Characterisation of Anthocyanin Transport and Storage in *Vitis vinifera* L. cv. Gamay Fréaux Cell Suspension Cultures

Simon James Conn

B.Biotech (Hons.)

Submitted for the degree of Doctor of Philosophy
Flinders University, Adelaide, Australia
I certify that this thesis does not contain material which has been accepted for the award of any degree or diploma; and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text of this thesis or in the notes.

Simon James Conn
THESIS SUMMARY ... X
ABBREVIATIONS ... XI
ACKNOWLEDGMENTS ... X

CHAPTER 1 - LITERATURE REVIEW .. 1
1.1 PLANT SECONDARY METABOLITES ... 2
1.2 FLAVONOIDS ... 2
1.2.1 ANTHOCYANINS ... 3
 1.2.1.1 Biological role of anthocyanins in the plant 3
 1.2.1.2 Anthocyanin biosynthesis .. 5
1.3 ANTHOCYANINS AS BIOPRODUCTS .. 9
1.3.1 COMMERCIAL USES .. 9
1.3.2 CHOICE OF PRODUCTION SYSTEM 11
 1.3.2.1 Plant cell and tissue cultures for bioproducts 12
 1.3.2.2 Anthocyanin production in plants 13
 1.3.2.3 Anthocyanin production in suspension culture 14
 1.3.2.4 Anthocyanin stability and accumulation in suspension culture ... 15
1.3.3 METHODS OF ENHANCING ANTHOCYANIN PRODUCTION 17
 1.3.3.1 Empirical approaches .. 17
 1.3.3.2 Semi-rational approaches ... 17
 1.3.3.3 Rational/Integrated approaches 18
1.4 ANTHOCYANIN BIOSYNTHETIC EVENTS 19
 1.4.1 SUBCELLULAR LOCALISATION OF ANTHOCYANIN BIOSYNTHESIS 20
1.4.2 REGULATION OF ANTHOCYANIN PRODUCTION 21
 1.4.2.1 Biosynthetic enzymes .. 21
 1.4.2.2 Transcription factors .. 22
 1.4.2.3 Post-transcriptional and post-translational regulation 26
1.5 ANTHOCYANIN POST-BIOSYNTHETIC EVENTS 27
1.5.1 ANTHOCYANIN TRANSPORT ... 28
 1.5.1.1 ER-derived vesicular model 28
 1.5.1.2 GSTs as escort proteins ... 29
 1.5.1.2.1 Maize ... 32
 1.5.1.2.2 Petunia .. 33
 1.5.1.2.3 Arabidopsis ... 34
 1.5.1.2.4 Carnation ... 34
 1.5.2 TRANSPORTERS/MEMBRANE PUMPS 35
1.5.3 ANTHOCYANIN STORAGE .. 38
 1.5.3.1 Anthocyanic Vacuolar Inclusions 39
 1.5.3.1.1 Lisianthus ... 41
 1.5.3.1.2 Sweet potato .. 41
 1.5.3.1.3 Rose ... 43
 1.5.3.1.4 Radish ... 44
 1.5.3.1.5 Maize ... 45
 1.5.3.1.6 Grape ... 45
1.5.4 ANTHOCYANIN DEGRADATION ... 46
1.6 SUMMARY .. 48
1.7 BROAD RESEARCH OBJECTIVES .. 49
CHAPTER 2 - MATERIALS AND METHODS

