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Abstract

Field robotics is an area of research that takes the discipline of robotics from the confines

of the laboratory into the unstructured and complex environment of the real world. Planning

and guidance systems have been developed to allow field robotic platforms to operate in

unstructured environments, but the limited amount of computing resources has constrained

the ability of field platforms to dynamically replan their missions. Domain specific planning

systems for path planning provide the efficiency that is required to handle large and com-

plex environments, but deliberative higher level mission planning systems typically use a

domain independent planner to find a solution to the vehicle’s task. As such, mission plan-

ners lack understanding of their spatial environment. This thesis chronicles the development

of a belief compression method using topological thinning to simplify the spatial environment

sufficiently for it to be solved by a domain independent planner allowing a vehicle’s mission to

be planned using information about its spatial environment. Algorithms are evaluated using

both simulated and real-world data showing that topological thinning can produce compact

domains while maintaining a high level of routing efficiency, enabling the solution of the

high-level mission planning problem. This thesis also examines the properties of topologi-

cal belief compression and the effectiveness of path planning with non-uniform action costs

using domain independent planners. To demonstrate the effectiveness of these algorithms,

a planning and guidance system is tested on an Autonomous Surface Vessel (ASV) built

around a five-metre Wave Adaptive Modular Vehicle platform (WAM-V). When performing

simulated rescue tasks for 20 survivors before returning to a dock, the Symbolic With Re-

finement planner demonstrated plan generation resulting in a mean reduction in path length

of approximately 15% when compared to a Greedy planning system.
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bour image using the Palágyi and Kuba skeleton and watershed segmenta-

tion. Red line indicates the mean of the non-optimal paths. Shaded portion is

+/- one standard deviation from the mean. . . . . . . . . . . . . . . . . . . . . 112

Figure 3.40 Histogram of relative distance in non-optimal paths for the Apra Har-

bour image. Red line indicates the mean of the non-optimal paths. Shaded

portion is +/- one standard deviation from the mean. (a) Medial axis transform,

region growing segmentation. (b) Medial axis transform, seeded segmenta-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xix



Figure 3.41 Histogram of relative distance in non-optimal paths for the Apra Har-

bour image using the Medial axis transform and watershed segmentation.

Red line indicates the mean of the non-optimal paths. Shaded portion is +/-

one standard deviation from the mean. . . . . . . . . . . . . . . . . . . . . . 114

Figure 4.1 Markers used to visualise search and rescue plans (a) TopCat Au-

tonomous Surface Vessel (ASV) (b) Outline representing subject requiring

rescue (c) Isolated danger mark representing a point obstacle (d) Safe water

mark representing a goal location (e) Ship representing a supply of stored

lifeboats. Buoy and ship symbols were downloaded from www.openclipart.org 127

Figure 4.2 Sample motion plan generated by Fast Downward with Lazy Greedy

search and the Fast Forward (FF) heuristic. The Context-Enhanced Addidtive

(CEA) and Dual heuristics produced identical plans. For completeness, these

results can be seen in Appendix D with the result of using the CEA heuristic

seen in Figure D.1, and Dual seen in Figure D.2 . . . . . . . . . . . . . . . . . 129

Figure 4.3 Sample motion plan generated by Fast Downward and A* search with

the Landmark-Cut (LM-cut) heuristic. The Blind and Pattern Database (iPDB)

heuristics and the Popf-2 planner produced identical results. For complete-

ness, these results can be seen in Appendix D with the result of using the

Blind heuristic seen in Figure D.3, iPDB seen in Figure D.4, and Popf-2 seen

in Figure D.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 4.4 Execution cost for generated plans for m×m nodes. Costs have been

scaled by a factor of 8 so that they are comparable to those in Table 4.5. Total

number of trials performed, n = 3521. Boxplot centreline indicates median,

extents show upper and lower quartiles. Non-overlapping notches indicate

statistically significant differences between medians. . . . . . . . . . . . . . . 130

Figure 4.5 Time to complete a planning run for the motion planning domain for

m × m nodes. All times are in seconds. Total number of trials performed,

n = 3521. Boxplot centreline indicates median, extents show upper and lower

quartiles. Non-overlapping notches indicate statistically significant differences

between medians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xx



Figure 4.6 Memory used in search for the motion planning domain and m × m

nodes. Total number of trials performed, n = 3018. Boxplot centreline in-

dicates median, extents show upper and lower quartiles. Non-overlapping

notches indicate statistically significant differences between medians. . . . . 131

Figure 4.7 Sample motion plans generated by Fast Downward with Lazy Greedy

search, and the Fast Forward (FF) heuristic. The Context Enhanced-Additive

(CEA) and Dual heuristics produced identical plans. . . . . . . . . . . . . . . 135

Figure 4.8 Sample motion plans generated through an asymetric cost environ-

ment. Streamlines represent the direction and strength of the water cur-

rent. (a) Fast Downward with Landmark-Cut (LM-cut) (b) Popf-2 planner. Fast

Downward with A* and the Blind and Pattern Database (iPDB) heuristics were

similar to LM-cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 4.9 Boxplot of execution cost of generated plans for problem containing

m ×m nodes. Total number of trials performed, n = 3479. Boxplot centreline

indicates median, extents show upper and lower quartiles. Non-overlapping

notches indicate statistically significant differences between medians. . . . . 137

Figure 4.10 Boxplot of time required to generate plans for problem containingm×m

nodes. All times are in seconds. Total number of trials performed, n = 3479.

Boxplot centreline indicates median, extents show upper and lower quartiles.

Non-overlapping notches indicate statistically significant differences between

medians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 4.11 Memory used in search for the motion planning domain and m nodes.

Total number of trials performed, n = 3000. Boxplot centreline indicates me-

dian, extents show upper and lower quartiles. Non-overlapping notches indi-

cate statistically significant differences between medians. . . . . . . . . . . . 138

Figure 4.12 Sample mission plans to rescue five survivors as generated by Fast

Downward with Lazy Greedy search through an asymetric cost environment.

Numbers indicate the order in which survivors were rescued. (a) Fast Down-

ward with Fast Forward (FF) (b) Fast Downward, Context Enhanced-Additive

(CEA). The plot for the Dual heuristic can be seen in Appendix D, in Figure D.6.141

xxi



Figure 4.13 Sample mission plans to rescue five survivors as generated by Fast

Downward with A* search, and the Popf-2 planner through an asymmetric

cost environment. Numbers indicate the order in which survivors were res-

cued (a) Fast Downward with Landmark-Cut (LM-cut) (b) Popf-2 planner. Fast

Downward with Blind and Fast Downward with Pattern Database (iPDB) were

similar to Fast Downward with LM-cut and can be seen in Appendix D, in

Figure D.7 (a) for the Blind heuristic and Figure D.7 (b) for the iPDB heuristic. 142

Figure 4.14 Execution cost for generated plans for m survivors to rescue. Total

number of trials performed, n = 3479. Boxplot centreline indicates median,

extents show upper and lower quartiles. Non-overlapping notches indicate

statistically significant differences between medians. . . . . . . . . . . . . . . 143

Figure 4.15 Time to complete a planning run for the motion planning domain for

m survivors to rescue. Total number of trials performed, n = 3479. Boxplot

centreline indicates median, extents show upper and lower quartiles. Non-

overlapping notches indicate statistically significant differences between me-

dians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 4.16 Memory used in search for m survivors to rescue. Total number of

trials performed, n = 3479. Boxplot centreline indicates median, extents show

upper and lower quartiles. Non-overlapping notches indicate statistically sig-

nificant differences between medians. . . . . . . . . . . . . . . . . . . . . . . 144

Figure 4.17 Sample motion plans for domains including move, collect, and deploy

actions using Fast Downward and Lazy Greedy Search, and the Popf-2 plan-

ner. These runs included three survivors for rescue and one supply ship.

Arrows on the red vehicle track indicate the direction of motion. (a) Fast

Downward with Fast Forward (FF) (b) Fast Downward with Context-Enhanced

Additive (CEA). The plot for the Dual heuristic can be seen in Appendix D in

Figure D.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xxii



Figure 4.18 Sample motion plans for domains including move, collect, and deploy

actions using Fast Downward, A* search and the Popf-2 Planner. These runs

included three survivors for rescue and one supply ship. Arrows on the red ve-

hicle track indicate the direction of motion. (a) Fast Downward with Landmark-

Cut (LM-cut) (b) Popf-2 planner. The plot for the Blind and Pattern Database

(iPDB) heuristics are similar to LM-cut and can be seen in Appendix D, with

Blind in Figure D.9 (a) iPDB in Figure D.9 (b). . . . . . . . . . . . . . . . . . . 147

Figure 4.19 Planner cost scaling for collect and deploy actions with one supply ship

and m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. Total

number of trials performed, n = 3253. Boxplot centreline indicates median,

extents show upper and lower quartiles. Non-overlapping notches indicate

statistically significant differences between medians. . . . . . . . . . . . . . . 150

Figure 4.20 Time required to plan for collect and deploy actions with one supply

ship and m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. Total

number of trials performed, n = 3253. Boxplot centreline indicates median,

extents show upper and lower quartiles. Non-overlapping notches indicate

statistically significant differences between medians. . . . . . . . . . . . . . . 151

Figure 4.21 Memory required for search with one supply ship. Landmark-Cut (LM-

cut) was only tested for m ≤ 3. Total number of trials performed, n = 2755.

Boxplot centreline indicates median, extents show upper and lower quartiles.

Non-overlapping notches indicate statistically significant differences between

medians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 4.22 Plan execution costs with collect and deploy actions for two supply

ships and m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. To-

tal number of trials performed, n = 3273. Boxplot centreline indicates median,

extents show upper and lower quartiles. Non-overlapping notches indicate

statistically significant differences between medians. . . . . . . . . . . . . . . 152

xxiii



Figure 4.23 Time required to plan for collect and deploy actions with two supply

ships and m survivors. Landmark-Cut (LM-cut) was only fully tested for m ≤

3. Total number of trials performed, n = 3273. Boxplot centreline indicates

median, extents show upper and lower quartiles. Non-overlapping notches

indicate statistically significant differences between medians. . . . . . . . . . 153

Figure 4.24 Memory required for search for collect and deploy actions with two

supply ships and m survivors. Landmark-Cut (LM-cut) was only fully tested

for m ≤ 3. Total number of trials performed, n = 2777. Boxplot centreline

indicates median, extents show upper and lower quartiles. Non-overlapping

notches indicate statistically significant differences between medians. . . . . 154

Figure 5.1 (a) Three layer planning model as implemented in the Robotics Op-

erating System (ROS). (b) Three layer planning model modified to support a

spatially aware scheduler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure 5.2 Stages in the generation of a planning graph from a volume using

a skeleton. (a) Original volume. (b) Topological Skeleton derived from the

volume. (c) Skeleton broken into segments. (d) Reconstruction of volume

based on the location of nodes. (e) Planning graph derived from skeleton and

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 5.3 A simulated environment with a robot (red cube), three obstacles (black

ovals), and three goals (blue pillars). Green arrows indicate the paths of the

robot. (a) Intial configuration. (b) Skeleton. (c) Segmentation. (d) Planner has

created a plan and dispatched the robot to the first goal. The map is restricted

to the zones required for traversal. (e) The robot reaches the first goal. (f) The

robot reaches the second goal. (g) The robot reaches the third goal. . . . . . 165

Figure 5.4 Diagram of Autonomous Surface Vessel (ASV) planning and control

system. Blue text indicates the corresponding segments of the three-layer

model visualised in Figure 5.1(b). . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 5.5 Conceptual model of planning core framework . . . . . . . . . . . . . 168

Figure 5.6 Top Cat vehicle in simulation. Computer Aided Design (CAD) models

developed by Tenzin Crouch and Jesse Stewart . . . . . . . . . . . . . . . . . 170

xxiv



Figure 5.7 West Lakes simulation environment. Heightmap derived from 10m

Digital Elevation Model [Keane, 2016] . . . . . . . . . . . . . . . . . . . . . . 171

Figure 5.8 RAdio Direction And Ranging (RADAR) map of West Lakes. White ar-

eas are accumulated strong RADAR returns. Backing image c©OpenStreetMap

contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 5.9 Vector map of the traversable area of Northern West Lakes as ren-

dered using the QGIS package. Annotations show the exclusions around the

buoys mapped in Figure 5.8. More information on QGIS and other Geograph-

ical Information Systems can be found in Appendix G . . . . . . . . . . . . . 172

Figure 5.10 Three stages in the construction of a motion path from a set of move-

ment actions for the map shown in Figure 5.9. (a) Palágyi and Kuba skeleton
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Chapter 1

Introduction

Advances in robotics have resulted in the development of machines with increasing capabil-

ities, not only to perform actions, but also to be able to develop their own courses of action.

A system that is capable of independent self-guided action can be said to be autonomous.

Early field robotic systems required either direct control by a human operator, or detailed

plans to be provided. The increasing capability of mobile platforms means that future au-

tonomous systems will be able to perform increasingly complex missions based on their own

internally generated plans. If such systems are to be effectively utilised, then these plans

must not only be both efficient to execute, but goals, possible actions, and plans must also

be simple for a human to specify and review. This would enable a robotic system to be

effectively supervised without requiring micro-management.

This thesis will cover a proposed approach for finding a system that can both incorporate

spatial information allowing more effective plans to be built, while also allowing working with

clearly defined actions and goals.

1.1 Development of Autonomy

The concept of autonomous machines has intrigued humanity since the first clockwork au-

tomata were exhibited. These machines used arrangements of springs and gears to sim-

ulate life and animation. With the exception of the Mechanical Turk, now considered to be
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an elaborate trick [Campbell, 2004], they operated on a very limited basis, performing a few

rote actions encoded by their mechanism. More complex behaviours were not possible until

the development of information systems and the miniaturisation required to interface them

to a mobile platform. With the development of such systems, the possibility emerged for a

robot to demonstrate planning.

At its most fundamental, planning is the formulation of a set of actions to achieve desired

objectives while satisfying constraints [Fox, 1994]. The application of planning to robotic

systems has been attempted since the development of Shakey, described by Russell and

Norvig as the first mobile general purpose robot [Russell and Norvig, 2010]. Shown in Figure

1.1, Shakey was developed at the Stanford Research Institute between 1966 and 1972. The

high-level deliberative planning system developed for Shakey used an internal model based

on predicate logic to store and reason with the state of its environment. This system, the

first symbolic planner, was referred to as the Stanford Research Institute Planning System

(STRIPS). STRIPS was able to formulate complex plans consisting of multiple actions by

starting at a goal state and searching for actions that transformed the system from the goal

to the initial state [Nilsson, 1984]. Table 1.1 shows the actions available to Shakey, when

combined in the sequence created by the planner these actions constituted a plan that the

robot could execute to achieve its assigned goal.

By the use of predicates to represent the state of the robot and it’s environment, shown in

Figure 1.2, STRIPS allowed the efficient searching for plans that fulfilled the robot’s assigned

goals. According to Brooks however, these single valued descriptions lacked the complex-

ity to represent the interrelationships, including spatial relationships, that occur in the real

world [Brooks, 1991b]. Shakey was capable of performing some spatial tasks, such as mov-

ing around it’s carefully controlled environment and pushing objects around. However, the

internal spatial model used by Shakey and other similar systems was only an approxima-

tion provided by its programmers. This was acceptable when that model was accurate, but

Shakey’s ability to maintain its internal model was limited, able to localise objects but unable

to map its environment. This limitation could potentially cause the robot to generate and

execute incorrect plans [Brooks, 1991a].
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Figure 1.1: Shakey in operation surrounded by obstacles. [SRI International, 1972]. License:
CC BY-SA

Table 1.1: Actions available to Shakey [Hart et al., 1972]

Action Type Parameter Type
GOTOB

go to
object

GOTOD door
GOTOL location
PUSHB

push an object to
object

PUSHD door
PUSHL location

GOTHRUDR go through a door door
PUSHTHRUDR push through door

OPEN open a door door
CLOSE close a door door

3

https://commons.wikimedia.org/wiki/File:SRI_Shakey_with_callouts.jpg
http://creativecommons.org/licenses/by-sa/3.0


Figure 1.2: Drawing of Shakey’s workspace as represented in [Hart et al., 1972]. Grey boxes
are push-able objects.
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Brooks proposed an alternative approach, known as the subsumption architecture, where

decisions are made directly from sensor data, making the world the robot’s model and al-

lowing the robot to react directly to changes in its environment [Brooks, 1991a]. Brooks’

concept simplifies the planner; by avoiding the necessity of internal state storage, the robot

requires a correspondingly simpler control and computing system with a resulting decrease

in required mass.

Closely related to the concept of planning is that of scheduling - the ordering of a number

of pre-selected actions, assigning resources and setting start and finish times for actions

to optimise or meet timing constraints. Like planning, this requires the ability to predict or

model the result of actions to allow the cost of plans to be evaluated. The use of Brooks’

subsumption architecture thus comes at a cost. By using the world as the model it cannot

predict potential future states, thus preventing it from evaluating potential courses of action.

For a scheduling based system to operate, some form of deliberation is required. Despite

this, Brooks’ criticism remains valid - a deliberative planning system can only operate within

the domain that its belief can support. In particular, the manipulation of spatial data is

normally performed by domain specific planning systems - path or trajectory planners - that

generate detailed solutions based on the requirements of the top level planner.

In the four decades since the development of Shakey, the range of sensing methods and

measurement accuracy available to a robotic system has increased greatly. Current gener-

ation research robots such as the Turtlebot [Open Source Robotics Foundation, 2014c] or

PR2 [Oyama et al., 2009] can mount sensors such as the Microsoft Kinect, a depth camera

capable of generating 9×106 depth points per second [Microsoft, 2014]. This improvement in

depth sensing capability allows the use of point cloud based perception [Rusu and Cousins,

2011] and the construction of volumetric maps using systems such as Octomap [Wurm et al.,

2010]. By allowing volumetric perception capabilities, the scope of what can be perceived

by a mobile robotic platform has greatly increased. Shakey possessed bump sensors and a

single colour camera interfaced wirelessly to a PDP-10 minicomputer. The use of Shakey’s

camera system was further limited to short periods due to the limited amount of battery

available. In contrast, a typical current day smartphone contains not only multiple colour

cameras, but a Global Positioning System (GPS) receiver, gyroscope, compass and more
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than three orders of magnitude more RAM than was available to Shakey [SRI, 2015].

In parallel with the increase in locally generated data available to mobile platforms, there

has been a similar increase in the amount of data available as on-line databases. In partic-

ular, the increasing number of Geographical Information Systems (GIS) has meant that any

platform with network connectivity potentially has access to terabytes of spatially registered

data. While it is impractical to expect a vehicle to store all possible relevant datasets, once

the area of operation is known relevant subsets can be downloaded to the vehicle where it

can be fused with data captured directly by the vehicle. Combined with increases in the ac-

curacy of navigation aids such as GPS receivers, the challenge of planning is not the ability

to build maps of the environment, but to process the available data into a form that can be

used by the robot’s on-board systems to efficiently work with the available information.

For a field robot engaged in the survey or measurement of its environment, the limits on its

mission time can be both the endurance of the robot and the available time window for it to

perform its task. To maximise the utilisation of the robotic platform in this window, the amount

of time spent performing its function should be maximised with comparison to the travel time

between observations. The return provided by this increased mission efficiency must be

traded against the increase in resources required to maintain the more complex internal

model. Data from sensors needs to be processed, stored, fused with other data sources,

and compiled into a format that is suitable for use with the planning system. These tasks

require computing resources: disk space for data storage, memory for data manipulation

and CPU time for the execution of algorithms. For a practical planning system, it should

also be capable of operating without the benefit of a carefully structured environment. When

operating in the field, it is likely that the terrain it encounters will be shaped by weather and

geographical processes into irregular forms, rather than ideal geometric shapes. The belief

compression system should also be robust to changes in pose, since remapping of the input

data may be required to align it with the internal model.

Despite the potential for autonomy, field robotic systems are commonly designed with a

“human in the loop” architecture allowing control by a human operator. This model has been

highly successful, being used on systems ranging from ROVs such as the BlueROV [Blue

Robotics Inc, 2017] to military platforms such as the Packbot [Yamauchi, 2004]. However,
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the workload of operating such a vehicle can be quite high. A human operator must be able

to model the environment that a robot inhabits based on it’s limited senses, and using this

model construct plans to achieve the required goals. Murphy states that control of robots

in disaster scenarios puts intense cognitive load on operators [Murphy, 2014], noting that in

two cases where robots were stuck, simply resting the operator allowed the situation to be

successfully resolved.

While the tele-operation model has worked well in the past, it is of limited use in situations

where oversight is impractical due to signal limitations. This highlights an important quality in

an autonomous system; human intuition and insight is still required in complex situations, but

in a hostile environment, such guidance cannot be guaranteed. By combining human over-

sight with automation, a system with supervised autonomy can be developed. In this model

the vehicle is capable of performing operations under the direction of a human operator. If

the vehicle can also act autonomously, for example detecting that it has lost contact and

attempt to either reacquire communication or recover itself, the result is a shared autonomy

system. An interest in the development of supervised autonomy systems may have shaped

the recent Defence Advanced Research Agency (DARPA) humanoid challenge [DARPA,

2012]. This robotics competition used a paradigm of shared autonomy under limited com-

munication for its control. Teams were provided with a constant low-bandwidth communi-

cation channel interspersed with short bursts of high-bandwidth communication. Notably

the team from Worcester Polytechnic Institute reported having full communication losses on

their provided network connection for more than six minutes during a competition task [Atke-

son et al., 2015]. A further example of this is the clean-up of the Fukushima Daiichi nuclear

accident. The Quince robot from the Chiba Institute of Technology had to be modified with a

wired cable connection because the reactor containment vessels in some buildings blocked

wireless signals. The vehicle was later lost when this cable failed [Kawatsuma et al., 2012].

If such communication issues are present in a carefully controlled competition environment,

the uncontrolled field environment is likely to be even more prone to such failures. As such,

shared autonomy systems become even more attractive.
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1.2 Existing Approaches

1.2.1 Applications for Autonomy in Marine Field Robots

Before a planning system can be developed, the potential applications need to be examined.

A number of applications for maritime vehicles exist in the area of environmental monitoring.

These can involve the preparation of bathymetry, sampling of water and marine life or the

visual examination of structures. The implementation of these tasks may involve the exe-

cution of a pre-planned mission, the creation of dynamic plans based on immediate sensor

data, or a hybrid approach combining pre-defined and dynamic plans.

A further area of potential interest is the mapping of sea grass beds. Imaging techniques

such as satellite and aircraft based imagery have been used, but when compared to data

gathered by direct observation, Phinn et al. found that the result of classification rarely

exceed 50% accuracy [Phinn et al., 2008]. Space and airborne optical systems also have

the limitation that visibility may be altered by absorption and turbidity of the water. While

sea grasses are photosynthetic, and are thus limited at the depth they can exist, Duarte’s

survey paper estimates that many species have a mean colonisation depth of more than

20m [Duarte, 1991] while Dekker et al. observed Secchi Depths, a measure of visibility from

the surface, of 1.2 to 2m during sea grass fieldwork at Wallis Lake [Dekker et al., 2005]. A

potential solution to the problem of visual inspection of sea grass beds, is the utilisation of

Autonomous Underwater Vehicles (AUV). Roelfsema et al. noted that an AUV can provide

data from depths greater than 2.5m [Roelfsema et al., 2015]. By bringing the sensor closer

to the subject, an AUV can thus give a better estimate of the sea grass composition and

extent than observation from above the surface.

Another area of interest is the sampling of water for measurement of water quality and bi-

ological content. Ryan et al. attempted to sample water from the Intermediate Nepheloid

layers, which are described as layers of turbid water that develop episodically from the bot-

tom layer [Ryan et al., 2010]. Since the sampling ability of their AUV was limited, and the

emergence of suitable layers could not be reliably predicted, their vehicle had to be able to

develop its own plan of water sampling events based on the sensor data that it immediately
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perceived from the environment. As noted by Ryan et al., an area of interest may not only be

difficult to identify before the start of a mission, but due to changes in the ocean caused by

currents and diffusion it may in fact change during the mission itself [Ryan et al., 2010]. As

such, the ability of a vehicle to adapt its mission plan to perceived changes in its environment

may be vital to the correct performance of its mission.

Camilli et al. similarly covered adaptive path generation for AUVs in survey missions. This

particular application involved localisation of methane in the water column [Camilli et al.,

2004]. This paper describes a simple AUV guidance system that would automatically ex-

ecute a grid pattern if the detected propane level exceeded a threshold. This group would

later go on to survey the extent of hydrocarbon plumes after the Deepwater Horizon accident

[Camilli et al., 2010].

In addition to the applications where oversight is limited, autonomy can be useful for its preci-

sion and repeatability. A control system can potentially allow an autonomous vehicle to more

accurately perform a mission plan than a human operator. In their comparison of snorkelers

versus AUVs for performing visual survey transects for sea grass maps, Roelfsema et al.

found that their AUVs provided a more consistent speed of traverse, frequency of sampling,

and more precisely repeated their previous transects [Roelfsema et al., 2015].

In summary, autonomous vehicles can be applicable in maritime environmental monitoring

when;

• visual observation of objects and areas is required beneath the depth visible from the

air or space

• direct sampling of water or marine life is required

Autonomy can provide advantages over remotely operated vehicles when;

• communication with the vehicle is limited

• repeatability of a plan needs to be maximised

Additionally compared to an ROV, an AUV has the following operational advantages;

• elimination of a dedicated support vessel
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• elimination of the highly-skilled ROV operator role

The on-board autonomy does not need to be complex. Undersea gliders such as the Slocum

and Seaspray can have mission durations in the order of weeks while navigating between

continents, but they require little in the way of sensing and control since they travel through

open water. As such, ocean gliders can perform missions with only simple intertial guidance

and a GPS receiver [Rudnick et al., 2004]. For the ability to plan spatially to be useful, the

spatial environment must be non-trivial. This is more likely to occur in inshore and littoral

areas where there may be shoals islands and shallow water that may cause damage or

prevent a vehicle from performing its mission.

The next two sections will provide a brief overview of some sample vehicles that can perform

environmental monitoring, along with a brief overview of their suitability for operations in

shallow and confined waters.

1.2.2 Autonomous Underwater Vessels for Environmental Monitoring

An AUV is a robotic vessel capable of travelling underwater without a tether and with some

amount of internal guidance. Amongst the earliest such vessels were the Self-Propelled

Underwater Research Vehicles (SPURVs) that were controlled directly by a surface vessel

using acoustic communications [Widditsch, 1973]. While being little more than Remotely

Operated Vehicles (ROVs) that lacked a tether, nevertheless these vehicles lead to later

vessels such as the Remote Environmental Measuring UnitS (REMUS) [Von Alt et al., 1994]

and AUTOSUB [Collar and McPhail, 1995] that had on-board computer systems capable of

executing plans.

These later vehicles were still relatively limited in computing power; they could execute pre-

planned missions, but lacked the ability to perform major re-planning of their missions during

operation. The ability to re-plan would not be a feature until the development of vehicles

such as the Monterey Bay Aquarium Research Institute’s (MBARI) Dorado AUV which uses

the Teleo-Reactive Executive (T-REX) system for autonomy. T-REX will be discussed further

in Section 1.5.3.2.
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1.2.2.1 Remote Environmental Measuring UnitS (REMUS)

The original prototype Remote Environmental Measuring UnitS (REMUS) AUV was devel-

oped in the mid 1990s [Allen et al., 1997] has lead to a family of vehicles ranging from the

40kg REMUS 100 to the 900kg REMUS 6000. The smaller vehicle is of most interest for

littoral operations, due to its more compact nature.

With a 1.5kWh battery unit and a mission time of up to twelve hours, the power budget

of the current REMUS 100 is limited to approximately 125 Watts for propulsion, sensors

and data processing [HYDROID, 2016]. This leaves relatively little scope for performing

the calculations that would be required for a complex mission planning system. As such, the

REMUS is likely to be operated using only pre-generated mission plans, or those dynamically

updated from a base station.

An image of a REMUS vehicle on static display can be seen in Figure 1.3.

1.2.2.2 Dorado

The Dorado vehicle is a modular AUV developed by MBARI for a variety of environmental

monitoring tasks. It has been used for direct water sampling using spring loaded plungers

to draw ocean water into sampling containers when criteria are met [Rajan et al., 2009].

Other variants of Dorado have been used for ocean mapping [Caress et al., 2008]. Dorado

is a larger vehicle than the REMUS 100, with a mass of approximately 680kg in its mapping

configuration.

1.2.2.3 New Small Autonomous Underwater Vehicles

Increasing miniaturisation has allowed the further reduction in size of AUVs. In particular

vehicles such as Bluefin Robotics SandShark [Blu, 2017] and the Iver 3 EcoMapper. The

Iver series is notable for an emphasis on low-cost using Commercial Off-The-Shelf (COTS)

parts [Anderson and Crowell, 2005]. A derivative of the Iver 2 has been modified to carry

a second backseat computer module which could increase the scope for detailed on-board

plan generation [Universidad Politechnica de Cartagena, 2014].
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Figure 1.3: Remote Environmental Measuring UnitS (REMUS) 100 vehicle on display. Im-
age by [MKFI, 2014]. License: Public domain.

1.2.3 Autonomous Surface Vessels for Environmental Monitoring

As mentioned in the previous section, Autonomous Underwater Vehicles have shown appli-

cation in environmental monitoring tasks. Autonomous Surface Vessels (ASVs) can poten-

tially perform similar tasks while also providing more accurate localisation sensor data using

Global Position System (GPS) and visual data. ASVs are also less limited in volume; unlike

an AUV, they are not required to be ballasted to reach neutral buoyancy. This allows more of

their mass to be allocated to power and sensing systems, potentially allowing a longer range

than an equivalent mass AUV. The primary disadvantages of an ASV compared to an AUV

are the limitations on the depth of water that their sensors can perceive, and a susceptibility

to wind and wave effects that underwater vehicles can pass beneath.

This section will provide a brief overview of four ASV platforms that have been developed for

inshore and riverine environmental monitoring.

1.2.3.1 Riverwatch Autonomous Surface Vessel

Built by researchers from the Instituto de Desenvolvimento de Novas Tecnologias, the Uni-

versidade Nova de Lisboa, and Instituto Universitário de Lisboa, Riverwatch is an autonomous
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surface vessel comprised of an electricly powered catamaran hull. The concept of River-

watch is to provide a platform for environmental monitoring of riverine environments that

combines the capabilities of both airborne and surface platforms to allow long range aerial

mapping in addition to lidar1 and SOuNd direction And Ranging (SONAR) mapping of the

environment. Carrying cameras and a launching platform for an Unmanned Aerial Vehicle

(UAV) in addition to its lidar and SONAR sensors, the platform is capable of sensing both

above and beneath the waterline while also being able to examine nearby land areas [Pinto

et al., 2014a]. The image in Figure 1.4 shows the vehicle with its UAV hovering in front of

the landing area [Pinto et al., 2014b].

1.2.3.2 TopCat Autonomous Surface Vessel

Originally developed for the 2014 Maritime RobotX Challenge [Maritime RobotX Challenge,

2014] by a combined team from Flinders University and the Australian Maritime College,

TopCat is a 5m Autonomous Surface Vessel based on a twin hull Wave Adaptive Modular

Vessel (WAM-V) [Marine Advanced Research Inc., 2015]. The vehicle was later modified

by moving the battery carriage, updating the electronics, and the addition of a cover to the

electronics. This was the version that competed in RobotX 2016, as seen in Figure 1.5.

The vessel’s environment is perceived by a combination of a surface search RADAR, lidar

and a camera system. Localisation information is provided by a dual antenna GPS with

a Real-Time Kinematic (RTK) connection to a reference station, and an Attitude Heading

Reference System (AHRS). A wind sensor is used to estimate windage effects on the surface

vehicle.

TopCat is driven by a pair of Torqeedo Cruise 2R electric outboards powered by a pair of

Kokam 3.9kWh lithium polymer (LiPo) batteries. Power supplied by these batteries to the

on-board systems allows an endurance of up to five hours at a four knot cruise speed.

Despite its origins as a competition vehicle, TopCat was developed for an eventual research

role. This has involved using TopCat’s deployment mechanism to carry sensors such as
1This thesis will use the convention used by the Macquarie Dictionary that lidar is a noun created as a

portmanteau of laser and RADAR, rather than an acronym [Macmillan Publishers Australia, 2018].
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Figure 1.4: Riverwatch Autonomous Surface Vessel with hovering Unmanned Aerial Vehicle
[Pinto et al., 2014a]. Image c©2014 IEEE .

underwater cameras and depth sounding equipment. To demonstrate that the ASV is suit-

able for such tasks, details of a mission to measure bathymetry with TopCat can be found in

Appendix A.

Future developments of TopCat may include modification to carry a marsupial vehicle for

the deployment of liferafts [Machado et al., 2014] similar to the ROAZII USV [Martins et al.,

2007] in the ICARUS project [De Cubber et al., 2013]. In this configuration, TopCat could

visit survivors of a boating disaster and provide assistance, deploying survival equipment to

those in distress.

1.2.3.3 Z-Boat Autonomous Surface Vessel

Much smaller in scale than the Riverwatch and TopCat platforms, the Z-Boat was designed

for the survey of small water bodies [Teledyne Oceanscience, 2015b]. This platform has

found application in tasks such as depth measurement in areas that are too small or too

hazardous for a manned platform such as mine tailing dams. Initially developed with a tele-

operated control system, the vessel was found to be capable of operation far beyond the

visual field of the operator. To allow the full capability of the boat to be used when surveying,

the manufacturer of the Z-Boat has announced the availability of a full auto-pilot allowing it
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Figure 1.5: TopCat Autonomous Surface Vessel at Maritime RobotX 2016. Cropped from
original image by Andrew Webb.

to follow a pre-planned path during survey operations [Teledyne Oceanscience, 2015a].

