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SUMMARY

Scene Graphs are powerful representations that abstract the content of images or videos in the
form of relations triplets grounded to visual regions. Generating Scene Graphs through the task
of Scene Graph Generation (SGG) seems especially promising for applications in Robotics such
as in Human-Robot Collaboration (HRC) in domestic context where Scene Graphs can be used to
model the environment and the interactions between the robot and the human. However, several
years after the first inception of the task, the usage of Scene Graphs in real-world applications is
still limited due to the poor performance of SGG models on out-of-distribution samples. In this
thesis, we propose to bridge the gap between theoretical methods of SGG and their practical
implementations in real-world settings, successfully contributing to the democratization of the
usage of Scene Graphs. We first describe a new method for semi-automatic extraction of clean and
qualitative annotations to create in-context Scene Graphs datasets from noisy data. This results
in our first contribution, the IndoorVG dataset, a high-quality Scene Graphs dataset targeting
scene understanding applications in a domestic context. When analyzing complex scenes, the
number of relations triplets in SGG can grow quadratically, leading to a loss of performance for
downstream tasks when the amount of non-informative relations predicted is high. To solve this
issue, we propose a new inference process that selects a subset of highly informative relations from
a set of biased and noisy predictions of an SGG model. This approach can substantially increase
the performance of downstream tasks by improving the quality of generated relations. Our results
on three different tasks (Visual Question Answering, Image Synthesis, and Image Captioning)
demonstrate the importance of the informativeness of relations in Scene Graphs and the benefit
of trading off accuracy for informativeness. To foster the usage of SGG in real-world applications
and improve the deployment of models on embedded devices, we propose a new method for real-
time SGG, based on state-of-the-art single-stage object detectors. Our method, named Real-Time
SGG, is able to generate Scene Graphs in real-time on a single GPU without loss of accuracy,
outperforming the current state-of-the-art methods in terms of speed and resource efficiency. We
further extend the traditional static implementation of SGG to the time domain, introducing a
Continuous SGG (C-SGG) architecture that aggregates relations from consecutive frames into
a consistent representation.We applied our C-SGG method for real-time fine-grained activity
understanding in the domestic context and demonstrated the advantage of our approach to
model long-term complex activities in a Human-Robot Collaboration scenario.
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Chapter 1

INTRODUCTION

Modeling the content of visual scenes has gained an important place in the field of computer
vision in the last few years. From Image Captioning [1], [2], [3] to Visual Question-Answering
(VQA) [4], [5], [6], the modeling of high-level representations of visual scenes has been a corner-
stone for the development of AI systems that requires a deep understanding of the scene. One of
the key components of these high-level representations is the notion of compositional relations
[7], [8]. Compositional relations represent interactions between visual elements in a scene, such
as objects or humans. These relations can be very diverse, from basic spatial descriptions such
as "computer on top of desk" to partonomies such as "tail belongs to cat" or human actions
such as "person eating pizza". Modeling such relations from images or videos can be enough for
Image Captioning or VQA. On the other hand, other tasks could also benefit from the usage of
compositional relations if these relations are grounded to the real word, such as in Embodied
Agent Navigation [9], [10] or Human-Robot Interaction (HRI) [11].

The task of Scene Graph Generation SGG has been proposed [12] as an alternative to tackle
these challenges. The task of SGG aims at creating a grounded representation of a scene by
inferring relations between entities as a graph structure. Typically, approaches in SGG rely on
detecting objects and their respective coordinates and then learning to model relations between
these objects in the form of ⟨subject, predicate, object⟩ triplets [7], [13]. Connections between
pairs of triplets form a directed acyclic graph in which each vertex refers to an object and its
associated image region, and each edge a predicate expressed in natural language. Given its
representation capabilities, this undertaking shows great potential as a foundational element for
various subsequent tasks that hinge on compositional aspects such as Image Captioning [14]
or Visual Question Answering [15]. SGG has also recently sparked interest in HRI [11] and
Embodied Agent Navigation [9] tasks. However, we observed a significant unbalance between
the progress in the SGG task itself and its adoption as a backbone in the aforementioned
downstream tasks [16]. In this work, we aim at investigating the reasons behind this unbalance
and propose new methods to bridge the gap between SGG approaches and their adoption in
real-world applications. As a case study, we give insights on all aspects of the SGG task, from
data collection to real-time implementation. To foster the development of the task of SGG
in new domains and fields, we also propose a new usage of SGG models for Human-Robot
Collaboration (HRC). In the next section, we detail the current challenges that SGG faces for
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Figure 1.1: A Scene Graph (right) and corresponding image regions (left). Image taken from the
Visual Genome dataset [8].

real-world applications and the opportunities to use the task for HRC use cases.

1.1 Scope and Motivations

The task of SGG exhibits a different learning paradigm from other vision-related tasks. In
fact, compositional relations are not mutually exclusive and can be defined in a myriad of
ways. For instance, the relation ⟨person, using, laptop⟩ in Figure 1.1 can also be defined as
⟨person, on, laptop⟩ or ⟨person, looking at, laptop⟩. When humans are asked to annotate images
with compositional relations, they must choose a relation from all possible relations that can be
defined between visual elements. This selection can heavily depend on the person’s subjective
interpretation of the scene, as well as the person’s appreciation of English language. This process
has led to a significant amount of noise in the annotations of leading datasets for the task [8],
[15], [17], which can be detrimental to the learning process of neural networks [18], [19], [20].
One consequence of this problem has been identified by the community over the years [19]: the
over-representation of certain predicate classes in the dataset, such as the predicate on which
can be used by annotators in most situations, saving time and effort. Over-representation of
certain predicate classes ultimately leads to strong unbalance and biases in the learning process,
which has been overly addressed by the community through the development of the sub-task of
Unbiased Scene Graph Generation U-SGG [19], [21], [22], [23].

A remaining issue with SGG datasets has not yet been addressed: the selection process of
relations or more simply which object pairs should we annotate in the first place? Indeed, an
image can contain a lot of objects and thus a quadratic amount of potential pairs. Annotating
extensively all relations will then require a consequent amount of time and effort. In current
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approaches [7], [8], [20], the types of relations which should or should not be annotated is left
under the responsability of the annotators. This can lead to another bias in SGG datasets: the
over-representation of obvious and irrelevant relations. Because some ⟨subject − object⟩ pairs
appear frequently, they are more likely to be selected by the human annotators, leading to
biased data. Ultimately, low data quality can lead to poor performance and poor generalization
capabilities of the trained models, which can be detrimental to the deployment of AI systems
in real-world settings [14], [18], [24]. Addressing the issue of relation selection in current leading
datasets is the first motivation of our work.

Research Question 1: Are current datasets for SGG biased and how can we improve the quality
of the annotations to improve models’ generalization?

To successfully be used in downstream tasks, not only do generated scene graphs need to be
correct, but they also have to contain as much information as possible. Even with a perfectly
annotated dataset, there is no guarantee that an SGG model will predict the most important
relations first. In fact, in traditional machine learning, only correctness is evaluated. However,
in the context of SGG, a very high number of relations can be correct in a scene but only a
few of them would play a significant role in the understanding of the scene. As an example,
we display the predictions of a popular SGG model [19] in Figure 1.2. Even if the model has
been trained to predict the relation ⟨person, using, laptop⟩, in this example, this relation was
predicted with a confidence level too low to be kept in the final output because other more trivial
relations (e.g. ⟨paper, on, table⟩, ⟨person, has, head⟩) were predicted with higher confidence. As
a result, the predicted graph lacks an informative perspective (see Figure 1.1), even though
all predicted relations are correct. This could be a challenge for downstream tasks which will
intuitively benefit from a more concise and informative representation [16]. This leads to the
second motivation of this work: the development of a method that can predict more relevant
and informative compositional relations, with the goal of increasing the performance of SGG
models in downstream tasks [14], [25].

Research Question 2: Develop a method that can predict more relevant and informative com-
positional relations, which can be generic enough to benefit a wide range of downstream tasks.

Another issue that can explain the slow adoption rate of SGG in subsequent applications is
the lack of simple, low-cost, and effective approaches that could power applications that require
low resources or real-time constraints (such as embodied agent reasoning [26]). While other tasks
such as Object Detection or Image Captioning have seen the emergence of real-time and low-cost
approaches [27], [28], the task of SGG did not. Nevertheless, generating comprehensive scene
graph representations holds significant promise for edge computing use cases, for instance in
HRI [11]. This leads us to the third motivation of this work: the development of an efficient
implementation of SGG for real-time constraints.

Research Question 3: How can we develop an efficient implementation of SGG for real-time
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Figure 1.2: Predicted scene graph with the Transformer model [19] trained on the Visual Genome
dataset [8].

constraints?
Finally, in a more general perspective, the task of SGG has been mostly studied in the context

of visual understanding, but not so much in the context of Robotics and HRC [11], [29]. In the
context of HRC, the robotic agent often needs to understand the actions being performed by
the human and the context in which they take place. This process requires actively identifying
agents, objects, and their interactions through time and space before proceeding with reasoning.
Intuitively, SGG is a good candidate to power such representation. In practice nonetheless,
challenges remain in the deployment of SGG models for HRC. First, comprehensive datasets
for in-domain applications of HRC (e.g. in domestic settings) are lacking. Second, generating
scene graphs for HRC requires extending the current architecture to the time domain, which
may not be straightforward [30], [31]. These two challenges lead to the fourth motivation of this
work: the development of a new method for the generation of a continuous SGG method that
can be used as the internal World Model of an autonomous agent during HRC In particular, the
task of HRC in domestic settings will be taken as a case study to illustrate the opportunities of
compositional relations for these types of scenarios.
Research Question 4: How can we develop a continuous SGG method that can be used as the
internal World Model of an autonomous agent for SGG?

In the following section, we detail the objectives of this work and our contributions to the
field of SGG and HRC.

1.2 Proposed Approach

Our first motivation concerns the quality of the annotations in current datasets for the task of
SGG. In this work, we propose to tackle the issue of data annotations by refining and augmenting
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the existing large-scale dataset Visual Genome [8]. We aim at removing irrelevant annotations
by categorizing compositional relations into semantic categories. Our approach can significantly
improve the learning process of neural networks and improve the performance of baseline models
in predicting compositional relations. As a case study, we proposed a new dataset, IndoorVG,
that is tailored for the task of SGG for indoor scenes. This dataset has been carefully re-annotated
by taking into account the before-mentioned issues and can be used as a benchmark for future
research in the field. Here, we purposely chose the domain of indoor scenes as it is a common
setting for SGG scenarios and can be used as a case study for our approach later on.

Once qualitative data has been gathered, training deep neural networks to predict composi-
tional relations can start. To ensure that common SGG models predict informative relation first,
we want to better align predictions with human description of scenes [32]. To solve this chal-
lenge, we draw inspiration from human perception of compositional relations through the notion
of image gist [33]. The image gist (or gist of the scene) represent the essential information which
is relevant in identifying a scene. This information is characterized in part by highly-informative
compositional relations that are meaningful in the context of the scene [34], [35]. However, it is
difficult to compute a proper value of the informativeness of a relation, mainly because this value
is both intrinsic and extrinsic. We define intrinsic informativeness as the semantic value of a
relation taken in isolation. For instance the relation ⟨person, eating, pizza⟩ is more informative
than ⟨person, wearing, hat⟩ as it provides more meaning to the scene, i.e. the first relation is
more likely to appear in the image gist than the second one, in images where both relations
hold. On the other hand, we define extrinsic informativeness as the relevance of a relation to
the overall context of the scene. Here, we define this context as the combination of all other
relations that hold in the given scene. For instance, the relation ⟨person, has, hand⟩ is more
informative in a scene where the person is holding an object than in a scene where the person
is not. The combination of intrinsic and extrinsic informativeness are used to define a proper
value of informativeness for a relation, which can be used to select only relevant relations in
the context of the scene. By applying this method on SGG models, we significantly improve the
performance of downstream tasks which rely on compositional relations as input [14], [25], [36].

Once an SGG model has been trained, it can be used to predict compositional relations in
real-time. Real-time and low-resources consumption are both requirements for embodied agent
applications. In the context of SGG, this requirement is not fulfilled by current methods, which
are often slow and memory-consuming [26]. At the same time, current SGG methods give poor
performance in object detection due to the jointly training of object detection and relation
prediction tasks [37], [38]. To solve these issues, we propose to review the current architecture
of SGG and adapt it to state-of-the-art strategies employed for real-time object detection [39].
All together, our proposed method improves the latency of an SGG model up to a factor of 10
compared to traditional methods without loss of performance.
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Given a real-time and informative SGG model, we can use its predictions as observation
of the environment to power the World Model of an autonomous agent for SGG. For this last
part, we will take as a case study the collaboration of a human and a robotic agent in domestic
daily life activities. These scenarios can encompass collaboration in common activities such as
cooking, cleaning or setting up dinner. In this context, the robotic agent needs to understand by
itself, given its representation of the world, the actions being performed by the human and the
context in which they take place. We proposed a new Continuous SGG method that aggregates
relations over time and space to generate a consistent internal representation of the visual world.
The grounding in space is done through the visual coordinates of the objects and humans in
the scene, and the grounding in time is done through the temporal sequence of the relations.
We specifically introduce a new method for the aggregation of relations which ensure that
important relations are kept in memory and less important ones are forgotten. Relations can
also be refined if their aggregation is breaking basic commonsense rules. For instance, if the
relation ⟨person, sitting on, chair⟩ is aggregated with the relation ⟨person, sitting on, couch⟩,
the model should delete the first one as it is not possible for a person to sit on two different
furniture at the same time. Finally, to demonstrate the interest of such an architecture, we
paired this representation with traditional planning systems [40]. We proposed a new method
for automatic planning domain generation based on the interplay of compositional relations
categories. As a result, we showed that our method can be used in the context of Symbolic
Demonstration Learning, and can spark new research for SGG based on Scene Graphs.

1.3 Contributions

We can summarize the main contributions of this work as follows:

1. First, a new method of annotations selections and refining for the task of SGG has been
proposed. By selecting only relevant annotations, we can improve the performance of
baseline models in predicting compositional relations.

2. We introduced a new dataset, IndoorVG, that is tailored for the task of SGG for indoor
scenes. Images and annotations from the IndoorVG dataset were extracted from the Visual
Genome dataset. Subsequently, new refinement and augmentation methods were proposed
to enhance both the quality and quantity of the data.

3. A new method for the prediction of compositional relations in visual scenes based on
intrinsic and extrinsic informativeness is introduced. We showed that this method can
greatly improve the performance of downstream tasks which rely on compositional relations
as input.
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4. Using state-of-the-art real-time object detectors, we proposed a new real-time SGG method.
This method can improve the latency of SGG models up to a factor of 10 compared to
traditional methods, without loss of performance.

5. We presented a new Continuous SGG method that autonomously generate a consistent
internal representation of the visual world through compositional relations. This represen-
tation can be paired to traditional planing systems through a proposed planning domain
generation algorithm. We demonstrated the effectiveness of this representation in the con-
text of Human Activity Recognition and Learning from Observations.

1.4 Thesis Outline

In the following chapters, we detail the proposed approach and the contributions of this work.
We start by reviewing the background concepts and related works to the notion of image gist and
SGG in Chapter 2. Then, in Chapter 3 we introduced a new definition of relevant compositional
relations and proposed a new method for automatically mining those relations in large-scale
noisy datasets. In Chapter 4, we proposed a new method for predicting Scene Graphs based
on the semantic importance and relevance of relations to the image gist. By leveraging real-
time object detector, we presented a new method for real-time SGG in Chapter 5. Finally, in
Chapter 6, we defined the concept of Continuous SGG and a new architecture that can be used
as the internal World Model of an autonomous agent in SGG use cases. We conclude this thesis
in Chapter 7 by summarizing the contributions and discussing future works.
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Chapter 2

BACKGROUND

In this chapter, we provide an overview of the main concepts and techniques related to the pre-
dictions of compositional relations from visual scenes. Compositional relations between objects
in a scene are a key aspect of human perception and understanding of the world. Following
previous work [7], we define a compositional relation as a relation that is described by a combi-
nation of two distinct visual elements in the scene, where one element s will serve as the subject
and the other o as the object, related by a predicate p as follows:

r = {(s, p, o)|p ∈ R, s ∈ V, o ∈ V, s ̸= o} (2.1)

where V is the set of visual elements and R is the set of possible relations. In the following, we
will often call the relation (s, p, o) a triplet, as per the Resource Description Framework (RDF)
standard [41]. In the field of Computer Vision, the task of SGG aims at modeling these relations
in a structured way. In this chapter, we will introduce the concept of Scene Graphs and their
importance in the field of Computer Vision. We will also present the most popular approaches
for the task and their main differences, see Section 2.1. The concept of Scene Graph is tight to
the idea of image gist [32], a term coined by Aude Oliva in 2005 [33] to describe the structural
summary of an image in human perception. To allow SGG methods to be more efficient in real-
world applications, such methods need to focus on extracting relevant relations that are part of
the image gist. We will discuss the concept of image gist and its relation to Scene Graphs in
Section 2.2. Finally, we will outline the current trends and challenges of SGG for downstream
tasks, and their implementations in real-world applications, see Section 2.3.

2.1 SGG

A symbolic representation system is a system that represents knowledge in a discrete form, such
as a set of symbols and rules that is used to infer new knowledge. In the field of Human-AI
collaboration, such representations are often used to represent the environment in which the AI
agent is evolving, what we call a world model. This world model can take different forms, such as a
semantic map [42] or an ontology [43] depending on the application. However, when representing
a wide range of information types (such as spatial relations, object properties, etc.), one of the
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most flexible representations is a graph structure. Graphs that represent visual information of
a visual scene are called Scene Graphs. Scene Graphs can be defined as "a data structure that
describes the object instances in a scene and the relationships between these objects" [16]. These
compositional relations are represented as RDF [41] ⟨subject, predicate, object⟩ triplets. Each of
the subject and object are usually tied to a 2D region of the image in the form of bounding box
coordinates, thus we have:

• B = {b1, ..., bn} the set of bounding boxes coordinates

• O = {o1, ..., on} the set of objects, with oi denoting the class label of the object in the
bounding box bi

• R = {r1→2, ..., rn→n−1} the set of relations, with ri→j denoting the class label of the
relation between the objects oi and oj .

For a scene graph representation G of an image I we can decompose the probability distribution
as follows:

p(G|I) = p(B|I) · p(O|B, I) · p(R|O, B, I) (2.2)

The objective of SGG is to infer the most likely graph G∗ for a given image, as follows:

G∗ = arg max
G

p(G|I) (2.3)

Given this definition, the SGG community divided the task into two main components: Ob-
ject Detection and Relation Prediction. Object Detection is the task of detecting the objects’
location B in the image and classifying them into a set of predefined classes O. Relation Pre-
diction is the task of predicting the relations R between the detected objects. The output of the
Relation Prediction component is a set of relation pairs and predicate labels. These two tasks are
usually solved separately with different neural network models and then combined to generate
the final scene graph. In that sense, SGG is similar to other multi-task problems that use Object
Detection as a backbone such as Visual Question Answering (VQA) [5] or Visual Dialog [44].
In the following, we describe in more detail the traditional approach for Object Detection and
Relation Prediction in SGG.

2.1.1 Object Detection

An object detection model usually takes as input an image and outputs a set of bounding
boxes and their corresponding class labels. The bounding boxes are represented as a set of four
coordinates (x, y, w, h), where (x, y) is the center of the box and (w, h) are the width and height
of the box, in the pixel space. The class labels O are represented as a set of N probabilities,
where N is the number of classes in the dataset. Each probability represents the confidence of
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the model that the detected object belongs to the corresponding class. The predicted class label
is selected by taking the class probability with the highest confidence score for each bounding
box. The final set of bounding boxes is then usually refined using Non-Maximum Suppression
(NMS). NMS is a post-processing step that removes redundant bounding boxes by selecting the
one with the highest confidence score and removing all the other bounding boxes that have a
high Intersection over Union (IoU) with the selected one. The IoU is a metric that measures the
overlap between two bounding boxes. The IoU is defined as the ratio between the intersection
area and the union area of the two bounding boxes, as follows:

IoU = Area(BB1 ∩BB2)
Area(BB1 ∪BB2) (2.4)

After NMS, overlapping boxes for the same objects are usually discarded, and the final set of
bounding boxes and corresponding labels is outputted.

Object detection models are evaluated on standard benchmarks such as the COCO dataset
[45] using different metrics. Standard metrics for the task of Object Detection are Precision and
Recall, which are defined as follows:

Precision = TP

TP + FP
, (2.5)

Recall = TP

TP + FN
, (2.6)

with TP being the number of True Positives, FP the number of False Positives and FN the
number of False Negatives. Positives and Negatives are defined by the IoU between the predicted
bounding boxes and the ground truth bounding boxes which share similar class labels, after the
step of NMS. A predicted bounding box is considered a TP if its IoU with the ground truth
bounding box is above a certain threshold. A predicted bounding box is considered a FP if its
IoU with the ground truth bounding box is below the threshold, usually, this threshold is set
at 0.5. To get a single value for all classes, all the results are averaged in the mean Average
Precision (mAP) metric. The mAP is defined as follows:

mAP = 1
N

N∑
i=1

APi, (2.7)

with N being the number of classes and APi the Average Precision for class i. In recent works,
the mAP metric is defined on a scale of IoU thresholds, ranging from 0.5 to 0.95 with a step of
0.05. This ensures that the model can predict fine-grained bounding box coordinates that are
close to the ground truth bounding boxes. This metric is called mAP@50-95, and is the most
widely used metric for evaluating Object Detection models. The mAP@50 metric does not take
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into account the IoU threshold and is the average of the mAP for all IoU thresholds above 0.5.
In this work, we will use both metrics to benchmark Object Detection models.

The bounding boxes and class labels predicted by an Object Detection model can be used as a
backbone for subsequent modules in scene understanding. In the case of SGG, both the bounding
box coordinates and object class labels will be used by the Relation Prediction component to
predict compositional relations between objects.

2.1.2 Relation Prediction

The Relation Prediction model is a component that cannot be trained alone, in contrast with
the object detection model as it needs bounding boxes and object class labels as input. In the
relation prediction stage, the visual features, bounding box coordinates, and object class labels
are used to create a graph representation of the scene. The visual features are extracted from
the backbone of the object detection model and are used to initialize the node features of the
graph. In addition to visual object features extracted from the backbone, the relation prediction
model also uses textual features to model the representation of subject and object labels. This
is usually done by using a pre-trained word embedding model such as GloVe [46]. The word
embedding model is used to extract a vector representation of the subject and object class
labels. This vector representation is then multiplied with the visual features of the subject and
object proposals to form the final node features.

Edges are created between all possible pairs of nodes in the graph. Edge features are initial-
ized with the union of the two nodes features. Then, different learning paradigms take place to
refine node and edge features to learn the interdependencies between relations. We review the
most popular ones in the following:

• Iterative Message Passing (IMP) [12]: Iterative Message Passing was proposed in 2017 by
Xu et al. as the first end-to-end trainable model for SGG. Message Passing is a technic
of Graph Neural Networks (GNN) that allows nodes to communicate with each other by
exchanging messages along the edges during learning. IMP uses an RNN-based architecture
to propagate information between nodes and edges in an iterative manner to form the final
graph representation. In contrast to previous approaches to model compositional relations
[7], IMP explicitly allows the model to learn the interdependencies between compositional
relations.

• Neural-Motifs [38]: In 2018, Zellers et al. proposed Neural-Motifs, a new approach to SGG
based on the concept of motifs. Motifs are recurrent sub-graph structures identified in
SGG datasets that can be exploited to better memorize interdependencies of compositional
relations in sub-regions of the image. To leverage such structures, Neural-Motifs proposed
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a local-to-global context learning paradigm, with the local context referring to the inside-
motif information and the global context the interplay of motifs at the image level.

• VCTree [37]: A year later, in 2019, Tang et al. proposed the VCTree model for the task
of SGG. In contrast to IMP or Neural-Motifs which use an all-to-all matching of nodes
during learning, VCTree introduces a dynamic tree-based structure to model the interde-
pendencies between nodes. In VCTree, hierarchical information between nodes is learned
through a Tree-LSTM network. For instance, the model will learn that the parent node of
car, person or bus is street as a lot of relation pairs are annotated with the class street as
subject and car, person or bus as object in the dataset. Parallel relations are also modeled
in VCTree, as the model can learn that car and bus are both related to street in the same
way. To form the final graph, nodes are paired through their parent or neighboring nodes
in the tree structure.

• GPS-Net [47]: The Graph Property Sensing Network (GPS-Net) was proposed in 2020 by
Lin et al. This approach builds on previous work by proposing to explicitly model the
direction of compositional relations in the graph structure. In fact, a significant amount
of compositional relations can be modeled in two directions, for instance, the relation
⟨person, wearing, shirt⟩ can also be modeled as ⟨shirt, on, person⟩. For better learning, it
is important to model both directions of the relation. Inspired by IMP and Neural-Motifs,
GPS-Net proposed a new Direction-Aware Message Passing mechanism for SGG.

• SGG-Transformer & Total Direct Effect (TDE) [19]: The SGG-Transformer model and
the TDE debiasing method for SGG have been proposed by Tang et al. in 2020. The
SGG-Transformer successfully leverages the Transformer [48] neural architecture to learn
contextual information of compositional relations through the attention mechanism. In the
same work, the authors proposed a new method based on TDE for debiasing other models’
predictions. It is known that SGG models cannot achieve reasonable performance on the
task because of the long-tail distribution of predicate classes in the dataset. Statistically
significant predicates such as on will be overly predicted in comparison to fine-grained
but less frequent predicates such as sitting on. The TDE method aims at solving this
problem using Counterfactual intuition with the given contextual information for a selected
⟨subject, object⟩ pair. By analyzing the differences between predictions of an SGG model
with and without contextual information from other visual regions, the TDE method
can generate more reasonable relations. This method sparked a new shift in the SGG
community and created the new task of U-SGG. U-SGG methods solely aim at solving the
long-tail problem of SGG datasets and are thus better related to the subfield of long-tail
learning than to SGG itself. As a result, we will not cover U-SGG methods in this work.

• Prototype Embedding Network (PE-NET) [49]: Recently, the PE-NET model was proposed
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by Zheng et al. PE-NET is based on the idea of Prototype Learning, a method that aims
at learning semantic prototypes as class representations. Prototypes are different from
traditional visual representations as they are distinct from the pixel-space and learned
from a separate semantic space, to reduce the dependence on pixel noise. In the case of
SGG, prototype learning is used to generate representations of nodes and edges that are
very distinct from each other, reducing the confusion of the model for the prediction of
fine-grained compositional relations. At the time of release, the PE-NET model achieved
state-of-the-art performance on the Visual Genome dataset [8] 1.

After context learning, the final graph is predicted by applying a softmax on the relation
logits of every possible ⟨subject, object⟩ pair. Most approaches use cross-entropy loss to train
their models, with the objective of maximizing the likelihood of the correct ground truth relation.
It is important to notice here that cross-entropy loss is applied at the relation level and not at
the graph level, as ground truth graphs can have varying sizes (in contrast, predicted graphs
will always have a size of n× (n− 1) with n being the number of detected objects).

The standard way of assessing SGG is to compute the average of the Recall@K (R@K)
metric for every graph, as follows:

Recall@K = TP@K

TP@K + FN@K
, (2.8)

with TP@K the number of TP computed in the top K predictions. This measures how often
the correct relations are predicted in the top K confident predictions, traditional approaches use
R@20, R@50, and R@100. The use of Recall instead of Accuracy is motivated by the observation
that not all TP samples are annotated in SGG datasets [7], as in fact up to n ∗ (n− 1) relations
can be labeled in an image, it would be extremely intensive to ask human annotators to annotate
all of them. Another problem of SGG datasets is the long-tail distribution of predicate classes
which makes the performance of SGG models unstable for infrequent classes. To address this, a
metric called Mean Recall@K (mR@K) was introduced [37], as follows:

meanRecall@K = 1
m

m∑
i=0

TPi@K

TPi@K + FNi@K
, (2.9)

with m being the number of predicate classes and TPi@K the number of TP for class i computed
in the top K predictions. The Recall@K metric is the average recall for all classes, while the
mR@K metric is the average recall for each class. The meanRecall@K metric is also computed
for values of K = [20, 50, 100] and averaged across every image to get a single value. This
metric calculates recall for each predicate category independently and then takes the average

1As of 22/06/2023. This performance is compared only with other standalone methods (IMP, Neural-Motifs,
GPS-Net etc..), this can be subject to change if adding any debiasing method to the PE-NET model, such as the
TDE method.
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of the results, giving equal weight to each category. By doing so, it reduces the impact of some
frequently occurring predicates such as "on" and "of," while placing more emphasis on infrequent
predicates like "reading" and "carrying". Instinctively, predicting more fine-grained predicates is
beneficial for the high-level reasoning which depends on compositional relations. For instance,
in the case of Human-AI collaboration, predicting that a person "is eating" a pizza is more
beneficial than predicting that a person "has" a pizza. The former can be used to infer that the
person is hungry and that the pizza is likely to be consumed, while the latter does not provide
any useful information to infer new relations. However, predicting fine-grained relations is not
sufficient to attain human-level performance in SGG. In fact, we, humans, also select the most
relevant relations to describe a scene, and we do not predict relations that are not part of the
image gist. In the next sections, we will discuss the concept of image gist and how it can be used
to better align SGG models with human perception.

2.2 The Image Gist: on the Perception of Scene Semantics

In 2005, Aude Oliva [33] described the concept of an image gist as a "structural summary
that’s meaningful enough for recognizing the image". We could subdivide information from
the image gist into two categories: perceptual information and conceptual information. The
perceptual "part" of the gist is composed of shapes and textures and basic elements gathered
during perception [33]. The conceptual part of the gist is composed of higher-level information
such as the scene category, the spatial layout of objects, and the global semantics of the scene
[33]. The conceptual aspect is particularly relevant to our work on SGG. In the following sections,
we will refer to the conceptual part of the image gist as the image gist.

Subsequent studies have aimed to pin down what kind of information should make up this
summary. For Mandler and Parker [50], image gist is centered around the appearance of objects
and their spatial relations, on the other hand Biederman et al. [51] have proposed that image
gist also encompasses global semantics and contextual information. In a long study, Li et al.
[34] detailed that low-level sensory information precedes the extraction of high-level semantic
information and that propositional relationships between objects make up for the majority of
the image gist. We display an example of the study conducted by Li et al. in Figure 2.1, showing
some description of the image gist after participants were shown the corresponding images for
500ms. In these descriptions, we can observe spatial information (i.e. "in the foreground", left
image) but also actions (e.g. "sitting on", "standing in") or positional relations (e.g. "something in
his hands"). Relations contained in the image gist can be aggregated in network representations
[52], which will resemble closely to the definition of a scene graph.

So, can scene graphs generated by SGG models be used as a representation of image gist?
In practice, it is more complex to draw such conclusions. Image gist traditionally encompasses

39



Chapter 2 – Background

Figure 2.1: Examples of image gist as a free-form description of scenes, when the scene has been
shown to the participant for 500ms [34].

visually important and relevant information that is extracted within a very short amount of
time by the human perception system (typically between 100ms to 300ms [53]). This information
never refers to specific details and rather conveys the overall meaning of the scene and where it
takes place [34]. By not incorporating any notion of relevance, scene graphs are sometimes too
specific in the description of scenes and miss out on the image gist. In contrast to the concept of
global context in SGG [38], the image gist does not necessarily refer to global relations between
sub-regions of the image. It can be the case (see the relation between foreground/background
in Section 2.2) or not (see Section 2.2). To align the representation of SGG models and human
perception, one needs to take into account the relevance of relations to the image gist, i.e.
the amount of information contained in the predicted graph that a human would instinctively
perceive and elaborate when asked to shortly describe the image content [34]. Focusing on the
relevance of relations in scene graphs is different from the current paradigm of SGG that aims
at predicting correct relations, independently of their intrinsic meaning. We hypothesize that
this new paradigm will lead to more efficient SGG models, and improve the performance of
subsequent applications of SGG. In the next section, we will discuss why this is the case for
several downstream tasks of SGG.

2.3 Applications of SGG

The task of SGG has recently gained interest as a backbone in a variety of other tasks. In a recent
survey, Chang et al. [16] have identified the main applications of SGG in the literature, including
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Image Retrieval, Visual Question Answering, Image Captioning, and Image Generation. Even if
not directly addressed, the opportunities of SGG for robotics are also pointed out in this survey
with applications in robot navigation. In an attempt to cover a broader range of applications,
we will discuss the aforementioned applications as well as the usage of SGG in robotics in this
section.

2.3.1 Image Retrieval

In the first inception of the task [54], Scene Graphs were used to improve the performance
of image retrieval systems. The idea was to use the graph structure of the scene to retrieve
images that are semantically similar to a query graph. Using Conditional Random Field (CRF)
Johnson et al. [54] proposed a method that aims at grounding a given query graph to a set of
images. Later on, SGG was proposed for the task of image-to-image retrieval, where the goal is
to retrieve images that are visually similar to a query image [55]. In this approach, Scene Graphs
are generated using the Bottom-Up Attention method [6] for all images and then embedded in
a graph embedding space. By comparing the features of the query graph with the features of
the scene graphs, the model retrieves images that are visually similar to the query image. In
this work, the authors point out the difficulty of generating comprehensive graphs from images.
The first discovery is that the performance of SGG methods on the standard benchmarks is
not consistent with their respective performance in the image retrieval task. The authors have
tried more qualitative SGG methods [12], [56], but the best performance reported is with the
Bottom-Up Attention method [6]. This highlights the misalignment of current SGG benchmarks
with the actual use of SGG methods in Image Retrieval.

2.3.2 Visual Question Answering

Visual Question Answering (VQA) is another downstream task that can benefit from SGG.
In VQA, the goal is to answer complex questions about visual scenes. With the GQA dataset
[15], Hudson et al. proposed a new approach for VQA with the support of scene graphs as an
additional input to question-answer pairs. Next, the GQA dataset has been used to abstract the
image content and facilitate answer prediction in VQA [25], [57]. Nevertheless, the quality of
generated scene graphs for VQA has been pointed out by several studies [4], [57], [58]. In their
work, Damodaran et al. [58] analyzed in depth the performance of the Motifs model [38] for SGG
in the VQA task. Results show that predicted scene graphs correctly identify the objects but
introduce a lot of noise by predicting many relations not related to the question-answer pairs.
This noise can be detrimental to the performance of VQA models, as it introduces irrelevant
information that confuses subsequent learning.
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2.3.3 Image Captioning

The task of Image Captioning [59] aims at generating free-form textual descriptions of images.
It can be convenient for Image Captioning to use scene graphs as abstract representations of the
image content before proceeding to the generation of the caption [60]. As a result, the task of SGG
was proposed as a backbone for Image Captioning [2], [6], [61]. In a so-called paper "Are scene
graphs good enough to improve Image Captioning?", Milewski et al. [62] analyzed the quality of
scene graphs produced by SGG models for the task of Image Captioning. Findings show a clear
imbalance in scene graph quality generated by the IMP model for SGG [12]. Furthermore, the
authors identify the quality of the scene graphs as a key factor for the performance of Image
Captioning models. The noise of the scene graphs generated by SGG models has also been
pointed out by subsequent work [14], [63].

