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SUMMARY 
 

The breakdown of contaminants in soil resulting from microbial activity that is 

enhanced in the presence of the plant root zone (rhizosphere) has been termed 

rhizoremediation. To date, Australian native plants have not been assessed for 

their hydrocarbon rhizoremediation potential. The use of native plants offers an 

economically feasible and environmentally sustainable cleanup option for the 

rehabilitation and restoration of hydrocarbon contaminated sites in Australia. The 

aim of the study was to evaluate the potential of Australian native grass species 

for the rhizoremediation of aliphatic hydrocarbon contaminated soil from a mine 

site.  

Candidate Australian native grass species (Poaceae) were selected following the 

development of essential and desirable growth criteria. Nine perennial Australian 

grasses were evaluated for seedling emergence in sandy loam soil sourced from a 

mine site which was artificially contaminated with a 60:40 diesel/oil mix at 

concentrations of 30 000 mg/kg, 10 000 mg/kg, 5 000 mg/kg and 0 mg/kg 

(control). Seedling emergence was not adversely affected by the presence of 

hydrocarbon contamination at the exposed concentrations for eight of the nine 

species studied (p > 0.05). Three promising species were assessed for relative 

growth performance in diesel/oil contaminated (10 000 mg/kg, 5 000 mg/kg) and 

uncontaminated (control) soils in greenhouse studies to assess their tolerance of 

aliphatic hydrocarbon contaminated soil.  

Cymbopogon ambiguus (Lemon Scented grass) is a summer growing perennial 

with widespread distribution throughout Australia including the region where the 

mine site is situated. Brachiaria decumbens (Signal grass) (naturalised) is 

adapted to humid tropical areas of Australia and is native to the site and sourced 

from seed banks. Microlaena stipoides (Weeping grass var. Griffin) is a cool 

season grass, widely distributed throughout Australia in moister regions. The 

three evaluated species survived for 120 days in the diesel/oil contaminated soil 

at the exposed concentrations without adverse growth affect (p > 0.05). In some 

instances (e.g. C. ambiguus) growth stimulation occurred in the presence of 

 i



contamination producing significantly more root biomass compared with the 

control (p < 0.0001).  

Most hydrocarbon degradation is believed to occur through microbial processes, 

and so the plant-associated microbial community was examined in the three 

tolerant species. The assessment of the influence of grass on the abundance and 

activity of microorganisms in the rhizosphere revealed species-specific plant-

induced changes in the soil microbial community. Selective enrichment of 

hydrocarbon degrading microorganisms was demonstrated in the rhizosphere soil 

of the Australian grasses tested, to varying degrees. C. ambiguus appeared to 

have the greatest influence on stimulation of hydrocarbon degrading 

microorganisms, followed by the cool season grass M. stipoides. B. decumbens 

showed consistently lower numbers of hydrocarbon degrading microorganisms in 

rhizosphere soil over time compared to the other two species (p < 0.01). The 

influence of grasses on microbial community structure (defined as community 

DNA fingerprint) in diesel/oil contaminated soil suggested no new microbial 

population was favoured by the grasses (qualitative shift), rather there were 

relative quantitative changes in existing members of the microbial population. 

Soil lipase activity did not appear to be an optimal bioindicator of 

rhizoremediation and may encompass total soil microbial activity not exclusively 

the hydrocarbon degrading microorganisms of interest. 

The assessment of biodegradation of hydrocarbons in soil is essential to 

characterise the effectiveness of plant species in rhizoremediation. Residual 

diesel and oil concentrations (as total petroleum hydrocarbons, TPH) were 

measured using Gas Chromatography. The presence of single species 

successfully enhanced the removal of hydrocarbons from soil (for all species). 

All showed significantly lower residual hydrocarbon concentrations than those in 

unplanted soil after 100 days (p < 0.01). Significantly, it was not necessary to 

add N and P to achieve up to 90% reduction in hydrocarbon concentrations in the 

soil. The relative performance of each grass species varied. In soil planted with 

C. ambiguus hydrocarbon concentrations were reduced faster and to a greater 

extent than the other species studied, from 10 000 mg/kg to approximately 1 100 

mg/kg TPH (88% removal). Similar endpoint success was recorded for              
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M. stipoides which facilitated 80% reduction in hydrocarbon concentrations. 

Interestingly,    B. decumbens (the only naturalised species) did not perform as 

well as the other species (although still significantly better compared to 

unplanted controls), with hydrocarbon concentrations reduced to approximately  

4 500 mg/kg (49%). Hydrocarbon concentrations in unplanted (control) soil were 

reduced by 45% through natural biodegradation processes. Plant root and shoot 

tissue was periodically assessed for hydrocarbon accumulation and was shown to 

be negligible. A multispecies planted trial using C. ambiguus plus B. decumbens 

had no additional influence on total TPH removal. The final TPH removal 

efficiency in the multispecies trial was not significantly different (p > 0.05) from 

that of the best single species performer of the two i.e. C. ambiguus. In a field 

application the planting of multiple species may still be desirable in order to 

preserve site biodiversity and assist rehabilitation of the area. 

A strong relationship between abundance of hydrocarbon degrading 

microorganisms in the rhizosphere and hydrocarbon biodegradation was 

demonstrated for all species (p < 0.01). Those species which showed greatest 

stimulation of the microbial population resulted in enhanced TPH removal from 

soil. These species were the summer grass C. ambiguus and the winter species M. 

stipoides. This may allow for broader application both seasonally and 

geographically across Australia. B. decumbens showed successful 

rhizoremediation to a lesser degree, but may still be an option in multiple 

planting strategies.    

This investigation identified three Australian grass species (from the nine 

evaluated) that are candidates for further investigation for in situ 

rhizoremediation potential at field scale.  
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