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Abstract

Conceptual modelling presented as a framework for database design is a discipline
of great importance in many areas in computer science that seeks to represent
real-world phenomenon using semantic primitives. To date, traditional (static)
conceptual models have been successfully used and extended to deal with the
semantics of relatively stable real world applications. However, the capturing
of semantics is a seemingly endless task as it involves various dimensions and
categories.

It is argued in this thesis that the incorporation of complex domain structures
in conceptual modelling to represent the semantic domains of an attribute and
the relationships within a concept in ontologies would provide more expressive
and richer semantics. Additionally, it is argued that basic relationships in the
entity-relationship model may need to be modified or extended to handle a broad
spectrum of situations that arise from differing perspectives of the real world.
Furthermore, it is argued that a conceptual model should allow rapid and simul-
taneous storage of data and data modelling as unexpected and sudden events
require data to be modelled rapidly. This thesis begins with an extensive review
of the field of conceptual modelling and an exploration of the concepts of meso-
data, ontologies and semantic relationships in conceptual modelling as well as
various aspects of extensions to the entity-relationship model.

Using these foundations, a classification of ER modelling extensions (CERME)
framework is introduced that forms the basis of common aspects and comparative
criteria which can be used to categorise and compare various proposals. In ad-
dition, the Mesodata Entity-Relationship (MDER) model, Mesodata Object Role
Model (MDORM), Ontological Entity-Relationship (OntoER) model, Ontological
Object Role Modelling (OntoORM) and Ontological Unified Modeling Language
(OntoUML) class diagrams are presented that allow advanced semantics to be
associated with the domains of an attribute. It is also demonstrated that these
proposed models can be mapped into the commonly accepted standard relational
model. Furthermore, for some of the modelling issues that are not easily accom-
modated into the ER model, this thesis introduces a new relationship construct,
polymorphic relationships, to handle this situation. To this end, a novel approach
to conceptual modelling, the LItER model, is presented that incorporates the pre-
viously proposed concepts of mesodata, ontologies and polymorphic relationships
into the model which allows data to be modelled rapidly.

xiil
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Chapter 1
Introduction

Research on conceptual modelling suggests that more meaningful information
about application data should be captured in the data model (Badia, 2004; Codd,
1979; Hull and King, [1987; [Tu and Wang, 1993)). However, this capture of the
semantics is a seemingly endless task because it involves various dimensions and
categories (Badial, 2004; [Tu and Wang,1993). Moreover, the semantics of complex

attribute domains are not explicitly represented in conceptual models.

Prior research into data modelling has considered concepts such as the com-
plex domains of an attribute (de Vries and Roddick, 2004) and the use of concep-
tual models in supporting ontologies (Evermann and Wand, 2005; |Jarrar, Demey
and Meersman| 2003} Purao and Storey, 2005; Spaccapietra, Parent, Vangenot
and Cullot, 2004; Sugumaran and Storeyl, 2002, 2006; Storey, 2005; [Wand, Storey!
and Weber, 1999)). However, these studies have not fully examined how the se-
mantics of the complex domains of an attribute can be integrated into a theoreti-

cal framework of conceptual models as a single integrated schema.

As has been suggested in interviews with Peter Chen (Winslett], [2004), the fu-
ture directions and applications of ER databases are more likely to be focused on
providing answers to the high-level matching of concepts and the identification of
complex relationships. The boundary of this focus will not be as easily definable
as in the past, as the questions being asked will cover broader and more intan-
gible questions such as those related to national security and other open-ended
questions relating to risk identification and mitigation. Consequently, exploring
enhancements and extensions to conceptual models still continues to be a legiti-
mate and important research area (Badia, 2004)). These are the driving forces for

exploring the ideas in this thesis.

This chapter provides the foundations of the presented thesis, beginning with

1



CHAPTER 1. INTRODUCTION 2

the background of the thesis (Section 1.1]) and the motivation behind the relevance

of the work (Section 1.2). Next, the objectives of the research (Section 1.3)) and

its scope (Section 1.4]) is discussed. The chapter concludes by presenting the
approach that will be followed to accomplish these objectives together with an

overview of the thesis structure ([Section 1.5)).

1.1 Background

Conceptual models attempt to represent the clear semantics of an application
environment of the real world so as to make the database schema generally un-
derstandable, useful and adaptable. Thus, instead of having modelling constructs
based on the concept of the logical schemata (as represented in the relational, hie-
rarchical and network models) (King and McLeod, [1985), conceptual models at-
tempt to represent data structures in a natural way by using graphics to represent
the entities (or objects) in the real world. For example, the Entity-Relationship
(ER) model (Chen| 1976)) represents the data structures as entity types, which
are a group of entities, relationship types, which are a set of relationships as asso-
ciations among entity types, and attributes which characterise the properties of

entities and relationships.

The following topics are now briefly introduced to provide the foundation and

motivation for the contributions of this thesis.

1.1.1 The Design of Conceptual Models

“The design of conceptual models is the most difficult stage in data
model development to learn (and to teach). There is no mechanical

transformation from requirements to candidate solutions.”

Graeme Simsion and Graham Witt (2005))

Every database can be defined by a data model. A data model is an abstract
description of reality according to certain conceptualisations, which cannot be
produced by a mechanical transformation. Conceptual data modelling is the cen-
tral activity in data modelling, providing a high level of abstraction in describing
the requirements of real world applications, aimed at achieving independence from
implementation issues (Simsion and Witt], 2005). Conceptual modelling is widely

recognised to be a necessary foundation for building a database that satisfies the
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user requirements. It relies on a graphical notation that facilitates understand-
ing and management of conceptual schemata by both designers and users (Rizzi,

Abello, Lechtenborger and Trujillo), 2006)).

Database design covers three main phases: conceptual design, logical design
and physical design. Often, there is some confusion between the terms conceptual
and logical when describing different data models. Similarly, conceptual schemata
are also ambiguously referred to as logical schema. The two notions of conceptual

and logical references are different and distinguishable as described below.

Conceptual design. A conceptual design aims to derive an implementation-
independent and expressive conceptual schema, starting from the user re-
quirements. In this phase, the database requirements are analysed and
modelled using conceptual data models. A main constituent of the con-
text in which user/application requirements specification are modelled is
related to the universe of discourse (UoD) or subject domain (Simsion and
Witt} [2005). For example, a medical database specification of requirements
refers to concepts in a UoD comprising entities such as patients, physicians,
treatments and so on. Conceptual models typically represent the UoD as
a collection of objects/entities (entity types). Entities are typically associ-
ated with each other via relationships and are classified according to types

(classes) and subtypes (subclasses).

Conceptual modelling is the central activity in data modelling and serves
as a framework for database design and information system development.
It represents real-world phenomena using semantic primitives (Chen, Song
and Zhu, 2007)). The ER model (Chenl, [1976)) is the fundamental principle

for conceptual modelling.

Logical design. A logical design takes the conceptual schema and creates a
corresponding logical schema for the chosen platform by considering a cer-
tain set of constraints. In other words, the next step after a creation of a
conceptual schema is to translate it into a logical data model suitable for
implementation using the target database management system (DBMS).
The most well-known and extensively used logical model is the relational
model. Logical design, in particular referring to relational models, can be

characterised by two main methodologies as follows.

1. Transformations (or Mappings). A mapping is a process of trans-

forming results (including requests) between schemata (Elmasri and
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Navathe, 2007). Conceptual schemata are only a description of data
and do not include implementation details. This logical design step
focuses on the actual implementation of the database using a commer-
cial DBMS. Most current commercial DBMSs use the relational data
model, so the conceptual schema is transformed from the high-level
data model into the relational model. This step is called data model
mapping or logical design. Its results are the relational schemata that

serve as the framework for the implementation on the chosen platform.

As the relational model is the implementation model of choice, a trans-
formation of conceptual schemata into relational schemata is also dis-
cussed in this thesis. This includes procedures to create a relational
schema from the proposed modelling constructs, e.g. the mesodata
entity types and the total domain participation constraints in the
Mesodata Entity-Relationship (MDER) schema. This thesis relates the
modelling constructs presented in Chapters {4] and |5| to the constructs
of the relational model as presented in

2. Normalisation. Functional dependencies (FDs) are derived from the
relationships between attributes. The concept of FDs are not taken
into consideration in conceptual modelling techniques such as the ER
model. There are two main types of FDs: (1) those that represent the
dependencies among non-key attributes; and (2) those that represent
dependencies of attributes which depend on only partial keys of tables
(A primary key of the table in this case is a composite key that uses
several attributes). The relational tables associated with all FDs are
normalised, i.e. tables are decomposed or split into smaller tables using
a standard methodology called normalisation, which is performed in

the logical design phase.

Normalisation aims to restructure database schemata through decom-
position in such a way that functional and join dependencies between
attributes are extracted from the real world semantics. An example

of this normalisation technique for the example MEDICAL database is

discussed in [Appendix C|

Note that database tool vendors sometimes use the term logical model to refer
to the conceptual data model, and use the term physical model to refer to the
DBMS-specific implementation model (Teorey, Lightstone and Nadeaul, 2006).

Note also that conceptual data models can not only be built from scratch, but
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can also be generated through a process of reverse engineering from an existing
DBMS-specific schema (Silberschatz, Korth and Sudarshan) |2005]).

Generally, when people first develop an application, they use ER, ORM or
UML diagrams for data modelling, followed by an alternate technique, such as
Data Flow Diagrams (DFD) for functional modellingl] ER models are concep-
tually oriented and are only a design methodology, as there are no commercial
ER database management systems (ER DBMSs) currently available. The logical
design step is necessary in order to allow the mapping of the ER diagrams to the
relational model which is more implementation oriented. For this reason, this

thesis also covers this aspect of logical design as it relates to ER modelling.

Designing a conceptual data model involves conceptualisation, abstraction and
other skills that are difficult to use on a day-to-day basis without considerable
practice (Simsion and Witt} [2005). Common experience tends to indicate that
even database design experts who have had many years experience in dealing with
the theories of conceptual modelling still struggle when faced with the scenario

of designing data models for challenging real world applications.

1.1.2 A Historical Background and Perspectives of Con-
ceptual Modelling

Conceptual modelling has always been one of the cornerstones for information
systems as it describes the general knowledge of the system in the so-called con-
ceptual schema (Krogstie, Opdahl and Brinkkemper, [2007). The evolution of
research and practice in the area of conceptual modelling during the past four
decades as discussed by Bubenko jr] (2007)) is depicted in [Figure 1.1} and discussed

below:

1. Modelling research issues in the seventies. This era was characterised
by the introduction of new models as well as the refinement and extensions
of a number of existing data modelling methodologies. The most enthusi-
astic data modelling researchers at this time came from the database com-

munity. Some notable activities during the seventies were as follows:

e In 1975, the Standards Planning and Requirements Committee (SPARC)

of the American National Standards Institute Information Processing

!Functional modelling is a different modelling approach focussing on describing the processes
rather than entities and relationships between entities. A well-known example of this approach
is Data Flow Diagrams.
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Figure 1.1: Conceptual modelling issues during four eras.

Systems (ANSI/X3) Committee proposed the three-schema architec-
ture (the external schema, conceptual schema and internal schema)
for describing data in a database, in addition to the concept of data

independence:

— the external schema describes the views of different user groups.

— the conceptual schema describes the structures, which is a high-
level description of the whole database focussing on entities, data
types, relationships, user operations and constraints, but ignores

any physical storage structures.

— the internal schema describes the physical storage structures of the

database.

Substantial research was carried out to provide high-level semantics
for modelling information systems, such as the binary relationship
model (Abrial, 1974} [Senko| [1975)), the ER model (Chen), and Ni-
jssen’s Information Analysis Methodology (NIAM) (Falkenberg) |1976}
Nijssen, 1976, 1977).

In summary, the essential basic concepts of modelling were invented and

presented during the seventies. Not all of the presented approaches became

practicable, but they formed a solid platform for further developments dur-

ing the eighties and nineties. This era is commonly referred to as “the road

toward acceptance” (Chen, Wong, Delcambre, Akoka, Sglvberg and Liuzzi,
2008).
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2. Modelling research issues in the eighties. Modelling approaches in
this era focused on the search for a common modelling and methodology
framework. As a large number of more or less similar modelling methodo-
logies and concepts were published during the seventies, it is apparent that
this era was marked by a common desire to compare the different mo-
dels and to try to find a common acceptable framework. Some important

developments during the eighties included:

e improving the expressive power of semantic data models, and adding

the temporal dimension;

e capturing more real-world semantics in an improved ER/EER model;

and

e increased understanding of existing methods and tools that conse-

quently led to their improvement.

Several other semantically rich and expressive modelling approaches were
introduced during the eighties, e.g. the Requirement Modeling Language
(RML) (Greenspan, Borgida and Mylopoulos, [1986) that focused on re-
quirement engineering as a significant phase in the system development life
cycle. An interest was also expressed in the topic of historical databases,
which gave rise to data models that treated several aspects of time, e.g.
checking valid time and the transaction time of an event. This database
concept was called temporal databases. A substantial number of tempo-
ral extensions are reported in the literature (Ferg, 1985; Klopprogge, (1981}
Klopprogge and Lockeman, 1983} [Snodgrass, [1987)).

3. Modelling research issues in the nineties. Modelling approaches in
this era focused on organisational aspects, stakeholder participation and
mechanisms to improve understanding of the various models. This illus-
trated the movement for extending the scope of modelling to business or
enterprise modelling which included, for example, work practice impacts,
managing database relationship changes and user needs. The widening

scope during the nineties included:
e increased understanding and support of work activities at all levels in
an organisation;
e interoperable systems and semantic heterogeneity; and

e enterprise modelling to support user and stakeholder participation in

enterprise analysis and requirements.
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These have led to a marked increase in the development and use of ad-
vanced conceptual modelling methodologies and techniques throughout the
database industry. This has not only impacted the development of new in-
formation system architectures and DBMS, but has brought many benefits
to a wide range of organisations in different application domains such as

medicine, defence and transportation.

Approaches based on temporal, spatio-temporal and deductive views of ap-
plication domains, as well as object-oriented modelling are attributable to
the nineties. Substantial research of this era focused on temporally en-
hanced ER models (Elmasri, El-Assal and Kouramajian, 1990} |Elmasri,
Wuu and Kouramajian, (1993} |[Lai, Kuiboer and Guynes|, 1994} 'Tauzovich,
1991; Theodoulidis, Loucopoulos and Wangler, 1991 a/b; Zimanyi, Parent,
Spaccapietra and Pirottel (1997) and spatio-temporal ER models (Tryfona
and Jensen| [1999; Parent, Spaccapietra and Zimanyi, 1999). The Unified
Modeling Language (UML) (Booch, Rumbaugh and Jacobson, [1999; [Muller,
1999)) was one of the most well known object-oriented modelling approaches

that was developed in the nineties.

Just as in the eighties, research in the nineties was focused on seeking to

refine and rationalise the theory behind conceptual modelling (Chen et al.|
2008).

4. Modelling research issues in the new millennium. Modelling ap-
proaches in this era have focused on extended scope and standardisation
efforts. To satisfy the need for better understanding and a shared concep-
tual view of different domains, the concept of ontologies became increasingly
popular and gained widespread use in various disciplines. In addition, in-
creasing changes in the real world has demanded a shift in conceptualisation
and a new way of viewing reality using evolving knowledge (Chen et al.,

2008). Some important issues of this era include:

e a focus on the web and ontological perspectives of conceptual mo-

delling;;

e development of a single dynamic conceptual model through multi-
perspective knowledge and technology integration within a new frame-

work of active paradigm; and

e development of database systems and technologies that can benefit

from active conceptual modelling.
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The present status of modelling is that its theory and practical applica-
tions have gained sufficient maturity for its worldwide acceptance in the I'T
community (Chen et al., [2008]).

1.2 Motivation for Research

As discussed by [Berild (2004), conceptual models are traditionally used to cap-
ture the meaning and structure of the information to be managed in database
applications. In this respect, the conceptual model also acts as input for the gen-
eration of a specific database schema conformant to some chosen implementation

technology.

A number of recent research efforts on conceptual modelling have investi-
gated the use of natural relationships within a body of information using con-
ceptual models in supporting ontologies. Examples include a conceptual markup
language within the ontology-engineering framework based on an ORM schema
(Jarrar et al. 2003)), a methodology for creating or evaluating ER models using
domain ontologies (Sugumaran and Storey, 2006, [2002), an ontology for classi-
fying the verb phases of relationships (Storey}, 2005 Purao and Storey, [2005), a
formal analysis of the meaning of the relationship construct (Wand et al., 1999)),
ontologically based semantics for object-oriented constructs using UML (Ever-
mann and Wand, 2005) and an analysis of some arguments concerning whether
conceptual data models can adequately support the design and use of ontologies
(Spaccapietra et al. 2004)).

As suggested by |Guizzardi| (2005)), the world view that is represented by con-
ceptual modelling can not be considered as an adequate conceptualisation of
reality. As a consequence, it falls short of offering its users suitable sets of mo-
delling concepts for constructing an explicit representation of their knowledge of
the domain. Within the database design community, there has been a change in
the application of databases away from the data and information specific level to
a domain specific level that focuses on semantic interaction. This thesis argues
that semantics can be completely represented by modelling structures, and the
focus of conceptual modelling should be on the adequacy and expressiveness of

the representation structures.

Having a precise representation of a given conceptualisation becomes more
important where advanced semantics are integrated into the data model. Con-

sider the role of ontologies in modelling the complex domains of an attribute.
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Figure 1.2: A representation of common domain semantics between three dif-
ferent conceptual modelling techniques.

Within this context, ontologies are referred to as a semantic representation of
the relationships between concepts/terms within the domain. In order for these
semantics to be represented precisely, the modelling of domain semantics for the

real world attributes must be explicitly represented in the conceptual models.