2.3.4 Image Generation

Recently, the task of Image Generation has gained new interest with the democratization of
Latent Diffusion models [64]. In Image Generation, the goal is to generate realistic images from
a given textual description. Approaches such as Generative Adversarial Networks (GAN) or even
Diffusion models have been criticized for their lack of compositionality [36], [65]. In this context,
Scene Graphs have been proposed as an intermediate representation to guide the generation of
images, leading to the task of Scene Graph to Image Generation (SG2IM) [36], [65]. In contrast
to Image Generation from free-form text, SG2IM aims at generating images from structured
representations of scenes. However, generating scene graphs from images and then using these
graphs to re-generate images does not make a lot of sense and thus SGG models have not
been used for Image Generation. Instead, ground truth scene graphs are used as inputs [65].
In recent works nonetheless, approaches in SGG are using the task of Image Generation from
Scene Graphs as a benchmark to evaluate the quality of the generated scene graphs in SGG [35],
[66]. This approach is particularly interesting as the SG2IM task is the only downstream task of
SGG that requires the sole scene graph as input. In fact, in Image Captioning the image is also
used as input, in VQA the question is used as input, and in Image Retrieval the query graph
is used as input. This makes the SG2IM task a good benchmark to fairly evaluate the quality
of scene graphs generated by SGG models, without other inputs as confounding factors [19]. In
their work, Wang et al. [35] have shown qualitatively that the quality of scene graphs is a key
factor for the performance of Image Generation models.

2.3.5 Robotics

Recently, we have witnessed the emergence of SGG for embodied agents, especially in au-
tonomous exploration and navigation. Graphs representing spatial relations between static ob-
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jects are leveraged from 2D image features [67] or from 3D sensors using PointCloud [68] during
the navigation of an embodied agent. This representation is then used for autonomous ex-
ploration of the environment [69] or for complex symbolic planning [70]. In contrast to the
aforementioned work, a recent approach [11] used SGG for high-level reasoning in HRI. In their
approach, Amodeo et al. proposed to use an SGG model in a real-world application for telep-
resence robotics. For such a scenario, abstracting the scene content in a graph representation is
beneficial for the person controlling the robot in a distance as it allows to define control com-
mands in natural language (such as "move toward the person holding a glass behind the table").
This work sparks interest in more open-ended applications of SGG in robotics, especially in the
field of HRI.

2.4 Redefining SGG for Downstream Tasks

SGG models have been heavily criticized not for predicting wrong relations but for introducing a
large amount of noise in the predictions. Nonetheless, precisely identifying and quantifying this
noise has not been done to this day. For the task of VQA, the noise seems to be any relations
not related to the question-answer pair, but questions and answers can be very diverse, so it is
hard to systematically eliminate the noise. For Image Captioning, defining noise is even more
complicated due to the varying size and diversity of captions. In this work, we hypothesize
that noise in SGG models can be defined as any relations not part of the image gist and that
predicting relations relevant to the image gist will lead to better performance in the majority of
downstream tasks. In the work of Amodeo et al. for telepresence robotics, the noise introduced
by the SGG model is controlled by the addition of a handcrafted ontology. By explicitly defining
the relations that matter for their particular use case, the authors were able to reduce the noise
in the predictions of the SGG model. However, this method is not scalable to more advanced
applications and can not generalize to other downstream tasks.

In contrast to traditional knowledge representations in robotics [43], [71], [72], SGG represen-
tations are static and do not allow for dynamic reasoning. In fact, the scene graph representation
is computed from a single image and does not take into account the temporal evolution of the
scene. When applied to navigation or manipulation tasks [69], [70], all relations are aggregated
through time with no distinction. In addition, relations are never discarded which can lead to
consequent overhead in long term tasks. Other approaches [11] simply do not aggregate relations
through time and base their reasoning on a single image. This can lead to a lack of context in the
reasoning process. Finally, the SGG approaches in robotics are not mentioning inference time
and resources constraint of their implementations. In the context of robotics, the inference time
of models is a key factor for the deployment on embedded systems. In addition to temporal ag-
gregation of relations, a realistic low-cost implementation of SGG models for robotics is lacking.
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We review the aforementioned challenges in a set of four distinct bottlenecks for the deployment

Figure 2.2: Overview of the different bottlenecks in SGG for real-world applications that will be
discussed in this thesis.

of SGG models in real-world applications, and especially in service robotics:

1. Data biases: Current datasets SGG training are not representative of the real-world and
introduce several biases that can be detrimental to the performance of SGG models.

2. Misalignment: Because of the noise introduced by SGG models, predictions are often not
aligned with the constraints of downstream tasks, leading to a decrease in performance.

3. Efficiency: SGG models are not efficient for real-time applications and require a lot of
resources to be deployed in real-world settings.

4. Temporal consistency: SGG models do not take into account the temporal evolution of the
scene and do not allow for dynamic reasoning. To be successfully used in service robotics,
SGG representations need to empower some sort of consistency when aggregating relations
through time.

These different bottlenecks are represented in fig. 2.2. This thesis does not aim at solving each
of these challenges but rather to propose new paradigms and methods to address them. Each of
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the following chapters will focus on one specific bottleneck, detailing its scope, the current state
of the art, and the proposed solution. In the next chapter (see Chapter 3), we will focus on the
first bottleneck, Data biases, and propose a new method to refine data annotations in current
SGG datasets. In Chapter 4, we will focus on the second bottleneck, Misalignment, and propose
a new method to remove the noise of the predictions of SGG models. In Chapter 5, we will focus
on the third bottleneck, Efficiency, and propose a new method to reduce the computational
cost of SGG models. Finally, in Chapter 6, we will focus on the fourth bottleneck, Temporal
consistency, and propose a new method to aggregate relations through time in SGG models.
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Chapter 3

MODELLING COMPOSITIONAL

RELATIONS: A DATA-CENTRIC

APPROACH

Garbage in, garbage out.

George Fuechsel, 1957

Part of this chapter was published in the pro-
ceedings of the 2023 International Conference
of Computer Vision (ICCV) as part of the
SG2RL Workshop [73] and in the proceed-
ings of the 2023 Robot World Cup Symposium
[74].

To be successfully used in real-world applications, it is crucial that predictions from SGG
models represent the diversity and complexity of the real world. Like many other tasks, the
paradigm of SGG is based on supervised learning. Supervised learning requires a large amount
of high-quality labelled data, which can be difficult to acquire in the context of SGG. Namely,
the high number of possible relations per image and the polysemic nature of natural language
are two of the main challenges in the annotation process [75]. As a result, datasets that have
been proposed for the task [8], [15] have been heavily criticized for having noisy and biased
annotations [18], [19], [75]. Furthermore, these datasets are context-agnostic, which does not
help with the generalization of models to specific contexts, for instance in domestic applications.
Real-world applications, and especially HRI in domestic domain, require comprehensive and
high-quality data of specific domains.

In this chapter, we focus on producing high-quality data for SGG in domestic applications,
using this as a case study to propose two novel methods for data refinement and augmentation.
These methods are centered on refining existing datasets by removing irrelevant annotations as
well as selecting interesting classes which better represent real-world diversity. First, we will re-
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view current datasets in SGG, discussing their biases and the data-centric approaches developed
to address these issues in Section 3.1. We will then present our data-centric method to refine
noisy annotations by tackling first the problem of irrelevant annotations, see Section 3.2, and
second the problem of connectivity in SGG datasets, see Section 3.3. Finally, we will demon-
strate the effectiveness of those approaches as well as a new data augmentation method for the
semi-automatic annotation of a dataset in the context of domestic applications in Section 3.4.

3.1 From Noisy to Meaningful Graphs: A Literature Review

In the past few years, various approaches have been proposed for the task of SGG. However,
the learning process in SGG is slightly different from other tasks in Computer Vision. In fact,
predicting relations cannot be simply defined as a classification task because relations are not nec-
essarily exclusive, defining the task as a multi-classification problem where each ⟨subject, object⟩
pair could be associated with up to n different relations. From a data perspective, this would
require extensively annotating multiple positive and negative relations for each pair of objects
which considerably enhances the resources required to produce large-scale datasets. Due to this
constraint, current approaches have decided to simplify the task to a traditional classification
problem where each pair is associated with one unique predicate label, described as the graph-
constrained [38] settings. But this poses another problem: now it is the responsibility of the
annotator to choose between a set of multiple valid labels to annotate a relation, which can lead
to confusing and noisy annotations [76]. In the following, we will analyze the commonly used
datasets for the task of SGG, their respective biases and approaches that have been proposed
to solve them.

3.1.1 SGG Datasets

The first dataset which contains densely annotated scene graphs that have been proposed is the
VRD dataset [77]. VRD is a dataset of 5,000 images annotated with 100 object categories and
70 predicates. The object and predicate classes have been manually selected to represent a wide
range of possible interactions in different contexts. The dataset has been manually annotated
to result in a total of 37,993 annotated relations and 6,672 possible triplets. The main criticism
of this dataset is the small number of images and the lack of diversity in the annotations. As
stated by the authors [77], the dataset is also biased towards the most frequent relations and
does not contain a lot of rare relations. The large number of object classes for the small number
of training images makes it also difficult for object detection.

A few months after the release of VRD, the Visual Genome dataset was proposed by Krishna
et al. [8]. This dataset is the first large-scale densely annotated dataset for SGG. It contains
108,077 images with 53,304 object classes and 29,086 predicate classes. The dataset has been
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annotated by human annotators in the form of region captions using an open-vocabulary class
format. Then, each visual caption was parsed to a ⟨subject, predicate, object⟩ format using dif-
ferent linguistic rules and corresponding bounding boxes were extracted from the image in a
matching process. This semi-automatic annotation process resulted in many classes with a lot of
ambiguous and generic names such as the class "background" or "room". The dataset contains an
average of 22 relations per image, with a total of 2,316,063 annotated relations. Due to the large
scale of the dataset and the number of redundant or ambiguous object and predicate classes,
this dataset has rarely been used as it is for SGG [78]. Quickly nonetheless the SGG community
has proposed to use a subset of this dataset [12], VG150, which is composed of annotations of
the top 150 object classes and top 50 predicate classes of Visual Genome, for a total of 636,722
annotated relations across 89,168 images. Even though a smaller amount of relations is used, the
VG150 split suffers from the same long tail distribution of predicate and ambiguous annotations
bias as the original dataset [18], [20]. In fact, due to the over-representation of vague predicate
classes over more fine-grained ones, the dataset is heavily unbalanced (i.e. long tail distribution).
In Figure 3.1 we display the actual distribution of predicate, where we can observe that the first
class “on” is annotated 6,549 times more (196,465 samples) than the last class “flying in” (30
samples). The first 6 classes represent more than 75% of the total number of annotations. This
long-tail distribution can lead to models biased towards the most frequent relations and that
will perform poorly on rare relations. In Figure 3.1 we can also observe the second major prob-
lem of VG150: redundant classes. Some classes such as “wearing” and “wears” are actually the
same class but have been annotated differently by different annotators. This redundancy in the
annotations can lead to confusion in the learning process of the model and can also bias the
learning process towards the most frequent relations.

The VG178 split has also been proposed [65], with a similar objective as VG150 but by
selecting object classes with more than 1,000 samples and predicates with more than 100 samples,
resulting in 178 object and 49 predicate classes.

The GQA dataset [15] is a subset of 85,638 images of Visual Genome with the addition
of question-answer pairs. Regarding scene graph annotations, GQA sees the addition of to the
left and to the right relations which have been automatically generated using bounding box
coordinates for every pair. It also incorporates some manual refinement of existing annotations
of Visual Genome. GQA is composed of 1,703 objects and 310 predicate classes and possesses
471,614 relations annotated other than to the left and to the right. Due to the sparsity of
annotations and the large number of classes, GQA is a more challenging dataset for SGG than
VG150 and is even more unbalanced [79]. Due to these two issues, the dataset as not been used
a lot by the community in comparison to VG150 [16].

The OpenImage dataset [17] is the largest fine-grained annotated dataset in Computer Vision,
with bounding boxes, captions, question-answer pairs and segmentation masks annotated for
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Figure 3.1: Distribution of predicate classes in VG150. The last class, flying in, is only annotated
56 times.

more than 1.7 million images. In the 6th release, OpenImageV6, a subset of 133,503 images
sees an addition of relations annotations, making it the largest dataset for SGG by number of
images. The dataset is composed of 601 object classes and 30 predicate classes. The dataset is
nonetheless very scarce in terms of relations annotations, with only 367,914 relations annotated
(less than 2.75 per image on average). The dataset is also biased towards the most frequent
relations and only contains a small amount of triplets due to the small number of predicates.

In 2022, a new dataset has been proposed to correct the biases of previous datasets. The
Panoptic Scene Graph dataset [20] is composed of 48,508 images densely annotated with segmen-
tation masks and bounding boxes for 133 object classes and 56 predicate classes. All classes have
been carefully chosen by authors (in contrast to VG and GQA) to represent non-ambiguous ob-
jects and predicates with low polysemy. Annotators have also been trained to annotate relations
consistently to avoid annotating similar relations with different predicates. This process resulted
in a high-quality densely annotated set of images taken from COCO [45] and VG. However, the
strategy employed for the PSG dataset still does not enforce the use of a clear taxonomy of
relations, which can lead to confusion in the learning process of the model. At the same time,
annotator are still free of choosing which relations to annotate, which can lead to disparity in
the annotations quality.

3.1.2 Related Datasets

One of the earliest definitions of a scene graph [54] can be stated as “the aggregation of any
relation that can describe a scene” which does not constrain the type of relations that can
be annotated in an SGG dataset. However, other tasks have proposed annotated Scene Graph
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datasets with more constraints, such as the task of Human-Object Interaction detection (HOI).
HOI datasets provide graph annotations centered around activities and actions. In HOI datasets,
each subject of a relation is a person instance and most of the predicates are action-related. These
constraints lower drastically the expressiveness of the data and make it less suitable for general
SGG tasks such as VQA or Image Captioning. The most used HOI datasets are HICO-Det [80],
V-COCO [81], and EPIC-KITCHENS [82].

In contrast to HOI which is centered around representing human activities, 3D scene graphs
have been proposed to represent spatial relations between objects in 3D scans (RGB-D or Point-
Cloud representations). The most used datasets in this area are 3D Scene Graphs [83] and
3DSGG [84]. Again here the constraints of the data make it less suitable for general SGG as the
relations are mostly topological relations between furniture and common objects. Humans and
activities are not represented in these datasets.

Finally, a set of Video SGG datasets has been proposed to represent relations between
objects in videos. The most used dataset for this task is ActionGenome [85], which comprises
234,253 annotated frames with 36 object classes and 26 predicates. Even though some papers
are referring to the task of predicting relations on Action Genome as "SGG" [30], [31], [86], the
task is more related to HOI detection as the relations in Action Genome are only action-related
and the subject is always a person instance. To this date, no video dataset combines all types of
relations in a single dataset, without being human-centered, which is the case for Visual Genome
and other image-based datasets.

3.1.3 Data Curation Approaches Based on Visual Genome

To counter the predicate long-tail bias of Visual Genome, a few approaches have been proposed
in the past few years, resulting in the subtask of U-SGG [19], [21], [22], [87], [88], [89], [90]. These
approaches are mainly focused on balancing the learning process of the model by re-weighting
the loss function [91] or by sampling the data differently [92], which make them more related
to the task of long-tail learning than SGG as relation learning becomes a secondary objective.
It is worth to mentioned here that the task of U-SGG is only a result of the noisy annotations
in Visual Genome and other datasets, as there is no incentive to the task of SGG to be biased
with long-tail learning in the first place. It is also worth to mention that the amount of effort
which has been put into the task of U-SGG from the model side (i.e. attempting to correct the
long-tail learning problem by tweaking the learning process) is much more important than the
amount of effort put into the task of refining the data itself [93].

To the best of our knowledge, only a few current approaches are considering the Visual
Genome dataset biases from a data-centric perspective. In VrR-VG [18], the authors based their
assumption on the fact that relations that can be easily inferred with only spatial information
from an object pair (i.e. bounding box coordinates) are not visually relevant. Based on this fact,
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the authors have pruned the original Visual Genome dataset to remove common relations. This
led to sparse annotations where only rare and very specific relations are annotated for which the
use in downstream tasks is very limited, while at the same time limiting the learning capabilities
of SGG models. Other approaches are focusing on balancing the predicate distribution [94] or
filtering similar or vague predicates [75] to improve the relevance of the annotations. However,
these methods assume a consistent use of the same predicate across the annotations which is
not true due to the inherent polysemy of natural language, as explained before [95]. In VG-KR,
Wang et al. [32] have proposed to extract from the Visual Genome dataset key relations to
form a concise and expressive smaller data split, with a set of 1 to 10 key relations per image
in addition to common relations. To do so, they first selected the most frequent 200 object
and 80 predicate classes in the VG dataset and then used COCO captions to match important
triplets using common WordNet [96] synsets. This resulted in VG-KR, a subset of VG with
26,992 images and 250,755 relation instances. Even though the key relations annotated are
deemed “more informative” because of the selection process, the dataset still suffers from the
same biases as VG150 and Visual Genome, as the annotations are still noisy and ambiguous (no
explicit curation has been performed to solve this last point).

Dataset Number of Object Predicate Number of Average
Images Categories Categories Relations Graph Size

O
rig

in
al

Visual Genome [8] 108,073 95,394 33,121 2,316,063 22.32
OpenImageV6 [17] 133,503 601 30 367,914 2.75

VRD [77] 5,000 100 70 37,993 7.59
PSG [20] 48,749 133 56 275,371 5.65

V
G

-b
as

ed

GQA [15] 85,638 1,703 310 471,614 5.51
VrR-VG [18] 56,254 1,321 117 176,488 3.13
VG150 [12] 89,168 150 50 636,722 7.14
VG178 [65] 91,753 178 49 646,267 7.04
VG-KR [32] 26,992 200 80 250,755 9.29

Table 3.1: Comparison of different SGG datasets.

We display in Table 3.1 a comparison of the most commonly used datasets for SGG. A
first consideration when building SGG datasets for real-world applications is the number of
object classes. In fact, most object detector are not very efficient for learning a high number
of classes. This is one reason why the authors of VG150 [12] chose a relatively small amount
of object classes in the first place. Regarding relations annotations, datasets with a higher
connectivity (i.e. higher average graph size) should benefit the learning process of SGG models
as the inter-dependencies between relations are easier to capture. However, the balance between
the number of object and predicate classes and the number of relations is crucial for the learning
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process because a high number of possible predicates for a ⟨subject, object⟩ pair can make the
data distribution long-tailed and the learning difficult [38]. To generate a new dataset targeting
domestic applications, one solution could be to re-annotate images from indoor scenes in Visual
Genome. However, manually generating new annotations is a time-consuming and expensive
process, thus we propose instead to leverage the existing annotations in Visual Genome and
refine them to improve the quality of the data. In the following sections, we will use the raw
data from Visual Genome as a base for our experiments to refine annotations and extract clean
and high-quality data from the mass of noisy annotations.

3.2 Irrelevant Data

As the Visual Genome dataset is annotated by human annotators in free-form text, it can be
considered a good representation of information perceived by humans in images. That being
said, the dataset has been extensively annotated, with annotators being tasked to annotate the
maximum of relations they can find in an image. In contrast to the gist, which represents the
minimal amount of information needed to extract the meaning of the scene [33], annotations in
Visual Genome can contain irrelevant data that does not contribute to the gist of the scene. In
this work, we consider two types of irrelevant data: data that is redundant with the information
we commonly already know a priori about the image or data that is superfluous for the gist.

Identifying superfluous information without actual gist annotations can be challenging, how-
ever, identifying redundant information can be done by analyzing information in the scene
graph that can be known without the need for visual information. For instance, the relation
⟨person, has, head⟩ is a relation that can be considered irrelevant as it is invariant and can be
known with external knowledge of the object person. In contrast, the relation ⟨person, wearing, hat⟩
is a relevant relation as it depends on the visual features of the scene. We call the overrepresenta-
tion of invariant relations in Visual Genome the invariant relationship bias. Intuitively, invariant
relations are of a different type than other relations as they convey different information. Invari-
ant relations are for instance not likely to be characterized by action-related predicates such as
eating or holding. To specifically identify irrelevant relations, we need to categorize them with
the help of a clear taxonomy of relations.

3.2.1 A Taxonomy of Relations

It is ubiquitous to us that objects in a scene are related to each other in various ways. Com-
positional relations can represent actions (such as person riding bike) or spatial relations (such
as bike next to tree). In prior work, Zellers et al. [38] proposed a taxonomy of relations in the
Visual Genome dataset. They defined relations as geometric, semantic and possessive by man-
ually clustering the different predicates used by annotators in the dataset. This categorization
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possesses some common ground with research in the image gist and scene understanding [33],
where for instance Mandler and Parker [50] detail the presence of spatial relations in the gist of
the scene. Same for semantic relations later on [51]. However, the taxonomy proposed by Zellers
et al. is not exhaustive and does not cover all possible relations that can be found in the dataset.
Specifically, the geometric category is too broad, and a correct definition will be topological which
covers relative spatial relations between neighboring objects [75]. The semantic category can be
refined as functional, which is a better wording to define dynamic relations between objects.
Finally, the possessive category is split into part-whole and attributive relations. The part-whole
category covers relations where an object is part of another object, such as ⟨person, has, head⟩,
whereas the attributive category covers relations where an object is an attribute of another ob-
ject, such as ⟨person, wearing, shirt⟩. We provide a comprehensive list of definitions below and
a set of examples for each category in Table 3.2.

• Functional: dynamic relations between entities;

• Topological: static spatial relation between any pair of entities;

• Part-Whole: hierarchical and invariant relation between a defined entity (i.e. “whole")
and one of its building blocks (i.e. “part");

• Attributive: relation between a physical entity and a non-invariant attribute.

Category Examples
Functional person reading book, coat hanging on rack, cat sleeping on bed
Topological phone on table, person next to window, paper on top of keyboard
Part-whole person has head, key on keyboard, window on building
Attributive person wearing jacket, frame has painting, writing on sign

Table 3.2: Example of compositional relations by semantic category.

3.2.2 Data Filtering

Defining relations categories is crucial for the task of SGG as it helps in understanding graph
structures and interdependence between relations. More importantly, relation categories can be
used to refine the annotations in a scene graph dataset by removing irrelevant relations. Based
on the part-whole category, we present a new definition of visually relevant relation as follows:
a relation is not relevant if it describes a composition between parts of an entity that is true in
a general sense and that could be inferred using external knowledge (e.g. ⟨man, has, arm⟩).

Figure 3.2 shows the relations that are most annotated in Visual Genome, where we can see
that part-whole relations are prevalent with 47.35% of the total number of occurrences for the
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Figure 3.2: Distribution of the top 50 relations in Visual Genome.
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Figure 3.3: Ratio of predicted triplets over ground truth ones on the test set of VG150 by the
Motifs model [38]. For clarity, we show only the top 20 triplets with more than 20 occurrences.

top 50 relations. We can, for instance, see the relation ⟨person, has, hair⟩ and ⟨leaf, on, tree⟩
very high on the list when their importance is debatable for downstream tasks. Moreover, as
explained in previous approaches [16], [18], [32], [93], these relations may be biasing the learning
process because they are true in the general sense and do not depend on visual features of
the scene, which could lead to overfitting of the models. In order to verify this assumption,
we conducted an experiment on predictions obtained by the Motifs-TDE model [19], [38] on
the test set of the VG150 dataset. Results are shown in Figure 3.3 where we can see that
part-whole relations are overly predicted in comparison to the ground truth annotations in
the respective images. For instance, the relation ⟨ear, on, head⟩ is predicted 14.5 times more
than the number of times it is annotated in the dataset. This shows that irrelevant data can
bias the learning process of SGG models and hinder their performance. Building upon our new
classification of relevant relations, we employed a new approach of filtering the dataset from part-
whole triplets. To filter categories of relations, previous approaches rely on handcrafted predicate
categories [38]. However, this categorization only takes into account the intended meaning of
predicates, which suppose that annotations are consistent in the dataset. This assumption is
wrong, given the polysemy of natural language [95]. For instance, the relation ⟨man, on, laptop⟩
does not represent a topological relation but rather a functional one, which is not the case
with another relation ⟨man, on, bench⟩ even though the predicate and subject are the same.
On the other hand, it has been noticed that there is a strong correspondence between the
knowledge embedded in the Visual Genome and relations contained in linguistic commonsense
knowledge sources such as ConceptNet [97] [66]. Thus, instead of manually labeling every triplet
in VG, we chose to compare triplet annotations with a subset of ConceptNet [97] that contains
only part-whole relations. If a relation has a significant similarity with one from ConceptNet,
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Method Recall Precision F1
Predicate only [38] 0.43 0.62 0.51
Lexical similarity 0.81 0.53 0.64
Glove 6B 300d (cos=0.7) 0.88 0.5 0.64
RoBERTa-large-v1 (cos=0.7) 0.75 0.58 0.66
MiniLM-L6-v2 (cos=0.7) 0.74 0.67 0.7
MpNet-base-v2 (cos=0.75) 0.64 0.83 0.72

Table 3.3: Part-whole relations filtering by comparing with ConceptNet, evaluation on a set of
1000 random samples.

then we can filter all its occurrences from the original data. We used the part-whole subset of
ConceptNet, following the ontology introduced by Illievski et al. [98] with the relations ’PartOf’,
’HasA’, and ’MadeOf’. Then, we used different approaches to categorize relations between part-
whole and non-part-whole from textual annotations only. To evaluate the performance of this
filtering, we manually annotated a subset of 1000 random relations from Visual Genome. First,
we evaluated the filtering using lexical similarity between ⟨subject, object⟩ pair in Visual Genome
and ConceptNet. Second, we compared the representation of ⟨subject, predicate, object⟩ triplet
in Glove embeddings [46] with those from ConceptNet using the cosine similarity. The cosine
similarity σ between vector representations B ∈ ConceptNet and A ∈ V G is defined as:

σ = A ·B
∥A∥∥B∥

(3.1)

Third, we used different pre-trained Sentence Transformers [99] models to generate sentence sim-
ilarity embeddings. Finally, we compared those approaches with the predicate-only classification
proposed by [38] in which the 50 predicate classes were classified within semantic, geometric,
and possessive classes. Results displayed in Table 3.3 show that the classification by [38] resulted
in the lowest score, this is due to the polysemy of predicates, as explained before. Approaches
based on Sentence-Transformers, as they have been pre-trained on a large corpus of texts, can
generalize easily and give the best performance. In the choice of embeddings, we prioritized
precision over recall as we do not want to discard anything else than part-whole relations. The
all-mpnet-base-v2 1 model has shown the best performance in the task, giving satisfactory trade-
off between precision and F1 score. This result is consistent with previous work as this model is
ranked 5 in the task of Sentence Similarity 2.

Using the embeddings produced by all-mpnet-base-v2, we were able to extract 36,777 part-
whole relations for a total of 416,318 occurrences in VG80K (18% of the annotations). Before
removing those annotations from the original samples, we ensured that no other types of rela-

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2
2https://huggingface.co/spaces/mteb/leaderboard accessed on the 21/11/2022.
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tionships were dependent on them. This step is important because by removing some part-whole
relations we could lose important structural information of the visual content. For instance, the
sub-graph:

person
has−−→ hand

holding−−−−→ cup (3.2)

describes a functional relation between the entity person and cup, even if the relation ⟨person,

has, hand⟩ is classified as a part-whole relation by our method. In this case, the method proposed
in this work can be applied as follows: we added a set of weights w : E → R to the original graph
G = (V, E) such as w = 1 if the edge is a part-whole relation and 0 otherwise. Given this graph,
we performed a pruning strategy that iterates through all edges and removed those that were
only dependent on other part-whole relations. This removed from the graph relations deemed
as irrelevant to the context of the scene.

To validate this approach, we conducted multiple experiments with different SGG models. To
be able to compare with previous approaches, we used the VG150 dataset [12]. This subset of the
data is the most used in the community. For a fair comparison, we kept the same train/val/test
split of images. However, due to the removal of part-whole relations, some object and predicate
classes ended with almost no annotations in the dataset (for instance the class "head" or the
predicate class "belonging to"). To address this issue, we choose to replace those classes with
new classes with higher occurrences in the dataset, following the frequency method by previous
work [12]. We call this new split VG150-cur, standing for curated VG150 dataset. VG150-cur
possesses 77% of similar object classes than VG150 and 88% of similar predicate classes. Due
to the addition of new classes, the number of relations in the dataset stays similar to VG150
(622,705 for VG150 versus 636,175 for VG150-cur) which makes the comparison fair.

We follow previous work in the area [12], [19], [37], [38] by evaluating our approach on three
distinct (but related) tasks, namely Predicate Classification PredCls, Scene Graph Classification
SGCls, and SGG SGGen. PredCls concentrates on predicting a relation, given the bounding
boxes and ⟨subject, object⟩ pairs. SGCls is analogous to PredCls, except that ⟨subject, object⟩
pairs are not known a priori, and they need to be inferred by the model. Finally, SGGen
assumes no prior knowledge; thus, the task included the prediction of object regions, pairs, and
relations. To be consistent with other related work, a selection of the most used baseline models
were trained: IMP [12], Motifs [38], and VCTree [37]. For Motifs and VCTree, we trained the
TDE version introduced in [19]. As other metrics have proven to be ineffective in measuring the
performance for both the head and tail classes [37], we used the meanRecall@K metric introduced
in [37]. We retrained every model using the code provided by the authors [19]3, whereby the
original parameters were maintained, except for the batch size and learning rate that were fit
to our hardware requirements. The training was conducted with a batch size of 32 and a base
learning rate of 0.02 on one Nvidia RTX3090 within 20000 iterations (approximately 10 epochs)

3https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
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PredCls SGCls SGGen Improv.
Models Dataset mR@20/50/100 mR@20/50/100 mR@20/50/100 (avg.)

IMP [12] VG150 8.8/10.80/11.62 4.63/5.82/6.42 2.76/4.02/5.0 -
VG150-cur 9.61/12.61/13.92 6.99/8.74/9.44 4.09/6.21/7.41 ↑ 28%

Motifs-TDE [19] VG150 18.5/25.5/29.1 9.8/13.1/14.9 5.8/8.2/9.8 -
VG150-cur 21.38/30.90/36.58 13.75/18.55/21.54 10.49/14.28/17.10 ↑ 37%

VCTree-TDE [19] VG150 18.4/25.4/28.7 8.9/12.2/14.0 6.9/9.3/11.1 -
VG150-cur 22.03/32.25/38.24 13.73/18.14/20.70 10.89/14.52/17.09 ↑ 39 %

Table 3.4: Reported performance of baseline models on the two splits of Visual Genome. Im-
provements are the relative average against the baseline VG150.

or 30000 iterations for SGGen. IMP was retrained on the baseline split (VG150) with the above
settings, this is why the reported results in Table 3.4 are slightly different from those reported
in the original paper [19]. For comparison, the same training/validation/test split of the original
VG150 was used for all datasets.

Results are displayed in Table 3.4. We can see that the performance of all models is sig-
nificantly improved on the VG150-cur split which does not contain irrelevant annotations. We
also display the relative improvement of the average meanRecall@K for each model over the
baseline dataset VG150. We can see that the average relative improvement is 28% for IMP, 37%
for Motifs, and 39% for VCTree. This shows that our filtering method is effective in improving
the performance of SGG models by removing irrelevant data from the dataset.

With this small experiment, we have shown that the quality of annotations in the dataset
is crucial for the performance of SGG models. We have also shown that the presence of cer-
tain types of invariant relations (part-whole) can bias the learning process of SGG models and
hinder their performance. Moreover, as SGG models are very sensitive to data distribution, we
observed a consequent improvement in performance by targeting specific data biases rather than
changing the model architecture. For a comparison, approaches in SGG traditionally improve
the meanRecall@K by only a few % by focusing on models architecture [16], [19]. In contrast,
our approach improves the meanRecall@K by a relative 28 to 39% with a data-centric approach.
This shows that improving the quality of the data is a more effective way to improve the per-
formance of SGG models than changing the model architecture. These findings are consistent
with previous data-centric approaches for SGG [95].

3.3 Class Selection

A second problem with annotating relations for SGG datasets is the background-foreground
problem, or more simply, which subject-object pair should have a relation in the first place?
Indeed, the number of possible relations (even after simplifying the problem to a standard clas-
sification task) will grow quadratically with the number of object proposals, which will also
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require a lot of effort and time for extensive annotation. In practice, annotators cannot annotate
all pairs but rather focus on a small part of them. But again here, the problem is that the edge
between what should/should not be annotated is left to the appreciation of the annotators. If
we look at annotations in the resulting dataset, we can observe an interesting phenomenon:
relations are not distributed uniformly across the image. If we take two reference images from
two very distinct contexts such as a Figure 3.4a and Figure 3.4b we can observe that relations
are distributed across important and meaningful subregions. In Figure 3.4a, relations are con-
centrated on the person sitting at the desk, and in Figure 3.4b relations are concentrated on
the foreground objects (the carriage and horses), and relations with the background (trees, cars,
etc...) are neglected. The exact explanation of this phenomenon will be further investigated in
the future. From those qualitative examples, we can also observe that highly connected regions
can be different from what we could expect to be visually salient regions. For instance, in Fig-
ure 3.4a, the person is not the most visually salient object in the image, but it is the most
connected one. This observation is consistent with previous work in the area of image under-
standing [100] where it has been shown that the content of the gist is not necessarily related to
the most visually salient regions.

In SGG, a highly connected sub-graph that can be encountered multiple times in the dataset
is called a motifs [38]. These sub-structures are defined as "structural regularities" in the data
distribution, i.e. frequent inter-dependent relations. We postulate here that a high-quality scene
graph dataset should be centered around those motifs to keep the maximum of the meaning
conveyed not only by relations but also by the structure of the graph. In practice, this means
that a dataset with more connected regions will improve the frequency of motifs which will lead
to the following benefits: (1) an increase in model performance as more patterns can be spotted
and (2) more meaningful graphs as learning will focus on meaningful regions of the image. To
validate this assertion, we propose to generate a new subset of Visual Genome by specifically
paying attention to preserving the different motif structures during the class selection process.

As discussed in the previous section, training an SGG model requires the selection of a small
subset of classes to reduce the long-tail distribution of the data. In traditional approaches, the
number of object classes is reduced to 150. This number has been chosen arbitrarily [12] with
the idea of making the object detection task easy. Similarly, the number of predicate classes is
50 to represent a large range of relations possible between those 150 object classes. To choose
the classes, the dominant method is to select the most frequent classes in the dataset by number
of annotations, for both objects and predicates. However, this approach is not optimal as it
does not take into account the connectivity of the graph. In fact, the most frequent classes in
the dataset are not necessarily the most connected ones. Selecting classes this way will result
in poorly connected graphs with relations that have no inter-dependences on each other. To
address this issue, we propose a new method to select the most connected classes in the dataset.
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(a) (b)

Figure 3.4: A visualization of the connectivity of Scene Graphs: two images annotated from the
Visual Genome dataset [8].

