
Detecting Non-Hamiltonian Graphs
by Improved Linear Programs and

Graph Reductions

A thesis submitted for the degree of
Doctor of Philosophy

Kieran Clancy
B.Sc. (Hons)

School of Computer Science,
Engineering & Mathematics

Faculty of Science & Engineering

Flinders University

May 2017

To my mother Gina for her immeasurable support.

Contents

Contents i

List of Tables iv

List of Figures vii

Summary x

Declaration xiii

Acknowledgements xiv

Glossary of terms xviii

Archive of problem sets and algorithms xx

1 Introduction and background 1

1.1 Hamiltonian cycle problem . 1

1.2 Graph theory . 6

1.2.1 Hamiltonian cycle problem for cubic graphs 11

1.3 Linear programming relaxations 12

2 Identifying non-Hamiltonian graphs by linear programming 15

2.1 Existing models to solve TSP and HCP 17

i

Contents ii

2.1.1 Subtour elimination model and MCF 17

2.1.2 Tightened multi-commodity flow model 21

2.1.3 SST model . 23

2.1.4 The Base Model . 25

2.2 Comparisons of LP models . 28

2.2.1 Adapting TSP models to solve HCP 29

2.2.2 Results of LP models on HCP instances 32

2.2.3 Adapting the Base Model to solve TSP 34

2.2.4 Generating TSP instances based on cubic graphs . . . 37

2.2.5 Results of LP models on TSP instances 42

2.2.6 A conjecture on the strength of the Base Model 44

2.3 Classifications of difficult cubic graphs 51

2.3.1 Vertex and edge connectivity 51

2.3.2 Graph toughness . 55

2.4 Concluding remarks on the Base Model 62

3 Hamiltonicity-preserving graph reductions 64

3.1 Graph reductions based on subgraphs 70

3.2 Graph reductions based on Hamiltonian and non-Hamiltonian

edges . 74

3.3 Edge orbits and their classification 79

3.4 Graph reductions based on edge orbits 92

3.5 Graph reduction algorithm . 98

3.6 Results of reduction algorithm on cubic graphs 110

4 Extending the Base Model 120

4.1 Merging SST with the Base Model 125

Contents iii

4.1.1 Base-SST model with multiple starting vertices 127

4.1.2 Extended Base-SST model 130

4.2 Constraints involving forced edges 142

4.3 Constraints based on 3-cuts 149

4.4 Constraints based on an eigenvalue of Hamiltonian permuta-

tion matrices . 152

4.5 Results of combined extensions 162

4.6 Detecting non-Hamiltonicity of graphs by using LP models on

their subgraphs . 173

5 Conclusions and future work 176

5.1 Summary of results . 177

5.2 Future work arising from Chapter 2 178

5.3 Future work arising from Chapter 3 179

5.4 Future work arising from Chapter 4 179

Appendix A Non-Hamiltonian non-bridge cubic graph sets 182

A.1 NHNB20 GENREG IDs . 183

A.2 NHNB20PR edge lists . 185

Appendix B ATSP problem sets 189

Appendix C Implementation of graph reduction algorithm 204

Bibliography 220

List of Tables

2.5 Results of MCF, MCF+, SST and the Base Model on non-

Hamiltonian graphs up to order 20 33

2.6 Results of MCF, MCF+, SST and the Base Model on NHNB20 34

2.9 Results of MCF, MCF+, SST and the Base Model on ATSP16A 43

2.10 Results of MCF, MCF+, SST and the Base Model on ATSP16AC 43

2.13 Hamiltonicity of connected 10-vertex graphs up to isomor-

phism by vertex connectivity 53

2.14 The numbers of non-Hamiltonian and Hamiltonian cubic graphs

up to order 20 . 54

2.15 The percentage of cubic graphs up to order 20 that are Hamil-

tonian . 54

2.16 Contingency table for cubic graphs up to order 20 by Hamil-

tonicity and connectivity . 55

2.17 Contingency table for non-Hamiltonian cubic graphs up to

order 20 by Base Model feasibility and connectivity 55

2.19 Hamiltonian and non-Hamiltonian cubic graphs up to order

20 by toughness . 59

2.20 Base Model feasibility for non-Hamiltonian cubic graphs up to

order 20 by toughness . 60

iv

List of Tables v

3.7 Number of asymmetric and non-asymmetric cubic graphs by

order up to 20 vertices . 81

3.12 Percentage of edges in each type of orbit, as classified by The-

orem 3.36, for non-asymmetric cubic graphs up to order 20 . . 90

3.18 Automorphism group size of cubic graphs of order between 6

and 20 with at least one triangle 100

3.19 Cubic graphs up to order 18 where multiple graph reductions

of the types ψstar, ψpinwheel, ψcycle and ψcut were simultaneously

applicable . 102

3.20 The number of comparisons made between each pair of reduc-

tions . 102

3.21 The number of comparisons between reductions where one re-

duction led to a graph with fewer edges than the other reduction103

3.24 Number of cubic graphs up to order 20 that are reducible by

Algorithm 3.1 . 110

3.25 Number of Hamiltonian cubic graphs up to order 20 that are

reducible by Algorithm 3.1 . 111

3.26 Number of graphs in NHNB20 that are reducible by Algo-

rithm 3.1 . 111

3.27 Base Model feasibility of reducible instances of NHNB20, be-

fore and after reduction . 112

3.28 Base Model feasibility after reduction versus Base Model fea-

sibility before reduction, for instances of NHNB20 that are

partially reduced by Algorithm 3.1 113

4.1 Results of the Base Model on NHNB20 and NHNB20PR . . . 124

4.2 Results of the Base Model on ATSP16A and ATSP16AC . . . 124

4.3 Results of Base-SST on NHNB20 and NHNB20PR 127

List of Tables vi

4.4 Results of Base-SST on ATSP16A and ATSP16AC 128

4.5 Results of Base-SST-k on ATSP16A and ATSP16AC 130

4.7 Results of Base-SST-k-Ext on ATSP16A and ATSP16AC . . . 138

4.8 Gaps for each of the Base Model, Base-SST, Base-SST-k and

Base-SST-k-Ext on the four instances from ATSP16A for which

SST outperforms the Base Model 139

4.12 Results of Base-Forced on NHNB20 and NHNB20PR 148

4.13 Results of Base-Forced on ATSP16AC 148

4.14 Results of Base-3-Cut on NHNB20 and NHNB20PR 151

4.15 Results of Base-3-Cut on ATSP16AC 152

4.16 Results of Base-Spectral on NHNB20 and NHNB20PR 159

4.17 Results of Base-Spectral on ATSP16A and ATSP16AC 160

4.19 Results of Base-Combined on NHNB20 and NHNB20PR . . . 166

4.21 Results of Base-Combined on ATSP16A and ATSP16AC . . . 167

4.22 A comparison of Base-Combined with the other extended mod-

els on ATSP16A and ATSP16AC 168

4.23 Gaps for various models on ATSP16AC instance 31 168

4.27 Results of the Base Model and Base-Combined using the sub-

graph method on NHNB20 and NHNB20PR 175

5.1 Successive results of the approach described in Section 5.1 on

NHNB20 . 178

List of Figures

1.1 An example of a Hamiltonian cycle in the 20 vertex dodeca-

hedral cubic graph . 2

1.2 The first of Euler’s solutions to the knight’s tour problem . . . 3

1.3 The Petersen graph and its corresponding adjacency matrix . 8

2.1 Visualisation of the feasible region for a relaxed model of HCP 16

2.2 Example of subtours in a TSP instance 18

2.3 Example of a subtour elimination constraint 19

2.4 Visualisation of the feasible region after adding additional con-

straints . 22

2.7 The smallest instance of NHNB20 that induces infeasibility in

MCF, MCF+, SST and the Base Model 34

2.8 Base Model gaps for randomly generated TSP instances 41

2.11 Plot of gaps for the Base Model against gaps for SST 45

2.12 The smallest cubic graphs having connectivity 1, 2, and 3 . . . 52

2.18 Selected examples of tough and non-tough cubic graphs 58

2.21 The smallest tough cubic graph that induces infeasibility in

MCF, MCF+, SST and the Base Model 62

3.1 Trivially Hamiltonian and trivially non-Hamiltonian graphs . . 66

3.2 The contraction of a triangle in a graph 72

vii

List of Figures viii

3.3 A diamond before and after its reduction with ψdiamond 74

3.4 A graph with known Hamiltonian edges before and after its

reduction with ψforced . 77

3.5 A graph with a path of degree-2 vertices before and after its

reduction with ψpath . 78

3.6 A 6-vertex graph with automorphism group of order 8 79

3.8 The Frucht graph, one of the five minimal asymmetric cubic

graphs . 81

3.9 Vertex and edge orbits for the graph shown in Figure 3.6 . . . 83

3.10 An example of a graph and its line graph 85

3.11 Example showing five types of edge orbits in a non-Hamiltonian

cubic graph . 91

3.13 Examples of incompatible edge sets 93

3.14 A graph with known redundant edges before and after its re-

duction with ψstar . 95

3.15 A graph with a known Hamiltonian edge and known redundant

edges, before and after its reduction with ψpinwheel 96

3.16 A graph with known redundant edges in a short cycle, before

and after its reduction with ψcycle 97

3.17 A graph with known redundant edges forming a minimal cut

set of odd size, before and after its reduction with ψcut 98

3.22 Flowchart of Algorithm 3.1 . 105

3.23 Flowchart of Algorithms 3.2 to 3.4 106

4.6 An example of two directed Hamiltonian cycles showing both

possible vertex orderings of four vertices 131

List of Figures ix

4.9 Gaps for the Base Model, Base-SST, Base-SST-k and Base-

SST-k-Ext versus the gaps for SST on ATSP16A 140

4.10 Ternary plots showing the proportion of the total reduction in

gap on instances of ATSP16A that can be attributed to Base-

SST, Base-SST-k and Base-SST-k-Ext relative to the Base

Model . 141

4.11 Visualisation of part of one feasible solution of the Base Model

for a non-Hamiltonian subcubic graph 143

4.18 Modified ATSP16AC instances 288 and 352 161

4.20 NHNB20PR instance 83 . 166

4.24 ATSP16AC instance 16 with optimal tour identified by Base-

Combined . 169

4.25 Euler diagrams showing effective HCP instances 171

4.26 Euler diagrams showing effective TSP instances 172

Summary

In this thesis, we continue a recent line of research that seeks to solve the

Hamiltonian cycle problem (HCP). In particular, the research is aimed at

providing certificates of non-Hamiltonicity. The approaches described fall

broadly into two categories. First, we can detect non-Hamiltonicity by for-

mulating HCP as a linearly-constrained integer program, and subsequently

relaxing it to a linear program (LP). Infeasibility of such an LP implies non-

Hamiltonicity. Second, we can attempt to identify edges or vertices that can

be removed from a graph without altering its Hamiltonicity, resulting in a

reduced graph which may be easier to solve. In order to test the effectiveness

of our approaches, we will consider all non-Hamiltonian non-bridge cubic

graphs with up to 20 vertices, the set of which we call NHNB20.

Following an introduction of the relevant background in Chapter 1, in

Chapter 2 we consider several notable formulations of HCP, and compare

their effectiveness on NHNB20. In Section 2.1 we introduce four LP models

from literature to which we assign the names MCF, MCF+, SST, and the

Base Model. In Section 2.2.2 we find that the first three of these models are

similarly effective, solving 399 out of the 2099 instances of NHNB20. The

Base Model is found to be somewhat more effective, solving 477 out of the

2099 instances. To achieve a finer comparison, in Section 2.2.5, we consider

these four models in the context of the travelling salesman problem (TSP),

a problem closely related to HCP. We introduce Algorithm 2.1, a technique

for producing small but difficult instances of TSP, and use this technique to

x

Summary xi

produce two TSP problem sets which we call ATSP16A and ATSP16AC. In

Section 2.2.5 we report on experiments on these TSP problem sets, which

indicate that the Base Model is the strongest of the considered models on

average. Based on the empirical evidence, in Section 2.2.6, we conjecture that

the Base Model is stronger than MCF and MCF+, and provide a partial proof

of this conjecture. Next, in Section 2.3, we consider classifications of the non-

Hamiltonian graphs that are not identified by these methods. Notably, in

Section 2.3.2 we consider non-tough graphs, and prove that MCF, MCF+ and

SST are infeasible for any non-tough graph. We conjecture that the same

result holds for the Base Model. The problem sets considered in Chapter 2,

and in the remainder of the thesis, are given in Appendices A and B.

In Chapter 3, we develop a framework for reducing a given graph without

altering its Hamiltonicity. In Section 3.1 we consider particular subgraphs

that, if present in a graph, may be replaced by a vertex. Next, in Section 3.2

we examine the effect of forced edges on a graph, and use this to identify

other edges that may be removed. Then, in Section 3.3 we consider the

automorphism group of a graph, and use this information about the symme-

tries of the graph to identify redundant edges that are not otherwise obvious.

Combining these approaches, in Section 3.5 we introduce Algorithm 3.1 to

search for applicable reductions and show, in Section 3.6, that the algorithm

successfully reduces many of the graphs in NHNB20 to trivial instances of

HCP. Of those graphs in NHNB20 not reduced to a trivial graph, a majority

are at least partially reduced. We also demonstrate that the Base Model is

more effective on these partially reduced graphs than on the original graphs.

In addition to the pseudocode of Algorithm 3.1 given in Section 3.5, an im-

plementation of the algorithm is presented in Appendix C.

In Chapter 4, we seek to improve upon the Base Model by augmenting it

with new constraints that take advantage of particular graph features. First,

in Section 4.1, we combine the Base Model with SST by expressing the latter

Summary xii

in the variables of the former. We then extend this model further by taking

advantage of the Base Model’s built-in capacity to handle different starting

vertices. Next, in Sections 4.2 and 4.3, we introduce constraints based on

the presence of forced edges, as well as the presence of non-trivial 3-cuts, and

show that both of these are very strong constraints in graphs that contain

these features. Then, in Section 4.4 we introduce constraints based on an

eigenvalue of permutation matrices corresponding to Hamiltonian cycles, and

demonstrate that a small improvement results. In Section 4.5 we combine

all of these constraints into a single model, which we call Base-Combined.

We show that Base-Combined is stronger than taking the best result of any

of its constituent models. Finally, in Section 4.6 we introduce a technique,

which we call the subgraph method, that uses Base-Combined on a set of

subgraphs of a given graph to test necessary conditions for Hamiltonicity of

the original graph. We show that this technique is often effective at detecting

non-Hamiltonicity.

We conclude in Chapter 5 by considering, in turn, the application of each

of the developed approaches, to the 2099 instances of NHNB20, and show

that we can now provide certificates of non-Hamiltonicity for 2087 instances.

This is significantly more than the 477 instances solved by the unaugmented

Base Model. We note that although our focus was often limited to cubic

graphs, the approaches considered are applicable to more general HCP in-

stances. The dramatic improvements obtained inspire great hope that further

investigations in this direction will constitute a successful line of research. To

this end, in Sections 5.2 to 5.4 we outline the most promising future directions

arising from this thesis.

Declaration

I certify that this thesis does not incorporate without acknowledgment any

material previously submitted for a degree or diploma in any university; and

that to the best of my knowledge and belief it does not contain any material

previously published or written by another person except where due reference

is made in the text.

Kieran Clancy

xiii

Acknowledgements

The research presented in this thesis could not have happened without the

generous support of many and it is an honour for me to thank them here.

Firstly, I would like to express my gratitude to my supervisors for their

patience and guidance throughout my candidature. To Prof. Jerzy Filar for

bringing the Hamiltonian cycle problem to life and sharing his wealth of

experience as an academic. To Dr Michael Haythorpe, or in the words of my

mother, ‘Saint Michael’, for his encouragement, extraordinary patience, and

for his sacrifice of much of his valuable time to support me throughout the

writing and editing process. And to A/Prof. Murk Bottema for his timely

and candid professional advice on numerous occasions.

Discussions with the other members of the Flinders Hamiltonian Cycle

Project team have been invaluable, leading to many new ideas and direc-

tions that I have pursued in the course of this research. I would like to

thank Prof. Jerzy Filar and A/Prof. Vladimir Ejov for starting the project,

Dr Michael Haythorpe for sharing many fascinating problems and findings

with the group, and Mr Serguei Rossomakhine for his comments and great

sense of humour. I also wish to express my gratitude to Dr David Glynn,

whose regular contributions illuminated the connections between the Hamil-

tonian cycle problem and other areas of mathematics. My peers in the

project, Mr Pouya Baniasadi, Mr Alex Newcombe and the now graduated

Dr Asghar Moeini have each made valuable comments and suggestions, and

I have enjoyed discussions with them on a broad range of topics.

xiv

Acknowledgements xv

For assisting in the administration of my candidature, I am also grateful

to A/Prof. Paul Calder, Prof. Mark Taylor, and Mrs Jennie Brand. Each

of them has provided practical advice and encouragement, and assisted in

resolving any administrative difficulties that arose.

I have greatly benefited from the friendly work and research environ-

ment created by my colleagues and peers in the School of Computer Science,

Engineering & Mathematics at Flinders University. The Dean, Prof. John

Roddick, has been an exemplary manager and very accommodating of my

candidature. The school administrative staff have always been supportive

and I would particularly like to thank Megan, Rosalee, Debbie, Gina, Linda

and Kelly; their assistance with topic administration has allowed me to spend

more time on research. I have also been fortunate to have the prompt as-

sistance of Jarrad, Ivan and Rino for any matters relating to computers and

networks.

I am thankful to the Commonwealth of Australia and, by extension, the

Australian taxpayers who have supported my research through an Australian

Postgraduate Award scholarship. I have also received funding to attend a

number of conferences, gaining valuable feedback on my presented research

at each of them. In particular, I am grateful to the South Australian branch

of ANZIAM for funding my attendance at their mini-meetings in 2013, 2014

and 2015, and to the Australian Mathematical Society for funding part of

my costs to attend their 60th Annual Meeting in 2016.

Research of this nature could not occur without high performance com-

puting resources, so I am also very appreciative of Flinders University and

eResearch SA for generously providing access to their computing clusters. I

also wish to thank the authors of the open source software used to perform

much of my research; GNU Octave, nauty, GENREG, LATEX and its packages

including TikZ, and Linux and its many userspace tools. I also appreciate

IBM for providing the CPLEX Optimization Studio freely for academic use.

Acknowledgements xvi

The community at the TEX StackExchange forum also deserves special men-

tion for typesetting advice without which my thesis would look terrible.

I am deeply grateful for my students who in every semester of my can-

didature have kept me sane, inspired me, and helped me to find ever more

passion for mathematics. When times were difficult, it was the joy I found in

teaching mathematics that motivated me to press on. My thanks thus also

goes to fellow lecturers Miss Bree Martin and Dr Simon Williams, with whom

I alternated topics, for their encouragement and many great discussions.

There are three others I would particularly like to thank for their advice

and support at crucial times. Dr Nurulla Azamov, who shared his enthusiasm

for mathematics and encouraged me to do a PhD. Dr Maria Gardiner, for

sharing her experience and research on academic writing at nearly a dozen

workshops and, most of all, for her unwavering confidence in me to finish.

Finally, Dr Timothy Trudgian of the Australian National University for his

sincere encouragement and indispensable professional advice.

Tracing back my interest in mathematics that has set me on this path,

there are also a number of people to whom I owe special thanks. First, the

teachers in primary school who recognised my abilities, especially Ms Elaine

Ahladas, and my teachers in secondary school who encouraged and inspired

me to extend myself, especially Mr Kon Marussinszky. I also owe a great

debt of gratitude to my year 12 mathematics teacher Mr Paul Thurlow, who

saw my potential despite my missing nearly the entire year of school due

to illness. Without his encouragement, I am certain that I could not have

completed school and gone on to university. Next, my undergraduate lec-

turers, notably A/Prof. Murk Bottema, A/Prof. Alan Branford, Prof. Fedor

Sukochev, Prof. Raja Huilgol, Dr Boris Blankleider and Dr Ray Booth who

each helped me to see an aspect of the beauty of mathematics. Ultimately,

I am grateful to God for the gift of mathematics that we might, to quote

Kepler, “share in his own thoughts.”

Acknowledgements xvii

I would also like to express my heartfelt gratitude to my friends for their

loyalty and encouragement to me throughout this endeavour; Nick, Hayley,

Anna, Terry, Jemima, Matt M., Sally, Lochy, Pete, Matt W., Rachael, Nicole,

Jake, Kelly, Jarrod, Tristan, Leah, Joel, Kristy, Luke, Yarran, Ben, Nanks,

Tait, Ariane, Steve, Jess, Brendan, Gary, Kate, David S., Jonno, and many

others, all of whose individual contributions would require another book just

to list. I have also had the great blessing to know, both as mentors and

friends, David K., Andrew and Liz, David and Cathy W., and Bruce.

Finally, I want to convey my deepest appreciation to my family for their

incredible support. My parents Gina and David have never ceased in their

love. They have provided a warm home and warm food, nurtured my gifts,

encouraged me during difficulties, and celebrated with me in my triumphs.

Throughout my studies I have also had the steadfast encouragement of my

sisters Jess, Michelle, and Danielle, my brothers-in-law Dan, Lachlan, and

Ben, my nieces and nephews, and my extended family. My grandmothers

Mary and Kath deserve a special mention for their faithful prayers and regular

reassurance.

Glossary of terms

The following notations are commonly used in this thesis.

G = (V,E) A simple graph with vertices V and edges E

n The number of vertices |V | of a graph G

Gk
n The cubic graph on n vertices with GENREG ID k

Cn The cycle graph with n vertices

Kn The complete graph with n vertices

Pr The path graph with r edges

Sr The star graph with r edges

Γ(G) The automorphism group of a graph G

L(G) The line graph of G

N(i) The set of vertices adjacent to i ∈ V

deg(i) The degree of a vertex i ∈ V

uv The edge with endpoints u and v in V

u�v The arc from u to v, using the edge uv

x1 6= · · · 6= xk xi 6= xj for all i 6= j in 1, . . . , k

O(f(n)) A function bounded from above by a constant positive

multiple of f(n) for all n > n0 for some n0

GS The subgraph of G induced by the vertices S if S ⊆ V ,

or by the edges S if S ⊆ E

xviii

Glossary of terms xix

The following acronyms are commonly used in this thesis.

ATSP Asymmetric travelling salesman problem

DFJ Dantzig, Fulkerson and Johnson formulation/model

HC Hamiltonian cycle

HCP Hamiltonian cycle problem

LP Linear program

MCF Multi-commodity flow formulation/model

MCF+ Multi-commodity flow, improved formulation/model

NH Non-Hamiltonian

NHNB Non-Hamiltonian non-bridge

NP Nondeterministic polynomial time

SAT Boolean satisfiability problem

SST Sherali, Sarin and Tsai ATSP6 formulation/model

TSP Traveling salesman problem

Archive of problem sets and

algorithms

An archive of the most commonly considered problem sets in this thesis, and

of a GNU Octave / MATLAB implementation of the graph reduction algo-

rithm Algorithm 3.1, is available for download on the FHCP Dissertations

page on the Flinders Hamiltonian Cycle Project website:

http://fhcp.edu.au.

The two archives are as follows.

(i) GraphReduction.zip contains the GNU Octave / MATLAB imple-

mentation of GraphReduction (Algorithm 3.1), as well as the sub-

algorithms Algorithms 3.2 to 3.4.

(ii) ProblemSets.zip contains each instance of the following problem sets.

• NHNB20 , introduced in Section 2.2.2.

• NHNB20PR, introduced in Section 3.6.

• ATSP16A and ATSP16AC , introduced in Section 2.2.4.

README files with further details may be found in the archives. The imple-

mentation of the graph reduction algorithm as well as an index of the above

problem sets may also be found in Appendices A to C.

xx

http://fhcp.edu.au

Chapter 1

Introduction and background

1.1 Hamiltonian cycle problem

The Hamiltonian cycle problem (HCP) is a famous problem in graph theory

that has the following, deceptively simple, definition.

Definition 1.1 (Hamiltonian cycle problem). Given a graph G = (V,E),

determine whether any cycle of length |V | exists in G.

Such cycles of length |V | are known as Hamiltonian cycles . HCP could

thus more succinctly be defined as determining whether a given graph con-

tains a Hamiltonian cycle.

The concept of a Hamiltonian cycle was formalised independently by two

authors. While the concept was named after Sir William Rowan Hamilton

who posed a single instance of the problem in 1856, in fact it was Kirkman

who had written a more general paper on the matter a year prior in 1855 [6].

Unfortunately, this and many of Kirkman’s other results were not recognised

until much later. Credit is due to Hamilton, however, for having popularised

HCP with a board game based on the planar embedding of the dodecahedron,

the graph of which is displayed in Figure 1.1 [7].

1

1.1. Hamiltonian cycle problem 2

Figure 1.1: An example of a Hamiltonian cycle in the 20 vertex dodecahedral
cubic graph.

Although the Hamiltonian cycle problem was not formally defined until

the nineteenth century, particular instances of HCP, albeit by other names,

had been considered in other contexts for centuries. The most notable of

these instances is the problem of finding knight’s tours on square chessboards.

This centuries-old problem involves finding a way for a knight to start on one

square of a vacant 8×8 chessboard and visit each of the squares exactly once

before returning to the start location, using only valid “L-shaped” moves (1

square in one direction and 2 squares in a perpendicular direction). Euler

was fascinated by the problem and in 1766 published several solutions [25],

the first of which is shown in Figure 1.2. Solutions to the knight’s tour

problem correspond directly to Hamiltonian cycles where each square of the

chessboard is considered to be a vertex of a graph.

For the most part, however, HCP did not begin to be widely explored until

its close relationship with other problems became apparent. In particular,

there has been renewed interest in HCP due to its importance in complexity

theory. A key set of problems in complexity theory is the set of decision

problems , which is the set of all problems having a yes or no answer. Indeed,

HCP is a decision problem; the answers can be that yes, the graph contains

1.1. Hamiltonian cycle problem 3

N
Figure 1.2: The first of Euler’s solutions to the knight’s tour problem [25].

at least one Hamiltonian cycle, or no, it does not. A special class of decision

problems is the set of NP problems defined as follows.

Definition 1.2 (NP problems). A decision problem is said to be in the set

of nondeterministic polynomial time (NP) problems if for any instance that

has the answer yes, it is possible to provide a proof of that answer that can

be verified in polynomial time. We call any such proof a certificate of that

yes answer.

In the case of HCP, a certificate of the answer yes typically takes the

form of a discovered Hamiltonian cycle, which can be verified to exist in the

given graph in linear time. Note that the definition of NP does not require

instances with a no answer to have any certificate. It is for this very reason

that the problem of providing certificates of no answers for NP problems

is a fascinating area of research. For HCP, one approach for providing such

a certificate is to establish that a necessary condition for Hamiltonicity is

violated by the instance, where this violation can be established by some

algorithm that terminates in polynomial time. This thesis considers a number

of such necessary conditions and polynomial time algorithms.

1.1. Hamiltonian cycle problem 4

We say that an algorithm has time complexity O(f(n)) if, for an input of

size n, the algorithm is guaranteed to terminate within O(f(n)) time steps

of some fixed duration. Notably, an algorithm is said to be polynomial-time

if it has a time complexity of O(nc) for some constant c.

In a seminal paper in 1971, Cook [18] proved that any instance of any

problem from NP can be converted to an instance of boolean satisfiability

(SAT) with only polynomial growth in the size of the instance, implying

that, in general, SAT is at least as difficult to solve as any problem from NP.

Then, in 1972, Karp [46] investigated a set of twenty NP problems, including

HCP, to which SAT can be converted, implying that each of these problems

must be at least as difficult as SAT. However, since Cook’s result implies that

SAT is at least as difficult as any of those problems, the problems considered

by Karp are therefore equally difficult in a complexity sense. Problems of

this type are called NP-complete and are, by definition, the most difficult

problems in NP. For more on this fascinating topic, the interested reader is

referred to the seminal book by Garey and Johnson [30].

One of the most important open problems in mathematics and computer

science is the so-called P vs NP problem, which is now famous as one of

the Clay Institute Millennium Prize problems [13]. The P vs NP problem

asks whether P, the set of decision problems that can be solved in polynomial

time, is equal to NP, the set of decision problems for which a certificate exists

for every yes answer. Since every NP problem is at most as difficult as a

problem in NP-complete, then if a polynomial time algorithm were found to

solve any one problem from NP-complete, such as HCP, it would imply the

existence of polynomial time algorithms to solve every other problem in NP.

It is perhaps this prospect that has prompted much of the research on HCP

in recent years. For more history on the P vs NP problem, refer to Cook [17].

In addition to being famous as one of the first discovered NP-complete

problems, HCP is also well-known for its close relationship with the travelling

1.1. Hamiltonian cycle problem 5

salesman problem (TSP). In this problem, a salesman must visit n cities

using roads of given distance between pairs of cities, by starting at one city

and visiting every other city exactly once before returning, such that the

total distance travelled is minimised. The observant reader will notice that

HCP is embedded in this problem since a valid travel itinerary necessarily

constitutes a Hamiltonian cycle. Formally, the travelling salesman problem

can be defined as follows.

Definition 1.3 (Travelling salesman problem). Given a graph G = (V,E)

and an associated cost cij for each arc i�j with i, j ∈ V , find a Hamiltonian

cycle or tour , if one exists, such that the sum of the costs on the arcs used,

called the tour cost , is minimised. If cij = cji for all i and j, then the instance

is said to be symmetric, otherwise the instance is said to be asymmetric. The

latter is sometimes distinguished by the abbreviation ATSP.

The travelling salesman problem is a member of the NP-hard set of prob-

lems, which is the set of problems that are at least as difficult as any problem

in NP. Note that although TSP as defined in Definition 1.3 is not a decision

problem, there is a decision variant in which the question is whether any

Hamiltonian cycles exist that have a tour cost below a given threshold.

There is a myriad of different approaches for solving HCP and TSP. For

HCP, these include fast heuristics [2], as well as exhaustive algorithms that

find every Hamiltonian cycle in a graph [14]. For HCP and TSP restricted to

graphs of certain types there are more efficient algorithms such as [23, 43, 75].

Finally, for TSP in general, there are various approaches, including simulated

annealing [49], edge-exchange heuristics [52, 37], and approaches based on re-

laxations of integer programming formulations [1, 19]. Much of this thesis

is focused on linear programming relaxations of integer programming formu-

lations for HCP and TSP. A further discussion of this topic is included in

Section 1.3. For more information about the TSP in general, the reader is

referred to [50].

1.2. Graph theory 6

The heuristics for solving HCP are often quick to find a Hamiltonian cycle

in a Hamiltonian graph, and this Hamiltonian cycle constitutes a certificate

that can be efficiently verified. However, for non-Hamiltonian graphs, these

algorithms are not able to provide any evidence of that non-Hamiltonicity

other than their failure to find a Hamiltonian cycle in a reasonable time. In

this thesis, we seek to continue a relatively new line of research, initiated in

Haythorpe [36] and continued in Eshragh [24] and Filar et al. [28], aimed at

providing certificates of non-Hamiltonicity.

1.2 Graph theory

As this thesis is primarily concerned with the investigation of graphs, we now

include a brief introduction of some relevant concepts from graph theory.

Definition 1.4 (Graph). A graph G = (V,E) is defined as a finite set V ,

called the vertices of G, and a set E, called the edges of G, where each edge

uv ∈ E is an unordered pair of distinct vertices u, v ∈ V . Two vertices

u, v ∈ V are said to be adjacent if the edge uv ∈ E. An edge uv ∈ E is

said to be incident to the endpoint vertices u and v. Also, two distinct edges

uv, wx ∈ E are said to be adjacent if both are incident to a common vertex.

More general definitions of graphs do exist, for example permitting di-

rected edges (directed graphs) or multiple edges between the same pair of

vertices (multigraphs). However, in this thesis we restrict our consideration

to simple, undirected graphs with finitely many vertices. A graph is said to

be simple if it contains no loops and no multi-edges; that is, vv 6∈ E for

any v, and E is not a multiset. A graph is said to be undirected if its edges

are unordered pairs of vertices; that is, uv and vu are considered to be the

same edge for any u and v. As given, Definition 1.4 already excludes these

possibilities, but we provide this clarification for readers familiar with a more

general definition of graphs. Further, unless otherwise stated, all graphs con-

sidered in this thesis are connected ; that is, every pair of vertices in G has

1.2. Graph theory 7

some path of edges in E between them.

We refer to the number of vertices |V | of a graph G = (V,E) as the order

of G and, where no confusion is possible, denote this simply by n. Although

we only consider undirected graphs, in the context of Hamiltonian cycles it

is often necessary to consider an edge uv of a graph used in some particular

direction; such an ordered pair of vertices is called an arc. If u precedes v

we denote the arc by u�v, otherwise, by v�u.

Since we are primarily interested in graphs from the perspective of HCP,

we will mostly consider graphs with relatively few edges. Indeed, graphs with

many edges are usually trivial instances of HCP. It is therefore desirable to

consider sparse graphs. Technically speaking, it is difficult to define whether

a given graph is sparse on its own. Rather, a graph must be considered in

the context of a family of graphs to which it belongs. One definition is that a

graph is sparse if it is contained in a family of graphs satisfying the property

that the number of edges is bounded from above by some constant multiple

of the number of vertices.

One method of describing a graph is via its adjacency matrix , which for a

graph G = (V,E) with vertices V = {1, . . . , n} is an n×n matrix containing

a 1 in row i and column j if ij ∈ E, and 0 otherwise. Figure 1.3 shows an

example of the adjacency matrix of the Petersen graph, a non-Hamiltonian

graph famous as a counterexample to many conjectures [40].

We now define some common graph theoretic terms and concepts that

will be important throughout this thesis. More specialised concepts will be

introduced in later chapters as they arise. For a more detailed introduction

to graph theory, the reader is directed to Bondy and Murty [9].

Definition 1.5 (Degree). Given a graph G = (V,E), the degree of a vertex

v ∈ V , denoted by deg(v), is defined as the number of vertices adjacent to v.

Definition 1.6 (k-regular graph). A graph G = (V,E) is said to be k-regular

if every vertex in V has degree k.

1.2. Graph theory 8

1

5

4 3

26

10

9 8

7
A =



0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0



Figure 1.3: The Petersen graph and its corresponding adjacency matrix.

Definition 1.7 (Cubic and subcubic graphs). A graph G = (V,E) is said

to be cubic if it is 3-regular. G is said to be subcubic if no vertex in V has

degree greater than 3.

Definition 1.8 (Bipartite graph). A graph G = (V,E) is said to be bipartite

if there is a partition of V into two subsets V1 and V2 such that every edge

e ∈ E is incident to exactly one vertex in V1 and one vertex in V2.

Definition 1.9 (Subgraph). A graph H = (V ′, E ′) is said to be a subgraph

of a graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

Definition 1.10 (Vertex-induced subgraph). For any graph G = (V,E), and

a subset U ⊆ V of its vertices, the subgraph of G induced by U is the graph

GU = (U,E ′), where E ′ = {uv ∈ E | u, v ∈ U}. That is, GU = (U,E ′) is the

subgraph of G containing only vertices U and any edges that are incident

only to vertices in U . The subgraph GU is called a vertex-induced subgraph.

Definition 1.11 (Edge-induced subgraph). For any graph G = (V,E), and

a subset D ⊆ E of its edges, the subgraph of G induced by D is the graph

GD = (V ′, D), where V ′ = {v ∈ V | ∃u ∈ V such that uv ∈ D}. That is,

GD = (V ′, D) is the subgraph of G containing only edges D and the vertices

to which those edges are incident. The subgraph GD is called an edge-induced

subgraph.

1.2. Graph theory 9

Where no confusion is possible, we will use the term induced subgraph to

refer to either a vertex-induced subgraph or edge-induced subgraph as the

context dictates.

Definition 1.12 (Connected component). Given a graph G = (V,E), a

subgraph H = (V ′, E ′) of G is said to be a connected component of G if H is

connected, H is the subgraph of G induced by the vertices V ′, and no edge

in E is incident to both a vertex in V ′ and a vertex not in V ′.

Definition 1.13 (k-connected graph). A graph G = (V,E) with at least

k + 1 vertices is said to be k-connected if it cannot be disconnected by the

removal of k−1 vertices. In other words, at least k vertices must be removed

to disconnect the graph or to obtain a 1-vertex graph.

Definition 1.14 (k-edge-connected graph). A graph G = (V,E) with at

least k+1 vertices is said to be k-edge-connected if it cannot be disconnected

by the removal of k − 1 edges. In other words, at least k edges must be

removed to disconnect the graph.

Definition 1.15 (k-cut). Given a graph G = (V,E), we define a k-cut (also

known as a disconnecting set of size k) to be a subset of k edges from E whose

removal disconnects the graph. A k-cut is said to be minimal if the removal

of no proper subset of the edges in the k-cut leaves the graph disconnected.

Definition 1.16 (Bridge graph). A graph G = (V,E) is called a bridge

graph if it contains at least one minimal 1-cut.

Definition 1.17 (Path). A path of length k in a graph G = (V,E) is an

ordered subset of sequentially adjacent edges {v1v2, v2v3, . . . , vkvk+1} ⊆ E

such that the vertices v1, . . . , vk+1 are all distinct.

Definition 1.18 (Cycle). A cycle of length k ≥ 3 in a graph G = (V,E)

is a path of length k − 1 with an additional edge that closes the path in G.

That is, a cycle is a path {v1v2, . . . , vk−1vk} ⊂ E with the additional edge

vkv1 ∈ E.

1.2. Graph theory 10

Similarly to individual edges, which we sometimes consider as arcs in a

particular direction, there are occasions where we must also consider paths

or cycles in a directed sense. That is, we may consider a path or cycle as

a sequence of arcs end-to-end v1 � v2, v2 � v3, . . . , which we abbreviate by

v1�v2�v3�· · · .

Definition 1.19 (Hamiltonian path). A Hamiltonian path in a graph G =

(V,E) is a path of length |V | − 1; that is, a path that traverses all vertices

of V .

Definition 1.20 (Hamiltonian cycle). A Hamiltonian cycle (HC) in a graph

G = (V,E) is a cycle of length |V |; that is, a cycle that traverses all vertices

of V .

Definition 1.21 (Graph isomorphism). Two graphs G1 = (V1, E1) and G2 =

(V2, E2) are said to be isomorphic if there exists a one-to-one mapping ϕ :

V1 → V2 such that for any u, v ∈ V1, uv ∈ E1 if and only if ϕ(u)ϕ(v) ∈ E2.

To consider a set of graphs up to isomorphism is to consider all pairwise

isomorphic graphs in the set as the same element.

We now define some common graph families used in this thesis.

Definition 1.22 (Complete graph Kn). The complete graph Kn is the n-

vertex graph in which any two distinct vertices are adjacent.

Definition 1.23 (Path graph Pr). A path graph Pr = (V,E) is a graph

comprising just the vertices and edges to trace out a path of length r. In Pr,

|V | = r + 1 and |E| = r.

Definition 1.24 (Cycle graph Cn). A cycle graph Cn = (V,E) is a graph

comprising just the vertices and edges to form a cycle of length n. In Cn,

|V | = |E| = n.

Definition 1.25 (Star graph Sr). A star graph Sr = (V,E) is a graph

comprising just a central vertex v ∈ V and r degree-1 vertices each of which

is adjacent to v. In Sr, |V | = r + 1 and |E| = r.

1.2. Graph theory 11

1.2.1 Hamiltonian cycle problem for cubic graphs

If it were necessary to consider all simple connected graphs for HCP, the task

would be unmanageable if only due to the astronomical number of possible

graphs for a given order n. For example, there are on the order of 107 unique

simple connected graphs with 10 vertices, 1038 with 20 vertices and 1098 with

30 vertices [67]. It is a natural question, then, to ask whether we can consider

a subset of the problem space for which HCP remains NP-complete.

Fortunately, there are indeed several considerably smaller subsets of sim-

ple connected graphs to which HCP may be restricted while retaining NP-

completeness. The first paper to show this was by Garey et al. [31] in 1976;

they showed that the problem space may be restricted to graphs that are

planar, cubic, and 3-connected, with HCP still being NP-complete on this

subspace. Since the intersection of these three subsets of simple graphs pro-

vides an NP-complete problem space, it follows that HCP restricted just to

any one of those individual sets is also NP-complete. Following Garey et al.’s

result, many other subsets of the problem space have been found to fulfill

this condition, including planar, cubic, 2-connected, bipartite graphs; cubic,

3-connected, bipartite graphs; maximal planar graphs; and 4-connected, 4-

regular graphs, as summarised in [38]. Perhaps the most practical subset

of these is the set of cubic graphs, which can be identified and enumerated

efficiently and have fascinating structural properties. There are also far fewer

of them for a given number of vertices n than planar graphs or 3-connected

graphs with the same number of vertices, making them ideal for use in com-

putation. Furthermore, it was shown recently that any non-cubic graph can

be converted to an equivalent cubic instance of HCP with only linear growth

in the order of the problem [22].

Cubic graphs have also been the subject of a number of conjectures, such

as the disproved conjectures by Tait [68] and Tutte [69], as well as Bar-

1.3. Linear programming relaxations 12

nette’s conjecture [3] that every 3-connected, planar, bipartite cubic graph is

Hamiltonian, which remains open. There are numerous extremely efficient al-

gorithms for enumerating all cubic graphs satisfying certain properties, such

as GENREG [56], Plantri [10], and Snarkhunter [11]. Throughout this the-

sis, it will often be convenient to refer to particular cubic graphs by the ID

number given to them by GENREG. In such a case we will refer to a cubic

graph with n vertices and ID k as Gk
n.

In 1992, Robinson and Wormald [64] proved that almost all cubic graphs

are Hamiltonian. Later, Filar et al. [27] conjectured that, of the remaining,

non-Hamiltonian, cubic graphs, almost all are bridge graphs, and as such can

be identified as non-Hamiltonian in linear time. However, there are difficult

and interesting examples of non-Hamiltonian cubic graphs. Snarks, which

are cubic graphs that are not 3-edge-colourable [62], are perhaps the most

well-known of these. The smallest snark is the Petersen graph displayed in

Figure 1.3, which was proved to be a minor of every snark [58].

There is a variety of research into HCP restricted to cubic graphs. Cur-

rently, one of the state-of-the-art algorithms for solving HCP and TSP on

cubic instances, due to Xiao and Nagamochi [75], can solve HCP on cubic

graphs in O(1.2312n) time. This is significantly better than brute-forcing

combinations of vertices, requiring O(n!) time, and still better than a depth-

first search of paths in the graph, requiring O(2n) time.

1.3 Linear programming relaxations

One approach to solving HCP or TSP is to formulate the problem as an

integer program such that the set of feasible solutions and the set of Hamil-

tonian cycles is in one-to-one correspondence. Note that if the graph under

consideration does not contain any Hamiltonian cycle, then such an integer

program will be infeasible. Unfortunately, integer programming is NP-hard,

1.3. Linear programming relaxations 13

and as such, difficult to solve. A common technique, then, is to relax the

integer requirement to obtain a linear program (LP). Linear programming

is a powerful platform for solving many problems and has polynomial-time

implementations [48, 45]. The continuation of research into linear programs

for HCP and TSP is a key component of this thesis.

Definition 1.26 (Linear program). A linear program consists of a set of

variables and a set of linear constraints on those variables, which may be

equalities or inequalities. A linear program typically also has a linear objec-

tive function to be optimised. For example, suppose there are n variables

x1, x2, . . . , xn for which we have an objective function

Minimise c1x1 + c2x2 + · · ·+ cnxn,

and which are subject to l inequality constraints and m equality constraints:

a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

al1x1 + al2x2 + · · ·+ alnxn ≤ bl

a(l+1)1x1 + a(l+1)2x2 + · · ·+ a(l+1)nxn = bl+1

a(l+2)1x1 + a(l+2)2x2 + · · ·+ a(l+2)nxn = bl+2

...

a(l+m)1x1 + a(l+m)2x2 + · · ·+ a(l+m)nxn = bl+m.

If the system of constraints is inconsistent, that is, if there are no feasible

solutions, then the linear program is said to be infeasible. Otherwise, the LP

is said to be feasible, and any solution that minimises the objective function

is called optimal .

Definition 1.27 (Integer program). A linearly-constrained integer program,

or simply integer program, is an extension of a linear program in which some

or all of the variables are required to take integer values.

1.3. Linear programming relaxations 14

As mentioned earlier, linear programs can arise from relaxing linearly-

constrained integer programs by simply replacing the integer requirements

with appropriate bounds. For example, if a variable is constrained in the

integer program to be 0 or 1, the appropriate relaxation is for it to lie on the

interval [0, 1]. In such a case, the optimal solution to the relaxed program,

provided that one exists, cannot have a higher objective function value than

that of the integer program. For this reason, the optimal objective function

value for the LP in such a case is called a lower bound . The following defini-

tion will be used as one of the primary measures of effectiveness throughout

this thesis.

Definition 1.28 (Gap). For an integer programming formulation, and its

associated linear programming relaxation, the gap is defined to be the dif-

ference between the lower bound from the linear program and the optimal

objective value for the integer program.

If a linear programming relaxation of an integer program has a relatively

small gap, then it implies that the relaxation is relatively tight. Throughout

this thesis we compare several such relaxations by considering the gaps over

a number of instances of TSP. In the case where an integer programming for-

mulation has no feasible solutions, the linear programming relaxation may or

may not be infeasible. If the linear program has polynomially many variables

and constraints and is infeasible, then this constitutes a polynomial-time cer-

tificate that the corresponding integer program has no solution.

Chapter 2

Identifying non-Hamiltonian

graphs by linear programming

In this chapter we consider linear programming formulations of TSP and

HCP from literature. Three of the considered models, MCF [16], MCF+ [34]

and SST [66], were designed to solve the traveling salesman problem (TSP),

while the most recent model considered, the Base Model [28], was designed

specifically to solve HCP. These four models along with another, equivalent

to MCF, will be detailed in Section 2.1.

Each of the aforementioned models, when expressed as integer programs,

are exact formulations of HCP and TSP in the sense that the set of each

model’s feasible points corresponds exactly to the set of Hamiltonian cycles.

However, their linear relaxations, which we consider here, may permit feasible

solutions outside the convex hull of solutions corresponding to Hamiltonian

cycles. Ideally, the feasible region of a relaxed model should be as close an

approximation as possible to the convex hull of integer solutions, which in this

case correspond to Hamiltonian cycles. Figure 2.1 provides a visualisation of

this concept.

In Section 2.2 we compare the performance of the four linear programming

models. For comparisons of the models on HCP instances, we first modify the

15

2. Identifying NH graphs by linear programming 16

Conv(HCs)

Figure 2.1: A two-dimensional visualisation of the feasible region of a re-
laxed model for HCP. The desired solutions will be at one of the
blue vertices corresponding to Hamiltonian cycles. The light-blue
shaded convex hull of these blue vertices represents the feasible
region of a theoretical set of ideal linear constraints. Red lines
represent the (non-ideal) constraints of the relaxed model.

three TSP models in Section 2.2.1 so that they may be applied directly to non-

complete graphs, with infeasibility implying the graph is non-Hamiltonian.

We show in Section 2.2.2 that considering only the feasibility of the generated

linear programs does not provide a very precise comparison of the models.

To obtain a finer comparison of the models, we seek to also compare the

models in a TSP context. To this end, in Section 2.2.3 we augment the

Base Model with an appropriate objective function so that it can be used to

find lower bounds for TSP instances. Then, in Section 2.2.4, we introduce

a new technique for producing instances of TSP based on cubic instances of

HCP, and construct two problem sets that will be valuable for comparing

models throughout the thesis. Results on these problem sets, presented in

Section 2.2.5, will lead naturally to a conjecture in Section 2.2.6 that the Base

Model is stronger than both MCF and MCF+. We give a partial proof of

this conjecture. It will also be seen that, although the Base Model performs

better than SST in the average case, there are some instances for which SST

outperforms the Base Model.

2.1. Existing models to solve TSP and HCP 17

In Section 2.3 we will consider the classifications of graphs whose non-

Hamiltonicity cannot be identified by this approach and summarise our find-

ings. The results of this section suggest that the considered models are always

infeasible for non-tough graphs, which is proved for MCF, MCF+ and SST,

and stated as a conjecture for the Base Model.

Finally, in Section 2.4, we outline the approaches we will take in the

following chapters to improve upon the detection of non-Hamiltonian graphs

currently offered by the Base Model.

2.1 Existing models to solve TSP and HCP

2.1.1 Subtour elimination model and MCF

Some of the earliest models that could be used to solve HCP were based on

formulations of the traveling salesman problem (TSP, Definition 1.3).

In a seminal article in 1954, Dantzig et al. formulated TSP as an assign-

ment problem with O(2n) linear constraints designed to eliminate subtours

[19]. A subtour is where a path prematurely returns to a previously visited

vertex rather than completing a cycle of all n vertices in the graph. Figure 2.2

shows an example of two candidate solutions to a TSP instance; the left can-

didate has a total cost of just 6 but contains subtours, whereas the candidate

on the right has a total cost of 8 and is the correct solution. Dantzig et al.’s

formulation of TSP may be expressed as:

Definition 2.1 (Dantzig, Fulkerson and Johnson (DFJ) formulation [19]).

Given a graph with vertices 1, . . . , n and a cost cij of using each arc i�j for

i, j ∈ {1, . . . , n},

minimise
n∑
i=1

n∑
j=1

cijxij,

2.1. Existing models to solve TSP and HCP 18

subject to
n∑
j=1

xij = 1 ∀i = 1, . . . , n (2.1)

n∑
i=1

xij = 1 ∀j = 1, . . . , n (2.2)

∑
i∈S

∑
j 6∈S

(xij + xji) ≥ 2 ∀S ⊂ V, 0 < |S| < n (2.3)

xij ∈ {0, 1} ∀i, j = 1, . . . , n. (2.4)

2

3

2

1

1

1

1

1

1 1 3 1

1

1

1

1

2

2

Figure 2.2: An invalid and a valid candidate solution to the same TSP in-
stance. Costs are shown on the edges, and edges used in the path
are highlighted in blue.

In the DFJ formulation, xij is 1 if the arc i�j is used in the Hamiltonian

cycle, and 0 otherwise. For a binary solution, the LHS of (2.3) counts the

number of edges in the cycle connecting a subset S to the rest of the graph.

In particular, the xij terms in the equation count the number of arcs leaving

the subset, and the xji terms count the number of arcs entering the subset.

If the solution contains a subtour comprising just the vertices of S, there

will not be any arc leaving S and the LHS will be less than 2, violating

(2.3). As this constraint is present for every proper subset S, it follows

that all subtours are prevented. Figure 2.3 shows an example of a subtour

elimination constraint that would prevent the subtour seen in the left side of

Figure 2.2. Note that (2.3) may be replaced with constraints counting only

the arcs in one direction (for instance, those leaving the subset), so the DFJ

constraints are often reported using (2.5) below rather than (2.3):

∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊂ V, 0 < |S| < n. (2.5)

2.1. Existing models to solve TSP and HCP 19

S

1

2

3 4

5

6

(x15 + x51) + (x34 + x43) + (x26 + x62) ≥ 2

Figure 2.3: Example of a DFJ subtour elimination constraint (2.3) for a
graph with vertices and a subset S as labelled. Edges with ex-
actly one endpoint in S are shown in solid black, with other edges
of the graph dashed.

Since solving a general integer programming problem, such as the DFJ

integer program, is NP-hard, the binary condition (2.4) is typically relaxed

so that xij ∈ [0, 1] for all i, j ∈ {1, . . . , n}. The relaxed version of DFJ

is a linear program, and as mentioned in Section 1.3, linear programs can

be solved in polynomial time. The downside of relaxing (2.4) is that this

may introduce new extreme points (with fractional values) that do not cor-

respond to proper solutions of TSP. Therefore, the relaxed version of DFJ is

no longer an exact formulation and will hereafter be referred to as the DFJ

model . After relaxation, we may think of the xij variables as being elements

of a doubly-stochastic matrix due to (2.1) and (2.2). Then, the well-known

Birkhoff–von Neuman Theorem [8] implies that the solution will always cor-

respond to a convex combination of permutation matrices, of which some

may, unfortunately, represent subtours.

Even after relaxing the xij variables, the main barrier to using the DFJ

model is that (2.3) comprises an exponential number of constraints; if there

are n vertices in the graph, then there are 2n − 2 non-empty proper subsets

S. This precludes the DFJ model from being used to provide (polynomial

2.1. Existing models to solve TSP and HCP 20

time) certificates of non-Hamiltonicity. For use in practice, Dantzig et al.

introduced a heuristic approach in which the model is first solved without

any subtour elimination constraints. Then, if a binary solution corresponding

to a tour is obtained, that tour is optimal. Otherwise, they identify some

subtour elimination constraints that the solution violates, add them to the

model, and solve again, iterating until the optimal tour is found.

Many years after the introduction of DFJ, Wong [71] developed an alter-

native construction of the same subtour elimination model that makes use

of some extra variables but has only polynomially many, O(n3), constraints.

Claus [16] later developed another DFJ-equivalent construction along the

same approach but using fewer variables and constraints, though still O(n3);

a version of this model is given below as the multi-commodity flow (MCF)

model, where V = {1, . . . , n} and V * = {2, . . . , n}. The equivalence to DFJ

was proved by Padberg and Sung [60].

Definition 2.2 (Multi-commodity flow (MCF) model [16]).

Minimise
∑
i∈V

∑
j∈V

cijxij, (2.6)

subject to
∑
j∈V

xij = 1 ∀i ∈ V (2.7)

∑
i∈V

xij = 1 ∀j ∈ V (2.8)

∑
j∈V

yijk −
∑
j∈V

yjik = 0 ∀i, k ∈ V *; i 6= k (2.9)

∑
i∈V

yikk = 1 ∀k ∈ V * (2.10)

∑
i∈V *

y1ik = 1 ∀k ∈ V * (2.11)

∑
i∈V

ykik = 0 ∀k ∈ V * (2.12)

0 ≤ yijk ≤ xij ∀i, j ∈ V ; k ∈ V * (2.13)

0 ≤ xij ≤ 1 ∀i, j ∈ V . (2.14)

2.1. Existing models to solve TSP and HCP 21

The xij variables here have precisely the same interpretation as in DFJ,

while the yijk variables can be thought of as tracking the location of a number

of packages (or commodities) to be delivered as the Hamiltonian cycle is

traversed. Specifically, there are n− 1 packages to be delivered, one to every

vertex except the first vertex, which is considered to be the depot from which

the commodities are dispatched. Then, yijk is intended to be 1 only if both

the arc i�j is used in the cycle and the package destined for vertex k is yet

to be delivered after leaving vertex i; otherwise, yijk is intended to be zero.

As the model does not restrict yijk variables to integer values, it is possible

to obtain extreme points with fractional values as in the relaxed DFJ model.

MCF and three other models will be compared empirically in Section 2.2.

2.1.2 Tightened multi-commodity flow model

Since the relaxed subtour-elimination models such as DFJ and MCF have ex-

treme points that do not correspond to Hamiltonian cycles, there are many

potential improvements to be made through the addition of new linear con-

straints (see Figure 2.4 for a visualisation). If one can design additional

constraints to exclude some of the unwanted points lying outside the con-

vex hull of Hamiltonian cycles, the model will be tighter, often reducing the

difference between the solution to the LP and the desired integer solution.

One such improvement to the MCF model was introduced as MCF+ by

Gouveia and Pires [34] in 2001. Their approach was to take advantage of a

third set of variables, vij, intended such that vij will be 1 if vertex j comes

later than vertex i in the Hamiltonian cycle, and 0 otherwise. By adding

these variables and some linking constraints to MCF, the resulting MCF+

can be shown to be a tighter model. Gouveia and Pires changed the notation

slightly by replacing the yijk variables in MCF with equivalent variables fkij.

The variables fkij are intended to be 1 only if both the arc i�j is used in the

cycle, starting at vertex 1, and the package destined for vertex k has been

2.1. Existing models to solve TSP and HCP 22

Conv(HCs)

Figure 2.4: A visualisation of the feasible region from Figure 2.1 after adding
additional linear constraints to obtain a tighter LP. The addi-
tional constraints are represented by a dashed line. The blue
vertices corresponding to Hamiltonian cycles are all still con-
tained in the feasible region.

delivered prior to reaching vertex j. Therefore, the linear relation between

fkij and the yijk variables of MCF is given by

yijk = xij − fkij.

Substituting this change of variable into (2.9) – (2.13) and using (2.7), (2.8)

and (2.13) for simplification, we arrive at equivalent constraints, to those of

MCF, in terms of the new variables:

∑
j∈V

fkji −
∑
j∈V

fkij = 0 ∀i, k ∈ V *; i 6= k (2.15)

∑
i∈V

fkik = 0 ∀k ∈ V * (2.16)

∑
i∈V *

fk1i = 0 ∀k ∈ V * (2.17)

∑
i∈V

fkki = 1 ∀k ∈ V * (2.18)

0 ≤ fkij ≤ xij ∀i, j ∈ V ; k ∈ V *. (2.19)

The extra vij variables are then added to the model and linked with the fkij

2.1. Existing models to solve TSP and HCP 23

variables through the following constraints:

∑
j∈V

fkij = vki ∀i, k ∈ V * (2.20)

xij + xji + vki − vkj ≤ 1 ∀i, j, k ∈ V *; k 6= i, j (2.21)

0 ≤ vij ≤ 1 ∀i, j ∈ V *. (2.22)

We remark that the vij variables are more of a notational convenience, as

they may be expressed as linear combinations of the fkij variables via (2.20).

Definition 2.3 (MCF+ model [34]). Minimise the objective function (2.6)

subject to (2.7), (2.8) and (2.14) – (2.22).

The key addition in MCF+ are the O(n3) constraints of (2.21) which

may be interpreted in the following way: Considering the case where the x

variables are integers, the edge ij may be used in one direction (xij = 1), in

the other direction (xji = 1), or not used at all (xij = xji = 0). In the last

case, (2.21) becomes vki−vkj ≤ 1, which is redundant due to (2.22). However,

in the first and second cases, xij+xji = 1 and so (2.21) becomes vki−vkj ≤ 0.

Given there is no condition on the ordering of the indices i and j in the

constraint, we will additionally have the constraint vkj − vki ≤ 0; together,

these imply vki = vkj. Recalling the interpretation of the vij variables, this

means that if the edge ij is used in either direction, then any third vertex

k is either visited before both i and j (vki = vkj = 1), or after both i and j

(vki = vkj = 0). MCF+ is compared to the other models in Section 2.2.

2.1.3 SST model

Another model based on similar variables to those of MCF+ was presented

in 2006 by Sherali, Sarin and Tsai [66], and shown to be tighter than MCF+.

Sherali et al. refer to the model as ATSP6 in [66], but for clarity we will

refer to it as the SST model, with its relaxed definition given below. The

model uses three sets of variables; xij exactly as in DFJ, yij analogous to the

2.1. Existing models to solve TSP and HCP 24

vij variables in MCF+, and f vij with indices i, v and j analogous to the fijk

variables from MCF with respective indices i, j and k. That is, in SST, f vij

is intended to be 1 if the arc i�v is used in the cycle before visiting vertex

j, and 0 otherwise. One other difference in the way the indices are defined

is that SST does not include any variables for which two indices are equal.

Definition 2.4 (SST model [66]).

Minimise
n∑
i=1

n∑
j=16=i

cijxij,

subject to
n∑

j=1,j 6=i

xij = 1 ∀i = 1, . . . , n (2.23)

n∑
i=1,i 6=j

xij = 1 ∀j = 1, . . . , n (2.24)

yij + yji = 1 ∀i, j = 2, . . . , n; i 6= j (2.25)

yij ≥ x1i ∀i, j = 2, . . . , n; i 6= j (2.26)

yji ≥ xi1 ∀i, j = 2, . . . , n; i 6= j (2.27)

0 ≤ xij ≤ 1 ∀i, j = 1, . . . , n; i 6= j (2.28)

yij ≥ 0 ∀i, j = 2, . . . , n; i 6= j (2.29)

yij + xji + yjk + yki ≤ 2
∀i, j, k = 2, . . . , n;

i 6= j 6= k

(2.30)

0 ≤ f vij ≤ xiv
∀i, j, v = 2, . . . , n;

i 6= j 6= v

(2.31)

n∑
v=2,v 6=i,j

f vij + xij = yij ∀i, j = 2, . . . , n; i 6= j (2.32)

x1v +
n∑

i=2,i 6=v,j

f vij = yvj ∀v, j = 2, . . . , n; v 6= j. (2.33)

The constraints involving the variables yij and f vij may be interpreted

as follows: If i and j are distinct vertices, then (2.25) expresses that either

vertex i comes before vertex j or vice versa. Next, the inequalities in (2.26)

and (2.27) ensure that if vertex i is either the first vertex visited after vertex

2.1. Existing models to solve TSP and HCP 25

1, or the last vertex visited before vertex 1, then all other vertices j must

come respectively after or before vertex i. Considering just the y variables

of (2.30), it can be seen that these inequalities express the property that

three distinct vertices i, j, k 6= 1 should not form a subtour; for example,

having started at vertex 1, if i comes before j (yij = 1), then it follows that

k cannot be both after j and before i (at most one of yjk and yki can be 1).

The addition of the variable xji to the LHS of (2.30) is an insightful way

to strengthen this inequality, since if vertex i immediately follows j then it

still follows that k cannot be after j and before i. Bounds on the yij and

f vij variables in (2.29) and (2.31) follow logically from the interpretation of

the variables. Finally, (2.32) and (2.33) express, in two different ways, the y

variables as linear combinations of the other variables. The former expresses

that vertex i precedes j precisely when either the arc i�j is used, or when

some other vertex v immediately follows i before later visiting j. The latter

is similar, expressing that a vertex v precedes j if either v is the first vertex

visited after vertex 1, or if some arc i�v for i 6= 1 is used before j.

In 2009, Öncan et al. [57] compared several TSP formulations in this class

and reported that SST was the strongest known polynomial size formulation

of TSP. However, as SST uses only a combination of 2-index and 3-index

variables, it is reasonable that a four index model (with more variables and

constraints) may be even stronger. We next introduce a recently published

four index model, following a short discussion of how the aims of this recent

model may differ from those considered so far.

2.1.4 The Base Model

It may be said that solving a TSP instance comprises two separate problems.

The first is to identify Hamiltonian cycles in the graph, and the second is

to find an optimal tour from amongst these cycles. Previous applications of

linear programming to these problems such as DFJ, MCF, MCF+ and SST,

2.1. Existing models to solve TSP and HCP 26

have typically focused on complete graphs wherein identifying Hamiltonian

cycles is trivial (any ordering of the vertices suffices) and thus the difficulty

lies solely in determining which is optimal. Some recent research has in-

stead focused on applying linear programming to sparse graphs, where even

establishing the existence of Hamiltonian cycles is a challenging problem.

In 2015, Filar et al. [28] published a linear programming model, the fea-

sibility of which is a necessary condition for the existence of Hamiltonian

cycles in a given undirected graph. Filar et al. begin by defining the model,

which they call the Base Model , then consider a branching algorithm with

branch-specific constraints designed for cubic graphs. We will not consider

that branching algorithm in this thesis, but rather focus on the Base Model

itself without any branch-specific constraints. We give the linear constraints

of the Base Model below.

Let G be a graph with vertices V = {1, . . . , n}. We denote by N(i) the

set of all vertices adjacent to i ∈ V . Unless otherwise restricted, it should

be assumed that the indices i, j, and k range from 1 to n, representing the

vertices of V , and that the indices r and s range from 0 to n− 1.

Definition 2.5 (Base Model).

∑
a∈N(i)

xkr,ia −
∑
a∈N(i)

xkr−1,ai = 0 ∀i, k, r; r 6= 0 (2.34)

∑
a∈N(i)

xkr,ia −
∑

a∈N(k)

xin−r,ka = 0 ∀i, k, r; r 6= 0 (2.35)

n−1∑
r=0

xkr,ia −
n−1∑
r=0

xjr,ia = 0 ∀i, j, k; a ∈ N(i); k 6= j (2.36)

n∑
k=1

xkr,ia −
n∑
k=1

xks,ia = 0 ∀i, r, s; a ∈ N(i); s 6= r (2.37)

n−1∑
r=0

∑
a∈N(i)

xkr,ia = 1 ∀i, k (2.38)

n∑
k=1

∑
a∈N(i)

xkr,ia = 1 ∀i, r (2.39)

2.1. Existing models to solve TSP and HCP 27

xk0,ia = 0 ∀i, k; a ∈ N(i); i 6= k (2.40)

xkr,ia ≥ 0 ∀k, r; a ∈ N(i). (2.41)

Note that the Base Model as introduced has no objective function. It is

only necessary to find a feasible solution satisfying (2.34) – (2.41). In Sec-

tion 2.2.3 we will consider the addition of an appropriate objective function

in order to permit more effective comparisons with other models.

The intention of the Base Model is to determine the Hamiltonicity of G

by attempting to find a solution corresponding to a Hamiltonian cycle in

G from the complementary perspectives of n different starting points. The

value of xkr,ia is intended to be 1 if the arc i�a is used exactly r steps after

leaving vertex k in the Hamiltonian cycle, and 0 otherwise. For example,

x30,34 = 1 would indicate that the arc 3 � 4 is used 0 steps after, that is,

immediately after, leaving vertex 3. Here we give a brief summary of the

constraints according to this interpretation:

(2.34) Vertex i is departed r steps after leaving vertex k if and only if i was

entered by an arc during the previous step.

(2.35) Vertex i is departed r steps after leaving vertex k if and only if k is

departed n− r steps after leaving i.

(2.36) If arc i�a is used in the cycle for one starting vertex, it must be used

in the cycle for every other starting vertex.

(2.37) For every starting vertex that uses i�a after exactly r steps, there is

a starting vertex using the same arc after exactly s steps.

(2.38) For any starting vertex k, there will be precisely one step in which

vertex i is departed.

(2.39) There will be precisely one starting vertex for which vertex i is de-

parted after exactly r steps.

2.2. Comparisons of LP models 28

(2.40) Only the starting vertex itself can be departed after exactly 0 steps.

(2.41) Non-negativity follows immediately from the interpretation.

For sparse graphs, the Base Model has O(n3) variables and constraints,

while for non-sparse graphs such as complete graphs, the Base Model has

O(n4) variables and constraints. The set of all binary solutions to the Base

Model corresponds precisely to the set of Hamiltonian cycles in G. Indeed, if

(2.41) is replaced with binary constraints on the xkr,ia variables, the resulting

model is an exact formulation of HCP [28]. However, as in the relaxed DFJ,

MCF, MCF+ and SST models, the Base Model is not guaranteed to find a

binary solution. In the case that 0 < xkr,ia < 1, Filar et al. instead interpret

the value as the probability of, r steps after leaving vertex k, using the arc

i�a.

If G contains no Hamiltonian cycles, then the variables xkr,ia cannot de-

scribe a Hamiltonian cycle, and hence there are no binary solutions to the

Base Model for non-Hamiltonian graphs. However, there may or may not be

other feasible solutions. If there are no feasible solutions, then it is certain

that G is non-Hamiltonian. This situation is desirable since infeasibility of

the Base Model can be verified in polynomial time, providing a certificate of

non-Hamiltonicity for G.

2.2 Comparisons of LP models

Having introduced MCF1, MCF+, SST, and the Base Model in Section 2.1,

which relate to either solving TSP or HCP, we now develop methods by

which the models may be evaluated. Firstly, we consider straightforward

variations of MCF, MCF+ and SST that can be used on non-complete graphs,

allowing us to try solving HCP instances by the LP infeasibility of those

1As DFJ is equivalent to MCF but requires exponentially many constraints, we omit
it from further consideration.

2.2. Comparisons of LP models 29

models as with the Base Model. Following that, we construct an appropriate

objective function to enable the Base Model to solve TSP instances, and

introduce a new method for generating TSP instances based on cubic graphs.

Having created a framework by which all four models may be compared,

Sections 2.2.2 and 2.2.5 then present the results of each model on a set of

non-Hamiltonian cubic graphs, and on TSP instances derived from cubic

graphs.

All the results from this section and the remainder of the chapter were

found using CPLEXTM Optimization Studio version 12.5 [42]. The linear

programs were executed on a cluster of machines with four 16-core AMD

OpteronTM 6282 processors.