2.1 CHEMICALS ... 51
2.2 PLANT CELL CULTURE .. 51
 2.2.1 CELL LINE DETAILS .. 51
 2.2.2 GROWTH MEDIUM .. 51
 2.2.3 SELECTION AND SUBCULTURE OF CELL LINES 52
 2.2.3.1 Callus cultures ... 52
 2.2.3.1.1 Subculture .. 52
 2.2.3.1.2 Clonal selection and micro-calli selection 52
 2.2.3.2 Suspension cultures .. 53
 2.2.3.2.1 Subculture .. 53
 2.2.3.2.2 Selected cell lines utilised in experiments 54
 2.3 ELICITATION EXPERIMENTS 54
 2.3.1 PREPARATION OF CHEMICALS FOR ADDITION TO CULTURES 54
 2.3.1.1 Jasmonic acid (JA) ... 54
 2.3.1.2 Sucrose ... 54
 2.3.2 ADDITION OF CHEMICALS TO CULTURES AND LIGHT IRRADIATION 55
 2.4 KINETIC ANALYSIS ... 55
 2.4.1 CULTURE GROWTH .. 55
 2.4.2 METABOLITE ANALYSIS ... 56
 2.4.2.1 Extraction of anthocyanins 56
 2.4.2.2 Spectrophotometric assay for anthocyanin content 56
 2.4.2.3 HPLC analysis of anthocyanin composition 57
 2.4.2.3.1 Solvent preparation and gradient program 57
 2.4.2.3.2 Sample preparation 58
 2.4.2.3.3 Identification of peaks 58
 2.4.2.4 Estimation of pigmented cell ratio 60
 2.4.2.4.1 Protoplasting of suspension culture cells 60
 2.4.2.4.2 Vacuole purification 60
 2.4.2.4.3 Microscopy and cell counting using a haemocytometer 61
 2.4.2.5 Cellular staining ... 61
 2.4.3 PROTEIN EXTRACTION AND PRECIPITATION 62
 2.4.3.1 Total protein extraction 62
 2.4.3.2 Whole-cell protein extraction 62
 2.4.3.3 Protein precipitation and desalting 63
 2.4.3.3.1 Acetone precipitation 63
 2.4.3.3.2 Ammonium sulphate precipitation 63
 2.4.3.3.3 HiTrap desalting 63
 2.4.3.4 Protein quantification 64
 2.4.3.4.1 Bicinchoninic acid protein assay kit 64
 2.4.3.4.2 EZQ protein quantification kit 64
 2.4.4 PURIFICATION OF GLUTATHIONE S-TRANSFERASES (GSTs) 64
 2.4.4.1 Glutathione-affinity chromatography 64
 2.4.4.2 GST assay .. 65
 2.5 GEL ELECTROPHORESIS .. 65
 2.5.1 SDS POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 65
 2.5.2 TWO-DIMENSIONAL GEL ELECTROPHORESIS (2D-GE) 66
 2.5.2.1 Sample preparation 66
 2.5.2.2 Strip rehydration ... 66
 2.5.2.3 Isoelectric focussing 67
CHAPTER 4 - GLUTATHIONE S-TRANSFERASES AND THEIR INVOLVEMENT IN ANTHOCYANIN TRANSPORT IN VITIS VINIFERA

L. CELL-SUSPENSION CULTURE ... 110

4.1 INTRODUCTION .. 111
4.2 GST CLONING STRATEGIES .. 113
4.2.1 DEGENERATE PCR TO CLONE GST SEQUENCES 113
4.2.2 PROTEIN PURIFICATION TO CLONE GST SEQUENCES 114
4.2.2.1 Selection of time-point for purification .. 114
4.2.2.2 Glutathione (GSH) affinity chromatography 116
4.2.2.3 Two-dimensional gel electrophoresis of purified GSTs 119
4.2.2.4 Edman sequencing ... 122
4.2.3 SELECTION OF GST EXPRESSED SEQUENCE TAGS 123
4.2.3.1 Cloning of GST ESTs ... 124
4.2.3.2 Cloning of GST genomic sequences 125
4.2.3.3 Analysis of non-coding sequences .. 132
4.2.3.4 Categorisation of V. vinifera GST protein sequences 134
4.2.4 RECOMBINANT PROTEIN EXPRESSION 136
4.2.4.1 Confirming size of protein .. 136
4.2.4.2 GST activity of crude E. coli extracts 137
4.2.4.3 GST activity of purified protein ... 137
4.3 Correlation of GST Expression with Anthocyanin Accumulation .. 139
4.3.1 Translational Level .. 139
4.3.1.1 FU-03 (anthocyanin-deficient cell line) ... 139
4.3.1.2 FU-01 treated with sucrose, jasmonic acid and light ... 140
4.3.2 Transcriptional Level (QPCR) ... 141
4.3.3 Effect of Individual Elicitors on GST1 Expression ... 143
4.3.4 GST Profiling in Grape Berry Skins at Veraison .. 144
4.4 Anthocyanin Transport Complementation Assay ... 146
4.4.1 Bombardment ... 146
4.4.2 GST Sequence Alignments ... 149
4.5 Discussion .. 153
4.5.1 Vitis vinifera GSTs .. 153
4.5.2 GST Sequences ... 153
4.5.3 Profile of GSTs Following Elicitation ... 155
4.5.4 Anthocyanin Transport Complementation Assay ... 161
4.6 Conclusions .. 164

