Economic Evaluation of Multidisciplinary Rehabilitation Following Hip Fracture

Rachel Kathleen Milte

Bachelor of Nutrition and Dietetics

Bachelor of Science (Honours)

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

School of Medicine

Faculty of Health Sciences

Flinders University

March 2014
TABLE OF CONTENTS

SUMMARY 6

LIST OF PUBLICATIONS AND ABSTRACTS ARISING FROM THIS THESIS 10

PUBLICATIONS 10

CONFERENCE PRESENTATIONS 10

CONFERENCE POSTERS 11

DECLARATION 13

ACKNOWLEDGEMENTS 15

LIST OF TABLES 16

LIST OF FIGURES 19

ABBREVIATIONS 21

1 INTRODUCTION AND RATIONALE FOR THESIS 24

1.1 IMPACT OF HIP FRACTURE 24

1.1.1 Incidence 24

1.1.2 Mortality 26

1.1.3 Function 27

1.1.4 Risk factors 27

1.2 IMPORTANCE OF MULTIDISCIPLINARY REHABILITATION FOLLOWING HIP FRACTURE 32

1.3 IMPORTANCE OF NUTRITION IN REHABILITATION 36

1.3.1 Impact of malnutrition 41

1.3.2 Malnutrition in hip fracture 42

1.3.3 Treatment strategies for malnutrition 48

1.4 IMPORTANCE OF EVALUATION OF HEALTHCARE INTERVENTIONS IN AN ECONOMIC FRAMEWORK 52

1.4.1 Methods of economic evaluation 52

1.4.2 Costs 56
2 SYSTEMATIC REVIEW OF THE EVIDENCE FOR PROTEIN AND ENERGY SUPPLEMENTATION AS A TREATMENT STRATEGY FOR MALNUTRITION IN REHABILITATION

2.1 METHODS

2.1.1 Search strategy

2.1.2 Data collection and analysis

2.2 FINDINGS

2.2.1 Results of the search

2.2.2 Results of studies where participants were defined as malnourished

2.2.3 Results of studies where nutritional status not specified

2.2.4 Quality assessment of published studies

2.3 DISCUSSION

3 ECONOMIC EVALUATION OF A MULTIDISCIPLINARY INDIVIDUALISED NUTRITION THERAPY AND EXERCISE PROGRAM FOR HIP FRACTURE RECOVERY

3.1 INTRODUCTION

3.2 METHODS

3.2.1 Trial participants and intervention

3.2.2 Health outcomes and resource use

3.2.3 Unit costs

3.2.4 Health related quality of life

3.2.5 Cost utility analysis

3.3 FINDINGS

3.3.1 Trial participants

3.3.2 Health outcomes and resource use

3.3.3 Costs
4 THE MEASUREMENT AND VALUATION OF QUALITY OF LIFE IN OLDER PEOPLE UNDERGOING REHABILITATION

4.1 INTRODUCTION

4.2 BACKGROUND

4.2.1 Measurement of quality of life

4.2.2 Measurement of quality of life in older people

4.2.3 Use of the EQ-5D-3L in measuring quality of life

4.2.4 Use of the ICECAP-O in measuring quality of life

4.2.5 Quality of life following a hip fracture

4.3 METHODS

4.3.1 Study participants

4.3.2 Administration of questionnaire

4.3.3 Comparison with a general population dataset

4.3.4 Calculating utility values

4.3.5 Data analysis

4.4 FINDINGS

4.4.1 Study participants

4.4.2 Responses to the EQ-5D-3L and ICECAP

4.4.3 Comparison with a general population dataset

4.5 DISCUSSION

5 PREFERENCES FOR REHABILITATION AFTER HIP FRACTURE

5.1 INTRODUCTION

5.2 METHODS

5.2.1 Questionnaire design
SUMMARY

Hip fracture is a major contributor to morbidity and mortality in Australia and worldwide. In addition, healthcare spending for individuals spikes following a hip fracture due to increased needs for medical and supportive care. Many patients with hip fractures are malnourished upon admission to hospital, which impacts upon the recovery and rehabilitation potential of patients, and is also a significant independent predictor of increases in healthcare costs. There is increasing scrutiny on healthcare spending and a need for approaches which demonstrate a return on investment. Therefore, finding effective strategies to improve recovery following a hip fracture is important. However rehabilitation following hip fracture is an expensive complex intervention involving multiple components (e.g. medical, nursing, and allied health interventions). Health economics has received increasing focus over the past decades as a way of evaluating not only the benefits from healthcare interventions but also their ‘value for money’. The focus of this thesis was to apply a range of methods of economic evaluation to rehabilitation following hip fracture, especially focusing on nutrition and exercise therapy. The intent was to demonstrate the strengths and potential weaknesses of various approaches.

