
Chapter 3

Related work

Since Wilhelm Roentgen discovered the existence of x-rays in 1895 [46], medical imag-

ing has advanced at a tremendous rate, with x-rays, fluoroscopy, ultrasound, CT, MRI,

positron emission tomography (PET) and single photon emission computerised tomog-

raphy (SPECT) becoming fundamental diagnostic tools in modern healthcare. The

developments in medical imaging technology are likely to advance into this century

[109], in part due to the rapid advances in computer technology. At present, most

systems do not directly utilise the acquired images, but instead rely on the subjective

findings from a human observer. Therefore, in addition to the hardware improvements

that will allow more accurate medical images to be acquired, there will undoubtedly

be further progress on computer aided diagnosis and computerised decision support in

medical imaging.

Computers have been used in medical imaging for many years, with their initial

application focusing purely on administrative functions. Early radiology information

systems (RIS) were developed in the 1970s for billing and patient registration. Nuclear

medicine was the first specialty to actually utilise computers in imaging, closely followed

by digital subtraction angiography (DSA) for interventional radiology. Both CT in the

1970s and MRI in the 1980s relied on computers to reconstruct medical images from

the raw collected data. In the late 1980s PACS became more common, replacing

the traditional hard-copy based methods of managing medical images. Today, most

hospitals are becoming increasingly more reliant on both RIS and PACS for both

patient management and digital medical imaging [11].
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Currently, two of the most popular areas of two-dimensional medical imaging re-

search are computer-aided diagnosis (CAD) of breast lesions from mammographic im-

ages and automatic segmentation of medical images using deformable models. CAD

has the potential to be a useful tool for the radiologist, by drawing attention to partic-

ular findings on the image, highlighting changes from previous images, or quantifying

the size, shape and texture of features. Some CAD systems are used for image reg-

istration, virtual interaction, visualisation, simulation or training. At present CAD is

used for the identification of clustered microcalcifications and masses in breast tissue,

that are visible on a mammogram [28]. These systems are reportedly already capable

of detecting possible malignant tumors with greater accuracy than most radiologists

and equal to that of the best mammographers [11]. The number of false positives is

still high, but according to Arenson et al. [11], having the system call attention to

possible abnormalities is as good or better than a reading by a second radiologist.

They also suggest that this type of aid could help reduce the variability in detecting

abnormalities.

Interpretation of any medical image is a difficult problem, because a non-trivial

algorithm will utilise some kind of automated system to understand the information

contained within the image. Automated detection of fractures in x-ray images is one

such problem. In some cases the general shape, orientation or location of the object of

interest is known, and can be used to constrain a model so that analysis can take place.

However in many cases this information is unknown, complicating the analysis greatly.

While there have been attempts to solve many medical image analysis problems, very

few of them have involved automated fracture detection. This chapter examines some

published methods for automatically detecting fractures, as well as some relevant bone

segmentation methods.

3.1 Computer aided diagnosis

There is very little literature related to computer aided fracture detection, but some

relevant work has been performed on detection of osteoporosis and bone age estimation.

Of most interest is the work initiated by Tian et al. [105], who have created a computer
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algorithm to detect femur and radius fractures.

3.1.1 Femur and radius fractures

The method outlined by Tian et al. [105] detects femur fractures by computing the angle

between the axis of the neck of femur, and the axis of the shaft. This measurement is

made in three stages. The first involves extraction of the femur contour, the second

involves the measurement of the neck-shaft angle (NSA, shown in Figure 3.1a), and

the third is a classification of the measured angle. Extraction of the femur contour

is not described in detail, but is said to be performed using Canny edge detection,

Hough Transform, and active contours. Testing of this algorithm in [110] showed that

the fracture detection rate was 61.5%. The results show that this method was only

capable of detecting severe femur fractures that caused significant changes in the angle

between the neck and the shaft. In many cases the neck of femur was fractured without

displacing or rotating the head, and the resulting local disruption to the trabecular

pattern was not detected. An example showing the results for both fractured and

unfractured femora is shown in Figure 3.1b and c.