2.2.1 Adapting TSP models to solve HCP

Suppose there is a non-complete graph G = (V,E) whose Hamiltonicity is

unknown. There are three ways in which a TSP model for complete instances

may be used to try to detect non-Hamiltonicity in G. One way is to set the

costs cij to be zero only when the arc i�j is in E, and positive otherwise.

A feasible solution using only the edges of G then exists if and only if the

objective function can be minimised to zero. The advantage of this approach

is that it will work for any TSP linear programming model, but it comes at

the expense of potentially having many superfluous variables or constraints.

A second method is to retain the original costs cij on the arcs in E and

set all other costs to a suitably large penalty value. The benefit is that we

can still obtain a lower bound for the minimum tour cost, as opposed to

the first approach. However, a difficulty is that in order to ensure that only

the variables corresponding to arcs in E have non-zero values, the penalties

must in theory be infinitely large. A sensible third approach that avoids these

drawbacks is to modify the model to only include variables and constraints

relevant to finding a solution in G. This still allows us to use arbitrary costs

cij on the arcs of G while ensuring that only these arcs are used.

2.2. Comparisons of LP models 30

We now make the appropriate variations to the objective function and

constraints of MCF, using the same notation N(i) as in the Base Model to

denote the set of vertices adjacent to i. The objective function (2.6) becomes

∑
i∈V

∑
j∈N(i)

cijxij, (2.42)

and the constraints (2.7) – (2.14) become

∑
j∈N(i)

xij = 1 ∀i ∈ V (2.43)

∑
i∈N(j)

xij = 1 ∀j ∈ V (2.44)

∑
j∈N(i)

yijk −
∑
j∈N(i)

yjik = 0 ∀i, k ∈ V *; i 6= k (2.45)

∑
i∈N(k)

yikk = 1 ∀k ∈ V * (2.46)

∑
i∈N(1)

y1ik = 1 ∀k ∈ V * (2.47)

∑
i∈N(k)

ykik = 0 ∀k ∈ V * (2.48)

0 ≤ yijk ≤ xij ∀i ∈ V ; j ∈ N(i); k ∈ V * (2.49)

0 ≤ xij ≤ 1 ∀i ∈ V ; j ∈ N(i). (2.50)

Similarly, we can make the necessary variations to (2.15) – (2.21), the con-

straints used in MCF+:

∑
j∈N(i)

fkji −
∑
j∈N(i)

fkij = 0 ∀i, k ∈ V *; i 6= k (2.51)

∑
i∈N(k)

fkik = 0 ∀k ∈ V * (2.52)

∑
i∈N(1)

fk1i = 0 ∀k ∈ V * (2.53)

∑
i∈N(k)

fkki = 1 ∀k ∈ V * (2.54)

0 ≤ fkij ≤ xij ∀i ∈ V ; j ∈ N(i); k ∈ V * (2.55)

2.2. Comparisons of LP models 31

∑
j∈N(i)

fkij = vki ∀i, k ∈ V * (2.56)

xij + xji + vki − vkj ≤ 1
∀i ∈ V *; j ∈ V * ∩N(i);

k ∈ V *; k 6= i, j.

(2.57)

We use the subscript HCP to denote the altered models as defined below:

Definition 2.6 (MCFHCP model). Minimise (2.42) subject to (2.43) – (2.50).

If the costs cij are not provided, find any solution subject to these constraints.

Definition 2.7 (MCF+HCP model). Minimise (2.42) subject to (2.22), (2.43),

(2.44) and (2.50) – (2.57). If the costs cij are not provided, find any solution

subject to these constraints.

To construct SSTHCP in a similar manner, we provide variations of the

SST constraints (2.26), (2.27) and (2.30) – (2.33). Note that (2.23), (2.24)

and (2.28) from SST become equivalent to the modified constraints (2.43),

(2.44) and (2.50) above.

yij ≥ x1i ∀i ∈ N(1); j = 2, . . . , n; i 6= j (2.58)

yji ≥ xi1 ∀i ∈ N(1); j = 2, . . . , n; i 6= j (2.59)

yij + xji + yjk + yki ≤ 2 ∀i, k = 2, . . . , n; j ∈ N(i); 1 6= j 6= k 6= i (2.60)

yij + 0 + yjk + yki ≤ 2 ∀i, k = 2, . . . , n; j 6∈ N(i); i 6= j 6= k 6= 1 (2.61)

0 ≤ f vij ≤ xiv ∀i, j = 2, . . . , n; v ∈ N(i); i 6= j 6= v 6= 1 (2.62)∑
v∈N(i)\{1,j}

f vij + xij = yij ∀i = 2, . . . , n; j ∈ N(i); j 6= 1 (2.63)

∑
v∈N(i)\{1}

f vij + 0 = yij ∀i = 2, . . . , n; j 6∈ N(i); j 6= i 6= 1 (2.64)

x1v +
∑
i∈N(v)\{1,j}

f vij = yvj ∀j = 2, . . . , n; v ∈ N(1) (2.65)

0 +
∑
i∈N(v)\{j}

f vij = yvj ∀j = 2, . . . , n; v 6∈ N(1); v 6= 1. (2.66)

Note that (2.30), (2.32) and (2.33) each become two separate constraints

here; (2.60) and (2.61), (2.63) and (2.64), and (2.65) and (2.66), respectively.

2.2. Comparisons of LP models 32

SSTHCP is defined as follows.

Definition 2.8 (SSTHCP model). Minimise (2.42) subject to (2.25), (2.29),

(2.43), (2.44), (2.50) and (2.58) – (2.66). If the costs cij are not provided,

find any solution subject to these constraints.

2.2.2 Results of LP models on HCP instances

We now compare MCFHCP, MCF+HCP, SSTHCP and the Base Model on

their ability to detect non-Hamiltonian graphs by the infeasibility of their

linear programs. In such a case, we say that a graph induces infeasibility

in the given LP model. In order to make this evaluation we need a set of

suitable non-Hamiltonian graphs. As mentioned in Section 1.2.1, HCP is

NP-complete even when restricted to cubic graphs, and cubic graphs can be

enumerated efficiently, making them a natural candidate set for testing these

models. Selecting small enough instances (e.g. no more than 20 vertices)

enables us to undertake exhaustive searches for Hamiltonian cycles, so the

true Hamiltonicity can be determined for comparison with the results.

There are 556 471 cubic graphs with between 4 and 20 vertices, a vast ma-

jority (roughly 97%) of which are Hamiltonian while only 16 425 (roughly 3%)

are non-Hamiltonian. The four models we compare, MCFHCP, MCF+HCP,

SSTHCP and the Base Model, are necessarily feasible for Hamiltonian graphs,

so we only consider feasibility of the models for non-Hamiltonian graphs.

Ideally, all non-Hamiltonian graphs would induce infeasibility. However, as

shown in Table 2.5, the models are feasible for approximately one tenth of

these instances. MCFHCP, MCF+HCP and SSTHCP have feasible LPs for the

same set of 1720 graphs, while the Base Model performed marginally better

on the 18-vertex and 20-vertex graphs, with an additional 98 graphs inducing

infeasibility. The Base Model is thus strictly better than MCF, MCF+ and

SST on this set of instances in the sense that the graphs inducing infeasibility

2.2. Comparisons of LP models 33

in the Base Model are a proper superset of the graphs inducing infeasibility

in any of the other three models.

Table 2.5: The number of infeasible LPs for MCFHCP, MCF+HCP, SSTHCP

and the Base Model on non-Hamiltonian cubic graphs up to order
20. The final column gives the number of additional instances
solved by the Base Model relative to the other models.

Vertices NH MCF MCF+ SST Base M. Add.

10 2 1 1 1 1
12 5 4 4 4 4
14 35 30 30 30 30
16 231 192 192 192 192
18 1666 1477 1477 1477 1487 10
20 14 498 13 001 13 001 13 001 13 089 88

Total 16 425 14 705 14 705 14 705 14 803 98

We remark that the vast majority of graphs tested that induce infeasibil-

ity in the four models are bridge graphs. Indeed, the Base Model was proved

in [28] to be infeasible for all bridge graphs. Later, in Theorem 2.23, we

will prove that the other three models are infeasible for all non-tough graphs

which, in particular, include all bridge graphs. Hence, we will exclude bridge

graphs from all future experiments described in this thesis. To that end, we

now define NHNB20 to be the set of all 2099 non-Hamiltonian non-bridge

cubic graphs containing up to 20 vertices. A list of all instances of NHNB20

is given in Appendix A.1. Table 2.6 shows the results of the four models con-

sidered when restricted to this problem set. Figure 2.7 displays the smallest

instance of NHNB20 that induces infeasibility in each of these models. The

problem set NHNB20 will be given particular focus in Chapters 3 and 4.

Although these results indicate that the Base Model is stronger than the

other three models, in most cases the graphs that induced feasible LPs for

those other models also induced feasible LPs for the Base Model. This raises

the question: To what extent do these models vary in their feasible regions,

or, as visualised in Figure 2.1, how close are they to a polytope corresponding

to the convex hull of Hamiltonian cycles? Given the results here, we may

2.2. Comparisons of LP models 34

Table 2.6: The number of infeasible LPs for MCFHCP, MCF+HCP, SSTHCP

and the Base Model on NHNB20. The final column gives the
number of additional instances solved by the Base Model relative
to the other models.

Vertices NHNB MCF MCF+ SST Base M. Add.

10 1 0 0 0 0
12 1 0 0 0 0
14 6 1 1 1 1
16 33 6 6 6 6
18 231 42 42 42 52 10
20 1827 330 330 330 418 88

Total 2099 379 379 379 477 98

Figure 2.7: The smallest instance of NHNB20, G120
14 , that induces infeasibility

in MCFHCP, MCF+HCP, SSTHCP and the Base Model.

expect the Base Model to have a tighter feasible region, but are there any

instances for which the Base Model is outperformed by the other models, and

how may the differences amongst them be quantified? To investigate these

questions further, we next consider the TSP versions of these models.

2.2.3 Adapting the Base Model to solve TSP

Although the Base Model was designed with the goal of detecting non-

Hamiltonicity, with the addition of an appropriate objective function the

Base Model may also be used to find lower bounds for general TSP instances.

Constraints specific to sparse graphs will be considered later in Chapter 4,

but for now note that the Base Model as defined does not require the graph to

2.2. Comparisons of LP models 35

be sparse, so the Base Model can be used for any graph (including complete

graphs).

Whereas the definitions of MCF, MCF+ and SST naturally included suit-

able objective functions for TSP, the Base Model was not originally intended

as a model for solving TSP and hence an objective function was not in-

cluded. We show how an appropriate objective function may be written and

then simplified using the constraints of the Base Model.

Consider the Base Model and fix some vertex k as the starting point of

a tour. Let x represent the vector of variables xkr,ia. We will argue that the

objective function below, which is to be minimised, is a valid expression to

express the cost of a tour according to the definition of TSP:

f(x) =
n∑
i=1

∑
j∈N(i)

n−1∑
r=0

cijx
k
r,ij

=
n∑
i=1

∑
j∈N(i)

cij

(
n−1∑
r=0

xkr,ij

)
. (2.67)

Note that
∑n−1

r=0 x
k
r,ij in (2.67) may be interpreted as the probability of start-

ing at vertex k and using the arc i�j at some step during the tour. With

binary variables, this will be 1 only where an arc i�j is used; so the total

sum will be just the sum of costs cij for each of the used edges only. By

(2.36) from the Base Model, the choice of vertex k will not influence the sum

here. In particular, we can use this fact, without loss of generality, to fix

k = i for each respective summand, and thus obtain an expression that no

longer depends on the choice of k;

f(x) =
n∑
i=1

∑
j∈N(i)

cij

(
n−1∑
r=0

xir,ij

)
. (2.68)

To further simplify the objective function, we introduce the following

lemma.

2.2. Comparisons of LP models 36

Lemma 2.9. Let G = (V,E) be a graph. For any i ∈ V and a ∈ N(i), the

linear constraints of the Base Model imply

xir,ia = 0, ∀r = 1, 2, . . . , n− 1.

Proof. Setting k = i in (2.38), we obtain

n−1∑
r=0

∑
a∈N(i)

xir,ia = 1, ∀i.

The outer sum may be split into two parts, so

∑
a∈N(i)

xi0,ia +
n−1∑
r=1

∑
a∈N(i)

xir,ia = 1, ∀i. (2.69)

Next, by setting r = 0 in (2.39), we obtain

n∑
k=1

∑
a∈N(i)

xk0,ia = 1, ∀i.

Combining this with (2.40), all the terms on the LHS are zero when k 6= i;

therefore,

∑
a∈N(i)

xi0,ia = 1, ∀i. (2.70)

Substituting (2.70) into (2.69), we arrive at

1 +
n−1∑
r=1

∑
a∈N(i)

xir,ia = 1, ∀i.

Therefore,

n−1∑
r=1

∑
a∈N(i)

xir,ia = 0, ∀i,

and finally, by non-negativity of the variables in (2.41), it follows that each

summand is exactly zero.

We may interpret Lemma 2.9 as ensuring that if a tour starts at some

vertex i, that vertex i may only be departed at the first step (r = 0); not at

any later step. Applying the lemma, we can remove the zero terms from the

2.2. Comparisons of LP models 37

right side of (2.68) to obtain

f(x) =
n∑
i=1

∑
j∈N(i)

cijx
i
0,ij. (2.71)

Accordingly, in the context of solving any TSP instance, we henceforth con-

sider the Base Model to include (2.71) as an objective function to be min-

imised.

2.2.4 Generating TSP instances based on cubic graphs

Having established the correctness of the TSP objective function for the Base

Model, it is necessary to select a set of TSP instances for testing. While there

are sets of TSP instances available in literature, for example in TSPLIB [63],

these were found to have too many vertices against which to reasonably test

a model with time complexity O(n4). Recall that the Base Model has time

complexity O(n3) for sparse graphs. Given this, it was decided that a new

set of TSP instances should be constructed for testing, with the following

goals in mind:

• Constructed instances should have relatively few vertices.

• An exact optimal tour for each instance should be known.

• Instances should be relatively difficult as far as the Base Model is con-

cerned, to allow as much room as possible for improving the solutions,

a direction we consider in Chapter 4.

• Given the previously discussed benefits of cubic graphs, it is desirable

for the constructed instances to have some relation to cubic graphs,

both Hamiltonian and non-Hamiltonian non-bridge.

In light of these goals, we now introduce Algorithm 2.1 for generating sets

of asymmetric TSP instances. Following the algorithm, we make a number

2.2. Comparisons of LP models 38

of comments about choosing appropriate inputs and parameters, and how

this influences the tractability of finding exact optimal tours in Step 3 of

the algorithm. This is followed by a discussion of a particular set of TSP

instances generated and the results on those instances.

Algorithm 2.1 Generate asymmetric TSP instances from cubic graphs

Input: G1, . . . , GN are cubic graphs
r is the number of candidates to generate from each graph
q is the maximum number of output graphs (q ≤ rN)
m is the maximum cost to assign to edges from the graphs
l is the cost to assign to non-edges from the graphs
LPModel is a linear program for solving ATSP

Output: T1, . . . , TM are ATSP instances (M ≤ q)
O1, . . . , OM are optimal tours for each ATSP instance

1 For each graph Gi, produce r candidate instances by assigning, for each
candidate, uniformly random integer costs between 0 and m to every arc.

2 For each candidate, complete the graph by adding edges between all pairs
of non-adjacent vertices, and assign a bi-directional cost of l to each of
these new edges.

3 Calculate the optimal tour for each candidate.
4 Execute LPModel for each candidate and discard any where the ob-

tained lower bound is equal to the optimal tour cost.
5 If the number of remaining candidates exceeds q, set M equal to q. Oth-

erwise, set M equal to the number of remaining candidates.
6 Select the M candidates with the largest gaps as a percentage of their

optimal tour costs, and return these candidates T1, T2, . . . and their re-
spective optimal tours O1, O2,

Since one of the goals was to generate difficult instances as far as the

Base Model is concerned, it was decided that the algorithm should generate

many candidate instances randomly, and only return those having sizeable

gaps. Recall from Definition 1.28 that the gap is defined to be the difference

between the LP lower bound and the exact optimal tour length. Determining

the gap therefore requires the exact optimal tour length to be known, an NP-

hard problem in general. Indeed, a näıve enumeration of all tours would take

a prohibitively long time even for small graphs. However, by restricting the

input graphs to be traceable graphs (those containing a Hamiltonian path)

of order n and setting l = mn, we can find the optimal tour much more

2.2. Comparisons of LP models 39

efficiently by Lemma 2.10 below. In this way, only the Hamiltonian cycles

or paths from the original graph G need be considered, which can be done

orders of magnitude more quickly than considering all tours in the complete

instance.

Lemma 2.10. Let G = (V,E) be a traceable graph with n vertices, and let m

and l be positive integers. Suppose that a complete ATSP instance of order

n were constructed such that the arcs corresponding to those in G have costs

chosen from {0, . . . ,m}, and the remaining arcs have cost l. If l ≥ mn, then:

(i) If G is Hamiltonian, any optimal tour is guaranteed to lie on the arcs

corresponding to a Hamiltonian cycle of G.

(ii) If G is non-Hamiltonian, any optimal tour is guaranteed to lie on arcs

corresponding to a Hamiltonian path of G with one additional arc from

the complement of E.

Proof. Consider the case that G is Hamiltonian. For any Hamiltonian cycle

from the original graph, it is clear that the cost of the tour corresponding to

this HC can be at most mn (when all n arcs in the tour have maximal cost

m). Using even a single arc from the complement of E will increase the tour

cost to be at least as large as this; l ≥ mn, plus the remaining cost of the

tour. Therefore, at least one of the Hamiltonian cycles of G corresponds to

the optimal tour.

Alternatively, consider the case that G is non-Hamiltonian. By the trace-

ability of G, there is at least one Hamiltonian path. The cost of using the

corresponding n − 1 arcs of this path can be at most m(n − 1). To close

the path it is necessary to go directly from the last vertex in the path to the

first. This additional arc cannot be in E, since that would imply that G is

Hamiltonian, so the cost of using this arc is l. The maximum cost for such a

cycle is thus m(n−1) + l. If, instead, two or more arcs from the complement

of E were used, the cost would be at least 2l, which is strictly greater than

2.2. Comparisons of LP models 40

m(n − 1) + l. Therefore, at least one of the Hamiltonian paths is optimal

when closed.

Using Algorithm 2.1, a particular set of TSP instances was generated from

cubic graphs with 16 vertices. There are 4060 cubic graphs with 16 vertices

comprising 3841 Hamiltonian graphs and 219 non-Hamiltonian graphs. The

219 non-Hamiltonian graphs can be further classified into 186 bridge graphs

and 33 non-Hamiltonian non-bridge (NHNB) graphs. All cubic graphs on

16 vertices are traceable except for one bridge graph, however, we do not

consider any bridge graphs here as the models considered already perform

very well on them (see Section 2.2.2). For Hamiltonian and NHNB instances

from this set then, Lemma 2.10 may be used.

The cost parameters chosen were m = 100 and l = mn = 1600, and

LPModel was set to be the Base Model. To ensure balance in the generated

problem set, it was decided to separately collect 200 instances based on

Hamiltonian graphs, and 200 instances based on NHNB graphs. For both

the Hamiltonian and NHNB subsets then, q was set to 200. The parameter

r was set to 2 for Hamiltonian graphs (for 7682 candidates) and set to 10 for

NHNB graphs (for 330 candidates.) Histograms showing the gaps from the

Base Model for the 8012 candidates are shown in Figure 2.8.

Combining both sets, the 400 ATSP instances returned are included in

Appendix B and will be referred to as problem set ATSP16A. Although the

problems generated by this method are complete graphs, it is trivial to remove

the extra edges (all having cost of 1600) and to consider the related problem

set of cubic ATSP problems, which will be referred to as ATSP16AC ; this

latter set will become useful when considering linear constraints that only

hold for cubic or other sparse graphs.

The new problem sets ATSP16A and ATSP16AC provide a way of quanti-

tatively measuring the relative efficacy of the LP models under consideration,

2.2. Comparisons of LP models 41

9.64%

66.0%

H
N

H
N

B

0 25 50 75 100

0

2000

4000

6000

0

30

60

90

Gap as percentage of optimal bound

F
re

q
u

en
cy

Figure 2.8: Histogram showing gaps obtained with the Base Model as a per-
centage of the optimal tour cost for 8012 candidate ATSP in-
stances generated by Algorithm 2.1. The gaps are grouped by
whether the input graph was Hamiltonian or non-Hamiltonian
non-bridge, of which in total there were 7682 and 330 candidates
respectively. The vertical dashed lines represent the cutoffs, to
the right of which the 200 instances with the largest percentage
gaps were retained for the two input types.

2.2. Comparisons of LP models 42

and are sensitive enough that small improvements to the models can be de-

tected if found. The key measure is the gap for each instance in the problem

set; the difference between the lower bound found by the linear program and

the optimal tour cost.

We remark that in the case of the 200 non-Hamiltonian cubic instances

in ATSP16AC, there is no optimal tour, and a sufficiently tight linear model

might in theory be infeasible for some or all of these instances. In the fol-

lowing section, and again in Chapter 4, we consider results of linear models

on these instances, but for convenience of terminology we continue to refer

to the gaps for these instances, using a special case definition of the term:

Definition 2.11 (Gaps for non-Hamiltonian instances of ATSP16AC). For

any non-Hamiltonian instance of ATSP16AC, we define the gap to be the

optimal tour cost of the corresponding complete instance in ATSP16A mi-

nus the lower bound found for the linear program. If the linear program is

infeasible, we say the gap is not defined.

This definition is practical, since, for all linear models considered, the

non-Hamiltonian instances of ATSP16AC have feasible solutions with similar

lower bounds to that of the corresponding ATSP16A instances. In theory, if

a linear model were infeasible for a non-Hamiltonian instance of ATSP16AC,

we would report those instances separately, but this does not occur for any

model considered in this thesis. Note that the definition of gaps for non-

Hamiltonian instances of ATSP16AC could also be used as the definition

of the gap for the Hamiltonian instances, since the optimal tours of the

corresponding instances of ATSP16A are necessarily the same.

2.2.5 Results of LP models on TSP instances

Using the TSP instances constructed in Section 2.2.4, we can now examine

more finely the relative performance of MCF, MCF+, SST, and the Base

2.2. Comparisons of LP models 43

Model. Rather than simply a binary result of feasible or infeasible as in

Section 2.2.2, we obtain a gap which may theoretically be any non-negative

rational number. The lower the gap, the better the model performs on that

instance, and any difference or improvement in the gap can be measured

quantitatively.

Aggregated results for the four models are presented in Table 2.9 for the

instances in set ATSP16A and in Table 2.10 for ATSP16AC. Recall that the

former are complete graphs, while the latter are the corresponding instances

having only the edges of the cubic graph from which they are derived. Note

that none of the four models were able to find the optimal tour for any of

the instances.

Table 2.9: Aggregated results of MCF, MCF+, SST and the Base Model on
the 200 NHNB-derived and 200 Hamiltonian-derived instances of
ATSP16A.

NHNB-derived Ham.-derived

Model Sum of gaps Mean Sum of gaps Mean

MCF 295 768.0 1478.8 22 693.1 114.8
MCF+ 294 799.8 1474.0 22 368.9 111.8
SST 293 721.7 1468.6 20 705.3 103.5
Base Model 289 064.2 1445.3 16 864.2 84.3

Table 2.10: Aggregated results of MCF, MCF+, SST and the Base Model on
the 200 NHNB-derived and 200 Hamiltonian-derived instances of
ATSP16AC.

NHNB-derived Ham.-derived

Model Sum of gaps Mean Sum of gaps Mean

MCF 295 768.0 1478.8 22 963.1 114.8
MCF+ 294 799.8 1474.0 22 368.9 111.8
SST 293 721.7 1468.6 20 705.3 103.5
Base Model 288 979.2 1444.9 16 864.2 84.3

As can be seen from Tables 2.9 and 2.10, the Base Model outperforms

MCF, MCF+ and SST in the average case. Recall that the instances of

ATSP16A and ATSP16AC were specifically chosen over others because the

2.2. Comparisons of LP models 44

Base Model was the least effective on them; despite this, the Base Model

dominated MCF+, and hence MCF, for every instance tested. This provides

strong empirical evidence that the Base Model may strictly contain MCF+,

a conjecture we present in Section 2.2.6.

For comparison with SST, Figure 2.11 shows a plot of the gaps for the

Base Model on these instances against the gaps for SST, the latter being

necessarily tighter than MCF+ and MCF in turn, as discussed previously.

This plot shows that the Base Model outperforms SST in almost all cases,

but that there are four instances of ATSP16A and the corresponding four

instances of ATSP16AC for which the gap obtained by SST was less than

that obtained by the Base Model. These four instances have the IDs 92, 105,

259 and 338; the edge lists and costs for which may be found in Appendix B.

In these instances, the difference in gaps between the two models was small;

no more than 1.5%. In contrast, the Base Model provided a tighter bound in

all remaining 396 instances of both sets. Although the Base Model is stronger

on average, there must be information about Hamiltonian cycles expressed in

SST that is not captured by the Base Model. This presents an opportunity

to improve the Base Model by adding constraints similar to those of SST, an

extension we consider in Chapter 4.

2.2.6 A conjecture on the strength of the Base Model

The results shown in Sections 2.2.2 and 2.2.5 lead naturally to the following

conjecture.

Conjecture 2.12. The Base Model is stronger than MCF+.

Specifically, by stronger we mean that for any given instance of HCP or

TSP, the set of feasible solutions to the Base Model when projected to the xij

variables of MCF+, is a subset of the set of feasible solutions to MCF+ when

projected to the same variables. To make this projection, we note the natural

2.2. Comparisons of LP models 45

ATSP16AC

H

ATSP16AC

NHNB

ATSP16A

H

ATSP16A

NHNB

100 150 200 1400 1440 1480 1520

100 150 200 1400 1440 1480 1520

1300

1350

1400

1450

1500

1300

1350

1400

1450

1500

80

120

160

80

120

160

SST

B
as

e
M

o
d

el

Figure 2.11: Gaps for the Base Model plotted against gaps for SST, for the
Hamiltonian-derived and NHNB-derived instances of ATSP16A
and ATSP16AC. The solid line y = x corresponds to the gaps
being the same for both models. The four instances from each
of ATSP16A and ATSP16AC for which SST outperforms the
Base Model are shown as solid red points.

2.2. Comparisons of LP models 46

equivalence of the Base Model variables xi0,ij and the MCF+ variables xij in

their respective objective functions (2.71) and (2.42).

We remark that Conjecture 2.12 implies that the Base Model is in turn

stronger than MCF, and MCF is in turn equivalent to DFJ. Therefore, one

approach to proving the conjecture would be to establish that:

(i) The Base Model implies constraints equivalent to those of DFJ and

hence those of MCF.

(ii) Assuming (i), the Base Model also implies constraints equivalent to

(2.20) – (2.22), the constraints of MCF+ without analogues in MCF.

We now give a partial proof of (i). First, we express the constraints of DFJ

in terms of the variables of the Base Model. By the observation above, the

DFJ variables xij are equivalent to the Base Model variables xi0,ij. Therefore,

constraints (2.1) – (2.3), and the relaxation of (2.4), may be written as

∑
a∈N(i)

xi0,ia = 1 ∀i = 1, . . . , n (2.72)

∑
a∈N(i)

xa0,ai = 1 ∀i = 1, . . . , n (2.73)

∑
i∈S

∑
a∈N(i)\S

(
xi0,ia + xa0,ai

)
≥ 2 ∀S ⊂ V, 0 < |S| < n (2.74)

0 ≤ xi0,ia ≤ 1 ∀i = 1, . . . , n; a ∈ N(i). (2.75)

Lemma 2.13. The constraints of the Base Model imply constraints (2.72),

(2.73) and (2.75).

Proof. Observe that (2.72) follows immediately from (2.38) if we set k = i and

apply Lemma 2.9. Next, (2.75) follows immediately from (2.41) and (2.72).

Hence we now focus on (2.73).

Consider any vertices i and k. Taking (2.34) and fixing r = 1, we obtain

∑
a∈N(i)

xk1,ia =
∑
a∈N(i)

xk0,ai. (2.76)

2.2. Comparisons of LP models 47

From (2.40), it is clear that the RHS of (2.76) reduces to xk0,ki if k is adjacent

to i, and 0 otherwise. Therefore,

∑
a∈N(i)

xk1,ia =


xk0,ki if k ∈ N(i),

0 otherwise.

(2.77)

Next, consider (2.39) for r = 1:

n∑
k=1

∑
a∈N(i)

xk1,ia = 1. (2.78)

Substituting (2.77) into (2.78), we obtain the desired equality;

∑
k∈N(i)

xk0,ki = 1.

We now consider the remaining constraint (2.74). We will show that

(2.74) is implied by

∑
i∈S

∑
a∈N(i)\S

xi0,ia ≥ 1 ∀S ⊂ V, 0 < |S| < n. (2.79)

Lemma 2.14. Constraint (2.74) is satisfied if the constraints (2.72), (2.73)

and (2.79) are satisfied.

Proof. Summing over (2.72) we obtain

∑
i∈S

∑
a∈N(i)

xi0,ia = |S|. (2.80)

We can then separate the summed terms of the LHS of (2.80):

∑
i∈S

∑
a∈N(i)

xi0,ia =
∑
i∈S

∑
a∈N(i)\S

xi0,ia +
∑
i∈S

∑
a∈N(i)∩S

xi0,ia. (2.81)

Substituting (2.79) and (2.80) into (2.81), we obtain

∑
i∈S

∑
a∈N(i)∩S

xi0,ia ≤ |S| − 1.

2.2. Comparisons of LP models 48

Similarly, summing over (2.73) we obtain

|S| =
∑
i∈S

∑
a∈N(i)

xa0,ai =
∑
i∈S

∑
a∈N(i)\S

xa0,ai +
∑
i∈S

∑
a∈N(i)∩S

xa0,ai. (2.82)

It may be seen that

∑
i∈S

∑
a∈N(i)∩S

xa0,ai =
∑
i∈S

∑
a∈N(i)∩S

xi0,ia ≤ |S| − 1. (2.83)

Hence, substituting (2.83) into (2.82), we obtain

∑
i∈S

∑
a∈N(i)\S

xa0,ai ≥ 1,

which along with (2.79) implies (2.74).

The upcoming theorem will require the following result, shown in [28].

Lemma 2.15. The constraints of the Base Model imply that xkn−1,ia = 0 for

all a 6= k, and xkr,ik = 0 for all r 6= n− 1.

For the sake of neatness, in the proof of the following theorem we will

permit sums over variables corresponding to arcs that may not exist in the

graph. In such a case, we treat these variables as identically zero.

Theorem 2.16. The constraints of the Base Model imply (2.74) for all sub-

sets S ⊂ V such that |S| ∈ {1, 2, 3, n− 3, n− 2, n− 1}.

Proof. First, we argue that if (2.74) is satisfied for all S such that |S| = k,

it is also satisfied for all S such that |S| = n − k. Suppose that (2.74) is

satisfied for all |S| = k. That is, for any S such that |S| = k, we have

∑
i∈S

∑
a6∈S

(
xi0,ia + xa0,ai

)
≥ 2. (2.84)

If we consider the complement of S, then the LHS of (2.74) is

∑
i 6∈S

∑
a∈S

(
xi0,ia + xa0,ai

)
. (2.85)

2.2. Comparisons of LP models 49

It is clear that (2.85) contains the identical terms as the LHS of (2.84). Since

any S such that |S| = n−k can be obtained by taking the complement of a set

of size k, we conclude that (2.74) is satisfied for any S such that |S| = n− k

as well.

Recall from Lemma 2.14 that (2.74) is satisfied if (2.72), (2.73) and (2.79)

are satisfied. By Lemma 2.13, the Base Model implies (2.72) and (2.73). We

now show that (2.79) is satisfied for k = 1, 2, 3. Without loss of generality,

we will assume that S = {1, . . . , k}; that is, S contains the first k vertices of

the graph. It is clear that for other choices of S the graph can be relabelled

so that the remaining arguments are applicable.

For k = 1, the result follows immediately from (2.72). Next, for k = 2,

we seek to prove the following:

∑
a>2

x10,1a +
∑
a>2

x20,2a ≥ 1. (2.86)

The LHS of (2.86) can be rewritten using (2.72) for the first sum, and (2.36),

(2.40), and Lemma 2.9 for second sum as follows:

1− x10,12 +
n−1∑
r=1

∑
a>2

x1r,2a. (2.87)

Note that by Lemma 2.15, we have

∑
a>2

x1n−1,2a = 0. (2.88)

Also, using (2.34) and (2.40), we have

∑
a>2

x11,2a = x10,12. (2.89)

Substituting (2.88) and (2.89) into (2.87), we see the LHS of (2.86) becomes

∑
a>2

x10,1a +
∑
a>2

x20,2a = 1 +
n−2∑
r=2

∑
a>2

x1r,2a. (2.90)

Hence, from the non-negativity of the xkr,ia variables, (2.86) is satisfied.

2.2. Comparisons of LP models 50

Finally, for k = 3, we seek to prove the following:

∑
i≤3

∑
a>3

xi0,ia ≥ 1. (2.91)

We can rewrite the LHS of (2.91) as

∑
i≤2

∑
a>2

xi0,ia −
∑
i≤2

xi0,i3 +
∑
a>3

x30,3a. (2.92)

Then, substituting (2.90) into (2.92), and separating the cases when r = 2

and r = n− 2, we obtain

1 +
n−3∑
r=3

∑
a>2

x1r,2a +
∑
a>2

x12,2a +
∑
a>2

x1n−2,2a −
∑
i≤2

xi0,i3 +
∑
a>3

x30,3a. (2.93)

Then, by (2.34) and (2.35), we can rewrite (2.93) as

1 +
n−3∑
r=3

∑
a>2

x1r,2a +
∑
a>2

x11,a2 +
∑
a>2

x21,a1 −
∑
i≤2

xi0,i3 +
∑
a>3

x30,3a. (2.94)

Now, consider the rightmost sum in (2.94). It follows from (2.37) where we

set r = 0 and s = 1, along with (2.40), that each term of the form x30,3a can

be expressed as

x30,3a =
n∑
k=1

xk1,3a,

and thus ∑
a>3

x30,3a =
n∑
k=1

∑
a>3

xk1,3a

=
∑
a>3

x11,3a +
∑
a>3

x21,3a +
∑
k>3

∑
a>3

xk1,3a. (2.95)

Then, by (2.34), (2.40), and Lemma 2.15, we can rewrite (2.95) as

∑
a>3

x30,3a = x10,13 − x11,32 + x20,23 − x21,31 +
∑
k>3

∑
a>3

xk1,3a. (2.96)

Finally, substituting (2.96) into (2.94), we see that the LHS of (2.91) becomes

∑
i≤3

∑
a>3

xi0,ia = 1 +
n−3∑
r=3

∑
a>2

x1r,2a +
∑
a>3

x11,a2 +
∑
a>3

x21,a1 +
∑
k>3

∑
a>3

xk1,3a.

Hence, from the non-negativity of the xkr,ia variables, (2.91) is satisfied.

2.3. Classifications of difficult cubic graphs 51

We expect that arguments similar to the above could be used to prove

that the Base Model implies (2.74) for the remaining cardinalities of S ⊂ V .

2.3 Classifications of difficult cubic graphs

A natural question to ask about the non-Hamiltonian graphs identified and

those not identified by these models is whether they may be distinguished

by a particular classification. For example, what characteristics distinguish,

or tend to distinguish the 14 803 non-Hamiltonian graphs identified as such

by infeasibility of the Base Model, from the 1622 graphs that were not? In

particular, we consider the classification of cubic graphs by connectivity, and

by toughness, with regard to identifying non-Hamiltonicity. We prove that

non-tough graphs necessarily induce infeasibility in the DFJ model and mod-

els with equivalent constraints. We conjecture based on empirical evidence

and the previous Conjecture 2.12 that the same result holds for the Base

Model.

2.3.1 Vertex and edge connectivity

Two fundamental properties of any graph are its vertex connectivity and edge

connectivity . The vertex connectivity , or simply connectivity , of a graph G

is defined as the maximum value of k for which G is k-connected. Similarly,

the edge connectivity of G is defined as the maximum value of k for which G

is k-edge-connected.

Note that the vertex connectivity can be at most 3 for any cubic graph.

This is due to the fact that for any cubic graph G = (V,E), other than the

complete graph K4, it is possible to disconnect G by removing the three

vertices adjacent to any vertex v ∈ V . For the remaining case of K4,

which is 3-connected, the definition of k-connected precludes K4 from be-

ing 4-connected, so K4 has a connectivity of 3. Furthermore, for any cubic

2.3. Classifications of difficult cubic graphs 52

graph, the vertex connectivity and edge connectivity are always equal by

Lemma 2.17 below. We also note that the connectivity of a cubic graph

can be found in polynomial time; at worst, all subsets of 3 vertices must be

considered for removal, but there are only O(n3) such subsets. Examples of

the smallest cubic graphs with vertex connectivities 1, 2 and 3 are shown in

Figure 2.12.

Figure 2.12: The smallest cubic graphs having connectivity 1 (left), 2 (centre)
and 3 (right). Examples of vertex cuts are shown with hollow
vertices, and examples of edge cuts are shown with dashed edges.
The graph on the right side, K4, does not have a 3 vertex cut
set, but is 3-connected as it cannot be 4-connected by definition.

The following lemma is a well-known result.

Lemma 2.17. Let G be a connected cubic graph with connectivity κ(G) and

edge connectivity λ(G). Then κ(G) = λ(G).

All connected graphs of a given order n may be considered to lie on a

scale of varying connectivities. At one extreme are graphs with vertex con-

nectivity 1, being necessarily non-Hamiltonian. At the other extreme are the

complete graphs Kn, necessarily Hamiltonian and having vertex connectivity

(n − 1). One might then predict that the ratio of Hamiltonian graphs to

non-Hamiltonian graphs increases with higher connectivity. For empirical

evidence to support this prediction, consider all connected graphs with 10

vertices. There are 11 716 571 such graphs up to isomorphism, summarised

by Hamiltonicity and vertex connectivity in Table 2.13. These results were

collected using the database from the Encyclopedia of Finite Graphs [41].

Note that having vertex connectivity of at least n/2, or 5 in the case of these

10-vertex graphs, is a sufficient condition for Hamiltonicity by a well-known

theorem of Dirac [21] which states that any graph with minimum degree n/2

2.3. Classifications of difficult cubic graphs 53

Table 2.13: Hamiltonicity of connected 10-vertex graphs up to isomorphism
by vertex connectivity.

Vertex
connectivity Non-Ham. Ham. % Ham.

1 1 973 029 0 0
2 424 177 4 205 286 90.84
3 14 177 3 888 167 99.64
4 70 1 109 035 99.99
5 0 99 419 100
6 0 3124 100
7 0 81 100
8 0 5 100
9 0 1 100

is Hamiltonian. This follows since any graph with a vertex connectivity of

n/2 must have a minimum degree of n/2.

Restricting our attention to cubic graphs, and considering all such graphs

up to order 20, Table 2.14 displays a strong correlation between connectivity

and Hamiltonicity. Indeed, 87.2% of the non-Hamiltonian cubic graphs have

connectivity 1, followed by 6.8% having connectivity 2 and the remaining

6.0% having connectivity 3. This is the case, despite graphs with connectivity

2, and especially connectivity 3, being far more common than graphs of lesser

connectivity. Treating connectivity as an indicator of the likelihood of a

graph being non-Hamiltonian, approximately 1 in 100 of the connectivity 2

graphs were non-Hamiltonian, while only 1 in 435 of the connectivity 3 graphs

were non-Hamiltonian. Furthermore, as shown Table 2.15, the differences in

proportions appear to increase with order.

Excluding the trivial case of bridge graphs, the measure of connectiv-

ity on its own has very poor sensitivity and specificity for classifying cubic

graphs as Hamiltonian or non-Hamiltonian. A contingency table, effectively

a summary of the data in Table 2.14, is shown in Table 2.16. In a proba-

bilistic sense, it seems that non-Hamiltonian graphs with connectivity 3 are

rarer, and hence more difficult to detect as such than for graphs with con-

2.3. Classifications of difficult cubic graphs 54

Table 2.14: The number of (a) non-Hamiltonian, and (b) Hamiltonian cubic
graphs up to order 20 by connectivity and number of vertices.

(a) Non-Hamiltonian

Connectivity

n 1 2 3 Total

4 0 0 0 0
6 0 0 0 0
8 0 0 0 0
10 1 0 1 2
12 4 0 1 5
14 29 2 4 35
16 186 15 18 219
18 1435 117 114 1666
20 12 671 979 848 14 498

Total 14 326 1113 986 16 425

(b) Hamiltonian

Connectivity

n 1 2 3 Total

4 0 0 1 1
6 0 0 2 2
8 0 1 4 5
10 0 4 13 17
12 0 23 57 80
14 0 137 337 474
16 0 1031 2810 3841
18 0 9281 30 354 39 635
20 0 100 689 395 302 495 991

Total 0 111 166 428 880 540 046

Table 2.15: The percentage of cubic graphs up to order 20 that are Hamil-
tonian by connectivity and number of vertices.

Connectivity

n 1 2 3 All

4 100 100
6 100 100
8 100 100 100
10 0 100 92.86 89.47
12 0 100 98.28 94.12
14 0 98.56 98.83 93.12
16 0 98.57 99.36 94.61
18 0 98.76 99.63 95.97
20 0 99.04 99.79 97.16

All 0 99.01 99.77 97.05

2.3. Classifications of difficult cubic graphs 55

Table 2.16: Contingency table for cubic graphs up to order 20 by Hamil-
tonicity and connectivity.

Connectivity Hamiltonian Non-Hamiltonian Total

1 0 14 326 14 326
2 111 166 1113 112 279
3 428 880 986 429 886

Total 540 046 16 425 556 471

Table 2.17: Contingency table for non-Hamiltonian cubic graphs up to order
20 by Base Model feasibility and connectivity.

Connectivity Feasible Infeasible Total

1 0 14 326 14 326
2 636 477 1113
3 986 0 986

Total 1622 14 803 16 425

nectivity 2. We also consider how connectivity relates to accurate detection

of non-Hamiltonian graphs by the Base Model. The results shown in Ta-

ble 2.17 clearly demonstrate that non-Hamiltonian graphs with connectivity

3, though less common, are much more difficult to identify using the Base

Model. Indeed, none of the 968 graphs with connectivity 3 were detected

as non-Hamiltonian, in contrast to 477 out of 1113, or 40%, of the non-

Hamiltonian graphs with connectivity 2, and 100% of the non-Hamiltonian

graphs with connectivity 1.

2.3.2 Graph toughness

A related concept to connectivity is that of toughness . Graph toughness was

introduced by Chvátal in 1973 and described as “[measuring] in a simple way

how tightly various pieces of a graph hold together” [15]. While connectivity

measures the number of vertices or edges that must be removed just to dis-

connect a graph, toughness measures the most economical ratio of vertices

removed to the resulting number of connected components.

2.3. Classifications of difficult cubic graphs 56

Definition 2.18 (t-tough graph). A graph is said to be t-tough if, for every

integer k ≥ 2, the removal of fewer than tk vertices always results in fewer

than k connected components.

Definition 2.19 (Graph toughness). The toughness τ(G) of a graph G is

the maximum value t for which G is t-tough. If G is a complete graph then it

is necessarily t-tough for every value of t, thus in this case we say τ(G) =∞.

The minimum toughness of a cubic graph is 1/3, when a single vertex may

be removed to give 3 connected components. The maximum toughness of

a cubic graph, excluding K4 which has infinite toughness by definition, is

3/2, when exactly three vertices must be removed to disconnect the graph

into two connected components. Toughness and Hamiltonicity are known to

be related. In particular, any graph with a toughness less than 1 is known

to be non-Hamiltonian [15], and it remains an open problem as to whether

there is a t0 such that all t0-tough graphs are necessarily Hamiltonian [12].

Certainly in the case of 3/2-tough graphs, the maximum for non-complete

cubic graphs, there are both Hamiltonian and non-Hamiltonian graphs. We

note that 1-toughness being a necessary condition for Hamiltonicity makes it

a special case, so 1-tough graphs are simply called tough while graphs with

toughness less than 1 are called non-tough. An obvious example of a non-

tough graph is a graph with vertex connectivity 1; the graph can be broken

into two connected components by removing one vertex, and so it must have

toughness no larger than 1/2.

Figure 2.18 shows a number of minimal examples of tough and non-tough

cubic graphs; the smallest cubic graphs with toughnesses 1/3, 1/2, 1, and 3/2,

as well as the smallest non-Hamiltonian graph with (maximal) toughness

3/2. To find the smallest non-Hamiltonian cubic graph with toughness 3/2,

Theorem 2.21 due to Jackson and Katerinis [44] was utilised. Since the 10-

vertex Petersen graph is the uniquely smallest 3-connected non-Hamiltonian

cubic graph, its inflation (replacing all the vertices with triangles, under

2.3. Classifications of difficult cubic graphs 57

which Hamiltonicity is invariant) must therefore be the uniquely smallest

3/2-tough non-Hamiltonian cubic graph.

Definition 2.20 (Graph inflation [15]). Let G = (V,E) be a cubic graph.

The inflation of G is the graph G* obtained by first replacing each vertex

of G with a copy of K3. Then, for each vertex v ∈ V in the original graph

G, consider its three incident edges. For each of these edges, let there be

a corresponding edge in G*, such that these three corresponding edges are

each incident to a different vertex of the copy of K3 that corresponds to v.

The resulting graph is cubic and has 3|V | vertices.

Theorem 2.21 (Characterisation of 3/2-tough cubic graphs [44]). Let G be

a cubic graph. Then G is 3/2-tough if and only if G = K4, G = K2 ×K3, or

G is the inflation of a 3-connected-cubic graph.

Unlike connectivity which can be determined for cubic graphs in polyno-

mial time, the decision problem of determining whether a graph is (1-)tough

is NP-hard [4], even when only cubic graphs are considered [5]. Consequently,

the best known algorithms for determining graph toughness take exponential

time, and this prevents toughness from being a useful diagnostic criterion in

determining Hamiltonicity.

Table 2.19 shows the distribution of toughness for cubic graphs up to

order 20. The most common toughness for this collection of graphs was 1

(30% of the total), followed closely by graphs with toughness 9/8 (28% of the

total). Toughness was calculated by removing every possible subset of k ver-

tices, from k = 1 to |V | − 2, and counting the number of resulting connected

components, finding the lowest possible value of t = k
components

whenever there

are at least two connected components. The maximum possible number of

connected components after removing k vertices is |V | − k, so the processing

may stop once the current bound for t is less than k
|V |−k for all remaining

values of k. Note that counting the number of connected components at each

2.3. Classifications of difficult cubic graphs 58

τ(G2
6) = 1 τ(G1

6) = 3/2 τ(G1
4) =∞

τ(G1
10) = 1/2 τ(G104

16) = 1/3

τ(G19
10*) = 3/2

Figure 2.18: Selected examples of tough and non-tough cubic graphs. The
top row, from left to right, shows the uniquely smallest cubic
graphs with toughness 1, with toughness 3/2, and with toughness
∞. The middle row, from left to right, shows the uniquely
smallest cubic graph with toughness 1/2 and with toughness 1/3.
The bottom graph shows the smallest non-Hamiltonian graph
with toughness 3/2, the inflated Petersen graph (see Figure 1.3
for the uninflated graph).

2.3. Classifications of difficult cubic graphs 59

Table 2.19: Hamiltonian and non-Hamiltonian cubic graphs up to order 20
by toughness.

Toughness Non-Hamiltonian Hamiltonian

1/3 34 0
1/2 14 292 0
2/3 230 0
3/4 41 0
4/5 16 0
5/6 6 0
1 1077 164 630
10/9 0 48 924
9/8 147 157 809
8/7 179 77 089
7/6 134 31 642
6/5 146 18 741
5/4 95 38 094
9/7 24 2972
4/3 3 131
7/5 0 6
10/7 1 3
3/2 0 4
∞ 0 1

step may be done more easily if every step only removes or restores a sin-

gle vertex from the graph; this can be done without repeating any subset by

using a monotonic Gray code [65]. We remark that there is an interesting co-

incidence here with respect to HCP; Gray codes are themselves Hamiltonian

cycles on the vertices of a hypercube.

In Table 2.20 we consider all non-Hamiltonian cubic graphs containing up

to order 20, partitioned by their toughness. In each case, we give the number

of graphs with feasible and infeasible LPs in the Base Model. As the table

shows, all tested non-tough graphs, which are necessarily non-Hamiltonian,

induce infeasibility. Interestingly, it is also the case that every graph tested

with a toughness exceeding 1 has a feasible Base Model LP.

Conducting the same experiment with MCFHCP, MCF+HCP and SSTHCP,

we found that all the tested non-tough cubic graphs induce infeasibility in

these models just as in the Base Model. These experiments suggest that

toughness is a necessary condition for feasibility of the four models. We will

2.3. Classifications of difficult cubic graphs 60

Table 2.20: Base Model feasibility for non-Hamiltonian cubic graphs up to
order 20 by toughness.

Toughness Infeasible Feasible

1/3 34 0
1/2 14 292 0
2/3 230 0
3/4 41 0
4/5 16 0
5/6 6 0
1 184 893
9/8 0 147
8/7 0 179
7/6 0 134
6/5 0 146
5/4 0 95
9/7 0 24
4/3 0 3
10/7 0 1

show, by Theorem 2.23 below, that this is indeed the case for any model

which includes constraints equivalent to or stronger than the constraints of

DFJ. This result therefore applies to MCFHCP, MCF+HCP and SSTHCP, since

the weakest of them, MCFHCP, is equivalent to DFJ. For the Base Model,

however, it is unknown whether constraints equivalent to those of DFJ are

implied, so we make the following conjecture.

Conjecture 2.22. Non-toughness is a sufficient condition for infeasibility

of the Base Model.

Recall that in Section 2.2.6 we presented a partial proof that the Base

Model implies constraints equivalent to those of DFJ. If the remaining com-

ponents of that proof were established, Conjecture 2.22 would follow imme-

diately from Theorem 2.23.

Theorem 2.23. If G = (V,E) is a non-tough graph, then the LP from the

DFJ model is infeasible.

Proof. Since G is non-tough, by definition it is possible to remove fewer

than k vertices and be left with k connected components, for some integer

2.3. Classifications of difficult cubic graphs 61

k > 1. Denote by V0 the set of removed vertices, and let Vt denote the set of

vertices in the t-th connected component that remains when V0 is removed

for t = 1, . . . , k. Then V0, . . . , Vk is a partitioning of the vertices of the graph,

such that |V0| < k, and every edge uv ∈ E where u ∈ Vt and v ∈ Vs satisfies

t = s, t = 0, or s = 0.

Now, recall the subtour elimination constraints (2.3) of the DFJ model,

∑
i∈S

∑
j 6∈S

(xij + xji) ≥ 2 ∀S ⊂ V, 0 < |S| < n.

The constraints of DFJ are posed for complete graphs. Rather than modify

the constraints to remove xij variables which do not correspond to arcs in

G, we may instead assume, without loss of generality, that xij = xji = 0 if

ij 6∈ E. Next, if we take S = Vt for t = 1, . . . , k, and sum each corresponding

inequality (2.3), we obtain

k∑
t=1

∑
i∈Vt

∑
j 6∈Vt

(xij + xji) =
∑
i 6∈V0

∑
j∈V0

(xij + xji) ≥ 2k. (2.97)

However, from (2.1) and (2.2) we have the following:

∑
i 6∈V0

(xij + xji) ≤ 2,

and since |V0| < k, this implies

∑
j∈V0

∑
i 6∈V0

(xij + xji) < 2k. (2.98)

Clearly, (2.97) and (2.98) cannot both be true, and so a contradiction is

obtained. Hence, (2.97) cannot be satisfied and the LP from the DFJ model

is infeasible for G.

As noted earlier, determining if a graph is tough is an NP-hard prob-

lem, but here we can identify almost all of the considered tough graphs by

feasibility of an LP model. If any of the models were to be feasible only

for tough graphs, then it would imply that P = NP. Hence, it is interest-

2.4. Concluding remarks on the Base Model 62

ing to consider the tough graphs with infeasible LPs, which must necessarily

be non-Hamiltonian. From Table 2.20, it appears that these instances are

relatively rare, and perhaps, only occur for graphs with toughness precisely

equal to 1. Ironically, the poorer performance of a model such as MCFHCP

relative to the Base Model is an advantage in this context, as fewer tough

graphs induce infeasibility. If these graphs could be characterised and effi-

ciently identified, then that would provide a polynomial-time algorithm for

recognising tough graphs. Figure 2.21 shows the uniquely smallest exam-

ple of a tough cubic graph that induces infeasibility in the Base Model. In

fact, the 16-vertex graph shown induces infeasibility in all four of MCFHCP,

MCF+HCP, SSTHCP and the Base Model. Note the similarity between the

graph in Figure 2.21 and the graph in Figure 2.7, which also induced infea-

sibility in these four models. Attempting to characterise all such graphs is a

ripe topic for future research.

Figure 2.21: The smallest tough cubic graph that induces infeasibility in each
of MCF, MCF+, SST and the Base Model. The graph, G547

16 ,
has a toughness of exactly 1.

2.4 Concluding remarks on the Base Model

Although the Base Model appears to be strictly stronger than MCF+, and

stronger than SST in the average case, the benefits gained in terms of HCP

2.4. Concluding remarks on the Base Model 63

are minimal. Indeed, only an additional 98 (4.7%) of the 2099 instances of

NHNB20 are identified by the Base Model compared to MCF+ and SST. It is

therefore desirable to attempt to improve upon the Base Model, particularly

in the context of determining non-Hamiltonicity. Such improvements logi-

cally fall into two categories. Either we can attempt to modify the graphs to

make them more suitable for the Base Model, without altering their Hamil-

tonicity, or we can attempt to improve the Base Model directly.

To this end, it is natural to consider whether the 1622 instances of

NHNB20 with feasible Base Model LPs described in Section 2.2.2 tend to

have any identifiable properties that we can exploit to improve the Base

Model. One such property that we have identified is the presence of symme-

tries, with 1437 (88.6%) of the instances having a non-trivial automorphism

group. Another property is the presence of certain structures within the

graph; for example, cubic graphs often contain at least one triangle.

In Chapter 3 we therefore consider a number of graph reductions, which

permit us to remove edges or vertices from a graph without changing the

Hamiltonicity. As will be shown in that chapter, this is particularly effective

on graphs with non-trivial automorphism groups. We also consider graph re-

ductions based on the presence of structures such as triangles. After reducing

the graphs for which this is possible, it will be shown that many of them can

then be identified as non-Hamiltonian immediately, while others induce in-

feasibility in the Base Model after being reduced. This provides us with an

effective alternative approach for the instances where the Base Model does

not detect non-Hamiltonicity. Then, to further assist in the identification of

non-Hamiltonian graphs, in Chapter 4 we consider extensions to the Base

Model that allow us to identify many of the remaining instances.

Chapter 3

Hamiltonicity-preserving graph

reductions

In this chapter a method is presented that can, in many cases, reduce the size

of instances of the Hamiltonian cycle problem (HCP) and thus reduce the

computational complexity of identifying their Hamiltonicity. The method

works by attempting to identify edges or vertices in the graph that can be

removed in a way that preserves Hamiltonicity. These edges and vertices

are identified through examination of the graph’s structure and symmetries.

Results of applying the method to cubic graphs are presented, along with

the performance of the Base Model on the resulting reduced graphs.

As introduced in Section 1.1, HCP is an NP-complete problem, and to

date there is no known method that can determine if an arbitrary graph is

Hamiltonian in polynomial time. In the case of cubic graphs with n vertices,

the best known exact algorithms1 have time complexity O(1.276n) by Epp-

stein [23], O(1.251n) by Iwama and Nakashima [43], and recently O(1.2312n)

by Xiao and Nagamochi [75]. In light of this, any reduction in the size of the

instance will reduce the time required to solve it by an exponential factor.

1These algorithms are designed for the travelling salesman problem but any instance
of HCP may be easily expressed as an instance of TSP.

64

3. Hamiltonicity-preserving graph reductions 65

For example, if it were possible to reduce the number of vertices in a cubic

graph by k vertices for a given instance in polynomial time, while ensuring

the solution to the problem were the same, then the required time could be

reduced by factor of at least 1.2312k with current techniques.

To formalise the concept of reducing the size of a graph while maintain-

ing the same HCP solution, we introduce the concepts of a Hamiltonicity-

preserving graph reduction and a graph reduction algorithm below, before

establishing their existence and introducing several such graph reductions.

Definition 3.1 (Graph reduction). Let ψ : G → G ′ be a function whose

domain and codomain are sets of graphs. We say that ψ is a graph reduction,

or simply reduction, if for every G = (V,E) ∈ G, ψ(G) = G′ = (V ′, E ′) meets

the conditions |V ′| ≤ |V | and |E ′| ≤ |E|. Provided that at least one of these

inequalities is strict, the reduction is called proper and the graph G′ is called

the reduced graph of G under ψ.

Definition 3.2 (Hamiltonicity-preserving graph reduction). A graph reduc-

tion ψ : G 7→ G′ is said to be Hamiltonicity-preserving provided that G′

is Hamiltonian if and only if G is Hamiltonian, for any choice of G in the

domain of ψ. Equivalently, we say that such a ψ preserves Hamiltonicity .

Such a reduction is additionally said to be recoverable if, given ψ and any

Hamiltonian cycle in G′, it is possible to find a Hamiltonian cycle in G in

polynomial time (in the number of vertices).

Note that by Definition 3.2, any Hamiltonicity-preserving graph reduction

acting on a non-Hamiltonian graph is necessarily recoverable, as there can

be no Hamiltonian cycles in the reduced graph.

Definition 3.3 (Graph reduction algorithm). A graph reduction algorithm is

any method to search for a suitable reduction ψ for a given graph G = (V,E).

If the reduction ψ found by the method is such that ψ(G) = (V ′, E ′) satisfies

|V ′| < |V | or |E ′| < |E|, then G is said to be reducible under the algorithm;

3. Hamiltonicity-preserving graph reductions 66

otherwise, G is said to be irreducible under the algorithm. The algorithm

itself is said to preserve Hamiltonicity if, given any graph G, the returned

reduction ψ preserves Hamiltonicity.

Definition 3.4 (Trivially Hamiltonian and non-Hamiltonian graphs). Let

G be a connected graph. We say that G is trivially Hamiltonian if G is

isomorphic to K3. Similarly, we say that G is trivially non-Hamiltonian if

G is isomorphic to K2. If, instead, G has more than two vertices and is not

isomorphic to either of K2 or K3, then we say that G is non-trivial .

Figure 3.1 shows the trivially Hamiltonian and trivially non-Hamiltonian

graphs as defined in Definition 3.4. Note that in this definition we implicitly

leave aside the question of whether graphs with just one or zero vertices are

Hamiltonian.

Figure 3.1: Trivially Hamiltonian graph K3 (left) and trivially non-
Hamiltonian graph K2 (right) that are irreducible (while main-
taining connectedness).

Lemma 3.5. Let G = (V,E) be a non-trivial graph. There exists a proper

Hamiltonicity-preserving graph reduction ψ whose domain contains G.

Proof. Suppose G is non-Hamiltonian. Any edge may be removed and the

resulting graph will remain non-Hamiltonian. The reduction ψ can be defined

to remove any edge in E and (non-)Hamiltonicity is preserved.

Alternatively, suppose G is Hamiltonian. Let v1, . . . , vn ∈ V trace out a

Hamiltonian cycle in G. Since G is non-trivial, it is not isomorphic to K3,

implying n ≥ 4. Define ψ that removes vn and its incident edges from G

while adding an edge v1vn−1 if it is not present. It is clear that v1, . . . , vn−1

will be a Hamiltonian cycle in ψ(G), thus ψ preserves Hamiltonicity.

3. Hamiltonicity-preserving graph reductions 67

Lemma 3.5 guarantees the existence of proper graph reductions for any

non-trivial graph. However, unless P = NP , there cannot exist a polynomial-

time algorithm that, given any non-trivial graph, is guaranteed to find a

proper reduction. If there were such an algorithm, it could be used to solve

HCP for any graph in polynomial time by repeated application (no more

times than the number of edges and vertices) until the graph became triv-

ially (non-)Hamiltonian, thus solving HCP in polynomial time. Therefore,

in practice we restrict our focus to developing a polynomial-time graph re-

duction algorithm, with the expectation that many graphs will be irreducible

under the algorithm.

Rather than trying to design a single graph reduction to be as general

as possible, we will instead introduce many specialised graph reductions and

a method to find compositions of such reductions. We now show that key

properties of the individual reductions extend to the composition of those

reductions.

Lemma 3.6. If the function ψ = ψk ◦ · · · ◦ ψ2 ◦ ψ1 is the composition of

k Hamiltonicity-preserving graph reductions, then ψ also preserves Hamil-

tonicity. Additionally, if ψ1, . . . , ψk are proper and recoverable graph reduc-

tions, then ψ is also proper and recoverable.

Proof. Firstly, if k = 1 then the result is trivial. Assume then that the

proposition holds for the composition of k − 1 reductions; the proof will

proceed by induction: Let G be a graph in the domain of ψ and let ψ′ =

ψk-1 ◦ · · · ◦ ψ1. Given that ψk is Hamiltonicity-preserving, ψk(ψ
′(G)) = ψ(G)

has the same Hamiltonicity as ψ′(G), which by the induction assumption has

the same Hamiltonicity as G. Thus ψ preserves Hamiltonicity.

Similarly, if ψ1, . . . , ψk are proper and recoverable graph reductions, then

given any Hamiltonian cycle in ψk(ψ
′(G)), we can recover a Hamiltonian

cycle in ψ′(G) in polynomial time. By the induction assumption, given this

3. Hamiltonicity-preserving graph reductions 68

Hamiltonian cycle in ψ′(G), it is then possible to find a Hamiltonian cycle in

G in the sum of k − 1 separate polynomial times. As ψ1, . . . , ψk are proper

reductions, k cannot exceed the combined number of edges and vertices in G,

O(n2). Therefore, the total time elapsed remains polynomial in the number

of vertices and ψ is recoverable. Further, since each of ψ1, . . . , ψk is proper,

it immediately follows that ψ is also proper.

In the first stage of any reduction algorithm, it may be beneficial to check

sufficient or necessary conditions for Hamiltonicity or non-Hamiltonicity, at

least when these conditions can be checked in polynomial time. For exam-

ple, a necessary condition for a graph G to be Hamiltonian is that it must

be 2-connected. Another example is Ore’s Theorem [59] shown below, which

gives a sufficient condition for Hamiltonicity; equivalently, the contraposi-

tive provides a necessary condition for non-Hamiltonicity. There are other

sufficient or necessary conditions that may be checked (see [72, 33, 26]) but

in our algorithm we will just check for 2-connectivity and the conditions of

Ore’s Theorem.

Theorem 3.7 (Ore’s Theorem [59]). Let G = (V,E) be a graph with |V | ≥ 3

vertices. The graph G is Hamiltonian if

deg(u) + deg(v) ≥ |V | ∀u, v ∈ V where u 6= v and uv 6∈ E.

If the Hamiltonicity of a graph is determined by checking sufficient or

necessary conditions, we may apply the appropriate graph reduction ψH or

ψNH, defined as follows. These are defined for use later in Section 3.5.

Definition 3.8 (ψH graph reduction). We define the constant function ψH

to return the trivially Hamiltonian graph K3, namely

ψH (G) = K3.

Domain of ψH: The set of all Hamiltonian graphs.

3. Hamiltonicity-preserving graph reductions 69

Definition 3.9 (ψNH graph reduction). We define the constant function ψNH

which returns the trivially non-Hamiltonian graph K2, namely

ψNH (G) = K2.

Domain of ψNH: The set of all non-Hamiltonian graphs.

By the definitions of ψH and ψNH, it is clear that both reductions pre-

serve Hamiltonicity. Also, ψNH is recoverable by definition, since the reduced

graph contains no Hamiltonian cycles. Unfortunately, ψH is not necessarily

recoverable. That is, knowing the obvious Hamiltonian cycle in the reduced

graph K3 does not help us find a Hamiltonian cycle in the original graph.

However, in practice we only apply ψH to graphs that meet the conditions of

Ore’s Theorem. As noted in [61], the argument used by Ore to prove the the-

orem effectively constitutes a polynomial-time algorithm to find Hamiltonian

cycles in graphs meeting the conditions. Therefore, if we restrict the domain

of ψH to graphs satisfying Ore’s Theorem, which we have in the upcoming

algorithm, then ψH is recoverable.

In contrast to testing a sufficient condition for Hamiltonicity, it will be

shown that there are also occasions where the structure of a graph makes a

particular Hamiltonian cycle evident. To handle such cases where a Hamil-

tonian cycle is serendipitously identified during our search for applicable

reductions, we introduce ψhcycle, defined below.

We remark that due to the number of graph reductions introduced in this

chapter, descriptive subscripts are used for graph reductions to avoid confu-

sion. This and later graph reductions are parametrised families of functions

with parameters listed in square brackets.

Definition 3.10 (ψhcycle[v1, . . . , vn] graph reduction). Given a graph G =

(V,E) and vertices v1, . . . , vn that trace out a Hamiltonian cycle in G, we

define ψhcycle[v1, . . . , vn] to remove any edge in E other than those in the

3.1. Graph reductions based on subgraphs 70

cycle, namely

ψhcycle[v1, . . . , vn] (G) = (V, {v1v2, . . . , vn−1vn, vnv1}).

Domain of ψhcycle[v1, . . . , vn]: The set of graphs G = (V,E) satisfying

(i) V = {v1, . . . , vn}

(ii) v1v2, . . . , vn−1vn, vnv1 ∈ E.

Since ψhcycle is only defined for Hamiltonian graphs and outputs a cycle

graph, it is clear that it preserves Hamiltonicity. Given the Hamiltonian

cycle in the reduced graph it may be seen that all the same edges must be

present in the original graph and hence ψhcycle is also recoverable.

3.1 Graph reductions based on subgraphs

When it is not possible to reduce a graph based on checking a necessary or

sufficient condition, we then begin to look at structures within the graph that

could lead to other reductions. For example, one common structure in graphs

is the triangle, which is a well-known example of a subgraph that can be

replaced with a single vertex in many instances [73]. In particular, triangles

may be contracted to a single vertex without altering the Hamiltonicity of

the graph under the conditions described in Proposition 3.12 below, which

utilises the following well-known lemma.

Lemma 3.11. Let G = (V,E) be a graph and let {V1, V2} be a partition of

V . Let E12 be the set {uv ∈ E | u ∈ V1 and v ∈ V2}; that is, the subset of

edges with an endpoint in each part. The total number of edges in E12 used

in any given Hamiltonian cycle of G must be a positive even integer.

For an illustration of the operation described in the following proposition,

refer to Figure 3.2.

3.1. Graph reductions based on subgraphs 71

Proposition 3.12. Let G = (V,E) be a graph with |V | ≥ 5 having three

degree-3 vertices u, v, w ∈ V such that the subgraph induced by {u, v, w} is

a triangle. Let G′ = (V ′, E ′) be an altered copy of G wherein the vertices v

and w have been contracted into vertex u; that is, v and w have been removed

from the set of vertices, and edges from u to all the other originally adjacent

vertices of v and w have been added where not already present. Then G′ will

be Hamiltonian if and only if G is Hamiltonian.

Proof. Note that the vertices {u, v, w} are connected to V \{u, v, w}, the

remainder of the vertices in G, via exactly three edges. Let these three edges

be denoted by ua, vb and wc for the edges respectively incident to u, v and

w. Note that the other endpoints a, b and c are not necessarily distinct

(1 ≤ |{a, b, c}| ≤ 3).

Suppose that G′ is Hamiltonian. Let C ′ be any Hamiltonian cycle in G′.