1.2.3.4 Lizhbeth Autonomous Surface Vessel

Lizhbeth is an ASV developed at ETH-Zurich for the task of measuring water quality at a

variety of depths. Initially used to measure algal growth in Lake Zurich, this system should be

applicable to other similar tasks [Hitz et al., 2012]. This vehicle was later used to demonstrate

a system for informed planning and re-planning of paths to reduce uncertainty in the property

being measured [Hitz et al., 2014].

1.3 Applications for Autonomy in Inspection

Platforms such as Riverwatch, Lizhbeth and TopCat are capable of carrying sensors on a

smaller platform than would be required for a comparable manned platform, however for

a mission to be executed, a plan that will achieve the mission goals is required. For an

inspection task, this may require carrying the sensor to multiple locations where the object(s)

of interest can be clearly viewed. This problem is referred to as coverage planning.

Coverage planning systems has applications ranging from cleaning floors [Kleiner et al.,

2017] to preparing structures for painting [Ren et al., 2008]. From a maritime field robotic
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Figure 1.6: Lizhbeth Autonomous Surface Vessel [Hitz et al., 2012]. Image c©2012 IEEE .

context, one of the more interesting approaches is the lazy tour.

Hover et.al. describes a complete system for the planning and execution of hull inspection

missions [Hover et al., 2012] using an intervention type AUV, the Hovering Autonomous

Underwater Vehicle (HAUV) to perform a search of the hulls of two ships, the SS Curtis, and

the USCGC Seneca. While much of ships hull is a smooth curve, parts such as the propeller

and associated hardware are complex shapes that cannot be trivially solved. The method

used for inspection path generation was the Travelling Salesperson Problem (TSP) based

system originally described in Saha et al. [Saha et al., 2006].

Englot and Hover used a sampling based technique to provide coverage of complex shapes.

A sample set was chosen that provided the required coverage, with the TSP tour generated

using Christofides algorithm [Christofides, 1976] and refined using the Lin-Kernighan algo-

rithm [Lin and Kernighan, 1973]. To allow the estimation of collision-free distances to be

found, the Rapidly exploring Random Tree (RRT) algorithm was used however the expense

of calculating RRT paths for all possible paths was considered impractical. The initial paths

were thus calculated using only Euclidean distances, with RRTs being used to calculate the

distances between vertices that selected to be on the tour. This process was repeated with

new tours being generated, and their distances being updated until the overall tour length

was stable. Since the distances were only calculated for the connections on the tour, this

algorithm is referred to as the lazy tour.
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1.4 Applications for Autonomy in Search and Rescue

Another application for autonomous vehicles is maritime Search and Rescue (SAR). Unlike

an environmental monitoring mission where external data sources can provide the ability

to produce plans at leisure, SAR tasks can combine both limited information and a rapidly

developing environment where human lives may rely on rapid and efficient response.

A project to develop assistive robotic tools for search and rescue operations is ICARUS2.

Two real-life disasters were used as a reference, an earthquake in Haiti, and a shipwreck

involving a passenger liner. A variety of robotic platforms were integrated to map the envi-

ronment, search for survivors and deploy life-saving equipment [De Cubber et al., 2013].

ICARUS’s second scenario culminated in a field exercise that simulated an event similar to

the Costa Concordia shipwreck. A variety of sea and air platforms were deployed under

a unified control system, including Unmanned Aerial Vehicles (UAVs), Unmanned Ground

Vehicles (UGVs) and Unmanned Surface Vehicles (USVs) to map and search an area. Data

were fused from multiple sources to produce tasking for the multiple autonomous platforms

in operation, and vehicles could then provide direct support to survivors by the deployment

of lifesaving equipment [Machado et al., 2014].

The majority of platforms used in project ICARUS were general purpose, but two specific

autonomous surface vehicles deserve closer consideration.

1.4.1 EMergency Integrated Lifesaving LanYard (EMILY)

The EMergency Integrated Lifesaving Lanyard (EMILY) is a small-scale autonomous surface

vessel that has applications in monitoring as well as SAR. In its rescue configuration, EMILY

operates as a self-deploying emergency float that can be sent out through surf to assist a

swimmer in difficulty [Patterson et al., 2013]. An image of EMILY on display can be seen in

Figure 1.7.
2Despite the capitalisation, this does not appear to be an acronym.
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Figure 1.7: EMergency Integrated Lifesaving LanYard (EMILY) at the 2016 Naval STEM
Exposition. Image cropped from original by [Office of Naval Research, 2016]. License: CC
BY 2.0

1.4.2 The Unmanned Capsule (UCAP)

Developed as part of Project ICARUS, the Unmanned Capsule (UCAP) is a small unmanned

surface vessel developed specifically for rescue. UCAP was designed to carry a 4-person

life-raft at least 1.2 kilometres at two knots. Once reaching the location of a survivor, UCAP

would deploy its life raft [Matos et al., 2013].

1.5 Software for Autonomous Vehicles

The implementation of robotic planning and control algorithms presents its own challenges.

Early robots such as Shakey used standard mainframe programming environments - Shakey’s

STRIPS planner was implemented in the LISP language on a PDP-10/15 [Hart et al., 1972].

The first subsumption architecture robot, Allen, similarly used an offboard LISP machine to

emulate its hardware, while its successors Tom and Jerry, used Programmable Array Logic

(PAL) chips to implement their control system [Brooks, 1990]. In the decades since the cre-

ation of these robots, a number of systems have been created to simplify the development

of robot software. This section will provide a brief overview of the systems commonly in use

for maritime field robots.
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1.5.1 Mission Orientated Operating Suite (MOOS)

The Mission Oriented Operating Suite (MOOS) is a software system for mobile robotics that

uses a central database to pass messages between independent processes. Each individ-

ual task within the robot’s control system is a separate program running as an independent

process in its own memory area. Since none of these programs share memory, communi-

cation between processes is performed using message passing. Messages are limited to

either a string or a single double-precision number and are sent to named topics that can be

subscribed to by multiple other nodes [Newman, 2008]. Since all messages travel through

the central node, the communications of this system form a star architecture.

The reduction of a complex task into several individual simple tasks resembles the Sub-

sumption architecture. This also potentially allows these individual systems to be re-used.

For example, a system for interpreting fix data from a GPS unit can be developed once and

then used across may different platforms.

MOOS was used with both AUVs such as the Yellowfin [West et al., 2010] and ASVs such

as MIT’s Scout [Curcio et al., 2005]. The flexibility of MOOS is sufficient that MIT later used

it to develop an automated control system for following maritime navigation rules [Benjamin

et al., 2004].

1.5.2 Robotics Operating System (ROS)

Quigley et al. identified the origins of the Robotics Operating System (ROS) as the Switch-

yard system that was first implemented as part of the STanford Artificial Intelligence Robot

(STAIR) [Quigley et al., 2007] and Personal Robot 1 (PR1) programs [Wyrobek et al., 2008]

[Quigley et al., 2009].

In ROS, communication between programs - referred to as nodes - is also done using topics,

identified by a text string. In the ROS system, a topic is created when one or more programs

advertise their ability to publish information as messages on this topic name. A topic can

have zero or more subscribers that will receive these messages upon publication. A cen-

tralised system for connecting nodes exists, but is not involved in communication once the
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connection is established. Thus, the communication in ROS is peer-to-peer.

Interpretation of the communicated messages would not be possible if there was not a stan-

dardised method for the serialisation and de-serialisation of data. In addition to a system

for the generation of custom message types, ROS provides a set of generic message types

for commonly used sensor and applications types allowing communication between nodes.

As an example of such a message type, Figure 1.8 shows the LaserScan message type for

messages from lidar sensors. Since each message header contains information on the pa-

rameters of the scan, this type can be applied to a variety of different lidar scanners without

modification. Similarly, it is possible to develop higher level software that works with lidar

data and that is independent of the exact design of the sensor that is in use. Thus, a tool-

based system consisting of small independent programs can be developed. These nodes

can be combined together to build more complex solutions.

An example of the homogeneity of ROS based tools is the wide support for lidar devices.

Drivers exist for sensors ranging from the XV-11 [Perko et al., 2016] found on robotic vacuum

cleaners, up to the 3D sensing Velodyne units [O’Quinn, 2016]. Notably, the planar lidar units

all produce laserscan messages on their data topics, while the volumetric models produce a

message type that encodes point cloud data that can be used with the Point Cloud Library

(PCL) [Rusu and Cousins, 2011].

In addition to communication between systems, a standardised method for the recording of

messages exists. Rosbag allows the recording of multiple topics in a time-stamped file. This

allows both post processing to analyse the behaviour of a system, and replay to allow a

program to be executed with input data as if it were being executed on a running robot [Field

et al., 2014].

In the past ten years, ROS has been used on a large array of systems. The re-usability of

ROS has made it particularly attractive for development due to the large range of software

and device drivers now available. This has led to the current time of writing when one

hundred and thirteen robots and related devices now have portal pages on the ROS wiki

[Open Source Robotics Foundation, 2018]. While aimed at ground robots such as the PR2

[Cousins, 2010], the flexibility of ROS has allowed it to be used on maritime robots such as
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std msgs / Header header
u in t32 seq
t ime stamp
s t r i n g f rame id

f l o a t 3 2 angle min
f l o a t 3 2 angle max
f l o a t 3 2 angle increment
f l o a t 3 2 t ime increment
f l o a t 3 2 scan t ime
f l o a t 3 2 range min
f l o a t 3 2 range max
f l o a t 3 2 [ ] ranges
f l o a t 3 2 [ ] i n t e n s i t i e s

Figure 1.8: sensor msgs/LaserScan message type

the Riverwatch ASV [Pinto et al., 2014b], TopCat ASV and [Sammut et al., 2014] Yellowfin

AUV [DeMarco et al., 2011]. The paper describing support for ROS on the Yellowfin is

notable in that the authors developed a gateway between ROS and the existing MOOS

based control system. They note that while MOOS is capable and has access to systems

such as IvP-Helm that support maritime navigation, ROS has a more flexible implementation

and access to a larger software ecosystem [DeMarco et al., 2011].

The topic based communication system in ROS is useful for streaming based systems such

as lidar and vision data, but planning architectures require the ability to dispatch actions and

receive confirmation of their completion. Synchronisation of such systems can be difficult,

with particular importance on knowing if a planner is active, what goal each system is cur-

rently attempting to achieve, and the progress of a planner to achieving this goal. In ROS,

the actionlib library provides an interface that supports feedback and pre-emption using the

underlying topic-based communication system. Actionlib supports the ROS system for cus-

tom message creation, thus allowing domain specific goal, feedback and result messages to

be generated. This has the further effect of allowing these control messages to be recorded

along with sensor and status information using the rosbag system.

Actionlib has become ubiquitous enough that interfaces are provided on systems such as

the move base 2D navigation package and the moveit arm planner [Open Source Robotics

Foundation, 2014a]. State machine based executive systems such as SMACH [Bohren and

Cousins, 2010] and FlexBE [Schillinger, 2015] are able to support the execution of actions
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using Actionlib, and can use the response of the Actionlib server to update their state.

A limitation of Actionlib is that since it is based on the ROS topic system, communication is

not guaranteed. ROS does cache data at the publisher, so re-transmission is possible, but

for full reliability monitoring of a client’s execution state will be required.

1.5.3 Implementation of Autonomy in Maritime

Autonomous Vehicles

Previous sections have examined the platforms, software and applications for maritime au-

tonomy. This section provides more detail on the architectures and systems used for auto-

mated planning in autonomous marine vehicles. A brief summary of significant approaches

is found in Table 1.2.

1.5.3.1 Reactive Planners

Various systems for autonomy have been developed such as the petri-net based scripting

system by Palomeras et al. [Palomeras et al., 2012], the multi-AUV system developed by

Sotzing [Sotzing et al., 2008] and the Mission Oriented Operating Suite (MOOS) developed

by Newman [Newman, 2008] and already covered in Section 1.5.1. Of particular interest is

the scripting system used by the AUTOSUB AUV. In a 2010 paper the top level control system

of the vehicle was not only described, but state machine representations and interpreted

code were presented. The paper provides a particularly detailed look at a modern reactive

AUV control system [Molnar et al., 2010].

1.5.3.2 Teleo-Reactive EXecutive (T-REX)

The Teleo-Reactive EXecutive (T-REX) was developed by the Monterey Bay Aquarium Re-

search Institute based on the EUROPA planner. Plans in EUROPA are expressed as time-

lines showing when actions should occur, while the state variables are stored as domains

representing the set of all possible values that a variable may take [Barreiro et al., 2012].
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T-REX uses EUROPA’s timeline representation to schedule access to the AUVs resources

[McGann et al., 2007]. The ability of T-REX to update its plan based on changes in the en-

vironment has been used to execute actions based on immediate stimuli. This has allowed

experiments to be performed that require local decision making capability such as mapping

algal blooms [Rajan et al., 2009]. This system is capable of performing spatial tasks - travel-

ling to waypoints, and moving relative to objects - but when operating in environments such

as coastal areas where the vehicle may run aground, human oversight of the mission plan

is still required to ensure that the vehicle remains within a safe operating area [Das et al.,

2011].

1.5.4 Symbolic Planning

The STRIPS planner was the first in a category of systems referred to as symbolic planners.

By using a domain model defining the relationship between possible actions and results, and

a task model describing the starting condition and the desired goal, plans can be generated

consisting of a sequence of actions resulting in the goal being reached [Knoblock et al.,

1998]. This abstraction allows planners to be applied to applications beyond the concept

envisioned for Shakey, extending to areas such as combining symbolic action plans with

geometric planning for arm manipulation tasks [Dornhege et al., 2009], and the generation

of temporal search plans [Bernardini et al., 2013].

A visualisation of Shakey’s environment is shown in Figure 1.2. This limited environment had

six rooms and a number of objects that could be pushed. Despite this simple environment,

Shakey’s set of possible actions were surprisingly numerous with separate movement com-

mands for moving to objects, locations and doors. The importance of the spatial connectivity

in its environment can be seen in this set of actions. As shown in Table 1.1, more than half

of the actions used a door as their parameter [Hart et al., 1972].
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1.5.4.1 Description Languages

Symbolic planning systems have been adopted widely enough that a number of planning

languages have been developed to encode symbolic information. The most commonly used

of these has been the Problem Domain Description Language (PDDL), a language devel-

oped for the Artificial Intelligence Planning Systems Conference to allow planning systems

to compete [Knoblock et al., 1998]. Updates to this language have included the addition of

time and numerical quantities [Fox and Long, 2003], while support for probabilistic planning

with rewards was added to the derived Probabilistic Planning Description Language (PPDL)

[Younes and Littman, 2004]. Belta et al. provides a useful overview of symbolic planning,

discussing the general architecture of a planning based robotic system including the use of

motion primitives to build a vehicle path [Belta et al., 2007].

PDDL based systems using symbolic manipulation are not the only method used for plan-

ning in robotic systems. The EUROPA planner used by T-REX originally used the New Do-

main Definition Language (NDDL) to describe its domains, before later adopting the Action

Notation Modelling Language (ANML) [Smith et al., 2008].

What symbolic systems typically lack is an ability to work directly with spatial values. NDDL

and later revisions of PDDL have support for single dimensional variables, but no direct

support for spatial concepts such as areas and volumes. Shakey’s STRIPS based planner

supported coordinates, but these were not manipulated by the plannner and could be re-

placed by named waypoints without altering the behaviour of the planning system. Notably,

none of Shakey’s example plans in Hart et al. used the support for numerical coordinates

[Hart et al., 1972].

1.5.4.2 Symbolic Planning with Real-World Systems

To develop a planning domain capable of supporting spatial concepts, some method of de-

composing the spatial environment into areas or volumes is needed, where the decomposed

components are then labelled and spatial relationships are generated. Each area could then

be tagged with information providing a semantic context for the domain model. Thus, some

24



model of identifying and characterising the space is required. Belouaer, Bouzid and Mouad-

dib developed an ontology for representing fuzzy human spatial concepts with symbolic

values [Belouaer et al., 2010]. That was later developed into a spatial extension for PDDL

[Belouaer et al., 2012]. This could be used to make an interface allowing naturalistic inter-

actions with spatial properties, however a method for generating the domain model is still

required.

Real world robotic problems can be much more complex, including multiple actions that need

to be performed at locations connected by areas with many possible patterns of traversal.

If the domain is extended to include obstacles that prevent a robot from travelling directly

between objects, then there may be multiple paths that can be taken. Such a task is not

unprecedented: even a task as simple as fetching a beverage may require the traversal of

multiple doorways and elevators [Cousins, 2010] requiring the evaluation of many potential

paths to efficiently perform its assigned task. Since determining the optimal path to an object

is a form of search, this could be integrated into the same search process that is used to

produce the robot’s plan. However, the expansion of complexity in the domain and task must

be balanced by the increase in size of the search space and the corresponding time to reach

a solution. The time required to search may be irrelevant for off-line systems but, if the plan

is being generated on the vehicle, then production of an optimal plan is inefficient if the time

saved compared to a less optimal plan is less than required to do the search. Thus, if the

vehicle is to be capable of creating mission plans based on the changing environment that it

perceives, then a trade-off may be necessary. A planner that can rapidly produce plans that

approach the optimal based on a changing environment can be desirable.

Bylander examined the computational complexity of STRIPS planning and found that ex-

cept for the simplest cases, the algorithmic complexity of planning is PSPACE-complete

[Bylander, 1994]. As such, expanding the states to be searched to allow all possible paths

to be examined would rapidly result in a system that could not produce a result within a

meaningful time period. This means that path planning is typically restricted to domain spe-

cific planners, while domain independent planning is typically restricted to the deliberative

layer. Bylander’s analysis of planning complexity in STRIPS type planners showed that the

complexity scaling of a symbolic planning domain is based on the number of pre- and post-
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conditions that are associated with the actions. Strict restrictions on these conditions when

searching for actions allows the task to be performed in polynomial time rather than being

a non-deterministic polynomial complete (NP-COMPLETE) or polynomial space complete

(PSPACE-COMPLETE) task [Bylander, 1994].

A possible solution to the problem of integrating symbolic and spatial planning is the use of

semantic attachment - the integration of an external domain specific planning system to a

domain independent planner. Dornhege et al. used this approach to integrate a probabilistic

roadmap based arm motion planner with a symbolic planner to perform a simulated urban

search and rescue task [Dornhege et al., 2012]. Muñoz et al. similarly integrated symbolic

and path planning by building a path planner into their symbolic planner [Muñoz et al., 2016]

The ubiquity of ROS has resulted in a number of executives being developed. Arguably

the system with the most complete support for symbolic planning is the ROSPLAN system

developed at King’s College. ROSPLAN uses a database to store the robot’s belief, and can

use this information with a PDDL based symbolic planner to generate plans. Actions can

then be dispatched to a robot using Actionlib.

The software distribution available on the GitHub website includes a demonstration of using

a turtlebot to visit a set of waypoints whose cost is generated using an RRT-Tree [KCL-

Planning, 2016], while Cashmore et al. describes the use of the planner with the Girona 500

AUV to manipulate switch panels in a test tank environment [Cashmore et al., 2015].

Due to the importance of symbolic planning to this thesis, a more detailed example is in-

cluded in Appendix B. This appendix introduces the concepts behind a domain-independent

symbolic planning system using some of the same PDDL code used in the planning systems

later in this thesis.

Table 1.2: Summary of Maritime Autonomy Approaches

Name Mission/Domain Encoding Action Selection
Component Oriented
Layer-Based Architecture
for Autonomy (COLA2)

Petri-net Petri-net player [Palomeras
et al., 2012]

Teleo-REactive EXecutive
(T-REX)

New Domain Description
Language (NDDL)

EUROPA solver [McGann
et al., 2007]

ROSPLAN Problem Domain Descrip-
tion Language (PDDL)

Symbolic planner [Cash-
more et al., 2015]
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1.5.5 Path Planning for Maritime Vehicles

In a robotics application, some form of path generation is required. Since the space to be

explored generally can include the space of all possible vehicle positions, a planning system

specifically designed for the problem is required. Domain specific spatial planning algorithms

for AUVs include the Fast Marching system by Pêtrés et al. [Pêtrès et al., 2007], and the

system by Kruger et al. that allow for the effect of estuarine currents [Kruger et al., 2006].

Other popular algorithms include the use of Rapidly exploring Random Trees (RRTs), a

sampling based algorithm that explores the space between obstacles [LaValle, 1998]. RRTs

can use vehicle models to generate feasible trajectories, but are commonly designed for

simple straight paths. RRTs have been applied to maritime vehicles including the NaviGator

ASV entered in the 2016 Maritime RobotX challenge [Frank et al., 2016].

Generation of minimum cost paths is only part of the maritime planning problem, vehicles are

also required to be compliant with the International Regulations for Prevention of Collisions at

Sea, 1972 (COLREGS). Benjamin and Curcio investigated COLREGS navigation for ASVs

[Benjamin et al., 2004] which was later used in the development of the vehicle described

in Benjamin et al. [Benjamin et al., 2006]. This system used the interval planning model

developed by Benjamin [Benjamin, 2004].

Another approach is the use of lattice planning [Pivtoraiko and Kelly, 2005], searching through

the spatial environment using sets of motion primitives to find a kinematically acheivable so-

lution to the problem. Shah et al. uses such a search based approach, along with a flaw

finding based solution for repairing plans that violate COLREGS constraints [Shah et al.,

2016].

Agrawal and Dolan used A* search through a four-dimensional configuration space to identify

feasible paths that avoided obstacles while meeting COLREGS constraints [Agrawal and

Dolan, 2015].
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1.5.6 Sources of Belief

Planning systems can attempt to provide solutions to tasks, but the ability to plan is depen-

dent upon the accuracy of the robot’s internal model of the world. This model can be built

and updated from both internal and external sources. Additionally, if the planning system is

to demonstrate on-line re-planning based on changes in its environment, a system of inter-

preting sensor data would be required. This system would allow the vehicle to update its

knowledge of the environment in real time during the mission.

1.5.6.1 On-Board Data Sources

For a wide ranging robot to effectively plan using its belief, data need to be stored in an

efficient manner. Robotic systems have typically used grid based systems for map creation.

ROS based systems can use the costmap2D package for storing map cells as free, occupied

and unknown [Marder-Eppstein et al., 2018]. Data sources for such costmaps can include a

number of sources include Simultaneous Localisation and Mapping (SLAM) algorithms such

as Gmapping [Kümmerle et al., 2011].

Storage of map data for three dimensions could be performed in a similar manner, but for a

regular grid the space requirements would scale with a power of three, rather than a power

of two. A potential solution to this problem is the use of hierarchical systems for data storage

such as Octomap - an octree based system for storing probabilistic models [Wurm et al.,

2010]. Since measurements contain uncertainty and noise, the use of a probabilistic stor-

age system combined with measured and estimated values for sensor performance could

allow this uncertainty to be estimated. These error and uncertainty estimates could then be

utilised by the planning algorithm, for example constructing search patterns to maximise the

likelihood of finding an object. Octomap has already been used for notable systems includ-

ing a stereo camera based exploration system [Shade and Newman, 2011] and the spatial

relation system used by Sjöö et al. [Sjöö et al., 2010]. Octomap is a capable system, but

its method of object orientation can complicate its use. The base tree class implements the

methods required to create a tree, but the methods required to set a value in a leaf vary by

subclass. This lack of commonality can complicate the creation of a general method for the
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handling of octrees.

In addition to Octomap, the Point Cloud Library [Rusu and Cousins, 2011] also implements

an octree that supports the indexing of point locations which allows for the rapid searching

for nearest neighbours. This differs from Octomap’s implementation where the tree structure

stores the data.

Interpretation of visual and SONAR data to maintain the internal belief state is also required.

An example of a visual interpretation system for maritime use is the Monterey Bay Aquarium

Research Institutes (MBARI) Automated Visual Event Detection and Classification (AVEDac)

system, but these may have to be adapted for operation on a mobile vehicle [Cline et al.,

2009].

Terrain and object reconstruction from SONAR data were demonstrated by Papadopoulos

et al. This technique constructed voxel objects by merging SONAR scans [Papadopou-

los et al., 2011]. This type of system would build models over time that could then be

combined with pointcloud recognition algorithms such as the Viewpoint Feature Histogram

[Rusu et al., 2010] to identify objects. Another example of a SONAR interpretation system

is AUTOTRACKER - a pipeline tracking system for sidescan SONAR [Evans et al., 2003].

1.5.6.2 Off-Board Data Sources

A number of methods exist for computerised storage of spatial data. Geographical Infor-

mation Systems (GIS) including ESRI ArcGIS [Environmental Systems Research Institute,

2015] and the open source GRASS [GRASS Development Team, 2015] system allow a hu-

man operator to manipulate large spatial datasets. GIS data is typically stored in either

raster (array like) or vector (primitive based) forms, although support for point cloud data is

now becoming available.

A more specialised robotics system that has promise is RoboEarth, a knowledge process-

ing system for mobile robots that includes such features as data mining and visual feature

classification [Waibel et al., 2011].

Specialised marine data is available from sources such as BLUElink, a joint venture between

29



the Bureau of Meteorology, Commonwealth Scientific and Industrial Research Organisation

(CSIRO) and the Royal Australian Navy (RAN) to create a system for sharing current and

predicted ocean data [Brassington et al., 2007]. Using this data, seven day predictions of

ocean currents, temperature, salinity and sea level anomaly are available from the Bureau

of Meteorology [Commonwealth of Australia, 2018].

Information on water depth and coastal extents can be more difficult to find. Spatial data for

navigational purposes in Australian waters is only available from the Australian Hydrographic

Office (AHO) as encrypted navigation charts. An alternative may be the use of charts by the

National Oceanic and Atmospheric Administration (NOAA) which cover the United States

and much of the Pacific Ocean. These charts are provided under a license that allows

usage with minimal restriction.

Geosciences Australia was created in 2000 as a merger of two former Australian govern-

ment geoscience and survey organisations. Tasked with providing geographic information to

promote safety and the effective use of natural resources, this organisation provides spatial

data, including bathymetry, under a number of licenses including Creative Commons [Geo-

science Australia, 2017]. Unlike the charts created by the AHO, this data is intended for

analysis rather than navigation, however it could be used for the generation of mission plans

based on spatial criteria.

1.6 Summary and Proposed Approach

The previous section has provided an overview of existing approaches and applications for

field robotic systems designed to travel on or underneath water, and the concepts required to

guide and plan for them. These sections have introduced a number of specialised planning

systems for tasks such as mission, coverage and path planning, as summarised in Table

1.3.

One of the more interesting concepts however is the symbolic planner which is capable

of adapting to multiple different tasks simply by altering the domain and task descriptions.

However, such general purpose planners cannot efficiently operate with spatial data. But
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what if the spatial environment could be reduced to its fundamental underlying topology?

Could such a system provide both the flexibility of generalised symbolic planning while still

allowing plans to be informed by spatial information?

1.7 Aims

This thesis has the following aims;

• Examine the feasability of developing a planning system combining both spatial and

symbolic data.

• Implement and demonstrate that this planner can effectively schedule missions.

• Evaluate the performance of the mission planner and scheduler for field robotic tasks.

Table 1.3: Summary of Planning Approaches

Type of Plan-
ning

Approach Significant Implementa-
tions

Path
Rapidly exploring Random
Tree (RRT)

Frank et al. [Frank et al.,
2016]

Lattice Shah et al. [Shah et al.,
2016]

Interval planning Benjamin et al. [Benjamin
et al., 2006]

Coverage

TSP based lazy Englot and Hover [Englot
and Hover, 2013]

Genetic algorithm Ren at al. [Ren et al., 2008]
Watershed Segmentation Kleiner at al. [Kleiner et al.,

2017]

Mission

Constraint Satisfication McGann et al. [McGann
et al., 2007]

Symbolic Planning Cashmore et al. [Cash-
more et al., 2015].

Symbolic planning with lift-
ing

Munõz et al. [Muñoz et al.,
2016]
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1.8 Key research questions

• Can the effectiveness of deliberative symbolic planning be improved by the incorpora-

tion of spatial data?

• Can symbolic spatial planning be applied to the real world?

• Will this allow more effective utilisation of field robotic assets?

1.9 Research Methodology

This thesis examines the integration of spatial data with symbolic planning to leverage the

available data resources for improved operation of field robotic systems. This is used to

develop a planning system capable of both supervised and full autonomy.

The process of this development occurs in a number of stages, first is a review of existing

approaches to the problem of planning in field robotics, including an examination of hard-

ware and software platforms. This section identifies that the combination of the flexibility of

symbolic planning combined with spatial data about the robots environment could improve

the quality of robotic planning.

The next chapter examines how spatial data can be represented, and how this data can be

compressed to identify the essential underlying information that can be used for informing

planning. This section includes an overview and examination of the properties of several

different algorithms for handling geometric data.

The third chapter uses the identified geometric algorithms and evaluates their effectiveness

at producing high-level path plans. This is done be experiments on a combination of syn-

thetic and real-world problems.

The fourth chapter evaluates the ability of high-level symbolic planning algorithms to combine

both path and mission planning in a single operation. This chapter will also test experimen-

tally the scalability of these systems.

Chapter five combines both the topological compression of spatial data with the previously
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tested symbolic planners in a planning system based on the mission planning stack created

for the TopCat Autonomous Surface Vessel. This system is tested in a simulated environ-

ment based on maritime rescue.

1.10 Research Significance

High level control systems for maritime mission scheduling have been developed, but they

are typically either reactive in nature - preventing long term planning - or lack spatial aware-

ness - making them unable to operate autonomously in a complex environment.

This thesis describes the development of a system capable of performing planning with both

symbolic and spatial data, scheduling software for controlling the robot and classification

systems allowing data to be updated in real time. This will improve mission capabilities by

allowing spatial data to be symbolically evaluated during mission planning, execution and

evaluation phases.

While the example implementation was originally intended for an AUV, its planning can be

applied to a variety of field robotic types. The field demonstration uses a maritime ASV to

demonstrate its operation.

By combining knowledge of the environment with information on the vehicle’s performance

encoded in the domain model and mission goals in the task model, a solution can be reached

that will maximise the return in data for a mission.

1.11 Contributions

This thesis proposes and investigates an altered model of planning for field robotics that

changes the normal separation between the mission and path planning layers. This provides

a number of contributions to knowledge. These have been organised into two groups, a list

of the contributions to the theory of mission planning, and a list showing the specific novel

contributions;
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1.11.1 Research

• An exploration of methods for geometry representation and belief compression, and

the selection of methods for skeletonisation, and segmentation that could be applied

to the belief compression problem in external spaces. High level planning systems are

limited in the complexity of the search space that they can explore. To allow complex

spatial relationships to be incorporated into their search domain, these spatial relation-

ships need to be reduced to a form that contains the essential information, a process

called belief compression. The commonly used approaches for performing this com-

pression are either only generalisable to R2, or limited in the type of environment that

they are applicable to. Chapter 2 explores these possible systems and selects systems

from biomedical and computer vision for application to the robotic mission planning do-

main.

• A direct comparison of both the robustness and effectiveness of the selected belief

compression methods. If the new planning model is to generate effective plans then

this belief compression system must be able to inform the task of path planning. Since

the selected belief compression methods are not used in the robotics space, no overall

quantitative comparison of their effectiveness is available. Chapter 3 includes experi-

ments testing the compression methods robustness to affine transformations, and their

effectiveness at producing a simplified model that can be used to perform the high-level

planning task on both synthetic and real-world derived datasets.

• An evaluation of the PDDL based symbolic planners that are currently used in ROS-

based robots to find their applicability to planning in the modified mission planning

model. Symbolic planning systems are extremely flexible at producing plans based on

the known state of the system. However, while some spatial based test domains exist,

they typically use unity cost to represent the movement between such spaces. Chapter

4 in particular tests these planning systems for the following properties that would be

required for the modified mission planning system to be effective;

– Scalability under different sizes of spatial domain, number of goals, and complex-

ity of preconditions
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– Planning time

– Effectiveness of generated plans with both symmetric and asymmetric action

costs

– Applicability of search and heuristic types

– The development and implementation of a planning system for an ASV that demon-

strates the effectiveness of the proposed planning model.

1.11.2 Engineering

• Chapter 5 uses an ASV simulation that incorporates planning and control systems

developed for the TopCat ASV running the ROS system to test the effectiveness of the

planning model at performing planning in spatial environments derived from real-world

data. These experiments show that the planning system outperforms a greedy system

at mission planning when the overall order of actions is important.

1.12 Publications

Jonathan Wheare, Andrew Lammas, Karl Sammut, 2018, Towards the Generation of Mis-

sion Plans for Operation of Autonomous Marine Vehicles in Confined Areas (Accepted for

Publication)

1.12.1 Conference Presentations

Jonathan Wheare, A/Prof Karl Sammut, Dr. Andrew Lammas, Tenzin Crouch, Dr. Graziela

Miot Da Silva (2015) An Autonomous Surface Vessel for coastal environmental monitoring

or: Getting a robot to do your field work.
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1.12.2 Competition Journal Papers

Jonathan Wheare, Bradley Donnely, Russell Peake, Thomas Arbon, Matthew Anderson,

Dr. Sherry Randhawa, Assoc. Professor Karl Sammut (2014) Autonomus Ground Vehicle

Competition 2014 - Flinders University Team Redback

Assoc. Professor Karl Sammut, Jonathan Wheare, Dr. Andrew Lammas, Mr Richard Bowyer,

Matthew Anderson, Thomas Arbon, Bradley Donnelly, Russell Peake, Tenzin Crouch, Rowan

Pivetta, Joshua Renfrey, Tobias Wooldridge, Scott Stevens, Andrew Webb, Dr. Alexan-

der Forrest, James Keane, Harry Hubbert, Reuben Kent, Supun Randeni Pathiranachchi-

lage (2014) Maritime RobotX journal paper - Flinders University / Australian Maritime Col-

lege - Team Topcat http://robotx.org/files/Flinders%20University-%20Australian%

20Maritime%20College%20Maritime%20RobotX%20journal.pdf

Jonathan Wheare, Bradley Donnelly, Russell Peake, Thomas Arbon, Matthew Anderson,

Rowan Pivetta, Dr. Sherry Randhawa, Assoc. Professor Karl Sammut, Dr. Andrew Lammas

(2014) Autonomus Ground Vehicle Competition 2014 - Flinders University Team Redback

Tenzin Crouch, Allan Mankavil, Andrew Webb, Bradley Donnelly, Derrick Kickel, Patrick

Kloasen, James Armitage, Rowan Pivetta, Joshua Renfrey, Jonathan Wheare, Lee-Ying

Wu, Keelan Burns, Michael Cadzow, Dr. Nasser Asgari, Mr. Richard Bowyer, Dr. Andrew

Lammas, Dr. Jimmy Li, Dr. Sherry Randhawa, Assoc. Professor Karl Sammut (2013) Au-

tonomus Ground Vehicle Competition 2013 - Flinders University Team Redback

1.12.3 Competition Presentations
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1.13 Outline

• Chapter 1 explores the application of planning to field robots. This includes a general

introduction to field robots, brief coverage of field robotic platforms, and information on

software and approaches used for robotic planning.