CHAPTER 5 - CHARACTERISATION OF ANTHOCYANIC VACUOLAR INCLUSIONS (AVIS) AND THEIR ROLE AS ANTHOCYANIN STORAGE SITES IN VITIS VINIFERA L. CELL-SUSPENSION CULTURES ... 166
5.1 Introduction .. 167
5.2. Localisation of AVIs in V. vinifera Cell Cultures ... 169
5.2.1 Light Microscopy ... 169
5.2.2 Confocal Microscopy ... 170
5.3 Formation of AVIs ... 174
5.3.1 Bombardment of Non-pigmented V. vinifera Cells with Anthocyanin Transcription Factors ... 174
5.3.2 Confocal Microscopy on AVI-containing V. vinifera Cells Expressing Anthocyanin Transcription Factors .. 175
5.3.3 Intravacuolar Dynamics of AVIs ... 177
5.3.4 Cryogenic Scanning Electron Microscopy of AVIs .. 179
5.4 Correlation of AVI Abundance and Anthocyanin Content in V. vinifera .. 182
5.4.1 Prevalence of AVIs in V. vinifera Suspension Cell Lines and Callus Cultures 182
5.4.2 Correlation of AVI Abundance and Anthocyanin Content in FU-01 Suspension Cells with and without Elicitation .. 183
5.5 Compositional Analysis .. 186
5.5.1 Protein .. 186
5.5.2 Dry Mass .. 189
5.5.3 Anthocyanin Profiles of AVIs, Vacuoles and Whole Cells...... 189
5.5.4 Kinetic Study of Anthocyanin Profile in FU-01 Cells and AVIs 193
5.5.5 Cellular Staining .. 195
5.5.6 Tannin (proanthocyanidins) .. 196
5.6 Discussion .. 199
5.6.1 AVI Localisation and Formation ... 202
5.6.2 AVI Composition .. 205

CHAPTER 6 - MAJOR PROJECT FINDINGS ... 209
Acknowledgments

First and foremost I wish to thank my wife, Vanessa (or Dr. Conn as she likes to be called). It is no understatement that without your support and constant encouragement, this would never have been completed. If for only that I would be eternally grateful, but that is only one of the things I wish to acknowledge you for. Your love, patience, and good humour has made me a happier person than I ever thought possible and I am so lucky that you came into my life. My second thanks go to my, as yet, unborn child – I promise if you have trouble sleeping that I will be only too happy to read you some of this and it will solve your problems. Despite the effort I put into this thesis, I know you are my greatest work and I am so happy you have chosen us as your parents. For that we could not be more proud.

I would like to thank my family, especially Dad, Mum, Sarah, Emily, and Grandma Daphne. Your interest in my study has made it all the easier to feel excited about science even when you know you have 300 PCR reactions to set up. I would also like to thank my newer family – Marg, Mike, El, John, Michelle, Andrew, Tayla, Hayley, Tyson and Connor – for believing that I was a nice enough guy to not throw food at (apart from you Tayla!!!).

A sincere thankyou to my supervisors – Prof. Chris Franco and Dr. Wei Zhang – for their wisdom and attention during my studies. I have learnt a lot during my time at Flinders and it has made me a better scientist. I would like to thank Chris Curtin for his assistance and for his friendship. I also wish to thank all the members of the Department of Medical Biotechnology. While there is not nearly enough room to mention you all, I trust you know that you all contributed to my completion and I hope I helped you in some small way also.
Enormous thanks go to my colleagues at the CSIRO Plant Industry, Adelaide for their constant support and guidance. In particular I would like to thank Dr. Mandy Walker, Dr. Simon Robinson, Nicole Cordon, Dr. Jochen Bogs, and Debra McDavid for their help and analysis of samples for tannin and with grape cell bombardment assays. I also appreciate the discussions had with Assoc. Prof. Graham Jones (School of Agriculture and Wine, Adelaide University, Adelaide) in interpreting some of my results.