We based our selection algorithm on the average graph size, trying to optimize the set of top
classes that maximize the average connectivity of graphs over the entire dataset. Thus, for every
graph G, the most connected object (ô) and predicate (p̂) classes were selected from the set of
n images as follows:

θ(ô, p̂) = max
ô,p̂

n∑
k=1

Conn(ô, p̂, Gk) (3.3)

Conn(ô, p̂, G) = |G(u, v, w)|, w ∈ p̂ ∨ [u, v] ∈ ô (3.4)

To be consistent with VG150, we chose |ô| = 150 and |p̂| = 50. As this is a complex
optimization problem, a satisfying solution can be found by first optimizing θ(ô) and then
θ(ô, p̂) with a fixed set of classes ô. We applied this method to the original data and obtained a
new split that we call VG150-connected (VG150-con). This split possesses a significantly higher
number of relations (22% more than VG150), with an average graph size s of 8.37 versus 6.98 for
VG150. More interestingly, we see a net improvement in the average vertex degree in VG150-con,
moving up from 2.02 to 2.2. This shows that relations are also more interdependent and thus
should benefit the context learning of SGG models. Regarding class distribution, VG150-con
possesses 77% of similar object classes than VG150 and 92% of similar predicate classes. We
display a comparison between resulting annotations in VG150-con and the original method based
on class frequencies in Figure 3.5. We can observe here that the annotations from Figure 3.5a are
loosely connected and split apart the image, which makes it difficult to reconstruct the layout of
the scene with only graph annotations. In contrast, the annotations from Figure 3.5b are more
connected and form a more meaningful graph structure. This shows that our method is effective
in selecting interesting motifs from the data distribution.
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(a) (b)

Figure 3.5: Comparison between annotations selected using class frequencies (a) and our method
based on connectivity (b).

PredCls SGCls SGGen Improv.
Models Dataset mR@20/50/100 mR@20/50/100 mR@20/50/100 (avg.)

IMP [12] VG150 8.8/10.80/11.62 4.63/5.82/6.42 2.76/4.02/5.0 -
VG150-con 8.8/11.9/13.35 5.63/6.76/7.16 2.59/4.26/5.61 ↑ 10.3%

Motifs-TDE [19] VG150 18.5/25.5/29.1 9.8/13.1/14.9 5.8/8.2/9.8 -
VG150-con 20.38/28.76/34.06 10.3/14.6/17.25 8.15/11.53/13.15 ↑ 16.1%

VCTree-TDE [19] VG150 18.4/25.4/28.7 8.9/12.2/14.0 6.9/9.3/11.1 -
VG150-con 22.5/31.22/37.02 9.38/13.32/15.29 8.56/10.84/13.09 ↑ 19.5 %

Table 3.5: Reported performance of baseline models on the two splits of Visual Genome. Im-
provements are the relative average against the baseline VG150.

To validate our approach, we conducted experiments with three different baseline SGG mod-
els. We follow previous work in the area [12], [19], [37], [38] by evaluating our approach on three
distinct (but related) tasks, namely Predicate Classification PredCls, Scene Graph Classification
SGCls, and SGG SGGen. Similar to our previous experiments, a selection of the most used
baseline models were trained: IMP [12], Motifs [38], and VCTree [37]. For Motifs and VCTree,
we trained the TDE version introduced in [19]. We can see that the performance of all models is
significantly improved on the VG150-con split. We also display the relative improvement of the
average meanRecall@K for each model. We can see that the average improvement is 15.3% for
IMP, 16.1% for Motifs, and 19.5% for VCTree. This shows that our selection method is effective
in improving the performance of SGG models with a more connected dataset.

It is no surprise that model architectures that specifically rely on the presence of motifs
for learning such as VCTree [37] or NeuralMotifs [38] are the ones that benefit the most from
our method. However, because we replace some classes in both VG150-cur and VG150-con,
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Connectivity Samples Pred. Distribution
Datasets d̄(v) s̄(G) #Rels #Triplets ID [102] LRID [103]
VG80K 2.34 19.02 2,316,063 514,526 29,278 13.75
VG150 2.02 6.98 622,705 35,412 40.7 2.99

VG150-con 2.20 8.38 799,412 44,851 40.69 2.98
VG150-cur 2.12 7.14 636,175 41,164 39.68 2.79

Table 3.6: Graph’s connectivity and size of the different splits; where d̄(v) represents the average
vertex degree; s̄(G) the average graph size; #Rels is the total number of relations samples, and
#Triplets is the number of different triplets.

the imbalance in the predicate distribution could be different from the original VG150 which
could facilitate learning. In fact, it is known that SGG models are heavily biased towards the
head predicate classes [19], [90], [101] and that the tail classes are poorly learned. We display
in Table 3.6 some statistics about the sample distribution in the different splits. We compare
the Imbalance Degree (ID) [102] of the different splits of Visual Genome. ID compares the
normalized distance between the actual distribution and a perfect distribution across all classes.
However, as highlighted in [103], this metric is highly dependent on the type of distance chosen
as well as the number of minority classes. As the Imbalance Degree does not give a full picture of
the imbalance in multi-class distribution, we also measure the likelihood-ratio imbalance degree
(LRID) [103] as follows:

LRID = −2
C∑

c=1
nc log N

Cnc
(3.5)

Where C is the number of unique classes, nc is the frequency of each class and N is the perfect
distribution. This metric tests the actual distribution against a complete balance distribution of
the data, and is reported to be more accurate for multi-class problems [103]. From Table 3.6 we
observe that the imbalance over the global distribution is very similar, with a small advantage
for VG150-cur in both ID and LRID. These findings confirm that our method does not change
the imbalance of the data and thus improvements can be attributed to the better quality of the
data rather than the change in the data distribution. The increase in connectivity by looking at
the average vertex degree or average graph size also confirms this claim.

Finally, we can observe an increase in the number of triplets (the number of different
⟨subject, predicate, object⟩ combinations in the dataset) for both VG150-con and VG150-cur
which demonstrate a more diverse data split and thus more challenging learning [18]. For VG150-
cur we believe that this better diversity comes from the removal of part-whole related classes that
had poor diversity, due to the invariant bias. Regarding VG150-con, the diversity comes from
the largely higher number of samples (799,412 versus 622,705 annotations) which statistically
would increase the number of possible combinations.
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In this section, we have shown that connectivity is an important factor in the learning of SGG
models. We have proposed to select classes by connectivity rather than overall frequency and
have shown that this method is effective in improving the performance of SGG models. This
method, coupled with the previously proposed filtering method for part-whole relations (see
Section 3.2), can be used to generate better-quality data splits from the original annotations
of the Visual Genome dataset. In the next section, we propose to leverage these methods to
generate a new dataset for the task of SGG for the domestic context.

3.4 Application: The IndoorVG Dataset

Annotating data for the task of SGG is very time-consuming as not only bounding boxes and
labels need to be annotated but also object pairs and predicates in every image. Noticing that
the large-scale dataset Visual Genome [8] contains densely annotated indoor scene snapshots,
we focused on leveraging the original annotations provided by authors [8]. Annotations in Vi-
sual Genome were collected by annotators in the form of region captions (i.e. annotators were
asked to describe part of the image using free-form text annotations), and then various parsing
techniques were applied to retrieve ⟨subject, predicate, object⟩ triplets for each region, as well
as corresponding bounding boxes. This process has resulted in free-form labels that are noisy
and contain duplicate bounding boxes, ambiguous classes, or synonyms. The raw dataset is thus
impossible to use as it is and requires a lot of preprocessing to be used by SGG models. On
the other hand, the number of annotations per image and the diversity of classes make it very
suitable for generating new data splits oriented in specific contexts. In the following, we build
on this assumption to generate a new dataset for the task of SGG in the domestic context.

3.4.1 Clustering Indoor Scenes

The Visual Genome dataset contains 108,077 images that represent different contexts, such as
household, sports, or streets that can be clustered by looking at the content of regions captions.
In this work, we focus on domestic context and thus our goal is to select a subset of images
from Visual Genome that represent indoor scenes. To do so, we introduce a method that uses
Sentence Embeddings Transformer to compute sentence embeddings from each region caption
using the MpNet pre-trained model 4, then region embeddings are averaged per image and
clusters are computed using the k-means algorithm. This method is more beneficial than classical
image clustering based on visual features as textual features are more discriminative and can be
used to generate better clusters [104]. To find the best number of clusters for k-means, we ran
experiments with different numbers of clusters, ranging from 2 to 15. We do not report results
for more than 15 clusters as we observed that the average number of images per cluster greatly

4https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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(a) Silhouette score for different k ∈ [2; 15]. (b) Cluster size distribution for k ∈ [2; 30].

Figure 3.6: Comparison between cluster sizes and average silhouette score for the semantic
clusters extracted from Visual Genome [8].

decreased after this value (see Figure 3.6b), hindering the potential of extracting a large subset
of images. We found out that 10 was the best value, with respect to the average silhouette
score (see Figure 3.6a). The silhouette score computes the average distance a between points
in a cluster and the distance b between points with the nearest cluster. It can be expressed as
follows, for every point i ∈ C:

s(i) = b(i)− a(i)
max(a(i), b(i)) , if |C|⟩1 (3.6)

By averaging the silhouette score over data points, we obtain the average silhouette score.
The silhouette score is bounded between -1 and 1, where a score close to 1 indicates that the
point is far away from the neighboring clusters. A score close to 0 indicates that the point is
close to the decision boundary between two neighboring clusters and a score close to -1 indicates
that the point might have been assigned to the wrong cluster. We display the silhouette score
for different cluster sizes in Figure 3.6. We can see that the silhouette score is maximized for a
cluster size of 10 with a value of 0.1179.

To validate this clustering, we use a T-SNE visualization in Figure 3.7. T-SNE is a technique
used to visualize high-dimensional data by reducing it to two or three dimensions [105]. In the
visualization, we can see a clear distinction between image clusters, that show clear patterns or
motifs [38] present in similar contexts. This suggests that indoor scenes can be easily clustered
by looking at the representation in embedding space of region captions. The obtained clusters
have a size ranging from 3,927 to 20,698 images. For this work, we selected a cluster that
encapsulates indoor scenes with a size of 17,740 images. We call the new distribution of Visual
Genome extracted from this cluster the IndoorVG split.
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Figure 3.7: T-SNE visualization of Visual Genome image clusters, with k clusters = 10.

3.4.2 Selecting Classes

As stated in numerous works (e.g. [38], [106]), annotations from Visual Genome are noisy and
contain duplicate bounding boxes, ambiguous classes, or synonyms. For all images in the In-
doorVG subset, annotations were processed as follows: for object regions, we replicated the
approach proposed by [12] to merge bounding boxes with an IoU (IoU) greater than or equal to
0.9. For the textual annotations, we also followed [12] to remove stop-words and punctuation us-
ing the alias dictionaries provided by the authors of the dataset 5. We then merged synonyms of
object and predicate classes using WordNet synsets [96]. At this point, we obtained a long-tailed
data split of 11,620 objects and 5,407 predicate classes where most of the classes still possess
only one sample. As a dataset of this scale would be of no use for real-world applications, only
the most representative relations were used from the selection of images from IndoorVG. To
solve this problem, we used the Connectivity-based Selection method described in Section 3.3
to select the most connected classes in the dataset. We set |ô| = 130 and |p̂| = 50 and ran
the method on the image subset obtained previously using kmeans clustering. This resulted in
a new split with 149,020 relation samples across 16,221 images. This new split still contains
duplicate or ambiguous object classes or predicate classes. As a result, we manually removed
classes that represent abstract concepts (such as “object", “edge" or “background") or groups
of entities (such as the class “people" and “food") to keep only physical, tangible, and unitary
object classes. We also set a minimum of 100 occurrences for each object or predicate class as we
believe that below this threshold learning would be difficult. The final resulting split is composed
of 84 object classes and 37 predicate classes with a total of 98,824 annotated relations and 9,095

5http://visualgenome.org/api/v0/api_home.html
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triplet combinations across 14,674 images. We maintain the same train/val/test split ratio as in
VG150 with 0.65/0.05/0.3 respectively. We will call this new split the IndoorVG dataset from
now on. This split contains traditional triplets annotations and corresponding bounding boxes
from Visual Genome. However, these annotations may not be sufficient to model the gist of the
scene. In fact, as we have seen in Section 3.2, relation categories are also of utmost importance
for the learning of SGG models. In the next section, we propose to extend the annotations of
the IndoorVG dataset with this additional information.

3.4.3 Relation Categories

Traditional Scene Graphs annotations only contain bounding boxes, predicate and subject-object
pairs. However, in real-world applications, it is important to have more detailed annotations such
as object attributes, spatial relations, or object functional interactions. Inspired by our findings
on the impact of relations categories on the learning of SGG models and the importance of
the quality of the data, we propose to extend the annotations of the IndoorVG dataset with
additional information. We propose to add to every relation an additional label representing one
of the four categories previously introduced: part-whole, functional, topological, or attributive.

As explained in Section 3.2, finding the correct category of each triplet is a complex task as
we can not annotate triplets by only looking at the predicate due to the polysemy of natural
language. In addition, the method proposed in Section 3.2 which uses external knowledge bases is
complex to extend to functional, topological, and attributive categories due to their high sparsity
in commonsense knowledge sources [98]. To address this issue, we proposed to use a pre-trained
Large Language Model (LLM) to classify relations in a few-shot manner. We first manually
annotated a set of 1,200 random triplets between the four categories topological, functional,
part-whole, and attributive by looking at corresponding images. For every triplet, we looked
at a set of 5 different images containing the triplet with corresponding bounding box annotations,
and we selected the category that best fits the relation for all images. This way, we ensure to have
a categorization as close as possible to the actual usage of relations in images from the dataset.
Then, we used these samples to fine-tune OpenAI’s GPT3.5 [107] LLM to give an effective
classification of all triplets in the dataset. Here, we used GPT3.5 to benefit from its pre-training
on a large corpus of data that showed some abilities in making inferences about commonsense
knowledge [108]. Commonsense knowledge is needed to differentiate between ambiguous cases,
such as ⟨man, on, phone⟩ (which is a functionnal relation, even though the predicate “on" is
usually used in topological relations). We fine-tuned the turbo version of GPT3.5 using a
training set of 1,000 triplets and a validation set of 200, results are displayed in Table 3.7.

We also compared the fine-tuning of GPT-3.5 with standard linear regression on different text
and sentence embeddings. For text embeddings, we used the average of the ⟨subject, predicate,

object⟩ word embeddings of the Glove 6B 300d embeddings [46]. For sentence transformers,
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Method Precision Recall F1-Score
glove.6B.300d

attribute 0.73 0.39 0.51
functional 0.83 0.77 0.80
part-whole 0.63 0.67 0.65
topological 0.82 0.91 0.86

macro avg 0.75 0.69 0.71
weighted avg 0.79 0.79 0.78
bge-base-en-v1.5

attribute 0.61 0.61 0.61
functional 0.87 0.87 0.87
part-whole 0.71 0.56 0.63
topological 0.87 0.89 0.88

macro avg 0.76 0.73 0.75
weighted avg 0.82 0.82 0.82

Method Precision Recall F1-Score
BERT-base

attribute 0.57 0.46 0.51
functional 0.93 0.90 0.92
part-whole 0.56 0.56 0.56
topological 0.85 0.89 0.87

macro avg 0.73 0.70 0.71
weighted avg 0.80 0.80 0.80
gpt-3.5-turbo-0613

attribute 0.85 0.61 0.71
functional 0.89 0.81 0.85
part-whole 0.81 0.72 0.76
topological 0.87 0.97 0.92

macro avg 0.86 0.78 0.81
weighted avg 0.87 0.87 0.86

Table 3.7: Compositional relations classification with different methods. Left: linear regression
with different pre-trained sentence transformer embeddings. Right: fine-tuning of GPT3.5-turbo
and BERT models.

we used the BGE-base-en-v1.5 [109] embeddings. We also compared with a fine-tuning of the
BERT-base model [110] on the same training and validation sets. We display the results in
Table 3.7 where we can see that GPT-3.5 outperforms all other methods with an F1-score of
0.86. This shows that GPT-3.5 is effective in classifying triplets into topological, functional,
part-whole and attributive categories. Using sentence transformer embeddings or fine-tuning
the BERT-base model also gives good results, with an F1-score of 0.82 and 0.80 respectively. This
shows that even using smaller models can give good results for the task of triplet classification.

We analyze the confusion matrices of the BERT and GPT3.5 models in Figure 3.8. We
can see for both methods a confusion between the attribute or part-whole categories and the
topological one. After identifying conflicting cases, this seems to be due to the predicate "on"
which is wrongly associated with topological triplets most of the time. For instance, the triplet
⟨keyboard, on, laptop⟩ is classified as a topological relation, even though it is a part-whole relation
because models tend to have trouble to select the correct syntactical sense of the word. This is a
common issue in the field of SGG, as the same predicate can be used in different contexts. This
is why we believe that using a LLM is a good approach to classifying relations, however, it may
not be optimal. The triplet-level classification applied is still too general to disambiguate rare
and complex cases. For instance, we noticed that the triplet ⟨arm, on top of , man⟩ could even
be a part-whole relation or topological relation, depending on the visual features. To solve
this issue, future work should consider annotating the relation triplets per image and training a
classifier based on the union of the visual features and the triplet embedding.

The effect of selecting a subset of the original annotations and then splitting relations into
different categories led to sparse annotations per relation category. In fact, we observed that
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(a) (b)

Figure 3.8: Comparison of the confusion matrix for the Relations Classification task using BERT-
base (a) and GPT3.5 (b).

only a small percentage of images contained annotations from the 4 different categories at once.
To alleviate this issue, data augmentation was used to enlarge the number of annotated relations
between existing object pairs.

3.4.4 Data Augmentation

Data Augmentation in SGG aims at re-labeling missed true annotation on the training set to
improve performance on the test set. We leveraged the external data-transfer method proposed
in [95]. This approach aims at re-labeling missed annotations by ranking new predictions of an
SGG model on the set of overlapping bounding boxes. The hint here is that overlapping object
regions have a higher probability of forming a compositional relation than non-overlapping ones.
Considering U as the set of unannotated relations where U = P ∪ N , with P as the set of
missed true positives and N true negatives, the external transfer T is defined as, for every
triplet (s, θ, o) ∈ U :

T (s, θ, o) = {p|(p ∈ R) ∧ (β(cs, p, co)⟩0) ∧ (IoU(bs, bo)⟩0)} (3.7)

with R being the set of possible predicates between (s, o) and the IoU of b bounding boxes. β

denotes the set of existing relations in the original dataset. This new set of T possible relations
is then ranked by confidence and the top predicate θ is selected, following Zhang et al. [95].
As it is, this method cannot discover any zero-shot triplet but can still relabel a consequent
amount of missed true positive annotations. We display the complete algorithm in Algorithm 1.
This algorithm takes as input ground truth pairs and predicate labels as well as predicted
pairs and labels. It also takes as input triplet frequencies and predicate frequencies. The triplet
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frequencies compute the number of times a triplet appears in the dataset, while the predicate
frequencies compute the number of times a predicate appears in the dataset, from the overall
number of triplets. By using both quantities we can compute the attraction factor attr_score

which corresponds to the ratio of the triplet frequency over the predicate frequency, following
Zhang et al. [95]. This factor is used to avoid transferring new predicates which are most likely
to be annotation noise (i.e. low frequency in the dataset). The algorithm then selects the most
relevant label from the confusion labels by ranking them with the attraction factor.

Algorithm 1 External Transfer for Data Augmentation
1: Inputs:
2: Training images (train_imgs)
3: Ground truth annotations (gt_rels)
4: Ground truth pairs with no predicate (pairs_no_rel)
5: Triplet frequencies (trip_freq)
6: Predicate frequencies (pred_freq)
7: Output: Updated relationship data (out_data)
8: for each img in train_imgs do
9: pred_pairs, pred_labels = model(img)

10: for each pair in pairs_no_rel[img] do
11: pair_idx← IoU(pair, pred_pairs)
12: pred_dist← pred_labels[pair_idx]
13: if argmax(pd_dist) ̸= background then
14: sorted_dist← argsort(pd_dist)
15: bg_index← first_similar_index(sorted_dist, background)
16: confusion_labels← sorted_dist[: bg_index]
17: attr_scores← ∅
18: for each i, c_label in confusion_labels do
19: attr_scores[i]← trip_freq[pair, c_label]/pred_freq[c_label]
20: end for
21: sorted_labels← sort(confusion_labels, attr_scores)
22: out_data[pair]← sorted_labels[0]
23: end if
24: end for
25: end for

Similar to the base dataset Visual Genome, the predicate distribution of our IndoorVG
dataset is long-tailed with an Imbalance Degree of 28.71 and a log-likelihood ratio of 2.87. For
instance, the class "on" solely counts for more than 41% of the annotated samples. This is a
common issue in SGG datasets and is known to hinder the learning of SGG models. To address
this issue, we propose to use the internal transfer method of Zhang et al. [95] to re-label existing
annotations for more fine-grained predicates. The method goes as follows: for every ground
truth annotated triplet, we select the new predicate from the top predictions that possesses the
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highest attraction factor to replace the original predicate. The idea here is that if the attraction
factor of the new predicate is higher than the ground truth one, then it is more likely to belong
to the tail of the distribution. Using this method, a relation such as ⟨hand, of, man⟩ could
be replaced by ⟨hand, belongingto, man⟩ which will help the model to learn more fine-grained
relations. However, in their original implementation, Zhang et al. did not take into account
relation categories and only focused on the predicate label, which could lead to the selection
of wrong annotations. For instance, given the ground truth triplet ⟨arm, next to, man⟩ a more
fine-grained predicate ⟨arm, belonging to, man⟩ could be selected by their method. Nonetheless,
in this example, the meaning conveyed by the new relation would be different (a part-whole
category) from the original one (a topological category) and most likely to be a false positive.
A better option that will take into account the relation category here could be for instance
⟨arm, in front of, man⟩. A solution for this issue would be to simply not allow transfer between
different relation categories. By a closer look, we observe that some relation categories can
encompass others. For instance, the intended meaning of functional relations often indicate a
topological proximity between subject and object. We can thus allow transfer between these two
categories. However, we should not allow transfer between part-whole and functional categories
for instance as a part-whole relation can not convey a functional meaning. Similarly, as we
have seen before with the ⟨keyboard, on, laptop⟩ example, we should also allow transfer between
topological and part-whole categories. We summarize the different new transfer rules based on
relation categories dependence below:

• functional → functional, topological

• topological → topological, functional, part-whole

• part-whole → part-whole

• attributive → attributive

Given the introduced new transfer rules, we redefine the internal transfer method in Algo-
rithm 2. This algorithm is similar to external transfer except that we loop over every ground
truth pair that already has a predicate. We introduce the categories axioms such that the trans-
fer to a more fine-grained predicate is only possible if the corresponding axiom is respected. It
is important to notice here that in contrast to Zhang et al. [95], we authorize the transfer of all
predicates. In their work, Zhang et al. do not transfer the top 30% most frequent predicates,
even if their attraction factor is high. We believe that this is not necessary as the attraction
factor already takes into account the frequency of the predicate in the dataset, also the propor-
tion of 30% is arbitrary and could be different for other datasets (authors used VG150 in their
work). Finally, in their work, Zhang et al. rank all possible transferred predicate labels by their
attraction factor and then only transfer the top 70% of them. Again this proportion is arbitrary
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and seems to improve the performance of models slightly compared to transferring all predicates.
We believe that this is not necessary and that transferring all predicates is more beneficial in
our case because we are working with a smaller dataset than VG150 and the number of possible
transfers is already low.

Algorithm 2 Internal Transfer for Data Refinement
1: Inputs:
2: Training images (train_imgs)
3: Ground truth labels (gt_label)
4: Ground truth pairs (pairs_rel)
5: Triplet frequencies (trip_freq)
6: Predicate frequencies (pred_freq)
7: Triplet categories (triplet_cat)
8: Output: Updated relationship data (out_data)
9: for each img in train_imgs do

10: pred_pairs, pred_labels = model(img)
11: for each pair in pairs_rel[img] do
12: pair_idx← IoU(pair, pred_pairs)
13: pred_dist← pred_labels[pair_idx]
14: if argmax(pd_dist) ̸= gt_label[pair] then
15: sorted_dist← argsort(pd_dist)
16: gt_label_index← first_similar_index(sorted_dist, gt_label[pair])
17: confusion_labels← sorted_dist[: gt_label_index]
18: attr_scores← ∅
19: for each i, c_label in confusion_labels do
20: attr_scores[i]← trip_freq[pair, c_label]/pred_freq[c_label]
21: end for
22: sorted_labels← sort(confusion_labels, attr_scores)
23: gt_cat← triplet_cat[pair, gt_label[pair]]
24: for each c_label in sorted_labels do
25: c_cat← triplet_cat[pair, c_label]
26: if c_cat ∈ allowed_transfers(c_cat, gt_cat) then
27: out_data[pair]← c_label
28: Break
29: end if
30: end for
31: end if
32: end for
33: end for

To evaluate our new data augmentation method, we ran experiments on IndoorVG with
different SGG models. We chose the Transformers [19] and PE-NET [49] as a baseline. We first
trained both models using the full IndoorVG dataset for 20 epochs with batch size 8 on one RTX
A6000 GPU. We used the same hyperparameters and official implementation by the authors.
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Models Transfer Int. rels. Ext. rels. F1@20/50/100 Improv.

Transformers [19]
None - - 12.79/16.89/19.00 -

No Cat. 4,619 464 13.28/17.14/20.22 ↑ 4.02%
With Cat. 4,485 464 13.21/17.40/20.49 ↑ 4.97%

PE-NET [49]
None - - 12.23/15.89/18.24 -

No Cat. 8,167 12,980 13.57/17.07/19.68 ↑ 8.54%
With Cat. 6,534 12,980 14.86/19.18/21.58 ↑ 19.97%

Table 3.8: Results of our new method for internal transfer on IndoorVG with different SGG
models. Improv. is the relative improvement for the average of F1@20/50/100 for each method
against the baseline with no augmentation (Transfer = None).

Then, we ran the two-step data augmentation on the training set of IndoorVG and used the
unaltered test set for validation to create new data splits. Finally, we retrained each model for
10 epochs using the augmented training split. It is worth noticing here that re-training each
model on the augmented training set generated by the other models is possible, however, to save
time and training resources we focus on re-training each model on the augmented training set
generated by the same model. In Table 3.8 we compare the performance of models trained on the
dataset with normal internal transfer and our new method based on transfer rules with relations
categories. Metrics used are the F1@K [95] at 20, 50, and 100 which correspond to the harmonic
average of Recall@K and meanRecall@K for predicate classes. We used the same externally
transferred data for all models to fairly compare the internal transfer only. The number of internal
transferred relations drop by a quarter when introducing our transfer rules, from 8,167 to 6,534
for PE-NET and from 4,619 to 4,485 for Transformers. 12,980 new relations are added with
external transfer using PE-NET, whereas this number drops to only 464 with Transformers. We
can see that our new method improves the performance over the baseline by 4.97% and 19.97%
for each model, where the improvement is only 4.02% and 8.54% with the previous method.
This shows that SGG models are sensitive to the quality of the data and that our new method
is effective in improving the performance of SGG models even with fewer relations transferred.
Performance improvements are poor with the Transformers model because of the low number
of relations transferred. We believe this comes from the fact that the Transformers model is
overfitting a little to the data and will weigh the background class heavily in the predictions,
making it difficult to obtain new candidates for internal transfer. Figure 3.9 represents the
predicate distribution shift before and after internal and external transfer with the PE-NET
model. We see clearly in this image that the distribution of predicates is more balanced after
the transfer. We can see that the number of relations for the predicate "on" has decreased by
12% for instance. This more balanced distribution surely contributes to the improvement of the
SGG models to detect more fine-grained relations. We decided to use the data split generated
by the PE-NET model for the rest of the experiments as it is the largest one and has the best
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(a) Distribution of predicates in IndoorVG after
class selection and refinement.

(b) Distribution of predicates in IndoorVG after
transfer with the PE-NET model.

Figure 3.9: Comparative distribution of predicates in IndoorVG. For clarity, we only display the
25 most frequent predicates.

performance.

3.4.5 Comparison with Other Datasets

The final split of our IndoorVG dataset after data augmentation contains 112,804 annotations
distributed over 14,733 images. Analytics of the dataset are available in Section A.3. It is inter-
esting to compare this data split with other datasets that have been presented over the years
for the task of SGG. In the Figure 3.10 we display an example of the difference between an-
notations in the original data and the IndoorVG dataset. Specifically, the original annotations
from Visual Genome (Figure 3.10b) are noisy and contain a lot of useless information (such as
⟨man, has no, hair⟩). Regarding VG150 (Figure 3.10c), we see here a big problem with the data
split, because classes have been chosen on a large set of different image contexts, the graphs in
this split are generally very sparse and not representative of the image gist at all. By focusing
on a specific context (indoor homes) and by selecting highly connected classes we can extract
a much better representation, see Figure 3.10d. Finally, we can see that the annotations are
more detailed and fine-grained in the IndoorVG dataset after the internal and external transfer,
see Figure 3.10e. This shows that our method is effective in improving the quality of the data
which did improve the performance of SGG models, as seen previously. This last point also in-
terrogates the usage of the VG150 dataset as a benchmark for SGG models. Indeed, the VG150
dataset rarely represents comprehensive graphs about a scene and is more a collection of indi-
vidual relations between objects, with a low connectivity. Issues arise because SGG models are
designed to specifically model a graph structure and not to predict individual relations. This is
why we believe that smaller but more qualitative data splits such as IndoorVG are more suited
to benchmark models for the task of SGG.
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(a) Original image with boxes (b) Original Visual Genome

(c) VG150 (d) IndoorVG (e) IndoorVG with transfer

Figure 3.10: Comparison between the annotations from the original data and our IndoorVG
dataset, with and without transfer. Colors indicate the functional, part-whole, topological and
attributive categories, respectively.

Dataset |E| |H| d̄(V ) D Images Obj. Pred.
VG80K 19.03 3.43 2.35 0.34 104,832 53,304 29,086
VG150 6.98 1.93 2.02 0.29 89,168 150 50

IndoorVG 6.87 2.31 1.95 0.28 14,733 84 37
IndoorVG † 8.18 2.21 2.18 0.27 14,733 84 37

Table 3.9: Comparison of connectivity and number of images in the different datasets. †denotes
the dataset after internal and external transfer with PE-NET.
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Table 3.9 compares the connectivity of IndoorVG and VG150. We see a net improvement
in both the average degree of nodes d̄(V ) and overall graph size |E| in IndoorVG compared
to VG150. The average number of subgraphs |H| also indicates a broader coverage of the
image content with more different regions connected. We also computed the graph density
D = |E||V |(|V | − 1) which is the ratio of the number of edges over the number of possible
edges in the graph. We see that the density of IndoorVG is lower than VG150, which is expected
as the number of bounding boxes annotated per image is higher in IndoorVG because object
classes are frequently present together (indoor context). Compared to all the data splits based on
VG that have been proposed (see Table 3.1), IndoorVG is one of the most connected ones while
at the same time being the only one to have semi-automatically curated object and predicate
classes. This last point ensures that the dataset is more qualitative and easier to learn from as
no classes are intersecting.

3.5 Concluding Remarks

In this chapter, we explored data biases in current SGG datasets, especially the Visual Genome
dataset. We proposed a set of methods to alleviate these biases and improve the quality of the
data. We first introduced a method to reduce the number of irrelevant relations using a new
taxonomy based on the intended meaning of relations. Our findings showed that the current
benchmark for SGG, VG150, is biased into invariant relations which hindered the performance
of SGG models. In a new set of experiments, we demonstrated that SGG models are sensitive
to motifs in the data (i.e. connected subregions of the image). By selecting classes based on con-
nectivity rather than overall frequency, motifs are more present and the performance of models
increases. Finally, we presented the IndoorVG dataset, a new dataset for the task of SGG in the
domestic context. We first introduced a method to cluster indoor scenes from the Visual Genome
dataset using sentence embeddings to extract a set of visually related images. We proposed to
add to every annotation on this set of images an additional label representing one of the four
categories: part-whole, functional, topological, or attributive. To do so, we used a pre-trained LLM
to classify relations by categories in a few-shot manner. We then used data augmentation to en-
large the number of annotated relations between existing object pairs. We improved the original
data augmentation method by limiting commonsense violations using our introduced relations
categories. This approach has been thoroughly tested by running experiments on IndoorVG with
different SGG models which validates our findings with improved overall performance.

This work is a step towards building more qualitative and representative datasets for the task
of SGG, targeted for real-world applications domains. Our findings investigate the current usage
of the VG150 dataset as a benchmark for SGG models. This dataset is highly biased and we
demonstrated that smaller but more qualitative datasets can be more suited to benchmark mod-
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els for the task. In fact, a data split from a defined model will encompass more inter-dependent
relations which will be harder to predict than invariant relations that span over different contexts.
By using such an approach, we can differentiate models that can learn complex interdependen-
cies to form the global scene graph rather than only focusing on predicting invariant relations.
Our new internal transfer method for data augmentation also shows the potential of using rela-
tions categories to filter incoherent or wrong predictions and improve the performance of SGG
models. This last point could spark new interests at the crossroads of Knowledge Representation
and Machine Learning, where knowledge priors could be used to improve the performance of
models in real-world applications [111].

Constructing the IndoorVG dataset was a necessary step to leverage SGG in domestic service
robotics. As a new step forward, we employed ourselves to use this dataset to train a model for
the task of SGG. However, as we will see, SGG models are not tailored for out-of-the-box use
in real-world applications. The inference process of these models is noisy and results in a high
number of useless relations that need to be post-processed before being fed to a downstream
module for reasoning. In the next chapter, we will present our work on post-processing the
output of SGG models by introducing the notion of Informativeness of relations and how we
can use it to filter noisy relations generated by an SGG model.
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Chapter 4

MINING INFORMATIVENESS IN SCENE

GRAPHS

Information: the negative reciprocal
value of probability.

Claude Shannon

Part of this chapter was published in the
"Graph-based Representations for Pattern
Recognition: New Results and Challenges"
special issue of the Pattern Recognition Let-
ters journal in 2025 [112].

As described in the previous chapter, SGG datasets have many biases that hinder the perfor-
mance of models in the task. Unfortunately, the models and especially the inference method of
SGG models also possess biases. During inference, an SGG model typically computes relations
between all pairs, giving a total number of n ∗ (n− 1) predictions for n objects. Aside from the
computational costs, this process generates a considerable amount of noise, as the main part of
generated relations are either false positives or uninformative triplets (such as ⟨man, has, head⟩).
When conducting inference on out-of-distribution images, the process of selecting a reasonable
number of relations to construct the graph becomes challenging, especially when dealing with
a high number of detected objects. If we want to use a SGG model as a backbone for reason-
ing and planning, we need to ensure that predictions are as informative as possible and, more
importantly, that a minimum amount of noise is present in the graph. Here we define noise as
valid but useless relations.

In the current paradigm of SGG, relations are predicted and then ranked given the confidence
of the model. This process is not optimal, as the relations with the highest confidence values
are not necessarily the most informative ones. In practice, we experienced the opposite effect
where relations deemed trivial (such as ⟨person, has, hand⟩) are more likely to be predicted
first by the model, as we have seen in Section 3.2. We display an example of this bias in
Figure 4.1 where we can see that relations deemed “very informative” (e.g. ⟨person, on, couch⟩,
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1. 5_window behind 9_hand
2. 6_head of 3_person
3. 3_person wearing 7_shirt

...
14. 3_person on 4_couch

...
27. 3_person reading 1_book

Figure 4.1: Example of relation predictions of the Motifs [38] model for an image from the VG150
dataset.

⟨person, reading, book⟩) are still predicted by the model, but with low confidence and then a
low ranking. When evaluating the performance of the model the ranking is not very important
because current metrics measure the correctness of relations on a large sample of the predictions
(typically between 20 and 100 samples). However, for some downstream tasks [14], [36], the
ranking of relations is of utmost importance. We want to be able to easily select a very low
amount of relations (for instance 5 to 10) and be sure that they are correctly representing the
scene, both by diversity and informativeness. To do so, we need to define a novel metric that
can measure the informativeness of a relation in a scene graph. This metric should be able to
measure the amount of information that a relation brings to the understanding of the scene,
both by itself and to other relations in the graph.