• Chapter 2 covers the existing techniques for the processing of spatial, geometric and

topological data for use with symbolic planning. Particular detail will be given to the

generation of thin structures called skeletons derived from geometric shapes.

• Chapter 3 investigates the effectiveness of skeletisation algorithms at producing struc-

tures that can be used for belief compression. These algorithms will be evaluated for

their effectiveness in producing compressed belief spaces that can be used to inform

spatial planning.

• Chapter 4 examines the effectiveness of domain independent planners at performing

high level scheduling tasks using spatial information. These systems will be evaluated

in a variety of environments.

• Chapter 5 covers the operation of the TopCat ASV as a field robotic platform. This

will demonstrate that the planning systems covered in this thesis can be used to plan

missions for a field robotic platform.

• Chapter 6 will summarise the findings of this thesis and propose future work.

In addition, appendices give an overview of the operation of symbolic planning, the available

simulation platforms and information on the handling of spatial data.
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Chapter 2

Belief Compression for Symbolic

Planning with Topology

2.1 Introduction

As covered in the introductory chapter, robots are increasing in capability to the point where

they are capable of storing and manipulating significant amounts of information. This in-

creasing capability will result in them being able to perform increasingly complex missions,

potentially including the achievement of multiple sub-goals. If such systems are to be used

successfully, not only will they need to effectively perform their assigned tasks, but the hu-

man operators will also need an efficient way to specify what tasks are to be achieved.

The use of general purpose planners allows atomic, well defined actions to be combined to

produce plans that are both effective and understandable.

For planning with complex actions, symbolic planning shows promise. This technique uses

values and predicates to represent belief - a robot’s representation of its environment, com-

bined with a set of predefined actions allowing these values to be transformed. A symbolic

planner uses a search algorithm [Russell and Norvig, 2010, p66] to find a sequence of ac-

tions that will transform its current belief into a desired goal state [Fikes and Nilsson, 1972].

The use of such a planning system has the advantage that it can use its information on the

robot’s current state, and the predicted effect of actions, to produce complex plans that meet

38



its goals, rather than taking a single action at a time based on its immediate state.

The original implementation of symbolic planning used with Shakey allowed such searching

to be performed by representing its work area as a series of rooms with connecting door-

ways. Mobile objects within these rooms were represented by corresponding objects within

the robot’s belief space, allowing courses of actions to be generated to transform the en-

vironment. Shakey’s plan was derived from the robots’ belief state at the start of the run,

which could cause plan execution to fail if the environment changed during execution due

to an external action. Shakey or its operators could update this belief, but would only be

creating new static positions of its movable objects [Brooks, 1991a].

At the core of the problem of robotic planning in spatial environments is thus how can the

environment be measured and turned into a model that can be used for planning? Existing

solutions for incorporating spatial data into planning solutions typically use semantic attach-

ment3, either performing a path generation operation between all possible combinations

of goals, or incorporating a separate path planning module alongside the mission planner.

Could the spatial environment instead be modelled directly in the planning domain?

Since classical planning systems are based around the concept of searching for possible

arrangements of actions in a graph representing the state space of the system, a represen-

tation of the spatial environment can be merged into such a representation. An example of

such an approach is the work of Belauer and Bouzid who demonstrated the representation

of spatial data by decomposing logical areas into symbolic trees [Belouaer et al., 2010], but

this is a specialised solution for an environment with a regular geometry. An algorithm for

a field robotic platform would need to support the irregularly shaped spaces that would be

encountered. This requires a more general solution to the problem of belief compression

that supports such spaces.

The first half of this chapter will examine the areas of digital geometry and topology with a

view to their application in preparing efficiently compressed spatial data for symbolic plan-

ning, while the second half of the chapter will cover the implementation of a selected group

of algorithms for belief compression in robotic planning.
3More information on semantic attachment can be found in Section 1.5.4
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2.2 Representation of Geometric Objects

Any model of the physical world stored within the digital world of a computer must be a

summary of the continuous and finely divisible real world that is sampled into the domain of

the discrete and digital. As such, a method is required to summarise and store geometric

information in a way that it can be manipulated by a computer.

Geometric objects can be stored as combinations of solids, surfaces or using a grid based

metric. Each of these forms requires a different set of assumptions that can also limit how

volumes can be generated and manipulated.

2.2.1 Representation as Solids

A possible solution to the storage problem is the use of simple and platonic4 solids to repre-

sent geometric information. This is the form of representation that was used in the original

Shakey planning system - the objects shown in photos of Shakey are primarily prisms, so a

platonic solid based system would accurately reflect reality. Solids can be stored as a com-

bination of type, pose and scale information. However, production of this data from sensor

data can be more complicated. A classification system must pre-process the sensor data to

find and infer the required shape before the internal representation can be updated.

More complex shapes can be constructed by creating sets of solids by the union, difference

and intersection of solid shapes, a technique referred to as constructive solid geometry.

In this representation the final shape is stored as a recipe of the operations required to

produce the desired result [Requicha and Rossignac, 1992]. An example of Constructive

Solid Geometry can be seen in Figure 2.1

Besides use in Computer Aided Design (CAD), this form of representation has found appli-

cation in the form of tetrahedral meshes - complex volumes formed of the union of tetra-

hedrons, each in turn described as sets of four vertices. Software exists to generate such

meshes using Delaunay triangulation [Si, 2015, Boissonnat et al., 2000], and they can be
4A platonic solid is a regular polyhedron, the faces of which are of equal size and shape [Helicon Publishing,

2005]. The cube and tetrahedron are included in the set of platonic solids.
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(a) (b)

(c) (d)

(e)

Figure 2.1: Construction of a solid shape using Constructive Solid Geometry and set opera-
tions. (a) a cube C (b) a sphere S (c) union of the sphere and cube S ∪ C (d) subtraction of
the sphere from the cube C − S (e) intersection of the cube and sphere S ∩ C.
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used for the construction of Reeb graphs [Doraiswamy and Natarajan, 2009].

2.2.2 Representation as a Surface

An area or volume can also be described by a fully enclosing surface. Whatever is inside

the surface is part of the shape. This form of shape is commonly used in Geographical

Informations Systems (GIS) where a shape in R2 can be represented as a polygon - a

collection of line segments in a closed loop.

In R3, a surface can be described as a triangular mesh. This representation is commonly

used in computer graphics, but a mesh that is completely enclosing, referred to as ”water-

tight”, can be used to describe a volume. The StereoLithography (STL) file format commonly

used in rapid fabrication uses this format for encoding volumetric shapes [Ennex Corpora-

tion, 2015]. An example of representing a solid as a surface can be seen in Figure 2.2

2.2.3 Representation as a Grid

A regular grid can be used to store information about the shape of objects by marking the

grid cells that correspond to the locations that are occupied by an object. This method is

popular in autonomous robotics since it can be easily updated from sensor data, adding and

(a) (b)

Figure 2.2: Representation of a volume by describing it’s surface. (a) Model of a cinderblock
(b) Underlying triangular mesh. The mesh describes the surface of the volume. Model
sourced from the gazebo model repository [Koenig, 2018]. Model license: CC-By
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clearing obstacle cells as sensor data is received. The grid may use a variety of methods

for storing the occupancy of a cell as either a simple boolean value, some measure of the

number of returns seen from a cell, or a probability of occupancy. The storage efficiency of

this method is dependent upon the homogeneity and amount of information encoded, since

the memory allocated is dependent on the extent of the area rather than the data that is

encoded.

Storage efficiency can be improved by attempting to remove unused areas. A popular ap-

proach is the use of k -dimensional trees, recursive tree structures that only create leaves

for areas that contain data, to store the occupancy information. Such data structures have

found application in robotic motion planning [Yahja et al., 1998].

2.3 Reduction of Volumes

While solids and surfaces have found application in robotics, the grid representation is the

most popular. The regular nature of a grid simplifies tasks such as mapping and motion plan-

ning. However, there is likely still too much information to allow efficient manipulation of the

data. A possible solution to the problem of complexity is to use techniques that reduce the

dimensionality of the data while still maintaining properties about relationships. Dimension-

ality reduction can be performed by multiple techniques based on the type of data available

and the property that is to be maintained.

(a) (b)

Figure 2.3: Representation of a volume using a regular grid. (a) Volume to be represented
(b) Set of grid cubes. The volume is the union of the individual cubes.
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Eight methods for performing such a reduction were examined. These methods can be

broken down into four general categories;

• Methods that are based on finding a geometric median.

• Methods based on topology.

• Methods that use clustering approaches.

• Methods that use landmarks.

These approaches are summarised in Table 2.1.

Table 2.1: Methods for reduction of volumes

Category Name Description

Geometric

Voronoi Diagram The locus of points midway be-
tween pairs of points

Medial Axis Transform Grid based method that iter-
atively removes the outermost
set of elements until the re-
mainder is thin.

Delaunay Triangulation Decomposition into triangles
where no triangle contains an-
other vertex

Reeb Graph The evolution of the level sets in
a solid.

Topological Lee et al. [Lee et al.,
1994] thinning

Grid based removal of simple
points from the outermost ele-
ments. Simple points are iden-
tified using the euler number of
the 3x3x3 neighbourhood and
connectivity tests.

Palágyi and Kuba.
[Palágyi and Kuba,
1999] thinning

Grid based removal of simple
points from the outermost ele-
ments. Simple points are iden-
tified using a set of templates.

Clustering Spectral Clustering Grouping of elements into clus-
ters based on similarity.

Landmark Topological Landmarks Construction of a graph based
on features of the environment
found while exploring.
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2.3.1 Reeb Graph

The Reeb Graph of an object is created by converting the volume containing the object into

a sequence of two-dimensional sections, segmenting the object within each section, and

comparing the connectivity of the object’s segments between these sections. The result is a

graph describing how the object changes over the sequence of segments, the simplest case

of which is to take regular slices across a single axis. However, this configuration is highly

susceptible to changes in rotation of the volume. An example of constructing a Reeb graph

can be seen in Figure 2.4.

Reeb graphs were used by Aleotti and Caselli for topological segmentation of an object

for grasp planning [Aleotti and Caselli, 2011], unlike axis based Reeb graphs they used

the evolution of the object from a central point to characterise the object, thus avoiding the

rotational dependence of axis based graphs.

Doraiswamy and Natarajan provided an efficient method for calculating such graphs from

tetrahedral meshes [Doraiswamy and Natarajan, 2009]. Finally, Garcia and Gonzalez de

Santos used a graph representation of topology from a Reeb graph to explore spaces [Garcia

and Gonzalez de Santos, 2004].

2.3.2 Voronoi Graph and the Medial Axis Transform

The Voronoi diagram is constructed from a set of points by finding the locus that is equidistant

between neighbouring points. In R2 this locus is a thin line, while in R3 it forms a surface.

In the case where a grid based metric rather than a set of points exists, the Voronoi locus

can be approximated using the medial axis transform, starting at the outside of a shape and

removing a layer at time until only a single thickness of points is left. These diagrams can

be used to decompose an area or volume into cells based on the distance from the seed or

generation points. If the seeds correspond to the exterior shell of obstacles to be avoided

then the generated cell borders can be used as paths [Rao, 1993]. But, navigation on the

Voronoi graph can be as simple as a control system that keep the robot equidistant from

obstacles while moving in the direction of its goal.
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(a) (b)

(c)

Figure 2.4: Construction of a Reeb graph, a graph representing the evolution of the level
sets, from a volume. (a) Input volume consisting of a pair of toruses (b) level sets sliced
along the z-axis (c) resultant graph.
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(a) (b) (c)

Figure 2.5: Construction of Voronoi graph and Delaunay triangulation from vertices. (a) input
vertices (b) corresponding Voronoi graph (c) corresponding Delaunay triangulation. Images
generated using the Python bindings to the Triangle library [Rufat, 2017] and Matplotlib
[Hunter, 2007].

Thrun used the Voronoi graph to plan robotic motion by generating a graph structure of the

robot’s immediate surroundings. These local segments were then merged together to form

a global graph that described the robot’s observed environment. In addition to the graph

generation, Thrun also segmented the traversable areas by the construction of critical lines

in the areas where obstacles approached most closely [Thrun, 1998].

Sud et al. used a different recursive approach, generating first and second order Voronoi di-

agrams to create a Multi-agent Navigation Graph (MaNG) [Sud et al., 2007]. This algorithm

uses both obstacles and agents as seed points to create paths for multiple agents cooperat-

ing in an area. Sud et al. reported that large numbers of agents could be routed in real time

through spaces despite the existence of dynamic obstacles.

In R3, Voronoi based algorithms have been used for identifying and characterising the

branching of blood vessels in medical imaging systems. The Vascular Modelling Toolkit

(VMTK) is a software package designed to enable the performance of such characterisation

tasks [Antiga et al., 2008]. This library can characterise the topology, branching points, and

the angle of separation of blood vessels [Antiga and Steinman, 2004]. As mentioned earlier

in the section, the Voronoi diagram of a shape in R3 is not thin, but VMTK uses the Voronoi

diagram sheets as a first step to find the centreline.

In addition to its applications in robotic planning, the Voronoi diagram has found application
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in other areas where coverage is required to be found. Bruck et al. used the medial axis

transform for designing the deployment of hierarchical sensor networks [Bruck et al., 2007].

By identifying the medial axis of a deployment area, a backbone can be designed that will

allow efficient communications with individual sensor nodes. Choset describes the use of

first and second order generalised Voronoi diagrams for sensor network design [Choset and

Burdick, 1995]. Notably this algorithm solves the issue of thinness in R3 by first generating

the Voronoi surface and then finding the Voronoi diagram of that surface.

The skeleton created by the medial axis transform is dependent on the geometry of the

object, and if the distance of each point to the exterior is known for the iteration number, a

spherical volume of that radius can be created at each element in the locus of the skeleton.

The sum of all these volumes is a reconstruction of the original volume. This technique,

referred to as the ‘power crust’ algorithm, is used to repair and reconstruct shapes from

noisy surface data [Amenta et al., 2001].

2.3.3 Other Approaches

In addition to to the previously covered approaches, two more are of interest, the Delaunay

Triangulation and Machine Learning.

Given a set of points, the Delaunay triangulation of those points is a set of triangles con-

structed such that each point is at least one vertex, and a circle constructed from the ver-

tices of any triangle does not contain any other vertex [Frey and George, 2000]. Notably,

the Delaunay triangulation is the dual of the Voronoi diagram - as such, once one has been

constructed it can be used to produce the other. Such triangulations have been proposed

as a source for vehicle motion planning, including the work by Pêtrés et al. who applied their

fast marching algorithm, a form of breadth-first search, to both regular grids and Delaunay

meshes [Pêtrès et al., 2007]. Unlike methods based on regular grids, triangulations allow

plans to be generated at multiple possible resolutions. This potentially allows more efficient

planning in sparse environments.

Clustering is a type of machine learning where points are grouped based on a property.

Brunskill et al. used the AdaBoost machine learning algorithm to cluster and segment indoor
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areas from lidar data [Brunskill et al., 2007]. This algorithm was later used as part of a

navigation system that used natural language commands to direct a robot [Kollar et al.,

2010].

2.3.4 Topological Thinning

Topological thinning operates in a similar method to the medial axis transform - removing a

layer of points at a time until only the skeleton is left. The primary difference is that before a

point is removed, it is tested to see if it is simple - a point which if removed will not change

the topology of an object. A definition of such simple points in Rn, n = [2, 3, 4] is provided

by Couprie and Bertrand [Couprie and Bertrand, 2009]. Unlike the medial axis transform,

topological thinning algorithms always produce a single pixel wide skeleton [Lee et al., 1994].

In an ideal algorithm, this skeleton is dependent only on the topology and not the geometry of

the input shape. Information on the implementation of Thinning algorithms, including figures

showing their effects, will be covered in Section 2.4.2.

Topological skeletons have been used in medical applications to find the routes through the

branching air passages in the lungs, and in unrolling sections of intestine. Kiraly et al. used

a hybrid skeletisation technique to identify the structure of the airways in patient’s lungs us-

ing data captured by a MultiDetector Computed-Tomography (MDCT) scanner [Kiraly et al.,

2004]. They demonstrated that a volumetric representation of the human bronchial tubes

can be decomposed to produce a tree representation that allows a path plan to be gener-

ated.

Cornea suggested that skeletons can be used for navigation [Cornea et al., 2006]. Skeletisa-

tion has also been used for producing seeds for the optimisation of flight paths for Unmanned

Air Vehicles (UAV) [Sun and Tsung-Ying, 2008].

If this technique is used to generate a graph based representation of the possible paths

around the obstacles, the topology of the environment could be characterised. Such a topo-

logical graph would allow paths of specified homotopy to be generated between arbitrary

points in the environment. However, there are other approaches to planning while consider-

ing the topology of a space.
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2.3.5 Topological Landmarks

In addition to the previously mentioned approaches for producing topological information

from spaces, it is also possible to produce graphs from the changes or obstacles in the

space. Wong and McDonald used a cellular decomposition based on Morse functions to

create a topological graph of the environment for efficient coverage planning. They used

this to demonstrate coverage of a space for a simulated vacuum cleaner robot [Wong and

MacDonald, 2003].

Acar and Choset developed a system for exploring the topology of a space using Morse

decompositions. They demonstrated the application of this method to practical robotics by

incrementally generating a graph representing the topological changes [Acar and Choset,

2002]. An example of such a construction can be seen in Figure 2.6. In (a), a robot is

using an alternating path to explore it’s environment from left to right. When the edge of an

obstacle is detected, a critical point is created as shown in (b). The resulting graph in (c) is

the connection of these critical points.

(a) (b)

(c)

Figure 2.6: Construction of cell decomposition using Morse decomposition. (a) Robot ex-
ploring a space using an alternating path (b) Critical points found by the robot. These points
are where the edges of obstacles are encountered. (c) Resulting graph of decomposed
cells.
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2.4 Topological Segmentation with Skeletisation for Mis-

sion Planning

Algorithms for planning and navigation such as Thrun’s have used graphs derived from the

local environment [Thrun, 1998], but the generated graph only reflects the topology or ge-

ometry of the volume that the algorithm is executed upon. If the planning system is to be

executed globally, then like Kiraly et. al. [Kiraly et al., 2004]., the thinning algorithm must be

executed on the global rather than the local volume. The Voronoi and medial axis methods

are not suited to this task due to their geometric sensitivity.

2.4.1 Proposal

What is required is an algorithm that can produce a graph that informs the planning system

based on the spatial information, while keeping a representation that is compact enough to

allow efficient planning.

Generation of such a compact representation of the spatial information could be done by

considering the topology of the space. Rather than constraining the trajectory as performed

by Bhattacharya, Likhachev and Kumar [Bhattacharya et al., 2012], the robot’s space of all

possible motions could be decomposed into cells where all possible trajectories are homo-

topic. With such a decomposition all possible trajectories within a cell, could be continuously

deformed from one to another [Hatcher, 2002], then, given the existence of an optimal tra-

jectory within a cell, finding that exact optimal trajectory can be neglected for the high level

planning tasks. Instead, the homotopic volume can be treated as an abstract object within

the domain independent planner, with the creation of an optimal trajectory left to a lower level

algorithm. This lower level algorithm can also be more efficient since it will only be required

to search the cells identified by the high level algorithm, rather than searching all possible

cells.

Since the branching of the skeleton is dependent on the topology of the space, the number

of segments will be dependent on the number of obstacles to be considered, rather than the
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geometric size of the volume or obstacles. By analysis of the skeletal locus, the topology

of the volume can be inferred: a volume with unchanging topology will produce a skeleton

that is either a single voxel or a curve containing two endpoints. The information from this

analysis can be encoded into a suitable symbolic representation, allowing scale independent

planning can be performed using a symbolic planning engine. The envisioned planning

system would thus support the creation of domains capable of supporting temporal planning

using spatial data while minimising the effect of the combinatorial explosion in complexity

that would occur with directly encoding the available spatial data into the domain.

To produce a graph that reflects the topology of the volume, the proposal is to segment the

volume in a manner similar to the planning graph. The graph is composed of nodes that

are used to represent the available working areas connected by edges that represent the

connectivity. To allow the planning graph to be used with the input volume, the volume must

be segmented into a similar group of volumes. The proposed method is;

• reduce the volume to its skeleton,

• analyse the topology of the resulting structure,

• reconstruct the volume in segmented form.

The following sections will cover the properties of these method in more detail.

2.4.2 Thinning

Thinning is a process where parts of a volume are removed until a minimal result is left

that still maintains a property of the input volume. While there are similarities in operation

between Lee et al. thinning [Lee et al., 1994], Palágyi and Kuba [Palágyi and Kuba, 1999]

thinning, and the medial axis transform - all these algorithms remove voxels from the exterior

of a volume until the result is a single voxel wide - there are significant differences in the result

and robustness of the algortithms.
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2.4.2.1 Medial Axis Transform

In the case of the medial axis transform, the property that is maintained is the distance from

the edges of the volume. The algorithm works on each cardinal direction in turn, removing

a layer of voxels from the surface of the volume in that direction. Since the process is

incremental, the result is those voxels that are equidistant along the Chebyshev distance

from the surface will be retained. The transform differs from the Voronoi Diagram in that

the loci of the Voronoi graph lie along the Euclidian distance from the seed points. Figure

2.7 shows the effect of applying the algorithm on two basic shapes. The square is reduced

to a set of lines which lie equidistant to the edges, while removing a single voxel at the

centre of the square results in a shape that contains a single loop, this shows that despite

its geometric nature, some topological information is still encoded in the graph. Figure 2.8

shows the process of generating the result over twelve iterations.

An algorithm for generating the medial axis can be seen in Algorithm 1. This algorithm uses

the convention from image processing that foreground elements are those that are set, while

background elements are those that are clear.

2.4.2.2 Thinning using the Lee, Kashyap and Chu Algorithm

The Lee et al. algorithm (”Lee skeleton”) can be considered a derivative of the medial axis

transform in that it uses the same iterative method to select foreground voxels for removal.

Before the voxels are removed they are tested to see if their removal will alter the topology

of the 3x3x3 neighbourhood that surrounds them. These tests are;

• counting the number of neighbours of the central voxel,

• calculating the Euler characteristic of the neighbourhood,

• testing the point for simplicity.

The neighbour count test simply totals the number of foreground voxels in the neighbour-

hood. If the number is two or less, the voxel is either standalone, the middle of a branch, or

an endpoint. Thus if the voxel is removed, a change in the connectivity of the volume will
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Figure 2.7: The medial axis transform of an input with (a) a square of pixels (b) the pixels
with the removal of a 3x3 section.

54



0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40 50
0

10

20

30

40

50

Figure 2.8: Evolution of the medial axis algorithm on the shape from Figure 2.7 (b). Each
sub-image represents a single iteration of the algorithm.
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Algorithm 1 Medial Axis Transform
iteration← 0
i← 0
directions← [north, south, east, west, up, down]
while number of changes > 0 do

removable← ∅ . The set of all removable voxels
for direction in directions do . once for each cardinal direction

for voxel ∈ forground do
if ( voxel[+direction] ∈ foreground) ∩ (voxel[−direction] ∈ background) then

removable← voxel ∪ removable
number of changes = number of changes+ 1

end if
end for

end for
voxels[removable]← 0 . All removable voxels are set to background simultaneously
i← i+ 1
iteration[removable]← i

end while
return voxels, iterations

occur. Voxels with three or more neighbours continue to the next test.

The second test estimates if the removal of the voxel will cause a change to the volume’s

Euler characteristic. Since the characteristic of a shape is equal to the sum of the charac-

teristics of its components, if the local neighbourhood has a characteristic of zero, removing

the voxel will not cause the characteristic of the overall shape to change its value. In the Lee

et al. algorithm this value is calculated for the 3x3x3 neighbourhood by summing the char-

acteristics of the 8 2x2x2 neighbourhoods that compose it. These individual characteristics

are calculated using a lookup table.

The final test is performed by finding the number of connected components in the neigh-

bourhood if the voxel is removed. Since the voxel is adjacent to all its neighbours, if more

than one component is found, the removal of the voxel will cause two parts of the volume to

become disconnected.

Algorithm 2 is the algorithm for performing the skeletonisation, while Algorithms 3, 4, and

5 are the tests for preserving topology. Lee et. al. uses a subiteration method for labeling

the local neighbourhood as shown in Algorithm 5. The version of this algorithm used in this

thesis uses the labeling function from the Scikit Image toolbox [scikit-image development

team, 2015a]. Figure 2.9 shows the effect of applying the algorithm to a simple box shape,
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and the same with a single voxel removed. Figure 2.10 shows the process of the algorithm

on the second shape as the iterations are performed. Both of these results notably differ

from the medial axis in that it lacks the four branches at the corners of the images.
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Figure 2.9: Skeletisation with Lee et al. of an input with (a) a square of pixels (b) the pixels
with the removal of a 3x3 section.
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Figure 2.10: Evolution of the Lee et al. algorithm on the shape from Figure 2.9 (b). Each
sub-image represents a single pass of the algorithm.
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Algorithm 2 Lee et al. Skeletonisation
while number of changes > 0 do

removable← ∅
i← 0 . The set of all removable voxels
directions← [north, south, east, west, up, down] . once for each cardinal direction
for direction ∈ directions do

for voxel ∈ forground do
if ( voxel[+direction] ∈ foreground) ∩ (voxel[−direction] ∈ background) then

if countNeighbours(voxel) > 2 then
if calcEuler(voxel) == 0 then

if isSimple(voxel) then
removable← voxel
number of changes = number of changes+ 1

end if
end if

end if
end if

end for
end for
i← i+ 1
voxels[removable]← 0 . All removable voxels are set to background simultaneously
iteration[removable]← i

end while
return voxels, iterations

Algorithm 3 countNeighbours - Count number of foreground voxels in neighbourhood
count← 0
for neighbour ∈ voxel neighbourhood do

if neighbour is foreground then
count← count+ 1

end if
end for
return count

Algorithm 4 calcEuler - Calculate the Euler number of a 3x3x3 neighbourhood using a
lookup table.
euler ← 0
lut← euler values for 2x2x2neighbourhood
for i in range 1 ..8 do . The 3x3x3 neighbourhood is treated as 8 2x2x2 neighbourhoods

euler ← euler + lut[voxel neighbours[i]]
end for
return euler
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Algorithm 5 isSimple - Find the connectivity of the voxels neighbourhood with the voxel
removed.
temp← 0
temp[voxel neighbours ∈ foreground]← 1 . set all foreground to 1.
temp[14]← 0 . clear the central voxel
count← count labels[temp]]
if count < 2 then . If the count is greater than 1, removing the voxel will cause two parts
of the skeleton to become disconnected.

return True
else

return False
end if

2.4.2.3 Thinning using the Palágyi and Kuba Algorithm

Like the Lee et al. algorithm, the Palagyi and Kuba algorithm considers a 3x3x3 neighbour-

hood to decide if removal of a voxel will cause the topology to change. Unlike both previous

algorithms, it does not consider the cardinal directions when finding candidates for removal,

but rather tests across diagonals. At each step all candidate voxels are tested for removal by

the use of a set of templates, an arrangement of voxels in the neighbourhood that matches

the template can be removed without affecting the topology of the volume.

Algorithm 6 shows an implementation of the thinning algorithm. Unlike the previous two

algorithms, voxels are removed after every sub-iteration rather than at the end. This results

in a less regular skeleton than the previous two algorithms. Figure 2.11 shows the effect of

skeletonisation on two simple shapes, while Figure 2.12 shows the evolution of thinning a

simple shape.

2.4.3 Graph Filtering

In their paper on path planning for virtual bronchoscopy, Kiraly et al. discussed the causes of

false branches, skeleton elements that are caused by imaging or processing artifacts [Kiraly

et al., 2004]. Removal of false branches produced a skeleton that more closely reflected the

underlying state of the patients lungs.

Even with an absolutely correct model of the environment, the skeletisation algorithm may

still produce branches based on geometry rather than topology. This geometric information
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Figure 2.11: Skeletisation with Palágyi and Kuba of an input volume with (a) a square of
pixels (b) the pixels with the removal of a 3x3 section.
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Figure 2.12: Evolution of the Palágyi and Kuba algorithm on the shape from Figure 2.11 (b).
Each sub-image represents a single pass of the algorithm.

Algorithm 6 Palágyi and Kuba Skeletonisation
while number of changes > 0 do . The set of all removable voxels

for i in range 1 to 12 do . once for each combination of cardinal directions
removable← ∅
for voxel in all forground voxels do

if voxel in background then
rotate neighbourhood
if template[neighbourhood] is true then

removable← voxel
number of changes = number of changes+ 1

end if
end if

end for
voxels[removable]← 0 . Removable voxels are set to background at the end of

each subiteration
end for

end while
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results in branches that terminate in endpoints. Since these endpoints do not connect more

than once to the skeleton, they can be contracted back to their junction without altering the

underlying topology of the space. Given that the skeleton is homotopic with the fundamental

group, it will contain the minimum number of loops while still maintaining topology. Since

the fundamental group contains all the branches that represent the possible alternate paths

through a space, it contains the minimal set of information required to generate a sched-

ule. Using techniques adapted from Kiraly et al., the skeleton may be filtered to produce

the fundamental group. This filtered skeleton may produce a graph that is more suited to

scheduling. The techniques that will be tested include the contraction of endpoints, the

removal of redundant nodes, and the merger of closely spaced nodes.

2.4.3.1 Contraction of Endpoints

Since singly connected nodes are trivial to identify, their removal is performed by finding the

connected branch and setting their values to background. The node at the other endpoint

has the branch removed from its list of connected components. This process is repeated until

no further removable branches are found. This is equivalent to the length-based elimination

technique used by Kiraly et al. with a minimum length of zero [Kiraly et al., 2004]

2.4.3.2 Removal of Redundant Nodes

With the removal of endpoints and connected branches, some nodes may remain that have

two branches connected, making them topologically identical to branches. These are re-

moved by picking one branch and setting the voxels of the redundant node and branch to its

identifying value.

2.4.3.3 Merger of Closely Spaced Nodes

The skeletisation algorithm can produce nodes that are connected by a branch of trivial

length. To identify and remove these nodes, a heuristic is applied that examines the thinning

distance along the length of each branch. If the minimum distance is less than the distance

63



between nodes, the nodes can be considered topologically redundant. Merger between

nodes is accomplished by marking both nodes and the connecting bridge to be a single

node with the first nodes identifier.

The resulting graph is referred to as the reduced topological graph due to its similarity to the

reduced general Voronoi graph proposed by Choset and Nagatani [Choset and Nagatani,

2001].

2.4.4 Segmentation

With the skeleton reduced to contractible segments, regions can be identified by recon-

structing a segmented volume while maintaining topology. In the proposed algorithm a com-

bination of both the critical point detection and geometric reconstruction approaches will be

used. As mentioned, the thin curve skeleton lacks the geometric information used in both

the generalised Voronoi diagrams and the power crust algorithms. However, the skeletisa-

tion algorithms used are all iterative, removing a layer of simple voxels at a time from the

border of the volume, so the iteration number required to remove a voxel can be recorded.

This thinning distance dthinning can be used as a proxy for the geometric information when

attempting a reconstruction.

As discussed in section 2.3.2, approaches that use critical lines to generate bounded re-

gions have been used by several groups. These lines can bound regions that are in R2, but

because lines cannot bound regions in R3 and higher, this approach does not generalise into

higher dimensional spaces. To find an approach that can work in such spaces, a number of

alternate methods were examined;

• region growing across the Chebyshev distance to create a watershed

• a method inspired by the ”Power Crust” spherical reconstruction - growing regions to a

distance set by dthinning

• watershed segmentation using dthinning

Detail of these algorithms will be presented next, with an evaluation of their effectiveness for

planning will be presented in the next chapter.
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2.4.4.1 Region Growing

The nodes form a set of seed points that show what parts of the volume have changing

topology. To find what parts of the foreground should be associated with each node can be

performed by finding which node is the closest to each individual graph element.

This could be performed by finding the distance for each such element to each node, but

would require a distance to be calculated for each element. If instead, the nodes are used

as a seed point, and regions are grown from these seeds, a general solution for the ele-

ments’ connectivity can be established. These regions expand until they reach the image

background or they meet at which point they form the watershed.

Three techniques were used to calculate these regions. The first was to simply find the

watershed across they Chebyshev distance. But, since the nodes were not equidistant from

the background and each other, they would sometimes completely enclose a background

feature resulting in a segment where not all trajectories were homotopic. An algorithm im-

plementing this approach is shown in Algorithm 7. This is similar to a search algorithm in

that a frontier is generated representing the next set of voxels to be expanded. Since cell

expansion is based on adjacency, this is a form of breadth-first search [Russell and Norvig,

2010].