Initially, a systematic review of the literature for economic evaluations of nutrition interventions for treatment or prevention of malnutrition was conducted (Chapter 2). Malnutrition is known to be common among patients with hip fractures, and therefore effective treatment strategies are useful in multidisciplinary rehabilitation
strategies. Only 20 articles meeting the selection criteria were identified (with an intervention increasing protein and energy intake via the oral route). Studied interventions included the provision of fortified diets but most used commercial Oral Nutritional Supplements (ONS). Seven studies included a multidisciplinary intervention with malnutrition screening and assessment, physical activity interventions, or consultations from other health professionals. The systematic review identified that there were only few high quality cost-utility studies (the preferred method of economic evaluation for regulatory bodies in Australia and around the world), but three indicated likely cost-effectiveness of their interventions in populations of hospitalised and community dwelling adults. While there is promising initial evidence for the cost-effectiveness of nutritional strategies in treating and preventing malnutrition, further studies utilizing preferred methods of economic evaluation are needed to provide more rigorous evidence to inform decision makers, especially in populations of frail older adults.

To add to the evidence for providing nutrition therapy in frail, older adults at risk of malnutrition, an economic evaluation was undertaken of a multidisciplinary rehabilitation strategy including an individualised program of nutrition and exercise therapy provided for six months following a hip fracture (Chapter 3). The study followed a cost-utility methodology, and therefore quality adjusted life years (QALY) were used to assess the benefits of the intervention. The incremental cost effectiveness ratio (ICER) calculated was $AUD28,350 which although large was below the implied cost effectiveness ratio of $50,000 for Australia. Therefore, it is
likely that this intervention of multidisciplinary rehabilitation would be considered cost-effective in Australia.

In addition to applying economic evaluation methods to healthcare interventions, this thesis also looked further into methodological issues surrounding cost-utility studies as they are applied to multidisciplinary rehabilitation strategies in frail older adults, namely the measurement of quality of life for calculation of QALY gain. A subsequent study applied two different instruments for measuring quality of life and QALY to a population of older adults following hip fracture to compare their performance (Chapter 4). It was found that the ICECAP-O, a relatively new instrument designed specifically for use in older adults, was highly correlated ($r=0.529, \ p=0.000$) with the EQ-5D-3L, a traditional instrument used worldwide for the measurement of quality of life. However, there were some systematic differences between the two instruments with the mean utility score generated from the ICECAP-O almost 0.01 higher than the score generated from the EQ-5D-3L, and this reached statistical significance ($z=-3.613 \ p=0.000$). Further work is needed to compare the performance of the new ICECAP-O instrument against more traditional instruments, especially overtime and in the generation of benefits for use in cost-utility studies.

In a final study (Chapter 5), patients’ preferences for different configurations of rehabilitation programs were elicited utilising an economic technique known as a discrete choice experiment (DCE). In this study, patients were averse to rehabilitation programs involving very high levels of therapy and severe levels of pain, but not to lower levels of therapy and moderate levels of pain. The mobility
outcome achieved from rehabilitation therapy following a hip fracture was found to be the most important determinant of rehabilitation program preference, in our sample of frail older adults. Importantly included in this study were two groups usually excluded from studies of this nature, those with cognitive impairment and from a nursing home. The study also highlighted the ability of discrete choice experiment techniques to be used to elicit preferences of frail older adults for multidisciplinary rehabilitation interventions.

In summary this thesis has identified that a number of economic methods can be successfully applied to the evaluation of rehabilitation approaches in older adults, and it is recommended that methods of economic analysis should be more widely applied to evaluate nutritional and rehabilitation strategies in the future to improve the evidence-base for practice in this area.
LIST OF PUBLICATIONS AND ABSTRACTS ARISING FROM THIS THESIS

Publications

Conference Presentations

Milte R, Crotty M, Miller M, Whitehead C, & Ratcliffe J 2013, ‘Quality of life in
older adults following a hip fracture: an empirical comparison of the ICECAP-O and
the EQ-5D instruments’, Top 15 Poster Oral Presentations, 2nd Fragility Fracture
Network Global Congress, 29-31 August, Berlin, Germany.

and energy supplementation: Where is the evidence?’, 16th International Congress of
Dietetics 5 - 8 September, Sydney, Australia.

interventions in older adults’, Australasian Society of Parenteral and Enteral
Nutrition 38th Annual Scientific Meeting 17-19 October, Adelaide, Australia.

overload? An exploration of the potential impact of cognitive functioning in discrete
choice experiments with older people in health care’, 34th Australian Conference of
Health Economists 27-28th September, Darwin, Australia.