From a human standpoint, it is fairly simple to evaluate the quality of a graph by the
amount of information that each relation provides with respect to (1) an image region and
(2) the overall context of the scene, provided by associated relations. We give an example of
this problem in Figure 4.2. Here we can see two graphs (A) and (B) that describe the left
image. Those two graphs possess the same number of relations and approximately the same
connectivity, however, we can see easily that graph (A) conveys more information about the
scene than graph (B) as it contains more informative relations. Here we define informativeness
as the quantity of information necessary to reconstruct the scene solely from the graph input. We
state that a relation is highly informative if it helps significantly to describe the scene, following
human judgment. In the example here, the relation ⟨laptop, on, woman⟩ is more informative
than ⟨face, on, woman⟩ as a human agent is more likely to select the former than the latter
to describe this scene where both relations hold. Differentiate between informative and not
informative relations is for now outside the scope of SGG models. Indeed, current SGG models
are trained with the only learning objective of generating correct relations between entities and
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(a)

(b)

Figure 4.2: Example of two different scene graphs describing the same image.

not maximizing the overall information content of the graph. Thus, they tend to predict the
most easy to guess relations, which are not necessarily the more informative ones in the current
scene, as we saw previously with irrelevant relations (see Chapter 3). This is not a problem for
the task in itself but is a major challenge for downstream tasks that rely on the information
contained in the scene graph for planning or reasoning. Recent approaches [14], [25] highlight
this issue for at least two downstream tasks, namely Visual Question Answering and Image
Captioning. We strongly believe that this problem is not limited to those two tasks and that
the usage of SGG in robotics could also benefit from more informative predictions. In fact,
to support effective planning and reasoning algorithms, knowledge representations need to be
comprehensive as possible [113].

Automatically measuring the informativeness of a relation in a scene graph is a challenging
task. In Section 4.1 we review the current metrics used in SGG, their advantages and flows
and highlight the challenges to measure informativeness of relations in scene graphs. Measuring
informativeness is not straightforward because a relation is not only informative by itself but
also for other relations in the graph. We define the independent information of a relation as its
intrinsic information value and the information it brings to other relations in the graph by its
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connectedness as its extrinsic information value. A correct definition of informativeness should
then encompass both the intrinsic information that the relation brings to the understanding of
the scene and its extrinsic importance on the graph structure. Regarding intrinsic information,
due to the annotation biases and noise contained in scene graph datasets, it is difficult to measure
the informativeness of a relation solely based on its frequency in the dataset. We then propose
to use external data to measure intrinsic information based on scene descriptions in Section 4.2.
On the other hand, extrinsic information given by a relation can be measured by looking at the
topology of the graph, see Section 4.3. We then propose to use the intrinsic information to assert
the performance of SGG models in producing informative graphs with the introduction of the
InformativeRecall@K metric Section 4.4. By leveraging the intrinsic and extrinsic information
measures, we can help SGG models to generate more informative scene graphs during inference,
see Section 4.5. To prove this last point, we evaluated our approach in a set of three different
downstream tasks and show that our method can improve the performance of SGG models in
real-world settings, see Section 4.6.

4.1 Measures of Scene Graph Quality

SGG models traditionally output the top predicate probability p ∈ P for each possible pair of
n objects in the image, such as |P | = n(n− 1). Considering that the object detector can detect
more than a hundred objects in an image, the number of possible relations to predict can be very
high in comparison to the number of ground truth annotated relations. This is mainly because
a lot of true positive annotations are missing from SGG datasets, as the task of annotating all
n(n−1) relations will be extremely intensive. To address this issue, the Recall@K (R@K) metric
was introduced in the SGG literature [77] to evaluate the quality of the predicted relations. This
metric computes the number of times a ground truth relation is detected in the top K predicted
relations ranked by confidence, as follows:

Recall@K = 1
N

N∑
i=1

|P0→K(i) ∩GT(i)|
|GT(i)| , (4.1)

where P0→K(i) is the set of predicted relations for the i-th object pair in the top K relations, and
GT(i) is the set of ground truth relations for the same object pair, matched by the IoU (IoU)
of the bounding boxes (threshold >= 0.5) [77]. However, due to the heavy long-tail distribution
of predicates in SGG datasets, it is fairly simple to obtain a high Recall@K by only predicting
a handful of relations that are very frequent in the dataset [37]. This is why the meanRecall@K
(mR@K) metric has been proposed [37], [114], which averages the recall of the top K relations
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for each predicate class individually:

meanRecall@K = 1
|P |

∑
p∈P

Recall@K(p) (4.2)

This way, the performance of the model on the least frequent classes is given the same importance
as the performance on the most frequent classes, which is more representative of the overall
quality of the model. These two metrics are usually computed for values of K ∈ [20, 50, 100].

To easily measure the trade-off between Recall@K and meanRecall@K, the F1@K (or simply
F@K) metric has been recently proposed [95]. F1@K is the harmonic average between Recall@K
and meanRecall@K, as follows:

F1@K = 2× R@K×mR@K
R@K + mR@K , (4.3)

where R@K and mR@K are the Recall@K and meanRecall@K metrics, respectively. This metric
is particularly useful to evaluate the quality of a model for real-world applications where the
trade-off between the performance on the most frequent classes (R@K) and a balance evaluation
of all classes (mR@K) is important.

Recall@K, meanRecall@K, and F1@K are the standard metrics in the SGG literature to
evaluate the quality of a model. These metrics are hard-matching metrics at the relation level,
neglecting the graph structure in the evaluation. To tackle this issue, Tang et al. [19] proposed
to evaluate the quality of a model on the downstream task of Sentence-to-Graph Retrieval
(S2GR). This task uses textual descriptions of scenes (i.e. image captions) to extract Textual
Scene Graphs (TSG) and match them with the generated Visual Scene Graphs (VSG) for the
same image. The objective is, given a detected VSG to be able to retrieve from a gallery of TSG
the correct one which corresponds to the same image. To match the vocabulary of the VSG and
TSG, the authors used a Bilinear Attention Network [115] to encode both graphs in the same
embedding space. In the original implementation, a gallery size of 1,000 and 5,000 images for
retrieval is used. The performance is measured using Recall@K and the median ranking index
of retrieved results (Med). This approach is indeed interesting, however, it does not solve all the
challenges introduced above. First, the process does not evaluate the quality of the generated
graphs directly but rather the performance of a trained model (the Bilinear Attention Network)
with the generated graphs as inputs, which can introduce further biases. Second, the performance
of the model is evaluated on a small gallery of TSG for computational reasons, which may not be
efficient given the sparsity of different contexts in the dataset. For instance, a graph representing
a scene that occurs a lot will be harder to correctly match as a lot of images can be very similar,
on the other hand, a graph representing a scene that occurs only once will be easier to match as
it is unique. To our knowledge, this approach has not been used in the SGG literature outside
the original paper. In the following, we take as inspiration the approach employed by Tang et al.
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with the TSG extracted from captions to provide a new method of measuring the quality of scene
graphs. In the next sections, we present a new method which is simpler and more efficient than
the S2GR task, and can be used to evaluate the quality of a model directly. By contrast to the
S2GR task, our method does not need any further training or fine-tuning, which reduces biases
and computational costs. Our method also does not require a large gallery of TSG for evaluation,
which makes it more efficient for large datasets. This method can also be used to evaluate the
quality of generated graphs on out-of-distribution images, further boosting the performance of
SGG models with no re-training. This method is based on intrinsic and extrinsic information
of relations in scene graphs.

4.2 Intrinsic Information

As introduced before, the informativeness of scene graphs lies in the way we humans choose a
relation instead of another when asked to describe major elements in an image. Based on this
definition, a coherent choice would be to compare relations contained in human-annotated image
captions to relations contained in scene graphs. The hint here is that captions can be seen as
representations of the gist [33] which contains the "true meaning" of the scene. By measuring the
alignment of each relation in the graph with relations contained in the corresponding caption,
we can measure the semantic importance of each relation in a dataset. This defines a practical
implementation of the intrinsic information value of a relation in a scene graph. The following
section describes our implementation for measuring this information value based on textual
similarity between scene graphs and image captions. In the following, we will use the VG150
dataset for evaluation to demonstrate that our method can be applied to a large dataset with
diverse contexts, however, our findings are directly applicable to the IndoorVG dataset or any
other SGG dataset.

4.2.1 Textual Scene Graphs

The Visual Genome (VG) dataset [8] (and by extension VG150 and IndoorVG) does not contain
image description annotations. However, part of the images in VG is also present in the COCO
dataset [45], which contains 5 image captions per image. Only half of the 108,077 images of VG
intersect with COCO, which leaves us with 56,575 images with no captions. To overcome this
issue, we used the pre-trained BLIP-2 Vision-to-Language model [116] to generate textual de-
scriptions for the remaining images in a zero-shot manner. We used the BLIP-2 ViT-g OPT2.7B

model [116] fine-tuned on the COCO-captions dataset, which ensures consistent data across
the part of the new annotations which has been manually annotated and automatically gener-
ated. We generated 5 captions for each remaining image to fit the format of the original COCO
captions. To ensure a diversity of generation, we used different prompt styles and temperature
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settings for each caption, more details in the Section B.1. Figure 4.3 shows an example of 5
generated descriptions for an image from the Visual Genome dataset. We can see that generated
captions are very reasonable but also diverse, which is a good sign for matching relations con-
tained in the scene graph with those contained in the textual descriptions. Due to the different
nature of free-form texts and graphs, direct matching is impossible. Inspired by Tang et al. [19],
we employed ourselves to convert the captions into TSGs to be able to compare them with VSGs
from Visual Genome.

1. A man sits at a desk surrounded by multiple computers

2. A guy sitting at a desk in a room with a computer

3. A room with two computers and a man in a jacket

4. A man working on two computer screens in a large office

5. A man sitting at a desk with two computers on it

Figure 4.3: Example of 5 generated captions for an image from the VG150 dataset.

Extracting relations from human-made image captions is not a straightforward process. It
encompasses various challenges of Natural Language Processing (NLP) such as quantifier scop-
ing, pronoun resolution, or dependency parsing. The method used by Tang et al. [19] for the
task of Sentence-to-Graph Retrieval is based on the Stanford NLP Parser [117] which has been
criticized recently for its lack of robustness [118], [119]. The Stanford NLP Parser is purely based
on heuristic rules, which are not designed to handle complex sentence. An example can be a
sentence with multiple quantifiers such as "three men reading books" [118], which will be parsed
distributively resulting in three relations with the same book, which is not realistic. To overcome
this issue, we propose to use a pre-trained language model to generate TSGs from the captions.
We used the Flan-T5-large model trained on the FACTUAL dataset [118] which has better
accuracy and can handle more complex sentences than the Stanford NLP Parser. We extract
one graph for each of the 5 captions which are then merged together by removing duplicates to
form the final TSG. Furthermore, we added a step of filtering to remove relations that contains
a quantifier (such as ⟨person, are, three⟩) or adjectives (such as ⟨living room, is, large⟩) using
the Spacy [120] dependency parser to keep only relations of the same type as the ones in the
VSGs. We display an example of a TSG generated from the captions in Figure 4.4. In this image,
we can observe that the node man has been decoupled with the node person, which is likely
due to the change of vocabulary between captions number 1,3,4,5 and caption 2, see Figure 4.3.
Similarly, the object computer mentioned in caption 2 cannot be associated with one of the
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computers mentioned in the other captions, resulting in two different nodes in the graph. These
issues are common in generated TSG and are due to the lack of grounding of the relations to
the image because the model is text-based only. We argue that this is not a major problem for
our approach because relations that are similar in meaning (such as ⟨room, with, computers⟩
and ⟨room, with, computer⟩ in this example) should be matched with the same unique relation
in the VSG if it exists.

Figure 4.4: Example of TSG extracted from the set of captions in Figure 4.3 using the Flan-T5-
large model [118] and our custom post-process function.

4.2.2 Semantic Matching

To perform the matching between triplets in the TSG and VSG based on their inherent mean-
ing, a direct comparison cannot be applied because of the distinct vocabularies and decou-
pled nodes [19]. In addition, we want to be able to count as a match inverse relation such as
⟨person, holds, phone⟩ and ⟨phone, held by, person⟩ which is a more difficult problem. To solve
the first problem, we propose to use word embeddings. However, a one-to-one matching of em-
beddings of the subject, predicate, and object would not solve the inverse relation problem, as the
order will still matter. To solve this issue, we propose to use sentence embeddings on the whole
⟨subject, predicate, object⟩ triplet to match the TSG and VSG relations. Sentence embeddings
trained for Semantic Textual Similarity (STS), can easily pair relations with different subjects
and objects but similar meanings such as ⟨person, holds, phone⟩ and ⟨phone, held by, person⟩.
However, more complex cases such as ⟨cup, on top of, table⟩ and ⟨table, below, cup⟩ are still chal-
lenging to match. This type of pairing is related to the task of Natural Language Inference
(NLI) which aims to decide if a sentence entails, contradicts, or is neutral with respect to an-
other sentence. In our example here with the cup and the table, the first relation entails the
second one, which is different from the similarity depicted with our first example with the phone
(which is the kind of similarity measured by STS). To solve this problem, we propose to use
pre-trained sentence embedding models specifically fine-tuned for the task of NLI and STS [99].
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(a) F1-score versus Accuracy for different models
on our collected dataset (distance metric = best co-
sine).

(b) Pearson versus Spearman correlation for differ-
ent models on our collected dataset (distance metric
= best cosine).

Figure 4.5: Measuring Semantic Similarity between TSG and VSG relations using different
sentence embedding models [99].

To benchmark existing models, we introduce the task of Visual Relation Semantic Similarity
which aims at measuring both the direct similarity and entailment in relations contained in
visual scenes. As an evaluation dataset for this task, we manually annotated 4,000 triplet pairs
randomly sampled from the IndoorVG annotations with corresponding TSG annotations ob-
tained from COCO captions. For every pair, we annotated the similarity as a binary value (0
for no similarity, 1 for similarity). Here, the value 1 can signify either a direct similarity or an
entailment, as explained before. We tested a range of 13 different sentence embedding models,
fine-tuned on either NLI datasets (SNLI and MultiNLI [121]) or STS datasets (STS-Benchmark
[122]). We mainly benchmarked BERT [110] and ROBERTA [123] variants, as well as some more
recent approaches targeting sentence similarity tasks [124], [125]. Furthermore, we also tested
the CLIP text encoder [126] for the task. The hint here is that CLIP has been trained on a large
dataset of images-text pairs, and should be able to capture the semantics of relations in visual
scenes better than models trained on text-only datasets.

We evaluate the task of Visual Relation Semantic Similarity by computing the cosine simi-
larity between every pair of relations and assign the prediction 1 for a similarity obtained above
a certain α threshold, 0 otherwise. We then compute the precision, recall and F1-score of the pre-
dictions with respect to the ground truth annotations. To pick the best α threshold fairly, we ran
experiments for all models with ranging values from 0.1 to 0.9, with a step of 0.05 and selected
the best threshold for each model based on the F1-score. In Figure 4.5 we display the results of
our experiments. Traditionally, the performance of sentence embeddings is measured using the
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Spearman and Pearson correlation factor with ground truth annotation (human evaluation) as
well as standard accuracy. In addition, we display the F1-score which is a more robust metric in
our case as we also do not want to mislabel any false positive. We can see that the models fine-
tuned on STS datasets perform better than the models fine-tuned on NLI datasets. However,
models fine-tuned on both NLI and STS perform better than models fine-tuned on STS only.
This is likely because NLI models are trained to capture entailment but also contradiction and
neutrality, which are not present in our dataset. We can see that the CLIP text encoder performs
better than most specialized models, which shows the versatility and robustness of the model
to capture the semantics of relations in visual scenes. Finally, we observe overall supremacy of
newer models trained on a large set of tasks (such as all-mpnet-base-v2 or all-minilm-L12-v2)
which are usually trained on a set of 32 or more datasets containing NLI and STS tasks 1. We
can see that the best model is all-mpnet-base-v2 (best F1-score obtained with α = 0.77) which
is a variant of the MPNet model [124] fine-tuned on a large set of tasks. This model is likely
better at capturing the semantics of relations in visual scenes because it has been trained on a
more diverse set of tasks. We will use this model with the α = 0.77 in the following to measure
the intrinsic information value of relations in scene graphs.

4.2.3 Relation Ranking

To find the overall similarity of each relation across the IndoorVG dataset, we propose to use
the cosine similarity distance between sentence embeddings of the VSG and TSG computed by
MPNet. For every image, we compute the cosine distance between embeddings of every VSG re-
lation with all TSG relations and keep only the top-1 distance as a match. By averaging cosine
distances across images for every VSG triplet, we built a ranking of the likelihood of a rela-
tion in a generated VSG to be present in the corresponding caption, which in fact corresponds
to the likelihood of belonging to the image gist. This gave us the intrinsic information value
of relation in Scene Graphs. Table 4.1 shows a few examples of relations ranked from highly
relevant (Top-5) to completely irrelevant (Bottom-5) using the intrinsic information value com-
puted on the Visual Genome images and averaged. We can see that the Top-5 describes mostly
spatial relations between what we can expect to be important elements of the scene, whereas
the Bottom-5 describes relations related to attributes of entities that are a priori commonsense
knowledge [66] (e.g. ⟨wheel, on, car⟩) or which seems to be very minor details of the scene (e.g.
⟨fork, behind, woman⟩). All top-5 relations have a cosine similarity score of 1 (exact matching
in every image they appear in) and all bottom-5 relations have a cosine similarity score of 0 (no
matching in any image they appear in). This can sometimes be misleading as some relations
only appear in a few images.

1For more information on the models or training data, please consult https://sbert.net/docs/sentence_
transformer/pretrained_models.html, accessed on the 17/08/2024.
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Top-5 Bottom-5
bowl on head wheel on car
woman in front of giraffe fork behind woman
umbrella above dog plant covered in plant
person on airplane leaf over bear
beach near mountain men watching person

Table 4.1: Top-5 and Bottom-5 relation after ranking all triplets in Visual Genome according to
our definition of intrinsic information value.

Figure 4.6: Distribution of relations based on their intrinsic information value and semantic
category.

For a relation represented as an edge e = ⟨s, p, o⟩ in a scene graph, we define the intrinsic
information value of the edge ζ(e) as a statistical prior between the reference graphs distribution
(
∑N

i=1 TSG) and the target distribution (
∑N

i=1 V SG), where N is the number of images in a
given dataset. Using cosine similarity as a distance metric, we have:

ζ(e) = 1
N

N∑
i=1

cosine_similarity(e ∈ TSGi, V SGi) (4.4)

After ranking relations based on intrinsic information value, it is interesting to look at
the types of relations deemed more informative than others, with the paradigm of relations
categories introduced in the previous chapter. We analyze the distribution of relations based on
their intrinsic information value and semantic type in Figure 4.6. First, we observe that the
distribution is not a normal distribution, with a significant number of outliers at 0 (no similarity
at all) and 1 (complete similarity for all samples). Regarding the distribution per category, we
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Figure 4.7: Distribution of relations based on their intrinsic information value and semantic
type as a violin plot, Med is the respective median value for each category.

can see that all categories are distributed all over the spectrum of intrinsic information values,
with a slight tendency for the Functional and Topological categories to have higher values than
the Attributive and Physical Part-whole categories. In the Figure 4.7 plot we can observe this
disparity more clearly. We see a significant difference in the distribution but also median and
mean values of the Topological and Functional categories compared to the Attributive and
Physical Part-whole categories. Specifically, the median values for the Functional and Topological
categories are 0.57 and 0.55 respectively, whereas the median values for the Attributive and
Physical Part-whole categories are 0.47 and 0.42 respectively, which is a relative gap of 20%
between the two groups.

To verify the statistical significance of these results, we performed a Kruskal-Wallis H test
[127] on the distribution of the intrinsic information value of relations based on their category.
Here we used the Kruskal-Wallis H test as the data was not normally distributed and the
sample sizes were different between each group. Our assumption is that the four categories are
not equally represented in the dataset, thus not a single distribution can be fitted to the data.
The Kruskal-Wallis H test showed that there was indeed a statistically significant difference
between informativeness score and relation categories with pvalue = 0.03, with pvalue < 0.05 for
significance. Then, we performed a post-hoc Tukey-Kramer test [128] to see which categories
were significantly different from each other. The results are shown in Table 4.2, with Lower and
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Pairs Mean Diff p-adj Lower Upper Reject H0
attribute functional 0.0981 0.0000 0.0883 0.1079 True
attribute part-whole 0.0066 0.4162 -0.0045 0.0178 False
attribute topological 0.0817 0.0000 0.0736 0.0899 True
functional part-whole -0.0914 0.0000 -0.1018 -0.0811 True
functional topological -0.0163 0.0000 -0.0234 -0.0093 True
part-whole topological 0.0751 0.0000 0.0663 0.0839 True

Table 4.2: Tuckey-Kramer test for the intrinsic information value of relations based on their
category.

Upper being the 95% confidence interval bounds. We can see that all categories are significantly
different from each other except for Attributive and Part-Whole, as the adjusted p-value (p-adj)
is above 0.05 for this particular case. This is consistent with the fact that the Attributive and
Part-Whole categories are very similar in semantics, as they both convey the belonging, more or
less strictly, of the object to the subject entity. We can also confirm these results by looking at
Figure 4.6 and Figure 4.7 where we can see that the Attribute and Part-Whole categories have
very similar distribution and mean values.

The conclusion from this study is that, when describing scenes, Topological and Functional
relations are the ones that convey the most information. However, Attribute and Part-Whole
relation types are not completely useless as they are still informative, with an average intrinsic
information value at 0.45 (again, here a value of 0 corresponds to no importance at all, which
means that the relation could be discarded without changing the representation of the "true
meaning" of the scene). It is also important to notice here that these numbers are computed
using intrinsic information only and do not take into account the extrinsic information value
of relations from their interplay in the graph structure. In real-world examples, taking this
information into account could lead to different results.

4.3 Extrinsic Information

At the graph level, gauging informativeness becomes inherently intricate. A relation that might
be considered "not informative" within a specific context can transition to being informative in
another scenario, particularly when other relations rely on it. Here we draw a specific example
given the relation ⟨man, has, hand⟩ in two different contexts:

man
has−−→ hand

has−−→ finger (4.5)

man
has−−→ hand

has−−→ book (4.6)
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While the structure of those two graphs is very similar, the information conveyed by the relation
⟨man, has, hand⟩ is very different. In the graph represented in Equation (4.5), the relation is
descriptive of the entity “man” and gives no contextual information whereas Equation (4.6) char-
acterizes a functional relation between the entity “man” and “book” that could be understood as
“man is holding book with hand”. Thus, we define the extrinsic information of a relation through
its importance in the graph structure with respect to other relation values. The key idea here
is that relations that, when removed, are likely to disrupt the flow of information in the graph
should be considered more informative than others. To measure the extrinsic information of a
relation, we then need to look at the topology of scene graphs and, specifically, edge importance
measures.

There exists multiple algorithms to measure the importance of an edge e in a graph, a simple
method could be to average the degree (i.e. number of connections) of the input node v1 and
output node v2 of the edge. This method is called the degree centrality. For a directed graph, we
can take into account the number of ingoing and outgoing edges from v1 and v2, respectively,
such that:

cD(e) = din(v1) + dout(v2)
2 (4.7)

The PageRank algorithm [129] can also rank the importance of nodes in a graph by their
respective connectivity. PageRank is defined as the probability of a random walker being at a
given node (or webpage in the initial implementation [130]) at a given time. The PageRank of
a node v is defined as follows:

PR(v) = 1− d

N
+ d

∑
u∈Bv

PR(u)
dout(u) , (4.8)

where d is the damping factor, typically set to 0.85, to model the probability that a user will
continue clicking on links (or the probability of moving from one node to another). The term N

represents the total number of nodes. The summation iterates over the set Bv, which consists of
all pages that have links (or edges) to page v, and P R(u)

dout(u) calculates the PageRank contribution
from a page u to page v, with dout(u) being the number of outgoing links from page u. PageRank
only computes values for nodes, to compute values for edges, we average the PageRank of the
input and output nodes.

The average degree and PageRank algorithm are satisfying ways of measuring the importance
of edges in a graph. However, none of them are specifically taking into account the connection
between highly connected subgraphs (i.e. motifs) which we believe is essential to measure the
importance of a relation in a scene graph. For a scene graph, motifs can be referred to as
communities in graph theory. A community is a set of nodes that are more connected to each
other than to the rest of the graph. Finding connections between communities is likely important
to extract key relations from the graph structure because if we remove a relation that connects
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two communities, we are likely to remove important contextual information about the scene. In
2002, Girvan and Newman [131] introduced the concept of edge betweenness centrality, which is
an extension of node betweenness centrality proposed by Freeman [132] to measure connectivity
between communities in a graph. The definition goes as follows: for each edge e ∈ E of a graph
G = (V, E), its edge betweenness is represented as the sum of all shortest paths σ(s, t|e) that
passes through e over all possible shortest paths σ(s, t), see Equation (4.9):

cB(e) =
∑

s,t∈V

σ(s, t|e)
σ(s, t) (4.9)

Thus, we propose to extend the definition of edge betweenness centrality to Scene Graphs as
follows: given a weighted graph G = (V, E, w), we define the extrinsic information of a relation
as the sum of all shortest paths that pass through the relation e over all possible paths in the
graph. To take into account the intrinsic information of the relation, noted Vi(e), we add a
distance value to every edge in the graph w(E) = 1 − Vi(e) such that the shortest path σ(s, t)
is computed as follows:

σ(s, t) = min
p∈P (s,t)

∑
e∈p

w(e) (4.10)

The shortest paths are computed using Dijkstra’s algorithm. Finally, values are normalized
by the maximum number of paths, i.e. 1

(n(n−1)) where n is the number of nodes in G. This
gives us, for every relation, its extrinsic information value ε(e), highlighting the information
flow of Scene Graphs. By combining intrinsic and extrinsic information, we define the overall
information score of a relation as follows:

τ(e) = ζ(e) + ε(e)
2 , (4.11)

which efficiently takes into account the trade-off between the intrinsic importance of relations
and their structural extrinsic importance in the graph.

We display an example image and the corresponding graphs in Figure 4.8. We compare
our approach with the baseline of intrinsic information value only, using average degree and
PageRank as edge importance measures. First, we can see that the relation ⟨bowl, on, head⟩
is indeed the most informative relation by intrinsic score (see Figure 4.8b) because it gives
contextual information about the action being performed, which is almost certain to appear
in the corresponding caption. We can also see that the important relation about the context
of the scene (e.g. ⟨woman, on, street⟩) is highly weighted (w > 0.5) and that other seman-
tically important relations, related to activities or spatial relations, are weighted even more
(e.g. ⟨woman, holding, bowl⟩, ⟨bowl, on, head⟩). Finally, the rest of the relations with lower
weights give more details about the scene but are not important to understand the image gist
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(e.g. ⟨woman, wearing, jacket⟩, ⟨woman, wearing, pant⟩). When we compare the baseline Fig-
ure 4.8b with the re-weighted graphs using the degree centrality Figure 4.8c, we observe that
non-informative relations such that ⟨woman, wearing, jacket⟩ have increased in weight, which is
not desirable. Regarding the PageRank centrality Figure 4.8d, we can observe that the relations
⟨woman, holding, bowl⟩ and ⟨woman, on, street⟩ have almost the same weight even though their
respective importance in the graph structure is very different, which is also not desirable. Fi-
nally, when we use the edge betweenness centrality for edge importance measure Figure 4.8e, we
can see that all relations are more fairly weighted. If we compare with the baseline Figure 4.8b,
we can see that the relation ⟨woman, holding, bowl⟩ is now much closer to the very informative
relations (e.g. ⟨bowl, on, head⟩ and ⟨banana, in, bowl⟩) and far from the other relations. This is
consistent with the fact that this relation is very important for the flow of information in the
graph and thus should be re-weighted accordingly.
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(a) Original image
(b) Baseline: Intrinsic Information
score ζ(e) only

(c) Informative score τ(e) with
ε(e) = Degree

(d) Informative score τ(e) with
ε(e) = PageRank

(e) Informative score τ(e) with
ε(e) = Betweenness

Figure 4.8: Comparison of different edge importance measures for the same image. The color of
edges gives the weight of the relative weight of the relation ∈ [0; 1] for better visualization.
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4.4 Informative Recall @ K

Algorithm 3 Informative Recall@K
1: Input: Predicted Scene Graph Gpred, TSG Gtext, α, K
2: Output: Informative Recall@K
3: IR@K = 0
4: for each ⟨s, p, o⟩ ∈ Gpred do
5: sum← 0
6: for each ⟨s′, p′, o′⟩ ∈ Gtext do
7: if cosine_similarity(⟨s, p, o⟩, ⟨s′, p′, o′⟩) ≥ α then
8: match_idx← index(⟨s, p, o⟩, Gpred)
9: sum← (K −match_idx)/K

10: break
11: end if
12: end for
13: end for
14: IR@K ← sum

|Gtext|
15: return IR@K

As we have seen in Section 4.1, the current metrics used in the SGG literature are not
sufficient to evaluate the quality of a model in real-world application settings. The Recall@K
and meanRecall@K do not take into account the graph structure and the semantic importance
of relations. To solve this problem, we define a new Informative metric, InformativeRecall@K
(IR@K), for the task of SGG, based on our definition of the intrinsic information value. This
metric computes the number of times a predicted relation is detected to be similar to one of
the corresponding TSG in the top K relations ranked by confidence. This metric differs from
Recall@K [37] used in SGG in three ways: (1) it compares the entire ⟨subject, predicate, object⟩
and not only the predicate, (2) it does not match predicted bounding boxes of relations as TSG
are not grounded to the scene, (3) it computes matches using the cosine similarity of language
embeddings (from the all-mpnet-base-v2 model) above an α threshold (α = 0.77) instead of
exact matching as the vocabulary of TSG and VSG classes is different. We used the Recall@k
settings for k ∈ [5, 10] as downstream tasks must have informative relations predicted with high
confidence, a description of the metric is given in Algorithm 3. Instead of solely counting the
number of matches, as done in Recall@K, we compute the sum of the rank of the match in the
top K predictions. This way, we give more importance to relations that are predicted in the top
predictions. We also normalize the sum by the number of relations in the TSG to have a value
between 0 and 1.

In the following, we compared the performance of different baseline SGG models using both
InformativeRecall@k (IR@k) and traditional Recall@K metrics. We evaluated the baseline mod-
els Motifs-TDE [38], VCTree-TDE [37] and Transformer [19] on the task of SGG (predicting
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Models R@20/50/100 IR@5/10/20/50
Motifs-TDE [38] 13.45/17.65/20.76 9.19/10.68/15.28/22.73

VCTree-TDE [37] 13.74/18.26/21.39 9.56/10.86/15.35/22.72
Transformer [19] 24.2/30.6/34.02 11.75/13.26/17.78/24.69

Table 4.3: Comparison between traditional Recall@K metric used in SGG and our newly intro-
duced IR@K for benchmarking models’ ability to generate informative relations.

object bounding boxes, labels, and relations) using the codebase provided in these references.
We compute the IR@k the same way as R@k from the original papers, except for key differences
introduced previously. Results are shown in Table 4.3 where we can see that the Transformer
model was the best one to predict informative relations with high confidence. However, there
is still room for improvement as the best model had only an average recall of 13.26 for IR@10.
IR@20 and IR@50 were also presented allowing a comparison with traditional Recall@K com-
puted on standard ground truth annotations. We observe a correlation between performance
in predicting accurate and informative relations. However, predicting informative relations was
shown to be more challenging than predicting accurate ones as the difference between the worst
and best model in R@K was more than 5 times that between the worst and best model in IR@K
(i.e. there is an 11% difference between R@20 of Motifs and Transformer but only a difference
of 2.5% between IR@20).

Using the IR@K metric to benchmark SGG models is a first step toward democratizing the
usage of SGG in downstream tasks. But we can push our approach further by introducing a
new selection process of relations based on intrinsic and extrinsic information score to further
boost the performance of those models. In fact, as we have seen before, SGG models typically
predict a very large amount of relations that are either false positives or uninformative triplets.
By using our intrinsic and extrinsic information score, we can re-rank prediction and filter out
uninformative triplets. In the next section, we will evaluate our approach first qualitatively and
then quantitatively on a set of downstream tasks relying on Scene Graph inputs.

4.5 Informative Inference

Measuring the informativeness of relations is a crucial step towards understanding the impor-
tance of relations in the context of the scene. However, our ultimate goal is to use this information
to improve the quality of SGG models. As we have seen before, one of the main drawbacks of
current SGG models is that they generate a large number of relations, most of which can be true
but uninformative. During inference in SGG, each relation is ranked with the following formula:

θrel = θobj ∗ θpred ∗ θsubj (4.12)
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With θpred being the confidence score of the predicate, given the ⟨subject, object⟩ pair, and
θobj , θsubj are the respective confidence score of the object detector given to each bounding
box. When doing inference, we typically select only high-confidence bounding boxes above an
α threshold (for instance α = 0.8) so the θobj , θsubj are usually very similar and thus negligible.
Because SGG datasets are biased over the most common relations, θpred is usually high for
common relations and low for uncommon relations, which does not necessarily correlate with the
informative score of the relation. This is why we propose to use the combination of the intrinsic
and extrinsic information value of relations τrel to re-rank the relations after the predicate
prediction stage as follows:

θrel = τrel ∗ θobj ∗ θpred ∗ θsubj (4.13)

Because τrel is the average of the intrinsic and extrinsic information value of the relation, we need
to compute the edge betweenness centrality of the entire graph to give a value to each relation.
This is computationally expensive for large graphs and is not optimal in the case of SGG because
the predicted graph is fully-connected (i.e. all nodes have a relation with all other nodes). To
solve this problem, we pre-select the top k relations ranked by θpred before computing the edge
betweenness centrality of the graph. Here we choose k = 100 to be consistent with previous
works [12], [37] which assume that relations above this threshold are mostly false-positive in
the computation of the Recall@K metric. We then compute the edge betweenness centrality
of the subgraph containing only the top k relations and re-rank the relations based on the
informative score τrel. To demonstrate the approach, we applied it to the scene graphs predicted
by the Neural-Motifs model trained on VG150 [38]. Figure 4.9 shows an example of different
edge selections for the same set of predictions, based on different centrality measures. The top-5
relations were extracted for 4 different settings: (b) relations ranked by prediction’s confidence
given by the SGG model (our baseline); (c) relations ranked by centrality using the average of
in-degree and out-degree of nodes; (d) relations ranked using the PageRank algorithm and (e)
relations ranked using our method based on betweenness centrality. We observe that our method
is the one that best describes the scene with homogeneity of nodes and edge types. This example
also emphasizes the problem of current SGG models that tend to predict vague and spurious
relations with high confidence, see the (b) baseline settings.