2.4.4.2 Seeded Region Growing

The power crust algorithm mentioned in 2.3.2 uses the property of the medial axis being

the locus of maximally inscribed spheres to reconstruct a volume. In this algorithm, a set of

spheres are created along the medial axis with radii equal to the distance from the edge as

found by the iteration number of the voxels of the medial axis. This algorithm was applied

to the reconstruction of thinned skeletons. However, where the medial axis guarantees that

the locus is equidistant from the edges of a volume, the topological skeleton is not always

centered. As such, a seeding distance was calculated by finding the minimum iteration

number of the removed voxels adjacent to the skeleton. This minimial thinning distance was

used as a limit on the regions’ growth. Once all regions had reached their maximum growth
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as constrained by dthinning min, a second pass was performed to grow the regions until no

unallocated segment was left. This method, where a graph is searched for a certain number

of iterations, is a form of iterative deepening search [Russell and Norvig, 2010].

2.4.4.3 Watershed using dthinning

The third algorithm used the watershed implementation from the scikit image package to

calculate the segmentation [scikit-image development team, 2015b]. Typically, this algorithm

would use the distance transform to generate an input matrix with the gradient of the image.

Since the nodes are at the minima of the thinned image, the thinning distance dthinning was

used instead, allowing the regions to grow along the inverse of the thinning algorithm. This

method, where lowest cost cells are added first, is a form of equal-cost search [Russell and

Norvig, 2010].

2.5 Conclusion

This chapter has outlined the available methods for handling spatial data for planning, with an

emphasis on the available algorithms for compression of belief spaces into forms suitable for

planning. In particular a number of skeletisation, filtering and reconstruction methods have

been identified as candidates for effective planning graph creation.

As noted in the previous chapter however, searching for a plan with a symbolic planner can

Algorithm 7 Region growing
frontier ← seed . Initialise with the set of seed points
unallocated← foreground− seed
new frontier ← ∅
while number of changes > 0 do

number of changes← 0
for voxel in frontier do

for neighbour in (neighbourhood(voxel) ∩ unallocated) do
new frontier ← neighbour
number of changes = number of changes+ 1

end for
end for

end while return voxels
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be an expensive operation. Thus, it is important to minimise the number of states that the

planner must search to find a valid plan. The next chapter will cover the testing of these

algorithms for suitability in planning applications, while subsequent chapters will describe

integration with robotic planning systems.

Table 2.2: Summary of Selected Geometric Simplification Algorithms

Type Name Summary

Thinning
Lee et al. [Lee et al.,
1994] thinning

Grid based removal of simple points from
the outermost elements. Simple points
are identified using the euler number of
the 3x3x3 neighbourhood and connectiv-
ity tests.

Palágyi and Kuba.
[Palágyi and Kuba,
1999] thinning

Grid based removal of simple points from
the outermost elements. Simple points
are identified using a set of templates.

Medial Axis Trans-
form

Grid based method that iteratively re-
moves the outermost set of elements un-
til the remainder is thin.

Segmentation
Region Growing Grow segments from an initial population

by iteratively adding to the frontier. Simi-
lar to breadth first search

Seeded Region
Growing

Grow segments from an initial population
by iteratively adding to the frontier until a
preset iteration count is reached. Similar
to iterative deepening search

Watershed Grow segments based on order of re-
moval during thinning operation. Similar
to equal-cost search.
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Chapter 3

Evaluation of Topological Planning

3.1 Introduction

In the previous chapter, a number of potential algorithms for the creation of graphs and

segmentations for robotic planning were examined. In particular, skeletisation with the Lee

et al. [Lee et al., 1994] and Palágyi and Kuba [Palágyi and Kuba, 1999] algorithms could be

useful for belief compression in robotic planning.

To provide a useful comparison with existing approaches, the medial axis transform was

chosen due to it’s use in systems such as Powercrust [Amenta et al., 2001], and it’s similarity

to the Voronoi graph used in Thrun’s work on metric topological maps [Thrun, 1998]. In this

chapter, the effectiveness of the skeletonisation and medial axis transform algorithms at

producing data suitable for symbolic planning will be examined.

3.1.1 Implementation

Implementations of these algorithms are available from sources including Cornea [Cornea,

2005] and Homann [Homann, 2007], however a unified codebase suitable for eventual test-

ing with robotic hardware is required. For this reason all thinning and segmentation algo-

rithms were implemented as a python library. This allowed direct comparison between the

performance of different algorithms by simply altering the function calls that were performed.
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Testing of these algorithms was performed by the use of a combination of Bourne Again

SHell (BASH) [Free Software Foundation, Inc, 2018] and Python [Python Software Foun-

dation, 2018] scripts. A set of test images were first generated, then each image was pro-

cessed by a testing script and the result was saved to a text file as a set of comma separated

values. Once the testing was complete, another script file was executed that performed anal-

ysis and generated figures. Statistical analysis of data was performed using algorithms from

the NumPy mathematical core library of the SciPy ecosystem [Jones et al., 2001].

3.1.2 Evaluation of Skeletisation

While the intention is to test these algorithms on spatial data, part of the hypothesis is that the

complexity of the robotic planning problem in spatial environments can be made to scale with

the complexity of the environment rather than the size of the map being processed. To eval-

uate the effectiveness of the skeletonisation algorithm, randomly constructed input images

were created in two basic configurations: an open configuration representing an outdoor

environment with small obstacles, an example of which can be seen in Figure 3.1(a), and

a closed configuration representing an indoor environment, consisting of open spaces con-

nected by maze-like corridors generated from a script [Wingbermuehle, 2010], an example

of which can be seen in Figure 3.1(b). To illustrate the effects of thinning, Figure 3.2 shows

the skeleton generated by thinning with the Lee et al. algorithm, while Figure 3.3 shows the

skeleton generated by thinning with the Palágyi and Kuba algorithm.

At the core of the proposed algorithm is the proposition that the removal of redundant in-

formation using skeletonisation allows the production of planning graphs that scale with the

complexity of an input image rather than the number of elements it contains. To investigate

this the number of nodes, places where a skeleton branches, were investigated for a range of

sample images and skeletonisation types. This investigation was performed by generating a

400×400 pixel obstacle type image, with down-sampled images scaled to 320×320, 240×240,

160×160 and 80×80 pixels. The original and down-sampled images were then skeletonised

and their nodes counted, and the results graphed in Figure 3.4(a). The Lee skeleton was

stable through all sizes except the smallest while the Palágyi skeleton showed a small in-
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Figure 3.1: Example images of the obstacle (open) and maze (closed) type (a) An obstacle
type image. (b) A maze type image. Results of skeletonisation with these images can be
seen in Figures 3.2 and 3.3.
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Figure 3.2: Results of skeletisation of the maze image in Figure 3.1(b) using the (a) Lee et
al. algorithm (b) the Palágyi and Kuba algorithm. Grey pixels indicate obstacle, white pixels
are free space, black pixels are the resultant skeleton.
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Figure 3.3: Result of skeletisation of the obstacle image in Figure 3.1a using the (a) Lee et
al. algorithm (b) the Palágyi and Kuba algorithm. Grey pixels indicate obstacle, white pixels
are free space, black pixels are the resultant skeleton.
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creasing trend. The medial axis transform showed a much larger increase in the number of

nodes due to change in scale, with the number of nodes increasing by approximately 50%

from the smallest to largest images.

The smaller number of nodes in the Palágyi skeletonisation of the 80 × 80 sized image can

be explained by the merger of two obstacles that were separated by a single pixel band in

the source image as shown in Figures 3.5 and 3.6. With the removal of 96% of the pixels

from the original image, these were merged into a single obstacle. This lends support to the

hypothesis that the Palágyi skeleton is robust to changes in scale.

A similar approach was taken to evaluating the effect of rotation on the skeletonisation al-

gorithms. An obstacle image was created and then used to generate rotated images at 30◦,

45◦, 60◦, 90◦, 120◦, 135◦, 160◦, and 180◦. Each image was skeletonised, the nodes counted,

and a graph generated for each angle as shown in Figure 3.4(b). The Lee skeleton showed

a large variation in the number of nodes generated depending upon the angle of the rotated

image. Examination of the rotated skeletons showed that there was little variation in the

closed loops of the graph, but a significant variation was found in the number of endpoints

generated due to variations in the geometry around obstacles. The Palágyi skeleton only

had a single change in the number of nodes generated. Examination of the 90◦ and 120◦

images shown in Figures 3.7 and 3.8 shows a pair of three-way nodes in the former image

that were connected by a short branch had become joined into a single four-way node in the

latter image. This artefact is not present if the image is flipped before skeletonisation.

3.1.3 Evaluation of Topological Segmentation Algorithms

The skeletons generated are thin, as such they do not map directly to the space that the

skeleton was generated from. To allow this relationship to be found, three segment re-

construction algorithms were selected in Chapter 2. An example of the effect of such an

algorithm can be seen in Figure 3.11

As stated in the introduction, the core hypothesis of this thesis is that skeletonisation algo-

rithms can be used to infer topological information that can then be used to inform planning

algorithms. if the inferred information is based on the underlying topological information,
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Figure 3.4: Number of nodes in the scaled and rotated images with least-squares regression
lines. Original images can be seen in Figures 3.5(a) and 3.7(a). (a) Nodes vs size for scaled
images. The 80 pixel value is excluded from the lines of best fit as an outlier. (b) Nodes vs
angle for rotated images.
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Figure 3.5: Scaling artifact for the Palágyi and Kuba skeleton. (a) The original full scale
image (b) Palágyi and Kuba skeleton of the full scale image. Scaled down images are in
Figure 3.6.
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Figure 3.6: Scaling artifact for the Palágyi and Kuba skeleton. (a) image scaled down to 80
by 80 pixels. (b) Palágyi and Kuba skeleton of the scaled image. The merged obstacle is
indicated by a red square.
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Figure 3.7: Rotation artifact for the Palágyi and Kuba skeleton. (a) The 90◦ image (b) Palágyi
and Kuba skeleton of the 90◦ image. Differences in image size are to prevent rescaling due
to the source and destination images being square. The 120◦ image is visible in Figure 3.8.
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Figure 3.8: Rotation artifact for the Palágyi and Kuba skeleton. (a) the 120◦ image. (b)
Palágyi and Kuba skeleton of the 120◦ image. Differences in image size are to prevent
rescaling due to the source and destination images being square. Artifact is indicated by a
red square in the 120◦ image.
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Figure 3.9: Lee and Medial skeletons generated from the rotation images in Figure 3.7. (a)
Lee skeleton of the 90◦ image. (b) Medial axis skeleton of the 90◦ image.
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Figure 3.10: Lee and Medial skeletons generated from the rotation images in Figures 3.7
and 3.8. (a) Lee skeleton of the 120◦ image. (b) Medial axis skeleton of the 120◦ image.
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Figure 3.11: Reconstruction of segments from Lee et al. skeleton using seeded segmenta-
tion. Input is the three obstacle image in Figure 3.1a. Greycale areas are the reconstructed
segments.
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then the inferred topological elements should be themselves topologically simple - their fun-

damental group must not contain any loops. Such a shape can be contracted to a single

voxel while maintaining homotopy.

To evaluate the proportion of segments that were homotopic to a single voxel, twenty ob-

stacle images were generated with sizes randomly selected between one hundred and four

hundred pixels on a side. Each image contains between 10 and 30 randomly placed circular

obstacles. Twenty further maze images were generated with sizes between 100 × 100 and

400× 400 pixels.

These images were skeletised using both the Lee and the Palágyi algorithms, with the to-

tal number of generated nodes shown in Table 3.1. These images were segmented with

each of the algorithms and checked for constant homotopy. A segment was declared as

non-contractible if a closed trajectory could be constructed within a cell that could not be

collapsed to a single voxel.

The number of non-homotopic segments was identified for each image type, skeletisation

algorithm and segmentation type and the result shown in Table 3.2. At most, 3% of recon-

structed segments were non-homotopic for all skeletons and segmentation, with the maze

type images consistently producing lower numbers of non-homotopic segments. For the

maze type images, the Lee skeleton produced a lower proportion of non-homotopic seg-

ments than the Palágyi skeleton. In Section 2.4.3, the use of filtering techniques on the

skeleton to make it more closely approach the fundamental group was discussed. To evalu-

ate if node filtering can reduce the number of nodes within the graph, these techniques were

applied to the obstacle and maze type images. The results of this operation are shown in

Table 3.1: Number of generated nodes for obstacle and maze type images. Examples of an
obstacle style image can be seen in Figure 3.1(a), and a maze style image can be seen in
Figure 3.1(b). Total number of trials performed, n = 40.

Skeletisation Number of nodes

Obstacle Maze

Lee et al. 582 9498

Palágyi and Kuba 521 9481

Medial Axis Transform 842 32611
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Table 3.2: Proportion of non-homotopic segments for all obstacle and maze trials. Examples
of an obstacle style image can be seen in Figure 3.1(a), and a maze style image can be seen
in Figure 3.1(b). Total number of trials performed, n = 53535.

Skeletisation Segmentation
Proportion of non-
homotopic segments

Obstacle Maze

Lee et al.
Region Growing 0.034 0.013

Seeded 0.000 0.006

Watershed 0.002 0.000

Palágyi and Kuba
Region Growing 0.026 0.010

Seeded 0.019 0.005

Watershed 0.000 0.001

Medial Axis Transform
Region Growing 0.017 0.000

Seeded 0.005 0.000

Watershed 0.0 0.000

Table 3.3. All of the skeleton types exhibited a decrease in the number of nodes, with the

medial axis skeleton on the maze image demonstrating a sixteen-fold reduction. Segmenta-

tion with the unfiltered skeletons exhibited only a small number of non-homotopic segments.

To evaluate if this property was maintained in the filtered skeleton, the segmentation pro-

cess was repeated with the filtered skeleton. A summary of the proportion of homotopy

can be seen in Table 3.4. With filtering applied, the number of non-homotopic segments

increased, while the total number of segments decreased resulting in an overall increase in

the proportion of non-homotopic segments.

Table 3.3: Number of generated nodes with skeleton filtering, for obstacle and maze type
images. Examples of an obstacle style image can be seen in Figure 3.1(a), and a maze
style image can be seen in Figure 3.1(b). Total number of trials performed, n = 40.

Skeletisation
Number of nodes

Obstacle Maze

Lee et al. 309 1178

Palágyi and Kuba 273 1309

Medial Axis Transform 475 1945
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Table 3.4: Proportion of non-homotopic segments for all obstacle and maze trials with skele-
ton filtering. Examples of an obstacle style image can be seen in Figure 3.1(a), and a maze
style image can be seen in Figure 3.1(b). Total number of trials performed, n = 5489.

Skeletisation Segmentation
Proportion of non-
homotopic segments

Obstacle Maze

Lee et al.
Region Growing 0.055 0.181

Seeded 0.000 0.104

Watershed 0.000 0.002

Palágyi and Kuba
Region Growing 0.055 0.144

Seeded 0.037 0.088

Watershed 0.000 0.015

Medial Axis Transform
Region Growing 0.034 0.085

Seeded 0.013 0.074

Watershed 0.002 0.033

3.1.4 Evaluation of Spatial Planning

As discussed earlier, the intent of the topological graph creation is to produce a compressed

representation of the input topology suitable for planning since an efficient belief compres-

sion method would not be useful if it did not allow the planner to make decisions about the

environment.

The planning effectiveness of the spatial graph was evaluated by the construction of an

experiment where the sequence of nodes to travel between each possible combination of

nodes was found. For each pair of nodes a plan was generated from the planning graph con-

taining the sequence of nodes to traverse. The shortest distance between the nodes across

the volume was evaluated using Scikit-images’ [scikit-image development team, 2015a]

route through array algorithm while constrained to lie within the segments in the plan. This

distance can be compared with the distance calculated with the path without segment con-

straints, thus giving a relative measure of the increase in calculated distance when using the

constrained trajectory. If the planned sequence of segment traversals is optimal, that is the

choice of segment traversals contains a path equal to the least-cost traversal between start

and goal positions, then the length of the trajectory generated through these segments will

be equal in cost to a path generated though the unconstrained map. An example of such a
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path test can be seen in Figure 3.12. In this reconstruction, the path generated through the

segments was not optimal.

By evaluating these paired distances for a significant number of possible paths, the distance

from optimality of the planning system can be evaluated. Table 3.5 shows the mean lengths

of the constrained paths as normalised against the optimal paths. These values approach

unity, but as shown in Figure 3.13, many non-optimal trajectories are still close to optimal.

To more clearly show how the length of the non-optimal paths are distributed, the results

were broken up into two sections. Table 3.6 contains the proportion of trajectories that were

optimal as generated for all skeleton and segmentation types grouped by the image type,

while a histogram of residuals was calculated for all trajectories that were not optimal. The

Palágyi skeleton consistently produced the highest proportion of optimal trajectories across

all image and segmentation types. When grouped by segmentation method, the watershed

algorithm produced the most optimal trajectories for maze type images, while region growing

Figure 3.12: Test of path generation through plan segments. Black circles are obstacles,
light area is the set of plan segments. Lighter path is constrained to pass through segments,
darker path is unconstrained.
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produced the most for obstacle type images. The seeded segmentation produced results

that were in the middle of the other types for all image types and skeletons.

The residuals were calculated by finding the difference between the distance of each sub-

optimal trajectory from the optimal and normalising the result. The residuals were then

plotted as histograms grouped by image type, skeleton and segmentation. The resulting his-

Table 3.5: Mean of normalised path length for all obstacle and maze trials. Examples of an
obstacle style image can be seen in Figure 3.1(a), and a maze style image can be seen in
Figure 3.1(b). Total number of trials performed, n = 254651.

Skeletisation Segmentation
Mean of constrained
path length normalised
to optimal path length.

Obstacle Maze

Lee et al.
Region Growing 1.012 1.018

Seeded 1.012 1.017

Watershed 1.014 1.020

Palágyi and Kuba
Region Growing 1.007 1.012

Seeded 1.008 1.011

Watershed 1.012 1.011

Medial Axis Transform
Region Growing 1.013 1.023

Seeded 1.012 1.021

Watershed 1.011 1.014

Table 3.6: Proportion of optimal trajectories for obstacle and maze style images. Examples
of an obstacle style image can be seen in Figure 3.1(a), and a maze style image can be
seen in Figure 3.1(b). Total number of trials performed, n = 254651.

Skeletisation Segmentation
Proportion of
optimal trajecto-
ries

Obstacle Maze

Lee et al.
Region Growing 0.80 0.43

Seeded 0.79 0.45

Watershed 0.79 0.45

Palágyi and Kuba
Region Growing 0.85 0.51

Seeded 0.84 0.56

Watershed 0.80 0.62

Medial Axis Transform
Region Growing 0.76 0.31

Seeded 0.78 0.32

Watershed 0.81 0.50
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tograms can be found in Figures 3.14, 3.15, and 3.16 for obstacle type images and Figures

3.17, 3.18 and 3.19 for maze type images. These figures show that for sub-optimal planned

trajectories, the distance that the planned trajectory exceeds the optimal trajectory follows

a distribution that is clustered close to the origin. The mean and variance of these excess

distances were found, with the lowest mean distance being 3.3% longer than optimal for the

obstacle type image with the Palágyi skeleton and region growing segmentation, and 2.6%

longer than optimal for the maze image and the seeded segmentation. For all conditions,

the Palágyi and Kuba algorithm did not produce a mean path length that was greater than

2% longer than optimal.
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Figure 3.14: Histogram of relative distance in non-optimal paths for Lee et al. skeleton and
region growing segmentation. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All maze
images. 89
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Figure 3.15: Histogram of relative distance in non-optimal paths for Lee et al. skeleton
and seeded segmentation. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All maze
images. 90
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Figure 3.16: Histogram of relative distance in non-optimal paths for Lee et al. skeleton and
watershed segmentation. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All maze
images. 91
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Figure 3.17: Histogram of relative distance in non-optimal paths for Palágyi and Kuba skele-
ton, and region growing segmentation. Red line indicates the mean of the non-optimal paths.
Shaded portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All
maze images. 92
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Figure 3.18: Histogram of relative distance in non-optimal paths for Palágyi and Kuba skele-
ton, and seeded segmentation. Red line indicates the mean of the non-optimal paths.
Shaded portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All
maze images. 93



1.00 1.05 1.10 1.15 1.20
Relative distance

0

50

100

150

200

250

300

350

400

N
u
m
b
e
r 
o
f 
tr
a
je
ct
o
ri
e
s

µ=1. 055
σ=0. 05
n=6586

(a)

1.00 1.05 1.10 1.15 1.20
Relative distance

0

500

1000

1500

2000

N
u
m
b
e
r 
o
f 
tr
a
je
ct
o
ri
e
s

µ=1. 029
σ=0. 041
n=17967

(b)

Figure 3.19: Histogram of relative distance in non-optimal paths for Palágyi and Kuba skele-
ton, and seeded segmentation. Red line indicates the mean of the non-optimal paths.
Shaded portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All
maze images. 94
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Figure 3.20: Histogram of relative distance in non-optimal paths for medial axis transform
and region growing segmentation. Red line indicates the mean of the non-optimal paths.
Shaded portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All
maze images. 95
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Figure 3.21: Histogram of relative distance in non-optimal paths for medial axis transform
and seeded segmentation. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All maze
images. 96
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Figure 3.22: Histogram of relative distance in non-optimal paths for medial axis transform
and watershed segmentation. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. (a) All obstacle images. (b) All maze
images. 97



3.2 Planning Efficiency in Real World Data

The synthetic examples in the previous sections demonstrated the properties of the skeleti-

sation algorithms, but testing for a real-world system should include real-world data. Natu-

rally occurring spaces are not constrained to appear as geometric shapes. An example of

this is the multi-beam bathymetric survey performed of Apra Harbour in Guam. This area in-

cludes a number of features including shoals, a drydock and several wrecks [Pacific Islands

Benthic Habitat Mapping Center (PIBHMC) et al., 2010]. Human actions have imposed reg-

ular shapes upon the natural environment, but the border of the harbour area is still irregular.

Some of the shoals are regular in shape, but the western shoals are irregular.

A map with 1m grid cells generated from the Apra Harbour map can be seen in Figure 3.23.

This bathymetry data was converted into a pair of images, one covering the entire harbour

and another centered on the central shoal area east of the dry dock. Figure 3.24 shows

the area based on the harbour bathymetry while Figures 3.25 to 3.27 show the skeletisa-

tions of this image. Figure 3.28 shows an extract of the data centered around the shoals.

Skeletisations of this image can be seen in Figures 3.29 to 3.31. As shown in Table 3.7, the

Palágyi skeleton produced a smaller number of nodes. As with the earlier maze and obsta-

cle images, the number of optimal trajectories were tabulated and can be seen in Table 3.8.

Notably the Palágyi skeleton produced optimal trajectories for all trials on the shoals image

while still outperforming all other skeleton types for the full harbour image. Histograms of

the residual distances generated by the Lee and medial skeletons for the shoals image can

be seen in Figures 3.32 to 3.35, while the residuals for the full Apra Harbour image can be

seen in Figures 3.36 to 3.41.

All skeletisation and segmentation types produced good results for the Apra shoals image,

since this contains obstacles that are all close to the centreline. The larger Apra image was

more challenging to the algorithms due to containing a number of small obstacles close to

the coastline. The Palágyi and Kuba algorithm outperformed the other skeletisation algo-

rithms in this situation, producing optimal trajectories more than half the time for all segmen-

tation types.
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Table 3.7: Number of generated nodes for the Apra Harbour and Apra shoals maps. Total
number of trials performed, n = 2.

Skeletisation Number of nodes

Apra Harbour Apra shoals

Lee et al. 386 57

Palágyi and Kuba 114 10

Medial Axis Transform 411 70

Table 3.8: Proportion of optimal trajectories for Apra Harbour extract. Total number of trials
performed, n = 14006.

Skeletisation Segmentation
Proportion of optimal trajecto-
ries

Apra Harbour Apra shoals

Lee et al.
Region Growing 0.21 0.39

Seeded 0.31 0.48

Watershed 0.45 0.63

Palágyi and Kuba
Region Growing 0.51 1.0

Seeded 0.53 1.0

Watershed 0.63 1.0

Medial Axis Transform
Region Growing 0.17 0.38

Seeded 0.20 0.39

Watershed 0.47 0.68

100



0 200 400 600 800 1000 1200
0

200

400

600

800

Figure 3.24: Input image of Apra harbour. Dataset was generated from Bathymetry data
shown in Figure 3.23.
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Figure 3.25: Skeletisation of Apra harbour image from Figure 3.24 using the Lee et al.
algorithm.
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Figure 3.26: Skeletisation of Apra harbour image from Figure 3.24 using the Palágyi and
Kuba algorithm
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Figure 3.27: Skeletisation of Apra harbour image from Figure 3.24 using the medial axis
transform algorithm.
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Figure 3.28: Segment of Apra harbour with the four central shoals east of the drydock area.
This area is marked in red in Figure 3.23

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Figure 3.29: Skeletisation of Apra shoals image from Figure 3.28 using the Lee et al. algo-
rithm.
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Figure 3.30: Skeletisation of Apra shoals image from Figure 3.28 using the Palágyi and Kuba
algorithm.
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Figure 3.31: Skeletisation of Apra shoals image from Figure 3.28 using the medial axis
transform algorithm.
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Figure 3.32: Histogram of relative distance in non-optimal paths for Lee and medial skeletons
and the Apra Harbour shoals. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. No residuals are included for the Palágyi
skeleton since all paths were optimal. (a) Lee et. al. skeleton, region growing segmentation.
(b) Lee et. al. skeleton, seeded segmentation.
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Figure 3.33: Histogram of relative distance in non-optimal paths for Lee et. al. skeleton
and the Apra Harbour shoals using watershed segmentation. Red line indicates the mean
of the non-optimal paths. Shaded portion is +/- one standard deviation from the mean. No
residuals are included for the Palágyi skeleton since all paths were optimal.
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Figure 3.34: Histogram of relative distance in non-optimal paths for Lee and medial skeletons
and the Apra Harbour shoals. Red line indicates the mean of the non-optimal paths. Shaded
portion is +/- one standard deviation from the mean. No residuals are included for the
Palágyi skeleton since all paths were optimal. (a) Medial axis transform, region growing
segmentation. (b) Medial axis transform, seeded segmentation.
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Figure 3.35: Histogram of relative distance in non-optimal paths for medial axis transform
and the Apra Harbour shoals using watershed segmentation. Red line indicates the mean
of the non-optimal paths. Shaded portion is +/- one standard deviation from the mean. No
residuals are included for the Palágyi skeleton since all paths were optimal.
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Figure 3.36: Histogram of relative distance in non-optimal paths for all skeletons in the Apra
Harbour image. Red line indicates the mean of the non-optimal paths. Shaded portion
is +/- one standard deviation from the mean. (a) Lee et. al. skeleton, region growing
segmentation. (b) Lee et. al. skeleton, seeded segmentation.

109



1.00 1.05 1.10 1.15 1.20
Relative distance

0

20

40

60

80

100

120

140

160

180

N
u
m
b
e
r 
o
f 
tr
a
je
ct
o
ri
e
s

µ=1. 026
σ=0. 036
n=914

Figure 3.37: Histogram of relative distance in non-optimal paths for the Apra Harbour image
using the Lee et. al. skeleton and watershed segmentation. Red line indicates the mean of
the non-optimal paths. Shaded portion is +/- one standard deviation from the mean.
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Figure 3.38: Histogram of relative distance in non-optimal paths for the Apra Harbour image.
Red line indicates the mean of the non-optimal paths. Shaded portion is +/- one standard
deviation from the mean. (a) Palágyi and Kuba skeleton, region growing segmentation (b)
Palágyi and Kuba skeleton, seeded segmentation.
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Figure 3.39: Histogram of relative distance in non-optimal paths for the Apra Harbour image
using the Palágyi and Kuba skeleton and watershed segmentation. Red line indicates the
mean of the non-optimal paths. Shaded portion is +/- one standard deviation from the mean.
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Figure 3.40: Histogram of relative distance in non-optimal paths for the Apra Harbour image.
Red line indicates the mean of the non-optimal paths. Shaded portion is +/- one standard
deviation from the mean. (a) Medial axis transform, region growing segmentation. (b) Medial
axis transform, seeded segmentation.
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Figure 3.41: Histogram of relative distance in non-optimal paths for the Apra Harbour image
using the Medial axis transform and watershed segmentation. Red line indicates the mean
of the non-optimal paths. Shaded portion is +/- one standard deviation from the mean.
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3.3 Conclusion

This chapter has demonstrated that the algorithms described in the previous chapter can

produce simplified graphs representing the complex spatial data contained in maps and

images. These graphs can then be used to make high-level path planning decisions with the

intention that they could then be integrated into a mission planning system. A summary of

the properties of these algorithms can be seen in Table 3.9, while Table 3.10 identifies which

form of segmentation produced the highest proportion of optimal trajectories.

The complexity of the graph produced by skeletisation with the Palágyi and Kuba algorithm

has been shown to be affected only slightly by scale and rotation, while maintaining homo-

topic segmentation for at least 95% of the segments tested. This algorithm has also been

shown to produce trajectories that are homotopic and optimal up to 85% of the time. As

such, the individual trajectories generated by the use of the planner may be less efficient

than performing a trajectory search on the entire volume for each action, but the normalised

mean length of these trajectories was found to be no more than 2% of the optimal length.

This excess distance is sufficiently small that it could be considered negligible in most cases.

The problem can thus be reduced to the point where it would be practical to use this as a

pre-processing system for symbolic planning based executives.

Skeleton filtering can further lower the complexity of the skeleton, but increases the propor-

tion of non-homotopic segments. This further decrease in complexity does not justify the

increase in segmentation errors.

The next chapter will examine the ability of domain independent planning systems to inte-

grate path generation with mission planning tasks.
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Table 3.9: Comparison of Spatial Compression Algorithms

Lee at al. Palágyi and Kuba Medial Axis Trans-
form

Method of
operation

Iterative removal of
non-simple border
elements

Iterative removal
of border elements
matching templates

Iterative removal of
border elements

Sensitivity to
Geometry

Some Sensitivity Invariant Sensitive

Sensitivity to
Rotation

Some Sensitivity Invariant when θ 6=
120◦

Sensitive

Sensitivity to
Scale

Some Sensitivity Invariant when
scale > 20%

Sensitive

Table 3.10: Segmentation Method Resulting in Highest Proportion of Optimal Trajectories

Map type Lee at al. Palágyi and Kuba Medial Axis Trans-
form

Obstacle Region Growing Region Growing Watershed

Maze Seeded and Water-
shed

Watershed Watershed

Apra Harbour Watershed Watershed Watershed

Apra shoals Watershed Region Growing,
Seeded, and Water-
shed

Watershed
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Chapter 4

Evaluation of Spatial Planning

Performance Using a Simulated

Environment

4.1 Introduction

In the previous chapter, a method for performing the compression of a robot’s belief space

was covered. This chapter will cover the implementation of a planning system that utilises

the Problem Domain Description Language (PDDL) [McDermott et al., 1998].

Domain independent planning systems are extremely flexible, but this flexibility does result

in lower efficiency when compared to a domain specific planning system. This chapter will

examine the suitability and scalability of a domain independent planner at performing spatial

planning tasks using a synthetic task involving maritime rescue based on Project ICARUS

[De Cubber et al., 2013], discussed in Section 1.4.
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4.2 The Problem Domain Description Language

Before a plan can be generated, a method of describing the problem domain is required. As

covered in Section 1.5.4, arguably the most influential problem description language is the

Problem Domain Decription Language (PDDL). Due to the broad support of PDDL, it can

provide an interface that is supported by multiple planning systems. Thus, the language can

be used as a way of abstracting the planner from the system. This allows the profiling and

testing of algorithms and planners to find which ones meet the requirements of the project.

The original dialects of the PDDL language could only support textual predicates and did

not support numerical variables which would prevent the encoding of non-unity action costs.

PDDL version 2.1 included support for numerical fluents, predicates that could represent

numerical values in a planning system. In the International Planning Competition (IPC),

a specific section was set aside for the optimisation of PDDL plans. Using the new PDDL

requirement called ‘:action-costs’ adds support for a specific configuration of numerical fluent

designed to support plan optimisation using the ‘:metric’ stanza [Do et al., 2009]. In this

chapter the effectiveness of this form of plan optimisation will be evaluated for the task of

spatial planning.

4.2.1 Experimental Evaluation of Optimisation in Symbolic Planners

Three planners were initially considered due to their current usage in ROS planning systems,

including the Popf-2 planner [Coles et al., 2011] used in ROSPLAN [Cashmore et al., 2015],

the Fast Downward planner [Helmert et al., 2014], and the FF planner [Hoffmann, 2000] both

packaged in the jsk 3rdparty package [Okada and Ueda, 2016] 5. The FF-X version of the

FF planner was considered due to its support of PDDL 2.1, but while it did support numerical

fluents, it did not support the ”:action-costs” requirement. Testing was thus concentrated on

only the first two planners.

Fast Downward is described by Fawcett et al. as a planning framework [Fawcett et al., 2011]

rather than a singular planner. It uses a plugin based architecture for both search algorithms
5The authors listed in this citation are the primary listed contributors on the jsk 3rdparty github page.
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and heuristics, allowing a number of algorithms to be supported with the planner. The Fast

Downwards project website provides six example configurations6 of search and heuristics

that can be performed with the planner [Helmert et al., 2014]. These combinations are

collated in Table 4.1. This table also includes citations where available for the heuristic

types, and a short name that will be used to refer to that combination of search and heuristic

in the remainder of this document. As recommended by the authors7, the Fast Downward

planner was built as a 32-bit executable, with the corresponding limits to memory size. All

trials were made on an Intel Core i7-4700HQ processor clocked at 2.40GHz. Despite the

single threaded nature of all the tested planners, only a single benchmark was run at a time

to prevent the CPUs turbo boost feature or cache size altering the execution time. Planners

were executed sequentially on the same domain and task files, so file caching may alter the

results. However, unlike a competition domain, the task files are being written to disk before

being executed, as such they should already be present in the file cache.

These planners all work by constructing a graph of potential future states. A successor

function is used to select states that could be added to the graph - the frontier. The search

algorithm will continue to add states until the goal is reached.

Since the majority of actions will be movements across a regular grid, it is expected that the

branching factor, the number of possible successor states from each state, will be four for

most states.