Consider the situation depicted in[Figure 1.2 where C4, Cp and C¢ represent
the conceptual schema of the same application created by different models. These
models can be equivalent. C4, Cg and C¢ are modelled based on, for example, the
ER, ORM and UML modelling techniques which reference the semantic sphere
that includes common domain structures providing a shared set of semantics.
C4, Cp and Cg could share the semantic spheres that provide their ontologies
and other semantics. For this situation, common domain structures describing
real world phenomena have not been fully investigated, and limited research has
been made into developing and promoting unified common domain structures for
the data modelling community. Extensions to the ER model can facilitate such
a solution as it is a powerful conceptual design tool. It can be used to consider
different conceptual models at the same time for different user groups, and then
map these models to each other (Chen, Thalheim and Wongj, [1999).

Since conceptual modelling is meant to be used by the wider technology com-
munity, its semantic expressiveness and comprehensibility plays a fundamental
role. Thus, modelling methodologies should be sufficiently expressive to suitably

characterise the conceptualisation of its domain. The development of common
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domain structures involves the expansion of the semantics of each technique that
will improve its expressiveness and comprehensibility thus allowing for design-
ers to easily recognise what each modeling construct means in terms of domain
concepts or any other concepts involved. This thesis is motivated by these re-
quirements in trying to incorporate more data semantics and explicitly represent
them in the data models. This thesis argues that this can be achieved through
the incorporation of mesodata, ontologies and links as polymorphic relationships
into conceptual modelling approaches that leads to the development of the rapid
data modelling approach that is presented in [Chapter 7] The practicability of
the suggested models is also presented in |[Chapter 8|

As applications and user needs of database systems have grown in complexity
over the decades, new demands have arisen that require event traceability in order
to deal with the changing world state. This new insight gained from the evalua-
tion of the relationships between events that cause these changes may provide a
significant impact on the understanding of the current world state (Chen, [2006]).
Recent dramatic incidents (e.g. the devastating cyclone Nargis in Burma, the
earthquake disaster in China, the tsunami in Southeast Asia, the current global
financial market crash and the September 11 attack on the World Trade Centers)
require changes in conceptual modelling from a static conceptual model to an
active conceptual modeﬂ (Chen et al.; 2008). This is a reflective approach where
the facts, activities and trends that were precursors to these past incidents are
examined with the aim of creating reference points that can be used to assess
current events, circumstances, and behaviours. This threat and risk assessment
technique can be used to try and predict similar events in the future. This serves
to encourage the establishment of socio-economic and emergency response pro-
grams to cope with such situations. To deal with these issues on a timely and
adaptive basis requires active and rapid conceptual modelling techniques to ana-
lyse these situations to assess appropriate responses. This is another motivation
for this thesis, namely to represent a different approach to conceptual modelling,

allowing data to be modelled rapidly.

In summary, it is argued in this thesis that the expressiveness of conceptual
modelling methodologies can be enhanced through (a) the semantics of complex
domain structures for attribute domains, (b) the semantic relationships between

concepts in ontologies, and (c) the flexibility of dealing with existing relationships.

2Chen (2006 has defined active conceptual modelling as a continual process of describing
all aspects of the open world, its activities, and its changes under different perspective, based
on our knowledge and understanding.
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These aspects should be explicitly incorporated into the conceptualisations of
their underlying subject domains. In addition, since unexpected and sudden
events requires data to be modelled rapidly, a conceptual model should easily
accommodate new data to reflect the rapidly changing complex environment.

Therefore, the major research questions are:

e What extensions to the ER model have been previously described in the

body of research literature?
e How can mesodata be modelled in conceptual modelling methodologies?
e How can ontologies be modelled in conceptual modelling methodologies?

e How can the relatively restricted and static modelling of relationships be
modified to handle a broad spectrum of situations, or is there a more feasible

approach to model overloaded relationships?

e How can these presented modelling constructs be related to a (re)design of

conceptual modelling approaches to facilitate the rapid exploration of data?

e How can the presented modelling constructs be mapped into the relational

database schema?

The answers to these questions are addressed through the 4 objectives that are

detailed in the next section.

1.3 Objectives

The purpose of this thesis is to promote better practices in conceptual modelling.
Specifically, the thesis introduces the semantic extensions of mesodata, ontologies
and polymorphic relationships to traditional conceptual models. In addition, this
thesis presents a unique and innovative modelling approach that accommodates
changes in situations where data needs to be modelled rapidly. Furthermore, data
model mapping steps are discussed to show how to design a relational database
schema based on a conceptual schema design. This thesis also discusses a survey
of various extensions to the ER model including the fundamentals of conceptual

modelling concepts. In summary, the objectives of this thesis are:
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1. to review the field of conceptual modelling, ontologies and the emerging
discipline of mesodata to address existing conceptual modelling problems

and to survey extensions to the ER model;
2. to extend conceptual data models to enhance expressiveness;

3. to establish a conceptual modelling approach that can support the modelling

of data in rapidly changing environments

4. to illustrate the mapping procedures by creating a relational schema from

a schema of the proposed conceptual models.

1.4 Scope

The central theme of this thesis is on conceptual modelling methodologies aimed
at supporting database designers and users in explicitly modelling the semantics.
The overall goal is to represent more semantics of the real world in the database
schema. The work presented here is expressed using the concepts provided by
the high-level conceptual data model and concentrates on entities, data types,

relationships, user operations and constraints.

As the focus is on the conceptual level, physical-level and external-level as-
pects all fall outside the scope of this thesis. These aspects that are excluded
from consideration include implementation issues, such as the development of a
proof-of-concept system that will demonstrate these techniques or promote fur-
ther development of the ideas for possible commercialisation, and the external

issues such as the screen forms used for data entry.

1.5 Approach and Structure

The approach and structure of this thesis reflect the successive elaboration of the
objectives specified in [Section 1.3|

1.5.1 Approach of the Thesis

The approach followed in this thesis is to accomplish each of the four objectives

is detailed as follows:
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Objective 1: To review the field of conceptual modelling, ontologies and the
emerging discipline of mesodata to address existing conceptual modelling

problems and to survey extensions to the ER model.

This objective is primarily accomplished in Chapters[2] [3]and parts of Chapters[4]
and [6]of this thesis. It begins with a review of conceptual modelling concepts and
methodologies. In [Chapter 3] a comprehensive survey and consolidated overview
of extensions to the ER model is presented. In this survey, various aspects of
the ER extensions are analysed, salient points of the extended ER models are
described, and a comparison of the models is discussed. Lastly, the concepts of

mesodata, ontologies and relationships in conceptual modelling are discussed in
Chapters [ [f] and [6] respectively.

Objective 2: To extend conceptual data models to enhance expressiveness.

The accomplishment of this objective constitutes the core of this thesis as detailed

below:

1. In[Chapter 4] the concept of mesodata is incorporated into conceptual mo-
delling methodologies based on the ER and ORM model. In that chapter
it is argued that conceptual modelling methodologies would be semanti-
cally richer if they were able to express the semantics of complex data
types for attribute domains. It starts with a systematic examination of
how the concept of mesodata provides advanced semantics that can be
associated with the domain of an attribute. The main research problem
which is addressed in is: how can mesodata be modelled in con-
ceptual modelling methodologies? The chapter thus presents the Mesodata
Entity-Relationship (MDER) model and Mesodata Object Role Modelling
(MDORM) to solve this research problem.

2. In [Chapter 5] the thesis demonstrates how ontologies can be incorporated
into conceptual modelling methodologies. Besides extensions to the ER
model and the ORM, this chapter includes a discussion of UML class dia-
grams. In that chapter it is argued that the conceptual model should sup-
port and express relevant aspects of the underlying domain associated with
the world view. The Ontological Entity-Relationship (OntoER), Ontologi-
cal Object Role Modelling (OntoORM) and Ontological Unified Modelling
Language (OntoUML) class diagram models are thus presented to illustrate

how the two concepts of mesodata and ontologies can be merged in order to
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support a richer level of semantics. This shows how conceptual models can
be enhanced with the purpose of improving domain semantics, through the
use of common domain structures that facilitate more advanced semantic

relationships between concepts/terms.

3. In a new relationship construct, termed polymorphic relation-
ships, is presented in the ER model. It is argued that existing relationship
constructs of traditional conceptual models may need to be modified or ex-
tended to handle a broader spectrum of situations due to differing world
views. It is shown how some of the modelling issues that are not easily
accommodated in conceptual modelling (i.e. the situation that requires a
treatment of default values in relationships where the values provided hold
unless more specific information is available) can be handled in an intuitive
manner. This research investigates the links between entities defined for
polymorphic (overloaded) relationships. This allows the conceptual models
to reflect situation changes in the real world and to continue providing a

sound basis for database design.

Extensions proposed in this thesis attempt to embed the semantics of an appli-
cation environment into the practice of conceptual modelling. This will improve
the semantic expressiveness of conceptual data models and database schemata,

and will assist in the evolution of semantically enriched conceptual schemata.

Objective 3: To establish a conceptual modelling approach that can support the

modelling of data in rapidly changing environments.

In a new conceptual modelling approach, the LItER model (Roddick,
Ceglar, de Vries and La-Ongsri, 2008), is presented which allows rapid data mo-
delling. This methodology allows data to be stored immediately and a more
refined conceptual schema to be developed later. It is argued that a common
conceptual schema should exist for the initial storage of data in the absence of
a more specialised model and that it should be flexible enough to capture all
data, and simple enough to create a full conceptual model. The adoption of this
novel modelling approach will also allow for the integration of ontologies and
mesodata combining emerging technologies such as data mining and knowledge
based technologies including hypotheses, probabilistic reasoning and temporal

auditing.

The contribution towards this objective provides further support for the prac-

tical utility of the work presented in the preceding chapters of this thesis (i.e.
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Figure 1.3: Overview of the thesis structure relating the objectives of the thesis
with the chapters in which they are accomplished.

Chapters , and @

Objective 4: To illustrate the mapping procedures by creating a relational

schema from a schema of the proposed conceptual models.

In [Chapter 8| the results of Objective 2 are used to show how the proposed
constructs from the MDER, MDORM, OntoER, OntoORM or OntoUML class di-
agram schemata can be mapped to a relational database schema. This chapter
argues that the ability to transform a conceptual schema to a relational schema
that can be manipulated by the system is essential. It then describes how to
design a relational database schema based on a conceptual schema design. These
instructions include additional steps that are added to the existing mapping algo-
rithm, and this transformation is illustrated with examples from the INVENTORY
and MEDICAL databases.

These ideas further illustrate the assertion that these modelling techniques

are useful and pragmatic.
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1.5.2 Structure of the Thesis

Between this introduction and the conclusion, this thesis contains seven chapters
which contain important research contributions. An overview of the structure of

this thesis is presented in |[Figure 1.3 and is summarised below:

provides the foundations of the presented thesis.

comprises an overview of fundamentals of conceptual modelling con-
cepts.

presents a comprehensive survey and consolidated overview of ER

model extensions.

extends the ER model and ORM to show how mesodata can be
accommodated into these modelling approaches, culminating in the Meso-
data Entity-Relationship (MDER) model and Mesodata Object Role Model

(MDORM). A review and further discussion of mesodata is included.

extends three conceptual modelling methodologies, the ER model,
ORM and UML class diagrams, to show how the concept of common do-
main structures can be used to accommodate ontologies, resulting in the
Ontological Entity-Relationship (OntoER) model, Ontological Object Role
Modelling (OntoORM) and Ontological Unified Modelling Language (On-
toUML) class diagrams. This chapter also includes a comprehensive review

of the concept of ontologies.

introduces the concept of polymorphic (i.e. overloaded) relationships
in ER modelling and shows how the static modelling of relationships can be
modified to accommodate the natural semantics of applications. This allows
for a conceptualisation of applications where a specific attribute value is not
neccessary for the relationship being described to be modelled in a concep-
tual model. This chapter also reviews the concept of (static) relationships

in conceptual modelling.

presents a new conceptual modelling approach that allows data to

be modelled in rapidly changing environments. This research incorporates

the concepts of mesodata, ontologies and links as polymorphic relationships
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developed in Chapters [4] [5] and [6] into the the Low Instance-to-Entity Ratio
(LItER) modeling approach. Their structures are presented as parts of the

components of the LItER schema and architecture.

presents a mapping algorithm that converts the proposed constructs
of the MDER, MDORM, OntoER, OntoORM and OntoUML schemata into

logical schemata that can be optimised and implemented in relational data-
base systems as illustrated through the two major database examples of

this thesis.

summarises the contributions of this thesis and outlines areas for

future research.

[Appendix A| provides references to relevant publications.

|Appendix B| provides the sample proposals from the classification of ER mo-

delling extensions (CERME) framework that have been described according

to key considerations of a conceptual data model.

Appendices [C] and [D] provide the schema mappings and data definition lan-
guages of the two major examples from the INVENTORY and MEDICAL

databases in this thesis, respectively.



Chapter 2

Revisiting the Fundamentals of
Conceptual Modelling Concepts

In the early days of conceptual modelling when data models were first proposed
and the relational model had just conquered the database technologies, numerous
data models had emerged with the aim of providing more expressive power for
capturing the semantics of applications. These models, called conceptual models,
have been used to capture the meaning and structure of the information to be
managed in database applications for more than three decades. This chapter
revisits the theoretical background of conceptual modelling concepts and presents

a summary of the various data models proposed in each of the different eras.

The structure of this chapter is as follows. The foundations of conceptual
modelling concepts is given in Sections to 2.7 These includes an overall

introduction (Section 2.1)), a review of data model terminologies (Section 2.2)),
conceptual schema (Section 2.3]), semantics (Section 2.4)), conceptual design ([SecH
tion 2.5)), key considerations of a conceptual data model (Section 2.6|), and three

well-known conceptual data models (the ER, ORM and UML class diagram mo-
dels) including their comparison (Section 2.7)). Next, a summary of the evolution
of data models is presented in Finally, this chapter is summarised in

Section 2.9l

2.1 Introduction

Database management is “all about mapping the informal real world into some

formal machine representation” (Date and Darwen, [1992)). The traditional database

19
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community’s dissatisfaction with its early systems was due to unwanted depen-
dencies embedded in applications (Date and Darwen, [1992)). Applications often
relied on detailed information about the physical layout of data records and this
made it impossible to evolve the database, or even to move it to a new architec-

ture without rewriting all affected applications. (Raymond, Tompa and Wood,

1996)

The solution developed by the database community was to generalise the se-
mantics of data by developing data models that described the logical properties
of data, independently of how it was stored (Raymond et al., [1996)). The rela-
tional model, proposed by (Codd (1970), makes the evolution of a database much
easier than using a data model based on a specific data representation such as a

hierarchical or network data model.

Most current database applications are implemented in either the relational,
object or object-relational data models. The relational model is well suited to
transaction processing, but has shortcomings in terms of semantic expressive-
ness that has led to the development of semantic models such as the ER model.
A number of database research efforts have concentrated on expanding the ex-
pressiveness of the database modelling mechanism in order to increase the un-
derstanding and usability of conceptual schemata. These so-called semantic or
conceptual data models, use primitives such as entities, attributes, relationships,
aggregation, generalisation, and constraint mechanisms, and are based on set

theory which typically provides a much more expressive modelling mechanism.

For the database community, the semantics of applications is of great concern.
Focussing on data models is a natural way to ensure the retention of semantics,
since data models deal with semantics directly, without taking into consideration
the machine, operating system or data representation (Raymond et al., [1996).
Conceptual modelling has traditionally been used to capture the meaning and
structure (schema) of the information to be managed in database applications.
In this respect, the conceptual model also acts as input for the generation of a
specific database schema conformant to some chosen implementation technology
(Berild, 2004). As discussed in the preface of the ER conference 2006 (Embley,
Olivé and Ram) |2006)), conceptual modelling has now become fundamental to any
domain in which organisations have to cope with complex, real-world systems.
It has become a key mechanism for understanding and representing computing
systems and environments of all kinds, including the new e-applications and the

information systems that support them.
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In addition, as discussed by [Parent, Spaccapietra and Zimanyi| (20064d)), to-
day’s research on the semantic web again emphasises the need for conceptual mo-
delling approaches to facilitate information exchange over the Internet and within
heterogeneous, distributed or federated databases. In such contexts, a conceptual
model provides the best vehicle for delivering a common understanding between

application partners with different technical and application backgrounds.

2.2 Data Models

The various data models proposed in the literature fall into two types: conceptual
models, used in database design; and logical models, supported by the database
management systems (DBMSs) that create, modify and maintain databases (Ba-~

tini, Ceri and Navathe| 1992)). This section presents definitions of data models.

The term data model has been used in the database community with various
meanings and in diverse contexts. Various definitions of data models (listed in

ascending order by published year) are as follows:

— A data model is a common language for describing constraints on data and
the effect of operations on that data (Kerschberg, Klug and Tsichritzis, (1976)).

— A data model is a mathematical framework for representing knowledge

(McGeel [1976).

— A data model is a combination of three components: a collection of data
structure types, a collection of operators or inference rules, and a collection of

general integrity rules (Codd, 1980).

— A data model is a collection of concepts that can be used to describe a set
of data and operations to manipulate the data (Batini et al.| 1992)H

— A data model is a set of concepts that can be used to describe the structure

of and operations on a database (Navathel [1992)).

— A data model is a collection of conceptual tools for describing the real-world
entities to be modelled in the database and the relationships among these entities
(Silberschatz, Korth and Sudarshan) 1996).

— A data model is a collection of concepts that can be used to describe the

!Based on this definition, when a data model describes a set of concepts from a given reality,
it is called a conceptual data model.
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structure of a database providing the necessary means to achieve data abstmctz’mﬂ
(Elmasri and Navathe, [2007)).

The term data model as used in the literature denotes different levels of
abstraction and this accounts for a degree of confusion when trying to provide
a consensus view of what a data model actually represents. To remove any am-
biguity, this thesis relies on the most concrete sense of the term data model as
defined by |Codd| (1980).

Codd (1980) further pointed out that many authors appear to understand
that a data model is only a collection of data structure types and often ignore the
operators and integrity rules. These operators and integrity rules are essential
to any understanding of how the structures behave, and as a consequence, when

they are omitted, such models should be regarded as incomplete.

