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Abstract
Towards Understanding Reality using Dynamical 3-Space Theory

by David P. Rothall

This dissertation extends on an alternative model of reality known as Dynamical

3-Space theory. Chapter 1 introduces the incidents in history which lead to the

development of Newtonian Gravity and General Relativity models, and explains

how these models require additional parameters to explain astrophysical and cos-

mological phenomena. Chapter 2 introduces Dynamical 3-Space theory, which is

a unique generalisation of Newtonian gravity cast into an inflow formalism. This

model contains two parameters, namely Newton’s gravitational constant G and

the fine structure constant α ≈ 1/137 and where all emerging phenomena such

as space and quantum physics are unified. Evidence supporting the Dynamical

3-Space theory is presented later in chapter 2 while the following chapter then

discusses known solutions to the model, including the emergence of gravity as a

quantum effect, black hole and filament solutions, and also that of the universe’s

expansion in terms of a Hubble flow.

My original contribution to knowledge begins in Chapter 4, which analyzes data

from two experiments by Cahill that suggest that fluctuations in radio-frequency

signals and tunneling currents are nonrandom, and can be explained by the pres-

ence of a dynamical and fractal space. These works are shown to be new methods

of detecting the similar nonrandom effects that Simon Shnoll observed in his ex-

periments throughout his career, especially that of radioactive decay. Chapters 5

- 7 extend on Dynamical 3-Space theory, with chapter 5 discussing a modification

to account for the borehole g anomaly while checking that the model still accounts

for known astrophysical and cosmological data. Chapter 6 then discusses the dis-

covery of a uniformly expanding universe, i.e. a parameter free Hubble fit to the

type 1a supernova data, along with a prediction of cosmic inflation solutions from

the newly modified Dynamical 3-Space equation. The final chapter studies black

hole solutions embedded in an expanding universe, required by the lack of a free

parameter within the Hubble flow, and then discusses a cosmic network of black

holes and induced filaments within an expanding universe.
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Introduction

The Earth travels around the Sun at approximately 30 kilometres every second.

Our Solar System travels at a speed of around 230 - 240 km/s within the Milky Way

galaxy. The galaxy is also moving universally - towards the Andromeda galaxy,

and the Hydra and Virgo clusters at a combined speed of over several hundred

kilometres per second. All of this is happening while the universe is expanding,

which has been the case for over 13 billion years. Astronomers knew substantially

less than this back in 1887, when Michelson and Morley’s interferometer experi-

ment was the first to study the absolute motion of Earth through space. At the

time it was believed through Kepler’s planetary observations and encompassed

in the Newtonian theory of gravity, that the universe was an empty unchanging

container that objects such as the Earth moved through. Because of this it was

believed that the only necessary motion to detect was that of Earth’s movement

around the Sun, which was assumed to be in a fixed position. We didn’t have the

knowledge nor the experimental capability to detect other relevant speeds such

as solar or galactic motion throughout the universe, nor realise that these speeds

might one day need to be taken into account.

If we knew in 1887 before performing the interferometer experiment about the high

speeds that we are currently travelling at through the universe, we’d have a much

better understanding of how the interferometer works. We would have a more

modern relativistic theory of the interferometer as opposed to that based on New-

tonian gravity, and Michelson and Morley would not have reported a null result so

1



Introduction 2

quickly. An interesting exercise would be to forget the Newtonian gravity model

and the theories of Special and General Relativity for a moment, and ask ourselves

what model of reality would ideally suit all of the experimental predictions that

we know today. Since the mentioned models are based on only a fraction of the

experimental phenomena that are known today, at first glance they are simply

inadequate to describe all of what is currently known. We would be immediately

taking into account Miller’s extensive interferometer observations, NASA space-

craft - Earth flyby Doppler shift data, flat spiral galaxy rotation curves, recession

of galaxies, supernova magnitude-redshift data... the list goes on, in order to

develop a model without any free parameters.

To this end, instead of following conventional physics my research extends on a

model of reality known as Dynamical 3-Space theory, and is a unique generalisation

of Newtonian gravity cast into an inflow formalism. The model therefore attempts

to explain observable phenomena at least from an absolute motion perspective,

i.e. by assuming the presence of a dynamical and fractal space which then influ-

ences measurements obtained during experiments. This means for example that

Maxwell’s equations as well as the Schrödinger and Dirac equations, are required

to be generalised to contain absolute motion effects as predicted by Dynamical

3-Space theory. The model is simple yet powerful - it predicts the emergence of

gravity as a derivable quantum effect, the equivalence principle, black holes, cosmic

filaments and the universe’s expansion as determined from type 1a supernova data.

Experimentally the model has been able to account for many other phenomena,

including the resolution of NASA spacecraft-Earth flyby Doppler shift anomalies,

predicting flat spiral galaxy rotation curves and accounting for the Milky Way

supermassive black hole data, all without requiring additional parameters. Some

of these observations don’t implicitly require the Dynamical 3-Space theory for an

explanation; any generic model which contains absolute motion effects is able to

explain these phenomena, as will be shown in this dissertation in the case for an
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expanding universe. Also shown here is a suggested modification to the Dynamical

3-Space theory to further account for the gravitational borehole g anomaly, and

also the discovery of new black hole solutions which are embedded in an expanding

universe.

Additional to extending on Dynamical 3-Space theory, this thesis also presents

the analysis of recent dynamical space detection techniques. The analysis is based

from Simon Shnoll’s research into nonrandom correlations in seemingly random

data sets arising mainly from protein activity, chemical reaction and radioactive de-

cay rates, semiconductor noise and fluctuations in gravitational antennae. Shnoll

spent over 50 years studying the similarities between the shapes of histograms

generated from 60 - 100 measurement data sets. He found periodic daily, yearly

and geographical correlations, gradual evolutions in histogram shape changes and

also observed characteristic histogram shapes during solar eclipses. Shnoll later

realised that the only way he could explain his results was if he assumed that

there were anisotropic fluctuations in the spacetime continuum. My contribution

to knowledge here is the analysis of two works by Cahill to show that they also

display the overall general nonrandom properties that Shnoll observed, and to ex-

plain these properties from a Dynamical 3-Space model viewpoint. These data

sets were generated from fluctuations in radio frequency electromagnetic waves

travelling through coaxial cables, and also from tunneling current fluctuations in

Zener diodes when operated in reverse bias mode. The short term effects Shnoll

discovered from histogram shape comparison are also discussed from a Dynamical

3-Space model viewpoint, to show that they also tie in with the growing amount

of evidence supporting a dynamical space-type theory.



Chapter 1

From Classical Physics to Big

Bang Cosmology

1.1 Introduction

There have been several major incidents in history stemming from the time of

Galileo Galilei (1564 - 1642) which have lead to the development of the Big Bang

Theory. These incidents arose from assumptions based on the limited knowledge

about reality at that particular time, and how these assumptions were then used

to guide future experiments. This chapter seeks to illustrate these incidents, and

how they then resulted in the introduction of the dark matter and dark energy

parameters within conventional physics models which were necessary to explain

phenomena that were later discovered.

1.2 Galilean Relativity

Before classical physics was developed, it was believed that a force was required

to keep an object moving. Galileo performed an experiment using marbles and 2
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inclined planes facing each other, where a marble was rolled down one side and

back up to the other side. By smoothing the planes he could get the marble to

roll up to the other side closer to the same height the marble started at. He

attributed the difference in heights to a frictional force, and hypothesised that

rolling a marble down a frictionless surface would then roll back up to the same

height it started at. He then supposed that a marble rolling down an inclined

plane and onto a frictionless horizontal surface would continue rolling forever,

thus forming the first concept of inertia. In his 1632 dialogue Concerning the Two

Chief World Systems[1] he related the inability to detect Earth’s motion through

space by considering a ship moving at constant velocity on a smooth sea, where

observers below the deck would not be able to tell whether the ship was moving

or not. He then put forth the first concept of relativity, where he assumed at least

from a modern point of view[2] that:

1. Absolute space exists, and is modelled as a Euclidean 3-space (E3) such that

the universe is an empty container which objects move through. Here the

space is not observable, dynamical nor has any structure,

2. Space and time intervals are recorded by observers using rods and clocks;

these intervals are not affected when moving, and

3. Velocities are measured relative to observers O and O′ for example, who then

relate their time and space coordinates by

t′ = t, x′ = x− V t, y′ = y, z′ = z (1.1)

where V is the relative velocity of the observers (here when both are moving

in the x-direction). The speed w of another object (in the x direction for

simplicity) according to each observer, is related by

w′ = w − V. (1.2)
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Galilean relativity (GaR) is then defined by the above assumptions, with equations

(1.1) and (1.2) forming the GaR Transformation. Isaac Newton used GaR to base

his model of relativity on, mainly his theory of gravity, to which General Relativity

then reduces to in the limits of low speeds and low matter densities.

1.3 Newtonian Gravity

Galileo is said to have dropped balls of different mass from the Leaning Tower of

Pisa to show that they have the same acceleration, although it is unknown as to

whether Galileo performed this experiment or not. This is the first mention of

the equivalence principle, where the acceleration of a falling object due to gravity

is independent of its mass, however the actual cause of gravity at the time was

unknown. Meanwhile, Kepler provided laws based on his observations on planetary

motions, and Newton later made a heuristic derivation of a theory of universal

gravitation based on these observations.[3] This model was based mainly around

the assumption that two massive objects mutually and instantly attract each other,

and not that there is an underlying phenomenon that causes gravity. Newton’s

theory, like Galileo’s, is also based from a series of assumptions. These include the

existence of:

1. A universal, or absolute time referred to as being on a one-dimensional line

(Galileo also assumed this). The events are said to occur depending on where

they lie on this line.

2. An absolute and infinite space, in which the absolute motion of a body occurs

in a way that the inertial motion of an object is uniform and linear, i.e. not

accelerating.

3. Infinitely many inertial reference frames which are of infinite size.
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4. Inertial reference frames move in all possible relative uniform motion, and

two frames are related by a Galilean transformation.

5. The magnitude of a gravitational force is proportional to the inertial mass mi

that it acts on. Here mi then also acts as a gravitational mass or charge, and

so mi = mg. This equality became known as the weak equivalence principle.

Newton openly declared that his theory was phenomenologically based, and that

he was simply axiomatising a set of observations currently known at a solar system

level. His model did not explain how gravity emerges, only a definition of what

was known about gravity and how it behaves locally. The inverse-square law of

gravity is one of Newton’s most famous equations, where the gravitational force

F between two objects m1 and m2 separated by a distance r, is

F =
Gm1m2

r2
(1.3)

where G is Newton’s gravitational constant and based on Kepler’s planetary mo-

tion observations in the solar system. Kepler’s laws were then explained, with

the famous relationship v2 α 1/r following from F = ma = mv2/r, i.e. Newton’s

second law expressed in the form of circular motion, showing how the square

of a planet’s orbital velocity is inversely proportional to the orbit’s radius. The

gravitational force was taken to act instantaneously, i.e. the well known ‘action-at-

a-distance’ expression, and could not be explained, only assumed to exist. Central

to Newton’s law being modelled from observations at a solar system level is the

gravitational potential V (r) = −MG/r which has an inverse distance relationship.

The potential V depends on the amount of matter M in the gravitational source,

and the strength of gravity is universally determined by the value of Newton’s

fundamental constant G. Newton’s theory was then taken to apply universally.

Here G is the only ‘universal’ constant in Newtonian Gravity (NG) and so is a one-

parameter theory, but it is always coupled to the product MG, and so it cannot
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be measured independently. This is shown by the irreproducibility in determin-

ing G experimentally,[4] where G measurements are performed in differing matter

distribution environments, some which deviate from spherical symmetry. The 1/r

dependence on the gravitational potential may not hold in all cases since there

are questions as to whether the Newtonian potential is applicable on all distance

scales. Newton’s equations are also spherically symmetric, and based on such ob-

servations (e.g. a planet orbiting the Sun). The universe is known to deviate from

such spherical symmetry, and so these two aspects challenge the claim that NG is

always applicable. If NG is the fundamental building block of conventional physics

models, then concerns can already be raised as to whether these models are most

ideal to help describe reality.

1.4 Special and General Relativity

Around 180 years passed before other building blocks of reality were discovered.

James Clerk Maxwell discovered how electricity and magnetism were related in his

theory published in A Treatise on Electricity and Magnetism (1881)[5] and that

light behaved as an electromagnetic wave. Maxwell described the interaction via

his 4 famous equations, with the result being the derivation of the speed of light

c. The existence of waves appeared to demand a medium to propagate through,

which was coined the luminiferous aether. At the time, the appearance of a ve-

locity in Maxwell’s equations lead to the belief that the equations only expressed

the speed of light in the rest frame of the aether, an unknown substance that

only the Earth travelled through as the Sun’s position remained fixed relative to

the aether. Testing of the existence of the luminiferous aether was achieved by

Albert Michelson, who conceived and developed an instrument with the inten-

tion of detecting the absolute motion of Earth around the Sun. The Michelson

interferometer compares the change in the difference between travel times, when
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the device is rotated, for two coherent beams of light that travel in orthogonal

directions between mirrors; the changing time difference being indicated by the

shift of the interference fringes during the rotation. With pointing one arm of

the interferometer at the Sun and the other along Earth’s orbit Michelson and

Edward Morley obtained a result of 8 km/s as the speed of Earth’s orbit around

the Sun,[6] and hence through the aether, as it was taken that only the Earth was

moving through the aether, and not the Sun as well. This was nowhere near the

predicted Earth’s orbit speed of 30 km/s, and the result was then declared null

despite a small effect actually being observed. Galilean invariance - the principle

that the fundamental laws of physics are the same in all inertial reference frames,

was derived as a result. Michelson and Morley’s interferometer results will also

be mentioned in more detail in chapter 2. Applying to NG meant that all rods

and clocks remain unaffected by a change in velocity. Fitzgerald (1889) and then

Lorentz (1892) then offered an explanation for the null result, namely that the

failure to get an effect was caused by the actual contraction of the arm moving

lengthwise through the absolute space. This became known as the principle of

Lorentz invariance, under which rods and clocks are affected by a change in ve-

locity as described mathematically by a Lorentz transformation. Michelson and

Morley’s reported failure to observe the aether drove Einstein’s 1905 paper On the

Electrodynamics of Moving Bodies,[7] where he dismissed the notion of the aether.

Absolute motion, i.e. motion relative to space itself had no meaning; it was in prin-

ciple not detectable in a laboratory setting. Motion of objects was always relative

to other objects, according to Einstein, i.e. Galilean invariance overruled Lorentz

invariance for every physical observation, and both time and length were forced

to be relative quantities. Using these assumptions Einstein went on to construct

the Special and then General Theory of Relativity, which uses the notion of four

dimensional spacetime to avoid any notion of absolute space. He first proposed

via two postulates that:
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• The laws of physics have the same form in all inertial reference frames.

• Light propagates through empty space with a definite speed c independent

of the speed of the observer (or source).

Einstein dismissed Newton’s notion of absolute time (and with it, absolute space),

but kept the idea of relative time which is measured with actual clocks associated

with local observers, i.e. each observer had their unique frame of reference and

their own unique rods and clocks - there now existed no absolute (universal) frame

of reference. In this theory, known as the Special Theory of Relativity (SR) time

is always connected to the actual clocks of observers, i.e. no universal ‘true’ time

for everybody to base their measurements from - it never flows equably for all

observers no matter how they are situated with respect to each other. This however

raised compatibility issues between NG and SR. From Newton’s first and second

laws, the gravitational force is proportional to the inertial mass of an object, and

all known experiments point to mg = mi to a great degree of accuracy. Einstein’s

SR was only valid for inertial reference frames, i.e. those without including the

effects of gravity. Newton’s ‘action-at-a-distance’ for gravity concept violated SR,

as in SR no information can travel faster than the speed of light. Experimentally,

NG could also not predict the correct orbit of Mercury due to its precession.

Einstein extended the theory to include the effects of gravity, i.e. reference frames

that are accelerating/changing velocity. His 1907 paper Principle of Equivalence

widened the scope of relativity to include uniformly accelerated motion of refer-

ence frames due to connections between such accelerated motion and gravitational

fields, i.e. no experiment can locally distinguish between the two. The equivalence

principle implied that geometry emerges from any suitable description of gravity,

thus the equivalence principle developed to become what is known as the General

Theory of Relativity (GR). Here GR is based off of a four dimensional construct
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known as spacetime, a combination of Galileo’s one dimensional time and New-

ton’s absolute space formalisms, where gravitational fields influence the structure

of spacetime through affecting light paths and spacetime intervals. Through relat-

ing Einstein’s field equations to the energy-momentum tensor determined by the

energy-matter density, the curvature of spacetime is determined, i.e. gravitational

force displays geometrical behaviour instead of that of a force. A ‘third’ postulate

was determined in that, in the limit of low speeds the gravity formalism should

agree with Newtonian gravity. At the time, the apparent successful application of

GR to (the then) currently observed phenomena such as the perihelion of Mercury

and light-bending due to gravity (Sun) lead to rapid recognition and acceptance

by the physics community.

1.5 Black Holes and Dark Matter

In 1916 Karl Schwarzschild derived a solution to the Einstein field equations for

the case of a single nonrotating massive object, i.e. describing the gravitational

field external to a spherical mass.[8] For a ‘point-like’ mass, the event horizon

(i.e. escape speed due to gravity being the speed of light) was defined to be

the Schwarzschild radius, i.e. the size of the event horizon as the distance at

which no information can escape the point-like mass. Chandrasekhar (1930)[9]

and Oppenheimer (1939)[10] predicted conditions in which stars would collapse to

form these ‘black holes’, the term coined by John Wheeler in 1967. Black holes

were found to exist at the centre of spiral galaxies in the assumed form of a point-

like mass, and the theoretical velocity of a mass in circular orbit around a black

hole is simply vO =
√
GM/r, obtained from equating Newton’s gravitational

force to that of centripetal acceleration. By knowing how fast objects orbit a

central point, its calculated mass can be then compared to the observed amount

of luminous matter present by the object. Dutch astronomer Jan Oort in the 1930s



Chapter 1. From Classical Physics to Big Bang Cosmology 12

used this technique at least for stellar motions in the local galactic neighbourhood,

indicating a mass around 3 times higher than that predicted by luminous matter

calculations.[11] He then predicted the existence of a non-luminous matter which

accounts for the apparent unseen mass present. In 1933 Fritz Zwicky also used this

technique except at a much larger scale, i.e. through studying velocity dispersions

in galaxies in the Coma galaxy cluster[12] and found the mass-to-light (ML) ratio

(ratio of apparent mass due to velocity dispersion, to luminous mass) to be around

50 (when using the currently known Hubble constant). Zwicky also concluded

that a new form of non-luminous matter is present to account for the high velocity

dispersions which he coined ‘dark matter’. Zwicky’s work was largely ignored for

decades however Smith (1936)[13] suggested that the Virgo Cluster presented a

similar problem, and Babcock (1939),[14] Rubin & Ford (1970)[15] and Roberts

& Winehurst (1973)[16] reported that the outer regions of the Andromeda (M31)

galaxy rotated with higher velocities than predicted by the Keplerian drop off

rate (the rotation curve even appeared ‘flat’) although Zwicky was rarely cited in

articles. Roberts & Winehurst noted that the galaxy mass appeared to increase

while the luminous mass did not - it wasn’t until the 1970s until the notion of

dark matter became accepted when Ostriker, Peebles and Yahil (1973,4)[17, 18]

showed that a dark matter halo component could explain the apparent increasing

galaxy mass with radius, which is required to explain the flat rotation curve of

M31. Since its acceptance forty years ago no physical evidence of dark matter has

been found, its discovery now a requirement as a test of GR.

1.6 Universe Expansion and Dark Energy

Einstein preferred the notion of a static universe, which neither contracts nor ex-

pands. In 1917 he introduced the cosmological constant into his field equations

for GR, a repulsive term equal to the value of the energy density of the vacuum
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of space designed to negate the effects of gravity. After GR was accepted how-

ever cosmology developed quickly, when in 1929 Hubble observed the recession of

galaxies and the discovery of the Universe’s expansion, and Einstein removed the

cosmological constant from GR saying it was his ‘biggest blunder’. A theory for

the origin of the Universe was developed by Gamow and dubbed the ‘Big Bang’

by Hoyle, who rejected Gamow’s theory while supporting his (with Bondi and

Gold) ‘Steady-State’ theory that the Universe existed indefinitely.[19] Along with

Hubble’s discoveries the Big Bang cosmology also predicts the existence and black

body nature of the cosmic microwave background (CMB) and its anisotropies, as

discussed in section 1.8. Observing the amounts of hydrogen, helium and lithium

in stars and gas clouds in galaxies allows us to then predict the light element abun-

dance formed in the first few minutes after the Big Bang. In Big Bang cosmology

there are 3 main principles or assumptions,[20] firstly that space is assumed to

be homogeneous and isotropic when viewed at sufficiently large scale. This was

also known as the Cosmological principle, and can be expressed as a spacetime

metric discovered by Friedmann-Robertson-Lemaitre-Walker (FLRW, or FRW) in

the form:

ds2 = a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(1.4)

Here a = a(t) is the scale factor of the universe, i.e. the relative size of the universe

at time t, where at current time t0, a(t0) = 1. k is the curvature of the universe

which can be closed (k = 1), flat (k = 0) or open (k = −1), i.e. k describes the

geometry of the universe. The FLRW metric then predicts how a straight path

through spacetime is affected by the expansion and curvature of the universe. The

dynamics of spacetime itself is then described by the Einstein equations which

relate the expansion rate of the universe to the energy density ρ and pressure p.

The matter present in the universe may also be described as a superposition of

two classical perfect fluids i.e. a radiation fluid with a relativistic equation of state

(primordial plasma), and an exotic pressure-less matter called ‘cold dark matter’,
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i.e. p = wρ. A relationship between the universe’s expansion and the required

matter density was derived by Friedmann in 1922 through Einstein’s field equations

using the FLRW metric and a perfect fluid with mass ρ and density p. Two

important results were determined, the first being the 00 (temporal) component

of the field equations and relative to chapter 6:

ȧ2 + kc2

a2
=

8πGρ

3
(1.5)

The overdot in a denotes a derivative with respect to time, and so this equation

can be used to determine the expansion rate of the universe. For a flat (k = 0)

universe there would exist a critical density ρc which then dictates the evolution of

the universe over time. The Perlmutter[21] and Schmidt - Reiss[22] teams studied

the universe’s evolution through observing type 1a supernovae magnitude-redshift

data up to a time where the universe was a third of its current size. These teams

realised that equation (1.5) is strongly violated by the data; the observed baryonic

density of the universe is 20 - 25 times less than ρc. This prompted the introduction

of the ‘dark energy’ parameter, a cosmic repulsion term which then predicts the

future expansion of the universe at an exponential rate. It also allowed estimations

of the total matter density compositions in the universe, with 73% dark energy,

23% dark matter and only 4% baryonic matter. Perlmutter, Schmitt and Reiss

were awarded the 2012 Nobel Prize in Physics for their discovery. This contradicted

the previous assumption that the expansion was slowing down due to the presence

of gravitational terms only (baryonic matter and dark matter) in the Friedmann

equations, resulting in an eventual ‘Big Crunch’ as the universe’s expansion slows,

stops and then reverses. So not only does GR require one free parameter to fit one

data set (velocity dispersions in stellar and galaxy data) but it then needs a second

one to fit a different data set (supernovae magnitude-redshift data), which then

demands exotic phenomena such as the accelerating expansion of the universe.

The implications of the supernova data will be further studied in chapter 6.
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1.7 Black Holes in an Expanding Universe

The motions of stars in galaxies are strongly affected by their central massive black

holes, and that of galaxies in clusters are also affected by the expansion of the uni-

verse. Then the need arises to analyse black holes in the expanding universe, with

the view to checking if that expansion affects black hole characteristics. There is

also a long history of attempts to model black holes (BH) while embedded in an

expanding universe. Early attempts include the McVittie solution[23] obtained

simply by embedding a single BH in the FLRW metric. This BH solution ap-

proaches a FLRW universe at infinity however this solution was disqualified as BH

in a FLRW universe (see ref 7 of Gibbons and Maeda).[24] There is the Einstein-

Strauss model containing a patchwork of Schwarzschild BHs in the background

(FLRW) universe[25] and also the Sultana/Dyer solution,[26] which describes the

behaviour of BHs in a flat expanding universe (also known as the Einstein-de

Sitter universe). The requirement of dark energy in GR then predicts solutions

for black holes in an expanding universe starting with the Schwarzschild-de Sitter

(uncharged BHs in a DE dominated universe) and Reissner-Nordström de Sit-

ter (charged BHs) solutions.[27, 28] Although these spacetimes are static, they

may be transformed into the form of a black hole in an exponentially expanding

universe.[29] The effects that an expanding universe has on a point-like object was

studied by Nandra et al.[30] where it was found that at galaxy cluster level there

existed two important radii. The first radius being defined as rF , is the distance

from an object where the forces due to gravity and the expanding universe cancel

and thus an object remains a fixed distance away from the centre of a cluster.

The second radius rS relates to the largest possible stable orbit and is typically

smaller than rF . The radius rF relates to studying galaxy cluster data such as

the recessional velocities of galaxies in the M81 group. Peirani and Pacheco[31]

use a numerical solution that combines the gravity due to black hole mass with

the Hubble constant and dark energy strength to model how galaxies in clusters
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recede from each other. A discussion of the effect of embedding black holes in an

expanding universe using the Dynamical 3-Space theory model will be presented

in chapter 7.