The next sections will detail the planners, search types and heuristics listed in Table 4.1.

4.2.1.1 A* search

The A* search algorithm [Hart et al., 1968] selects states to expand from the frontier, the

set of possible successor states under consideration, based on the cost to reach the current

state g(n), and the value of a heuristic h(n) estimating the cost to reach the goal. A* uses a

metric for expanding a node equal to the cost of reaching that node plus the heuristic cost.

f(n) = g(n) + h(n) (4.1)
6These sample configurations can be found on the Fast Downward webpage http://www.fast-downward.org/
7Planner usage for Fast Downward can be found on http://www.fast-downward.org/PlannerUsage

119



Table 4.1: Combinations of search and heuristic types used with the Fast Downward planner

Search Heuristic short name
Lazy Greedy Fast Forward [Hoffmann and Nebel,

2001]
FF

Lazy Greedy Context-Enhanced Additive Heuristic
[Eyerich et al., 2012]

CEA

Lazy Greedy Combined Fast Forward and Context-
Enhanced Additive Heuristic

Dual

A* Landmark-Cut [Pommerening et al.,
2014]

LM-cut

A* Blind Blind
A* Pattern Database [Haslum et al., 2007] iPDB

The selected state is the one that satisfies the relationship;

min
n∈frontier

f(n) (4.2)

If the heuristic is optimal, A* will grow in the direction of the goal, but a sub-optimal heuris-

tic may result in the search expanding nodes that are not required for the solution. If the

heuristic is admissable, it will not overestimate the cost of reaching the goal from the current

state.

The use of A* may be useful for the task of planning in a spatial environment, since the

number of states that can be expanded will be relatively large. Since most of these states

will be spatial states representing the path of the vehicle, an optimal search will leave the

majority unexpanded.

4.2.1.2 Lazy Greedy search

Lazy refers to the deferred heuristic calculation used by Fast Downward. This algorithm

does not calculate the heuristics for all possible states, but only calculates h(n) when a state

is added to the graph. Unlike A* which selects from the frontier, the greedy search selects

already expanded nodes from the graph that have the lowest heuristic cost;

min
n∈graph

h(n) (4.3)

All successor nodes of the node are then expanded [Helmert, 2006].
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The Lazy Greedy search will attempt to guide the growth of the graph towards the goal

as represented by the heuristic, but since the cost of the reaching the current state is not

included in the minimisation operation, the path will not be restricted to the lowest plan exe-

cution cost. The lazy component of the search is identified by Helmert as an attempt to op-

timise search in tasks that have a large branching factor and expensive heuristics [Helmert,

2006]. In the spatial search domain with its low branching factor, this is not likely to improve

the effectiveness of the search.

4.2.1.3 Fast Forward Heuristic

Developed for the Fast Forward planner, the Fast Forward heuristic is a form of search

through a relaxed problem, a simplification of the planning task where the preconditions of

an action are ignored [Hoffmann and Nebel, 2001]. Bylander noted that the complexity of the

plan satisfication problem increases with the number of preconditions, a search with no pre-

conditions and multiple postconditions was in polynomial space, while the same with a single

precondition was PSPACE-complete [Bylander, 1994]. Thus, by removing preconditions the

search task should be greatly simplified.

4.2.1.4 Context-Enhanced Additive Heuristic

The Context-Enhanced Additive heuristic combines the effect of the Causal Graph heuristic

and the Additive heuristic by performing a search from the goal state back to the current

state [Eyerich et al., 2012]. This search produces an estimate of the number of steps that

will be required to reach the goal.

4.2.1.5 Dual Heuristic

The Dual heuristic uses Fast Forward’s ability to use plugins to combine the results of multi-

ple heuristics. In this configuration, the Lazy Greedy search will alternate the use of the Fast

Forward and Context-Enhanced Additive heuristics [Helmert et al., 2014].
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4.2.1.6 Landmark-Cut Heuristic

The Landmark-Cut Heuristic uses a method based on a justification graph which is a relax-

ation of the domain. The heuristic is calculated by taking this graph and finding landmarks

states that are common across all possible plans that are also cuts states where the removal

will result in disconnections between sets [Helmert and Domshlak, 2009].

Landmark-Cut may improve the efficiency of spatial planning since in more complex domains

discussed later in this chapter, there are a number of actions that need to be performed that

are separated by many possible paths. These individual actions constitute landmarks that

could be detected by the system.

4.2.1.7 Blind Heuristic

Blind is a simple heuristic which assigns zero to a goal state, or the cheapest action cost in

non-goal states [Fawcett et al., 2011]. When combined with the A* algorithm and with unit

action costs, the effect would be that the lowest cost path would always be expanded. Since

this would not be guided towards the goal state, many more states would be expanded than

necessary. However, the final path can be expected to be the lowest cost.

Blind with A* appears to be a solution that is low in CPU usage compared to relaxation

based heuristics, and will produce efficient plans. However the domain must be a suitable

one where a solution can be found before the planner fails due to memory exhaustion. With

its low branching factor, the spatial domain could be suitable for this planner and heuristic

combination.

4.2.1.8 Pattern Database Heuristic

The Pattern Database Heuristic uses the concept of patterns-small sections of the planning

problem that can be isolated and solved exhaustively. These patterns are then stored in a

database and accessed to create the cost estimate to reach the goal. According to Haslum

et al., the difficulty in developing such an heuristic is the selection of the set of patterns to
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be stored. Their implementation of the pattern database heuristic uses an algorithm that

generates the pattern database from the problem instance [Haslum et al., 2007].

4.2.1.9 Popf-2

The Popf-2 planner is a partial-order chaining planner developed for the task of planning

temporal environments [Coles et al., 2011]. A partial-order planner is one that finds actions

that are required to be performed, but does not order them unless constrained by precondi-

tions. Barrett and Weld observed that such an approach can have significant performance

improvements in some domains [Barrett and Weld, 1994].

4.2.1.10 Summary

This set of planners, search algorithms and heuristics covers algorithms for both low and

high branching problems, together with three of the four families of heuristics, delete re-

laxation, abstraction, and landmarks, identified by Helmet and Domshlak in their paper on

the Landmark Cut heuristic [Helmert and Domshlak, 2011]. The next sections will cover

a number of experiments of increasing complexity covering simple path-finding in a spatial

environment, path-finding in an environment with asymmetric action costs, the scheduling

of actions to minimise plan cost, and scheduling of actions under preconditions. These will

allow the evaluation of the efficiency of these systems at the generation of plans, and the

responsiveness of the planning systems. Measuring the duration of plan generation is of

interest since in an off-line planning system, plan execution cannot begin until the plan is

complete. As such, the time between the planning operation being requested and the plan

being available will impact on the repsonse time of the overall planning system.

Using these planning runs, a combination of planner, search algorithm and heuristic can be

selected for the task of mission planning with spatial information.
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4.2.2 Pathfinding

One of the key research questions of this thesis is that if a domain-independent symbolic

planner can combine mission planning with high-level path planning? The previous section

has introduced seven possible combinations of search and planning system, six different

configurations of the Fast Downward planner as listed in Table 4.1, and the Popf-2 planner.

The remainder of this chapter will evaluate the use of these planning combinations by the

use of a synthetic spatial environment. Due to space restrictions, full detail of the PDDL

code used will not be included, however information on the predicates and actions used can

be found in Appendix C. Similarly, for spacing some figures have been moved to Appendix

D.

The base spatial environment was designed as a grid with each grid square representing

a possible location for an Autonomous Surface Vessel (ASV). Such an environment does

have advantages, the scale of the planning problem could be varied by altering the size of

the grid. By programmatic creation of the domain and task file, a planning problem can

thus be created with a variable number of nodes to be searched. By profiling the time and

effectiveness of plan creation, an estimate of the performance and scalability of the planners

could be developed. This can be used to inform the potential applicability of spatial planning

with domain independent planners.

To encode this space as an PDDL domain, the vehicle, each possible position and the

connections between the spatial locations were declared as objects of type entity, node

and edge respectively. To store the relations between entities, nodes, and edges, a pair of

predicates were declared, at, declaring that an entity was located at a node, and accessible

which specified that a node was accessible from another node via a particular edge. To

allow an entity to change it’s node, a move action was declared, allowing an entity to change

the node it was at as long as the origin and destination nodes had an accessible predicate,

the code for which can be seen in Figure C.1. The symbolic planning example in Appendix

B uses this set of actions and predicates.

To perform a trial, randomly selected start and end positions were generated, and the plan-

ner tasked with generating a sequence of actions that would take the ASV from the start to
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the finish locations. Randomly placed obstacles prevented the ASV from traversing a node.

Unlike buoys and marks as used in the International Regulations for Prevention of Collisions

at Sea (COLREGS), there is no constraint for the vehicles path to either between a set of

buoys or to a particular side or direction. These obstacles merely prevent the trivial solution

of the path planning problem.

Conversion of this domain into a PDDL file suitable for planning wwas performed using a

library called pddl libs developed for this thesis. As described in Appendix C, this library

has the ability to generated PDDL domain and task files from both pre-defined files or using

function calls. This functionality was used to generate a PDDL task file using that encoded

the nodes, their accessibility, and the initial and goal positions of the ASV. This task file is

then used with each planner configuration, ensuring that all planning results were directly

compatible. To explore the possible effects of different spatial configurations, 100 trials were

generated for each possible condition of the experiment.

The plan execution costs, planning time, and memory usage of the planners have been

visualised using notched boxplots created using the matplotlib library [Hunter, 2007]. The

box of these plots extends from the lower to upper quartiles with a line at the median. As

such, half of the readings will lie within the box. The whiskers extend to the range of the

dataset, with outliers marked as crosses. The boxplots also have a notch, a narrowing of

the box the extent of which is calculated using a Gaussian-based asymptotic approximation.

Differences between the medians of boxplots should only be considered significant if their

notches do not overlap. Matplotlib cites McGill et al. [McGill et al., 1978] and Kendall and

Stuart [Kendall and Stuart, 1967] as the source of the notch creation algorithm.

Later experiments will extend this methodology with variable actions costs, multiple action

types and preconditions.

The experiment was performed five hundred and three times on an m × m array - one

hundred times8 each for array sizes m = 10, 20, 30, 40, 50. In each test run the location of

the obstacles, start position of the ASV, and the goal position were randomised, then each

planner, heuristic and search combination was executed. This arrangement ensured that the
8Extra trials were performed on the m = 10 case as part of the development process. These have been left

in to avoid biasing the result.

125



results for each planning combination were directly comparable, each being executed with

an identical problem configuration.

The result of each individual planning run was checked to ensure that a valid plan was

produced, and if a planner failed to produce a result, all results for that randomly generated

planning problem were discarded. This prevents the case of a planner receiving an artificially

lower plan cost due to being unable to plan more complex environments.

When an array size of m = 60 was attempted, the Fast Downward planner failed to correctly

validate the plan, throwing an exception while allocating an associative map container during

the checking of the object types. The failure in Fast Downward may be caused by the number

of objects in the planning problem simply exceeding the ability of the map object to contain

them. With m = 60, the pathfinding task will include 3,590 spatial nodes, connected by

almost 14,000 edges - each of which is stored as an individual object within the task. If each

of these objects is stored as 32-bit pointer, then the total storage space will exceed 216 bytes,

thus it can be suspected that the required space exceeds what the map data structure can

store. This limitation would not normally be reached since problems used to test scaling of

planners typically use a maximum of a few hundred nodes. As an example, the twentieth task

in the transport domain from the 2014 IPC competition had just over one hundred objects

[IPC benchmark authors, 2010]. The closest workload may be the Visit-All domain which

also implements an m × m grid. The planners are required to generate a plan that visits

every cell in the grid at least once. In the document by Lipovetzky, the largest tested task

was for m = 50, with the LAMA [Richter and Westphal, 2010] planner only achieving m = 30

before errors occurred [Lipovetzky, 2010].

The planners were executed and the plan cost, plan length and planning time required to

generate each plan was recorded. For this domain, the cost of executing each action was

set to one, so that the plan length and plan cost were equal. To examine the way these

planners generated paths, a visualisation was created showing how the plan lead from the

initial to goal positions. In these images the start location is represented by the image of

the ASV, the obstacles are represented by local obstacle buoys, and the goal position is

represented as a safe water mark as seen in Figure 4.1. A visualisation of planning with

the Greedy and A* planners can be seen in Figures 4.2 and 4.3 respectively. Examination
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of these sample images showed that the three combinations of Fast Downward that used

Greedy search, and the three that used A* search produced identical plans. This similarity

shows that in the examined case, the effect of heuristic choice on the generated plan is

minimal.

The execution times, costs of the generated plans, and the memory used during search

were recorded and averages for time and cost tabulated in Tables 4.2 and 4.3. These results

were then graphed in Figures 4.4, 4.5 and 4.6 as notched boxplots.

The planners were all capable of operating in the case of m = 50, but exhibited increases in

planning times as the total number of nodes in the spatial environment increased. The Popf-2

planner exhibited shorter planning times than the Fast Downward based planning runs. This

is related to the structure of the planners - Popf-2 is a single executable that reads the domain

and task files, solves the problem, and outputs the result. The Fast Downward planning

system uses separate executables in both C++ and Python to read the inputs, translate to

its own internal description language, plan the result and validate the plan. Examination of

the output of Fast Downward shows that the majority of the execution time was spent in the

instantiation stage, where the templated actions and grounded predicates are converted into

a set of grounded actions. The actual search times reported by Fast Downward were only a

small component of the overall time.

Memory usage of the search component of Fast Downward was also recorded. Examination

of Figure 4.6 shows that the majority of the Fast Downward systems used similar memory

amounts. The exceptions being the Lazy Greedy search with the CEA and Dual heuristics

(a) (b) (c) (d) (e)

Figure 4.1: Markers used to visualise search and rescue plans (a) TopCat Autonomous
Surface Vessel (ASV) (b) Outline representing subject requiring rescue (c) Isolated danger
mark representing a point obstacle (d) Safe water mark representing a goal location (e) Ship
representing a supply of stored lifeboats. Buoy and ship symbols were downloaded from
www.openclipart.org
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when n ≥ 20. Since Dual is a combination of the Fast Forward and CEA heuristics, it can

be inferred that CEA has a significantly larger memory usage in this domain than the other

tested heuristics.

As mentioned in Section 4.2.1, caching effects could bias the results of the planners. Exam-

ination of the results shows that the first executed planner (Fast Forward with Lazy Greedy

search and FF heuristic) did not produce times that differed significantly from the other Lazy

Greedy searches despite the variation in conditions. As such, it can be expected that any

cache effects are small compared to the search task.

Table 4.2: Average times for path generation through m×m array. All times are in seconds.
Total number of trials performed, n = 3521.

Planner Width of environment m (elements)

10 20 30 40 50

Number of trials 103 100 100 100 100

Fast Downward, FF 0.13 0.36 0.79 1.41 2.3

Fast Downward, CEA 0.13 0.36 0.79 1.43 2.32

Fast Downward, Dual 0.13 0.36 0.78 1.43 2.33

Fast Downward, LM-cut 0.13 0.36 0.82 1.56 2.65

Fast Downward, Blind 0.13 0.36 0.78 1.42 2.3

Fast Downward, iPDB 0.13 0.36 0.79 1.43 2.32

Popf-2 0.01 0.04 0.12 0.32 0.65

Table 4.3: Average costs for pathfinding through m × m array. Costs have been scaled
by a factor of 8 so that they are comparable to those in Table 4.5. Total number of trials
performed, n = 3521.

Planner Width of environment m (elements)

10 20 30 40 50

Number of trials 103 100 100 100 100

Fast Downward, FF 57.48 129.51 174.91 254.71 319.36

Fast Downward, CEA 57.48 129.51 174.91 254.71 319.36

Fast Downward, Dual 57.48 129.51 174.91 254.71 319.36

Fast Downward, LM-cut 55.18 125.93 172.0 258.21 318.34

Fast Downward, Blind 57.03 125.73 172.0 258.21 318.34

Fast Downward, iPDB 57.04 125.73 172.0 258.21 318.34

Popf-2 57.09 120.56 172.67 258.88 321.66
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Figure 4.2: Sample motion plan generated by Fast Downward with Lazy Greedy search and
the Fast Forward (FF) heuristic. The Context-Enhanced Addidtive (CEA) and Dual heuristics
produced identical plans. For completeness, these results can be seen in Appendix D with
the result of using the CEA heuristic seen in Figure D.1, and Dual seen in Figure D.2

Figure 4.3: Sample motion plan generated by Fast Downward and A* search with the
Landmark-Cut (LM-cut) heuristic. The Blind and Pattern Database (iPDB) heuristics and
the Popf-2 planner produced identical results. For completeness, these results can be seen
in Appendix D with the result of using the Blind heuristic seen in Figure D.3, iPDB seen in
Figure D.4, and Popf-2 seen in Figure D.5
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Figure 4.4: Execution cost for generated plans form×m nodes. Costs have been scaled by a
factor of 8 so that they are comparable to those in Table 4.5. Total number of trials performed,
n = 3521. Boxplot centreline indicates median, extents show upper and lower quartiles. Non-
overlapping notches indicate statistically significant differences between medians.
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Figure 4.5: Time to complete a planning run for the motion planning domain for m×m nodes.
All times are in seconds. Total number of trials performed, n = 3521. Boxplot centreline
indicates median, extents show upper and lower quartiles. Non-overlapping notches indicate
statistically significant differences between medians.
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Figure 4.6: Memory used in search for the motion planning domain and m × m nodes.
Total number of trials performed, n = 3018. Boxplot centreline indicates median, extents
show upper and lower quartiles. Non-overlapping notches indicate statistically significant
differences between medians.

4.2.3 Pathfinding with Asymmetric Action Costs

In the previous section, routes were planned with equal costs in all directions. However,

the effect of wind and water action may further result in motion costs that are asymmetric -

movement in the direction of currents will be lower in cost than movements that oppose the

currents. This experiment will examine the effect of adding variable action costs to the test

domain described in Section 4.2.2.

While local currents may exhibit random or variable nature, Carton wrote that at a sufficiently

large scale, ocean currents can be modelled as sets of vortices [Carton, 2001]. Zeng et al.

used this conclusion to optimise Autonomous Underwater Vehicle (AUV) trajectories using

genetic algorithms and particle swarm optimisation [Zeng et al., 2012].

The Lamb vortex is a solution to the Navier-Stokes equations in cylindrical co-ordinates

where the tangential velocity of the fluid can be specified by Equation 4.4 [Meunier and
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Villermaux, 2003].

vtangential =
Γ

2πr

1− e
−
r2

a2

 (4.4)

where;

vtangential tangential velocity

Γ vortex circulation

r radius

a core radius

(4.5)

This model of vortex velocity was used to create a path planning system with asymmetric ac-

tion costs. Equation 4.4 was used to create a pair of equations with the velocity components

shown in Equation 4.6.

vx =
vtangential × y

r

vy =
−vtangential × x

r

(4.6)

For each domain, a pair of vortices were added with random centres and vorticity values in

the range of [−1, 1]. For each node in the domain, the velocity components in the x and y

directions for each vortex were calculated as shown in Equation 4.6. The sum of the vortices’

velocity components was recorded as the water velocity for that node.

When constructing the PDDL code describing the task, the action cost for moving between

nodes was set as shown in Equation 4.7.

costnorth = max (integer (10 + 8× vy) , 1)

costeast = max (integer (10 + 8× vx) , 1)

costsouth = max (integer (10− 8× vy) , 1)

costwest = max (integer (10− 8× vx) , 1)

(4.7)

With Γ = a = 1, the peak tangential velocity of a vortex is 0.63. The scaling value of 8 allows

a range of possible costs in the range [1, 20]. This allows a significant range of possible

action costs while ensuring that the plan costs are monotonically increasing.

Movement costs were encoded in the PDDL task file as numerical predicates of type en-
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ergyrequired, with the move action updated to increase the value of the total cost value by

the energy cost of the traversed edge as encoded by this predicate. The planner was then

directed to minimise the total cost value using the :metric stanza.

The testing process was similar with the start position, end position and obstacle locations

being randomised as described for the path-finding test as outlined in Section 4.2.2. In addi-

tion to the factors that were randomised for the pathfinding task, the location and strength of

the vortices were also randomised. This problem was then executed for all planners with a

variety of different sizes for m, and the results recorded. Sample images showing the path of

the planned vehicle can be seen in Figures 4.7 and 4.8. This uses the same iconography for

representing the vehicle and goal, but with the addition of streamlines showing the trajectory

of the water flow. The colour of the streamlines shows the velocity with colours towards the

red end of the spectrum representing high velocities, and the blue end representing lower

velocities.

The average plan costs for all Fast Downward plans were within ±1 of each other, while the

Popf-2 planner generated slightly higher cost plans. From the boxplot in Figure 4.9, this effect

does not appear to be significant. As with the previous environment, the Fast Downward

planners all took similar lengths of time to generate plans, while the Popf-2 planner had a

much shorter average planning time.

As with the equal cost metric example, Figure 4.11 shows that memory usage for search

that used the CEA heuristic was higher than the remaining cases when n ≥ 20. Compar-

ison between Tables 4.3 and 4.5 showed that all planners exhibited reduced average plan

execution costs in the asymmetric cost domain compared to plans generated in the previous

equal-movement cost domain for m = [40, 50]. This result shows that a domain independent

planning system can utilise enviropnmental effects to reduce overall plan cost.

4.2.4 Ordering Actions

In the previous experiments, the planners produced lists of actions that moved the vehicle

through environments with symmetric or asymmetric costs - in effect producing high-level

path plans for the vehicle. This could be performed by a more specialised path planning
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Table 4.4: Average planning times for pathfinding through m × m array with asymmetric
costs. All times are in seconds. Total number of trials performed, n = 3479.

Planner Width of environment m (elements)

10 20 30 40 50

Number of trials 99 99 99 100 100

Fast Downward, FF 0.18 1.23 6.33 21.54 59.49

Fast Downward, CEA 0.17 1.24 6.35 21.57 59.72

Fast Downward, Dual 0.18 1.27 6.39 21.65 59.71

Fast Downward, LM-cut 0.17 1.29 6.58 22.09 61.69

Fast Downward, Blind 0.17 1.25 6.35 21.4 59.85

Fast Downward, iPDB 0.17 1.25 6.41 21.39 59.92

Popf-2 0.02 0.14 0.65 1.94 4.7

Table 4.5: Average plan costs for pathfinding through m × m array with asymmetric costs.
Total number of trials performed, n = 3479.

Planner Width of environment m (elements)

10 20 30 40 50

Number of runs 99 99 99 100 100

Fast Downward, FF 59.12 120.51 183.42 200.01 293.0

Fast Downward, CEA 59.12 120.51 183.42 200.01 293.0

Fast Downward, Dual 59.12 120.51 183.42 200.01 293.0

Fast Downward, LM-cut 59.24 120.86 183.78 200.2 293.16

Fast Downward, Blind 58.84 120.27 183.34 199.89 292.78

Fast Downward, iPDB 59.24 120.86 183.78 200.2 293.16

Popf-2 62.47 128.57 190.2 203.55 302.58
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Figure 4.7: Sample motion plans generated by Fast Downward with Lazy Greedy search,
and the Fast Forward (FF) heuristic. The Context Enhanced-Additive (CEA) and Dual heuris-
tics produced identical plans.
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(a)

(b)

Figure 4.8: Sample motion plans generated through an asymetric cost environment. Stream-
lines represent the direction and strength of the water current. (a) Fast Downward with
Landmark-Cut (LM-cut) (b) Popf-2 planner. Fast Downward with A* and the Blind and Pat-
tern Database (iPDB) heuristics were similar to LM-cut.
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Figure 4.9: Boxplot of execution cost of generated plans for problem containingm×m nodes.
Total number of trials performed, n = 3479. Boxplot centreline indicates median, extents
show upper and lower quartiles. Non-overlapping notches indicate statistically significant
differences between medians.
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Figure 4.10: Boxplot of time required to generate plans for problem containing m×m nodes.
All times are in seconds. Total number of trials performed, n = 3479. Boxplot centreline
indicates median, extents show upper and lower quartiles. Non-overlapping notches indicate
statistically significant differences between medians.
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Figure 4.11: Memory used in search for the motion planning domain and m nodes. Total
number of trials performed, n = 3000. Boxplot centreline indicates median, extents show up-
per and lower quartiles. Non-overlapping notches indicate statistically significant differences
between medians.

algorithm such as that developed by Zeng et al. [Zeng et al., 2012]. A scheduling system,

however may require the ordering of a set of actions to minimise the time for them to be

executed.

The advantage of a domain independent planner is that it can generate more complex plans

consisting of multiple action types that satisfy prerequisites. To test the applicability of gener-

ating such plans in a spatial environment, a correspondingly more complex task is required.

To provide an illustrative scenario for this problem, the ICARUS project discussed in Section

1.4 was chosen. In such a scenario, a number of survivors in danger of drowning have been

located by an Unmanned Aerial Vehicle (UAV). The ASV is required to visit each subject at

least cost. Since the position of each survivor is known, the surface vehicle can optimise the

scheduling of tasks to minimise the time until rescue of the survivors. For this to occur, the

planning system must generate efficient plans in a timely manner.

The planning environment described in Sections 4.2.2 and 4.2.3 was extended by adding

randomly located survivors requiring rescue. The vehicle was required to visit each subject

in an order that minimised the overall plan cost. As such, this domain includes not only the
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planning of spatial actions, but also the scheduling of tasks. By combining the task satisfi-

cation with spatial information the search can expand only those solution states necessary

to reach the goal.

This task was implemented in PDDL by adding the survivors as entities, and a new action

get which allows an entity to collect another. To distinguish between active entities and those

requiring rescue, another predicate canact was added. The presence of this predicate was

a precondition to the move and get actions. The goal of the wamv being at a location was

replaced with the has predicate being true for all survivors. The PDDL code for the get action

can be found in Appendix C in Figure C.2.

With the size of the grid set at m = 30, the largest domain that produced a plan within

a responsive time, the planners were run one hundred times each for between one and

five survivors, and the results were recorded and tabulated. Sample motion plans with five

survivors can be seen in Figures 4.12 and 4.13. The average planning times and plan

execution costs are tabulated in Tables 4.6 and 4.7, and plotted in Figures 4.14 and 4.15.

The most efficient plans were generated by Fast Downward with the A* based planning

runs (LM-cut, Blind, iPDB). These were dramatically shorter than the Lazy Greedy based

planning runs (FF, CEA, Dual), with the Popf-2 planner falling in-between.

As with the previous domain, the Fast Downward planning system gave consistent times for

planning with the exception of the A* search with the LM-cut heuristic. The median time for

LM-cut was several times larger than the other conditions. The Popf-2 planner which had

been consistently faster than Fast Downward produced outliers that exceeded the median

planning time for the non-LM-cut Fast Downward conditions.

Examination of Figure 4.12 showed that the ordering of actions using the Fast Forward

heuristic appeared to follow the direction of current flow. The Context-Enhanced Additive

heuristic, while building paths that appeared to follow the water currents, scheduled actions

that appeared to require backtracking with a correspondingly higher plan cost. Figure 4.13

showed that the A* based search demonstrated a similar strategy to the Lazy Greedy with

Fast Forward heuristic, differing primarily in the handling of the last two actions. The Lazy

Greedy search followed a low cost trajectory to both of the last two survivors before heading
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to the safe water mark, while the A* based systems only followed a low cost trajectory to the

furthest survivor before turning against the current to collect the final survivor and reach the

safe water mark. This strategy required higher cost movements, but allowed an overall lower

cost solution by shortening the plan length.

Table 4.6: Average plan generation times for ordering actions in an array with asymmetric
costs. All times are in seconds. Total number of trials performed, n = 3479.

Planner Number of survivors

1 2 3 4 5

Number of trials 100 100 100 99 98

Fast Downward, FF 6.48 6.48 6.52 6.35 6.74

Fast Downward, CEA 6.47 6.52 6.58 6.42 6.71

Fast Downward, Dual 6.56 6.57 6.6 6.46 6.86

Fast Downward, LM-cut 9.67 15.55 24.05 39.69 63.05

Fast Downward, Blind 6.52 6.51 6.51 6.37 6.73

Fast Downward, iPDB 6.56 6.6 6.52 6.3 6.71

Popf-2 0.98 1.12 1.52 1.89 2.74

Table 4.7: Average plan execution costs for ordering actions in an array with asymmetric
costs. Total number of trials performed, n = 3479.

Planner Number of survivors

1 2 3 4 5

Number of trials 100 100 100 99 98

Fast Downward, FF 392.74 625.13 890.3 1112.2 1325.69

Fast Downward, CEA 388.8 634.74 931.66 1166.8 1439.69

Fast Downward, Dual 392.54 623.39 900.68 1084.84 1380.36

Fast Downward, LM-cut 365.67 493.68 601.5 658.48 724.97

Fast Downward, Blind 365.32 493.42 601.08 658.18 724.71

Fast Downward, iPDB 365.67 493.68 601.5 658.48 724.97

Popf-2 379.99 583.54 831.76 936.38 1137.3
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Figure 4.12: Sample mission plans to rescue five survivors as generated by Fast Downward
with Lazy Greedy search through an asymetric cost environment. Numbers indicate the
order in which survivors were rescued. (a) Fast Downward with Fast Forward (FF) (b) Fast
Downward, Context Enhanced-Additive (CEA). The plot for the Dual heuristic can be seen
in Appendix D, in Figure D.6.
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Figure 4.13: Sample mission plans to rescue five survivors as generated by Fast Downward
with A* search, and the Popf-2 planner through an asymmetric cost environment. Numbers
indicate the order in which survivors were rescued (a) Fast Downward with Landmark-Cut
(LM-cut) (b) Popf-2 planner. Fast Downward with Blind and Fast Downward with Pattern
Database (iPDB) were similar to Fast Downward with LM-cut and can be seen in Appendix
D, in Figure D.7 (a) for the Blind heuristic and Figure D.7 (b) for the iPDB heuristic.
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Figure 4.14: Execution cost for generated plans for m survivors to rescue. Total number
of trials performed, n = 3479. Boxplot centreline indicates median, extents show upper
and lower quartiles. Non-overlapping notches indicate statistically significant differences
between medians.
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Figure 4.15: Time to complete a planning run for the motion planning domain for m survivors
to rescue. Total number of trials performed, n = 3479. Boxplot centreline indicates me-
dian, extents show upper and lower quartiles. Non-overlapping notches indicate statistically
significant differences between medians.
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Figure 4.16: Memory used in search for m survivors to rescue. Total number of trials per-
formed, n = 3479. Boxplot centreline indicates median, extents show upper and lower quar-
tiles. Non-overlapping notches indicate statistically significant differences between medians.

4.2.5 Ordering Multiple Actions

In the previous experiment, each subject was visited by the vehicle. This demonstrated

scheduling and pathfinding, but not the satisfaction of prerequisites. In a search and rescue

scenario, it is likely that the payload of the rescue platform would be limited. The ICARUS

project demonstrated the deployment of a lifeboat carrying ASV from a surface platform, but

it is possible that such a vehicle could be limited to carrying a single lifeboat, resulting in a

requirement for replenishment between rescues [Machado et al., 2014]. This limitation could

require several visits to a supply ship to replenish supplies between runs.

To test the ability of the planner to schedule actions, the domain was extended to replace

the earlier get action with collect and deploy actions representing the handling of lifeboats.

In this modified domain, a collect action requires the vehicle to be in the same node as the

supply ship, and results in the ASV carrying a lifeboat. The deploy action requires the vehicle

to be in the same node as a subject with a lifeboat that can be deployed. The PDDL code

for these actions can be found in Appendix C in Figures C.3 and C.4.

To investigate scaling with the number of actions, the size of the environment was fixed
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at n = 30 and planning runs were executed with a variable number of supply ships and

survivors to be rescued. An example of such a set of planning runs can be seen in Figures

4.17 and 4.18. The times and costs for the runs were tabulated and the results can be seen

in Tables 4.8 and 4.9 for one supply ship, and Tables 4.10 and 4.11 for two supply ships.

This information is also graphed in Figures 4.19 and 4.20 for one supply ship, and Figures

4.22 and 4.23 for two supply ships.

The Popf-2 planner produced similar execution cost plans to the Lazy Greedy search, but

unlike previous testing domains demonstrated longer planning times than Fast Downward.

From the trend when survivors ≤ 3 it is possible it would have produced plans in less time

than A* with LM-cut, but due to the exclusion of this heuristic from the more complex case,

it cannot be confirmed.

As with the previous domain, the Lazy Greedy searches that used the CEA heuristic demon-

strated much greater memory usage than the FF heuristic as seen in Figures 4.21 and 4.24.

Unlike the previous domain, CEA demonstrated significantly shorter plans than FF when

survivors = 5. Since Lazy Greedy search does not consider the current plan cost when

evaluating the next state to expand, the CEA heuristic must select future states that lead to

lower overall cost paths than FF.