Data models first appeared in the early 1970s with the aim of providing some
level of data abstractions so that different users may perceive data at their pre-
ferred level of detail. For example, the hierarchical data model was defined by
a process of abstraction as part of the DBMS called Information Management
System (IMS) created by IBM. The network data model was defined by a process
of abstraction introduced by the Conference on Data Systems and Languages
(CODASYL) Database Task Group. The relational data model (Codd, 1970),
which is based on mathematical concepts and formal definitions such as relations
and normal forms, organised data according to three levels of data description

(external, conceptual and internal).

These three data models are examples of logical models. A Logical model is
a data model that represents data descriptions in a form that can be processed
by computer (Batini et al., |1992)). However, such data models retain less of the
original meaning of the data that is necessary for database designers and users in
being able to interpret the contents of a database. As a response to this perceived
need, better modelling tools are required to capture (in a more or less formal way)
more of the meaning of the data so that database design can become semantically

richer and the database system itself can behave more intelligently (Codd, [1979).

In the mid 1970’s, the creation of conceptual or semantic data models helped
to overcome these deficiencies of the logical data models by providing a stronger

semantic foundation that retain more of the original meaning of the data. The

2Data abstractions are relevant to three levels of data description (external, internal and
conceptual) through which the user can visualise the schema levels in a database system. This
three levels or three-schema architecture is known as the ANSI/SPARC proposal (1975]).
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Entity-Relationship (ER) model (Chen, [1976)) established in 1976 is the most

popular model for conceptual modelling

A data model is qualified as conceptual if it enables a direct mapping between
the perceived real world and its representation within the concepts of the model
(Parent et al., 2006d). The conceptual data model helps designers capture the
real world data requirements as it allows them to focus on semantic details of the
concepts and their relationships, more than that which would be provided by the
relational data model. The semantics represented in the ER model, for example,
allow for direct transformations of entity types and relationship types to at least
first normal form (INF) tables. They also provide clear guidelines for integrity

constraints (Teorey et al., 2006).

In addition, as discussed by Batini et al. (1992) and Navathe (1992)), any
semantic data model used for the purpose of conceptual design should be a suit-
able tool for representing reality. These data models should possess the following

qualities:

o Frpressiveness. The model must be sufficiently expressive to bring out the
distinctions between different types of data, relationships and constraints,
allowing analysts to capture relevant information not previously available.
Additional features are introduced through the modelling of any new con-

structs that contribute to the semantics of the model.

o Simplicity. The model must be simple enough for any end user to use and
understand. Hence, it must always be accompanied by easy diagrammatic

notation.

e Minimality. The model must consist of a small number of basic concepts

that are distinct and orthogonal in their meaning.

e Formality. The concepts of the model should be formally defined. It should

be possible to state the criteria for the validity of a schema in the model.

e Unique Interpretation. Ideally, there should be a single semantic interpreta-
tion of a given schema. In turn, this implies that complete and unambiguous

semantics can be defined for each modelling construct.

3Conceptual modelling was used either as a synonym to semantic data modelling or in the
technical sense of the ANSI/X3/SPARC report (1975) where it referred to a model that allows
for the definition of schemata lying between external views, as defined for different groups of
users, and internal schemata defining one or several databases (Mylopoulos, 1992).
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This thesis also suggests the inclusion of orthogonality as below:

e Orthogonality. A way that purportedly makes the modelling dimensions
independent of each other, so that the modelling of new constructs in one
dimension are independent of the existing constructs in another dimension.
Orthogonality is the best way to provide maximum expressive power while
retaining maximum simplicity in the constructs of the model (Spaccapietra,
Parent and Zimanyi, 2008)).

At the highest and most abstract level, a conceptual data model describes
how relevant information is structured in the natural world for purposes of com-
municating a common understanding. It should be independent of any database
management system or other implementation considerations and is usually ex-
pressed in verbal or graphical form based on formal notations that allows for the

capture of the semantics of the application.

In the design of databases, conceptual models are first used to produce a high-
level description of reality then the conceptual schema is translated into a logical
schema. The goal of conceptual data modelling is to capture real-world data
requirements in a simple and meaningful way that is understandable by both the
database designer and the end user. The conceptual data model has been most
successful as a tool for communication between the designer and the end user and

helps them understand and describe the contents of database in an intuitive way.

2.3 Conceptual Schema

A conceptual schema is a global description of the database that hides the details
of physical storage structures and concentrates on describing entities, data types,
relationships and constraints (Thalheim, |2000). As discussed by Sowa| (2005)),
the need for standardised ways of encoding knowledge has been recognised since
the 1970s. The American National Standards Institute (ANSI) proposed that all
pertinent knowledge about an application domain should be collected in a single

conceptual schema (Tsichritzis and Klug) 1978)).
As described by Sowal (2005)), [Figure 2.1|illustrates an integrated system with

a unified conceptual schema at the centre. Each circle is specialised for its own
purposes, but they all draw on the common application knowledge represented in
the conceptual schema. The user interface calls the database for query and editing

facilities, which, in turn, calls the application programs to perform actions and
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Database & Applications
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Figure 2.1: Conceptual schema as the heart of an integrated system (from Sowa,
2005)

provide services. Thus, the database supports both the application programs with
facilities for data sharing and persistent storage. The conceptual schema binds
all three circles together by providing the common definitions of the application

entities and the relationships between them.

Sowa| (2005) stated that for more than twenty years, the conceptual schema
has been important for integrated application design, development and use. The
most recent attempt to integrate all the world’s knowledge is the semantic web
and so far, its major contribution has been to propose XML as the common

syntax for sharing common semantics between applications.

It is important to distinguish between a conceptual data model and a concep-
tual schema. The former refers to the technique (including its notation) that is
used to model any database. The ER (Chen, [1976), NTAM/ORM (Falkenberg,
1976; Halpin, 2001}, [Nijssen, [1976l 1977; Nijssen and Halpin, [1989; |Verheijen and
van Bekkum)| 1982) and UML (Booch, Jacobson and Rumbaugh, 2005 |Muller,
1999)) are all examples of conceptual data models. On the other hand, conceptual
schemata refer to the result of the modelling, namely a set of diagrams described
by a specific data model in the form of diagrammatic conventions or a language
syntax to express the specific data structures for an application that is going to

be developed (Fonseca, Davis and Camaral 2003; [Fonseca and Martin| [2007).

2.4 Semantics in Conceptual Modelling

“...Data by itself 1s not enough — what we really need is information,
the meaning or semantics behind the data. Since computers lack com-
mon sense, we need to pay special attention to semantics when we use

computers to model some aspect of reality.” T Halpin (2001)
erry Halpin
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Next generation database systems will not work without semantics (Mylopou-
los, |2004). Several perspectives on semantics appeared in the literature, in par-
ticular, in a panel discussion of the Data Semantics (DS-6) conference compiled
by [Sheth, Meersman and Navathe| (1995)). Various definitions of semantics are

given below:
— Semantics is the meaning and the use of data (Woods|, [1988)).
This is the classic definition of semantics.

— Semantics can be viewed as a mapping between an object modelled, repre-
sented and/or stored in an information system (e.g. an ‘object’ in a database)
and the real-world object(s) it represents (Sheth et al., |1995).

This mapping represents the semantics of the modelled object by describing or

identifying the meaning and the use perspectives.

— Semantics is all pervasive and covers many things such as the interpretation
and the use of data, or the interaction of people to convert data into information

(that is, semantics is everywhere and has broad interpretation).

This definition is given by Navathe, one of the four panellists of DS-6 conference,
who defined semantics in a broader term (Sheth et al., |1995]).

— Semantics is dependent on humans, thus it is difficult to address it in the
context of machines (no wonder the systems oriented database researchers often

find it a ‘soft science’).

This is another definition by Navathe, given at the DS-6 conference (Sheth et al.
1995)) that shows another interesting philosophical point of this term.

— Semantics, in a formal way, is the precise description of the link between
a representation and concepts in the real world; in a casual way, semantics is
a feature of a language or representation that supposedly can be measured or

compared in intuitive ways (Meersman) 1996)).

This latter definition appears to be the most frequently used in the database
and information system literature. Examples of this form are approaches where
semantics are conceptually linked to relationships, constraints, objects or appli-

cation functionality.

— Semantics can be identified by relationships between objects (Wiederhold,
1995) in |Sheth et al.| (1995).

This term is identified by Gio Wiederhold, one of the three keynote speakers
at the DS-6 conference (Sheth et al. 1995). In addition, [Sheth, Thacker and
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Patel (2003) stated that relationships between entities (terms or concepts) are
the basis of capturing, representing and supporting semantics. This definition
is indeed the perspective taken by many in the knowledge representation and

conceptual modelling fields.

— Semantics is defined as the meaning of a term or a mapping from a con-
struct to the real world (Purao and Storey, [2005)).

According to this definition, understanding a relationship requires that one un-

derstands the semantics of the accompanying verb phrase.

— Semantics is defined as the meaning, or essential message, of the terms
used in the conceptual model, that is, of words and phrases representing entities
and verbs (Storey, 2005).

According to this definition, mechanisms for capturing some of the semantics of

the real world are needed to compare the entities and verb phrase relationships.

For the purpose of this thesis, the concept of semantics that is used throughout
this thesis encompasses all of these understandings and perspectives that reflect
upon the common understanding of this term. Understanding the semantics
of the real world and representing them in a conceptual schema are becoming
common in conceptual modelling. Ontologies capture useful semantics about the
domains that they model, relationships between them and the characteristics of
the domain (Sheth et al.| 2003). A variety of the semantics of relationships can be
seen in context through conceptual schemata and ontologies. This understanding
that relationships between objects are the key to semantics is also reflected in the
definitions suggested by both Wiederhold (Sheth et al., [1995) and [Sheth et al.
(2003).

Entities in the real world are related to each other in various ways (Sheth
et al., 2003)). These relationships can be simple such as is-a and is-part-of,
which are basic hierarchical structures or can be much more complex relation-
ships which require complex structures. For example, the semantic relationships
such as CLOSETO and NEXTTO presented in this thesis capture the degrees of prox-
imity of address/location (refer to[Chapter 4). Similarly, the domain knowledge
that uses ontologies to describe terms or concepts provides additional meanings

to a location attribute through the relationships between its concepts (refer to
Chapter b|).

Recent research efforts have been devoted to the further understanding of the
semantics of relationships. Bergholtz and Johannesson (2001) proposed an on-

tology for classifying relationships based on data abstractions. [Purao and Storey
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(2005) proposed a layered ontology for classifying the semantics of relationships.
Other similar efforts provide a way to create database designs that capture and
represent the semantics of an application. For example, [Storey (2005)) proposed
an ontology for classifying relationship verbs based upon the domain and context
of the application within which the relationship appears. Sugumaran and Storey
(2006)) showed how domain knowledge stored in an ontology can be used to assist
in the generation of complete and consistent database designs. These are based
on the concept that understanding the semantics of relationships requires an ex-
plicit characterisation of the meaning underlying the descriptive verb that is part

of each relationship.

It is believed that semantics is a grand challenge for the current generation
of computer technology (Embley} 2004 and ontologies will help solve the major
problem of incorporating semantics into data modelling. This thesis will show one

potential use of ontologies in enhancing richer semantics in conceptual modelling

(refer to [Chapter 5)).

2.5 Conceptual Design as Part of Database De-

sign

“Conceptual modeling is a very important phase in designing a suc-
cessful database application.”
Ramez Elmasri and Shamkant B. Navathe (2007)

As stated by |[Rolland and Cauvet| (1992)), conceptual models have proved to
be extremely useful throughout the information system life cycle. The growing
demand for information systems of ever-increasing complexity and size, calls for
high level concepts and formal techniques to model systems at different levels of
abstraction. The need for powerful conceptual tools and better forms of abstrac-
tion, particularly in the earlier phase of systems development, has been recognised

throughout industry, business and administration.

As discussed by Halpin (2001), when a database is designed for a particular
application, a model of the application area is created. Technically, the applica-
tion area being modelled is called the Universe of Discourse (UoD), since it is the
world (or universe) that we are most interested in. The UoD is also called the
‘the application domain’ and typically represents ‘part’ of the ‘real world’. The

main challenge is to describe the UoD clearly and precisely.
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Figure 2.2: Three main phases of database design (from Batini et al.| (1992]).

Designing databases is still considered as an art rather than a science. When
supported by a good conceptual data model which has enough expressive power to
support the modelling of all situations of interest, this design process can deliver
high quality database applications. However, there is no obvious answer to the
question of how much expressive power a data model should possess, since being
conceptual, data models may have more or less expressive power depending on
the number of concepts, constructs and constraints they support (Parent et al.
2006 a).

Database applications are modelled using a three-step design paradigm. Con-
ceptual design is the first stage in the process of top-down database design which
is decomposed into conceptual, logical and physical design as shown in [Figure 2.2|
The objective of conceptual design is to describe the information used by an or-
ganisation in a way which is not governed by implementation-level issues and
details, and is initiated from requirement specifications that describe the real-
ity. In this first phase, the model should be expressed at the conceptual level to
make it easy for people to see the overall picture, thus enabling any non-technical
stakeholders to be able to view, understand and to contribute to any discussions

on the database design.

The three-step design process as discussed by [Batini et al.|(1992)) and Shekhar,

Vatsavai, Chawla and Burk (1999)) is summarised as follows:

Conceptual Design. A conceptual design starts from the specification of re-

quirements and results in the conceptual schema of the database. A con-
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ceptual schema is a high-level description of the structure of the database,
independent of the particular DBMS that will be used to implement the
database. A common method of analysis involves identifying the essential
data that needs to be stored:

e cntities that the organisation has to deal with;

e attributes and items of information that characterise and describe

these entities; and

e relationships between entities that exist and must be taken into ac-

count when processing information.

At the conceptual design level, the focus is on the entity types of the appli-
cation, their relationships and constraints, and therefore the actual imple-
mentation details are omitted from this step. To assist the design process,
graphical notation or visual tools are commonly used to express the data

and their relationships.

Of all the available conceptual design methodologies, the ER model is the

one that is used most prevalently.

Logical Design. A logical design starts from the conceptual schema and results
in the logical schema. A logical schema is a description of the structure of
the database that can be processed and supported by a commercial database
management system (DBMS). The logical data model is often directly used
as part of the computer implementation in some DBMSs but omits the phy-
sical details related to the implementation. It contains modelling constructs
that are easy for users to follow, and is also referred to as an implementation

model.

The most widely used logical data model in current commercial databases
is the relational data model. At this point of the process, the logical schema
now represents familiar relations, tuples, attributes, primary keys and for-
eign keys of relational databases and allows queries to be expressed without
direct reference to specific indexes. Normalisationﬁ is applied at this step
to minimise redundancy in the data and to leverage maximum utility of
relational concepts. Object-oriented, object-relational, network and hierar-
chical data models are also examples of the actual implementation of the

conceptual data model.

4Normalisation is a methodology to analyse an association between attributes to extract
functional and join dependencies from the real-world semantics.
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Note that the entire activity, starting from requirements and producing the
definition of the final implementable schema in a DBMS, can also be called
schema design (Navathe, 1992).

Physical Design. A physical design starts from the logical schema and results
in the physical schema. A physical schema is a description of the implemen-
tation of the database and is strongly coupled to the DBMS. It is used to
describe the storage structures and access methods used in order to effec-
tively access data. Issues relating to the disk representation of data related
to the storage, clustering, partitioning, indexing, and space and memory
management are handled at this level. There may be an iterative process
loop between the physical and logical design phases as the decisions taken
during physical design for improving performance might affect the structure

of the logical schema.

The most demanding phase in database design is conceptual design. The
conceptual schema is the first formalised description of the database application
which serves as the basis for discussions with stakeholders on database design
or on further design steps to achieve fuller functionality of an existing database
system (Engels, Gogolla, Hohenstein, Hilsmann, Lohr-Richter, Saake and Ehrich,
1992). Conceptual data modelling is thus imperative for successful information

systems development (ter Hofstede, Lippe and van der Weide, [1995)).

2.6 Key Considerations of a Conceptual Data
Model

From a database point of view, conceptual data models that constitute a data(base)
model should at least possess: data structures that define the template of a
database; constraints (rules) that define the set of accurate and consistent database
states; and languages and operations on the database that allow retrievals and

updates.

According to these criteria, conceptual models are thus formally considered
as comprising three parts; data structures, integrity constraints and languages.
These criteria correspond to a combination of three components (a set of data
structure types, a set of operators or inferencing rules, and a set of general in-
tegrity rules) used to describe a data model as proposed by (Codd (1980). These

key considerations of a conceptual data model are described below.
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Data Structures. The structure of a data model refers to the modelling con-
structs with which the structure of a database can be described. For exam-
ple, the data structures of the ER model are entity types, relationship types

and attributes.

Integrity Constraints. Constraints are an additional restriction on the occur-
rences of data within a database that must hold at all times (Navathe, 1992).
They are used to ensure accuracy and consistency of data in a database.
As discussed by Navathe| (1992), data model constraints serve two primary

goals:

e Integrity. Integrity constraints are the rules that constrain the valid
states of a database. They arise either as properties of data or as user-
defined rules that reflect the meaning of data. For example, if a user
tries to insert data that does not meet the rules, the DBMS will not
allow it. Also, requirements (i.e. rules) imposed by a relationship in

the ER model must be met when updating the database.

e Security and Protection. This applies to restrictions and authorisation
limitations that are applied to a database so as to protect it from

misuse and unauthorised usage.