I would like to thank Miss Kathryn Boyd and Dr. Karen Murphy (School of Medicine, Paediatrics and Child Health, FMC, Adelaide) for their lipid analysis expertise. Great amounts of help were afforded me by Dr. Meredith Wallwork with confocal and all matters microscopy and Lyn Waterhouse (Adelaide Microscopy, Adelaide) for her assistance with cryoSEM. Dr. Chris Winefield (Cell Biology Group, Lincoln University, New Zealand) was kind enough to run extracts from my cells on his fluorescence HPLC. I would also like to thank Dr. Kevin Gould and Dr. Ken Markham for letting me ask all of the specific details that one cannot fit into a great paper.

My proteomics work could not have been completed without the help of numerous people. My primary thanks go to Dr. Tim Chataway (Dept. of Human Physiology, FMC, Adelaide) for his help with 2D-gels and for introducing me to Mark Raftery (Bioanalytical Mass Spectrometry Facility, University of NSW) who ran all my Mass Spectrometry samples free of charge. Further support was given to me with Edman sequencing and reverse-phase HPLC of my GST proteins by Dr. Antony Bacic and Dr. Shaio-Lim Mau (Dept. of Botany, University of Melbourne, Victoria, Australia).
Dr. Fabienne Bailleul (Laboratoire de Stress, Défenses et Reproduction des Plantes, Reims, France) provided great assistance in obtaining the 5’ region of GST3 by RACE-PCR. For this collaboration I am particularly grateful. I wish to acknowledge Prof. Rossitza Atanassova (Bâtiment Botanique, Université de Poitiers, France) who was kind enough to send me the Q84N22 sequence for comparison. I look forward to the opportunity to collaborate with both of these individuals in the future to repay their generosity and kindness. My final thanks are to the individuals who assisted with maize kernel bombardment. In particular Prof. Virginia Walbot and Dr. Guo-Ling Nan (Biological Sciences, Stanford University, USA) for sending me the kernels and the maize expression vector which started me on the road to completing my PhD. I would also like to thank Dr. Mark Alfenito and Dr. C. Dean Goodman (Dept. of Botany, University of Melbourne, Victoria, Australia) for their interpretation of my results. It is always a strange scenario when people you have referenced are discussing your results with so much interest and for that I will be ever grateful to these gentlemen.
Abbreviations

µl; ml; l: microlitre; millilitre; litre
ρM; µM; mM; M: picomolar; micromolar; millimolar; molar
AVI: anthocyanic vacuolar inclusion
BMS: black Mexican sweetcorn bp: base pairs
C3G: cyanidin 3-glucoside
C3pCG: cyanidin 3-p-coumaroylglucoside
cDNA: complementary DNA
CDNB: 1-chloro-2,4-dinitrobenzene
CHAPS: 3-cholamidopropyl dimethyl ammonio-1-propane sulfate DNA: deoxyribonucleic acid
dNTPs: dinucleotide triphosphates
DTT: dithiothreitol
EDTA: ethylenediamine tetraacetic acid
eGFP: enhanced green fluorescent protein
EST: expressed sequence tag
GSH: glutathione
GST: glutathione S-transferase
H2O: water
HPLC: high pressure liquid chromatography
hr: hour(s)
IPTG: isopropyl β-D-thiogalactoside JA: jasmonic acid
kDa: kilodaltons
LB: Luria broth
M3G: malvidin 3-glucoside
M3pCG: malvidin 3-p-coumaroylglucoside
MeJa: methyl jasmonate
min: minute(s)
MS: mass spectroscopy
mW: molecular weight
nos: Nopaline synthase
NCBI: National Centre for Biotechnology Information
ng; µg; mg; kg: nanograms; micrograms; milligrams; kilograms
P3G: peonidin 3-glucoside
P3pCG: peonidin 3-p-coumaroylglucoside
PBS: phosphate buffered saline
PCR: polymerase chain reaction
PEG: polyethylene glycol
aPMSF: a-phenylmethylsulfonylfluoride
QPCR: quantitative PCR
RACE: rapid amplification of cDNA ends
rER: rough endoplasmic reticulum
RNA: ribonucleic acid
rRNA: ribosomal ribonucleic acid
RT: room temperature
SDS: sodium dodecyl sulphate
sER: smooth endoplasmic reticulum
sp.: species (singular)
spp.: species (plural)
Std. Dev.: standard deviation
TBE: tris-borate EDTA
TIGR: The Institute for Genomic Research
UV: ultraviolet
W: watts
X-gal: 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
Thesis Summary