In this experiment, A* search based planning continued to outperform Lazy Greedy search

and the Popf-2 planner, however the duration required for generating plans with the LM-

cut heuristic were large enough that its runs were limited to survivors = [1, 3]. The iPDB

and Blind heuristics performed well, producing the lowest cost plans while still maintaining

minimal memory and time footprints. Notably the mean times for all numbers of survivors

with the latter heuristics showed small variation. This shows that there is potential for further

increases in mission complexity with the combination of A* search and these heuristics.
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(a)

(b)

Figure 4.17: Sample motion plans for domains including move, collect, and deploy actions
using Fast Downward and Lazy Greedy Search, and the Popf-2 planner. These runs in-
cluded three survivors for rescue and one supply ship. Arrows on the red vehicle track
indicate the direction of motion. (a) Fast Downward with Fast Forward (FF) (b) Fast Down-
ward with Context-Enhanced Additive (CEA). The plot for the Dual heuristic can be seen in
Appendix D in Figure D.8.
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(a)

(b)

Figure 4.18: Sample motion plans for domains including move, collect, and deploy actions
using Fast Downward, A* search and the Popf-2 Planner. These runs included three sur-
vivors for rescue and one supply ship. Arrows on the red vehicle track indicate the direction
of motion. (a) Fast Downward with Landmark-Cut (LM-cut) (b) Popf-2 planner. The plot for
the Blind and Pattern Database (iPDB) heuristics are similar to LM-cut and can be seen in
Appendix D, with Blind in Figure D.9 (a) iPDB in Figure D.9 (b).
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Table 4.8: Average times for planning with move, collect, and deploy actions. A single supply
ship is present. Total number of trials performed, n = 3253

Number of survivors requiring rescue

1 2 3 4 5

Number of trials 99 98 98 97 100

Fast Downward, FF 6.65 6.63 6.59 6.73 6.64

Fast Downward, CEA 6.64 6.72 6.72 6.77 6.78

Fast Downward, Dual 6.64 6.74 6.82 6.93 7.04

Fast Downward, LM-cut 18.68 52.34 150.15

Fast Downward, Blind 6.67 6.6 6.71 6.79 6.86

Fast Downward, iPDB 6.7 6.67 6.72 6.84 6.92

Popf-2 1.27 3.74 10.66 25.25 53.91

Table 4.9: Average costs for plan execution with move, collect, and deploy actions. A single
supply ship is present. Total number of trials performed, n = 3253

Number of survivors requiring rescue

1 2 3 4 5

Number of trials 99 98 98 97 100

Fast Downward, FF 617.12 1087.28 1594.8 2083.4 2711.87

Fast Downward, CEA 610.67 1054.74 1478.31 1941.1 2467.88

Fast Downward, Dual 613.23 1059.69 1500.03 1938.58 2495.48

Fast Downward, LM-cut 533.69 850.97 1192.66

Fast Downward, Blind 533.29 850.47 1192.34 1484.23 1938.53

Fast Downward, iPDB 533.69 850.97 1192.66 1484.62 1938.92

Popf-2 618.68 1027.28 1466.4 1868.45 2383.28
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Table 4.10: Average times for planning with move, collect, and deploy actions. Two supply
ships are present. Total number of trials performed, n = 3273.

Number of survivors requiring rescue

1 2 3 4 5

Number of trials 100 98 99 99 100

Fast Downward, FF 6.53 6.41 6.35 6.51 6.68

Fast Downward, CEA 6.54 6.47 6.49 6.59 6.89

Fast Downward, Dual 6.52 6.43 6.5 6.73 6.95

Fast Downward, LM-cut 17.03 46.02 118.78

Fast Downward, Blind 6.51 6.43 6.4 6.56 6.83

Fast Downward, iPDB 6.57 6.43 6.45 6.68 6.96

Popf-2 1.1 2.39 5.64 13.26 27.58

Table 4.11: Average costs for plan execution with move, collect, and deploy actions. Two
supply ships are present. Total number of trials performed, n = 3273.

Number of survivors requiring rescue

1 2 3 4 5

Number of trials 100 98 99 99 100

Fast Downward, FF 553.19 1015.0 1360.02 1887.38 2397.35

Fast Downward, CEA 559.43 966.0 1328.06 1685.04 2174.22

Fast Downward, Dual 561.1 953.1 1278.05 1706.57 2175.07

Fast Downward, LM-cut 474.15 734.06 939.62

Fast Downward, Blind 473.77 733.63 939.27 1205.1 1461.54

Fast Downward, iPDB 474.15 734.07 939.62 1205.51 1462.13

Popf-2 541.3 907.0 1255.4 1658.48 2045.96
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Figure 4.19: Planner cost scaling for collect and deploy actions with one supply ship and
m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. Total number of trials
performed, n = 3253. Boxplot centreline indicates median, extents show upper and lower
quartiles. Non-overlapping notches indicate statistically significant differences between me-
dians.
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Figure 4.20: Time required to plan for collect and deploy actions with one supply ship and
m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. Total number of trials
performed, n = 3253. Boxplot centreline indicates median, extents show upper and lower
quartiles. Non-overlapping notches indicate statistically significant differences between me-
dians.
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Figure 4.21: Memory required for search with one supply ship. Landmark-Cut (LM-cut)
was only tested for m ≤ 3. Total number of trials performed, n = 2755. Boxplot centreline
indicates median, extents show upper and lower quartiles. Non-overlapping notches indicate
statistically significant differences between medians.
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Figure 4.22: Plan execution costs with collect and deploy actions for two supply ships and
m survivors. Landmark-Cut (LM-cut) was only tested for m ≤ 3. Total number of trials
performed, n = 3273. Boxplot centreline indicates median, extents show upper and lower
quartiles. Non-overlapping notches indicate statistically significant differences between me-
dians.
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Figure 4.23: Time required to plan for collect and deploy actions with two supply ships
and m survivors. Landmark-Cut (LM-cut) was only fully tested for m ≤ 3. Total number
of trials performed, n = 3273. Boxplot centreline indicates median, extents show upper
and lower quartiles. Non-overlapping notches indicate statistically significant differences
between medians.
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Figure 4.24: Memory required for search for collect and deploy actions with two supply ships
and m survivors. Landmark-Cut (LM-cut) was only fully tested for m ≤ 3. Total number
of trials performed, n = 2777. Boxplot centreline indicates median, extents show upper
and lower quartiles. Non-overlapping notches indicate statistically significant differences
between medians.
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4.2.6 Selection of Planner for Spatial Tasks

These benchmarks have shown that the Fast Downward planner can plan and order actions

to both satisfy requirements and reduce plan costs. The A* search based systems using the

LM-cut, iPDB and blind heuristics produced the lowest cost plans, between 15% and 30% less

than the Greedy Fast Downward and Popf-2 planners in the survivor rescue scenarios. In

these scenarios, The LM-cut system demonstrated rapidly increasing planning times in more

complex tasks making it unsuitable for more complex tasks. A* with LM-cut or iPDB should

thus produce plans that are efficient while still executing rapidly enough to be responsive to

changes in the environment.

Not all planning runs were successful, with a failure rate in the order of < 1%. As outlined

in Section 4.2.2, all planning runs in a trial were discarded if any planning system failed

to produce a result. This failure rate is within an acceptable range, but a practical robot

planning system will have to monitor the output of the planner to ensure the generation of a

valid plan before execution.

4.3 Conclusion

A number of planning systems have been tested for their applicability to the mission planning

task in a spatial environment as outlined in Table 4.12. These experiments have shown

that a domain independent planner can be used to find a low-cost path through a spatial

environment to execute a task, while also satisfying mission constraints and goals.

From these tests, the Fast Downward planner with A* search and the Blind or iPDB heuristics

have been identified as the most suitable for such spatial planning tasks. These produced

the shortest plans while maintaining an execution time that scaled primarily with the number

of spatial nodes, rather than the number of actions they were required to schedule.

With 900 spatial nodes, the Fast Downward planner averaged between 6 and 7 seconds to

generate a plan when not using the LM-cut heuristic. These short planning times would

allow these planners to be run off-line, using the current estimate of the environment and
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producing a plan to reach the goal state.

900 spatial nodes is a very small for a robotic spatial environment. For example, the wil-

low garage example map from the turtlebot navigation package [Open Source Robotics

Foundation, 2014d] has 344, 128 grid locations. In Section 4.2.3, an increase in nodes from

900 to 2500 resulted in an approximately tenfold increase in planning time, while attempting

to plan with 3600 nodes caused a failure of the planner. Use of the Fast Downward plan-

ner with a full-resolution map similar to the turtlebot navigation example would thus not be

possible.

The next chapter will combine the Fast Downward planner with the belief compression sys-

tems investigated in Chapter 3 to perform planning with a real-world maritime vehicle.

Table 4.12: Summary of effectiveness search and heuristic types used with the Fast Down-
ward planner

Search Heuristic Summary
Lazy Greedy Fast Forward Produced longest plans, low memory

usage
Lazy Greedy Context-Enhanced Ad-

ditive Heuristic
Long plans, high memory usage

Lazy Greedy Combined Fast Forward
and Context-Enhanced
Additive Heuristic

Long plans, high memory usage

A* Landmark-Cut Efficient plans, rapidly increasing
planning time

A* Blind Efficient plans, low memory usage
A* Pattern Database Efficient plans, low memory usage
Popf-2 Moderate efficiency plans, short plan-

ning time in simple environments
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Chapter 5

Topological Mission Planning

5.1 Introduction

The previous chapters evaluated methods for belief compression of spatial environments,

and the generation of vehicle plans’ action costs. This chapter will examine the implemen-

tation of a planning system for TopCat, a 5m Autonomous Surface Vessel (ASV) based on

the Wave Adaptive Modular Vessel (WAM-V) hull. As with the previous chapter, the planner

will be evaluated with a search and rescue task based on project ICARUS [De Cubber et al.,

2013].

A number of simulations were performed with tasks of increasing complexity starting from

simply visiting several positions, and increasing in complexity until the mission required the

execution of multiple actions.

5.2 Planning with Spatial Constraints

In a symbolic planing system, as described in Appendix B, the planner chooses actions

based on their effects to achieve a goal. These action effects are applied to the state si-

multaneously, as such all actions are atomic and instantaneous. In a real-world system, it

is expected that many of these actions would require a non-trivial period to execute while

the robot’s state evolves from initial to final condition. To interface between these domains,
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a system is required to translate between the discrete actions of the planning system and

the continuous real-world that the robot’s hardware is present in. This system is typically

referred to as an executive.

As covered in Section 1.1, the approach used to integrate the STanford Research Insti-

tute Planning System (STRIPS) with Shakey was to generate a plan using STRIPS, and

then dispatch actions sequentially to lower level FORTRAN programs for execution. Due to

limitations in memory space, the LISP based planner was swapped out of memory before

execution [Nilsson et al., 1968]. Thus, the planning layer was not operational during the

operation of the executive. This model, where the planning, executive and low-level reac-

tive systems are separated is referred to as the three layer model of planning, a conceptual

diagram of which can be seen in Figure 5.1(a). Despite significant increases in computing

power, systems such as ROSPLAN, covered in Section 1.5.4.2, still use this model.

As shown in Table 1.1, each action that could be executed by Shakey had a singular pa-

rameter specifying the object that they would work upon. In Shakey’s workspace, shown in

Figure 1.2, with its six rooms and seven doors, the number of objects to be manipulated was

limited. As investigated in Chapter 4, domain independent symbolic planning systems can

only operate on small spatial environments. For a planner to scale to the more complex en-

vironment expected of a field robot, a compressed spatial model is required. The topological

compression techniques covered in Chapter 3 provide a possible method for reducing the

complexity of an irregular natural environment to a level that is possible to be used directly

by a symbolic planner, allowing the model of planning shown in Figure 5.1(b). In this model,

spatial data is used to inform both the planning and executive layers.

The high-level planning in Chapter 3 differs from that used by Shakey in that the planning

units are constraints, specifying the set of trajectories to be traversed rather than the specific

path to be traversed. This chapter will investigate two different approaches to the integration

of a symbolic planning system with spatial data for robotic planning.
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5.3 Robotic Planning and the Travelling Salesperson Prob-

lem

Since many of the robot’s actions require it to be in a specific spatial position, for example ad-

jacent to a survivor requiring rescue, then the overall lowest plan cost will be the arrangement

of these actions that minimises the travel cost. In this configuration, the problem represents

a form of Travelling Salesperson Problem (TSP) [Russell and Norvig, 2010], visiting all the

nodes in a graph with the minimum possible cost. Solutions to the TSP problem are NP-Hard

but the limitation of using TSP solvers in real-world robotic applications appears to be the

calculation of the edge costs of the TSP graph. In a planar problem with no obstacles, the

travel cost between TSP nodes is equal to the Euclidian distance. However, once obstacles

are introduced, then a closed form solution to the edge costs no longer exists. Systems

such as ROSPLAN, and Englot and Hover’s ship inspection system use RRT algorithms to

calculate the path length [Englot and Hover, 2013]. However, this operation is sufficiently

expensive that calculating the costs from every observation point to every other observation

point, a total of n(n − 1)/2 operations for n nodes, that the generation of a full TSP matrix

is impractical for large values of n. In particular, Englot and Hover’s system uses Euclidean

distances for initial estimates, and only calculates true distances for edges that are expected

to be on the TSP tour.

For a robotic system, there may be additional restrictions on the vehicles actions including

launch and retrieval positions, limitations on vehicle range, and load capacity. Furthermore,

the solution to the TSP is a cycle, a closed loop of edges. Thus, an optimal TSP solution may

not be optimal for a mission that requires the terminal position to differ from the initial. Solving

the ordering of actions with a symbolic planning system would allow these constraints to be

considered in the construction of an optimal plan.
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5.4 Symbolic Planning for Ground Vehicles

To test the applicability of planning with belief compression to robotic mission planning, an

initial prototype using the Robotics Operating System (ROS) existing support for ground ve-

hicles was developed. The move base navigation stack [Open Source Robotics Foundation,

2014b] uses a three-layer architecture comprising a reactive, an executive and a deliberative

layer [Russell and Norvig, 2010] as shown in Fig 5.1a. In the stack these three layers cor-

respond to move base’s local planner, move base’s global planner, and the executive that

dispatches goals to the navigation system. The reactive local planner uses sensor data from

the environment to build short range, short duration maps of local obstacles, and creates

trajectories for the robot system based on these maps and the path provided by the higher

level systems. The executive layer corresponds to the global planner which uses a static

or slowly updating map to produce a path from the robot’s current pose to the goal pose.

Finally, the deliberative layer, which may be a planning system, script or immediate com-

mands from a human operator, dispatches goal poses to the executive layer. In this model

each layer sends information to the one beneath it, but only considers the success or failure

of the lower level planning system.

By using the spatial information available to the system in the goal planning stage, a mod-

ified planning system can be created where the deliberative layer has sufficient information

to not only plan goals in an order that attempts to minimise the effort required to visit them,

but as shown in Fig 5.1(b), also performs part of the planning function formerly performed by

the executive. Since the deliberative layer has provided a constrained set of homotopic tra-

jectories, the executive system can restrict its search to a smaller area, allowing it to reduce

the number of nodes searched. This comes at the cost of potentially choosing less efficient

trajectories, but as found in Chapter 3, the increase in path length is rarely significant.

The robot’s goal is set using a PDDL task containing two new keywords traversable and

locatable as shown in Table 5.1. These two keywords cover two basic sorts of spatial in-

formation - individual objects that may be agents, and a spatial environment represented

as a graph structure that can be traversed. The locatable keyword also allows initialisa-

tion of all such created objects using simple PDDL statements. A program was developed
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Figure 5.1: (a) Three layer planning model as implemented in the Robotics Operating Sys-
tem (ROS). (b) Three layer planning model modified to support a spatially aware scheduler.
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that would read the PDDL files and combined with data generated by the robots naviga-

tion system would expand these keywords to produce a planning graph of the topological

environment as shown in Fig 5.2(e). Action costs for traversing branches are automatically

generated based on branch length, allowing PDDL solvers capable of optimising plan met-

rics to attempt to minimise the energy expended when performing a task. To differentiate

between objects that are static and those that can perform actions, the test domain includes

the predicate canact for all agents.

To test this strategy, a simulated environment was created with the Stage robotic simula-

tor [Vaughan, 2008] containing a robot with a lidar sensor and a number of goal objects.

This robot was interfaced with the ROS standard navigation stack [Open Source Robotics

Foundation, 2014b]. The navigation system was configured to use a map generated by the

planning system that contained only the area of the current cells in which the vehicle was

operating, as seen in Figure 5.3. This restriction of data to lower level systems can provide

an advantage when navigating in complex environments. ROS uses a sampling planner for

its low level trajectory generation that scores possible trajectories using three criteria - the

Table 5.1: New PDDL keywords

Keyword Description

traversable
<map name>

Define a graph based on a ROS map that can be used
with movement commands. map name is used to find
the correct ROS service to call to obtain a map.

nodename
<node names>

specifies the type that will be used for node objects.
Defaults to ”node”

edgename
<edge name>
<predicate>

specifies the type used for edge objects and the pred-
icate that will be used to show connectivity between
nodes. Defaults to ”edge” and ”at”

costname
<cost name>

specifies the traversal cost of an edge. If no instances
of this keyword exists, no costs will be created.

locatable <type>
<name>
[<predicate> ...]

Define an entity that may appear zero or more times
within a planning system. An PDDL entity is created for
ROS transform that matches the given name with the
specified type and initialised with predicates as speci-
fied on the list.

locatablepredicate
<predicate>
<node type>

allows the creation of a custom predicate associating
the entity with a node. Defaults to ”at” and ”node”.
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Figure 5.2: Stages in the generation of a planning graph from a volume using a skeleton. (a)
Original volume. (b) Topological Skeleton derived from the volume. (c) Skeleton broken into
segments. (d) Reconstruction of volume based on the location of nodes. (e) Planning graph
derived from skeleton and reconstruction.
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achievement of the goal, the avoidance of obstacles, and following the assigned path. In

some environments, the long range goal may be on the far side of a concave obstacle from

the robot’s pose. If the local planner prefers trajectories that head towards its goal, it may

cause the robot to be trapped within such a local concavity. As implemented, the piecemeal

presentation of map and goal reduces the likelihood of such an occurrence.

Once the plan has been generated, it must be implemented by the robotic platform. The

output of a PDDL planning run is a list of actions to be performed that will allow the goal to

be achieved. These actions can be mapped to a ROS message that can communicate the

action names and ground predicates, and the result can be used with the actionlib library to

invoke execution on domain specific control and planning tasks.

This model assumes that each action is atomic, with the planner invoking each action se-

quentially until they are complete. To simulate the robot’s ability to interact with the world,

three python scripts allowing the robot to move around its environment and interact with ob-

jects were created. These scripts were exposed to the planning system using the actionlib

library. PDDL actions named identically to the available scripted actions allow the planning

system to generate plans.

This section showed that a deliberative planning system could be integrated with the existing

ROS move base guidance system to guide a simulated ground robot. However, the guidance

and control of a maritime robot differs significantly. In particular, a maritime vehicle lacks the

connection to a solid surface that allows a kinematic solution to both navigation and guidance

that a wheeled or tracked robot has. To allow guidance and control of the maritime vehicle, an

Table 5.2: Actions available to the simulated robot

Action Description Precondition

move Move the robot from one
cell to another

Robot must be in an adja-
cent cell

approach Move the robot adjacent to
an object

Robot and observation
point must be in the same
cell

observe Examine an object Robot must be adjacent to
an object

leave Move the robot away from
an object

Robot must be adjacent to
an object
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.3: A simulated environment with a robot (red cube), three obstacles (black ovals),
and three goals (blue pillars). Green arrows indicate the paths of the robot. (a) Intial con-
figuration. (b) Skeleton. (c) Segmentation. (d) Planner has created a plan and dispatched
the robot to the first goal. The map is restricted to the zones required for traversal. (e) The
robot reaches the first goal. (f) The robot reaches the second goal. (g) The robot reaches
the third goal.
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alternate planning and executive is required. The next section will cover the implementation

of such an alternate system for the TopCat ASV.

5.5 Planning for Maritime Vehicles

To demonstrate maritime planning, a new planning and navigation system was developed for

the TopCat vehicle. This system incorporating a reactive layer comprising a model predictive

control system, an executive layer including an object tracking system, a path generation

system, and a deliberative layer incorporating a symbolic planning based mission planner.

A block diagram outlining these relations can be seen in Figure 5.4. The following sections

will cover this system in more detail.

5.5.1 Reactive Layer

The reactive layer receives actions as transects, goals that the vehicle is to approach from a

particular heading. The use of this primitive is to improve the effectiveness of the vehicle at

map 

server

wamv

planning

graph

wamv

motion

planner

/map /nodelabel

planning

core

control

allocation

/objects

object

tracker
/move

/wamv_primitive

/objects

Deliberative

Executive

Reactive

Spatial Data 

Generation

Figure 5.4: Diagram of Autonomous Surface Vessel (ASV) planning and control system.
Blue text indicates the corresponding segments of the three-layer model visualised in Figure
5.1(b).
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performing scientific tasks that would require the vehicle to repeatably sample a known path.

As discussed by Roelfsema et al., simply minimising heading error while travelling to a goal in

an environment with water currents will result in a curved trajectory [Roelfsema et al., 2015].

Following such a curved trajectory may result in incorrect sampling of an environment when

repeating survey tasks. Details of this node including the method of control can be found in

Appendix E.

5.5.2 Executive Layer

The executive layer uses a grid based map to both generate a compressed graph modelling

the spatial environment, and also to generate collision free paths. A map server node pub-

lishes the current known map of the environment, which is used by the wamv planning graph

node to generate the compressed belief space of the environment, both as predicates and

also labelled maps.

The wamv motion planner uses both map data and the compressed skeleton to construct

motion plans. Path planning is performed by first checking for a direct collision free path

to the goal. If no such path is available, a path is generated using the same grid search

algorithm as used in the path length evaluation in Chapter 3. The output of this search is a

set of grid squares to be traversed. These grid squares are converted into a set of transects

suitable for the control allocation system by the use of a split and merge algorithm.

The executive layer also contains object tracker, a system for tracking object positions. This

is used by both the path generation system and the deliberative planning system. Since

an object tracking system based on external data is still under development, this system

currently stores static positions for objects other than the ASV.

5.5.3 Deliberative Layer

The deliberative layer comprises the planning core system. This package interfaces be-

tween the executive layer and the Fast Downward symbolic planning system. One of the

primary design criteria of planning core was maximising the exposure of the planner’s state
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Figure 5.5: Conceptual model of planning core framework

to the ROS system, thus allowing introspection of the planning process. As demonstrated

by ROSPLAN, PDDL predicates can be encoded as ROS messages. However, a limitation

of the system is that the ROS message definition system does not support recursion, and

as such cannot support the Boolean relations that are typically found in a planning domain.

While the AND, and NOT relations are implemented, the limitations on recursion and cus-

tom message types prevents a simple implementation of an OR type relation. Full support

for Boolean preconditions could have been implemented by the addition of another layer of

messages and a translation to a Sum-Of-Products form, but would add further complexity

to the system. Due to the rarity of OR relations, this has not limited the implementation of

robotic control domains. Details on the message types used to encode this information can

be found in Appendix C.

Predicates, functions, actions, and the initial state can be populated from PDDL files or using

ROS messages. Once loaded, this state can be used to either generate domain and task

files, or to manually apply actions to the belief to predict future states. During operation,

the state of the environment is communicated to the planning system by ROS topics using

Objects messages, the format of which is covered in Section C.4.5, while the generated plan

is published as Plan messages that are described in Section C.4.6.
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As discussed in Section 5.2, the classic model of plan execution is to dispatch actions se-

quentially to lower level domain specific planners. This is the approach used by executives

from Shakey to ROSPLAN. However, since planning core is intended to inter-operate with

the topological belief compression system discussed in earlier chapters, the nodes of the

spatial graph encode not movements, but constraints. Each node specified by the move

action stating which homotopic segment should be used when searching for an optimal tra-

jectory. In this model a sequence of node traversals followed by a move to a waypoint must

be interpreted as a move to the waypoint within the constraint specified by the regions as-

sociated with the nodes. The algorithm used to perform this action grouping is shown in

Algorithm 8.

5.6 Planning for an Autonomous Surface Vessel (ASV) with

planning core

As covered in Appendix A, field testing was performed of the reactive and executive layers of

the planning system. Unfortunately, due to logistical reasons it was not possible to do an all-

up field test of the planning system. However, as covered in Appendix F, a simulated ASV,

shown in Figure 5.6, was available that emulated the behaviour of the real vehicle. This

simulated vehicle was combined with a model of the West Lakes environment developed

from spatial data as shown in Figure 5.7.

To provide the required spatial data needed to inform the deliberative and executive layers,

a number of data sources such as OpenStreetMap imagery [Open Street Map, 2015b] and

previous vehicle runs were used. Notably, a number of buoys exist in West Lakes that are

not shown in standard maps. These include two sets of small marker buoys used to mark

competition lanes, and a larger buoy used to mark the presence of overhead power lines.

Using TopCat’s navigation RADAR, a map of the boating lake and northern portion of the

eastern branch of West Lakes was created as seen in Figure 5.8. This map data was used

to exclude areas around these buoys. The traversable environment of West Lakes was

described using a vector spatial layer, a rendering of which can be seen in Figure 5.9.
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Algorithm 8 Dispatch move actions as a batch from the plan A
function DISPATCHACTIONS(A)

dispatch action← ∅
action index← 0
while isMove(A[action index]) do

dispatch action← dispatch action ∪ A[action index]
action index← action index+ 1

end while
if isSpatial(A[action index]) then

dispatch action← dispatch action ∪ A[action index]
end if

return dispatch action
end function

Figure 5.6: Top Cat vehicle in simulation. Computer Aided Design (CAD) models developed
by Tenzin Crouch and Jesse Stewart
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Figure 5.7: West Lakes simulation environment. Heightmap derived from 10m Digital Eleva-
tion Model [Keane, 2016]

Figure 5.8: RAdio Direction And Ranging (RADAR) map of West Lakes. White areas are
accumulated strong RADAR returns. Backing image c©OpenStreetMap contributors.
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Figure 5.9: Vector map of the traversable area of Northern West Lakes as rendered using
the QGIS package. Annotations show the exclusions around the buoys mapped in Figure
5.8. More information on QGIS and other Geographical Information Systems can be found
in Appendix G
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To demonstrate the integration of the planner with the motion planning system, a simple

simulation was performed. The vehicle was initialised in the north of the boating lake area

shown in Figure 5.9. The planned goal was to navigate down to the southwestern extent.

The planning process begins with the generation of a skeleton of the spatial environment.

This is performed by the wamv planning graph node, using the Palágyi and Kuba [Palágyi

and Kuba, 1999] algorithm and watershed reconstruction. The resultant graph is published

on a ROS topic as an Objects message the details of which can be found in Section C.4.5. A

visualisation of the skeleton can be seen in Figure 5.10a, while the reconstructed segments

can be seen in Figure 5.10b.

Once the skeleton and node information is available, the object tracker node can use it’s spa-

tial information to generate it own list of objects with predicate information. This information

is also published as an Objects message, an example of which is shown in Figure C.12. Us-

ing this information combined with PDDL code encoding the move action loaded from a text

file, The planning core system was able to successfully generate a plan that dispatched the

vehicle to the goal node. The generated plan is shown in Table 5.3. This plan required the

traversal of several goal nodes, as such the movement commands were appended together

into a single action and dispatched to the wamv motion planner as shown in Table 5.4. This

action is dispatched using the actionlib library [Open Source Robotics Foundation, 2014a]

to the wamv motion planner node using the PDDLAction action shown in Figure C.15. This

node produces a path through the specified segments as shown in Figure 5.10c, this path is

converted to line segments, and the result dispatched to the control alloc node which then

drives the vehicle to the goal.

Table 5.3: Plan generated by Fast Downward to move from Node 11 to Node1.

move wamv node11 node10 bridge9 (55)
move wamv node10 node7 bridge10 (50)
move wamv node7 node5 bridge5 (27)
move wamv node5 node3 bridge4 (34)
move wamv node3 node1 bridge1 (186)
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(a) (b) (c)

Figure 5.10: Three stages in the construction of a motion path from a set of movement
actions for the map shown in Figure 5.9. (a) Palágyi and Kuba skeleton of the North end of
West Lakes. (b) Reconstructed segments of the North end of West Lakes. (c) Constrained
map and vehicle path generated by the wamv motion planner node.

Table 5.4: Action dispatched by Planning Core based on plan

sending goal: [’wamv’, ’node11’, ’node10’, ’node7’, ’node5’, ’node3’, ’node1’]
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5.7 Scheduling of Rescue Tasks with planning core

The planning core planning system has demonstrated the ability to interface with the wamv

motion planner system used for generating motion plans for the vehicle. The intention of this

design was to allow the use of symbolic data with spatial information to allow the informed

planning of tasks. In previous chapters, the Palágyi and Kuba skeleton [Palágyi and Kuba,

1999] was shown to efficiently compress the spatial belief space of a robot, while the Fast

Downward planner [Helmert, 2006] with asymmetric cost information and the Blind or iPDB

[Haslum et al., 2007] heuristics was shown to produce low cost motion and mission plans.

planning core allows these techniques to be combined to produce schedules for the ASV

vehicle.

To simulate a task similar to EU-ICARUS, a simulated sinking vessel, and a pair of rescue

vessels were added as shown in Figure 5.11. These vessels block traversal of the vehicle,

increasing the complexity of the environment. As with the simulations in the previous chap-

ter, it is assumed that another vehicle has already performed the search task, locating and

localising the survivor’s positions. In this simulation, nine survivors were randomly placed in

the traversable area, represented as fixed objects within the simulation. The maritime vehi-

cle was also randomly placed, and given the task of visiting each survivor and performing a

rescue operation. The planning system uses the same PDDL based environment developed

for the rescue task in Chapter 4.

5.7.1 Method

As with Chapter 4, a number of survivors were spread in the environment and the ASV was

tasked with visiting each survivor with the least cost. The control system was configured to

produce a steady velocity of 1ms−1, thus a lowered action cost should result in a reduced

distance covered by the vehicle, and a similarly reduced mission time.

To provide a baseline, a simple Greedy planner was developed. This planner finds a set of

actions that satisfies the goal by selecting the action a from the set of actions A that has

the lowest cost at each step, similar to the Blind heuristic covered in Section 4.2.1.7. The
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Figure 5.11: Vector map of the traversable area of Northern West Lakes as rendered using
the QGIS package. In this figure, exclusion areas have been added for rescue scenario.
More information on QGIS and other Geographical Information Systems can be found in
Appendix G.
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selected action is executed, and then removed from the set of available actions. The process

repeats until there are no longer any actions to execute. Unlike the Symbolic planner that

calculates the cost based on the distance between nodes, the Greedy planner uses the

Cartesian distance between the current position of the ASV and the goals as shown in

Equation 5.1.

a = min
a∈A
|
−−−−−−→
XwamvXa| (5.1)

Since the Greedy Planner only considers the current action, the overall mission cost will

not be minimised since the planner does not consider the global cost of its plan. Thus, the

algorithm is locally optimal, but the complete plan is not guaranteed to be globally optimal.

Johnson and McGeosh, who refer to this algorithm as Nearest Neighbour 9, provide a bound

of the ratio of optimal to maximum path length based on the number of locations to visit,

as shown in Equation 5.2 [Johnson and McGeoch, 1997]. However, this bound assumes

that the triangle inequality to be true, which does not hold for environments that contain

obstacles.

dnearestneighbour ≥ (0.5 ∗ ((log n) + 1)) ∗ doptimal (5.2)

5.7.2 Results

To provide a sample of execution times and costs, the simulation was repeated five times

with the position of the survivors randomised after both planners had executed. A summary

of the results can be seen in Table 5.5. Visualisations of the vehicle track and action ordering

for the fourth test run can be seen in Figure 5.12. The tracks of the remaining runs can be

seen in Appendix D, in Figures D.10 to D.13.

Examination of the results shows that runs 1, 3, and 5 show similar performance for the

Greedy and Symbolic Planner algorithms, while on runs 2 and 4 the distance travelled by the

ASV under Symbolic planner control exceeded the distance travelled under Greedy planner
9Johnson and McGeosh use Greedy to describe an algorithm that finds the closest pairs in a tour first
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(a)

(b)

Figure 5.12: Vehicle tracks for the fourth task configuration (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic planner. Backing image is c©OpenStreetMap con-
tributors.

178



Table 5.5: Time used and distance covered by TopCat vehicle when executing simulated
rescue

Run Greedy Symbolic Difference
Distance Time Distance Time Distance Time

1 2016m 2016s 2061m 2091s 2% 4%
2 2658m 2513s 3461m 3402s 30% 35%
3 2704m 2724s 2768m 2782s 2% 2%
4 1154m 1157s 1650m 1712s 43% 48%
5 2020m 1990s 2149m 2182s 6% 10%

control by 30% and 42% respectively.

Examination of Run 4 shows that both the Greedy algorithm shown in Figure 5.12(a), and

the Symbolic Planner shown in Figure 5.12(b), travelled anti-clockwise around the operating

area, but the ordering of actions differs between algorithms. In particular, Survivors 3 and

6, 4 and 9 are rescued in reverse order. As shown in Figure 5.13, Survivors 1, 2, 7 and 8

share the same node. Since the Symbolic planning system treats all such nodes as single

locations, no optimisation of the ordering of rescue actions can take place.

These results show that while the topological thinning can effectively compress a problem

for effective planning, this plan may still not be optimal. In particular, short range spatial

relationships between actions may result in the sub-optimal scheduling of the actions to be

performed.

5.7.3 Conclusion

This section has demonstrated that the planning core system can be used to schedule a

number of actions in a spatial environment. However, the execution time and distance were

inferior to performing the same task with a simple Greedy planner.

The high-level scheduling system was capable of producing low-cost plans, but since the

internal arrangement of each node was not efficiently laid out, the overall result was poor.

However, a concept that is used in the solution of the TSP, is plan refinement - taking a plan

that is sub-optimal and re-ordering it to improve its effectiveness. The next experiment will

attempt to use such a plan refinement strategy to improve the solution.
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(a)

(b)

Figure 5.13: Magnification of Figure 5.12 showing the northern boating lake for the fourth
task configuration. Shading shows the segmentation generated by the node reconstruction.
(a) Vehicle track with Greedy Planner (b) Vehicle track with Symbolic planner. Backing image
is c©OpenStreetMap contributors.
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5.8 Planning with Refinement

In the previous section, the efficiency of deliberately planned missions using topological

belief compression was compared against the best first method using geometric information.

While the planner was capable of global optimisation, the simplification made to its model to

allow efficient search removed data that was relevant to the local optimisation problem.

5.8.1 Method

One method for the solution to the TSP is the reduction of the global problem to a set of local

optimisation problems. For example, Karp used a system of spatial subdivision to reduce the

overall problem to a set of tractable sub-problems [Karp, 1977]. Similarly, the plan produced

by the Symbolic Planner could likewise be used to identify sub-tours which could then be

optimised by a lower-level planning system, a form of plan refinement. Since the Symbolic

planning system is optimising globally, the final plan could be improved by refining the initial

plan by local optimisation.