Then C ′ must use exactly two edges incident to u, that is, two edges from

{au, bu, cu}. Without loss of generality, suppose that edges au and bu are

used in C ′. Then C ′ can be viewed as a path P from a to b that avoids vertex

u and visits all other vertices, plus au and bu. It is clear that P also exists in

G, visiting all vertices other than u, v and w. Thus, a Hamiltonian cycle in G

can be formed by C = P ∪ {ua, uw,wv, vb}. An equivalent argument can be

made for C ′ containing au and cu, or bu and cu. Hence, if G′ is Hamiltonian,

G must be as well.

Now, suppose that G is Hamiltonian. By Lemma 3.11, any Hamiltonian

cycle C in G must use exactly two edges of {ua, vb, wc}, and hence C in G

visits all three vertices of the triangle consecutively before traversing the rest

of the graph. Without loss of generality, suppose C starts at u, then goes to

w, then v. Then C can be defined as {uw,wv, vb, ua} ∪ P , with P defined

as earlier. Then a Hamiltonian cycle C ′ exists in G′, defined as P ∪{au, bu}.

Hence, G′ is Hamiltonian if and only if G is Hamiltonian.

3.1. Graph reductions based on subgraphs 72

u

v w

u

Figure 3.2: A triangle u, v, w of degree-3 vertices in a graph before (left) and
after (right) contracting vertices v and w into vertex u. In the
resulting graph, u has between 1 and 3 incident edges; one for
each distinct neighbour of u, v and w in the original graph (shown
here with 3).

Given our particular interest in solving HCP for cubic graphs, it is notable

that a majority of cubic graphs contain at least one triangle. Precisely, it has

been established [74] that the probability of a random labelled cubic graph

containing no 3-cycles asymptotically approaches e−4/3 as |V | → ∞. There-

fore, the probability that a random labelled cubic graph contains at least

one triangle (3-cycle) approaches 1 − e−4/3 ≈ 73.6%. For every such cubic

graph apart from K4, the number of vertices can then be reduced by at least

2 while maintaining Hamiltonicity, as shown in Proposition 3.12. Further-

more, it is straightforward to find triangles in polynomial time (for example,

by checking if any pair of adjacent vertices has a common neighbour).

In practice, it is useful to distinguish two cases involving triangles of

degree-3 vertices: (i) Triangles where each vertex in the triangle has a distinct

neighbour outside the triangle; and (ii) triangles where two vertices in the

triangle share a common degree-3 neighbour outside the triangle. The latter

situation corresponds to a subgraph which is sometimes called a diamond

(see Figure 3.3, left.) To handle these two cases we now introduce the graph

reductions ψtriangle and ψdiamond.

Definition 3.13 (ψtriangle[u, v, w] graph reduction). Given a graph G =

(V,E) and vertices u, v, w ∈ V forming a triangle in G, we define the graph

reduction ψtriangle[u, v, w] to contract v and w into the remaining vertex u as

3.1. Graph reductions based on subgraphs 73

shown in Figure 3.2. That is,

ψtriangle[u, v, w] (G) = G′ = (V ′, E ′),

where V ′ = V \{v, w},

E ′ = {ab ∈ E | a, b 6∈ {v, w}}

∪ {ub | b ∈ N(v) ∪N(w)} .

Domain of ψtriangle[u, v, w]: The set of all graphs G = (V,E) where the

three vertices u, v, w ∈ V satisfy

(i) deg(u), deg(v), deg(w) = 3

(ii) uv, uw, vw ∈ E

(iii) |N(u) ∪N(v) ∪N(w)| = 6.

Definition 3.14 (ψdiamond[u, v, w, x] graph reduction). Given a graph G =

(V,E), we define the function ψdiamond[u, v, w, x] to contract v, w and x, three

vertices of a diamond into the remaining vertex u as shown in Figure 3.3.

That is,

ψdiamond[u, v, w, x] (G) = G′ = (V ′, E ′)

where V ′ = V \{v, w, x}

E ′ = {ab ∈ E | a, b 6∈ {v, w, x}}

∪ {ub | b ∈ N(x)\ {v, w}} .

Domain of ψdiamond[u, v, w, x]: The set of graphs G = (V,E) where the four

distinct vertices u, v, w, x ∈ V satisfy

(i) deg(u), deg(v), deg(w), deg(x) = 3

(ii) uv, uw, vw, vx, wx ∈ E

(iii) |N(u) ∩N(x)| = 2.

3.2. Graph reductions based on H. and N.H. edges 74

u

v

w

x u

Figure 3.3: A diamond in a graph before (left) and after (right) its reduction
with ψdiamond[u, v, w, x].

Lemma 3.15. The reductions ψtriangle[u, v, w] and ψdiamond[u, v, w, x] pre-

serve Hamiltonicity and are recoverable.

Proof. First consider ψtriangle. It follows as a direct consequence of Propo-

sition 3.12 that ψtriangle preserves Hamiltonicity, and given any Hamiltonian

cycle in the reduced graph the argument made in Proposition 3.12 may be

used to recover a Hamiltonian cycle in the original graph.

Next consider ψdiamond. It is clear that ψdiamond[u, v, w, x] is equivalent to

contracting the triangle uvw by applying Proposition 3.12 and then combin-

ing u and x into one vertex by contracting the edge between them. Since

u and x have degree 2, it is clear that this preserves Hamiltonicity, and the

Hamiltonian cycle in the original graph can be recovered accordingly.

3.2 Graph reductions based on Hamiltonian

and non-Hamiltonian edges

In this section we consider two useful graph reductions that are applicable in

certain situations. In particular, if we know that an edge must be used in all

Hamiltonian cycles, or if we know that an edge cannot be used in any Hamil-

tonian cycle, then under certain additional conditions graph reductions are

possible. We begin by defining the concepts of redundant edges , Hamiltonian

edges , non-Hamiltonian edges , and forced edges .

3.2. Graph reductions based on H. and N.H. edges 75

Definition 3.16 (Redundant edge). An edge uv of a graph G = (V,E) is

said to be redundant if removing the edge does not affect the Hamiltonicity;

that is, G is Hamiltonian if and only if G′ = (V,E\{uv}) is Hamiltonian.

An edge that is not redundant must therefore be one whose removal

changes the graph from being Hamiltonian to being non-Hamiltonian, since

a non-Hamiltonian graph cannot be made Hamiltonian through the removal

of an edge. In general, a redundant edge may be used in some but not all of

the Hamiltonian cycles of a graph.

It is useful to also have terms for edges used in all of the Hamiltonian

cycles, and edges used in none of the Hamiltonian cycles of a graph.

Definition 3.17 (Hamiltonian and non-Hamiltonian edges). An edge that

is used in every Hamiltonian cycle of a graph will be called a Hamiltonian

edge. On the other extreme, an edge not used in any Hamiltonian cycle of a

graph will be called a non-Hamiltonian edge.

To avoid ambiguity, we remark that in the case of a non-Hamiltonian

graph, where every edge is used in all (zero) yet also none of the Hamil-

tonian cycles, we will say that every edge of a non-Hamiltonian graph is

both Hamiltonian and non-Hamiltonian. This flexibility of notation is nec-

essary as the Hamiltonicity of a graph under consideration will typically not

be known in advance. Note that in earlier literature, Hamiltonian edges

and non-Hamiltonian edges are sometimes called a-edges and b-edges re-

spectively [39]. Note also that, by definition, non-Hamiltonian edges are

necessarily redundant.

In general, determining whether any given edge is redundant, Hamil-

tonian, non-Hamiltonian, or in none of these categories, is as difficult as

solving HCP. However, there are some special cases where we can efficiently

(in polynomial time) identify Hamiltonian edges or non-Hamiltonian edges

from the structure of a graph. In practice then, it is useful to distinguish be-

3.2. Graph reductions based on H. and N.H. edges 76

tween the set of all Hamiltonian edges of a graph, which may not be known

a priori , and the subset of Hamiltonian edges that have been deduced as

such by some efficient calculation. Henceforth, the latter will be referred to

as forced edges ,2 defined as follows.

Definition 3.18 (Forced edges). Given a graph G = (V,E), a subset of

the edges F ⊆ E is said to be forced if every edge of F is known to be a

Hamiltonian edge. For convenience, we additionally define F (v) ⊆ V to be

the subset of vertices that are adjacent to v ∈ V using an edge in F .

Observe that if |F (v)| > 2 for any vertex v ∈ V , then G is necessarily

non-Hamiltonian. This condition will be checked as part of the upcoming

graph reduction algorithm.

One efficient test for Hamiltonian edges, which will be used in the up-

coming graph reduction algorithm to identify a set of forced edges F , is given

in Lemma 3.19 as follows.

Lemma 3.19. Let G = (V,E) be a graph, let e ∈ E be an edge in G, and let

G′ = (V,E\{e}) be the graph obtained by removing the edge e. A sufficient

condition for e to be a Hamiltonian edge is that G′ is not 2-connected.

Proof. All Hamiltonian graphs are known to be 2-connected. Since G′ is

not 2-connected, there cannot be a Hamiltonian cycle using the edges of G′.

Therefore, if G has a Hamiltonian cycle it must necessarily pass through the

edge e. Alternatively, if G is not Hamiltonian, then e is a Hamiltonian edge

by definition.

The following result follows immediately from Definition 3.18.

Lemma 3.20. Let G = (V,E) be a graph, let v ∈ V be a vertex, and let

F ⊆ E be a set of forced edges. If |F (v)| = 2 and deg(v) ≥ 3, v has incident

non-Hamiltonian edges going to each vertex of the set N(v)\F (v).

2We note that some authors have used the term forced edges as a synonym for Hamil-
tonian edges. However, in this thesis we make a distinction between the two terms in order
to provide an algorithm that can be executed in polynomial time.

3.2. Graph reductions based on H. and N.H. edges 77

By Lemma 3.20, we define below a Hamiltonicity-preserving graph reduc-

tion ψforced[u, v1, . . . , vm]. After using this reduction, it is common for there to

be a path of three or more forced edges in the graph. This can in turn be han-

dled by another Hamiltonicity-preserving graph reduction ψpath[v1, . . . , vm] in

the upcoming Definition 3.22.

Definition 3.21 (ψforced[u, v1, . . . , vm] graph reduction). Given a graph G =

(V,E), we define the function ψforced[u, v1, . . . , vm] to remove from the graph

the non-Hamiltonian edges uv1, . . . , uvm, that is

ψforced[u, v1, . . . , vm] (G) = (V,E\{uv1, . . . , uvm}).

An example is shown in Figure 3.4.

Domain of ψforced[u, v1, . . . , vm]: The set of graphs G = (V,E) having

vertices u, v1, . . . , vm ∈ V such that the edges uv1, . . . , uvm ∈ E are all known

to be non-Hamiltonian edges (for example by Lemma 3.20.)

u

v1

v2

u

v1

v2

Figure 3.4: A graph with known Hamiltonian edges (green) and known non-
Hamiltonian edges (red), before (left) and after (right) its reduc-
tion with ψforced[u, v1, v2].

Definition 3.22 (ψpath[v1, . . . , vm] graph reduction). Given a graph G =

(V,E), we define the function ψpath[v1, . . . , vm] for m ≥ 3 to contract the

vertices v2, . . . , vm−1 into the vertex v1, that is

ψpath[v1, . . . , vm] (G) = G′ = (V ′, E ′)

where V ′ = V \{v2, . . . , vm−1},

E ′ = {ab ∈ E | a, b 6∈ {v2, . . . , vm−1}} ∪ {v1vm} .

3.2. Graph reductions based on H. and N.H. edges 78

An example is shown in Figure 3.5.

Domain of ψpath[v1, . . . , vm]: The set of graphs G = (V,E) satisfying

(i) v1, . . . , vm ∈ V

(ii) vi 6= vj when i 6= j and i, j = 1, . . . ,m

(iii) 3 ≤ m ≤ |V | − 1

(iv) deg(vi) = 2 for i = 1, . . . ,m− 1

(v) v1v2, v2v3, . . . , vm−1vm ∈ E.

v1

v2

v4

v3

v1

v4

Figure 3.5: A graph with a path of degree-2 vertices, before (left) and after
(right) its reduction with ψpath[v1, v2, v3, v4].

Lemma 3.23. The reductions ψforced[u, v1, . . . , vm] and ψpath[v1, . . . , vm] pre-

serve Hamiltonicity and are recoverable.

Proof. Consider first ψforced. It follows from Definition 3.21 that this reduc-

tion does not remove any edges that could be in a Hamiltonian cycle. Hence,

any Hamiltonian cycle in the reduced graph must also exist in the original

graph. Therefore, ψforced preserves Hamiltonicity and is recoverable.

Next consider ψpath. Suppose there is a Hamiltonian cycle C ′ in the

reduced graph. Since v1 has degree 2, C ′ must contain v1vm, plus a path P

from vm to v1. Then a Hamiltonian cycle can be recovered in the original

graph consisting of P and the edges v1v2, . . . , vm−1vm. Using an equivalent

argument, it can be seen that if there is a Hamiltonian cycle C in the original

graph, there is a corresponding Hamiltonian cycle in the reduced graph.

Hence, ψpath preserves Hamiltonicity and is recoverable.

3.3. Edge orbits and their classification 79

3.3 Edge orbits and their classification

Another way to identify applicable graph reductions is to examine the sym-

metries of a graph. In the presence of certain symmetries, it is possible to

take a subset of the edges of a graph and efficiently demonstrate that one or

more of those edges is redundant and hence can be removed while preserving

Hamiltonicity. These edge subsets are constructed from the symmetries of

the graph by the action of the graph’s automorphism group, defined below.

In this section we introduce the necessary background, with examples,

before providing a novel classification of edge orbits. This classification will

be used to identify redundant edges in the following section. The interested

reader is referred to Godsil and Royle [32] for a more in-depth treatment of

automorphism groups and related theory from a graph theoretic perspective.

Definition 3.24 (Graph automorphism). Given a graph G = (V,E), a bi-

jection ϕ from V to itself is called an automorphism of G if, for any pair of

vertices u, v ∈ V , ϕ(u)ϕ(v) ∈ E if and only if uv ∈ E.

Definition 3.25 (Automorphism group). Let Γ = Aut(G) denote the set of

all automorphisms of a graph G. These automorphisms form a group under

the operation of composition, where the identity element is the identity map

on V [40]. Any automorphisms other than the identity map, if they exist,

are called non-trivial automorphisms . The cardinality of an automorphism

group is called its order .

1

2

3 4

5

6

Figure 3.6: A 6-vertex graph with automorphism group of order 8.

Example 3.26. Consider the graph in Figure 3.6 and its automorphism

group of order 8, Γ = {ϕ1, ϕ2, . . . , ϕ8} below, where each bijection on the

3.3. Edge orbits and their classification 80

vertices {1, 2, . . . , 6} is represented as a product of disjoint cycles:

ϕ1 = () ϕ5 = (12)(56)

ϕ2 = (12) ϕ6 = (1526)(34)

ϕ3 = (56) ϕ7 = (1625)(34)

ϕ4 = (15)(26)(34) ϕ8 = (16)(25)(34).

Each non-trivial automorphism represents a symmetry of the graph. For

example, ϕ2 represents a reflection of the vertices 1 and 2, if we picture

the other four vertices lying in a different plane. The automorphism ϕ4

represents a horizontal reflection of Figure 3.6. As another example, ϕ8

represents a rotation through the centre of the figure of the graph by 180

degrees. Note that {ϕ2, ϕ4} is a set of generators for the whole group,

meaning that any element of the group can be written as some composition

of those two elements:

ϕ1 = ϕ2
2 ϕ5 = (ϕ2 ◦ ϕ4)

2

ϕ2 = ϕ2 ϕ6 = ϕ2 ◦ ϕ4

ϕ3 = ϕ4 ◦ ϕ2 ◦ ϕ4 ϕ7 = ϕ4 ◦ ϕ2

ϕ4 = ϕ4 ϕ8 = ϕ2 ◦ ϕ4 ◦ ϕ2.

It may be shown that this particular group is equivalent to the dihedral group

of order 8, which is the symmetry group of a square [35].

Definition 3.27 (Asymmetric graphs). A graph is said to be asymmetric if

it has no non-trivial automorphisms. Table 3.7 shows the number of asym-

metric and non-asymmetric cubic graphs for up to 20 vertices.

See Figure 3.8 for an example of an asymmetric graph with 12 vertices;

the Frucht graph, described in [29].

Definition 3.28 (Vertex and edge orbits). Given a graph G = (V,E) and

its automorphism group Γ = Aut(G), the vertex orbit of a vertex v ∈ V ,

3.3. Edge orbits and their classification 81

Table 3.7: Number of asymmetric and non-asymmetric cubic graphs by order
up to 20 vertices.

Vertices Asymmetric Non-asymmetric

4 0 1
6 0 2
8 0 5
10 0 19
12 5 80
14 103 406
16 1547 2513
18 22 124 19 177
20 327 580 182 909

Total 351 359 205 112

Figure 3.8: The Frucht graph, one of the five minimal asymmetric cubic
graphs.

denoted by Γ(v), is defined as the set

Γ(v) = {ϕ(v) | ϕ ∈ Γ}.

Similarly, given an edge uv ∈ E, we define the edge orbit of uv, denoted by

Γ(uv), as the set

Γ(uv) = {ϕ(u)ϕ(v) | ϕ ∈ Γ}.

We now define the notations Γ(V) and Γ(E), which by Lemma 3.30 below

are partitions of the vertices and edges of a graph, respectively. Note the

distinction between Γ(V) and Γ(v), the latter being the orbit of a particular

vertex v as defined above; similarly for Γ(E) and Γ(uv).

3.3. Edge orbits and their classification 82

Definition 3.29 (Vertex and edge partitions). Let G = (V,E) be a graph,

and let Γ be the automorphism group of G. The partition of the vertices V

by Γ is defined as

Γ(V) = {Γ(v) | v ∈ V },

and the partition of the edges E by Γ is defined as

Γ(E) = {Γ(uv) | uv ∈ E}.

The following result is well-known and follows from the definitions of

vertex and edge orbits.

Lemma 3.30. Let Γ be the automorphism group of a graph G = (V,E). The

sets Γ(V) and Γ(E) are partitions of V and E, respectively.

Example 3.26 (Continued). Continuing the previous example of graph

automorphisms, we now consider the vertex and edge orbits of the graph

shown previously in Figure 3.6. Recalling that

Γ = {(), (12), (56), (15)(26)(34), (12)(56),

(1526)(34), (1625)(34), (16)(25)(34)},

it is now straightforward to calculate the vertex orbits

Γ(1) = Γ(2) = Γ(5) = Γ(6) = {1, 2, 5, 6}

Γ(3) = Γ(4) = {3, 4},

and to calculate the edge orbits

Γ(12) = Γ(56) = {12, 56}

Γ(13) = Γ(23) = Γ(45) = Γ(46) = {13, 23, 45, 46}

Γ(34) = {34}.

Furthermore, this example clearly shows the partitioning of the six vertices

3.3. Edge orbits and their classification 83

and seven edges, so that

Γ(V) = {{1, 2, 5, 6}, {3, 4}}

Γ(E) = {{12, 56}, {13, 23, 45, 46}, {34}} .

These vertex and edge orbits induced by Γ are shown with colours in Fig-

ure 3.9.

1

2

3 4

5

6

1

2

3 4

5

6

Figure 3.9: The graph shown previously in Figure 3.6 but with its orbits
shown in different colours. On the left, vertices are filled with
either red or yellow according to their vertex orbit. On the right,
edges are highlighted with blue, red or yellow according to their
edge orbit.

Of the partitions Γ(V) and Γ(E), it is particularly the edge partition

Γ(E) of a graph that we have found to be useful for identifying graph reduc-

tions. The motivating principle here is that graphs typically contain edges

not required for forming a particular Hamiltonian cycle, and the goal is to

remove some of these edges. That is, given a graph G and a Hamiltonian

cycle C in G, then all the edges not used in C are redundant with respect

to determining the Hamiltonicity G. Alternatively, if G does not contain

a Hamiltonian cycle, then all of the edges can be removed and the graph

will remain non-Hamiltonian. Unfortunately, without a priori knowledge of

a Hamiltonian cycle (or their absence), deciding if a particular edge is re-

dundant would, in general, require solving two instances of the NP-complete

decision problem; deciding if the graph is Hamiltonian, and then deciding if

the graph is Hamiltonian after the removal of the edge in question. How-

ever, in the case of graphs with certain edge orbits, some of these redundant

edges can be efficiently identified by finding incompatible edge sets, as will

be shown in the following section, Section 3.4.

3.3. Edge orbits and their classification 84

For the purposes of finding edge orbits containing redundant edges, it

is convenient to have a classification of edge orbits. Such a classification is

developed in Theorem 3.36 through the use of the Propositions 3.33 and 3.34

and Lemma 3.35. Although a classification with more categories may be

possible, this classification provides enough granularity for our purposes while

still allowing us to classify orbits efficiently.

Prior to introducing our classification of edge orbits, we first provide a

definition of semiregular graphs :

Definition 3.31. (Semiregular bipartite graph) Let G = (U ∪ V,E) be a

bipartite graph with bipartition {U, V }. The graph G is said to be semireg-

ular if every vertex in U has the same degree, and every vertex in V has

the same degree. Further, if the degrees of vertices in U and V are given by

a and b respectively, we may specifically say that G is (a, b)-semiregular or

equivalently (b, a)-semiregular. Note that if a = b then G is also a-regular.

Given any graph G = (V,E), its automorphism group Γ, and any edge

e ∈ E, Propositions 3.33 and 3.34 and Lemma 3.35 are concerned with the

subgraph H induced by the edges of Γ(e). Propositions 3.33 and 3.34 require

the following definition.

Definition 3.32 (Line graph). Let G = (V,E) be a graph. The line graph

of G, denoted by L(G), is defined as the graph

L(G) = (E,E ′),

where

E ′ =
{

(uv, wx) ∈ E2 | |{u, v, w, x}| = 3
}
.

That is, each vertex of L(G) corresponds to an edge of G, and two vertices

of L(G) are adjacent precisely when their two corresponding edges in G are

incident to a common vertex.

3.3. Edge orbits and their classification 85

Figure 3.10 shows an example of a graph and its line graph.

1

2

3 4

5

6

12

13

23

34

45

46

56

Figure 3.10: A graph (left) and its line graph (right). Vertices of the line
graph are labelled with their corresponding edges in the original
graph.

Proposition 3.33. If H is the subgraph induced by an edge orbit Γ(e), then

the line graph of H is regular.

Proof. First we consider the case that |Γ(e)| = 1, that is, the orbit contains

just a single edge. In this case the line graph L(H) is a singleton graph and

is 0-regular.

Otherwise, |Γ(e)| > 1 so there are multiple edges in the orbit and we

may consider taking any two distinct vertices l1, l2 ∈ L(H). To complete the

proof it must be shown that deg(l1) = deg(l2).

Let vertex l1 in the line graph correspond to an edge u1v1 ∈ Γ(e), and

similarly let vertex l2 in the line graph correspond to an edge u2v2 ∈ Γ(e).

Note that the edges u1v1 and u2v2 may share at most one endpoint, so there

are at least three distinct vertices amongst u1, u2, v1, v2. Since u1v1 and u2v2

are both in Γ(e), by definition there exists an automorphism ϕ ∈ Γ such that

ϕ(u1v1) = u2v2. Without loss of generality, assume the indices are set so that

ϕ(u1) = u2 and ϕ(v1) = v2.

The degree of l1 in the line graph can be expressed as the cardinality of

a particular subset of vertices neighbouring u1 and v1 in H as follows.

deg(l1) = |{w ∈ V \{u1, v1} | wu1 ∈ Γ(e) or wv1 ∈ Γ(e)}| .

3.3. Edge orbits and their classification 86

By definition of edge orbits and the automorphism ϕ, a condition such as

wu1 ∈ Γ(e) holds if and only if ϕ(w)ϕ(u1) ∈ Γ(e). Therefore,

deg(l1) = |{w ∈ V \{u1, v1} | ϕ(w)ϕ(u1) ∈ Γ(e) or ϕ(w)ϕ(v1) ∈ Γ(e)}|

= |{w ∈ V \{u1, v1} | ϕ(w)u2 ∈ Γ(e) or ϕ(w)v2 ∈ Γ(e)}| .

Applying the automorphism ϕ to both sides of the condition w ∈ V \{u1, v1},

and letting x = ϕ(w), we obtain

deg(l1) = |{ϕ(w) ∈ V \{ϕ(u1), ϕ(v1)} | ϕ(w)u2 ∈ Γ(e) or ϕ(w)v2 ∈ Γ(e)}|

= |{x ∈ V \{u2, v2} | xu2 ∈ Γ(e) or xv2 ∈ Γ(e)}|

= deg(l2).

The following result is inspired by a similar result in [32], Lemma 1.7.5,

which is stated in terms of line graphs rather than edge orbits. The proof

below is more detailed, with [32] leaving steps to the reader as an exercise.

Proposition 3.34. If H is the subgraph induced by an edge orbit Γ(e) and H1

is a connected component of H, then either H1 is non-bipartite and regular,

or H1 is bipartite and semiregular.

Proof. First we deal with the trivial case that H1 contains only one edge; H1

is then bipartite and (1, 1)-semiregular. Otherwise, H1 contains at least two

edges. Since H1 is a connected component of H, it follows that L(H1) must

be a connected component of L(H). By Proposition 3.33, the line graph

L(H) is regular, therefore L(H1) is also regular with the same degree; let

this degree be k.

Let uv and vw be any two adjacent edges in H1. Calculating the degrees

of u, v and w with respect to H1, the k-regularity of L(H1) guarantees that

deg(u) + deg(v) = k + 2, and

deg(v) + deg(w) = k + 2.

3.3. Edge orbits and their classification 87

Equating the left hand sides yields

deg(u) = deg(w).

Since the only condition on vertices u and w is that they have a path of

length 2 between them (via v in this case), we may conclude that all pairs

of vertices in H1 with a path of length 2 between them necessarily have the

same degree.

Let A be the set containing u and all vertices with paths of even length

from u. Similarly, let B be the set containing v and all vertices with paths of

even length from v. Applying the argument above, all vertices in A have the

same degree, and all vertices in B have the same degree; let these degrees be

a and b respectively. Since every vertex in H1 has a path of even length to

either u or v, or to both, A∪B contains all the vertices of H1. Finally, there

are just two cases to consider: If H1 contains a cycle of odd length, then

A = B and thus H1 will be non-bipartite and a-regular. Otherwise, if H1

contains no cycles of odd length, then A ∩B = ∅, and H1 must be bipartite

and (a, b)-semiregular.

Lemma 3.35. If the subgraph H induced by an edge orbit Γ(e) has more

than one connected component, every such component of H is isomorphic to

the other components.

Proof. Let H1 and H2 be two connected components of H, let u1v1 be an

edge of H1, and let u2v2 be an edge of H2. By the definition of Γ(e), there

must be an automorphism ϕ ∈ Γ such that ϕ(u1)ϕ(v1) = u2v2. Note that ϕ

must also map any neighbouring edges of u1v1, if any, to neighbouring edges

of u2v2. This argument can be repeated inductively on those neighbouring

edges, et cetera, until the entire connected component H1 is mapped to H2

by ϕ. Similarly, it can be shown that the entire connected component H2 is

mapped to H1 by ϕ−1. Since a one-to-one mapping exists between H1 and

3.3. Edge orbits and their classification 88

H2, they are by definition isomorphic, and as H1 and H2 could be any two

components of H, this proves that all the components are isomorphic.

For Theorem 3.36 below, we use the notation kG, where k ∈ N and G

is a graph, to denote the disjoint union of k copies of G. The notations

Xr and Xr,s, further described in the theorem, are used to denote generic

regular graphs with minimum degree 3, and semiregular bipartite graphs

with minimum degree 2, respectively.

Theorem 3.36. Given a graph G = (V,E) and any edge e ∈ E, the edge

orbit Γ(e) may be classified into one of the following six mutually exclusive

types that can be identified by the number of connected components k in the

subgraph H induced by Γ(e) and the structure of those components.

(kK2) Each component of H is a complete graph with two vertices.

(kP2) Each component of H is a path graph with two edges.

(kSr) Each component of H is a star graph with r edges, where r ≥ 3.

(kCn) Each component of H is a cycle graph with n vertices, where n ≥ 3.

(kXr) Each component of H is isomorphic to the same r-regular non-

bipartite cyclic graph Xr, where r ≥ 3.

(kXr,s) Each component of H is isomorphic to the same (r, s)-semiregular

bipartite cyclic graph Xr,s, where r ≥ s ≥ 2 and r ≥ 3.

Proof. Firstly, observe that each of the six cases are mutually exclusive. Next,

by Lemma 3.35 we know that all the connected components of H are isomor-

phic to one another so we only need to consider one connected component H1

of H. We will show that H1 is in one of the six forms listed in the theorem.

The primary tool to distinguish amongst forms is Proposition 3.33; each edge

in H1 has the same number of neighbouring edges. Thus, we take any edge

e from H1 and let l be the degree of L(H1).

3.3. Edge orbits and their classification 89

By Proposition 3.34 we know that H1 is either regular or semiregular. In

the former case let a and b both equal the degree of H1. In the latter case

let a and b be such that a ≥ b and H1 is (a, b)-semiregular. The following

easily-verified equation will be used several times in the remainder of the

proof:

a+ b = l + 2. (3.1)

For the purposes of this proof it is useful to separate the cases based on

whether H1 is cyclic or acyclic. First we consider all the possible cases when

H1 is acyclic: If l = 0, then H1 contains only one edge and the orbit is of type

kK2. If l = 1, then H1 must be a 2-path and the orbit must be of type kP2.

Otherwise, if l ≥ 2, then we will show that H1 is a star graph Sl+1. Since we

assume H1 is acyclic, it must contain vertices of degree 1. Therefore, b = 1

and by (3.1), a = l + 1 ≥ 3. It is clear that the star graph Sa is the only

(1, a)-semiregular connected graph, thus H1 is isomorphic to Sa and the orbit

is of type kSa.

In turn, we consider all the possible cases when H1 is a cyclic graph. If

H1 contains a cycle, it necessarily follows that l ≥ 2 since each edge on a

cycle has at least two adjacent edges; this also implies that a ≥ b ≥ 2. The

first case to consider here is when l = 2; in this case the lower bounds on

a and b, together with (3.1), imply that a = b = 2. Since H1 is connected

this leaves a cycle graph as the only possibility and thus the orbit is of type

kCn with n being the number of edges in H1. Lastly, we consider the case

when l ≥ 3; here, the lower bound on b and ordering of a and b, together

with (3.1), imply that a ≥ 3. There are two sub-cases, depending on the

bipartiteness of H1: If H1 is non-bipartite, then by Proposition 3.34 H1 must

be regular with a = b = l+2
2

, so the orbit is of type kXa. Otherwise, H1 must

be bipartite and (a, b)-semiregular, so the orbit is of type kXa,b.

3.3. Edge orbits and their classification 90

Table 3.12: Percentage of edges in each type of orbit, as classified by The-
orem 3.36, for non-asymmetric cubic graphs by order up to 20
vertices.

Vertices Graphs kK2 kP2 kSr kCn kXr kXr,s

4 1 0 0 0 0 100 0
6 2 16.67 0 0 33.33 50.00 0
8 5 25.00 13.33 0 31.67 20.00 10.00
10 19 38.60 19.65 3.16 29.12 5.26 4.21
12 80 49.58 27.64 1.67 20.28 0 0.83
14 406 58.95 29.04 0.74 10.60 0.25 0.42
16 2513 65.91 26.87 0.24 6.84 0.04 0.10
18 19 177 71.43 24.21 0.04 4.28 5× 10−3 0.03
20 182 909 76.08 21.18 0.01 2.72 1× 10−3 7× 10−3

≤ 20 205 112 75.55 21.51 0.02 2.91 3× 10−3 0.01

Since we have enumerated all possible cases, H must belong to one of the

six listed types, concluding the proof.

An example graph containing five of these six orbit types may be seen

in Figure 3.11. Interestingly, the graph displayed is the only instance of

NHNB20 to feature at least five different classes of orbit. The only type of

orbit not shown in Figure 3.11 is the regular Xr type, which for cubic graphs

can only appear in edge-transitive graphs, for example the Petersen graph in

Figure 1.3.

Table 3.12 shows the prevalence of edges in non-asymmetric cubic graphs

up to order 20 constituting each of these types of orbits.

3.3. Edge orbits and their classification 91

Figure 3.11: An 18-vertex non-Hamiltonian cubic graph G34034
18 with six edge

orbits highlighted to demonstrate five different types of orbit as
classified by Theorem 3.36: The outer cycle orbit 1C6 in dashed
grey, a triple 2-path orbit 3P2 in yellow, a triple edge orbit 3K2

in blue, a star orbit 1S3 in lilac, a second triple edge orbit 3K2

in dashed maroon, and lastly a bipartite (3, 2)-semiregular orbit
X3,2 in red.

3.4. Graph reductions based on edge orbits 92

3.4 Graph reductions based on edge orbits

We now turn our attention to considering how edge orbits may aid in the iden-

tification of graph reductions, and hence introduce several new Hamiltonicity-

preserving graph reductions. We begin by defining the concept of an incom-

patible edge set .

Definition 3.37 (Incompatible edge set). We define a non-empty subset D

of the edges E in a graph to be incompatible if it is not possible to use all

the edges of D in the same Hamiltonian cycle.

In general, determining whether an arbitrary subset of edges is incom-

patible requires knowledge of all the Hamiltonian cycles of the graph, so in

practice we just consider some common structures that are guaranteed to be

incompatible. A list of these common structures is given in Theorem 3.38,

although this list is not intended to be exhaustive. Examples of sets of edges

satisfying the conditions listed in Theorem 3.38 are shown in Figure 3.13.

Theorem 3.38. Let G = (V,E) be a graph and let D ⊆ E be a non-empty

subset of the edges. Then D is incompatible if any of the following three

conditions hold:

(i) |D| ≥ 3 and every edge in D is incident to the same vertex v ∈ V .

(ii) |D| < |V | and the subgraph of G induced by D is a cycle graph.

(iii) |D| is odd and D is an edge cut set such that there exists a connected

component G1 of (V,E\D) in which every edge of D has exactly one

endpoint.

Proof. If G does not contain a Hamiltonian cycle, then by definition any

(non-empty) subset of the edges is incompatible. It then remains only to

prove the sufficiency of these conditions for Hamiltonian graphs. The proof

3.4. Graph reductions based on edge orbits 93

will proceed by contradiction; that is, assume G contains a Hamiltonian cycle

using every edge of D and let C ⊇ D be the edges of this cycle.

If D meets condition (i), this would imply a Hamiltonian cycle using three

or more edges incident to v, which is a contradiction as a Hamiltonian cycle

must enter and exit each vertex exactly once. If D meets condition (ii) then

D traces out a short cycle (visiting fewer than |V | vertices), and since a cycle

graph cannot be a subgraph of a larger cycle graph, D 6⊆ C; a contradiction.

Finally, assume D meets condition (iii). Since D is the edge cut set that

separates G1 from the remainder of the graph, we have a partition of the

vertices into two sets with only edges in D having one endpoint in each set.

Then, by Lemma 3.11 the number of edges of D used in C must be even.

But this contradicts the assumption that every edge in D, of which there is

an odd number, is used.

Figure 3.13: Examples of incompatible edge sets as given by Theorem 3.38.
The highlighted edges belong to incompatible edge sets. On the
left is a subset of edges with more than two edges incident to the
same vertex. In the centre is a short cycle. On the right is an
edge cut with an odd number of edges separating a connected
component from the rest of the graph.

Lemma 3.39. Suppose that D ⊆ E is an incompatible edge set of the graph

G = (V,E). Then at least one of the edges in D is redundant.

Proof. By definition, it is not possible to use all the edges in D in the same

Hamiltonian cycle. Therefore, either D is a set containing a single non-

Hamiltonian edge (in which case it is necessarily redundant), or D contains

3.4. Graph reductions based on edge orbits 94

more than one edge. In the latter case, without loss of generality, suppose

that u1v1 ∈ D and u2v2 ∈ D are not both used in the same Hamiltonian

cycle. If there is a Hamiltonian cycle that uses u1v1, then u2v2 may therefore

be removed without changing the Hamiltonicity. Alternatively, if there is

not a Hamiltonian cycle that uses u1v1, then u1v1 may be removed without

changing the Hamiltonicity. Therefore, at least one of the edges u1v1 and

u2v2 is redundant.

By Lemma 3.39, any incompatible edge set D is guaranteed to contain a

redundant edge. The question then arises; which edges of D are redundant?

As mentioned earlier, in general this question is not necessarily any easier to

answer than the original decision problem (HCP). Neither is it easy to decide

whether a given subset of edges is incompatible. Therefore, we restrict our

attention to only certain incompatible edge sets; in particular, those formed

by the edge partition Γ(E), and only those which can be easily proved to be

incompatible. The key to this process is given in the following theorem.

Theorem 3.40. Given a graph G = (V,E), its automorphism group Γ, and

an edge orbit Γ(uv) ∈ Γ(E), then one of the following conditions must hold:

(i) Every edge of Γ(uv) is redundant.

(ii) Every edge of Γ(uv) is a Hamiltonian edge.

(iii) In the case that G is non-Hamiltonian, both (i) and (ii).

Proof. If G is not Hamiltonian, then by definition every edge in E ⊇ Γ(uv)

is a Hamiltonian edge, and is also redundant. Thus for the remainder of the

proof we only need to consider graphs G that are Hamiltonian.

Suppose that none of the edges of Γ(uv) are redundant. Then by defini-

tion, each of the edges is Hamiltonian.

Alternatively, suppose that at least one of the edges of Γ(uv) is redundant.

Without loss of generality, let e ∈ Γ(uv) be redundant. That is, there exists

3.4. Graph reductions based on edge orbits 95

a Hamiltonian cycle C in G that does not contain e. Consider any other edge

f ∈ Γ(uv). By the definition of the automorphism group Γ, there exists an

automorphism ϕ such that ϕ(e) = f . Then there exists a Hamiltonian cycle

C ′ using the edges {ϕ(c) | c ∈ C}. Since e 6∈ C, then it follows that f 6∈ C ′.

Therefore, f is also redundant in G. Since this argument may be made for

any other edge in Γ(uv), every edge in Γ(uv) is redundant.

Definition 3.41 (ψstar[u, v1, . . . , vm] graph reduction). Given a graph G =

(V,E), we define the function ψstar[u, v1, . . . , vm] for m ≥ 3 to remove one re-

dundant edge uvm from G out of a collection of redundant edges uv1, . . . , uvm

incident to the same vertex u. There may be other edges incident to vertex

u which are not known to be redundant.

ψstar[u, v1, . . . , vm] (G) = (V,E\{uvm}).

An example is shown in Figure 3.14.

Domain of ψstar[u, v1, . . . , vm]: The set of graphs G = (V,E) having vertices

u, v1, . . . , vm ∈ V , m ≥ 3, where the edges uv1, . . . , uvm ∈ E are all known

to be redundant.

u

v1

v4 v3

v2

u

v1

v4 v3

v2

Figure 3.14: A graph with known redundant edges uv1, uv2, uv3, uv4, before
(left) and after (right) its reduction with ψstar[u, v1, v2, v3, v4]. If
the four edges uv1, uv2, uv3, uv4 are in the same orbit (shown in
red), their redundancy is guaranteed by Theorems 3.38 and 3.40.

While ψstar may be used with any incompatible edge set whose edges are

incident to a common vertex, there is a special case in which may one use a

stronger reduction, defined as follows.

3.4. Graph reductions based on edge orbits 96

Definition 3.42 (ψpinwheel[u, v1, . . . , vm] graph reduction). Given a graph

G = (V,E), we define the function ψpinwheel[u, v1, . . . , vm] for m ≥ 2 to re-

move all but one edge uv1 from G out of a collection of redundant edges

uv1, . . . , uvm in the same edge orbit where: (i) v1, . . . , vm are adjacent to the

vertex u, and (ii) one Hamiltonian edge uw is also incident to u.

ψpinwheel[u, v1, . . . , vm] (G) = (V,E\{uv2, . . . , uvm}).

An example is shown in Figure 3.15.

Domain of ψpinwheel[u, v1, . . . , vm]: The set of graphs G = (V,E) with

u, v1, . . . , vm ∈ V , m ≥ 2, and edges uv1, . . . , uvm ∈ E that are all known to

be redundant and where Γ(uv1) = Γ(uv2) = · · · = Γ(uvm). Further, there

must exist another vertex w 6∈ {v1, . . . , vm} in G such that uw is known to

be Hamiltonian.

u

v1

w

v4 v3

v2

u

v1

w

v4 v3

v2

Figure 3.15: A graph with known Hamiltonian edge uw (green) and known
redundant edges uv1, uv2, uv3, uv4, before (left) and after (right)
its reduction with ψpinwheel[u, v1, v2, v3, v4]. If the four edges
uv1, uv2, uv3, uv4 are in the same orbit (shown in red), their
redundancy is guaranteed by Theorems 3.38 and 3.40.

We now define another two reductions ψcycle and ψcut, as follows.

Definition 3.43 (ψcycle[v1, . . . , vm] graph reduction). Given a graph G =

(V,E), we define the function ψcycle[v1, . . . , vm] to remove a redundant edge

vmv1 from a short cycle of edges (v1v2, v2v3, . . . , vmv1) in G.

ψcycle[v1, . . . , vm] (G) = (V,E\{vmv1}).

An example is shown in Figure 3.16.

3.4. Graph reductions based on edge orbits 97

Domain of ψcycle[v1, . . . , vm]: The set of graphs G = (V,E) with ver-

tices v1, . . . , vm ∈ V , 3 ≤ m < |V |, and with edges forming a short cycle

v1v2, v2v3, . . . , vmv1 ∈ E where vmv1 is known to be redundant.

v1

v2

v3v4

v5

v1

v2

v3v4

v5

Figure 3.16: A graph with known redundant edges v1v2, v2v3, . . . , v5v1 in a
short cycle, before (left) and after (right) its reduction with
ψcycle[v1, v2, v3, v4, v5]. If the edges are in the same orbit (shown
in red), their redundancy is guaranteed by Theorems 3.38
and 3.40.

Definition 3.44 (ψcut[u1, v1, u2, v2, . . . , um, vm] graph reduction). Given a

graph G = (V,E), we define ψcut[u1, v1, u2, v2, . . . , um, vm] to remove a re-

dundant edge umvm from an edge cut set {u1v1, . . . , umvm} ⊂ E with odd

cardinality.

ψcut[u1, v1, u2, v2, . . . , um, vm] (G) = (V,E\{umvm}).

An example is shown in Figure 3.17.

Domain of ψcut[u1, v1, u2, v2, . . . , um, vm]: The set of graphs G = (V,E) with

distinct vertices u1, . . . , um, v1, . . . , vm ∈ V and edges u1v1, . . . , umvm such

that m is odd and {u1v1, . . . , umvm} is a minimal cut set; that is, removing

all the edges in the set disconnects the graph but adding any one of them

back decreases the number of (connected) components. Note that this is an

incompatible edge set by Theorem 3.38.

Lemma 3.45. The reductions ψstar, ψpinwheel, ψcycle and ψcut preserve Hamil-

tonicity and are recoverable.

Proof. In the cases of ψstar, ψcycle and ψcut, only a single redundant edge

is removed, and so it is clear that these reductions preserve Hamiltonicity.

3.5. Graph reduction algorithm 98

u1

u2

u3

v1

v2

v3

u1

u2

u3

v1

v2

v3

Figure 3.17: A graph with known redundant edges u1v1, u2v2 and u3v3 form-
ing a minimal cut set, before (left) and after (right) its reduc-
tion with ψcut[u1, v1, u2, v2, u3, v3]. If the edges are in the same
orbit (shown in red), their redundancy is guaranteed by Theo-
rems 3.38 and 3.40.

Furthermore, any Hamiltonian cycle in the reduced graph must necessarily

be present in the original graph, so recoverability follows immediately.

In the case of ψpinwheel, recovery is similarly trivial, so all that remains

is to prove that Hamiltonicity is preserved. From the definition of ψpinwheel,

the reduction removes edges uv2, . . . , uvm, each of which is redundant and

lies in the edge orbit Γ(uv1), from a graph G containing a Hamiltonian edge

uw. Note that any Hamiltonian cycle in G must therefore contain uw, and

hence contain at most one of the edges uv1, . . . , uvm. If none of the edges

uv1, . . . , uvm are used in a Hamiltonian cycle of G, then the removal of any

of these edges cannot alter the Hamiltonicity of G and thus Hamiltonicity

is preserved. Alternatively, let C be a Hamiltonian cycle in G using one of

the edges e ∈ {uv1, . . . , uvm}. Then, since Γ(uv1) = · · · = Γ(uvm), there is

an automorphism ϕ such that ϕ(e) = uv1. Hence, there is a Hamiltonian

cycle that contains uv1, and so the removal of uv2, . . . , uvm does not alter

the Hamiltonicity. Therefore, in all cases, Hamiltonicity is preserved.

3.5 Graph reduction algorithm

Having introduced eleven Hamiltonicity-preserving graph reductions and also

characterised the situations in which they may be applied, it is now possible

to describe a graph reduction algorithm that searches for applicable reduc-

3.5. Graph reduction algorithm 99

tions or applicable compositions of these reductions. Before presenting the

algorithm, it is useful to consider what should be done when multiple reduc-

tions are applicable to a given graph simultaneously; that is, should there be

a preferred order to search for reductions?

Firstly it is clear that the reductions ψH and ψNH which reduce the

graph to the maximum extent possible (to a trivially Hamiltonian or non-

Hamiltonian graph) should have the highest priority if they are determined

to be applicable. Next, it may be argued that the reductions ψtriangle and

ψdiamond, being based on particular subgraphs, may reasonably be applied

prior to reductions based on edge orbits: Since non-trivial edge orbits are

only present when there is some kind of symmetry in the graph, any sub-

graphs whose modification would affect the edge orbits would necessarily

share in the same symmetries. Therefore, as long as all such subgraphs are

modified in the same way (e.g. by ψtriangle or ψdiamond), the symmetries upon

which the orbits are based will remain. In fact, by contracting subgraphs

that are not involved in symmetries, new symmetries may appear.

Table 3.18 shows empirical results on cubic graphs with at least one tri-

angle, between 6 and 20 vertices in order. After performing all applicable

ψtriangle and ψdiamond reductions, the order of the automorphism group in-

creased by a factor of 2.91 on average and the number of asymmetric graphs

reduced by 25.7%. By a similar argument, any reductions made to or at

forced edges (such as ψforced and ψpath) will not affect symmetries elsewhere

in the graph as long as all such structures are modified in the same way.

Based on this reasoning, the upcoming algorithm first searches for condi-

tions allowing the reductions ψH and ψNH, then for reductions based on forced

edges (ψforced and ψpath), then for reductions based on subgraphs (ψtriangle

and ψdiamond) before finally searching for reductions based on edge orbits.

For these reductions based on edge orbits, the only reduction that should

have a clear priority over the others is ψhcycle, which we will use when an

3.5. Graph reduction algorithm 100

Table 3.18: Automorphism group size of cubic graphs of order between 6
and 20 with at least one triangle, before and after performing
all applicable ψtriangle and ψdiamond reductions. The mean fac-
tor increase in the order of the automorphism group for the
graphs modified is also given, as well as the number of asym-
metric graphs (|Γ| = 1) before and after.

Mean |Γ| Asymmetric

Vertices Graphs Before After Factor Before After

6 1 12.00 24.00 × 2.00 0 0
8 3 10.67 33.33 × 4.08 0 0
10 13 9.23 31.08 × 5.71 0 0
12 63 7.83 24.89 × 7.36 5 0
14 399 5.31 18.30 × 7.49 89 4
16 3268 3.88 12.42 × 6.15 1253 317
18 33 496 2.70 7.58 × 4.29 17 372 9016
20 412 943 2.05 4.47 × 2.76 253 557 193 017

All 450 186 2.11 4.77 × 2.91 272 276 202 354

edge orbit C|V | is present, because that leads to a graph that is simple to

establish as Hamiltonian. For the other reductions based on edge orbits

(ψstar, ψpinwheel, ψcycle, and ψcut) it is less obvious how the priorities should be

ranked, or even if the ordering makes any significant difference. To investi-

gate this, a target set of graphs was chosen and all applicable reductions at

each step of the process were compared to determine an appropriate order in

which to search for these reductions.

The target graphs chosen to evaluate the edge orbit reduction order were

the 45 982 cubic graphs up to order 18. Each graph was first reduced only

with ψH, ψNH, ψforced, ψpath, ψtriangle, and ψdiamond, following the first stage of

the algorithm later presented in Algorithm 3.1. Next, the orbits were exam-

ined to see which graph reductions based on edge orbits would be applicable.

If ψhcycle was applicable, or otherwise if only one edge orbit reduction was ap-

plicable, then it would be applied to the graph and the process would restart

from the beginning on the new graph. However, when two or more edge

orbit reductions (other than ψhcycle) were applicable, each of them would be

3.5. Graph reduction algorithm 101

attempted one at a time before restarting the reduction search, recursively

determining which choice could potentially lead to a graph with the fewest

edges. Unfortunately, always trying all possible orderings of reductions makes

the algorithm run in exponential time, so a specific order must be fixed.

The differences in the number of resulting edges, even if zero, were then

recorded for each pair of available reductions at every step. In total, there

were 615 115 pairwise comparisons in processing 6041 (13%) of the starting

graphs, summaries of which are shown in Tables 3.19 to 3.21. Note that the

application of ψcycle was split into two separate cases; one where there is a

short cycle orbit kCn, and the other where there is a kK2 or kP2 orbit that

forms a short cycle when combined with forced edges. These two cases were

compared separately as they occur in fundamentally different circumstances

despite using the same reduction function; Table 3.20 shows the former as

ψcycle and the latter as ψcycle (forced).

From Table 3.19 it can be seen that on these graphs where there are

multiple ways to order the sequence of reductions, the average best and

worst case performance is very close. Specifically, as a percentage of edges

removed with the best possible reduction ordering, the worst case ordering

still reduces 90% as many edges on average. Table 3.20 shows a matrix of

the number of times each pair of reductions was compared, and Table 3.21

shows a matrix of the number of times one reduction outperformed another.

To determine a suitable ranking for the reductions, we consider the pro-

portion of comparisons where each reduction is outperformed by others. For

example, ψcut is never outperformed, so it is reasonable to give it the highest

priority amongst the five. If we then eliminate ψcut from the table of com-

parisons, that then leaves ψstar as never outperformed by other remaining

reductions. Thus we give ψstar the second highest priority. At this point,

3.5. Graph reduction algorithm 102

excluding the already ranked ψcut and ψstar, we have:

Comparisons where ψpinwheel outperformed =
128 + 115

220233 + 9466
≈ 0.11%,

Comparisons where ψcycle outperformed =
645 + 198

220233 + 2478
≈ 0.38%,

Comparisons where ψcycle (forced) outperformed =
12

9466 + 2478
≈ 0.10%.

Hence, ψcycle (forced) has the lowest ratio here, but ψpinwheel is very close. Just

considering the 9466 comparisons between this pair, ψcylce (forced) outperforms

ψpinwheel 115 times compared to only 12 times for the converse. Therefore

ψcycle (forced) is given the third highest priority, and of the remaining two

reductions ψpinwheel is outperformed less often, leaving ψcycle to be the lowest

priority of the five reductions.

Table 3.19: Cubic graphs up to order 18 where multiple graph reductions
of the types ψstar, ψpinwheel, ψcycle, and ψcut were simultaneously
applicable at the same point. The table shows the mean differ-
ence in the number of edges reduced between the best and worst
orders to apply the reductions.

Mean reduction in |E|
Vertices Graphs Comparisons Worst Best Gap

8 1 1 9 9 0
10 5 179 10.20 12.40 2.20
12 22 1491 11.86 12.91 1.05
14 122 7664 13.97 15.86 1.89
16 751 65 748 16.13 17.91 1.78
18 5140 540 032 17.71 19.62 1.91

≤ 18 6041 615 115 17.41 19.30 1.89

Table 3.20: The number of comparisons made between each pair of reduc-
tions. A dash indicates that the given pair were never both
applicable at the same point for the graphs tested.

ψstar ψpinwheel ψcycle ψcycle (forced) ψcut

ψstar 238 – 569 75 776
ψpinwheel – 372 544 220 233 9466 –
ψcycle 569 220 233 1394 2478 529
ψcycle (forced) 75 9466 2478 6802 –
ψcut 776 – 529 – 11

3.5. Graph reduction algorithm 103

Table 3.21: The number of comparisons between reductions where one reduc-
tion led to a graph with fewer edges than the other reduction.
For example, the 450 in the ψstar row and ψcycle column indicates
that ψstar outperformed ψcycle on 450 occasions. A dash indicates
that the given pair were never both applicable at the same point
for the graphs tested.

Better

Worse
ψstar ψpinwheel ψcycle ψcycle (forced) ψcut

ψstar 10 – 450 0 0
ψpinwheel – 826 645 12 –
ψcycle 0 128 119 0 0
ψcycle (forced) 0 115 198 0 –
ψcut 11 – 466 – 0

Having determined a suitable ordering in which to search for reductions,

Algorithms 3.1 to 3.4 are presented on the following pages. For the sake of

readability and modularity, the main algorithm, GraphReduction (Algo-

rithm 3.1), makes repeated calls to three separate functions, each of which

is a graph reduction algorithm in its own right: ForcedEdgeReduction

(Algorithm 3.2) searches for reductions based on forced edges, Subgraph-

Reduction (Algorithm 3.3) searches for reductions based on particular sub-

graphs, and EdgeOrbitReduction (Algorithm 3.4) searches for reductions

based on edge orbits.

Prior to the pseudocode of the algorithms, Figure 3.22 shows a flowchart

of the main steps in Algorithm 3.1, and Figure 3.23 shows flowcharts of the

main steps in Algorithms 3.2 to 3.4. A GNU Octave / MATLAB implemen-

tation may be found in Appendix C. Section 3.6 presents empirical results

of Algorithm 3.1 on the set NHNB20, with a discussion of the findings, con-

cluded with three examples of graphs reduced by the algorithm.

Theorem 3.46. Algorithm 3.1 terminates in polynomial time for graphs of

bounded degree.

Proof. At each iteration of the algorithm, it either terminates, or removes at

least one edge. Since the graph is of bounded degree, there is order O(n)

3.5. Graph reduction algorithm 104

edges, so there are polynomially many iterations. Hence, we focus on the

complexity of each iteration.

During each iteration we may need to check for one or more of the follow-

ing: Connectivity, the criterion of Ore’s theorem, the presence of triangles

or diamonds, consecutive degree-2 vertices, cycles containing forced edges,

and minimal edge cut sets. Each of these can be checked in polynomial time.

During this process, we may also need to find the edge orbits. The edge or-

bits can be computed in polynomial time since finding a set of generators for

the automorphism group is known to be polynomial-time equivalent to the

graph isomorphism problem [54] which in turn is of polynomial complexity

for graphs of bounded degree [53]. Hence, Algorithm 3.1 will terminate in

polynomial time for graphs of bounded degree.

In practice, we do not compute the edge orbits by using graph isomor-

phism directly, instead choosing to use the excellent nauty package [55],

which we found to terminate very quickly for the graphs we considered. We

remark that the restriction of Theorem 3.46 to graphs of bounded degree

can be avoided in some sense by converting a non-sparse HCP instance to a

sparse instance, and then considering the latter instead. Indeed, any HCP

instance can be converted to a cubic instance having the same Hamiltonicity,

with only linear growth in the size of the graph [22].

In the upcoming pseudocode, ψidentity denotes the identity function map-

ping any graph G to itself. Where S is any subset of edges in a graph

G = (V,E), we use NS(u) to denote the set of vertices adjacent to u ∈ V

using only edges in S; more precisely, NS(u) = {v ∈ V | uv ∈ S}. Further,

if S ⊆ E then let GS denote the subgraph induced by the edges in S. Simi-

larly, if U ⊆ V then let GU denote the subgraph induced by the vertices in

U . Comments in the pseudocode are preceded by .. Each graph reduction

algorithm returns a graph reduction rather than the reduced graph itself.

3.5. Graph reduction algorithm 105

Start
GraphReduction

NH condition

H condition

ForcedEdge-
Reduction

Found ψ

Subgraph-
Reduction

Found ψ

EdgeOrbit-
Reduction

Found ψ

Stop

ψNH

ψH

ψ

yes

no

yes

no

yes

no

yes

no

yes

no

Key:

Algorithm start/stop

Check for
condition

Append to
output

Sub-algorithm

Figure 3.22: Flowchart of Algorithm 3.1.

3.5. Graph reduction algorithm 106

Start
ForcedEdge-
Reduction

Excess
forced

Redundant
edge

Forced
path

2 forced
in 3-cycle

Stop

ψNH

ψforced

ψpath

ψcycle

yes

yes

yes

yes

no

no

no

no

Start
Subgraph-
Reduction

|V | ≤ 4

Found
triangle

Found
diamond

Stop

ψtriangle

ψdiamond

yes

yes

yes

no

no

no

Start
EdgeOrbit-
Reduction

Orbit
forms HC

Orbit+forced
forms HC

Odd edge
cut in orbit

Has star
orbit

Orbit+forced
=short cycle

Orbit+forced
=star

Orbit contains
short cycle

Stop

ψhcycle

ψhcycle

ψcut

ψstar

ψcycle

ψpinwheel

ψcycle

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

Figure 3.23: Flowchart of Algorithms 3.2 to 3.4. Refer to Figure 3.22 for key.

3.5. Graph reduction algorithm 107

Algorithm 3.1 Find a Hamiltonicity-preserving graph reduction

Input: G = (V,E) is a graph
Output: A Hamiltonicity-preserving graph reduction

1 function GraphReduction(G)
2 ψ ← ψidentity

3 loop
4 if ψ = ψNH ◦ · · · then
5 return ψ

6 if G is not 2-connected then
7 ψ ← ψNH ◦ ψ
8 return ψ

9 if |E| = 1
2
|V |(|V | − 1) then

10 ψ ← ψH ◦ ψ . G is a complete graph Kn, n ≥ 3
11 return ψ

12 if minu,v∈V ; uv 6∈E; u6=v(deg(u) + deg(v)) ≥ |V | then
13 ψ ← ψH ◦ ψ . Hamiltonian by Ore’s Theorem (3.7)
14 return ψ

15 ψnext ← ForcedEdgeReduction(G)
16 if ψnext 6= ψidentity then
17 ψ ← ψnext ◦ ψ
18 G ← ψnext(G)
19 restart loop

20 ψnext ← SubgraphReduction(G)
21 if ψnext 6= ψidentity then
22 ψ ← ψnext ◦ ψ
23 G ← ψnext(G)
24 restart loop

25 ψnext ← EdgeOrbitReduction(G)
26 if ψnext 6= ψidentity then
27 ψ ← ψnext ◦ ψ
28 G ← ψnext(G)
29 restart loop

30 return ψ . No further reductions found

3.5. Graph reduction algorithm 108

Algorithm 3.2 Find a graph reduction based on forced edges

Input: G = (V,E) is a graph
Output: A Hamiltonicity-preserving graph reduction

1 function ForcedEdgeReduction(G)
2 F ← the forced edge set

{
uv ∈ E | GE\{uv} is not 2-connected

}
3 if maxu∈V |F (u)| > 2 then
4 return ψNH . Too many forced edges at a vertex

5 if ∃u ∈ V such that |F (u)| = 2 and deg(u) > 2 then
6 v1, v2, . . . ← the elements of N(u)\F (u)
7 return ψforced[u, v1, v2, . . .]

8 U ← {v ∈ V | deg(v) = 2}
9 for each connected component P = (PV , PE) ⊆ GU do
10 if |PV | > 1 then
11 if |V | = 3 then
12 return ψidentity . G already reduced to K3

13 u1, u2, . . . ← a sequence of vertices tracing out P
14 if |PV | > |V | − 2 then
15 truncate u1, u2, . . . to the first |V | − 2 items

16 v← the vertex in V \PV adjacent to the last vertex in u1, u2, . . .
17 return ψpath[u1, u2, . . . , v]
18 else
19 u ← the one element of PV
20 v, w ← the two elements of N(u)
21 if vw ∈ E then
22 return ψcycle[v, u, w] . vw is a redundant edge

23 return ψidentity

Algorithm 3.3 Find a graph reduction based on subgraphs

Input: G = (V,E) is a graph
Output: A Hamiltonicity-preserving graph reduction

1 function SubgraphReduction(G)
2 if |V | ≤ 4 then
3 return ψidentity . No subgraph reductions applicable

4 for each vertex set {u, v, w} inducing a triangle in G do
5 if deg(u), deg(v), deg(w) = 3 and |N(u)∪N(v)∪N(w)| = 6 then
6 return ψtriangle[u, v, w]

7 for each vertex set {u, v, w, x} inducing a diamond in G do
8 order the values of u, v, w, x so that uvw and vwx are triangles
9 if deg(u), deg(v), deg(w), deg(x) = 3 and |N(u)∩N(x)| = 2 then
10 return ψdiamond[u, v, w, x]

11 return ψidentity

3.5. Graph reduction algorithm 109

Algorithm 3.4 Find a graph reduction based on edge orbits

Input: G = (V,E) is a graph
Output: A Hamiltonicity-preserving graph reduction

1 function EdgeOrbitReduction(G)
2 classify type of each orbit O ∈ Γ(E) according to Theorem 3.36
3 F ← the forced edge set

{
uv ∈ E | GE\{uv} is not 2-connected

}
. An orbit may trace out a complete Hamiltonian cycle

4 if maxu∈V deg(u) ≥ 3 and ∃O ∈ Γ(E) of type 1C|V | then
5 v1, . . . , vn ← a sequence of vertices tracing out GO

6 return ψhcycle[v1, . . . , vn]

. Search for complete cycles using one or more forced edges
7 if ∃O ∈ Γ(E) of type kK2 or kP2, s.t. GO∪F is a |V |-cycle then
8 v1, . . . , vn ← a sequence of vertices tracing out GO∪F
9 return ψhcycle[v1, . . . , vn]

. Search for minimal edge cut sets of odd size
10 for each O ∈ Γ(E) of type kK2 or kP2, s.t. k 6= 2n ∀n ∈ Z do
11 if GE\O has more than one connected component then
12 uv ← any edge from O
13 W ← the vertices of the component of GE\O containing u
14 X ← the vertices of the component of GE\O containing v
15 u1w1, . . . , uawa ← the edges in O\{uv} from W to V \W
16 v1x1, . . . , vbxb ← the edges in O\{vu} from X to V \X
17 if a+ 1 is odd then
18 return ψcut[u1, w1, . . . , ua, wa, u, v]
19 else if b+ 1 is odd then
20 return ψcut[v1, x1, . . . , vb, xb, v, u]

. Search for orbits containing star graphs or star subgraphs
21 if ∃O ∈ Γ(E) of type kSr, kXr or kXr,s, then
22 u ← any vertex in V s.t. |NO(u)| ≥ 3 . Exists by Theorem 3.36
23 v1, v2, . . . ← the elements of NO(u)
24 return ψstar[u, v1, v2, . . .]

. Search for short cycles using one or more forced edges
25 if ∃O ∈ Γ(E) of type kK2 or kP2, s.t. GO∪F has a cycle C then
26 v1, . . . , vm ← a sequence of vertices tracing out C s.t. vmv1 ∈ O
27 return ψcycle[v1, . . . , vm]

. Search for forced edge and two orbit edges incident to one vertex
28 for each u ∈ V s.t. |F (u)| = 1 do
29 if ∃O ∈ Γ(E) not of type kK2 s.t. |NO(u)\F (u)| ≥ 2 then
30 v1, v2, . . . ← the elements of NO(u)\F (u)
31 return ψpinwheel[u, v1, v2, . . .]

. Search for an orbit containing a short cycle
32 if ∃O ∈ Γ(E) of type kCn s.t. n < |V | then
33 v1, . . . , vn ← a sequence of vertices tracing out one cycle in O
34 return ψcycle[v1, . . . , vn]

35 return ψidentity

3.6. Results of reduction algorithm on cubic graphs 110

3.6 Results of reduction algorithm on cubic

graphs

This section presents results of applying Algorithm 3.1 to cubic graphs, the

efficacy of the Base Model on the resultant reduced graphs, and three step-

by-step examples of graphs with reductions.

A summary of the reducible cubic graphs up to order 20 may be seen in

Table 3.24. The algorithm is very effective on these graphs, with reductions

found for 455 533 (81.9%) of the graphs, and on average resulting in the

removal of nearly one third of the vertices and edges. Table 3.25 shows a

summary of reductions found on Hamiltonian graphs, and Table 3.26 shows

a summary of reductions found on the non-Hamiltonian non-bridge graphs;

that is, the set NHNB20. A table is not included for bridge graphs, since

Algorithm 3.1 reduces every bridge graph to the trivial non-Hamiltonian

graph K2 after checking connectivity.

Table 3.24: Number of cubic graphs reducible by Algorithm 3.1 by initial
order up to 20. For the resulting reduced graphs, the table shows
the mean number of vertices and edges, and the mean percentage
decrease in the number of edges.

Mean size of red. graphs

N Graphs Red. % |V | |E| % ↓ |E|

4 1 1 100 3 3 50.0
6 2 2 100 3 3 66.7
8 5 5 100 3 3 75.0
10 19 18 94.7 3.28 3.39 77.4
12 85 75 88.2 4.71 5.68 68.4
14 509 433 85.1 6.08 7.95 62.1
16 4060 3403 83.8 8.48 11.85 50.6
18 41 301 34 169 82.7 11.15 16.13 40.2
20 510 489 417 427 81.8 13.85 20.38 32.0

All 556 471 455 533 81.9 13.60 19.98 32.9

Since our main goal is to detect non-Hamiltonian graphs, the fact that

the algorithm finds reductions for 1980 (94.3%) of the instances of NHNB20,

3.6. Results of reduction algorithm on cubic graphs 111

Table 3.25: Number of Hamiltonian cubic graphs reducible by Algorithm 3.1,
and those reducible to the trivially Hamiltonian graph K3, by
initial order up to 20. For the resulting reduced graphs, the
table shows the mean number of vertices and edges, and the
mean percentage decrease in the number of edges.

Red.
to K3

Mean size of red. graphs

N Graphs Red. % % |V | |E| % ↓ |E|

4 1 1 100 1 100 3 3 50.0
6 2 2 100 2 100 3 3 66.7
8 5 5 100 5 100 3 3 75.0
10 17 16 94.1 15 88.2 3.44 3.69 77.4
12 80 70 87.5 53 66.3 4.71 5.68 68.4
14 474 398 84.0 232 48.9 6.08 7.95 62.1
16 3841 3185 82.9 1175 30.6 8.48 11.85 50.6
18 39 635 32 516 82.0 6608 16.7 11.15 16.13 40.2
20 495 991 403 034 81.3 39 553 8.0 13.85 20.38 32.0

All 540 046 439 227 81.3 47 644 8.8 14.01 19.98 30.6

Table 3.26: Number of graphs in NHNB20 that are reducible by Algo-
rithm 3.1, and those reducible to the trivially non-Hamiltonian
graph K2, by initial order. For the resulting reduced graphs,
the table shows the mean number of vertices and edges, and the
mean percentage decrease in the number of edges.

Red.
to K2

Mean size of red. graphs

N Graphs Red. % % |V | |E| % ↓ |E|

10 1 1 100 1 100 2 1 93.3
12 1 1 100 1 100 2 1 94.4
14 6 6 100 6 100 2 1 95.2
16 33 32 97.0 31 93.9 2.44 1.69 93.0
18 231 218 94.4 193 83.5 3.60 3.55 86.9
20 1827 1722 94.3 1305 71.4 5.58 6.73 77.6

All 2099 1980 94.3 1537 73.2 5.30 6.27 78.9

3.6. Results of reduction algorithm on cubic graphs 112

a significant majority, makes it a valuable preprocessing step. To evaluate

the extent to which the algorithm assists detection of non-Hamiltonicity, we

now compare the feasibility of the Base Model (introduced in Section 2.1.4)

before and after reductions on these graphs. Recall that infeasibility of the

Base Model is a sufficient condition for non-Hamiltonicity, so an increase

in the number of infeasible LPs indicates that detection has improved. A

summary of the results are shown in Table 3.27. Note that although the

Base Model as originally defined does not detect K2 as non-Hamiltonian, it

is trivial to include a linear constraint such as |V | ≥ 3, and thus we treat

any graph reduced to K2 as having an infeasible Base Model regardless.