To overcome the problems that resulted from only measuring macroscopic changes

to the bone, Yap et al. [110] developed a complementary method of detecting femur

fractures, involving analysis of the disruption to the trabecular patterns present in

the femoral neck. Their method also consisted of three stages, the first of which

extracted the femur contour, the second analysed trabecular texture, and the third

performed classification. To extract the femur from the image they used an active shape

model—a snake (Section 3.2.1 on page 42) with gradient vector flow [104]—that was

supplemented with active appearance models at distinct feature points. The anatomical

structure of the bone in the neck of femur permits fracture detection by analysis of

trabecular orientation, since these type of fractures cause significant disruption to the

texture pattern. The dominant orientation of the texture is determined at a series of

sampling locations within the femoral head using a set of Gabor filters (shown in Figure

3.2a and b for unfractured and fractured femora), referred to as Gabor orientation

(GO) maps. Classification was performed using both a Bayesian classifier and Support

35



(a)

(b)

(c)

Figure 3.1: (a) Measurement of the femoral neck shaft angle (NSA), with (b) unfractured
examples, and (c) fractured examples. Replicated from Tian et al. [105].
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(a)

(b)

Figure 3.2: Gabor texture orientation maps of (a) unfractured and (b) fractured femora.
Replicated from Yap et al. [110].

Vector Machine (SVM). The femoral neck was classified as fractured if either of the two

classifiers or the NSA method classified it as fractured. This yielded a detection rate of

84.6%. While this method produced good results, it is only suited to the femoral neck,

and cannot be adapted to other bones. Both methods also require a large amount

of manual interaction, since segmenting the femoral neck typically requires a dozen

initialisation points for the active contour.

A further refinement of these methods was undertaken by Lim et al. [59], who mod-

ified the feature extraction stage of the algorithm to include Markov Random Fields

(MRF) and intensity gradient direction (IGD) to the existing method of NSA and GO

maps. The classification methods in [110] were unmodified. If any two of the six classi-

fication methods were positive then the bone was classified as fractured. This produced

an improved fracture detection rate of 92.2%, with a false positive rate of 1%. They

also showed that the fracture detection rate of individual classifiers is not very high,
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but they can be used to complement each other to give significantly improved classifi-

cation accuracy. When tested on images of the radius, this same method produced a

fracture detection rate of 82.6% with a false positive rate of 17.6%. Normal structures

such as growth plates were often falsely classified as fractures. Finally, Lum et al. [65]

improved the detection accuracy and sensitivity by combining classifiers. The three

texture features utilised were again GO, MRF and IGD. This time, classifiers were

combined using a number of rules such as max, min, sum, product, majority vote and

the simple m-of-n (including OR and AND). They concluded that the OR rule (1-of-n)

had the highest sensitivity and comparable accuracy.

3.1.2 Osteoporosis

Most research involving the analysis of orthopaedic x-ray images has been focussed on

detecting osteoporosis and determining fracture risk, using methods such as texture

and fractal analysis. Some groups [40, 63, 80] have used first order statistics such as

the standard deviation and mean to measure texture, while others [71, 107] computed

second order texture statistics like the co-occurrence matrix. Other methods such as

surface area measurement [24], semi-variance [55] and power spectral analysis to deter-

mine the fractal dimension [23] have also been used to detect osteoporosis. Caligiuri et

al. [24] found that in some cases their method was capable of distinguishing fractured

specimens from normal specimens. Fractal analysis was applied to the micro x-ray

images of human knees by Lynch et al. [66], while a multi-resolution wavelet technique

was used by Matani et al. [70] to analyse the micro x-ray CT images of rat lumbar

vertebrae. While this work is related, both used micro x-ray images rather than normal

diagnostic x-rays.

3.1.3 Bone age estimation

In pediatrics, bone age estimation (BAE) is an important application of hand radiog-

raphy, especially for the diagnosis of growth disorders and endocrinological problems

[39]. A comparison of chronological age and skeletal age can indicate atypical skeletal

development, as well as serve as an indication of any therapeutic effects of treatment.
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Figure 3.3: Carpal-bone region of interest division, to which the classifier is applied to
determine bone age. Replicated from Fan et al. [39].

Skeletal maturity of a child can be determined from a standard radiograph of the ossi-

fication centres in the left hand and wrist, using one of a number of established clinical

methods [78], including the Tanner and Whitehouse method, and the Greulich and

Pyle method [74]. In the Tanner and Whitehouse method, 20 regions of interest in the

hand are considered. The development of each region is classified into discrete stages,

and given a numerical score. The sum of scores for all the regions produces a maturity

score. The Greulich and Pyle method requires the comparison of all the bones in the

hand and wrist against reference radiographs at different ages. Bone age estimation

is a very subjective process, so the results are highly dependent on the expertise and

experience of the assessor [39]. Like automatic fracture detection, automatic skeletal

age assessment can potentially reduce the time required to examine an image, and also

produce better repeatability.