To allow the handling of sub-tour optimisation, the execution model was updated to dispatch

sequential rescue actions as a single unit to the lower level planner. This planner would then

use the Greedy planner from Equation 5.1 to choose the order to execute rescue actions

within the space provided by the spatial constraints. The resulting system will be referred to

as the Symbolic with Refinement planner. An updated model of the planning system can be

seen in Figure 5.14. Note that in this model, the Greedy planner system does not receive

information on the general spatial environment; it only optimises the current set of rescue

tasks within the provided spatial constraints.

5.8.2 Results

The previous experiment was repeated with this updated model, with the results being shown

in Table 5.6. Visualisations of the vehicle track for trial 3 can be seen in Figure 5.15. The

remaining tracks can be seen in Appendix D, in Figures D.14 to D.17.
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Figure 5.14: Three-layer model of autonomy for Symbolic With Refinement planner

Table 5.6: Comparison of time used and distance covered by TopCat vehicle when executing
simulated rescue using Greedy planner vs Symbolic With Refinement planner.

Run Greedy Symbolic With Refinement Difference
distance time distance time distance time

1 2168m 2078s 2054m 1971s -5% -5%
2 2789m 2683s 2461m 2501s -12% -7%
3 1500m 1459s 1753m 1762s 17% 20%
4 1583m 1624s 1584m 1631s 0% 0%
5 1685m 1655s 1657m 1671s -2% 1%
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(a)

(b)

Figure 5.15: Vehicle tracks for the third task configuration. (a) Vehicle track with Greedy
Planner (b) Vehicle track with Symbolic With Refinement planner. Backing image is
c©OpenStreetMap contributors.
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Examination of the results shows that except for run 3, most of the runs were similar in

execution time to the purely Greedy planned system. Run 3 took approximately 20% longer

to execute. Examination of Figure 5.15 shows that between survivors 4 and 1, a significant

amount of backtracking was performed. This may have contributed to the increased cost of

the planned mission.

In this experiment, the task of rescuing survivors did not require the consideration of precon-

ditions, thus the problem closely matched the TSP. In a problem where some actions have

preconditions requiring satisification, a planning system that considers the global problem

should provide an improved solution over only local optimisation.

5.9 Scheduling of Rescue Tasks with Preconditions

The previous section showed that a domain independent planner could be used to schedule

visits to multiple goals. However one of the strengths of a domain independent planner

is the ability to satisfy preconditions of actions. Chapter 4 showed that a planner could

combine preconditions with a spatial domain to generate paths while minimising costs. By

combining spatial compression with the planning domains demonstrated in Section 4.2.5,

complex plans can be scheduled.

In this experiment, a further goal is added. At the end of the mission, the maritime vehicle

must dock at the north end of the boating lake to deliver the survivors to awaiting facilities.

5.9.1 Method

In the planning system, a new action dock was added. This took an entity with the grounded

predicate isdock as a parameter. An object with this predicate called wamvdock was placed

at the north end of the boating lake. This action was forced to be last by deleting the canact

predicate of the ASV vehicle when it is executed. Since canact is a precondition of all other

actions, this dock task must be performed last. PDDL code encoding these predicates and

action can be found in Appendix C.
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The Greedy Planner was also modified, by adding a move command to the wamvdock object

at the end of its tour of the survivors. Once again, five runs were executed with the position

of the survivors and vehicle randomised between runs. Results of these runs are tabulated

in Table 5.7, while visualisations of the vehicle track for the first and third trials can be seen

in Figures 5.16 and 5.17. The remaining trials can be seen in Appendix D in Figures D.18 to

D.20.

5.9.2 Results

In this configuration, the Symbolic planner system outperformed the Greedy planner signif-

icantly in four out of the five runs, producing travel distance between 25% and 40% shorter

than the missions planned with the Greedy planner. Since the Greedy planner did not con-

sider the distance from the last point to the dock when ordering actions, four out of the five

missions required a significant travel distance from the tours end to the dock as shown in Fig-

ure 5.16. The exception is the third mission shown in Figure 5.17, which visits the survivors

in the same order as the planned mission. Since the Greedy planner does not consider the

global cost of the generated path, this ordering of actions is only coincidental.

5.10 Large-Scale Testing of Scheduling with Preconditions

The previous section showed that the Symbolic Planner system could outperform the Greedy

Planner system when preconditions were in place on the mission. However, the limited trials

prevent this from being a truly rigorous test. To produce a rigorous result, a larger scale test

Table 5.7: Time used and distance covered by TopCat vehicle when executing simulated
rescue.

Run Greedy Planned Difference
distance time distance time distance time

1 3819m 3602s 2849m 2812s -25% -22%
2 2641m 2576s 1814m 1882s -31% -27%
3 2256m 2226s 2258m 2272s 0% 2%
4 3739m 3696s 2256m 2282s -40% -38%
5 3982m 3761s 2458m 2472s -38% -34%
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(a)

(b)

Figure 5.16: Vehicle tracks for the first task configuration. Vehicle must dock at the end
of mission (a) Vehicle track with Greedy Planner (b) Vehicle track with Symbolic Planner.
Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure 5.17: Vehicle tracks for the third task configuration. Vehicle must dock at the end
of mission (a) Vehicle track with Greedy Planner (b) Vehicle track with Symbolic Planner.
Backing image is c©OpenStreetMap contributors.
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is required, but the simulation environment used to test the planning system precludes such

large scale testing since it is both resource intensive and the missions are long in duration.

Since the previous runs had shown that the vehicle responded reliably to guidance from

the executive layer of the planning system, the reactive layer and simulator were removed

and replaced with a program that read the motion goal position, and updated the pose to

match. The simplified system neglects the time and distance required for heading changes

but, since the distances are large compared to the turning circle of the vehicle, the recorded

distances will be an accurate proxy of the actual vehicle performance.

This simplified system allowed a much larger set of trials to be run. The trials were executed

with survivors = 5, 10, 20, and three conditions, one with the vehicle being randomly placed

as in Section 5.8, and a second where the vehicle was placed randomly, but required to dock

at the north end of the boating lake, and a third where the vehicle both launched and recov-

ered from the north end of the boating lake. This combination of conditions demonstrates

the creation of plans both without and without constraints.

The data was recorded and a summary can be seen in Table 5.8, while graphs of the distri-

bution of normalised differences in path length can be seen in Figures 5.18, 5.19 and 5.20

for the case where the vehicle was launched randomly and not required to dock, Figure 5.21

where the vehicle was launched randomly and required to dock at the end of it’s run, and

Figures 5.22, 5.24 and 5.25 for launch and retrieval both occuring at the northern end of

the boating lake. Figure 5.23 shows detail of the histogram of Figure 5.22 centered on the

origin.

In the unconstrained planning case, the mean of the mission length for planned missions

were shorter than the Greedy missions, by between 1 to 4% which are less than one standard

Table 5.8: Statistical comparison of mission lengths for Symbolic Planner vs Greedy Planner.

No Constraint Dock Constraint Launch and Dock
Constraint

Survivors mean standard
deviation

mean standard
deviation

mean standard
deviation

5 0.013 0.119 0.006 0.031
10 0.023 0.13 0.035 0.062
20 0.035 0.09 0.158 0.115 0.066 0.071
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Figure 5.18: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 5. Red line indicates the mean, while
the shaded area is ±1σ. Positive values indicate Greedy Planner mission length exceeds
Symbolic Planner mission length.
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Figure 5.19: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 10. Red line indicates the mean, while
the shaded area is ±1σ. Positive values indicate Greedy Planner mission length exceeds
Symbolic Planner mission length.
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Figure 5.20: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 20. Red line indicates the mean, while
the shaded area is ±1σ. Positive values indicate Greedy Planner mission length exceeds
Symbolic Planner mission length.
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Figure 5.21: Histogram of normalised difference between mission length for the Greedy
planner and symbolic planner with survivors = 20. Mission began at a random location,
but was constrained to end at the north end of the boating lake. Red line indicates the
mean, while the shaded area is ±1σ. Positive values indicate Greedy Planner mission length
exceeds Symbolic Planner mission length.
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Figure 5.22: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 5. Mission was constrained to begin and
end at the north end of the boating lake. Red line indicates the mean, while the shaded area
is ±1σ. Positive values indicate Greedy Planner mission length exceeds Symbolic Planner
mission length.
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Figure 5.23: Detail of histogram shown in Figure 5.22. Positive values indicate Greedy
Planner mission length exceeds Symbolic Planner mission length.

deviation.

For the case where the vehicle was launched and retrieved from the northern dock, the mean

difference between the mission generation systems was larger than the unconstrained case,

but once again was not larger than one standard deviation.

Examination of the histograms of the normalised plan lengths shows that in most cases,

the distributions appear broadly unimodal, with outliers in the range of ±30% for the uncon-

strained case and [−10%,+30%] for launch and retrieval in the northern boating lake. While

the normalised mean differences between planning types were small, examination of the

histograms showed differences with outliers. Figure 5.18, representing the unconstrained

case with survivors = 5, shows outliers in the range of approximately [−30%, 30%]. The

corresponding Figure 5.22 for the launch and dock constraint shows outliers in the range of

[−10%, 10%]. Similar trends of reduced variability exist for the cases of survivors = [10, 20].

The difference between these cases is that in the case where the vehicle was launched and

docked in the boating lake, plans are constrained in their initial and final positions. Since the
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Figure 5.24: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 10. Mission was constrained to begin and
end at the north end of the boating lake. Red line indicates the mean, while the shaded area
is ±1σ. Positive values indicate Greedy Planner mission length exceeds Symbolic Planner
mission length.
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Figure 5.25: Histogram of normalised difference between mission length for the Greedy
Planner and Symbolic Planner with survivors = 20. Mission was constrained to begin and
end at the north end of the boating lake. Red line indicates the mean, while the shaded area
is ±1σ. Positive values indicate Greedy Planner mission length exceeds Symbolic Planner
mission length.
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Symbolic Planner based system considers the global problem when generating each action,

the ordering of actions considers the final position constraint of the vehicle.

The third case was when the initial position of the ASV was randomised, but the final position

was constrained to finish at the northern boating dock. This configuration differs from the

dock and launch constraint in that the path of the robot does not form a tour. As such, like

in Figure 5.16, simply ordering goals to minimise tour length can result in a longer trip to

return to the dock. In this configuration, the Symbolic Planner based system produced plans

that were on average 15.8% shorter than the Greedy planner based system. This difference

corresponded to ≈ 1.4σ.

5.11 Conclusion

This chapter has covered a pair planning of planning systems developed for the task of

planning field robotic systems including both ground and maritime vehicles. The Symbolic

planning system was tested extensively and was found to be outperformed by a simple

Greedy planner at short distances. By the application of plan refinement, and in situations

where preconditions are significant, the plans produced by the combination of Symbolic

Planning, and topological compression resulted in plans 15.8% shorter than using a locally

optimising system.

These planning systems have demonstrated that the result of combining a domain indepen-

dent planning system with a compressed spatial model to generate plans informed by spatial

environment. With the extension of these systems with plan refinement, the results are also

superior to locally optimising systems. A brief table outlining the properties of these systems

can be seen in Table 5.9.

The flexibility of domain-independent planning with these superior path planning results al-

lows significant scope for the implementation of future highly-complex planning systems

using numerical predicates to track values such as fuel levels and vehicle carrying capacity

allowing these values to be combined to generate optimal mission plans that incorporate

vehicle constraints in addition to spatial information.
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Table 5.9: Summary of Planner Properties

Type Greedy Symbolic Symbolic With Re-
finement

Type Select nearest ac-
tion

Solve task using
domain independent
planning system

Solve task using
domain independent
planning system.
Re-order actions us-
ing Greedy Planner

Supports precondi-
tions

No Yes Yes

Considers spatial
environment

No Yes Globally
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Chapter 6

Conclusion

6.1 Summary

Planning in spatial environments is a non-trivial problem. The number of states to be ex-

plored prevents simply combining mission planning with spatial data. The method used by

the ROSPLAN system for performing this task is to factorise the planning problem by consid-

ering spatial information only as a set of costs to travel between waypoints [Cashmore et al.,

2015], but this can be limited. In particular, producing movement costs between n waypoints

requires (n(n − 1))/2 paths to be explored. Depending on the method, size, and length of

the paths this may be a highly expensive operation. This is the reasoning behind the Lazy

Tour coverage planning system - only generating detailed paths for those that are expected

to be in the final coverage plan [Saha et al., 2006].

This thesis proposes an alternate method for performing high-level mission planning by

combining mission and spatial data using belief compression for processing by a domain-

independent symbolic planning system. As shown in Chapter 2 these topological methods

of belief compression allow the data required to produce a plan to be reduced by assuming

that if a homotopic space can be identified, then an optimal trajectory can be found within

the space. As such, detailed path generation is only required for paths that will be utilised

by the vehicle.

This assumption reduces the planning problem to the selection of a suitable set of homo-

199



topic spaces to traverse. Thus, topological information can be used by the high level planner

to set broad spatial constraints for the low-level planning system. This allows the high level

planning system to restrict the scope of its search, potentially improving its own efficiency.

Chapter 3 showed that this assumption could be applied to both simulated and real-world

map data while producing models of the environment that allowed effective choice of seg-

ments to traverse for short path plans. When performing the high level path planning task

with spatial data derived from Apra Harbour, the Palágyi and Kuba skeletonisation algorithm

and watershed reconstruction were found to produce high-level paths that contained the op-

timal trajectory between 60% − 100% of the time with the mean length of non-optimal paths

being 1.5% longer than optimal.

A number of planning systems were examined in Chapter 4, including multiple search and

heuristics to identify their applicability to the task of planning in a spatial environment, and

their scalability. In particular, the A* search algorithm with the Blind and iPDB heuristics was

found to be efficient at the planning task with multiple preconditions while not demonstrating

any appreciable slowdown in the tested spatial environments with increasing task complexity.

Chapter 5 combined belief compression and a domain-independent symbolic planner to

generate mission plans for a simulated maritime vehicle. This method was shown to be

superior to a greedy planning system in a maritime rescue task where preconditions exist

due to it’s ability to optimise the global plan. In the case where an ASV was randomly

placed, required to collect survivors and then dock, the Symbolic With Refinement planner

outperformed a greedy planning system by an average of 15%.

6.1.1 Additional Deliverables

As part of the development of this thesis, a number of other useful systems were devel-

oped including systems for performing various skeletonisation and geometric tasks, libraries

for handling PDDL code, a path generation system as demonstrated in Appendix A, and

an alternate method for control allocation using model predictive control as described in

Appendix E. These systems have been used for measuring the bathymetry of a lake en-

vironment, demonstrating their suitability for maritime survey tasks. Derivatives of these

200



systems and other concepts developed during the production of this thesis have found use

in the development of the TopCat ASV, and projected future autonomous vehicles.

In addition to the robot planning architecture, a simulation system was also developed based

on the Gazebo robotics simulator as outlined in Appendix F. This simulator was validated by

repeating and comparing the results of field trials. This system was used for the development

and testing of the high-level planning systems.

6.2 Future Work

6.2.1 On-line Planning

One of the important points to come out of the creation of this thesis is that similar to the

travelling salesperson problem (TSP), mission plans can benefit from a process of plan

refinement. This requires the maintenance of state that would be discarded in a standard

off-line planning model. Without the ability to evaluate whether the addition or reordering of

planned actions will violate plan constraints, refinement can only be performed at the most

trivial of levels.

6.2.2 State Update

An improved model of the planning system would allow publication of states during a plan-

ning run. As observed in Chapter 5, it is possible to encode standard textual and numeric

grounded predicates into Robotics Operating System (ROS) message types. This means

that it should be possible to extend ROS’ tool based model to the level of the mission plan-

ning system. By modifying the planning system to be a set of independent tools that inter-

operate, introspection of the system can be improved by leveraging the existing tools for

state recording and review.
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6.2.3 D* Search

A limitation of informed search algorithms such as A* is that they require the entirety of

planning graph to remain in memory as they cannot prune their search space [Russell and

Norvig, 2010]. However this can be turned to an advantage by the use of search algorithms

such as D* that allow updates to the planners state as the robots environment changes

[Stentz, 1994]. Such a system would not require the entire search to be repeated for each

change to the environment.

6.2.4 Trusted Autonomy

With the current interest in trusted autonomy, improving introspection can improve trust by

both communicating the intentions of the planning system and the reasoning behind its ac-

tions. Such visibility and accountability of the planning system should allow human operators

to build trust by their own review of the planning systems proposed actions.

6.2.5 International Regulations for Preventing Collisions at Sea (COL-

REGS)

A further area of interest is the design of suitable belief compression systems. The topo-

logical based methods tested in Chapter 3 were initially envisioned for an Autonomous Un-

derwater Vehicle in a volumetric environment. There are similar requirements for planning

tasks for maritime surface operations. A system based on the use of Delaunay Triangulation

was developed for Flinders University’s entry to the Maritime RobotX Competition [Webb

et al., 2016]. This system was further expanded into a proposed system for planning in con-

strained environments such as marinas [Wheare et al., 2018]. Further development of this

system should allow it to support International Regulations for Preventing Collisions at Sea

(COLREGS) navigation tasks.
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6.3 Environmental monitoring

The TopCat Autonomous Surface Vessel (ASV) was designed to be capable of performing

environmental monitoring tasks. TopCat’s shallow draft allows it to operate in areas that are

closer inshore than what a true ocean-going survey vessel would require. This potentially

allows precision monitoring of inshore waters. This was demonstrated in Appendix E which

included a demonstration of bathymetry measurement using the TopCat vehicle.

This survey was limited in that an ASV is limited to observations that can be performed from

the surface. Roelfsema et al. expressed interest in the data gathering abilities of an Au-

tonomous Underwater Vehicle (AUV) able to dive beneath the limit achievable by a human

swimmer [Roelfsema et al., 2015]. Compared to an underwater vehicle, an ASV has greater

payload and access to precision navigation systems, but lacks the ability to approach the

underwater area of interest. A possible solution is the development of a hybrid vehicle con-

sisting of an ASV platform with a tethered Remotely Operated Vehicle (ROV). Development

of such hybrid systems are being performed by the EU Trident project [Sanz et al., 2013],

and the University of Florida’s Anglerfish [Gray and Schwartz, 2016]. Such hybrid vehicles

have potential to perform many of the tasks that are currently done by shallow-water AUVs.

Interest in this area does appear to be increasing, with the upcoming 2018 Maritime RobotX

challenge also proposing a task to recover a set of underwater rings. This will likely require

the use of a tethered ROV [Maritime RobotX Challenge, 2018].

Future development of the ASVs planning system would allow the automatic generation of

observation plans, with support for ship tracking and COLREGS path planning potentially

allowing survey tasks to be completed in complex and busy environments such as harbours.

6.3.1 Beneficiaries

The systems designed for this thesis would benefit applications requiring efficient plan gen-

eration where the problems of spatial and mission planning are not easily separable. This

could provide a potential improvement in performance for applications in the following areas;
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6.3.1.1 Research

As shown in Appendix A, the TopCat platform can perform environmental monitoring tasks.

By the use of a spatially-aware planning system similar to that covered in this thesis, future

systems could perform such tasks in environments that are complex such as harbours and

near structures without requiring extensive pre-planning by a human operator. This would

allow more missions to be performed for a given number of staff potentially improving pro-

ductivity.

6.3.1.2 Academic

The use of topology to construct graphs representing a compressed space has potential

applications beyond the production of graphs for plan generation. In much the same way that

heuristics are relaxed planning problems, a topological graph can be considered a relaxation

of a path plan. As such, a topological skeleton could have applications to guiding solutions

in other spatial planning problems.

6.3.1.3 Industry

Similar to the use as a research platform, improvements in planning could lead to more

effective performance of monitoring tasks around complex structures such as tailing dams,

aquaculture nets, and oil rigs. These structures require inspection for damage and corrosion.

Particularly in areas with complex spatial environments, inspection plans could benefit from

the use of topological information.

6.4 Conclusion

In conclusion, this thesis has shown that deliberative domain-independent planners can be

used with spatial data if it is first compressed. This system is capable of outperforming a

locally optimising planning system while executing rapidly enough to allow rapid re-planning
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due to environmental changes, and supporting the future implementation of more complex

robotic planning domains.
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Appendix A

Experimental Validation of TopCat

Planning Architecture

To validate that the path planning system developed for the TopCat Autonomous Surface

Vessel (ASV), a task based on both environmental monitoring was developed. This would

demonstrate both the ability of the planning system to generate trajectories, and for TopCat

to reliably and repeatably follow them.

A.1 Environmental Monitoring

As discussed in the introduction, one of the areas of interest for field robotics is the carriage

of sensors for environmental monitoring. Amongst the areas of research being undertaken

by the School of The Environment at Flinders University, is work on the monitoring of coastal

geomorphology and evolution. Earlier studies such as the one undertaken by da Silva et al.

had used fishing vehicles to carry depth sounding equipment [da Silva et al., 2012]. TopCat,

with its shallow draft and ability to beach without damage, could potentially make an excellent

sensor platform for capture of bathymetric data in shallow inshore waters. This comes at

the cost of having limited directional control due to its large windage and shallow draft.

To demonstrate that the control system was capable of reliably executing the repeatable

transects required for the generation of time series data, an experiment was performed

206



at West Lakes to demonstrate control of the platform and integration with the bathymetry

equipment.

A.2 Aims

To demonstrate the ability of the TopCat ASV as an environmental mapping tool, the following

aims were developed;

• Demonstrate guidance of the TopCat vehicle to waypoints using the planning system

• Demonstrate repeatable traversal of transects.

• Capture data from the CeeScope bathymetry device for building bathymetry maps of a

maritime environment.

A.3 Method

The area selected for this experiment was the north end of West Lakes boating lake - an

artificial Saltwater environment developed as part of the West Lakes housing development

in the 1970s. Powered vehicles are prohibited to operate on West Lakes, but a permit was

negotiated for the operation of TopCat for research purposes. Imagery of West Lakes can

be seen in Figure A.1.

Depth information was captured using a CeeScope echo sounder. The control and data

logger was mounted on the sensor tray, while the SONAR transducer was bolted to TopCats

deployer mechanism. The CeeScope device integrates position estimation, depth sounding

and data logging into a single package. To enable it to log precision depth information

without the provision of external tide data, a Real-Time Kinematic (RTK) Global Position

Satellite (GPS) based state estimation system was configured using an R10 [Trimble, 2014]

and a BX982 GPS [Trimble, 2016]. State estimates from the system were communicated to

the sensor using the NMEA protocol. After conclusion of the experiment, the depth data and

GPS fixes were downloaded from the CeeScope sensor.
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Twelve waypoints were generated in the Boating Lake. The vehicle was given six transects

to traverse, each between a pair of waypoints as shown in Figure A.2. Transects were

executed by use of an actionlib [Open Source Robotics Foundation, 2014a] goal sent to the

wamv motion planner node. Each of these goals used two named waypoints as the start

and finish of a transect.

The planner automatically created a goal dispatching the vehicle to the start waypoint. The

motion planning node then dispatched these goals to the contol allocation node. The pro-

gram was executed five times and the resulting vehicle track plotted. A map showing the

vehicle track can be seen in Figure A.3. All runs were executed under autonomous control.

The first run was aborted due to the presence of a kayak resulting in the deviation between

waypoints search2 and search3. The remaining runs were completed without incident.

More details on the performance of the vehicle guidance and control system can be found in

Appendix E.

A.4 Results

The Ceescope depth data was post-processed to produce the depth data shown in Figure

A.4. These data are consistent between runs, but not corrected for antenna offset error.

Inspection of the vehicle track shows that the vehicle performed the majority of its inspection

task correctly, however the approach to waypoints search5, and search9 shows the vehi-

cle converging onto the search transect only after passing the waypoint. This is due to the

method of implementation of the control system, as the vehicle uses a line-of-sight mecha-

nism for converging onto the line of transect, there is no constraint on this occurring before

the start waypoint. Waypoints search3, search7, and search11 do not exhibit this behaviour

since the vehicle ran long at their preceding waypoints.

Using these data, a contour bathymetry map of the boating lake was constructed using QGIS

[QGIS Development Team., 2018] contour plugin [Roubeyrie and Crook, 2018]. The result

of this is the map shown in Figure A.5. While no ground truth was available to confirm the

measurements, the readings taken by the system appear consistent.
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A.5 Conclusion

The vehicle was capable of repeatable traversal of transects with a lateral error in the order

of half a metre. This capability was used for the capture of depth data from a prepared

plan which was then used to construct a bathmetry map of the test area. Construction of

this map shows that the TopCat ASV can perform environmental monitoring tasks. Further

improvements to the handling of transects and motion primitives would allow the system

even greater precision when performing such tasks.
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Appendix B

An Introduction to the Operation of

Symbolic Planners

Since the use of the Problem Domain Description Language (PDDL) and symbolic planning

is important to this thesis, a short introduction describing its operation has been added.

An early problem demonstrating the advantages of searching for plans is the monkey and

banana problem proposed by McCarthy [McCarthy, 1963]. This problem uses three objects,

a monkey, a box and a bunch of bananas to illustrate the requirement for building multi-step

planners.

In this problem, the monkey is an agent that is capable of executing the plans calculated by

the planning system. A graphical representation of the monkey can be seen in Figure B.1

along with the Problem Domain Description Language (PDDL) code required to initialise a

planning domain. PDDL provides a planner independent method for defining such planning

tasks.

In a symbolic planning system the state of a planning operation is defined as a set containing

the initial state, set of available actions, current plan, and the goal state. Bylander represents

these as the tuple shown in Equation B.1 [Bylander, 1994]:

[P,O, I,G] (B.1)
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Where;

• P - is the set of ground atoms describing the current world state.

• O - is the set of operators that can transform the atoms.

• I - is the initial state.

• G - is the goal state.

In operation, the planner searches through actions adding those that transform the goal into

the initial state to the plan. Figure B.1 shows the PDDL code defining the monkey’s existence

as an object has been added. No initial actions or grounded predicates are defined, so the

initial state is empty as shown in Equation B.2.

[P,O, I,G] = [∅, ∅, ∅, ∅] (B.2)

An action consists of a set of preconditions, a list of predicates to be added to the state and

another list of predicates to be deleted the add list and delete list.

When actions are added, they define alterations to the predicates of the system. If another

entity is added that represents a bunch of bananas the monkey wishes to possess, this can

be represented by the addition of a predicate called has representing possession and an

(define (domain monkeybananas)
(:requirements :strips :typing :fluents)

(:types entity)
(:objects monkey - entity))

Figure B.1: A monkey representing an agent in a planning system. Clipart from opencli-
part.org
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action get that allows the predicate to be set. Predicates start off as potential relationships

between free variables representing types of objects. When a type in a predicate is replaced

by a specific object, it is said to be grounded. The goal defines the grounded predicates that

the system is directed to achieve. In this system, the state is now as shown in Equation B.3;

[P,O, I,G] = [∅, (get (:effect has o1 o2)), ∅, (has monkey banana)] (B.3)

which can then be used to generate the plan as shown in Equation B.4;

plan = (get monkey banana) (B.4)

In addition to transforming the predicates of a system, actions may also have preconditions

that are required to be true before they can be performed. If the bananas are suspended

from a branch, the monkey may require a method to reach them - the banana is initialised

(:predicates (has o1 o2 - entity))
(:action get (:effect has o1 o2))

(:objects monkey banana - entity)
(:goal (has monkey banana))

Figure B.2: The monkey can reach its goal by executing the get action. Clipart from opencli-
part.org
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with the predicate high which is also added to the preconditions of the get action.

[P,O, I,G] =[[(high banana)],

[(get (and (high o1)(high o2))(:effect has o1 o2))],

[(high banana)],

[(has monkey banana)]]

(B.5)

Since the monkey has no method of achieving the grounded predicate (high monkey), this

configuration of the problem is insoluble as shown in Equation B.6.

plan ≡ ∅ (B.6)

For the monkey to reach the bananas, a new action needs to be added. Climb allows

the monkey to climb an object that has the predicate climbable, gaining the predicate high

and thus satisfying the preconditions of the get action. A new object, ladder, is added and

(:predicates (high o - entity))
(:action get (:precondition (and (high o1)(high o2)) (:effect has o1 o2))

(:init (high banana))
(:goal (has monkey banana))

Figure B.3: The prerequisites of the get action prevent the monkey from obtaining the bunch
of bananas.
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initialised with the climbable predicate as shown in Figure B.4, this gives the system shown

in Equation B.7.

[P,O, I,G] =[[(high banana), (climbable ladder)],

[(get (and (high o1)(high o2))(:effect has o1 o2)),

(climb (:precondition (climbable o1)) (:effect high o2))],

[(high banana), (climbable ladder)],

[(has monkey banana)]]

(B.7)

In this configuration, the monkey cannot immediately reach its goal - it must first enter an

intermediary state as shown in Equation B.8.

plan = [(climb ladder)]

P = [(high banana), (climbable ladder), (high monkey)]
(B.8)

Once in this intermediate state the preconditions of the get action are satisfied and the plan

can be completed as shown in Equation B.9.

plan = [(climb ladder), (get bananas)] (B.9)

This domain assumes that the objects are all at a single location. If the entities are at

seperate locations as shown in Figure B.5, a new set of actions is required. Support for

multiple locations can be provided by adding a new predicate at that designates an entity

as being within an instance of another new type, a node. The monkey can move between

locations which are accessible or move the ladder and itself by using push, which requires

the ladder and monkey to be at the same location. This is performed by adding the following

predicates and actions to the system as shown in Equation B.10
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(:predicates (climbable o - entity))
(:action climb (:precondition (climbable o1)) (:effect high o2))

(:objects monkey banana ladder- entity)
(:init (climbable ladder))

Figure B.4: The addition of a ladder object and the climb action allows the monkey to achieve
its goal.

1 2 3
Figure B.5: Each entity now has a location

220



[P,O] =[[(at location1 banana), (at location2 monkey), ,

(accessible location1 location2),(accessible location2 location3)]

[(move (and (at o2 o1)(accessible o2 o3)),

(:effect (and (at o3 o1)(not at o2 o1)))]]

(B.10)

Notably this action is the first to use the delete list. When the monkey leaves a location, this

is performed by deleting the predicate showing a relationship between the entity and that

location. Since, by the closed world assumption, any relationship that is not listed as being

true, is assumed to be false the monkey will no longer be associated with its former location.

If the ladder is not at the required location a similar action can move it to the bananas as

shown in Equation B.11;

[P,O] =[[(at location3 ladder)]

[(push (and (at o3 o1)(at o3 o2)(accessible o3 o4)),

(:effect (and (at o4 o1)(not at o3 o1)(at o4 o2)(not at o3 o2)))]]

(B.11)

The spatial relationships of objects can thus be encoded into a planning domain and a plan

of action derived that performs a sequence of actions in this environment. Were the problem

presented as a simple motion-planning task, no solution would be possible since the monkey

must transform its environment before a trajectory can be generated that takes it to its goal.

In this case, if each action is assigned a cost f(a), then the solution space can be searched

to find the plan A in the set of all possible plans A1..n that satisfies the relationship in Equation

B.12.

min(Σf(a), a ∈ Ak), Ak ∈ A1..n (B.12)

Since this plan is the lowest cost set of actions, it can be said to be optimal.
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Figure B.6: In a more complex environment, an agent may have multiple paths to a goal

B.1 Conclusion

This chapter has provided a brief overview of the operation of the method of operation of a

symbolic planning system. Although the problem is quite different to that of planning for field

robotics, the spatial relation predicates and get action are identical to those that were used

in the body of this thesis.
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Appendix C

Problem Domain Description Language

Keywords and Handling

This thesis involves the use of several domain-independent symbolic planning systems with

software to interact with a field robots systems. This process involves transforming infor-

mation from the different internal states used by these systems. This chapter will provide

an overview of the languages, code and message types used to perform this information

transfer.

The systems developed for this thesis use the Problem Domain Description Language (PDDL)

to specify the state of the robots environment and it’s possible actions to the tested symbolic

planning systems. This appendix will provide a brief list of Problem Domain Description Lan-

guage (PDDL) keywords and their definitions. Later sections will cover the particular PDDL

code used to define the domains used, and finally the custom Robotics Operating System

(ROS) messages used to communicate between the parts of the planning system.
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C.1 Problem Domain Description Language (PDDL) State-

ments

The layout of a PDDL file resembles the Lisp language in having a recursive structure delim-

ited using brackets. As such, the contents of a file can be represented as a tree structure. A

PDDL planner requires two files to generate a plan, a domain file that sets the types, predi-

cates and actions that are used by the domain, and a task file that instantiates the grounded

predicates describing the initial and goal states.

For planning competitions, a single domain file will be used with a number of task files

of increasing complexity. For example, the visit-all domain from the 2011 IPC competi-

tion [Lipovetzky, 2010] has twenty task files in it’s sequential optimal repository [Lipovetzky,

2011].

C.1.1 Common

Both the domain and task file have a set of common text tags representing Boolean relation-

ships

• and - boolean and operation. This operator will evaluate to true if all of it’s subtags are

true.

• or - boolean or operation. This operator will evaluate to true if any of it’s subtags are

true.

• not - boolean not operation. This operator will evaluate to true if it’s subtag is false.

C.1.2 Domain File Only

• requirements - lists the capabilities of the solver that are required for the domain to be

correctly processed.

• types - the object types that will appear in the domain
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• predicates - a list of the relationships between keywords and objects that can be used

in the symbolic planning system.

• functions - used in domains that support numerical fluents to specify the numerical

relationships that are supported.

• actions - The use of actions that can be used by the planner to transform the state.

Each action contains a parameter, precondition and effect keyword.

C.1.3 Task File Only

• domain - specifies the name of the domain that this task file is associated with.

• objects - the list of objects that are instantiated for the task.

• init - a set of grounded predicates that specifies the initial state of the domain.

• goal - a set of grounded predicates that specifies the final state that the planner is to

achieve.