Table 3.27: Base Model feasibility of reducible instances of NHNB20, before
and after reduction.

Base LP infeasible

N Reduced Before % After %

10 1 0 0 1 100
12 1 0 0 1 100
14 6 1 16.7 6 100
16 32 6 18.8 31 96.9
18 218 52 23.9 196 89.9
20 1722 418 24.3 1346 78.2

All 1980 477 24.1 1581 79.8

Nearly three quarters of the reduced NHNB cubic graphs are reduced

to K2, so these are straightforward to identify as non-Hamiltonian, but the

remaining 443 reduced graphs are only reduced partially, as illustrated in

Example 3.49 below. Restricting our analysis to these partially reduced

graphs, it is natural to consider the question of whether they are more or

less likely to be detected as non-Hamiltonian by the LP. That is, do the

(partial) graph reductions merely reduce the size of the problem (and hence

the computational complexity to solve), or do the reductions fundamentally

alter the graph in a way that makes it easier (or harder) to detect as non-

Hamiltonian? Table 3.28 shows a contingency table with feasibility of the

Base Model and after making the partial reduction.

3.6. Results of reduction algorithm on cubic graphs 113

Table 3.28: Base Model feasibility after reduction versus Base Model feasibil-
ity before reduction, for instances of NHNB20 that are partially
reduced by Algorithm 3.1.

Feasible after Infeasible after Total

Feasible before 397 41 438
Infeasible before 2 3 5

Total 399 44 443

It is worth noting that although two of the partially reduced graphs of

NHNB20 have an infeasible Base Model LP pre-reduction and a feasible LP

post-reduction, this situation can be eliminated in practice by executing the

Base Model both before and after reduction. Then, if either is infeasible,

the graph is necessarily non-Hamiltonian. At the cost of executing several

LPs (though never more than the number of edges in the graph), the model

could even be checked after each individual reduction, to detect any cases

where only an intermediate reduced graph induces infeasibility during the

reduction process.

For the 443 graphs of NHNB20 that were partially reduced, there may be

opportunities for identifying non-Hamiltonicity in the reduced graphs that

did not exist for the original graphs. Indeed, prior to applying the partial

reductions, only 5 of these 443 instances were detected as non-Hamiltonian

by the Base Model, a proportion of 5
443
≈ 1.13%. After applying the par-

tial reductions, 44 instances were detected as non-Hamiltonian by the Base

Model, a proportion of 44
443
≈ 9.9%. This difference in proportions is strongly

statistically significant, with an exact McNemar’s test giving a p-value of

2.2× 10−10. That is, even if we can only make a partial reduction to a

given graph, we not only decrease the computational complexity of execut-

ing a linear program, but likely also increase the chance of detecting non-

Hamiltonicity with the Base Model.

It should be noted that many of the 443 partially reduced graphs are

isomorphic to one another. In fact, there are only 87 graphs up to iso-

3.6. Results of reduction algorithm on cubic graphs 114

morphism. This means that, in many cases, proving that just one of these

partially reduced instances is non-Hamiltonian constitutes a proof of the non-

Hamiltonicity of multiple instances of NHNB20. Furthermore, 14 of these 87

instances, corresponding to 215 of the 443 partially reduced instances of

NHNB20, were themselves isomorphic to smaller cubic graphs of NHNB20

that were not reducible. Hence, improving the detection for those instances

would often lead to a proof of the non-Hamiltonicity of many larger instances

as well. We now define the problem set NHNB20PR to be this set of 87 non-

isomorphic partially reduced graphs. Edge lists of these 87 instances, and the

IDs of the 443 instances in NHNB20 to which they correspond, may be found

in Appendix A.2. In Chapter 4 we will investigate extensions of the Base

Model, and so will have a particular interest in how the extended models

perform on instances of NHNB20PR, with the eventual goal of solving even

more instances of NHNB20.

Having demonstrated a significant improvement in the number of non-

Hamiltonian graphs detected through polynomial-time methods, we conclude

this chapter with three illustrative examples of the reductions found by Al-

gorithm 3.1. Example 3.47 shows a Hamiltonian graph reduced to K3 along

with a recovery of a Hamiltonian cycle; Example 3.48 shows the famous Pe-

tersen graph reduced to K2; and Example 3.49 shows a NHNB graph for

which only a partial reduction is found. In the examples, edges detected

as forced are dashed, and orbits consisting of more than one edge are drawn

with thick lines highlighted in different colours, while the remaining orbits are

black. The italicised comment below each reduction summarises the change

made to the graph since the previous step.

Example 3.47. A triangle-free 10-vertex graph (G14
10) reduced to K3 after

applying the reduction found by Algorithm 3.1. The example also demon-

strates how a Hamiltonian cycle in the original graph can be recovered from

a Hamiltonian cycle in the reduced graph.

3.6. Results of reduction algorithm on cubic graphs 115

G14
10 =

1 4

7

8
95

3

2
6 10

GraphReduction(G14
10) = ψH ◦ ψpath[1, 4, 7, 10, 8] ◦ ψforced[7, 9]

◦ ψpinwheel[4, 7, 8] ◦ ψpath[1, 2, 6, 3, 5, 9]

◦ ψforced[2, 5] ◦ ψpinwheel[1, 2, 3]

◦ ψcut[1, 4, 5, 9, 6, 10].

ψcut[1, 4, 5, 9, 6, 10]
(
G14

10

)
Edge 6 10 removed.

=

1 4

7

8
95

3

2
6 10

ψpinwheel[1, 2, 3] ◦ · · ·
(
G14

10

)
Edge 13 removed.

=

1 4

7

8
95

3

2
6 10

ψforced[2, 5] ◦ · · ·
(
G14

10

)
Edge 25 removed.

=

1 4

7

8
95

3

2
6 10

3.6. Results of reduction algorithm on cubic graphs 116

ψpath[1, 2, 6, 3, 5, 9] ◦ · · ·
(
G14

10

)
Path 1–2–6–3–5–9

replaced with edge 19.

=

1 4

7

8
9

10

ψpinwheel[4, 7, 8] ◦ · · ·
(
G14

10

)
Edge 48 removed.

=

1 4

7

8
9

10

ψforced[7, 9] ◦ · · ·
(
G14

10

)
Edge 79 removed.

=

1 4

7

8
9

10

ψpath[1, 4, 7, 10, 8] ◦ · · ·
(
G14

10

)
Path 1–4–7–10–8

replaced with edge 18.

=

1

8
9

At this point we have a graph isomorphic to K3 with a Hamiltonian cycle

1–8–9. Applying ψH is not strictly necessary. To recover a Hamiltonian cycle

in the original graph we take this cycle and apply inverses of just the ψpath

reductions:

ψ−1path[1, 4, 7, 10, 8] ◦ · · ·
(
G14

10

)
Edge 18 replaced with

path 1–4–7–10–8.

=

1 4

7

8
9

10

3.6. Results of reduction algorithm on cubic graphs 117

ψ−1path[1, 2, 6, 3, 5, 9] ◦ · · ·
(
G14

10

)
Edge 19 replaced with

path 1–2–6–3–5–9.

=

1 4

7

8
95

3

2
6 10

It is straightforward to verify that 1–4–7–10–8–9–5–3–6–2 is a Hamiltonian

cycle in the original graph.

Example 3.48. The Petersen graph, the smallest NHNB cubic graph, is

reduced to K2 after applying the reduction found by Algorithm 3.1.

G19
10 =

1

23 4

5

6

7

8

910

GraphReduction(G19
10) = ψNH ◦ ψforced[10, 7] ◦ ψpinwheel[2, 5, 6]

◦ ψstar[1, 2, 3, 4].

ψstar[1, 2, 3, 4]
(
G14

10

)
Edge 14 removed.

=

1

23 4

5

6

7

8

910

ψpinwheel[2, 5, 6] ◦ · · ·
(
G14

10

)
Edge 26 removed.

=

1

23 4

5

6

7

8

910

3.6. Results of reduction algorithm on cubic graphs 118

ψforced[10, 7] ◦ · · ·
(
G14

10

)
Edge 10 7 removed.

=

1

23 4

5

6

7

8

910

At this stage Algorithm 3.1 detects more than two forced edges at either

vertex 3 or 5 and so it applies ψNH:

ψNH ◦ · · ·
(
G14

10

)
Graph replaced with K2.

=

1

2

Example 3.49. The smallest NHNB cubic graph just partially reduced by

Algorithm 3.1 (G3337
16). Only a single reduction step is found before the

algorithm terminates.

G3337
16 =

1

2

3
4

5
6

7

8

9

10

1112

13

14

1516

GraphReduction(G3337
16) = ψcycle[1, 2, 5, 3].

3.6. Results of reduction algorithm on cubic graphs 119

ψcycle[1, 2, 5, 3]
(
G3337

16

)
Edge 13 removed.

=

1

2

3
4

5
6

7

8

9

10

1112

13

14

1516

Chapter 4

Extending the Base Model

In Chapter 2 we examined a number of linear models for HCP and TSP

and concluded that the Base Model is the strongest amongst them in two

senses. First, for the non-Hamiltonian HCP instances tested, the Base Model

identifies a proper superset of those which the other models identify. Second,

for the TSP instances tested, the gaps obtained by the Base Model are on

average the smallest amongst the considered models. Indeed, of the 800 TSP

instances tested, only eight instances were found for which the Base Model

is outperformed, in each case by the SST model.

Rather than trying to further reduce the graphs as done in Chapter 3,

an alternative avenue to improve detection of non-Hamiltonian graphs is

to seek to tighten the Base Model itself. In this way we aim to induce

infeasibility more often for non-Hamiltonian graphs. Additionally, we aim

to improve the bounds obtained for TSP instances as this also constitutes

a measure of improvement. To this end, we have considered a variety of

new kinds of constraints, some of which offered improvement while others

appeared to be redundant. In this chapter, we describe the new constraints

for which an improvement is observed for the instances considered. The new

constraints are grouped into several categories, and for each category we

define an extension of the Base Model with the additional constraints. In

120

4. Extending the Base Model 121

particular, we will consider extensions based on the SST model, the presence

of forced edges, the presence of 3-cuts, and an eigenvalue of Hamiltonian

permutation matrices.

Some of the new constraints exploit features that may only be present in

some graphs, but all the constraints are presented in such a way that they

reduce to an empty set of constraints when the features are absent, ensuring

that the models are well-defined for any graph. It should be noted that the

constraints proposed in this chapter are not designed to be minimal in a

redundancy sense, although we will remove redundant constraints when such

redundancies are obvious. With only one exception, the extended models do

not have a higher time complexity than the Base Model. That is, the number

of variables and constraints remains O(n3) for sparse graphs and O(n4) for

dense graphs. For the one model that does have a higher time complexity

than the Base Model, it will be shown that the set of O(n4) constraints

responsible may be replaced by a stronger set of O(n3) constraints.

Throughout this chapter we test the extended models on the two HCP

problem sets NHNB20 and NHNB20PR, and on the two TSP problem sets

ATSP16A and ATSP16AC. NHNB20, introduced in Section 2.2.2, is the

set of all 2099 non-Hamiltonian non-bridge cubic graphs up to order 20, an

index of which may be found in Appendix A.1. NHNB20PR, introduced in

Section 3.6, is the set of 87 graphs to which the 443 partially reduced instances

of NHNB20 are isomorphic. The TSP problem sets are the ATSP16A and

ATSP16AC sets constructed in Section 2.2.4, each containing 400 instances.

Recall that each instance of ATSP16A is a complete instance that is based

on an underlying cubic graph. For each instance in ATSP16A, there is a

corresponding cubic instance in ATSP16AC where only the edges in the

underlying cubic graph are used. Note that, for any instance of ATSP16A

and the corresponding instance in ATSP16AC, those edges in common for

both instances have the same costs.

4. Extending the Base Model 122

We conclude this introduction by recalling the Base Model and the re-

sults of the Base Model on the four problem sets. The following sections

then introduce the extended models along with their results on the problem

sets, showing the improvements gained. Then, in Section 4.5, we define a

combined model that uses constraints from all the extended models. We will

demonstrate that this combined model is stronger than any of its constituent

models, in the sense that instances exist for which the combined model out-

performs all the other extended models considered. Finally, in Section 4.6,

we introduce a method that produces a set of subgraphs for any given HCP

instance, and uses the combined model on these subgraphs to attempt to infer

non-Hamiltonicity of the original instance. We will show that this approach

is successful for almost all instances of NHNB20 and NHNB20PR.

Recall that the Base Model is defined in terms of variables xkr,ia for all

vertices k, i = 1, . . . , n, steps r = 0, . . . , n−1, and adjacent vertices a ∈ N(i).

The value of xkr,ia is intended to be 1 if the arc i�a is used r steps after vertex

k in the Hamiltonian cycle, and 0 otherwise. For convenience, we restate the

(relaxed) linear constraints of the Base Model, from Section 2.1.4. Unless

otherwise restricted, the indices i, j, and k range from 1 to n and that the

indices r and s range from 0 to n− 1.

∑
a∈N(i)

xkr,ia −
∑
a∈N(i)

xkr−1,ai = 0 ∀i, k, r; r 6= 0 (4.1)

∑
a∈N(i)

xkr,ia −
∑

a∈N(k)

xin−r,ka = 0 ∀i, k, r; r 6= 0 (4.2)

n−1∑
r=0

xkr,ia −
n−1∑
r=0

xjr,ia = 0 ∀i, j, k; a ∈ N(i); k 6= j (4.3)

n∑
k=1

xkr,ia −
n∑
k=1

xks,ia = 0 ∀i, r, s; a ∈ N(i); s 6= r (4.4)

n−1∑
r=0

∑
a∈N(i)

xkr,ia = 1 ∀i, k (4.5)

n∑
k=1

∑
a∈N(i)

xkr,ia = 1 ∀i, r (4.6)

4. Extending the Base Model 123

xk0,ia = 0 ∀i, k; a ∈ N(i); i 6= k (4.7)

xkr,ia ≥ 0 ∀k, r; a ∈ N(i). (4.8)

When used in a TSP sense, recall from Section 2.2.3 that we may define the

objective function, which we seek to minimise, to be

n∑
i=1

∑
j∈N(i)

cijx
i
0,ij. (4.9)

We now summarise the results of the Base Model on the problem sets

NHNB20 and NHNB20PR in Table 4.1, the former of which were presented

in Section 2.2.2. Similarly, results of the Base Model on ATSP16A and

ATSP16AC from Section 2.2.5 are summarised in Table 4.2. As in previ-

ous chapters, all results in this chapter were generated using the CPLEXTM

Callable Library version 12.5 [42]. For the HCP instances we report the

number of graphs for which the Base Model is infeasible, and for the TSP

instances we report the sum and mean of the gaps. Recall that for a TSP

instance and a given model, the gap is defined to be the difference between

the length of the optimal tour and the lower bound obtained by that model.

Also recall from Definition 2.11 that for the non-Hamiltonian instances of

ATSP16AC, where no optimal tour exists, we define the gap to be the differ-

ence between the length of the optimal tour of the corresponding complete

instance of ATSP16A, and the lower bound obtained by the model on the

ATSP16AC instance. Finally, recall that the TSP instances were specifi-

cally constructed to induce large gaps between the solution found by the

Base Model and the length of the optimal tour in the complete instances;

indeed, no instances in these sets have zero gap for the Base Model, with the

minimum gap being approximately 48.7 for both sets.

In the upcoming extended models, we report not only infeasibility and

gaps, but also the improvements relative to the Base Model. That is, for HCP

instances we report the number of instances that are feasible for the Base

Model but infeasible for the extended model, if any. For TSP instances, we

4. Extending the Base Model 124

Table 4.1: Results of the Base Model on (a) NHNB20 and (b) NHNB20PR,
by order n.

(a) NHNB20

n Graphs Infeasible

10 1 0
12 1 0
14 6 1
16 33 6
18 231 52
20 1827 418

All 2099 477

(b) NHNB20PR

n Graphs Infeasible

12 1 0
13 1 1
14 7 3
15 5 4
16 9 4
17 23 3
18 17 0
19 6 3
20 18 0

All 87 18

Table 4.2: Results of the Base Model on the 200 Hamiltonian-derived and
200 NHNB-derived instances in each of (a) ATSP16A and (b)
ATSP16AC.

(a) ATSP16A

Subset Sum of gaps Mean

Ham.-derived 16 864.2 84.3
NHNB-derived 289 064.2 1445.3

All 305 928.4 764.8

(b) ATSP16AC

Subset Sum of gaps Mean

Ham.-derived 16 864.2 84.3
NHNB-derived 288 979.2 1444.9

All 305 843.4 764.6

4.1. Merging SST with the Base Model 125

report the number of instances for which the optimal solution changed , and

the mean improvement in the gap for those changed instances. Specifically,

we consider the solution to have changed for a TSP instance, if in the given

extended model there is not a feasible solution with the same xkr,ia values as

those in the optimal feasible solution from the Base Model.

4.1 Merging SST with the Base Model

As seen in Section 2.2.5, there are four instances from the ATSP16A problem

set (and their corresponding four instances in the ATSPC16AC cubic problem

set) for which the SST model outperforms the Base Model. It follows that the

constraints in SST prevent some linear combinations of cycles and subcycles

that are not prevented by constraints in the Base Model. Therefore, a natural

extension to the Base Model is to include variables and constraints analogous

to those in the SST model. We begin by mapping the xij variables from

SST to the xkr,ia variables of the Base Model and including the appropriately

reformulated constraints from SST in the Base Model.

Recall that SST is defined in terms of the following variables:

• xij, intended to be 1 if the arc i�j is used in the cycle, and 0 otherwise.

• yij, intended to be 1 if, starting from vertex 1, vertex j comes later

than vertex i in the cycle, and 0 otherwise.

• f vij, intended to 1 if, starting from vertex 1, the arc i�v is used prior

to visiting vertex j, and 0 otherwise.

While the Base Model contains no natural analogues to the y and f

variables of SST, the xij variables of SST can easily be expressed in terms of

the xkr,ia variables from the Base Model. Specifically, inspecting the objective

functions of the two models it is clear that we can express the variables xij

of SST as

xij = xi0,ij.

4.1. Merging SST with the Base Model 126

Hence the constraints from SST, based on the more general constraints

for potentially non-complete graphs, (2.25), (2.29), (2.43), (2.44), (2.50)

and (2.58) – (2.66) may be reformulated for the Base Model variables as

follows. Unless otherwise restricted, all indices range from 1 to n.

∑
j∈N(i)

xi0,ij = 1 ∀i (4.10)

∑
i∈N(j)

xi0,ij = 1 ∀j (4.11)

yij + yji = 1 ∀i, j; 1 6= i 6= j (4.12)

yij ≥ x10,1i ∀j; i ∈ N(1); 1 6= i 6= j (4.13)

yji ≥ xi0,i1 ∀j; i ∈ N(1); 1 6= i 6= j (4.14)

0 ≤ xi0,ij ≤ 1 ∀i, j; i 6= j (4.15)

yij ≥ 0 ∀i, j; 1 6= i 6= j (4.16)

yij + xj0,ji + yjl + yli ≤ 2 ∀i, l; j ∈ N(i); 1 6= i 6= j 6= l (4.17)

yij + 0 + yjl + yli ≤ 2 ∀i, l; j 6∈ N(i); 1 6= i 6= j 6= l (4.18)

0 ≤ f vij ≤ xi0,iv ∀i, j; v ∈ N(i); 1 6= i 6= v 6= j (4.19)∑
v∈N(i)\{1,j}

f vij + xi0,ij = yij ∀i; j ∈ N(i); 1 6= i 6= j (4.20)

∑
v∈N(i)\{1}

f vij + 0 = yij ∀i; j 6∈ N(i); 1 6= i 6= j (4.21)

x10,1v +
∑
i∈N(v)\{1,j}

f vij = yvj ∀j; v ∈ N(1); 1 6= v 6= j (4.22)

0 +
∑
i∈N(v)\{j}

f vij = yvj ∀j; v 6∈ N(1); 1 6= v 6= j. (4.23)

The intention is now to combine the Base Model constraints (4.1) – (4.8)

with the reformulated SST constraints (4.10) – (4.23). However, there are

some redundancies. Clearly, (4.15) follows from (4.8) and (4.6) where r = 0.

Additionally, (4.10) and (4.11) follow from Lemma 2.13. Hence, adding the

non-redundant constraints above to the Base Model, we obtain a new model

which we call Base-SST.

4.1. Merging SST with the Base Model 127

Definition 4.1 (Base-SST). Minimise (4.9), subject to (4.1) – (4.8), (4.12)

– (4.14) and (4.16) – (4.23). If the costs cij are not provided, find any solution

subject to these constraints.

Table 4.3 shows the results of Base-SST on the problem sets NHNB20

and NHNB20PR. As can be seen, there are no additional instances in these

sets for which Base-SST obtains infeasibility, relative to the Base Model.

Table 4.3: Results of Base-SST on (a) NHNB20 and (b) NHNB20PR, by
order n. The table also shows the improvement in solved instances
relative to the Base Model.

(a) NHNB20

n Graphs Inf. Imprv.

10 1 0 0
12 1 0 0
14 6 1 0
16 33 6 0
18 231 52 0
20 1827 418 0

All 2099 477 0

(b) NHNB20PR

n Graphs Inf. Imprv.

12 1 0 0
13 1 1 0
14 7 3 0
15 5 4 0
16 9 4 0
17 23 3 0
18 17 0 0
19 6 3 0
20 18 0 0

All 87 18 0

Table 4.4 shows the results of Base-SST on the problem sets ATSP16A

and ATSP16AC. It can be seen that, unlike for the HCP instances, there

is a clear improvement over the Base Model in these instances. Indeed, an

improvement is observed in 183 of the 400 instances for both problem sets.

4.1.1 Base-SST model with multiple starting vertices

As seen above, adding the reformulated SST constraints tightens the Base

Model. However, the y and f variables used of the SST constraints are

intended to describe only a cycle starting at vertex 1. In contrast, the vari-

ables of the Base Model are intended to describe the same cycle n times, from

each possible starting vertex. Therefore, a natural extension of Base-SST is

4.1. Merging SST with the Base Model 128

Table 4.4: Results of Base-SST on the 200 NHNB-derived and 200
Hamiltonian-derived instances in each of (a) ATSP16A and (b)
ATSP16AC. The table indicates the number of instances for which
the optimal solution changed relative to the Base Model, and the
mean reduction in gap for these instances.

(a) ATSP16A

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 16 667.5 83.3 101/200 1.947
NHNB-derived 288 895.7 1444.5 82/200 2.054

All 305 563.2 763.9 183/400 1.995

(b) ATSP16AC

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 16 667.6 83.3 101/200 1.947
NHNB-derived 288 810.8 1444.1 82/200 2.054

All 305 478.3 763.7 183/400 1.995

to consider higher-dimensional y and f variables, defined for each possible

starting vertex, as below. Note that for consistency with the Base Model

variables, where the superscript k denotes the starting vertex, the positions

of the indices in the extended y and f variables have been altered.

• ykij, intended to be 1 if, starting from vertex k, vertex j comes later than

vertex i in the cycle, and 0 otherwise, for i, j, k = 1 . . . n; i 6= j 6= k.

• fkia,j, intended to be 1 if, starting from vertex k, the arc i�a is used

prior to visiting vertex j, and 0 otherwise, for i, j, k = 1 . . . n; a ∈

N(i); i 6= a 6= j 6= k.

Constraints (4.12) – (4.14) and (4.16) – (4.23) can now be extended to

use these new variables as follows. Since this extension involves effectively

just replacing every instance of the index 1 with k in the original constraints,

correctness follows from the correctness of Base-SST. Unless otherwise re-

stricted, the indices i, j, k and l range from 1 to n.

4.1. Merging SST with the Base Model 129

ykij + ykji = 1 ∀k, i, j; k 6= i 6= j (4.24)

ykij ≥ xk0,ki ∀k, j; i ∈ N(k); k 6= i 6= j (4.25)

ykji ≥ xi0,ik ∀i, j; i ∈ N(k); k 6= i 6= j (4.26)

ykij + xj0,ji + ykjl + ykli ≤ 2 ∀k, i, l; j ∈ N(i); k 6= i 6= j 6= l (4.27)

ykij + 0 + ykjl + ykli ≤ 2 ∀k, i, l; j 6∈ N(i); k 6= i 6= j 6= l (4.28)

ykij ≥ 0 ∀k, i, j; k 6= i 6= j (4.29)

0 ≤ fkia,j ≤ xi0,ia ∀k, i, j; a ∈ N(i); k 6= i 6= a 6= j (4.30)∑
a∈N(i)\{k,j}

fkia,j + xi0,ij = ykij, ∀k, i; j ∈ N(i); k 6= i 6= j (4.31)

∑
a∈N(i)\{k}

fkia,j + 0 = ykij ∀k, i; j 6∈ N(i); k 6= i 6= j (4.32)

xk0,ki +
∑
b∈N(i)\{k,j}

fkbi,j = ykij ∀k, j; i ∈ N(k); k 6= i 6= j (4.33)

0 +
∑
b∈N(i)\{j}

fkbi,j = ykij ∀k, j; i 6∈ N(k); k 6= i 6= j. (4.34)

We remark that (4.28) contains O(n4) constraints in the event that the

graph is sparse, in contrast to the Base Model which has O(n3) constraints

in total for sparse graphs. This increase in time complexity is undesirable,

however it will be shown in Section 4.1.2 that we can replace both (4.27)

and (4.28) with a stronger set of O(n3) equality constraints.

We now define the model Base-SST-k to use these modified constraints,

where k signifies the use of every starting vertex:

Definition 4.2 (Base-SST-k). Minimise the objective function (4.9), subject

to (4.1) – (4.8) and (4.24) – (4.34). If the costs cij are not provided, find any

solution subject to these constraints.

Unfortunately, as with Base-SST, Base-SST-k is not infeasible for any

additional instances of NHNB20 or NHNB20PR relative to the Base Model.

However, Base-SST-k offers significant improvements in a TSP sense relative

4.1. Merging SST with the Base Model 130

to Base-SST. Table 4.5 shows the results of Base-SST-k on ATSP16A and

ATSP16AC, where improvements are given relative to the Base Model. Un-

like for Base-SST, for which fewer than half of the instances show an improve-

ment, Base-SST-k induces an improved gap in 348 instances of ATSP16A

and ATSP16AC, with the mean improvement in gaps more than three times

as large compared to Base-SST, demonstrating the value of considering the

different starting points.

Table 4.5: Results of Base-SST-k on the 200 NHNB-derived and 200
Hamiltonian-derived instances in each of (a) ATSP16A and (b)
ATSP16AC. The table indicates the number of instances for which
the optimal solution changed relative to the Base Model, and the
mean reduction in gap for these instances.

(a) ATSP16A

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 15 351.9 76.8 188/200 8.044
NHNB-derived 288 363.1 1441.8 160/200 4.382

All 303 715.0 759.3 348/400 6.360

(b) ATSP16AC

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 15 351.9 76.8 188/200 8.044
NHNB-derived 288 278.1 1441.4 160/200 4.382

All 303 630.1 759.1 348/400 6.360

4.1.2 Extended Base-SST model

A further extension to Base-SST is possible by adding linking constraints for

the new y and f variables:

ykij = yijk ∀k, i, j; k < i < j or j < k < i (4.35)

fkia,j + f jia,k = xi0,ia ∀k, i, j; a ∈ N(i); k < j; k 6= i 6= a 6= j. (4.36)

To show the correctness of the new constraints it is sufficient to show that,

for any Hamiltonian cycle, the constraints are satisfied if the variables are set

4.1. Merging SST with the Base Model 131

according to their interpretations, which we show in Proposition 4.4 below.

For use in the upcoming proposition and the remainder of this section,

we introduce the following definition.

Definition 4.3 (Vertex ordering). A vertex ordering , denoted [v0, v1, . . . , vk−1],

indicates an ordered sequence of vertices in a cyclic sense. That is, ver-

tex vi occurs at some point after vi−1 on a cycle, but before vi+1 for all

i = 0 . . . , k − 1, where the subscripts are taken mod k.

Proposition 4.4. Let G = (V,E) be a graph. Constraints (4.35) and (4.36)

are satisfied for any solution of Base-SST-k corresponding to a (directed)

Hamiltonian cycle H in G.

Proof. We first show that (4.35) holds. Let i, j, k ∈ V be distinct and consider

the vertex ordering of these vertices in H. There are just two possible vertex

orderings; [k, i, j] if i precedes j when starting at k, and [k, j, i] otherwise. See

Figure 4.6 for a visualisation. By the stated interpretation of the y variables,

in the case of [k, i, j] we should set ykij = 1. By cyclicity, it is clear that we

should also set yijk = yjki = 1. In the case of [k, j, i] however, ykij = 0 since i

does not precede j, if starting at k. Similarly, yijk = yjki = 0. Thus regardless

of the direction of H and the choice of distinct vertices, we have

ykij = yijk = yjki ∀k 6= i 6= j. (4.37)

k

j

i

[k, i, j]

k

j

i

[k, j, i]

Figure 4.6: An example of two directed Hamiltonian cycles showing both
possible vertex orderings of the vertices i, j and k.

4.1. Merging SST with the Base Model 132

Clearly, (4.37) implies (4.35). However, it can also be shown that (4.35),

along with (4.24), implies (4.37) despite the latter not imposing ordering

requirements on the indices. Without loss of generality, choose three vertices

numbered 1, 2 and 3. It is sufficient to show that (4.35), together with the

other constraints in Base-SST-k, implies

y123 = y231 = y312 (4.38)

y132 = y213 = y321. (4.39)

Immediately from (4.35) we have the two equalities when the indices satisfy

k < i < j and j < k < i, respectively,

y123 = y231 (4.40)

y231 = y312. (4.41)

This implies (4.38). Next, by (4.24) in Base-SST-k, we can exchange the

variables in (4.40) and (4.41) as follows:

1− y132 = 1− y213 (4.42)

1− y213 = 1− y321. (4.43)

It is clear that (4.42) and (4.43) imply (4.39). Therefore, (4.35) implies

(4.37).

Finally we show that (4.36) holds for the Hamiltonian cycle H. Let i�a

be any arc in G. By the stated interpretation of the xi0,ia variables, we can

set xi0,ia = 1 if the arc i�a is used in H, and set xi0,ia = 0 otherwise. In the

latter case, (4.30) will constrain fkia,j and f jia,k to be zero regardless of the

choice of k and j, so (4.36) holds.

It remains to consider the case that xi0,ia = 1. Since a must immediately

follow i, there are again two possible vertex orderings of the vertices k, i, a

and j; either [i, a, j, k] = [k, i, a, j] or [i, a, k, j] = [j, i, a, k]. In the former

case, the arc i�a is used before j if starting at k, so we can set fkia,j = 1

4.1. Merging SST with the Base Model 133

and f jia,k = 0. In the latter case we can similarly set fkia,j = 0 and f jia,k = 1.

Therefore (4.36) holds in either case.

Additionally to the linking constraints (4.35) and (4.36), we may also

replace the inequality constraints (4.27) and (4.28) with a stronger set of

equality constraint as follows:

y1ij + yjil + y1jl + y1li = 2 ∀i, j, l; 1 < i < j < l. (4.44)

We remark that in contrast to (4.27) and (4.28) from Base-SST-k, which to-

gether comprise O(n4) inequality constraints, (4.44) has only O(n3) equality

constraints.

Proving that (4.44) is stronger than (4.27) and (4.28) is non-trivial. First

we consider a more general version of (4.44);

ykij + yjil + ykjl + ykli = 2 ∀k, i, j, l; k 6= i 6= j 6= l. (4.45)

We will first prove in Proposition 4.5 that (4.45) is satisfied for all solutions

corresponding to Hamiltonian cycles and is stronger than (4.27) and (4.28).

Following this, Theorem 4.6 shows that (4.44) and (4.45) are equivalent.

Proposition 4.5. Let G = (V,E) be a graph. Then:

(i) The constraints (4.27) and (4.28) are redundant in the presence of

(4.45) and the other Base-SST-k constraints.

(ii) The constraints (4.45) are satisfied for any solution of Base-SST-k cor-

responding to a Hamiltonian cycle H in G.

Proof. By (4.25) and the non-negativity constraints (4.8) we have

0 ≤ xj0,ji ≤ yjil,

so the left hand sides of (4.27) and (4.28) are both bounded from above by

4.1. Merging SST with the Base Model 134

(4.45) as follows:

ykij + xj0,ji + ykjl + ykli ≤ ykij + yjil + ykjl + ykli = 2

ykij + 0 + ykjl + ykli ≤ ykij + yjil + ykjl + ykli = 2.

Therefore the constraints (4.27) and (4.28) are redundant, hence (i) is proved.

Next, we show that (4.45) is satisfied for the cycle H. Consider four

distinct vertices i, j, k and l in V . There are six possible vertex orderings

of these vertices depending on the cycle H: [k, i, j, l], [k, i, l, j], [k, j, i, l],

[k, j, l, i], [k, l, i, j] and [k, l, j, i]. Setting each of the y variables in (4.45)

according to their interpretations, we tabulate the values for the six possible

vertex orderings:

Vertex ordering ykij yjil ykjl ykli Sum

[k, i, j, l] 1 0 1 0 2

[k, i, l, j] 1 1 0 0 2

[k, j, i, l] 0 1 1 0 2

[k, j, l, i] 0 0 1 1 2

[k, l, i, j] 1 0 0 1 2

[k, l, j, i] 0 1 0 1 2

In every case the sum of the four variables is 2. Therefore the solution

corresponding to H always satisfies (4.45) regardless of the ordering of the

vertices on the cycle.

We remark that the equalities of (4.45) may be especially stronger than

the inequalities of (4.27) and (4.28) when the arc j� i is not used or not

present. In that case, the only potentially positive terms remaining on the

left hand sides of (4.27) and (4.28) are ykij, y
k
jl and ykli, whereas (4.45) has an

additional non-negative term on the left hand side, namely yjil.

Theorem 4.6. The equalities in (4.45) are implied by the subset of
(
n−1
3

)
equalities given in (4.44) and the constraints (4.24) and (4.35).

Proof. This proof consists of two parts. We will first prove that (4.45) is

4.1. Merging SST with the Base Model 135

equivalent to

ykij + yjil + ykjl + ykli = 2 ∀k, i, j, l; k < i < j < l, (4.46)

which is identical to (4.45) except the indices are ordered. Following this, we

will prove that k can be fixed to be 1.

To show the equivalence of (4.45) and (4.46), we will demonstrate that

given any particular equation from (4.46), we can derive additional con-

straints that have the same form but a different ordering of the indices. In

particular, we will show the derivation of two such additional constraints,

which respectively correspond to two cyclic permutations of the indices; (i j)

and (i j l k). Together, these are a generating set for the group of all per-

mutations on the four indices (that is, the symmetric group S4.) Hence, we

will conclude that we can derive any constraint of (4.45) from an appropriate

constraint of (4.46).

Fix any k, i, j, and l, such that k < i < j < l. Then the corresponding

equality from (4.46) is

ykij + yjil + ykjl + ykli = 2. (4.47)

By (4.24) and (4.35), which were shown in Proposition 4.4 to imply (4.37),

we may rotate the indices of any given y term. In this way we take (4.47)

and rotate the indices clockwise in the second term:

ykij + yilj + ykjl + ykli = 2. (4.48)

Then by (4.24), we obtain

(1− ykji) + (1− yijl) + (1− yklj) + (1− ykil) = 2, (4.49)

Next, we multiply both sides by −1 and subtract 4:

ykji + yijl + yklj + ykil = 2. (4.50)

4.1. Merging SST with the Base Model 136

Now we swap the third and fourth terms:

ykji + yijl + ykil + yklj = 2. (4.51)

It can be seen that the steps in (4.48) – (4.51) correspond to the cyclic

permutation (i j) on the indices of (4.47).

Next, we may take (4.51) and rotate the indices of the first, third and

fourth terms, respectively, anti-clockwise, clockwise and clockwise:

yikj + yijl + yilk + yljk = 2. (4.52)

Finally, we rotate the positions of the first, fourth and second terms:

yijl + yljk + yilk + yikj = 2. (4.53)

The steps in (4.48) – (4.53) can be seen to correspond to the cyclic per-

mutation (i j l k) on the indices of (4.47). Thus by the group properties of

S4 for which {(i j), (i j l k)} is a generating set, all possible permutations of

(4.45) are implied by (4.46) in the presence of (4.35) and the constraints in

Base-SST-k.

Finally, we prove that any equality from (4.46) can be derived from equal-

ities in (4.44). That is, we can effectively fix k to be 1 without weakening

the constraint set (4.46).

Consider again (4.47) for any choice of k > 1; that is, 1 < k < i < j < l.

We will show that (4.47) follows from the following four equalities in (4.44):

y1ij + yjil + y1jl + y1li = 2 (4.54)

y1ki + yikl + y1il + y1lk = 2 (4.55)

y1kj + yjkl + y1jl + y1lk = 2 (4.56)

y1ki + yikj + y1ij + y1jk = 2. (4.57)

Then, by adding (4.54) and (4.55) and subtracting (4.56) and (4.57), we

4.1. Merging SST with the Base Model 137

obtain

y1ij + yjil + y1jl + y1li + y1ki + yikl + y1il + y1lk

− y1kj − y
j
kl − y

1
jl − y1lk − y1ki − yikj − y1ij − y1jk = 0,

and after simplifying,

yjil + yikl − y
j
kl − y

i
kj + (y1li + y1il)− (y1kj + y1jk) = 0. (4.58)

By (4.24), y1li + y1il = y1kj + y1jk = 1, so (4.58) reduces to

yjil + yikl − y
j
kl − y

i
kj = 0. (4.59)

Also by (4.24), we can replace the negated terms of (4.59) as follows:

yjil + yikl + (yjlk − 1) + (yijk − 1) = 0.

Finally, by rotating the indices and simplifying, we obtain

ykij + yjij + ykjl + ykli = 2,

which is identical to (4.47).

Having established the correctness of (4.35), (4.36) and (4.44), we now

define an extension of Base-SST-k which we name Base-SST-k-Ext.

Definition 4.7 (Base-SST-k-Ext). Minimise (4.9), subject to (4.1) – (4.8),

(4.24) – (4.26), (4.29) – (4.36) and (4.44). If the costs cij are not provided,

find any solution subject to these constraints.

As with Base-SST and Base-SST-k, Base-SST-k-Ext is not infeasible for

any additional instances of NHNB20 or NHNB20PR relative to the Base

Model. However, there are additional improvements in a TSP sense, which

are shown in Table 4.7. Indeed, an additional 10 instances for each of

ATSP16A and ATSP16AC display improvement, and the mean reductions

in the gaps of each case are also significantly improved.

4.1. Merging SST with the Base Model 138

Table 4.7: Results of Base-SST-k-Ext on the 200 NHNB-derived and 200
Hamiltonian-derived instances in each of (a) ATSP16A and (b)
ATSP16AC. The table indicates the number of instances for which
the optimal solution changed relative to the Base Model, and the
mean reduction in gap for these instances.

(a) ATSP16A

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 14 756.9 73.8 193/200 10.919
NHNB-derived 288 170.2 1440.9 165/200 5.418

All 302 927.1 757.3 358/400 8.383

(b) ATSP16AC

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 14 756.9 73.8 193/200 10.919
NHNB-derived 288 085.2 1440.4 165/200 5.418

All 302 842.1 757.1 358/400 8.383

The additional improvements offered by Base-SST-k-Ext are particularly

pleasing given that the model has O(n4) fewer constraints than Base-SST-k.

As noted, unlike Base-SST-k, Base-SST-k-Ext has the same time complexity

as the Base Model. Thus, in the combined model to be introduced in Sec-

tion 4.5, we can include the constraints of Base-SST-k-Ext to take advantage

of this significant improvement without increasing the time complexity of the

model.

As mentioned in the chapter introduction, there are eight TSP instances

for which SST outperforms the Base Model. Specifically, these instances,

identified in Section 2.2.5, comprise four instances from the problem set

ATSP16A and their corresponding four instances from ATSP16AC. Since

we have included the SST constraints in the three models developed in this

section, it follows that SST cannot outperform any of these extended models

on these four instances. Rather, the combination of SST and Base Model

constraints in Base-SST, Base-SST-k and Base-SST-k-Ext leads to signifi-

cant additional improvement on these four instances, which we highlight in

4.1. Merging SST with the Base Model 139

Table 4.8. Note that the gaps obtained for these four instances in ATSP16A

are identical to the gaps obtained for the four corresponding instances in

ATSP16AC, so we only report gaps for the former.

Table 4.8: Gaps for each of the Base Model, Base-SST, Base-SST-k and Base-
SST-k-Ext on the four instances from ATSP16A for which SST
outperforms the Base Model.

ID Base Model SST Base-SST Base-SST-k Base-SST-k-Ext

92 66.2 62.7 57.6 49.6 49.3
105 77.2 75.1 66.3 65.4 64.9
259 1465.7 1462.5 1455.1 1440.8 1438.6
338 1444.1 1434.5 1427.9 1425.2 1424.8

We now conclude this section with two visualisations of the relative im-

provements obtained by Base-SST, Base-SST-k and Base-SST-k-Ext. In Fig-

ure 4.9 we plot four points for each instance in ATSP16A. The points have

the gap obtained from the SST model as an x-coordinate, and the gaps ob-

tained from the Base Model, Base-SST, Base-SST-k and Base-SST-k-Ext as

y-coordinates, with the four points for each instance connected by a vertical

line. The further that points lie below the solid line y = x, the bigger the

improvement over the SST model. This can be compared to Figure 2.11,

which for each instance only includes the points for the Base Model. The

four instances for which the SST model outperforms the Base Model are

displayed in dark red.

In Figure 4.10 there are two ternary plots containing a point for each in-

stance of ATSP16A. For each instance, we consider first the improvement in

gap from the Base Model to Base-SST, then the improvement from Base-SST

to Base-SST-k, and finally the improvement from Base-SST-k to Base-SST-

k-Ext. Then for each instance, we plot a point where the three coordinates

are the proportions of the total improvement in gap comprising the respec-

tive individual improvements. For example, if the three improvements were

5, 15 and 10 for a total improvement of 30, we would plot the point (1
6
, 1
2
, 1
3
).

4.1. Merging SST with the Base Model 140

NHNB

H

1400 1440 1480 1520

100 150 200

50

100

150

1300

1350

1400

1450

1500

SST

B
as

e
M

o
d

el
,

B
as

e-
S

S
T

,
B

as
e-

S
S

T
-k

an
d

B
as

e-
S

S
T

-k
-E

x
t

Base Model

Base-SST

Base-SST-k

Base-SST-k-Ext

Figure 4.9: Gaps for the Hamiltonian-derived and NHNB-derived instance
of ASTP16A under the Base Model, Base-SST, Base-SST-k and
Base-SST-k-Ext versus the gaps for SST. The solid line y = x
corresponds to the given model and SST having the same gap.

4.1. Merging SST with the Base Model 141

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

Base-SST-k

Base-SST Base-SST-k-Ext

20

40

60

80

100

20

40

60

80

100

20 40 60 80 10
0

Base-SST-k

Base-SST Base-SST-k-Ext

NHNB

H

Total
reduction
in gap

10

20

30

40

Figure 4.10: Ternary plots showing the proportion of the total reduction in
gap that can be attributed to Base-SST, Base-SST-k and Base-
SST-k-Ext relative to the Base Model, for the Hamiltonian-
derived and NHNB-derived instances of ATSP16A.

4.2. Constraints involving forced edges 142

In Figure 4.10 the size of each point also corresponds to the size of total

reduction in gap. As can be seen, the majority of instances have negligi-

ble improvement attributable to Base-SST relative to the Base Model. In

contrast, there are many instances for which a majority of the improvement

can be attributed to Base-SST-k, with most of the remaining improvement

attributable to Base-SST-k-Ext.

We do not include figures equivalent to Figures 4.9 and 4.10 for the set

ATSP16AC as, for the extended models considered in this section, they are

visually almost identical to those for ATSP16A.

4.2 Constraints involving forced edges

Suppose a feasible solution has been obtained from the Base Model, but does

not correspond to a Hamiltonian cycle. Such a solution necessarily contains

some xkr,ia values strictly between 0 and 1. This may be interpreted as mul-

tiple edges being traversed when leaving a vertex. For example, Figure 4.11

shows part of a feasible solution from the Base Model on a non-Hamiltonian

subcubic graph resulting from the reduction algorithm in Chapter 3. It can

be seen that, considering the starting vertex k shown, multiple edges are used

even in the initial step (r = 0). Clearly this cannot be the case for a solution

corresponding to a Hamiltonian cycle but, in general, this feature is difficult

to prevent through linear constraints on relaxed variables, because we do not

know a priori which edges should be used.

Figure 4.11 shows the evolution of this feasible solution, relative to this

starting point, on a subset of three vertices and their six incident edges from

the graph. We make some remarks about these values: First, it can be seen

that, summing the values over all steps, each of the vertices has exactly one

unit on outgoing arcs, which follows from (4.5). Second, for each vertex,

the sum of values on outgoing arcs is always equal to the sum on incoming

4.2. Constraints involving forced edges 143

1
4

1
4

1
2

k

Step 0

Step 31
4

Step 7
1
4

1
2

Step 4

1
4

Step 8

1
4

1
4

1
4

Step 5

1
4

1
4

1
4 Step 9

1
4

Step 6
1
4

1
2

Step 101
4

Figure 4.11: Visualisation of part of one feasible solution of the Base
Model for a non-Hamiltonian subcubic graph (top, produced by
GraphReduction on G71268

20). We consider the variables xkr,ia
where the starting vertex k is shown in red. The arc labels give
the non-zero values of xkr,ia for arc i�a in the given step r. For
steps r > 0 it is instructive to only show a subset of the edges
(from the blue rectangle), skipping steps r = 1, 2, 11, 12, 13
where these edges have only zero values.

4.2. Constraints involving forced edges 144

arcs in the previous step, which follows from (4.1). Third, note the unwanted

feature that some edges are used more than once at different steps, sometimes

in both directions.

Clearly, it is desirable to prevent solutions with the kind of behaviour seen

in Figure 4.11, and fortunately there are instances in which this is possible.

Specifically, where we know that any particular edge must be used in the

solution, we can impose additional constraints on the linear program. Recall

from Definition 3.18 that we define forced edges to be those that we have

determined to be Hamiltonian edges; that is, edges we know must be present

in every Hamiltonian cycle of the graph, should any Hamiltonian cycles exist.

Consider a graph G = (V,E) with forced edges F ⊆ E. We may then impose

constraints (4.60) – (4.62), which prevent some unwanted behaviour from

occurring in feasible solutions.

xi0,ia + xa0,ai = 1 ∀i; ia ∈ F (4.60)

xkr,ia =
∑
b∈N(i)\{a}

xkr−1,bi ∀i, k; ia ∈ F ; r 6= 0 (4.61)

xkr,ia =
∑
j∈N(a)\{i}

xkr+1,aj ∀i, k; ia ∈ F ; r 6= n− 1. (4.62)

These constraints, respectively, are motivated by the following observa-

tions about any forced edge ia ∈ F :

(i) The edge ia must be used, either as the arc i�a or the arc a�i.

(ii) If the vertex i was entered in the previous step from a vertex other than

a, then arc i�a must used in the current step.

(iii) Similarly to (ii), if the arc i�a is used in the current step, then in the

next step it is not possible to return to vertex i.

An obvious subset of F is the edges incident to degree 2 vertices, which

includes the two bottom edges of the graph as shown in Figure 4.11. Including

constraints (4.60) – (4.62) would help to prevent the undesired behaviour in

4.2. Constraints involving forced edges 145

the solution displayed in this figure. In particular, the value of 1
4

that enters

the degree-2 vertex in step 4 would be prevented from returning over the same

arc in step 5 by (4.62). Similarly, the values of 1
2

and 1
4

entering the degree-2

vertex in steps 6 and 8 respectively would be prevented from returning over

those arcs. In fact, after imposing these additional constraints, with F set

to the edges incident to degree 2 vertices, the Base Model no longer has any

feasible solution for the graph in Figure 4.11; precisely the desired outcome

for a non-Hamiltonian graph.

Proposition 4.8. Constraints (4.60) – (4.62) are satisfied for any solution

of the Base Model corresponding to a Hamiltonian cycle H in G, where G

has a set of forced edges F .

Proof. Let ia be a forced edge in F . By definition, the edge ia must be used

in H; that is, either arc i�a or a�i is used. Without loss of generality, let

vertex u be the vertex, other than a, adjacent in an undirected sense to i

in H. Similarly, let the vertex v be the vertex, other than i, adjacent in an

undirected sense to a in H. In a directed sense, then, H contains either the

path u�i�a�v or the path v�a�i�u.

If we set the xkr,ia variables according to their interpretation, it is straight-

forward to show that (4.60) is satisfied: If arc i�a is used, then xi0,ia = 1

and xa0,ai = 0. Otherwise if a�i is used, then xi0,ia = 0 and xa0,ai = 1. In both

cases the sum is exactly 1.

For constraints (4.61) and (4.62), first consider the case where arc a�i is

used in H. Then it is clear that xkr,ia = 0 for all k and r, and so the left hand

side of (4.61) and (4.62) are zero. Similarly, it is clear that for all k and r,

we have xkr,bi = 0 if b 6= a, and xkr,aj = 0 if j 6= i. Hence the right hand side

of (4.61) and (4.62) are zero as well, and so both constraints are satisfied.

Next consider the case where arc i�a is used in H, with the path u�i�

a�v. Let k be the starting vertex of H. Then suppose that i�a is step s of

4.2. Constraints involving forced edges 146

H. If we set the xkr,ia variables according to their interpretation, we have the

following:

xkr,ia =


1 if r = s,

0 otherwise.

xkr,bi =


1 if r = s− 1 mod n, and b = u,

0 otherwise.

xkr,aj =


1 if r = s+ 1 mod n, and j = v,

0 otherwise.

Now consider the LHS of (4.61). It will be equal to one if r = s and

will be zero otherwise. Every term in the RHS of (4.61) is of the type xkr,bi.

Recall that only one such term is equal to one, when r = s− 1 mod n and

b = u. Suppose that s > 0. Then the RHS will contain such a term when

r = s but not for any other value of r. Hence the RHS will be equal to one

if and only if r = s, and will be zero otherwise. This is identical to the LHS

and hence (4.61) is satisfied by H when s > 0.

Then consider the case when s = 0. By definition this can only occur

when k = i. In this case, the LHS of (4.61) is always zero since the case

when r = 0 is excluded. Likewise, the RHS of (4.61) is always zero because

the term xkn−1,ui never occurs. Hence (4.61) is satisfied by H in all cases.

Next, consider the LHS of (4.62). It will be equal to one if r = s and

will be zero otherwise. Every term in the RHS of (4.62) is of the type xkr,aj.

Recall that only one such term is equal to one, when r = s + 1 mod n and

j = v. Suppose that s < n−1. Then the RHS will contain such a term when

r = s but not for any other value of r. Hence the RHS will be equal to one

if and only if r = s, and will be zero otherwise. This is identical to the LHS

and hence (4.62) is satisfied by H when s < n− 1.

Finally, consider the case when s = n − 1. By definition this can only

4.2. Constraints involving forced edges 147

occur when k = a. In this case, the LHS of (4.62) is always zero since the

case when r = n − 1 is excluded in (4.62). Likewise, the RHS of (4.62) is

always zero because the term xk0,aj never occurs. Hence (4.62) is satisfied by

H in all cases.

We now define the model Base-Forced.

Definition 4.9 (Base-Forced). Minimise the objective function (4.9), subject

to (4.1) – (4.8) and (4.60) – (4.62). If the costs cij are not provided, find any

solution subject to these constraints.

Note that in order to take advantage of the new constraints in Base-

Forced we must find a set of forced edges F . Recall from Lemma 3.19 that

edges whose removal results in a graph that is not 2-connected are necessarily

Hamiltonian, so in the results that follow we will use the same construction

of F as in Chapter 3, which can be found in polynomial time:

F =
{
uv ∈ E | GE\{uv} is not 2-connected

}
.

Table 4.12 shows the results of Base-Forced on the problem sets NHNB20

and NHNB20PR. It is notable that, unlike in any of the extended models

based on SST, for Base-Forced there are 52 and 8 additional instances, rel-

ative to the Base Model, with infeasible LPs from the respective problem

sets.

Table 4.13 shows the results of Base-Forced on the set ATSP16AC. Note

that ATSP16A is not included here as all instances in that set are complete

and hence do not contain any forced edges. As can be seen, in almost all of

the 43 instances of ATSP16AC containing forced edges an improvement is

found.

4.2. Constraints involving forced edges 148

Table 4.12: Results of Base-Forced on (a) NHNB20 and (b) NHNB20PR, by
order n. We restrict our consideration to the instances that con-
tain forced edges, the numbers of which are shown in the |F | > 0
columns. For these instances, the table shows the improvement
relative to the Base Model.

(a) NHNB20

n Graphs |F | > 0 Inf. Imprv.

10 1 0
12 1 0
14 6 2 1 0
16 33 15 6 0
18 231 117 52 0
20 1827 979 470 52

All 2099 1113 529 52

(b) NHNB20PR

n Graphs |F | > 0 Inf. Imprv.

12 1 1 0 0
13 1 1 1 0
14 7 7 6 3
15 5 5 4 0
16 9 8 6 2
17 23 23 4 1
18 17 4 0 0
19 6 6 4 1
20 18 18 1 1

All 87 73 26 8

Table 4.13: Results of Base-Forced on the 200 NHNB-derived and 200
Hamiltonian-derived instances of ATSP16AC. The table indi-
cates the number of instances for which F is not empty, and thus
additional constraints are present. The table also includes the
number of such instances for which the optimal solution changed
relative to the Base Model, and the mean reduction in gap for
these instances.

Subset Sum of gaps Mean |F | > 0 Changed Mean red.

Ham.-derived 16 844.4 84.2 3 3 6.585
NHNB-derived 288 782.0 1443.9 40 35 5.635

All 305 626.4 764.1 43 38 5.710

4.3. Constraints based on 3-cuts 149

4.3 Constraints based on 3-cuts

Recall the subtour elimination constraints from the DFJ formulation (Defi-

nition 2.1), which ensure that any induced subgraph is entered and exited at

least once by a solution:

∑
i∈S

∑
j 6∈S

(xij + xji) ≥ 2 ∀S ⊂ V, 0 < |S| < n. (4.63)

As for other constraints based on xij variables, in the Base Model these

constraints may be expressed as:

∑
i∈S

∑
a∈N(i)\S

(
xi0,ia + xa0,ai

)
≥ 2 ∀S ⊂ V, 0 < |S| < n. (4.64)

Note that we do not intend to add the constraints in (4.64) to the Base Model,

as there are exponentially many. Furthermore, Conjecture 2.12 implies that

all these constraints are already satisfied for the Base Model. However, if

we know a priori that an induced subgraph with vertices S may only be

entered and exited exactly once by any Hamiltonian cycle, the inequality in

(4.63) may be tightened to a strict equality. One particular case in which we

know that the subgraph induced by S may only be entered and exited once

is when S is connected to V \S by an edge cut set of size no greater than

3. This follows since, in such a case, there are not enough edges in the cut

set to enter and exit S more than once. In this section we develop equality

constraints to take advantage of this property.

Consider first a 1-cut, which by definition only occurs in bridge graphs. It

was proved in [28] that the Base Model is always infeasible for bridge graphs.

Hence, we do not consider 1-cuts. Next consider a 2-cut. Note that in this

case, both edges in the 2-cut are forced edges. Hence from (4.60) we can

immediately obtain (4.64) with equality on any 2-cut. As such, we do not

consider 2-cuts here either, as these are handled in the Base-Forced model.

In this section then, we restrict our focus to 3-cuts only. The combined

4.3. Constraints based on 3-cuts 150

effect of forced edge constraints and 3-cut constraints will be considered in

Section 4.5.

Note that not all 3-cuts need be considered. For instance, in the cases

where the 3-cut isolates a single vertex, (4.64) reduces to (4.5). Hence, we

exclude this situation. We also exclude the case where the 3-cut contains a

2-cut, since, as mentioned earlier, the 2-cut case is handled by Base-Forced.

Therefore, in the following set of constraints, we only consider minimal 3-cuts

that do not isolate a single vertex. Denote the set of all such 3-cuts by C3.

Then we define the 3-cut constraints as follows:

xa0,ab + xb0,ba + xc0,cd + xd0,dc + xe0,ef + xf0,fe = 2, ∀{ab, cd, ef} ∈ C3. (4.65)

The validity of (4.65) follows immediately from the subtour elimination

constraints (4.64). Regarding the number of constraints |C3|, consider the

result of Lehel et al. [51] that the number of 3-cuts in any simple graph with

n vertices is bounded from above by b3n
2
c−2. Since C3 is a subset of all 3-cuts,

it follows that (4.65) consists of O(n) equality constraints. Furthermore, fast

polynomial-time algorithms exist for finding small edge cuts in any graph [47].

We now define the Base-3-Cut model.

Definition 4.10 (Base-3-Cut). Minimise the objective function (4.9), sub-

ject to (4.1) – (4.8) and (4.65). If the costs cij are not provided, find any

solution subject to these constraints.

Table 4.14 shows the results of Base-3-Cut on the problem sets NHNB20

and NHNB20PR. Note that C3 is non-empty for almost all of the instances in

these sets, so additional constraints are imposed in nearly all cases. Relative

to the Base Model, there are 49 and 4 additional instances with infeasible

LPs from the respective problem sets. We note that this includes 5 instances

and 1 instance, respectively, that do not have infeasible LPs in Base-Forced.

A full breakdown of the overlaps of instances solved for the various models

4.3. Constraints based on 3-cuts 151

in this chapter will be given at the end of Section 4.5.

Table 4.14: Results of Base-3-Cut on (a) NHNB20 and (b) NHNB20PR, by
order n. We restrict our consideration to the instances that have
a non-empty set of 3-cuts as defined in this section, the numbers
of which are shown in the |C3| > 0 columns. For these instances,
the table shows the improvement relative to the Base Model.

(a) NHNB20

n Graphs |C3| > 0 Inf. Imprv.

10 1 0
12 1 1 0
14 6 6 1 0
16 33 33 6 0
18 231 229 52 0
20 1827 1820 467 49

All 2099 2089 526 49

(b) NHNB20PR

n Graphs |C3| > 0 Inf. Imprv.

12 1 1 0 0
13 1 1 1 0
14 7 7 3 0
15 5 5 4 0
16 9 9 6 2
17 23 23 4 1
18 17 16 0 0
19 6 6 4 1
20 18 18 0 0

All 87 86 22 4

Table 4.15 shows the results of Base-3-Cut on the problem sets ATSP16A

and ATSP16AC. Note that C3 is non-empty for most of the Hamiltonian-

derived instances, and all of the NHNB-derived instances. In the majority

of these cases there is a substantial reduction in the gap, considerably larger

than that obtained by the extended models considered thus far. Indeed, the

gaps for 29 of the Hamiltonian-derived instances were reduced to zero; that

is, the solutions found correspond to the optimal tours. This is notable as

none of the models considered previously in this thesis obtained optimal tours

for any of the instances in ATSP16A or ATSP16AC. For reference, then, we

give the IDs of these 29 instances; 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18,

19, 20, 21, 22, 30, 48, 50, 51, 55, 66, 68, 76, 82, 108, 163, and 165. Edge lists

and weights for these instances may be found in Appendix B.

4.4. Constraints based on an e.-value of H. perm. matrices 152

Table 4.15: Results of Base-3-Cut on the 200 NHNB-derived and 200
Hamiltonian-derived instances of ATSP16AC. The table indi-
cates the number of instances for which C3 is not empty, and
thus additional constraints were present. The table indicates the
number of such instances for which the optimal solution changed
relative to the Base Model, and the mean reduction in gap for
these instances.

Subset Sum of gaps Mean |C3| > 0 Changed Mean red.

Ham.-derived 10 428.8 52.1 165 161 39.971
NHNB-derived 284 734.8 1423.7 200 168 25.264

All 295 163.6 737.9 365 329 32.461

4.4 Constraints based on an eigenvalue of

Hamiltonian permutation matrices

Consider a graph G, with adjacency matrix A, containing a (directed) Hamil-

tonian cycle H with a corresponding permutation matrix P . That is, the

element Pjk is 1 if the arc j�k is used in H, and 0 otherwise. Since G is

undirected, the reverse cycle to H is also present with corresponding permu-

tation matrix P−1 = P T .

In 2012, Weber [70] proved the following result:

Theorem 4.11 (Weber [70]). Let P be an n × n doubly-stochastic matrix.

Then P is a permutation matrix corresponding to a cycle graph if and only

if the complex exponential e
2π
n
i is an eigenvalue of P .

For the sake of neatness we define θ to be 2π
n

throughout the remainder of

this chapter. We now define a vector v, which we prove in Proposition 4.12 to

be an eigenvector of P corresponding to the eigenvalue eθi. For convenience,

we use hj to denote the number of steps after vertex 1 that vertex j occurs

in the Hamiltonian cycle H, where h1 is fixed to be zero. Let the entries of

v then be given by

vj = ehjθi. (4.66)

4.4. Constraints based on an e.-value of H. perm. matrices 153

Proposition 4.12. The vector v, whose elements vj are given by (4.66),

satisfies

Pv = eθiv. (4.67)

Proof. Recall that P is a permutation matrix corresponding to a Hamiltonian

cycle H. Suppose that vertex k 6= 1 follows vertex j in H. That is, hk =

hj + 1, and Pjk = 1. Now consider the element in the jth position of the left

hand side of (4.67). Since the jth row of P contains all zeros except for Pjk,

[Pv]j = vk

= ehkθi

= e(hj+1)θi

= eθivj. (4.68)

Hence (4.67) is satisfied element-wise for all elements j whose subsequent

vertex in H is not 1. We now consider this final case. If k = 1, then clearly

hj = n− 1, and

[Pv]j = v1

= eh1θi

= e0θi

= eθie(n−1)θi

= eθivj. (4.69)

By (4.68) and (4.69), (4.67) is satisfied.

Given a graph with the adjacency matrix A, and the permutation matrix

P corresponding to the Hamiltonian cycle H, define

S = A− P − P T .

4.4. Constraints based on an e.-value of H. perm. matrices 154

Clearly, S is a 0-1 matrix. For any given vertex j, the corresponding jth row

of S will contain deg(j) − 2 unit entries, all contained within the positions

corresponding to the neighbours of vertex j. In particular, we focus on the

cases where the degree of j is either 2 or 3. By Proposition 4.12,

Sv = Av − Pv − P Tv

= Av − eθiv − e−θiv

= Av − 2 cos θ v

= (A− 2 cos θ I) v.

If the degree of j is 2, then the jth row of S has all zeros, thus [Sv]j = 0 and

we obtain

[A− 2 cos θ I]j v = 0,
∀j = 1, . . . , n;

deg(j) = 2.

(4.70)

Alternatively, if the degree of j is 3, then the jth row of S has exactly one

unit, whose element must be in a column corresponding to one of the three

vertices in N(j). Therefore,

[A− 2 cos θ I]j v ∈
{
ehkθi

∣∣∣ k ∈ N(j)
}
,

∀j = 1, . . . , n;

deg(j) = 3.

(4.71)

It will be shown that the vector v, and hence the left hand sides of (4.70)

and (4.71) may be expressed by a (complex) linear combination of xkr,ia vari-

ables from the Base Model. However, since the ordering of vertices in the de-

sired Hamiltonian cycle is not known a priori , we cannot assume to know the

individual values of hk in the set on the right hand side of (4.71). Rather, we

may give lower and upper bounds on each hk based on the shortest path be-

tween vertex 1 and k, which can easily be calculated in polynomial time [20].

Let µ1
k denote the length of the shortest path between vertex 1 and k,

where µ1
1 is defined to be zero. For convenience, we also define µ̂1

k to be

4.4. Constraints based on an e.-value of H. perm. matrices 155

identical to µ1
k in all cases except for k = 1 where we define µ̂1

1 = n. It is

clear that hk, the position of vertex k on the Hamiltonian cycle relative to

vertex 1, can be bounded from above and below, as

µ1
k ≤ hk ≤ (n− µ̂1

k). (4.72)

Note that in the case that k = 1, the definition of µ̂1
k ensures that both the

lower and upper bounds of (4.72) will be 0. Note also that it is not possible

for the left hand side of (4.72) to be greater than n
2
, since in such a case the

graph would be non-Hamiltonian by the following lemma.

Lemma 4.13. Let G be an undirected graph and let k be a vertex in G. Then

G is non-Hamiltonian if µ1
k >

n
2
.

Proof. Suppose a Hamiltonian cycle H exists in G, and that µ1
k >

n
2
. Then

vertex k follows more than n
2

steps after vertex 1 in H. Likewise, since G is

undirected, vertex 1 follows more than n
2

steps after vertex k in H. Thus the

length of H must be greater than n, and hence it is not a Hamiltonian cycle.

By contradiction, G is non-Hamiltonian.

Using (4.72) we can then replace the right hand side of (4.71) with a

superset as follows, which can be calculated in advance using just the shortest

paths in G. For brevity, we do not repeat here the conditions on j from (4.71).

[A− 2 cos θ I]j v ∈
{
elθi

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}
. (4.73)

In order to derive linear constraints suitable for use with the Base Model,

we now consider a construction of the vector v in terms of the xkr,ia variables of

the Base Model, and write linear constraints based on the real and imaginary

parts of (4.70) and (4.73).

Let the xkr,ia variables be set according to their interpretations for the

Hamiltonian cycle H; that is, 1 precisely if the arc i�a is used after starting

at vertex k and visiting r vertices, and 0 otherwise. If we set k = 1, then by

4.4. Constraints based on an e.-value of H. perm. matrices 156

definition of hj, an arc out of j must be used after visiting hj vertices, thus

∑
a∈N(j)

x1hj ,ja = 1,

and we multiply both sides by ehjθi to obtain

ehjθi
∑
a∈N(j)

x1hj ,ja = ehjθi. (4.74)

Furthermore, for all a ∈ N(j) and any r 6= hj it is clear that

x1r,ja = 0,

and thus,

n−1∑
r=0
r 6=hj

erθi
∑
a∈N(j)

x1r,ja = 0. (4.75)

Adding (4.74) and (4.75), and recalling (4.66), we arrive at a linear expression

for vj in terms of the xkr,ia variables:

n−1∑
r=0

erθi
∑
a∈N(j)

x1r,ja = ehjθi = vj. (4.76)

Applying (4.72) to (4.76) we can express the set of valid values for each of

these linear combinations as:

n−1∑
r=0

erθi
∑
a∈N(j)

x1r,ja ∈
{
elθi

∣∣∣ µ1
j ≤ l ≤ (n− µ̂1

j); l ∈ Z
}
. (4.77)

Next, using (4.76), the left hand sides of both (4.70) and (4.73) may be

expressed as:

LHS =
n∑
k=1

[A− 2 cos θ I]jk vk

=

 ∑
k∈N(j)

vk

− 2 cos θ vj

=
∑
k∈N(j)

n−1∑
r=0

erθi
∑

a∈N(k)

x1r,ka − 2 cos θ
n−1∑
r=0

erθi
∑
a∈N(j)

x1r,ja

4.4. Constraints based on an e.-value of H. perm. matrices 157

=
n−1∑
r=0

erθi

 ∑
k∈N(j)

∑
a∈N(k)

x1r,ka − 2 cos θ
∑
a∈N(j)

x1r,ja


=

n−1∑
r=0

erθi
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 . (4.78)

Finally, by (4.78), we can give linear constraints based on the real and

imaginary parts of (4.70) and (4.73) for vertices j with degree 2 or 3, respec-

tively, as well as bounds for based on (4.77).

Linear constraints based on (4.70), where j = 1, . . . , n, and deg(j) = 2,

may be written as:

n−1∑
r=0

cos (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 = 0 (4.79)

n−1∑
r=0

sin (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 = 0. (4.80)

Linear constraints based on (4.73), where j = 1, . . . , n, and deg(j) = 3, may

be written as:

min

{
cos (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

≤
n−1∑
r=0

cos (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 (4.81)

≤ max

{
cos (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

min

{
sin (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

≤
n−1∑
r=0

sin (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 (4.82)

≤ max

{
sin (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}
.