To automatically determine bone age, Fan et al. [39] uses carpal bone features that

are extracted using a 2-stage edge detection method, as well as a projection based

method for determining the carpal bone region of interest (shown in Figure 3.3). The

extracted features are applied to three classifiers, weighted minimum distance, Bayes,

and a neural network. The Bayes and neural network classifiers produced the best

results with an accuracy of over 90%, with best results occurring with children under

the age of seven. In contrast, Niemeĳer et al. [78] constructed mean images for each

of the Tanner and Whitehouse regions (Figure 3.4a), and then trained an active shape
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model to segment these regions in the input image (Figure 3.4b). The mean images

were then aligned to the segmented regions using Procrustes analysis (Figure 3.4c), and

the correlation between the two was calculated to produce a region score. Either the

highest correlation is used to determine the maturity score, or the values are used as

features and a classifier was trained to determine the score. The accuracy was stated

to be 73%. The method relies on accurate segmentation of the bones by the active

shape model. In a number of cases the segmentation is poor (right side of Figure 3.4b)

because some natural anatomical variations do not match the model.

3.1.4 Non-visual fracture detection

Other groups have attempted to detect fractures using non-visual techniques. Ryder et

al. [91] analysed acoustic pulses as they travelled along a bone to determine if a fracture

was present, Kaufman et al. [54] analysed mechanical vibrations in a bone using a

neural network model, and Singh and Chauhan [96] measured electrical conductivity.

Unfortunately none of these techniques are as accurate as x-rays for the diagnosis,

localisation and classification of long-bone fractures, and as a result they are not used

in a clinical setting.

3.2 Automatic image segmentation

As mentioned throughout Section 3.1, the extraction of features from the image is a

significant problem. This is because the anatomical structures present within medical

images are generally very complex, both inter- and intra-subject variability is enor-

mous, and the data sets are generally very large. In addition noise, sampling artifacts

and spatial aliasing can cause the boundaries of the structures of interest to become

indistinct or disconnected, so it is often a challenge to extract boundary elements be-

longing to the same structure [73]. Traditional low-level image processing techniques

that consider only local information can make incorrect assumptions during the seg-

mentation process and generate infeasible object boundaries. For many applications a

complete and accurate segmentation is essential, however many systems either suffer

from poor results, or require expert human intervention [34]. The accurate identifica-
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(a)

(b)

(c)

Figure 3.4: (a) Calculation of a mean image for a particular stage by orthogonal projection.
(b) Some examples of the segmentations performed using their active shape model (ranked
from best to worst). (c) Correlation of the identified points in the query image (L) and the
mean image (R) is used to determine the bone age. Replicated from Niemeĳer et al. [78].
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tion and segmentation of bones from a digital x-ray image is a necessary step for the

automatic detection of fractures and other abnormalities. A number of groups have

been working on different methods of automatically segmenting and identifying various

bones from medical images. This section gives a very short and general introduction

to deformable models, and demonstrates their use on a sequence of medical images. It

also examines the relevant work that has been performed on segmenting the vertebrae,

the bones in the arm and other long-bones, as well as other anatomical structures.

3.2.1 Deformable models

Many structures have been semi-automatically segmented from medical images using

deformable models, such as geometric active contours, otherwise known as “snakes”. A

deformable model is active in the sense that it can adapt itself to fit the given data. It is

a useful shape model because of its flexibility, and its ability to both impose geometric

constraints on the shape and to integrate local image features. Given an input image,

the objective is often to produce complete and accurate contour line of a specific object

within the image. A simple pixel-based identification is not satisfactory since a full

mathematical and analytical description of the contour lines is desired.