C.2 pddl libs, a Library for the Manipulation of Problem

Domain Description Language Statements

To allow the integration of standalone PDDL based symbolic planning systems with a robot

executive, a method for constructing PDDL files based on the robot’s current state was

required. To fulfil this role, a library called pddl libs was developed

At the core of the pddl libs library is a tree-based data structure similar that allows storage of

data in a similar layout to the file structure. Loading of PDDL files into this structure uses a

lexical analyser based on the ply library [Beazley, 2016]. PDDL statements in this structure

can be searched for, modified or added to. Additional functions include;

• Searching for branches of the PDDL based on tokens

• Helper functions to assist in the addition of facts, actions, and goals
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• The creation of domain and task files from the current state of the tree

• An interface to allow automated execution of PDDL domains using the Fast Downward

[Helmert, 2006] and Popf2 [Coles et al., 2011] planners, and the parsing of their output

files.

For the planning system in Section 5.4 that is based on expanding PDDL statements, an im-

portant ability is to substitute statements. This allows new PDDL statements to be generated

based on a combination of found statements and the robots belief. The original statements

are hidden preventing them from confusing the PDDL planner. This allows the PDDL lan-

guage to be extended with a statements that are specialised for the task of spatial planning.

C.3 Problem Domain Description Language (PDDL) Code

Used For Maritime Planning

Chapters 4 and 5 have used PDDL code to encode domains to be solved by the domain

independent planning systems. This section will detail the predicates and actions used to

define these domains.

C.3.1 Objects

Using PDDLs typing requirement, code can be written that supports object type checking.

This allows the detection of possible incorrect code. The object types used by the maritime

planning systems are shown in Table C.1.

Table C.1: Types used in the Problem Domain Description Language (PDDL) code used by
the maritime planning system.

Type description
entity An entity that can act or be acted upon
node A node of the spatial graph
edge an edge that connects graph nodes together
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C.3.2 Predicates

The PDDL domain indicates the state of the object by the use of logical statements called

predicates. A summary of the predicates used by the planning system can be seen in Table

C.2.

C.3.3 Functions

Functions in a PDDL domain operate in a similar manner to predicates, in that they are

representations of the state of a system. However, where predicates are either present or

absent, functions represent numerical values. A summary of the functions used in the PDDL

domains can be seen in Table C.3

Table C.2: Predicates used in the Problem Domain Description Language (PDDL) code used
by the maritime planning system.

Predicate Description
at ?o - entity ?n - node The entity is at a node.
accessible ?e - edge ?n1
?n2 - node

A node is accessible from another node via an edge.

canact ?o - entity Indicates that the entity can perform actions.
has ?o1 ?o2 - entity The entity o1 has possession of o2.
haslifeboat ?o - entity The entity currently has a lifeboat that can be used to

rescue a survivor.
depot ?o - entity The entity is a depot that can provide replacement

lifeboats.
rescued ?o - entity The entity has been rescued.
isdock ?o - entity The entity is a dock.
docked ?o - entity The entity is docked.

Table C.3: Predicates used in the Problem Domain Description Language (PDDL) code used
by the maritime planning system.

Function Description
total-cost The total cost of executing a plan
energyrequired ?e - edge
?n1 ?n2 - node

The energy required to travel from a node to another
node via an edge.
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C.3.4 Actions

To allow the correct selection of actions, the preqrequisites and effects of these actions need

to be encoded in the PDDL domain.

C.3.4.1 Move

The most common of these actions is move, which allows an entity to change the node

that it is at. A listing of the code of this action can be seen in Figure C.1. The cost of

performing a move action can vary. This information is encoded by the numerical predicate

energyrequired. When the move action is performed, the total-cost value is increased by the

action cost specified by the energyrequired function.

C.3.4.2 Get

The demonstration task shown in Section 4.2.4 used a domain independent planner to

choose the order of rescuing a number of survivors. This required the addition of a new

action called get, the PDDL code for which can be seen in Figure C.2. This only requires an

entity that canact to be at the same node as the entity to be rescued.

(:action move

:parameters (?o - entity ?n1 ?n2 - node ?e - edge )

:precondition (and (at ?o ?n1 )

(accessible ?e ?n1 ?n2 )

(canact ?o ) )

:effect (and (not (at ?o ?n1 ))

(at ?o ?n2 )

(increase (total-cost) (energyrequired ?e ?n1 ?n2))))

Figure C.1: Problem Domain Description Language (PDDL) code encoding the move action.

(:action get

:parameters (?o1 ?o2 - entity ?n- node)

:precondition (and (at ?o1 ?n ) (at ?o2 ?n )

(canact ?o1 ))

:effect (has ?o1 ?o2 ))

Figure C.2: Problem Domain Description Language (PDDL) code encoding the get action.
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C.3.4.3 Rescue

Later versions of the domain would use a rescue action that required the presence of a

lifeboat as represented by the haslifeboat predicate. This version of the action can be seen

in Figure C.3. The rescue of a survivor with a lifeboat expends that lifeboat. To replenish the

lifeboat supply, the vehicle can use the collect action while at the same node as an entity

with the depot predicate. Code implementing this action can be seen in Figure C.4

C.3.4.4 Dock

The vehicle may be required to dock at the end of its run. The dock action combined with

the isdock predicate allow an entity that can act to be given the docked predicate when at

the same node. Removal of the canact predicate ensures that this is the last action that the

vehicle can perform. Code for the dock action can be seen in Figure C.5.

(:action rescue :parameters (?o1 - entity ?n - node ?o2 - entity )

:precondition (and (at ?o1 ?n )

(at ?o2 ?n )

(canact ?o1 )

(haslifeboat ?o1))

:effect (and (rescued ?o2)

(not(haslifeboat ?o1))))

Figure C.3: Problem Domain Description Language (PDDL) code encoding the rescue ac-
tion with a lifeboat.

(:action collect

:parameters (?o1 - entity ?n - node ?o2 - entity )

:precondition (and (at ?o1 ?n )

(at ?o2 ?n )

(canact ?o1 )

(depot ?o2 ))

:effect (haslifeboat ?o1))

Figure C.4: Problem Domain Description Language (PDDL) code encoding the collect action
that replenishes the lifeboat supply.
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(:action dock

:parameters (?o1 - entity ?n - node ?o2 - entity )

:precondition (and (at ?o1 ?n )

(at ?o2 ?n )

(canact ?o1 )

(isdock ?o2 ))

:effect (and (docked ?o1)

(not (canact ?o1))))

Figure C.5: Problem Domain Description Language (PDDL) code encoding the dock action
that docks the vehicle at the end of a mission.

C.4 Inter-operation of Domain Independent Planning with

the Robotics Operating System (ROS)

As outlined in Section 5.5, the custom message encoding system of the Robotics Operating

System (ROS) has sufficient expressiveness to encode domain-independent domains within

it’s structure. This section will provide a brief overview of how this can be performed.

At their most basic level, a PDDL domain and task are tree structures containing a number

of statements encoding the desired relationships between actions and predicates. While

ROS messages do not support recursion, they do support the inclusion of sub-messages

zero or more times. Using this, a message structure can be constructed that encodes the

commonly used features of a PDDL domain.

C.4.1 The Predicate Message

The most fundamental of the messages used for domain encoding was the Predicate mes-

sage. This message encodes a single grounded predicate, and is used as the basis of more

complex message types. The message encoding is shown in Figure C.6.

string name

string[] parameter

int8 relation

int8 TRUE=0

int8 FALSE=1

Figure C.6: Custom Robotics Operating System (ROS) message encoding a predicate.
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C.4.2 The NumericPredicate Message

In addition to the true and false information provided by the standard predicates a system

that encodes numerical values such as action costs will require a method of communicating

these values. The NumericPredicate message encodes a numerical relationship between

a set of symbols representing the function and a numerical value. The custom message

encoding is shown in Figure C.7.

C.4.3 The Parameter Message

Predicates specify the facts of a planning system by providing relationships between sym-

bols. To ensure that correct typing is performed when constructing predicates, a method of

communicating the object types is required. The Parameter message is used to commu-

nicate this type information. A listing of the custom ROS message can be seen in Figure

C.8.

Predicate[] functions

int8 relation

int8 GREATERTHAN=0

int8 LESSTHAN=1

int8 EQUAL=2

int8 ADD=3

int8 SUBTRACT=4

int8 SET=5

int32 value

Figure C.7: Custom Robotics Operating System (ROS) message encoding a numeric predi-
cate.

string name

string type

Figure C.8: Custom Robotics Operating System (ROS) message encoding a parameter.
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C.4.4 The Action Message

The action message encodes an action. Preconditions and effects are encoded as zero or

more Predicate and NumericPredicate messages.

C.4.5 The Object and Objects Message

The robots control and estimation systems communicate their estimated state of the sys-

tem with the planning system by the use of Objects messages. The definition of the Object

message can be seen in Figure C.10. The Objects message contains zero or more Object

messages. Objects messages are used to communicate both the state of the spatial en-

vironment, including the action costs for traversing between nodes as seen in Figure C.11

and the state of objects within the environment as seen in Figure C.12. The use of these

messages allow separation between the executive of the robot and the planning system.

string name

Parameter[] parameters

Parameter[] numeric parameters

Predicate[] preconditions

NumericPredicate[] numeric preconditions

Predicate[] effects

NumericPredicate[] numeric effects

Figure C.9: Custom Robotics Operating System (ROS) message encoding an action.

string name

string type

int32 node id

bool tracked

geometry msgs/Point position

Predicate[] predicates

NumericPredicate[] numeric predicates

Figure C.10: Custom Robotics Operating System (ROS) message encoding an objects prop-
erties.

232



name: "bridge5"

type: "edge"

node id: 4

tracked: False

position:

x: -82.6819422992

y: -966.084036425

z: 0.0

predicates:

-

name: "accessible"

parameter: [bridge5, node4, node14]

relation: 0

-

name: "accessible"

parameter: [bridge5, node14, node4]

relation: 0

numeric predicates:

-

functions:

-

name: "energyrequired"

parameter: [bridge5, node4, node14]

relation: 0

relation: 2

value: 232

-

functions:

-

name: "energyrequired"

parameter: [bridge5, node14, node4]

relation: 0

relation: 2

value: 232

-

Figure C.11: Part of the Objects message used to communicate state with the planning
system. This portion encodes the connectivity between two nodes.
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name: "wamv"

type: "entity"

node id: 2

tracked: False

position:

x: -667.681942299

y: -783.084036425

z: 0.0

predicates:

-

name: "free"

parameter: [wamv]

relation: 0

-

name: "canact"

parameter: [wamv]

relation: 0

-

name: "haslifeboat"

parameter: [wamv]

relation: 0

numeric predicates: []

-

Figure C.12: Part of the object message used to communicate state with the planning sys-
tem. This portion encodes the state of the Autonomous Surface Vessel (ASV).
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C.4.6 The Plan Message

When the domain-independent planning system has generated a plan for execution, it’s state

should be communicated for logging and monitoring purposes. The custom ROS message

type Plan shown in Figure C.13. The Plan message comprises zero or more PlanAction

messages as shown in Figure C.14.

C.4.7 Actionlib Integration

Once the planning system has generated a plan, it needs to be dispatched to the systems

that will implement the actions. In this planning system, this is performed using the actionlib

library [Open Source Robotics Foundation, 2014a] using the PDDLAction custom action

definition shown in Figure C.15. When it is time for an action to be performed, an actionlib

server calls the corresponding client with the name of the action to be performed and the

corresponding grounded objects in the strings section. By monitoring the state of the objects

in the system, this information is sufficient for the client to complete the action. The client

responds with success or failure when the action is complete.

bool execute

PlanAction[] actions

Figure C.13: Custom Robotics Operating System (ROS) action definition used to publish the
generated plan.

string name

float32 time

string[] values

Figure C.14: Custom Robotics Operating System (ROS) action definition used by the planner
to publish individual actions.

string action

string[] strings

---

bool result

---

int32 status

int32 final cost

Figure C.15: Custom Robotics Operating System (ROS) action definition used by the planner
to invoke actions.
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C.5 Conclusion

This chapter has provided brief information on the software, PDDL code, and ROS mes-

sages that are used to communicate the domain and task information between the execu-

tive, planning system and domain-independent planner that comprise the planning system

developed for this thesis.
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Appendix D

Additional Figures Showing Motion

Plans

Due to their size, some figures showing vehicle motion plans were unable to be shown in the

body of this thesis. These figures have been reproduced here.

Figure D.1: Sample motion plan generated by Fast Downward with Lazy Greedy search, and
the Context Enhanced-Additive (CEA) heuristic. This result is identical to the result of using
the Fast Forward (FF) heuristic as seen in Figure 4.2.
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Figure D.2: Sample motion plan generated by Fast Downward with Lazy Greedy search,
and the Dual heuristic. This result is identical to the result of using the Fast Forward (FF)
heuristic as seen in Figure 4.2.
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Figure D.3: Sample motion plan generated by Fast Downward with A* search, and the Blind
heuristic. This result is identical to the result of using the Landmark-Cut (LM-cut) heuristic
as seen in Figure 4.3.
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Figure D.4: Sample motion plan generated by Fast Downward with A* search, and the Pat-
tern Database (iPDB) heuristic. This result is identical to the result of using the Landmark-
Cut (LM-cut) heuristic as seen in Figure 4.3.

Figure D.5: Sample motion plan generated by the popf-2 planner. This result is identical to
the result of using the Landmark-Cut (LM-cut) heuristic as seen in Figure 4.3.
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Figure D.6: Sample mission plan to rescue five subjects as generated by Fast Downward
with Lazy Greedy search through an asymmetric cost environment and Dual Heuristic. Num-
bers indicate the order in which subjects were rescued. Result was identical to Fast Down-
ward with the Fast Forward heuristic as seen in Figure 4.12a
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(b)

Figure D.7: Sample mission plans to rescue five subjects as generated by Fast Downward
with A* search through an asymmetric cost environment. Numbers indicate the order in
which subjects were rescued (a) Fast Downward with Blind heuristic (b) Fast Downward with
Pattern Database (iPDB) heuristic. Mission plans were similar to that generated by Fast
Downward with the Landmark-Cut (LM-cut) heuristic as seen in Figure 4.13(a).
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Figure D.8: Sample motion plan for domains including move, collect, and deploy actions
using Fast Downward, Lazy Greedy Search, and the Dual Heuristic. This run included three
subjects for rescue and one supply ship. Arrows on the red vehicle track indicate the direc-
tion of motion. Plots of Lazy Greedy Search with the Fast Forward and Context-Enhanced
Additive heuristics can be found in Figure 4.17.
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(a)

(b)

Figure D.9: Sample motion plans for domains including move, collect, and deploy actions
using Fast Downward and A* search. These runs included three subjects for rescue and
one supply ship. Arrows on the red vehicle track indicate the direction of motion. (a) Fast
Downward with Blind heuristic (b) Fast Downward with Pattern Database (iPDB) heuristic.
Fast Downward with the Landmark-Cut (LM-cut) heuristic can be found in Figure 4.18(a).
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(a)

(b)

Figure D.10: Vehicle tracks for the first task configuration (a) Vehicle track with Greedy plan-
ner (b) Vehicle track with Symbolic planner. These tracks come from the same test runs as
Figure 5.12. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.11: Vehicle tracks for the second task configuration (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic planner. These tracks come from the same test runs
as Figure 5.12. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.12: Vehicle tracks for the third task configuration (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic planner. These tracks come from the same test runs
as Figure 5.12. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.13: Vehicle tracks for the fifth task configuration (a) Vehicle track with Greedy plan-
ner (b) Vehicle track with Symbolic planner. These tracks come from the same test runs as
Figure 5.12. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.14: Vehicle tracks for the first task configuration. (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic With Refinement planner. These tracks come from
the same test runs as Figure 5.15. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.15: Vehicle tracks for the second task configuration. (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic With Refinement planner. These tracks come from
the same test runs as Figure 5.15. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.16: Vehicle tracks for the fourth task configuration. (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic with Refinement planner. These tracks come from
the same test runs as Figure 5.15. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.17: Vehicle tracks for the fifth task configuration. (a) Vehicle track with Greedy
planner (b) Vehicle track with Symbolic with Refinement planner. These tracks come from
the same test runs as Figure 5.15. Backing image is c©OpenStreetMap contributors.
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(a)

(b)

Figure D.18: Vehicle tracks for the second task configuration. Vehicle must dock at the end of
mission (a) Vehicle track with Greedy planner (b) Vehicle track with Symbolic planner. These
tracks come from the same test runs as Figure 5.16. Backing image is c©OpenStreetMap
contributors.
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(a)

(b)

Figure D.19: Vehicle tracks for the fourth task configuration. Vehicle must dock at the end of
mission (a) Vehicle track with Greedy planner (b) Vehicle track with Symbolic planner. These
tracks come from the same test runs as Figure 5.16. Backing image is c©OpenStreetMap
contributors.
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(a)

(b)

Figure D.20: Vehicle tracks for the fifth task configuration. Vehicle must dock at the end of
mission (a) Vehicle track with Greedy planner (b) Vehicle track with Symbolic planner. These
tracks come from the same test runs as Figure 5.16. Backing image is c©OpenStreetMap
contributors.
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Appendix E

Guidance for Autonomous Surface

Vessels

E.1 Control of Maritime vehicles with the Robotics Oper-

ating System (ROS)

Through the use of kinematics, and when neglecting friction and wheel slip, an exact solution

for the motion of wheeled ground vehicle can be derived. Since a maritime vehicle lacks a

solid surface to act against, such a simple solution for motion cannot be derived for simu-

lation or control. The control system must instead consider the effect of the hydrodynamic

forces on a vehicle when deriving a motion model for the vehicle.

One solution to the problem of controlling a maritime vehicle is to develop a force-based

model, such as the one implemented by Matthew Anderson for the TopCat Autonomous

Surface Vessel (ASV) for the 2014 Maritime RobotX competition [Anderson, 2014]. The

force-based model approach uses a model of the expected forces on the vehicle derived from

performance data as measured by the RobotX team members at the Australian Maritime

College. By using these forces as a base, the required difference in force to create the

desired vehicle performance can be calculated. This solution was capable of controlling the

vehicle, however it did not extend to modelling the control lag, and did not include support

for a wind model.
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Lacking a full model of the vehicle hydrodynamics, a simplified model of the vehicles motion

can be developed empirically. The basic model of the vehicle was expressed as a set of

discrete state equations with the state vector X defined as;

X =


vx

vy

w

 (E.1)

where vx and vy are the velocity components in the vehicle frame, while ω is the angular

velocity. Anderson characterised the non-linear dynamics of the vehicle to the equation:

Mẋ+ C(x)x+D(x)x = τ (E.2)

where M is the mass and inertia matrix, C is the coriolis matrix, D is a damping matrix and

τ is the external forces on the vehicle [Anderson, 2014].

Derivation of these terms is difficult, requiring extensive modelling of the vehicle and testing

in controlled conditions to derive an effective solution. Given, however, that the vehicle

normally manoeuvres at only a relatively small speed range, the assumption can be made

that within this range the predicted future state can be linearly derived from the current state

Xn and a control input un. Neglecting the effect of external forces, The vehicle’s future state

Yn+1 can be estimated using a state space model;

Xn+1 = A ∗Xn +B ∗ un (E.3)

Yn+1 = C ∗Xn+1 +D ∗ un (E.4)

The external observed state is given by Y, if this is the linear and angular velocities, then C

will be the identity matrix. If the coefficients of D are zero, this can be written as;

Yn+1 = Xn+1 (E.5)

External forces may include water currents, but the vehicle is currently only able to perceive
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wind and propulsion effects. Thus the vector un is expanded as;

un =



ωpropport

ωpropstarboard

vwindx

vwindy


n

(E.6)

Derivation of the coefficients of such a model normally requires testing in a specialised fa-

cility. Lacking access to such facilities, these values were derived empirically from operation

in the field. These data was processed by Dr. Andrew Lammas using MATLAB’s system

identification toolbox to produce the state space model.

E.1.1 State Selection

For the TopCat ASV, a lag of approximately 700ms between change in throttle settings and

the motors beginning to respond has been observed. Combined with a 1000ms ramp time

for the motors, any change made to the motor throttle setting would take almost two seconds

to take effect. Modelling only a single step into the future will not consider these effects.

Xn+m = Πm
k=0(A ∗Xn+k +B ∗ un+k) (E.7)

Yn+m = I ∗Xn+m (E.8)

Given a desired value of the vehicle state, Ydesired, and a set of possible throttle settings

Uthrottle combined with the current wind data uwind, a solution can then be sought for uthrottle

that minimises the absolute value of the weighted sum of the difference between the desired

A

B

I
Xn+1 Yn+1Xn

un

Figure E.1: Block diagram of state space model from Equations E.7 and E.8.
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and predicted states.

min
un∈Uthrottle,uwind

|Xweight ∗ (Ydesired − Yn+m,un)| (E.9)

Variations in the weighting vector can allow vehicle behaviours to be prioritised, including

the preference for minimising heading or velocity errors.

Over a period of several seconds, as the vehicle rotates in relation to the wind direction,

the wind effect can also vary significant on the vehicle. Thus, the trajectory followed by the

vehicle will not be a simple geometric shape. This lack of regularity makes a difficult to

produce a closed form solution for the vehicle’s trajectory. To enable the evaluation of the

vehicle’s future state, a multi-resolution grid search was used to generate potential vehicle

trajectories. By projecting forward the potential trajectories of the vehicle, a combination of

control inputs can be selected that will most closely match the intended vehicle behaviour.

E.1.2 Guidance

As stated in the introduction, the primary task of the vehicle is to observe the environment.

This requires it to not only correctly drive to a goal pose, but to travel across a locus of obser-

vation points, typically expressed as a transect line. For a dataset that tracks the evolution

of an environment over time, this transect must also be be repeatable. For this reason, the

transect line, specified as a combination of a location given in geodetic coordinates, and a

heading defining the line of approach, was chosen as the primary primitive of the motion

planning system. The vehicle trajectory is generated using a line of sight algorithm that in-

tersects a circle 5 m radius with the transect line, and the vehicle attempts to minimise the

heading error to the solution that is closest to the goal. In the case of no solution, the point

of closest approach on the line is used.

Additional primitives support operations such as driving to a goal position, turning to a head-

ing, travelling at a fixed speed, and operating the motors at a fixed throttle setting. These

additional primitives can be used for testing the vehicle’s performance.

Initial testing of the primitive system was performed at West Lakes, and it was later used as

259



part of a demonstration on the River Torrens. This testing showed that the model worked

well when the forward velocity was limited, however when travelling at cruising speed the

vehicle consistently underestimated its turning rate. This underestimation resulted in the

vehicle overshooting its transect when converging onto a new course. To limit this overshoot,

an additional control term was added to the system. This used Equation E.10 to limit the

velocity target of the vehicle when the heading differed from the transect. Use of this allowed

the vehicle to more rapidly converge onto the goal transect.

vx = vx(max(cos(θr − θh), 0))k (E.10)

E.2 Experimental Results

As covered in Chapter 5, the TopCat vehicle was used for a simulated Environmental Mon-

itoring task in West Lakes. During this task, the vehicle was sent on a repeated transect

pattern across the northern boating lake. The data from this event were recorded and anal-

ysed.

To better understand the vehicle’s behaviour, the recorded data were segmented into sec-

tions by commanded transect, and the guidance error was plotted in the frame of reference

of the goal. The resulting plots can be seen in Figures E.2 and E.3, which represent the error

of the control system at tracking the line-of-sight goal, and the final transect goal. Since in

most plots, the vehicle was given a new goal transect in a direction anti-parallel to its current

course and separated by a lateral distance of 20m, these can be considered amongst the

worst case of error that control system will need to recover from.

Examination of Figure E.2 shows that the vehicle does overshoot the target angle, with most

of the trajectories settling after approximately 20 seconds. However the converged error is

too small to infer the true accuracy of the system.
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E.3 Limitations of the Linear Model

The control system developed here has shown to be effective at consistently guiding the

vehicle along transects, but the Equation E.10 was required due to its behaviour while off

transect. To evaluate the effectiveness of the model at predicting the future state of the

vehicle, a program was developed to compare the recorded state of the vehicle xn with the

value x̄n predicted by combining its earlier state xn−10 with the linear model and the control

vector un−10...n. If the linear model was correct, then it was expected that x̄n = xn. The result

was generated and converted to a scatterplot which can be seen in Figure E.4.

Notably, Figure E.4 shows an approximately linear relationship between estimated vs actual

rate for low predicated rates, but predicted rates over 0.15rad/s did not produce a reliable

linear relationship. As such this model is likely only valid for a limited operating range. Use of

the predictive controller outside of this range will not result in correct guidance of the vehicle.

Figure E.4: Scatterplot of predicted vs measured rotational rate during testing. Non-linearity
of the graph indicates the model inaccurately predicted the rotational rate.
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E.4 Conclusion

The model predictive controller developed for TopCat has demonstrated an ability to con-

trol the vehicle on transects even given the 700ms latency of control. However, limitations

in the linear model prevents the effectiveness of the solution when operating outside the

range where the model is valid. Improvements in modelling should allow the system to more

accurately control the vehicle in a variety of conditions.
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Appendix F

Simulators

F.1 Introduction

Testing of a field robotic system can be long and expensive. To more rapidly develop a

system, the use of simulation can reduce development time and reduce testing overhead.

A suitable simulation system does not need to provide a fully authentic representation of all

vehicle dynamics and systems, but increasing the authenticity and coverage of the system

would allow more of the robots systems to be developed under the simulation environment.

The Robotics Operating System (ROS) provides interfaces to a number of simulation sys-

tems. These include Turtlesim which is used to demonstrate control of a very simple robotic

system using ROS topics, and UWsim a specialised Autonomous Underwater Vehicle (AUV)

simulator [IRSLab, 2012]. Neither of these simulators is suitable for the simulation of an

Autonomous Surface Vehicle, so a combination of two simulators derived from the Player

project were used.

F.2 Stage - a Ground Robot Simulator

The Stage robotic simulator originated as a system to simulate Multi-Robot Systems (MRS),

allowing the development and testing of cooperative and swarming type systems [Gerkey

et al., 2003]. Stage has been extended to support ROS, allowing integration with the ROS
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ecosystem [Gerky, 2015]. The relative simplicity of stage allows it to be easily integrated

in test harnesses, while the support for multiple agents in simulation potentially allows the

testing of algorithms that can operate in parallel.

Stage represents its environment as a 2.5 dimensional world. Robots have position and

heading, but are not capable of roll or pitch, while sensors are limited to a lidar and camera

device. An example of a robot in such an environment can be seen in Figure F.1.

Terrain is created by the importation of images showing obstacles and traversable terrain.

This allows the simple creation of complex environments.

F.3 Gazebo - a Field Robot Simulator

Stage allowed the development of ground robots that operated under control schemes such

as differential drive, but this model cannot be extended to all simulation types. In particular,

some types of simulation require the evaluation of the forces acting upon a robot, for example

the effect of a suspension system, or the simulation of a multiple degree of freedom rigid

body such as an aircraft. These types of simulation are supported by the Gazebo simulator

Figure F.1: Stage robot travelling on a small map segment. The red box represents the robot,
while red dots are lidar returns. The vehicle’s planned trajectory is shown by the green line.
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[Koenig, 2004].

Gazebo is notable for the wide range of systems that it can simulate, ranging from the Hector

quadrotor developed at Technische Universität Darmstadt [Meyer and Kohlbrecher, 2012],

to the Atlas robots used by the Defence Advanced Research Projects Agency (DARPA) Hu-

manoid Challenge [DARPA, 2012]. This flexibility is encouraged by the implementation of a

plugin based system allowing user code to be loaded into the simulation. This architecture

allows the addition of sensors and behaviours without the simulator itself requiring modifica-

tion.

F.3.1 Vehicle Dynamics

Gazebo originally supported the Open Dynamics Engine (ODE), a physical simulation en-

gine that supported both rigid body dynamics and collision detection [Smith, Russell, 2007].

This physics engine does not support hydrodynamic simulation, but an earlier project demon-

strated that a plug-in could be developed that simulated an AUV using the equations of mo-

tion of a Remus 100 [Wheare, 2011]. This approach was extended to develop support for

the Wave Adaptive Modular Vessel (WAM-V) based TopCat vehicle.

Vehicle performance data was developed from performance data gathered by students at

the Australian Maritime College, including tow tank testing of the WAM-V Hull and the force

generated by the Torqeedo motors [Keane et al., 2016].

Using this information, a fit was generated for the drag force on a single hull. This information

was encoded into a Gazebo plug-in and a simulation was created. Additional plugins were

created to simulate the force due to the motors, while existing plugins and sensors were

used to simulate the lidar and cameras installed on the vehicle. This environment was used

to both develop the higher level planning system used by TopCat and perform dry runs of

the planned missions.

The visual simulation of TopCat is performed using a set of meshes derived from Computer

Aided Design (CAD) models developed within the University. As shown in Figure F.2, simpli-

fied meshes are used for the representation of the vehicle in physical simulation.
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Figure F.2: Gazebo simulation of TopCat vehicle showing visual meshes (grey) and collision
bodies (pink). Axes represent hinge points.

F.4 Experimental Validation of Vehicle Dynamics

Since the Gazebo based simulation system was developed to emulate the systems and

dynamics of the TopCat vehicle, one method of demonstrating that the simulation resembles

the real-world system is to repeat an experiment and analyse the resulting data with the

same tools. A simulation of West Lakes was thus used with the task shown in Appendix

A. A simulation was started, the run transect script was executed three times, and the data

logged for later review.

The vehicle track was recorded and can be seen in Figure F.3. Using the same analysis

script as Section E.2, graphs of the vehicle angular and lateral errors were created as shown

in Figures F.4 and F.5. While differing in detail, these graphs showed broad similarity to the

behaviour of the vehicle as shown in Figures E.2 and E.3.
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F.5 Conclusion

This chapter has covered systems used for the simulation of robotics in this thesis. While

no simulation system can replace gathering data from field experiments, this appendix has

shown that simulation can provide the ability to develop software and algorithms such that

they are ready for field testing.
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Appendix G

Spatial Data for Field Robotics

The modern world is increasingly networked, with the ubiquity of internet connections and

mobile devices allowing the capture, storage and retrieval of data. Storage of geographic

information adds further challenges, while the world can be treated as locally flat, on a

sufficiently large scale its underlying geometry as an oblate spheriod is required. A solution

to this is the use of geodetic co-ordinate systems, treating positions as sets of polar co-

ordinates. While another method is to specify locally flat planes or projections that can be

worked in.

This appendix will provide a brief overview of the GIS systems and data used in this thesis.

Two external data sources were used, and additional spatial data was generated from the

sensors on-board of the TopCat Autonomous Surface Vessel (ASV)

G.1 Manipulation of Spatial Data

A database that is designed to handle geodetic or projected co-ordinates is a Geographic

Information System (GIS). GIS are becomming a rich source of data that could be used for

planning of field robotic missions. Accessing these data is simplified by the existance of a

number of open source projects such as Quantum GIS (QGIS) [QGIS Development Team.,

2018], and the Geospatial Data Abstraction Library (GDAL) which allowed the viewing, cre-

ation and manipulation of spatial datasets [GDAL Development Team, 201x].
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G.2 OpenStreetMap

OpenStreetMap began is a project that emphasises the creation of freely available spa-

tial data made by individual contributors. As a collaborative system, the licensing is also

more liberal, allowing usage of the data as long as the contributors copyrights are respected

[Open Street Map, 2015c]. An offshoot of this project, the OpenSeaMap, is developing a

similar database of maritime charts [Open Street Map, 2015a]. Both projects are in use for

the provision of map data, with many applications developed for platforms including mobile

phones.

An adapter to extract spatial data from OpenStreetMap has been developed for ROS to allow

the use of spatial data[O’Quin, 2015]. An experimental system for route planning is under

development, but does not yet appear to be ready for use [O’Quin, 2012].

Unlike other data providers, OpenStreetMap data is primarily crowd-sourced and feature

based. Despite lacking overhead or satellite imagery, data from OpenStreetMap was used

to provided spatial context and backing maps for both the development of mission plans and

the analysis of post-run data.

Figure G.1: An image of the OpenStreetMap webpage showing South Australia. Data is
c©OpenStreetMap contributors.
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G.3 National Oceanic and Atmospheric Administration

The National Oceanic and Atmospheric Administration publishes spatial information under

liberal licenses including both projected data, such as the Apra harbour bathymetry used in

Section 3.2, and geodetic data such as the Electronic Navigation Charts (ENCs) detailing

the safe approach paths to American coasts and harbours [NOAA Office of Coast Survey,

2015]. This data has been useful in the exploration of spatial data available to maritime

systems, and as a source of data for the testing of algorithms.

G.4 Map Generation for TopCat

In addition to external data sources, data captured during testing has been used to gener-

ate spatial products that were later used in testing and demonstration of the TopCat plat-

form. TopCat is equipped with a Navico 4G maritime Radio Direction and Ranging (RADAR)

system. This unit is normally used for maritime navigation, but with the use of TopCats

navigation state estimate, the data can be used for mapping.

During an experiment on West Lakes, RADAR data was captured using the Robotic Operat-

ing Systems (ROS) bagfile format, and then later played back and converted to a projected

map by averaging the intensity of all RADAR returns for each grid cell. This map data was

then converted into a spatial file using the Geospatial Data Abstraction Layer (GDAL) sys-

tem. The resultant data could then be used with a GIS program for display with to other

georeferenced data.

As seen in Figure 5.8, this method has allowed mapping of surface and waterborne features

of the robots environment. Examination of the detail of this image in Figure G.2 shows that

the navigation RADAR is capable of resolving features such as jetties and trees.

This image was produced by combining information transformed into a geo-referenced im-

age using GDAL and then combining this with a backing map using the Quatum GIS package

(QGIS) [QGIS Development Team., 2018].
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G.5 Conclusion

This chapter has covered the spatial data handling that is has been used in this thesis.

These packages and data sources have been useful both for generating data for the planning

systems as well as visualising the resulting plans and vehicle tracks.
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