1.8 Cosmic Microwave Background Anisotropies

The accidental discovery of the cosmic microwave background (CMB) and its

temperature anisotropies is a major test of cosmological models. The CMB is

an isotropic radiation bath that permeates the universe, and is a remnant of the

primordial plasma existing at a time when the universe was hotter than 3000 K

(≈ 1/1100th its current size). The prediction and discovery of the CMB dates back

to 1947, with a temperature prediction of 5 K made by George Gamow, Ralph

Alpher and Robert Herman, however at the time cosmology was not a widely

discussed topic by astronomers. The CMB was again acknowledged in the 1960s

independently by Yakov Zel’dovich and Robert Dicke[32] and in 1964 Doroshkevich

and Igor Novikov discussed CMB radiation as being a detectable phenomenon.[33]

The CMB was accidentally detected by Penzias and Wilson at Bell Telephone

Laboratories in 1965, where the instrument they were using for satellite commu-

nication experiments had an excess 3.5 K temperature they could not account for.

The serendipitous discovery resulted in Penzias and Wilson winning the 1978 Nobel

Prize in Physics. Later in 1992, the NASA Cosmic Background Explorer (COBE)

detected temperature fluctuations in the CMB to 1 part in a million (2006 Nobel

Prize).[34] The Wilkinson Microwave Anisotropy Probe (WMAP, 2001 - 2008)[35]

and Planck Mission (2009 - 2013) detected the CMB anisotropies to much greater

accuracy.[36] The CMB map provides a sky map of the temperature fluctuations

in all directions, and these fluctuations can be plotted in the form of an angular

power spectrum which breaks down the data into spherical harmonics. The peaks

in the harmonics can then be used to provide information about the Universe.
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To obtain a theoretical derivation of the CMB spectrum the FLRW metric is per-

turbed and combined with the Boltzmann equations, to provide how perturbations

in different matter densities (i.e. baryonic, dark matter) evolve over time. This

information is then translated into how the temperature fluctuation amplitudes of

increasing angle in the sky (related to the spherical harmonics) are affected, and

then compared with the power spectra generated by WMAP and Planck data.

This theoretical framework has evolved into what is known today as the ΛCDM

model, and is the standard model of Big Bang cosmology. The ΛCDM model cur-

rently has 6 parameters required to explain the CMB data - these are the baryonic

matter Ωb, dark matter ΩDM and dark energy ΩΛ densities, scalar spectral index

ns (a measure of the scale invariance of the primordial perturbations), curvature

fluctuation amplitude42
R (relates to the universe curvature) and reionization opti-

cal depth τ (relating to the decoupling period, where the primordial plasma cools

to form stable hydrogen over a period of time). Applying the ΛCDM model to

CMB data yielded the parameters ΩΛ = 0.69, ΩDM = 0.26, Ωb = 0.05 and also

the Hubble constant H0 = 70 km/s/Mpc.[37]

1.9 Cosmic Inflation

The discovery of the CMB anisotropies generated many problems with the stan-

dard model of cosmology. There is no possible causal mechanism to explain the

observed large scale isotropy of the CMB, i.e. photons emerging from opposite

sides of the sky are not causally connected as information cannot travel faster

than the speed of light. This was referred to as the horizon problem. The CMB

data predicts the universe to be spatially flat,[38] requiring that the initial en-

ergy density ρ must have been incredibly close to that of the critical density ρc

however ρ = ρc is a critical unstable point in standard cosmology. There is also

no causal mechanism to generate the required primordial perturbations that later
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generate the observed galaxy structure formation, which occurs at a faster rate

than is predicted by standard cosmology. An inflationary model of the universe

was introduced which predicts a rapid exponential expansion of the universe at

early times.[20] This accounts for at least the horizon and flatness problems that

the standard Big Bang model produced, as well as containing a mechanism to

introduce perturbations into the primordial plasma, and produce the small inho-

mogeneities that turn into the CMB anisotropies observed today. Evidence for

the primordial perturbations was only discovered recently from studying B-mode

polarisation modes in the BICEP2 CMB data.[39] This appeared to confirm the

existence of an inflationary epoch as required by the standard model of cosmology

however the data suggests a much stronger inflationary period than predicted by

current models of inflation.[40] The claim of the evidence supporting cosmic infla-

tion was withdrawn by the BICEP team after discovering that the signal was likely

to result mainly from dust radiation from the Milky Way galaxy.[41] The discus-

sion here is limited to Big Bang cosmology since it is the accepted model, and also

the Dynamical 3-Space theory which is discussed in the following chapter. The

CMB spectrum along with cosmic inflation will also be discussed further in chapter

6. There are however other cosmological models such as matter bounce,[42] string

gas cosmology[42] and steady state theory.[19] These are not discussed here.

1.10 Concluding Remarks about Chapter 1

The standard Big Bang cosmology framework is based from GR and SR which in

turn are based from NG and Galilean observations. These models were based from

‘local’ observations of planetary motion in the Solar system and then using inter-

ferometer experiments and again after the discovery of the Universe’s expansion.

At each step the newer theory is forced to agree with both observation and the pre-

vious theory. Building on the foundations of GR after further discoveries raised
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serious questions about its feasibility, and required the introduction of two free

parameters, namely ‘dark matter’ and ‘dark energy’ to explain such observations.

This then produced exotic predictions as to the evolution of the universe, further

inconsistencies with experiments, and the creation of cosmic inflation theories to

fix these inconsistencies. Chapter 2 uses a different approach to understand these

observations via an alternative model of reality which has different fundamental

building blocks.



Chapter 2

Justifying An Alternative Model

of Reality

2.1 Introduction - Process Physics

Apart from what was mentioned in chapter 1 there were other motivations to find

an alternative model of reality.[43] These include:

1. It was not believed that all aspects of time could be completely modelled

from a geometrical viewpoint. For example, modelling the present moment

required the establishment of a metarule to explain its existence.

2. Elements of a stochastic neural network appeared to be hidden within quan-

tum field theory, suggesting that perhaps all of reality could be modelled to

behave in a similar fashion.

3. A syntactical description of reality was considered impossible to describe all

of its components, as the emergence of the syntax is taken for granted and

cannot be explained.

20
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A theory was developed which acknowledged the limitations of logic discovered by

Gödel[44] and extended by Chaitin,[45, 46] by using the notion of self referential

noise, and which introduced a radical information-theoretic modelling of reality.

In this theory time was modelled as a self organising process, i.e. as the successive

ordering of events, as opposed to by modelling geometrically, which has been the

case since the time of Galileo over 400 years ago. This self organising process would

compete with a stochastic, or random process during each iteration of the model.

There was therefore an order/disorder system at the ‘start-up’ of the modelling but

which a priori contained no notion of geometry, space or quantum matter. This

model can then be considered simply as information which is evolved internally,

such that it produces its own relational patterns and modes of behaviour. This

theory is known as Process Physics [47], and mainly contains components mod-

elling a stochastic neural network as inspired by not only the apparent operation

of biological brains, but also through the discovery that conventional quantum field

theories appear to display neural network modelling properties. This stochastic

neural network then represents information as connection patterns, as opposed to

symbols or syntax as found in conventional physics theories. The network was

then shown to self organise these patterns in a way that it displays geometri-

cal and fractal properties, along with the emergence and unification of quantum

phenomena without any initial assumptions about these phenomena. What also

emerged was the development of a Quantum Homotopic Field Theory which was

aimed at modelling these properties. This was expected to approximate to a more

conventional quantum field theory containing many of the attributes of the current

standard model of particle physics.

The idea behind Process Physics was originally to derive the emergence of known

quantum phenomena, and ideally the syntactical description of reality suggested

by General Relativity. What followed instead was a radical deviation from con-

ventional physics, mainly the emergence of a growing fractal geometry which is
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dynamic and approximately three dimensional in nature, and the prediction that

matter is simply fractal topological defects embedded in the geometry, or quan-

tum foam as it was called. This quantum foam explanation is also emergent from

Process Physics and provides an explanation for the necessary emergence of grav-

ity, since quantum ‘matter’ essentially acts as a sink for the quantum foam. By

ignoring the non trivial topological aspects of the quantum foam it may then be

embedded in the 3 dimensional geometrical manifold used today and referred to

classically as a dynamical 3-space, i.e. a real existent fractal network of events and

connectivities which rearranges as it flows past an observer. Since the embedding

of the space in a geometrical manifold can be arbitrary (i.e. rotated/translated

etc.) this then dictates the minimal dynamics for the space at a phenomenological

level. While Process Physics is currently unable to mathematically transition from

a quantum foam theory to a classical theory, a model known as Dynamical 3-Space

theory contains a phenomenological derivation based on evidence for an absolute

reference frame.

2.2 Dynamical 3-Space Theory

A heuristic derivation of the dynamics of space was developed by firstly assuming

that Galileo’s observations suggested the existence of a dynamical space, whose

acceleration would generate the same acceleration of matter.[48] Its velocity would

be shown to match that of observed light speed anisotropy experiments along with

the acceleration determining light bending and gravity as refraction effects. As

discussed in the introduction, space at a deeper level is probably a fractal quantum

foam that can be embedded in a 3 dimensional manifold. However this embedding

manifold has no meaningful existence; it is only used to note that space has an

approximate dimension of 3 and also to study classical phenomena (i.e. gravity,

velocity fields etc.) in the quantum foam using observers with physical rods and
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clocks. This is often confused with aether theories, where a substance travels

through a real but unobservable space - here both aether and space are viewed as

being ontologically real, whereas in Dynamical 3-Space theory there is only the

observable quantum foam, and any of its emergent properties are those intrinsic

solely to the quantum foam. In this theory[49] space is assumed to have a structure

which can be described by a velocity field v(r, t) at location r and time t (Newton

instead used a gravitational field, as he took space to be real but unobservable).

Since there is now an absolute reference frame, observers in relative uniform motion

are required to relate their description of the space velocity field via Galilean

and Lorentz Relativity transformations. Lorentz Relativity is also experimentally

distinguishable from SR as it is with reference to an absolute reference frame,

unlike SR.[2] Part of the minimal dynamics must include the ability to flow, thus

introducing an Euler type flow into the space dynamics. This flow is characterised

by tracking its change in velocity field over time, i.e.

a(r, t) = lim
4t→0

v(r + v(r, t)4t, t+4t)− v(r, t)

4t
=
∂v

∂t
+ (v · ∇)v. (2.1)

Equation (2.1) describes the acceleration of a constituent element of space by track-

ing its change in velocity. As the Dynamical 3-Space theory attempts to model a

fractal geometry, or ‘quantum foam’ emerging from Process Physics, space then

essentially has a quantum structure that permits its velocity to be defined and de-

tected, which experimentally has been achieved and discussed later in this chapter.

To simplify (2.1), the flow is assumed to have zero vorticity ∇ × v = 0, which

forces the flow to be determined by a scalar function v = ∇u. Only one scalar

equation is then needed to determine the space dynamics, simply constructed by

taking the divergence of a. Equation (2.1) then becomes

∇ ·
(
∂v

∂t
+ (v · ∇)v

)
= −4πGρ(r, t) (2.2)
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where the inhomogeneous term determines a dissipative flow caused by matter,

expressed as a matter density, and where the coefficient turns out to be Newton’s

gravitational constant G. Note here that even a time independent matter den-

sity ρ(r) can still be associated with a time-dependent flow. Also note that this

is Newtonian gravity simply cast into an inflow (velocity) formalism, one which

Newton didn’t consider at the time. This zero vorticity assumption has lead to

determination of the speed and direction of space from multiple experiments us-

ing the current Dynamical 3-Space equation (see below), which will be discussed

in chapter 3. The generalisation of the model to include vorticity effects and its

application to gyroscope precession experiments has been reported in [50, 51].

External to a spherically symmetric matter distribution, of total mass M , and a

time-independent spherically symmetric flow, equation (2.2) has the solutions

v(r) = −
√

2GM

r
r̂, a(r) = −GM

r2
r̂ (2.3)

which is an inverse square law emergent from the Euler constituent acceleration,

which imposes a space self interaction effect. For the simplest case of the spherical

matter density stationary with respect to (wrt) a 3-space the analytic solution

is known, however for more complex situations such as matter moving wrt space

numerical solutions are required, and which would reveal non trivial wave effects.

It is however trivial for two observers in relative motion to relate their description of

the space velocity field using Galilean Relativity transformations. While equation

(2.2) contains terms describing a space velocity field, there are also additional

terms with the same order in speed and spatial derivatives which cannot be a

priori neglected. Since this derivation would be arising from a deeper theory

such as quantum foam theory which Process Physics would require, one can also

consider a derivative expansion approach. All such terms added are invariant

under rotation and translation, and when combined give the current Dynamical
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3-Space equation,[52]

∇·
(
∂v

∂t
+ (v·∇)v

)
+
α

8

(
(trD)2 − tr(D2)

)
+
δ2

8
∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ , Dij =

∂vi
∂xj

. (2.4)

The α and δ (plus additional higher order derivative terms denoted by an ellipsis)

terms contain higher order derivatives and derivative terms and describe the self

interaction of space at large (α) and small (δ) different scales. The coefficients

of the trace terms (trD)2 and tr(D)2 are forced to be equal and opposite, in or-

der to preserve the inverse square law external to a stationary spherical matter

density wrt space. Here G is Newton’s gravitational constant, which according

to Dynamical 3-Space theory now relates the amount of dissipative flow of space

(quantum foam) into matter. Equation (2.4) currently isn’t derivable from the

deeper Process Physics theory however it appears to model currently known phe-

nomena quite well, without requiring additional free parameters. It is a heuristic

derivation based from generalising Newtonian gravity into an inflow formalism and

then adding extra terms which a priori cannot be neglected as mentioned above.

The value of α, a dimensionless self coupling constant, was determined from labo-

ratory, geophysical[53] and astrophysical[54] data to be the fine structure constant

1/137, demonstrating that space is fundamentally a quantum process and thus

unifying space and quantum physics. This data will be discussed in chapter 5. δ

has the dimensions of length, most likely at the Planck scale, and has been shown

to account for galactic black hole masses and cosmic filament phenomena.[52] The

value of δ has yet to be determined from any data so far but is assumed to be

very small but non-zero, and is required to study space at very small scales. If

α = δ = 0, (2.4) reduces to (2.2) and hence Newtonian gravity, i.e. the Dynamical

3-Space equation can be reduced to NG cast into an inflow formalism as opposed

to one requiring gravitational fields. As Newton believed matter was gravitation-

ally attracted to each other through a real but unchanging space, he had no need
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to rewrite his equation in the form of (2.2) as his observations were only based on

examining Kepler’s laws of planetary motion. He however makes no mention of

what is causing the acceleration of matter although later he did speculate that an

aether type substance could account for gravity in 1675, in a letter to Oldenburg,

Secretary of the Royal Society, and later to Robert Boyle.[55] Since planetary mo-

tion within the solar system is largely spherically symmetric (i.e. low planetary

mass wrt the Sun) any α effects observed in the solar system will be negligible, an

effect which Newton was unaware of. These α- terms however cannot be a priori

neglected in the space dynamics due to them having the same order derivatives

as the Euler terms. At a galactic scale α effects are quite prominent, where the

Milky Way black hole and other galaxy cluster data sets have given evidence for

both α and δ terms as will be discussed in chapters 3 and 5. A final note is to

observe that equation (2.4) does not involve the speed of light c, is non linear and

time dependent, and implies that the universe is more connected than previously

thought than using NG. Dynamical 3-Space theory has a number of predictions

centering around the phenomenon of gravity along with the time dependent nature

of space, which will be discussed in chapter 3 along with testing how matter and

EM radiation respond to this dynamical space. The rest of this chapter presents

evidence consistent with a dynamical space-type theory.

2.3 Evidence Consistent with a Dynamical Space-

Type Theory

2.3.1 Interferometer Experiments

The 1887 interferometer experiment undertaken by Michelson and Morley actually

resulted in an absolute light speed anisotropy of 8 km/s according to their

theory of the interferometer. This was however rejected in favor of a null



Chapter 2. Justifying An Alternative Model of Reality 27

result as the result was far less than the expected 30 km/s orbital speed of the

Earth, which the experiment was originally designed to study. By the time Dayton

Miller realised in the 1920s that the data instead suggested that the theory for the

interferometer was incomplete, i.e. that the apparatus moved not only around the

Sun, but also at higher speeds through Milky Way galaxy and the universe as we

know today, Einstein’s theory of SR and GR had already taken hold and absolute

motion had become a taboo subject. Further interferometer experiments (and

others regarding absolute motion) yielding non null results were scorned, ignored

and/or rejected by the physics community.

In 2002 Cahill and Kitto[56] reported a relativistic theory for the operation of

the Michelson interferometer in an absolute reference frame, and reanalysed the

Michelson-Morley data to obtain a light speed anisotropy of some 360 km/s. This

was the first relativistic effects-based theory analysis since the data was published

in 1887, mainly due to the large influence Einstein’s work held on the physics

community. The new interferometer theory contains an expression for the travel

time difference between light travelling in the orthogonal arms as (ignoring Fresnel

drag effects, which are mentioned later this chapter)

4t = k2L|vP |2

c3
cos (2(θ − ψ)). (2.5)

Here the absolute velocity v is projected onto the interferometer at angle ψ relative

to the local meridian and with velocity vP , and θ is the angle of one arm with

respect to that meridian. L is the interferometer arm length, c is the speed of

light and k2 = n(n2 − 1) is the new expression which accounts for interferometers

travelling in mediums of refractive index n, one which Miller[57] thought existed

but had no theory for. The two key effects, namely (i) the path length of the two

orthogonal arms changing when the interferometer is in absolute motion, and (ii)

that Fitzgerald-Lorentz contraction of the arms along the direction of motion, now

a real dynamical effect caused by rods and clocks being affected by the quantum
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foam, cancel each other out in vacuum (n = 1 and so k = 0). This then explains

why all interferometers (and resonant cavities for that matter) operated in vacuum

mode cannot study light speed anisotropy at all, as indicated by the increasingly

accurate null results over the decades[58–60] as they only test for the cancellation

of these two effects in vacuum. A null result does agree with Einstein’s postulate

regarding light speed isotropy however, and hence physicists then misinterpret

these results as verifying GR despite the fact that vacuum mode interferometers are

insensitive to detecting absolute motion. The two above mentioned effects however

are predicted to not cancel when operated in the presence of a gas (k is very small

but nonzero) as the speed of light is slowed down as V = c/n, thus distinguishing

between GR and theories involving absolute motion. Newtonian physics, which

the initial studies by Michelson and Miller were based on, contains no Fitzgerald-

Lorentz contraction and so k2 = n3,[61] and so k ≈ 1 for analyses made in 1887.

This is compared to Cahill and Kitto’s model predicting k = 0.0241 for air, making

interferometers around 2000 times less sensitive in air than previously thought.

This is certainly shown by interferometer data giving such small fringe shifts. The

absolute projected light speed anisotropy vP compared to speeds using Newtonian

physics was then shown to be

vP =
vN√

n(n2 − 1)
(2.6)

where vN is the speed predicted by Newtonian physics. Projected speeds are

therefore dependent on refractive index, as helium has also been used as a medium

in interferometers.[62] A summary of the main interferometer results is shown in

table 2.1. Michelson and Morley in 1887[6] made observations based in Cleveland

(Latitude 41◦30′N) and collected results of 36 full rotations of their air-mode

interferometer at 22.5 degree intervals, in 6 separate hours over 3 separate days

(1 hour at 12:00 on July 8,9 and 11 and again at 18:00 on July 8,9 and 12). Each

rotation took 6 minutes as the interferometer rotated slowly on a tank of mercury
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designed to eliminate vibrations. They published and analysed the average of each

of the 6 data sets instead of looking at separate rotations, and obtained speeds

of 5 - 7.5 km/s. The smaller speeds than that shown in table 2.1 occurred due

to this averaging (12:00 data, and separately the 18:00 data), whereas Miller and

Cahill report higher speeds between 8 - 8.8 km/s from Michelson & Morley due

to studying individual rotations, some of which do not have a sinusoidal form

induced by rotating the interferometer. With k = 0.0241, the new interferometer

theory changes an 8 km/s anisotropy to 331 km/s via equation (2.6), for example.

In 1927 Illingworth[62] constructed an interferometer experiment using helium

instead which has a refractive index n = 1.00036, making k = 0.00836, thus

checking the n dependence of k. Due to the massive reduction of the sensitivity of

the interferometer using helium, Illingworth unsurprisingly reported no “ether drift

to an accuracy of about one kilometer per second”, however Múnera[63] reanalysed

the data (along with reanalysing other interferometer data including Michelson-

Morley and Miller) and obtained a value of 3.13 ± 1.04 km/s. This yielded a

speed of 368 ± 123 km/s, in agreement with the Michelson/Morley data however

no direction was able to be obtained as there was insufficient data.

Future interferometer experiments were not repeated immediately after the pio-

neering work by Michelson and Morley to confirm the results until Dayton Miller’s

[57] research where, with Morley he developed his interferometer between 1902 and

1906 and took preliminary observations around 1904 - 1905. Miller then went to

a great deal of effort to ensure his interferometer was sensitive to only detect-

ing absolute motion, and undertook many rigorous control experiments to study

and reduce the effects of vibration and heating, mainly between 1922 and 1924.

Over 200,000 measurements were then recorded by Miller, accounts of which are

available in Swenson[67], over half of which are in the form of 12,000 rotations

performed between April 1925 and February 1926, as compared to Michelson’s

36 rotations over 3 days / 6 separate hours. Miller found that that temperature



Chapter 2. Justifying An Alternative Model of Reality 30

Table 2.1: Summary of absolute speeds and directions obtained from interfer-
ometer experiments.

Person/Group
Michelson
& Morley

[6] Miller[57] Illingworth[62]

Year 1887 1925 - 26 1927

Location
Cleveland,

Ohio
Mt. Wilson,
California

Pasadena,
California

Medium
Atmospheric
(n=1.00029)

Atmospheric
(n=1.00029)

Helium
(n=1.000035)

Original
Absolute
Velocity

V (km/s) 8.4 ± 0.4[6, 57]
10.25 ± 0.95,
209 (Cosmic)

1[62],
3.13 ± 1.04[63]

RA (h)
6.5 (Noon)
12.8 (PM)

[57] 4.85 ± 1.15 Unknown

Dec (◦) Unknown -69.5 ± 7.5 Unknown
Calibration

Factor k
[64] 0.0241 0.0241 0.0084

Corrected
Velocity

[64]
V (km/s) 328 ± 50 420 ± 30 368 ± 123
RA (h) Unknown 5.2 Unknown
Dec (◦) Unknown -67 Unknown

Person/Group
Shamir
& Fox

[65] Cahill[66]

Year 1969 2007-08

Location
Haifa,
Israel

Adelaide,
South Australia

Medium
Perspex

(n = 1.495)
Optical Fibre
(n = 1.462)

Original
Absolute
Velocity

V (km/s) < 6.64 Unknown
RA (h) Unknown 5.9 ± 2.4
Dec (◦) Unknown -72 ± 6

Calibration
Factor k

[64]
N/A for

solids
[61] N/A

Corrected
Velocity

V (km/s) N/A N/A
RA (h) N/A N/A
Dec (◦) N/A N/A

effects could be assumed to be linear provided that each turn was performed suf-

ficiently quickly enough, and a uniform temperature background drift could be

removed from the data. Sets of 20 turns (320 measurements over 18 minutes)

would be observed in a single sitting however if a single reading was lost due

to vibration, miscalculation or other means then that observation was cancelled,

thus showing how aware Miller was of the importance of his experiments. Miller

in his experiments obtained a speed of (see table 2.1) approximately 10.25 km/s
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which corrects to 425 km/s (k = 0.0241) using the full theory of the interferom-

eter, which Miller was unaware of (he used the Newtonian theory, where k = 1

and which neglects both Fitzgerald/Lorentz contraction and gas presence effects).

This speed is consistent with Michelson-Morley’s result of 330 km/s as Cleveland

has a higher latitude than Mt. Wilson. While Miller didn’t know the theory for

the interferometer he understood that there was a flaw in the Michelson-Morley

analysis. He assumed that the absolute velocity of Earth was split into 2 com-

ponents - the orbital motion of Earth around the Sun, and the movement of the

solar system through the galaxy, and he then introduced the scaling factor k. Here

k was only phenomenologically based and Miller had no theory for its value, but

he reasoned that since Earth’s direction changed he could extract k as well as

the solar system velocity component. An effect was potentially missed by Miller,

namely the inflow of space into the Sun as predicted by Dynamical 3-Space theory,

which will be explained in chapter 3. He undertook interferometer experiments

in April, August and September 1925, and February 1926 throughout all hours of

the day and determined the velocity of absolute motion (he called this the solar

system movement) was 209 km/s in the direction (4.85h, −70◦) and did indeed

change slightly throughout the year (see table 2.1 and figure 2.1), and estimated

the value of k to be around 0.05, twice that predicted by the full interferometer

theory. Reasons for the discrepancy are given in [64]. Miller’s results were incredi-

ble, and confirmed the validity of the Michelson-Morley observations that absolute

motion had been detected. However by then GR had already been established,

and Miller’s results were refuted, even ignored by the physics community although

Miller was regarded highly by the physics community as a careful experimental-

ist. Fourteen years after Miller’s death in 1941 Shankland,[68] a former student of

Miller, reported that Miller’s results were in fact due to temperature fluctuations

and in fact had observed a null result. This was despite the fact that Miller has

rebutted several criticisms of his work while he was alive, including that regarding

temperature effects. An extensive review of the Shankland analysis and handling
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Figure 2.1: Southern celestial sphere, summarising the absolute motion direc-
tions found by Miller (Apr 1925 - Feb 1926, blue points) and Cahill (Sep - Dec
2007, red points, trending closer to the south celestial pole over time) using

right ascension and declination. Figure source from [66].

of the criticism of Miller can be found at [69].