The snake is an iterative algorithm first proposed in Kass et al. and Terzopoulos

et al. [53, 101, 102] that can produce a good contour-line description. The current

iteration of the algorithm receives as input the previous contour line and uses some

balancing constant factors to produce a new contour line representation. Two forces

are measured, an internal force that estimates the length and smoothness of the line

(lower values produce a smoother and shorter line, forcing the contour inwards), and

an external force from the gradient of the image pixel intensity (so major changes in

the output values occur when the coordinates are close to the edges of the desired

object). Iteratively minimising the resulting potential energy function produces the

best estimate of the real contour. Since the use of non-geometric function parameters

can cause the absence of a minimum value, or dual values, geometric parameters are

used. A level set approach can be used to solve this problem, although it does not

produce a meaningful analytic solution. This can be obtained by combining these
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Active snake deformation. (a) Intensity CT image slice of the left ventricle. (b)
The edge detected image. (c) The initial snake. (d-e) The snake deforming toward the
ventricle boundary, driven by the inflation force. (f) The final contour matches the

ventricular wall. Adapted from McInerney and Terzopoulos [73].

two concepts, which is termed geodesic active contours. An example showing the left

ventricular segmentation produced by the snake model is shown in Figure 3.5.

This snake model provides a powerful interactive tool for image segmentation. How-

ever it uses strictly local information, so the original implementation is vulnerable to

image noise and the initial position of the snake. In the literature, many provisions

have been made to improve the robustness and stability of the snakes. Some of these

[31] allow the snake to trespass spurious isolated weak image edges, and counter its

tendency to shrink. This produces a snake that is more robust to the initial position

and image noise, but human intervention is needed to decide whether an inflationary

or deflationary force is needed. In addition, deformable models also require manual

intervention to set the initial contour line that is to be deformed, often a difficult image

processing task in itself. Nevertheless, active contours have been successfully extended

to perform tasks such as edge and subjective contour detection, motion tracking, stereo

matching and image segmentation. Indeed, some of the applications in the following
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sections utilise active contours for segmentation tasks.

3.2.2 Vertebrae

Determining the location of the cervical vertebrae in x-ray images is an important

problem that has been addressed by Tezmol et al. [103]. A robust segmentation method

that utilises the generalised Hough Transform is used to find estimates of the location

and orientation of the cervical vertebrae, independent of the image scale or rotation.

Their customised approach to the generalised Hough Transform identifies objects based

on shape, and exploits the shape information embedded in the Hough domain so that

the effects of noise and occlusions are minimised. The generalised Hough Transform is a

template-based technique that searches the target image for instances of the previously

defined template. The use of multiple templates to capture the variability in shape

is ideal, but the use of a collection of templates is very computationally expensive.

Therefore the authors found the mean of 50 template images, to create a single template

that best represents the target. Peak detection in the accumulator space then yields

the spatial coordinates, scale and angle of rotation of the best matches to the template.

Landmark points were placed on the image by a radiologist (Figure 3.6), and the

algorithm was tested against this by placing a bounding box at the site of the best

template match. Using their proposed technique, an average of 72 out of 80 land-

mark points fell inside the bounding box, and the average orientation error was 4.16

degrees. However, the bounding box is very large, and its placement does not appear

to be specific. Identification of fractures within the bounding box would certainly be

a worthwhile, but as yet undocumented, task.

3.2.3 Tubular structures

There has been a substantial amount of work on the computer assisted radiological

detection of tubular structures, such as lung bronchi and blood vessels, much of which

has been performed using deformable models [76]. These models are well suited to

repetitive tasks that are not necessarily difficult to perform manually, but are often

relatively time consuming. Such tasks include automatically following and segmenting
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Figure 3.6: The detected cervical vertebrae. Replicated from Tezmol et al. [103].

blood vessels through three-dimensional CT or MRI image slices, or tracing vessels

in angiographic images. In these cases it is not difficult to manually draw the initial

contour, and then allow it to deform to fit the structure of interest, thus substantially

reducing the manual segmentation time. For large structures like long-bones, that

contain a complex internal texture and a complex projected two dimensional shape,

these methods will not necessarily produce good results, and since manual setup is

usually required, fully automatic segmentation is difficult to achieve.

3.2.4 Arm fractures

The segmentation of fractured bones within an x-ray image of a patient’s arm is out-

lined by Jia and Jiang [51]. They utilise a geodesic active contour model with global

constraints to identify bones within the arm. This procedure involves collecting a prior

shape that is to be detected, and using this as the global constraint within the model.

This allows the model to evolve toward the desired shape, and to register with the prior

shape. To determine how good the fit is, a maximum-likelihood function is derived,

and provides feedback at each step of the evolution.