Linear constraints based on the bounds (4.77), for all j = 1, . . . , n regardless

4.4. Constraints based on an e.-value of H. perm. matrices 158

of the degree of j, may be written as:

min
{

cos (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
≤

n−1∑
r=0

cos (rθ)
∑
a∈N(j)

x1r,ja (4.83)

≤ max
{

cos (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
min

{
sin (lθ)

∣∣∣ µ1
j ≤ l ≤ (n− µ̂1

j); l ∈ Z
}

≤
n−1∑
r=0

sin (rθ)
∑
a∈N(j)

x1r,ja (4.84)

≤ max
{

sin (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
.

Note that in (4.81) – (4.84), the sets over which the minimum and maximum

values are found could theoretically be empty, precisely where µ1
k >

n
2

for

some k. To handle such cases, we define, for (4.81) – (4.84), the minimum of

an empty set to be ∞, and the maximum of an empty set to be −∞. This

will have the effect of forcing the model to be infeasible, which is appropriate

since such a graph must be non-Hamiltonian by Lemma 4.13.

Since constraints (4.79) – (4.84) were constructed based on an eigenvalue

and eigenvector pair that is guaranteed to exist for any Hamiltonian cycle,

it follows that these constraints will be satisfied for any solution to the Base

Model that corresponds to a Hamiltonian cycle. Thus we define the model

Base-Spectral:

Definition 4.14 (Base-Spectral). Minimise (4.9), subject to (4.1) – (4.8)

and (4.79) – (4.84). If the costs cij are not provided, find any solution

subject to these constraints.

Table 4.16 shows the results of Base-Spectral on the sets NHNB20 and

NHNB20PR. As can be seen, there are no additional instances in these sets

for which Base-Spectral obtains infeasibility, so we focus instead on the TSP

instances.

4.4. Constraints based on an e.-value of H. perm. matrices 159

Table 4.16: Results of Base-Spectral on (a) NHNB20 and (b) NHNB20PR,
by order n. The table also shows the improvement in solved
instances relative to the Base Model.

(a) NHNB20

n Graphs Inf. Imprv.

10 1 0 0
12 1 0 0
14 6 1 0
16 33 6 0
18 231 52 0
20 1827 418 0

All 2099 477 0

(b) NHNB20PR

n Graphs Inf. Imprv.

12 1 0 0
13 1 1 0
14 7 3 0
15 5 4 0
16 9 4 0
17 23 3 0
18 17 0 0
19 6 3 0
20 18 0 0

All 87 18 0

Table 4.17 shows the results of Base-Spectral on the sets ATSP16A and

ATSP16AC. We note that for ATSP16A, which comprises complete ATSP

instances, the only additional constraints are (4.83) and (4.84). In contrast,

for ATSP16AC, which comprises cubic ATSP instances, constraints (4.81)

and (4.82) are applicable in addition to (4.83) and (4.84). As can be seen,

there are no instances from ATSP16A for which the optimal solution changed

relative to the Base Model. This suggests, perhaps, that the constraints

(4.83) and (4.84) do not provide any additional benefit, at least in isolation.

However, for ATSP16AC there are two instances for which the solution did

change, albeit with only a very slight improvement in the gap.

Given the very small improvement in gaps for these two instances of

ATSP16AC, we wanted to ensure that these improvements were not per-

haps due to numerical inaccuracy, and so we investigated these instances

further. We verified that the solutions of the Base Model for these two in-

stances are, indeed, infeasible in Base-Spectral, and that this infeasibility

could not be attributed to any numerical inaccuracy in the double-precision

floating-point format used. The two instances have IDs 288 and 352, and the

ratios of the improvement in gap to the original lower bounds are 1.3× 10−7

4.4. Constraints based on an e.-value of H. perm. matrices 160

Table 4.17: Results of Base-Spectral on the 200 NHNB-derived and 200
Hamiltonian-derived instances in each of (a) ATSP16A and (b)
ATSP16AC. The table indicates the number of instances for
which the optimal solution changed relative to the Base Model,
and the mean reduction in gap for these instances.

(a) ATSP16A

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 16 864.2 84.3 0/200
NHNB-derived 289 064.2 1445.3 0/200

All 305 928.4 764.8 0/400

(b) ATSP16AC

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 16 864.2 84.3 0/200
NHNB-derived 288 969.2 1444.9 2/200 4.8× 10−4

All 305 843.4 764.6 2/400 4.8× 10−4

and 1.2× 10−6, respectively. Both instances may be found in Appendix B.

Since a small improvement is found for these instances, it follows that the

constraints are not redundant, and so we reasoned that, for some carefully

chosen costs, the improvement in gap could be made starker.

We used the following technique to modify the costs. First, we compared

the solution from the Base Model to that of Base-Spectral, and noted which

x variables in the objective function had changed. Then, we made small

increases and decreases to the costs, with the intention that the new solution

from Base-Spectral would be more costly relative to that from the Base

Model, while ensuring the total sum of costs was unchanged. We continued

this process iteratively, each time comparing the two solutions and adjusting

the costs, until the method ceased to yield further improvement. At the end

of this process, we scaled and rounded the costs to the integer range 0 to

100, which is the same range as other instances in ATSP16AC. For Base-

Spectral, the modified instance based on that with ID 288 has a lower bound

of 705.958 compared to 705.653 for the Base Model; a difference of 0.305 or

4.4. Constraints based on an e.-value of H. perm. matrices 161

38

14

77
64

4421

54
36

1148

0

32

39

96

8093

7538

81

34

100

88
49

54

75

53

5
96 61

66

13

28

7

74

37

31

10

37

3471

49

69

65
29

86

97

64

38

1

4

9

15 6

12

16

13

10

11

14

3

8 5 2

7

∆

+12

-7

84

58

33

86

37

0

57 56

41

35

21

63

1331

94

100

49

54

59

44

6769

49

72
49

53

59

42

3516 23 25

29 39

55

48

24 25

19

29

62

32

3039

60

83

69

94

2 3

5 6

15

11

7

10

4

12

13

9

8 14

1

16

∆

+36

-42

Figure 4.18: Instances of ATSP16AC with IDs 288 (top) and 352 (bottom),
modified to increase the contrast between Base-Spectral and the
Base Model. Costs are shown on each arc closest to the vertex
that the arc enters. Colour gives an indication of the increase or
decrease of costs relative to the costs of the original instances.

4.5. Results of combined extensions 162

ratio of 4.3× 10−4. For the modified instance based on that with ID 352,

Base-Spectral has a lower bound of 599.809 compared to 595.586 for the Base

Model; a difference of 4.22 or a ratio of 7.1× 10−3. Note that in each case

the ratio is improved by three orders of magnitude. We display these two

modified instances along with their new arc costs in Figure 4.18.

4.5 Results of combined extensions

We have seen that each of the models Base-SST-k-Ext, Base-Forced, Base-

3-Cut and Base-Spectral are improvements upon the Base Model. A logical

question is whether additional improvements could be gained by combining

all four of these models. Note that while each of these models is well-defined

for any graph G, some of the models only offer improvements for graphs

with certain properties. For example, some additional constraints will only

be present in graphs that contain forced edges, 3-cuts or vertices of certain

degrees.

We now define the model Base-Combined, as follows:

Definition 4.15. Minimise (4.9), subject to (4.1) – (4.8), (4.24) – (4.26),

(4.29) – (4.36), (4.44), (4.60) – (4.62), (4.65) and (4.79) – (4.84). If the costs

cij are not provided, find any solution subject to these constraints.

For the reader’s convenience, we repeat the objective function,

n∑
i=1

∑
j∈N(i)

cijx
i
0,ij, (4.9)

and each of the linear constraints of Base-Combined below. Unless otherwise

restricted, the indices i, j, k and l range from 1 to n, and r and s range from

0 to n − 1. The set of forced edges is denoted by F and the set of minimal

3-cuts not isolating a single vertex is denoted by C3.

4.5. Results of combined extensions 163

Constraints from the Base Model:

∑
a∈N(i)

xkr,ia −
∑
a∈N(i)

xkr−1,ai = 0 ∀i, k; r 6= 0 (4.1)

∑
a∈N(i)

xkr,ia −
∑

a∈N(k)

xin−r,ka = 0 ∀i, k; r 6= 0 (4.2)

n−1∑
r=0

xkr,ia −
n−1∑
r=0

xjr,ia = 0 ∀j, k 6= j; ia ∈ E (4.3)

n∑
k=1

xkr,ia −
n∑
k=1

xks,ia = 0 ∀r, s 6= r; ia ∈ E (4.4)

n−1∑
r=0

∑
a∈N(i)

xkr,ia = 1 ∀i, k (4.5)

n∑
k=1

∑
a∈N(i)

xkr,ia = 1 ∀i, r (4.6)

xk0,ia = 0 ∀k; i 6= k; ia ∈ E (4.7)

xkr,ia ≥ 0 ∀k, r; ia ∈ E. (4.8)

Additional constraints from Base-SST-k-Ext:

ykij + ykji = 1 ∀k, i, j; k 6= i 6= j (4.24)

ykij ≥ xk0,ki ∀k, j; i ∈ N(k); k 6= i 6= j (4.25)

ykji ≥ xi0,ik ∀i, j; i ∈ N(k); k 6= i 6= j (4.26)

ykij ≥ 0 ∀k, i, j; k 6= i 6= j (4.29)

0 ≤ fkia,j ≤ xi0,ia ∀k, i, j; a ∈ N(i); k 6= i 6= a 6= j (4.30)∑
a∈N(i)\{k,j}

fkia,j + xi0,ij = ykij ∀k, i; j ∈ N(i); k 6= i 6= j (4.31)

∑
a∈N(i)\{k}

fkia,j + 0 = ykij ∀k, i; j 6∈ N(i); k 6= i 6= j (4.32)

xk0,ki +
∑
b∈N(i)\{k,j}

fkbi,j = ykij ∀k, j; i ∈ N(k); k 6= i 6= j (4.33)

0 +
∑
b∈N(i)\{j}

fkbi,j = ykij ∀k, j; i 6∈ N(k); k 6= i 6= j (4.34)

ykij = yijk ∀k, i, j; k < i < j or j < k < i (4.35)

4.5. Results of combined extensions 164

fkia,j + f jia,k = xi0,ia ∀k, i, j; a ∈ N(i); k < j; k 6= i 6= a 6= j (4.36)

y1ij + yjil + y1jl + y1li = 2 ∀i, j, l; 1 < i < j < l. (4.44)

Additional constraints from Base-Forced:

xi0,ia + xa0,ai = 1 ∀i; ia ∈ F (4.60)

xkr,ia =
∑
b∈N(i)\{a}

xkr−1,bi ∀i, k; ia ∈ F ; r 6= 0 (4.61)

xkr,ia =
∑
j∈N(a)\{i}

xkr+1,aj ∀i, k; ia ∈ F ; r 6= n− 1. (4.62)

Additional constraints from Base-3-Cut:

xa0,ab + xb0,ba + xc0,cd + xd0,dc + xe0,ef + xf0,fe = 2 ∀{ab, cd, ef} ∈ C3. (4.65)

Additional constraints from Base-Spectral for all j such that deg(j) = 2;

n−1∑
r=0

cos (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 = 0 (4.79)

n−1∑
r=0

sin (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 = 0, (4.80)

for all j such that deg(j) = 3;

min

{
cos (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

≤
n−1∑
r=0

cos (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 (4.81)

≤ max

{
cos (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

min

{
sin (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}

≤
n−1∑
r=0

sin (rθ)
∑
k∈N(j)

 ∑
a∈N(k)

x1r,ka − 2 cos θ x1r,jk

 (4.82)

≤ max

{
sin (lθ)

∣∣∣ min
k∈N(j)

µ1
k ≤ l ≤ max

k∈N(j)
(n− µ̂1

k); l ∈ Z
}
,

4.5. Results of combined extensions 165

and for all j;

min
{

cos (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
≤

n−1∑
r=0

cos (rθ)
∑
a∈N(j)

x1r,ja (4.83)

≤ max
{

cos (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
min

{
sin (lθ)

∣∣∣ µ1
j ≤ l ≤ (n− µ̂1

j); l ∈ Z
}

≤
n−1∑
r=0

sin (rθ)
∑
a∈N(j)

x1r,ja (4.84)

≤ max
{

sin (lθ)
∣∣∣ µ1

j ≤ l ≤ (n− µ̂1
j); l ∈ Z

}
.

Table 4.19 shows the results of Base-Combined relative to the Base Model

on the problem sets NHNB20 and NHNB20PR. As expected, all of the

instances that are infeasible in any of the extended models are infeasible

for Base-Combined as well. However, there is one additional instance from

NHNB20PR that is feasible for all the individual models, but for which the

combination of all the models induces infeasibility. We display this instance

in Figure 4.20. This instance indicates that Base-Combined prevents some

feasible solutions, not corresponding to Hamiltonian cycles, that lie in the in-

tersection of feasible solutions in the other extended models. In other words,

using Base-Combined for a given instance can give a stronger result than

taking the best outcome from the individual extended models.

Table 4.21 shows the results of Base-Combined relative to the Base Model

on the problem sets ATSP16A and ATSP16AC. There are 358 and 379 in-

stances, respectively, for which the optimal solution changed relative to the

Base Model. We note that this set of instances is the union of the respective

sets from the individual extended models. It is worthwhile, then, to compare

the reduction in gap for Base-Combined on these instances to the best of the

reductions for the individual extended models. Table 4.22 shows the means

of the gaps for Base-Combined compared to the best gaps obtained by any of

4.5. Results of combined extensions 166

Table 4.19: Results of Base-Combined on (a) NHNB20 and (b) NHNB20PR,
by the order n. The table also shows the improvement in solved
instances relative to the Base Model.

(a) NHNB20

n Graphs Inf. Imprv.

10 1 0 0
12 1 0 0
14 6 1 0
16 33 6 0
18 231 52 0
20 1827 475 57

All 2099 534 57

(b) NHNB20PR

n Graphs Inf. Imprv.

12 1 0 0
13 1 1 0
14 7 6 3
15 5 4 0
16 9 6 2
17 23 6 3
18 17 0 0
19 6 4 1
20 18 1 1

All 87 28 10

Figure 4.20: The instance of NHNB20PR that induced infeasibility in Base-
Combined but not any of the individual extended models. It is
the reduced graph of G71235

20 and has NHNB20PR ID 83.

4.5. Results of combined extensions 167

the individual models for each instance. Note that for the complete instances

in ATSP16A, Base-Combined effectively contains constraints from only Base-

SST-k-Ext and the relatively weak Base-Spectral. It is not unexpected then

that in all cases, there is no improvement over the result obtained for Base-

SST-k-Ext. In contrast, for the cubic instances of ATSP16AC, there is a

significant improvement in gap (greater than 0.1) found for 154, or 44% of

the instances considered that had not already been solved to optimality.

Table 4.21: Results of Base-Combined on the 200 NHNB-derived and 200
Hamiltonian-derived instances in each of (a) ATSP16A and (b)
ATSP16AC. The table indicates the number of instances for
which the optimal solution changed relative to the Base Model,
and the mean reduction in gap for these instances.

(a) ATSP16A

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 14 756.9 73.8 193/200 10.536
NHNB-derived 288 170.2 1440.9 165/200 4.470

All 302 927.1 757.3 358/400 7.503

(b) ATSP16AC

Subset Sum of gaps Mean Changed Mean red.

Ham.-derived 9794.9 49.0 197/200 35.346
NHNB-derived 284 412.2 1422.1 182/200 22.835

All 294 207.1 735.5 379/400 29.091

Recall that there are 29 Hamiltonian-derived instances of ATSP16AC for

which the optimal solution for Base-3-Cut corresponded to the optimal tour.

For Base-Combined, there is one additional instance for which the optimal

tour is obtained, bringing the total number up to 30. In other words, the

information exploited by any individual extended model is not sufficient to

obtain the optimal tour for this instance, but their combination is. This offers

further support for the merit of the Base-Combined model. To illustrate the

performance of each of the different models, Table 4.23 shows the gaps for

each model considered in this chapter on this instance, which has ID 31 and

4.5. Results of combined extensions 168

Table 4.22: A comparison of Base-Combined with the other extended models
for the instances of (a) ATSP16A and (b) ATSP16AC in which
the optimal solution changed relative to the Base Model. For
each instance, we find the best gap obtained over each of the
individual extended models, and list the mean of these in the
column labelled Mean best . We then list the mean of the gaps
found for Base-Combined in the column labelled Base-Combined .
Finally the improvement in mean is listed.

(a) ATSP16A

Subset Changed Mean best Base-Combined Improvement

Ham.-derived 193 73.2 73.2 0
NHNB-derived 165 1445.0 1445.0 0

All 358 705.5 705.5 0

(b) ATSP16AC

Subset Changed Mean best Base-Combined Improvement

Ham.-derived 197 50.0 48.4 1.618
NHNB-derived 182 1423.8 1422.4 1.423

All 379 709.7 708.2 1.524

is displayed in Figure 4.24. Note that this instance has no forced edges, so

Base-Forced is no stronger than the Base Model. It does contain four 3-cuts,

and Base-3-Cut is very effective, though constraints from the other models

are required to reduce the gap all the way to zero.

Table 4.23: Gaps for various models on ATSP16AC instance with ID 31.

Model Gap

SST 136.5
Base Model 82.6
Base-SST 82.6
Base-SST-k 78.3
Base-SST-k-Ext 75.9
Base-Forced 82.6
Base-3-Cut 3.0
Base-Spectral 82.6
Base-Combined 0

Each of the extended models considered in this chapter exploit some

information or features that may or may not be present in a given instance.

4.5. Results of combined extensions 169

75

46

83
77

89
43

90

75

46

35

76

60

76

94

47

24

2375

90

82

51 26

89

32

69

16

81

36

75

25

87

48

3

94

85

40

14

64

29
18

54

87

89

38

51

59 31
77

8 5

14

9

2

7

11

6 10

15 1

12 3

416

13

Figure 4.24: Instance of ATSP16AC with ID 31, showing the optimal tour
of length 839, which is identified by Base-Combined. Costs are
shown on each arc closest to the vertex that the arc enters.
Costs for arcs in the optimal tour are shown in green.

4.5. Results of combined extensions 170

In some instances then, it may be helpful to exploit one feature, while in

another instance this may not provide any benefit. To illustrate this concept,

we present Euler diagrams in Figures 4.25 and 4.26 that indicate the number

of instances for which each extended model is effective on the four problem

sets. For the instances in NHNB20 and NHNB20PR, we consider an extended

model to be effective if it is infeasible but the Base Model is feasible. For the

instances in ATSP16A and ATSP16AC, we consider a model to be effective

if the optimal solution found by the Base Model is no longer feasible. In each

Euler diagram the universal set is taken to be the set of instances that are

effective under Base-Combined, and we only include those models that are

effective on at least one instance.

Recall that for the Base Model, 477 instances of NHNB20 are infeasi-

ble, while an extra 57 instances are infeasible for Base-Combined. In Fig-

ure 4.25(a) we consider these 57 instances. As discussed previously, of the

individual extended models, only Base-Forced and Base-3-Cut are effective,

but it is interesting to note that there are instances for which one but not

the other is effective. Similarly, recall that for the Base Model, 18 instances

of NHNB20PR are infeasible, while an extra 10 instances are infeasible for

Base-Combined. In Figure 4.25(b) we consider these 10 instances. As before,

of the individual extended models, only Base-Forced and Base-3-Cut are ef-

fective on these instances, again with some instances effective in only one

but not the other. Note also the one instance effective for Base-Combined

that is not effective for either Base-Forced or Base-3-Cut, shown previously

in Figure 4.20.

In Figure 4.26(a) we consider the 358 instances of ATSP16A for which

Base-Combined is effective. As discussed previously, only Base-SST, Base-

SST-k and Base-SST-k-Ext are effective on any of these instances. In Fig-

ure 4.26(b) we consider the 379 instances of ATSP16AC for which Base-

Combined is effective. In this case, each of the extended models are effective

4.5. Results of combined extensions 171

8 544

Base-Forced Base-3-Cut

(a)

5 13

Base-Forced Base-3-Cut

Only Base-Combined

1

(b)

Figure 4.25: Euler diagrams of the (a) 57 instances from NHNB20, and (b)
10 instances from NHNB20PR, for which Base-Combined is ef-
fective relative to the Base Model. Zones show which individual
extended models are effective.

on at least one instance, so they are each included in the Euler diagram. It

is notable that the 379 instances are partitioned into many distinct zones

(thirteen), indicating how each of the extended models contributes to the

effectiveness of Base-Combined on this problem set. Interestingly, the two

instances for which Base-Spectral is effective are contained entirely in the

intersection of instances effective for Base-SST and Base-3-Cut.

4.5. Results of combined extensions 172

Base-SST-k-Ext

Base-SST-k

Ba
se-
SS

T

183

165

10

(a)

Base-SST-k-Ext

Base-SST-k

Ba
se-
SS

T

12

6

18

160

4

134

Base-Forced13

3

13
8

1

Base-3-Cut

5Base-
Spectral

2

(b)

Figure 4.26: Euler diagrams of the (a) 358 instances from ATSP16A, and (b)
379 instances from ATSP16AC, for which Base-Combined is ef-
fective relative to the Base Model. Zones show which individual
extended models are effective.

4.6. Detecting non-Hamiltonicity using LPs on subgraphs 173

4.6 Detecting non-Hamiltonicity of graphs by

using LP models on their subgraphs

Throughout this chapter we have considered both TSP and HCP instances.

The TSP instances have been useful for providing a higher fidelity test set

for the models. However, as we are primarily interested in detecting non-

Hamiltonicity in HCP instances, we now conclude this chapter with a more

elaborate approach to solving instances of NHNB20 and NHNB20PR, many

of which are not detected as non-Hamiltonian even by the combined model.

We will use this method with Base-Combined to successfully detect non-

Hamiltonicity of almost all of the instances considered.

Observing that the two most effective extensions to the Base Model in

an HCP sense are Base-Forced and Base-3-Cut, it follows that the graph

features exploited by these extended models are very useful for inducing

infeasibility of the LPs. However, not all of the instances considered possess

these features; in particular, only 1113 of the 2099 instances in NHNB20, and

73 of the 87 instances in NHNB20PR contain forced edges by the definition

used in Base-Forced. Therefore we consider the following straightforward

method to take any subcubic HCP instance and construct a corresponding

set of smaller instances, each having forced edges.

Given any graph G = (V,E), consider the set of subgraphs obtained

by the following approach. For each edge uv ∈ E, we produce the sub-

graph (V,E\{uv}), which we denote by G−uv. If the subgraph G−uv is

non-Hamiltonian, it is apparent that the edge uv must be present in all

Hamiltonian cycles of G (if any exist). Thus, if we are able to determine that

some of these subgraphs G−uv are non-Hamiltonian for a subset of the edges

S ⊆ E, we may verify that the edges in S are compatible with the presence of

a Hamiltonian cycle in G. Specifically, since each edge of S lies in all Hamil-

tonian cycles of G, a necessary condition for G to be Hamiltonian is that

4.6. Detecting non-Hamiltonicity using LPs on subgraphs 174

the subgraph induced by S must be isomorphic to a subgraph of the cycle

graph Cn. Note that a graph is isomorphic to a subgraph of Cn if and only

if it has at most n vertices, a girth of either n or ∞, and a maximum vertex

degree of 2. If this condition is not met, then G must be non-Hamiltonian.

When combined with any given heuristic for detecting non-Hamiltonicity in

the subgraphs G−uv, we refer to this method of detecting non-Hamiltonicity

in G as the subgraph method .

For a subcubic graph G, such as any of the instances from NHNB20 or

NHNB20PR, there are O(n) edges and the given heuristic is run for each

corresponding subgraph. In general, then, the subgraph method comes at

the expense of an additional factor of O(n) in time complexity for subcubic

graphs. However, an advantage of the method comes from the fact that if

G is subcubic, then each subgraph produced by the subgraph method will

necessarily contain forced edges by the definition used in Base-Forced.

In Table 4.27 we show the results of applying the subgraph method with

both the Base Model and Base-Combined acting as the underlying heuris-

tic, compared to the results of the two models without using the subgraph

method. As one might expect, both models perform much better with the

subgraph method, at the expense of this O(n) factor in additional time com-

plexity, but the contrast is especially stark for Base-Combined which exploits

more structural properties of the subgraphs. Indeed, using Base-Combined

with the subgraph method detects non-Hamiltonicity in 99.0% of graphs from

NHNB20, and 98.9% of graphs from NHNB20PR.

4.6. Detecting non-Hamiltonicity using LPs on subgraphs 175

Table 4.27: Results of the Base Model and Base-Combined, using the sub-
graph method on (a) NHNB20 and (b) NHNB20PR, by order
n. The columns labelled Without and With show the number
of instances for which the given model is infeasible respectively
with and without using the subgraph method.

(a) NHNB20

Base Model Base-Combined

n Graphs Without With Without With

10 1 0 0 0 0
12 1 0 1 0 1
14 6 1 4 1 6
16 33 6 27 6 33
18 231 52 191 52 229
20 1827 418 1418 475 1809

All 2099 477 1641 534 2078

(b) NHNB20PR

Base Model Base-Combined

n Graphs Without With Without With

12 1 0 1 0 1
13 1 1 1 1 1
14 7 3 7 6 7
15 5 4 5 4 5
16 9 4 9 6 9
17 23 3 23 6 23
18 17 0 13 0 16
19 6 3 6 4 6
20 18 0 18 1 18

All 87 18 83 28 86

Chapter 5

Conclusions and future work

We now conclude this thesis with a summary of the gains that have been

made, and the future work arising from the research presented.

In Chapter 2 we compared various relaxed formulations of HCP. In or-

der to make these comparisons, we considered NHNB20, the set of all non-

Hamiltonian non-bridge cubic graphs with up to 20 vertices. We also con-

structed two sets of TSP instances, ATSP16A and ATSP16AC, to enable finer

comparisons to be made. We concluded that the Base Model was the most

powerful of the models considered in the majority of instances in these sets.

Indeed, the Base Model dominated the other models in terms of identifying

non-Hamiltonian graphs in NHNB20. In particular, the Base Model detected

non-Hamiltonicity in approximately 23% of the instances of NHNB20.

In Chapter 3 we investigated techniques for reducing the HCP instances,

without altering their Hamiltonicity. We identified a number of graph re-

ductions, each of which is applicable on any graph containing particular

features. We described an algorithm, GraphReduction, that searches for

a sequence of such reductions for a given graph. This is so effective that

in many cases, the sequences of reductions found reduce the corresponding

instances to trivially Hamiltonian or trivially non-Hamiltonian graphs. In

particular, the algorithm is capable of reducing approximately 73% of the

176

5.1. Summary of results 177

instances from NHNB20 to a trivially non-Hamiltonian graph, and partially

reducing an additional 21% of the instances. Furthermore, approximately

10% of these partially reduced instances can be immediately identified as

non-Hamiltonian by the Base Model.

In Chapter 4 we considered several extensions of the Base Model and

quantified their improved effectiveness. We then combined each of these ex-

tensions into a single model which we called Base-Combined. Base-Combined

was shown to be considerably stronger than the Base Model, and indeed,

stronger than even taking the best result from each of its constituent models.

Finally, we introduced the subgraph method which, when paired with Base-

Combined, is effective in solving almost all remaining instances of NHNB20,

but at the cost of increasing the time complexity by a factor of O(n).

We now summarise the cumulative results of applying each of the above

methods in turn on NHNB20. Following that, we outline the directions of

future research that have arisen from each of the chapters in this thesis.

5.1 Summary of results

Given the methods described in this thesis, there is a natural approach for

attempting to establish the non-Hamiltonicity of a graph. First, we apply

the Base-Combined LP (Section 4.5) to see if the graph induces infeasibility.

If not, we use GraphReduction (Algorithm 3.1) to see if the graph can be

reduced to a trivially non-Hamiltonian graph. If a partially reduced graph

is obtained instead, we apply Base-Combined again on this reduced graph.

Finally, if we have still not been successful in identifying non-Hamiltonicity,

we use the subgraph method (Section 4.6) with Base-Combined.

Table 5.1 shows the outcome of the above approach for the instances

of NHNB20. After each successive method is applied, the table shows the

number of instances that have not yet been identified as non-Hamiltonian. As

5.2. Future work arising from Chapter 2 178

can be seen, after all of our methods are applied, only 12 instances of NHNB20

remain unidentified as non-Hamiltonian. This is a dramatic improvement

over the original Base Model for which 1622 graphs were not identified.

Since the approach described is guaranteed to terminate in polynomial

time for cubic graphs, this constitutes a certificate of non-Hamiltonicity for

2087 out of the 2099 instances of NHNB20.

Table 5.1: The number of instances of NHNB20, by order n, that remain
unidentified as non-Hamiltonian after each successive method is
applied as described in Section 5.1.

Base-
Combined

Graph
Reduction

(Red) Base-
Combined

Subgraph
methodn Graphs

10 1 1 0 0 0
12 1 1 0 0 0
14 6 5 0 0 0
16 33 27 2 2 0
18 231 179 38 34 1
20 1827 1352 506 452 11

Total 2099 1565 546 488 12

5.2 Future work arising from Chapter 2

Conjectures 2.12 and 2.22 are obvious topics for future research. Conjec-

ture 2.12 would imply Conjecture 2.22, and all empirical evidence points to

both being true.

The result of Theorem 2.23 is also very interesting from the perspective of

the NP-hard graph toughness problem; determining whether a given graph is

tough or non-tough. In particular, the feasibility of DFJ constitutes a new,

polynomial-time verifiable, sufficient condition for graph toughness. Similar

to in this thesis wherein we try to improve the detection of non-Hamiltonicity

with polynomial-time methods, we could instead focus on improving the de-

tection of tough graphs with polynomial-time methods such as the feasibility

of appropriate LP models. This presents an interesting challenge; unlike for

5.4. Future work arising from Chapter 4 179

the LP models we sought to tighten in Chapter 4, in this scenario we would

seek rather to weaken the models as much as possible, without permitting

non-tough graphs to induce feasibility.

5.3 Future work arising from Chapter 3

An obvious line of future work is to identify more reductions for inclusion in

the graph reduction algorithm. One such family of reductions could be to

consider more specific subgraphs than just triangles and diamonds. Such a

choice of subgraph would need to be chosen by a suitable survey of graphs to

see which are the most common. It would also be beneficial to try to identify

other classes of incompatible edge sets. This could be achieved by identifying

new measures of edge equivalence besides edge orbits.

Another potentially fruitful approach would be to further develop the

graph reduction algorithm as a heuristic for solving HCP in its own right.

We would first apply as many reductions as possible, and when no further

reductions can be made, systematically remove edges and then see if the

graph can now then be reduced to a trivial Hamiltonian or non-Hamiltonian

graph. In the former case, the problem is solved, and in the latter case, we

can return to the original graph and list that edge as forced, and then iterate.

This procedure could also be combined with linear programming techniques,

such as the Base-Combined model, to assist in the detection of forced edges.

5.4 Future work arising from Chapter 4

Broadly speaking, there are two different ways to improve the effectiveness of

the techniques in Chapter 4. The first would be to further extend the models

considered, by adding new constraints that take advantage of more graph

properties. The second would be to consider ways that we can modify the

5.4. Future work arising from Chapter 4 180

instances to take further advantage of the constraints we already have. For

example, the constraints in Base-Forced and Base-3-Cut, which exploit the

features of forced edge and 3-cuts respectively, were very effective but only

on the graphs in which these graph features were present. Hence, a possible

avenue for future research is to investigate techniques for introducing forced

edges or 3-cuts into graphs without either altering the Hamiltonicity (in an

HCP instance) or changing the length of the optimal tour (in a TSP sense).

For example, one way to introduce a 3-cut is to replace any degree-3 vertex

with a triangle, or some other appropriate graph, such that the original three

edges form a 3-cut that separates the introduced subgraph from the rest of

the graph.

Many of the new constraints in the extended models only involve xkr,ia

variables where k = i and r = 0. Given the benefits gained so far, it stands

to reason that finding new linking constraints on the other xkr,ia variables

might lead to additional improvement. One possible idea in this direction

is to try to impose constraints on the powers of the permutation matrix P

corresponding to a Hamiltonian cycle, as considered in Section 4.4. Although

we only considered P in that section in order to obtain constraints on other

variables, in fact, it can be easily seen that we can represent any element of

any power of P linearly in terms of the xkr,ia variables as follows.

[P r]ki =
∑
a∈N(i)

xkr,ia ∀r = 0, . . . , n− 1. (5.1)

Powers of P higher than n− 1 may be obtained by recognising that P n = I

for any Hamiltonian cycle. Thus (5.1) allows us to impose constraints on

powers of P .

One potentially useful property on powers of P is the following: If P

is a permutation matrix corresponding to a Hamiltonian cycle in a graph

with n vertices, it can be shown that for r = 1, . . . , n, the matrix P r will

be a permutation matrix consisting of cycles of length n
gcd(r,n)

. Using linear

5.4. Future work arising from Chapter 4 181

constraints to demand that powers of P contain cycles of the desired length

is difficult; indeed, no easier than HCP itself, where we want a cycle of length

n in the first power of P . We did, however, investigate the following set of

constraints based on the cyclic properties of powers of P . For all r such that

n
gcd r,n

6= 3; we can prevent P r from containing 3-cycles though the linear

constraints

[P r]ij + [P r]ik + [P r]ji

+ [P r]jk + [P r]ki + [P r]kj ≤ 2
∀i, j, k ∈ {1 . . . n}; i < j < k. (5.2)

In investigating these constraints, we found many instances where particular

feasible solutions from the Base Model violated (5.2) for some powers of r.

However, imposing (5.2) never led to an improvement in gap for any TSP

instances tested, nor to additional infeasible instances in the non-Hamiltonian

graphs tested. Nonetheless, constraints such as (5.2), in combination with

other carefully designed constraints for powers of P , could yield significant

improvements.

Appendix A

Non-Hamiltonian non-bridge cubic

graph sets

This appendix provides two sets of HCP instances used throughout the thesis. In

Appendix A.1 we give a list of GENREG IDs for the instances in NHNB20; the cubic

non-Hamiltonian non-bridge graphs up to 20 vertices in size, defined in Section 2.2.2. In

Appendix A.2 we provide GENREG IDs and edge lists for the instances in NHNB20PR;

the set of partially reduced graphs of NHNB20 after applying the graph reduction

algorithm presented in Algorithm 3.1.

For both lists of instances, the GENREG ID refers to the graph number, starting

at 1, produced by the quality GENREG software by Meringer [56], when the genreg

executable is called to produce all cubic graphs of that size. For example, to produce

the 510 489 cubic (3-regular) graphs of size 20 vertices, the command genreg 20 3 -a

is used. The Hamiltonicity of all instances was verified with the exact algorithm of

Chalaturnyk [14].

For convenience, both sets in GENREG’s ASCII format may be downloaded from

the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website:

http://fhcp.edu.au.

182

http://fhcp.edu.au

A.1. NHNB20 GENREG IDs 183

A.1 NHNB20 GENREG IDs

There are 2099 non-Hamiltonian non-bridge cubic graphs up to 20 vertices in size, with

the GENREG IDs as listed below. We also indicate the instances for which the graph

reduction algorithm in Algorithm 3.1 is able to find a reduction; a plus (+) following an

ID indicates that the instance is partially reduced, while an asterisk (*) indicates that

the instance is completely reduced to a trivially non-Hamiltonian graph. There are

respectively 443 and 1537 instances of NHNB20 with partial and complete reductions.

10 vertices (1 graph):

19*

12 vertices (1 graph):

63*

14 vertices (6 graphs):

120* 123* 251* 372* 388* 421*

16 vertices (33 graphs):

237* 240* 410* 416* 547* 552* 582* 824* 830* 831* 842* 852* 971*
1066* 1281* 1386* 1792* 1828* 1840* 1864* 1998* 2031* 2235* 2911* 2923* 3009*
3112* 3123* 3138* 3300* 3337+ 3427* 3453

18 vertices (231 graphs):

1066* 1069* 1245* 1251* 1397* 1402* 1440* 1567* 1697* 1703* 1704* 1715* 1726*
1863* 1866* 2033* 2038* 2210* 2215* 2412* 2469+ 2748* 3030* 3031* 3032* 3058*
3074* 3107* 3121* 3145* 3472* 3556* 3564* 3646* 3649* 3707* 4189* 4195* 4203*
4212* 4213* 4238* 4250* 4279* 4489* 4535* 4536* 4537* 4557* 4652+ 5112* 5132*
5190* 5459* 5460* 5461* 6099* 6105* 6814* 6932* 6933* 6934* 6964* 6965* 6966*
6967* 6968* 6969* 6970* 6971* 7018* 7027+ 7037* 7038* 7039+ 7119* 7120* 7121*
7122* 7147* 7229* 7305* 7389* 7578* 7640* 7648* 7649* 7675* 7679* 7683* 7710*
7899* 8045* 8151* 8420* 8430* 8625* 8746* 8864* 9134* 9147* 9249* 9379* 9506*
9719* 9907* 10094* 10937* 10976* 10994* 11010* 11041* 11133* 11360* 11424* 11526* 11969*

12006* 12018* 12043* 12201* 12300* 12952* 13068* 14794* 15633* 15971* 15996* 16009* 16029*
16238* 16239* 16240* 16241* 16331* 16332* 16353* 16432* 16611* 16612* 16613* 16617* 16664*
16781* 17340* 17499* 17576* 17641* 17766* 17796* 17914* 18069+ 18139* 18214* 18567+ 18597*
18608* 18632* 18758+ 18902* 18921* 18978* 19026* 19153* 19271+ 19337* 20388* 20633* 20740*
20766* 20795* 21027+ 21493* 22141+ 22181* 25534* 28010* 28478* 28485* 28488* 28544* 28579*
28624* 28803* 28884+ 29269+ 29446* 29479* 29498+ 29499+ 29500* 29501+ 29502+ 29777* 29824*
30289* 30554+ 30555* 30556+ 30557* 30558+ 30560+ 30599* 30675* 33494* 33547* 33587* 33737*
33798 33827+ 34034* 34065+ 34468+ 34621+ 34742* 34770 34858* 34877* 34901 34934 35117
35141 35533 36973 37070 37124 37193 38297 40847+ 40849 40852*

20 vertices (1827 graphs):

8602* 8605* 8783* 8789* 8938* 8943* 8981* 9108* 9238* 9244* 9245* 9256* 9267*
9407* 9410* 9583* 9588* 9770* 9775* 9986* 10043+ 10336* 10568* 10624* 10625* 10626*

10652* 10668* 10701* 10715* 10739* 11081* 11090* 11222* 11242* 11333* 11336* 11405* 11631*
11912* 11918* 11926* 11935* 11936* 11962* 11975* 12006* 12235* 12291* 12292* 12293* 12294*
12300* 12304* 12319* 12416+ 12417* 12929* 12949* 13021* 13268* 13301* 13302* 13303* 13532*

A.1. NHNB20 GENREG IDs 184

13862* 13865* 13986* 13992* 14753* 14759* 14880* 14886* 14887* 14888* 14889* 14923* 14924*
14925* 14926* 14927* 14928* 14929* 14930* 14931* 14977* 14985* 14996+ 15007* 15008* 15009+
15094* 15095* 15096* 15097* 15123* 15208* 15286* 15371* 15574* 15639* 15647* 15648* 15681*
15685* 15689* 15716* 15942* 15945* 16117* 16123* 16267* 16272* 16308* 16560* 16566* 16567*
16578* 16589* 16877* 16882* 17165* 17174* 17326* 17331* 17397* 17896* 17902* 17910* 17919*
17920* 17946* 17959* 17990* 18203* 18208* 18369* 18375* 18654* 18663+ 18813* 18818* 18884*
19385* 19391* 19399* 19408* 19409* 19435* 19448* 19479* 19642* 19645* 19943* 19949+ 20093*
20099* 20345* 20356+ 20603+ 20830* 21016+ 21056* 21057* 21058* 21121* 21197* 21203+ 21556+
21569+ 21633* 21706+ 21730+ 21792* 21899+ 22087* 22092* 22242* 22935* 22946* 24207+ 24261*
24262* 24263* 24267* 24273+ 24298+ 24465+ 24547* 24682+ 24940* 25061* 25149* 25218+ 25868*
26304* 26305* 26306* 27203* 27204* 27205* 27206* 27207* 27208* 27209* 27210* 27211* 27212*
27213* 27214* 27455* 27456* 27457* 27458* 27459* 27495* 27545* 27550* 27581* 27586* 27631*
27649* 27666* 27702* 27771* 27806* 27834* 28015+ 28034* 28045* 28046* 28047* 28048* 28159*
28160* 28161+ 28162* 28163+ 28164* 28267* 28344* 28448* 28503* 28504* 28505* 28506* 28510*
28537* 29056* 29344* 29350* 29368+ 29459* 29519* 29534* 29712* 29946* 29949* 30057* 30060*
30213* 30219* 30494* 30500* 30750+ 30993+ 31419* 31985* 31993* 32006* 32052* 32070* 32087*
32123* 32224* 32233* 32248* 32417* 32423* 32515* 32518* 32821* 32858* 32861* 32863* 32885*
32902* 32959* 33147* 33283* 33288* 33321* 33568* 33574* 33575* 33586* 33597* 33797* 33942*
34021* 34022* 34023* 34027* 34077* 34220+ 34882* 35029* 35059* 35194* 35468* 35773* 35774*
35775* 37189* 37195* 38348* 38505* 38757* 38783* 38838* 38839* 38840* 38865* 38878* 38911*
38925* 38948* 39023* 39024* 39025* 39026* 39080* 39081* 39082* 39083* 39084* 39085* 39086*
39087* 39088* 39089* 39090* 39229* 39245+ 39256+ 39267* 39268* 39269* 39270+ 39379* 39380*
39381* 39382* 39407* 39489* 39719* 39720* 39721* 39722* 39726* 39777* 39911* 40103* 40593*
40785* 40871* 40889* 40894* 40936* 40958* 41017* 41082* 41141* 41145* 41149* 41183* 41203*
41314* 41317* 41596+ 41710* 41728* 41874* 42420+ 42463* 42476* 42505* 42727* 42877* 42883*
42887* 42888* 42889* 42890* 42891* 42892* 42893* 42894* 42895* 42896* 42897* 42898* 42899*
42900* 42925* 42926* 42927* 42943* 42944* 42945* 42972* 42977* 43006* 43025* 43042+ 43049*
43050* 43051* 43174* 43318+ 43403* 43473+ 43752+ 43761+ 43772+ 43880+ 44016* 44021* 44304+
44530+ 45443* 45618+ 48031+ 48114* 48127* 48129* 48180* 48274* 48278* 48384* 48725* 48839*
48840* 48841* 49097* 49337* 49382+ 50083* 50485* 50935* 50936* 50937* 50938* 51552* 51553*
51554* 51579* 51580* 51581* 51582* 51583* 51584* 51585* 51586* 51587* 51588* 51589* 51671+
52039* 53516+ 53778* 53789* 53790* 55422* 55933+ 56973* 57130* 57408* 58570* 58579* 58580*
58767* 58768* 58769* 59264+ 59806* 59830* 59884* 59885* 59886* 59910* 59920* 59953* 59967*
59990* 60204* 60256+ 62899* 67169* 67186* 67396* 67397* 67398* 67429* 67435* 67532* 67605*
67627* 67643* 67675* 69036* 69052+ 69084* 69479* 70252* 70258+ 70298* 70299* 70300* 70320*
70321* 70322* 70323* 70324* 70325* 70326* 70327* 70328* 70329* 70330* 70331* 70332* 70333*
70334* 70335* 70336* 70337* 70560* 70561* 70562* 70563* 70564* 70565* 70566* 70567* 70568*
70569* 70570* 70571* 70572* 70573* 70574* 70575* 70576* 70577* 70578* 70579* 70580* 70581*
70582* 70583* 70584* 70585* 70586* 70587* 70588* 70589* 70590* 70591* 70592* 70593* 70594*
70595* 70596* 70597* 70598* 70599* 70600* 70601* 70602* 70603* 70604* 70605* 70606* 70607*
70608* 70609* 70893* 70917* 71121* 71122* 71123* 71170+ 71171+ 71172+ 71230* 71231* 71232+
71233* 71234* 71235+ 71236* 71237+ 71238+ 71239+ 71240* 71241+ 71242+ 71243* 71244+ 71268+
71300* 71415* 71907* 71911* 71912* 71913* 71914+ 71915* 71916* 71917* 71918* 71919* 71920*
71921* 71922* 71923+ 71924* 71925+ 71926* 71927+ 71928+ 71976+ 71988* 72082* 72088* 72101*
72103* 72112* 72115* 72116* 72117+ 72118* 72119+ 72240+ 72338+ 72738* 72971* 72987* 73011*
73012+ 73290* 73899* 73907+ 73916+ 73918* 74752* 74772* 74784* 75369* 77114* 77368* 77398*
77410* 77416+ 77509* 77878* 77901* 78010* 78139* 78140* 78517* 79742* 79974* 79975* 80023*
80160* 80169* 80175* 80189* 80190* 80199* 80214* 80220* 80221* 80234* 80251* 80295* 80649*
80722* 80830* 80970* 80993* 81032* 81039* 81093* 81099* 81376* 81495* 81576* 81586* 81595*
81596* 81630* 81638* 81643* 81644* 81651* 81680* 81688* 81695* 81786* 81791* 81805* 81821*
81886* 82068* 82140* 82141* 82236+ 82277+ 82507* 82679+ 83062* 83063* 83064* 83065* 83066*
84038* 84186* 84294* 84563* 84573* 84690* 84830* 84980* 85195+ 85711* 85741* 85755* 85777*
86050* 86123* 86623* 86660* 86672* 86699* 86889* 86932* 86933* 86934* 87038+ 87480* 88390*
89071* 89273* 89274* 89275+ 89352* 89353* 89354* 89378* 89458* 89533* 89616* 89800* 89860*
89867* 89868* 89893* 89897* 89901* 89928* 90728* 90868* 90972* 91236* 91246* 91400* 91627*
91747* 92184* 92221* 92233* 92260* 92400* 92628+ 92747* 93144* 93287* 93317* 93352* 93470*
93587* 94071* 94745* 94746* 94848+ 94939* 95983* 95987* 96002* 96006* 96011* 96033* 96064*
96123* 96124* 96173* 96174* 96175+ 96235* 96445* 96474* 96647* 96781* 96880* 97141* 97151*
97376* 97597* 97701* 98168* 98205* 98217* 98244* 98494* 98611* 98805* 99302* 99332* 99346*
99368* 99529* 99651* 99771* 99985* 100178* 100374* 101236* 101275* 101293* 101309* 101340* 101432*

101575* 101792* 101900* 102086* 102607* 102738* 103040* 103052* 103180* 103203* 103353* 103570* 103759*
103858* 104044* 104912* 104950* 104962* 104987* 105021* 105100* 105242* 105426* 106332* 106469* 108357*
108867* 109290* 110867* 112685* 112703* 113405* 113444* 113462* 113478* 113509* 113601* 113857* 113858*
113859* 113860* 113975* 113976* 113977* 113978* 114096* 114097* 114098* 114099* 114124* 114198* 114296*
114514* 114515* 114516* 114520* 114567* 114782* 115659* 115838* 115919* 116179* 116191* 116284* 116289*
116305* 116620* 116643* 116743* 117083* 117245* 117378* 117424* 117626* 117736* 117844* 118040* 118215*
118393* 119202* 119241* 119259* 119275* 119306* 119398* 119530* 119597* 119827* 119877* 119948* 120159*
120270* 120715* 120752* 120764* 120791* 120961* 121064* 121757* 121889* 123709* 124665* 125006* 125073*
125105* 125119* 125141* 125386* 125387* 125388* 125389* 125488* 125489* 125490* 125514* 125594* 125792*
125793* 125794* 125798* 125845* 125969* 126606* 126777* 126858* 126930* 127032* 127085* 127117* 127248*
127438+ 127526* 127625* 128063+ 128100* 128112* 128137* 128283* 128462+ 128561+ 128987* 129024* 129036*
129063* 129235* 129297* 129481* 129651+ 129748* 131170* 131260* 131439+ 131606+ 132404* 132527* 134268*
134422* 134851* 134970* 135249* 135261* 135381* 135404* 135548* 135613* 136057* 136188* 136299* 136423*
136427* 136649* 136669* 136868* 137371+ 137814+ 138702* 140064+ 140462+ 140579* 146954* 147872* 151562*
156690* 156844+ 157264* 157333* 157365* 157378* 157399+ 157522* 157950* 158943+ 161433* 165994* 166000*
166082* 166145* 166178* 166204* 167396+ 167422* 167760* 168443* 168558* 168850* 169151* 170803* 170836*

A.2. NHNB20PR edge lists 185

170852* 170866* 170891* 170963* 171124* 171125* 171126* 171213* 171214* 171215* 171216* 171306* 171373*
171464* 171499* 171500* 171525* 171910* 172136* 172139* 172153* 172292* 172579+ 173333+ 173918* 173971*
174005* 174039+ 174040+ 174041+ 174042* 174043* 174044* 174045* 174046+ 174047* 174048+ 174049* 174050*
174051+ 174052* 174777* 174779+ 174780* 174781* 174782* 174783* 174784* 174785* 174786* 174787+ 174788+
174789+ 174918* 174928* 174930* 174931* 174932* 174933* 175683* 175698* 175721* 175722* 175977* 176089+
177006* 177632* 177633* 177634+ 177635* 177636+ 177637* 177638* 177639+ 177641* 177642* 177643+ 177653*
177654* 177655* 177669* 177793* 177802* 178017* 178127* 178143* 178166* 178167* 179254* 179256* 179257*
182425* 186153* 186194* 186200* 186637* 186850* 186851* 187281* 188890* 188918* 189026* 189062* 189113*
189114* 191480* 191528* 191581* 191719* 191827* 192683* 192805* 193097* 193158* 193920* 194403* 194486*
194487+ 194491* 194596* 196149* 196150+ 196151* 196152* 196967* 197189* 197427* 197513* 197527* 197545*
197604* 197932* 197982+ 198032+ 198385+ 198416* 198417* 199119* 199473* 199474* 199476+ 200370* 200529*
200679* 200743* 201079* 201109* 201120* 201144* 201298* 201384* 201468* 201618+ 201744+ 201879+ 202523+
202555+ 202571+ 202585+ 202613+ 202687+ 202782* 202857* 203109* 203192* 203255* 203259* 203350* 203559+
203637+ 203967* 203978* 204002* 204136* 204215+ 204745+ 204844+ 206349+ 207340* 207395+ 207424+ 207436+
207457+ 207656+ 207741+ 207760* 207833* 208000+ 208003* 208044* 208151* 208705* 208856* 208933* 208995+
209091+ 209142* 209171* 209254* 209332* 209467+ 209536+ 209872+ 209902+ 209913+ 209937+ 210057+ 210089*
210344+ 211262* 211282* 211292* 211444+ 211508* 211580* 211596+ 211613* 211911* 211992+ 212133* 212152*
212216* 212295* 212351* 212544* 212553* 212622* 212693* 212743* 212865* 212981* 213100* 213707* 213739*
213755* 213769* 213797* 213871* 213940* 214007* 214134+ 214195* 214304+ 214644+ 214726+ 214953+ 214964+
215068+ 215089+ 215202+ 215285+ 215343* 215578+ 215656* 215718* 215722* 215812* 216001+ 216111+ 216176*
217298+ 217400+ 217878+ 219722+ 220429+ 223296* 226842* 226899* 227152* 227193* 227244* 227255* 227331*
227432* 227531* 227594* 227680* 229417* 229744* 229771* 229782* 229793* 229816* 230047* 230831* 230898*
230968* 231170* 231315* 231318* 231374* 231795* 231942* 231964* 231969* 231970* 232076* 232197+ 232303+
232370+ 232470+ 233428* 233535+ 233630+ 233728+ 234254+ 234286+ 234302+ 234315+ 234342+ 234412+ 234498+
234775* 234869+ 235163+ 235415+ 236835+ 238741+ 238807* 238863* 238867* 238950* 239092+ 239729+ 244064*
244128+ 244227+ 244329+ 244421+ 244509+ 246245+ 246334+ 246729* 246869+ 246874+ 246934+ 246983+ 247004+
247022+ 247089* 247289+ 247377* 247420* 247440* 253182+ 253379+ 253474+ 254298+ 254502+ 254738+ 255389+
255703+ 255786* 256054+ 256761+ 257382+ 258408* 260741+ 264223+ 267396+ 268521+ 269104+ 270280* 287129*
287176* 287418+ 287441* 287450* 287468* 288629+ 288800+ 288887+ 288997+ 289991+ 296754+ 296802* 297985+
298024+ 306924+ 311109+ 311887+ 319062+ 327104* 327161+ 327579* 327660* 327749+ 328042* 332900* 333264*
333295* 333320* 333329* 333442* 333609* 333662* 333687* 333731+ 333985+ 334076* 334104* 334118+ 334119+
334120* 334121+ 334122+ 334437* 334438+ 334439+ 334440+ 334441* 334442+ 334752* 334962* 335385* 337526+
338019* 338854* 339126+ 339160* 339385+ 339405+ 339412+ 339429+ 339583+ 341155* 341201+ 341516+ 342307*
342351+ 343102+ 343247+ 343250+ 343379+ 343404+ 343482+ 343567+ 343580+ 345988* 345989* 345990* 345991*
345992* 346054+ 346104+ 346192+ 346203* 346204* 346205* 346206* 346207* 346334+ 346358* 346359* 346360*
346361+ 346362+ 346363+ 346364+ 346365+ 346366+ 346367+ 346368+ 346369* 346370+ 346371+ 346372+ 346373+
346374+ 346375* 346376+ 346377+ 346378+ 346379+ 346380+ 346381+ 346382+ 346383+ 346384+ 346385+ 346386+
346387+ 346388+ 346389+ 346390+ 346391+ 346392+ 346393+ 346394+ 346395* 346396* 347133* 348925* 348992*
349065+ 349087+ 349204+ 349236+ 349291+ 349300* 349301+ 349309+ 349315* 349316+ 349323+ 349337+ 349519+
350322+ 350339+ 353410+ 353469+ 353551* 353552+ 353553+ 355890+ 356755* 357734+ 357795+ 358211+ 358279*
358448* 358449+ 358450* 358451+ 358452+ 358453+ 358454+ 358455+ 358456+ 358457* 358458+ 358459+ 358461+
358462+ 358463+ 358464+ 358465* 358466* 358467+ 358468+ 358469+ 358470+ 358471+ 358472+ 358476* 358477*
358478+ 358479+ 358480+ 358481+ 358482+ 358483+ 358484+ 358485+ 358486+ 358487+ 358488* 358489* 358490+
358491+ 358492+ 358493* 358506* 358567+ 358675+ 358766+ 358806+ 358843+ 358844* 358848+ 358908+ 358919+
359301+ 359378+ 359379* 359380+ 359381+ 361236* 361500+ 367771+ 376442+ 376498+ 376786+ 377178+ 379913+
383925+ 385630+ 385965+ 391322+ 392099+ 393918* 400138* 404228* 404260* 404577+ 404727+ 405059* 405120+
405454+ 410763* 411046+ 411965* 412677* 413133* 413174* 413325* 413365* 413423+ 413662* 413670* 413715+
414174* 414497+ 414514* 414737* 414790* 414828* 414980* 415007* 415069 415122 415178 415570 415698+
415824 415856+ 416707+ 417120 417162+ 417355+ 417721+ 417798* 417830+ 417930* 417982+ 418009+ 418224+
418273 418288* 418801 418847 418976+ 422384 422473+ 424159+ 424367+ 424399+ 424400 424401+ 424541+
425973* 426002+ 426126* 426173 426198 426389+ 426400* 427045* 427071+ 427207* 427232 427355* 427395
427417 427596* 427633 427665 427786 428012+ 428031 428525 429718* 429732* 429763 429780 429950*
429962* 429990 430005* 430028 430135 430352 430366 430633 430655 430805 431491 434209* 434218*
434232 434253 434405 434417 434644 436326 436338 436558 436638 436748 437336 439826 439993
440009 451500* 451510* 451522 451538 451658 451672 452512* 452518* 452528 452541 452654 452667
452678 452691 452702 453194 453197* 453259 453299* 453309 453371 453570 453645 454046 454156
455252 455548 455865 458069 458181 458184 460746 461487 462692 468366 468368* 468386 468428
468429 468581 468582 468610 468851 468863 470354 470360 470469 470475 470481 470674 474063
474064 474227 474575 476227 495446+ 504707* 504708 504713 504724 504725 504730 504756 504757
504758 504759* 504803 504912 505618 505657+ 510433+

A.2 NHNB20PR edge lists

Of the 443 instances of NHNB20 which are partially reduced by Algorithm 3.1, there

are 87 unique partially reduced instances up to isomorphism (determined with the

graph canonicalisation routines in nauty [55]). These 87 instances are given in this

A.2. NHNB20PR edge lists 186

section, along with the GENREG IDs of the 443 instances in NHNB20 to which they

correspond. The first number given is the assigned instance ID followed by an edge list

consisting of pairs of vertices in base 20 (vigesimal); the first through tenth vertices are

represented by 0 through 9, the eleventh vertex is represented by A and so on until a

maximum of J for the 20th vertex, where present. Below this line is an indented list of

NHNB20 GENREG IDs that are reduced to this instance by Algorithm 3.1. Instances

are numbered by the first time they are produced as NHNB20 is processed in order of

graph size then GENREG ID, with this first produced instance also determining the

given vertex labelling.

1 01 03 14 15 24 25 36 37 46 58 69 7A 7B 8C 8D 9E 9F AC AE BD BF CF DE
16 vertices: 3337
18 vertices: 18069 18567 18758 29269 29498 29499 30554 30556
20 vertices: 42420 59264 127438 128063 128462 128561 156844 157399 173333 174039 174040 174041

174779 174789 176089 177634 177636 194487 198032 198385 202523 202555 202571 202585
202613 202687 203559 203637 204844 207395 207424 207436 209091 209872 209902 209913
209937 210344 232303 232370 238741 247289 333985 334118 334119 334438 334439 337526
343247 343250 343379 343404 343567 346104 349236 349291 349316 353410 353469 358766
358919 359301 359378

2 01 02 13 14 23 25 36 46 47 58 59 6A 7B 7C 8B 8D 9C 9E AD AE BE CD
18 vertices: 2469
20 vertices: 10043 21203 21556 21569 21706 21730 21899 24682 25218 30750 30993 48031

85195 92628 413423
3 01 02 14 15 24 26 35 37 48 59 6A 6B 7A 7C 8C 8D 9B 9D AD BC

18 vertices: 4652
20 vertices: 12416 24465 28161 34220 43752 43761 43772 53516 87038 94848 413715

4 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7A 89 AB
18 vertices: 7027
20 vertices: 14996 39245 39256 55933 71170 71171 71172 71976 72117 72338 73907 82679

5 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AD BD BE CD CE
18 vertices: 7039
20 vertices: 15009 39270 71237 71238 71242 72119 73012 73916 77416 89275 96175 414497

6 01 02 03 14 15 24 26 35 37 47 58 69 6A 7B 8C 8D 9C 9E AD AF BE BF CF DE
18 vertices: 19271 21027 22141 28884 29501 29502 30558 30560
20 vertices: 129651 131439 131606 137371 137814 140064 140462 158943 167396 172579 174046 174048

174051 174787 174788 177639 177643 196150 197982 199476 214726 214953 214964 215068
215089 215202 220429 234254 234286 234302 234315 234342 234412 235163 239729 244329
246245 246869 246874 246934 246983 247022 253474 264223 267396 288800 288997 311109
327161 327749 333731 334121 334122 334440 334442 339405 339412 339429 349301 349309
349323 353552 353553 358843 358848 359380 359381

7 01 03 14 15 24 25 36 37 46 58 69 79 7A 8B 8C 9D AE AF BE BG CF CH DG DH EH FG
18 vertices: 33827
20 vertices: 201744 207457 209536 254738 319062 346363 346373 358449 358458

8 01 05 13 14 23 24 37 48 57 59 67 6E 8A 8B 9C 9D AC AE BD BF CF DE
18 vertices: 34065
20 vertices: 204215 208995 210057 298024 311887 346374 346388 358459 358461

9 01 02 03 14 24 25 36 37 48 5D 69 6A 79 7A 8B 8C 9F AG BD BF CE CG DG EF
18 vertices: 34468
20 vertices: 206349 207741 211596 349519 358806

10 01 03 14 15 24 25 36 37 48 59 6A 6B 7C 7D 8A 8C 9B 9E AF BC DG DH EG EH FG FH
18 vertices: 34621
20 vertices: 207656 208000 211444 357734 361500 392099 404727

11 01 02 03 14 15 26 38 39 46 48 57 59 6A 7B 8C 9D AE AF BE BG CF CH DG DH EH FG
18 vertices: 40847
20 vertices: 346054 350339 385630

12 01 02 13 14 23 25 36 45 47 58 67 69 7A 8B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 18663

13 01 02 13 14 23 25 36 46 47 57 58 69 7A 8B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 19949

14 01 02 13 14 23 25 36 46 47 58 59 68 7A 7B 8C 9D 9E AD AF BE BG CF CG DG EF
20 vertices: 20356

15 01 02 13 14 23 25 36 46 47 58 59 6A 78 7B 8C 9B 9D AB AC CD
20 vertices: 20603

A.2. NHNB20PR edge lists 187

16 01 02 13 14 23 25 36 46 47 58 59 6A 7A 7B 8C 8D 9E 9F AG BC BE CF DE DG FG
20 vertices: 21016

17 01 02 13 14 23 25 36 47 48 59 5A 67 68 7B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 24207

18 01 02 13 14 23 25 36 47 48 59 5A 67 69 7A 8B 8C 9D AB BD CD
20 vertices: 24273

19 01 02 13 14 23 25 36 47 48 59 5A 67 69 7B 8A 8B 9C AD BC CD
20 vertices: 24298

20 01 02 13 14 23 25 36 47 48 59 5A 6B 6C 79 7B 8A 8C 9C AD BD
20 vertices: 28015

21 01 02 13 14 23 25 36 47 48 59 5A 6B 6C 79 7B 8C 8D 9C AE AF BG DE DF EG FG
20 vertices: 28163

22 01 02 13 14 23 25 36 47 48 59 5A 6B 6C 7B 7D 8C 8E 9F AF AG BE CD DF EG
20 vertices: 29368

23 01 02 13 14 25 26 35 36 47 48 57 69 7A 8B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 41596

24 01 02 13 14 25 26 35 37 46 48 58 69 7A 7B 8C 9D 9E AD AF BE BG CF CG DG EF
20 vertices: 43042

25 01 02 14 15 24 26 35 37 48 59 68 6A 79 7B 8B 9A AC BC
20 vertices: 43318

26 01 02 13 14 25 26 35 37 46 48 59 6A 79 7B 8C 8D 9E AF AG BC BF CG DE DF EG
20 vertices: 43473

27 01 02 14 15 24 26 35 37 48 59 6A 6B 7C 7D 8C 8E 9A 9F AC BE BF DE DF
20 vertices: 43880

28 01 02 13 14 25 26 35 37 47 48 58 69 6A 7B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 44304

29 01 02 13 14 25 26 35 37 47 48 59 67 6A 8B 8C 9D 9E AF AG BD BF CE CG DG EF
20 vertices: 44530

30 01 02 13 14 25 26 35 37 47 48 59 6A 6B 79 8C 8D 9E AC AF BD BG CG DF EF EG
20 vertices: 45618

31 01 02 13 14 25 26 35 37 48 49 58 6A 6B 78 7C 9D 9E AD AF BE BG CF CG DG EF
20 vertices: 49382

32 01 06 13 14 23 25 38 46 47 59 5A 6B 7C 8D 8E 9B 9D AC AE BE CD
20 vertices: 51671

33 01 02 13 14 25 26 37 38 47 49 57 58 6A 6B 8C 9D 9E AD AF BE BG CF CG DG EF
20 vertices: 60256

34 01 04 12 13 26 27 36 38 49 4A 5B 5C 6D 78 7D 8E 9B 9E AC AF BF CE DF
20 vertices: 69052

35 01 03 15 16 25 27 38 39 4A 4B 5C 6C 6D 7C 7E 8A 8D 9B 9E AE BD
20 vertices: 70258

36 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AB AD BE CF CG DF EF EG
20 vertices: 71232

37 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AC AD BE BF CG DE DF EG FG
20 vertices: 71235

38 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AD AE BD BF CE CF DG EG FG
20 vertices: 71239

39 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AD AE BD BF CE CG DG EF FG
20 vertices: 71241

40 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 89 AD AE BF BG CD CF DG EF EG
20 vertices: 71244

41 01 02 13 14 25 26 37 38 49 4A 57 59 68 6B 7C 8A 9D AD BC BD
20 vertices: 71268

42 01 02 13 14 25 26 37 38 49 4A 57 59 6B 6C 7A 89 8B AD BE CF CG DF DG EF EG
20 vertices: 71914

43 01 02 14 15 26 27 38 39 46 48 5A 5B 69 78 7C 9D AC AE BD BE CF DF EF
20 vertices: 71923

44 01 02 14 15 26 27 38 39 46 48 5A 5B 69 78 7C 9D AC AE BD BF CF DE EF
20 vertices: 71925

45 01 02 13 14 25 26 37 38 49 4A 57 59 6B 6C 7A 89 8D AE BD BF CF CG DG EF EG
20 vertices: 71927

46 01 02 14 15 26 27 38 39 46 48 5A 5B 69 78 7C 9D AE AF BE BF CD CE DF
20 vertices: 71928

47 01 02 13 14 25 26 37 38 49 4A 57 59 6B 6C 7B 8A 8C 9D AD BD
20 vertices: 72240

48 01 03 15 16 27 28 39 3A 4B 4C 57 58 67 6D 8E 9B 9D AC AE BE CD
20 vertices: 82236

49 01 04 12 13 26 27 38 39 4A 4B 5C 5D 68 69 7A 7C 8E 9E AD BC BF DF EF
20 vertices: 82277

50 01 02 03 14 15 24 25 36 37 46 58 69 78 7A 8B 9C 9D AE AF BG BH CE CG DF DH EH FG
20 vertices: 201618 201879 204745 209467 343482 343580 346361 346362 346368 358451 358455 358484

404577 411046
51 01 02 03 14 15 24 26 35 36 47 58 69 78 7A 8B 9C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 211992 215285 215578 255703 287418 346364 346370 358453 358472 383925
52 01 02 03 14 15 24 26 35 37 47 58 68 69 7A 8B 9C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 214134 233630 246334 339385 346365 346371 358456 358490 405454
53 01 02 03 14 15 24 26 35 37 47 58 69 6A 79 8B 8C 9D AE AF BE BG CF CH DG DH EH FG

A.2. NHNB20PR edge lists 188

20 vertices: 214304 214644 233535 233728 244227 247004 339126 346366 346367 346372 358452 358454
358470 376786 391322

54 01 02 03 14 15 24 26 35 37 48 59 67 68 7A 8B 9C 9D AE AF BG BH CE CG DF DH EH FG
20 vertices: 216001 217878 256761 296754 346376 346379 358462 358478 379913

55 01 02 03 14 15 24 26 35 37 48 59 67 69 7A 8B 8C 9D AE AF BE BG CF CH DG DH EH FG
20 vertices: 216111 219722 255389 256054 260741 288629 346382 346383 346390 355890 358211 358471

358481 358483 377178
56 01 02 03 14 15 24 26 35 37 48 59 68 69 7A 7B 8C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 217298 217400 288887 289991 346378 346381 358464 358480 405120
57 01 02 03 14 15 24 26 37 38 47 56 58 69 7A 8B 9C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 232197 232470 341516 343102 346377 346380 358479 358485 385965
58 01 02 03 14 15 24 26 37 38 47 58 59 68 6A 7B 9C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 234498 236835 244421 341201 342351 346384 346389 350322 358486 358491 376442
59 01 02 03 14 15 24 26 37 38 47 58 59 6A 6B 79 8C 9D AE AF BG BH CE CG DF DH EH FG

20 vertices: 234869 244128 253182 339583 346385 346392 349337 358469 358482 358908
60 01 02 03 14 15 24 26 37 38 47 58 59 6A 6B 7C 8C 9D 9E AD AF BE BG CH DG EF FH GH

20 vertices: 235415 239092 244509 253379 254298 254502 269104 306924 346386 346387 346391 358463
358467 358487 376498

61 01 02 03 14 15 24 26 37 38 49 57 5A 67 6A 8B 8C 9D 9E AF BD BG CE CH DH EG FG FH
20 vertices: 257382 268521 297985 346393 346394 357795 358468 358492

62 01 02 03 14 15 26 27 38 39 46 48 57 5A 69 7B 8C 9D AE AF BE BG CF CH DG DH EH FG
20 vertices: 346192 346334 349065 349204 358675 367771

63 01 03 14 15 26 27 38 39 46 48 5A 5B 69 7A 7C 8D 9E AF BD BG CE CG DH EH FG FH
20 vertices: 349087 358567

64 01 03 14 15 24 25 36 37 46 58 69 79 7A 8B 8C 9D AD AE BF BG CH CI DJ EF EH FI GH GJ IJ
20 vertices: 415698

65 01 03 14 15 24 25 36 37 46 58 69 7A 7B 8A 8C 9A 9D BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 415856

66 01 03 14 15 24 25 36 37 46 58 69 7A 7B 8C 8D 9A 9B AE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 416707

67 01 03 14 15 24 25 36 37 46 58 69 7A 7B 8C 8D 9E 9F AC AE BF BG CF DH DI EJ GH GI HJ IJ
20 vertices: 417162

68 01 02 03 14 15 24 25 36 37 46 58 69 7A 7B 8C 8D 9E 9F AC AG BD BH CH DG EI FI FJ GI HJ
20 vertices: 417355

69 01 03 14 15 24 25 36 37 46 58 69 7A 7B 8C 8D 9E 9F AE AG BF BH CI DI DJ EH FG GI HJ
20 vertices: 417721

70 01 03 14 15 24 25 36 37 48 59 68 69 7A 7B 8A 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 417830

71 01 03 14 15 24 25 36 37 48 59 68 6A 78 7B 9A 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 417982

72 01 05 13 14 23 24 37 48 57 59 67 6A 8B 8C 9A 9D AE BF BG CH CI DF DH EG EI FI GH
20 vertices: 418009

73 01 02 03 14 24 25 36 37 48 59 68 6A 79 7A 8B 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 418224

74 01 03 14 15 24 25 36 37 48 59 68 6A 7A 7B 8C 9D 9E AC BF BG CH DF DI EG EJ FJ GI HI HJ
20 vertices: 418976

75 01 03 14 15 24 25 36 37 48 59 6A 6B 7A 7C 8A 8B 9D 9E BF CG CH DG DI EH EJ FI FJ GJ HI
20 vertices: 422473

76 01 02 03 14 24 25 36 37 48 59 6A 6B 7A 7C 8D 8E 9F 9G AH BC BH CI DF DI EG EJ FJ GI HJ
20 vertices: 424159

77 01 02 03 14 24 25 36 37 48 5E 69 6A 79 7B 8C 8D 9G AG AH BG BI CE CH DF DI EI FH
20 vertices: 424367

78 01 03 14 15 24 25 36 37 48 59 6A 6B 7C 7D 8A 8C 9B 9E AF BC DG DH EG EI FH FI GJ HJ IJ
20 vertices: 424399

79 01 03 14 15 24 25 36 37 48 59 6A 6B 7C 7D 8A 8C 9B 9E AF BC DG DH EG EI FI FJ GJ HI HJ
20 vertices: 424401

80 01 05 13 14 23 24 37 48 59 5A 6B 6C 79 7B 8D 8E 9C AB AF CG DF DH EG EI FI GH HI
20 vertices: 424541

81 01 02 03 14 15 24 26 35 47 57 68 79 8A 8B 9A 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 426002

82 01 02 03 14 15 24 26 35 36 47 58 69 7A 8A 8B 9C 9D AE BG CF CG DH DI EF EH FI GH
20 vertices: 426389

83 01 02 03 14 15 24 26 35 37 47 68 79 8A 8B 9A 9C AD BE BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 427071

84 01 02 03 14 15 24 26 35 37 47 58 69 7B 89 8A 9C AH BD BE CF CG DF DH EG EI FI GH
20 vertices: 428012

85 01 03 14 15 24 26 37 38 49 5A 5B 6A 6B 79 7A 8C 8D 9E BF CG CH DI DJ EG EI FH FJ GJ HI
20 vertices: 495446

86 01 03 14 15 26 27 38 39 46 48 5A 5B 69 7C 7D 8C 9A AE BF BG CH DF DI EI EJ FJ GH GI HJ
20 vertices: 505657

87 01 02 03 14 15 26 27 38 39 46 4A 5B 5C 7E 7F 8B 8E 9C 9F AG AH BG CH DE DI FI GI
20 vertices: 510433

Appendix B

ATSP problem sets

This appendix contains the 400 ATSP instances of ATSP16A and ATSP16AC gener-

ated by the method described in Section 2.2.4. Each instance is arranged into a 24× 3

array, labelled above with its instance ID and the optimal tour cost of the correspond-

ing ATSP16A instance. In each row of the 24 × 3 array, the first element is an edge

described by two vertices uv, and the second and third elements give the arc costs for

u�v and v�u respectively. Vertices are represented in hexadecimal, with the first

vertex being 0 and the 16th vertex being F.