Constraints as described by [Borysowich| (2007)), [Elmasri and Navathe| (2007))
and Navathe (1992) can be visualised at different levels and are summarised

as:

e [nherent-based constraints. An inherent-based constraint is a con-
straint that is built into the rules of the data model itself. For example,
in the ER model, a relationship must have a least two participating

entity types.

e Schema-based constraints. A schema-based constraint is a constraint
that can be directly expressed in a schema of a data model, typically
by specifying this constraint in the data definition language. These
constraints are expected to be automatically enforced. For example, a
total participation constraint in the ER model, states that a specific
entity must participate in a particular relationship and therefore it
requires a minimum of one occurrence for any particular entity that
participates in the relationship. Consider the relationship ‘Teacher
teaches Course’. A Course cannot exist unless a Teacher has been

assigned to teach the Course.
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o Application-based constraints. An application-based constraint is a
constraint that can not be directly expressed in a schema of a data
model and hence must be expressed and enforced by the application
program. This constraint is more general and relates to the meaning
as well as behaviour of attributes. Since this is difficult to express
and enforce within the data model, it is usually checked within the

application program.

Languages. A data model should provide languages and operations for the
database that allow retrievals and updates including insertions, deletions
and modifications. A data model in the database parlance is associated
with a variety of languages such as data definition language (DDL) and
data manipulation language (DML). The DDL allows the database designer
to define the database schema. The DBMS has a compiler to process the
schema definition in DDL and to convert it into a machine-processable
form (Navathe, 1992). The DML is used to specify the retrieval, insertion,
deletion and modification of data. Languages for data models can also
be distinguished in terms of record-at—a-timcﬂ or set—at-a—timeﬁ ,

1952).

In the following section, the criteria related to the key considerations of a concep-
tual data model are applied to show that each of the well-known data modelling
approaches, ER, ORM and UML, can be regarded as completed data models.

2.7 Conceptual Modelling Approaches

In the past, a number of data models, called semantic or conceptual models have
been proposed for conceptual modelling, e.g. the Semantic Data Model (SDM)
(Hammer and McLeod, |1981)), the Functional Data Model (Shipman| 1981), the
Nijssen’s Information Analysis Methodology (NIAM) approach (Falkenberg, |1976;
Nijssen, (1976} (1977 Nijssen and Halpin, 1989) and the Entity-Relationship (ER)

model (Chen, |1976). For a comprehensive survey of these, refer to Hull and

| ®Record-at-a-time, the low level or procedural language, requires an elaborate control struc-|
ture typically provided by a host programming language within which the DML commands are
embedded (Navathe| [1992)).

®Set-at-a-time, the high level or non-procedural DML, can specify and retrieve sets of ele-
ments (e.g. sets of tuples in the relational model) in a single DML statement. This retrieval of
a tuple is said to be Set-at-a-time or Set-oriented.




CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 24

King| (1987) and [Potter and Kerschberg (1988). Amongst these, one of the first
and most powerful semantic data models was the ER model proposed by |Chen
(1976). Since this time, several conceptual modelling researchers have continued
to evolve the model by trying to express it using semantically enriched modelling
formalisms. A number of new abstraction mechanisms have been proposed, such
as specialisation, aggregation and association (Batini et al., [1992; Elmasri and
Navathe, 2007) to enrich its modelling capabilities. Another well-known fact-
oriented model for conceptual modelling is the NIAM approach (Nijssen, 1976
1977; Nijssen and Halpin), [1989)). Although it is less popular than the ER model, it
has also gained some attention from the database community and several papers
have been presented (Leung and Nijssen, 1988} |Creasy, 1989; Song and Forbes|,
1991; Laender and Flynn, 1993; |Puntheeranurak and Chittayasothorn| |2002).
This model is now widely known as Object Role Modelling (ORM) (Halpin), 1998,
2001). More recently, Unified Modelling Language (UML) class diagrams (Muller,
1999; Halpin, [1998-1999a) have also gained popularity for data modelling.

There are many modelling approaches that provide for diagrammatic repre-
sentation of conceptual models and much of the literature on data modelling is
devoted to different modelling techniques. This thesis provides a discussion of
three of these well-known approaches, ER, ORM and UML class diagram that
are used for conceptual modelling. The following explanation of this model draws
particular attention to data structures, integrity constraints and languages that

are the key considerations of the model.

2.7.1 The Entity-Relationship (ER) Model

“(The Entity-Relationship model) incorporates some of the important

semantic information in the real world...”

Peter Chen (1976)

The ER model was the first conceptual data model that was proposed by Peter
Chen in [1976, and is still the most widely used data modelling approach for the
conceptual design of databases and information systems. It can be described as
a top-down approach that views the real world as entities (that have attributes)
and relationships. The ER model exemplified semantic data models and has been
a precursor of much subsequent development (Navathe, [1992). The key elements

of a (conceptual) data model as they apply to the ER model are described below:
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Figure 2.3: An example of an ER diagram for a university database.

b

Data Structures. The main constructs in the ER model are entity types, rela-
tionship types and attributes which are represented graphically as an entity-

relationship diagram.

1. Entity types. In the ER model, the real world is modelled into entities,
that are characterised by attributes and interrelated through relation-
ships. An entity, or more precisely an entity instance, represents an
object of interest that may be concrete or abstract. A collection of
similar entities forms an entity type. An entity type is similar to a
class of objects, however, it is not involved with the operations on

data and thus there are no methods associated with an entity type.

2. Relationship types. A relationship type represents a meaningful associ-

ation between two or more entity types.

3. Attributes. An attribute is a property of the entity. The set of values

an attribute can take is often termed a domain.

shows an example ER diagram for a university database. In
the ER diagram, entity types, relationship types and attributes are repre-
sented by rectangles, diamonds and ellipses respectively. The ellipse with
an underlined label indicates a unique identifier attribute which uniquely

identifies instances of an entity.
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Figure 2.5: Cardinality ratios in the ER model.

Integrity Constraints. There are two types of constraints on relationship types
in the ER model: cardinality ratios and participation constraints that fall

under the schema-based constraint category.

1. Cardinality ratios. A cardinality ratio specifies the maximum number
of relationship instances that an entity can participate in (Elmasri and
Navathe, 2007). For example, consider the WORKS_IN relationship type
in [Figure 2.4 A cardinality ratio of EMPLOYEE:DEPARTMENT is N:1,
meaning that an employee can work in only one department while a
department can have many employees. The possible cardinality ratios
for relationship types in the ER model are 1:1, 1:N, N:1 and M:N as
shown in [Figure 2.5 where the N and M notations refer to any number
of instances (refer to |[Elmasri and Navathe (2007))).

2. Participation constraint. A participation constraint specifies whether
the existence of an entity depends on its relationship to another en-
tity via the relationship type (Elmasri and Navathe, |2007). There are
two types of participation constraints — total and partial. Consider
the MANAGES relationship type in If we do not expect every
employee to manage a department, then the participation of EMPLOYEE
in the MANAGES relationship type is partial as depicted by a single line
connecting EMPLOYEE and MANAGES and if we expect that every de-
partment has a manager, then the participation of DEPARTMENT in the
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MANAGES relationship is total as depicted by a double line connecting
DEPARTMENT and MANAGES.

Languages. A discussion of query languages for the ER model ranges from pro-
cedural languages (Campbell and Embley, [1985; Demo, Di Leva and Giolito,
1985), descriptive languages such as GORDAS (Elmasri and Wiederhold,
1981) to graphical languages (Campbell, Embley and Czejdol |1987; El-
masri and Larson, 1985) such as GRAQULA (Sockut, Burns, Malhotra and
Whang), 1993)) or GQL/ER (Zhang and Mendelzon, (1983)). There are also
query languages such as SQL/ER (Gogolla and Hohenstein|, |1991)) and oth-
ers that are based on the Extended Entity-Relationship (EER) model such
as SQL/EER (Hohenstein and Engels| [1992).

However, there are no DBMSs that use the ER model directly. As most com-
mercial DBMS uses the relational model, the ER model is thus converted
to a relational schema in the data-specification language of the relational
DBMS. Subsequently, a RDBMS language, such as SQL, is used to create
a schema in the conceptual design phase. The ER model integrates seam-
lessly with the relational data model and can be mapped into a relational

database schema which guarantees the first normal form (INF).

To capture the real-world semantics in the ER model, one main problem that
needs to be overcome is how to distinguish between attributes and entity types.
The distinction between entity types and attributes tends to be fuzzy (Navathe,
1992)). Also, there seems to be not just one correct ER diagram for a given
situation. For example, one may consider the Country in which a person was
born to be modelled as an attribute of the PERSON entity type [Figure 2.6[a).
Conversely, it could be argued that the COUNTRY entity type should be modelled
with the attributes of, for example, Name, Population and Zone. The latter
argument is supported by promoting relationship types between the PERSON and
COUNTRY entity type as shown in [Figure 2.6(b).

Given the term Country from the example in [Figure 2.6, this thesis suggests
that the following guideline should be used to assess whether Country should be

modelled as an attribute or entity type.

e Country should be modelled as an attribute if it is required to record only
one piece of information about a Country (i.e. the Country’s name) and

Country is related to only one entity type.
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e Country should be modelled as an entity type if it is required to record mul-
tiple pieces of information about Country (e.g. Name, Population, Zone)
and where Country is also associated with any other entity types through

relationship types.

2.7.2 Object Role Modelling (ORM)

ORM is a method for modelling and querying an information system at the con-
ceptual level (Halpin, 1998). ORM'’s precursor is often referred to as NIAM,
which was initially developed by Nijssen and others in Europe in the early 1970s
(Nijssen and Halpin, [1989)). NIAM was originally an acronym for Nijssen’s Infor-
mation Analysis Methodology (Nijssen, (1976, |1977; Nijssen and Halpin, [1989),
but more recently, it has been revised to Natural Language Information Analysis

Method (Verheijen and van Bekkum) [1982)). At present, a more general name for

NIAM is Object Role Modelling (ORM) (Halpin, [2001)).

ORM expresses the information in terms of elementary relationships which
means that a base concept of ORM makes no use of attributes, but uses a re-
lationship instead (Halpin, 2000). This differs from other modelling techniques
such as the ER or UML approaches in that these approaches use attributes as
their main constructs. The key elements of a (conceptual) data model as they

apply to the ORM approach are described as follows:

Data Structures. The main constructs of ORM are entity types (types of ob-

ject), label types (type of values or names), reference types and fact types.

1. Entity types. An entity type is the set of all possible values. Each
entity is an instance of the particular entity type. For example, the
entity type STUDENT is the set of all students. That is, an entity type
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Figure 2.7: An example of an ORM diagram (adapted from Jarrar et al.| (2003))).

is a generic collection of abstract or real entities. Note that in ORM
the word ‘entity’ refers to ‘entity instance’. The semantics of the con-
structs are similar to that of the ER model, however the graphical
representation is different. In ORM, an entity type is depicted as a

named ellipse whereas in ER a named rectangle is used.

2. Label types. A label type is used to denote a particular object. In
other words, it is a naming of an entity type and is usually depicted

as a named, dotted ellipse.

3. Reference types. Relationship types in ORM are known as reference
types and fact types that are depicted as a named sequence of one or
more roles, where each role appears as a box connected to the object
type that plays it. A reference type is an association between entity
types and label types. An entity type may have several label types

and its unique identifier is chosen from a one-to-one reference type.

4. Fact types. A fact type is an association between entity types. Each
fact type is in the form of elementary facts (Halpin, [1993)). This pro-
perty enables the ORM conceptual schemata to be mapped into the
5NF relational schemata (Leung and Nijssen), [1987; [Pornphol and Chit-
tayasothorn, [2004]).

Consider that depicts an example of an ORM diagram. Object

types are shown as a named ellipse, with solid lines for entity types and
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dotted line for label (value) types. Fact types appear as a named sequence of
roles, where each role appears as a box connected to the object type playing
it. Entity types are Committee, Person, Author, Reviewer and Paper. A
label type is TitleName. Committees, Persons, Authors and Reviewers are
identified by their name while Papers are identified by their paper number.
A named bracket is used to concisely represent a unique identifier, which
is placed below the entity type name. There is one reference type (i.e. a
Paper has a TitleName) while the remaining are fact types (e.g. an Author
writes a Paper, an Author presents a Paper, a Reviewer reviews a Paper,
etc.).

Integrity Constraints. ORM is typically more expressive than ER in terms
of its wider variety of constraints. Examples of such constraints that come
under the schema-based constraint category include uniqueness, mandatory

role, entity type, subtype and set comparison.

1. Uniqueness constraints. A uniqueness constraint is a constraint on the
fact types to indicate that each fact instance is unique. Arrow-tipped
bars over one or more roles represent uniqueness constraints. There
are two types of uniqueness constraints: intra-fact-type and inter-fact-
type.

e [ntra-fact-type constraints. An intra-fact-type constraint, some-
times called internal constraint, declares that the role in the rela-
tionship type must be unique. These are shown as arrow tipped
bars and are placed over one or more roles in a predicateﬂ For
example, adding a uniqueness constraint over the first role of
fact type ‘Committee is chaired by Person’ in declares
that each committee is chaired by at most one person and that
each entry in the Committee column must be unique (no com-
mittee’s name can be duplicated in that column). The predicate
‘...is chaired by...” is many to one (N:1). The inverse predicate

b

‘...chairs...” is said to be one to many (1:N).
e [Inter-fact-type constraints. An inter-fact-type constraint, some-

times called an external constraint, indicates that instances of the

"A predicate (as discussed by Halpin| (1998)), Halpin and Morgan! (2008) and Nijssen and
Halpin| (1989)) is basically a declarative sentence with object holes in it, one for each role. The
number of role is called the arity of the predicate. ORM allows predicates of any arity (e.g.
1=unary, 2=binary, 3=ternary etc.) in which the name of the predicate can be written either
in or beside the first role box. For example, the fact type an Author writes a Paper involves
the predicate ‘...writes... .
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combination of the roles in the join of those predicates are unique.
These are depicted as a circled U applied to two or more roles from
different predicates and are interconnected with dotted lines. For
example, to identify that a paper is defined by a combination of a
title name and authors, an inter-fact-type constraint is used that
joins the two role boxes shown in [Figure 2.7 This indicates that
for each paper the combination of a title name and authors is
unique. This means that when querying any title name and au-
thor name, there is at most one PaperNr which is paired with
both.

2. Mandatory role constraints. A mandatory role constraint declares that
every instance in the population of the role’s object type must play that

role. These are represented graphically by a black dot (Figure 2.7]).
For example, each Paper must have a Title name.

3. Entity type constraints. An entity type constraint, sometimes called a
domain constraint or value constraint, restricts an object type’s pop-
ulation to a given list. The relevant values may be listed in braces.
For example, the set of possible sexes may be listed or enumerated as
{M,F}, and placed alongside the entity type. If the values are ordered
and have a continuous range, the range can be declared by separat-

bl

ing the first and last values by ‘..” which abbreviates the integers in
between. For example, a range of employee age may be indicated as

[18..65].

4. Subtype constraints. A subtype constraint indicates that the specified
object type is a subtype of another. These are depicted by a solid
arrow. For example, in the solid arrows connecting the
object types Author and Reviewer to Person denote a subtype (is-a)

relationship, i.e. both author and reviewer are a subtype of person.

5. Set comparison constraints. A set comparison constraint restricts the
way the population of one role, or role sequence, relates to the pop-
ulation of another. These constraints can be applied between com-
patible role sequences where the corresponding roles have the same
object type. Set comparison constraints declare a subset, equality and
exclusion relationship between the populations of role sequence. An

example of exclusion and subset constraints is described below:

o Fxclusion constraints. An exclusion constraint indicates that the
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populations are mutually exclusive. This is depicted by the symbol
®. For example, in [Figure 2.7] the ® symbol between the fact
types ‘Reviewer reviews Paper’ and ‘Paper is written by Author’
indicates that an author who writes a certain paper is not allowed

to be a reviewer of the same paper.

e Subset constraints. A subset constraint declares that the popu-
lation of the source role sequence must be a subset of the target
role sequence. This is depicted by a dotted arrow that connects
any pair of compatible role sequences. For example, consider the
subset constraint between the Person-Committee role pair in
ure 2.7, This constraint declares that any person who chairs a

committee must be a member of that committee.

A detailed discussion of equality constraints including other constraints such
as ring and frequency constraints provided by ORM, can be found in |Halpinl
(2001)) and |Nijssen and Halpin| (1989)).

Languages. A powerful query language is important for successful database
modelling. To allow queries and updates to be performed at a concep-
tual level requires interaction with conceptual structures, rather than with
relational databases. ConQuer (Bloesch and Halpin| |1996]) is a concep-
tual query language based on ORM allowing users to formulate queries
naturally in terms of elementary relationships. Operators such as ‘and’,
‘not” and ‘maybe’ can be used and it does not require the user to have
any understanding of how the information is stored in the underlying data
structures. Similarly, the conceptual query language RIDL (De Troyer,
1989)) is based on NIAM (ORM’s precursor methodology) (Verheijen and
van Bekkum, [1982; Demey, Jarrar and Meersman, [2002). ORM-Markup
Language (ORM-ML) (Demey et al., 2002) has also been proposed as a
method to express ORM schemata using an XML-based markup language.

The ORM approach has well-defined semantics and uses elementary fact
types which can be easily mapped into fifth normal form (5NF) relational
schema. Once the conceptual schema has been transformed to a relational

schema, it then can be supported by SQL which is widely used in commercial
DBMSs.
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2.7.3 Unified Modelling Language (UML) Class Diagrams

The Unified Modelling Language (UML) is a relatively new object-oriented analy-
sis and design method. The Object Management Group (OMG) (OMG, [2008)
is in charge of developing and standardising UML and this sponsorship aims
to promote its universal acceptance and for it to become an emerging standard
for conceptual data modelling in object-oriented domains (OMG, 2005). Several
types of diagrams are provided by UML to assist developers of object-oriented
programming (Booch et al., 2005; Halpin, |1998-1999¢a; Muller, 1999)). As far as
conceptual data modelling is concerned, this thesis is only interested in the UML

class diagram which is used for data modelling purposes.

The key elements of a (conceptual) data model as they apply to the UML

class diagrams are described below:

Data Structures. The main modelling constructs of the UML class diagram
that is used for conceptual modelling purposes are classes, associations and
attributes. These constructs closely correlate to those associated with the

ER model.