Jia and Jiang [51] state only that they have tested their algorithm on “more than

10 cases”, and that their results showed that their algorithm is “robust and accurate”,

however without additional information their results are hard to quantify. Nevertheless,
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an example of their work is shown in Figure 3.7. The initial position of the evolving

curve is shown in orange in Figure 3.7a. The curve was allowed to evolve until the

energy of the evolving function was minimised, and the result is shown in purple.

Figure 3.7b shows their “bone alignment calculation result”, although no details were

provided within the text about how this is achieved, or how well their method performs.

One major advantage of their method is that it can be used when the arm is covered

by a casting material that typically interferes with the segmentation by reducing the

signal to noise ratio, although it is not clear if the other described methods would

also perform well in this situation. The major drawback with this method is that

it requires a prior shape that must be very similar to the shape to be detected. By

examining Figure 3.7a, it is possible to see that the prior shape and final evolution

are essentially identical, other than their rotation about the centroid of the shape. Of

course, it is often impossible to know the prior shape without first performing a manual

segmentation, as has most likely been done in this case. Therefore this method would

have extremely limited real world applications, as it presumably requires an accurate

prior shape, as well as relatively precise placement of the prior shape within the image.

3.2.5 Long-bones

A model based bone segmentation method, specifically designed for long-bones is out-

lined by El-Kwae et al. [38]. Like the bone age estimation method described by Niemei-

jer et al. [78] in Section 3.1.3, their model is based on the knowledge of statistical varia-

tions in anatomical data that were collected by analysing diverse bone shapes. A bone

is then modelled as two centroid points that correspond to each of the epiphyses, with a

range of weighted values for the distances between the centroid and the boundary. For

a positive match (Figure 3.8), a strong edge belonging to the boundary of the shape

should be present within the calculated ranges. No results for their work are presented,

however their model shows a huge amount of anatomical variation, that would most

likely reduce the precision of any match. In addition, they also only show detection of

a single long-bone within an image, without any subsequent segmentation. No other

solutions to the problem of fracture detection in long-bones were found.
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(a)

(b)

Figure 3.7: (a) Experimental results, in which the initial curves are shown in orange, and
the final results in purple. (b) Their bone alignment calculation result. Replicated from Jia

and Jiang [51].
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(a)

(b)

(c)

Figure 3.8: (a) The anatomical model of diverse humerus shapes. (b) A partial humerus
detected, and (c) no humerus detected. Replicated from El-Kwae et al. [38].
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3.3 Thesis aim

The previous sections have identified the related work that has been performed on

both computer aided diagnosis and medical image segmentation. This search revealed

that there is no evidence of complete solutions to the problem of semi-automatic long-

bone fracture detection. This section summarises the previous work and identifies its

limitations, it establishes what has not been done before and what needs to be done,

and also describes the aims of this thesis.

3.3.1 Summary of the previous research

The literature review revealed that in comparison to some areas of medical imaging,

such as microcalcification identification in mammograms, very little research has been

published on bone fracture detection. Sections 3.1 and 3.2 described all the relevant

work that was found. To summarise, the CAD and segmentation literature that is

specific to bones is:

• Detection of femur fractures using the NSA (Section 3.1.1)

• Detection of femur fractures using Gabor orientation maps (Section 3.1.1)

• Detection of osteoporosis from texture and fractal analysis (Section 3.1.2)

• Bone age estimation by model matching and classification (Section 3.1.3)

• Segmentation of cervical vertebrae using a generalised Hough Transform that

searches the image for a previously defined template (Section 3.2.2)

• Arm bone segmentation using a prior shape and maximum-likelihood function

(Section 3.2.4)

• Long-bone segmentation using a model created from statistical variations in

anatomical data from diverse bone shapes (Section 3.2.5)

These methods all work with varying degrees of accuracy, but they also all suffer from

some type of limitation. In most cases the first major limitation is that they were not
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designed for long-bone fracture detection. However, the arm bone segmentation and

long-bone segmentation methods appear to be insufficient.

3.3.2 Common limitations of the previous research

Amongst all the methods that were described in this chapter, three common limita-

tions were identified. The first limitation was the requirement for finding an accurate

model for many of the methods, before any analysis can be performed. This was neces-

sary for the neck shaft angle calculation, bone age estimation, long-bone segmentation

(including the arm fractures) and the vertebral segmentation. Some of these meth-

ods required particularly strict models, for example the arm fracture segmentation

appeared to require a very accurate model to be manually created before matching

could be performed.