No other major non-null interferometer experiments had been reported due to the

use of vacuum mode (instead of gas mode) interferometers and resonant cavity ex-

periments, until 2007-8 when Cahill reported[70] that optical fibre interferometers

detect light speed anisotropy. The results were only preliminary, with photodetec-

tor recording voltage readings obtained only and no actual determination of the

speed of absolute motion due to the inability to calibrate the apparatus. Cahill

however later reported[66] correlated detection of light speed anisotropy by two

detectors respectively oriented 6◦ differently to the local meridian. If apparatuses
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are aligned differently they record Earth induced travel time difference minima at

different times as they would be aligned with the space flow at different times,

which was observed and predicted. The right ascension and declination values

reported were also in agreement with that found by Miller.

2.3.2 Non-Interferometer Experiments

One Way Speed of Light Experiments - DeWitte, Torr-Kohlen and

Cahill

The gas-mode Michelson interferometer was an extremely difficult and insensitive

apparatus to use, as indicated by the arguments in the interpretation of the data.

The main problem was that it was a second order device in that the travel time

difference between the orthogonal arms was proportional to (v/c)2, which is very

small, and without gas the device is rendered useless. A serendipitous discovery

in 1991 saw Roland DeWitte, an employee for the Belgacom telecommunications

company in Belgium design and use an apparatus to detect absolute motion that

was first order in (v/c).[71] The experiment used 1.5 km length coaxial cables

buried underground where sets of 3 caesium beam atomic clocks located at either

end recorded the travel time difference as radio frequency (RF) signals were sent in

opposite directions through the cables. This was undertaken in a research project

aimed to synchronise the two sets of atomic clocks. The project included account-

ing for drifts with temperature, cable length, humidity, pressure, heat capacity of

the clocks, magnetic induction and current fluctuation effects and found that any

long term drift was linear, reproducible and could not be explained by outside

factors affecting the clocks or cables. The drift was analysed over 178 days and

the phase signal was found to have a period of 23 h 56 m, i.e. a sidereal day,

concluding that absolute motion had indeed been detected as the period of the

signal was relative to the stars. What makes this experiment remarkable is that

the apparatus was aligned N-S, more in line with the direction of absolute motion
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of −70◦ permitting the study of absolute motion (apparatuses aligned E-W gener-

ate a much weaker effect as the direction of absolute motion is perpendicular - see

the Torr-Kohlen discussion next). While DeWitte understood that he had discov-

ered absolute motion he expected the direction to coincide with that of the CMB

direction (≈ 11h), but he was unaware of Miller’s papers and failed to realise that

his direction of 5.0h (17h is also possible here due to lack of data) agreed almost

exactly with that of Miller (5.2h). DeWitte only released 3 days worth of data and

the only mention of his results were through email and website correspondence

as he was unable to have his results published, as they contradicted prevailing

theories. In his email he writes:

Incredibly, the output of the phase comparator shows a clear and important sinus-

like undulation which permits to conclude of the existence of a periodic variation

(24 h period) of the speed of light in the coaxial cable around 500 km/s.

In performing the experiment during 178 days, with six cesium beam clocks, the

period of the phase signal has been accurately measured and is 23h 56 m +- 25 s.

and thus is the sidereal day.

So DeWitte managed to extract the speed and right ascension from his results,

which are shown in table 2.2. To this day only 3 days of data out of the 178

are known, making it impossible to determine the Declination. Roland DeWitte

died several years later, in 2000 after becoming extremely depressed. He did

however, acknowledge two other similar experiments in his email, namely Torr

and Kohlen,[72] and Krisher:[73]

This result, like the one of D.G. Torr and P. Kolen (Natl. Bur. Stand. (U.S.),

Spec. Publ. 617, 1984) is well understood with a new space-time theory based on

a new electron theory.
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Table 2.2: Summary of absolute speeds and directions obtained from non-
interferometer experiments.

Experiment Author Year V (km/s) RA (h) Dec (◦)

Coaxial
Cable

DeWitte 1991 500 5.0[71] N/A
Torr/Cohlen

[72]
1981 N/A 5.0[71] -70[71]

Cahill[74] 2012 499 2.75 -77
Optical Fibre

One Way
Speed of Light

Krisher[73] 1990 N/A 6.09[64] N/A

Spacecraft-
Earth Flyby

Doppler
Shift Data[75]

Cahill [76]

Dec
1990/92

491
(Galileo)

5.23 -80

Jan
1998

497
(NEAR)

3.44 -80

Aug
1999

478
(Cassini)

5.18 -70

Mar
2005

499
(Rosetta)

2.75 -77

Zener Diode
Quantum
Detector

Cahill[77]
1 Jan
2013

512 4.8 -83

Random Event
Generator

(GCP)

Cahill[77]
1 Jan
2013

528 5.3 -81

Cahill[77]
1 Aug
2012

471 5.4 -82

Brownian
Motion

Dai[78] 2014 N/A 5.0[79] -60[79]

Fine Structure
Constant

Anisotropy

Webb et al.
[80]

2011 N/A 17.3 ± 1.0 -61 ± 10

Moving Mirror /
Earth Lorentz
Contraction

Courvoisier
[81]

1921 -
1955

600 5.0 +40

It is also the case for the nearly negative result of the experiment of Krisher et al,

with a fiber optics instead of a coaxial cable (Physical review D, Vol 42, number 2,

1990, pp. 731-734).

The Torr and Kohlen experiment was performed in Utah ten years prior to De-

Witte’s experiment and had the same principle i.e. 2 rubidium atomic clocks

separated by 500 metres of coaxial cable, however their apparatus was oriented

E-W meaning that the space velocity projection onto the apparatus was substan-

tially lower than observed by Miller and DeWitte. Nevertheless they observed a
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positive result, and was in agreement with the theoretical prediction of 433 km/s

in the direction (α, δ) = (5.2h,−67◦). Torr and Kohlen also reported fluctuations

in both the magnitude and time of the maximum variations in travel time as ob-

served by both DeWitte and Miller. The experiment performed by Krisher et al.

for 5 days in November 1988 used optical fibres instead of coaxial cables but at

the much larger scale of 29 km where Krisher noted that the phase variations

corresponded to a right ascension of 4.96h (corrected to 6.09h to account for the

orientation of the cable wrt the local meridian) but compared this to the CMB

direction of (α, δ) = (11.20h,−7.22◦) some 6 hrs difference.[76] The CMB direc-

tion is determined by removing the dipole component of the CMB anisotropy as

to make the preferred frame of the thermal 3◦ K radiation bath isotropic, relative

to the movement of the solar system. Krisher didn’t notice that his results in fact

coincided with that of Miller. In 2012 Cahill reported both that one way speed

of light measurements could be achieved without clock synchronisation along with

reporting such an experiment using shorter coaxial cables and a single atomic

clock.[82] The experiment was also shown to work due to the absence of Fresnel

drag, an effect that slows down the speed of light in dielectric materials to speed

v(n) = c/n + v(1 − 1/n2) as the dielectric itself passes through space, and which

induces second order refractive index effects. Without the Fresnel drag effect a

detector which is first order in (v/c) can detect/characterise dynamical space while

requiring only one clock (if Fresnel drag is present then 2 synchronised clocks are

required). Cahill found that his apparatus displayed the Earth rotation effect, i.e.

daily periodic fluctuations of the travel time difference while the effect disappeared

when aligning the coaxial cables with the space flow, and allowed the permission

to study gravitational turbulence effects more accurately. Using the Earth ro-

tation effect the space flow was found to be 499.2 km/s in the direction (2.75h,

-76.6◦), a theoretical prediction from the data suggested in the spacecraft-Earth

flyby Doppler shift data.[74, 76]
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Doppler Shift - NASA Spacecraft-Earth Flyby Data

Planetary probe spacecraft are sent into outer space by completing close flybys

of Earth or other planets, and in the heliocentric frame of reference their speeds

are increased upon this happening. In the Earth frame of reference however there

should be essentially no change of asymptotic speed, only in the direction. Doppler

shift observations of spacecraft-Earth flybys of Galileo, NEAR, Cassini and Rosetta

have all yielded unexplained asymptotic speed anomalies. These anomalies were

shown[76] to be artificial, and a product of using the incorrect theory for the rela-

tionship between Doppler shift of RF transmissions and the speed of the spacecraft,

i.e. assuming that the speed of light is isotropic in all frames. Using a model which

is more similar to that of the anisotropic speed of sound these anomalies vanished

completely, and in conjunction with the Krisher data[73] yielded 3-space veloci-

ties given in table 2.2. These velocities were also in excellent agreement with the

Miller interferometer data (see figure 2.2), and also fluctuate during the year in

a predictable manner. The flyby data also permitted the first ever prediction of

the inflow speed into the Earth, an effect predicted by Dynamical 3-Space the-

ory, which was reported to be 12.4 ± 5 km/s, in agreement with the theoretical

prediction of 11.2 km/s as reported by Cahill.[76]

Quantum Detectors

Shortly after the coaxial cable experiment in 2012 a correlation study between

Adelaide and London was performed, in order to determine the speed of space

as it passed two different points on Earth. Originally the dual RF coaxial cable

apparatus was set up at both locations however later it was noticed that the ‘clock

jitter’ within the instruments, i.e. the Digital Storage Oscilloscope (DSO) internal

noise was actually correlated between the 2 locations, even without joining the

coaxial cable apparatus to the DSO. The Adelaide ‘clock jitter’ signal was found

to be 13 - 20 seconds ahead of the London signal. This fluctuated depending
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Figure 2.2: Southern celestial sphere, summarising the absolute motion direc-
tions found by Miller (pink circle) and that from the NASA Spacecraft Earth
Flyby Doppler shift data (blue circle) using right ascension and declination.

Figure source from [76].

on sidereal time, and also from gravitational turbulence effects along with differ-

ences due to London not being exactly ‘downstream’ from Adelaide in terms of

space flow direction, where the fractal and evolving nature of space affects the

DSO signals slightly differently. The analysis suggested that not all of the internal

noise was caused by a random process intrinsic to the DSO, but by some other

process which affected both instruments. Efforts were then taken to study Zener

diodes, which were suggested to be found within the time difference measurement

hardware inside DSOs but also used in some of the Random Event Generators

(REGs) in the Global Consciousness Project (GCP).[83] Zener diodes have the
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property that they display quantum tunneling effects when operated in reverse

current mode. The tunneling events are recorded classically by REGs as the elec-

tron wavefunction collapses on either side of a barrier inside the diode, in which

the REGs used in the GCP count the number of quantum tunneling events every

second (averaging around 100/second). Correlations in REGs located around the

world are then obtained by the GCP, in an effort to predict global events and

attribute them to the collective emotional responses of people affecting the REGs

in some way. The REGs in Perth - London were studied by Cahill and found to

be correlated with a time delay that also fluctuated with sidereal time correspond-

ing to some 470 - 520 km/s in the direction (5.3h, −81◦), also agreeing with the

previously mentioned experiments. The correlation of the REGs and that found

in Zener diode current fluctuations[84] suggested that the interpretation of quan-

tum theory was incorrect in that electron wavefunction collapse on either side of a

barrier is not a random event intrinsic to a quantum system. Instead, the collapse

was suggested to be due to fluctuating space affecting the relative barrier quantum

tunneling amplitude that the electron has to pass through, an effect which would

be sensitive to any change in v. Current fluctuations would then be completely

determined by the fluctuations in the passing space - any similar fluctuations in

space flowing past instruments would generate similar current fluctuations.[84] An

extended discussion of this will also be shown in chapter 4 as the work presented

here requires the same explanation. In [85] it was shown that Zener diodes gen-

erated the same signal as resonant gravitational wave antennae operated in Rome

and Frascati in 1980. The power spectrum of both data sets display the same

Earth vibration frequencies, although the Zener diodes wouldn’t physically detect

them in the same way as the gravitational wave antennae. This suggested that the

same phenomenon affected both apparatuses namely the existence of a fluctuating

dynamical space travelling past Earth. The other potential correlations noted are

that the GCP data from 2000 - 2012 tracks Solar Cycle 23 reasonably well and

that the Zener diode data precedes solar flare activity by a few days,[86] however
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this has only been discovered recently and not studied in depth.

Anisotropic Brownian Motion

Potential evidence for anisotropic Brownian motion was reported in 2014 by Jiapei

Dai[78] along with Felix Scholkmann reporting a sidereal time dependence of Dai’s

data in 2015.[87] This indicated the possible driving of Brownian motion to an

absolute preferred direction. The data consisted of 24 measurements made in a day

of studying Brownian motion of a toluidine blue solution dropped into a container

of water, with 15 such experiments performed from December 2011 to March 2013.

It was suggested[79] that this direction of approximately 5h is in agreement with

other experiments. The right ascension according to the data does appear to vary

throughout the year, as observed in the Miller and NASA flyby Doppler shift data.

It would be interesting to study whether multiple Brownian motion experiments

performed within days of each other produced similar right ascensions.

Study of Quasars - Fine Structure Constant Variation

Webb et al.[80] reported a variation of the fine structure constant when studying

distant quasars. They found that the value of α is larger to one part in ≈ 100 000

in the direction (17.3h, −61◦), from using two independent data sets, namely the

Very Large Telescope and Keck samples. While this direction is different from the

other experiments listed here it does observe very distant phenomena as opposed

to the ‘local 3-space’, perhaps arising from flows into the galaxy, local cluster or

great attractor.

Leopold Courvoisier’s Experiments

Leopold Courvoisier (1873 - 1955)[81] was a Swiss observer at the Berlin / Ba-

belsberg astronomical observatory from 1905 - 1938. His earlier work was based

around publishing several star catalogues but later moved to detecting the mo-

tion of the solar system through the aether, as he disagreed with the SR and GR
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models. During a routine measurement published in 1905 (earlier than the de-

velopment of GR by Einstein) Courvoisier noticed that the RA and Dec of fixed

stars changed slightly when observed close to the Sun. He called this ‘annual

refraction’, due to the influence having a period of one year, and the effect was

interpreted as being due to the refraction of light by a denser medium around

the Sun as opposed to being a consequence of relativity, i.e. the gravitational

deflection of light rays. Courvoisier’s opposition to Einstein grew steadily from

this point. Courvoisier also preferred the idea of a static aether, but also that

movement through the aether caused real contraction of moving bodies although

not exactly for the same reasons as what Lorentz proposed. He directly denied

the principle of Relativity and invented two novel techniques which independently

measured the motion of the Solar System through the aether. His first technique

involved determining star positions through reflecting light emitted by a star from

a mercury mirror and recording the reflection angle, which deviated slightly from

the incident angle relative to the proper reference frame of the mirror. Courvoisier

reasoned that any observable effect was second order effect in (v/c). He then either

performed different experiments using either a single or double mirror involving

rigorous control experiments, or took previously published data from star cata-

logues published from reputable sources (such as the Leyden Observatory) over

an 80 year time span. This makes it difficult to explain away his results as instru-

mental or other systematic effects. Courvoisier’s second method was based on the

Lorentz contraction of the Earth as it moved through the aether, as only the local

vertical would undergo contraction effects as the Earth rotated. He then assumed

that there would be a periodic effect noticeable. Courvoisier also performed many

other smaller and different experiments, all of which amount to a speed of the

solar system through the aether of some 600 km/s in the direction (5.0h,+40◦).

This speed is higher than the other experimental methods discussed, and the dec-

lination differs greatly from the other velocities shown in table 2.2. No checks

of Courvoisier’s theoretical derivations are known and it is assumed that he was
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unaware of potential inflows into the Sun, for example. Courvoisier’s work was

largely ignored by the scientific community, for many reasons both scientific and

historical, as the bulk of his research was undertaken after World War 1 and after

the acceptance of Einstein’s Relativity models. Most of Courvoisier’s research was

also published in a anti-relativistic journal called the Astonomishe Nachrichten

which the general science community ignored. His theories were also phenomeno-

logically based, i.e. he had no real model to base his research and results from.

The large fluctuations in the results he published meant that they could easily

be thought of to have contained systematic or random errors. He however made

sure to mainly use data published by other observers as to ensure that his results

could be checked by other astronomers if they so wished, something which was

apparently not performed. Apart from publishing his work, Courvoisier did not

attempt to join other astronomers to produce a stronger anti-relativistic front.

2.3.3 Simon Shnoll - Histogram Fine Structure and Cor-

relations

Professor Simon Shnoll is a Russian scientist who along with his team conducted

many unique experiments at the Institute of Biophysics in Pushino, Russia.[88] He

originally started with attempting to reduce the uncertainty in the activity of AT-

Pase in his reactions of radioactive amino acids with proteins. He was very careful

in the manner of preparing these reactions, but found that the activity rates varied

too much for the way he was preparing them. Shnoll mentions being extremely

careful in his youth to ensure that scientific processes are kept when performing

these reactions. He later started to study the ATPase activity of muscle proteins

over time in parallel, and found that they appeared to not only take on preferred

or discrete values, but the individual reaction rates of the solutions also correlated

with each other at the same time. He began to explain the scattering of these
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measurements in terms of wave patterns in the restructuring of water originating

from how the hydrophilic and hydrophobic parts of the proteins interacted with

the water. Shnoll however later found that reaction rate changes were also found

in many other processes including but not limited to all proteins, chemical reaction

and radioactivity rates, gravitational wave antennae and semiconductor noise,[89]

all of which have different mechanisms and fluctuation amplitudes.[90, 91] All of

the experiments Shnoll performed, whether it be studying a single experiment

such as protein activity, or comparing 2 completely different phenomena in paral-

lel yielded that the changes in the activity correlated in some way, and that the

Gaussian distributions of these processes had a fine structure which did not smooth

out after taking more measurements. This fine structure was then broken down

into 60 - 100 measurement histograms and Shnoll realised that the histograms had

daily (both solar and sidereal) and annual cycles. Histograms from experiments

separated by distance also correlated with each other, both instantly and also by

a time difference corresponding to the Earth’s rotation between the experiments.

Shnoll collected results for over half a century, and found that:

• The measurement scatter appeared to be intrinsic to all processes studied

(over 20 different processes were investigated).

• The amplitude of fluctuations (i.e. the scattering of measurements) relative

to a measured value varied depending on the process studied.

• The shape of a histogram, i.e. the distribution of results evolved over time,

where the current histogram shape was most similar to the one preceding it.

The histogram shape obtained at the same time and place is also independent

of the process.

• Histogram similarity and fine structure depended on the direction of study.[92]
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The only factor that Shnoll could conclude that would cause the behaviour ob-

served in all of his experiments was that they must be affected by “fluctuations in

the space-time continuum caused by the movement of an object in the inhomoge-

neous gravitational field.”[88] He suggests that the initial structure to spacetime

itself must cause the scattering of measurements found in his experiments, and

that the inhomogeneity results from the existence of massive objects, namely the

Sun, Moon etc. disrupting these fluctuations. In chapter 4, a discussion on Shnoll’s

work from a Dynamical-3 Space theory viewpoint along with its implications will

be presented along with two new methods of studying the effects Schnoll observed.

2.4 Concluding Remarks about Chapter 2

There exists an incredible amount of evidence supporting a theory involving ab-

solute motion. The data alone suggests that the absolute motion of Earth is in

the order of ≈ 400 km/s in the direction ≈ (5h,−70◦). Dynamical 3-Space the-

ory is one candidate to explain this data and while phenomenologically derived it

arises from a deeper, pregeometric model of reality. Chapter 3 will discuss what

is currently known about Dynamical 3-Space theory.



Chapter 3

Dynamical 3-Space Theory -

Emerging Phenomena

3.1 Introduction

The dynamics of space can be characterised by solving equation (2.4) in terms of

either v(r, t) or a(r, t). Just to reiterate, equation (2.4) is

∇·
(
∂v

∂t
+ (v·∇)v

)
+
α

8

(
(trD)2 − tr(D2)

)
+
δ2

8
∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ, Dij =

∂vi
∂xj

(3.1)

and will be referred to as equation (3.1) for the remainder of this thesis. As it

turns out, there are both simple and complex solutions depending on the absence

or presence of matter, or when considering either long (α 6= 0, δ = 0) or short (α 6=

0, δ 6= 0) range effects. To clarify further, from the known available experimental

data α appears to be the fine structure constant while δ appears to be a small

but nonzero Planck-type length. The consideration of long range effects means to

search for solutions which hold for sufficiently large r such that any δ effects are

45



Chapter 3. Dynamical 3-Space Theory - Emerging Phenomena 46

negligible, and so δ may be set to zero. When these solutions are found to not agree

with data, the full solutions requiring both nonzero α and δ are then required. The

only solutions to the full Dynamical 3-space theory (with δ 6= 0) that are currently

known are those for time independent and radially symmetric flows into black holes

and filaments, and without the presence of matter; these will be discussed in this

chapter. The presence of a dynamical space also required alterations to other well

known equations by Schrödinger, Dirac and Maxwell. This chapter summarises

these alterations and solutions to the Dynamical 3-Space theory to further justify

its use.

3.2 The ‘Dark Matter’ Effect

While the Dynamical 3-Space theory is essentially Newtonian Gravity cast into

an inflow formalism it contains additional α and δ terms (as stated in chapter 2)

which cannot be a priori neglected. Rearranging these terms, through combining

the expression for a(r, t) (equation (2.1)) and (3.1) the theory can be written in

the form

∇ · a = −4πGρ− 4πGρDM , (3.2)

where

ρDM(r, t) ≡ α

32πG

(
(trD)2 − tr(D2)

)
+

δ2

32πG
∇2
(
(trD)2 − tr(D2)

)
(3.3)

which introduces an effective ‘dark matter’ density term ρDM which is observed

in systems such as spiral galaxies, for example.[64] This suggested that the unex-

plained velocities found in spiral galaxy rotation curves were explained by space

self interaction effects, and not by the presence of extra unobservable matter.

These effects manifest at both large (α) and small (δ) scales and is completely
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emergent from the theory. For δ = 0, this effect has been shown to account for

spiral galaxy rotation at least asymptotically, lensing effects in galaxies, systemat-

ics of black hole masses, the borehole g anomaly and anomalies in measurements

of the fundamental constant G.[49, 64]

3.3 Action at a Distance

The spatial dynamics is non-local and instantaneous, which points to the uni-

verse being highly connected, consistent with the deeper pre-space Process Physics

paradigm. Historically this was first noticed by Newton who called it action-at-

a-distance. To see this (3.1) can be written as an non-linear integro-differential

equation[54]

∂v

∂t
= −∇

(
v2

2

)
−G

∫
d3r′

ρDM(r′, t) + ρ(r′, t)

|r− r′|3
(r− r′). (3.4)

This shows a high degree of non-locality and non-linearity, and in particular that

the behaviour of both ρDM and ρ manifest at a distance irrespective of the dy-

namics of the intervening space. This non-local behaviour is analogous to that in

quantum systems and may offer a resolution to the horizon problem arising from

CMB observations.

3.4 Emergence of Gravity and the Equivalence

Principle

A very important result arises from using the Schrödinger equation to determine

the acceleration of test masses in the presence of a dynamical space, namely

the emergence of gravity as a derivable quantum effect. A generalisation to the
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Schrödinger equation was required to include additional terms to describe the

evolution of wavefunctions with respect to a dynamical space, and not to an em-

bedding space, the equation shown below,[51]

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t)− i~

(
v.∇+

1

2
∇.v

)
ψ(r, t). (3.5)

Here the space and time coordinates x, y, z, t ensure that the separation of the

dynamical 3-space and quantum matter systems from a deeper and unified process,

are properly tracked and connected by an observer using these same coordinates,

i.e. unifying both systems from one theory. The additional terms on the RHS

of the modified Schrödinger equation model a quantum system in the presence

of the space velocity field. The extra 1
2
∇ · v term is required to maintain the

Hermitian properties of the operator, where the
(
∂
∂t

+ v · ∇+ 1
2
∇ · v

)
operator

remains invariant under an observer’s rotation and/or translation, and that the

wavefunction norm is also time invariant.

The Lorentzian interpretation of relativistic effects suggests that the speed of light

is c with respect to the quantum foam system predicted from Process Physics.

Any time dilation and length contraction effects are thus predicted to be real

phenomena, caused by the motion of rods and clocks relative to the quantum

foam. From a Dynamical 3-Space model point of view this suggests that objects

travel at speed vR with respect to the space flow. This is in contrast to the SR

formalism, in which time dilation effects exist for two observers in relative motion

wrt each other, and arise by the choice of coordinate system used in the mapping.