1. Classes. A class is a description of a set of objects that share the same
attributes, associations and methods. In ER terminology, the term
class has an equivalent meaning to that of entity type. Classes have
properties in the form of attributes, provide abstract services in the
form of operations, and can be related to other objects using associa-
tions. Classes in UML are typically depicted as named rectangles with
three sections: the top section for the name of the class; the middle
section for the attributes of the class; and the bottom section for the
operations (methods) of the class. When used in conceptual analysis
and design, implementation details such as methods are omitted. The
nature and usage of UML class diagrams closely mirrors equivalent

processes in the ER model.

2. Associations. An association is the semantic relationship between two
or more classes involving links or connections among their instances.
These are depicted as solid lines connecting classes. In ER terminology,

the term association has an equivalent meaning to that of relationship
type.
3. Attributes. Attributes are properties of classes that describe a range of

values that instances of this class may hold.
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Figure 2.8: An example of a binary association with the expression of
multiplicity constraints in a UML class diagram.

Integrity Constraints. The UML class diagram includes multiplicity constraints
on the association roles. The concept of multiplicity in UML class diagrams
corresponds to cardinality in ER terminology. The multiplicity specifies
the number of target instances (at minimum and maximum) of one class
that may be associated with a given single instance of another class. Each
multiplicity constraint is placed on the far role in the direction in which the

association is read (Halpin, 2001; |Génova, Llorens and Martinez, |2001)).

shows a multiplicity constraint on a binary association meaning
that ‘each Company employs zero or more Employees’ while ‘each Employee
is employed by exactly one Company’. The association is simply shown as a
line connecting the two classes, named with a verb that describes the action.
An arrow shows which way the association is read. Notations at each end
of the line (i.e. ‘1’ and “*’) represents the multiplicity of the association.
The “*’ character symbol abbreviates ‘0..*’, meaning ‘zero or more’. A
‘17 abbreviates ‘1..1’, meaning ‘exactly one’. The multiplicity at each end
of the line in |[Figure 2.§| is called a one-to-many association. Multiplicity
is important in the data model since it maps directly into the structure
of the foreign key in the logical schema. shows some examples
of multiplicity notations. Refer to Halpin (2001) for possible constraint

patterns in UML for binary associations.

UML supports subclass and superclass, where each instance of a subclass
is also an instance of its superclass. A subclass inherits all the attributes,
associations (and operations/methods) of its superclass. The symbol for a
subclass association in UML is an open arrowhead that points to the su-
perclass. Rather than the usual multiplicity constraint, the subclass asso-

ciation line is labelled with four predefined constraints to indicate whether
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Table 2.1: Examples of Multiplicities.

Multiplicity Meaning

0.* Zero or more objects

0..1 No more than one optional object

1 Exactly one object

1..% One or more objects

2..10 At least two but not more than ten objects

1,3,9-10 At least one object but possibly three, nine or ten objects

subclasses are exclusive or exhaustive (Halpin and Morgan, 2008). Con-
straints are described along two dimensions: incomplete versus complete,

and disjoint versus overlapping (Jewett, 2006 a).

o [ncomplete versus complete. These constraints can be considered as

participationﬂ constraints.

— Incomplete. The incomplete superclass/subclass relationship spec-
ifies that only some instances of the superclass belong to any of its
subclasses. An incomplete superclass/subclass relationship is also
called a partial participation. To represent an incomplete super-
class/subclass relationship, the label {incomplete} is placed next

to the subclass association line.

— Complete. The complete superclass/subclass relationship specifies
that all instances of the superclass must also be a member of
a subclass. A complete superclass/subclass relationship is also
called a total or exhaustive participation. To represent a complete
superclass/subclass relationship, the label {complete} is placed
next to the subclass association line. For example, in [Figure 2.9
the subclasses of the Owner are complete, which means that every
member of Owner must be either a private owner or a business

owner.

° Disjoinﬂ versus overlapping. These two constraints, respectively indi-

cate whether the subclasses are mutually exclusive or overlapping.

8Participation constraints determine whether every member in the superclass must partici-
pate as a member of a subclass (Connolly and Begg, [2004)).

9Disjoint constraints describe the relationship between members of the subclasses and in-
dicates whether it is possible for a member of a superclass to be a member of one or more
subclasses (Connolly and Begg, 2004).
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Figure 2.9: An example of a UML class diagram (adapted from Connolly and
(2004)).

— Disjoint. If subclasses are disjoint, then an entity instance of the
superclass can be a member of only one of the subclasses. The

disjoint constraint only applies when a superclass has more than

one subclass (Connolly and Begg), 2004). A disjoint constraint

also called an exclusive constraint. To represent a disjoint super-
class/subclass relationship, the label {disjoint} is placed next to
the subclass association line. For example, in the sub-
classes of the Owner are disjoint, which means that a member of

Owner can be a private owner or a business owner, but not both.

— Qwverlapping. 1If the subclasses are overlapping, then an entity
instance of the superclass may be a member of more than one
subclass. To represent an overlapping superclass/subclass rela-
tionship, the label {overlapping} is placed next to the subclass

association line.

The disjoint/overlapping and complete/incomplete constraints of a super-
class/subclass relationship are distinct, giving rise to four categories: ‘com-

plete and disjoint’, ‘incomplete and disjoint’, ‘complete and overlapping’

and ‘incomplete and overlapping’ (Connolly and Begg, 2004)).
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Figure 2.10: UML aggregation.

In addition, UML provides for an aggregatioﬂ shown by an open diamond
on the end of association line that points to the aggregated class to rep-
resent a collection of their component objects. The relationship between
the primitive objects and their aggregate object is called a whole/part
(Halpin, 2001) relationship or is described as is-part-of; the inverse is
called is-a-component-of (Elmasri and Navathe 2007). For example, a
university is an aggregation of schools. Although this pattern can be mo-
delled by an ordinary association, aggregation provides a more semantically
correct way. describes that each university is composed of one

or more schools and each school is part of one university.

Arbitrary constraints in UML can be declared by writing a comment or

constraint in a note attached to the notations involved.

Languages. The OMG (OMG, 2008) has adopted UML as the standard nota-
tion for object methods (Muller, [1999)). Several additions to the language
are incorporated into the UML including the Object Constraint Language
(OCL) and action semantics. As part of the UML, OCL provides the pos-
sibility of expressing constraints in a conceptual model unambiguously and
enabling query expressions that can be used in conjunction with UML data
models. Based on the OCL, a Unified Query Language (UQL) (Grinev and
Kuznetsov,, 2002)) is also proposed. The mapping of OCL expressions to
SQL (Demuth and Hussmann, 1999; |Akehurst and Bordbar, 2001)) as well
as the mapping of a UML class diagram schema into a relational schema
(Muller, (1999; |[Shah and Slaughter, |2003)) are also provided.

shows an example of the UML class diagrams as discussed by |Con-
nolly and Begg| (2004)). This depicts superclass Owner, with a PrivateOwner and
BusinessOwner as subclasses. The specialisation/generalisation of the Owner en-

tity is complete and disjoint (shown as {complete, disjoint}) as an Owner must

10An aggregation represents ‘has-a’ or ‘is-part-of’ relationships between entity types, where
one represents the ‘whole’ and the other the ‘part’ (Connolly and Beggl [2004)).



CHAPTER 2. CONCEPTUAL MODELLING CONCEPTS 48

be either a private owner or a business owner, but cannot be both.
also depicts two examples of aggregations, namely ‘Branch has Staff’ and ‘Branch
offers PropertyForRent’. In both relationships, the Branch entity represents the
‘whole’ and therefore the open diamond shape is placed beside this entity. In
addition, includes an association class that is connected to the asso-
ciation by a dotted line. This occurs as there are new attributes dateAdvert and
cost that result from a many-to-many association between Newspaper and Pro-
pertyForRent (the maximum multiplicity in each direction is ‘many’). If there are
no attributes that result from a many-to-many association, there is no association
class (Jewett}, 2002-20060).

2.7.4 A Comparison of ER, ORM and the UML Class

Diagram

While the NIAM/ORM approach may not be as popular as the ER/EER model,
it is a semantically powerful conceptual model as it is fact-oriented in nature that
allows for the capture of more business rules about the application domain in
diagrammatic form and is not impacted by changes that causes attributes to be
remodelled as relationships. Its conceptual schema are presented in an easy-to-
read graphical form which can be easily understood by everyone involved in the
design stage (Leung and Nijssen, 1987). Additional work by Leung and Nijssen
(1987, |1988)) also reflects on an additional strength of NIAM/ORM in that its
well-formed conceptual schema can be transformed into an SQL Optimal Normal

Form (ONF)T] database schema.

Several researchers have also addressed the strengths of this model. |[Halpin
and Proper| (1995)) stated that ORM has advantages over the ER model in terms
of a populated and rich semantic notation. |Laender and Flynn| (1993) claimed
that the NIAM approach is more expressive in terms of a rich set of integrity
constraints. Song and Forbes (1991) also suggested that the NIAM approach
is more rigorous in its definition of constraints on the data represented in the
model. Additional work by Halpin/ (2001) concluded that the ORM method
has several advantages over the ER and UML approaches with respect to the
number of business rules that can be captured, greater stability when dealing

with application domain changes and easier verbalisation and population.

HONF is a fifth normal form (5NF) with a minimum number of 5NF tables in the overall
schema (Nijssen and Halpin) 1989} [Halpin, |1998)).
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Table 2.2: Equivalent data structures in ER, ORM and the UML class dia-
gram.

ER ORM UML
Entity type Entity type Class
Entity Entity Object
(or Data value)
Attribute ﬂ Attribute

Relationship type Relationship type Association

“No corresponding concept; ORM uses relationship types rather than attributes.

As discussed by Halpin and Bloesch (1999) and Halpin (1998, 2001} 2004),
UML class diagrams are clearly superior to both ER and ORM for the detailed
design of object-oriented code e.g. Java or C++4 programs. However, they are less
suitable for conceptual analysis since they lack a standard for the identification
of schemata e.g. uniqueness constraints on attributes and external uniqueness
constraints between association roles and attributes. In addition, UML does not
predefine any data types (Halpin, |2000) and does not impose any compatibility
constraints (Parent et al., 2006a), leaving these up to modellers to define their

own type systems and notations for the constraints.

Although each model possesses a construct which another lacks, this the-
sis has found that both the ER and ORM models are significantly similar in
their modelling power but distinctly different in their modelling methodologies
(i.e. top-down versus bottom-up) and diagrammatic representation. [Laender and
Flynn| (1993) also asserted that the similarities between the two models are that

they both can be implemented by the relational model.

Each model has its own peculiarities and vagaries in the way that the products
are used and implemented by designers/developers. Some prefer to use the ER
model rather than the ORM due to its simplicity. However, as design work
cannot be completed by only using the ER model, the designer must also possess
sufficient understanding of normalisation techniques after applying a process to
transform an ER schema to a relational schema. The use of these techniques
removes the relationships between the attributes that cause redundancies in the

relational database schema.

For beginners who lack normalisation knowledge, the ORM design method

is a suitable substitute. The strength in the ORM design method is in its use
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Table 2.3: Equivalent integrity constraints in ER, ORM and the UML class
diagram.

ER ORM UML
Key attribute Unique identifier ﬂ

(chosen from 1-1 reference type)
Participation Mandatory role Multiplicity
(total/partial) (1.1, 1..%/0..1, O*)ﬂ
Cardinality Uniqueness Multiplicity
(1:1,1:N,N:1,M:N)  (Intra-fact-type, Inter-fact-type) (1,*)
ﬂ Subtype Subclass
Exclusion XOR

“No standard notation.

®The multiplicities ‘1..*’ for mandatory-to-many and ‘1..1’ for mandatory-to-one while
the multiplicities ‘0..1’ for optional-to-one and ‘0..*’ for optional-to-many.

¢Each role multiplicity consists of a specification of integer value, ‘*’ and ‘1’ are the most
common. The asterisk ‘*’ represents an unlimited upper bound.

9No equivalent concept or term; this constraint is established by using subclasses in EER.

°No equivalent concept or term; this constraint is established by using disjoint classes in
EER.

Table 2.4: Equivalent languages in ER, ORM and the UML class diagram.
ER ORM UML

GORDAS, GRAQULA ConQuer, RIDL OCL, UQL
GQL/ER, SQL/ER

SQL SQL SQL
(ER-to-relational (ORM-to-relational (UML-to-relational
mapping available) mapping available) mapping available)

of well-defined transformation algorithms and elementary relationships. In other
words, the ORM conceptual schema can be easily transformed into a fifth normal
form relational database schema (Leung and Nijssen, 1987, 1988; Puntheeranurak

and Chittayasothorn, 2002)), with no resultant redundancy in the schemata.

However, a transformation of an ER schema only guarantees a first normal
form relational database schema which may need further normalisation. This
is a consequence of the way that relationship types in the ER model exist be-
tween entity types and thus the relationships between attributes which can cause

redundancy in a schema are not considered.

The basic similarities regarding data structures, constraints and languages in
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Table 2.5: The data models in ten historical eras.

- Based on
E Data Model . Typesof * = ppys/
ra ata Mode D r r
ata Structure Data Model Technology
late 1960s Hierarchical Record type Logical IMS
and 1970s Parent-child relationship
(PCR) type
1970s Network Record type Logical IDMS
(CODASYL) Set type
1970s and . i
i Logical
early 1980s Relational Relation g RDBMS
late 1970s Semantic Conceptual o
and 1980s "ER Entity type
Relationship type
- ORM/NIAM Entity type
Label type
Fact type
Reference type
- UML Class
Association
mid 1980s and  Object-oriented Object Logical ODBMS
early 1990s Class
Method
late 1980s and ) . )
early 1990s Object-relational Object+Relation Logical ORDBMS
1980s and Temporal Temporal relation .
1990s relational Timestamp attribute Logical RDBMS
late 1980s
and 1990s Graph Graph Conceptual -
late 1990s and  Multidimensional Fact Logical ROLAP
early 2000s Dimension MOLAP
HOLAP
late 1990s to Semi-structured Logical Web
present - XML Tree
- RDF Graph
(Subject-predicate-object)

ER, ORM and UML class diagrams is summarised in Tables [2.2] and [2.4]

respectively.

2.8 Evolution of Data Models

Data modelling plays an important role in the process of information system
development. The two main purposes of data modelling are to assist in the un-

derstanding of the meanings (semantics) of data and to facilitate communication

about the information requirements (Connolly and Begg, 2004). Data models

were first proposed in the late 1960s and since this time, a great number of new
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and extended data models have been proposed.

The purpose of this section is to summarise this evolution of data models.
Broadly speaking, the development of data models has occurred in distinctive
eras as shown in [Table 2.5 The principal models developed during each of these

eras 1s described as follows:

Hierarchical. A hierarchical data model represents data as a record type that is
arranged into a tree-like structure. The hierarchical data model supports
two main types of structures: record types which are a collection of data
items; and parent-child relationship (PCR) types which define a 1:N re-
lationship between two record types. The most recognised example of a
hierarchical model database is an Information Management System (IMS)
designed by IBM, which was released in the late 1960s. An IMS database is
a collection of instances of record types, such that each instance, other than
root instances, has a single parent of the correct record type. Every record
in an IMS database has a hierarchical sequence key (HSK). The IMS has a
data manipulation language, DL /1, which is a ‘record-at-a-time’ language

based on discrete and sequential record processing.

Network. The network data model represents data as record types and set types.
Each set type defines a 1:N relationship between one instance of a record to
many record instances using pointer7] linking mechanisms. A record type
can participate as an owner or member in any number of set types. A net-
work data model organises a collection of record types, each with keys, into
a directed graph, rather than a tree. Thus, a given record instance can have
multiple parents, rather than just a single one, as is evident in the hierar-
chical model. This approach provides more flexibility than the hierarchical
model, but the programmer still has to know the physical representation of
the data to be able to access it. Similar to the hierarchical model, every
time the structure of the database changes, the physical storage and appli-
cation software also needs to be modified (Danielsen, |1998)). The network
data manipulation language also involves one-record-at-a-time processing.
The standards for the network model were published in 1971 by the Confer-
ence on Data Systems Languages (CODASYL) Consortium and presented
in the CODASYL Data Base Task Group (DBTG) report (DBTG/ [1971)).

2Pointers provide fast access, but they also embed certain forms of data access in the system,
making it difficult to change the system to accommodate new requirements or to take advantage
of new data structures (Raymond et al., [1996)).
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Relational. A relational data model (Codd, 1970) presents all data as relations,
which can be accessed using a high-level non-procedural (set-at-a-time)
language. The use of a high level language can provide a high degree of
physical data independence. Hence, there is no need to specify a storage pro-
posal, as was required in both IMS and CODASYL. As this model negates
the need for pointers, the use of tables and records becomes much easier to
understand. This makes the development of programs more effective and
less dependent on changes in the physical representation of data. Most sig-
nificantly, a set-at-a-time (high-level relational query) language such as SQL
could give an efficient performance comparable to any one-record-at-a-time

language.

Semantic. A semantic data model is a data modelling technique that is used to
represent the meaning of data within the context of its interrelationships
with other data (Hammer and McLeod, [1981; Hull and King, (1987} |Peck-
ham and Maryanski, [1988)). A semantic data model is sometimes called a
conceptual data model. The logical data structure of a database manage-
ment system (DBMS), whether hierarchical, network, or relational, cannot
totally satisfy the requirements for a conceptual definition of data as it of-
fers little to aid database designers and users in interpreting the contents
of a database. Consequently, the need for better modelling approaches
to capture more of the semantics of an application to define data from
a conceptual view has led to the development of semantic data models.
Database designers can represent objects and their relationships in a nat-
ural and clear manner (similar to the way users view an application) by
using high level abstraction concepts such as aggregation, classification and
instantiation, subclass and superclass, attribute inheritance and hierarchies

(Navathe, [1992). Examples of well-known semantic data models include:

e the ER model (Chen, [1976);

e Object Role Modelling (ORM) (Halpin, [2001) (Its precursor was
called NIAM (Falkenberg, (1976; Nijssen, |1976, [1977; [Nijssen and
Halpin, [1989; Verheijen and van Bekkum, |1982)); and

e the Unified Modeling Language (UML) (Booch et al| 2005;
Muller; (1999).