4.5.1 Evaluation

In this section, we compared the performance of a few models in SGG with and without our
Informative Inference method. We used the same models as before, Motifs-TDE [38], Trans-
former [19] and PE-NET [49]. The results are shown in Table 4.4 where we can see that the
performance in Recall@20 and Recall@50 drops significantly when using Informative Inference
while Recall@100 stays similar. This is expected as we are re-ranking relations in the top 100
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(a) Image (b) Baseline (c) Degree

(d) PageRank (e) Betweenness

Figure 4.9: Different relations selection method based on edge centrality and importance mea-
sures.
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Model Settings R@20 R@50 R@100 IR@5 IR@10 IR@20

Motifs-TDE [38] Baseline 7.20 9.93 12.32 4.97 15.89 21.98
Informative 3.17 8.44 12.32 14.24 18.95 25.86

Transformer [19] Baseline 19.32 24.97 28.83 12.35 16.08 21.28
Informative 5.66 14.77 28.83 13.64 19.29 25.64

PE-NET [49] Baseline 18.38 24.37 27.87 12.49 16.53 21.12
Informative 5.21 13.56 27.87 18.63 23.91 30.30

Table 4.4: Comparison of different different SGG models with and without Informative Inference
selection.

Settings R@20 R@50 R@100 IR@5 IR@10 IR@20
Informative 5.21 13.56 27.87 18.63 23.91 30.30
Ext. Only 8.39 18.33 27.87 11.39 16.64 22.93
Int. Only 2.80 9.86 27.87 12.79 16.42 22.02

Table 4.5: Performance of the PE-Net model [49] using only extrinsic or intrisic information for
re-ranking.

predictions which does not impact Recall@100. However, the performance in IR@5, IR@10, and
IR@20 increases significantly, from an average of 5.4 points for Motifs-TDE to 7.6 points for
PE-NET. This shows that our method is able to correctly re-rank relations, making the top
predictions much more informative than before. These results also clearly demonstrate the shift
between ground truth annotations in SGG datasets and the actual informative relations that
should be predicted by SGG models.

Our Informative Selection method is based on intrinsic and extrinsic information values of
relations. It is thus interesting to compare the actual impact of both values on the performance
of the model. To do so, we conducted an ablation study where we compared the performance of
the model using only the intrinsic information value, only the extrinsic information value, and
both values combined. The results are shown in Table 4.5 where we can see that the performance
of the PE-NET model using only the extrinsic information value is better than using only the
intrinsic information value. This is expected as the extrinsic information value is computed using
the graph structure and thus gives a better representation of the importance of relations in the
graph. However, the best performance is achieved when combining both values, confirming that
our Informative Selection method is indeed appropriate for the task of SGG. We also observe
that the intrinsic information-only setting is deteriorating the Recall@K performance more than
the extrinsic information-only setting. We hypothesize that extrinsic information selection tends
to re-rank relations that match the ground truth, whereas intrinsic information selection is more
likely to re-rank other relations due to the distributional shift between the two.

When applying our Informative Selection method, we sample a set of K relations from the
top predictions of the model to re-rank them based on their informative value. We do not take
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Figure 4.10: Impact of the number of relations to select for re-ranking on the performance of the
PE-NET model. For Recall and meanRecall, we average the results for Recall@20, Recall@50,
and Recall@100. For InformativeRecall, we average the results for IR@5, IR@10, and IR@20.

into account all predicted relations because their number can grow significantly with the number
of objects in the image, hindering a computational overload. In the next section, we will evaluate
the impact of the number of relations to select for re-ranking on the performance of the model.

4.5.2 Impact of K

The number of relations to select for re-ranking is an important hyperparameter of our method.
Previously, we chose K = 100 to be consistent with the Recall@100 metric but other values
can be picked. To evaluate the impact of K on the performance of the model, we conducted
an ablation study where we compared the performance of the PE-NET model using different
values of K, ranging from 0 (no informative selection) to 200. Note that 200 is the maximum
value, but a lower amount of relations can be selected in images that contain less than 15 objects
( 2√200 = 14.1). Results are displayed in Figure 4.10 where we can see that the performance of
the model in IR@K increases with the number of relations selected for re-ranking until 100.
After that, the performance drops and stabilizes, showing that relations below 100 are likely to
be false-positive, as it has been observed in previous work [12]. We also observe a consistent
decrease in both traditional Recall@K and meanRecall@K metrics, re-ranking relations in the
top 20 of the predictions has no impact on Recall and meanRecall because both metrics start
at a value of 20. For cases where very good performance on those metrics is needed, an optimal
trade-off of k = 30 can be chosen. Otherwise, k = 60 or k = 90 can be chosen for optimal
performance in Informative Recall with this particular model.
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As we hypothesized previously, selecting relations based on their informativeness rather
than correctness could be beneficial for downstream tasks that rely on Scene Graph inputs. In
addition, we hypothesize that non-informative relations hurt the performance of downstream
tasks as they introduce noise in the graph and models could wrongly focus on it. In the next
section, we will evaluate the impact of our method on three downstream tasks: Image Captioning,
VQA, and Image Generation from Scene Graphs. These three tasks were chosen as they are the
most common tasks that rely on Scene Graph inputs and are representative of the different types
of tasks that can be conducted with Scene Graphs. The biases of SGG models have also already
been pointed out in the literature for some of these tasks [14], [60].

4.6 Experiments on downstream tasks

To evaluate our approach, we compared performance on several downstream tasks using (1) rank-
ing based on confidence and (2) ranking based on our Informative Selection method. Three dis-
tinct downstream tasks were chosen to this end: Image Generation from Scene Graphs (SG2IM)
[65], Visual-Question Answering with Scene Graphs (VQA) [15], and Image Captioning with
Scene Graphs [14]. For comparison purposes, results from previous works were reproduced by
retraining and evaluating each model using the given codebase from the original references, by
using the hyperparameters and settings reported.

The Visual Genome (VG) dataset [8] was used to conduct this investigation, as it has been
adopted by the majority of approaches in the Scene Graph-related literature [93]. The following
distinct splits were used for downstream tasks, to respect comparison with respective baselines:

• For SG2IM, the VG178 split [65] (178 object and 49 predicate classes) was used.

• For Image Captioning, Scene Graphs have been generated for the COCO-captions dataset
using the original NeuralMotifs model [38] trained on VG150, we call this split COCO-sgg.

• Finally, for VQA, the GQA dataset [15] (which is based on a refinement of VG) was used.

4.6.1 Image Captioning

The goal of Image Captioning with Scene Graphs is to generate a short textual description
of an image, given the corresponding scene graph and input image. Here we used the TFSGC
model [133] for the tests. After retraining the model using authors codebase and parameters,
it was evaluated using the predictions generated from the Motifs model [38], in the Original
and Informative settings. In Image Captioning the size of the input graph matters as the model
equally attends all relations. Thus, we compared our approach by selecting the top 5 relations
using the Informative settings to the original full predictions (average length of graphs = 21
relations). We retrained the model for 15 epochs using the codebase provided by the original
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Settings B@4 M R C S
Orig. / Full 34.23 27.21 55.43 109.41 20.33

Inform. / Top5 34.25 27.52 55.55 110.42 20.59

Table 4.6: Results for Image Captioning on the test set of MS-COCO [45].

references, and we performed the evaluation using the standard metrics for the task, namely
BLEU (B@4), METEOR (M), ROUGE (R), CIDEr-D (C), and SPICE (S) [133]. For all metrics,
higher is better. Results are presented in Table 4.6 where we can see that, by only using the top
5 relations ranked by informativeness, we were able to generate better captions than using the
full graph. This shows that our method was able to remove the noise in the graph and focus on
the most informative relations, which is beneficial in this case. It also shows that, for the task of
Image Captioning, the quality of the relations is more important than the quantity of relations.

4.6.2 Visual Question-Answering

Apart from Image Captioning, the task of Visual Question Answering (VQA) can also benefit
from Scene Graph representations [15]. The VQA task aims at answering a set of complex
questions given an image. In the settings of VQA from Scene Graphs, we are using the graph to
abstract the image and give it as the only input to the neural network that we want to evaluate.
Then, the goal is to select the valid answer to the question, usually in a set of four proposals.
In the present case, the GraphVQA model [4] was used as a baseline. We retrained the model
with the original GQA dataset [15] and then generated graphs for the validation set using the
compositional approach [134]. The paradigm of VQA from scene graphs is different from Image
Captioning in the sense that the GraphVQA model will attend specifically to relations that
match the question keywords. The performance will only increase with more relations, even of
bad quality. However, the resources and time consumed to process the graph will grow with the
number of relations, thus applying our method here can still be beneficial. To demonstrate this
hypothesis, we selected distinct sets with the top k relations as k ∈ [10, 20, 30] using the Original
ranking and our Informative one. We used traditional metrics for the task [135]: answer Accuracy,
Consistency, Validity, and Plausibility. Accuracy is the exact matching of answers to the ground
truth, consistency, validity, and plausibility are all metrics that evaluate the coherence of the
provided answers. Results are shown in Table 4.7, for all metrics, higher is better. We observe
that our Informative selection outperformed the Original one by a small margin for all k. With
only 10 relations, our settings outperformed the original one with 30 relations. By using the top
30 relations in our settings we are almost matching the accuracy obtained by using all relations,
where the average number of relations per graph was 143.23 (almost 5 times more). This shows
that selecting informative relations first is indeed beneficial to remove the noise in the VQA task.
It also shows that the predictions of the SGG models are of poor quality. In fact, we observed
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Settings Accuracy Consistency Validity Plausibility
Ground truth 60.78 90.42 92.62 87.5

O
rig

in
al

Full 38.54 79.61 88.79 80.31
Top 10 37.45 78.42 87.42 78.36
Top 20 37.94 79.65 87.79 79.17
Top 30 38.19 80.38 88.02 79.50

In
fo

rm
. Top 10 38.23 81.22 88.0 79.35

Top 20 38.41 80.72 88.26 79.79
Top 30 38.48 80.89 88.39 80.02

Table 4.7: Results on the validation set of the GQA dataset [135].

that relations after the top 10 only slightly impact the performance of the model, meaning that
they are likely to be false positives or uninformative relations. The gap in all metrics between
the predictions and the ground truth can be explained by the size of the GQA dataset. In fact,
the GQA dataset contains more than 1,700 object classes and 300 different predicate classes,
making it very challenging for the SGG model to predict both objects and relations precisely.

4.6.3 Image Generation

Image Generation from Scene Graphs (SG2IM) [65] aims at generating corresponding represen-
tations solely from input SGs. To benchmark our approach we used the latest state-of-the-art
model, SGDiff [36], which is based on Latent Diffusion [136]. We first trained the model us-
ing the original VG178 dataset by following the authors’ codebase. Then, we generated scene
graph predictions for the test set of VG178 using three SGG models, Motifs [38], VCTree [37],
and Transformer [19]. We named the ranking of predictions based on confidence as the original
setting and our new ranking as the Informative setting. As the average number of relations in
the VG178 dataset is around 6 per image, we selected the top 5 predictions for both settings
to be consistent with the training set of the SGDiff model. All experiments used an image size
of 256x256 pixels and a sampling size of 200 for the DDIM sampler (i.e. number of steps in
the denoising process). The results obtained are shown in Table 4.8 and the metric used is
the Fréchet Inception Distance (FID) [137], which evaluates the distance in the latent space of
an InceptionV3 model between the distribution of the ground truth images and the generated
ones. An FID of 0 represents an exact matching between original images and generated ones.
The Inception Score (IS) evaluates the diversity and quality of generated images alone and was
only reported here for comparison with other image generation approaches. We can see that
for all predicted scene graphs, selecting relations based on informativeness led to better results
than using confidence, outperforming the latter by an average of +1.38 on the FID metric.
These results also show that our Informative Selection method can get consistent improvements
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Model Settings FID ↓ IS ↑
Ground truth 23.54 18.02

Motifs [38] Original 26.37 17.25
Informative 25.48 17.35

VCTree [37] Original 26.6 16.88
Informative 24.32 17.49

Transformer [19] Original 25.22 17.11
Informative 24.26 18.83

Table 4.8: Performance of the SGDiff model [36] for 256x256px settings with original and infor-
mative predictions from different SGG models.

over the predictions given by different models, making it general and applicable to any SGG
model. Finally, we validate the usage of the IR@K metric for selecting a good backbone for
this task as the results obtained in SG2IM are consistent with values of IR@K computed for
each model previously (i.e. the best model in IR@K performs the best here and the worst in
IR@K is the worst here), see Table 4.3. Figure 4.11 shows a qualitative example of our approach
for Image Generation from Scene Graphs. We can easily see that the top predictions from the
original model (left graph) are not informative at all, misleading the diffusion model to generate
a blurry background (left image). By selecting informative relations instead (right graph), the
model generated a background that resembles that of the original image (right image). This
example, and quantitative results from Table 4.8, show how the current SGG models are biased
into generating uninformative relations first as those relations are more likely to be true, hinder-
ing the performance in downstream tasks. Here, we also want to emphasize the importance of
Topological relations in the performance of SG2IM models. Because diffusion models reconstruct
the image pixel by pixel, relations that are more likely to impact the distribution of pixels in the
final image are topological relations between important regions of the image (right graph) rather
than fine-grained details of a specific region which could be predicted with high importance by
an SGG model (left graph).

The success of our approach in the task of Image Generation is especially important because
it is a task that, in contrast to VQA or Image Captioning, relies solely on scene graph inputs. This
is why we are observing a greater improvement in the different metrics here than in the previous
two tasks. For instance in VQA, inputs also contain the question and for Image Captioning the
image in itself, where both can impact the performance of models.

4.7 Concluding Remarks

In this chapter, we have presented a new concept related to the semantic importance of re-
lations in scene graphs, which we call informativeness of relations. We have shown that the
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Figure 4.11: Comparison of generated scene graph images from original Motifs predictions (left),
and Motifs predictions refined with Informative Selection (right). Final images (bottom) were
generated with the SGDiff model [36].
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current metrics used in the evaluation of SGG models are not representative of the actual im-
portance of relations in the graph. We defined the importance of relations as a combination of
intrinsic and extrinsic information values. For both values, we have introduced new methods
to compute them efficiently: similarity with image captions for intrinsic information and edge
betweenness centrality for extrinsic information. Based on intrinsic information value, we pro-
posed a new metric: Informative Recall@K (IR@K) to evaluate the performance of SGG models
to be used in downstream tasks. We showed that this new metric is more representative of the
actual importance of relations in the graph than traditional Recall@K. We then proposed a new
inference method to re-rank predictions from an SGG model based on their informativeness and
showed that this method can improve the performance of SGG models in downstream tasks.
Our approach has been evaluated on three different tasks: Image Captioning, VQA, and Image
Generation from Scene Graphs. We showed that our method can consistently improve the perfor-
mance of models in those tasks, demonstrating the importance of selecting informative relations
in the context of SGG. This approach is general and can be applied to any SGG model, without
retraining or fine-tuning, making it a powerful tool to improve the performance of SGG models
in downstream tasks. Furthermore, we provided additional insights into the informativeness of
the relations categories introduced in Chapter 3 by linking them to our definition of intrinsic
information value. We showed that the Topological and Functional relations are more informa-
tive than the Part-Whole and Attributive relations, which is consistent with the results obtained
in the task of Image Generation from Scene Graphs.

Our contributions in this chapter can also be applied to other tasks and contexts beyond those
we have evaluated here. For instance, the Informative Selection method can be used to improve
the performance of SGG models used in service robotics. Service robots and robots in general
require strict constraints regarding quality of data but also inference time, as new predictions
need to be made frequently to account for changes in the environement. The current paradigm
of SGG, as we have seen, is not adapted to this context as it does not take into account any
notion of time or resource efficiency. In the next chapter, we break down current architectures of
SGG models and propose further solutions to adapt them to the real-time constraints of service
robotics.

107





Chapter 5

REAL-TIME SGG

Resource efficiency - it’s about only
taking what we need.

Hilary Benn

Real-world applications, and especially robotics applications, require robustness and effi-
ciency to meet real-time constraints. In previous chapters, we have tackled the challenges related
to robustness and performance of SGG models for downstream tasks. In this chapter, we will fo-
cus on the efficiency of SGG models, and their deployment in applications that require real-time
inference. Despite the recent advances in SGG , the task remains computationally expensive and
is not yet suitable for real-time. In fact, efficiency in terms of computational resources or time is
not a concern at all in the field of SGG as only a few approaches are reporting latency metrics
[26], [138]. In this chapter, we aim at solving this gap by proposing a new architecture for SGG
that is efficient in terms of latency and computational resources.

It is difficult to define a proper real-time constraint for a SGG task, i.e. if we want to embed
a SGG algorithm onboard a robot, what would be the desired latency of the SGG model?
This question is bounded by two parameters: (1) the expected frequency of changes in the
environment and (2) the expected frequency of updates in the downstream task. Regarding (1)
we can assume that in domestic contexts, relations changes are frequent when we are identifying
complex actions, possibly involving multiple humans. Traditionally, in object detection, a rate
of 10Hz+ is considered as taking into account most of these changes. Regarding (2), a desired
rate of update for planning systems is usually between 5 to 50hz (20 to 200ms per detection).
As a consideration, we will assume a goal of at least 20Hz in our approach here (50ms per
detection), benchmarked on standard hardware (a unique laptop with a standard GPU). Having
a lower latency than 50ms on a laptop should ensure adequate latency on an edge computing
device. In this chapter, we will focus on fundamental changes to SGG architectures and not on
implementation details to meet these requirements. Actual optimizations for real-time inference
of deep neural networks (e.g. quantization, model pruning etc...) are outside the scope of this
work.

We first analyzed the real-time performance of different SGG models which are considered
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Model Model Latency (ms) Params (M) FLOPs (G)
Motifs [38] 398.63 274.51 1030.70

VCTree [37] 519.53 357.89 1083.62
Transformer [19] 381.64 327.98 1025.58

GPS-Net [47] 377.51 392.81 1212.14
PE-NET [49] 277.62 425.99 2218.91

Table 5.1: Real-time performance of SGG models equipped with the Faster-RCNN backbone.
Model latency measures the overall latency of the forward pass of the model (object detector +
relation prediction) with batch size 1. FLOPs is the Floating Point Operations per Second of
the forward pass of the mode, computed with the PyTorch profiler.

baseline models in the field in table 5.11. We can see that none of them meet our requirements
for real-time (i.e. latency < 50ms). The lowest latency is the PE-NET [19] model with 277.62ms
and the higher latency is the VCTree-TDE [37] model with 519.53ms, which are respectively
5.54x and 10.38x slower than our higher bound. The number of parameters of these models is
also very high, considering the difficulty of the task. In addition of latency, we measured the
complexity of each models using Floating Point Operations per Second (FLOPs) which is a
measure of the number of floating-point operations that a model performs in a second. The
FLOPs of the models are also very high, ranging from 1025.58 GIGA FLOPs to 2218.91. This
is a very high number of operations for a single forward pass of the model, which is likely to fail
on edge devices.

Defining the current bottleneck of those models in terms of latency is complex, as approaches
often rely on the aggregation of diverse modules. The standard approach that most models are
using is called the “two-stage approach” as it relies on the aggregation of a frozen object detector
and a custom model for scene graph prediction. The two-stage approach can be decoupled into
four different modules, paired as the following pipeline:

1. The Feature Extraction step, which generates different visual features and proposals from
the image ;

2. The Feature Refinement step, which aggregates those features to form nodes and edges
representation ;

3. The Context Learning step which refines the representation of nodes and edges with con-
textual information at the graph level ;

4. The Scene Graph Prediction module, which takes as input the bounding boxes and as-
sociated features to predict the final graph composed of objects, bounding boxes, and

1Hardware used: 11th Gen IntelTM CoreTM i9-11950H @ 2.60GHz x 16, NVIDIA GeForce RTX 3080 Laptop
GPU 16GB VRAM, 2 x 16GB 3200 MHz RAM.
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relations.

Figure 5.1: Pipeline of a typical SGG model. Stage 1 correspond to bounding box regression (see
(c)) and features extraction ((d), (e) and (f)). Stage 2 is responsible for features aggregation
and refinement ((g) and (h)) as well as context learning (see (i)) and final decoding ((j), (k)
and (l)).

⊗
denotes element-wise concatenation.

In Figure 5.1, we display the pipeline of a typical SGG model [12], [19], [37], [47], [49]. The
first stage (first row, module “Feature Extraction”) has been proposed by Tang et al. [37] based
on the Mask-RCNN implementation [139] of the Faster-RCNN object detector. We can break-
down this stage in three different blocks: the ResNeXt-101 backbone for features generation
(Figure 5.1(a)), the Feature Pyramid Network (FPN) [140] (Figure 5.1(b)) for features en-
hancement and the Region Proposal Network (RPN) [141] (Figure 5.1(c)) for bounding box
proposal generation. The main differences between this implementation for SGG and the origi-
nal Mask-RCNN implementation are the second ROI Align performed on the union of proposals
(Figure 5.1(d)) and the addition of a spatial feature module that generates features from box
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coordinates (Figure 5.1(e)). Another step of ROI Align (Figure 5.1(f)) is performed on every
proposal, as in the original Faster-RCNN approach [141]. ROI Align is a technique that ex-
tracts features from a fixed-size feature map for a set of bounding boxes, by aligning the feature
map with the bounding box coordinates. In this particular implementation, the feature map
is composed of the five different feature dimensions extracted by the FPN (Figure 5.1(b)) at
five different scales. For each bounding box, the ROI Align algorithm selects the appropriate
layer of the feature map from which to sample the features. Bigger bounding boxes will tend
to be matched with the last layer of the feature map (P2) while smaller bounding boxes will
be matched with the first layer (P5) for smaller resolution. Then, the features are aligned with
the corresponding coordinates of the bounding box using bi-linear interpolation. Features are
extracted as a fixed dimension of 7x7 for each box (small or big). For the ROI Align performed
on the union of proposals (Figure 5.1(d)), the input bounding box coordinates are computed
on the union of every proposal, by taking into account the top-left corner of the left-most box
and the bottom-right corner of the right-most box. The output of the ROI Align on the union
of proposals (Figure 5.1(d)) and the spatial features (Figure 5.1(e)) are then fed to the edge
representation model (Figure 5.1(g)). On the other hand, the output of the ROI Align on every
proposal (Figure 5.1(f)) is fed to the node representation module (Figure 5.1(h)).

In the second stage of the pipeline, we have three different modules: the Feature Refinement,
Context Learnings and Scene Graph Prediction modules. In the Feature Refinement, the union
and spatial features are concatenated to represent the edge features (Figure 5.1(g)). At the
same time, the visual features are decoded using a classification head to predict the object labels
(Figure 5.1(h)). These object labels are then used to retrieve corresponding word embeddings for
each object. These embeddings, concatenated with the original visual features, will serve as the
node features for the graph. In the Context Learning module, the edge features are aggregated
with the node features to form a graph representation (Figure 5.1(i)). It is in this step that most
of the learning is done, as the model will learn to predict the relations between pairs of objects.
Most of the approaches in SGG are only modifying this step to improve the performance of
the model [19], [47], [49]. Finally, in the Scene Graph Prediction module, the predicate labels
are decoded using a standard softmax layer (Figure 5.1(j)). The object and subject class labels
are also decoded using softmax (Figure 5.1(k)) and then matched with corresponding proposals
before a step of Non-Maximum Suppression (NMS) (Figure 5.1(l)). NMS is a technique to merge
overlapping bounding boxes, which are then used to generate the final scene graph.

We identified two main limitations in the two-stage architecture: (1) the use of Faster-RCNN
as a feature extractor is not optimal for real-time applications and (2) the feature alignment and
feature refinement step are overly complex and not efficient in terms of latency. This last point
mainly result from the usage of an RPN which requires performing object detection on every
proposal, which is computationally expensive (see Figure 5.1(c) and Figure 5.1(d)). To solve
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these challenges, using a single-stage object detector such as You Only Look Once (YOLO) [27]
seems promising. YOLO is an object detector which does not use an RPN and ROI Align, as
it is done with Faster-RCNN. Instead, YOLO decode both bounding boxes and object labels in
a single head of the network. The latest versions of YOLO, such as YOLOV8 [39], are heavily
optimized for a trade-off between latency and accuracy, making them a very good choice for
real-time SGG. However, integrating YOLOV8 in the SGG architecture is not straightforward
as YOLOV8 does not use box candidates and does not have a traditional feature extractor
component. Thus, our goal in this chapter is not only to modify the feature extraction stage of
the SGG architecture but also subsequent modules which may depend on it.

Before describing our new architecture, we will first review the state of the art in real-time
SGG and the limitations of current approaches in Section 5.1. Then, in Section 5.2, we will
describe the modifications made to the feature extraction stage of the SGG pipeline to use
YOLOV8 as a feature extractor. To make these changes efficient, we need to also modify the
feature alignment and feature refinement steps of the SGG pipeline, as these steps goes hand-in-
hand. We will detail the changes made to these steps in Section 5.3. Improvements can also be
made to the context learning and final graph prediction steps of SGG models, as we will see in
Section 5.4, by lowering the complexity of the relation learning without sacrificing performance.
Finally, we will discuss the overall challenges of the task of SGG for its adoption for real-time
and real-world applications and the limitations of our approach in Section 5.5.

5.1 State of the Art in Real-Time SGG

The term Real-Time SGG has not been widely adopted by the community, to our knowledge only
a single approach uses the term “real-time SGG” [138]. However, a set of recent approaches are
reporting latency metrics in their work, showing a growing interest in efficient implementations.
Specifically, we can separate approaches in SGG into two categories: two-stage approaches and
one-stage approaches. The former uses a two-stage pipeline with the Faster-RCNN backbone,
while the latter uses a single-stage pipeline, to infer both relations and object proposals directly
from the image features. As a result, this second category of approaches is often more efficient for
real-time processing than the first. However, a few challenges remain, especially concerning the
accuracy of such approaches for object detection. In the following, we review those limitations
and challenges for both two-stage and one-stage approaches.

5.1.1 Two-Stage Approaches

In a recent work, Jin et al. [26] introduced an approach for real-time SGG based on contextual
information. In contrast to every other SGG approaches, this work does not use visual features
to infer relations. Instead, it uses object bounding box coordinates to learn the correlation
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between respective positions in the image and predicate classes. To generate the bounding boxes,
the use of YOLOV5 is reported for real-time object detection. The reported results show a
latency of 29ms with 33.5 Frames Per Second ()FPS) for a state-of-the-art F1@K metric in
the task of SGG. However, these results are difficult to put in perspective due to the choice of
using only box coordinates as inputs. In fact, it is a highly questionable choice for the overall
purpose of the task which is to understand fine-grained compositional relations at the image
level. In its present form, the model would never be able to disambiguate between different
relations that may have similar bounding box coordinates such that ⟨person, holding, bottle⟩
and ⟨person, drinking from, bottle⟩. By removing the dependence on visual features, the model
can learn very efficiently the statistical co-occurrences of the dataset and thus achieves very good
F1@K performance but is very likely to fail to generalize to other datasets or out-of-distribution
images. In another work [138], Jin et al. propose to achieve real-time SGG by leveraging a
Relation-aware YOLO structure (RYOLO). RYOLO is composed of two parallel branches, one
for classical object detection using YOLOV5 and one for relationship prediction using anchor
orientation on the visual feature maps. The idea is to predict the coordinates of relations directly
from the feature maps and then do a step of matching with relatively spatially close objects in the
scene that have been detected by YOLOV5. Due to both operations being performed in parallel,
the approach is able to attain a low latency of 28ms or 25.7FPS. However, performance in the
task of SGG is poor and more importantly, the performance of YOLOV5 for object detection is
also poor. The poor performance in relation prediction may be due to the design of the model,
which needs to match relations detected with the closest object coordinates, which may not be
efficient for cluttered scenes with a lot of similar objects.

5.1.2 One-Stage Approaches

The first one-stage approach to the task of SGG is Sparse-RCNN [142]. This approach employs
a strategy of triplet querying to generate object proposals and relations. Once visual features
have been extracted from a CNN backbone, boxes and relations are decoded altogether using a
cascade-RCNN scheme. This approach reports state-of-the-art Recall and meanRecall@K metrics
for a latency of 190ms (5.26FPS), which is not real-time. RelationTransformer (RelTr) [143]
and SGTR [79], [144] are two Transformer-based one-stage approaches to the task that report
low-latency with 13.4FPS and 6FPS, respectively. RelTr uses a DETR-based approach with a
ResNet-50 backbone and SGTR is a custom Transformer-based approach with a ResNet-101 or
ResNet-50 backbone. Both approaches generate a sparse set of relations between a selected set
of pairs of interest, in contrast to traditional two-stage approaches which will predict relations
for all possible pairs of objects. Due to this design, these approaches maintain a good trade-off
between performance in SGG and latency, however, they still suffer in object detection. In fact,
because object proposals and labels are decoded all together with relations, the models will tend
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to only predict objects that can be easily paired with a relation. This design is not optimal for
real-world applications as it is likely to miss relations between important objects in the scene
[144]. Also, we want to point out the lack of a clear benchmark for latency, as all approaches
are benchmarking their model using different hardware and settings. Some approaches are even
not reporting the hardware used for latency [142], which is an issue for fairness. In our work, we
report all latency with the same hardware and settings.

Authors of RelTr have compared their work with two-stage approaches such as Motifs [38] and
VCTree [19] in terms of latency. The comparison shows a clear disadvantage for any two-stage
approaches as none of them succeed in achieving more than 6FPS. However, as we have seen
previously, this may be biased by the usage of Faster-RCNN for object detection. Specifically,
we strongly believe that lower latency and better accuracy can be attained by combining the
best of the two-stage approaches with a real-time object detector such as YOLOV8. In the
following, we will prove this last point by modifying the pipeline of two-stage approaches to be
more efficient in real-time, with no loss of accuracy. We will demonstrate the benefits of this
solution by combining the YOLOV8 model with a set of different relations prediction heads used
in two-stage approaches. Nonetheless, this is not straightforward and requires first a review of
the architecture design of two-stage approaches.

5.2 Feature Extraction

Extracting high-quality visual features for SGG is critical for the overall performance of models.
Visual features will be used during two stages: the object detection stage and the relation
prediction stage. One could use a different pre-trained feature extractor for each stage, however,
this will be computationally expensive. Instead, in traditional approaches, the features extracted
from a unique backbone are shared by the object detection head as well as to the relation head.
In the case of Faster-RCNN in SGG, approaches traditionally use a ResNeXt-101 architecture
paired with a Feature Pyramidal Network (FPN) [140] to extract features from different depths
to construct a multi-scales feature map (traditionally features from 5 stages are extracted). This
design ensures the efficient extraction of the maximum of information from the backbone. It is
known that, in ResNet-type models, deeper layers are responsible for coarse information about
the image whereas shallow layers are responsible for fine-grained information. This can be used
to efficiently model the representation of small to large objects. These feature maps are then fed
to a RPN to generate proposals. The proposal coordinates are then used to align and “crop” the
feature from corresponding layers to extract a deep representation of each Region Of Interest
(ROI) in the ROI Align stage. It is after this stage that the corresponding proposal and visual
features are fed to the relation prediction head. In classical SGG, the relation head is not only
responsible for predicting relations between pairs of objects but also the classes of the objects,
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Figure 5.2: Modified SGG architecture with YOLOV8 as feature extractor.

a task traditionally performed by a dedicated classification head after the ROI align stage.

On the other hand, real-time object detectors such as YOLO [27] are what we call one-stage
detectors because they do not possess an RPN and process features straight out of the backbone
(sometimes using an FPN but not always) with regression and classification heads. In addition
to extracting features from interesting layers, the FPN is responsible for upsampling the features
by integrating context from other layers for better representation [140]. In YOLOV8, the FPN is
followed by a Path Aggregation Network (PAN). The combination of those is called the “neck”
which performs a top-down and bottom-up pass of features at three different scales instead of
five for Faster-RCNN, see Figure 5.2 (b). The three different feature maps are then fed to three
different “decoupled heads” which each comprise a regression and a classification module, see
Figure 5.2 (c). To respect the original two-stage approach of SGG models, we extracted the
upsampled features from YOLOV8 after the Neck, which corresponds to the P3, P4 and P5
layers of the overall architecture. Features could also be extracted directly after the Backbone
and post-process by the original FPN of Faster-RCNN, however, this would lead to extensive
overhead. Because YOLOV8 does not use an RPN and ROI Align as in Faster-RCNN, we
needed to modify the original ROI Align algorithm of Faster-RCNN to extract corresponding
features for each object proposal. After the forward pass of the YOLOV8 model, we feed the
three feature maps and bounding boxes coordinates from the regression head to the original
ROI Align algorithm [139]. At the difference of Faster-RCNN, YOLO’s feature maps do not
possess the same number of channels, P3 has 256 channels, and P4 and P5 have 512 channels.
We then add one 1x1 Conv layer to downsample P4 and P5 feature maps to 256 channels before
performing Region of Interest (ROI) Alignement (see Figure 5.2 (f)). ROI Align is a technique
to accurately extract features from proposed regions within an image. It improves upon ROI
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Figure 5.3: Performance in F1@K for relation prediction of different models [19], [37], [38]
equipped with Faster-RCNN and YOLOV8 backbones.

Pooling by avoiding quantization and using bilinear interpolation to compute precise feature
values. ROI Align works by dividing each candidate bounding box as a fixed grid size (in our
case a 7x7 grid) and then computing interpolation points with the feature vector for each grid
cell. This results in a set of n× 7× 7 features which can be used for further processing.

We evaluated the impact of these changes by training different relation prediction models
for the task of SGG. For all experiments, we keep all modules except the feature extractor
unchanged. To reproduce the training strategy employed in SGG, we first trained the YOLOV8
model, froze its weights, and then trained the rest of the SGG model upon it. During training
and evaluation, we purposely input ground truth bounding boxes and pairs to evaluate only the
prediction of relations. This type of evaluation is known as predicate classification (PredCls).
In Figure 5.3 we display a comparison of the performance of three different baseline models,
Motifs-TDE [38], VCTree-TDE [37] and Transformer [19] equipped with the feature extractor
of YoloV8 (CSPDarknet-53) and Faster-RCNN (ResNeXt-101). For each model, the metric used
is F1@K which is the harmonic average between the commonly used metric Recall@K, and
meanRecall@K. We display the average obtained by all models for better visualization. We
observed almost no difference between the two feature extractors, which can signify that either
the visual features are not important in the learning process of relation prediction or that the
quality of the features generated by the YoloV8 backbone and the Faster-RCNN ones are very
similar. This is an interesting finding, as the size and architecture of both backbones are very
different. However, the implication of such findings is left for future work.

Generating good feature representations is a critical step in the SGG pipeline. In the next
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section, we will focus on the object detection step and how to improve it by using YOLOV8.

5.3 Object Detection

The traditional approach in real-time object detection employs a bounding box regression and a
classification head after the feature generation step. In the original Faster-RCNN implementa-
tion, regression and classification are done in a sequence, and then a final step of Non-Maximum
Suppression (NMS) is applied to merge overlapping bounding boxes. In the case of the two-
stage approach in SGG with a Faster-RCNN backbone, the strategy employed is to decode
object classes a first time before the context learning, and a final time after the context learning
which will be used for the final prediction. While in the original Faster-RCNN implementation,
a simple softmax is applied to the class logits, SGG approaches are introducing their method
to decode classes, for instance, a TreeLSTM for VCTree [37]. This strategy has been employed
as we assume that the prediction of a relation could improve the performance of the object
classification. For instance, for a given pair of proposals, if the detected relation is wearing

and the subject label is man, there is a high chance that the object label will be shirt. The
first approach to report this strategy is Neural-Motifs [38] where a contextual representation
of parent nodes is used to decode the child node labels using an LSTM network. This strategy
has been employed with a TreeLSTM in VCTree [37] and then used various times with different
contextualized decoding in further approaches [19], [47]. It is very important to notice here that,
to our knowledge, none of these approaches performed ablation studies to confirm if this strat-
egy is indeed beneficial for the task (i.e. comparing the performance in object detection with
and without contextualized decoding). This makes the performance of SGG models different
from each other on the task of Object Detection, even though they all report using the same
Faster-RCNN checkpoint. This can lead to confusion in the comparison of models for the task
of SGG, as the difference in performance for object detection may hinder the comparison of
relation prediction modules.

