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Abstract

Atomic force microscopy (AFM) is a high-resolution microscopic
technique highly suitable for investigating biological entities. Chapter 1
reviews the use of AFM for investigating fibre—forming peptides and proteins,
followed by the application of AFM to peptide—based dendrimers in chapter 2,
fungus—based proteins in chapter 3 and whole human tissue in chapter 4. This
investigation is supported by more traditional analytical techniques such as
optical, electron and fluorescence microscopy, dynamic light scattering and
circular dichroism spectroscopy.

In chapter 2, the aggregation properties of peptide—based dendrons and
dendrimers were investigated using AFM. 3"~ and 4‘h—generation dendrons
made from L-lysine showed gelation via a unique vesicle—driven pathway,
confirmed by transmission electron microscopy, forming a dense network of
nanofibres. The symmetrical dendrimers also formed nanofibre—based gels,
which could be polymerised using UV irradiation to form tightly—packed gels
with altered optical, Raman and fluorescence properties. UV irradiation
through a photomask allowed the generation of crosslinked gel patterns. Gels
from dendrons and dendrimers may be suitable for use in biomaterial
applications for cell seeding assays, tissue engineering, or for drug delivery.

Chapter 3 dealt with the aggregation of fungal proteins. The recent
identification of genes encoding three arabinogalactan—like (AGL) proteins of
the fungi G. intraradices suggests that AGL proteins may be involved in the
formation of the symbiotic interface between a common fungus and plant roots.
Currently, the nature of cell wall modifications in this interface is unknown.
Here, AFM was applied to investigate the self-assembly of the fungal proteins

rAGL1 and rAGL3 and the growth of nanofibres and microtubules was



observed and described. Peptides based on the repeat regions seen in the AGL
sequences were also observed to form fibres as seen by AFM and optical
microscopy. The secondary structure of the proteins and peptides —
hypothesised to be responsible for creating the interface of root apoplasts and
fungi — were found to be primarily disordered or polyproline Il helices by
circular dichroism spectroscopy. Understanding of the structural properties of
these proteins is vital to the process of G. intraradices symbiosis. Self-
assembling peptides based on these proteins may find applications as
innovative self-assembling biomaterials.

Protein aggregation is of significant interest to various disciplines
including ophthalmology. One ocular disease hallmarked by protein
aggregation is known as pseudoexfoliation (PEX) syndrome. This condition is
caused by the formation of insoluble aggregates in the eye, and is clinically
characterised by the deposition of proteinaceous material on the anterior lens
capsule. The ultrastructure of PEX material is poorly characterised, despite
numerous proteomic and genomic studies. The novel application of AFM—
based antibody recognition imaging is applied in chapter 4 for determination of
the molecular nature of PEX material on lens capsules in their native state.
Topographical AFM images and antibody recognition images were obtained
simultaneously to determine the specific location of clusterin, lysyl oxidase—
like 1, and elastin proteins in and around PEX aggregates using antibody-
modified AFM probes. Multiple AFM-based techniques were tested, and
TREC was found to be the most suitable technique for recognition on whole
unprocessed tissue samples. Future studies into AFM-antibody recognition
techniques, such as quantitative nanomechanical mapping, may lead to

interesting data combinations of mechanical and compositional information.
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