Only the arc costs for the underlying cubic graph are given. For each complete

instance of ATSP16A, all other arcs required to complete the graph have a cost of 1600.

Alternatively, for each cubic instance of ATSP16AC, only the given edges are present.

Instances 1 through 200 are derived from Hamiltonian graphs, while instances 201

through 400 are derived from non-Hamiltonian graphs. Underlined arc costs correspond

to that arc being used in the optimal tour of the ATSP16A instance, and in the case

of a non-Hamiltonian graph they indicate which arcs are in the optimal Hamiltonian

path (with the cycle being formed in the complete graph using the additional arc with

cost 1600 between the end and start of the optimal Hamiltonian path).

For convenience, the complete instances in TSPLIB [63] format may be downloaded

from the FHCP Dissertations page on the Flinders Hamiltonian Cycle Project website:

http://fhcp.edu.au.

189

http://fhcp.edu.au

B. ATSP problem sets 190

An example is helpful in describing the format. Consider the instance with ID 1:

1 697

01 26 41

02 76 63

03 98 79

12 59 15

. . .

Having an ID between 1 and 200, this instance is derived from a Hamiltonian cubic

graph. It has edges between the vertex 0 and 1, between vertex 0 and 2, et cetera.

The arc cost for 0�1 is 26 while the arc cost for 1�0 is 41. The optimal tour, of length

697, contains the arcs 2�0 and 0�1.

1 697
01 26 41
02 76 63
03 98 79
12 59 15
13 24 83
24 34 58
35 40 53
46 78 15
47 61 5
58 6 61
59 80 84
68 50 51
6A 26 69
79 99 7
7B 40 7
8C 57 92
9D 3 12
AD 72 32
AE 61 29
BC 34 40
BF 5 64
CF 65 51
DE 72 56
EF 49 49

2 693
01 1 29
02 58 97
03 28 10
12 31 77
13 70 60
24 93 18
35 46 12
46 52 62
47 86 45
58 100 97
59 1 36
68 28 44
6A 98 69
7B 30 10
7C 77 32
8D 36 98
9E 17 12
9F 93 11
AB 41 33
AE 45 46
BF 0 57
CD 20 92
CE 70 79
DF 28 10

3 623
01 38 17
02 8 3
03 93 24
12 71 28
13 15 55
24 61 27
35 55 11
46 16 19
47 48 50
58 94 24
59 37 19
6A 64 6
6B 78 27
7C 7 38
7D 80 74
8A 17 93
8C 7 10
9B 38 61
9E 65 55
AD 18 34
BF 21 96
CE 72 67
DF 69 67
EF 50 16

4 757
01 53 79
02 4 58
03 64 75
12 63 23
14 6 68
25 37 31
34 34 21
36 42 66
47 51 90
56 65 70
58 57 43
69 68 1
78 77 57
7A 57 69
8B 43 37
9B 63 38
9C 20 12
AC 83 45
AD 92 8
BE 98 69
CF 52 76
DE 55 2
DF 47 43
EF 47 13

5 618
01 35 68
02 57 26
03 34 72
12 81 6
14 84 41
25 40 4
34 14 32
36 28 4
47 32 9
56 58 47
58 36 91
69 12 12
78 72 29
7A 54 21
8B 63 29
9C 41 42
9D 9 79
AC 97 32
AE 41 48
BE 27 48
BF 75 62
CD 5 49
DF 30 56
EF 73 22

6 682
01 15 19
02 70 70
03 73 94
12 9 38
14 81 80
25 32 17
34 99 88
36 49 8
47 7 62
56 4 98
58 84 22
69 2 48
78 81 30
7A 9 16
8B 50 66
9C 5 95
9D 88 50
AE 65 72
AF 23 87
BC 81 65
BE 63 16
CF 48 49
DE 12 18
DF 100 59

7 792
01 53 88
02 84 47
03 56 4
12 34 77
14 25 43
25 99 58
34 49 43
36 78 84
47 84 73
56 57 0
58 19 48
69 79 40
79 1 94
7A 35 8
8B 53 44
8C 65 97
9D 39 45
AD 65 54
AE 77 63
BC 95 2
BE 13 35
CF 47 33
DF 44 68
EF 84 1

8 777
01 81 29
02 9 10
03 94 57
12 66 79
14 100 67
25 36 44
34 82 92
36 50 59
47 33 72
56 97 100
58 7 11
69 44 70
7A 9 88
7B 31 22
89 12 6
8C 97 19
9D 61 96
AB 7 38
AD 12 49
BE 81 85
CE 53 39
CF 75 23
DF 24 74
EF 1 71

9 834
01 26 42
02 97 12
03 40 58
12 68 57
14 4 86
25 25 63
34 2 41
36 64 52
47 54 57
56 38 92
58 65 95
69 99 5
7A 48 3
7B 90 85
8A 52 87
8C 14 39
9B 52 1
9D 12 77
AE 15 89
BD 91 86
CE 90 86
CF 33 71
DF 96 100
EF 74 91

10 691
01 93 43
02 94 98
03 92 99
12 42 27
14 74 13
25 67 44
34 73 69
36 20 22
47 67 30
56 96 53
58 62 56
69 15 17
7A 20 67
7B 87 34
8A 89 92
8C 39 40
9B 19 89
9D 96 7
AE 8 81
BF 50 7
CD 6 16
CE 10 4
DF 13 60
EF 67 77

11 600
01 17 33
02 39 97
03 30 20
12 54 17
14 80 42
25 18 36
34 61 33
36 69 38
47 20 1
56 82 35
58 75 5
69 47 18
7A 37 37
7B 11 6
8A 26 86
8C 23 4
9D 29 78
9E 82 22
AC 18 95
BD 86 77
BF 64 19
CE 75 91
DF 2 27
EF 44 22

12 767
01 1 74
02 99 6
03 26 21
12 48 17
14 47 85
25 22 20
34 39 91
36 97 55
47 5 64
56 38 69
58 62 14
69 86 62
7A 27 19
7B 68 11
8A 39 44
8C 57 32
9D 99 93
9E 93 35
AD 84 89
BE 19 96
BF 85 80
CE 60 88
CF 33 41
DF 38 17

13 708
01 8 0
02 8 56
03 9 88
12 61 38
14 68 76
25 97 37
34 59 89
36 10 3
47 63 14
56 13 62
58 77 77
69 18 33
7A 67 70
7B 59 54
8A 74 17
8C 100 51
9D 29 37
9E 72 86
AF 12 23
BC 65 53
BD 6 80
CF 10 38
DE 55 47
EF 44 62

14 661
01 48 5
02 51 3
03 50 64
12 90 73
14 7 74
25 39 21
34 39 40
36 15 99
47 49 89
56 61 89
58 99 2
69 55 28
7A 34 46
7B 60 40
8C 2 48
8D 4 83
9C 2 74
9E 41 15
AB 51 18
AD 3 83
BF 66 95
CF 53 74
DE 31 52
EF 12 79

15 652
01 80 67
02 15 79
03 39 28
12 3 31
14 26 82
25 92 88
34 73 97
36 2 40
47 13 55
56 67 45
58 52 65
69 60 48
7A 4 78
7B 3 44
8C 12 46
8D 77 75
9C 42 73
9E 85 32
AB 5 12
AE 9 35
BF 91 97
CD 84 21
DF 21 14
EF 50 43

16 671
01 48 30
02 23 16
03 24 46
12 51 51
14 21 73
25 65 22
34 97 92
36 68 28
47 51 84
56 51 89
58 1 22
69 30 35
7A 69 36
7B 93 9
8C 64 69
8D 71 88
9C 13 16
9E 85 93
AB 48 15
AE 6 67
BF 10 10
CD 22 3
DF 51 30
EF 29 49

17 777
01 73 33
02 29 33
03 83 61
12 85 87
14 20 17
25 70 91
34 78 1
36 28 6
47 76 66
56 39 44
58 17 36
69 87 74
7A 71 35
7B 33 80
8C 86 38
8D 23 32
9C 63 80
9E 70 63
AD 8 50
AF 91 68
BE 3 80
BF 27 96
CD 84 55
EF 14 75

18 661
01 85 4
02 89 79
03 86 24
12 66 97
14 71 20
25 24 58
34 98 59
36 95 94
47 1 25
56 66 62
58 13 91
69 29 34
7A 26 97
7B 84 28
8C 52 83
8D 2 8
9C 75 3
9E 87 81
AD 41 10
AF 100 41
BE 13 13
BF 62 27
CE 32 20
DF 25 46

19 769
01 35 52
02 40 34
03 21 51
12 83 52
14 81 68
25 27 2
34 86 99
36 64 98
47 39 40
56 95 100
58 70 78
69 10 35
7A 99 13
7B 66 91
8C 77 53
8D 5 6
9E 6 72
9F 64 7
AC 82 45
AE 56 100
BD 58 88
BE 67 26
CF 72 15
DF 55 85

20 539
01 38 50
02 20 71
03 75 18
12 57 25
14 94 44
25 32 4
34 96 37
36 30 64
47 12 3
56 69 32
58 23 3
69 4 20
7A 32 21
7B 88 11
8C 3 7
8D 61 37
9E 37 83
9F 27 57
AC 17 0
AE 8 39
BD 99 60
BF 69 31
CD 97 18
EF 57 59

B. ATSP problem sets 191

21 739
01 95 98
02 93 59
03 62 61
12 68 35
14 63 24
25 96 14
34 72 86
36 14 48
47 94 24
58 16 77
59 36 89
67 90 90
68 32 91
7A 42 5
8B 3 59
9C 0 36
9D 73 94
AC 41 30
AE 87 84
BD 59 95
BF 70 40
CE 85 63
DF 13 26
EF 84 7

22 675
01 88 93
02 42 49
03 21 99
12 4 72
14 52 12
25 11 34
34 78 69
36 20 11
47 47 44
58 93 95
59 21 63
67 2 24
68 16 88
7A 30 76
8B 17 44
9C 58 88
9D 86 5
AE 33 6
AF 63 28
BC 17 96
BE 55 71
CD 45 29
DF 22 77
EF 23 5

23 626
01 1 71
02 33 73
03 43 86
12 26 42
14 27 99
25 84 50
34 20 9
36 97 12
47 18 4
58 83 93
59 69 96
67 40 89
6A 26 0
7B 86 40
8A 9 59
8C 43 11
9D 93 51
9E 2 36
AF 52 55
BD 1 86
BE 24 2
CD 87 6
CF 75 26
EF 85 39

24 636
01 97 5
02 81 50
03 9 93
12 77 40
14 40 68
25 77 66
34 41 35
36 17 28
47 4 8
58 81 78
59 45 10
67 56 48
6A 77 52
7B 24 91
8C 64 17
8D 10 67
9C 13 0
9E 29 66
AD 23 45
AF 47 22
BE 98 2
BF 42 42
CF 49 6
DE 83 62

25 755
01 65 10
02 64 50
03 4 36
12 68 58
14 97 58
25 83 59
34 58 46
36 57 75
47 81 27
58 16 97
59 100 95
68 65 10
6A 13 98
79 88 49
7B 42 84
8B 61 49
9C 31 4
AC 87 18
AD 90 24
BE 4 89
CF 62 70
DE 65 9
DF 22 22
EF 47 3

26 614
01 65 49
02 79 4
03 90 16
12 43 54
14 24 91
25 10 8
34 36 98
36 7 68
47 61 75
58 16 8
59 1 39
68 32 98
6A 46 20
79 41 4
7B 23 59
8C 57 6
9D 99 35
AB 11 97
AD 76 42
BE 27 52
CE 67 30
CF 35 88
DF 74 16
EF 98 34

27 711
01 83 9
02 2 5
03 72 10
12 41 64
14 89 57
25 28 31
34 54 10
36 45 63
47 59 10
58 7 99
59 2 92
68 54 32
6A 72 32
79 84 65
7B 83 93
8C 17 42
9D 32 59
AC 24 82
AE 1 44
BD 33 48
BF 82 72
CF 84 71
DE 99 63
EF 26 95

28 644
01 28 99
02 1 92
03 4 68
12 21 30
14 68 34
25 5 16
34 16 65
36 68 95
47 11 3
58 86 3
59 75 81
68 53 89
6A 92 6
7A 27 97
7B 78 64
8C 40 55
9D 20 20
9E 71 20
AD 17 32
BC 63 23
BF 46 30
CE 92 81
DF 9 24
EF 99 12

29 608
01 37 93
02 59 5
03 20 13
12 66 90
14 17 32
25 8 59
34 79 93
36 94 52
47 14 14
58 88 34
59 34 37
68 10 55
6A 99 2
7A 60 76
7B 51 7
8C 13 16
9D 43 72
9E 87 40
AF 92 69
BD 80 35
BF 85 74
CD 91 6
CE 1 21
EF 29 63

30 879
01 38 97
02 24 100
03 11 95
12 89 16
14 75 86
25 29 100
34 74 83
36 35 65
47 31 78
58 85 66
59 94 74
68 70 17
6A 4 34
7B 27 38
7C 3 49
8A 74 55
9B 93 35
9D 90 22
AE 83 57
BF 21 42
CD 91 90
CE 49 60
DF 93 7
EF 61 93

31 839
01 46 75
02 77 83
03 43 89
12 75 90
14 35 46
25 60 76
34 94 76
36 24 47
47 75 23
58 82 90
59 26 51
68 32 89
6A 16 69
7B 36 81
7C 25 75
8D 48 87
9A 94 3
9B 40 85
AD 64 14
BE 18 29
CE 87 54
CF 38 89
DF 59 51
EF 77 31

32 669
01 9 72
02 89 25
03 39 53
12 20 52
14 3 87
25 72 16
34 67 28
36 77 18
47 81 80
58 5 42
59 80 12
68 64 59
6A 57 42
7B 23 76
7C 44 96
8D 26 24
9A 35 39
9E 72 36
AF 56 47
BC 33 19
BD 45 7
CF 14 28
DE 45 95
EF 96 89

33 660
01 2 29
02 83 48
03 15 32
12 31 34
14 13 12
25 96 2
34 77 41
36 58 20
47 15 12
58 88 11
59 99 92
68 69 9
6A 55 95
7B 66 48
7C 3 16
8D 53 77
9B 39 81
9C 54 73
AB 20 76
AE 0 74
CF 69 75
DE 34 80
DF 64 6
EF 88 42

34 663
01 61 22
02 4 6
03 22 58
12 93 98
14 6 91
25 18 4
34 28 28
36 69 23
47 80 3
58 76 32
59 4 88
68 30 9
6A 95 98
7B 99 41
7C 92 13
8D 84 52
9B 29 9
9D 68 6
AE 80 15
AF 18 33
BE 20 27
CD 17 96
CF 31 72
EF 52 21

35 682
01 64 12
02 59 2
03 11 85
12 92 56
14 54 6
25 26 38
34 12 39
36 78 95
47 14 47
58 9 85
59 10 95
68 2 75
6A 42 69
7B 58 30
7C 62 22
8D 56 76
9B 41 46
9E 75 32
AC 9 52
AF 37 93
BF 6 52
CD 89 73
DE 90 41
EF 27 48

36 759
01 72 8
02 6 44
03 85 84
12 73 88
14 50 1
25 40 93
34 64 34
36 10 58
47 88 42
58 76 55
59 93 44
68 4 12
6A 57 87
7B 51 18
7C 19 78
8D 33 13
9B 88 80
9E 3 79
AC 3 4
AF 21 80
BF 19 61
CE 65 12
DE 59 96
DF 99 89

37 766
01 63 59
02 52 20
03 80 56
12 82 69
14 6 61
25 3 37
34 70 72
36 46 32
47 63 42
58 45 74
59 66 87
68 74 97
6A 66 11
7B 98 87
7C 89 56
8D 3 96
9B 99 53
9E 36 55
AE 21 14
AF 6 93
BD 72 13
CD 92 81
CF 40 90
EF 16 56

38 708
01 52 8
02 26 7
03 26 31
12 84 21
14 95 27
25 3 96
34 62 46
36 78 9
47 77 82
58 3 52
59 30 29
68 95 92
6A 85 52
7B 47 54
7C 8 91
8D 46 93
9B 92 38
9E 91 30
AE 0 56
AF 76 54
BF 89 65
CD 70 83
CE 38 2
DF 20 34

39 696
01 82 44
02 92 89
03 21 53
12 49 29
14 3 80
25 4 83
34 16 79
36 2 75
47 25 73
58 61 91
59 82 29
68 0 79
6A 36 93
7B 47 15
7C 100 81
8D 14 28
9D 29 37
9E 66 64
AE 38 20
AF 13 70
BC 56 32
BE 52 51
CF 91 66
DF 30 10

40 647
01 47 14
02 6 12
03 61 74
12 92 97
14 40 9
25 3 17
34 13 91
36 71 84
47 13 76
58 42 73
59 28 54
68 86 67
6A 37 76
7B 18 68
7C 21 65
8D 66 8
9E 33 5
9F 80 90
AB 22 44
AE 40 30
BF 63 3
CD 62 35
CE 89 67
DF 80 6

41 650
01 66 49
02 14 81
03 44 66
12 57 25
14 58 28
25 69 5
34 55 88
36 43 83
47 37 8
58 21 96
59 41 67
6A 58 95
6B 54 13
7A 54 6
7C 29 41
89 41 10
8B 26 75
9D 44 32
AD 62 45
BE 17 78
CE 27 88
CF 10 35
DF 100 17
EF 51 65

42 749
01 30 6
02 67 59
03 57 93
12 11 29
14 4 24
25 89 15
34 60 20
36 27 15
47 73 64
58 47 82
59 26 48
6A 68 67
6B 23 89
7A 68 29
7C 32 90
89 25 12
8B 21 20
9D 31 93
AE 45 83
BC 52 43
CF 78 79
DE 61 38
DF 49 78
EF 72 60

43 729
01 85 76
02 9 44
03 24 5
12 34 59
14 38 80
25 27 65
34 78 59
36 8 17
47 46 46
58 47 73
59 93 96
6A 96 3
6B 42 75
7A 38 16
7C 41 79
89 1 16
8D 25 73
9E 24 23
AD 53 89
BC 76 82
BE 94 29
CF 43 77
DF 98 35
EF 77 78

44 667
01 81 34
02 30 14
03 16 89
12 81 93
14 93 40
25 1 15
34 54 48
36 33 53
47 97 85
58 57 76
59 35 49
6A 91 26
6B 82 84
7A 99 18
7C 2 35
8A 99 75
8D 12 63
9B 0 49
9E 98 58
BF 99 3
CD 91 6
CE 5 14
DF 62 18
EF 5 3

45 713
01 44 19
02 34 26
03 47 11
12 41 94
14 97 3
25 17 76
34 83 96
36 55 2
47 1 81
58 70 83
59 11 57
6A 75 31
6B 60 55
7A 7 96
7C 71 14
8A 73 52
8D 14 83
9D 99 37
9E 40 68
BC 73 62
BE 78 81
CF 91 76
DF 95 14
EF 50 13

46 528
01 83 17
02 63 89
03 95 50
12 50 12
14 3 80
25 5 15
34 50 52
36 76 61
47 2 52
58 61 57
59 5 64
6A 3 95
6B 93 27
7A 52 30
7C 93 97
8A 70 14
8D 22 38
9E 3 39
9F 92 13
BC 20 37
BD 59 15
CE 18 29
DF 11 9
EF 1 64

47 648
01 7 97
02 22 63
03 43 5
12 70 66
14 27 32
25 10 61
34 28 91
36 74 6
47 14 22
58 65 77
59 40 55
6A 74 85
6B 59 25
7A 38 28
7C 58 53
8B 58 33
8D 96 82
9C 66 72
9D 90 12
AE 16 9
BF 61 97
CF 12 25
DE 80 55
EF 78 64

48 663
01 60 74
02 41 83
03 51 20
12 23 79
14 10 84
25 5 6
34 60 34
36 59 52
47 81 0
58 35 7
59 85 9
6A 97 85
6B 38 14
7A 31 39
7C 30 57
8B 35 41
8D 11 96
9D 79 38
9E 57 92
AC 36 26
BE 80 57
CF 7 62
DF 50 38
EF 61 100

49 582
01 4 40
02 13 5
03 30 23
12 68 82
14 52 38
25 17 8
34 29 78
36 1 29
47 34 26
58 100 4
59 77 66
6A 11 96
6B 8 29
7A 17 11
7C 28 50
8D 49 63
8E 81 69
9D 93 41
9E 9 78
AF 34 34
BC 63 35
BD 69 44
CF 1 78
EF 85 87

50 773
01 88 19
02 72 95
03 40 79
12 49 16
14 7 90
25 80 4
34 39 62
36 30 41
47 86 3
58 49 10
59 46 60
6A 23 69
6B 85 88
7A 5 25
7C 44 29
8D 49 73
8E 44 74
9D 2 53
9F 72 51
AB 67 83
BE 94 42
CD 7 86
CF 79 22
EF 56 71

B. ATSP problem sets 192

51 769
01 29 42
02 19 94
03 4 33
12 90 20
14 17 74
25 95 73
34 79 34
36 99 65
47 92 55
58 13 18
59 40 50
6A 93 37
6B 84 99
7C 48 31
7D 9 19
89 56 10
8A 18 74
9C 58 17
AB 96 84
BE 33 67
CF 89 72
DE 67 48
DF 73 6
EF 83 37

52 762
01 6 35
02 62 99
03 75 97
12 71 74
14 21 71
25 80 68
34 7 27
36 70 84
47 48 5
58 89 22
59 92 77
6A 90 53
6B 16 9
7C 13 79
7D 80 95
89 56 39
8A 64 23
9C 29 10
AD 47 39
BE 6 47
BF 99 2
CE 78 61
DF 71 63
EF 32 36

53 598
01 56 37
02 10 35
03 88 72
12 11 82
14 95 33
25 26 40
34 12 18
36 4 32
47 59 25
58 16 98
59 59 88
6A 34 89
6B 56 4
7C 97 97
7D 69 28
89 4 2
8A 70 48
9E 6 41
AF 65 8
BC 72 9
BE 23 27
CF 11 98
DE 84 86
DF 60 36

54 696
01 40 73
02 48 95
03 0 96
12 92 33
14 22 99
25 84 28
34 14 51
36 0 72
47 96 68
58 32 60
59 17 21
6A 54 39
6B 74 25
7C 36 56
7D 36 67
89 37 95
8A 86 11
9E 10 31
AF 15 93
BE 46 33
BF 35 77
CD 76 26
CE 54 94
DF 10 40

55 826
01 63 90
02 91 76
03 50 18
12 75 57
14 79 25
25 31 72
34 29 91
36 73 61
47 60 100
58 63 85
59 96 38
6A 16 34
6B 70 0
7C 77 72
7D 1 88
8A 81 47
8B 82 73
9A 97 22
9E 32 57
BC 97 3
CF 13 29
DE 80 76
DF 56 58
EF 96 1

56 763
01 79 2
02 89 29
03 13 41
12 67 91
14 52 22
25 15 98
34 90 74
36 69 59
47 60 11
58 86 49
59 1 89
6A 87 34
6B 34 83
7C 70 92
7D 48 77
8A 10 17
8B 77 11
9C 75 43
9D 44 18
AE 89 4
BF 8 95
CE 97 50
DF 66 81
EF 63 90

57 739
01 83 74
02 7 1
03 55 63
12 52 61
14 89 89
25 14 15
34 78 55
36 35 7
47 46 28
58 40 60
59 14 82
6A 93 89
6B 2 10
7C 81 21
7D 40 66
8A 86 28
8B 25 61
9E 92 80
9F 99 25
AC 82 49
BD 67 71
CE 42 11
DF 11 87
EF 68 92

58 642
01 68 33
02 60 48
03 37 13
12 8 72
14 20 19
25 63 15
34 21 33
36 23 30
47 90 58
58 53 19
59 87 72
6A 5 53
6B 93 85
7C 8 10
7D 73 34
8A 70 9
8C 46 22
9B 64 68
9E 47 58
AE 99 50
BD 4 22
CF 54 97
DF 14 36
EF 54 36

59 705
01 18 99
02 10 69
03 14 88
12 6 67
14 23 43
25 60 43
34 99 98
36 56 39
47 85 65
58 70 4
59 87 3
6A 48 60
6B 29 52
7C 1 88
7D 83 11
8A 85 42
8C 15 30
9E 6 43
9F 10 49
AB 65 32
BD 72 64
CE 14 22
DF 33 90
EF 70 30

60 608
01 6 88
02 65 14
03 3 33
12 15 26
14 96 32
25 44 75
34 5 73
36 64 1
47 21 9
58 9 19
59 89 30
6A 43 12
6B 28 49
7C 91 74
7D 63 7
8A 45 82
8E 33 52
9A 61 81
9F 86 11
BC 25 35
BD 69 84
CE 67 56
DF 52 89
EF 66 65

61 696
01 28 85
02 89 21
03 7 36
12 2 66
14 92 29
25 87 58
34 8 14
36 44 6
47 82 47
58 100 42
59 11 55
6A 91 9
6B 18 14
7C 1 36
7D 59 55
8A 54 93
8E 35 77
9C 77 13
9E 22 46
AD 68 38
BC 91 41
BF 87 0
DF 14 37
EF 83 42

62 672
01 62 24
02 70 42
03 56 89
12 17 28
14 32 32
25 61 12
34 16 31
36 96 67
47 9 80
58 78 40
59 18 79
6A 36 47
6B 55 25
7C 48 37
7D 76 84
8A 64 46
8E 2 44
9C 55 65
9F 78 75
AB 68 37
BD 57 6
CE 3 14
DF 61 70
EF 2 76

63 738
01 89 66
02 85 70
03 72 27
12 64 10
14 2 79
25 99 56
34 81 3
36 94 41
47 57 20
58 33 53
59 39 44
6A 96 9
6B 29 52
7C 81 54
7D 77 91
8A 93 29
8E 95 0
9C 67 51
9F 3 28
AB 55 3
BD 65 94
CF 42 27
DE 1 90
EF 83 44

64 682
01 88 2
02 11 96
03 38 64
12 100 89
14 72 44
25 51 10
34 40 33
36 39 84
47 38 5
58 82 60
59 84 8
6A 73 39
6B 78 85
7C 33 18
7D 89 7
8A 6 28
8E 11 72
9C 70 19
9F 46 18
AD 79 53
BD 56 99
BE 63 87
CF 26 60
EF 62 6

65 706
01 77 9
02 54 86
03 32 99
12 86 83
14 27 91
25 11 69
34 79 81
36 96 57
47 70 28
58 28 75
59 2 39
6A 27 5
6B 40 42
7C 30 39
7D 20 33
8A 48 6
8E 25 15
9E 63 83
9F 39 26
AF 95 3
BC 62 92
BE 95 27
CD 90 76
DF 26 46

66 721
01 60 27
02 75 38
03 57 18
12 72 100
14 57 69
25 16 4
36 83 17
37 71 72
46 68 11
47 63 38
58 73 40
59 38 44
68 52 8
7A 96 62
8B 91 25
9C 17 35
9D 31 25
AE 21 42
AF 59 82
BC 67 80
BE 73 23
CF 34 84
DE 69 13
DF 1 12

67 719
01 98 34
02 80 36
03 89 72
12 59 10
14 61 85
25 65 40
36 25 78
37 54 55
46 42 55
47 69 26
58 8 68
59 21 73
6A 71 16
7B 1 57
8C 24 78
8D 13 95
9E 50 6
9F 99 9
AC 56 15
AD 99 15
BE 8 44
BF 4 90
CE 5 75
DF 64 70

68 798
01 67 35
02 35 20
03 83 62
12 75 97
14 68 31
25 19 54
36 64 32
37 54 55
46 76 23
48 95 38
57 42 93
59 13 84
68 15 99
7A 67 12
8B 49 59
9C 69 92
9D 13 4
AC 21 37
AE 52 75
BE 88 0
BF 67 72
CD 87 71
DF 90 5
EF 83 91

69 622
01 92 3
02 72 51
03 38 1
12 65 81
14 36 36
25 24 83
36 49 47
37 54 48
46 83 9
48 20 1
57 51 46
59 52 32
6A 74 23
7B 22 34
89 25 24
8C 46 97
9D 42 57
AC 83 13
AE 72 95
BC 21 57
BF 64 68
DE 18 7
DF 65 90
EF 82 16

70 628
01 100 23
02 7 81
03 98 44
12 31 56
14 45 17
25 9 66
36 17 68
37 23 53
46 13 37
48 98 99
57 69 93
59 5 53
6A 96 26
7B 7 57
89 70 69
8C 78 32
9D 3 22
AC 29 53
AE 44 30
BD 71 62
BF 7 30
CE 9 99
DF 72 71
EF 26 11

71 659
01 75 14
02 36 90
03 24 36
12 82 95
14 54 9
25 39 30
36 41 75
37 39 36
46 96 13
48 73 17
57 50 74
59 31 53
6A 60 79
7B 10 49
8B 93 64
8C 6 62
9C 56 88
9D 58 43
AC 76 20
AE 1 67
BF 68 5
DE 90 52
DF 6 21
EF 95 80

72 586
01 4 50
02 79 11
03 14 2
12 48 70
14 30 27
25 9 91
36 8 70
37 39 62
46 45 88
48 24 46
57 0 16
59 87 81
6A 55 28
7B 25 38
8B 36 79
8C 57 18
9D 16 95
9E 13 2
AC 7 86
AF 25 58
BF 56 81
CD 4 99
DE 0 94
EF 29 43

73 784
01 82 76
02 79 61
03 7 29
12 84 35
14 75 50
25 83 71
36 80 97
37 29 48
46 100 84
48 85 71
57 17 17
59 77 90
6A 5 97
7B 74 29
8B 21 93
8C 88 70
9D 35 3
9E 13 45
AD 82 24
AF 49 20
BE 57 16
CE 67 8
CF 78 72
DF 73 59

74 798
01 72 53
02 98 15
03 37 39
12 60 70
14 48 68
25 54 85
36 81 48
37 77 52
46 89 18
48 81 51
57 22 8
59 99 89
6A 95 19
7B 46 94
8C 28 59
8D 68 3
9C 31 98
9D 10 4
AC 83 51
AE 72 62
BE 67 43
BF 4 52
DF 75 25
EF 60 57

75 590
01 92 19
02 2 21
03 55 28
12 39 38
14 10 83
25 95 38
36 83 60
37 31 18
46 48 98
48 55 94
57 14 8
59 77 26
6A 99 1
7B 77 77
8C 15 68
8D 32 8
9C 15 33
9E 57 22
AD 54 1
AF 6 92
BE 18 51
BF 97 12
CD 2 67
EF 59 84

76 694
01 6 46
02 81 57
03 26 44
12 12 75
14 27 14
25 9 84
36 6 14
37 64 31
46 91 7
48 57 48
59 78 42
5A 36 97
67 97 21
79 89 5
8B 99 76
8C 31 23
9D 70 81
AB 45 2
AE 64 86
BF 99 93
CE 6 6
CF 49 73
DE 90 56
DF 42 87

77 729
01 31 5
02 54 88
03 35 4
12 4 96
14 25 83
25 81 78
36 28 35
37 65 81
46 15 10
48 46 67
59 73 49
5A 55 78
67 1 59
7B 80 64
8C 7 23
8D 55 76
9B 88 10
9E 87 58
AC 2 94
AF 45 38
BF 94 38
CE 58 95
DE 3 16
DF 77 95

78 737
01 19 78
02 91 57
03 32 20
12 49 15
14 58 9
25 69 4
36 50 58
37 57 56
46 58 6
48 88 84
59 98 41
5A 41 10
67 38 93
7B 18 40
8C 57 15
8D 82 6
9C 89 69
9E 42 81
AC 89 100
AF 33 4
BE 91 72
BF 53 49
DE 74 4
DF 90 18

79 502
01 16 74
02 26 4
03 39 46
12 17 71
14 89 9
25 15 50
36 19 28
37 29 16
46 18 1
48 16 36
59 35 7
5A 52 98
69 34 25
7A 8 34
7B 44 0
8C 8 36
8D 90 7
9C 55 13
AE 54 60
BD 18 92
BE 95 72
CF 32 23
DF 22 85
EF 50 76

80 709
01 48 87
02 59 81
03 29 26
12 59 95
14 13 57
25 70 44
36 22 85
37 46 64
46 30 57
48 29 57
59 33 15
5A 77 42
6B 85 39
78 39 58
79 89 29
8C 46 2
9D 24 20
AC 77 12
AD 54 30
BE 16 88
BF 35 29
CE 48 58
DF 56 41
EF 31 85

B. ATSP problem sets 193

81 675
01 31 79
02 26 16
03 41 39
12 61 76
14 33 90
25 2 86
36 57 46
37 28 74
46 97 11
48 56 90
59 59 73
5A 59 4
6B 88 92
78 87 22
79 17 99
8C 70 19
9D 34 23
AC 28 30
AE 36 18
BD 35 72
BF 26 6
CE 14 15
DF 44 45
EF 83 64

82 695
01 27 75
02 26 63
03 39 89
12 6 86
14 33 35
25 41 70
36 82 10
37 96 35
46 7 7
48 54 79
59 74 49
5A 60 95
6B 88 5
78 65 55
7B 23 31
8C 84 31
9C 8 0
9D 67 52
AE 4 83
AF 94 24
BE 67 97
CF 13 15
DE 56 60
DF 26 20

83 696
01 96 8
02 44 61
03 13 58
12 92 32
14 27 29
25 41 35
36 8 73
37 82 80
46 89 25
48 29 83
59 89 16
5A 11 89
6B 95 97
78 75 71
7C 93 63
8D 79 64
9A 22 9
9C 2 55
AE 49 14
BE 29 79
BF 9 100
CF 98 0
DE 3 77
DF 62 35

84 577
01 58 20
02 86 12
03 31 24
12 4 54
14 47 33
25 1 44
36 34 44
37 47 52
46 99 0
48 22 18
59 84 91
5A 51 31
6B 41 42
78 32 43
7C 24 54
8D 91 28
9B 49 5
9E 1 50
AC 13 68
AF 70 76
BD 8 15
CF 65 64
DE 47 44
EF 28 82

85 559
01 30 31
02 9 39
03 84 0
12 76 16
14 73 80
25 72 58
36 100 55
37 86 52
46 27 48
48 11 42
59 24 42
5A 15 10
6B 24 75
78 77 80
7C 28 20
8D 44 24
9C 8 37
9E 98 48
AD 30 8
AE 23 53
BC 1 50
BF 54 1
DF 6 78
EF 58 41

86 605
01 74 92
02 8 39
03 28 18
12 89 44
14 44 32
25 25 39
36 78 16
37 63 100
46 47 4
48 6 40
59 67 52
5A 23 52
6B 37 16
79 5 74
7A 37 78
8B 15 44
8C 83 28
9D 30 36
AE 10 18
BF 42 93
CD 93 49
CF 91 17
DE 3 46
EF 85 100

87 741
01 57 84
02 4 9
03 77 21
12 27 92
14 8 48
25 62 83
36 27 15
37 59 73
46 85 35
48 84 74
59 46 2
5A 43 85
6B 100 72
79 46 87
7B 45 6
8C 16 56
8D 18 41
9C 3 13
AC 24 97
AE 92 14
BF 51 56
DE 100 89
DF 53 63
EF 91 7

88 682
01 23 51
02 48 0
03 25 83
12 91 93
14 56 68
25 36 21
36 44 96
37 13 51
46 77 41
48 61 48
59 96 21
5A 96 35
6B 6 88
79 55 62
7C 41 60
89 57 56
8D 38 26
AC 50 21
AD 60 77
BE 46 55
BF 12 99
CE 78 3
DF 43 5
EF 4 78

89 607
01 57 67
02 84 32
03 5 60
12 0 23
14 4 29
25 4 75
36 30 82
37 1 40
46 78 15
48 40 84
59 75 44
5A 14 99
6B 52 9
79 78 52
7C 29 92
89 60 3
8D 80 19
AE 41 40
AF 98 72
BE 2 11
BF 47 64
CD 57 89
CE 80 9
DF 85 31

90 764
01 48 12
02 69 35
03 80 79
12 65 44
14 80 16
25 83 83
36 80 22
37 36 78
46 72 4
48 86 96
59 57 37
5A 98 11
6B 55 19
79 84 3
7C 87 89
8A 16 15
8D 45 84
9C 94 92
AE 61 20
BD 96 67
BE 97 63
CF 15 51
DF 54 8
EF 13 19

91 651
01 49 61
02 99 56
03 24 69
12 97 57
14 46 99
25 76 3
36 19 71
37 16 52
46 71 66
48 7 4
59 79 19
5A 69 44
6B 88 38
79 47 66
7C 38 45
8A 10 28
8D 28 64
9D 37 30
AE 5 19
BD 71 4
BF 7 63
CE 80 41
CF 74 99
EF 90 48

92 594
01 45 3
02 89 26
03 28 17
12 70 8
14 61 5
25 75 95
36 77 26
37 80 65
46 61 26
48 96 10
59 2 21
5A 58 83
6B 33 35
79 7 11
7C 32 93
8A 2 82
8D 59 19
9D 65 43
AE 3 14
BE 76 11
BF 98 63
CE 61 76
CF 74 3
DF 27 34

93 671
01 83 28
02 91 97
03 99 87
12 38 51
14 65 46
25 7 5
36 58 27
37 93 21
46 70 40
48 15 96
59 80 88
5A 66 16
6B 46 4
79 30 56
7C 53 38
8A 18 95
8D 42 51
9E 96 13
AF 41 58
BC 9 24
BD 87 53
CE 49 63
DF 22 3
EF 33 14

94 660
01 96 72
02 0 5
03 91 19
12 73 17
14 63 95
25 34 72
36 8 91
37 27 86
46 79 20
48 26 59
59 99 55
5A 7 50
6B 13 24
79 93 69
7C 9 31
8B 1 90
8D 88 75
9E 88 40
AB 56 12
AF 16 80
CD 31 31
CE 74 98
DF 1 85
EF 52 18

95 572
01 10 18
02 21 78
03 15 22
12 43 65
14 15 73
25 60 65
36 35 2
37 54 85
46 28 92
48 31 71
59 10 16
5A 19 57
6B 46 9
79 42 12
7C 51 25
8B 96 53
8D 6 95
9E 7 46
AC 80 53
AF 87 35
BF 43 5
CD 18 45
DE 87 11
EF 52 97

96 693
01 50 93
02 63 2
03 25 92
12 72 91
14 79 19
25 58 6
36 78 3
37 84 80
46 42 5
48 95 18
59 77 28
5A 5 48
6B 28 5
79 39 60
7C 75 53
8C 64 99
8D 84 80
9E 2 89
AB 42 34
AF 34 47
BF 91 43
CE 68 23
DE 24 4
DF 100 6

97 717
01 12 73
02 33 57
03 19 0
12 24 69
14 40 11
25 6 61
36 67 21
37 35 46
46 34 26
48 91 54
59 58 95
5A 96 11
6B 81 69
79 24 12
7C 95 71
8D 73 4
8E 11 55
9A 38 91
AF 79 97
BC 36 54
BD 35 90
CE 73 99
DF 41 14
EF 88 89

98 779
01 17 17
02 28 1
03 74 74
12 74 90
14 61 93
25 38 43
36 87 63
37 84 11
46 27 97
48 32 86
59 90 31
5A 4 70
6B 24 70
79 50 81
7C 67 30
8D 19 92
8E 72 82
9C 79 72
AD 84 18
AF 76 70
BD 53 93
BF 75 6
CE 50 24
EF 74 1

99 542
01 29 9
02 12 14
03 81 13
12 43 36
14 55 66
25 78 20
36 83 49
37 2 5
46 91 75
48 38 34
59 80 12
5A 55 49
6B 12 49
79 11 78
7C 88 41
8D 0 63
8E 82 0
9D 19 23
AB 42 67
AC 33 83
BE 2 30
CF 39 1
DF 66 13
EF 53 39

100 651
01 8 49
02 74 90
03 51 2
12 5 91
14 73 99
25 89 62
36 17 66
37 52 7
46 7 4
48 42 50
59 37 64
5A 36 40
6B 18 86
79 83 80
7C 78 8
8D 26 24
8E 13 91
9D 61 25
AB 48 80
AC 57 83
BF 78 99
CE 83 98
DF 88 28
EF 2 60

101 812
01 83 71
02 97 24
03 52 94
12 37 92
14 52 10
25 32 79
36 88 58
37 71 92
46 32 1
48 94 7
59 28 31
5A 88 32
6B 41 96
79 95 92
7C 23 18
8D 3 64
8E 94 18
9D 67 37
AC 72 44
AF 90 90
BC 51 11
BE 59 21
DF 76 99
EF 10 7

102 595
01 88 1
02 55 31
03 51 84
12 29 98
14 45 7
25 88 30
36 32 90
37 7 62
46 89 44
48 11 70
59 46 54
5A 37 24
6B 33 0
79 37 32
7C 10 12
8D 4 19
8E 10 7
9D 79 75
AE 35 69
AF 26 0
BC 31 74
BD 68 17
CF 83 88
EF 5 78

103 604
01 25 1
02 39 68
03 6 97
12 52 71
14 75 20
25 8 5
36 10 58
37 11 54
46 71 37
48 57 78
59 72 8
5A 48 61
6B 69 72
79 26 54
7C 58 37
8D 36 15
8E 87 40
9D 15 75
AE 29 72
AF 29 26
BC 54 37
BF 87 84
CE 81 50
DF 21 92

104 622
01 98 29
02 17 60
03 48 61
12 71 41
14 3 50
25 97 49
36 29 86
37 70 35
46 83 1
48 25 37
59 48 96
5A 89 42
6B 65 44
79 53 12
7C 30 4
8D 38 87
8E 28 20
9F 30 54
AB 40 58
AC 89 24
BD 5 54
CF 44 35
DE 29 89
EF 41 23

105 674
01 16 61
02 29 59
03 23 5
12 75 40
14 100 4
25 69 6
36 73 40
37 41 77
46 82 41
48 41 95
59 65 89
5A 15 65
6B 72 32
79 74 1
7C 66 27
8D 85 2
8E 82 40
9F 21 28
AB 13 84
AD 6 54
BC 45 20
CE 54 50
DF 70 53
EF 75 20

106 738
01 46 50
02 51 36
03 90 45
12 20 19
14 87 6
25 14 45
36 87 92
37 48 0
46 82 16
48 13 69
59 66 24
5A 1 21
6B 66 68
79 43 43
7C 53 79
8D 34 70
8E 31 74
9F 77 24
AC 62 51
AD 30 43
BC 22 91
BE 90 93
DF 95 82
EF 54 68

107 775
01 90 94
02 95 78
03 44 50
12 59 79
14 83 25
25 67 67
36 99 47
37 28 1
46 33 81
48 36 73
59 11 35
5A 64 55
6B 70 17
79 1 28
7C 51 70
8D 87 13
8E 37 11
9F 28 55
AC 89 75
AD 64 53
BC 68 1
BF 43 15
DE 74 99
EF 14 59

108 891
01 84 83
02 98 7
03 78 91
12 74 80
14 98 87
25 98 25
36 13 77
37 68 1
46 79 0
48 42 64
59 75 38
5A 66 86
6B 2 88
7B 38 87
7C 57 34
8B 83 79
8D 40 66
9C 77 98
9E 5 11
AE 26 77
AF 73 100
CF 98 82
DE 39 83
DF 26 66

109 692
01 54 53
02 92 31
03 93 87
12 90 21
14 39 45
25 29 32
36 77 40
37 38 22
46 90 83
48 24 95
59 87 42
5A 66 65
6B 17 38
7B 64 37
7C 24 36
8D 4 4
8E 33 43
9A 77 35
9D 67 22
AF 7 25
BF 1 98
CD 75 45
CE 42 73
EF 64 37

110 693
01 55 36
02 77 69
03 66 84
12 56 33
14 76 15
25 43 96
36 3 84
37 81 4
46 39 43
48 17 97
59 38 59
5A 94 47
6B 3 23
7B 49 16
7C 18 69
8D 92 26
8E 43 72
9B 68 7
9F 72 37
AD 53 84
AE 78 50
CD 98 69
CF 24 16
EF 51 5

B. ATSP problem sets 194

111 668
01 67 97
02 91 34
03 81 35
12 17 100
14 76 54
25 88 65
36 72 55
37 47 6
46 56 25
48 14 41
59 84 86
5A 5 32
6B 24 13
7C 89 19
7D 71 99
8C 14 43
8D 31 82
9A 11 26
9E 36 79
AF 37 100
BE 0 6
BF 38 19
CE 29 100
DF 7 72

112 723
01 20 14
02 96 11
03 78 65
12 41 14
14 40 49
25 44 19
36 27 74
37 57 81
46 88 79
48 88 86
59 96 71
5A 5 78
6B 38 40
7C 3 57
7D 59 43
8C 2 81
8E 72 8
9A 68 76
9D 53 66
AF 44 11
BE 81 89
BF 20 19
CF 17 27
DE 34 92

113 753
01 81 98
02 12 95
03 91 65
12 55 72
14 58 56
25 62 78
36 70 52
37 63 39
46 71 52
48 23 31
59 64 89
5A 50 19
6B 30 22
7C 62 90
7D 11 27
8C 36 35
8E 8 61
9B 92 43
9C 18 85
AD 43 50
AF 85 85
BE 91 11
DF 68 7
EF 11 83

114 678
01 80 100
02 80 42
03 66 95
12 48 32
14 97 8
25 3 31
36 10 67
37 72 75
46 1 65
48 19 37
59 79 43
5A 78 26
6B 32 17
7C 99 67
7D 23 24
8C 84 10
8E 25 24
9B 54 70
9F 26 27
AD 38 23
AF 98 6
BD 11 44
CE 6 68
EF 97 99

115 524
01 58 8
02 13 38
03 27 22
12 98 28
14 86 40
25 60 18
36 9 28
37 54 90
46 38 2
48 30 13
59 77 92
5A 40 52
6B 54 73
7C 17 46
7D 29 26
8C 33 42
8E 70 27
9C 70 25
9F 13 64
AD 20 83
AF 24 33
BE 5 88
BF 36 34
DE 56 93

116 614
01 80 94
02 11 33
03 47 70
12 63 79
14 32 51
25 59 53
36 63 68
37 60 31
46 80 56
48 37 3
59 77 35
5A 59 27
6B 28 33
7C 1 45
7D 72 5
8C 59 26
8E 37 26
9D 20 85
9E 97 9
AD 74 97
AF 54 19
BE 16 6
BF 21 35
CF 40 48

117 742
01 91 75
02 89 64
03 22 47
12 23 52
14 73 4
25 30 62
36 39 88
37 62 28
46 80 91
48 18 55
59 69 41
5A 80 26
6B 100 52
7C 91 86
7D 80 15
8E 87 35
8F 5 46
9A 92 62
9B 28 38
AC 62 8
BE 4 29
CD 23 67
DF 15 52
EF 11 21

118 651
01 15 73
02 91 48
03 86 100
12 34 40
14 56 42
25 74 46
36 78 61
37 74 88
46 28 2
48 53 9
59 25 76
5A 23 23
6B 30 51
7C 88 11
7D 66 91
8E 0 40
8F 93 43
9A 88 0
9C 74 8
AE 97 21
BD 46 20
BF 30 18
CF 22 3
DE 11 6

119 609
01 45 4
02 82 50
03 32 4
12 70 58
14 9 25
25 43 34
36 71 7
37 36 76
46 16 29
48 51 3
59 68 49
5A 29 80
6B 5 44
7C 6 27
7D 15 41
8E 73 49
8F 7 62
9B 98 21
9C 87 15
AB 48 12
AE 73 78
CF 65 47
DE 89 84
DF 33 56

120 650
01 57 66
02 60 43
03 35 2
12 55 41
14 40 50
25 22 44
36 95 22
37 1 14
46 9 93
48 98 75
59 19 16
5A 56 89
6B 32 47
7C 30 30
7D 96 68
8E 8 34
8F 9 49
9B 4 83
9C 94 32
AD 92 58
AE 34 11
BD 85 89
CF 56 40
EF 96 26

121 684
01 30 59
02 31 66
03 38 64
12 40 95
14 89 36
25 50 94
36 18 57
37 63 97
46 88 79
48 38 71
59 71 27
5A 21 41
6B 55 77
7C 69 4
7D 49 93
8E 10 88
8F 36 8
9C 12 10
9E 48 23
AD 63 2
AF 29 56
BC 9 22
BE 27 64
DF 49 38

122 717
01 43 59
02 62 75
03 27 92
12 68 87
14 25 46
25 7 29
36 91 38
37 53 74
48 7 28
49 39 72
5A 20 6
5B 64 34
67 5 53
68 16 55
7A 100 64
8C 91 62
9C 19 15
9D 55 56
AE 0 70
BE 57 58
BF 8 95
CF 55 82
DE 47 33
DF 94 22

123 752
01 74 36
02 69 22
03 36 78
12 86 74
14 44 87
25 53 7
36 47 78
37 60 63
48 35 32
49 58 75
5A 79 8
5B 25 30
67 43 12
68 95 83
7A 59 48
8C 16 51
9D 47 23
9E 83 27
AD 52 27
BE 89 49
BF 76 41
CE 40 46
CF 41 17
DF 80 46

124 675
01 51 15
02 95 22
03 1 25
12 80 66
14 20 34
25 70 86
36 76 37
37 10 41
48 11 48
49 19 0
5A 22 97
5B 99 60
67 62 35
68 25 57
7C 29 13
8A 18 92
9B 18 24
9D 38 99
AE 18 93
BD 59 78
CE 32 91
CF 64 56
DF 30 58
EF 22 37

125 621
01 77 1
02 29 74
03 10 64
12 93 53
14 4 28
25 66 85
36 21 83
37 26 50
48 47 34
49 23 88
5A 93 28
5B 52 7
67 91 58
68 75 97
7C 9 11
8A 100 16
9D 28 89
9E 10 44
AF 19 82
BD 45 9
BE 45 7
CD 26 46
CF 65 10
EF 39 29

126 575
01 85 47
02 96 74
03 83 29
12 28 56
14 51 63
25 10 72
36 71 38
37 36 93
48 19 54
49 24 24
5A 9 24
5B 64 10
67 22 29
68 46 1
7C 31 21
8D 2 90
9A 92 18
9E 53 29
AF 62 9
BC 45 15
BE 49 67
CF 73 42
DE 76 2
DF 22 36

127 654
01 63 44
02 34 61
03 59 62
12 33 91
14 82 81
25 23 98
36 51 88
37 21 3
48 18 81
49 81 52
5A 4 94
5B 39 100
67 8 26
68 56 30
7C 67 41
8D 39 3
9D 21 60
9E 26 50
AC 38 71
AE 61 38
BD 4 58
BF 59 33
CF 39 47
EF 98 21

128 593
01 16 37
02 6 79
03 30 4
12 71 79
14 12 52
25 26 10
36 42 37
37 46 100
48 57 69
49 36 63
5A 22 27
5B 43 66
67 100 8
68 98 25
7C 53 74
8D 36 9
9E 10 48
9F 70 18
AC 50 38
AE 44 13
BD 98 77
BF 64 31
CF 56 82
DE 13 2

129 613
01 16 5
02 69 59
03 29 38
12 77 95
14 83 67
25 76 33
36 8 50
37 71 23
48 34 60
49 22 6
5A 42 71
5B 2 92
67 27 26
6C 29 75
7D 16 89
8A 5 97
8B 68 20
9E 72 2
9F 23 35
AC 27 42
BD 84 33
CE 78 74
DF 66 46
EF 9 56

130 767
01 0 75
02 98 61
03 3 34
12 23 59
14 23 88
25 66 89
36 72 90
37 14 42
48 93 14
49 65 73
5A 67 42
5B 20 38
67 63 6
6C 4 50
7D 84 54
8A 58 63
8C 41 54
9D 74 66
9E 40 74
AE 29 6
BC 31 30
BF 23 91
DF 32 82
EF 69 40

131 686
01 80 30
02 90 53
03 34 50
12 95 61
14 60 21
25 39 37
36 86 10
37 76 14
48 30 3
49 62 20
5A 72 19
5B 32 42
67 38 0
6C 9 59
7D 23 88
8A 30 99
8C 85 96
9D 28 18
9E 5 61
AF 67 67
BE 24 89
BF 50 6
CE 90 38
DF 37 93

132 709
01 73 28
02 89 50
03 27 75
12 20 50
14 88 55
25 55 2
36 16 55
37 60 86
48 83 23
49 19 9
5A 66 58
5B 17 84
67 96 3
6C 88 3
7D 61 5
8A 14 22
8C 30 53
9D 36 55
9E 53 25
AF 87 41
BE 47 36
BF 27 99
CE 91 36
DF 69 78

133 746
01 11 77
02 2 14
03 23 78
12 88 31
14 50 5
25 99 26
36 92 54
37 23 58
48 33 99
49 91 58
5A 79 98
5B 65 61
67 77 55
6C 80 10
7D 6 63
8A 11 53
8C 80 16
9E 19 54
9F 93 36
AD 21 93
BE 61 62
BF 61 95
CE 50 44
DF 50 52

134 679
01 37 84
02 63 84
03 10 70
12 19 4
14 0 61
25 2 12
36 98 84
37 27 18
48 15 76
49 72 59
5A 42 66
5B 14 61
68 1 39
69 20 64
7A 65 94
7B 75 61
8C 41 74
9D 36 91
AE 58 26
BF 11 91
CD 97 23
CE 25 86
DF 46 17
EF 94 36

135 592
01 64 11
02 4 79
03 0 42
12 6 78
14 82 66
25 52 69
36 22 1
37 14 39
48 26 53
49 79 9
5A 34 44
5B 42 81
68 1 25
69 74 57
7A 32 2
7C 92 22
8D 12 14
9E 1 33
AF 32 94
BC 23 91
BD 50 60
CE 61 82
DF 42 97
EF 39 58

136 770
01 38 63
02 7 52
03 53 3
12 82 27
14 8 77
25 45 81
36 58 57
37 0 92
48 84 57
49 10 41
5A 34 100
5B 79 94
68 26 7
69 86 97
7A 65 75
7C 12 79
8D 49 84
9E 10 27
AF 75 25
BC 7 91
BD 43 93
CF 52 98
DE 98 12
EF 93 69

137 584
01 7 18
02 5 17
03 55 15
12 0 39
14 29 23
25 3 63
36 82 61
37 98 48
48 85 53
49 65 42
5A 29 50
5B 38 8
68 21 29
6A 1 33
79 27 17
7C 39 12
8D 46 73
9B 51 94
AE 26 33
BE 72 19
CD 40 68
CF 27 77
DF 21 83
EF 33 54

138 682
01 36 40
02 75 41
03 78 33
12 4 84
14 63 19
25 18 46
36 45 31
37 76 49
48 77 83
49 40 81
5A 100 16
5B 80 27
68 57 7
6A 100 80
79 6 58
7C 8 10
8D 95 55
9E 21 19
AF 1 64
BC 95 4
BF 90 85
CE 21 24
DE 38 84
DF 15 32

139 606
01 63 80
02 97 38
03 8 22
12 95 67
14 85 94
25 12 24
36 10 88
37 57 79
48 41 61
49 20 67
5A 14 2
5B 35 22
68 11 31
6A 12 89
79 6 74
7C 85 23
8D 59 60
9E 42 1
AF 12 54
BD 6 14
BE 36 54
CD 12 37
CF 44 1
EF 48 66

140 595
01 62 55
02 13 3
03 85 70
12 36 3
14 26 38
25 100 60
36 94 39
37 8 63
48 6 26
49 3 14
5A 48 24
5B 95 58
68 0 24
6A 51 1
7C 64 94
7D 7 38
8B 40 28
9E 53 44
9F 94 36
AE 2 34
BC 20 98
CF 45 15
DE 78 28
DF 21 63

B. ATSP problem sets 195

141 458
01 6 75
02 27 44
03 26 9
12 35 4
14 3 83
25 20 5
36 15 5
37 80 44
48 13 45
49 61 54
5A 1 81
5B 38 15
68 32 30
6A 92 95
7C 69 11
7D 25 71
8C 45 27
9C 22 6
9E 21 79
AF 47 15
BD 20 34
BF 53 65
DE 74 25
EF 46 3

142 684
01 21 35
02 10 44
03 27 54
12 5 87
14 65 77
25 61 35
36 70 33
37 27 2
48 50 60
49 69 19
5A 76 24
5B 67 5
68 31 31
6A 92 14
7C 86 56
7D 41 94
8C 10 80
9E 0 58
9F 14 78
AE 36 95
BC 82 71
BD 84 39
DF 23 87
EF 80 17

143 665
01 62 54
02 10 46
03 99 20
12 35 42
14 28 23
25 76 35
36 66 66
37 13 27
48 66 30
49 48 95
5A 94 6
5B 0 68
68 66 34
6A 17 17
7C 47 80
7D 57 44
8C 45 91
9E 81 16
9F 31 29
AE 22 88
BC 48 81
BF 66 97
DE 61 64
DF 66 16

144 744
01 67 1
02 45 31
03 11 27
12 30 97
14 70 63
25 57 99
36 61 37
37 20 46
48 78 49
49 45 98
5A 38 42
5B 90 39
68 95 85
6A 86 40
7C 58 87
7D 84 92
8E 28 40
9B 57 78
9C 98 13
AF 100 62
BE 6 54
CD 1 18
DF 24 54
EF 42 9

145 618
01 47 69
02 72 74
03 46 23
12 72 47
14 51 54
25 17 87
36 48 8
37 72 34
48 20 53
49 38 77
5A 35 56
5B 5 53
68 13 87
6A 58 17
7C 26 96
7D 5 2
8E 61 35
9C 21 44
9E 73 73
AF 34 78
BC 92 29
BF 7 18
DE 18 5
DF 18 65

146 748
01 96 11
02 51 34
03 42 44
12 68 18
14 16 86
25 57 56
36 51 59
37 63 70
48 14 34
49 50 57
5A 54 91
5B 32 32
68 98 79
6C 57 88
79 28 71
7D 33 7
8D 90 67
9E 38 48
AC 100 70
AF 42 10
BE 80 15
BF 15 93
CE 94 40
DF 60 2

147 700
01 50 93
02 44 60
03 12 41
12 46 89
14 59 93
25 52 10
36 11 99
37 28 2
48 61 29
49 23 41
5A 60 10
5B 89 40
68 33 45
6C 30 93
79 75 57
7D 93 64
8E 56 18
9F 31 77
AC 64 68
AD 91 40
BC 67 80
BF 70 1
DE 16 29
EF 88 48

148 759
01 41 79
02 14 98
03 44 89
12 95 24
14 99 49
25 49 60
36 46 0
37 16 62
48 20 79
49 65 44
5A 71 79
5B 57 31
68 99 62
6C 17 87
79 90 79
7D 25 33
8E 18 82
9F 12 17
AC 13 34
AD 66 59
BE 10 74
BF 7 56
CE 80 74
DF 5 58

149 661
01 60 41
02 24 51
03 9 27
12 85 92
14 34 79
25 66 74
36 9 18
37 68 97
48 40 69
49 64 10
5A 36 61
5B 68 20
68 53 53
6C 33 39
79 83 87
7D 3 53
8E 39 7
9F 14 34
AC 47 43
AF 32 70
BD 70 1
BE 16 82
CE 77 12
DF 13 82

150 620
01 18 41
02 58 51
03 17 20
12 31 21
14 34 69
25 36 82
36 90 49
37 44 75
48 95 10
49 62 59
5A 13 67
5B 56 61
68 18 2
6C 87 31
7A 80 44
7C 48 50
8D 68 18
9B 97 35
9D 7 81
AE 16 70
BE 89 68
CF 46 2
DF 32 85
EF 18 80

151 563
01 52 29
02 84 86
03 41 11
12 73 0
14 24 77
25 2 4
36 45 15
37 80 31
48 94 25
49 17 18
5A 21 57
5B 37 33
68 59 10
6C 32 64
7A 88 40
7C 98 8
8D 73 21
9B 85 95
9D 58 59
AE 63 2
BF 58 37
CF 63 36
DE 97 0
EF 22 41

152 657
01 70 12
02 22 8
03 73 73
12 54 70
14 75 3
25 5 30
36 69 22
37 74 96
48 99 75
49 43 7
5A 91 67
5B 58 79
68 40 72
6C 93 54
7A 2 52
7C 84 5
8D 42 92
9D 86 31
9E 9 10
AE 68 95
BD 57 45
BF 42 48
CF 18 34
EF 18 67

153 713
01 63 66
02 91 34
03 15 46
12 97 35
14 85 40
25 30 17
36 2 15
37 66 7
48 85 49
49 43 43
5A 85 16
5B 52 7
68 21 93
6C 95 1
7A 3 83
7D 71 20
8C 95 22
9B 94 26
9E 5 83
AE 28 52
BD 9 96
CF 93 96
DF 59 38
EF 39 83

154 620
01 43 14
02 46 69
03 44 8
12 35 0
14 2 9
25 29 55
36 21 46
37 69 66
48 6 49
49 65 17
5A 46 13
5B 22 96
68 2 77
6C 71 53
7A 8 32
7D 98 72
8D 54 35
9B 93 63
9C 21 62
AE 79 59
BF 11 49
CF 77 21
DE 83 63
EF 64 26

155 658
01 69 85
02 11 93
03 38 36
12 60 18
14 70 59
25 99 95
36 44 22
37 21 26
48 10 7
49 40 18
5A 75 99
5B 11 8
68 44 90
6C 88 19
7A 8 83
7D 29 57
8D 27 24
9B 65 10
9E 90 43
AE 28 4
BF 68 24
CE 20 39
CF 52 61
DF 48 97

156 630
01 84 1
02 46 82
03 40 48
12 2 2
14 43 68
25 82 18
36 3 8
37 44 55
48 8 45
49 41 11
5A 72 86
5B 27 16
68 74 55
6C 64 0
7A 94 68
7D 64 93
8D 29 82
9C 55 9
9E 73 24
AE 2 86
BE 57 21
BF 59 84
CF 63 24
DF 29 62

157 698
01 92 37
02 93 96
03 41 94
12 24 41
14 92 29
25 73 28
36 85 42
37 68 39
48 9 5
49 65 2
5A 37 59
5B 52 57
68 59 22
6C 54 76
7A 40 78
7D 43 17
8E 61 87
9C 12 12
9F 35 6
AF 47 89
BD 94 7
BE 36 67
CE 68 29
DF 97 46

158 710
01 28 55
02 7 24
03 69 38
12 26 49
14 29 95
25 99 5
36 77 28
37 41 18
48 69 83
49 86 65
5A 75 88
5B 21 90
68 56 7
6C 95 80
7C 9 38
7D 41 57
8E 91 40
9D 87 5
9F 13 58
AD 55 85
AF 1 16
BE 70 47
BF 83 76
CE 51 51

159 640
01 79 23
02 52 74
03 6 41
12 75 51
14 55 68
25 68 24
36 14 67
37 51 50
48 19 26
49 81 68
5A 23 87
5B 53 38
68 68 24
6C 36 65
7D 19 19
7E 88 50
8D 0 68
9C 73 35
9F 42 98
AC 25 92
AE 56 34
BD 33 23
BF 2 14
EF 86 47