On top of that, in SGG mode the step of NMS is performed after the relation prediction
stage (see Figure 5.1(l)) which will also influence the predicted objects. To measure this shift,
we draw a comparison of the performance of the Faster-RCNN model trained on the IndoorVG
dataset with different classification heads in table 5.2. In this table, we can see that the perfor-
mance in object detection drops significantly, from 1% for Motifs-TDE to almost 10% in mAP
for GPS-NET by comparison to the original Faster-RCNN implementation [141]. These results
show a true dependence between the two stages of SGG methods, in contrast to what is usu-
ally accepted in the community. The ability to accurately detect objects in the scene directly
impacts the performance of models to generate the graph, as relations are first evaluated by the
correspondence of the ⟨subject, object⟩ pair with the ground truth. As a result, the performance
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Backbone Detection Head Classification Head mAP50 mAP50-95

ResNeXt-101 [145] Faster-RCNN [141]

Faster-RCNN [141] 27.2 11.5
Motifs-TDE [38] 26.2 11.6

VCTree-TDE [37] 25.5 11.1
PE-NET [49] 25.2 11.2

Transformer [19] 24.2 10.6
GPS-NET [47] 17.4 7.1

Table 5.2: Performance on Object Detection of Faster-RCNN before and after the Relation
Prediction stage with different SGG models on the IndoorVG dataset. The baseline (top row) is
the Faster-RCNN implementation with a ResNext-101 backbone as described by He et al. [139].
In this implementation, the Classification Head is a simple average pooling followed by a linear
layer.

of SGG models in object detection becomes slightly worse after the relation training stage than
before, biasing a fair evaluation of the task.

To solve this problem, we propose to completely make independent the first and second
stages of the SGG process. To do so, we freeze the regression but also the classification head of
YOLOV8 and perform Non-Maximum Suppression (NMS) before the relation prediction stage,
see Figure 5.2 d. The objective of the relation prediction stage becomes then to predict only
correct predicates, in contrast to also predicting the class labels of objects. This significantly
lowers the complexity of the relation prediction stage and thus the computational load of the
model, while maintaining similar performance in mAP for all SGG models.

To evaluate the performance of this new architecture, we first trained the YOLOV8 object
detector on the IndoorVG dataset. YOLOV8 comes in different variants, ranging from nano to
x-large. Each variant is a different scale from the original model, both for depth and width,
making optimal trade-offs between accuracy and latency for a wide range of use cases. In our
experiment, we used the medium version YOLOV8m. We trained the model for 50 epochs with
a batch size of 32 and a learning rate of 0.001. We used other default parameters of the original
implementation of YOLOV8 [39]. To make the model converge faster, we fine-tuned the provided
checkpoint pre-trained on the COCO dataset [45] by authors of the original implementation [39].
With this method, we obtained a mAP@50 of 31.2 and a mAP@50-95 of 17.1 on the IndoorVG
test set. When used in the relation prediction stage of an SGG model, this stays strictly similar
after any full model training (see Table 5.1), which also helps to fairly evaluate the quality of
relation predicted by SGG models. We also observed a significant drop in latency for YOLOV8
against Faster-RCNN, as seen in Table 5.1 and Table 5.2. This is encouraging as it shows that
significant improvements can be made to reduce the latency of SGG models. In the next section,
we will evaluate the impact of these changes on the relation prediction stage of SGG models, in
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Backbone Heads mAP50 mAP50-95 Latency (ms) Params (M)
CSPDarknet [39] YoloV8 [39] 31.2 17.1 9.28 25.91

Table 5.3: Performance on Object Detection of YOLOV8 on the IndoorVG dataset. Latency is
computed with similar settings as in Table 5.1.

terms of overall performance in Recall@K and meanRecall@K but also InformativeRecall@K.

5.3.1 Comparison with two-stage approaches

In the following, we compared the performance in latency and performance metrics between
traditional two-stage approaches with Faster-RCNN equipped with a ResNeXt-101 and our
new architecture which uses YOLOV8 exclusively as an object detection backbone. We used
IndoorVG as a dataset for the experiments. To make the comparison as fair as possible, we kept
all parameters similar during training and inference for all models, except of course parameters
related to the object detection backbone in itself.

We experimented with our approach for five different relation prediction models: Neural-
Motifs [38], VCTree [37], Transformer [19], GPS-Net [47] and PE-NET [49]. For all approaches,
we retrained the original implementations with both the Faster-RCNN backbone and our modi-
fied YOLOV8 backbone. All models have been trained for 20 epochs with a batch size of 8 and a
learning rate of 0.001 with the SGD optimizer with a momentum of 0.9. These settings are sim-
ilar to previous approaches [19], [49]. At the difference of Faster-RCNN, we used fix size for the
image inputs as it is required for YOLOV8. In the original implementation of Faster-RCNN, the
input size of the image is a minimum of 600 pixels for the height and 1000 pixels for the width.
Images are then pre-processed to fit the first of those requirements by keeping the original aspect
ratio. For instance, an image of size 400x500 will be reshaped to 500x600, an image of 900x450
will be reshaped to 1000x500, etc. For YOLOV8, all images need to be reshaped to a square size,
we chose 640x640 as this is the default size used for YOLOV8. In addition, to fairly evaluate
all approaches, we set a fixed seed of 42 for all random number generators and made use of
deterministic operators in PyTorch 2. Finally, we benchmarked latency on one Nvidia RTX3080
GPU with batch size 1 and input image size 640*640px. The latency reported is the combination
of object detection and relation prediction stages for all models. In Figure 5.4 we display the
difference in latency and F1@k for the five different models. Using YOLOV8, we experienced an
average improvement of 62.17% in F1@k compared to Faster-RCNN. This improvement is obvi-
ously due to the overall gain of the accuracy of YOLOV8m in object detection, which performs
at 35.1 mAP@50 versus 17.4 to 27.2 for Faster-RCNN on the IndoorVG dataset, see Table 5.2.
We computed an average of 67.62% improvement in mAP@50 for all models, which is different

2For more information, please consult https://pytorch.org/docs/stable/notes/randomness.html
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Figure 5.4: Latency versus F1@k for different models equipped with the Faster-RCNN backbone
and our modified YOLOV8 backbone.

from the gain in F1@k which shows that there is not a strong correlation between mAP@50
and F1@K performance in general. In fact, we measured a Pearson correlation coefficient of
0.70 between the two gains with a p-value of 0.19, which is not significant under the condition
p < 0.05. Regarding latency, we observed an average improvement of 77.82% for using YOLOV8
instead of Faster-RCNN, which is a considerable gap. The difference in latency between the five
models tested is also lower with YOLOV8 than Faster-RCNN, this is due to the step of object
classification which has been removed in our implementation. As relation heads do not need to
compute object classes, computational complexity becomes lower and their average execution
time for relation prediction becomes very similar. The best model in F1@K, PE-NET [49], is
also the fastest one with a latency of 48.5ms which is a good choice for real-time constraints.

As shown in previous chapters, the meanRecall@k and Recall@k metrics do not efficiently
represent the performance of a model to produce useful graphs for real-world applications. We
used the InformativeRecall@K metric introduced in Section 4.4 with k = [5, 10] to evaluate the
impact of YOLOV8 on the performance of SGG models. Here we purposely chose low values
of k as the main goal of this metric is to represent the ability of models to output informative
predictions with confidence, such that the top predictions can be directly sampled for reasoning.
We assume that in real-world applications a few high-quality relations are more beneficial than
a high number of medium to low-quality relations to describe a scene. We compare our approach
with YOLOV8m and traditional Faster-RCNN in fig. 5.5, the metric reported is the average of
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Figure 5.5: Latency versus IR@k for different models equipped with the Faster-RCNN backbone
and our modified YOLOV8 backbone.

IR@5 and IR@10. Surprisingly, we observe a net improvement using YOLOV8 for all models,
with an average improvement of 62.08%. In contrast to F1@k, the gain in IR@K is strongly
correlated to the gain in mAP@50 with a Pearson correlation coefficient of 0.93 and a p-value
of 0.02, which is significant under the hypothesis p < 0.05. This is a very interesting result as
it shows that the quality of the object detection backbone has a direct impact on the quality
of the relations predicted by the model. The best model overall seems to be PE-NET with the
better trade-off between F1@k and IR@K and the lowest latency. This result is consistent with
the performance of the model reported by authors on the VG150 dataset in their original paper
[49]. In the next sections and chapters, we will use the PE-NET model for all our experiments.

5.3.2 Scaling YOLOV8

The results that we obtained with the YOLOV8 object detector clearly show that object de-
tection has a consequent impact on the performance of relations predictions. However, it is still
unclear if this improvement comes from the quality of the features extracted by YOLOV8 or
the performance of the regression and classification heads of YOLOV8. To investigate this is-
sue, we decided to run a last experiment by scaling down and up the YOLOV8 model with its
different variants. Similarly to YOLOV8-medium, we trained the nano, small, large and x-large
variants with the same hyperparameters as before on the IndoorVG dataset. In Table 5.4 we
first display the key differences between every variant. The YOLOV8-Large is the base model
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Variant Width Depth Channels Params mAP50 mAP50-95 Latency
Nano 0.33 0.25 64 3.2 26.6 14.5 11.46
Small 0.33 0.50 128 11.2 32.8 18.2 11.94
Medium 0.67 0.75 192 25.9 31.2 17.1 14.33
Large 1.0 1.0 256 43.7 39.8 22.9 16.80
X-Large 1.0 1.25 320 68.2 36.7 20.6 22.49

Table 5.4: Scales of the different YOLOV8 variants and their respective performance on the
IndoorVG dataset.

and then every variant scales in depth or width from this model. The depth scale is the number
of layers in the model, implemented as the number of repeated Conv layers inside each Pyramide
block (the C1-C5 and P3-P5 blocks depicted in Figure 5.2). It is important to notice that the
overall architecture of the network stays the same for all variants. Due to differences in width
and depth, the number of out channels for the Neck of YOLOV8 is different from every model.
This corresponds to the number of dimensions that the features extracted from the backbone are
reduced to, before being fed to the Head of YOLOV8 and the relations prediction stage in our
case. For comparison, the number of out channels in Faster-RCNN is 256, which corresponds to
YOLOV8-Large. Results in mAP and latency are also displayed in Table 5.4. Surprisingly, the
performance in mAP@50 and mAP@50-95 is not increasing as the size of the model increases. We
observe a slight decrease in accuracy from the medium to the small version and a similar effect
from the x-large to the large version. This could be due to the bad quality of IndoorVG bounding
box annotations or the small number of images available for training (11,433 images). On the
other hand, the latency does increase linearly with the size of the model, which is consistent
with reported metrics by the authors of YOLOV8 3.

To evaluate the impact of the model size on the relation prediction stage, we ran a set
of experiments using the PE-NET model [49] for SGG. Here, we trained the model with the
same hyperparameters as before, only modifying the input size of the visual features used for
relation prediction to match the different output channel sizes for each YOLOV8 variant. For
each model, we measured the InformativeRecall@K with k = [5, 10] and averaged the results in
the IR@K metric. For the F1 score, we measured the F1@K with k = [20, 50, 100] and averaged
the results in the F1@K metric. The results are displayed in Figure 5.6a. In this figure, we
can observe no correlation between the mAP@50 of the different object detector backbones
and the overall performance of the PE-NET model, for both F1@K and IR@K. Specifically,
the Pearson correlation test gives a p-value of 0.141 for the correspondence between mAP and
F1@K and 0.390 for the correspondence between mAP and IR@K, which is not statistically
significant under the p < 0.05 hypothesis. While the nano and large versions have the worst and
better performance in both F1@K and IR@K, the other models with small, medium, and x-large

3See https://docs.ultralytics.com/models/yolov8/#performance-metrics, accessed on 12/08/2024
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(a) (b)

Figure 5.6: Average F1@k and IR@k performance for the PE-NET model [49] on relation pre-
diction against the corresponding mAP@50 for object detection using different variants of the
YOLOV8 model.

variants seem to have a random performance with respect to their mAP. In Figure 5.6b we also
display the latency of the PE-NET model for the different YOLOV8 variants. We observed a
linear increase in latency with the size of the model, which is consistent with the results of the
object detection stage. This is an important finding as it shows that the performance of the
relation prediction stage is not directly correlated with the performance of the object detection
stage. We hypothesize that the out-channel sizes of the features extracted from the backbone
are also an important factor in the relation prediction stage. Regarding the underperformance
of YOLOV8-X, we believe that the higher number of dimensions in the features extracted from
the backbone could lead to more difficulties for the relation head to converge.

In terms of the overall performance, the large versions seem to be the best. It has a good
trade-off between IR@K, F1@K, and latency, which is important for real-time applications.
However, the latency is still slightly above our desired threshold of 50ms with a value of 56ms on
average. To address this problem, we decided to run a new set of experiments on another variable
that could impact the performance of the relation prediction stage: the number of proposals per
image.

5.3.3 Candidate Selection: Quadratic Complexity

During the step of relation prediction, all proposals detected by the object detector are considered
valid node candidates for the graph refinement process. To not blow up the memory usage
during training and inference, previous works [12], [37] have chosen to keep only a fixed number
of proposals (i.e. 80 proposals) from the higher confidence proposals predicted by the object
detector. The idea here is that by sampling enough proposals, it is easier to find valid pairs
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and relations. However, 80 proposals per image is unrealistic and will considerably enlarge the
number of computations required to generate a good graph, which is a bottleneck for real-time
applications. In fact, in the Context Learning step (Figure 5.1(i)) strategies such as Iterative
Message Passing [12], [47] are used to learn inter-dependencies between nodes. This type of
learning is scaling in terms of computational complexity quadratically with the number of nodes
in the graph, as the model needs to learn the relation between all possible pairs of nodes. This
issue also raises concerns about the objective of the task, as it could be considered unfair to look
for candidate nodes of the graph based on their likelihood of having a relation rather than the
true confidence of the object detector. For instance, a low-confidence bounding box chair (which
could be ranked bottom 80 in the detected proposals) could be selected as a node candidate in
the final graph instead of a higher-confidence bounding box kite if the two objects are in the
presence of a third one, table, as chair is more likely to have a relation with table than kite.
This paradigm will tend to improve the performance of models for relation prediction but with
the drawback of lowering the accuracy in object detection and limiting the generalization to new
or unseen relations. This could be one explanation of the phenomenon observed in Table 5.2.
The question here is: do we want models to predict relations from a small set of highly confident
objects in the scene or do we want models to predict the most likely relations from a larger set of
objects, even though some of those objects are of low confidence? Outside the real-time constraint,
we believe the first approach is more beneficial for real-world applications and extends to the
usage of SGG on the edge. We also hypothesize that the gain in latency is more important than
the gain in accuracy by using a smaller number of proposals, such as 10 or 20 per image and that
an optimal trade-off can be found. For the relation prediction stage, as we are evaluating models
to predict entire triplets and not solely the predicate, the relation triplets score is computed
with the following formula:

θrel = θobj ∗ θpred ∗ θsubj (5.1)

With θpred being the confidence score of a predicate given ⟨subject, object⟩ pair as candidate
and θobj , θsubj are the respective confidence score of the object detector. This formula gives
more weight to the confidence of the subject and object than the predicate, which makes the
model’s overall performance rely more on the object detector than the relation predictor. Thus,
one would rather want to input only highly confident proposals to the relation prediction stage.
There could be a maximum of n ∗ (n − 1) possible pairs in the graph, as a result when doing
matching the computational complexity is supposed to scale accordingly. To demonstrate this
hypothesis, we evaluate the performance of the PE-NET model [49] in both latency and accuracy
for different numbers of input proposals, ranging from 10 to 150 per image, with a step of 10. For
all experiments, we ranked proposals by confidence of the backbone after a step of Non-Maximum
Suppression (NMS) and selected the top n ones.

We display the results of those experiments in fig. 5.7. By using 150 proposals with YOLOV8,
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(a) (b)

Figure 5.7: Latency for the PE-NET model [49] with YOLOV8 backbone (a) and Faster-RCNN
backbone (b) using a different number of proposals per image, with batch size = 1.

the latency is 65.22 while the same number of proposals with the Faster-RCNN backbone will
result in a latency of 1060.16. We also observe a 3x gain from 10 to 150 proposals with YOLOV8
whereas, for Faster-RCNN, the gain is 10x. We believe this is due to the label decoding step
added in the PE-NET model with Faster-RCNN backbone, which adds a significant overhead
to the model. The latency of the Faster-RCNN-based model is also significantly higher than
our upper bound for real-time inference, even with only 10 proposals. However, when using
YOLOV8, we can find a satisfying latency (i.e. > 50ms) with 90 proposals and below. To find
the best trade-off between latency and performance, we also measured the average F1@k for
different numbers of proposals, see fig. 5.8. In this figure, we can see that for both models, an
optimal F1@k (left axis, plane line) is obtained at around 40 proposals per image. This means
that the top 40 proposals returned by YOLO or Faster-RCNN are of good enough quality to
be valid node candidates for the graph refinement step. In the same plot, we also measure the
average IR@k for the same set of settings (right axis, dotted line). Interestingly, we observe a high
IR@k for the lowest number of proposals, 10, even if the average F1@k is not maximal. These
results confirm the assumption that to obtain informative graphs, the quality of object proposals
is of utmost importance. By crossing those numbers with latency per number of proposals (see
fig. 5.7), we can find a threshold of n = 40 for an optimal implementation for F1@k and n = 18
for an optimal F1@k to IR@k trade-off for both YOLOV8 and Faster-RCNN.

This concludes our experiments on the Feature extraction and object detection components
of the SGG pipeline (see the first stage in Figure 5.1). However, as soon as latency is involved, we
believe that further improvements can be made by also optimizing the relation prediction stage
(the second stage in Figure 5.1). In the next section, we will tackle this problem by proposing
a new method to extract relation features from the backbone and reduce the complexity of the
relation prediction stage for the PE-NET model.
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Figure 5.8: Average F1@k and IR@k performance for the PE-NET model [49] using a different
number of proposals per image, with batch size 1.

5.4 Relation Prediction

The feature extraction and object detection modules were the most obvious and easiest com-
ponents to optimize in the SGG pipeline. Taking the PE-NET as a case study, we now focus
on the relation prediction stage. During the relation prediction stage three steps are performed
in a sequence: (1) features refinement to generate node and edge representation, (2) context
learning, and (3) final decoding of relations and object classes. In this section, we will focus on
steps (1) and (2), which are the most computationally expensive and the most critical for the
overall performance of the model.

5.4.1 Features Refinement

In most SGG implementations, the relation prediction stage takes as input visual features for
each bounding box (which serve for subject and object representation, see Figure 5.1(f)) but
also visual features aggregated from each ⟨subject, object⟩ pairs of bounding boxes (which will
be used later on as the internal representation of the relation, see Figure 5.1(d)). These union
features are usually aggregated with spatial features to form the edge representation in step (g)
of the pipeline. However, the union features are computed using a second step of RoI Align, which
is computationally expensive (see Figure 5.1(d)). We could remove this step and instead directly
merge the features from every possible pair of subject and object after the first RoI Align step
(Figure 5.1(f)), which would save a significant amount of computation. Another possibility is to
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Head IR@K F1@K Latency (ms) Params (M)
Baseline 14.13 20.03 45.26 151.8
Union 14.25 21.05 42.61 64.18
Spatial 14.40 20.67 20.89 55.42

Spatial+Union 14.35 19.03 57.41 65.23

Table 5.5: Performance on SGG of the PE-NET model [49] using different feature extraction
methods for relation prediction.

remove the use of union features, and create the edge representation based on spatial features
only. The hint here is that the visual representation of the relation is already embedded in the
visual features of the subject and object nodes, which are used to predict the relation. To test this
hypothesis, we ran a set of experiments with the PE-NET model [49] using different features as
input to the relation prediction stage. We tested the use of union features, spatial features and a
combination of both for the relation prediction stage. For these experiments, we also reduced the
number of dimensions of the node and edge features. In the original implementation, node and
edge features are upsampled 8x and 4x respectively to a fixed size of 4096 by a feed-forward layer
(see steps (g) and (h) in Figure 5.1). We believe that this is not necessary and that the model
will perform similarly without upsampling. In fact, 256 and 512 dimensions are already enough
information to represent the visual features of the subject, object, and relation. The results from
these experiments are displayed in Table 5.5. First, we can observe that by not upsampling the
features we do not lose performance, but we gain a significant amount of latency, compared
with the baseline used in previous sections. More interestingly, we observe a small gain in F1@K
and IR@K by not upsampling features. In terms of the features extraction, we observe that the
use of spatial features only is the best choice for the PE-NET model, as it has a lower latency
while keeping a similar performance in F1@K and IR@K than other settings. Interestingly, by
combining spatial and union features with no upsampling (last row of Table 5.5), we observed a
decrease in performance in F1@K and IR@K, which shows that upsampling is beneficial in this
particular case to take advantage of the large amount of information extracted.

5.4.2 Prototype Embedding Network

The Prototype Embedding Network model (PE-NET) [49] is a state-of-the-art model for SGG.
It is based on the idea of learning prototypes for each predicate class in the dataset and using
those prototypes to predict relations between objects. Entity prototypes are also used to model
the node representation and learn efficient node-edge representation. Entity (or node) prototypes
are formed using a combination of linguistic features (using GLoVe word embeddings [46]) and
the visual features extracted from the ROI Align step. Next, a gate mechanism is employed to
remove class-irrelevant information from the representation. To compute the edge prototype,
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the prototype representation of the subject and object are merged. Specifically, in the original
representation the fusion is done as shown below:

ReLU(s + o)− (s− o)2, (5.2)

with s and o being the corresponding prototypes for subject and object. Then, this representation
is combined with the union features and spatial features obtained in step d and e of the pipeline.
Finally, a gate mechanism is employed to select relevant features from the multi-modal fusion.
We proposed to modify this step in two ways: first, we added a linear layer to replace the fusion
of subject and object prototype (Equation (5.2)). Second, we removed the union features for
the edge representation, as demonstrated previously union features are of no use for the relation
prediction stage of PE-NET. Next, prototype-guided learning is applied as in the original work
[49]. Prototype-guided learning will consider a loss function as the combination of cosine and
Euclidean distances to push away dissimilar prototypes and pull closer similar ones. The final
loss function is defined as:

L = Lr_cos + Le_cos + Lr_euc + Le_euc, (5.3)

with Lr_cos and Le_cos being the cosine distance between relation prototypes and edge pro-
totypes and Lr_euc and Le_euc being the Euclidean distance between relation prototypes and
edge prototypes. We ran a set of experiments with the PE-NET model using the modified edge
representation and removing the union features. The modified PE-NET architecture is displayed
in Figure 5.9. As we are now performing object class prediction in the object detection stage, we
can remove the object class prediction head in the Scene Graph Prediction module, which also
saves some computation (see Figure 5.1k and Figure 5.1(l)). The edge representation refinement
(see Figure 5.9(g)) is now dependent on the node representation refinement (see Figure 5.9(h)),
in contrast to the baseline implementation (see Figure 5.1(h)).

The results of new experiments with this architecture are displayed in Table 5.6. We observed
a slight improvement in F1@K and IR@K by using the modified edge representation, which shows
that the original fusion of subject and object prototypes is not optimal for the task. We also
observe a significant decrease in latency by removing the union features, which is consistent with
the results of the previous section. This is a very important result as it shows that the relation
prediction stage can be optimized to be more efficient and faster without losing performance.
When we compare the final model with the original Faster-RCNN implementation, we see a
consequent improvement in performance but also in latency, with almost a 10x gain in latency.
This is surely exciting news for the SGG community and especially the robotics community, as
it shows that the task can be performed in real time with a good trade-off between accuracy and
latency. We also observe a significant decrease in the number of parameters and GFLOPS, with
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Figure 5.9: Modified PE-NET model for SGG.

Backbone Head IR@K F1@K Latency (ms) Params (M) FLOPs (G)
Faster-RCNN PE-NET 10.7 10.47 277.62 425.99 2218.91
YOLOV8-L PE-NET 14.13 20.03 45.26 151.8 164.42
YOLOV8-L M-PE-NET 14.75 21.48 29.36 65.75 140.05

Table 5.6: Performance of the modified PE-NET model for SGG on the IndoorVG dataset.
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15x less GFLOPS require for our Modified PE-NET than the original model. This demonstrates
that the model is more efficient and can be deployed on edge devices.

5.5 Discussion

Even with improved latency and performance, the Real-Time SGG task is still far from being
solved. In this section, we discuss the limitations of SGG models and the challenges that remain
to be addressed for their deployment on edge devices.

5.5.1 Performance in SGG

The performance of SGG models that we obtained in our experiments is not very convincing.
For the Recall@K or meanRecall@K, the best model we have tested does not reach more than
27% in Recall@100 and 18% in meanRecall@100. This means that out of the top 100 relations
predicted, merely a fifth of them are correctly identified on average for each class (meanRecall
metric). If we put this information in perspective with other similar tasks such as VQA (VQA),
state-of-the-art models in VQA attain today more than 70% accuracy on traditional benchmarks.
Of course, this performance has to be mitigated by the fact that the task of SGG is bounded by
the performance of the object detector, which is not the case for VQA. However, this is still a
significant gap in performance that needs to be addressed. As we have seen, a significant increase
in the performance of the object detector does not necessarily translate into a similar increase
in performance for the SGG model. This is due to the inherent complexity of the task, which
can be pinned to one major issue: the intrinsic polysemy of natural language. In Figure 5.10
we display the confusion matrix of the PE-NET model for relation prediction on the IndoorVG
dataset. We can see the confusion created by the predicate “on” which is highly polysemous. This
issue has been pointed out by multiple previous works [18], [146] under the umbrella of long-tail
learning. As predicate annotations are very sparse for some confused classes (such as laying
on or mounted on), disambiguation can be proposed by artificially boosting the performance
on those tail classes. This can be done by using the Logit Adjustment method [147] or other
balance adjustment strategies [148], [149]. These methods can significantly boost the meanRecall
performance for SGG, however, their potential for real-world deployment is still to be evaluated.
In fact, there is often a significant shift between in and out-of-distribution data in Computer
Vision [150], which can lead to a decrease in the performance of the model when evaluated
on different data. Due to the sparse annotation of SGG datasets, we argue that this bias can
be even more important in the case of SGG models. When used in real-world settings, SGG
models will tend to predict true spurious relations or invalid fine-grained relations most of the
time. We display two examples of the M-PE-NET model predictions in Figure 5.11. In the first
prediction (b), we see that most of the relations predicted are correct, but spurious. The object
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Figure 5.10: Confusion matrix for the M-PE-NET model with YOLOV8-L backbone on the
IndoorVG dataset.

detector backbone is also not able to detect a wide range of objects in the scene. In the second
example (d), the model is predicting ⟨person, sitting at, counter⟩ which is not correct but very
likely to be true given the other relations (specifically the relations ⟨person, holding, bottle⟩ and
⟨bottle, on, counter⟩) as well as language priors. We hypothesize here that the visual features
are not taken into account to predict this relation, leading to failure. This shows that the task
of SGG is still far from being solved and that more research is needed to address the issue of
generalizing to out-of-distribution data.

5.5.2 A Multi-Modal Problem

As we have seen in the previous sections, not all modalities involved in the relation prediction
stage play a significant role. We pointed out the usage of the Union features for the relation
representation which seems to confuse more the PE-NET model than it helps it to converge. This
addresses the question of which modality plays the biggest role in the context learning of SGG
models. As we have seen, a lot of issues in the performance of SGG models come down to the
ambiguous nature of natural language, it is then possible that the linguistic features extracted
from the text embeddings are the most important modality for the task. In a new experiment,
we decided to change the PE-NET model one last time by removing all dependence on visual
features. This means removing the visual features and gate operation in step (h) (see Figure 5.9)

132



5.5. Discussion

(a) (b)

(c) (d)

Figure 5.11: Examples of SGG in real-time with the YOLOV8-L object detector and the PE-
NET model.
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Model IR@K F1@K Latency (ms) Params (M)
M-PE-NET 14.75 21.48 29.36 65.75

M-PE-NET w/o Visual 14.33 19.21 17.84 55.94

Table 5.7: Performance of the modified PE-NET model (M-PE-NET) with no visual guidance
on the IndoorVG dataset.

as well as removing the spatial features and the gate operation in step (g). By doing so and re-
training the model with the same hyperparameters as before, we obtain a performance of 19.21 in
F1@K and 14.33 in IR@K (see Table 5.7) which is very close to the performance of our modified
PE-NET model with visual features. By removing the dependence on visual features, the latency
drops significantly to a low 17.84ms per inference, taking into account that YOLOV8 alone takes
an average of 12.43ms, this means that the relation prediction stage takes only 5ms. This can
of course benefit the real-time implementation of SGG models but with the disadvantage of
losing all possible generalizations to out-of-distribution images. This shows the enormous bias
of the PE-NET model towards linguistic features and the misuse of visual features for the task.
Our findings are consistent with previous work which has shown that SGG models can attain
good performance without visual guidance [26]. However, not using any visual features is not
profitable for the task, and especially for generalization on out-of-distribution data. A model
without visual information will not be able to predict rare relations and will rely solely on
statistical information from the training data. In the past few years, a consequent amount of
work has been proposed based on the same two-stage architecture proposed in 2019 which, by
its structure, helps this bias to happen. We believe that a new architecture that does not use
linguistic features and a better fusion of spatial and union features could be more efficient for
the task. In fact, using linguistic features helps the model to converge very quickly but does
not necessarily help it to generalize to new data and may overfit the training data distribution
easily.

5.6 Concluding Remarks

In this chapter, we proposed the first implementation of a true real-time SGG procedure by
leveraging the YOLOV8 object detector. Our main finding is that the performance and latency
of SGG models can be greatly improved by optimizing the feature extraction and object detection
steps. However, the performance of SGG models is not strictly correlated with the quality of
objects detected by the object detector, as greater mAP does not necessarily imply greater F1@K
or IR@K performance for the task. We also found that the number of proposals used as input to
the relation prediction stage is a critical parameter for the performance of the model, for both
latency and accuracy. We observed that the quality of the proposals is more important than the
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quantity of proposals for the task. An optimal trade-off between latency and accuracy can be
found by using 40 object proposals as input to the relation prediction stage. Using the IR@K
metric, we observed that a low number (i.e. 10 or below) of high-quality proposals produces
a more informative graph even though relations for this number of proposals are deemed of
less quality by standard metrics (F1@K). This last point illustrates the limits and challenges of
current evaluation metrics and benchmarks used in the task which may not be appropriate to
evaluate real-world use cases of SGG.

Furthermore, we conducted additional experiments on the relation prediction stage of the
PE-NET model and found that the use of union features is not beneficial to form the initial
edge representation. By removing union features and optimizing the PE-NET model, we obtain
a final performance of 21.48 in F1@K and 14.75 in IR@K with a latency of 29.36ms per inference
on our IndoorVG dataset. This is an improvement of +105.02% in F1@K and +37% in IR@K
compared to the original PE-NET model with Faster-RCNN trained on the same dataset with
similar hyperparameters. Compared to the original model, the gain in latency is 955.17%, going
down from 277ms to 29ms which is close to the performance of the object detector alone. We
also found that the PE-NET model is highly biased towards linguistic features and that the use
of visual features is not beneficial for the task. By removing all visual features from the PE-NET
model, we obtain a performance of 19.21 in F1@K and 14.33 in IR@K with a latency of 17.84ms
per inference. This shows that the PE-NET model, and potentially other models in the SGG
task, still possess today severe limitations for their deployment in real-world applications.

In summary, in this chapter, we successfully leveraged the state-of-the-art real-time object
detector YOLOV8 as a feature extraction backbone for the task of SGG, and we proposed a
new implementation that achieves a competitive runtime latency of 29.36ms with an improved
performance of 62.17% in average on a large set of baseline models. Our approach is generic
and can be easily implemented in any two-stage SGG architecture to boost performance and
lower latency. This approach can be specifically beneficial for real-time constraint applications
such as during Human-AI collaboration in Activity of the Daily Life (ADL). We believe that our
approach for real-time SGG can be used to power the representation capabilities of autonomous
agents in these scenarios and enable them to understand and interact with the environment in
a more human-like way. In the next chapter, we will introduce a new architecture which takes
advantage of Scene Graphs to power the internal representation of the world of an autonomous
agent. We call this new type of representation Continuous SGG.
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CONTINUOUS SGG

We are drowning in information but
starved for knowledge.

John Naisbitt

Autonomous AI agents evolve in a dynamic world where the environment is constantly
changing. Representing such changes in a structured and comprehensive manner is a long-lasting
challenge in the field of Artificial Intelligence. In this chapter, we aim to tackle this issue from
the perspective of compositional relations. Compositional relations can be aggregated into Scene
Graph representations thanks to the task of SGG. In previous chapters, we tackled the task of
SGG from still images. However, in the context of autonomous agents, the environment is not
static and the agent should be able to reason over time. In this chapter, we introduce a new
paradigm for SGG in the context of autonomous agents. We propose a new representation based
on Scene Graphs that is continuously updated over time and that serves as the internal abstract
memory of the agent, i.e. a symbolic World Model.

Scene graphs are currently not tailored for temporal reasoning. Current approaches for this
purpose are limited because they replace the entire graph with new predictions, potentially eras-
ing previous detections that could still be valid [30], [151]. This is not suited for an autonomous
agent as it does not memorize past relations. Here, we define a new Continuous SGG paradigm
for autonomous agents: given generated scene graphs from each timestamp t, we update a sin-
gle Global Scene Graph (GSG) representation that encompasses all informative and plausible
relations gathered by the agent on the visual environment from timestamp t0 to tn. Here, infor-
mative refers to our definition of informativeness in Chapter 4. In addition, we define plausibility
as the likelihood of a relation existing in the real world, with respect to past relations in the
graph. As we are updating the relations in our Global Scene Graph with new predictions at
each new timestamp, some relations can be inconsistent with each other. For instance, a new
relation can be predicted stating that ⟨person_2, is sitting on, chair_1⟩ when another relation
⟨person_1, is sitting on, chair_1⟩ already exists in our representation. This is not plausible
in the real world, as it breaks basic common sense and needs to be handled before updating
the representation to avoid wrong interpretations of the scene. To tackle this issue, we applied
Constraint Optimization [152] to our representation via a set of commonsense rules to ensure
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consistency.
Our Global Scene Graph (GSG) representation serves as the internal memory of the agent and

is used for further reasoning. Downstream tasks include Activity Recognition [153], Automated
Planning [154], or even HRC [29]. In this chapter, we evaluate our approach on the task of
Activity Recognition and Automated Planning for Symbolic Learning by Demonstration. For
Activity Recognition, we provide a learning-free approach that can predict human activity from
our Global Scene Graph representation, without the need for any visual features. For Automated
Planning, we presented a new approach to generating planning domains from our Global Scene
Graph representation. We show that our approach can generate a PDDL [40] description from
our Global Scene Graph representation with no further processing. Activity Recognition and
Automated Planning are two key tasks in HRC. Our approach is based on a simple scenario where
a human is conducting various Activities of the Daily Life (ADL) in a domestic environment with
the help of an autonomous robot. However, in contrast to previous work, we do not assume any
specific knowledge of the environment or the human. Our approach is based on the continuous
learning of the environment and the human activities through time. Our system needs to be
able to (1) detect the activity being performed after a few demonstrations and (2) generate a
comprehensive plan of the actions which composed the activity to be able to reproduce them. To
achieve this goal, we will use objects and relations detected in the scene to generate a symbolic
representation of the environment and the human activities.