This was shown by the discovery of an exact linear mapping between Galilean

Relativity and Special Relativity as discussed in [2, 93], differing only by definitions

of space and time coordinates. These relativistic effects are currently not emergent

from Dynamical 3-Space model but are expected to be derived directly from the

Quantum Homotopic Field Theory that describes the quantum foam system.[47]

The elapsed proper (time dilated) time of an object travelling through a time
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dependent and inhomogeneous space flow is defined by

τ [r0] =

∫ (
1− v2

R

c2

) 1
2

dt. (3.6)

Here vR(ro(t), t) = vo(t) − v(ro(t), t) is the absolute velocity of a wave packet,

i.e. matter travelling relative to the local dynamical space, and vo and ro are the

velocity and position of a wave packet relative to an observer. The ‘gravitational’

acceleration of quantum matter is then found to be an effect induced by wave

refraction and by maximising the elapsed proper time wrt space. From using (3.5)

and (3.6) this is then found to be[51, 94]

g =
∂v

∂t
+ (v.∇)v + (∇× v)× vR −

vR

1− v2
R

c2

1

2

d

dt

(
v2
R

c2

)
. (3.7)

The third term is an effect known as the Lense-Thirring effect and is a vortic-

ity driven effect, and results in planets’ orbits to become slightly perturbed when

orbiting a rotating star, for example. The last relativistic term generates the plan-

etary precession effect, and arises from maximising the elapsed proper time with

respect to the quantum matter wavepacket trajectory. This entails that matter

undergoes a local time dilation effect, and has a maximum speed c with respect

to the 3-space, and not wrt an observer as in SR. Matter is predicted to be able

to travel faster than c with respect to other observers in the Dynamical 3-Space

model provided they are at rest inside a bubble of space, for example, as their vR

will be zero in this case. Clocks taking different trajectories through space will

thus predict different times upon meeting again. In the case of zero vorticity and

in the non relativistic limit vR/c→ 0, equation (3.7) reduces to g = a, i.e. that the

matter acceleration is exactly that of the 3-space acceleration, and independent of

the mass of an accelerating object, in agreement with Galileo’s observations and

a derivation of the weak equivalence principle. The Global Positioning System

(GPS) also allows for an excellent test of the Dynamical 3-Space model. It has
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been shown[94] that for the case of spherical symmetry (see the following sections

regarding spatial inflow solutions) and then considering a constant cosmic flow of

space past the Earth, that the timing of the satellite clocks are affected in the

same way as that when applying the General Relativity model. The Dynamical

3-Space and GR models for the GPS are thus mathematically equivalent in this

case however their interpretations are quite different. In conventional physics the

relativistic effects involve the time dilation induced by Special Relativity effects

along with the gravitational potential energy effects predicted by GR. In the Dy-

namical 3-Space model the only effects present are that of time dilation produced

by the motion of clocks through space, where the velocities vR of the clocks depend

on the vector sum of their orbital velocity around earth and also the space inflow

speed into the earth. Once allowing for the non-sphericity of the earth and consid-

ering gravitational inflow turbulence, then minor timing effects at higher orders of

(vR/c) would become noticeable in the GPS satellites as the space flow becomes

time dependent, affecting time dilation properties. The GPS system therefore

would provide an excellent method of characterising the 3-space.

An analogous generalisation of the Dirac relativistic wave equation was also re-

quired, [54] giving the coupling of the spinor to a dynamical 3-space, and not wrt

to observers/an embedding space as

i~
∂ψ(r, t)

∂t
= −i~

(
c~α.∇+ v.∇+

1

2
∇.v

)
ψ + βmc2ψ (3.8)

where ~α and β are the usual Dirac matrices. The generalised Dirac equation can

also be used to obtain (3.7) through performing the same wavepacket accelera-

tion anaylsis as for the generalised Schrödinger equation, and thus predicts the

trajectory of a spinor wave packet in the dynamical 3-space.
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3.5 Maxwell’s Equations

Maxwell created these equations but without respect to any absolute reference

frame. Generalising these equations for the electric and magnetic fields as excita-

tions of dynamical space gives, in the absence of charges, currents and matter,[93]

∇× E = −µ0

(
∂H

∂t
+ v · ∇H

)
, ∇ · E = 0,

∇×H = ε0

(
∂E

∂t
+ v · ∇E

)
, ∇ ·H = 0. (3.9)

This was originally suggested by Hertz in 1890, but with v being a constant vector

field to account for an aether model of reality.[95] The speed of EM radiation is

still c = 1/
√
µ0ε0 but now with respect to the Dynamical 3-Space, and not wrt an

observer moving through the space. A time dependent / inhomogeneous velocity

field (as expected in reality as objects in the universe aren’t static) causes the

refraction of EM radiation, which can be calculated in an opposite fashion to

quantum matter by using the Fermat least-time approximation and ensures that

neighbouring paths are in phase. The EM ray paths r(t) are hence calculated by

minimising the elapsed travel time

T =

∫ sf

si

ds|dr
ds
|

|cv̂R(s) + v (r(s), t(s)) |
,vR =

dr

dt
− v (r(t), t) (3.10)

by varying both r(s) and t(s), where s is a path parameter and cv̂R is the velocity

of EM radiation with respect to the Dynamical 3-Space. The denominator in the

first term is the speed of the EM radiation wrt an observer’s Euclidean spatial

coordinates. Equation (3.10) can then be used to determine the amount of gravi-

tational lensing by matter (the Sun, for example), and by black holes and cosmic

filaments, the solutions which will be discussed shortly.
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3.6 Spatial Flow (α 6= 0, δ = 0, ρ = 0) Effects

Equation (3.1) with ρ = δ = 0 has solutions where space flows into a singular point.

These are also referred to as black holes as they have an event horizon where the

speed of the space inflow equals the speed of light. Their gravitational acceleration

is however not inverse square dependent and so differ from that predicted by GR.

The other major difference is that they are emergent from Dynamical 3-Space

theory, whereas they are required to exist in GR but their existence unexplained.

There are two categories of black holes:

• Minimal - Large inflow speeds induced by the presence of a large amount of

matter, such as a spherical galaxy or globular cluster. The effective black hole

mass of these systems is minimal. The minimal black hole mass and total

baryonic mass of these systems appears to be related by the fine structure

constant - see section 3.8.2 and chapter 5 for a further insight.

• Non-Minimal - Primordial black holes, i.e. those left over at the beginning

of the universe, which matter is then attracted to. These typically result in

spiral galaxies, and their effective mass is much larger than required by a

minimal black hole induced by matter. These contain an inflow singularity

at r = 0, and have a much more powerful gravitational influence than what

is predicted by GR, and do not require the presence of matter to function.

3.6.1 Primordial (Non Minimal) Black Holes

In the absence of matter, the Dynamical 3-Space theory, equation (3.1) has a

simple yet elegant spherically symmetric and time independent solution for a pri-

mordial black hole, namely

v(r) = − β

rα/4
, g(r) = ∇v

2

2
= − αβ2

4r1+α/2
(3.11)
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where β is a parameter which characterises the strength of a black hole, and the

minus sign denotes an inflow. The inflow speed at large distances is effectively

constant. The gravitational acceleration of these black holes has the stronger and

longer range 1/r gravitational acceleration as opposed to the black holes predicted

by GR (1/r2). The dark matter density obtained from equation (3.3) is thus

ρDM(r) = − αβ2(2− α)

256πGr2+α/2
(3.12)

which has an inverse square relationship as determined by ‘dark matter’ interpre-

tations of the flat rotation curves of spiral galaxies, however here it is purely a

space self interaction effect. Spiral galaxies are formed by matter infalling on pri-

mordial black holes, i.e. space inflow singularities remaining from the Big Bang,

leading to rotation of the matter as the infall will never be symmetric. Matter

orbiting such black holes would have approximate circular orbital velocities given

by

vO(r) =
√
rg(r) =

α1/2β

2rα/4
(3.13)

in which the velocity drops off extremely slowly with distance, which is observed

for spiral galaxies, at least for at large distances. An explanation of the rotation

curve at shorter distances is currently unavailable but would perhaps have to do

with finding solutions to the orbital velocity for when δ is also nonzero. This is one

class of solutions found in the Dynamical 3-Space theory, and the simplest, since

ρ = 0. For a spiral galaxy with a non-spherical matter distribution, numerical

solutions are required to determine the inflow velocity. Sufficiently far away from

a black hole however, the inflow will have spherical symmetry. Equation (3.1) then

has an exact non-perturbative two parameter analytic solution,

v(r) = K

(
1

r
+

1

Rs

(
Rs

r

)α/2)1/2

(3.14)
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where the 1/r term arises only if matter is present, and the second term is respon-

sible for the primordial black hole effect (at far distances, where ρ = 0). If no

matter is present, the presence of the 1/r term does not satisfy (3.1) for ρ = 0,

and so (3.14) then reduces to (3.11).[96] Here Rs characterises the length scale

of the non-perturbative part of this expression, and K depends on α, G and the

matter distribution itself. It was argued that the constants K and Rs are found

by matching the matter and non-matter regions from spiral galaxy data together.

The exact analytic solution then yields for the orbital velocity,

vO(r) =
K

2

(
1

r
+

α

2Rs

(
Rs

r

)α/2)1/2

. (3.15)

The asymptotic part of the rotation curve decreases very slowly with distance,

which is observed for spiral galaxies. In the absence of the α dynamics, this

expression then reduces to the Keplerian form, thus providing an alternative ex-

planation to the galaxy rotation anomalies.

3.6.2 Cosmic Filaments

Straight-line cosmic filament solutions were obtained by writing equation (3.1) in

cylindrical coordinates (r, z, φ). These solutions are:[97]

v(r) = − µ

rα/8
, g(r) = − αµ2

8r1+α/4
, ρDM(r) = − αµ2

1024πGr2+α/4
(3.16)

for arbitrary filament strength µ. These are time independent (i.e. static) solutions

for a single infinitely long and straight filament, and similar to black holes, have

a long range gravitational acceleration that is directed perpendicularly towards

the centre of the filament. As these solutions are using δ = 0 they only apply at

sufficiently large distances from the centre of a filament. Closer to the filament

the δ effects would become noticeable, which is mentioned later. The existence of
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both black hole and cosmic filament solution classes brought the conjecture that

reality consists of a network of black holes connected by cosmic filaments emergent

from Dynamical 3-Space theory.

3.6.3 Expanding Universe

The Dynamical 3-Space theory has spatial ‘outflow’ solutions which are time de-

pendent. This is referred to as the centreless expansion of the universe as the

solutions have a Hubble form v(r, t) = H(t)r. In the absence of matter this

solution is[49]

H(t) =
1

(1 + α
4
)t
, a(t) =

(
t

t0

) 1
(1+α

4 )

. (3.17)

Here a(t) is the scale factor indicating the relative size of the universe, and where

a(t0) = 1 for the present moment t0. The solution for the scale factor indicates

essentially a uniform expansion rate (due to the small value of α), and gives a

parameter free account of the type 1a supernova magnitude-redshift data, i.e.

without requiring the dark matter or dark energy parameters which the Fried-

mann equations require in order to predict the universe’s expansion. More on

the expanding universe solutions will be mentioned in chapter 6. Solution (3.17)

contains a singularity at t = 0, i.e. that at very early times the universe would

have expanded at an exponential rate, as α- dynamics become prominent at early

times and the universe’s expansion becomes nonuniform. This is brought on by

the small value of α which produces a nonuniform expansion rate at early t, and

gives rise to an inflationary epoch, also discussed in chapter 6.

3.7 Spatial Flow (α 6= 0, δ 6= 0, ρ = 0) Effects

In 2011 the Dynamical 3-Space equation was altered via a semi-classical derivative

expansion approach to include higher derivative δ terms which model much shorter
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length-scale dynamics of space.[52] Solutions to equation (3.1) with δ 6= 0 were

found, and for ρ = 0 there exist two parameter, v0 , κ ≥ 1 black hole solutions

v(r)2 = v2
0(κ− 1)

δ

r

(
1− 1F1

[
−2 + α

4
,−1

2
,−r

2

δ2

])
−v2

0κ

(
4− 2α

3

)
r2

δ2

Γ(2−α
4

)

Γ(−α
4

)
1F1

[
1 +

α

4
,
5

2
,−r

2

δ2

]
(3.18)

where 1F1[a, b, w] is the confluent hypergeometric function, which are used to model

both small and very large flows simultaneously, like blood flow[98] for example.

Here v0 sets the strength of the black hole and κ sets its structure by altering the

relative strength of the two 1F1 terms above. Equation (3.18) is a generalisation

of (3.11), and for r � δ gives an asymptotic description of the inflow velocity as

v(r)2 ≈ A
δ

r
+B

(
δ

r

)α/2
. (3.19)

From equation (3.7) i.e. the gravitational acceleration of matter this then gives

g(r) = GM(r)/r2, where M(r) defines an ‘effective mass’, using a two parameter

description,

M(r) = M0 +M0

(
r

rs

)1−α/2

(3.20)

This ‘effective mass’ mimics the amount of matter enclosed within radius r outside

a black hole, however this is now completely induced by the space interaction

effects, and does not contain any actual matter. Here rs is the distance where

M(rs) = 2M0, and r < rs is the region where M(r) is essentially constant, and

increases outside this region. Equation (3.20) was used to fit the Milky Way

SgrA* black hole mass data remarkably well, and showed how space dynamics

can be used to mimic the increasing matter density outside a primordial black

hole.[52] In chapter 5 it will be shown how to use the Dynamical 3-Space theory

to mimic the effective mass parameter to fit the SgrA∗ data using BH solutions to

a modified version of equation (3.1). The parameters κ and δ relate to each other
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in the way that if one is altered, the other automatically rescales to compensate.

The value of δ cannot be set to zero however. This suggested the existence of a

very small but nonzero structure to space which has a Planck-like length. At large

r, the inflow speed decreases very slowly, predicting essentially flat rotation curves

given by [52]:

vorb(r)
2 = GM0

(rs
r

)α/2 1

rs
. (3.21)

The rotation curves would also require additional contributions from present mat-

ter density however the primordial black hole would be the major contributor to

the inflow speed. For the Milky Way, for example, the black hole contribution at

a distance r = 8 kpc i.e. at the location of our solar system, was predicted to be

vorb = 117 km/s, and determined by M0 and rs. Various correlations such as that

between supermassive black hole mass and stellar speed dispersion in their spiral

galaxy bulges may be explained by the black hole being an extended structure as

given by this theory.

Exact filament solutions for (3.1) also exist when δ 6= 0, as a generalisation of

(3.16):

v(r)2 = v2
0

r2

δ2 1F1

[
1 +

α

2
, 2,− r2

2δ2

]
. (3.22)

Here r is the distance perpendicular to the axis of the filament and v(r) is the

inflow in that direction. The only known filament solution is still for one that is in-

finitely long and straight. Both (3.18) and (3.22) are well behaved functions which

converge to zero as r → 0, i.e. the in-flow singularities are removed, and the δ dy-

namics self-regulate the interior structure of the filament which again has a Planck

length scale. At long range, i.e. r � δ, v(r) ∝ 1/rα/8 and g(r) ∝ 1/r1+α/4, i.e.

reduces to the δ = 0 case as per equation (3.16), thus still producing a long range

gravitational attraction. Cosmic filaments have been detected using techniques

that combine weak gravitational lensing with statistical tomography.[99]
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3.8 ρ 6= 0 Effects

3.8.1 Gravity Inside Matter - Borehole g Anomaly

The borehole g anomaly is a deviation from Newtonian gravity when study-

ing gravitational effects upon digging deeper into the Earth’s core via the Airy

method,[100] which compares gravity gradients above and below the Earth’s sur-

face. These gravitational anomalies were never resolved in literature. The Dy-

namical 3-Space theory gives an exact analytical solution (for δ = 0 at least) for

the gravity inside a uniform and spherically symmetric object, and is compared

to that of NG in table 3.1. As seen, external to a spherically symmetric uniform

matter density the Dynamical 3-Space theory matches NG, and explains why the

α dynamics aren’t prominent in Kepler and Newton’s study of planetary orbits.

Inside an object however the theories give different results, as stated by the gravity

residual being to first order 4g(r) = 2παGNρ(r − R). The Dynamical 3-Space

theory then predicts the borehole g anomalies in the Greenland Ice shelf[101] and

Nevada[102] data to require a two parameter fit, namely Newton’s gravitational

constant GN (defined as GN ≡
(
1 + α

2

)
G), and also α which is approximately the

fine structure constant, 1/137.

3.8.2 Minimal Black Holes

Based off of evidence from black holes in 19 spherical galaxies, the black hole

mass is proportional to the observable mass of the galaxy, to a factor of α/2.[54]

Dynamical 3-Space theory predicts a relationship between the dark matter mass

MDM of a black hole and its observable mass to be

MDM = 4π

∫ ∞
0

r2ρDM(r)dr =
α

2
M +O(α2) (3.23)



Chapter 3. Dynamical 3-Space Theory - Emerging Phenomena 59

Table 3.1: Summary of the gravity profiles internal and external to an object
of uniform and spherical matter density.

Theory Solution

Dynamical

3-Space

g(r) =


(1+α

2 )GM
r2 , r ≥ R,

4πG
r2

∫ r
0

(∫ R
s
s′ρ(s′)ds′

)
ds , r < R

g(r) =

 GNM
R2 − 2GNM

R3 (r −R) , r ≥ R

GNM
R2 −

(
2GNM
R3 − 4π(1− α

2
)GNρ

)
(r −R) , r < R

Newtonian

Gravity
gN(r) =

 GNM
R2 − 2GNM

R3 (r −R) , r ≥ R

GNM
R2 −

(
2GNM
R3 − 4πGNρ

)
(r −R) , r < R

Gravity

Residual
4g(r) ≡ gN(r)− g(r) =

 0 , r ≥ R

2παGNρ(r −R) , r < R

for a spherical galaxy. Dynamical 3-Space theory currently defines MDM = MBH

although there is no derivation of this; it is only conjecture. This result is applica-

ble to any spherical matter distribution however, meaning that planets and other

massive objects also have an inflow singularity at their centre, and contributes to

the effective mass of planets and hence their gravity profiles, as was touched on

in the previous section. In star systems however the minimal black hole effect

becomes more prominent as was backed up by the spherical galaxy data.

3.8.3 Reverberation Effects

Perturbing the spatial inflow into matter (i.e. simulating gravitational waves) was

shown recently to produce reverberations in which the wave generates trailing

copies of itself.[103] This reverberation effect is caused by the non-linear nature of

the flow dynamics evident in equation (3.1), and was detected in Zener diode data,

where the data signal contains approximate 20 second periodic fluctuations.[77]

The scale of the reverberations was predicted to change depending on the matter
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in the local environment, e.g. Moon, Earth, Sun, galaxy etc. These reverberations

were predicted to be detectable in many experimental processes.

3.9 Concluding Remarks about Chapter 3

The Dynamical 3-Space theory predicts the emergence of many observable phe-

nomena such as gravity, black holes, cosmic filaments and an expanding universe

with an inflation epoch. While these predictions are only found in the most sim-

plest cases such as requiring time independence or spherical symmetry, they have

all been so far backed up by experiment and also without requiring the dark matter

or dark energy parameters predicted by GR.



Objectives of this Thesis

The new work presented in this dissertation covers two areas. Chapter 4 furthers

the understanding the effects a dynamical and fractal space has on macroscopic

processes. This is achieved through analysing the data obtained from the appa-

ratuses in two works reported by Cahill, one showing fluctuations in RF electro-

magnetic (EM) waves propagating through coaxial cables, and the other studying

tunneling current fluctuations in Zener diodes. These are shown to be two new

methods of studying the effects Shnoll observed when studying nonrandon mea-

surement scattering in data sets. The final part of this work offers an explanation

of the effects Shnoll observed from a Dynamical 3-Space theory viewpoint.

The remainder of the thesis extends on the Dynamical 3-Space theory, starting

in chapter 5 with revisiting the borehole g anomaly data in order to show that

the α terms in the model (equation (3.1)) must be altered in order to fit this

data set. Other data that the Dynamical 3-Space theory has been applied to,

such as the SgrA∗ black hole, spiral galaxy rotation and the type 1a supernova

magnitude-redshift data will be revisited to check that the theory still predicts

these phenomenon. This will then lead to showing in chapter 6 that the supernova

data predicts a uniformly expanding universe from a model independent viewpoint,

and then discussing how the NG/GR and Dynamical 3-Space models predict the

universe’s expansion and potential inflation epochs. New black hole solutions em-

bedded in a uniformly expanding universe that are emergent from the Dynamical

3-Space theory are discussed in chapter 7 along with their implications.
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Chapter 4

Measurement Scatter in Coaxial

Cables and Zener Diodes, and the

Shnoll Effect

4.1 Introduction

There is significant evidence suggesting that fluctuations in macroscopic processes

aren’t randomly generated.[88, 90] There are over 20 different processes studied

over a 5 decade period by Simon Shnoll which suggest this, and include protein ac-

tivity and chemical reactions,[88] radioactive decay,[92], dark current fluctuations

in photomultipliers,[104] and germanium semiconductor noise.[89] Shnoll studied

the rates of change of these processes by breaking the data signal into 1 - 1.5

minute segments and then taking the respective histograms of these segments.

These segments typically contain 60 - 100 measurements - a measurement is usu-

ally taken every second in the case for radioactive α decay rates which Shnoll

studied in depth. He then compared the similarity in histogram shapes both over

time and also between different experiments as they were run in parallel. Not only
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did these shapes repeat periodically over time but they did so regardless of the

process studied. Amongst others, he found that histogram shapes:[105]

• from a single apparatus were most likely to correlate with that of the follow-

ing histogram in time,

• repeat periodically, over both solar and sidereal days and years, moon cycles

and during solar eclipses,

• from apparatuses (regardless of whether they studied the same process or

different) located next to each other correlated at the same time,

• from apparatuses separated geographically correlated either instantly and/or

with a time delay corresponding to the Earth’s rotation, depending on the

direction of detection, and

• contained characteristic features during solar eclipses.

The study of histogram similarities using 60 - 100 measurements, and the results

reported by Shnoll has been coined as the Shnoll effect. All of his correlation

studies were performed via double blind experiments over tens of thousands of

measurements, and also by several different human experts, which dramatically

reduces the probability of findings being randomly generated and/or biased. Shnoll

mainly studied radioactivity, as it was the most reliable process to study, and he

has performed many control experiments which rule out common factors such as

varying temperature, pH, humidity, concentration, container/apparatus shape and

fluctuations in the electric mains. He ended up attributing the effects observed to

cosmophysical factors,[91] i.e. inhomogeneities in the spacetime continuum. These

inhomogeneities are “caused by the movement of an object in the inhomogeneous

gravitational field”,[88] e.g. as the Earth rotates/orbits the Sun, for example.

While these inhomogeneities were not characterised by Shnoll there is a remarkable

amount of evidence supporting this conclusion. No explanation of these effects has
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yet been provided by anyone nor have the experiments been successfully repeated

outside of Russia. A major concern appears to be that the correlations were made

by human experts and not via pattern recognition algorithms. A 20 year history

of the attempts made by Shnoll to automate the histogram similarity process is

found in chapter 2 of [88]. In the history for example he mentions a graduate from

Moscow who trained a neural network algorithm to learn histogram similarities

over a 2 month period based on previous similarities. When presented with new

data however the algorithm failed to detect the correlations at all, whereas a human

expert would find obvious histogram similarities. This appeared to be the case

for all attempted pattern recognition and correlation algorithms at the time. The

human brain appears to be a much more suitable device for pattern recognition,

and so the work performed by Shnoll and his colleagues was tedious but necessary.

Shnoll also reports longer term studies of radioactive decay rates over time. These

studies are achieved by taking a layered histogram, essentially stacked histograms

of the series of measurements as an experiment progresses. An example of this is

shown in figure 4.1, which shows a layered histogram of 352,980 successive mea-

surements of the α decay rate of a 239Pu source. The layers show a fine structure

which builds up over time instead of cancelling out as in the case of a typical ran-

dom, or Poisson distribution. This suggests that the radioactivity of 239Pu takes on

discrete (preferred) values, and is not completely random. This is usually ignored

in favour of a random distribution after either smoothing the data or taking into

account statistical probabilities. This chapter firstly discusses the new analysis of

two works published by Cahill in an effort to further understand at least the long

term effects Shnoll observed.[106, 107] The dual radio frequency coaxial cable EM

speed anisotropy experiment[74] allowed a preliminary analysis of understanding

the long term measurement scattering effect, and is shown here to be a potential

new technique for observing the short term Shnoll effects. The resolution of this
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Figure 4.1: Distribution of 352,980 measurements of 239Pu α decay by Shnoll
performed in May 2004 (Figure 2-2 of [88]). The layered histograms are taken
every 6000 measurements. The x-axis denotes the number of decay events per

second and the y-axis is the frequency of measurements.

data was however insufficient to further study changes in histogram shapes con-

taining only 60 - 100 measurements. The second experiment however used a newer

technique with current fluctuations in Zener diodes[77] produced data which had a

much higher timing resolution, and could in the future be used to study the Shnoll

effect. A discussion of how the presence of a dynamical space could affect the ap-

paratuses used by Cahill to generate the resultant data sets is presented.[106, 107]

The rest of the chapter discusses the short term Shnoll effects from a Dynamical

3-Space model viewpoint, which will suggest that Shnoll’s work also indicates the

existence of a richer reality than predicted by conventional physics models.



Chapter 4. Measurement Scatter and the Shnoll Effect 66

4.2 Materials and Methods

4.2.1 Dual RF Coaxial Cable Experiment

Figure 4.2a shows the dual RF coaxial cable apparatus used by Cahill[74] for

collecting data. The apparatus relied on soldering two phase stabilised Andrew

coaxial cables with differing refractive indices (HJ4-50, n = 1.11, FSJ1-50 A,

n = 1.19) together into 2 circuits, in a way where the EM waves in one circuit

would travel in one direction through one type of coaxial cable, and then back

through the other, and vice versa with the other circuit. This is better represented

in figure 4.2b. All 16 of the HJ4-50 cables were tightly bound into a 4x4 array

such that they all locally have the same temperature, and similarly with the FSJ1-

50 cables (see the gray conduit boxes at the bottom of figure 4.2a). The cables

in one of the circuits were embedded into the cables in the second circuit, which

then allows the cancellation of any temperature effects present in both circuits.