Anthocyanins are ubiquitous plant pigments with strong antioxidant activity, stimulating interest in the development of a plant cell-based bioprocess for their production to replace toxic synthetic food dyes and for application as pharmaceuticals, or nutraceuticals. Anthocyanin-producing plant cell suspension cultures are the currently favoured model production system facilitating rapid scale-up of production and circumventing the seasonal growth of crop plants. However, the level of anthocyanin production in these cells is commonly less than that seen in the intact plant, requiring anthocyanin enhancement strategies to improve the commercial feasibility of this approach. Attempts to enhance anthocyanin production by augmenting anthocyanin biosynthesis alone, without considering the post-biosynthetic limitations (transport and storage) have been largely unsuccessful in the development of a commercial bioprocess. The aims of this study were to characterise the anthocyanin transport pathway and storage sites in *Vitis vinifera* L. suspension cells towards significantly improving anthocyanin production by rational enhancement strategies at the molecular level. Anthocyanins are thought to be transported from their site of biosynthesis in the cytosol via the non-covalent (ligandin) activity of glutathione S-transferases (GSTs) to the vacuole where they are concentrated in insoluble bodies, called anthocyanic vacuolar inclusions (AVIs).

Five GSTs were affinity purified from pigmented grape suspension cells, characterised by nano-LC MS/MS and Edman sequencing, with the coding sequences identified and cloned. Bombardment of anthocyanin transport-deficient maize kernels with *V. vinifera* L. GST sequences indicated the potential involvement of two GSTs, GST1 and GST4, in anthocyanin transport. Gene expression analyses by QPCR indicated a strong correlation of these two GSTs
with anthocyanin accumulation. GST4 was enhanced 60-fold with veraison in Shiraz berry skins, while GST1 and to a lesser extent GST4, was induced in *V. vinifera* L. cv. Gamay Fréaux suspension cells under elicitation with sucrose, jasmonic acid and light irradiation (S/JA/L) to enhance anthocyanin synthesis. Purified GSTs quantified by reverse-phase HPLC from control and S/JA/L-treated suspension cells supported the gene expression data. Sequence alignments of these genes with known anthocyanin-transporting GSTs have shown conserved putative anthocyanin-binding regions. Furthermore, analysis of short upstream regions identified anthocyanin transcription factor- (R/C1) binding regions in the promoter of GST1. Increasing the expression of these GSTs provides an avenue to enhance anthocyanin production by more rapid removal of anthocyanins from biosynthetic complexes, potentially increasing biosynthetic flux.

AVIs have been documented in 45 of the highest anthocyanin-accumulating suspension cell cultures, with few detailed studies on their composition, or anthocyanin profile. AVIs in grape cell cultures were found to be highly dense, membrane-delimited bodies containing a complex mix of anthocyanins, long-chain tannins and other unidentified organic compounds. Furthermore, while the proportion of individual anthocyanin species were maintained between whole-cell and AVI extracts, the AVIs were found to selectively bind a subset of highly stable acylated (*p*-coumaroylated) anthocyanins. Strategies to enhance anthocyanin accumulation in grape suspension cultures lead to a proportionate increase in the abundance of AVIs. Unlike AVIs in sweet potato and, to a lesser extent lisianthus, protein was not a major component of AVIs in *V. vinifera* L. It is likely from this evidence that AVIs represent a by-product of ER-derived vesicular transport of anthocyanins, and therefore not a target for rational enhancement of anthocyanin production.