This chapter is organized as follows: in Section 6.1 we review the state-of-the-art on symbolic
representations in robotics, their limitations, and the need for a new paradigm. Then, we review
the latest trends and popular approaches for Video SGG and their challenges for real-world
applications. In Section 6.2 we describe the modifications done to the previously introduced
SGG architecture (see Chapter 5) to adapt it to videos. Next, in Section 6.3 we present our
Global Scene Graph (GSG) representation and the rules we defined to ensure common sense
consistency. In Section 6.4 we present a quantitative evaluation of our approach for the task of
Activity Recognition. Finally, in Section 6.5 we present a qualitative evaluation of our approach
for the task of Automated Planning for Symbolic Learning by Demonstration.

6.1 Related Work

While the task of SGG aims at representing all kinds of relations, their applications to robotics
are mostly tied to spatial relations [67], [68]. These approaches are modeling spatial relations
between objects to help autonomous agents navigate the environment. On the other hand, Video
SGG is a new task that aims at generating scene graphs from a sequence of images. In the
next sections, we review related work on temporal reasoning and knowledge representations in
robotics, as well as the latest trends in Video SGG and the challenges to adapt these approaches
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to robotic constraints.

6.1.1 Temporal Reasoning and Knowledge Representations in Robotics

Temporal Reasoning. Temporal reasoning have been used in robotics for a long time. From
the early works of Allen [155] to the more recent work of Beetz et al. [156] on knowledge
management, temporal reasoning has always been a key aspect of robotics. Theoretical methods
include different types of temporal logics such as Allen’s Interval Algebra [155], the Situation
Calculus [157] or the Event Calculus [158]. These methods are based on a set of rules that define
the temporal relations between events which are traditionally handcrafted. Implementations of
temporal reasoning in robotics is often associated to task planning. The usage of Answer Set
Programming (ASP) [159] or PDDL [40] for planning in robotics is popular. These methods are
used to generate plans for autonomous agents to perform tasks in the environment. However,
these methods assume a complete knowledge of the environment and the tasks to be performed.
They are not suited for real-world applications where the environment is dynamic, and the tasks
are not known in advance.
Knowledge Representations. Temporal reasoning requires extensive knowledge of the envi-
ronment, which is usually represented in a structured manner. Ontologies and taxonomies are
popular methods to represent knowledge in robotics [160]. Popular ontologies include the Robo-
Brain [161] or the KnowRob [71], [72] projects. These projects aim at representing knowledge in
a structured manner to be used by autonomous agents. However, these methods are not easily
generalizable to new data and are not robust to new scenarios and applications. They require
a lot of manual work to define the rules and cautious updates to adapt to new data. Semantic
graph and scene graph representations have gained popularity in robotics in recent years through
their applications in autonomous navigation [162], [163] and object manipulation [68]. In these
representations, relations are defined by spatial properties between objects and agents, often in
a 3D space. These representations do not represent other types of relations such as functional or
attribute and are thus limited in their applications. A second challenge of traditional Knowledge
Representation in robotics is the acquisition of knowledge [164]. Each robotic platform has its
own sensors and perception system, which makes it difficult to transfer knowledge from one
platform to another and generate the same representation. In this chapter, we present a new
approach to knowledge representation and reasoning in robotics based on Multi-Layer Scene
Graph representations (the different layers corresponding to Topological, Functional, Part-
Whole, and Attributive relations) that are continuously updated over time. In contrast to 3D
scene graphs, our approach uses only 2D images from RGB sensors which can be deployed in
almost any robotic platform. This representation combine the flexibility of deep learning meth-
ods through an SGG backbone and the robustness of symbolic reasoning through commonsense
rules and heuristic methods.
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6.1.2 Video SGG

Models. When generating scene graphs from a video flow, a complex structure is needed to
model relationships between images. The task of Video SGG was initiated by Shang et al. [165]
with a first approach at modeling relations through time as object tracklets and predicate. In con-
trast to object bounding boxes, object tracklets represent the trajectory of an object in the video
flow. Relations are typically predicted by frames and then aggregated to corresponding tracklet
pairs over the video sequence. Subsequent approaches, such as VSGG-Net will take inspiration
from this architecture and the current work in classical SGG [38] to propose a context learning
module to refine the graph representation before the final classification, improving efficiency.
Instead of a separated context learning module, Wang et al. [166] uses a Temporal Convolution
Network (TCN) paired with a Graph Convolution Network (GCN) for modeling within-image
dependencies to create coherent stories across video clips. Other works include the Target Adap-
tive Context Aggregation (TRACE) architecture [31]. Here, the authors use a temporal fusion
module to relate information from consecutive frames to each other in the latent space. Finally,
Li et al. [167] proposed to add a step of pre-training to their spatio-temporal architecture. This
pre-training aims at predicting the Scene Graph from the next frame given past frames. During
fine-tuning, this temporal context is combined with information retrieved from the current frame
to output the current graph. Authors claim a significant improvement over previous work [31]
with this method on Action Genome. Unfortunately, the aforementioned approaches are not yet
mature enough to be used in real-life applications. For instance, the TRACE architecture needs
to relate all frames from a video clip to each other, generating relations between past and future
frames to generate predictions. In real-world scenarios, predictions should be made in real-time
and the model should not have access to future frames. Finally, these approaches are not tailored
for the task of Continuous SGG. They are designed to generate a scene graph for every new
frame in the video, without keeping track of past predictions. This is not suited for our approach
as we need to keep a memory of past relations to ensure consistency in the representation and
allow further reasoning.
Datasets. In a first attempt at leveraging the power of compositional relations for video un-
derstanding, Shang et al. [165] proposed VidVRD in 2017. VidVRD is a dataset of 1,000 videos
with 35 object classes and 130 predicate classes for a total of 55,631 annotated triplets. This
dataset is focusing on temporal actions with relation triplets being annotated between agents
(person, animals, etc...) and objects. At the same time, VidVRD contains predicates which are
compositions of multiple relations, such as walk behind or walking faster than. The video clips
are short and depict activities being shared by multiple agents and their interactions (such as
someone walking their dog on the beach). This dataset is a good starting point for Video SGG
but is limited in the number of relations and objects annotated. It is also not representative
of real-world scenarios as the actions are limited to a few classes and the dataset is not large
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enough to cover all possible relations between objects, especially in the domestic context. In
2019, Shang et al. proposed a new dataset, VidOR, which encompasses more realistic video clips
for the task of Video SGG. VidOR is a large-scale dataset of 10,000 videos with 80 object classes
and 50 predicate classes. 42 of the 50 predicates are actions-related and the other 8 are spatial
relations. Like VidVRD, the dataset is mostly centered on representing actions between agents
and objects. The dataset is more diverse than VidVRD and contains more complex actions such
as shake hand with or playing (an instrument). However, the dataset is still limited because it
does not cover relations between objects in cluttered scenes. The ActionGenome dataset [85] is
another dataset annotated with scene graphs in videos. It represents a set of 10,000 short video
clips of an average 30s with HOIs annotations. Even though this dataset is used to benchmark
the most part of recent approaches in Video SGG, it is in fact a video HOIs (HOI) dataset as it
does not represent object-object relations. To our knowledge, there is no large-scale Video SGG
dataset that covers all relations in the frames, not only relations involving human subjects in a
comprehensive way. This is a major drawback for our approach as we need background annota-
tions between all entities to accurately model the context of the scene. Video SGG datasets focus
on modeling dynamic relations between moving objects and agents, forgetting static relations
which can still be relevant to describe the gist of the scene.

6.2 Informative SGG From Videos

In the previous sections, we showed that Video-SGG methods and datasets are not yet ma-
ture enough to be used in real-world Human-AI Collaboration. Building on our real-time SGG
approach introduced in Chapter 5, we propose to extend this architecture to videos. However,
using our Modified PE-NET model for inference in real-world images requires ensuring to filter
out False Positive detections. We cover this paradigm in Section 6.2.1. To capture the history
of relations from consecutive frames, we add a new module for Multi-Object Tracking (MOT)
to the SGG backbone to track similar visual entities in the video flow, see Section 6.2.2.

6.2.1 SGG Backbone

To generate informative graphs in every frame in real-time we used the Modified PE-NET (M-
PE-NET) model previously introduced which is optimized for real-time edge computing (see
Chapter 5). Inference in real-world images requires setting two confidence thresholds to filter
out (1) low-confidence objects detected and (2) low-confidence relations detected. For the object
detection, we set a threshold α = 0.194 by taking into account the average best performance
in the F1-score of all classes, see Figure 6.1. In this image, we can see that the average the
F1-score of all classes is maximized at a confidence threshold of 0.194 (strong blue line). For
object detection, the F1-score is computed as the harmonic combination of precision and recall,
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Figure 6.1: F1-score of the YoloV8-m model for all classes in the IndoorVG dataset for different
confidence thresholds. The average F1 is maximized at a confidence score of 0.194.

as follows:
F1 = 2× precision× recall

precision + recall
(6.1)

This metric is different from the F1@K score for relations. The best performance is for the class
refrigerator with an F1-score of 0.74 at 0.28 confidence threshold. The worst performance is for
the class key with a maximum F1-score of 0.11 at 0.06 confidence threshold. The performance
is particularly low for this class because both keyboard key and door key are annotated with the
key label, which confuses the model.

For relation prediction, we post-process predictions using the Informative Inference algorithm
introduced in Section 4.5 to ensure that only informative relations are kept. This algorithm re-
ranks relations based on a combination of their informativeness score and confidence score. As
we cannot compute the F1-score for relation prediction, we choose instead to use the Recall@K
metric to find the best confidence threshold for relations. After the Informative post-process,
we use the combined score as the new confidence score for each predicate class and average
this score for each true prediction in the top 100 relations (which correspond to Recall@100).
In Figure 6.2a, we show the average confidence score per class for the Recall@100 metric. We
compared the performance of the Informative Inference algorithm with the baseline algorithm
that only uses the confidence score of the model in Figure 6.2b. We can see that the Informative
Inference algorithm is able to increase the confidence score for all classes, especially for rare
classes. This is particularly important for our approach as we want not only to use confidence
to select true predictions but also to use confidence as an initial weight for the relations in the
Global Scene Graph. Edge weights in the GSG are used to remove low-confidence relations after
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(a) Baseline (b) Informative Inference

Figure 6.2: Average confidence score per class for relations prediction in the IndoorVG dataset
for the M-PENET model (Recall@100).

Settings R mR IR F1@K Latency
@20/50/100 @20/50/100 @5/10 (avg) (ms)

Baseline 17.81/19.10/19.21 15.66/16.79/16.96 14.98/20.41 17.52 26.57
Informative 12.11/17.84/19.21 8.58/15.48/16.96 16.32/21.32 14.88 30.87

Table 6.1: Performance of the M-PE-NET SGG model on the IndoorVG dataset, with α = 0.194.

a certain number of timestamps without update, as explained in Section 6.3.1.
In Table 6.1 we display the final performance of our model with an active selection of in-

formative relations and a confidence threshold for object detection set at α = 0.194. We can
observe that the performance in Recall@K and meanRecall@K is decreased compared to the
baseline without informative selection. However, the InformativeRecall@K has increased, which
is the most important metric for our approach. The post-processing by informative selection is
also increasing the latency of the model, which is expected as we are adding a new step in the
inference process. The latency only increases by an average of 4ms, staying under our threshold
of 50ms (see Chapter 5).

6.2.2 Object Tracking

To model compositional relations through time, object and subject nodes need to be persistent.
To solve this issue, we proposed to use an Object Tracking approach to track similar visual
entities in the video flow. We added a new module for Multi-Object Tracking (MOT) to the
two-stage SGG architecture presented in Chapter 5. This module takes as input the bounding
boxes and class labels predicted by YOLOV8 (see Figure 5.2 (d)) and generates a corresponding
identifier (ID) for each of them.

Here, we specifically used the OC-SORT approach [168] for real-time MOT. OC-SORT is a
state-of-the-art approach in MOT that is able to track objects in real time with high accuracy.
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The approach is based on the popular Simple Online and Realtime Tracking (SORT) algorithm
[169]. SORT uses a Kalman filter [170] combined with a Hungarian matching algorithm [171] to
estimate the position of objects in the video flow and match new detections with known objects.
SORT-based approaches can be inefficient for tracking objects during occlusions as a Kalman
filter typically assumes linear trajectory during occlusions. To solve this problem, OC-SORT
introduces a virtual trajectory estimation based on pre- and post-observations before and after
occlusion to update the Kalman filter parameters. Combining this with traditional Kalman-based
SORT approaches makes the overall tracking more robust to occlusions and noisy detections,
without significantly impacting running time [168].

To further boost the performance and reduce memory consumption, we used OC-SORT with
the class-based association. For multi-class object tracking, objects can be tracked independently
for each class. This process lowers the matching cost as the Hungarian algorithm will only be
applied to objects of the same class. If no more than one object of each class is present in the
image, the tracking will be almost instantaneous because the only operation performed in this
case is to save bounding box coordinates for the Kalman filter. We used a custom implementation
of the OC-SORT algorithm based on the popular implementation boxmot for real-time object
tracking 1. We set the maximum age variable to 30: after this period of time with no update,
past detections are removed from the tracking list.

Finally, we feed the OC-SORT tracker with the bounding boxes and class labels predicted
by YOLOV8 and the confidence score of the model. The tracker outputs a unique ID for each
detected object, which is then associated with the corresponding node of the scene graph and
fed to the Global Scene Graph (GSG) representation.

6.3 The Global Scene Graph

We define a Global Scene Graph (GSG) structure that is continuously updated over time and
that serves as the internal memory of the agent. This structure takes as input the scene graphs
generated by the SGG backbone at every timestamp and maintains a continuous representation
of the environment through time. We aggregated relations at every new timestamp, which led
to a lack of consistency. To ensure consistency in such representations, traditional approaches
use handcrafted ontologies [72], [160], [161]. Defining a comprehensive ontology of relations
would be difficult in our case as our SGG model can predict up to m × n × (n − 1) different
⟨subject, predicate, object⟩ triplets, with m being the number of predicate classes and n the
number of visual object classes. For the IndoorVG dataset, with m = 37 and n = 84, there
are 257,964 possible relations which lead to a considerable amount of rules to define. Whilst
we cannot manually define proper rules for every possible relation, we can define rules per

1https://github.com/mikel-brostrom/boxmot
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relation category. In fact, we introduced in Section 3.2 a taxonomy of relation types, which can
be autonomously inferred using a language model (see Section 3.4.3). Given this taxonomy, we
split our Global Scene Graph into four different layers: Functional, Topological, Part-Whole,
and Attributive. This multi-layer representation is called a multiplex network.

Definition 6.3.1 (Multiplex Network). A multiplex network is a graph where nodes are con-
nected by multiple types of edges [172]. In our case, the nodes are the entities detected in the
scene and the edge types are the relations categories.

Our GSG is a multiplex network but keeps the same node attributes as the Scene Graph
generated from the video, which are the bounding box coordinates, the class label and the
corresponding ID. For a set of object classes O, a set of relations R, and a set of layers D we
have:

G = {V, E, D} (6.2)

v = {o, {x, y, w, h}}, o ∈ O (6.3)

e = {u, v, d, r, τ, ω}, {u, v} ∈ V, d ∈ D, r ∈ R, (6.4)

with {x, y, w, h} being the bounding box coordinates of the object o, τ the timestamp of the
relation and w the weight of the relation. We detail the computation of ω and its usage in the
next section. We display a representation of this multiplex network in Figure 6.3.

6.3.1 Edge Dynamics

To make edges continuous through time, we define edges as matrices of size n ×m where n is
the number of timestamps and m is the number of layers (m = 4 in our case). Each cell of the
matrix represents a state of the relation between two nodes at a given timestamp and for a given
dimension. To make this process more robust, we need to filter out wrong detections by ensuring
time consistency with previous detections. Inspired by the work of Zhuo et al. [173], we deployed
a state refinement mechanism for this purpose. State refinement goes as follows: we set a sliding
window variable θ (θ = 3) that represents the number of timestamps to consider for the state
refinement. For every new relation detected, we compare it to its previous states and wait for
future detections to confirm or infirm the relation. An example is depicted in Figure 6.4.

In addition, every new relation added to the GSG is given a weight value ωr. ωr is a value
of confidence or certainty that the relation exists. When an existing relation is detected again,
we update its confidence value as follows:

ωr = ω(r−1) + σ(τc − τr), (6.5)

with ω(r−1) the previous confidence value of the relation, σ a constant value (σ = 0.5), τc the
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Figure 6.3: Example of a scene graph as a multiplex network with 4 layers, each layer representing
a relation category (Part-Whole, Attributive, Functional and Topological). Dash lines
connect similar nodes from different layers, they are added only for visualization. Plane lines
represent relations between nodes.

current timestamp and τr the last timestamp of the relation. This ensures that relations detected
multiple times in a row will have a strong confidence value. We use the original confidence value
given by the SGG backbone as the initial weight of the relation.

6.3.2 Consistency

Inserting new relations in the GSG can lead to inconsistencies in the representation. We used
Constraint Optimization [152] to refine the edges of the graph according to a set of commonsense
rules. To be able to deploy our solution easily in a new environment and with new data, rules
need to be set up only at the layer level. As a result, our approach can be easily adapted to new
data and new scenarios. We defined a set of rules to ensure the consistency of the representation,
as follows:

• Transitivity: an object node of a part-whole relation possesses the same topological rela-
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Figure 6.4: Example of state refinement for a relation between two nodes at a given layer. States
are represented by the label of the relation, for instance 8 = above and 5 = below. The sliding
window is set to 3 timestamps (i.e. ω = 3).

tions as the subject node, example:
⟨person, behind, table⟩ + ⟨hand, part of, person⟩ → ⟨hand, behind, table⟩

• Belonging: A node cannot be the object of more than one part-whole relation. A new
part-whole relation detected with a new entity will remove the current one.

• Functions: A functional relation will be removed if the object or subject nodes are not
detected anymore at time tn. This is to ensure that functional relations are only kept if
the object or subject nodes are present in the scene.

Our Global Scene Graph representation is generated over time to represent contextual fine-
grained information through Functional, Topological, Part-whole, and Attributive rela-
tions. This design allows the easy refinement of the generated graph according to basic semantic
rules. Temporal consistency is also handled thanks to dynamic weight for each relation. In the
following section, we detail how we use this new representation for commonsense reasoning in
the context of Human Activities Understanding.

6.4 Evaluation: Activity Classification

To evaluate the relevance of our Global Scene Graph representation, we performed experiments
with the downstream task of temporal action recognition from videos. Temporal action recog-
nition aims at classifying every frame in a given video clip into a set of known human action
classes. Typical approaches in this task use image features to train DNN models in a super-
vised manner [174]. In contrast to previous work, we use exclusively the generated Global Scene
Graph to infer the action being performed in a given video clip, without the addition of any vi-
sual features. The hypothesis here is that contextual information from background relations will
help to classify the current action, even when no object label is present in the action class (e.g.
"Someone is eating something"). We used 200 videos from the Charades dataset [175] that are all
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annotated with one or more human actions. We removed actions that are not based on relations
with objects (such as <Someone is smiling> or <Someone is standing up from somewhere>)
to keep 131 action classes. For every video, we generated a Global Scene Graph representation
by applying our approach. At every new timestamp, we predict the activity being performed as
follows:

1. We select all relations directly or indirectly linked to the person node, except the part-
whole relations as they are not contextual (part-whole relations are still used indirectly in
the Semantic Consistency refinement of other relations)

2. We retrieve the BERT [110] embedding of every ⟨subject, predicate, object⟩ triplet

3. All embeddings are averaged and compared to stored embeddings of activities using cosine
similarity

4. Action candidates are ranked using the confidence weight ωr of relations

5. The top-1 activity is selected

This process ensures that relations with higher weights are more important for the final
decision. Such relations will often be related to foreground objects or persons that are essential
to the understanding of the scene. We evaluate our approach using the mean Average Precision
(mAP) metric on all action classes from all video clips. If no ground truth is available in one
frame, prediction is not counted as a false positive but discarded instead. For efficiency, we
processed the videos at 6fps. We used as a baseline the static scene graph generated by the
SGG backbone in every frame to compare our approach. Results are shown in Table 6.2. Current
state-of-the-art methods in this task report result up to 26.95% mAP on this dataset [176], but
with slightly different evaluation protocol (evaluation on evenly-sampled 25 frames from each
validation clip).

Even though our approach did not outperform previous work, our results are significant tak-
ing into account that we did not specifically train on the Charades dataset. In fact, our approach
for this task can be associated with zero-shot settings. We qualitatively experienced better results
with actions relying on specific objects that our backbone was able to detect. However, we also
experienced good results in high-level actions (such as Someone is cooking something) relying
only on background contextual relations from our graph (such as ⟨person, in front of, stove⟩).

In the Charades dataset, there is only one person in every video, however, our approach can
predict actions related to n different humans at a time, taking into account that each human
node possesses at least one relation in the graph, which is not necessarily the case of end-
to-end learning approaches for the task [176]. In addition to temporal action recognition, our
approach is also able to provide a spatially grounded rational for every prediction in the form of
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Continuous SG Static SG
mAP 0.1292 0.02

Table 6.2: Results on Temporal Action Recognition from the Charades dataset [175] using (1)
the M-PENET with our continuous implementation (see section 6.3) and (2) the static imple-
mentation (i.e. all previous relations are discarded at every new timestamp).

the top-related relations in the graph and associated bounding boxes. This is likely important
information for an autonomous agent to understand the context of the scene and to be able to
interact with the environment, for instance in a HRC scenario. In the next section, we explore
such scenario with new experiments in the context of learning new tasks from observations.

6.5 Experiments: Learning From Observations

In natural interactions between humans and autonomous agents in domestic environments, a
common behavior is the observation and reproduction of simple tasks. We can take for instance
the task of cleaning a table after dinner. In such a scenario, we assume that the human has a
definitive understanding of the task and can perform it without any additional information. In
contrast, the observer (in our case the AI agent) has no priors of the task or the environment.
This is a common scenario in HRC where the robot needs to learn a new task by observing
a human expert. In such settings, the common approach is to learn low-level trajectories and
transfer them to the autonomous agent [177]. However, this approach is not robust to (1) changes
in the environment, (2) changes in the scheduling of the task, and (3) changes in the capabilities
of the autonomous agent. To solve these problems, it could be convenient to learn a symbolic
representation of the task, with correct scheduling, and apply basic low-level behaviors of the
robot to reproduce the task.

Such behavior is related to the automated generation of robotic planning domains from
demonstrations [178]. In a recent work, Andrea Maria Zanchettin [154] presents a new approach
to demonstration learning which aims at learning the symbolic representation of human demon-
strations. In their approach, authors proposed to use a graph representation of the scene which is
then translated to a PDDL Planning Domain through various axioms. This approach is promis-
ing as it enables learning a symbolic representation of the action from a single demonstration,
whereas usually other approaches often need more [179]. Inspired by the work of Andrea Maria
Zanchettin, we propose to use our Global Scene Graph representation to learn a planning do-
main, which could be further used by the agent to reproduce the observed actions. We use the
Planning Domain Definition Language (PDDL) [40] to model this planning domain.
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6.5.1 PDDL Implementation

PDDL is a formal language for defining planning domains [40]. A PDDL domain is defined by a
set of types, predicates, actions, and constants (optional). We define two types for our approach:
agent and object. The nodes in the GSG with the label person will be defined as agent and all
other nodes as object. Predicates are defined as relations between two entities in our graph, e.g.
behind(object, object). Actions are an important component of a planning domain because they
define rules of changes in the environment. Actions in PDDL are specified by:

• Parameters: the entities involved in the action

• Preconditions: the conditions that must be true for the action to be executed

• Effects: the changes in the environment after the action is executed

To identify preconditions and effects, we define transitional states as actions of an agent which
modify the state of at least one object. In our case, we define a transitional state as a relation in
our graph that modifies one or more relations of another node at the next timestamp. For in-
stance, the relation ⟨person, holding, bottle⟩ at time tn can modify the relation ⟨bottle, on, table⟩
at time tn−1 to ⟨bottle, on, shelf⟩ at time tn+1. We can then identify the preconditions and ef-
fects of this action by comparing the Global Scene Graph at two different timestamps. Instead
of only looking at the previous and next timestamps, we set a sliding window of 10 frames to
look back and forward for relation changes. This approach is necessary because actions can span
long durations and may be interrupted by other actions. Setting this threshold will also cope
with missing detections in the scene graph.

Some actions can directly modify the states of objects (such as holding, drinking) while some
other will have more indirect effects (such as sitting on or lying on). For simplicity here, we will
take the example of the holding action in the Functional layer to demonstrate our proposal.
In the same way, for simplification, we will only consider the Topological layer of the Global
Scene Graph to define the preconditions and effects of the action. In Algorithm 4, we describe
the algorithm to find preconditions and effects for a given transition in the GSG. This algorithm
first looks for preconditions for a given transition and then looks for effects. The algorithm is
applied for every transition of interest in the GSG.

We propose to visualize one example of a PDDL action identified using the proposed algo-
rithm. In a short video clip, one person (i.e. an agent) is moving a glass from a table to a shelf.
Figure 6.6a shows the Global Scene Graph (left) before the action takes place. We see the rela-
tion ⟨glass, on, table⟩ identified. In the next frame, the person is holding the glass and moving
it to the shelf, see Figure 6.6b. We can see the relation ⟨person, holding, glass⟩ in the GSG and
the absence of ⟨glass, on, table⟩. Finally, the glass is placed on the shelf, see Figure 6.6c. The
relation ⟨glass, on, shelf⟩ is identified in the GSG and ⟨person, holding, glass⟩ disappears. The
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Algorithm 4 Finding preconditions and effects for a given transition in the GSG.
1: Inputs:
2: Target relation rel
3: Functional states F[0→n]
4: Topological states T[0→n]
5: Outputs:
6: Preconditions P
7: Effects Q
8: temp_states← ∅
9: P ← ∅

10: Q ← ∅
11: sliding_window = 10
12: for each index i in the range of len(F) do
13: for each state in F [i] do ▷ Here we look for preconditions
14: if state ∈ rel then
15: temp_states[state] = i
16: obj = state[1] ▷ Find object of the transition
17: P[state]← empty list
18: for each index j from max(0, i− sliding_window) to i− 1 do
19: for each topo_state in T [j] do
20: if topo_state[0] == obj then ▷ Find object in the topological layer
21: P[state].insert(topo_state)
22: end if
23: end for
24: end for
25: end if
26: end for
27: for each (k, v) in temp_states.items() do ▷ Here we look for effects
28: if v < i then ▷ Verify that the transition is over
29: if k not in P then ▷ No preconditions so no effects
30: continue
31: end if
32: Q[state]← empty list
33: for each index j from i + 1 to min(i + sliding_window, len(T )) do
34: for each topo_state in T [j] do
35: if topo_state[0] == obj and topo_state /∈ P[k] then
36: Q[state].insert(topo_state)
37: end if
38: end for
39: end for
40: end if
41: end for
42: end for
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Figure 6.5: Example of a transition identified using the interactions of the Topological and
Functional layers of the Global Scene Graph.

goal of our algorithm is to identify the initial state of the world, the transition, and the final state
to generate a PDDL action. Initial states and the transition will serve as preconditions and the
final states as effects, see Figure 6.5 for a schematic visualization. In Listing 6.1, we display the
PDDL action generated by our algorithm in this example. We can see that the transition from
the table to the shelf is correctly identified. Parameters are comprised of all entities involved in
the action. The name of the action is generic, in this case, it is extracted from the effect of the
action. The process of extracting PDDL actions from our Global Scene Graph can be used in
real-world applications, such as during learning from observations.

Listing 6.1: PDDL “move on shelf” action.
( :action on s h e l f

:parameters (
? person − agent
? g l a s s , ? s h e l f , ? t ab l e − ob j e c t

)
:precondition (and

( on ? g l a s s ? t ab l e )
( ho ld ing ? person ? g l a s s )

)
: e f f e c t (

( on ? g l a s s ? s h e l f )
)

)

6.5.2 Implementation: ROS2 Integration

In order to test our approach in a real-world scenario, we integrated our Global Scene Graph
as well as our Planning Domain Generation algorithm in a Robot Operating System 2 (ROS2)
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(a) Initial State, t = 0

(b) Transition, t = 5

(c) Final State, t = 10

Figure 6.6: Global Scene Graph generated at each time step for the action “putting glass on
shelf”, for clarity representations in between key timestamps are not displayed.
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[180] environment. The ROS2 framework is used to gather images from a robot or laptop camera
and to control the behavior of the different modules. As per the ROS2 architecture, we defined
four different nodes:

• SGG Node: This node is responsible for generating a Scene Graph from the RGB images.
We used the M-PENET model coupled to the OC-Sort tracking algorithm for this task. In
addition, this node performs Informative Selection to keep only relevant relations in the
graph.

• GSG Node: This node is responsible for generating the Global Scene Graph by aggre-
gating relations gathered by the SGG node. This node also performs the state refinement
and adds edge dynamics to the graph. This node also output a dynamic visualization of
the GSG for debugging purposes.

• Reasoning Node: This node is responsible for generating the Planning Domain from the
Global Scene Graph. It queries the current states of nodes from the GSG node and uses
the algorithm described in Algorithm 4 to identify preconditions and effects of transitions
in the graph. This node can also perform Activity Recognition, as described in Section 6.4.

• Manager Node: This node is responsible for managing the communication between the
different nodes. It can launch or stop other nodes by using service or action calls.

This architecture is summarized in Figure 6.7. The SGG node listen to the /camera/image_raw

topic and outputs the Scene Graph on the /sgg topic. The GSG node listens to the /sgg topic
and outputs the Global Scene Graph on the /gsg topic. The Reasoning node listens to the /gsg

topic. It can be triggered by a service call to generate the Planning Domain. The Manager node
listens to the /gsg topic and can trigger the Reasoning node by a service call. The Manager
node can also trigger the Activity Recognition by a service call. Each PDDL actions generated
is stored in an actions bank and can be access by the Manager node. This architecture can be
easily extended with the addition of a Planning Node that would use the generated Planning
Domain (actions bank) and the GSG to plan a sequence of actions to perform a given task
(see Planning Algorithm in Figure 6.7). This architecture has been implemented on a Pepper
robotic platform 2, with the scene graph generation node being deported on an external laptop
for computational reasons. The robot is equipped with two RGB cameras, we used the front
camera for getting RGB images at 30FPS. The overall latency of the system is around 5FPS
(SGG + GSG + Reasoning) which is sufficient for real-time applications. Next, we evaluated
the relevance of our approach on the DAHLIA dataset [181], a real-world dataset of daily life
activities.

2https://corporate-internal-prod.aldebaran.com/en/pepper
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Figure 6.7: ROS2 Integration of the Global Scene Graph and Planning Domain Generation
algorithm.

6.5.3 Evaluation: The DAHLIA Dataset

The DAily Home LIfe Activity (DAHLIA) dataset is a dataset of long-term human activities
performed in home environments. The dataset is composed of 44 videos of 44 different subjects
performing daily life activities such as cooking, cleaning, or working. The dataset contains 7
different annotated activities performed in a kitchen environment. In addition to RGB videos,
the dataset contains depth maps and skeleton data collected by a Kinect sensor. Three different
viewpoints are available for each video and each video lasts an average of 39 minutes. The dataset
is annotated with the following activities: Cooking, Laying Table, Having Lunch, Clearing Table,
Washing Dishes, Working and House working.

At the difference of other ADL datasets [175], DAHLIA introduces very long videos of daily
life activities, which is more representative of real-world scenarios. Benchmarking our approach
on the DAHLIA dataset is particularly valuable because our Global Scene Graph representation
is designed for continuous updates over long period of time and can be used to learn multiple
tasks with the same representation. Another advantage of DAHLIA is the high quality of the
videos (lightning, resolution) and the diversity of objects and their interactions in the scene. We
display an example of two activities from the DAHLIA dataset in Figure 6.8. The first activity
(Figure 6.8a) is Working and the second activity (Figure 6.8b) is Cooking.

We used the DAHLIA dataset to evaluate our approach for automated planning. We used the
same approach as previously described to generate a Planning Domain from the Global Scene
Graph. First, we evaluate the relevance of our approach by measuring the number of correct ac-
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(a) (b)

Figure 6.8: Example of two activities of the DAHLIA dataset.

Video True Positive False Positive
1 21 14
2 19 28
3 59 44
4 19 18
5 43 51

Recall 0.51

Table 6.3: Performance of the Automated Planning approach on the DAHLIA dataset.

tions identified and translated into PDDL. We ran our approach on 5 different videos randomly
sampled in the DAHLIA dataset. The length of the videos ranges from 32 to 51 minutes. Because
the DAHLIA dataset does not contain any ground truth for the scene graphs or actions, we man-
ually evaluated the relevance of the generated PDDL actions. For each PDDL action generated,
we watched the corresponding video clip and evaluated if the action was correctly identified and
translated into PDDL. We then computed the Recall of the approach as the number of correct
actions identified divided by the total number of actions in the video. We display the results
in Table 6.3. We can observe that our approach can identify correctly a significant number of
actions in the scene, with less than 50% of false positives. This is encouraging as it shows that
we can learn, end-to-end, a significant amount of actions performed in day-to-day activities from
a symbolic representation. We observed that a lot of actions generated contained the same set of
objects and relations. We hypothesize that the SGG backbone could be in fault here. Likewise,
we can pinpoint two issues: (1) the default of the object detector to detect certain classes and
(2) the lack of diversity in the predicate classes of the IndoorVG dataset. We believe that with
a bigger and more diverse base dataset, our approach could be able to identify more actions in
the scene. To test this hypothesis, the DAHLIA dataset could be directly annotated with object
coordinates and relations, allowing to train our SGG model in better conditions.

We also display the results of the same approach without the Informative Selection process
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Video True Positive False Positive
1 3 0
2 1 0
3 3 1
4 1 2
5 1 1

Recall 0.69

Table 6.4: Performance of the Automated Planning approach on the DAHLIA dataset, SGG
without Informative Selection.

in Table 6.4. We can observe that the number of actions identified is significantly lower than
with the Informative Selection process. Even if the Recall is higher, with this few number of
actions identified, measuring the recall is not relevant. This shows the importance of selecting
only informative relations in the Global Scene Graph to generate actions in PDDL.

We tried to understand why there is such a significant gap between the number of actions
identified with and without the Informative Selection process. For generating graphs without
the Informative Selection process, we used the output of the SGG backbone with a confidence
threshold of 0.3 for relations (see Figure 6.2a). By comparing the number of relations predicted
in each setting, we were able to pinpoint the issue: the number of relations predicted by the
SGG backbone is significantly higher when using the Informative Selection process, especially
for action-related predicates. We display a comparison of the number of relations predicted by
predicate class in Figure 6.9. For clarity, we display numbers in a log scale. We observed a
higher count of relations predicted with our Informative Selection, especially for fine-grained
predicates such as sitting on, cutting, reading, or looking at. We also observed a higher count of
spatial predicates such as in front of, behind, or under. This shows that the Informative Selection
process is very important to generate relations that could be used to generate a Planning Domain
from the Global Scene Graph. Of course, it is very likely that more False Positive relations are
predicted with the Informative Selection process, but this seems to be still beneficial for the
performance of our PDDL parser.