The apparatus was also aligned N-S and horizontally, 35◦ with respect to Earth’s

spin axis as to allow Earth to naturally change the angle of the apparatus wrt

the space flow, which is predicted to have a declination of approximately −70◦.

Aligning the apparatus with respect to the Earth’s spin axis removed any Earth

rotation induced effects which would then allow the characterisation of the 3-space

wave effects, however for the data analysed here the apparatus was oriented at

the angle mentioned above. The travel time difference of two 10MHz RF signals

from a Rubidium (Rb) frequency standard clock was detected using a LeCroy

Waverunner 6000A Digital Storage Oscilloscope (DSO) as the signals travel one

way in one type of coaxial cable and return via the other type of coaxial cable.

Any temperature effects that affect one circuit also affect the other circuit in

the same manner (as they are bound together), and so the travel time difference

is only affected by the overall temperature of the cables, Rb clock and DSO.

The effects on travel time due to temperature were removed from the data by
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(a)

(b)

Figure 4.2: (a) Dual RF coaxial cable apparatus, see figure 5 of [74], with 2
circuits of alternating lengths of HJ4-50 coaxial cable soldered to FSJ1-50A
cable. Each circuit was 1.85 x 16 = 14.8 m long. (b) Schematic of the coaxial
cable apparatus, see figure 6 of [74]. In each circuit the 10 MHz RF signal
travels one-way in one type of coaxial cable and returns via a different kind of

coaxial cable, and the travel time difference is measured via a DSO.

positioning the detector in a closed room, while allowing the room temperature

to fluctuate slowly over a period of time. The timing errors were assumed to be

proportional to changes in temperature, and were found to have a distinct time

signature approximately 4 times that of the true 8 ps signal. The circuit phase

data was obtained by subtracting the temperature induced4t = a+b4T from the

data, after determining coefficients a and b. Data was collected every 5 seconds,

from 12:00 am March 4, 2012 to 12:00 am March 2012 (9 days), and contains

155,520 data points over this period. The data has a resolution of 1 ps, i.e. the

travel time difference was recorded in integer picosecond values. The data obtained

and used was that after taking into account temperature fluctuations, i.e. the raw

data was not obtained nor required for analysis.
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Figure 4.3: Circuit diagram of the Zener diode gravitational wave detector,
showing 1.5 V AA battery, 1N4725A Zener diode operating in reverse bias mode,

and having a Zener diode of 3.3 V, and resistor R = 10 kΩ.[107]

4.2.2 Zener Diode Experiment

The Zener diode gravitational wave detector experiment performed in August 2013

was set up as shown in the circuit diagram in figure 4.3.[77] The setup is quite

simple and only uses a 1.5 V AA battery, a 1N4728A Zener diode operating in

reverse bias mode, having a Zener voltage of 3.3 V, and a resistor R = 10 kΩ. The

voltage V across the resistor is measured and used to determine the fluctuating

tunnelling current through the Zener diode. The apparatus was attached to a

LeCroy Waverunner 6051A DSO and data was collected at 1 second intervals,

from 5:06:55 am August 20th, 2013 to 3:12:42 am August 27th 2013 (8 days), and

contains 376,101 data points over this period. The current fluctuation amplitude

data has a much higher resolution than that of the coaxial cable data (µA, to

multiple decimal places as opposed to ps, and is the limitation of the DSO for

the coaxial cable experiment). Due to power issues the recording of the data was

intermittent, which is discussed in the results section.
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4.2.3 Data Analysis and Layered Histogram Generation

The coaxial cable and Zener diode data was analysed in the work presented here

using Mathematica 9.0. The code used contains a mechanism to reduce or elimi-

nate unwanted low frequency effects such as the Earth rotation effect, temperature

drift and tunneling current drift from decreasing battery power (in the Zener diode

experiment), for example. The code works in the following manner:

1. Import the required data set (either coaxial cable or Zener diode data) and

plot in a signal form.

2. A Fourier Transform (FT) of the data set is performed.

3. A low frequency cutoff (FC) is set which then eliminates the lowest frequen-

cies observed in the raw data, like Earth rotation effects and any potential

residual temperature effects for example. An inverse of this FT then leaves

the remaining data without the unwanted lower frequencies. This data set

is then plotted in a signal form.

4. The data is split into segments each containing 3350 (coaxial) or 6100 (Zener)

measurements, starting from the first measurement - the remainder of the

measurements not divisible by the above numbers (155520 - coaxial cable,

376101 - Zener diode data sets) are discarded.

5. To ensure that numerical artifacts are minimised, the first and last segments

of the coaxial cable data set, and the first/last 5 segments from the Zener

diode data set are discarded - see the results section on this for a further

justification on numerical artifact removal.

6. The data points from the first remaining segment are placed into a histogram

of width ±3σ, where σ is the standard deviation of the data set generated.

The histograms are divided into 70 bins of fixed width.
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7. The second histogram was taken in a similar manner except it uses both the

1st and 2nd data segments, the third containing 1st to 3rd segments, and so

on, to achieve a series of layered histograms that build up over time. These

layered histograms don’t necessarily contain all the data points, just those

that fall within ±3σ of the mean value of all data points collected over the

duration of the experiment.

8. All histograms are plotted together to show how the data builds up over

time. Layered histograms of width 1σ and 2σ were also generated to show

how the data is affected by scaling effects.

In both the coaxial cable and Zener diode data cases a background of the data

was also taken in which the above FT process was also used. This background

was obtained by:

1. Taking a moving average of a data set, using 250 points.

2. Repeating the above once, to further smooth the data. This gives a smooth

background as will be shown in the results section.

3. Using the mentioned FT process to remove low frequencies from the back-

ground data set.

4.3 Results

4.3.1 Coaxial Cable Experiment: Code Robustness

Figure 4.4 shows the data from the dual RF coaxial cable experiment performed

in 2012 - see [74]. There are periodic peaks and troughs which are caused by the

rotation of the Earth changing the orientation of the apparatus wrt to the space
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Figure 4.4: Reproduction of the coaxial cable data (red) obtained in [74], over
the duration Mar 4 - 12, 2012. The blue plot represents a moving average of
the raw data. The y axis represents the travel time difference between the two

coaxial cables, in ps, to integer precision.

flow, hence changing the travel time. The travel time difference between the

circuits at the DSO is independent of temperature, and is

4t =
2v cos θL(n2

1 − n2
2)

c2
+ ... (4.1)

where L = 14.8 m is the length of each circuit, n1 and n2 are the refractive indices

of the two coaxial cable materials used and v cos θ is the 3-space velocity projected

onto the apparatus, which changes as the Earth rotates. The apparatus relies on

exploiting the Fresnel drag anomaly, i.e. that there is no apparent Fresnel drag in

coaxial cables. The Fresnel drag effect is an additional slowing effect which EM

waves experience when moving through a dielectric that is itself moving through

space. A clarification of the Fresnel drag formalism in the presence of a dynamical

space can be found in section 3 of [108]. A key point is that if Fresnel drag was

present in coaxial cables then the n2
1 − n2

2 term in 4.1 is replaced by 0, and no

first order term in v is present.[74, 108] This is clearly violated by the actual

data recorded by the coaxial cable experiment, as the Earth rotation effect is

apparent. These results are in remarkable agreement with the velocity of absolute



Chapter 4. Measurement Scatter and the Shnoll Effect 72

motion of Earth determined from both the Miller data[57] and that from NASA

spacecraft Earth-flyby Doppler shift data,[109] which revealed a light/EM speed

anisotropy of 486 km/s in the direction (4.3h,−75.0◦). This anisotropy, or 3-space

velocity varies throughout the year in a predictable fashion because of the orbital

motion of the Earth - the aberration effect discovered by Miller, see figure 2.1 but

also shows fluctuations with fractal characteristics. The flyby data provides an

excellent comparison with coaxial cable 3-space velocity predictions; if Fresnel drag

is present then the space velocity for DeWitte’s coaxial cable data was predicted

to be 1125 km/s, which also disagrees with the flyby data.[74] The regular dipping

spikes in the data at 135, 160, 183 and 208 (and likely also at 86) hours occur at

around 3 - 4 am on those days and are likely caused by power grid fluctuations.

The data also only contains measurements at integer values of picoseconds, as this

is the extent that the DSO can measure. This is the one major limitation of the

DSO in that it cannot physically record a higher timing resolution than this.

The Fourier Transform process used is designed to remove any low frequency ef-

fects observed in the coaxial cable data, including daily Earth rotation, residual

temperature anomalies arising from the linear fitting process and the effects due

to power grid fluctuations. This results in a signal which is caused solely by fluctu-

ations in space flowing past the apparatus, and ideally allows the characterisation

of these fluctuations. Figures 4.5a - 4.5c show the data after the described FT pro-

cess after using different low FC strengths ranging from 20 to 1000. The strength

values are only meaningful in that they reflect the strength of the frequencies re-

moved from the 155520 data points used. It is noticed that having an insufficient

(too low) FC introduces sinusoidal numerical artifacts into the data along with

insufficient removal of the data spikes, as is shown by having low FCs of 20 and

100. The sinusoidal effects and data spikes were observed to decrease with increas-

ing low FC. The presence of the mentioned power spikes in the coaxial cable data

in figures 4.5a (20) and 4.5b (100) demand a higher low FC, such as 1000 which
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(a) Low FC = 20

(b) Low FC =100

(c) Low FC =1000

Figure 4.5: Coaxial Cable data after FT using increasing low frequency cutoffs
from 20 to 1000 (from 155520 measurements).
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appear to remove this completely.

To be certain that all unwanted artifacts from a signal were removed, the extent

to which numerical artifacts in the data set after background removal were quanti-

fied. There are different ways to do this, the easiest of which is to simply subtract

the background from the data. It was decided however to determine a smoothed

background of the coaxial cable data, while then using the FT process to reduce

the background to zero by varying the low FC strength. One then gains the added

benefit of being able to remove not only the background but also the lower fre-

quencies in the true signal, allowing the study of various frequency bands observed

in the data if desired. This is the role of the low FC, to set all sufficiently low

frequencies observed in a data set to zero; a high FC may also be used to remove

higher frequencies. This will then guarantee a clean data set after the FT process

while demonstrating the robustness of the Mathematica code used. The blue plot

in figure 4.4 shows the background of the coaxial cable data, while figures 4.6 and

4.7 show how the background reduces when the low FC increases from 200 to 2000.

The inserts of these two figures are zoomed in sections after removing the first and

last 3350 measurements (since the ends contain higher numerical artifacts induced

by the FT process, these data points are discarded when compiling the layered

histograms), and further show the reduction in the background signal. For a low

FC of 200, figure 4.6a, the numerical artifacts due to power grid fluctuations are

clearly evident. These are virtually eliminated at higher strengths such as from

500 - 2000.

For a low FC value to sufficiently reduce the background signal to a point where it

will not affect the resultant layered histograms, the numerical artifacts observed in

figures 4.6 and 4.7 must be at least lower than the bin width of the histograms. If

the background noise is too high, a data point could be shifted to the bin next to

it, thus a layered histogram will become unreliable if there are too many numerical

errors present in the data. Table 4.1 shows the bin widths of the resultant layered
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(a) Low FC = 200

(b) Low FC = 500

Figure 4.6: Residual noise of smoothed coaxial cable data after FT using in-
creasing low FCs of 200 and 500 (from 155520 measurements).
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(a) Low FC = 1000

(b) Low FC = 2000

Figure 4.7: Residual noise of smoothed coaxial cable data after FT using in-
creasing low FCs of 1000 and 2000 (from 155520 measurements).
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Table 4.1: Background coaxial cable data after the FT process, for low FCs
from 200 to 2000. The resulting layered histogram bin width is shown along

with the estimated noise from the background signal.

Low FC σ Bin Interval Estimated Smoothed FT Noise
200 1.2288 0.0529 > 0.4
500 1.1707 0.0500 0.030
1000 1.1511 0.0500 0.010
2000 1.1300 0.0486 0.004

histograms for a given low FC, along with the estimated background noise for the

coaxial cable data. A FC of 200 for example (figure 4.6a) shows clear numerical

noise mainly from the daily spikes in the raw data resulting from the FT process,

while the estimated background noise is almost 8 times higher than the resultant

layered histogram bin width. It could be argued that using a low FC of 500

(figure 4.6b) shows this as well, or at the very least at the end points since the

FT noise is 0.03 and comparable to the bin interval of 0.05, meaning that the

first and last histograms would likely contain a lot of numerical errors which then

persist throughout a layered histogram. As table 4.1 shows, a FC of at least 1000

is required for background numerical effects to be reduced enough to generate

meaningful layered histograms.

Figure 4.8 shows the layered histogram generated for a low FC of 1000. The struc-

ture observed in the layered histogram appears to build up over time instead of

cancelling out. This suggests that the coaxial cable data is affected by a non-

random process as the data is taking on discrete, or preferred values. Layered

histograms with different low FCs also display this property though, such as those

still containing some numerical effects as shown in figure 4.9a for a low FC of 500,

or when more of the true signal is removed from the histogram (figure 4.9b uses

a low FC of 2000, for example). These histograms appear noisier than the ones

Shnoll produced (see figure 4.1 earlier in this chapter) but this may be due to the

fewer data points obtained than Shnoll (352,980 measurements), or due to the tim-

ing resolution of the DSO used in the experiment. What is noticeable is that there
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Figure 4.8: Layered histogram of the dual RF coaxial cable data after FT using
increasing a low FC of 1000.

are peaks at non integer values, which contradicts the coaxial cable data initially,

as this contained only integer picosecond values. This is likely caused by the FT

process interpolating the data after removing the low frequency effects, leading to

non integer data points being generated. Since all 3 layered histograms show simi-

lar properties, it can be said that the Mathematica code used is sufficiently robust

enough to study the Zener diode data, which has much better timing resolution

as discussed next.
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(a) Low FC = 500

(b) Low FC = 2000

Figure 4.9: Layered histograms of the dual RF coaxial cable data after FT using
increasing low FCs of 500 and 2000.
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(a) Collected data

(b) Used data

Figure 4.10: Zener diode data obtained from 20 - 27 August, 2013, in Adelaide.
Part (a) is the entire data showing periods of intermittance and data spikes and

part (b) shows the data after removal of unwanted periods.

4.3.2 Zener Diode Experiment

Figure 4.10a shows all the raw data obtained from the reverse biased Zener diode

experiment performed in Adelaide, from 5:06:55 am August 20 - 3:12:42 am August

27, 2013, along with a smoothed fit performed in a similar way to that of the coaxial

cable data (see figure 4.4). The data contains periods of intermittance (flat lines

caused by the DSO stopping recording data or power issues), dips (e.g. at 75 hours

- the cause of this is unknown) and spikes (43, 127 and 151 hours likely caused by
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power grid fluctuations at midnight) which make it difficult to generate layered

histograms of this data without introducing numerical errors at these periods.

The gradual current decay is attributed to the batteries in the circuit draining

over time. It was decided to remove these undesired periods and obtain a data

set with no current spikes, thus allowing the general study of tunneling current

fluctuations over time.

Figure 4.10b shows this data with periods removed to obtain a data set with no

major spikes or dips. The resulting data set was smoothed (see blue plot of 4.10b)

and the FT process was performed. Table 4.2 summarises the standard deviation

and bin intervals of the Zener diode data as a function of low FC as well as the

corresponding estimated smoothed noise. It was required to remove the first and

last 3 segments of data (18300 data points on either side) as the numerical artifacts

at either end of the resulting data sets were too large to include. From table 4.2

it is apparent that a low FC of at least 2000 is required to study the Zener diode

data (the estimated smoothed noise of 0.001 is less than half of the bin interval

of 0.00214) although using a FC of 5000 would produce a more reliable layered

histogram as well. Figures 4.11a and 4.11b show the layered histograms generated

for low FCs of 2000 and 5000. The histogram shape is very similar to that of

what Shnoll detected, see figure 4.1, i.e. smoother than the coaxial cable layered

histograms but still containing features which persist over time instead of washing

out as in the case for a typical random distribution. This suggests that the long

term effects Shnoll observed will also be evident in both the coaxial cable and

the Zener diode data. Figures 4.12a and 4.12b show layered histograms for a low

Table 4.2: Summary of FT of unsmoothed and smoothed Zener Diode data,
used in order to determine the low FC used for further study.

Low FC σ Bin Interval Estimated Smoothed FT Noise
500 0.0565 0.0024 0.0060
1000 0.0529 0.00223 0.0015
2000 0.0509 0.00214 0.0010
5000 0.0491 0.00214 0.0004
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(a) FC = 2000, 3σ scale

(b) FC = 5000, 3σ scale

Figure 4.11: Layered histograms of the Zener diode data after FT using increas-
ing low FCs of 2000 and 5000.
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FC of 5000, but at increased time scales, effectively ‘zooming in’ on the layered

histogram. These layered histograms show even more structure that builds over

time. This buildup appears to occur regardless of the time scale used, suggesting

that the phenomenon causing this has a fractal nature.

4.4 Interpretation of Data

There are properties which arise in the layered histograms for both the dual RF

coaxial cable and Zener diode data sets. These are:

1. The data consists of preferred or discrete values instead of random values.

This is shown through figures 4.8 and 4.12 having nonrandom distributions.

2. The distributions have persistent structure regardless of the cutoff frequency

used to produce them, i.e. the structure exists for differing frequencies used

in the histogram.

3. The structure also persists when observed at different scales, see figure 4.12.

Point 1 suggests a nonrandom phenomenon causing the observed distributions

while points 2 and 3 suggest a fractal nature of the phenomenon. If this is indeed

caused by a dynamical and fractal 3-space then the persisting structure observed

in the layered histograms correspond to regions of space passing the Earth that

have preferred/discrete velocities, and not random ones, as randomly distributed

velocities would result in a Poisson distribution, i.e. no features. This is better

illustrated using a bubble diagram shown by figure 4.13. Here the bubbles can be

thought of as the regions of space with differing speeds and directions and which

evolve over time. A likely explanation for this is that the gravitational waves prop-

agating in the 3-space inflow of the Earth or Sun could become phase locked due to

the relative locations of massive objects. This would cause reverberation effects,
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(a) FC = 5000, 2σ scale

(b) FC= 5000, 1.5σ scale

Figure 4.12: Layered histograms of the Zener diode data with 2 σ and 1.5 σ
scale for a low FC of 5000.
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Figure 4.13: Bubble representation of the fractal wave data as revealing the
fractal and dynamical structure of the 3-space. The cells of space would contain
slightly different velocities which evolve over time, and move wrt the Earth with

a speed of ≈ 500 km/s.

i.e. regions of space which have similar speeds and directions, which then repeat

over time. The reverberations would be detectable in many other experiments such

as EM anisotropy, radiation decay, semiconductor noise generation etc. and could

in the future be used to further characterise the dynamics of space. Characteris-

ing these reverberation effects however would be quite difficult, at least using this

study since the reverberations would change shape while the Earth rotates and

orbits the Sun, and also as the Moon orbits the Earth, at least from a local point

of view. It could be possible, if one had enough instruments to perform multiple

experiments in parallel while the relative positions and orientation of Earth, Sun

and Moon are fixed, but this however was not possible in the work presented here.

For the above claim to be true, a mechanism is required which describes the in-

teraction of space with these devices to produce the mentioned effects. Certainly

the coaxial cable data set contains light speed anisotropy effects arising from the

apparatus changing angle wrt the space flow as the Earth rotates, which explains



Chapter 4. Measurement Scatter and the Shnoll Effect 86

the periodic change in the travel time observed. To explain the scatter of mea-

surements in the data signals one must turn to clock jitter effects within a DSO

and tunneling current fluctuations within Zener diodes, which were suggested to

exist within the time difference measurement hardware within DSOs.[77] It was

mentioned briefly in chapter 2 regarding clock jitter, the effect which appears to be

correlated when the DSOs are separated geographically. The discovery was later

followed by correlations observed in Zener diode devices in the Global Conscious-

ness Project between Perth and London, i.e. at a much larger scale. The work

presented here was later followed by a study by Cahill[84] where the signals from

Zener diodes separated by distance were also found to correlate, with a time delay

corresponding to a 3-space speed of 476 km/s when the diodes were oriented N-S.

This then provided further justification for space fluctuations being responsible

for causing Zener diode fluctuations. Why fluctuations in space also drive cur-

rent fluctuations in Zener diodes was then understood. Consider the generalised

Schrödinger equation in the presence of a potential V (r, t),[51]

i~
∂ψ(r, t)

∂t
= − ~2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t)

−i~
(

v(r, t).∇+
1

2
∇.v(r, t)

)
ψ(r, t) (4.2)

which is (3.5), and models quantum matter as a purely wave phenomenon, as

mentioned in chapter 3. It is possible to use the generalised Schrödinger equation

to understand current fluctuations in reverse biased Zener diodes that are driven

by fluctuations in space. Figure 4.14 shows the operating voltage and energy levels

for electrons at the pn junction of a Zener diode. The current when operated in

reverse biased mode only occurs due to quantum tunneling, and is very small. One

can consider wave packet solutions to (4.2) applicable to the situation shown in

figure 4.14, using a complete set of plane waves,

ψ(r, t) =

∫
ψ(k, ω)ei(k·r−ωt)d3kdω. (4.3)
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Figure 4.14: (Left) Current-Voltage (VI) characteristic plot for a Zener diode.
In this study V Z = −3.3 V is the Zener diode, and V D = −1.5 V is the
operating voltage used (AA Battery). The reverse bias region is when V < 0,
and produces a small tunneling current when operated near voltage V D. (Right)
Top: Schematic of an electron incident on a pn junction of a Zener diode in
reverse bias mode. The electron travels from the anode (A) to the cathode (C)
as labelled in figure 4.3, Ec is the bottom of the conduction band, Eν is the top
of the valence band, and EFp and EFn are the respective Fermi levels. No states
are available in the depletion region. Middle/Bottom: Schematic of electron
wavepacket incident on a Zener diode pn junction in reverse bias mode. Note
the reflected and transmitted components after electron tunneling through the

potential barrier with height V0. Image source from figures 2 and 3 of [84].

These solutions would be applicable to not only the electrons in the current but

also for the Zener diode as an individual quantum system itself, with resultant

wavenumbers k for the diode being much larger than that of electrons. Provided we

can approximate the 3-space velocity v(r, t) as a constant over a short distance and

time, the space driven term added to the generalised Schrödinger equation then

mainly contributes the term ~v · k to the equations for ψ(k, ω). This effectively

results in space fluctuations driving the change in the potential barrier height of

the Zener diode, V0 → V0 + ~v · k. The barrier height change then alters the
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quantum tunneling amplitude, T (V0 − E) → T (V0 + ~v · k − E) where E is the

electron’s energy, and which changes the Zener diode current. Notice that the

current fluctuations would then be very sensitive to fluctuations in space.

The correlations in Zener diode data found by Cahill marked a major discovery

regarding the current interpretations of quantum theory, and implied a need for

its reinterpretation in terms of a fractal and dynamical space, and not the Eu-

clidean embedding space solely used for position labelling. Quantum theory can

predict the transition amplitude T (V0 − E), with |T |2i giving the average Zener

diode current (i is the current at the pn junction). Quantum theory however

contains no randomness nor probabilities, i.e. the Schrödinger equation is purely

deterministic and does not describe the localisation of quantum matter when mea-

sured. For example, in figure 4.14, the middle and bottom schematics depict an

electron wavefunction ψ(r, t) becoming delocalised around a potential barrier, and

has now evolved to the superposition ψr(r, t) + ψt(r, t), the reflected and trans-

mitted electron components respectively. Such an electron in a delocalised state

when interacting with a detector, i.e. a system in a metastable state, would put

the combined system in a delocalised state which is then observed to localise.

The detector records an event at one location, but for which quantum theory can

only provide the expected average distribution, i.e. in this case ||ψr(r, t)||2 and

||ψt(r, t)||2 for reflected and transmitted photons respectively. The theory is how-

ever unable to make predictions as to the fluctuations that lead to these observed

averages. Interpretations of the Schrödinger equation from an ad hoc probability

viewpoint such as the Born metarule and Copenhagen interpretation ultimately

demand that measurements are completely random. This is because the probabil-

ity of detection events are intrinsic to individual quantum systems, but this is false

from the reported correlations in Zener diode data sets. Process Physics suggests

that delocalised states become localised through interaction with the dynamical

space, and that the variations in detections are produced by fluctuations in space
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itself, which would be observed in quantum processes. This is achieved simply

by the addition of a dynamical space component to the Schrödinger equation, as

discussed here.

4.5 Interpretation of the Shnoll Effect

The nonrandom processes and correlations discovered by Shnoll are similar exam-

ples of the effect explained above. Alpha decay for example, involves the Coulomb

repulsion between an α particle and its nucleus generating a potential energy bar-

rier that the α wavepacket then tunnels through.[110] The distinction here is that

the fluctuations in space would affect the potential barrier height of the nucleus

more than that of the α particle, thus allowing fluctuations in the radioactive de-

cay rate. Shnoll also reports many correlations and properties of α decay studies,

mainly through studying correlations in histogram shapes of 60 - 100 measure-

ments taken in sequence. This was referred to as the Shnoll effect, and is different

to studying real time fluctuations in experimental data by instead looking at the

collective behaviour of a phenomenon over a small time period (usually a minute).