A detailed description of these models is previously given in [Section 2.7]
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Object-oriented. An object-oriented data model is an adaption of the object-
oriented programming language paradigm for database systems that is used
to represent a collection of objects that are organised into classes defined
by complex values and methods (Kim) |1990). The model is based on the
concept of an encapsulation of data and code in an object (Silberschatz
et al., [1996)). The behaviour of these objects is controlled by methods and
each method consists of code that manipulates or returns the state of the
object. As discussed by Bachman| (1996]), the major components of the

object-oriented concept are as follows:

e objects (and their relationships);

e inheritance and multi-type objects;

e abstract data type and operator overloading;
e encapsulation and entity methods; and

e tight integration of the database and programming language.

Object-relational. An object-relational data model is a combination of the
object-oriented and relational data models (Silberschatz et al.,|1996). Based
on the solid foundation of the relational model, this hybrid object-relational
data model has an extended modelling power that supports object-oriented
concepts in both the data schema and the query language. The introduc-
tion of abstract data types allows for attribute states to be defined by more

complex types.

As discussed by (Malinowski and Zimanyi, 2008]), this hybrid object-relational

data model supports:

e complex and/or multi-valued attributes;
e user-defined types with associated methods;
e system-generated identifiers; and

e inheritance among types.

Object-relational database management systems (ORDBMSs) are used to
support object-relational data models and are able to process the various
object-oriented features such as inheritance, polymorphism, embedded ob-
ject, complex objects, sets, lists and bags. ORDBMSs are mainly based on
the criteria defined by Stonbraker et al. (1990]) that provides suggestions
on how to extend the capabilities of an RDBMS to include support for rich

object structures and rules (Danielsen, [1998)).
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Temporal relational. A temporal data model includes timestamp attributes in
its schema and provides special semantics for the values of these attributes
for processing in its query language. A number of research efforts that
have added time to the relational model have been proposed (Jensen and
Snodgrass|, [1996)). A temporal relational data model is a relational data
model that uses temporal relations as the underlying data structure, with
operators that are all temporal (Bohlem, Busatto and Jensen| 1998). These

temporal relations are also defined by temporal attributes.

Research interest into time modelling has increased dramatically in the
1980s and 1990s. A recent bibliography contained 331 temporal database
papers from 1995 to 1998 (Wu, Jajodia and Wan) [1998)). Since the advent
of semantic data models that try to capture more real-world meaning than
the relational model, a number of research proposals have appeared in the

literature that have attempted to add temporal aspects into the ER model

(Gregersen and Jensen| 1999)) (refer to [Chapter 3)).

Graph. A graph data model is a model in which the data structures for the
schema and/or instances are modelled as a directed (and possibly labelled)
graph or as a generalisation of the graph data structure (Angles and Gutier-
rez, 2008). Data manipulation within the model is expressed by graph-
oriented operations and type constructors. Additionally, appropriate in-
tegrity constraints can be defined over the graph structure (Angles and
Gutierrez, 2008]). Graph data models first appeared in the late 1980s for
representing complex structures of knowledge called G-Base (Kunii, [1987)),
with more proposals appearing in the 1990s (Amann and Scholl, 1992;
Gemis, Paredaens, Thyssens and den Bussche, 1993} |Guting), (1994} |Levene
and Loizou, [1995)).

Multidimensional. A multidimensional data model structures data into facts
and dimensions. A fact can be considered as data of interest which contains
some measures, and a dimension provides a set of attributes that charac-
terise the dimension. Two common multidimensional schemata are the star
schema and the snowflake schema. The star schema consists of a fact ta-
ble with a single table for each dimension while the snowflake schema is a
variation of the star schema in which the dimensional tables from a star

schema are organised into a hierarchy through normalisation (Elmasri and

Navathe, 2007)).

Data warehouse and On-Line Analytical Processing (OLAP) systems are
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based on a multidimensional data model. OLAP is a technology that pro-
cesses data from a data warehouse into multidimensional structures to pro-
vide rapid response to complex analytical queries. The multidimensional
model supports OLAP functionality, i.e. querying, restructuring, classifica-

tion and summarisation.

OLAP technologies are used to implement a multidimensional model. Dif-
ferent architectures are used to store and process multidimensional data as

discussed by Malinowski and Zimanyi| (2008) as follows:

e Relational OLAP (ROLAP). In ROLAP systems, multidimensional
data is implemented as relational tables organised in specialised struc-
tures called star schemata or snowflake schemata. ROLAP supports
extensions to SQL and special access methods to efficiently implement
the multidimensional data model and the related operators. ROLAP
systems provide better storage capacity than MOLAP systems.

o Multidimensional OLAP (MOLAP). In MOLAP systems, multidimen-
sional data is directly stored as special data structures, for example,
arrays. OLAP operations are implemented over these structures. MO-
LAP systems provide better performance when processing multidimen-

sional data queries.

e Hybrid OLAP (HOLAP). HOLAP systems combine both technologies,
benefiting from the storage capacity of ROLAP and the processing
capabilities of MOLAP. For example, HOLAP systems may store large
volumes of detailed data in a relational database, while aggregations

are kept in a separate MOLAP store.

Multidimensional data models appeared in the late 1990s (Chaudhuri and
Dayall, [1997; |[Franconi and Sattler, [1999; |Gyssens and Lakshmanan|, 1997
Golfarelli, Maio and Rizzi, [1998; |Vassiliadis and Sellis, [1999) and then later
into the early 2000’s (Jensen, Kligys, Pedersen Bach and Timko| 2004;
Lechtenborger and Vossen|, 2003; Martyn, [2004).

Semi-structured. A semi-structured data model is designed to model data with
flexible structures, e.g. documents and web pages (Buneman), |1997)). Ex-

amples of well-known semi-structured data models include XML and RDF.

e XML. The eXtensible Markup Language (XML) data model struc-
tures data as an XML document consisting of the two concepts of ele-

ment and attribute (Elmasri and Navathe, 2007). Data is represented
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using hierarchical tree structures, which are represented as elements.
With the use of tags, data can be nested to create complex hierarchical
structures (Elmasri and Navathe, 2007). XML was developed by an
XML working group (originally known as the SGML editorial review
board) formed under the auspices of the World Wide Web Consortium
(W3C) in 1996 (Bray, Paoli, Sperberg-McQueen, Maler and Yergeau,
2006). As discussed in the W3C recommendation report (Bray et al.,
2006)), XML documents are made up of storage units called entities,
which contain either parsed or unparsed data. Parsed data is made
up of characters, some of which form character data, and some which

form markup.

As discussed by [Stonebraker and Hellerstein| (2005), the data model
presented in XML schema has XML records that can (a) be hierar-
chical, as in IMS, (b) have ‘links’ (references) to other records, as in
CODASYL and semantic data models, (c¢) have set-based attributes, as
with semantic data models, and (d) inherit values from other records
in several ways, as with semantic data models. Hence, the structure

of a document can be very complex.

e RDF. The resource description framework (RDF) is a model of meta-
data that relies on the XML standard which has statements in the
form of subject-predicate-object expression. It provides interoperabi-
lity between applications that exchange machine-understandable in-
formation on the Web. The underlying structure of any expression
in RDF is represented as sets of triples, each triple consisting of a
subject, a predicate (verb) and an object of an elementary sentence
(Fromm, Polikoft, Obrst, Daconta, Murphy and Morrison, 2005; Klyne
and Carroll, 2004). Each triple represents a statement of a relationship
between the subject and the object (Angles and Gutierrez, [2008). A
set of such triples is called an RDF graph, which can be illustrated by
a node and directed-arc diagram (Klyne and Carroll, [2004). In sum-
mary, RDF is a directed, labelled graph data format for representing
information in the Web (W3C| 2008]).

Table 2.5 (Page presents the data model proposals in ten historical epochs,
along with their main data structure, types of data model, and the DBMS or
technology on which they are based.
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2.9 Summary

Conceptual modelling is a semantically rich discipline aimed at capturing the
meaning of an application domain at a high level of abstraction. The importance
of conceptual modelling has been recognised by practitioners and researchers
as it provides a plan for building a database that can be used to capture user
requirements and to understand system complexity. Conceptual modelling is a
notoriously difficult activity that can not be treated algorithmically and requires

both ingenuity and experience (Badia, |2000).

The main focus of database technologies lies in the database design process.
This process consists of three phases, namely conceptual, logical and physical
design. The goal of conceptual design is to produce a high-level conceptual schema
for a database that is independent of a specific DBMS configuration. To achieve
this, conceptual (or semantic) data models are used and are expressed by means
of diagrams with a rich set of modelling constructs. The most popular conceptual
model for relational database design is the ER model and its extensions. The logi-
cal design maps this high-level conceptual schema to a logical schema formulated

according to the data model of the DBMS used for implementation.



Chapter 3

ER Modelling Extensions: A

Survey and Comparative Review

Over the past three decades since the original ER model was first published by
Chen| in 1976, the ER modelling approach has gained worldwide acceptance in
database design, information system development and software engineering, and
has been extended by several authors. In line with Objective 1 of this thesis as
outlined in the Section 1.5 of Chapter 1, this chapter continues with the review of
new and extended data models for conceptual modelling. It provides background
information on the need for extensions to the ER model and delivers a survey
on various proposed extensions to this model, with the objective of defining a
survey framework proposals that can be used to categorise and compare the
various proposals. From this study nine common aspects and four criteria have
been identified that form a basic Classification of ER Modelling Extension (CERME)

framework.

This survey is organised as follows. Initially, an overview is provided that
introduces the central concept and key aspects of the CERME framework
tion 3.1)). Next, the deficiencies and weaknesses of the original ER model are ex-
amined ([Section 3.2)). The proposals within each of the CERME aspects are then
presented . Using a common comparative framework, each proposal
is then assessed and compared with other ER modelling extensions (Section 3.4)).

This chapter concludes with a summary of the lessons and understanding learned

from the exploration of the CERME framework (Section 3.5)).

99
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3.1 Introduction

The ER model is the most influential conceptual model in the database commu-
nity. As discussed by [Chen, Song and Zhu| (2007)), many different extensions of
the ER model have been developed in order to extend the original ER model
to achieve more semantic power. The widely researched extensions have in-
cluded the EER model (Elmasri and Navathe, 2007), the E*R model (Embley
and Ling|, [1989)), the HERM approach (Thalheim) 2000), the TIMEER plus model
(Gregersen, 2005), the starER model (Tryfona, Busborg and Christiansen, |1999)
and the MDER model (La-Ongsri, Roddick and de Vries, 2008). These mo-
dels have been categorised according to an ER modelling extension classification

framework as described in the subsequent discussion.

Minimal research has been directed towards explaining and analysing the
available modelling methodologies and their extensions. This author has not
located any survey similar to that presented in this thesis that explores the area
of extending the semantics of the ER model, and any comparative reviews of any

ER modelling extensions based on the key criteria of (conceptual) data models.

This chapter presents such a survey and conducts a comparative review of
various ER extension proposals published between 1976 and 2008. Using the
results of this research, the information was analysed to identify trends or com-
mon themes within the survey results. These results showed that it was possible
to classify these extensions according to the specific area that each extension
was designed to deal with. These areas, or aspects, were able to be identified
as structural, data abstractions, temporal, spatio-temporal, data warehousing,
domain-specific applications, knowledge base, fuzzy data and XML data. As a
means of providing an overall descriptive term covering all these aspects, the term
Classification of ER Modelling Extensions (CERME) has been devised. Follow-
ing on from the review of the various proposals, a comparison of the proposals
under each main CERME aspects is presented. In addition, earlier survey and
bibliography papers as well as books that are relevant to each CERME aspect are

included.

The number of extensions to the original ER model that have appeared in
the literature is estimated to be more than 100 (cf. |Patig (2006)) and have been
designed to deal with a wide range of applications requiring various levels of
semantics. This survey of the ER modelling extension population was conducted
to identify common extension aspects and criteria which can be used to categorise

and compare all various proposals. The CERME framework has identified the
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following nine aspects.

1. Structural Aspect. This category encompasses structural extensions of
the ER model. This broad group covers a wide range of ER structures
that are focused on overcoming the weaknesses of the basic ER structures
(entity types, relationship types and attributes) in order to enhance its
expressiveness. Extensions covering behaviours, events and constraints are

also included in this category.

2. Data Abstraction Aspect. This category deals with abstraction mecha-
nisms to capture (a) more complex relationships between entity types such
as superclass/subclass relationships and union types, (b) complex objects
and (c) category and inheritance and other items pertaining to the con-
cepts of generalisation and specialisation. Although this category has much
in common with the structural aspect, it is classed separately due to the
relatively large number of extensions grouped under this category and also

since many of the features are object-oriented in nature.

3. Temporal Aspect. This category discusses those extensions to the ER

model dealing with time.

4. Spatio-temporal Aspect. This category deals with those modelling as-

pects that relate to space and time information.

5. Data Warehousing Aspect. This category presents the conceptual mo-
delling of data warehouses that enrich the ER model with the features of

multidimensional views.

6. Domain-Specific Application Aspect. This category includes exten-
sions of the ER model that caters for the needs of modelling specific ap-
plications such as geographic data, multimedia, superimposed information,

electronic commerce and manufacturing.

7. Knowledge Base Aspect. This category focuses on data modelling of
knowledge in the ER/EER model that are expressed using natural language

or inference rules.

8. Fuzzy Data Aspect. This category concentrates on fuzzy extensions to
ER/EER models to represent uncertainty and imprecision in data and se-

mantics at a conceptual level.
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Table 3.1: Overview presentation of the CERME survey framework.
. Special Based on
CERME Aspect Proposal Name
P P el Name Model
Structural E°R model Embley and Ling (1989) E’R ER
Higher-order Entity-Relationship Model Thalheim (1990, 2000) HERM ER
MesoData Entity-Relationship model La-Ongsri et al. (2008) MDER ER
Data Abstraction Obiject base entity relationship Spaccapietra and Parent (1992) ECR+ ER
approach
Enhanced Entity-Relationship model Elmasri and Navathe (1994, 2007) EER ER
Temporal Time Extended EER model Gregersen and Jensen (1998, 2004) | TIMEER EER
Time Extended EER model Gregersen (2005) TIMEERplus EER
Spatio-Temporal | SPatio-Temporal ER model Tryfona and Jensen (1999) STER ER
Modeling of Application Data with Spatio-
temporal data Parent et al. (1999, 2006) MADS EER
DIStributed design of SpaTlo-temporalL Ram et al. (2001) DISTIL ER
data
Data _ Multidimensional Entity-Relationship Sapia et al. (1998) ME/R ER
Warehousing model
starER model Tryfona et al. (1999) starER ER
MultiDimER model Malinowski and Zimanyi (2006) MultiDIimER ER
Domain-Specific Hypertext Design Model 2 Garzotto et al. (1994) HDM2 ER
icati S ity Enh d Entity-Relationshi
Application e aneed ENREEHONSAP | o and Navathe (1995) SEER EER
Geographic Entity-Relationship model Hadzilacos and Tryfona (1997) Geo-ER ER
Knowledge Knowledge-based Entity-Relationship Kerschberg et al. (1990) KORTEX EER®
Base model
Deductive Entity-Relationship model Han and Li (1992) Deductive-ER ER
Refined Entity-Relationship model Shimazu et al. (2003) RER ER
Fuzzy ER model Zvieli and Chen (1986) Fuzzy ER ER
Fuzzy Data -
FuzzyEER model Galindo et al. (2006) FuzzyEER EER
MesoData Entity-Relationship model La-Ongsri et al. (2008) MDER ER
EReX model Mani (2004) EReX ER
XML Data
XSEM-ER model Necasky (2007) XSEM-ER ER

@ EER here is the Extended Entity-Relationship model described by Teorey et al. (1986)

9. XML Data Aspect. This category includes the current research on the
conceptual models for XML based on the ER model.

Where possible, previous surveys, bibliographies and book references that

provide a substantial contribution to each CERME aspect are referred to in each

of the later discussions.

Table 3.1] provides an overview of the CERME framework that covers each

of these CERME aspects, along with their proposal name, main citation, special
name (or identifier), and the models on which they are based. All of these CERME

aspects can be attributed to increasing expressiveness of the ER model.

By

introducing new constructs to the basic ER model, increased knowledge and

understanding can be captured through the addition of these new constructs

that can be assigned particular semantics.
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This study provides a summary of 32 years worth of research into ER mo-
delling extensions as proposed in the literature. This survey systematically analy-
ses the various aspects of each reviewed ER modelling extension, categorises each
proposal according to its CERME aspect and presents a comparative summary of

the features of each proposal. A detailed description of some of the proposals is

given in [Appendix B|

3.2 Limitations of the ER Model

Both the classical ER model and other database models have significant inherent
limitations, so it is expected that a number of extension versions will be required
to overcome these deficiencies. Research into the basic limitations of the ER
model prove useful in raising awareness of these faults and to create the impetus
to consider approaches that can overcome these limitations. These ideas and con-
tributions can thus lead to the development and delivery of tangible specifications

of ER model extensions.

Research into the limitations of the ER model has been covered by a number
of researchers including Badia/ (2000}, 2004), [Embley and Ling (1989)), Kroenke
and Gray| (2006)), Rolland and Cauvet| (1992), Shekhar et al. (1999)), Thalheim
(2000) and [Chen| (2006).

In the research by [Badia (2000, 2004), it was pointed out that the basic
components of the ER model can only be combined in certain ways, not freely.
Specifically, these constraints dictate that only entities and relationships can have
attributes and only entities can be associated with relationships. Thus, the limi-

tations of the ER model can be summarised as below:

e Attributes cannot be defined to have attributes.
e Attributes cannot be associated with relationships.

e Relationships cannot be associated with other relationships.