6.5.4 Discussion

Our approach to automated planning discovery can be extended in many ways. For instance, we
can learn hierarchical relations between object classes by aggregating actions generated by our
PDDL algorithm, without any priors on the object classes. To follow up our previous example, we
can learn a new class of entities called movable by aggregating all actions that involve moving an
object from one place to another. The action of “moving” is determined by a change of relation
in the Topological layer of our Global Scene Graph, as we have seen with the example of the
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Figure 6.9: Number of relations predicted by predicate class per video in the DAHLIA dataset.
Average over 5 videos.

Movable Objects Static Objects
bottle, door, bag, basket, bowl, cup,
knife, glass, plate

cabinet, microwave, counter, sink,
faucet, floor, wall, table, shelf, stove

Table 6.5: Classes of entities learned from the DAHLIA dataset.

glass being moved on the shelf (see Figure 6.5). By looking at all objects involved in this type
of action during the course of the observations, we can find patterns and define a new class of
entities. On the other hand, objects involved in the preconditions but never in the effects of
an action can be defined as static entities. By mining these two types of objects in the actions
generated from the DAHLIA dataset with the “holding” action, we obtained a realistic list, see
Table 6.5. This example demonstrates the perspectives of our approach for related tasks such
as learning new concepts from continuous symbolic representations.

However, limitations are still important. As we have seen with the DAHLIA dataset, a
significant amount of PDDL actions generated are wrong, due to wrong detections of the SGG
backbone. For instance, the relation ⟨person, holding, microwave⟩ was almost systematically
detected every time the person in the video was walking past the microwave, even when there
was no contact between the person and the microwave. This shows the limit of SGG models in
the real world and the need for more robust approaches. A second limitation that we noticed is
the performance of the Multi-Object Tracking algorithm [168]. This type of tracker can struggle
to keep track of objects which move a lot in very long time frames. We can observe that this is
especially the case in the DAHLIA dataset where the camera is fixed, and the person is moving
a lot in the scene, turning his back to the camera or moving out of the field of view. This
is a common issue in real-world scenarios and a lot of research is still needed to improve the
performance of these trackers [182]. One opportunity for our Global Scene Graph representation
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is to augment the tracker by providing the history of relations for lost tracklets. For instance,
if the person is turning his back to the camera and the corresponding tracklet is lost, it would
be convenient to compare the relation of a new person’s tracklet and the former one to find
similarities. As an example, the Part-Whole layer could be used here to look for relations
between the person and its parts (such as the hands) to find similarities, and then re-associate
the tracklet. In this case, we assume that the tracklets for the parts have not been lost.

6.6 Concluding Remarks

In this chapter, we introduced a new approach for Continuous SGG in robotics. This approach
models a new representation of the environment called the Global Scene Graph, which repre-
sents the evolution of compositional relations through time. This representation is powered by a
SGG backbone and a Multi-Object Tracking module. In contrast to standard representations of
the sort, we proposed to divide our representation into four different layers, each representing a
category of relations: Topological, Functional, Part-Whole, and Attributive. This process
can alleviate the lack of consistency in the representation with the use of dedicated common-
sense rules. We presented four different axioms which are used to maintain the consistency of
the representation via Constraint Optimization. Our Global Scene Graph is an end-to-end repre-
sentation that can be generated directly from videos, furthermore, it is generic and can be used
with any scene graph dataset or any SGG model. We successfully implemented our approach on
a Pepper robot in a ROS2 environment.

We illustrated the opportunities of our approach in two downstream tasks: Temporal Action
Recognition and Automated Planning. We showed that our approach is able to predict actions
from videos without the need for visual features and that it can be used to generate Planning
Domains in PDDL. We evaluated our approach on the Charades dataset for Temporal Action
Recognition and on the DAHLIA dataset for Automated Planning. For the latter, we proposed
a new approach to automatically generate PDDL actions from the continuous representation.
This approach has been manually evaluated on the DAHLIA dataset as no ground truth was
available. Results are promising with an overall Recall of 51% for the Automated Planning task.

Both approaches presented in this chapter open new perspectives for the usage of SGG in
Human-AI collaboration scenarios. First, these types of representations are easy to visualize and
understand by humans, which is important for trust in robotic agents [183]. Second, our approach
can be used in real-time and on low-resource hardware thanks to an optimized SGG backbone
(see Chapter 5), which can also be useful for real-world implementation on robotic hardware.
However, challenges remain for robustness such as the limitations of the SGG backbone or the
performance of the Multi-Object Tracking algorithm.

159





Chapter 7

CONCLUSION

What are the main causes of the limitations of current SGG in real-world applications? What
are the opportunities for SGG in HRC? These two questions have been the main focus of this
work: the former mainly emerged as a result of addressing the latter. At first, generating end-
to-end comprehensive scene graphs from visual scenes seemed to be a promising approach for
HRC scenarios. SGG methods can alleviate the need for hand-crafted rules and provide a more
flexible and interpretable representation of the environment. However, the limitations of current
SGG methods have become evident in the context of real-world applications. As an attempt
to address these limitations, we have proposed a set of contributions that aim to bridge the
gap between theoretical approaches to SGG and real-world implementations. The problems we
addressed in this work are not only related to the usage of SGG in robotics but can also be seen
as a general limitation of SGG methods. In this chapter, we summarize the main contributions
of this work, discuss the limitations of our approach, and outline the opportunities for future
research in this field.

7.1 Summary of Contributions

This work has resulted in four main contributions, spanning the field of Visual Understanding,
Knowledge Representation, and Robotics Planning. This work covers all the main stages of the
data annotation, model training, model evaluation, and deployment in real-world settings of a
SGG solution. The main contributions of this work are summarized in the following.

In Chapter 3 we have addressed the problem of data annotation for Scene Graph datasets.
Annotating compositional relations in images is a challenging task due to the polysemy of natural
language and human biases in selecting relations of interest. As a result, common SGG datasets
that have been proposed so far are limited in terms of the diversity and quality of relations
annotated. We have quantified this issue by categorizing compositional relations based on their
semantic meaning. We found that, for most SGG models, the over-representation of the Part-
Whole category can lead to biased learning and evaluation. To address this issue, we have
proposed a method for refining data annotations by removing irrelevant Part-Whole relations.
In addition, we proposed a new method for selecting data classes based on their inter-dependence
rather than overall frequency, which results in higher-quality annotations. We have evaluated this
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method on the popular Visual Genome dataset, however, it can be applied to any other Scene
Graph dataset. In particular, we can implement our method for data selection and refinement
of in-domain data splits, which can be used in real-world applications. As a study case, we
proposed a new data split, IndoorVG, which is a subset of the Visual Genome dataset that
contains only indoor scenes. We have shown that the IndoorVG dataset has a higher quality
of annotations compared to the original Visual Genome dataset. We have also shown that the
IndoorVG dataset can be used to train a SGG model that generalizes better to indoor scenes
throughout the following chapters.

If SGG datasets are limited in terms of quality, the actual evaluation process and inference
method of SGG models are also limited for real-world applications. Current metrics in SGG are
difficult to relate to actual needs in real-world applications. In Chapter 4 we have addressed the
problem of informativeness of relations in Scene Graphs. Informativeness is a concept that (as
we have defined it) has not been addressed in the literature on SGG. Inspired by the prevalence
of informative relations in human descriptions of visual scenes, we have demonstrated that the
informativeness of relations can highly impact the performance of SGG models in downstream
tasks. We have proposed a new metric for evaluating the informativeness of relations in Scene
Graphs, the InformativeRecall@K, which can be used to benchmark approaches for real-world
usage. We have also proposed a new inference method, the Informative Selection, which can be
used to re-score predictions of SGG models to better reflect the importance of each relation in
the scene. This approach has been successfully evaluated in four downstream tasks, including
VQA, Image Captioning, Image Generation, and later on in SGG scenarios (see Chapter 6).
Our method can improve performance in those tasks, by a slow margin for certain (e.g. Image
Captioning) and by a large margin for others (e.g. Image Generation).

In Chapter 5 we have addressed the problem of real-time SGG. Real-time SGG is a re-
quirement for real-world applications, such as SGG, where the robot needs to understand the
environment in real time. We have proposed a new method for real-time SGG, which is based
on the popular two-stage approach. We have replaced the first stage of the SGG pipeline with
the real-time object detector YOLOV8 and modified the second stage to be more efficient. In
particular, we have removed computations and requirements that do not significantly contribute
to the performance of models to attain real-time inference. We have evaluated our method with
different baseline models on the IndoorVG dataset and shown that it can achieve real-time
performance on a single GPU, with up to 10x gain in latency and no loss of accuracy.

Finally, in Chapter 6 we have successfully validated our previous contributions in downstream
tasks related to robotics applications. To demonstrate the opportunities of SGG in new domains,
we proposed a new architecture for Continuous SGG in SGG. In such scenarios, our SGG model
serves as a backbone to build a continuously updated internal representation of the environment,
a World Model. We called this representation the Global Scene Graph (GSG). A Global Scene
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Graph can aggregate important relations through time and can be used to plan robotic actions.
Here, we proposed a new method for automated planning domain generation from Scene Graphs,
based on human observations. This method can be used to collect possible actions and their
effects on the environment from human demonstrations, which can be further used by the agent
to plan assistive actions for instance. We quantitatively and qualitatively benchmarked our
approach on the real-world DAHLIA dataset.

The investigations conducted in this work have permitted to identify a few shortcomings of
current SGG methods, which are limiting their applicability in real-world scenarios. In the next
sections, we discuss the limitations of our approach and the opportunities for future research in
this field.

7.2 Limitations

The limitations of our approach can be summarized in two main points: (1) the domain gap
between annotated data and the needs of real-world applications and (2) the over-complexity of
SGG models. Regarding the annotations of Scene Graph datasets, we have shown that the quality
of annotations can highly impact the performance of SGG models in real-world applications.
However, our proposed method is limited to the refinement of existing datasets [8]. A better
approach would be to generate new data annotations from scratch, making sure that annotators
are taking into account the relevance and informativeness of relations. Nevertheless, such an
approach is complicated because SGG models need to be trained on a fixed set of m object
classes and n predicate classes, which will always result in images where some relations are
missing. To create a "perfect" dataset for SGG, one should carefully (1) determine a correct set
of object and predicate classes that is semantically coherent (for instance avoiding polysemy
as much as possible) and (2) select training images where all informative relations (i.e. related
to the image gist) can be annotated with the provided set of classes. This process is hard to
automate because there is no way of knowing which set of classes can cover the widest range
of images in the best way possible. Recently, the PSG dataset [20] was released as an effort
toward solving this challenge. However, the PSG dataset still lacks from a clear taxonomy of
predicate classes, with some debatable choices such as the class "over" which can almost always
be replaced by "on" or the class "biting" which can be replaced by "eating" etc. The problem
of granularity in object classes is also important to be mentioned. In the PSG dataset, some
classes are for instance "wall-stone" or "wall-wood" which are attributes of the object "wall" and
not different classes. This example shows the need to also take into account the performance
of the backbone object detector into account when designing a Scene Graph dataset. A similar
problem can be spotted on the GQA dataset [15], where predicate classes such as "to the left"
and "to the right" are annotated. However, in a natural scene, every object can be to the left or
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to the right of another object, which makes the annotation of such relations irrelevant. If we take
a step back, we can see that this problem comes from the initial definition of the task [7]. This
definition is deliberately vague in order to be able to annotate as many relations as possible, and
easily generate the large-scale amount of data required to train modern deep learning models. In
this process, coherence and relevance of relation types has been overlooked. For instance, using
ambiguous classes is a failure to consider the actual paradigm of supervised learning, and, more
importantly, is a failure to consider the end applications of the task. One last consideration for
building SGG datasets is the target domain. As we have observed with the IndoorVG dataset,
it is way easier to construct a coherent set of object and predicate classes in a small domain
(such as indoor scenes) than in an all-purpose dataset such as Visual Genome which comprises
a wide range of scenes in different contexts (such as beaches, cities or nature). Solutions to this
problem can be to annotate a very large number of classes, but this requires a lot of human
effort and is not designed for models such as Object Detectors. Annotating too many classes
will also augment the long tail problem of SGG datasets [78].

Regarding the complexity of SGG models, we have witnessed over the past few years the trend
of designing new approaches which are adding new components to existing approaches. The best
example of this is the VCTree model [37] with the two-stage Faster-RCNN-based architecture
that we have reviewed in Chapter 5. This architecture has been re-used by almost every other
approach since its first inception (to cite a few: [49], [92], [101], [142], [184], [185], [186], [187],
[188], [189]). The reason for this choice is simple: the codebase provided by the authors of VCTree
was the first documented codebase that supported recent versions of PyTorch. Re-using it for
new approaches was then simply a matter of convenience and not efficiency or performance.
We have demonstrated in our experiments with the PE-NET model that some components of
the model can be removed without any loss of performance. These components have been kept
in the model because they were part of the original VCTree codebase, and not because they
were necessary for the specific presented approach. Or at least, if that was the case, there is
no trace of it in the original paper [49]. By adding more and more components to existing
approaches, it becomes tedious to disambiguate the actual contributions of each element to
the final performance. This can be misleading to fairly evaluate approaches and compare them
to each other. This issue is only clear when trying to reimplement a new approach given the
provided codebase, as we have done with the PE-NET model. It may not be clear to the reader
of the corresponding paper, who is not aware of the actual implementation details of the model.
Some approaches do not explicitly state that most of their codebase is similar to the VCTree
model, which is misleading for the reader. Last but not least, we believe that the over-complexity
of SGG models is strongly misaligned with potential applications of the task. In fact, if SGG
approaches are overly complicated and rely on useless components, their actual usage in the real
world will be limited.
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7.3 Perspectives

In the following, we detail opportunities for future research in the field of SGG, which can
be used to address the limitations of current methods and to foster the development of new
applications.

Open-Vocabulary SGG. To address the limitations of the annotation process in SGG, it
would be reasonable to consider the task in open-vocabulary settings. Because it is very difficult
to produce a non-biased dataset, it would be convenient to consider the task as a generative
modeling task instead of a classification task. To do so, we can consider the task as a sequence-
to-sequence problem, where the input is an image and the output is a sequence of objects and
relations. This approach has been successfully applied to Image Captioning [60] and can be
adapted to SGG. In this setting, we evaluate the model performance based on metrics such
as BLEU [190], METEOR [191] or CIDEr [192] which are metrics that consider the semantic
similarity with the ground truth. This approach could be used to match generated graphs with
detailed descriptions of scenes for instance. Our work with the InformativeRecall metric is a first
step in this direction, but it is still limited to the evaluation of the performance of SGG models
and not to the training process itself. Training SGG models for Open-Vocabulary settings will
be challenging because of the large number of possible relations in each scene. A few works
have been proposed to address this issue, using large Vision-to-Language (VLM) models such
as CLIP [193] or BLIP [194]. Although using VLMs could solve the aforementioned issues, this
solution is not appropriate for real-time applications such as SGG. In such a context, low-cost
and real-time solutions are preferred. In a recent work, Cheng et al. [195] proposed Yolo-World, a
real-time Open-Vocabulary Object Detector based on YOLOV8. The key insight in Yolo-World
is the alignment of a CLIP text encoder with YOLOV8 visual features through visual region-text
matching. Cheng et al. modified the YOLOV8 architecture to incorporate a Vision-to-Language
Path Aggregation Network (PAN) to align visual features with text features. By coupling this
solution to a long training with weakly annotated data (millions of images from different object
detection datasets), authors were able to propose real-time inference and open-vocabulary with
state-of-the-art performance. This approach can be adapted to SGG by adding a relation detec-
tion head. We believe that using the Yolo-World architecture will also be possible for relation
detection. By taking inspiration from the region-text matching, we can create a region-relation
matching, where the relation detection head will be trained to match the visual features of
object pairs with the text features learned. This approach can be integrated with the existing
Box and Classification heads of Yolo-World, resulting in minimal computational overhead and
enabling real-time inference. However, this would require a large amount of relations data to
train the model, which is not available at the moment. We can draw inspiration from the data
collection strategy of Yolo-World and collect a large amount of weakly annotated data using
large pre-trained model such as BLIP-2 [116] or Grounding-DINO [196].
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Category-Aware SGG. Current paradigm of SGG models all relations in the same em-
bedding space. However, as we have seen through this work, relations can be of different types.
To improve the performance of SGG models, it would be interesting to consider the task as
a multi-task learning problem, where predicting each relation type would be a different sub-
task. In a recent work, Jiang et al. [197] proposed to use different Bayesian classification head
for the three types of relations introduced in Neural-Motifs [38]: Geometric, Possessive and
Semantic. The approach of Jiang et al. relies on manually defining the type of relations by
predicate classes. As we have seen in Chapter 3, this is not a good approach because of the
polysemy of natural language. As a result, defining multiple heads by predicate classes is not
a good approach. Instead, one could split the original dataset into different sub-datasets, each
containing relations of a specific type. During training, each head would be fed a different por-
tion of the data and a context learning module will ensure the consistency of the predictions
between each category-aware head. Here, the context learning will responsible for modeling the
inter-dependencies between relation types (such as the fact that a Functional relation often
implies a Topological relation of proximity, etc...). Other types of dependencies will be model
inside each head, leading to better representations of each relation type. Finally, this type of
architecture will be easy to pair with commonsense knowledge databases such as ConceptNet
[97] to introduce external priors to the model and facilitate learning. The idea of bridging SGG
models with external knowledge bases is not new, and has been proposed in a few works [111],
[148], [198]. The issue with such work is that the external knowledge is infused systematically
in the model, without taking into account the intrinsic type of the relation that we are trying
to model. This often results in the insertion of irrelevant external knowledge, for instance when
predicting the relation ⟨person, in front of, bike⟩ we will insert from the external knowledge
base all relations related to bike or person such as ⟨bike, used for, riding⟩ which may confused
the model. By using a Category-Aware SGG model, we can ensure that the external knowledge
is only used when it is relevant to the type of relation we are trying to model, in this case a
Topological relation.
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Embodied SGG SGG is a field where real-time SGG can contribute significantly. The
current paradigm of knowledge representation systems in robotics relies extensively on (1) hand-
crafted solutions [179], [199] or (2) non-symbolic approaches in the form of large Vision-to-
Language models [200], [201]. As we have seen previously, none of these two approaches can
be reasonable for low-resource applications which requires strong generalization capabilities. In
fact, the first approach is not scalable and the second approach is not real-time. Here, we believe
that the task of SGG can perfectly solve this gap, as we have shown in our Continuous SGG
implementation for automated planning. The last missing step from our current implementation
in HRC is the deployment of SGG models on embodied platforms. In a recent work [202], we
proposed an implementation of YOLOV8 on the low-resource robotic platform Pepper from
Aldebaran 1. The Pepper robot is a humanoid robot that is equipped with a low-power CPU
Intel ATOM® E3845 and no GPU. The memory of the robot is 4GB and the CPU is a quad-core
1.91GHz, which is very low by today’s standards. We have shown that YOLOV8 can be deployed
on Pepper with a latency of 300ms, which is reasonable for real-time applications. We believe
that we can extend our approach to our proposed model M-PE-NET and deploy it on Pepper.

SGG for Service Robotics. Once our Continuous SGG approach is deployed onboard a
robotic platform such as Pepper, we can use it in real-world tasks. In particular, we can use
it for HRI in Service Robotics. Service Robotics is a subfield of Robotics targeting real-world
applications of humanoid robots for daily care. As a study case, we explored the task of HRC in
the context of the RoboCup@Home competition. The RoboCup@Home is the biggest interna-
tional competition of Domestic Service Robotics [203]. The competition is divided into several
challenges, including the Final Challenge where teams have to demonstrate the capabilities of
their robots in a real-world scenario. This often includes HRC tasks such as setting a table,
cleaning a room, or cooking a meal. In 2023, we participated in the RoboCup@Home com-
petition, and especially in the Final challenge [202]. The task was to help someone prepare a
meal using ingredients from the environment. The challenge took place in a randomly initial-
ized kitchen-like environment. The robot had to understand the context of the scene, recognize
the objects and ingredients, and instruct the human to prepare a meal. During this challenge,
we used the Pepper robot to retrieve images from the scene and interact with the human. On
a deported computer, we used our Global Scene Graph to analyze the video flow and predict
relations. Communication with the robot is done through the Robot Operating System (ROS)
framework. We created a custom algorithm on top of the GSG to retrieve objects of interest
(food or ingredients) and their respective Topological relations with the human. We then used
a simple rule-based system to instruct the human to retrieve dedicated objects. By looking at
the Functional layer of our representation, we were able to monitor the person and especially
detect if they were grasping the correct object through the holding relation. We were able to give

1https://www.aldebaran.com/en/pepper
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a precise instruction on where to find objects (such as "the tomato soup is on the second shelf of
the fridge") and to monitor the human actions precisely (such as "put the tomato soup on the
table next to the plate"). The algorithm then needed to wait to detect the combination of the
on relation between the tomato soup and the table and the next to relation between the tomato
soup and the plate to give the next instruction. This was done by monitoring the Topological
layer of the GSG. Thanks to this approach and other algorithms, our team RoboBreizh was able
to win the RoboCup@Home competition in 2023 by scoring first 2. This scenario was directed,
as we knew in advance which object could be used by the human. However, we believe that our
approach can be extended to more complex scenarios where the robot has to adapt to observed
actions and objects present in the environment. This would require to develop a second module,
which would work in parallel of the GSG to reason on the symbolic representation and infer the
next actions to take.

SGG and Commonsense Reasoning. In another work [204], we have proposed a related
architecture, where inferences are made on a similar scene graph representation thanks to the
pairing with a commonsense knowledge database. In such architecture, we proposed to use the
ConceptNet [97] and ATOMIC [205] databases to infer possible actions related to the current
state of the Global Scene Graph and their effect on the environment. ConceptNet and ATOMIC
contain relations of the type "X causes Y" or "X is a type of Y" which can be used to infer possible
next states of the GSG. However, pairing a Global Scene Graph with external knowledge graphs
is complicated. In a recent work, Agnese Chatti [206] takes inspiration from our work to propose
a graph enrichment method for hazard detection. In this work, the scene graph is limited to
spatial relations only in a static environment, without a continuous implementation. It would be
then interesting to extend this proposal to our Continuous SGG approach and to use it in real-
world applications such as in the RoboCup@Home competition. By extending such approach to
human activities, we could detect possible hazards in the environment and prevent the human
from doing dangerous actions. This will be the last perspective of our work.

2https://github.com/RoboCupAtHome/Bordeaux2023
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Appendix A

DATA CURATION AND REFINEMENT FOR

SCENE GRAPH GENERATION

A.1 Annotations Comparison

In the following, we compare annotations obtained by removing irrelevant relations and using
our class selection method by connectivity. Figure A.1 gives an overview of the difference in
annotations between the original VG dataset (VG80K) [8], VG150 [12], our proposed data split
VG150-connected and VG150-curated.

(a) VG80K (b) VG150 (c) VG150-connected (d) VG150-curated

Figure A.1: A few examples of the difference between annotations in the original dataset VG80K,
VG150, VG150-connected, and VG150-curated. We can easily see that annotation from VG150-
curated (right) only detail informative relations, while irrelevant annotations are heavily present
in the other data splits. In addition, annotations from VG150-curated are preserving the graph
structure by limiting the number of independent sub-graphs.
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A.2 Triplet classification

To categorize relation triplets between Topological, Functional, Part-Whole, and Attribute
categories, we fine-tuned the GPT3.5 model from OpenAI [107] on the IndoorVG dataset. Here
we display the system prompt used for the fine-tuning of GPT3.5 for triplet classification:

You are an AI assistant with rich commonsense knowledge and strong reasoning
abilities. You will be provided with a triplet formulated as (subject, predicate, object),
where the predicate represents a relation between the subject and object. Your task is
to categorize this triplet between the following four categories: topological, functional,
part-whole, and attribute. Only answer with one of the four categories.

Examples of triplets in the IndoorVG dataset successfully classified:

• Topological: (cup, on, table)

• Functional: (person, on, phone)

The model was fine-tuned for 1000 iterations using the OpenAI API, and the accuracy of
the model during training is shown in Figure A.2 (numbers provided by OpenAI).

Figure A.2: Accuracy of the GPT3.5 model fine-tuned for 1000 iterations.
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A.3 The IndoorVG Dataset: analytics

In the following we display the list of object and predicate classes in the IndoorVG dataset.

bag basket bin blind book
bookshelf bottle bowl box button
cabinet camera can carpet ceiling
chair clock computer couch counter
cup curtain desk dishwasher door
drawer eyeglasses faucet floor flower
food fruit frame glass hand
handle head jacket key keyboard
knob knife lamp laptop leg
lid light luggage magazine microwave
mirror monitor mouse mug oven
paper pan pen person phone
pillow plant plate poster pot
refrigerator remote scissors screen shelf
shirt shoe sink speaker stand
stove suitcase table television towel
toy vase wall window

Table A.1: List of object classes in the IndoorVG dataset.

above against at attached to behind
between carrying covering cutting drinking
eating filled with for hanging from has
holding in in front of laying on looking at
lying on mounted on near of on
playing with reading sitting at sitting on standing on
taking talking on under using watching
wearing with

Table A.2: List of predicate classes in the IndoorVG dataset.

In Figure A.3, we display the proportion of relation categories by predicate in the IndoorVG
dataset. For each triplet, we predicted its category using the GPT3.5 model fine-tuned for triplet
classification and then displayed the proportion by predicate. We can observe that fine-grained
predicates (such as watching, cutting, playing with etc...) are untitled to a single category,
whereas more general predicates (such as on, in, near etc...) are more versatile and can be
categorized in multiple categories, depending on the subject and object of the relation.

As a comparison, we also display the proportion of relation categories by predicate in the
VG150 dataset in Figure A.4. We can observe that the VG150 dataset contains more ambiguous
predicates.
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# Rels # Objects Triplets Categories
Topo. Func. Part. Attr.

112,804 708,409 9,095 66.15% 12.71% 11.93% 9.21%
Classes # Rels/Image Train/Val/Test

Obj. Pred. Objects Rels
84 37 8.18 64,098/5,069/29,159 9,538/733/4,403

Table A.3: Statistics of the IndoorVG dataset, Rels/Image is an average of all annotated
samples. # Objects represent the total number of bounding boxes. The Train/Val/Test split is
larger for objects to allow object detection training on the full original dataset.

Figure A.3: Proportion of relation categories by predicate in the IndoorVG dataset.

Figure A.4: Proportion of relation categories by predicate in the VG150 dataset.
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Appendix B

INFORMATIVENESS IN SCENE GRAPHS

B.1 Captions Generation

We used the caption_coco_opt2.7b model based on the decoder-only pre-trained model OPT
with 2.7b parameters. The model was fine-tuned on the COCO dataset for image captioning.
To generate good captions, we used the 5 following prompts, one by one for each image:

• "a photo of"

• "a picture of"

• "a photo showing"

• "a picture showing"

• "a photo with"

The temperature parameter was set to 0.9 to allow for more diversity in the generated captions
and the minimum length to 15 for longer captions. Longer captions usually contain more relations
which also prevents from having 5 very similar captions.

B.2 Image Generation From Scene Graphs

More visualization of the generated images from scene graphs can be found in this section. The
layout is similar as the one from Figure 4.11 (top row: ground truth image; left: baseline graph
and generated image; right: informative graph and corresponding generated image). We can
see from these qualitative examples that the informative graph (right) and the corresponding
generated image (right) are closer to the ground truth image (top row) than the baseline graph
(left) and the corresponding generated image (left).

173



(a) (b)

Figure B.1: Generated images from scene graphs.
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(c) (d)

Figure B.2: Generated images from scene graphs (con’t).
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(e) (f)

Figure B.3: Generated images from scene graphs (con’t).
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Appendix C

REAL TIME SCENE GRAPH GENERATION

C.1 Experiments with YOLOV8

Model mR@20 mR@50 mR@100 R@20 R@50 R@100 F1@20 F1@50 F1@100

Y
O

LO
V

8m

PE-NET 13.22 16.47 18.08 17.79 22.62 24.91 15.17 19.06 20.95
GPS-NET 11.08 13.51 14.39 19.14 23.79 25.89 14.04 17.24 18.50
Neural-Motifs 10.31 12.71 13.71 20.41 24.95 26.91 13.70 16.84 18.16
VCTree 10.33 12.54 13.54 18.45 22.74 25.01 13.25 16.17 17.57
Transformer 10.20 12.15 13.26 19.24 23.50 25.76 13.33 16.02 17.51

Fa
st

er
-R

C
N

N PE-NET 7.56 9.48 10.25 10.22 12.68 14.15 8.69 10.85 11.89
GPS-NET 5.42 6.92 7.70 9.27 12.41 14.14 6.84 8.89 9.97
Neural-Motifs 8.16 9.95 11.11 12.30 14.45 15.79 9.81 11.78 13.04
VCTree 7.59 9.13 9.86 11.37 13.76 15.12 9.10 10.98 11.94
Transformer 6.48 7.71 8.76 10.87 13.27 14.64 8.12 9.76 10.96

Table C.1: Full results of our experiments with the YOLOV8 and Faster-RCNN models for SGG
on the test set of the IndoorVG dataset. All results are in percentage.

Model IR@5 IR@10 IR@20 IR@50 IR@100 mAP@50 Latency (ms) FPS

Y
O

LO
V

8m

PE-NET 10.72 14.32 18.30 23.55 26.98 31.20 46.09 ± 1.3 21.69
GPS-NET 11.94 16.11 20.36 25.61 29.42 31.20 50.54 ± 1.4 19.78
Neural-Motifs 12.81 17.03 20.76 26.09 29.55 31.20 48.93 ± 1.8 20.43
VCTree 12.23 16.31 20.28 25.16 29.11 31.20 239.51 ± 15.4 4.17
Transformer 12.41 16.94 20.95 25.81 29.78 31.20 49.86 ± 1.1 20.05

Fa
st

er
-R

C
N

N PE-NET 8.93 12.62 16.55 22.25 27.11 20.60 277.62 ± 25.4 3.60
GPS-NET 4.45 6.49 8.92 13.37 16.83 14.17 383.51 ± 132.5 2.61
Neural-Motifs 7.32 10.35 13.83 18.72 22.68 19.70 398.63 ± 133.5 2.50
VCTree 6.96 9.99 13.25 18.24 22.06 19.20 519.53 ± 163.2 1.92
Transformer 6.39 9.61 13.32 18.67 23.03 19.40 381.64 ± 126.7 2.62

Table C.2: (con’t) Full results of our experiments with the YOLOV8 and Faster-RCNN models
for SGG on the test set of the IndoorVG dataset. All results are in percentage except for Latency
and Frames Per Second (FPS).
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Hyperparameter Value
Batch size 8
Learning rate 0.01
Optimizer SGD
Loss function CrossEntropy
Epochs 20
Learning rate scheduler ReduceLROnPlateau
Learning rate scheduler factor 0.1
Learning rate scheduler patience 3
Learning rate scheduler threshold 0.001

Table C.3: Hyperparameters used for the experiments with the YOLOV8 and Faster-RCNN
models.

Hyperparameter Value
Batch size 32
Learning rate 0.01
Momentum 0.937
Optimizer AdamW
Loss function CrossEntropy
Epochs 20

Table C.4: Hyperparameters used for training the YOLOV8 model.

In this section, we display the full results of the YOLOV8 experiments for SGG on the test
set of the IndoorVG dataset. These results correspond to the Figure 5.4 and Figure 5.5 in the
main text. All results are in percentage.

In Table C.3, we display the hyperparameters used for the above experiments with the
YOLOV8 model. To compare model with fairness, hyperparameters are the same for all the
models using the YOLOV8 architecture and Faster-RCNN architecture.

Next, we display the hyperparameters used for training the YOLOV8 object detector in
Table C.4. The hyperparameters are the same for all the YOLOV8 variants.

For the final training of our M-PE-NET model, we used hyperparameters tuning to find the
best learning rate and momentum for the model. We used the Optuna library 1 to perform the
hyperparameters tuning. We performed 50 trials to find the best learning rate and momentum
with the ASHA scheduler. The grace period is 100 iterations and the maximum number of itera-
tions is 500. The scheduler is configured to minimize the loss. The results of the hyperparameters
tuning are displayed in Figure C.1. The best learning rate and momentum found are 0.016 and
0.23, respectively.

1https://optuna.org/
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Figure C.1: Loss versus Training Iterations for 50 trials with different learning rate and momen-
tum hyperparameters.
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C.2 SGG Codebase & Open-Source

In recent years, the SGG community has relied extensively on the codebase by Tang et al. [19].
The codebase is available on GitHub2 and has been used by several researchers to compare
their models with the state-of-the-art. However, this codebase is not up-to-date, last commit
was more than 2 years ago. In addition, the codebase do not incorpore latest development for
the task and is limited to only a few models. We have developed a new codebase for SGG,
which is available on GitHub3. Our codebase is the first to implement different backbones for
the object detector, including YOLOV8, YOLOV9 [207], YOLOV10 [208], Yolo-World [195],
RT-DETR [209], and Faster-RCNN. The YOLOV8, YOLOV9, YOLOV10, Yolo-World, and
RT-DETR implementations are based on the ultralytics codebase 4. In addition, we provide new
implementations for recent approaches in SGG such as the IETrans method for internal and
external data transfer [95]. Finally, our codebase can be used with different dataset such as the
PSG dataset [20], VG150 [12] and IndoorVG dataset. In Table C.5, we compare our codebase
with other codebases for SGG [210].

Codebase Datasets OD Backbone SGG Methods Pytorch
[38] VG150 [12] Faster-RCNN [139] IMP [12], Motifs [38] v0.3
[19] VG150 [12] Faster-RCNN [139] IMP [12], Motifs [38], VC-

Tree [37], VTransE [211],
Transformer [19]

v1.2

[210] VG150 [12],
OpenImage
[17]

Faster-RCNN [139] IMP [12], MSDN [212],
Motifs [38], GRCNN [213],
RelDN [214]

v1.7

Ours VG150 [12],
PSG [20],
GQA [15],
IndoorVG [74]

Faster-RCNN [139],
YOLOV8 [39],
YOLOV9 [207],
YOLOV10 [208],
RT-DETR [209],
Yolo-World [195]

IMP [12], Motifs [38], VC-
Tree [37], VTransE [211],
Transformer [19], GPS-Net
[47], SHA-GCL [188], PE-
NET [49], Squat [215],
IETrans [95]

v2.2

Table C.5: Comparison of different code bases for SGG. Our codebase is the only one that
provides a wide range of object detectors and SGG methods.

To our knowledge, we are the first to provide an open-source implementation of a wide range
of object detector for the task of SGG, which can be used with different datasets and SGG
methods. This high number of possible backbone-relation head combination makes it possible
to compare different models and methods fairly. In addition, we believe that more diversity in
the codebase will help the community to use SGG in a wider range of use cases. In Figure C.2,

2https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
3https://github.com/Maelic/SGG-Benchmark
4https://github.com/ultralytics/ultralytics
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Figure C.2: GitHub analytics for the SGG-Benchmark codebase, the total number of clones is
70 from 64 different account (cloners).

we display the number of clones that our codebase has received since its open-source release
the 21/07/2024. From the period between 21/07/2024 and 29/09/2024, the codebase has been
visited by 643 unique visitors, and 70 clones have been made. In addition, 32 issues have been
opened by the community, which shows a growing interest. Our codebase also provide a tutorial
for hyperparameters tuning and a tutorial for integration in other pipelines with visualization
and demos. We are committed to maintaining and updating the codebase with new models and
methods.
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