Absolute time correlation of histogram shapes measured at different geographical

locations was observed by Shnoll. Because his results were typically collected over

a 60 second period this limits the time resolution of his results. Histograms of

α decay rates taken over a 1 second time interval for example should detect the

space driven time delay effects observed by Cahill, if the studies were well separated

geographically N-S. Histogram shapes of studies separated geographically were also

found to correlate with a time delay corresponding to that caused by the rotation

of the Earth, i.e. the time taken for Earth to rotate one apparatus to the same

longitude that the other apparatus was previously at. These studies are taken

using a collimator to allow directional studies. This suggests that radioactive

decay is affected by the characteristic space fluctuations flowing in a particular
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direction. For example, using no collimator or aiming one E-W will yield local

time correlations as it picks up wavefronts travelling past Earth which align in

an E-W direction. Aiming a collimator towards the south celestial pole (to detect

cosmic flows) or at the Sun (as space flows into massive objects) allows for absolute

time histogram correlations instead, as space flows in this approximate direction.

The Shnoll effect manifests itself periodically with respect to both sidereal and

solar days and years as well with more subtle periods such as the Sun’s synod pe-

riod and the lunar month. The alignment of the massive objects in the sky is then

likely to affect the space fluctuation patterns flowing past Earth in a predictable

fashion. For specific cases such as during solar eclipses and to a lesser extent with

new moons there exist characteristic histogram shapes which are repeatable and

observed mainly in the Global Consciousness Project, which studies the change

in XOR gate altered various diode setups in one second intervals. This is likely

caused by the existence of filaments forming between the Sun-Earth, Earth-Moon

and Sun-Moon combinations, with the filaments aligning during these events, caus-

ing space to behave in the Earth’s vicinity in a predictable manner. Filaments are

predicted in Dynamical 3-Space theory however only single, infinitely straight fila-

ments are predicted in the absence of matter, with numerical solutions required for

more complex cases. Modelling the velocity field for a Sun-Earth-Moon environ-

ment, and then perturbing the inflow into these massive objects is predicted here

to produce both filaments as well as complex reverberations that would evolve as

they pass Earth.

For a single radioactive decay study, histogram shapes were found to correlate

with those closest in time, i.e. with that of the following histogram generated.

This also occurs over a wide range of time scales ranging from 6 hour histograms

down to 0.13 ms when studied using germanium semiconductors.[89] Since there

is currently no time scale at which the mentioned effect is unobserved it suggests

that space is both fractal and evolves over time. This effect was referred to as the
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‘near zone effect’, and is most strongly observed when aiming collimators at the

Sun, or without a collimator, suggesting that the evolution of space flowing into

the Sun can be detected and characterised. Over 20 different processes display the

effects Shnoll observed, including the previously mentioned phenomena but also in

photomultiplier dark noise fluctuations, electrophoretic mobility in latex particles,

proton relaxation times and neutrino emission fluctuations in the Earth’s crust.

These processes have energies and fluctuation amplitudes differing in many orders

and suggests the ability of space turbulence to affect processes universally. This

then allows the study of how space interacts with these phenomena.

4.6 Concluding Remarks about Chapter 4

The data from coaxial cable and Zener diode - gravitational wave experiments

display the nonrandom characteristics Shnoll observed previously in radioactivity

experiments. It is suggested that these two experiments (along with other work by

Shnoll) are caused by the fractal nature of space, together with the reverberation

effect from gravitational waves, as predicted by the Dynamical 3-Space theory.

Quantum tunneling current fluctuations and alpha decay rates are also suggested

to be nonrandom and completely caused by the fractal and dynamical nature

of space as it passes by an instrument. Through generalising the Schrödinger

equation to contain dynamical space effects one can explain how space can cause

the localisation of wavefunctions on either side of a potential energy barrier, thus

requiring a reinterpretation of quantum theory. The short term Shnoll effects were

also able to be explained in terms of the presence of a dynamical space. Shnoll’s

extensive research therefore opens up many opportunities to study space dynamics.

This work was performed more recently; further studies of the Shnoll effect was

limited as it is quite time consuming. The following work is more theory based

and is aimed at further developing the Dynamical 3-Space theory.
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Dynamical 3-Space Theory

Modification

5.1 Introduction - the Borehole g Anomaly

The Dynamical 3-Space theory, equation (3.1) is phenomenologically based i.e.

not derived from theory but instead from experimental data. The only theoretical

foundations the model contains is from that suggested by Process Physics, and also

through generalising Newtonian gravity into an inflow formalism which contains

the α and δ space self interaction effects that cannot a priori be ignored. As

discussed in chapter 2 it has links to the fine structure constant, which is the value

α ≈ 1/137 found from geophysical and astrophysical data which will be discussed

throughout this chapter.

Upon checking the application of Dynamical 3-Space theory to the Greenland Ice

Shelf borehole data[111] an error was found in the analysis of the results in which

the value of α was off by a factor of ten, i.e. α = 1/13.7 was required to fit the

data using (3.1) and the predictions in table 3.1. It is therefore proposed here that

the Dynamical 3-Space theory be modified to include an extra factor of π2, which

92
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allows α to remain ≈ 1/137 as in the equation below:

∇·
(
∂v

∂t
+ (v·∇)v

)
+
π2α

8

(
(trD)2 − tr(D2)

)
+
δ2

8
∇2
(
(trD)2 − tr(D2)

)
+ ... = −4πGρ, Dij =

∂vi
∂xj

. (5.1)

This is allowed as the model is phenomenologically based - all that has been

modified here is the coefficient of α has been altered from 1/8 to π2/8. The

value π2 = 9.870 ≈ 10 has instead been suggested since the final form of (5.1) is

still unknown, and is largely dependent on whether future studies of the Process

Physics paradigm can derive the Dynamical 3-Space theory in this form. It is

also believed that this model is likelier to contain a factor of π2 than a factor of

10. An alternative for example would be to drop the division of α by 8 instead

however this changes α; experimentally α appears to be the fine structure constant

≈ 1/137, and so historically this model has accommodated for this fact.

The new solutions for the expected gravitational acceleration inside matter are

shown in table 5.1. As observed, the gravity residual i.e. the difference between

NG and Dynamical 3-Space model predictions for the gravity inside a spherical

matter distribution now includes the additional π2 factor when compared to that in

table 3.1. This is required to explain the borehole g anomaly for the Greenland Ice

Table 5.1: New gravitational acceleration solutions inside a spherical matter
density (see table 3.1)

Type New Solution

Gravity

Inside &

Outside

Matter

g(r) =


(

1+π2α
2

)
GM

r2 , r ≥ R,

4πG
r2

∫ r
0

(∫ R
s
s′ρ(s′)ds′

)
ds , r < R

g(r) =


GNM
R2 − 2GNM

R3 (r −R) , r ≥ R

GNM
R2 −

(
2GNM
R3 − 4π(1− π2α

2
)GNρ

)
(r −R) , r < R

Gravity

Residual
4g(r) ≡ gN(r)− g(r) =

 0 , r ≥ R

2π3αGNρ(r −R) , r < R
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Figure 5.1: The Greenland Ice Shelf borehole g anomaly data, [101] giving
α ≈ 1/137 from fitting the gravity residual 4g(r) form in table 5.1. The misfit
at shallow depths arises from the ice not having reached the ice-shelf full density,

which is a snow compacting effect.

Shelf data, see figure 5.1. A similar result can be applied to the Nevada borehole

data.[102, 111]

A redefinition of GN ≡ (1 + π2α/2)G is also required, since this is the definition

of Newton’s gravitational constant in [111]. Here GN implies that a two param-

eter fit consisting of G and α applies to experiments including studying galaxy

dynamics, borehole gravity gradients and also those which determine G experi-

mentally. Newtonian physics only contains the single parameter GN to base G

measurements from. The inflexibility of NG when applied to gravitational studies

then yields differing values of GN with large uncertainties, created as a result of

using differing matter density distributions between experiments. These matter

distributions would instead need to be modelled using velocity fields (of both test

particle and Earth/Sun/galaxy environment) in an effort to then predict the accel-

eration fields involved. These fields would certainly become non-Newtonian as one

deviates from spherical symmetry. This should then allow laboratory Cavendish-

type experiments in conjunction with astrophysical data for example to determine
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both G and α to high accuracy. The Dynamical 3-Space model predicts that G

will be reduced by a factor of (1 + π2α/2) ≈ 3.5% than currently reported, and so

G ≈ 6.442 ∗ 10−11 m3/kg/s2, using α = 1/137. It is important to revisit both the

solutions to the Dynamical 3-Space theory as well as any other experimental data

that the model has been applied to, in order to check that the theory still holds.

5.2 Methodology

All solutions and figures were plotted using Mathematica version 9.0. The refer-

ences for all data presented can be found in the figure captions. Generation of the

plot fits will be discussed as they are presented. Modelling equation (5.1) in time

independent cases was achieved differently for different solutions:

• Spherically symmetric cases involve setting up the x, y and z components

of v(r, t) (e.g. vx(r) = v(
√
x2 + y2 + z2)x̂ etc.) and then solving (5.1) for

v(r, t) as x→ r, y → 0 and z → 0 for simplicity.

• For filament solutions vx(r) = v(
√
x2 + y2)x̂, vy is similar and vz = 0 to

generate cylindrical symmetry - see section 5.3.1 for the new black hole and

cosmic filament solutions.

• When δ 6= 0, Mathematica is unable to solve for v(r) directly. In this case

substituting v(r) =
√
f(r) allows Mathematica to retrieve a general solution

for f(r) and hence v(r)2 in terms of 2 hypergeometric functions in the form

below, after rearranging the solution provided by Mathematica:

v(r)2 = v2
0

(
c1

r
+
δ

r
(κ(c2, c3)− 1) (1− A)− r2

δ2
κ(c2)XB

)
. (5.2)

Here A and B are confluent hypergeometric functions which are part of

the solution Mathematica provides. The first term contains a singularity at
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r = 0 which was removed by setting constant c1 = 0. The strength of the

two hypergeometric terms δ
r
(1 − A) and r2

δ2B were related by κ − 1 and κ

which contain constants c2 and c3 in their expressions. By taking the ratio

κ−1
κ

and setting c3 = 0 the remainder X was found, which then relates the

two hypergeometric terms together, the structure which can be changed by

varying κ. See section 5.3.3 for the new black hole δ 6= 0 solutions.

• The new solutions for g(r) are all related by g(r) = 1
2
d
dr
v(r)2, see equation

(3.11) in section 3.6.1.

• In the case of spherically symmetric and time dependent Hubble solutions,

v(r, t) = H(t)r = H(t)
√
x2 + y2 + z2 and then solving for H(t) as x → r,

y → 0 and z → 0 for simplicity.

5.3 Revisiting Predictions and Experimental Data

5.3.1 Spatial Flow (α 6= 0, δ = 0, ρ = 0) Effects

The primordial black hole solutions shown in equation (3.11) now instead have the

following characteristics shown in table 5.2. At long range v(r) still behaves like a

constant as indicated by the 1/rαπ
2/4 term and α ≈ 1/137. As shown in figure 5.2a

this new inflow is weaker than a v(r) ∝ 1/rα/4 strength BH at the same distance

r from a BH. At a distance of our solar system 8 kpc from the Milky Way black

hole, the predicted inflow speed is some 47% weaker then previously predicted. The

acceleration of space now instead appears stronger for all r due to the presence

of π2 in the new solutions. Due to the new g(r) ∝ 1/r1+απ2/2 dependence of g(r)

on r, the relative strength of the new black holes when compared to the previous

g(r) ∝ 1/r1+α/2 dependence decreases with distance, as shown in figure 5.2b. At
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Table 5.2: New Dynamical 3-Space black hole and filament solutions for long
range α 6= 0, δ = 0, ρ = 0

BH Property Eqn. Ref. New Solution

3-Space Velocity (3.11) v(r) = − β

rαπ
2/4

3-Space Gravity (3.11) g(r) = − απ2β2

4r1+απ2/2

Dark Matter Density (3.12) ρDM(r) = − απβ2(2−π2α)

256Gr2+απ2/2

Matter Orbital Velocity (3.13) vO(r) = πα1/2β

2rαπ
2/4

(3.15) vO(r) = K
2

(
1
r

+ π2α
2Rs

(
Rs
r

)π2α/2
)1/2

Filament Property

3-Space Velocity (3.16) v(r) = − µ

rαπ
2/8

3-Space Gravity (3.16) g(r) = − απ2µ2

8r1+απ2/4

Dark Matter Density (3.16) ρDM(r) = − απµ2

1024Gr2+απ2/4

the Solar System - Milky Way BH distance of 8 kpc, g(r) is now predicted to be

2.15 times stronger than predicted by the previous solutions.

The orbital velocity of an object around a black hole is affected in an interesting

manner - figure 5.3 shows the NGC3198 spiral galaxy rotation curve data. In

GR these plots are typically predicted by a universal rotation curve empirically

determined by Persic, Salucci and Stel;[112]

vO(x) = v(Ropt)

γ 1.97x1.22

(x2 + 0.782)1.43 + 1.6e−0.4(L/L∗) x2

x2 + 1.52
(
L
L∗

)0.4


1/2

(5.3)

where γ =
(

0.72 + 0.44 log L
L∗

)
, x = r/Ropt where Ropt is the optical radius, i.e.

83% of the matter limit and L/L∗ is mass to light ratio. The first term is the

Newtonian contribution from an exponential matter disk and controls the initial

upper slope of the generated rotation curve, which then drops off rapidly as shown
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(a) Velocity profile

(b) Acceleration profile

Figure 5.2: Inflow velocity (a) and acceleration (b) profiles for black holes pre-
dicted by the previous (blue) and modified (red) Dynamical 3-Space theory.
Here the black hole strength β = 1 for the velocity profile and β = 3.16 ∗ 1011

for y axis aesthetics only.
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Figure 5.3: Spiral galaxy rotation curve for the NGC3198 data.[113] Green plot
is best fit by Newtonian Gravity, blue plot is the former Dynamical 3-Space
theory fit for β = 3550 and red plot is for the modified version and β = 1165.

by the green plot in figure 5.3. The second term is the ‘dark matter’ contribution,

which generates a flat asymptotic region sufficiently far away from the centre of

a galaxy and is required to explain the flat outer arms of the rotation curves. To

generate the asymptotic regions of the data using Dynamical 3-Space theory the

second ‘dark matter’ term in (5.3) was replaced with the expression for vO shown

in table 5.2 to produce the following

vO(x) =

[
260

x1.22

(x2 + 0.782)1.43 +

(
πα1/2β

2xαπ2/4

)2
]1/2

. (5.4)

This then mimics the dark matter effects required by NG, but where the effects

are purely space self interactions, and require no actual matter. Alternatively

the two parameter analytic solution for vO in terms of K and RS in table 5.2

could be used to generate a similar result. The predictions of the rotation curves

made by Dynamical 3-Space theory are asymptotic only. This means that they

are only able to account for the outer regions of the spiral galaxy data, as they
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are solutions containing only the long range α effects of black holes, which have

an inflow singularity. The rotation curve solution to (5.1) when also accounting

for both nonzero α and δ are unknown, i.e. when accounting for both long and

short range inflow effects. As the inflow speeds for these black hole solutions (see

table 5.3) decrease smoothly to zero as r → 0 this then suggests that the predicted

rotation curves will also decrease to zero as r → 0. The red orbital velocity plot

was obtained using (5.4) with black hole strength β = 1165, and the blue plot is

that when substituting the previous expression for vO, namely equation (3.13) into

the dark matter expression in (5.3), using β = 3350. The previous orbital velocity

prediction by the Dynamical 3-space model (blue plot) shows very flat rotation

curves. The velocities in the NGC3198 spiral galaxy curve however appear to

slowly decrease with distance which is arguably better represented by the new

3-space solutions in table 5.2, see the red plot, since the orbital speeds drop off

more slowly with distance as suggested by [112]. The NGC3198 black hole is

predicted to be 67% weaker than previously predicted, as shown by the difference

in BH strength parameters β used between previous and modified orbital velocity

solutions.

5.3.2 The ‘Dark Matter’ Effect

In the case for the effective ‘dark matter’ density, i.e. the space self interaction

effects, equation (3.3) now becomes

ρDM(r, t) ≡ πα

32G

(
(trD)2 − tr(D2)

)
+

δ2

4πG
∇2
(
(trD)2 − tr(D2)

)
(5.5)

and so the effective dark matter effects observed are at most π2 times stronger than

predicted by the previous Dynamical 3-Space equation. Figure 5.4 shows the dark

matter profile predicted for the black hole inflows generated, (for δ 6= 0) and they
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Figure 5.4: Dark matter density profiles for black holes predicted by the previ-
ous (blue) and modified (red) Dynamical 3-space theory. Here the black hole

strength β = 1017 is purely for y axis aesthetics.

show that ρDM is indeed stronger than previously predicted. The decrease is still

approximately 1/r2 as determined by the ‘dark matter’ interpretation of the flat

rotation curves of galaxies. Here it is still purely a space self interaction effect. The

dark matter density at 8 kpc away from a black hole is estimated to be twice than

that previously predicted. Figure 5.5 illustrates that for globular clusters and

spherical galaxies the observational data implies the relationship MBH = α
2
M ,

where MBH is the apparent black hole mass and M is the mass of the star system.

Here the α- dynamics appear to be the cause of this result, and would imply that

the minimal black hole strength induced by the system is proportional to its mass.

This relationship is yet to be derived from the Dynamical 3-Space theory however

it now predicts a relationship between the dark matter mass MDM of a black hole

and its observable mass to be

MDM = 4π

∫ ∞
0

r2ρDM(r)dr = 5αM +O(α2) (5.6)
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Figure 5.5: Black hole masses MBH vs mass M , in solar masses, for globular
clusters M15 and G1, and spherical galaxies.[114] The straight line is the relation

MBH = α
2M with α ≈ 1/137.

for a spherical galaxy. Dynamical 3-Space theory currently defines MDM = MBH

although there is no derivation of this; it is only conjecture. For any spherical

matter distribution this result will still apply, meaning that planets and stars also

contain an inflow singularity at their centre. This affects the effective mass of

planets and hence their gravity profiles such as what the borehole data suggests.

As backed up by the spherical galaxy data the minimal BH effects become more

prominent in larger star systems.

The 3-space velocity, gravity and effective dark matter density solutions for the

new filaments are also mentioned in table 5.2. All of the characteristics essentially

display similar behaviour to that of the black holes mentioned, and are so not

required to be discussed any further.
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Figure 5.6: Black hole velocity profile for the full Dynamical 3-Space model for
α 6= 0 and δ 6= 0, with the inflow speed smoothly reducing to zero at the centre.
Here δ = 0.5 as Mathematica is unable to accurately determine hypergeometric

calculation for very small δ due to underflow problems.

5.3.3 Spatial Flow (δ 6= 0, ρ = 0) Effects and the SgrA∗ BH

Data

Table 5.3 shows a summary of the new solutions to the full Dynamical 3-Space

theory, i.e. equation (5.1) for δ 6= 0. Both the black hole and filament solutions

still contain hypergeometric functions as expected. The parameter v0 sets the

BH/filament inflow strength and κ sets the structure of the BH by adjusting the

relative strength of the two hypergeometric terms present. As before, at large

distances r � δ the inflow increases as v(r)2 ≈ A δ
r

+ B
(
δ
r

)απ2/2
. The solutions

are still well behaved however, and v(r) → 0 as r → 0, as shown in figure 5.6,

therefore removing the singularity at the centre. The δ self interaction effects have

a characteristic radius of O(δ), which act as to self regulate the interior structure

of the BH and filaments. The new BH velocity profiles are still a generalisation

of that in table 5.2, and so from (3.7) i.e. the gravitational acceleration of matter
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Table 5.3: New Dynamical 3-Space theory solutions for α 6= 0, δ 6= 0 and ρ = 0.

Property Eqn. Ref. New Solution

BHs
(3.18)

v(r)2 = v2
0(κ− 1) δ

r

(
1− 1F1

[
−2+π2α

4
,−1

2
,− r2

δ2

])
−v2

0κ
8
3
r2

δ2

Γ( 6−π2α
4

)

Γ(−π2α
4

)
1F1

[
1 + π2α

4
, 5

2
,− r2

δ2

]
(3.19) v(r)2 ≈ A δ

r
+B

(
δ
r

)π2α/2
, r � δ

Eff. BH Mass (3.20) M(r) = M0 +M0( r
rs

)1−π2α/2

Orbital Velocity (3.21) vorb(r)
2 = GM0( rs

r
)π

2α/2 1
rs

, r � δ

Filaments (3.22) v(r)2 = v2
0
r2

δ2 1F1

[
1 + π2α

8
, 2,− r2

4δ2

]
this then gives g(r) = GM(r)/r2, where M(r) defines an ‘effective mass’,

M(r) = M0 +M0

(
r

rs

)1−π2α

(5.7)

where rs is the distance where M(rs) = 2M0. This ‘effective mass’ mimics the

amount of matter enclosed within radius r outside a black hole, however this is

now completely induced by space interaction effects, and does not contain any

actual matter.

Equation (5.7) can be used to test whether these space interactions can account

for the increasing matter density outside the SgrA∗ supermassive black hole at the

centre of our Milky Way galaxy. This is achieved by creating an effective mass

density function M(r, κ, α, δ) then finding the best fit for κ, α and δ via comparison

with the SgrA∗ mass data. Firstly note that the following equality holds

g(r) = −GM
r2

= ∇v(r)2

2
(5.8)

where v(r) is the BH solution shown in table 5.3. An effective matter density can
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then be defined in terms of the 3-space inflow velocity, radius and the gravitational

constant G, i.e.

M(r) = − r2

2GM�
∇v(r)2 (5.9)

which is in terms of solar masses M�. The form for v(r)2 shown in table 5.3

was written in a different form, namely v(r)2 = v2
0h(r) where h(r) is a function

including the entire remaining (κ− 1) δ
r
(1− 1F1....) terms. Then (5.9) becomes

M(r) = M(r, κ, α, δ) = − r2

2GM�

v(r∞)2

h(r∞, κ, α, δ)
∇v(r, κ, α, δ)2

v2
0

(5.10)

where r∞ is an asymptotic value in relation to the SgrA∗ data, and here was taken

to be 30 kpc, as the Milky Way’s radius is 15 - 25 kpc. Here the presence of

v(r∞)/h(r∞) = v2
0 not only maintains the equality but allows the estimation of an

asymptotic orbital speed v(r∞) ≈ vorb(r) using the expression for the asymptotic

velocity vorb(r)
2 = GM0( rs

r
)π

2α/2 1
rs

in table 5.3. Here rs is the distance where

M(rs) = 2M0 ≈ 1 pc as estimated from the SgrA∗ enclosed data shown in figure

5.7, and α = 1/137 (only used here to determine an initial velocity of 105 km/s

to assist the best fit calculation). The best fit between equation (5.10) and the

SgrA∗ data was determined for κ, α and δ although the last value is unnecessary

and only aids Mathematica in generating the fit to the data. These values along

with the SgrA∗ data is shown in figure 5.7, and the source data is tabulated in table

5.4. Observed is that the best fit prediction of (5.10) for the modified Dynamical

3-Space model (red curve) matches that of the previous model, equation (3.20)

(blue curve, barely visible) while the predicted α−1 = 144.0 is only 5% higher

than the expected value of 137. The gradual increase of M(r) at the outer data

points wrt the form predicted by (5.9) is presumably due to actual matter having

an additional effect on the enclosed mass data, whereas (5.9) is a prediction for

ρ = 0. The best fit for M0 as observed in figure 5.7 is 4.21 × 106M�, is in

good agreement with the 4.31 ± 0.36 × 106M� predicted by Gillessen et al.[115]
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Figure 5.7: Effective mass data M(r) for the Milky Way SgrA∗ black hole, from
star and gas cloud orbital data, showing the flat regime that mimics a pointlike
mass but for which there is no actual matter contained within the black hole,
and the linearly rising form beyond rs =1.33pc, as predicted by old (blue curve,
see eq. (3.20) for best fit α−1 = 131.2, κ = 3.657 and δ = 0.00001214 and
new (red curve, see M(r) equation in table 5.3) for α−1 = 144.0, κ = 70.28
and δ = 0.00002483 but which is usually attributed to a constant ‘dark matter’
density. This form is a direct consequence of the 3-space self interactions in

(5.1). Figure sources are shown in table 5.4.



Chapter 5. Dynamical 3-Space Theory Modification 107

Table 5.4: Enclosed mass distribution for the SgrA∗ Milky Way black hole, for
a black hole mass predicted by Gillessen et al. of 4.31± 0.36× 106M�. All data
sets apart from Beloborodov et al. were required to be scaled up by a factor
of 4.31/2.5 = 1.7. This is presumed to be due to these data sets fitting to a
then predicted smaller initial M0 = 2.5× 106M� value, the scaling which then

matches that of the prediction by Gillessen et al.