Additionally, [Thalheim| (2000) presented the deficiencies of the ER model as

follows:

e The ER model is unable to represent hierarchical and higher-order relation-

ships. Only first-order relationships can be modelled.
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e Is-a relationship cannot be modelled naturally.
e The concept of weak entities is not theoretically based.
e The classical ER model does not use n-ary relationship.

e The basic approach (Teorey, [1990)) in defining new entities as clusters of

entities and relationships leads to a loss of information.
e Sets, sequences and null-valued relationships cannot easily be represented.

e During database design, the type system requires the introduction of artifi-
cial and abstract types that do not carry any semantics in the application.
For example, if relationship types are restricted to binary types then n-ary
types (n>2) are represented by entity types and connecting relationship

types that are not independent and do not have their own significance.

e ER concepts often lack a clear statement of purpose for semantics. This
can result in different semantics being applied to the same concept, and the

intermixing of semantics of different constructs.

Embley and Ling (1989) further discuss the limitations of both the ER and
EER models as follows.

e The ER/EER models require designers to distinguish between attributes
and entities. This can cause downstream redesign to accommodate schema
integration such as where attributes and entities are mismatched or where
there is a need to accommodate any subsequent discovery of relationships

among items designated as attributes.

e Design work can not be completed in the ER model alone, and thus de-
signers have to use two different types of abstraction. In the first instance,
designers work with the ER diagrams. After applying a process to map
the ER schema to a relational schema, they work with relational schemata
using normalisation techniques in order to extract functional and join de-

pendencies from the real world semantics.

In the research by Rolland and Cauvet| (1992), it was suggested that tra-
ditional conceptual models are limited by their emphasis on modelling static
aspects of the real world, thus requiring dynamic aspects to be integrated into

static conceptual models. |Kroenke and Gray| (2006) stated that human beings
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do not naturally consider and rationalise the relationships between entities and
their cardinalities in the same way that they are represented in the ER model. It
becomes unrealistic to expect users to understand the cardinality of relationships
unless the ER model can accurately reflect user perceptions. A further limitation
has been identified by Shekhar et al.| (1999) who discussed that the ER model
is unable, at least intuitively, to capture some important semantics inherent in

spatial modelling.

The general practice of using conceptual models has proven that the underly-
ing theory and constructs are sound and have been effective in capturing the basic
semantics of applications. As applications become more complex and sophis-
ticated, such as in handling fast time-varying and time-dependent changes in
world states, modelling modifications and extensions become essential in order
to overcome the inadequacies of the basic model. On reflection of his own mo-
delling approach, (Chen| (2006) has identified the following weaknesses of existing

conceptual modelling, methodologies and techniques that need addressing;:

e Using the constructs of existing conceptual models, it is very difficult to
model a wide spectrum of situations resulting from different degrees of

importance of relationships due to different perspectives.

e Current state-of-the-art techniques focus on pre-defined entities of interest

and their static relationships.

e As current database/knowledge-based systems only model snapshots of part
of the world of interest, there is no support for information and schema

changes or the storage of historical information.

e Virtually no constructs in the existing conceptual models are available for
modelling changes of the entity behaviours (e.g. weather pattern changes)

and the dynamic and time varying relationships between them.

e The schemata of the current data models are difficult to change dynamically.

The restrictive problems in the ER model or conceptual models are signifi-
cant and should be addressed through the enhancement or extensions of these
original models so as to produce better conceptual modelling methodologies and

techniques.
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3.3 Exploring ER Modelling Extensions

The original ER model (Chen| |1976) has attracted much research over the last
30 years and has been extended by more than 100 proposals (cf. |Patig (2006])).
In the past decades, many papers on extending and modifying the original ER
model have been presented at the annual International Conference on Conceptual
Modeling (the ER conferences). These have also been posted on the main forum

for conceptual models and modelling at http://www.conceptualmodeling.org/.

In the exploration of ER extensions, this thesis has referred to the main
series of relevant conferences (ER, VLDB, ACM, SIGMOD, ICDE) and jour-
nals (ACM Transactions on Database Systems, ACM Computing Surveys, ACM
SIGMOD Record, Communications of the ACM, Data & Knowledge Engineer-
ing, IEEE Transactions on Knowledge and Data Engineering, Information Sys-
tems, Information and Software Technology, Information and Management, Jour-
nal of Database Management) up until 2008. Additionally, publications relat-
ing to the enhancement of ER models were accessed through various sources
such as the scientific literature digital library (http://citeseer.ist.psu.edu/), the
scholarly search engine (http://scholar.google.com/) and the ACM digital library
(http://portal.acm.org/). Relevant textbooks, technical reports and various other

papers were also included in the study.

For each of the nine CERME aspects, various proposals that extend the ER
model are examined and discussed. This examination covers a total of 23 propo-
sals. Whilst the sampling of these proposals was unbiased, the selection tech-
niques used aimed to ensure that all of the CERME aspects were covered equally.
Some of these proposals are described in detail in [Appendix Bl Earlier sur-
vey studies, published bibliographies and books that are relevant to each of the
CERME aspects are also included to provide details on trends, ideas, interesting
views and relevant research for further reference. Where the subject matter of
a proposal spans several CERME aspects, it will appear in multiple categories.
For example, the MDER model (La-Ongsri et al. 2008) appears under both the

fuzzy data and structural aspects.

3.3.1 Structural Aspect

There is a large variety of structural extensions of the ER model whose main aim is
to attempt to overcome the weaknesses of the ER model with regard to its basic

structures (entity types, relationship types and attributes). Other extensions
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relevant to structures include (a) behaviours (Schrefl, [1991)), (b) events such as the
Deterministic Event-Tuned Entity-Relationship Modeling (DETERM) approach
(Falkenberg, 1993) that enhanced the ER model by considering not only static
phenomena, but also dynamic phenomena of the universe of discourse, viz. events,
and (c) constraints such as the Methods enhancement of the EER (MEER) model
(Balaban and Shoval, 2002)) that extends the EER model with structure-based
update methods which are fully defined by cardinality constraints.

The limitation of the ER/EER model proposed by |[Embley and Ling| (1989) is
subject to the following two problems; the ER/EER models require designers to
distinguish between attributes and entities, and the database design cannot be
completed by using the ER model alone. Thus, designers have to use two different
types of abstraction, namely, the ER model and a transformation to a relational

schema which may then need normalisation. These problems were addressed in
an improved ER approach called E2R (Embley and Ling), [1989).

The remaining weaknesses of the ER model are concerned with the way that
those structures are built and their composition. For example, the classical ER
model does not support the view of having attributes over attributes, relation-
ship types over attributes, or relationship types over relationship types. To deal
with the limited power of the model in supporting these basic relationship types,
various structural extensions to the ER model have been suggested. [Tu and
Wang| (1993) developed the Attribute-Relationship (AR) extension that allowed
relationships to be built at the attribute level. [Thalheim| (1990|, 2000) presented
the Higher-Order Entity-Relationship Model (HERM) to allow for the definition
of new relationship types based on existing relationship types. Badia (2000])
proposed the concepts of Generalised Quantifiers (GQs) that provided for higher-
order operators which allowed relationships to be involved in other relationships.
Limitations of the ER model concerning relationship types were also discussed by
Camps Pare (2002)) and Badia| (2004)). Their discussion indicates that there are
properties of ternary relationships that can not be represented in the ER model

nor captured in a relational model in the form of a key or integrity constraint.

In addition, recent extensions to the ER model have been suggested to deal
with its structural limitation with regard to entity types. For example, Jiménez
(2006)) promoted the Reenhanced Entity-Relationship Model (REERM) that re-

defines the concept of entity and adds the construct event.

A further limitation of the ER model with regard to attributes is that there
is no support for data domains (Kroenke and Grayl 2006|). The need to capture
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more domain semantics is growing due to the requirement to support more com-
plex and sophisticated applications. When designing models, basic attributes are
assigned to base data types. Complex attributes can be constructed by applying
constructors such as list, set and bag (also called multisets) to attributes that
have already been constructed. Most of these extensions are based on the notion

of complex types of attributes.

However, a recent extension to attribute domains, the Mesodata Entity-Rela-
tionship (MDER) model (La-Ongsri et al. |2008]), uses complex domains based
on complex structures of mesodata type, such as tree and graph, to provide more
advanced semantics to the domain of an attribute, instead of using complex at-
tributes like other approaches. This maintains the usual basic attribute data types
such as integer, string and real whilst also accommodating attributes whose values
are based on complex domains. It also provides greater versatility by allowing
domains of an attribute in MDER to be defined according to an organisation’s

data type standards when data models are created.

Examples of ER modelling extensions with this CERME aspect include the
E?R, HERM and MDER models that are described below:

1. The E’R (E-squared-R) model. The E’R proposal (Embley and Ling,
1989)) is based on the ER model and includes notions of generalisation/spe-
cialisation and lexical entity types. In this model, designers do not need to
distinguish between attributes and entities and it also supports normalisa-
tion at the model level. Synergistic database design occurs as a designer
interactively manipulates an E?R diagram until the desired properties are
attained. Design is performed by transforming a given E2R model into a
normalised E?R model that is guaranteed to generate normalised relations.
The main steps in this approach can be summarised as (a) capture the real-
world semantics in an improved EER model, (b) transform the EER model

into a normalised EER model, and (c) generate the normalised relations.

E?R modelling treats an attribute as a point of view rather than a basic
model construct and thus does not prematurely impose structure on the
database being designed. That is, time consuming decisions on whether
to use an entity type or attribute become inconsequential. Extensions
to the ER model that are necessary to add additional semantic-modelling
power, such as participation constraints, generalisation/specialisation, ag-
gregation/decomposition and power-sets, are included in the E?R model.

The implementation of this approach allows a user to store the E?R model
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with constraints that include both functional and multivalued dependen-
cies. Also, transformations allow a user to remove or reduce relationship

types that have redundancy.

2. The Higher-Order Entity-Relationship Model (HERM). The HERM
methodology (Thalheim| 1990, 2000) extends the ER model by using re-
lationships of higher degrees and relationships of relationships. This ap-
proach introduces the new concept of higher-order relationships which are
additional generalisations of the ER constructs to handle both the multi-
ple entity set participation in a given role of the relationship, as well as
the subclass, superclass and clustering concepts. This concept further ex-
tends the scope and concepts related to data abstraction and incorporates
a supporting set of operations and integrity constraints. HERM algebra is
introduced that defines the available manipulation operations in the model.
HERM uses set semantics for the definition of entity instances and rela-
tionship instances and also supports a mechanism for the translation to

relational, network and hierarchical schemata.

3. The Mesodata Entity-Relationship (MDER) model. The MDER
model (La-Ongsri et al., 2008)) is a new approach proposed in this thesis
that extends the ER model and is also applicable to the EER
model. This approach provides richer semantics to attribute domains by in-
corporating the complex domain structures using mesodata concepts. New
constructs and constraints are proposed to capture domain semantics of an
attribute. The MDER model is based on the mesodata concept (de Vries
and Roddickl 2004; de Vries, Rice and Roddick, 2004). This approach pro-
vides the mesodata languages (MDDL and MDML), which are extensions to
SQL to define and manipulate the structure of domains (mesodata types).

The mechanism to transform a MDER schema to a relational schema is also

discussed (Chapter 8)).

This thesis survey has identified the following relevant resource that covers the

ways that the ER model has been extended to enhance its structural aspect.

Thalheim’s book (2000) provides a theoretical basis for database modelling
and proposes a new ER model extension termed the HERM model. This model
supports relationships with higher degrees and relationships of relationships. The
model allows the specification of structures, behaviour and interaction. The book

also presents techniques for the translation of the ER model into object-oriented
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models and classical database models such as relational, hierarchical and network

models.

3.3.2 Data Abstraction Aspect

One of the most popular ER modelling extensions is the Enhanced Entity-Relation-
ship (EER) model proposed by Elmasri and Navathe| (1994} [2007)). This model
adds abstraction mechanisms such as superclass, subclass and category, including
attribute and relationship inheritance. These properties favour an object-oriented
approach. Other works include the Entity-Category-Relationship (ECR) model
(Elmasri, Weeldreyer and Hevner, 1985) that presents the concept of categories
to handle both multiple entity set participation in a given role of a relationship,

as well as subclass and superclass concepts, including multi-valued attributes.

Other contributions add object-oriented features (e.g. generalisation and in-
heritance, enforcement of the information hiding principle, abstract data type
encapsulation and message passing) in order to adapt the original ER model
to object-oriented database design. Examples include the Object-Oriented ER
(OOER) model (Navathe and Pillalamarri, 1988)), the Behavior-Integrated ER
(BIER) model (Kappel and Schrefl, [1988)), the Object-Oriented ER Model (OO-
ERM) (Gorman and Choobineh| 1991) and the object base entity relationship
(ERC+) approach (Spaccapietra and Parent| [1992). A summary of some of these
models can be found in the survey presented by [Saiedian| (1997).

The proposals of ERC+ and the most recent publications of EER models are

described below:

1. An object base entity relationship (ERC+) approach . The ERC+
approach (Spaccapietra and Parent,|1992) is an extended entity-relationship
model specifically designed to support complex objects and object iden-
tity. Two generalised relationships are supported, the classical is-a and
an additional may-be-a relationship. ERC+ thus provides for the choice
between optional and mandatory status (for attributes, for roles, and for
generalisations, using may-be-a relationships). Formal definitions and Data
Manipulation Languages (DML) of the ERC+ model are also discussed.

The ERC+ algebraic query language is presented and consists of ten primi-
tive operations which may be combined in any order to form algebraic ex-
pressions. Using this algebra, entity types with complex attributes are con-

structed. Tools to support the graphical description of database schemata
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and for graphical data manipulation are presented to aid the design and
development of database applications. A method of mapping from ERC+

to the relational model and object-oriented model is also demonstrated.

2. The Enhanced Entity-Relationship (EER) model. The EER model
(Elmasri and Navathe, [2007) enhances the ER model by incorporating
the concepts of superclass/subclass (or generalisation/specialisation), su-
perclass/subclass relationships, type inheritance (including various types of
constraints on specialisation/generalisation) and category. The concept of

category is used to deliver the UNION construct.

A class/subclass relationship proposed in EER is often called an is-a re-
lationship providing generalisation/specialisation. The constraints of to-
tal/partial and disjoint/overlapping can be applied to specialisation, gen-
eralisation and category. The EER-to-relational mapping algorithm is pro-

vided that can be used to create a relational schema from an EER schema.

This thesis survey has identified the following relevant resources that cover the

ways that the ER model has been extended to enhance its data abstraction aspect.
Survey Paper:

Saiedian| (1997)) surveyed major extensions to the ER model, in particular, en-
hancements related to generalisation and object-oriented adaptions. This research
also provides an overview of ER models and points out the close relationship be-
tween ER modelling and object-oriented data modelling. This research has led to
the adoption of object-oriented design techniques that have significantly improved
the modelling power of the original ER model. These object-oriented features in-
clude generalisation and inheritance, enforcement of the information hiding prin-
ciple, abstract data type encapsulation and message passing. Saiedian/s research
discusses three object-oriented ER models (the OOER, BIER and OOERM) that
further explores this CERME aspect.

Book:

Elmasri and Navathes book (2007, 5th edition) introduces the fundamental
concepts necessary for designing, implementing and using database systems and
applications. It presents clear explanations of theory and design, broad coverage
of models and real systems, and an up-to-date introduction to modern database
systems and technologies. Sections of this book focus on data abstractions, se-

mantic data modelling concepts and an integration of those concepts leading to
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the EER model and EER diagrams. A discussion about relational database design
using ER-and EER-to relational mapping is also presented.

3.3.3 Temporal Aspect

Temporal aspects of the real world are pervasive and important for most appli-
cations. Not surprisingly, several enhancements to the data models have been
proposed in an attempt to support the modelling of time. Time has been incor-
porated into many data models, such as semantic data models, object-oriented
data models, relational data models and deductive databases. As this thesis sur-
vey is focused on the ER model, the attention of this survey is only on those ER

model extensions that facilitate the capture of time-varying information.

The modification of the ER model to capture time-varying information has
gained increasing popularity within the database research community over the
last two decades. A number of the temporally enhanced ER models have been

presented, for example:

e the Temporal Entity-Relationship Model (TERM) (Klopprogge, 1981} Klop-
progge and Lockeman), (1983);

e the Relationships, Attributes, Keys, and Entities (RAKE) model (Ferg,
1985));

e the Model for Objects with Temporal Attributes and Relationships (MO-
TAR) (Narasimhalu, |1988));

e the Temporal EER (TEER) model (Elmasri and Wuul, |1990; |[Elmasri et al.,
1993):;

e the Semantic Temporal EER (STEER) model (Elmasri et al., 1990; Elmasri

and Kouramajian, 1993);

e the Entity-Relation-Time (ERT) model (Theodoulidis et al., |1991d,b) and
its refinement (McBrien, Seltveit and Wangler, 1992);

e the Temporal ER (TER) model (Tauzovich, [1991);
e the TempEER model (Lai et al. [1994); and

e the TERC+ model (Zimanyi et al., [1997).
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All of these models are extensions to the ER/EER model. For a detailed de-
scription of all the above models, refer to the comprehensive survey by |Gregersen
and Jensen| (1999)). This thesis examines a number of more recent models that

capture temporal aspects of information, such as those detailed below:

1. The Time Extended EER (TIMEER) model. The existing temporal
ER models represent quite diverse approaches to capture temporal aspects
of data at the conceptual level. The TIMEER approach (Gregersen and
Jensen|, |1998, 2004)) retains the existing ER constructs and their associated
semantics and simply makes them temporal. The model introduces new
temporal constructs that provide implicit temporal support and includes
snapshot-reducible attribute types (temporal single valued, temporal multi-
valued, temporal composite and temporal derived attribute types) as well
as snapshot-reducible participation constraints. The model also supports

both valid time and transaction time including lifespans.

The TIMEER model extends the EER model to support four distinct types
of temporal aspects, namely, valid time, lifespan, transaction time and user-
defined time. Two additional participation constraints, snapshot and life-
span, are also proposed and the method of mapping the TIMEER model
to the relational model is also presented. The research does not, however,
provide for a query language that can be used to query the temporal ER

database.

