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Abstract

In this thesis, we describe several imaging techniques specifically designed and
developed for the assessment of pulmonary structure, function and pathology. We
then describe the application of this technology within appropriate biological
systems, including the identification, tracking and assessment of lung tumors in a

mouse model of lung cancer.

The design and development of a Large Image Microscope Array (LIMA), an
integrated whole organ serial sectioning and imaging system, is described with
emphasis on whole lung tissue. This system provides a means for acquiring 3D
pathology of fixed whole lung specimens with no infiltrative embedment medium
using a purpose-built vibratome and imaging system. This system enables spatial
correspondence between histology and non-invasive imaging modalities such as
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET), providing precise correlation of the underlying
“ground truth” pathology back to the in vivo imaging data. The LIMA system is
evaluated using fixed lung specimens from sheep and mice, resulting in large, high-
quality pathology datasets that are accurately registered to their respective CT and

H&E histology.

The implementation of an in vivo micro-CT imaging system in the context of
pulmonary imaging is described. Several techniques are initially developed to
reduce artifacts commonly associated with commercial micro-CT systems, including
geometric gantry calibration, ring artifact reduction and beam hardening correction.
A computer controlled Intermittent Iso-pressure Breath Hold (IIBH) ventilation
system is then developed for reduction of respiratory motion artifacts in live,
breathing mice. A study validating the repeatability of extracting valuable
pulmonary metrics using this technique against standard respiratory gating

techniques is then presented.

The development of an ex vivo laser scanning confocal microscopy (LSCM) and an
in vivo catheter based confocal microscopy (CBCM) pulmonary imaging technique

is described. Direct high-resolution imaging of sub-pleural alveoli is presented and



an alveolar mechanic study is undertaken. Through direct quantitative assessment of
alveoli during inflation and deflation, recruitment and de-recruitment of alveoli is
quantitatively measured. Based on the empirical data obtained in this study, a new

theory on alveolar mechanics is proposed.

Finally, a longitudinal mouse lung cancer study utilizing the imaging techniques
described and developed throughout this thesis is presented. Lung tumors are
identified, tracked and analyzed over a 6-month period using a combination of
micro-CT, micro-PET, micro-MRI, LSCM, CBCM, LIMA and H&E histology
imaging. The growth rate of individual tumors is measured using the micro-CT data
and traced back to the histology using the LIMA system. A significant difference in
tumor growth rates within mice is observed, including slow growing, regressive,
disappearing and aggressive tumors, while no difference between the phenotype of
tumors was found from the H&E histology. Micro-PET and micro-MRI imaging
was conducted at the 6-month time point and revealed the limitation of these
systems for detection of small lesions (<2mm) in this mouse model of lung cancer.
The CBCM imaging provided the first high-resolution live pathology of this mouse
model of lung cancer and revealed distinct differences between normal, suspicious
and tumor regions. In addition, a difference was found between control A/J mice
parenchyma and Urethane A/J mice ‘normal’ parenchyma, suggesting a “field
effect” as a result of the Urethane administration and/or tumor burden. In
conclusion, a comprehensive murine lung cancer imaging study was undertaken, and

new information regarding the progression of tumors over time has been revealed.
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