Data Source r (pc) M(106M�) ± (106M�)

Gillessen et al. (2009)[115] 0.002 4.31 0.36
Beloborodov et al. (2006)[116] 0.1 4.3 0.5

0.2 4.73 1.35
0.25 5.24 1.69
0.3 5.41 1.52
0.35 5.58 1.35
0.4 5.92 1.01

Table 10 of 0.5 5.75 1.35
Genzel et al. (1996)[117] 0.6 5.92 1.01

0.8 6.51 0.68
1 7.1 0.68
2 10.82 1.86
4 20.11 3.38
12 54.09 8.45

0.68 8.28 2.87
0.76 7.27 1.69
0.92 11.49 2.2
1.36 10.14 1.69

Table 3 of 1.44 9.63 2.87
McGinn et al. (1989)[118] 1.8 13.86 2.2

2.16 15.21 2.7
2.72 15.38 3.21
2.88 27.89 4.73
3.4 25.86 4.9
3.6 15.89 7.94

See abstract, 3 14.2 4.56
figure 9 of 5.5 26.03 8.37
Serabyn et al. (1986)[119] 8 37.86 12.17
Serabyn & Lacy (1985)[120] 1.7 7.94 1.69
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The modified Dynamical 3-Space model therefore is still able to account for the

Milky Way black hole mass data. Determining the contribution of the black hole

inflow speed at the distance of our solar system, r = 8 kpc is required. Using

(5.7) and the predicted flat rotation curve vorb equation shown in table 5.3, rs

(defined as the point where M(rs) = 2M0) is 1.17 pc, using α−1 = 144.0. This

then yields vorb = 103 km/s, which is 88% that of 117 km/s from the previous

prediction.[52] Forcing α−1 = 137 instead yields rs = 1.08 pc and vorb = 106 km/s,

as a comparison, and so small changes in the α effects do not have huge impacts

on the asymptotic inflow speeds.

As was discussed in [52], both α and δ are required to be nonzero in order for

M(r) to produce the flat and rising features observed in the SgrA∗ data in figure

5.7. If α = 0 then the curve remains flat and does not rise, whereas if δ = 0

then asymptotically the rising feature persists but does not become flat at smaller

r. The δ- dynamics, i.e. the space self interactions close to the centre/interior of

black holes are thus responsible for emitting an effective pointlike mass behaviour

for a black hole although there is no actual matter present. With δ = 0 the black

hole effect is still apparent, but with g(r) ∝ 1/r1+απ2/2 which does not agree with

the motion of inner star elliptical orbits found near the Milky Way’s centre. For

any value of δ used in M(r) it is found that v0 and κ rescale to give exactly the

same plot, suggesting that δ must be small but nonzero, suggestive of a structure

to space at the fundamental Planck length scale.

5.3.4 Universe Expansion

The new expanding universe solutions obtained from the modified Dynamical 3-

Space theory, equation (5.1) are

H(t) =
1(

1 + π2α
4

)
t
, a(t) =

(
t

t0

)1/(1+π2α
4

)

. (5.11)
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Due to the low value of π2α/4, H(t) still predicts a uniform expansion rate, and

is still parameter free, i.e. does not require matter, let alone dark matter nor

dark energy to explain its expansion. There are more implications of this result

in which chapters 6 and 7 will further elaborate on, along with applying (5.11) to

the type 1a supernova data to show that the new solution still predicts a uniform

expansion in the same manner as the old solution. Because a uniform expansion

is predicted, (5.11) gives the age of the universe as 13.7 Gyr, the same as that for

the Newtonian and General Relativity models. Solutions for cosmic inflation will

also be shown and discussed in the following chapter.

5.4 Concluding Remarks about Chapter 5

The inclusion of the π2 factor into the α- terms of the Dynamical 3-Space theory

alters all of the known solutions and mainly produces weaker black holes and

filaments but which still maintain approximate long range g(r) ∝ 1/r effects which

NG/GR cannot produce. These new solutions still have the necessary properties

required to explain the shown astrophysical (and cosmological data - see chapter

6) and geophysical data, at least from a long range viewpoint. While the model

still accounts for the effective black hole mass dynamics from the SgrA∗ Milky

Way BH data at any scale, it has yet to still explain spiral galaxy rotation for

stars closer to the centre of the galaxy. There is also still work to be achieved

with for example the spherical galaxy and globular cluster data, in deriving the

relationship between effective dark matter density with the observed black hole

mass. The following chapter studies the application of the Dynamical 3-Space

theory and its modification to the type 1a supernova data in more depth to show

that this is too unaffected by the modification, and also to show that the supernova

data alone suggests that the universe is expanding uniformly.



Chapter 6

Discovery of Uniformly

Expanding Universe

6.1 Introduction

The major task in cosmology is to determine how the universe expands over time.

The time evolution of the scale factor a(t), i.e. the relative size of the universe

at time t is then determined observationally through measurement of type 1a

supernovae,[21, 22] and it is a simple process to extract a(t) from that data. A sec-

ondary process is to then test different dynamical theories of the universe against

that data. However this did not happen, and not for the first time in the history of

astronomy was one predetermined theory forced onto the data fitting. The Babylo-

nian planetary orbit data for example, was fitted using Ptolemy’s geocentric model

of the solar system. This required, and correctly so, that the orbits have epicycle

components. When the heliocentric model replaced the geocentric model after

roughly 1400 years, the epicycle phenomenon then vanished - it was merely an

artifact of the incorrect geocentric model. Analysing the supernova data through

the use of NG and GR has already lead to the introduction of the ‘dark matter’

110
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and ‘dark energy’ parameters. A third prediction is that of the future exponential

acceleration of the universe, and so it appears that a similar confusion of data and

model has happened in physics, as will be discussed here. Either NG or GR can

be used to construct the Friedmann equation used to analyse the supernova data.

This is because GR was constructed as a generalisation of NG, and reduces to NG

in the limit of low matter speeds and densities. Here this chapter[121] shows in

a few simple steps how a model independent result, and then the Dynamical 3-

Space theory, both predict a uniformly expanding universe, and so dispenses with

the ‘dark matter’ and ‘dark energy’ artifacts required by the Friedmann equation.

This is in fact a major outcome of the observations of supernova events, and needs

to be understood.

6.2 Methodology

6.2.1 Type 1a Supernova Magnitude-Redshift Data

The type 1a supernova data and fits were plotted using Mathematica 9.0. The

data sets were taken from the ESSENCE data set, table 9 of [122] using only

the supernovae that passed the light-curve-fit quality criteria and the HST data,

table 6 of [123] using only the ‘high confidence’ supernovae classified as ‘gold’. All

models were plotted using the generic relationship between magnitude µ(z) and

redshift z observables, namely

dL(z) = (1 + z)

∫ z

0

H0dz
′

H(z′)
(6.1)

and

µ(z) = 5 log10 dL(z) +m (6.2)
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where m = 43.4 and dL(z) is the dimensionless luminosity effective distance, or

the ‘Hubble-constant-free’ luminosity distance as defined by Perlmutter.[21] The

Hubble equation in terms of redshift z is defined as

H(z) = H0

√
ΩM(1 + z)3 + ΩΛ + Ωs(1 + z)2+απ2/2 (6.3)

where H0 is the Hubble constant, α = 1/137 and the density parameters for dark

energy ΩΛ, matter/dark matter ΩM , and space Ωs (the radiation matter density

here is negligible and not included for simplicity’s sake) are related by

ΩΛ = 1− (ΩM + Ωs) . (6.4)

The parameters used for each of the plots is shown in table 6.1. The space pa-

rameter in (6.3) and (6.4) appears as a constant of integration in the Dynamical

3-Space model.[49] The derivation is equivalent to that from using the Friedmann

equation to derive the NG/GR based Hubble equation, which contains a curvature

integration constant.

Table 6.1: Density parameters used for the type 1a supernova magnitude-
redshift plot shown in figure 6.1.

Plot ΩM Ωs ΩΛ

Dynamical 3-Space (Red) 0 1 0

Dark Matter Only (Black) 1 0 0

Dark Energy Only (Green) 0 0 1

NG/GR Best fit (Blue) 0.27 0 0.73

6.2.2 CMB Data

The actual data used for the Cosmic Microwave Background (CMB) angular power

spectrum was taken from [124] and the resultant power spectrum is exactly that
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shown in figure 1 of [35]. The July 2011 version of the Code for Anisotropies in

the Microwave Background (CAMB) program was used to generate CMB power

spectra predictions along with the use of version 1.5 of RECFAST, a model used to

calculate the recombination history of hydrogen, helium and lithium throughout

the universe’s expansion. The 6 parameters used in CAMB for spectra calculation

were obtained from Table 3 of [35] and also shown here in table 6.2. The 6

parameters were fixed, and ΩΛ was then taken to be 0.0, 0.7331 and 1.0 to show

the effects of varying the dark energy parameter on the CMB power spectrum.

Table 6.2: CAMB parameters used to generate the CMB angular power spec-
trum in figure 6.2. (The 42

R value used is different to the 2.43×10−9 value used
in [35], likely due to the different versions of CAMB and RECFAST used here)

Parameter Description Value

H0 Hubble constant (km/s/Mpc) 71.0

Ωb Baryonic matter density 0.0449

ΩDM Dark matter density 0.222

ns Scalar spectral index 0.963

τ Reionization optical depth 0.088

42
R Curvature fluctuation amplitude 2.18× 10−9

6.3 Model Independent Analysis Reveals Uni-

form Expansion

The scale factor a(t) is the relative size of the universe at time t, and describes

the time evolution of the universe assuming a homogeneous and isotropic descrip-

tion. It is defined as a(t) = r(t)/r(t0); (a(t0) ≡ 1 by definition), where r(t) are

galactic separations on a sufficiently large scale, and t0 is the present moment age

of the universe. In principle it may be directly extracted from type 1a supernova

magnitude-redshift data without the use of any particular dynamical model for
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a(t). To extract a(t) we need to describe the relationship between the cosmologi-

cal observables: the apparent energy-flux magnitudes and redshifts, and in a model

independent manner. This relationship is that of equations (6.1) and (6.2), which

are generic and was used in [21, 22] but here it is shown that the Dynamical 3-

Space theory yields the same equations. The presence of an expanding dynamical

space will affect travelling photons in the following ways:

• Reduction in photon count affects the energy-flux magnitude

• Reduction in photon energy affects the observed redshift

An embedding-space coordinate system is used with r = 0 at the location of a

supernova event at time t1, where the speed of light relative to this coordinate

system is c + v (r(t; t1), t), i.e. c wrt the expanding space itself, where r(t; t1) is

the photon embedding-space distance from the source. The distance travelled by

a photon at time t after the supernova event at t1 is determined implicitly by

r(t; t1) =

∫ t

t1

(c+ v(r(t′; t1), t′)dt′. (6.5)

This has the solution, on using v(r, t) = H(t)r,

r(t; t1) = ca(t)

∫ t

t1

dt′

a(t′)
(6.6)

where typically H(t) ≡ ȧ(t)
a(t)

, a(t) is not yet defined and so can be nonlinear, and

an overdot represents a derivative with respect to time. The distance r(t; t1) gives

directly the surface area 4πr(t; t1)2 of the expanding sphere around a supernova

event, and so the photon count per unit area on that surface decreases over time.

With t→ t0 (and dropping t0 in the notation), a(t0) = 1 and a(t1) = 1/(1+z(t1)),

the photon distance in terms of redshift is

r(z) = c

∫ z

0

dz′

H(z′)
. (6.7)
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Due to the space expansion the flux of photons is reduced by the length scale

a = 1/(1 + z) simply because they become spaced further apart by the expansion.

The photon flux is then given by

FP =
LP

4π(1 + z)r(z)2
(6.8)

where LP is the source photon-number luminosity. Usually the energy flux is

measured however, and because of the redshift the energy of each photon is reduced

by the factor 1/(1 + z). The energy flux in terms of the source energy luminosity

LE is

FE =
LE

4π(1 + z)2r(z)2
≡ LE

4πrL(z)2
. (6.9)

This generates an effective sphere of radius rL(z) in terms of the observed photon

energy emitted from a supernova. This effective energy-flux luminosity distance

is therefore defined as

rL(z) = (1 + z)r(z) = c(1 + z)

∫ z

0

dz′

H(z′)
, (6.10)

where H(z) is the Hubble term - equation (6.3) and derived in [125]. The dimen-

sionless ‘energy-flux’ luminosity effective distance is then given by

dL(z) = (1 + z)

∫ z

0

H0dz
′

H(z′)
. (6.11)

Here dL(z) takes account of the reduced photon flux and energy loss caused by the

expansion. Then the magnitude-redshift observables automatically follow, and are

computable from

µ(z) = 5 log10 dL(z) +m (6.12)

where m is determined by the intrinsic brightness of the supernova event. In

principle µ(z) can be inverted to yield a(t), without reference to any dynamical

theory for a(t). Notice that (6.11) and (6.12) match that of (6.1) and (6.2).
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Figure 6.1: Type 1a supernova magnitude-redshift data. Upper curve (green) is
‘dark energy’ only ΩΛ = 1. Next curve (blue) is best fit of ‘dark energy’-‘dark-
matter’ ΩΛ = 0.73. Lowest curve (black) is ‘dark matter’ only ΩΛ = 0. Second
lowest curve (red) is the uniformly expanding universe, and also predicted by

Dynamical 3-Space theory (5.1).

A simple first analysis of the data tries a uniform expansion a(t) = t/t0, which in-

volves one parameter t0 = 1/H0 that sets the time scale. Figure 6.1 shows that this

uniform expansion (shown by red plot) gives an excellent account of the data, and

so further, more complex solutions are unnecessary. For a uniformly expanding

universe H(z) = (1 + z)H0 and dL(z) = (1 + z) ln(1 + z). It is therefore con-

cluded that the supernova magnitude-redshift data reveals a uniformly expanding

universe. So why did the Perlmutter[21] and the Schmidt - Riess teams[22] report

an accelerating expansion for the universe? According to the Nobel Prize briefing

notes, this is because “The evolution of the Universe is described by Einstein’s

theory of general relativity.”[126] To the contrary it is argued that the data should

be used to test possible theories of the universe, as in the usual scientific method,

and not a priori demand that one theory, with ad hoc adjustments, be defined to

be the only correct theory.
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6.4 NG / GR Universe Models

The analysis in [21, 22] used the GR-based Friedmann equation for a(t), i.e. the

00 (temporal) component of the field equations mentioned in chapter 1,

ȧ2 =
8

3
πGa(t)2ρ(t) (6.13)

where the overdot represents a derivative with respect to time, and ρ(t) is the

matter/energy density. However this equation follows trivially from Newtonian

gravity, by considering a uniform matter density moving radially with speed v(r, t),

at distance r, away from an origin. The kinetic + gravitational potential energy,

with total energy E, of a test particle of mass m is given by

1

2
mv2 − GmM(r)

r
= E (6.14)

where M(r) = 4
3
πr3ρ is the mass enclosed within radius r - this follows simply from

Newton’s inverse square law. Using r(t) = a(t)r0 , v = ṙ and the so-called critical

case E = 0, immediately gives (6.13). The reason for this simple derivation is that

GR was constructed as a generalisation of NG, that reduces to NG in the limit of

low speeds and matter densities. The Friedmann equation therefore inherits all of

the fundamental problems with NG. As well the redshift z is actually a Doppler

shift effect, caused by the motion of the source relative to the observer. Consider

then some of the implications of (6.13):

1. If ρ = 0, i.e. no matter, then there is no expanding universe possible: ȧ = 0.

This arises because (6.13) is about the effects of matter-matter gravitational

attraction, and without matter there are no gravitational effects.

2. It is not about the expansion of space, for it arises from NG in which matter

moves through a Euclidean and unchanging space.



Chapter 6. Discovery of Uniformly Expanding Universe 118

3. (6.13) requires, at t = t0, that

H2
0 =

8

3
πGρc (6.15)

where ρc is the so-called critical density. However (6.15) is strongly violated

by the data; the observed baryonic matter density is 20 - 25 times smaller

than ρc, and so ρ must be padded out to satisfy (6.15).

4. No uniformly expanding solutions for (6.13) exist unless ρ ∼ 1/a2, a form

not considered in [21, 22].

To fit the data [21, 22] used the restricted ad hoc form

ρ(a) =

(
ΩM

a3
+ ΩΛ

)
ρc (6.16)

where ΩΛ is the dark energy density parameter, and ΩM is the matter density

parameter. There is no theoretical underpinning for this dark energy parameter.

The relationship for the critical density in equation (6.15) relationship requires

that ΩΛ + ΩM = 1, resulting in a two parameter model containing H0 and ΩΛ.

Fitting the data, by solving (6.13), and then using (6.1) and (6.2), gives ΩΛ = 0.73,

and so ΩM = 0.27. This fitting is shown as the blue curve in figure 6.1. Since

it was argued earlier that the data alone suggests that the universe is expanding

uniformly, ΩΛ = 0.73 is essentially the value for which NG best mimics a uniformly

expanding universe, despite its inherent weakness as a model of the universe. The

known baryonic matter density, corresponding to Ωb = 0.04, then requires that

ΩM − Ωb = 0.23 be interpreted as the dark matter composition ΩDM . However

(6.13) has another strange feature, namely that a(t), as a consequence of the dark

energy parametrisation, possess an exponential component; neglecting ΩM (which

becomes increasingly valid into the future) we obtain

a(t) ∼ eH0
√

ΩΛt. (6.17)



Chapter 6. Discovery of Uniformly Expanding Universe 119

The Nobel Prize for Physics in 2011 was awarded for the discovery of this “acceler-

ated expansion of the universe”,[126] despite the fact that the model independent

analysis in section 6.3 shows no such effect.

6.5 Dynamical Space Universe Model

6.5.1 Uniformly Expanding Universe Solutions

The Dynamical 3-Space theory contains a solution for the expansion of space in all

directions. Substituting the Hubble form v(r, t) = H(t)r, and then H(t) = ȧ/a,

we obtain[121]

4aä+ π2αȧ2 = −16

3
πGa2ρ (6.18)

This has a number of key features:

1. Even when ρ = 0, i.e. no matter, a(t) 6= 0 and monotonically increasing.

This is because the space itself is a dynamical system, and the (small) amount

of actual baryonic matter merely slightly slows that expansion, as the matter

dissipates space.

2. Relation (6.15) no longer applies, and so there is no ‘critical density’.

3. The redshift z is no longer a Doppler shift; now it is caused by the expansion

of the space removing energy from photons.

4. As mentioned in chapter 5, in the absence of matter ρ = 0 (6.18) has the

solutions

H(t) =
1

(1 + π2α
4

)t
, a(t) =

(
t

t0

)1/(1+π2α
4

)

. (6.19)

Because of the small value of α = 1/137, the α term only plays a significant

role in extremely early epochs, but only if the space is completely homogeneous.
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Neglecting the α dynamics, the solution a(t) = t/t0 is obtained, which remarkably

is a uniformly expanding universe solution. This solution is exactly the form

directly determined in section 6.3 from the supernova data, and the extra π2

factor from equation (5.1) has no observable effect on the model independent plot

in figure 6.1. It requires neither ‘dark energy’ nor ‘dark matter’ - these parameters

have evaporated, and are clearly revealed as nothing more than artifacts of the

NG model. The ‘accelerating expansion of the universe’ in the future has also

disappeared, as can be noticed by observing that ȧ(t) = 1/t0 and ä(t) = 0.

6.5.2 CMB Fluctuations

Another technique for determining the expansion rate and density composition

of the universe is to use the Cosmic Microwave Background (CMB) temperature

angular fluctuation spectrum. The thermal fluctuations observed in the sky pro-

vides a snapshot of the anisotropic primordial plasma densities at the time of

decoupling, or recombination of hydrogen when the universe was around 3000 K

(z ≈ 1100). As briefly mentioned in chapter 1 this spectrum is computed as a

perturbation of the primordial plasma relative to an assumed homogeneous back-

ground universe dynamical model. The background model used is the Friedmann

equation (6.13). The computed angular fluctuation power spectrum from CAMB

is shown in figure 6.2 for the same three values ΩΛ = 0.73, 0 and 1, as also used in

figure 6.1. Increasing the dark energy parameter does nothing to the shape of the

plot; it merely compresses its form. As already noted in section 6.4, this homo-

geneous background dynamics is merely a NG/GR model, with the dark energy

and dark matter parameters used to pad out the critical density and mimic a uni-

form expansion. In the presence of a dynamical space the CMB power spectrum

should then yield information about the space self interaction effects that mimic

the dark matter density, without requiring an extra padding parameter to stretch

the predicted power spectrum form, which the dark energy parameter achieves in
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Figure 6.2: CMB angular power spectrum for (i) ΩΛ = 1 (green curve), (ii) ΩΛ =
0.73 (blue curve), and (iii) ΩΛ = 0 (black curve), confirming that the background
space is uniformly expanding due to the appearance of the reoccurring ΩΛ = 0.73

and ΩM = 0.27 best fit parameters.

GR. The baryonic matter density Ωb is responsible for the relative heights of the

first and second peaks in the CMB power spectrum, as well as the position of the

first peak. Decreasing the Ωb : ΩDM ratio decreases the heights of all observed

peaks as well as dampens the heights of the second and third peaks. Observing the

relative heights and location of the first 3 peaks therefore yields information about

the Ωb : Ωs ratio observed within the primordial plasma. Because Ωs indicates the

strengths of space self interactions present and is determined by α, the value of α

should therefore also be obtained from the power spectrum. Predicting the CMB

power spectrum using Dynamical 3-Space theory is currently not possible due to

the lack of knowledge of how perturbations in space self interaction effects develop.

These might potentially be modelled in a similar fashion as to how dark matter

is currently perturbed in cosmology textbooks. It may certainly be possible to

modify the Hubble equation used in CMB anisotropy programs, such as CAMB

(which also requires modifying Hubble equations in RECFAST) in order to model
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that of a uniformly expanding universe in order to predict the CMB anitostopies.

This would then entail modelling ‘dark matter’ effects which drop off as ≈ 1/a2 as

predicted in equation (6.3) for example, instead of 1/a3 using the standard model

of cosmology.

6.5.3 Age of Universe and Cosmic Inflation

The Newtonian model and the Dynamical 3-Space model give the same age for

the universe, 13.7 Gyr, as they both describe the same uniform expansion rate,

with the minor variations in the Newtonian model expansion rate cancelling out.

However they give different decoupling times, which can be determined from the

respective models for the scale factor. The Newtonian and Einstein models give

the well known decoupling of 0.38 Myr. The decoupling time for the Dynamical

3-space theory can be computed straight from equation (6.19) for a(t) = 1/1100

since z ≈ 3000/2.725 ≈ 1100 at time of recombination. The previous Dynamical 3-

Space model, equation (3.17) predicts a decoupling time of 12.3 Myr while the new

model predicts 11.0 Myr. This suggests that in the modified model the universe

expanded faster in its infancy, and has therefore cooled down faster. It is therefore

important to note that the decoupling time is very model dependent.

The presence of α in solutions (6.19) suggest that at very small t the rate of space

expansion becomes nonuniform, suggesting an ‘inflation epoch’ emergent from the

Dynamical 3-Space model. Certainly if α = 0 then ȧ becomes constant and ä = 0.

With the presence of α the following solutions for the rate and acceleration of the

universe’s expansion are

ȧ =

(
t
t0

) 1

1+απ2
4

t(1 + απ2

4
)

=
4.6636× 10−18

t0.0177
(6.20)
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Figure 6.3: Plot of ȧ = 1/t0.0177, the rate of expansion showing the inflation
epoch (without the 4.6636 × 10−18 coefficient in equations (6.20) and (6.21)).

This inflation epoch is intrinsic to the Dynamical 3-Space.

and

ä =
π2α

(
t
t0

) 1

1+απ2
4

4t2(1 + απ2

4
)2

= −8.2507× 10−20

t1.0177
(6.21)

when substituting α = 1/137 and t0 = 13.7 Gyr as this is predicted by the su-

pernova data. By studying the rate of expansion of the universe, i.e. ȧ at early

times one can deduce the epoch of inflation, which is intrinsic to the Dynamical

3-Space theory and shown in figure 6.3. This is different to cosmic inflation theo-

ries in NG and GR which are created as a way to explain various problems such

as horizon and flatness problems, and also requiring a mechanism to introduce

primordial perturbations into the universe. These models suggest that inflation

occurs through a mechanism which causes space to expand exponentially for a frac-

tion of a second, before settling to a more uniform expansion. Equations (6.20)

and (6.21) instead suggest such an epoch would see space expanding rapidly at the

universe’s beginning but always at a decelerating rate, until at sufficiently large

time t such that the acceleration is negligible and the universe expands uniformly.
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Table 6.3: Relative size, speed and acceleration of the universe’s expansion over
time.

Time t Size a(t) Speed ȧ(t) Acceleration ä(t)
10−102 s 3.03× 10−118 2.27× 10−16 −5.26× 1084

1 s 4.75× 10−18 4.47× 10−18 −8.25× 10−20

13.7 Gyr 1 2.27× 10−18 −9.31× 10−38

Process Physics[47] and Dynamical 3-Space theory suggest that at very fast inflow

speeds during this very early epoch such a space flow would be turbulent, and

would introduce perturbations into the universe. The inflation epoch predicted by

Dynamical 3-Space theory however does contain a singularity at t = 0 suggesting

that the expansion of space becomes infinite at the Big Bang, and so the model

currently breaks down at very early times. The only explanation for this would

be dependent on modelling any phase transitions that triggered the early stages of

the Big Bang, which there is no test for. The inflation epoch according to figure

6.3 ends at around t = 0.1× 10−102 s, some 70-75 orders of magnitude earlier than

conventional physics inflation models. This value was earlier reported to be related

to t = 0.1 × 10−101t0 = 4.4 × 10−83 s,[84] here the additional π2 factor predicts

an inflation epoch an order of magnitude earlier. The t0 constant however only

affects the magnitude of the relative rate of expansion, and not t directly, and so

is not plotted here on the x− axis.