Conference Posters

Milte R, Miller, M, Crotty, M, Cameron, I, Whitehead, C, Kurrle, S, Mackintosh, S
Thomas, S, & Ratcliffe, J 2013, ‘Economic evaluation of an individualised nutrition
and exercise program for rehabilitation following hip fracture’, 2nd Fragility Fracture
Network Global Congress, 29-31 August, Berlin, Germany.

Milte R, Crotty M, Miller M, Whitehead C, & Ratcliffe J 2013, ‘Quality of life in
older adults following a hip fracture: an empirical comparison of the ICECAP-O and
the EQ-5D instruments’, 2nd Fragility Fracture Network Global Congress, 29-31 August, Berlin, Germany.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university, and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

When I commenced my candidature, the INTERACTIVE randomised controlled trial had been designed and commenced collecting data. I was involved in the recruitment of participants, baseline assessments and administering the nutritional intervention and control visits to the participants for the remaining duration of trial in conjunction with the other staff working on the trial. Six month outcome assessments were conducted by outcome assessors to maintain their blinded nature. I conducted the analysis of the economic and quality of life data collected for the trial. I was also involved in the recruitment of participants, outcome assessments, and administration of the nutritional intervention for the ATLANTIC trial, and used quality of life data from this trial as part of the cost-utility study contained in this thesis.

For the discrete choice experiment and quality of life studies reported I conducted the recruitment of participants, and administered the questionnaires with the assistance of one other staff member. Design of the discrete choice experiment was conducted prior to my candidature commencing.
While both nutrition and exercise therapy will be considered in reference to multidisciplinary rehabilitation strategies, special focus will be given to the impact of nutrition as it is within the expertise of my discipline.

Rachel Milte

March 2014
ACKNOWLEDGEMENTS

Thank you very much to the patients and their families who participated in the studies included within this thesis. They gave up their time to participate, often in periods of ill-health for themselves or family members. They also were kind enough to allow us to not only visit them while they were in hospital, but for up to six months after they had been discharged to the community. Therefore, their ongoing participation in the projects was most appreciated.

Thank you to the staff members of the Nutrition and Dietetics and Rehabilitation, Aged, and Extended Care of Flinders University. Special thanks goes to the staff who worked on the INTERACTIVE trial who were extremely supportive and hardworking over the four years the INTERACTIVE trial was collecting data.

Thank you to my friends and family who have supported me during my candidature. Special thanks to my sister Catherine and my parents Sue and Peter who have assisted me in my candidature and assisted me with reading drafts. Thank you to my husband Damian who provided much emotional and practical support over my candidature.

Finally, a very big thank you to my three supervisors. Thank you for providing the opportunity to work on these unique and interesting projects, and for providing much guidance throughout my candidature. You have all been very generous with your time and knowledge, and I have benefited much from your experience.
LIST OF TABLES

Table 1.1 Factors influencing hip fracture risk (Adapted from Marks 2010)........28
Table 1.2 Factors associated with risk of malnutrition in older adults...............39
Table 1.3 Prevalence of malnutrition in patients with hip fractures45
Table 1.4 Accepted forms of economic evaluation...55
Table 1.5 Studies estimating the medical costs associated with hip fracture......61
Table 1.6 Studies estimating the cost of hip fracture including rehabilitation.....63
Table 1.7 Studies estimating the cost of hip fracture including social and community
care costs ...64
Table 2.1 Drummond criteria for assessing quality of economic literature71
Table 2.2 Design and cost outcomes of included studies when participants defined as
malnourished ..77
Table 2.3 Design and cost outcomes of included studies where nutritional status not
specified...82
Table 3.1 Unit costs for healthcare resources utilized.......................................104
Table 3.2 Characteristics of participants included in INTERACTIVE...............108
Table 3.3 Mean utilizations of healthcare resources for the intervention and control
groups over six months..110
Table 3.4 Number of participants in the intervention and the control groups who used
healthcare services during the six months...111
Table 3.5 Overview of the mean costs for control and intervention group over six
months ($AUD)...112
Table 3.6 Utility of the intervention and control groups using AQoL over six months

Table 3.7 Cost effectiveness of intervention group over the control group for rehabilitation following hip fracture over six months

Table 4.1 Population norms for EQ-5D-3L utility values

Table 4.2 EQ-5D-3L utility values in studies targeting older people and nursing home residents

Table 4.3 Population norm values for the ICECAP-O

Table 4.4 Studies measuring quality of life in patients after surgery for hip fracture

Table 4.5 Demographic characteristics of the sample (n=87)

Table 4.6 Distribution of responses to EQ-5D-3L items by all participants (n=87) and selected subgroups

Table 4.7 Distribution of responses to ICECAP-O items by all participants and selected subgroups

Table 4.8 Utility values calculated from EQ-5D-3L and ICECAP for all patients with hip fractures, and selected subgroups