160 641
01 9 66
02 94 88
03 30 28
12 8 51
14 90 39
25 23 89
36 64 37
37 60 3
48 35 58
49 83 68
5A 7 66
5B 86 23
68 61 72
6C 70 3
7D 59 28
7E 32 49
8D 24 98
9E 86 93
9F 22 32
AC 82 76
AD 3 93
BC 16 64
BF 17 63
EF 95 22

161 634
01 71 64
02 13 66
03 47 48
14 60 86
15 23 22
24 54 23
25 10 22
36 53 98
37 66 81
48 65 35
59 46 38
6A 17 35
6B 22 76
7C 28 58
7D 5 79
8A 15 47
8C 86 40
9B 51 9
9E 1 18
AE 43 57
BD 77 32
CF 12 6
DF 48 82
EF 20 71

162 606
01 26 6
02 30 63
03 30 20
14 77 82
15 57 9
24 85 58
25 17 65
36 25 75
37 15 81
48 46 25
59 41 94
6A 12 10
6B 51 16
7C 96 81
7D 60 15
8A 20 23
8E 86 22
9B 12 51
9F 87 43
AC 69 100
BE 67 15
CF 22 84
DE 4 45
DF 93 28

163 730
01 74 33
02 74 69
03 37 72
14 74 56
15 25 79
24 1 75
26 56 46
35 23 51
37 0 76
47 5 58
58 51 93
68 39 45
69 63 6
7A 40 62
8B 99 66
9C 62 46
9D 77 86
AC 79 43
AE 13 63
BE 8 73
BF 67 6
CF 5 68
DE 13 87
DF 31 42

164 703
01 51 32
02 2 37
03 12 93
14 95 97
15 25 49
24 98 42
26 64 1
35 56 58
37 55 99
47 66 28
58 35 96
69 32 65
6A 52 79
7B 99 87
8C 80 96
8D 87 38
9B 73 4
9E 48 50
AC 38 2
AF 17 4
BD 88 12
CE 13 38
DF 42 58
EF 1 29

165 709
01 77 6
02 54 78
03 44 64
14 55 9
15 65 84
24 9 68
26 13 20
35 8 67
37 55 55
47 25 86
58 11 60
69 52 45
6A 92 49
7B 37 37
8C 75 29
8D 45 69
9C 45 3
9D 29 69
AE 57 79
AF 84 29
BE 40 79
BF 48 53
CE 56 36
DF 100 23

166 703
01 61 41
02 13 87
03 97 7
14 27 20
15 98 45
24 45 64
26 41 52
35 60 74
37 95 69
48 88 58
59 66 6
67 76 40
6A 90 42
7B 49 3
8C 35 70
8D 55 86
9E 22 59
9F 63 59
AC 74 7
AE 4 71
BD 16 4
BF 93 54
CF 36 92
DE 65 9

167 618
01 7 42
02 63 36
03 47 14
14 65 96
15 23 44
24 68 3
26 62 2
35 9 9
37 95 55
48 69 42
59 7 19
69 54 90
6A 48 92
7A 48 54
7B 84 76
8B 20 80
8C 12 31
9D 21 34
AE 2 99
BF 67 44
CE 99 22
CF 82 67
DE 54 27
DF 16 65

168 569
01 63 52
02 62 11
03 59 6
14 20 82
15 25 31
24 94 6
26 55 87
35 12 75
37 30 28
48 3 51
59 39 18
69 23 44
6A 29 45
7B 75 76
7C 54 3
8B 45 52
8D 97 29
9E 35 2
AB 33 93
AF 27 70
CD 99 24
CE 97 13
DF 6 46
EF 2 58

169 577
01 77 11
02 63 86
03 1 72
14 98 22
15 47 27
24 21 94
26 23 18
35 51 42
37 53 1
48 43 74
59 31 40
69 12 29
6A 52 19
7B 5 74
7C 29 78
8B 22 12
8D 67 48
9E 88 3
AC 79 72
AD 1 71
BF 98 42
CE 92 8
DF 19 58
EF 12 31

170 455
01 17 79
02 56 47
03 5 21
14 5 41
15 33 4
24 16 45
26 52 6
35 24 26
37 68 40
48 6 19
59 35 96
69 19 37
6A 54 82
7B 79 37
7C 0 61
8B 26 62
8D 41 17
9E 100 3
AC 35 28
AF 13 73
BF 8 16
CD 6 21
DE 20 15
EF 40 96

B. ATSP problem sets 196

171 575
01 94 68
02 51 14
03 16 46
14 57 34
15 34 94
24 61 31
26 21 14
35 15 39
37 45 34
48 88 28
59 13 68
6A 81 17
6B 6 8
7A 99 10
7C 28 62
8A 4 30
8D 45 24
9B 25 60
9E 98 36
BF 30 17
CD 84 24
CE 1 86
DF 8 100
EF 10 81

172 659
01 6 8
02 61 78
03 59 46
14 78 84
15 67 38
24 71 88
26 13 76
35 35 25
37 8 96
48 57 49
59 40 7
6A 51 89
6B 28 16
7C 37 69
7D 31 58
8A 96 92
8C 50 1
9B 54 81
9E 18 10
AD 27 76
BF 5 84
CF 0 19
DE 65 56
EF 92 51

173 738
01 50 38
02 49 54
03 36 87
14 89 73
15 20 55
24 51 66
26 93 81
35 33 97
37 32 80
48 76 29
59 6 82
6A 61 85
6B 73 1
7C 16 32
7D 35 33
8A 41 48
8C 89 55
9E 94 92
9F 93 83
AE 56 99
BD 92 37
BF 27 7
CF 44 22
DE 63 6

174 667
01 55 22
02 72 66
03 44 70
14 68 7
15 84 56
24 0 7
26 79 35
37 28 47
38 4 25
47 68 20
58 64 74
59 0 78
6A 100 53
6B 93 31
7C 89 17
8A 83 94
9B 27 58
9D 66 16
AE 88 10
BF 26 23
CD 23 63
CF 69 90
DE 31 48
EF 36 11

175 779
01 10 77
02 78 49
03 92 14
14 52 22
15 44 97
24 84 8
26 95 40
37 90 70
38 88 84
47 43 45
58 69 68
59 38 43
6A 85 66
6B 21 33
7C 98 81
8D 66 26
9C 67 95
9E 32 91
AD 75 49
AE 94 47
BE 5 65
BF 21 27
CF 15 56
DF 79 50

176 649
01 47 32
02 96 16
03 67 61
14 19 13
15 8 35
24 6 92
26 89 63
37 73 70
38 11 7
47 44 88
58 84 69
59 18 42
6A 11 71
6B 39 64
7C 26 54
8D 47 87
9E 69 96
9F 25 78
AC 45 27
AE 44 27
BD 87 88
BE 5 13
CF 7 78
DF 97 5

177 675
01 68 55
02 23 39
03 61 20
14 43 48
15 17 94
24 64 6
26 57 80
37 86 21
38 11 95
47 39 88
58 71 2
59 72 71
6A 47 12
6B 6 82
7C 92 25
8D 27 37
9E 44 41
9F 79 1
AC 65 58
AE 83 61
BD 21 85
BF 96 83
CF 77 32
DE 37 12

178 666
01 78 60
02 50 98
03 16 10
14 93 20
15 90 89
24 11 92
26 38 59
37 58 82
38 16 87
47 78 19
59 35 61
5A 12 47
6B 27 58
6C 51 20
7D 55 25
89 17 45
8B 93 13
9C 63 16
AD 39 57
AE 21 58
BE 40 69
CF 75 19
DF 30 33
EF 31 45

179 516
01 62 3
02 28 19
03 71 36
14 96 11
15 42 13
24 56 44
26 38 22
37 35 33
38 0 36
47 86 86
59 19 19
5A 91 67
6B 91 39
6C 5 91
7D 47 38
89 39 14
8E 36 51
9B 55 35
AE 84 23
AF 24 6
BD 34 5
CE 1 29
CF 2 88
DF 68 39

180 730
01 91 34
02 79 94
03 68 7
14 78 48
15 69 29
24 40 56
26 88 42
37 29 50
38 33 37
49 96 96
57 82 46
5A 48 34
67 52 44
6B 34 1
8C 95 22
8D 78 63
9C 46 25
9E 76 41
AD 95 33
AF 9 85
BE 72 11
BF 100 29
CF 16 41
DE 30 50

181 716
01 87 82
02 2 40
03 17 11
14 41 7
15 18 47
24 82 86
26 84 91
37 29 1
38 15 6
49 30 100
57 25 41
5A 1 79
6A 99 59
6B 81 29
7C 18 70
89 73 65
8D 52 92
9E 33 50
AF 42 57
BC 35 34
BD 54 62
CE 11 87
DF 4 66
EF 57 74

182 777
01 81 66
02 40 17
03 44 76
14 33 84
15 61 76
24 68 48
26 19 13
37 67 31
38 77 49
49 38 11
57 87 50
5A 34 74
6A 94 88
6B 15 17
7C 55 48
8B 86 81
8D 94 34
9D 45 73
9E 81 21
AF 62 6
BE 63 75
CD 7 90
CF 74 30
EF 45 31

183 620
01 30 16
02 62 41
03 56 42
14 22 65
15 20 21
24 24 19
26 46 93
37 84 18
38 64 50
49 17 77
57 11 54
5A 26 6
6A 23 87
6B 25 86
7C 24 95
8C 51 93
8D 55 76
9B 19 77
9E 84 10
AD 35 27
BF 32 92
CF 68 31
DE 31 15
EF 34 86

184 717
01 13 99
02 31 11
03 26 31
14 84 64
15 81 27
24 54 91
26 54 23
37 99 50
38 10 68
49 73 12
57 51 5
5A 7 50
6A 83 61
6B 86 94
7C 89 32
8C 48 25
8D 16 36
9B 47 9
9E 25 54
AF 67 94
BD 21 88
CE 67 78
DF 72 100
EF 15 44

185 652
01 86 8
02 53 19
03 36 46
14 100 78
15 69 34
24 99 35
26 3 18
37 3 81
38 79 50
49 22 45
57 22 79
5A 22 52
6A 29 67
6B 15 60
7C 84 79
8D 78 54
8E 99 77
9B 93 23
9D 58 70
AE 37 19
BC 1 47
CF 26 8
DF 24 14
EF 16 22

186 689
01 69 42
02 54 63
03 37 95
14 69 26
15 44 66
24 80 85
26 55 86
37 14 41
38 48 9
49 2 40
57 6 3
5A 16 74
6B 28 92
6C 90 31
7B 2 74
8D 86 72
8E 19 15
9C 34 19
9D 44 46
AC 53 60
AE 52 63
BF 97 61
DF 26 18
EF 36 33

187 792
01 86 51
02 77 13
03 31 38
14 15 34
15 60 94
24 83 48
26 55 12
37 6 77
38 62 95
49 99 83
57 12 57
5A 50 26
6B 77 95
6C 48 92
7D 4 87
8B 42 36
8E 65 83
9C 66 45
9E 1 14
AB 45 60
AF 54 76
CF 41 77
DE 59 39
DF 70 40

188 559
01 50 8
02 72 91
03 30 24
14 69 95
15 41 14
24 27 64
26 42 45
37 60 31
38 45 87
49 58 31
5A 88 24
5B 95 10
6A 0 3
6C 79 43
79 7 85
7B 26 12
8C 81 2
8D 6 40
9D 57 34
AE 37 9
BF 7 66
CF 42 19
DE 87 59
EF 18 97

189 579
01 74 60
02 25 12
03 15 5
14 35 15
15 9 83
24 49 99
26 5 69
37 74 78
38 96 40
49 87 48
5A 28 45
5B 25 58
6A 4 8
6C 46 53
79 60 36
7B 76 44
8C 95 1
8D 5 70
9E 66 63
AD 22 2
BF 23 32
CF 89 66
DE 75 20
EF 26 74

190 781
01 24 27
02 99 9
03 92 6
14 13 68
15 74 25
24 33 53
26 72 83
37 90 91
38 48 41
49 51 68
5A 25 59
5B 94 44
6C 74 31
6D 70 33
7A 81 83
7C 97 64
8B 11 96
8E 67 38
9E 10 43
9F 19 50
AD 25 92
BF 91 93
CE 55 61
DF 45 97

191 624
01 86 54
02 43 48
03 97 11
14 45 17
15 98 46
26 68 26
27 68 5
38 6 41
39 97 1
46 57 44
48 47 5
57 25 14
5A 100 26
6B 86 91
7C 1 59
8D 72 91
9B 95 34
9E 80 68
AE 9 23
AF 92 57
BF 83 94
CD 6 17
CE 20 23
DF 1 23

192 665
01 34 98
02 53 88
03 75 37
14 4 99
15 72 7
26 87 62
27 21 77
38 16 97
39 48 18
46 2 68
48 28 58
5A 80 56
5B 40 32
69 16 17
7A 29 79
7C 45 96
8D 97 35
9E 78 4
AF 13 17
BC 52 19
BD 50 35
CE 79 52
DF 6 1
EF 52 69

193 707
01 26 83
02 16 12
03 10 65
14 43 51
15 81 12
26 22 9
27 26 7
38 69 90
39 100 94
46 66 37
48 84 73
5A 74 52
5B 81 7
69 78 86
7A 67 67
7C 12 90
8D 98 17
9E 5 57
AF 60 8
BC 27 95
BE 14 98
CD 1 97
DF 32 56
EF 36 65

194 693
01 91 64
02 37 41
03 43 41
14 29 52
15 39 48
26 28 74
27 91 18
38 93 57
39 66 5
46 43 27
48 91 65
5A 86 61
5B 93 94
6C 44 48
79 13 66
7A 72 25
8D 43 51
9E 85 54
AF 69 79
BC 25 41
BD 63 13
CE 12 39
DF 31 57
EF 9 25

195 519
01 72 23
02 31 4
03 29 22
14 20 29
15 3 17
26 58 29
27 86 23
38 95 59
39 70 47
46 42 4
48 49 33
5A 0 59
5B 91 64
6C 99 66
79 51 1
7A 79 5
8D 43 14
9E 25 31
AF 27 87
BD 41 11
BE 13 71
CE 59 56
CF 21 23
DF 73 61

196 676
01 39 44
02 44 37
03 99 8
14 12 48
15 91 42
26 19 48
27 67 58
38 89 16
39 29 12
46 84 86
48 2 13
5A 45 56
5B 41 0
6C 11 74
79 6 57
7D 62 27
8E 63 77
9F 45 16
AC 9 83
AF 50 6
BD 95 62
BE 67 54
CD 99 85
EF 74 100

197 712
01 76 61
02 31 20
03 94 97
14 59 1
15 84 15
26 59 47
27 98 77
38 19 81
39 74 33
46 19 54
48 74 70
5A 98 49
5B 64 14
6C 21 61
7A 58 44
7D 99 10
8E 7 21
9A 86 5
9F 59 30
BC 46 55
BF 73 71
CD 98 85
DE 42 16
EF 57 48

198 844
01 78 91
02 75 65
03 7 51
14 61 14
15 86 30
26 81 59
27 36 84
38 83 85
39 28 44
46 41 43
48 35 86
5A 87 54
5B 88 97
6C 40 48
7A 6 2
7D 61 15
8E 49 41
9C 67 3
9D 93 57
AF 45 27
BD 76 67
BE 36 39
CF 66 25
EF 98 88

199 665
01 16 15
02 63 100
03 97 64
14 95 60
15 60 97
26 1 30
27 89 81
38 18 100
39 43 90
46 98 71
4A 98 9
58 57 17
5B 6 14
6C 59 41
7B 45 11
7D 7 63
8E 5 44
9C 83 68
9D 53 33
AD 52 21
AE 73 0
BF 47 10
CF 98 5
EF 57 94

200 647
01 17 74
02 96 86
03 98 91
14 80 60
15 90 94
26 97 4
27 35 2
38 56 71
39 2 1
46 1 31
4A 88 48
5B 30 47
5C 81 24
6D 96 63
7B 90 37
7E 3 43
8A 38 54
8E 97 23
9D 68 88
9F 55 1
AF 44 13
BF 50 67
CD 28 43
CE 45 7

B. ATSP problem sets 197

201 2072
01 20 33
02 80 4
03 4 40
12 85 60
13 10 28
24 68 12
35 80 64
45 64 63
46 17 26
57 23 39
68 40 92
69 18 59
7A 57 43
7B 41 27
8C 30 67
8D 40 75
9E 73 44
9F 32 97
AC 82 78
AE 100 34
BD 28 54
BF 12 98
CF 77 28
DE 16 62

202 2108
01 57 10
02 61 33
03 14 11
12 24 43
13 11 63
24 66 56
35 95 54
45 86 63
46 16 72
57 63 56
68 32 67
69 1 25
7A 75 29
7B 11 31
8C 68 28
8D 14 81
9E 90 16
9F 11 45
AC 97 99
AE 26 58
BD 96 35
BF 24 67
CF 82 73
DE 55 83

203 2150
01 46 53
02 72 93
03 61 68
12 94 12
13 43 21
24 54 66
35 86 17
46 28 62
47 48 68
56 89 93
58 37 75
69 55 52
7A 24 19
7B 24 94
8C 56 90
8D 40 70
9E 26 58
9F 35 90
AC 39 0
AE 5 19
BD 32 83
BF 39 59
CF 19 75
DE 34 16

204 2148
01 89 40
02 52 38
03 44 27
12 81 58
13 85 64
24 5 61
35 71 83
46 97 85
47 22 1
56 72 9
58 85 80
69 21 79
7A 12 26
7B 9 21
8C 66 21
8D 59 63
9E 71 84
9F 13 75
AC 3 84
AE 40 78
BD 67 39
BF 34 46
CF 93 43
DE 35 61

205 2065
01 62 30
02 10 73
03 84 55
12 38 54
13 4 13
24 54 23
35 8 14
46 98 26
47 74 94
56 5 46
58 2 69
69 36 97
7A 61 74
7B 92 15
8C 2 97
8D 33 99
9E 47 93
9F 17 31
AC 27 16
AE 5 81
BD 69 47
BF 64 22
CF 85 27
DE 33 96

206 2101
01 57 46
02 98 49
03 1 93
12 25 35
13 21 64
24 48 47
35 39 26
46 99 20
47 39 88
56 20 71
58 100 76
69 77 11
7A 22 82
7B 56 27
8C 16 80
8D 59 31
9E 52 76
9F 87 89
AC 36 94
AE 51 0
BD 20 28
BF 17 32
CF 60 47
DE 99 6

207 2095
01 92 15
02 13 2
03 48 36
12 55 50
13 98 22
24 56 13
35 46 60
46 80 42
47 44 73
58 90 94
59 30 73
67 84 99
6A 17 47
7B 74 7
8C 60 55
8D 87 1
9E 34 26
9F 62 59
AC 7 8
AE 51 5
BD 81 68
BF 38 26
CF 68 33
DE 25 60

208 2085
01 59 62
02 46 26
03 20 32
12 92 77
13 33 44
24 95 18
35 56 57
46 85 59
47 95 13
58 30 13
59 51 81
67 38 87
6A 90 98
7B 16 69
8C 44 29
8D 12 10
9E 47 46
9F 10 22
AC 93 6
AE 36 18
BD 48 77
BF 96 37
CF 67 86
DE 74 43

209 2094
01 6 40
02 8 53
03 38 41
12 57 50
13 100 59
24 58 48
35 75 89
46 70 15
47 63 3
58 17 8
59 32 89
67 94 50
6A 87 19
7B 77 22
8C 48 12
8D 84 47
9E 17 47
9F 70 34
AC 18 87
AE 10 77
BD 81 12
BF 40 32
CF 65 32
DE 83 23

210 2201
01 0 24
02 58 69
03 55 73
12 2 66
13 29 39
24 71 19
35 37 66
46 61 78
47 53 52
58 80 77
59 90 95
67 73 29
6A 78 81
7B 58 21
8C 74 21
8D 13 55
9E 98 100
9F 59 10
AC 93 99
AE 91 76
BD 36 44
BF 18 35
CF 18 37
DE 59 2

211 2016
01 46 60
02 32 58
03 69 17
12 2 88
13 89 77
24 71 19
35 8 98
46 92 24
47 47 41
58 71 14
59 31 2
67 26 56
6A 10 17
7B 15 14
8C 7 79
8D 68 37
9E 75 26
9F 25 3
AC 32 81
AE 12 79
BD 31 89
BF 19 25
CF 82 21
DE 32 1

212 2179
01 38 86
02 10 24
03 79 66
12 56 63
13 87 60
24 29 11
35 87 76
46 32 48
47 39 10
58 27 93
59 26 61
67 77 54
6A 66 42
7B 54 3
8C 78 19
8D 85 4
9E 64 36
9F 74 34
AC 88 30
AE 38 30
BD 55 77
BF 60 94
CF 37 51
DE 46 4

213 2138
01 97 32
02 87 68
03 70 79
12 5 13
13 74 51
24 48 51
35 32 29
46 43 100
47 83 77
58 12 29
59 63 57
67 72 15
6A 7 3
7B 3 70
8C 91 10
8D 46 9
9E 43 48
9F 92 83
AC 26 64
AE 62 69
BD 84 85
BF 85 15
CF 93 58
DE 9 33

214 2117
01 1 88
02 42 49
03 3 50
12 56 73
13 46 33
24 20 17
35 45 16
46 5 29
47 44 96
58 39 14
59 24 49
67 50 61
6A 73 42
7B 99 7
8C 95 64
8D 46 17
9E 66 77
9F 69 97
AC 16 67
AE 86 63
BD 89 8
BF 81 67
CF 80 7
DE 6 60

215 2108
01 22 43
02 1 75
03 29 4
12 48 75
13 34 24
24 75 15
35 97 19
46 83 99
47 53 37
58 46 27
59 95 46
67 82 1
6A 49 24
7B 81 14
8C 2 73
8D 19 17
9E 87 69
9F 22 22
AC 45 25
AE 73 96
BD 87 87
BF 27 4
CF 76 7
DE 42 99

216 2047
01 47 38
02 45 75
03 33 44
12 43 43
13 84 47
24 6 2
35 56 88
46 2 6
47 12 44
58 26 36
59 9 11
68 72 39
6A 27 16
79 43 44
7B 62 80
8B 52 58
9A 84 74
AC 14 92
BD 64 67
CE 33 11
CF 49 16
DE 26 86
DF 9 56
EF 61 1

217 1966
01 13 43
02 22 44
03 61 78
12 30 99
13 21 89
24 66 11
35 12 30
46 86 17
47 76 4
58 10 84
59 18 63
68 98 17
6A 78 77
79 16 93
7B 12 3
8B 78 21
9A 58 25
AC 65 79
BD 0 40
CE 26 97
CF 42 63
DE 99 69
DF 19 34
EF 28 43

218 2009
01 45 1
02 6 54
03 81 68
12 72 93
13 55 35
24 23 12
35 9 86
46 42 24
47 48 97
58 34 10
59 17 29
68 50 89
6A 62 98
79 85 19
7B 85 98
8B 32 42
9A 87 15
AC 22 33
BD 38 91
CE 78 10
CF 54 8
DE 50 67
DF 7 42
EF 50 33

219 2121
01 51 64
02 21 56
03 1 64
12 88 22
13 8 58
24 56 78
35 17 87
46 58 92
47 97 78
58 56 62
59 48 53
68 9 1
6A 81 4
79 47 32
7B 79 72
8B 53 83
9A 28 15
AC 73 63
BD 0 10
CE 2 76
CF 54 44
DE 67 44
DF 76 82
EF 16 18

220 1939
01 9 81
02 76 26
03 91 5
12 49 2
13 50 62
24 17 81
35 32 67
46 65 93
47 3 64
58 94 27
59 39 0
68 58 44
6A 75 18
79 14 3
7B 66 13
8B 23 27
9A 88 0
AC 81 10
BD 78 23
CE 11 3
CF 59 7
DE 84 2
DF 95 58
EF 48 41

221 2093
01 88 99
02 36 73
03 99 62
12 46 57
13 47 36
24 30 2
35 90 25
46 50 68
47 17 93
58 5 29
59 30 6
6A 50 86
6B 64 66
7C 74 18
7D 23 53
8A 34 1
8C 65 51
9B 68 26
9E 77 92
AF 97 67
BC 58 9
DE 45 41
DF 47 72
EF 65 23

222 2154
01 67 49
02 43 26
03 44 89
12 84 53
13 71 26
24 19 95
35 52 11
46 42 78
47 43 1
58 63 30
59 17 16
6A 54 62
6B 33 26
7C 63 80
7D 16 22
8A 28 85
8C 20 55
9B 10 92
9E 31 39
AF 95 45
BC 25 45
DE 84 66
DF 98 99
EF 66 95

223 2014
01 11 17
02 4 62
03 41 8
12 31 77
13 37 34
24 66 6
35 0 80
46 84 49
47 36 56
58 10 47
59 49 100
6A 22 10
6B 22 48
7C 100 58
7D 82 82
8A 5 52
8C 1 56
9B 51 86
9E 58 19
AF 41 48
BC 34 98
DE 22 86
DF 18 33
EF 38 45

224 1990
01 12 33
02 75 2
03 94 88
12 56 5
13 23 96
24 64 16
35 5 23
46 87 30
47 51 6
58 67 69
59 97 72
6A 63 7
6B 91 94
7C 17 38
7D 10 48
8A 34 77
8C 91 41
9B 75 71
9E 50 32
AF 51 43
BC 58 7
DE 57 4
DF 36 31
EF 45 97

225 2131
01 73 83
02 67 68
03 30 14
12 1 65
13 4 78
24 30 9
35 47 43
46 29 56
47 45 66
58 3 33
59 92 84
6A 19 25
6B 81 27
7C 81 81
7D 90 17
8A 25 48
8C 53 56
9B 76 29
9E 21 86
AF 54 93
BC 71 70
DE 86 32
DF 30 45
EF 42 17

226 2098
01 53 44
02 30 33
03 42 23
12 63 25
13 27 47
24 20 81
35 19 66
46 9 52
47 34 62
58 68 68
59 43 72
6A 33 40
6B 69 42
7C 30 14
7D 59 94
8A 52 29
8C 35 40
9E 49 75
9F 94 67
AD 32 90
BC 26 63
BE 32 33
DF 35 99
EF 60 1

227 2097
01 20 38
02 2 96
03 18 74
12 67 31
13 2 20
24 65 21
35 78 41
46 77 72
47 36 56
58 1 52
59 28 36
6A 95 79
6B 97 16
7C 31 89
7D 60 87
8A 70 75
8C 65 5
9E 22 68
9F 98 28
AD 42 57
BC 86 99
BE 87 21
DF 71 86
EF 45 29

228 1967
01 31 63
02 98 14
03 85 82
12 16 95
13 33 76
24 64 1
35 41 42
46 100 95
47 83 51
58 15 23
59 23 19
6A 24 68
6B 24 81
7C 53 20
7D 64 46
8A 33 26
8C 34 78
9E 14 3
9F 14 22
AD 1 54
BC 11 98
BE 87 51
DF 88 78
EF 86 1

229 2148
01 88 7
02 40 25
03 63 52
12 85 56
13 98 15
24 69 90
35 57 59
46 2 63
47 46 52
58 52 51
59 41 46
6A 53 37
6B 65 37
7C 20 45
7D 49 72
8A 44 81
8C 77 86
9E 19 33
9F 55 18
AD 58 55
BC 20 57
BE 73 85
DF 8 83
EF 57 86

230 2143
01 63 46
02 58 48
03 96 31
12 64 40
13 30 32
24 61 12
35 33 69
46 39 22
47 29 44
58 17 5
59 72 91
6A 27 78
6B 10 74
7C 28 3
7D 99 100
8A 30 95
8C 29 21
9E 78 92
9F 97 19
AD 39 19
BC 74 13
BE 66 90
DF 43 52
EF 84 21

B. ATSP problem sets 198

231 2074
01 37 94
02 6 5
03 76 85
12 28 42
13 2 86
24 28 60
35 41 73
46 40 47
47 28 89
58 37 17
59 25 99
6A 48 47
6B 91 97
7C 18 11
7D 83 6
8A 88 43
8C 45 59
9E 74 8
9F 26 13
AD 7 57
BC 18 43
BE 49 86
DF 82 97
EF 23 91

232 2183
01 56 14
02 65 8
03 11 88
12 31 79
13 64 84
24 11 81
35 80 32
46 94 51
47 72 72
58 51 2
59 31 11
6A 43 6
6B 94 93
7C 37 28
7D 60 78
8A 77 50
8C 33 94
9E 81 54
9F 44 9
AD 75 87
BC 45 48
BE 53 48
DF 13 26
EF 86 49

233 2078
01 54 25
02 57 88
03 46 80
12 64 97
13 49 71
24 69 66
35 92 40
46 50 52
47 67 8
58 36 43
59 74 14
6A 48 93
6B 52 40
7C 64 37
7D 22 37
8A 68 14
8C 51 11
9E 18 1
9F 44 3
AD 68 71
BC 4 17
BE 20 40
DF 94 25
EF 93 31

234 2047
01 27 25
02 36 5
03 33 15
12 67 30
13 70 13
24 3 49
35 16 63
46 3 65
47 16 80
58 80 48
59 71 29
6A 15 78
6B 97 12
7C 85 45
7D 31 75
8A 42 85
8C 29 83
9E 0 74
9F 49 59
AD 37 65
BC 54 26
BE 32 28
DF 32 56
EF 39 43

235 2157
01 5 49
02 47 10
03 45 30
12 84 14
14 68 49
25 1 56
34 50 82
35 31 43
46 32 35
57 14 81
68 97 43
69 76 73
7A 50 4
7B 77 82
8C 71 56
8D 57 80
9E 38 45
9F 29 47
AC 42 98
AE 31 73
BD 41 79
BF 7 24
CF 72 18
DE 25 43

236 2062
01 32 20
02 53 79
03 58 48
12 7 52
14 9 72
25 62 33
34 43 9
36 54 15
46 38 17
57 49 80
58 16 29
69 96 88
7A 47 78
7B 2 46
8C 56 85
8D 69 76
9E 99 7
9F 7 49
AC 18 78
AE 87 35
BD 31 95
BF 85 6
CF 81 14
DE 71 16

237 2054
01 10 98
02 70 78
03 16 20
12 32 81
14 22 66
25 93 42
34 90 21
36 55 29
46 84 30
57 63 74
58 47 42
69 9 38
7A 62 89
7B 7 37
8C 10 26
8D 0 44
9E 42 36
9F 92 14
AC 57 90
AE 85 57
BD 32 50
BF 0 92
CF 24 11
DE 46 74

238 2039
01 4 84
02 23 84
03 38 90
12 10 75
14 81 48
25 22 79
34 43 74
36 23 82
47 26 31
56 81 23
58 58 69
69 9 14
7A 58 53
7B 6 99
8C 2 1
8D 79 92
9E 86 30
9F 77 77
AC 83 61
AE 6 79
BD 29 57
BF 58 13
CF 5 68
DE 79 63

239 2119
01 46 54
02 60 16
03 64 95
12 61 62
14 1 21
25 42 32
34 75 17
36 87 95
47 80 66
56 23 27
58 35 40
69 42 88
7A 48 41
7B 23 99
8C 16 55
8D 91 47
9E 72 66
9F 39 78
AC 24 28
AE 89 25
BD 62 4
BF 25 58
CF 67 21
DE 48 86

240 2084
01 48 24
02 58 58
03 87 97
12 78 0
14 79 54
25 14 84
34 89 16
36 69 30
47 33 84
56 99 92
58 69 14
69 61 54
7A 13 100
7B 41 1
8C 70 100
8D 11 3
9E 43 28
9F 74 54
AC 12 77
AE 25 25
BD 14 99
BF 35 49
CF 37 66
DE 9 69

241 2072
01 85 8
02 3 97
03 86 73
12 70 19
14 5 61
25 19 82
34 51 77
36 70 88
47 45 21
56 28 64
58 99 64
69 68 59
7A 13 3
7B 31 9
8C 100 40
8D 99 7
9E 18 84
9F 9 24
AC 78 7
AE 37 1
BD 87 72
BF 68 91
CF 57 16
DE 93 40

242 2160
01 26 50
02 73 80
03 98 57
12 14 45
14 86 67
25 84 64
34 95 44
36 73 41
47 9 4
56 42 61
58 56 67
69 16 63
7A 31 83
7B 71 19
8C 26 50
8D 54 67
9E 96 61
9F 54 72
AC 32 39
AE 78 81
BD 75 8
BF 35 85
CF 63 21
DE 42 87

243 2115
01 21 22
02 22 25
03 50 65
12 92 2
14 42 35
25 94 91
34 47 18
36 13 67
47 48 12
56 45 85
58 81 63
69 77 16
7A 73 92
7B 11 13
8C 40 77
8D 93 36
9E 59 71
9F 84 57
AC 52 12
AE 49 77
BD 79 48
BF 87 13
CF 13 16
DE 56 31

244 2090
01 20 69
02 2 81
03 39 30
12 61 13
14 91 17
25 64 90
34 76 58
36 54 77
47 13 21
56 35 87
58 59 33
69 37 77
7A 86 43
7B 37 27
8C 88 63
8D 3 59
9E 12 43
9F 31 31
AC 45 36
AE 25 18
BD 81 20
BF 93 23
CF 77 52
DE 58 81

245 2056
01 87 51
02 49 52
03 31 8
12 87 3
14 58 68
25 35 44
34 52 91
36 14 92
47 29 43
56 66 4
58 9 16
69 92 43
7A 7 93
7B 83 82
8C 21 90
8D 74 72
9E 87 68
9F 20 61
AC 84 67
AE 73 54
BD 16 71
BF 67 81
CF 1 39
DE 5 58

246 1974
01 88 8
02 16 99
03 13 23
12 17 56
14 12 20
25 18 18
34 80 84
36 19 24
47 69 39
56 23 72
58 36 74
69 57 6
7A 89 31
7B 95 40
8C 53 10
8D 13 5
9E 70 81
9F 92 6
AC 40 62
AE 77 20
BD 91 54
BF 22 85
CF 36 23
DE 81 15

247 2003
01 88 33
02 19 15
03 17 17
12 41 54
14 64 20
25 56 19
34 10 99
36 54 80
47 56 13
56 66 5
58 97 68
69 29 90
7A 39 88
7B 40 16
8C 5 8
8D 98 48
9E 78 66
9F 55 37
AC 2 46
AE 34 90
BD 62 29
BF 89 85
CF 44 41
DE 33 4

248 2070
01 21 81
02 57 4
03 70 88
12 1 43
14 19 58
25 98 55
34 39 95
36 42 73
47 68 5
58 14 100
59 28 25
67 37 20
6A 94 87
7B 53 21
8C 60 70
8D 28 8
9E 51 70
9F 2 42
AC 41 73
AE 47 43
BD 51 25
BF 63 60
CF 51 17
DE 37 64

249 2128
01 20 84
02 61 83
03 7 93
12 97 73
14 37 4
25 52 47
34 7 8
36 40 1
47 83 42
58 92 68
59 49 67
67 94 25
6A 97 16
7B 1 37
8C 42 34
8D 32 53
9E 53 73
9F 68 2
AC 45 25
AE 86 82
BD 55 27
BF 57 89
CF 15 90
DE 75 81

250 1997
01 28 48
02 53 26
03 25 44
12 51 0
14 42 89
25 25 34
34 26 93
36 8 3
47 16 42
58 50 44
59 81 96
67 30 63
6A 93 81
7B 10 27
8C 46 89
8D 8 14
9E 10 47
9F 99 55
AC 52 61
AE 17 49
BD 64 34
BF 25 78
CF 91 4
DE 34 9

251 2129
01 82 37
02 38 84
03 5 31
12 57 30
14 50 92
25 10 52
34 73 47
36 12 75
47 94 75
58 78 37
59 95 25
67 54 33
6A 79 44
7B 40 72
8C 31 60
8D 63 12
9E 41 32
9F 55 85
AC 58 2
AE 51 37
BD 39 3
BF 36 72
CF 70 59
DE 69 83

252 2180
01 95 52
02 21 85
03 33 20
12 76 45
14 95 60
25 98 75
34 48 37
36 52 70
47 43 38
58 7 89
59 77 34
67 56 32
6A 39 76
7B 21 3
8C 71 13
8D 89 50
9E 23 59
9F 91 54
AC 37 40
AE 89 14
BD 56 47
BF 95 53
CF 58 43
DE 5 72

253 2081
01 54 11
02 23 1
03 18 63
12 74 37
14 11 35
25 51 33
34 9 38
36 88 96
47 98 86
58 31 83
59 1 62
67 41 49
6A 50 97
7B 87 17
8C 78 31
8D 66 32
9E 59 21
9F 21 9
AC 52 47
AE 80 63
BD 70 29
BF 8 14
CF 59 52
DE 51 49

254 2160
01 100 76
02 10 74
03 20 10
12 63 17
14 73 26
25 55 66
34 55 90
36 82 62
47 7 81
58 96 81
59 69 8
67 30 52
6A 5 49
7B 90 38
8C 70 88
8D 62 62
9E 90 59
9F 34 87
AC 92 56
AE 97 15
BD 61 40
BF 5 84
CF 86 47
DE 9 20

255 2099
01 51 84
02 58 10
03 14 38
12 29 99
14 15 52
25 14 89
34 30 65
36 73 85
47 9 98
58 0 84
59 75 19
67 50 94
6A 32 91
7B 1 68
8C 39 87
8D 95 54
9E 35 87
9F 57 20
AC 81 72
AE 53 65
BD 64 95
BF 1 7
CF 12 57
DE 36 88

256 2176
01 22 20
02 8 4
03 97 96
12 73 47
14 36 80
25 29 82
34 71 74
36 48 51
47 83 20
58 15 40
59 77 50
6A 44 72
6B 67 83
7C 83 28
7D 5 8
89 21 44
8E 69 49
9F 72 93
AC 36 44
AE 71 91
BD 79 48
BF 69 50
CF 60 4
DE 81 75

257 2062
01 25 52
02 67 15
03 11 93
12 77 90
14 7 37
25 43 58
34 92 32
36 13 63
47 23 73
58 91 76
59 12 6
6A 85 59
6B 66 50
7C 39 59
7D 65 91
89 46 3
8E 79 76
9F 1 6
AC 47 58
AE 0 97
BD 88 95
BF 15 20
CF 26 35
DE 27 58

258 1998
01 10 6
02 27 83
03 93 16
12 18 53
14 13 20
25 33 86
34 55 88
36 2 31
47 65 12
58 14 12
59 25 87
6A 10 42
6B 84 89
7C 63 71
7D 12 53
89 72 14
8E 63 65
9F 49 96
AC 17 86
AE 68 51
BD 45 56
BF 62 5
CF 78 61
DE 15 98

259 2164
01 2 70
02 46 55
03 51 86
12 69 66
14 28 92
25 88 6
34 1 80
36 75 35
47 85 83
58 92 18
59 56 69
6A 29 71
6B 62 42
7C 78 88
7D 97 38
89 33 68
8E 48 7
9F 3 70
AC 82 45
AE 54 18
BD 84 90
BF 33 15
CF 45 8
DE 32 94

260 2180
01 97 81
02 68 18
03 15 47
12 26 83
14 89 67
25 59 81
34 54 64
36 96 26
47 92 92
58 45 47
59 81 61
6A 17 9
6B 24 35
7C 17 61
7D 36 54
89 92 9
8E 93 12
9F 83 89
AC 4 50
AE 25 6
BD 63 98
BF 65 28
CF 27 93
DE 59 83

B. ATSP problem sets 199

261 2264
01 53 38
02 86 58
03 47 37
12 99 97
14 88 97
25 6 91
34 44 18
36 80 90
47 82 95
58 79 97
59 67 27
6A 34 88
6B 89 94
7C 60 39
7D 87 24
89 43 35
8E 52 24
9F 45 79
AC 73 58
AE 86 3
BD 10 94
BF 34 48
CF 42 10
DE 23 3

262 2132
01 33 46
02 77 28
03 68 84
12 11 5
14 8 79
25 33 13
34 53 77
36 88 72
47 91 48
58 15 96
59 39 86
6A 40 77
6B 95 54
7C 93 47
7D 9 65
89 37 9
8E 56 93
9F 8 19
AC 84 38
AE 59 87
BD 97 20
BF 42 42
CF 25 5
DE 55 94

263 2150
01 55 12
02 59 17
03 95 68
12 21 15
14 80 7
25 15 33
34 78 88
36 83 56
47 35 81
58 49 94
59 71 74
6A 27 55
6B 26 59
7C 67 95
7D 4 78
89 87 7
8E 35 93
9F 92 72
AC 63 61
AE 23 69
BD 21 1
BF 58 64
CF 96 31
DE 41 85

264 2125
01 82 60
02 80 42
03 58 85
12 87 81
14 68 53
25 9 13
34 8 58
36 78 94
47 38 54
58 6 60
59 40 33
6A 47 45
6B 30 39
7C 46 97
7D 34 96
89 63 7
8E 35 24
9F 62 25
AC 34 71
AE 98 67
BD 77 12
BF 63 39
CF 51 3
DE 48 5

265 2192
01 65 92
02 69 29
03 70 34
12 59 5
14 9 33
25 47 63
34 57 93
36 58 17
47 45 31
58 94 69
59 40 35
6A 9 68
6B 23 17
7C 80 9
7D 32 41
8A 89 94
8C 18 83
9B 70 14
9E 36 99
AF 31 52
BC 0 59
DE 62 69
DF 71 60
EF 79 87

266 2049
01 19 44
02 42 94
03 64 23
12 84 98
14 50 17
25 13 50
34 51 40
36 58 73
47 55 56
58 28 34
59 24 33
6A 16 3
6B 56 74
7C 23 2
7D 97 33
8A 4 84
8C 16 51
9B 2 84
9E 83 23
AF 68 83
BC 38 28
DE 92 86
DF 26 91
EF 10 88

267 2091
01 10 53
02 33 56
03 8 87
12 71 19
14 55 74
25 19 67
34 46 17
36 15 93
47 77 29
58 32 38
59 48 74
6A 17 1
6B 81 71
7C 2 76
7D 50 15
8A 23 94
8C 89 74
9B 43 52
9E 61 96
AF 41 80
BC 49 33
DE 74 67
DF 32 12
EF 73 73

268 2037
01 14 63
02 14 27
03 91 68
12 56 47
14 86 94
25 34 1
34 93 56
36 16 75
47 13 18
58 89 80
59 13 75
6A 73 62
6B 52 74
7C 97 96
7D 32 18
8A 4 61
8C 10 20
9B 96 77
9E 27 14
AF 28 53
BC 27 37
DE 85 54
DF 9 60
EF 43 71

269 2183
01 38 20
02 43 98
03 99 57
12 95 22
14 75 91
25 14 70
34 90 18
36 3 28
47 7 50
58 81 8
59 79 63
6A 69 94
6B 98 40
7C 45 5
7D 96 81
8A 48 91
8C 73 35
9B 14 82
9E 18 89
AF 67 22
BC 74 7
DE 69 19
DF 85 45
EF 18 79

270 2158
01 70 75
02 15 1
03 72 90
12 8 0
14 90 26
25 23 91
34 40 70
36 2 38
47 1 29
58 74 26
59 93 29
6A 52 29
6B 91 87
7C 96 56
7D 82 41
8A 57 51
8C 80 65
9B 48 69
9E 42 78
AF 38 54
BC 69 95
DE 83 15
DF 93 0
EF 54 25

271 2026
01 18 17
02 92 64
03 83 25
12 31 41
14 51 77
25 90 94
34 9 1
36 14 52
47 64 8
58 81 3
59 80 80
6A 89 10
6B 24 22
7C 10 8
7D 66 48
8A 81 59
8C 60 24
9B 42 16
9E 41 29
AF 59 51
BC 32 64
DE 39 45
DF 49 93
EF 64 80

272 2151
01 78 96
02 62 45
03 13 80
12 98 53
14 82 35
25 4 78
34 53 92
36 34 34
47 85 71
58 12 6
59 22 78
6A 88 3
6B 65 91
7C 93 86
7D 98 56
8A 2 97
8C 48 98
9E 41 63
9F 76 5
AD 46 2
BC 2 0
BE 59 78
DF 73 19
EF 43 79

273 2066
01 68 74
02 91 46
03 24 5
12 55 19
14 29 29
25 54 28
34 23 35
36 51 94
47 92 35
58 86 10
59 33 23
6A 78 84
6B 19 55
7C 26 20
7D 17 51
8A 22 59
8C 71 97
9E 97 26
9F 55 76
AD 19 67
BC 92 52
BE 5 63
DF 13 56
EF 87 34

274 2086
01 55 34
02 54 71
03 7 55
12 41 3
14 76 58
25 27 86
34 69 15
36 53 29
47 93 57
58 86 54
59 25 67
6A 78 18
6B 9 62
7C 99 78
7D 72 75
8A 10 13
8C 78 8
9E 51 97
9F 79 92
AD 71 56
BC 53 85
BE 25 68
DF 16 23
EF 43 81

275 2081
01 52 20
02 86 4
03 11 22
12 62 54
14 92 18
25 3 56
34 89 44
36 79 64
47 62 65
58 25 96
59 94 10
6A 23 20
6B 36 26
7C 31 73
7D 36 69
8A 53 33
8C 74 15
9E 52 14
9F 28 24
AD 46 94
BC 75 69
BE 23 30
DF 14 45
EF 29 16

276 2127
01 26 14
02 90 11
03 65 35
12 22 43
14 22 42
25 88 60
34 80 39
36 52 24
47 46 1
58 71 70
59 67 96
6A 38 11
6B 10 33
7C 80 79
7D 48 97
8A 5 29
8C 45 74
9E 88 52
9F 76 22
AD 90 87
BC 32 52
BE 42 61
DF 4 57
EF 90 44

277 2060
01 78 67
02 65 65
03 66 62
12 7 16
14 15 11
25 19 99
34 93 12
36 20 59
47 54 59
58 59 49
59 9 46
6A 6 94
6B 23 41
7C 53 61
7D 40 35
8A 40 98
8C 32 88
9E 93 48
9F 93 28
AD 36 80
BC 51 59
BE 21 37
DF 94 61
EF 2 94

278 1997
01 26 15
02 9 92
03 9 96
12 4 18
14 47 37
25 7 8
34 98 45
36 7 45
47 6 40
58 29 38
59 83 15
6A 81 17
6B 29 71
7C 23 63
7D 22 49
8A 99 8
8C 33 5
9E 82 1
9F 85 79
AD 24 79
BC 40 31
BE 66 6
DF 51 52
EF 58 92

279 1982
01 13 81
02 9 37
03 45 32
12 57 72
14 13 10
25 40 81
34 49 65
36 7 1
47 47 7
58 13 75
59 11 63
6A 61 8
6B 82 68
7C 49 69
7D 46 8
8A 76 7
8C 36 87
9E 34 17
9F 94 26
AD 35 1
BC 75 42
BE 26 25
DF 24 91
EF 42 43

280 2085
01 94 42
02 68 18
03 24 11
12 1 12
14 57 89
25 36 20
34 37 9
36 6 90
47 78 2
58 65 30
59 82 62
6A 4 18
6B 100 80
7C 82 38
7D 37 99
8A 57 64
8C 66 23
9E 48 93
9F 40 93
AD 59 92
BC 68 37
BE 9 92
DF 48 18
EF 22 43

281 2237
01 94 23
02 84 93
03 45 2
12 64 44
14 92 38
25 96 89
34 59 8
36 44 30
47 32 96
58 82 99
59 28 72
6A 21 15
6B 96 98
7C 79 26
7D 97 5
8A 17 9
8C 61 77
9E 16 59
9F 81 76
AD 42 58
BC 74 85
BE 2 33
DF 24 58
EF 26 49

282 2071
01 73 2
02 71 37
03 31 57
12 29 73
14 72 24
25 100 68
34 19 10
36 58 10
47 12 66
58 49 27
59 51 94
6A 1 14
6B 91 23
7C 43 8
7D 93 27
8A 26 25
8E 45 11
9B 32 65
9F 86 23
AF 26 93
BE 80 31
CD 32 62
CE 64 69
DF 74 72

283 2113
01 6 79
02 64 13
03 40 88
12 7 23
14 9 80
25 12 93
34 89 28
36 18 31
47 27 80
58 85 85
59 51 54
6A 36 95
6B 16 56
7C 92 84
7D 16 75
8A 53 50
8E 64 86
9B 32 10
9F 95 88
AF 68 32
BE 71 17
CD 94 84
CE 51 98
DF 19 84

284 2060
01 61 2
02 23 7
03 92 34
12 87 66
14 32 91
25 5 59
34 77 12
36 74 58
47 15 36
58 15 31
59 37 48
6A 97 36
6B 98 3
7C 77 67
7D 50 74
8A 12 15
8E 25 77
9B 50 7
9F 39 78
AF 58 52
BE 31 88
CD 75 5
CE 28 27
DF 57 69

285 2163
01 65 39
02 21 55
03 36 90
12 74 73
14 25 87
25 11 34
34 61 62
36 65 95
47 43 51
58 76 37
59 13 11
6A 31 53
6B 91 2
7C 75 84
7D 20 51
8A 22 26
8E 17 33
9B 61 39
9F 49 16
AF 96 83
BE 69 95
CD 69 46
CE 38 69
DF 86 5

286 2082
01 67 78
02 93 20
03 69 52
12 12 15
14 94 68
25 81 68
34 4 38
36 92 37
47 81 96
58 21 96
59 20 74
6A 24 16
6B 14 50
7C 52 87
7D 91 19
8A 27 44
8E 35 23
9B 65 3
9F 8 12
AF 49 75
BE 59 89
CD 15 37
CE 86 13
DF 87 8

287 2123
01 34 93
02 64 7
03 85 83
12 19 42
14 15 24
25 77 79
34 2 50
36 18 42
47 32 94
58 85 95
59 33 21
6A 8 63
6B 82 91
7C 84 6
7D 60 64
8A 36 80
8E 10 93
9B 93 69
9F 94 90
AF 24 79
BE 37 17
CD 9 86
CE 30 41
DF 98 79

288 2119
01 9 40
02 59 72
03 24 42
12 29 48
14 47 14
25 38 5
34 94 40
36 95 70
47 26 75
58 28 77
59 83 95
6A 60 40
6B 54 79
7C 92 4
7D 68 67
8A 21 15
8E 81 2
9B 29 37
9F 40 9
AF 72 29
BE 60 45
CD 23 64
CE 97 90
DF 29 63

289 2075
01 37 2
02 85 61
03 47 5
12 42 45
14 15 52
25 17 80
34 47 21
36 68 65
47 60 91
58 78 28
59 53 52
6A 48 8
6B 96 45
7C 51 0
7D 69 99
8A 77 75
8E 53 87
9B 39 83
9F 58 48
AF 12 50
BE 86 36
CD 87 11
CE 42 24
DF 36 4

290 2091
01 19 30
02 16 98
03 86 95
12 84 96
14 92 45
25 94 45
34 19 61
36 61 77
47 44 20
58 24 18
59 43 34
6A 65 68
6B 94 37
7C 22 1
7D 56 53
8A 5 2
8E 52 82
9B 86 78
9F 8 26
AF 56 62
BE 27 69
CD 53 72
CE 34 99
DF 22 18

B. ATSP problem sets 200

291 1993
01 68 89
02 81 17
03 63 50
12 88 90
14 42 23
25 43 7
34 20 34
36 42 14
47 14 9
58 93 43
59 77 5
6A 57 31
6B 11 50
7C 9 61
7D 8 13
8A 23 65
8E 95 21
9B 15 9
9F 42 78
AF 72 22
BE 92 72
CD 93 66
CE 51 56
DF 58 90

292 1946
01 7 41
02 14 100
03 5 95
12 74 97
14 21 31
25 2 43
36 72 45
37 97 37
46 26 19
47 29 61
58 68 64
59 39 31
6A 28 86
7B 54 0
8C 82 27
8D 3 29
9E 39 24
9F 27 13
AC 30 4
AE 98 69
BD 23 4
BF 23 7
CF 10 79
DE 12 1

293 2185
01 73 25
02 25 29
03 95 91
12 21 50
14 49 85
25 86 20
36 39 22
37 37 85
46 20 66
47 56 77
58 66 69
59 55 69
6A 24 97
7B 57 49
8C 1 36
8D 58 39
9E 26 73
9F 82 36
AC 22 94
AE 42 96
BD 91 35
BF 82 51
CF 91 77
DE 57 7

294 2172
01 68 70
02 51 92
03 38 41
12 21 67
14 25 3
25 67 12
36 33 68
37 45 5
46 63 52
47 19 10
58 82 46
59 88 83
6A 22 94
7B 84 77
8C 78 32
8D 73 75
9E 25 97
9F 71 87
AC 26 60
AE 44 55
BD 48 72
BF 34 10
CF 63 22
DE 85 65

295 2104
01 12 42
02 74 13
03 42 39
12 78 47
14 47 98
25 49 60
36 3 74
37 8 84
46 15 96
47 4 1
58 52 36
59 94 65
6A 98 51
7B 98 6
8C 12 11
8D 87 62
9E 77 15
9F 61 3
AC 1 64
AE 20 69
BD 38 42
BF 50 68
CF 43 67
DE 45 66

296 2013
01 58 3
02 97 87
03 45 33
12 63 10
14 98 71
25 96 14
36 84 97
37 86 49
46 70 36
47 81 11
58 71 65
59 88 93
6A 11 23
7B 85 52
8C 16 21
8D 20 12
9E 27 65
9F 6 37
AC 31 10
AE 95 2
BD 48 36
BF 7 85
CF 85 38
DE 24 2

297 2136
01 79 7
02 17 87
03 88 1
12 4 90
14 93 85
25 52 44
36 43 96
37 2 57
46 8 63
47 32 87
58 40 0
59 7 1
6A 95 46
7B 44 73
8C 13 69
8D 68 95
9E 18 7
9F 55 65
AC 15 60
AE 42 84
BD 59 33
BF 78 45
CF 45 42
DE 61 16

298 2101
01 97 14
02 91 53
03 86 5
12 57 56
14 16 38
25 81 63
36 62 26
37 70 45
46 93 38
47 37 97
58 69 89
59 90 18
6A 78 56
7B 86 21
8C 27 48
8D 31 53
9E 10 34
9F 64 10
AC 7 56
AE 54 2
BD 90 3
BF 60 53
CF 71 61
DE 36 10

299 2087
01 96 21
02 94 60
03 29 14
12 77 69
14 7 7
25 34 68
36 81 44
37 37 1
46 0 67
47 50 61
58 38 16
59 9 94
6A 12 62
7B 65 65
8C 97 60
8D 12 67
9E 34 69
9F 39 71
AC 14 51
AE 78 30
BD 96 58
BF 89 74
CF 31 89
DE 68 77

300 2043
01 96 80
02 17 26
03 30 1
12 11 69
14 45 61
25 55 36
36 18 27
37 92 72
46 64 65
47 96 1
58 47 30
59 42 21
6A 94 54
7B 62 62
8C 25 99
8D 79 76
9E 72 88
9F 29 19
AC 75 32
AE 45 74
BD 98 8
BF 75 55
CF 37 44
DE 60 37

301 1974
01 60 88
02 2 53
03 40 32
12 42 45
14 94 38
25 71 62
36 95 1
37 73 12
46 93 65
47 22 67
58 41 43
59 3 55
6A 7 60
7B 2 25
8C 9 60
8D 96 43
9E 47 20
9F 77 20
AC 4 54
AE 38 1
BD 8 66
BF 28 4
CF 27 99
DE 76 60

302 2122
01 1 69
02 7 17
03 20 15
12 51 95
14 2 77
25 79 19
36 18 28
37 42 78
46 15 15
48 99 93
56 18 71
59 94 69
7A 93 86
7B 49 33
8C 72 96
8D 79 25
9E 69 78
9F 51 61
AC 13 27
AE 75 61
BD 66 11
BF 75 73
CF 54 90
DE 38 87

303 2056
01 14 39
02 39 39
03 44 31
12 73 84
14 17 54
25 68 58
36 63 39
37 18 82
46 42 40
48 53 17
56 7 96
59 71 50
7A 21 24
7B 9 58
8C 96 37
8D 67 30
9E 75 23
9F 54 79
AC 35 3
AE 27 88
BD 9 41
BF 38 52
CF 42 96
DE 16 81

304 2125
01 45 20
02 19 56
03 44 24
12 58 81
14 78 59
25 17 28
36 58 96
37 83 88
46 48 8
48 10 54
56 87 66
59 44 39
7A 45 62
7B 57 55
8C 18 94
8D 75 59
9E 93 22
9F 81 78
AC 46 37
AE 2 63
BD 59 95
BF 70 93
CF 0 65
DE 46 71

305 2047
01 24 74
02 85 68
03 3 55
12 39 18
14 34 5
25 93 89
36 75 52
37 70 26
46 7 100
48 79 9
56 58 3
59 86 35
7A 14 66
7B 48 3
8C 30 25
8D 56 30
9E 86 97
9F 64 2
AC 19 9
AE 54 63
BD 48 95
BF 84 23
CF 35 100
DE 52 56

306 2091
01 89 60
02 8 82
03 32 86
12 43 51
14 78 72
25 82 98
36 47 23
37 14 11
46 39 81
48 56 89
56 32 87
59 39 22
7A 17 15
7B 12 82
8C 7 95
8D 52 11
9E 17 40
9F 6 35
AC 28 86
AE 68 35
BD 31 15
BF 64 20
CF 88 23
DE 43 1

307 2071
01 9 49
02 16 49
03 53 1
12 9 90
14 82 54
25 7 88
36 66 68
37 48 42
46 51 30
48 94 46
56 67 57
59 23 17
7A 74 51
7B 37 84
8C 9 70
8D 53 70
9E 95 48
9F 54 89
AC 39 64
AE 3 41
BD 29 100
BF 37 5
CF 64 71
DE 100 55

308 2008
01 35 62
02 52 33
03 61 10
12 24 98
14 59 32
25 30 67
36 97 39
37 54 86
46 13 64
48 30 82
56 41 8
59 93 77
7A 59 63
7B 99 3
8C 12 93
8D 52 23
9E 22 42
9F 85 17
AC 58 51
AE 71 78
BD 6 9
BF 80 88
CF 50 57
DE 71 2

309 2083
01 56 17
02 91 11
03 68 25
12 83 56
14 39 23
25 5 79
36 37 5
37 1 25
46 60 16
48 11 21
56 25 90
59 85 38
7A 93 11
7B 82 22
8C 28 59
8D 46 90
9E 81 94
9F 38 69
AC 26 34
AE 85 80
BD 64 94
BF 69 15
CF 16 85
DE 66 15

310 2170
01 94 74
02 45 9
03 82 36
12 62 78
14 37 43
25 62 10
36 73 58
37 76 9
46 98 57
48 74 5
59 41 94
5A 47 44
67 7 17
7B 88 15
8C 86 90
8D 6 41
9C 59 50
9E 22 93
AD 18 84
AF 58 43
BE 96 95
BF 8 54
CF 15 60
DE 55 28

311 2113
01 53 91
02 83 6
03 43 10
12 59 34
14 47 78
25 52 67
36 41 34
37 80 29
46 45 82
48 5 71
59 8 65
5A 19 62
67 98 91
7B 4 58
8C 8 26
8D 83 47
9C 86 30
9E 6 7
AD 60 25
AF 69 96
BE 69 37
BF 39 78
CF 95 15
DE 45 66

312 2114
01 3 12
02 75 17
03 1 94
12 62 30
14 88 82
25 25 60
36 30 87
37 98 74
46 4 35
48 23 96
59 77 36
5A 95 98
67 46 23
7B 66 50
8C 60 78
8D 65 70
9C 34 11
9E 61 95
AD 60 6
AF 94 7
BE 20 48
BF 1 88
CF 100 92
DE 88 19

313 2078
01 92 85
02 60 91
03 11 54
12 28 12
14 54 100
25 39 29
36 18 75
37 31 97
46 34 38
48 71 69
59 69 84
5A 60 100
67 81 52
7B 62 11
8C 13 85
8D 17 20
9C 48 0
9E 51 79
AD 57 29
AF 6 68
BE 43 17
BF 13 72
CF 97 83
DE 94 34

314 2029
01 61 82
02 59 90
03 8 96
12 1 78
14 8 20
25 49 41
36 91 48
37 7 36
46 95 43
48 62 64
59 87 58
5A 63 1
67 13 90
7B 18 41
8C 58 52
8D 24 55
9C 77 82
9E 18 88
AD 83 1
AF 81 24
BE 26 85
BF 57 68
CF 2 2
DE 52 67

315 2146
01 88 84
02 25 64
03 11 11
12 1 34
14 75 55
25 93 40
36 21 58
37 87 52
46 80 69
48 33 80
59 37 59
5A 78 54
67 38 23
7B 82 73
8C 33 33
8D 67 72
9C 26 24
9E 85 77
AD 96 27
AF 60 2
BE 61 71
BF 53 97
CF 67 30
DE 2 100

316 2034
01 88 38
02 95 28
03 60 48
12 91 84
14 18 97
25 53 52
36 35 20
37 28 48
46 57 22
48 87 20
59 18 1
5A 34 53
67 49 12
7B 72 40
8C 11 86
8D 66 31
9C 38 39
9E 71 64
AD 36 11
AF 75 6
BE 41 2
BF 17 26
CF 48 69
DE 98 28

317 2030
01 44 79
02 20 31
03 25 47
12 60 34
14 47 53
25 71 71
36 16 61
37 7 58
46 24 84
48 93 66
59 33 73
5A 49 55
67 0 75
7B 17 51
8C 100 95
8D 38 18
9C 14 10
9E 34 53
AD 29 31
AF 7 19
BE 34 53
BF 77 45
CF 15 77
DE 79 49

318 2081
01 31 67
02 26 97
03 3 83
12 36 56
14 63 23
25 81 46
36 89 49
37 12 85
46 87 75
48 59 100
59 37 50
5A 72 8
67 87 44
7B 93 44
8C 16 5
8D 41 96
9C 20 44
9E 51 97
AD 51 64
AF 22 5
BE 75 10
BF 42 17
CF 50 89
DE 50 56

319 2019
01 32 79
02 85 3
03 79 5
12 16 96
14 80 36
25 0 54
36 78 38
37 12 44
46 62 96
48 4 55
59 96 38
5A 51 57
67 56 46
7B 91 27
8C 59 35
8D 23 88
9C 25 47
9E 66 93
AD 45 97
AF 48 3
BE 46 39
BF 21 8
CF 93 5
DE 38 12

320 2151
01 1 40
02 74 51
03 21 41
12 79 2
14 23 88
25 64 38
36 54 56
37 51 74
48 41 89
49 63 72
5A 32 15
5B 27 48
67 36 73
6C 94 99
7D 90 71
89 64 14
8E 38 48
9F 81 22
AC 7 78
AE 57 29
BD 63 49
BF 83 93
CF 53 69
DE 25 58

B. ATSP problem sets 201

321 2031
01 77 55
02 4 64
03 65 66
12 26 96
14 40 46
25 4 19
36 25 90
37 89 17
48 94 26
49 40 10
5A 41 1
5B 66 53
67 80 23
6C 9 76
7D 31 41
89 67 10
8E 6 34
9F 32 73
AC 90 70
AE 42 38
BD 4 29
BF 20 57
CF 85 80
DE 19 33

322 1934
01 79 57
02 5 91
03 37 25
12 71 5
14 38 76
25 78 34
36 8 85
37 47 47
48 14 4
49 74 83
5A 89 8
5B 29 18
67 18 38
6C 7 76
7D 96 18
89 58 0
8E 30 54
9F 91 10
AC 70 69
AE 47 72
BD 8 83
BF 40 94
CF 100 6
DE 57 6

323 2038
01 4 91
02 53 2
03 66 70
12 26 2
14 36 76
25 52 95
36 82 14
37 25 73
48 9 6
49 27 75
5A 52 72
5B 56 14
67 58 79
6C 70 37
7D 16 57
89 40 29
8E 28 24
9F 75 61
AC 43 46
AE 17 50
BD 6 26
BF 6 52
CF 92 77
DE 52 9

324 2080
01 34 48
02 75 59
03 76 94
12 78 8
14 22 98
25 91 74
36 92 64
37 23 41
48 37 81
49 29 4
5A 53 39
5B 38 92
67 40 15
6C 34 13
7D 1 91
89 43 63
8E 42 91
9F 15 33
AC 45 24
AE 36 44
BD 9 4
BF 79 81
CF 37 17
DE 49 96

325 2072
01 61 60
02 96 33
03 6 77
12 19 55
14 89 29
25 90 84
36 86 3
37 72 11
48 100 35
49 6 3
5A 54 98
5B 14 82
67 36 87
6C 64 24
7D 35 33
89 9 60
8E 3 71
9F 26 80
AC 31 97
AE 12 66
BD 91 71
BF 16 22
CF 39 38
DE 41 32

326 2049
01 66 11
02 9 85
03 96 24
12 20 67
14 62 57
25 24 87
36 18 37
37 92 45
48 54 69
49 50 66
5A 83 55
5B 95 49
67 2 65
6C 2 12
7D 78 3
89 31 67
8E 3 72
9F 8 91
AC 50 23
AE 25 9
BD 51 76
BF 74 32
CF 16 17
DE 87 65

327 2152
01 1 95
02 24 69
03 71 29
12 29 41
14 46 55
25 40 34
36 62 66
37 27 32
48 87 36
49 67 41
5A 42 99
5B 91 77
67 22 7
6C 81 52
7D 73 89
89 98 31
8E 97 43
9F 13 56
AC 57 90
AE 40 10
BD 92 53
BF 81 54
CF 36 73
DE 43 23

328 2081
01 19 78
02 62 40
03 33 38
12 8 89
14 6 26
25 53 40
36 57 47
37 74 66
48 64 12
49 9 41
5A 5 87
5B 29 52
67 81 58
6C 84 45
7D 24 26
89 57 40
8E 22 53
9F 41 4
AC 71 78
AE 67 94
BD 78 42
BF 24 45
CF 59 35
DE 88 70

329 2095
01 96 26
02 21 97
03 84 27
12 99 36
14 76 51
25 43 12
36 3 10
37 15 26
48 89 80
49 54 97
5A 56 92
5B 13 95
67 77 63
6C 57 83
7D 100 11
8A 33 44
8C 21 21
9D 59 56
9E 77 24
AD 21 52
BE 45 29
BF 53 37
CF 28 59
EF 93 79

330 2094
01 28 39
02 53 24
03 42 92
12 73 73
14 56 61
25 40 84
36 98 1
37 79 76
48 60 93
49 16 45
5A 5 53
5B 14 10
67 100 45
6C 39 9
7D 69 10
8A 52 55
8C 73 46
9D 26 45
9E 64 78
AD 84 43
BE 33 41
BF 51 5
CF 11 45
EF 10 42

331 2038
01 13 30
02 91 70
03 16 42
12 82 1
14 89 76
25 29 71
36 80 71
37 22 21
48 27 42
49 2 14
5A 57 4
5B 79 78
67 47 20
6C 94 26
7D 69 80
8A 41 53
8C 12 62
9D 92 59
9E 74 10
AD 69 45
BE 61 9
BF 72 49
CF 47 72
EF 77 11

332 2029
01 64 92
02 32 36
03 95 85
12 41 33
14 74 65
25 12 96
36 72 28
37 4 95
48 60 90
49 12 26
5A 46 20
5B 25 9
67 21 2
6C 88 33
7D 48 33
8A 59 14
8C 4 99
9D 33 35
9E 53 52
AD 99 29
BE 46 74
BF 17 30
CF 53 61
EF 41 1

333 2096
01 9 80
02 50 40
03 56 83
12 68 54
14 34 62
25 74 22
36 86 24
37 81 83
48 92 24
49 35 53
5A 13 34
5B 91 63
67 38 45
6C 58 52
7D 77 24
8A 86 33
8C 79 59
9D 61 13
9E 0 61
AD 24 82
BE 47 25
BF 53 14
CF 48 75
EF 11 62

334 2077
01 2 43
02 57 68
03 73 99
12 8 18
14 4 70
25 35 80
36 37 8
37 58 39
48 70 49
49 64 17
5A 96 47
5B 70 60
67 88 48
6C 63 24
7D 0 73
8A 49 86
8C 43 50
9D 20 41
9E 3 9
AD 46 12
BE 28 77
BF 67 20
CF 74 36
EF 59 79