Table 6.3 shows information about the relative size, rate and acceleration of the

universe’s expansion. The universe’s relative deceleration at t = 10−102 s is around

122 orders of magnitude higher to the current time of 13.7 Gyr while the relative

expansion rate of expansion of the universe was only 2 orders of magnitude higher

in the same period. After only one second the universe’s expansion rate is compa-

rable (roughly double) to what is observed today, and the acceleration is negligible,

showing how rapidly the universe’s expansion becomes uniform. So the α effects

gradually slow the universe’s expansion, but at essentially a negligible rate.
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6.6 Concluding Remarks about Chapter 6

The supernova magnitude-redshift data is of great significance to cosmology. From

a model independent approach it reveals that the universe is undergoing a uniform

expansion. This represents a major challenge to theories of the universe, partic-

ularly as GR does not have such solutions. To mimic the uniform expansion the

canonical value ΩΛ = 0.73 emerges by fitting the NG model to either the data,

or more revealingly, by fitting to the Dynamical 3-Space theory. However the

ad hoc introduction of the dark energy parameter results in a spurious accelerat-

ing expansion. These spurious effects, namely dark energy, dark matter, and the

universe’s future accelerating expansion, are today’s ‘epicycles’ when an incorrect

model of reality is forced to fit the data, instead of using the data to test different

models of the universe. Astronomers are now committing major resources to ‘ex-

plaining’ these new epicycles instead of potentially exploring alternative models.

The Dynamical 3-Space theory gives a uniformly expanding universe without the

introduction of any ad hoc parameters, and disagrees in general with NG, even

in the low matter density, low speed limits, while nevertheless reproducing the

NG restricted successes within the solar system. It also predicts an intrinsic early

epoch where space is rapidly expanding at a decelerating rate, as opposed to cur-

rent cosmic inflation theories which introduce an accelerating universe expansion

phase early on. Introducing the dark matter and dark energy parameters amounts

to the belief that Newton had correctly and completely described space and grav-

ity some 300 years ago, requiring only the identification of new matter/energy.

The supernova data, and potentially the CMB data, is now showing that this is

not the case.



Chapter 7

Black Holes in an Expanding

Universe

7.1 Introduction

The type 1a supernova magnitude-redshift data permits the study of the universe’s

evolution up to redshifts of about 2, i.e. when the universe was a third of its current

size. Gamma ray burst data can provide information about a(t), up to redshifts

of 5-7[127] thus providing more information about the universe’s evolution. Re-

cession of distant galaxies from a central larger galaxy cluster, for example those

receding from the M81 group[128] or from the CenA/M83 complex[129] can also

study the same phenomenon however at a lower redshift. These data sets are re-

ferred to as velocity-distance relationships similarly to those Hubble discovered in

the 1920s, but are more used to determine both the dynamics and mass of galax-

ies in clusters. Today they are studied using a 2 parameter fit typically involving

attractive and repulsive parameters, i.e. a gravitational attraction associated with

the large central mass and the cosmic repulsion suggested by both Hubble ex-

pansion and dark energy parameters in the GR model.[31] As briefly discussed in

126
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chapter 1 there then defines a zero velocity surface, i.e. the radial distance from

the central mass where these two effects cancel, and this radius is then used to

calculate the enclosed mass of the cluster. This chapter will extend on Dynamical

3-Space theory, and present how the model demands the combination of black hole

and expanding universe solutions. These combined solutions will be discussed and

shown how they could potentially be used to study the dynamics of galaxy cluster

data and also the large scale structure of the universe.

7.2 Black Hole/Expanding Universe Solutions

Chapter 6 discussed expanding universe solutions which are emergent from Dy-

namical 3-Space theory. This Hubble flow, equation (6.19) does not contain a free

parameter, and so in this theory the universe necessarily expands, and hence it

cannot be ignored when considering BH and filament solutions, for example. Since

any radially flowing and time dependent v(r, t) (i.e. containing both outflows and

inflows) has spherical symmetry, (5.1) becomes, in the absence of matter

∂

∂t

(
2v

r
+ v′

)
+ vv′′ + 2

vv′

r
+ (v′)

2
+
π2α

4

(
v2

r2
+

2vv′

r

)
+

4δ2

r4

(
v2 + r2(v′)2 + 3r3v′v′′

)
+

4δ2

r4

(
−2rvv′ + r2vv′′ + r3vv′′′

)
= 0 (7.1)

where v′ ≡ ∂v/∂r. General black hole / expanding universe solutions would require

the following ansatz

v(r, t) = H(t)r + w(r, t)r̂ (7.2)

where w(r, t) is the spherically symmetric black hole inflow. After substituting this

form into (5.1), a time dependent equation for w(r, t) was found, however solutions

for w(r, t) are currently unknown. By setting w(r, t) = R(r)/t however this time
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dependence is completely resolved, and (5.1) now may be solved for R(r), implying

that the Hubble expansion and black hole inflow are inseparable and compatible

phenomena. There are two cases for potential solutions that must be discussed,

namely the long range δ = 0 and short range δ 6= 0 cases.

7.3 Long Range (δ = 0) Solutions

Asymptotically, when r � δ, then δ may be set to zero for the purposes of deter-

mining black hole / expanding universe solutions which hold sufficiently far away

from the centre of a black hole. The resulting equation for R(r) has the solution

R(r) = − ν

r
π2α

4

, and so v(r, t) =
r

(1 + π2α
4

)t
− ν

r
π2α

4 t
(7.3)

which contains the original black hole solution (see table 5.2 in chapter 5.3.1), but

now with an inverse time dependence, and where ν is a parameter for the black

hole strength. Eqn (7.2) is for the black hole located at r = 0. For a black hole

comoving with the local Hubble space flow the solution of (5.1) is

v(r, t) = H(t)r′ + w(r′, t)r̂′ (7.4)

where r′ = r−a(t)rBH when the observer is at r = 0, and the black hole is located

at a(t)rBH . A consequence of (7.2) and (7.3) is that for any BH there exists a

critical radius rc where the spatial inflow into the BH is equal and opposite to the

Hubble expansion, figure 7.1, so defining a sphere of influence where v(r, t) = 0,

v(rc, t) = 0 =⇒ rc

t(1 + απ2

4
)
− ν

r
π2α

4
c t

= ν

(
1 +

απ2

4

)
− r1+απ2

4
c = 0. (7.5)

Inside the sphere the space is moving towards the black hole, and outside the

space appears to recede from it due to universe expansion effects. This does not
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Figure 7.1: Schematic 3-space velocity for an isolated black hole embedded in
an expanding universe, see (7.2), showing radius at which flow reverses, defining

the black holes sphere of influence at radius rc.

necessarily mean that test particles will behave in the same way as that of space,

as their motion is affected by the gravitational acceleration of the dynamical space

and potentially due to a galaxy cluster environment, for example. Additionally the

two effects present are physically different, namely the black hole effect is space

flowing into a singular point, and is a real velocity, whereas the Hubble expansion

is the centreless expansion of space everywhere, the magnitude of this which is

relevant to an observer’s position. It is important to emphasise that sufficiently far

away from a black hole an observer would view an apparent space velocity, and then

ultimately the recession of galaxies due to the universe’s expansion (sufficiently far

away), and not an actual space flow velocity superposition. This is also illustrated

in figure 7.2a which plots the velocity profile of the 3-space flow with decreasing

Hubble constant, while holding the black hole strength ν fixed. The two separate

inflow and ‘outflow’ regions are clear from this figure. What is also evident from

figure 7.2a is that the critical radius rc is found to remain independent of time, i.e.
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rc depends only on the strength of the black hole as suggested by (7.5) and figure

7.2b. Increasing the black hole strength ν only affects the 3-space inflow profile,

and not that of the outflow/expanding universe as denoted by the asymptotic

parallel plots in figure 7.2b.

The acceleration of the new black holes can be derived simply from

g(r, t) =
∂v(r, t)

∂t
+ v(r, t)

∂v(r, t)

∂r
≡ ∂v(r, t)

∂t
+
∇v(r, t)2

2
. (7.6)

This then predicts coupled interactions between the spatial inflows and ‘outflows’

present near the black hole, as the H(t) and w(r, t) terms will cross multiply. For

the known black hole (7.3) and Hubble solution (6.19) the gravitational accelera-

tion is, from (7.2),

g(r, t) = −π
2α

4

H(t)2

r1+π2α
2

((
1 +

π2α

4

)
ν − r1+π2α

4

)2

= −π
2α

4r
v(r, t)2. (7.7)

This solution appears quite complex however with some manipulation it reduces

to a more elegant form, namely to g in terms of v2, with an inverse dependence

on distance. This also occurs for the gravitational acceleration due to static black

holes upon closer inspection, where similarly g(r) = −π2α
4r
v(r)2, see table 5.2 in

chapter 5.3.1, and so this new result appears to be correct and in trend with the

previously known solutions. Figure 7.3 shows the acceleration profiles of the 3-

space, using the same values as those for the velocity profiles in figure 7.2. Note

that from figure 7.3a the critical radius rc still remains independent of time, which

is expected as the predicted 3-space acceleration (7.7) can be written in terms of

its velocity, and inherits this property. A peculiar result may be apparent here,

namely that the 3-space acceleration is always negative. Certainly for r < rc the

acceleration is always towards the black hole but it may be unclear as to why this is
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(a)

(b)

Figure 7.2: (a) Typical 3-space velocity profile for a single black hole embedded
in an expanding universe, (7.2) and (7.3), for fixed ν = 1, and H(t) = 75
(red), H(t) = 50 (green), and H(t) = 20 (blue). (b) Velocity profiles for fixed
H(t) = 75 and ν = 1 (red), ν = 2 (green) and ν = 3 (blue). The values used

here are for schematic purposes only.
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(a)

(b)

Figure 7.3: (a) Typical 3-space acceleration profile for a single black hole em-
bedded in an expanding universe, (7.2) and (7.3), for fixed ν = 1, and H(t) = 75
(red), H(t) = 50 (green), and H(t) = 20 (blue). (b) Acceleration profiles for
fixed H(t) = 75 and ν = 1 (red), ν = 2 (green) and ν = 3 (blue). The values

used here are the same used in figure 7.2.
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the case for r > rc. To an observer viewing space at great distances, equation (7.2)

suggests that space recedes faster at larger distances from the observer. This then

implies that the apparent acceleration of expanding space will always be towards

the observer. This is not to be confused with the acceleration of the scale factor

a(t) which is related to the Hubble term H(t), as this is a derivative with respect to

time whereas here it is with respect to distance, and is therefore different. Stronger

black hole inflows are also predicted for higher values of H(t) (obtained by varying

t to yield H(t)) as shown by comparing for example, the red curve to the blue curve

in figure 7.3a for r < rc, or r ≈ 1 in this case, as well as faster outflows for r > rc.

This occurs because of the inverse dependence on t for both black hole inflows

and the Hubble expansion now - a higher Hubble constant then also dictates the

black hole strength (flow strength only, not the value of rc) implying that these

two phenomena cannot be separated, and are indeed compatible. Increasing the

value of ν yields stronger and longer range gravitational black hole strengths as

observed in figure 7.3b, for r < rc, while outside of this the behaviour is similar to

that of the velocity profiles observed in figure 7.2b.

To clarify, the critical radius rc where v(r, t) = 0 is the same for both the velocity

and gravitational properties of the Dynamical 3-space. This implies that test

particles placed at rest inside rc are attracted to the black hole due to gravity,

while those placed outside rc, and at rest wrt the local space, recede from it due

to expansion. This also gives the smallest possible radius at which an object

could theoretically orbit a black hole without being drawn to it gravitationally.

This was previously reported by [30, 31] who predicted a similar critical radius

defined as rF from galaxy cluster data, and induced by gravity and expansion/dark

energy effects canceling out. Objects with initial velocities would violate this rule

- for example two galaxies separated by r > rc but traveling towards each other

would still do so provided their relative velocities overcame that of the universe’s



Chapter 7. Black Holes in an Expanding Universe 134

expansion. Solution (7.3) therefore cannot immediately be applied to the velocity-

distance relationships from galaxy cluster data as the initial cluster dynamics are

unknown. The critical radius is found to remain independent of time, i.e. rc only

depends on the black hole strength ν. rc is expected to be sufficiently large that

the black hole - star distance r in a galaxy today is negligible compared to rc, i.e.

r � rc, therefore not affecting the size of galaxies themselves. This effect would

more likely be evident at a distance which galaxies are separated by, as suggested

by the galaxy cluster data in [31]. For a Hubble constant H0 = 74 km/s/Mpc,

and using the new vorb = 103 km/s calculation for the asymptotic inflow speed

from table 5.3 in chapter 5, solving for vorb(rc) = H0rc for the Milky Way SgrA∗

black hole data (figure 5.7) yields rc = 1.39 Mpc. This value is of the same order

of magnitude as those obtained experimentally in [31, 128] which suggest rc values

around 0.7 - 1.25. This value is however assuming that the orbital speed of stars in

the Milky way galaxy remains constant over such large distances (this calculation

is for our location 8 kpc from the Milky Way black hole), which might not be

the case at 1.39 Mpc. For example, at a distance 1.31 Mpc from the SgrA∗ black

hole, vorb = 96.7 km/s which then yields rc = 1.31 Mpc. Indeed the orbital speed

contributed by vorb would weaken at further distances, which ultimately reduces

rc. There is currently no known way to derive the black hole strength ν in order

to accurately determine rc. For multiple black holes in the expanding space, (5.1)

implies a more complex time evolution.

7.4 Short Range (δ 6= 0) Solutions

As mentioned earlier the obtained black hole/expanding universe solution (7.3) is

predicted to hold sufficiently far away from a black hole, however the singularity

at r = 0 means the inflow speed at the black hole becomes infinite, and so these

solutions break down at small distances. For the current full Dynamical 3-Space
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equation there exist a class of time independent (non expanding universe) black

hole solutions in which the inflow speed smoothly reduces to zero at r = 0, namely

those in table 5.3 in chapter 5 but shown here again just to reiterate

v(r)2 = v2
0(κ− 1)

δ

r

(
1− 1F1

[
−2 + π2α

4
,−1

2
,−r

2

δ2

])
−v2

0κ
8

3

r2

δ2

Γ(6−π2α
4

)

Γ(−π
2α

4
)

1F1

[
1 +

π2α

4
,
5

2
,−r

2

δ2

]
. (7.8)

To find black hole / expanding universe solutions which are valid for all r requires

setting both α 6= 0 and δ 6= 0. It was expected that w(r, t) for the δ 6= 0 case

would be simply (7.8) with an inverse time dependence, however Mathematica was

unable to completely simplify the result after substituting this form into (7.1).

Neither could Mathematica produce a solution to (7.1) for R(r) suggesting that

either the necessary solution classes are unavailable to Mathematica to allow it

to solve this equation, or that the generated equation is in a too unfamiliar form

for Mathametica to reduce to a solvable form. Whether (7.8) with an inverse

time dependence is a solution to (7.1) or not is therefore unknown. It is expected

however that the solution will have hypergeometric properties just as in the case

of time independent and static black holes and so the black holes will retain the

same or at least similar properties as discussed in [52], such as removing the inflow

speed singularity at the black hole’s centre as mentioned in chapter 3.

7.5 Large Scale Structure - Induced Filaments

and Bubble Networks

We have seen that the Dynamical 3-Space theory offers possible explanations for

many phenomena, including a uniformly expanding universe with no additional pa-

rameters, and that of an isolated black hole coexisting with this Hubble expansion.
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Figure 7.4: 3-space in-flow velocity schematic for two black holes located within
their spheres of influence. Note the emergence of a filament forming between
the black holes, indicative of a BH - filament network formation, see figure 7.5.

It also has filament solutions, in the absence of the Hubble expansion. However

with multiple black holes embedded in this Hubble expansion a new feature ap-

pears to emerge, namely cosmic networks of black holes and induced filaments.

First note that the black hole inflow speed in table 5.3 and (7.3) is essentially very

long range, resulting in the matter acceleration g(r) ∼ −1/r, which is a key feature

of these black holes, and may explain the ‘dark matter’ effect. However this long

range in-flow then raises the question of how multiple black holes coexist when

located within one another’s sphere of influence, i.e. the critical radius rc. Figure

7.4 shows the vector addition of the inflows for two black holes. This cannot be a

solution of (5.1) as it is non-linear and so does not have a superposition property,

from which this flow must evolve over time. Indeed the evolving flow appears to

form a filament connecting the two black holes, however even then there remains

a long range inflow, which would lead to further filaments connecting black holes
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(a) (b)

Figure 7.5: (a) 2D schematic cross section of a symmetrical cosmic network of
black holes and induced filaments. Vectors indicate 3-space flow, both within
the bubble from the Hubble space expansion, and inwards to black holes (dots)
and filaments (red lines). (b) A bubble structure schematic of how the universe
would more likely behave as, with solid filament lines connecting black holes

but where not all black holes influence each other.

within their range of influence. These black holes are remnants of the early forma-

tion of space, and imply that (5.1) will undergo a dynamical breaking of symmetry,

from an essentially homogeneous and isotropic 3-space, to a network of black holes

and induced filaments. Note that the matter content of the universe is very small,

and does not play a key role in this structure formation. Mini primordial black

holes sufficiently close to each other would likely coalesce into larger macroscopic

black holes due to gravitational forces overcoming the universe’s expansion. This

could either instantly or rapidly affect the local inflow properties of the new black

hole, especially if the coalesced black hole properties have now changed. A pos-

sible dynamically stable 3-space structure is shown in fig.7.5a, which entails this

network forming a bubble structure with the network defining a ‘surface’ for the

bubbles. The stability of this is suggested by noting that the Hubble expansion

within the interior of each bubble is now consistent with the inflow into the black

holes and filaments, and so there is no longer a dynamical clash between the long

range flows. This is not observed in reality however; we observe other currently

dynamically stable structures formed since the beginning of the universe which
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may look like that shown in figure 7.5b, where galaxies are observed to be joined

by filaments lying on spherical surfaces, filled with large voids. This is indeed

found at least for our observable universe, such as that for the Coma[130] and

Lynx-Ursa Major filaments[131] for example.

7.6 Concluding Remarks about Chapter 7

Instead of studying black-hole only cases, we need to model astrophysical and

cosmological phenomena embedded in an expanding universe. The Dynamical 3-

Space theory naturally forces us to do this, as there is no free parameter to switch

off the emergent expanding universe solution, and so must be included. It has

been shown that the long range black hole solutions found previously hold while

embedded in an expanding universe, and predict a critical radius at which gravity

and universe expansion effects cancel. This critical radius is predicted to be in

the order of ≈ Mpc. It is suggested that the time dependent nature of these new

solutions explains in part the observed cosmic web. It appears that the dynamics

of the 3-space in the presence of primordial black holes, essentially defects in the

space emerging from the quantum foam, renders a homogeneous and isotropic

universe dynamically unstable, even without the presence of matter, resulting in

a spatial bubble network. The long range g ∼ 1/r of both the black holes and

induced filaments will cause matter to rapidly infall and concentrate around these

spatial structures, resulting in the earlier formation of galaxies than expected from

conventional physics models.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The Dynamical 3-Space theory, which is based from Process Physics is a unique

generalisation of Newtonian gravity cast into an inflow formalism, and while it

is relatively new in its development it has been able to predict the emergence of

many linked phenomena. Some of these phenomena such as gravity, black holes

and filaments, conventional physics only assumes to exist and doesn’t actually

predict. The Dynamical 3-Space theory is also able to predict these phenomena

without the requirement of additional parameters, something which is remarkable.

Here we have shown to not only extend on this theory and discuss its implications

but also show a new method using two different phenomena to study this effect,

aided with the discovery of Simon Shnoll’s work and methods a couple of years

ago now.

The study of the RF EM dual coaxial cable data and the Zener diode tunneling

current fluctuation data was successful, with showing nonrandom effects in layered

histograms generated for the two data sets. The coaxial cable experiment was first

studied to understand how the long term Shnoll effect works, and then using the

139
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Zener diode experiment that has a better timing resolution to further study this.

We then gave an explanation of the fine structure observed in the data in terms

of a dynamical and fractal space present affecting tunneling current fluctuations,

and then predicted how the short term Shnoll effects would manifest from space

fluctuations.

The discovery that the α effects in the borehole g anomaly data were approximately

ten times stronger than previously reported allowed the revision of the Dynamical

3-Space equation to allow for an additional π2 factor in the α space self interaction

effects. New black hole, filament and effective dark matter density solutions were

reported, where the predicted black hole inflow is now weaker than previously

predicted however their acceleration is stronger. We then showed that the new

orbital velocity solutions would still asymptotically predict the flat rotation curves

observed in spiral galaxies. The inflow dynamics were still observed to mimic an

effective matter density that predicted the enclosed mass observed in the Milky

Way SgrA∗ black hole data, and successfully predicted the M0 = 4.21 × 106M�

pointlike black hole mass observed at its centre.

The type 1a supernova data used to study the universe’s evolution over time is

able to be predicted from a model independent point of view, and we showed that

the data suggests that the universe is undergoing a uniform expansion. This is

in contradiction to that predicted by Newtonian Gravity and General Relativity

which do not have a simple uniform expansion solution. It is only when the dark

matter and dark energy parameters are forced onto the models that a uniform

expansion is mimicked, which then also generates a predicted future accelerating

expansion of the universe. Dynamical 3-Space theory now possesses new solutions

for a uniform universe expansion, even without requiring the presence of matter,

and such a solution has negligible universe acceleration except at very early times

(t < 10−103 s), which is dubbed the inflation epoch. This epoch is one where space
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is rapidly expanding but always at a decelerating rate, as opposed to current

inflation models which contain accelerating phases in the universe’s infancy.

That the Hubble solutions do not contain a free parameter forces any phenomena

emergent from the Dynamical 3-Space theory to be embedded in the centreless

Hubble expansion. New black hole / expanding universe solutions were obtained

and suggest that the black hole inflow is compatible with the Hubble expansion in

that a critical radius in the order of ≈ Mpc exists where both the 3-space velocity

and acceleration are zero. At this critical radius an object at rest will remain at

a fixed distance from a black hole. This was at least found for the asymptotic

δ = 0 case; solutions to the full Dynamical 3-Space equation were not obtained.

Embedding multiple black holes in an expanding universe was predicted to produce

filaments between two black holes located within their spheres of influence, or

within their critical radii. This would predict a cosmic network of black holes

connected by filaments, located on the surface of large empty voids produced by

the universe’s expansion.

8.2 Future Work

There is a vast amount of work which can be achieved, with regards to the ap-

plication of the Dynamical 3-Space theory to phenomena and also extending on

the model itself. We know the approximate velocity of space i.e. its speed and

direction, which changes throughout the year, and it would be a huge but reward-

ing task to further map out the change in velocity throughout the year as the

Earth changes position. This could be achieved for example through repeating

the experiments performed by Cahill and DeWitte, which use coaxial cables to

measure the periodic change in travel time of signals as they travel through coax-

ial cables. Repeating the anisotropic Brownian motion study performed by Dai

could potentially offer further insight as to how the right ascension changes with
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time. Reanalysing Courvoisier’s extensive research would also be beneficial, as

his understanding of relativistic effects contradicted Lorentz however he studied

light speed anisotropy effects in several different ways. Being able to further repli-

cate the directional results predicted by Miller and from NASA flyby data would

reinforce the argument justifying a dynamical space theory.

The characteristics of space and its turbulence effects can potentially be studied

by observing fluctuations in virtually any data set. The fractal nature of the

fluctuations however makes it very difficult to characterise the properties of space

in depth. This could be achieved by studying the tunneling current fluctuations in

Zener diodes or possibly through using the extensive data (over 17 years’ worth)

available through the Global Consciousness Project. There are many studies which

can be performed here, including real time experiments to study the evolution of

space fluctuations, or those made in parallel to also study correlations in the

fluctuations. Alternatively, the histogram similarity approach by Shnoll could be

implemented, as his histogram analysis reveals the evolutionary nature of space

fluctuations in 60 - 100 measurement blocks, the technique which differs from the

real time study approach. For example, studying the characteristic histogram

shapes generated during solar eclipses would yield valuable information about the

nature of space fluctuations when the relative positions of Sun, Earth and Moon

are locked.

There are some data sets which Dynamical 3-Space has yet to completely explain.

An important result observed from the spherical galaxy data is that of the α/2

proportionality between black hole and spherical galaxy cluster mass, which has

yet to be derived from Dynamical 3-Space theory. The CMB anisotropies could

potentially be predicted through modifying the Hubble equation to mimic uniform

expansion. This would likely require modelling ‘dark matter’ effects to fall as 1/a2

instead of the currently predicted 1/a3, while keeping the current equations for

how dark matter density perturbations evolve in time. If this was successful, then
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including the α effects into the Hubble equation should then predict the value of

α, and the dark matter perturbations would instead mimic space self interaction

perturbations.

Much is unknown about the Dynamical 3-Space theory for δ 6= 0. This is simply

because the inclusion of δ effects produces extremely complex equations, which

aren’t currently able to be reduced to a form that Mathematica can solve. Knowing

the δ 6= 0 black hole solutions while embedded in an expanding universe could allow

the study of the velocities of galaxies in clusters, for example. The spiral galaxy

rotation curves for δ 6= 0 orbital velocity solutions have not been studied, along

with the solutions where matter is present, i.e. for ρ 6= 0. A starting point here

could be to use the δ 6= 0, ρ = 0 black hole solutions, determine vO(r) and observe

whether the orbital speeds or the best fit predicted rotation curve matches that

of the data. The work presented here will hopefully gain an insight as to how to

approach these problems, in order to further our understanding of the dynamics

of space.
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