Table 4.9 Correlations between participant characteristics and ICECAP and EQ-5D-3L score measured by Pearson correlation or Spearman Rho

Table 4.10 Paired comparison of the ICECAP-O and EQ-5D-3L utilities

Table 4.11 Association between ICECAP-O score and sample characteristics as measured by Kruskal Wallis or Mann-Whitney U Test

Table 5.1 Responses to attitudinal questions for total sample and by subgroup: living in residential care vs the community prior to fracture
Table 5.2 Conditional logit model results (total sample). Data shown as Coefficients with 95% confidence intervals ... 185

Table 5.3 Results of conditional logit model for subgroups based on living in the community or in residential care .. 189

Table 5.4 Marginal rates of substitution using risk of falls and duration of effort as value attributes .. 190
LIST OF FIGURES

Figure 2.1 Flow diagram showing study selection process...73
Figure 2.2 Number of studies meeting the Drummond criteria for the design of the studies ..86
Figure 2.3 Number of studies meeting the Drummond criteria for data collection ...87
Figure 2.4 Number of studies meeting the Drummond criteria for analysis and interpretation of data ..88
Figure 2.5 Comparison of the number of Drummond criteria met and year of study publication ..89
Figure 3.1 Levels of precision in hospital costing...100
Figure 3.2 Cost effectiveness plane for the difference in quality adjusted life years ..115
Figure 3.3 Cost effectiveness acceptability curve for difference in quality adjusted life years ..117
Figure 4.1 The EuroQol descriptive dimensions..130
Figure 4.2 The ICECAP-O attributes ...139
Figure 4.3 Scatter plot comparison of the ICECAP-O and EQ-5D-3L utilities......159
Figure 4.4 Bland-Altman plot of differences in ICECAP-O and EQ-5D-3L utilities. ..162
Figure 4.5 Comparison of the utility values for the ICECAP-O for the general population (n=1052) and hip fracture (n=82) samples ..163
Figure 4.6 Comparison of the utility values for the EQ-5D-3L for the general
population (n=632) and hip fracture (n=82) samples…………………………………….164

Figure 5.1 Number of dominant responses for each attribute …………………………….183

Figure 5.2 Proportion of dominant responses in participants from residential care.183
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQOL</td>
<td>Assessment of quality of life instrument</td>
</tr>
<tr>
<td>AUD</td>
<td>Australian dollars</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone mineral density</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CAD</td>
<td>Canadian dollars</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost benefit analysis</td>
</tr>
<tr>
<td>CCA</td>
<td>Cost consequences analysis</td>
</tr>
<tr>
<td>CEA</td>
<td>Cost effectiveness analysis</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence intervals</td>
</tr>
<tr>
<td>CMA</td>
<td>Cost minimisation analysis</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CUA</td>
<td>Cost utility analysis</td>
</tr>
<tr>
<td>DCE</td>
<td>Discrete choice experiment</td>
</tr>
<tr>
<td>DOHA</td>
<td>Department of Health and Ageing</td>
</tr>
<tr>
<td>DRG</td>
<td>Diagnostic related group</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DVA</td>
<td>Department of Veterans Affairs</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>HEHP</td>
<td>High energy high protein diet</td>
</tr>
<tr>
<td>HLC</td>
<td>High level care</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health related quality of life</td>
</tr>
<tr>
<td>HUI</td>
<td>Health utilities index</td>
</tr>
<tr>
<td>ICER</td>
<td>Incremental cost effectiveness ratio</td>
</tr>
<tr>
<td>LLC</td>
<td>Low level care</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of stay</td>
</tr>
<tr>
<td>MAC</td>
<td>Mid arm circumference</td>
</tr>
<tr>
<td>MAUI</td>
<td>Multi-attribute utility instrument</td>
</tr>
<tr>
<td>MNA</td>
<td>Mini nutritional assessment</td>
</tr>
<tr>
<td>NFS</td>
<td>Not further specified</td>
</tr>
<tr>
<td>NHCDC</td>
<td>National Hospital Cost Data Collection</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>PA</td>
<td>Physical activity</td>
</tr>
<tr>
<td>PBAC</td>
<td>Pharmaceutical Benefits Advisory Committee</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PEG</td>
<td>Percutaneous endoscopic gastrostomy</td>
</tr>
<tr>
<td>PSA</td>
<td>Probabilistic sensitivity analysis</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality adjusted life year</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratio</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SGA</td>
<td>Subjective global assessment</td>
</tr>
<tr>
<td>ONS</td>
<td>Oral nutritional supplement</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>TCP</td>
<td>Transitional care program</td>
</tr>
<tr>
<td>TSF</td>
<td>Triceps skin fold</td>
</tr>
</tbody>
</table>