Secondly, in some cases the models were limited and did not necessarily match

well. An example of the poor detection produced by El Kwae’s model is shown in

Figure 3.8. Although not all authors showed these poor matches, it is highly likely

that their methods suffered from similar problems. Some methods traded the accuracy

with which they could match any one individual case for a better global detection,

by creating a mean image from a large number of images that captured the natural

anatomic variation.

The final common limitation was that the methods that utilised active contours,

such as the neck shaft angle calculation and bone age estimation, required strict initial

conditions to produce a good segmentation. Without good initial conditions the final

contour does not match the object accurately. To determine the initial conditions it is

assumed that manual setup is required. Active contour methods also perform better

when used to segment tubular structures, like those examined in Section 3.2.3, but are

not so successful for complex shapes like bones and joints. Accordingly, active contours

are not utilised within this thesis.
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3.3.3 What has not been done before

In addition to identifying the previous work that has been performed, the literature

review also effectively identified what has not yet been achieved in the field of frac-

ture detection in long-bones. Firstly, despite locating information about the various

segmentation methods already described, there was no information about methods for

automatically segmenting long-bones into their anatomic regions, as defined by the AO

method in Section 2.5.1 and Figure 2.10. Secondly, there are no algorithms for detect-

ing fractures within long-bones, other than the neck of femur as described in Section

3.1.1.

3.3.4 Thesis aims and goals

Based on the previous work discussed throughout this chapter one major goal was clear.

A better long-bone fracture CAD method needed to be developed, to aid the radiolo-

gist in reducing the fracture miss rate by minimising the SOS effect, and subsequently

improving patient treatment outcomes. As with other CAD systems for medical imag-

ing, the radiologist does not necessarily want a complete system to detect fractures

without any human intervention. A completely autonomous system would place all

the responsibility of the diagnosis on this system, ultimately rendering the radiologist

unnecessary. Instead, an algorithm that can highlight the regions that are of concern

and should be looked at more carefully, possibly after the radiologist has already per-

formed their preliminary diagnosis, would be of great value. This is similar to state of

the art mammogram reading, where a computer is used to highlight areas of interest,

rather than providing a diagnosis without any intervention or manual reading by the

radiologist. In this way, the well trained eye of the human observer is supplemented

with a computer system that can ensure that any regions missed on the initial reading

are brought to the attention of that observer, before the final diagnosis is completed.

In order to produce a better CAD system for long-bone fracture detection, two

major goals were identified:

1. To create a semi-automatic long-bone segmentation method to identify the differ-

ent regions of a long-bone, so that the diaphyseal and epiphyseal segments could
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be separated.

2. To create a semi-automatic long-bone fracture detection method that could iden-

tify fractures within the diaphyseal segment of the bone. The fracture detection

algorithm should be able to detect all fractures within the diaphyseal segment

with the smallest possible number of false negatives and false positives. That

is, it should increase both the accuracy and reliability of detecting all long-bone

fractures, and as a byproduct it should also ultimately reduce the fracture miss

rate. Finally, the algorithm should perform the fracture detection with a minimal

amount of user input, and in the shortest time possible.

Although it is desirable to detect all fractures within the diaphyseal segment, the pri-

mary objective is to detect the very subtle fractures that are not obvious to an untrained

observer, and are more likely to be missed by a radiologist during reporting. It is possi-

ble that the fractures that are most obvious to humans are also the hardest for a CAD

system to identify. As a result, the computer can add value to the detection process by

complementing rather than replacing human experts. However, to achieve the second

goal stated above, detection of both subtle and obvious fractures is attempted within

this thesis. In addition, although Section 2.5.1 stated that long-bone fractures were

chosen for initial fracture detection, hopefully this type of algorithm could eventually

be used for detecting fractures in other anatomic regions, and eventually in all bones

throughout the body.

The novel CAD algorithm for fracture identification developed in this thesis consists

of four key components that are covered in the following chapters:

1. Extraction of the bone edges (Chapter 4)

2. Determination of global parameters that are used to approximate the pertinent

bone edges (Chapter 5)

3. Long-bone diaphysis identification using the global parameters and a bone cur-

vature based segmentation method (Chapter 6)

4. Highlighting the abnormal parts of the segmented region using gradient analysis

(Chapter 7)
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