335 2050
01 80 6
02 97 79
03 54 28
12 1 15
14 97 72
25 77 94
36 91 61
37 9 17
48 66 30
49 24 84
5A 45 41
5B 10 95
67 64 32
6C 45 32
7D 77 49
8A 61 60
8C 29 22
9D 67 5
9E 80 38
AD 94 40
BE 36 90
BF 53 69
CF 56 75
EF 19 61

336 1966
01 96 40
02 17 78
03 47 64
12 74 48
14 9 94
25 23 35
36 93 3
37 9 10
48 10 10
49 60 63
5A 19 6
5B 9 92
67 12 98
6C 39 68
7D 35 89
8A 5 91
8C 31 77
9D 24 68
9E 79 65
AD 76 29
BE 41 24
BF 45 66
CF 55 33
EF 5 9

337 2043
01 64 29
02 96 8
03 47 69
12 71 11
14 80 28
25 86 99
36 77 21
37 46 58
48 0 12
49 50 76
5A 46 80
5B 19 21
67 62 92
6C 9 8
7D 2 89
8A 51 80
8C 32 3
9D 37 58
9E 45 24
AD 96 8
BE 14 44
BF 59 56
CF 20 10
EF 19 33

338 2112
01 66 81
02 31 92
03 23 52
12 0 36
14 79 26
25 33 84
36 34 14
37 95 12
48 80 21
49 58 56
5A 40 68
5B 47 10
68 47 22
6A 79 79
79 7 85
7C 11 57
8D 90 86
9A 92 25
BE 31 91
BF 27 87
CE 9 24
CF 36 43
DE 87 92
DF 97 40

339 2082
01 23 13
02 94 17
03 78 92
12 51 74
14 4 9
25 89 67
36 57 62
37 97 28
48 14 33
49 96 29
5A 20 12
5B 10 97
68 82 88
6A 93 79
79 67 63
7C 14 33
8D 5 7
9A 78 84
BE 51 69
BF 44 54
CE 73 4
CF 35 73
DE 36 15
DF 35 38

340 1998
01 1 77
02 31 1
03 52 59
12 76 31
14 79 14
25 16 75
36 14 42
37 63 8
48 81 18
49 74 38
5A 9 42
5B 74 85
68 18 19
6A 12 38
79 8 12
7C 39 10
8D 89 93
9A 98 4
BE 85 45
BF 67 95
CE 91 36
CF 11 80
DE 87 25
DF 84 3

341 2149
01 31 81
02 88 47
03 81 70
12 59 30
14 8 85
25 20 98
36 16 79
37 65 38
48 27 78
49 4 33
5A 58 61
5B 87 57
68 77 41
6A 7 100
79 99 86
7C 40 71
8D 15 52
9A 57 24
BE 86 7
BF 100 87
CE 73 6
CF 86 63
DE 17 99
DF 54 73

342 1997
01 60 44
02 11 74
03 31 8
12 93 40
14 32 45
25 55 92
36 92 31
37 90 37
48 92 85
49 97 6
5A 28 89
5B 25 70
68 55 12
6A 18 91
79 55 88
7C 79 24
8D 81 18
9A 36 19
BE 35 77
BF 91 5
CE 52 82
CF 93 40
DE 80 44
DF 82 49

343 2089
01 57 36
02 91 78
03 3 27
12 24 54
14 70 57
25 74 29
36 71 12
37 42 74
48 15 14
49 36 5
5A 42 75
5B 47 22
68 80 20
6A 91 42
79 71 14
7C 28 26
8D 19 24
9A 4 25
BE 72 54
BF 31 56
CE 66 61
CF 84 78
DE 63 33
DF 89 81

344 2062
01 50 81
02 31 22
03 3 34
12 81 97
14 50 63
25 93 79
36 30 3
37 32 22
48 23 16
49 91 99
5A 95 4
5B 18 36
68 9 39
6A 89 13
79 19 72
7C 71 20
8D 74 69
9A 89 76
BE 63 67
BF 26 6
CE 3 59
CF 96 80
DE 27 52
DF 66 1

345 2058
01 54 18
02 82 74
03 98 26
12 55 63
14 28 23
25 52 28
36 36 28
37 95 28
48 67 66
49 24 80
5A 94 95
5B 7 30
68 23 4
6A 79 87
79 67 14
7C 90 25
8D 85 5
9A 13 95
BE 26 45
BF 13 43
CE 8 77
CF 6 69
DE 78 76
DF 41 1

346 2049
01 87 35
02 22 62
03 72 69
12 77 65
14 56 64
25 22 27
36 96 28
37 53 68
48 36 44
49 86 15
5A 24 14
5B 13 57
68 49 66
6A 22 10
79 32 17
7C 40 16
8D 48 87
9A 91 36
BE 58 67
BF 21 8
CE 23 97
CF 69 100
DE 74 11
DF 30 30

347 2082
01 34 60
02 33 3
03 6 68
12 75 33
14 40 34
25 65 66
36 43 89
37 36 40
48 46 25
49 35 42
5A 16 88
5B 18 18
68 78 31
6A 60 92
7C 18 46
7D 39 75
8E 50 33
9C 48 94
9F 50 2
AF 71 31
BD 99 18
BE 77 35
CF 29 86
DE 99 50

348 2213
01 63 62
02 77 44
03 46 81
12 95 61
14 43 63
25 46 5
36 57 50
37 84 48
48 79 12
49 98 21
5A 72 92
5B 20 24
68 54 65
6A 7 28
7C 40 80
7D 61 37
8E 11 80
9C 84 81
9F 97 95
AF 51 20
BD 76 47
BE 48 67
CF 83 18
DE 30 65

349 2086
01 32 6
02 16 77
03 86 94
12 40 51
14 90 86
25 10 57
36 45 2
37 28 25
48 97 98
49 49 18
5A 48 30
5B 7 64
68 59 16
6A 89 41
7C 27 97
7D 12 19
8E 95 93
9C 92 29
9F 38 31
AF 98 36
BD 8 48
BE 88 37
CF 46 30
DE 87 32

350 2060
01 16 49
02 6 45
03 47 6
12 42 64
14 36 49
25 18 22
36 57 36
37 73 22
48 50 78
49 57 86
5A 84 96
5B 29 61
68 26 61
6A 85 55
7C 30 79
7D 69 28
8E 41 4
9C 58 66
9F 55 27
AF 31 91
BD 1 70
BE 79 31
CF 1 52
DE 59 22

B. ATSP problem sets 202

351 2119
01 60 23
02 68 77
03 6 93
12 24 83
14 79 51
25 79 70
36 17 90
37 32 69
48 73 8
49 25 99
5A 41 86
5B 82 39
68 48 13
6A 56 92
7C 1 56
7D 2 2
8E 16 81
9C 8 41
9F 58 84
AF 69 50
BD 94 23
BE 21 71
CF 73 17
DE 72 31

352 2160
01 61 78
02 88 31
03 13 72
12 77 58
14 72 67
25 91 39
36 57 4
37 83 63
48 74 37
49 8 50
5A 66 81
5B 94 65
68 33 29
6A 44 64
7C 28 59
7D 50 49
8E 81 35
9C 60 84
9F 25 24
AF 39 19
BD 3 87
BE 41 21
CF 83 30
DE 99 69

353 2120
01 38 55
02 4 50
03 71 68
12 54 97
14 94 80
25 35 71
36 12 97
37 39 23
48 69 64
49 30 28
5A 55 36
5B 43 82
68 2 33
6A 82 1
7C 99 16
7D 93 63
8E 62 34
9C 88 42
9F 58 38
AF 62 65
BD 10 81
BE 51 41
CF 23 68
DE 53 77

354 2036
01 70 24
02 22 98
03 91 88
12 68 79
14 23 59
25 2 79
36 3 89
37 59 52
48 60 13
49 50 55
5A 7 19
5B 98 51
68 64 6
6A 78 83
7C 5 52
7D 81 94
8E 83 98
9C 14 54
9F 47 44
AF 6 86
BD 56 71
BE 16 55
CF 32 89
DE 18 16

355 1992
01 34 91
02 100 18
03 72 17
12 1 96
14 96 84
25 33 22
36 44 76
37 42 6
48 36 39
49 67 11
5A 36 25
5B 8 94
68 22 73
6A 17 2
7C 49 4
7D 5 40
8E 92 75
9C 30 24
9F 11 2
AF 93 84
BD 78 18
BE 73 18
CF 18 30
DE 91 74

356 2143
01 51 25
02 1 55
03 70 22
12 55 12
14 76 29
25 12 27
36 43 95
37 88 51
48 0 85
49 68 80
5A 54 41
5B 89 81
68 14 75
6C 75 1
79 53 97
7D 35 27
8D 84 21
9C 46 45
AE 84 30
AF 51 31
BE 56 73
BF 80 46
CE 53 76
DF 68 27

357 2015
01 58 21
02 3 64
03 25 19
12 38 31
14 18 2
25 46 32
36 34 69
37 51 71
48 59 82
49 64 43
5A 75 44
5B 61 85
68 16 79
6C 53 1
79 3 42
7D 69 22
8D 43 60
9C 35 68
AE 7 72
AF 86 53
BE 54 48
BF 36 63
CE 57 60
DF 6 77

358 2007
01 64 92
02 36 40
03 31 71
12 10 37
14 57 29
25 51 48
36 71 0
37 38 89
48 85 81
49 90 51
5A 97 88
5B 2 15
68 17 28
6C 86 19
79 2 71
7D 7 22
8D 19 87
9C 90 74
AE 5 49
AF 33 79
BE 66 12
BF 66 74
CE 13 15
DF 87 23

359 1991
01 12 42
02 7 9
03 92 53
12 69 1
14 20 24
25 18 4
36 18 28
37 34 47
48 13 92
49 35 86
5A 16 9
5B 10 34
68 61 5
6C 30 14
79 88 71
7D 89 35
8D 2 37
9C 36 15
AE 13 90
AF 50 79
BE 39 99
BF 65 76
CE 7 50
DF 54 7

360 2006
01 98 78
02 27 6
03 66 79
12 84 42
14 33 14
25 84 82
36 93 35
37 1 12
48 7 65
49 52 76
5A 42 72
5B 70 3
68 31 17
6C 41 50
79 61 7
7D 15 10
8D 68 40
9C 6 51
AE 98 47
AF 86 21
BE 15 6
BF 97 14
CE 13 5
DF 63 36

361 1996
01 0 65
02 37 29
03 77 48
12 62 23
14 3 86
25 39 60
36 28 100
37 18 30
48 12 78
49 47 76
5A 36 94
5B 18 93
68 26 57
6C 9 19
79 87 34
7D 62 3
8D 1 1
9C 89 73
AE 32 75
AF 66 40
BE 59 45
BF 79 49
CE 13 11
DF 58 64

362 2020
01 90 65
02 97 46
03 34 34
12 4 73
14 64 87
25 7 28
36 35 19
37 32 28
48 33 68
49 96 52
5A 96 75
5B 19 35
68 94 27
6C 49 85
79 69 57
7D 72 20
8D 68 77
9C 82 54
AE 95 94
AF 15 4
BE 6 50
BF 78 23
CE 19 23
DF 78 8

363 2012
01 24 34
02 41 42
03 6 44
12 34 69
14 92 1
25 56 21
36 70 14
37 55 18
48 68 6
49 44 83
5A 38 4
5B 53 87
68 34 0
6C 41 54
79 74 8
7D 74 11
8D 68 7
9C 37 98
AE 90 40
AF 61 94
BE 0 41
BF 25 88
CE 89 0
DF 51 22

364 2152
01 0 75
02 61 79
03 99 84
12 40 77
14 99 47
25 22 20
36 23 97
37 35 75
48 60 16
49 92 44
5A 85 39
5B 89 93
68 11 58
6C 39 82
79 11 85
7D 41 93
8E 25 13
9F 1 58
AC 66 88
AF 22 60
BD 98 19
BE 44 70
CF 20 6
DE 56 7

365 2128
01 65 47
02 82 79
03 33 69
12 62 26
14 79 78
25 88 51
36 59 93
37 68 90
48 35 59
49 68 14
5A 29 20
5B 45 38
68 26 14
6C 97 68
79 54 82
7D 92 89
8E 10 59
9F 64 1
AC 27 84
AF 23 2
BD 7 48
BE 38 63
CF 27 37
DE 97 43

366 2111
01 22 10
02 62 97
03 64 36
12 73 58
14 34 80
25 20 31
36 72 99
37 11 12
48 14 59
49 9 63
5A 15 87
5B 47 64
68 32 64
6C 53 92
79 29 77
7D 78 42
8E 92 69
9F 41 25
AC 62 71
AF 44 79
BD 85 25
BE 30 45
CF 7 22
DE 48 26

367 2214
01 33 76
02 17 13
03 6 85
12 36 38
14 52 96
25 7 95
36 97 5
37 52 85
48 64 96
49 84 27
5A 19 1
5B 66 82
68 91 74
6C 30 52
79 56 4
7D 7 39
8E 38 68
9F 63 64
AC 57 31
AF 52 96
BD 89 36
BE 74 99
CF 93 82
DE 43 85

368 2014
01 17 70
02 17 4
03 91 31
12 6 48
14 36 51
25 16 28
36 34 12
37 79 64
48 92 70
49 32 2
5A 18 93
5B 45 25
68 40 29
6C 16 93
79 96 45
7D 24 44
8E 5 2
9F 24 42
AC 10 19
AF 72 44
BD 43 86
BE 38 99
CF 81 16
DE 75 87

369 2076
01 26 29
02 62 37
03 71 44
12 8 98
14 3 56
25 30 21
36 81 13
37 73 11
48 19 92
49 48 60
5A 65 69
5B 10 8
68 13 93
6C 54 1
79 43 49
7D 86 69
8E 78 18
9F 74 53
AC 67 46
AF 75 19
BD 19 98
BE 10 97
CF 83 11
DE 97 57

370 2168
01 47 76
02 71 39
03 85 87
12 79 40
14 89 8
25 48 32
36 18 83
37 43 16
48 62 93
49 59 75
5A 41 22
5B 10 31
68 4 65
6C 13 96
79 54 33
7D 26 85
8E 64 47
9F 70 74
AC 4 95
AF 76 83
BD 53 86
BE 36 3
CF 63 73
DE 62 59

371 2029
01 47 28
02 76 57
03 93 0
12 84 60
14 4 62
25 85 24
36 95 38
37 43 64
48 50 78
49 38 48
5A 36 57
5B 4 84
68 30 18
6C 95 90
79 29 11
7D 53 68
8E 97 26
9F 6 19
AC 63 30
AF 17 36
BD 39 5
BE 16 41
CF 75 67
DE 91 57

372 2177
01 85 72
02 44 75
03 81 73
12 4 96
14 92 88
25 96 46
36 85 72
37 53 23
48 11 78
49 89 28
5A 59 79
5B 1 51
68 98 78
6C 78 71
79 13 41
7D 26 28
8E 79 65
9F 97 14
AC 87 35
AF 8 4
BD 25 94
BE 18 87
CF 81 53
DE 85 63

373 2113
01 13 100
02 31 31
03 3 64
14 97 65
15 42 34
24 10 69
25 44 8
34 38 49
36 32 26
57 14 97
68 22 44
69 91 2
7A 98 57
7B 52 61
8C 35 31
8D 22 29
9E 49 8
9F 53 65
AC 30 31
AE 93 49
BD 80 19
BF 70 69
CF 8 77
DE 93 65

374 2063
01 68 51
02 32 19
03 79 33
14 66 21
15 80 15
24 26 74
25 5 6
34 64 15
36 84 50
57 41 12
68 74 61
69 92 29
7A 50 78
7B 56 37
8C 34 50
8D 90 45
9E 9 4
9F 55 46
AC 45 97
AE 76 7
BD 91 20
BF 13 6
CF 10 16
DE 47 38

375 2124
01 71 48
02 41 13
03 81 13
14 95 85
15 81 0
24 2 16
25 70 26
34 20 85
36 11 33
57 42 69
68 45 71
69 62 43
7A 25 31
7B 87 41
8C 28 10
8D 62 25
9E 6 51
9F 40 26
AC 84 99
AE 67 53
BD 85 94
BF 71 86
CF 14 59
DE 92 73

376 2058
01 2 68
02 100 26
03 28 58
14 4 3
15 30 79
24 44 65
25 80 78
36 70 70
37 98 40
46 8 40
58 20 63
69 56 90
7A 67 21
7B 2 31
8C 13 87
8D 49 98
9E 25 20
9F 38 68
AC 26 35
AE 90 52
BD 84 3
BF 37 14
CF 4 82
DE 58 70

377 2156
01 53 30
02 86 27
03 67 65
14 53 19
15 11 9
24 18 90
25 86 62
36 45 1
37 54 99
46 87 50
58 78 89
69 46 3
7A 92 66
7B 45 43
8C 38 37
8D 71 33
9E 26 69
9F 61 16
AC 20 76
AE 41 52
BD 73 78
BF 52 18
CF 70 63
DE 37 72

378 2053
01 23 30
02 66 19
03 80 65
14 65 15
15 34 56
24 43 6
25 72 17
36 16 22
37 52 75
46 20 41
58 43 93
69 61 72
7A 95 22
7B 42 87
8C 29 69
8D 42 98
9E 52 16
9F 65 80
AC 75 51
AE 83 20
BD 23 34
BF 17 49
CF 21 82
DE 36 73

379 2080
01 39 93
02 93 84
03 8 99
14 96 55
15 43 5
24 44 65
25 68 55
36 78 1
37 51 92
46 17 25
58 6 5
69 57 92
7A 87 19
7B 97 27
8C 29 19
8D 38 15
9E 62 34
9F 34 82
AC 87 1
AE 49 20
BD 0 66
BF 88 38
CF 21 57
DE 75 17

380 1994
01 94 23
02 76 85
03 13 67
14 87 5
15 45 60
24 27 71
25 52 3
36 91 96
37 95 41
46 23 14
58 31 63
69 17 3
7A 31 49
7B 13 70
8C 25 20
8D 88 45
9E 17 92
9F 94 35
AC 73 19
AE 83 83
BD 58 10
BF 3 16
CF 82 89
DE 92 44

B. ATSP problem sets 203

381 2102
01 57 65
02 61 57
03 77 42
14 15 76
15 91 81
24 62 65
25 70 46
36 69 13
37 90 44
46 49 82
58 57 10
69 12 27
7A 47 19
7B 73 94
8C 81 27
8D 5 48
9E 59 89
9F 14 51
AC 48 98
AE 34 53
BD 28 17
BF 23 90
CF 2 37
DE 50 45

382 1996
01 82 61
02 83 47
03 30 35
14 37 1
15 7 90
24 79 100
25 92 26
36 73 95
37 78 54
46 77 22
58 8 64
69 25 38
7A 66 13
7B 75 63
8C 23 2
8D 11 8
9E 62 0
9F 23 3
AC 62 86
AE 96 83
BD 38 33
BF 63 30
CF 43 38
DE 23 16

383 2143
01 99 22
02 48 0
03 35 8
14 31 38
15 98 41
24 66 57
25 71 21
36 86 82
37 97 12
46 89 19
58 17 32
69 9 65
7A 92 67
7B 94 56
8C 78 55
8D 84 78
9E 42 8
9F 32 85
AC 69 89
AE 44 24
BD 72 39
BF 73 35
CF 47 4
DE 21 67

384 2093
01 86 11
02 28 47
03 61 1
14 46 25
15 54 75
24 74 49
26 33 78
35 47 18
36 32 59
47 1 8
58 97 44
69 84 15
7A 35 94
7B 65 76
8C 87 4
8D 7 45
9E 63 64
9F 10 80
AC 87 22
AE 51 43
BD 28 57
BF 31 16
CF 36 95
DE 68 83

385 2115
01 61 15
02 31 16
03 62 59
14 33 75
15 44 71
24 92 81
26 11 37
35 25 43
36 52 43
47 73 35
58 6 88
69 75 28
7A 89 12
7B 0 76
8C 34 73
8D 86 27
9E 96 89
9F 14 80
AC 35 2
AE 66 6
BD 99 59
BF 65 88
CF 3 71
DE 97 23

386 2083
01 84 56
02 30 3
03 49 23
14 14 47
15 75 10
24 69 53
26 82 73
35 46 36
36 22 74
47 41 25
58 41 17
69 33 17
7A 68 65
7B 23 65
8C 5 47
8D 3 70
9E 56 99
9F 85 9
AC 79 70
AE 58 81
BD 62 97
BF 25 76
CF 73 35
DE 18 57

387 1959
01 0 35
02 98 20
03 10 89
14 18 1
15 31 57
24 17 74
26 39 38
35 45 36
36 38 65
47 77 77
58 3 92
69 60 85
7A 39 26
7B 85 24
8C 1 17
8D 95 16
9E 90 19
9F 27 13
AC 89 26
AE 13 57
BD 1 43
BF 35 73
CF 93 27
DE 38 5

388 2189
01 15 26
02 23 33
03 84 41
14 6 86
15 43 45
24 90 44
26 68 76
35 52 16
36 25 57
47 70 80
58 55 79
69 86 6
7A 95 50
7B 81 2
8C 10 55
8D 74 45
9E 86 97
9F 45 85
AC 47 81
AE 96 53
BD 68 96
BF 16 17
CF 34 75
DE 36 76

389 2079
01 2 65
02 93 75
03 50 83
14 68 19
15 1 90
24 69 52
26 13 4
35 42 71
36 53 83
47 86 26
58 19 71
69 48 87
7A 69 89
7B 80 32
8C 53 54
8D 2 37
9E 29 53
9F 41 44
AC 16 34
AE 37 54
BD 11 89
BF 74 14
CF 90 0
DE 73 16

390 2034
01 6 11
02 17 98
03 83 9
14 7 6
15 97 38
24 31 54
26 28 42
35 9 55
36 99 46
47 89 83
58 48 53
69 48 71
7A 71 8
7B 54 66
8C 37 37
8D 5 27
9E 83 47
9F 69 46
AC 55 25
AE 55 10
BD 50 29
BF 57 45
CF 96 29
DE 32 52

391 2128
01 46 29
02 78 98
03 50 57
14 38 59
15 98 16
24 54 25
26 73 22
35 10 52
37 41 42
47 47 58
58 7 44
69 96 25
6A 2 66
7B 40 37
8C 94 53
8D 89 55
9C 16 30
9E 5 54
AD 93 35
AF 81 33
BE 27 5
BF 35 37
CF 36 80
DE 39 19

392 2033
01 28 90
02 3 86
03 46 13
14 95 40
15 63 72
24 5 35
26 53 99
35 74 67
37 60 35
47 19 24
58 48 17
69 96 34
6A 42 26
7B 70 11
8C 96 88
8D 24 40
9C 94 10
9E 75 47
AD 51 43
AF 9 59
BE 95 89
BF 93 60
CF 58 23
DE 36 62

393 2087
01 83 88
02 51 47
03 23 43
14 24 73
15 58 1
24 89 36
26 5 87
35 50 35
37 1 88
47 63 30
58 89 65
69 18 82
6A 77 71
7B 22 68
8C 49 76
8D 49 81
9C 30 10
9E 69 84
AD 5 82
AF 72 96
BE 12 97
BF 92 91
CF 31 1
DE 89 63

394 2126
01 12 99
02 80 67
03 76 76
14 14 97
15 30 11
24 77 58
26 85 42
35 8 38
37 13 65
47 37 76
58 52 82
69 6 49
6A 79 63
7B 5 25
8C 51 79
8D 52 94
9C 66 16
9E 76 48
AD 22 36
AF 28 85
BE 94 23
BF 53 93
CF 67 39
DE 27 60

395 2037
01 91 55
02 20 49
03 63 35
14 51 31
15 94 28
24 22 91
26 13 31
35 92 93
37 37 18
47 50 64
58 73 62
69 89 7
6A 20 44
7B 87 2
8C 37 42
8D 43 49
9C 6 90
9E 34 32
AD 56 0
AF 28 66
BE 69 1
BF 29 34
CF 54 82
DE 80 9

396 2053
01 71 37
02 38 75
03 7 56
14 69 52
15 77 42
24 14 49
26 35 54
35 81 53
37 42 12
47 56 90
58 7 10
69 16 43
6A 49 16
7B 93 30
8C 51 16
8D 39 37
9C 72 76
9E 5 71
AD 34 22
AF 70 23
BE 57 80
BF 16 37
CF 50 73
DE 44 15

397 2115
01 26 66
02 82 94
03 22 35
14 6 27
15 39 59
24 86 72
26 45 14
35 36 20
37 55 96
47 0 58
58 96 61
69 33 97
6A 44 56
7B 53 89
8C 50 8
8D 70 60
9C 94 40
9E 85 28
AD 23 51
AF 59 51
BE 37 79
BF 98 61
CF 74 20
DE 34 31

398 2118
01 1 70
02 80 70
03 79 82
14 34 9
15 65 62
24 34 59
26 2 86
35 15 66
37 92 62
47 42 30
58 48 47
69 15 98
6A 29 10
7B 48 69
8C 39 65
8D 25 64
9C 92 74
9E 61 25
AD 49 24
AF 87 60
BE 70 67
BF 13 85
CF 17 31
DE 2 39

399 2167
01 58 62
02 42 18
03 38 16
14 57 88
15 59 74
24 23 35
26 21 27
35 47 76
37 73 55
47 20 48
58 28 81
69 96 84
6A 28 40
7B 84 55
8C 68 66
8D 81 62
9C 17 46
9E 87 98
AD 76 34
AF 78 41
BE 73 21
BF 49 98
CF 100 17
DE 27 11

400 2167
01 2 42
02 12 61
03 12 58
14 15 91
15 70 78
24 38 30
26 50 69
35 96 66
37 16 35
47 52 40
58 50 39
69 56 94
6A 91 65
7B 40 38
8C 3 11
8D 50 52
9C 99 81
9E 29 39
AD 49 72
AF 94 88
BE 95 22
BF 16 23
CF 78 68
DE 38 91

Appendix C

Implementation of graph reduction

algorithm

This appendix gives a complete implementation of Algorithms 3.1 to 3.4 for GNU

Octave / MATLAB. All graph inputs should be adjacency matrices. The function

graph reduction returns a cell vector of function handles, which may be passed as

the first argument to apply reduction. The function handles in this vector may be

one or more of red cut, red cycle, red diamond, red forced, red hcycle, red H,

red I, red NH, red path, red pinwheel, red radial and red triangle. The func-

tions eorbits, config and nauty write are used to calculate the edge orbits as nec-

essary by executing dreadnaut from the nauty software package [55].

For convenience, the source code is distributed under the GNU General Public

License and may be downloaded from the FHCP Dissertations page on the Flinders

Hamiltonian Cycle Project website: http://fhcp.edu.au. To use the implementation

it is necessary that a correct path to dreadnaut be set in config.m. The current URL

for nauty is http://pallini.di.uniroma1.it/.

Before listings of the code we give a short example of usage:

>> petersen = [0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0

0 0 1 0 1 0 0 0 1 0

1 0 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 1 1

0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 1 1 0 0 0

0 0 0 0 1 0 1 1 0 0];

204

http://fhcp.edu.au
http://pallini.di.uniroma1.it/

C. Implementation of graph reduction algorithm 205

>> P = graph_reduction(petersen)

P =

{

[1,1] = @red_NH

[1,2] = @(g) red_forced (g, 9, 4)

[1,3] = @(g) red_pinwheel (g, 2, 3, 7)

[1,4] = @(g) red_radial (g, 1, 2, 5, 6)

}

>> reduced = apply_reduction(P, petersen)

reduced =

0 1

1 0

Code listings are now given in the order they are referenced, starting with the two

functions comprising the main interface; graph reduction and apply reduction. An

index to the files is shown below:

C.1 graph reduction.m . 206

C.2 apply reduction.m . 212

C.3 red H.m . 212

C.4 red I.m . 212

C.5 red NH.m . 212

C.6 red forced.m . 212

C.7 red path.m . 213

C.8 red cycle.m . 213

C.9 red triangle.m . 214

C.10 red diamond.m . 214

C.11 red hcycle.m . 215

C.12 red cut.m . 215

C.13 red radial.m . 216

C.14 red pinwheel.m . 217

C.15 eorbits.m . 217

C.16 config.m . 219

C.17 nauty write.m . 219

C. Implementation of graph reduction algorithm 206

Listing C.1: graph reduction.m
% p = graph reduction(g)
%
% Find a Hamiltonicity-preserving graph reduction
% g should be an adjacency matrix of a simple undirected graph
% degree 0 vertices will be treated as absent from the graph
% P is a cell vector of function handles which should be applied to g
% P will be empty if no applicable graph reduction was found
%
% Use apply reduction(P, g) to produce the resulting graph

function P = graph reduction(g)
if (∼∼∼issimple(g))

error('g is not a simple graph')
end
P = {};
while true

if (length(P) > 1 && isequal(P{1}, @red NH))
return

end
if (∼∼∼is2connected(g))

P = {@red NH, P{:}};
return

end
n = nvertices(g);
if (2*nedges(g) == n*(n-1))

% g is complete (and 2-connected as above)
P = {@red H, P{:}};
return

end
if (min_nonadjacent_deg_sum(g) >= n)

% satisfies necessary condition in Ore's theorem
P = {@red H, P{:}};
return

end
F = forced_edges(g);
p = forced_edge_reduction(g, F);
if (∼∼∼isequal(p, @red I))

P = {p P{:}};
g = p(g);
continue

end
p = subgraph reduction(g);
if (∼∼∼isequal(p, @red I))

P = {p P{:}};
g = p(g);
continue

end
p = edge_orbit_reduction(g, F);
if (∼∼∼isequal(p, @red I))

P = {p P{:}};
g = p(g);
continue

end
% no more reductions found
return

end

function p = forced_edge_reduction(g, F)
n = nvertices(g);
if (max(sum(F)) > 2)

% too many forced edges at a vertex
p = @red NH;
return

end
for u = find(sum(F) == 2 & sum(g) > 2, 1)

p = eval(['@(g) red forced(g' sprintf(',%d', u, find(g(u,:)-F(u,:))) ')']);
return

end
H = vsubgraph(g, sum(g)==2);
for c=components(H, sum(g)∼∼∼=2)

if (sum(c) > 1)
if (n == 3)

p = @red I;
return

C. Implementation of graph reduction algorithm 207

end
V = trace_path(vsubgraph(H,c));
if (length(V) > n-2)

V = V(1:n-2);
end
p = eval(['@(g) red path(g' sprintf(',%d', V) ')']);
return

else
v = find(c);
V = adjacent(g,v);
if (g(V(1),V(2)))

p = eval(['@(g) red cycle(g' sprintf(',%d', V(1), v, V(2)) ')']);
return

end
end

end
p = @red I;

function p = subgraph reduction(g)
if (nvertices(g) <= 4)

p = @red I;
return

end
deg = sum(g);
for t=triangles(g)

if (all(deg(t) == 3) && length(adjacent(g,t')) == 6)
p = eval(['@(g) red triangle(g' sprintf(',%d', t) ')']);
return

end
end
for d=diamonds(g)

% d is already ordered as returned by diamonds
if (all(deg(d)==3) && length(intersect(adjacent(g,d(1)),adjacent(g,d(4))))==2)

p = eval(['@(g) red diamond(g' sprintf(',%d', d) ')']);
return

end
end
p = @red I;

function p = edge_orbit_reduction(g, F)
O = edge_orbits(g);
[C, K] = classify_orbits(O);
n = nvertices(g);
for i=find(C == 'C' & K == 1)

if (nvertices(O{i}) == n && any(sum(g) > 2))
% found Hamiltonian cycle
p = eval(['@(g) red hcycle(g' sprintf(',%d', trace_path(O{i})) ')']);
return

end
end
for i=find(C == 'K' | C == 'P')

% find_cycle uses degree 2 vertices only so isn't doing any special processing
cycle = find_cycle(O{i} | F);
if (length(cycle) == n)

% found Hamiltonian cycle
p = eval(['@(g) red hcycle(g' sprintf(',%d', cycle) ')']);
return

end
end
for i=find((C == 'K' | C == 'P') & log2(K) ∼∼∼= fix(log2(K)))

% number of disjoint edges or 2-paths with odd divisor
comps = components(g & ∼∼∼O{i}, sum(g)==0);
if (size(comps,2) > 1)

E = edges(O{i});
Ecomp = arrayfun(@(v) find(comps(v,:)), E);
[E, Ecomp] = reorder_edges_by_components(E, Ecomp);
c1 = Ecomp(end,1);
c2 = Ecomp(end,2);
if (mod(nnz(Ecomp == c1),2) == 1)

E = E(any(Ecomp == c1, 2),:);
elseif (mod(nnz(Ecomp == c2),2) == 1)

E = E(any(Ecomp == c2, 2),:);
else

continue
end
% odd number of edges connecting a component to the rest of the graph

C. Implementation of graph reduction algorithm 208

p = eval(['@(g) red cut(g' sprintf(',%d', E') ')']);
return

end
end
for i=find(C == 'S' | C == 'X', 1)

centre = find(sum(O{i}) >= 3, 1);
p=eval(['@(g) red radial(g' sprintf(',%d',centre,adjacent(O{i},centre)) ')']);
return

end
for i=find(C == 'K' | C == 'P')

cycle = find_cycle(O{i} | F);
if (∼∼∼isempty(cycle) && length(cycle) ∼∼∼= n && ∼∼∼is_cycle_in(cycle, F))

cycle = reorder_cycle_break_on_nonforced(cycle, F);
p = eval(['@(g) red cycle(g' sprintf(',%d', cycle) ')']);
return

end
end
% search for a vertex with a forced edge and two or more edges from the same orbit
for v=find(sum(F)==1)

Fv = adjacent(F, v);
for j=find(C ∼∼∼= 'K')

Ov = adjacent(O{j}, v);
A = setdiff(Ov, Fv);
if (length(A) >= 2)

p = eval(['@(g) red pinwheel(g' sprintf(',%d', v, A) ')']);
return

end
end

end
for i=find(C == 'C')

if (K(i) ∼∼∼= 1 || nvertices(O{i}) ∼∼∼= n)
p = eval(['@(g) red cycle(g' sprintf(',%d', trace_path(O{i})) ')']);
return

end
end
p = @red I;

%%%

function b = issimple(g)
b = issymmetric(g) && size(g,1) && nnz(g) && ∼∼∼any(diag(g)) && isequal(g,logical(g));

function b = is2connected(g)
if (ncomponents(g) ∼∼∼= 1)

b = false;
return

end
if (any(sum(g) == 1))

b = false;
return

end
n = size(g,1);
for v=find(sum(g) >= 2)

adj = adjacent(g,v);
% temporarily remove edges
g(v,adj) = 0;
g(adj,v) = 0;
if (ncomponents(g) ∼∼∼= 1)

b = false;
return

end
% restore edges
g(v,adj) = 1;
g(adj,v) = 1;

end
b = true;

function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices

function n = nedges(g)
n = nnz(triu(g));

function c = ncomponents(varargin)
c = size(components(varargin{:}), 2);

C. Implementation of graph reduction algorithm 209

function C = components(g, ignore)
n = size(g,1);
c = zeros(1,n);
if (nargin < 2)

ignore = (sum(g) == 0); % ignore degree 0 vertices
end
c(ignore) = -1;
while nnz(c) < n

% vector for next component
v = double(1:n == find(c == 0, 1));
vnz = 0;
while nnz(v) > vnz

vnz = nnz(v);
v = v + v*g;

end
c(v>0) = max(c)+1;

end
nc = max(max(c),0);
C = false(n, nc);
for i=1:nc

C(:,i) = (c == i)';
end

function s = min_nonadjacent_deg_sum(g)
s = Inf;
n = size(g,1);
for i=1:n

if (sum(g(i,:)) == 0)
% ignore degree 0 vertices
continue

end
for j=i+1:n

if (sum(g(j,:)) == 0)
% ignore degree 0 vertices
continue

end
if (∼∼∼g(i,j))

s = min(s, sum(g(i,:))+sum(g(j,:)));
end

end
end

function F = forced_edges(g)
n = size(g,1); % include degree 0 vertices
F = zeros(n);
for i=1:n

for j=i+1:n
if (∼∼∼g(i,j))

continue
end
% temporarily remove edge
g(i,j) = 0;
g(j,i) = 0;
if (∼∼∼is2connected(g))

F(i,j) = 1;
F(j,i) = 1;

end
% restore edge
g(i,j) = 1;
g(j,i) = 1;

end
end

function H = vsubgraph(G, vertices)
H = zeros(size(G,1));
H(vertices,vertices) = G(vertices,vertices);

function V = trace_path(g)
V = [];
if (nnz(g) == 0)

return
end
[i,j] = find(g, 1);
V = [j, i]; % j < i
g(:,i) = 0;
g(j,:) = 0;

C. Implementation of graph reduction algorithm 210

g(i,V) = 0;
g(V,j) = 0;
while (nnz(g(V(end),:)))

k = find(g(V(end),:), 1);
g(:,k) = 0;
g(k, V) = 0;
V = [V, k];

end
while (nnz(g(:,V(1))))

k = find(g(:,V(1)), 1);
g(k,:) = 0;
g(V,k) = 0;
V = [k, V];

end
if (V(1) > V(end))

V = fliplr(V);
end

function T = triangles(g)
n = size(g,1);
T = zeros(3,0);
for i=1:n

if (sum(g(i,:)) == 0)
continue

end
for j=i+1:n

if (∼∼∼g(i,j))
continue

end
for k=j+1:n

if (∼∼∼g(i,k) || ∼∼∼g(j,k))
continue

end
T(:,end+1) = [i j k]';

end
end

end

function A = adjacent(g, vertices)
n = size(g,1);
A = zeros(1,n);
for i=1:length(vertices)

A = A + g(vertices(i),:);
end
A = find(A);

function D = diamonds(g)
n = size(g,1);
D = zeros(4,0);
for t=triangles(g)

i=t(1);
j=t(2);
k=t(3);
for l=i+1:n

if (l == i || l == j || l == k || sum(g([i, j, k], l)) ∼∼∼= 2)
continue

end
if (g(i,l) && g(j,l) && l > k)

D(:,end+1) = [k i j l]';
elseif (g(i,l) && g(k,l) && l > j)

D(:,end+1) = [j i k l]';
elseif (g(j,l) && g(k,l))

D(:,end+1) = [i j k l]';
end

end
end

function O = edge_orbits(g)
n = size(g,1);
[g, vmap] = compact(g);
[orbits, E] = eorbits(g);
norbits = max(orbits);
E = vertex_map(E, vmap);
O = cell(1, norbits);
for i=1:norbits

H = zeros(n);

C. Implementation of graph reduction algorithm 211

for edge = E(orbits == i,:)'
H(edge(1),edge(2)) = 1;
H(edge(2),edge(1)) = 1;

end
O{i} = H;

end

function [g, vmap] = compact(g)
vmap = find(sum(g));
g = g(vmap, vmap);

function E = edges(g)
[i,j] = find(tril(g));
E = [j i];

function M = vertex_map(M, vmap)
f = @(x) scalar_map(x, vmap);
M = arrayfun(f, M);

function x = scalar_map(x, vmap)
x = vmap(x);

function [c, k] = classify_orbits(O)
c = '';
k = zeros(1,length(O));
for i=1:length(O)

H = O{i};
degrees = unique(sum(H));
if (degrees(1) == 0)

degrees = degrees(2:end);
end
a = degrees(1);
if (length(degrees) == 1)

b = a;
elseif (length(degrees) == 2)

b = degrees(2);
end
k(i) = ncomponents(H);
if (a == 1 && b == 1)

c(i) = 'K'; % K_2
elseif (a == 1 && b == 2)

c(i) = 'P'; % P_2
elseif (a == 1 && b > 2)

c(i) = 'S'; % S_n
elseif (a == 2 && b == 2)

c(i) = 'C'; % C_n
elseif (a == b)

c(i) = 'X'; % X_n
elseif (a < b)

c(i) = 'X'; % X_m,n
end

end

function C = find_cycle(g)
% cycles must be on degree 2 vertices
g = vsubgraph(g, sum(g)==2);
if (nnz(g))

for c = components(g)
if (sum(c) >= 3)

h = vsubgraph(g,c);
C = trace_path(h);
if (h(C(end),C(1)))

return
end

end
end

end
% no cycle found
C = [];

function C = reorder_cycle_break_on_nonforced(C, F)
n=length(C);
shifts=0;
while (F(C(n),C(1)))

C = circshift(C, [0 -1]);
shifts = shifts+1;

C. Implementation of graph reduction algorithm 212

end

function [E, C] = reorder_edges_by_components(E, C)
c1 = min(C(end,:));
c2 = max(C(end,:));
for i=1:size(E,1)

if (C(i,1) == c2 || C(i,2) == c1)
% swap
tmp = C(i,1);
C(i,1) = C(i,2);
C(i,2) = tmp;
tmp = E(i,1);
E(i,1) = E(i,2);
E(i,2) = tmp;

end
end

function b = is_cycle_in(cycle, g)
if (length(cycle) < 3)

b = false;
return

end
n = length(cycle);
cycle(n+1) = cycle(1);
for i=1:n

if (∼∼∼g(cycle(i),cycle(i+1)))
b = false;
return

end
end
b = true;

Listing C.2: apply reduction.m
% g = apply reduction(P, g)
%
% P should be a cell of function handles to be applied to g from last to first
% g should be an adjacency matrix

function g = apply reduction(P, g)
for i=numel(P):-1:1

p = P{i};
g = p(g);

end
g = g(sum(g)>0,sum(g)>0);

Listing C.3: red H.m
% g = red H(g)
% returns a small Hamiltonian graph K_3
function g = red H(g)
g = 1-eye(3);

Listing C.4: red I.m
% g = red I(g)
% identity "reduction" - returns g unmodified
function g = red I(g)

Listing C.5: red NH.m
% g = red NH(g)
% returns a small non-Hamiltonian graph K_2
function g = red NH(g)
g = 1-eye(2);

Listing C.6: red forced.m
% g = red forced(g, u, v1, ...)
% unusable edge reduction
function g = red forced(varargin)
if (nargin < 3)

error('too few arguments')

C. Implementation of graph reduction algorithm 213

end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
u = varargin{2};
V = [varargin{3:end}];
if (u < 1 || u > size(g,1) || min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
for v=V

if (∼∼∼g(u,v))
error('edge (%d, %d) not in graph', u, v)

end
end

g(u,V) = 0;
g(V,u) = 0;

Listing C.7: red path.m
% g = red path(g, v1, v2, ...)
% path reduction
function g = red path(varargin)
if (nargin < 3)

error('too few arguments')
end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
V = [varargin{2:end}];
if (min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
if (length(V) ∼∼∼= length(unique(V)))

error('repeated arguments')
end
if (any(sum(g(:,V)) ∼∼∼= 2))

error('vertices must be degree 2')
end
if (length(V) > nvertices(g)-2)

error('too many vertices in path')
end
for i=1:length(V)-1

if (∼∼∼g(V(i),V(i+1)))
error('edge (%d, %d) not in graph', V(i), V(i+1))

end
end

endpoint = find(g(V(end),:).*(1:size(g,1) ∼∼∼= V(end-1)));

% remove all but first vertex
dv = V(2:end);
g(dv,:)=0;
g(:,dv)=0;

% connect first vertex to endpoint (if not already)
g(V(1),endpoint) = 1;
g(endpoint,V(1)) = 1;

function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices

Listing C.8: red cycle.m
% g = red cycle(g, v1, v2, v3, ...)
% remove an edge from a short cycle of redundant edges
function g = red cycle(varargin)
if (nargin < 4)

error('too few arguments')
end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')

C. Implementation of graph reduction algorithm 214

end
V = [varargin{2:end}];
if (min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
n = length(V);
if (n ∼∼∼= length(unique(V)))

error('repeated arguments')
end
if (n == nvertices(g))

error('cycle is not short')
end
% make loop
V(end+1) = V(1);
for i=1:n

if (∼∼∼g(V(i),V(i+1)))
error('edge (%d, %d) not in graph', V(i), V(i+1))

end
end
% remove edge
g(V(1),V(n)) = 0;
g(V(n),V(1)) = 0;

function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices

Listing C.9: red triangle.m
% g = red triangle(g, u, v, w)
% contract degree 3 triangle into single vertex
function g = red triangle(g, u, v, w)
if (nargin ∼∼∼= 4)

error('wrong number of arguments')
end
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
if (min([u v w]) < 1 || max([u v w]) > size(g,1))

error('arguments out of bounds')
end
if (any(sum(g(:,[u,v,w])) ∼∼∼= 3))

error('vertices are not degree 3')
end
if (∼∼∼g(u,v) || ∼∼∼g(u,w) || ∼∼∼g(v,w))

error('not triangle')
end
% find other vertices
gu = g(u,:);
gu([v w]) = 0;
ou = find(gu);
gv = g(v,:);
gv([u w]) = 0;
ov = find(gv);
gw = g(w,:);
gw([u v]) = 0;
ow = find(gw);
if (ou == ov || ou == ow || ov == ow)

error('triangle does not connect to 3 distinct outside vertices')
end

% remove v and w
g([v w],:) = 0;
g(:,[v w]) = 0;

% connect u to other vertices
g(u,[ov ow]) = 1;
g([ov ow],u) = 1;

Listing C.10: red diamond.m
% g = red diamond(g, u, v, w, x)
% contract cubic diamond into a single vertex
function g = red diamond(g, u, v, w, x)
if (nargin ∼∼∼= 5)

error('wrong number of arguments')

C. Implementation of graph reduction algorithm 215

end
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
if (min([u v w x]) < 1 || max([u v w x]) > size(g,1))

error('arguments out of bound')
end
if (any(sum(g(:,[u v w x])) ∼∼∼= 3))

error('vertices of diamond are not degree 3')
end
if (∼∼∼g(u,v) || ∼∼∼g(u,w) || ∼∼∼g(v,w) || ∼∼∼g(v,x) || ∼∼∼g(w,x) || g(u,x))

error('not diamond')
end

xn = setdiff(find(g(x,:)),[v w]);
assert(isscalar(xn));

if (g(u,xn))
error('endpoints of diamond have a common neighbour')

end

% remove v w x
g([v w x],:) = 0;
g(:,[v w x]) = 0;

% connect u to xn
g(u,xn) = 1;
g(xn,u) = 1;

Listing C.11: red hcycle.m
% g = red hcycle(g, v1, v2, ..., vn)
% remove all edges but those in a given Hamiltonian cycle
% v1 ... vn should trace out a Hamiltonian cycle
% n must be the number of vertices in g
function g = red hcycle(varargin)
if (nargin < 1)

error('too few arguments')
end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
n = nvertices(g);
if (nargin ∼∼∼= 1 + n)

error('wrong number of arguments')
end
V = [varargin{2:end}];
if (min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
if (length(unique(V)) ∼∼∼= n)

error('repeated arguments')
end
% make loop
V(end+1) = V(1);
for i=1:n

if (∼∼∼g(V(i),V(i+1)))
error('edge (%d, %d) not in graph', V(i), V(i+1))

end
end

% remove all edges
g(:,:) = 0;
for i=1:n

% restore Hamiltonian cycle
g(V(i),V(i+1)) = 1;
g(V(i+1),V(i)) = 1;

end

function n = nvertices(g)
n = nnz(sum(g)); % ignores degree 0 vertices

Listing C.12: red cut.m

C. Implementation of graph reduction algorithm 216

% g = red cut(g, u1, v1, u2, v2, u3, v3, ...)
% remove an edge from an odd edge cut
function g = red cut(varargin)
if (nargin < 3 || mod(nargin,2) ∼∼∼= 1)

error('wrong number of arguments')
end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
U = [varargin{2:2:end-1}];
V = [varargin{3:2:end}];
if (min(U) < 1 || max(U) > size(g,1) || min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
n = length(U);
if (size(unique(sort([U' V'], 2), 'rows'),1) ∼∼∼= n)

error('repeated edges in arguments')
end
h = g;
for i=1:n

if (∼∼∼g(U(i),V(i)))
error('edge (%d,%d) not in graph', U(i), V(i));

end
h(U(i),V(i)) = 0;
h(V(i),U(i)) = 0;

end
C = components(h, sum(g) == 0);
nc = size(C, 2);
if (nc < 2)

error('not edge cut');
end
for i=1:n

h(U(i),V(i)) = 1;
h(V(i),U(i)) = 1;
if (size(components(h, sum(g) == 0), 2) == nc)

error('edge cut not minimal');
end
h(U(i),V(i)) = 0;
h(V(i),U(i)) = 0;

end

% remove last edge from cut
g(U(end),V(end)) = 0;
g(V(end),U(end)) = 0;

function C = components(g, ignore)
N = size(g,1);
c = zeros(1,N);
if (nargin < 2)

ignore = (sum(g) == 0); % ignore degree 0 vertices
end
c(ignore) = -1;
while nnz(c) < N

% vector for next component
v = double(1:N == find(c == 0, 1));
vnz = 0;
while nnz(v) > vnz

vnz = nnz(v);
v = v + v*g;

end
c(v>0) = max(c)+1;

end
nc = max(max(c),0);
C = false(N, nc);
for i=1:nc

C(:,i) = (c == i)';
end

Listing C.13: red radial.m
% g = red radial(g, u, v1, v2, v3, ...)
% remove an edge from a star where all the edges are redundant
function g = red radial(varargin)
if (nargin < 5)

error('too few arguments')

C. Implementation of graph reduction algorithm 217

end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
u = varargin{2};
V = [varargin{3:end}];
if (u < 1 || u > size(g,1) || min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
if (length(V) ∼∼∼= length(unique(V)))

error('repeated arguments')
end
for v=V

if (∼∼∼g(u,v))
error('edge (%d, %d) not in graph', u, v)

end
end

g(u,V(end)) = 0;
g(V(end),u) = 0;

Listing C.14: red pinwheel.m
% g = red pinwheel(g, u, v1, v2, ...)
% remove all but one redundant edge where a Hamiltonian edge was found adjacent
function g = red pinwheel(varargin)
if (nargin < 4)

error('too few arguments')
end
g = varargin{1};
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
u = varargin{2};
V = [varargin{3:end}];
if (u < 1 || u > size(g,1) || min(V) < 1 || max(V) > size(g,1))

error('arguments out of bound')
end
if (length(V) ∼∼∼= length(unique(V)))

error('repeated arguments')
end
for v=V

if (∼∼∼g(u,v))
error('edge (%d, %d) not in graph', u, v)

end
end
for v=V(2:end)

g(u,v) = 0;
g(v,u) = 0;

end

Listing C.15: eorbits.m
% [orbits, edges] = eorbits(g)
%
% label edges according to their edge orbits
%
% g should be a simple graph
%
% edges is an Mx2 matrix where M is the number of edges in the graph
% orbits is an Mx1 matrix assigning an integer from 1:N_EDGE_ORBITS to each edge
function [orbits, edges] = eorbits(g)
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
[i,j] = find(tril(g));
edges = [j i];
m = size(edges, 1);
if (m < 1)

orbits = [];
return;

end
orbits = [1:m]';
gorders = [];

C. Implementation of graph reduction algorithm 218

generators = autgen(g);
for g=1:length(generators)

gen = generators{g};
orders = cellfun(@length, gen);
order = 1;
for o=orders

order = lcm(order, o);
end
gorders(g) = order;

end

for i=1:m
edge = edges(i,:);
for g=1:length(generators)

perm = generators{g};
for j=1:gorders(g)-1

edge = apply_cycles(edge, perm);
edgei = find(edges(:,1) == edge(1) & edges(:,2) == edge(2));
if (orbits(edgei) == orbits(i))

continue;
end
oidx = orbits == orbits(edgei) | orbits == orbits(i);
orbits(oidx) = min(orbits(edgei), orbits(i));

end
end

end

uniq = unique(orbits);
norbits = length(uniq);
for i=1:norbits

orbits(orbits == uniq(i)) = i;
end

function edge = apply_cycles(edge, perm)
for i=length(perm):-1:1

cycle = perm{i};
order = length(cycle);
if (order < 2)

continue;
end
ind = find(cycle == edge(1));
if (length(ind) == 1)

ind = ind + 1;
if (ind > order)

ind = 1;
end
edge(1) = cycle(ind);

end
ind = find(cycle == edge(2));
if (length(ind) == 1)

ind = ind + 1;
if ind > order

ind = 1;
end
edge(2) = cycle(ind);

end
end
edge = sort(edge, 2);

function generators = autgen(g)
config();
tmp = tempname;
nauty write(g, tmp);
fid = fopen(tmp, 'a');
fprintf(fid, 'x\n');
fclose(fid);

[status, output] = system([dreadnaut ' < "' tmp '"']);
delete(tmp);
if (status ∼∼∼= 0)

error('dreadnaut failed to run. Output:\n\n%s', output);
end

output = strrep(output, sprintf('\n '), ''); % join split output lines
output = regexprep(output, '\n$', ''); % remove trailing newline
lines = strsplit(output, sprintf('\n'));

C. Implementation of graph reduction algorithm 219

generators = {};
for i=1:length(lines)

line = lines{i};
if (line(1) == '(')

gen = {};
cycles = strsplit(regexprep(line, '(ˆ\(|\))', ''), '(');
for j=1:length(cycles)

gen{end+1} = str2num(['[' cycles{j} ']']);
end
generators{end+1} = gen;

else
grpsize = strfind(line, 'grpsize=');
if grpsize

line = line(grpsize+8:end);
line = line(1:strfind(line, ';')-1);

end
end

end

Listing C.16: config.m
% edit the options here to configure the algorithm
function config()

% path for dreadnaut
% download and compile from http://pallini.di.uniroma1.it/
% or from http://cs.anu.edu.au/∼∼∼bdm/nauty/
if (isunix)

dreadnaut = 'nauty/dreadnaut';
else % Windows

dreadnaut = 'nauty/dreadnaut.exe';
end

% don't edit below this line
if (∼∼∼(exist(dreadnaut, 'file')))

error('%s: not found. Please edit dreadnaut path in config.m', dreadnaut);
end
assignin('caller', 'dreadnaut', dreadnaut);

Listing C.17: nauty write.m
% nauty write(g, filename)
%
% save a graph in nauty format
%
% g is the adjacency matrix of a simple undirected graph
% filename is a string, recommended to end in ".dre"
%
% nauty is a program for computing automorphisms of graphs. It can be
% downloaded from http://cs.anu.edu.au/∼∼∼bdm/nauty/
function nauty write(g, filename)
if (∼∼∼(issymmetric(g) && size(g,1) && ∼∼∼any(diag(g)) && isequal(g,logical(g))))

error('bad input graph')
end
n = size(g,1);
fid = fopen(filename,'w');
fprintf(fid,'$ 1\n'); % sets nauty to start number vertices from 1
fprintf(fid,'n=%d\n', n); % write the number of vertices
fprintf(fid,'g\n'); % begin the graph
for v=1:n-1

Nv = find(g(v,v+1:end)) + v;
if isempty(Nv)

continue
end
fprintf(fid,'%d:', v);
fprintf(fid,' %d', Nv);
fprintf(fid,';\n');

end
fprintf(fid,'.\n'); % end writing the graph
fclose(fid);

Bibliography

[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling

salesman problem: a computational study . Princeton University Press,

2011.

[2] P. Baniasadi, V. Ejov, J. A. Filar, M. Haythorpe, and S. Rossomakhine.

Deterministic “Snakes and Ladders” heuristic for the Hamiltonian cycle

problem. Mathematical Programming Computation, 6(1):55–75, 2014.

[3] D. Barnette. Conjecture 5. In W. T. Tutte, editor, Recent Progress in

Combinatorics , page 343. Academic Press, New York, 1969.

[4] D. Bauer, S. L. Hakimi, and E. Schmeichel. Recognizing tough graphs

is NP-hard. Discrete Applied Mathematics , 28(3):191–195, 1990.

[5] D. Bauer, J. van den Heuvel, A. Morgana, and E. Schmeichel. The

complexity of recognizing tough cubic graphs. Discrete Applied Mathe-

matics , 79(1):35–44, 1997.

[6] N. L. Biggs. T. P. Kirkman, mathematician. Bulletin of the London

Mathematical Society , 13(2):97–120, 1981.

[7] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736–1936 .

Clarendon Press, Oxford, 1976.

[8] G. Birkhoff. Three observations on linear algebra. Universidad Nacional

de Tucumán, Revista A, 5:147–151, 1946.

220

Bibliography 221

[9] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications ,

volume 290. Macmillan, London, 1976.

[10] G. Brinkmann and B. D. McKay. Fast generation of planar graphs.

MATCH Communications in Mathematical and in Computer Chemistry ,

58(2):323–357, 2007.

[11] G. Brinkmann, J. Goedgebeur, and B. D. McKay. Generation of cubic

graphs. Discrete Mathematics and Theoretical Computer Science, 13(2):

69–80, 2011.

[12] H. Broersma, V. Patel, and A. Pyatkin. On toughness and Hamiltonicity

of 2K2–free graphs. Journal of Graph Theory , 75(3):244–255, 2014.

[13] J. A. Carlson, A. Jaffe, and A. Wiles, editors. The millennium prize

problems . American Mathematical Society, 2006.

[14] A. Chalaturnyk. A fast algorithm for finding Hamilton cycles . Master’s

thesis, University of Manitoba, 2008.

[15] V. Chvátal. Tough graphs and Hamiltonian circuits. Discrete Mathe-

matics , 5(3):215–228, 1973.

[16] A. Claus. A new formulation for the travelling salesman problem. SIAM

Journal on Algebraic Discrete Methods , 5(1):21–25, 1984.

[17] S. Cook. The P versus NP problem. In The Millennium Prize Problems ,

pages 87–106, 2006.

[18] S. A. Cook. The complexity of theorem-proving procedures. In Pro-

ceedings of the third annual ACM symposium on Theory of computing ,

pages 151–158. Association for Computing Machinery, 1971.

[19] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale

traveling-salesman problem. Journal of the Operations Research Society

of America, 2(4):393–410, 1954.

Bibliography 222

[20] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik , 1(1):269–271, 1959.

[21] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the

London Mathematical Society , 3(1):69–81, 1952.

[22] V. Ejov, M. Haythorpe, and S. Rossomakhine. A linear-size conversion

of HCP to 3HCP. Australasian Journal of Combinatorics , 62(1):45–58,

2015.

[23] D. Eppstein. The traveling salesman problem for cubic graphs. In Work-

shop on Algorithms and Data Structures , volume 11, pages 307–318.

Springer, 2003.

[24] A. Eshragh. Hamiltonian cycles and the space of discounted occupational

measures . PhD thesis, University of South Australia, 2011.

[25] L. Euler. Solution d’une question curieuse qui ne paroit soumise à aucune

analyse. Mémoires de l’Academie Royale des Sciences et Belles Lettres,

Année 1759 , 15:310–337, 1766.

[26] G.-H. Fan. New sufficient conditions for cycles in graphs. Journal of

Combinatorial Theory, Series B , 37(3):221–227, 1984.

[27] J. A. Filar, M. Haythorpe, and G. T. Nguyen. A conjecture on the

prevalence of cubic bridge graphs. Discussiones Mathematicae Graph

Theory , 30(1):175–179, 2010.

[28] J. A. Filar, M. Haythorpe, and S. Rossomakhine. A new heuristic for

detecting non-Hamiltonicity in cubic graphs. Computers & Operations

Research, 64:283–292, 2015.

[29] R. Frucht. Herstellung von Graphen mit vorgegebener abstrakter

Gruppe. Compositio Mathematica, 6:239–250, 1939.

Bibliography 223

[30] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness , volume 174. Freeman San Francisco,

CA, 1979.

[31] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian

circuit problem is NP-complete. SIAM Journal on Computing , 5(4):

704–714, 1976.

[32] C. Godsil and G. Royle. Algebraic Graph Theory , volume 207 of Grad-

uate Texts in Mathematics . Springer-Verlag, New York, 2001.

[33] S. Goodman and S. Hedetniemi. Sufficient conditions for a graph to be

Hamiltonian. Journal of Combinatorial Theory, Series B , 16(2):175–

180, 1974.

[34] L. Gouveia and J. M. Pires. The asymmetric travelling salesman prob-

lem: on generalizations of disaggregated Miller–Tucker–Zemlin con-

straints. Discrete Applied Mathematics , 112(1):129–145, 2001.

[35] F. M. Hall. An Introduction to Abstract Algebra, volume 1. Cambridge

University Press, 1966.

[36] M. Haythorpe. Markov chain based algorithms for the Hamiltonian cycle

problem. PhD thesis, University of South Australia, 2010.

[37] K. Helsgaun. An effective implementation of the Lin–Kernighan travel-

ing salesman heuristic. European Journal of Operational Research, 126

(1):106–130, 2000.

[38] A. Hertel. A non-Hamiltonicity proof system. Unpublished manuscript,

2006.

[39] D. A. Holton and B. D. McKay. Cycles in 3-connected cubic planar

graphs II. Ars Combinatoria, 21(A):107–114, 1986.

Bibliography 224

[40] D. A. Holton and J. Sheehan. The Petersen Graph. Cambridge Univer-

sity Press, 1993.

[41] T. Hoppe and A. Petrone. Database file for Encyclopedia of Finite

Graphs: Simple connected graphs, n ≤ 10, published electronically at

http://doi.org/10.5281/zenodo.11280. Zenodo, 2014.

[42] IBM Corporation. IBM ILOG CPLEX Optimization Studio CPLEX

User’s Manual 12.5 . 2012.

[43] K. Iwama and T. Nakashima. An improved exact algorithm for cubic

graph TSP. In International Computing and Combinatorics Conference,

pages 108–117. Springer, 2007.

[44] B. Jackson and P. Katerinis. A characterization of 3
2
–tough cubic graphs.

Ars Combinatoria, 38:145–148, 1994.

[45] N. Karmarkar. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the sixteenth annual ACM symposium on Theory

of computing , pages 302–311. ACM, 1984.

[46] R. M. Karp. Reducibility among combinatorial problems. In Complexity

of Computer Computations , pages 85–103. Springer, 1972.

[47] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding

all minimal edge cuts of a nonoriented graph. Cybernetics and Systems

Analysis , 22(2):156–162, 1986.

[48] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR

Computational Mathematics and Mathematical Physics , 20(1):53–72,

1980.

[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-

lated annealing. Science, 220(4598):671–680, 1983.

http://doi.org/10.5281/zenodo.11280

Bibliography 225

[50] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys,

editors. The Traveling Salesman Problem. John Wiley & Sons, Ltd.,

1985.

[51] J. Lehel, F. Maffray, and M. Preissmann. Graphs with largest number

of minimum cuts. Discrete Applied Mathematics , 65(1-3):387–407, 1996.

[52] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the

traveling-salesman problem. Operations Research, 21(2):498–516, 1973.

[53] E. M. Luks. Isomorphism of graphs of bounded valence can be tested

in polynomial time. Journal of Computer and System Sciences , 25(1):

42–65, 1982.

[54] R. Mathon. A note on the graph isomorphism counting problem. Infor-

mation Processing Letters , 8(3):131–136, 1979.

[55] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal

of Symbolic Computation, 60:94 – 112, 2014.

[56] M. Meringer. Fast generation of regular graphs and construction of

cages. Journal of Graph Theory , 30(2):137–146, 1999.

[57] T. Öncan, İ. K. Altınel, and G. Laporte. A comparative analysis of

several asymmetric traveling salesman problem formulations. Computers

& Operations Research, 36(3):637–654, 2009.

[58] A. Orbanić, T. Pisanski, M. Randić, and B. Servatius. Blanuša double.

Mathematical Communications , 9(1):91–103, 2004.

[59] Ø. Ore. Note on Hamilton circuits. The American Mathematical

Monthly , 67(1):55–55, 1960.

[60] M. Padberg and T.-Y. Sung. An analytical comparison of different for-

mulations of the travelling salesman problem. Mathematical Program-

ming , 52(1-3):315–357, 1991.

Bibliography 226

[61] E. M. Palmer. The hidden algorithm of Ore’s theorem on Hamiltonian

cycles. Computers & Mathematics with Applications , 34(11):113–119,

1997.

[62] R. C. Read and R. J. Wilson. An Atlas of Graphs . Clarendon Press,

Oxford, 1998.

[63] G. Reinelt. TSPLIB – a traveling salesman problem library. ORSA

Journal on Computing , 3(4):376–384, 1991.

[64] R. W. Robinson and N. C. Wormald. Almost all cubic graphs are hamil-

tonian. Random Structures and Algorithms , 3(2):117–126, 1992.

[65] C. D. Savage and P. Winkler. Monotone Gray codes and the middle

levels problem. Journal of Combinatorial Theory, Series A, 70(2):230–

248, 1995.

[66] H. D. Sherali, S. C. Sarin, and P.-F. Tsai. A class of lifted path and

flow-based formulations for the asymmetric traveling salesman problem

with and without precedence constraints. Discrete Optimization, 3(1):

20–32, 2006.

[67] N. J. A. Sloane. Number of connected graphs with n nodes, sequence

A001349. The On-Line Encyclopedia of Integer Sequences, published

electronically at https://oeis.org, 2010.

[68] P. G. Tait. Remarks on the colouring of maps. In Proceedings of the

Royal Society of Edinburgh, volume 10, page 729, 1880.

[69] W. T. Tutte. On the 2-factors of bicubic graphs. Discrete Mathematics ,

1(2):203–208, 1971.

[70] S. Weber. Spectral Approaches to the Hamiltonian Cycle Problem. Hon-

our’s thesis, Flinders University, 2012.

https://oeis.org

Bibliography 227

[71] R. T. Wong. Integer programming formulations of the traveling salesman

problem. In Proceedings of the IEEE international conference of circuits

and computers , pages 149–152. IEEE Press Piscataway, NJ, 1980.

[72] D. R. Woodall. Sufficient conditions for circuits in graphs. Proceedings

of the London Mathematical Society , 3(4):739–755, 1972.

[73] N. C. Wormald. Triangles in labelled cubic graphs. In Combinatorial

Mathematics , pages 337–345. Springer, 1978.

[74] N. C. Wormald. The asymptotic distribution of short cycles in random

regular graphs. Journal of Combinatorial Theory, Series B , 31(2):168–

182, 1981.

[75] M. Xiao and H. Nagamochi. An exact algorithm for TSP in degree-3

graphs via circuit procedure and amortization on connectivity structure.

Algorithmica, 74(2):713–741, 2016.

	Contents
	List of Tables
	List of Figures
	Summary
	Declaration
	Acknowledgements
	Glossary of terms
	Archive of problem sets and algorithms
	Introduction and background
	Hamiltonian cycle problem
	Graph theory
	Hamiltonian cycle problem for cubic graphs

	Linear programming relaxations

	Identifying non-Hamiltonian graphs by linear programming
	Existing models to solve TSP and HCP
	Subtour elimination model and MCF
	Tightened multi-commodity flow model
	SST model
	The Base Model

	Comparisons of LP models
	Adapting TSP models to solve HCP
	Results of LP models on HCP instances
	Adapting the Base Model to solve TSP
	Generating TSP instances based on cubic graphs
	Results of LP models on TSP instances
	A conjecture on the strength of the Base Model

	Classifications of difficult cubic graphs
	Vertex and edge connectivity
	Graph toughness

	Concluding remarks on the Base Model

	Hamiltonicity-preserving graph reductions
	Graph reductions based on subgraphs
	Graph reductions based on Hamiltonian and non-Hamiltonian edges
	Edge orbits and their classification
	Graph reductions based on edge orbits
	Graph reduction algorithm
	Results of reduction algorithm on cubic graphs

	Extending the Base Model
	Merging SST with the Base Model
	Base-SST model with multiple starting vertices
	Extended Base-SST model

	Constraints involving forced edges
	Constraints based on 3-cuts
	Constraints based on an eigenvalue of Hamiltonian permutation matrices
	Results of combined extensions
	Detecting non-Hamiltonicity of graphs by using LP models on their subgraphs

	Conclusions and future work
	Summary of results
	Future work arising from Chapter 2
	Future work arising from Chapter 3
	Future work arising from Chapter 4

	Appendix Non-Hamiltonian non-bridge cubic graph sets
	NHNB20 GENREG IDs
	NHNB20PR edge lists

	Appendix ATSP problem sets
	Appendix Implementation of graph reduction algorithm
	Bibliography