2. The Time Extended EER (TIMEERplus) model. The TIMEERplus
(Gregersen, 2005) model is a recent refinement of the TIMEER model offer-
ing enhanced modelling constructs applicable to attributes in four aspects;
time sequence attributes, an update pattern for attributes, an observation
pattern for attributes and an explicit notation for specifying changes to the

database schema.

TiMEERplus extends TIMEER by including time sequence attributes, up-
date and observation patterns for attributes (Jensen and Snodgrass| 2000)
and schema changes (Roddick, Craske and Richards, |1994). All modelling
structures and integrity constraints are the same as those of the TIMEER

model, but no query language for this temporal ER database is provided.

This thesis survey has identified the following relevant resources (listed in
alphabetical order by first author) that cover the ways that the ER model has

been extended to enhance its temporal aspect.
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Survey Papers:

Gregersen and Jensen (1999)) surveyed ten temporally enhanced ER models,
provided a comprehensive list of 19 design properties of temporal ER models,
and evaluated the models according to those properties. Their research explores
different ways of conveniently capturing the temporal aspects of data at the con-
ceptual level and consolidates these concepts and ideas so as to assist with future
research in temporal ER modelling. As both their research and this thesis are
focused on surveying extensions to the ER model, their research provides valuable
reference material that complements this thesis survey. Rather than re-examine
these previously proposed ER model extensions, this thesis refers the reader to

Gregersen and Jensen's survey.

Ozsoyoglu and Snodgrass| (1995) surveyed many temporal and real-time data,
models. Their research covers the time domain, temporal queries, real-time data
and query languages, and temporal and real-time DBMS implementation. Their
survey attempts to capture and summarise the major concepts, approaches and
implementation strategies that have been discovered through temporal and real-
time database research. The evaluation of temporal and real-time query lan-
guages along several dimensions are also discussed. Their work mainly examines
the inclusion of time into relational data models and object-oriented data models.
While their research does not consider those ER model extensions that incorpo-

rate time, it does cite a reference to some of these extensions.

The survey by Roddick and Patrick (1992) covered those information systems
that incorporated the concept of time and identified potential impacts on tem-
poral data modelling, artificial intelligence and various practical implications of
these time concepts. Their research investigates the handling of time in data
modelling which includes only two of the temporal ER models, the TERM and
RAKE models. Their research does not consider the evaluation and comparison
of the models.

Roddick and Spiliopoulou (2002) surveyed various aspects of temporal data
mining and reviewed research contributions that are related to temporal know-
ledge discovery. Their survey includes a discussion of temporal rules and their
semantics, temporal mining environments and the discovery of temporal rules
that can identify key items of interest. As their research is more directed towards
the area of using temporal databases for data mining, its value for data modelling

is limited.

Theodoulidis and Loucopoulos (1991)) surveyed nine approaches to specify
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and use time in conceptual modelling. The approaches were evaluated using a
devised comparative framework based on time semantics, model semantics and
temporal functionality. Their research included only two of the temporal ER
models, namely, TERM and the Entity, Relationship, Attribute, Event (ERAE)
model. The likely reason for this is that the focus of the research was on the
investigation of ontologies and the properties of time in the broader context of

information systems and conceptual modelling.
Bibliographies:

Wu et al.| (1998)) collected 331 temporal database papers, most of which were
published between 1995 and 1998. Adding to the six previous bibliographies
(Bolour, Anderson, Dekeyser and Wong, [1982; |Kline, 1993; McKenzie, 1986;
Soo, [1991; Stam and Snodgrass, 1988; Tsotras and Kumar, 1996), this is the
seventh bibliography concerning temporal databases. Their bibliography adopts
a different classification method that divides papers into Models, Database de-
signs, Query languages, Constraints, Time granularities, Implementations, Access
methods, Real-time databases, Sequence databases, Data mining, Concurrency

and Other papers.
Books:

A recent book devoted to temporal data and relational model is by Date,
Darwen and Lorentzos| (2003). This book provides an in-depth description of the
foundations and principles on which temporal DBMSs are built. These founda-

tions and principles are firmly rooted in the relational data model.

Snodgrass[s book (2000) provides a general introduction and extensive cover-
age of temporal data with a great number of examples from real application
database systems that have been designed and built to record information over

time.

3.3.4 Spatio-Temporal Aspect

The spatio-temporal concept is created by combining the concepts of space and
time, and in practical terms, this is achieved through recording spatial views (e.g.
objects and layers) in time (e.g. time point and time interval). As described by
Pelekis, Theodoulidis, Kopanakis and Theodoridis (2004), the development and
research into spatio-temporal databases started in the early 1990s and has princi-
pally dealt with applications characterised by both spatial and temporal seman-

tics. Some research has concentrated on the conceptual modelling of geographical
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applications, mainly dealing with space, location and dimensionality of objects,
spatial relationships and space-depending attributes, such as the Geo-ER model
(Hadzilacos and Tryfona, |1997). For a summary of the Geo-ER model refer to
the domain-specific application aspect (Page [81)).

Since the spatial and temporal database models were integrated into the
spatio-temporal database models, a number of extensions have been proposed
that use object-oriented approaches. These have included Spatio-temporal UML
(STUML) (Price, Ramamohanarao and Srinivasan|,[1999), Extended spatio-tempo-
ral UML (Ext. UML) (Price, Tryfona and Jensen, 2000), an object-oriented data
model for geographic applications (OMT-G) (Borges, Davis Jr and Laender|, 2001])
and the Tripod spatio-historical data model (Griffiths, Fernandes, Paton and
Barr, 2004). As these models are extensions to the UML and Object Modeling
Technique (OMT) methodologies, they are outside the scope of this thesis survey.

Examples of the extensions of the ER/EER model that include space and

time are described below:

1. The Spatio-Temporal ER (STER) model. The STER model (Try-
fona and Jensen, (1999) is an extension of the basic ER model that in-
cludes spatio-temporal entities, attributes and relationships for modelling
spatio-temporal information. STER offers support for the spatial data types
(point, line and regions) and geometries (and various combinations thereof),
and for temporal aspects (existence time (et) for objects, valid time (vt) for
attributes and relationships, and transaction time (tt) for all constructs).
Support for both valid time and transaction time is represented as bitem-
poral (bt). However, STER omits to provide integrity constraints or any

supporting language.

2. The Modeling of Application Data with Spatio-temporal features
(MADS). The MADS approach (Parent et al., 1999, 2006a) is a concep-
tual spatio-temporal model based on the EER model. It caters for multi-
associations, a larger number of semantic descriptors for relationship types
(in particular, generation and transition) and supports diversity in the way
constraints are handled. The orthogonality principle is an important aspect
of MADS that adds different modelling dimensions (i.e. spatial and tempo-
ral characteristics). MADS also allows for additional multi-representation
functionality resulting in further potential model extensions (Parent, Spac-
capietra and Zimanyi, [20064). However, MADS does not yet support trans-

action time. Integrity constraints, query languages and the translation
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process to facilitate an implementation of current DBMSs and GISs are

provided.

3. DIstributed design of SpaTIo-temporal data (DISTIL). DISTIL
(Ram, Snodgrass, Khatri and Hwang), 2001) is another recent design tool
that assists in the design and modelling of spatio-temporal databases. DIS-

TIL classifies spatio-temporal conceptual design into two steps:

e Firstly, capture the current reality of an application using an ER based
conventional conceptual model, without consideration of any spatial

aspects.

e Secondly, annotate the schema with spatial and temporal semantics of

the application.

DISTIL is an annotation-based approach to spatio-temporal conceptual
modelling that captures various aspects related to temporality and spatial-
ity such as valid time, transaction time, events, states, position, geometry
and shape. In particular, DISTIL provides a mechanism to capture se-
mantics related to granularity and indeterminacy. Furthermore, schemata
developed via DISTIL can be saved as XML schemata (Khatri, Ram and
Snodgrass, 2006). However, a detailed description of the associated con-

straints and languages is not covered in their proposal.

This thesis survey has identified the following relevant resources (listed in alpha-
betical order by first author) that cover the ways that the ER model has been

extended to enhance its spatio-temporal aspect.
Survey Papers:

Abraham and Roddick| (1999) surveyed spatio-temporal models proposed in
the literature and also included other aspects covering representation, spatial
access methods, conceptual models, spatial database languages, scaling and ac-
curacy issues, query optimisation and visualisation. However, no ER model ex-

tensions that capture spatio-temporal information are introduced in their survey.

Friis-Christensen, Tryfona and Jensen| (2001) surveyed six existing proposals
for the modelling of geographic and spatio-temporal data of which five are based
on the object-oriented approach and the remainder, STER, that is based on
the ER model. Their research presents a list of requirements that is used to

identify critical properties of geographical data models. These surveyed models
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are assessed using the list of requirements and a summary of the evaluation is

presented.

Pelekis et al.| (2004) surveyed different types of spatio-temporal data models
and used a comparative framework to evaluate the benefits of each approach.
An overview of notable achievements within spatio-temporal database research
together with suggestions for future spatio-temporal database research are also
provided. Their research discusses the extended ER model, STER, which caters

for the capture of spatio-temporal information.

Wang, Zhou and Lu| (2000) surveyed various aspects of spatio-temporal data
management covering data models, indexing structures, query evaluation and

architectures. Their research only refers to one of the spatio-temporal ER models,

STER.
Bibliographies:
Al-Taha, Snodgrass and Soo| (1994)) collated a number of reference papers that

consider spatio-temporal aspects. The bibliography is an updated version of the

previous bibliography produced by |Al-Taha, Snodgrass and Soo| (1993)).
Roddick, Hornsby and Spiliopoulou (2001) collated those papers primarily

concerned with mining temporal, spatial and spatio-temporal data. As the biblio-
graphy uses broader categories covering Theses, Surveys, Books and Previous
Bibliographies, it provides valuable reference material. Additional considerations
and directions for further research into spatial and temporal databases can be
found in Roddick, Hoel, Egenhofer, Papadias and Salzberg| (2004]).

Books:
Ott and Swiaczny's book (2001) deals with the integration of temporal infor-

mation in Geographical Information Systems (GIS). It reflects upon theoretical
ideas on the interrelations between space and time and includes practical exam-
ples taken from various types of applications (spatial/environmental analysis,

demographics, history and business data warehousing).

Parent et al.’s book (2006a) focuses on modelling spatial and temporal infor-
mation, presenting the MADS data modelling approach that covers both data
modelling and data manipulation features. This presented material serves as a
valuable reference in its discussions of how these concepts relate to the traditional
data modelling approaches. Visual notations and examples are extensively used
to illustrate how various constructs can be used. The book is of major impor-
tance and interest in the areas of spatio-temporal databases and geographical

information systems.
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3.3.5 Data Warehousing Aspect

From the discussions by [Malinowski and Zimanyi| (2006), the structures of data
warchouses (DWs) are re-examined using a multidimensional view of data includ-
ing dimensions, hierarchies and measures. These concepts are applied to OLAP
systems that allow for interactive data warehouse querying using operations such
as drill-down and roll-up, which need hierarchies in order to automatically aggre-

gate the measures to be analysed.

It is well known that data warehouses are centred upon decision support rather
than transaction support, and that they are based on multidimensional modelling
requiring specialised design techniques. This is reflected in the literature which
has focused on the multidimensional modelling facets of conceptual modelling
for data warehouses. Current research is thus directed towards advanced mul-
tidimensional features with proposals that have extended UML (Abell6, Samos
and Saltor], 2006} Lujan-Mora, Trujillo and Song, [2006) and the ER model (Ma-
linowski and Zimanyi, 2000; Sapia, Blaschka, Hofling and Dinter, [1998; 'Tryfona)
et al., [1999). A more recent model, the Generalising Conceptual Multidimen-
sional Data (CGMD) model, extends the ER model for data warehouses through
additional constructs of aggregated entities that allow for their interrelationships
with the other parts of the schema (Kamble, 2008).

Examples of extensions of the ER model that support multidimensional views

of data are described below:

1. The Multidimensional Entity-Relationship (ME/R) model. The
multidimensional element plays a major role in the design of a data ware-
house. ME/R (Sapia et al., [1998) extends the ER model to express the
multidimensional structure of the data. ME/R includes two specialised
relationship types and a specialised entity type allowing the adequate con-
ceptual representation of the multidimensional data view to be compliant
with OLAP schemata. These are as follows:

e a special entity type, termed the dimensional level,
e two special relationship types connecting dimensional levels:

— a special n-ary relationship type, termed a fact relationship type,

— a special binary relationship type, termed a classification relation-

ship type.
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However, the ME/R model does not discuss the features of the models with

regard to integrity constraints and languages.

2. The starER model. StarER (Tryfona et al. [1999) addresses the mo-
delling requirements of a data warehouse and incorporates the star structure
into the constructs of the ER model. Their research presents new special
relationship types for hierarchies and includes an evaluation of the starER
model. Examples from a mortgage data warehouse environment are used
to illustrate how the model can be used to represent complex information
at the conceptual level. However, starER omits to define the features of the

model to address integrity constraints and languages.

3. The MultiDimER model. MultiDimER (Malinowski and Zimanyi, 2006)
is a conceptual multidimensional model based on the ER model that in-
cludes constructs for data warehouse and OLAP modelling. The model
offers some important features for representing different kinds of hierar-
chies, levels and fact relationships. Both graphical and textual notation, as
well as a formal definition are included. Hierarchy features are important
for analysis and form part of the advanced features for a multidimensional
model. The model provides exclusive integrity constraints and introduces
a mechanism to allow for the mapping of these hierarchies to the relational

model. However, a language for the model is not provided.

In addition to the multidimensional view of data, a temporal extension of the
MultiDim model (Malinowski and Zimanyi, 2008|) has been recently introduced
and provides temporal support (valid time, transaction time and lifespan) for
levels, attributes, hierarchies and measures. Refer to Malinowski and Zimanyi
(2008) for a detailed discussion on the implications of this proposal on temporal

data warehouse design.

As new data warehouse applications and architectures move towards web-
based technologies, data modellers and designers must deal with the challenges
of automating the conceptual design process when some or most data sources
reside on the web (Rizzi et al., 2006). Some attempts have been made in this
direction, mainly aimed at building a web warehouse conceptual schema from
XML data (Vrdoljak, Banek and Rizzi, 2003).

This thesis survey has identified the following relevant resources (listed in al-

phabetical order by first author) that provide the necessary data modelling and
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design techniques for the data warehousing aspect.

Books:

Imhoff, Galemmo and Geiger[s book (2003)) thoroughly describes the data

modelling techniques used to construct multipurpose, stable and sustainable data

warehouses used to support business intelligence.

Malinowski and Zimanyi’s book (2008) explains the conventional data ware-

house design in detail, particularly complex hierarchy modelling. Additionally, it

addresses two innovative domains recently introduced to extend the capabilities
of data warehouse systems, namely the management of spatial and temporal in-
formation. Its presentation covers different phases of the design process, such as

requirements specification, conceptual, logical and physical design.

3.3.6 Domain-Specific Application Aspect

This category focuses on a variety of extensions to the ER models that are relevant

to specific application domains such as:

e geographical information systems (Hadzilacos and Tryfonal |1997; |Vert, Stock
and Morris|, 2002),

e hypermedia (Garzotto, Mainetti and Paolini, [1994; Bowers, Delcambre and|

Niaier, 2003).

e superimposed information (Murthy, Delcambre and Maier, [2006),

e web applications (Feyer and Thalheim| 1999),

e electronic commerce (Karlapalem, Dani and Krishnal, [2001)),

e multimedia (Velez, |1985), and

e manufacturing (Flory and Giard, |1988; Moyne, Teorey and Leo C. McAfee,

1991).

Examples of the proposals for hypermedia, security and geographical applica-

tions are summarised below:

1. The Hypertext Design Model 2 (HDM2). HDM2 (Garzotto et al.,
1994)) is the evolution of the Hypertext Design Model (HDM) (Garzotto,
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Paolini and Schwabe, [1993) and is an extension of the classical ER model.
The concept of access structure (i.e. index and guided tour), the notion
of anchors, and the definition of the dynamic behaviour of guided tours
are extremely important in hypermedia applications but are not covered in
the traditional ER approach. The main features of HDM2, with respect to
HDM, are an improvement of the access mechanisms, a generalisation of
the notion of link, an extension of the notion of derivation, definitions of
hyperviews and a refinement of the definition of browsing semantics. Neither

integrity constraints nor languages are defined in HDM2.

2. The Security Enhanced Entity-Relationship (SEER) model. The
SEER model (Oh and Navathe, 1995) extends the conceptual level of the
EER model to deliver a model that handles security schemata and autho-
risation history details. This model proposes a two-layered representation
of data with the first layer based on the traditional ER model and the
secondary layer used to deal with security schemata and authorisation his-
tories. This framework aims to serve as a common data model that provides
independence from other different access control mechanisms supported by

the participating DBMSs. Neither integrity constraints nor languages are
defined in SEER.

3. The Geographic Entity-Relationship (Geo-ER) model. This model
is based on the study of spatial aspects that call for special modelling tech-
niques and constructs to deliver conceptual designs for geographic applica-
tions. Geo-ER (Hadzilacos and Tryfona, [1997)) is presented as a model that
extends the ER model to integrate the concepts of aggregation and group-
ing. Geo-ER includes spatial entity types and spatial relationship types,
geographic entities’ position, and space-depending attributes to express the
semantics of space. In addition, two new constructs, spatial aggregation
and spatial grouping, are added to express the spatial dimension of com-

plex geographic entity types. Neither integrity constraints nor languages

are defined in Geo-ER.

This thesis survey has identified the following relevant resources (listed in al-
phabetical order by first author) that provide the necessary data modelling and

design techniques for the domain-specific application aspect.
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Books:

DeMers's book (2005) discusses spatial and mapping concepts, the compo-
nents of GIS systems and the process of designing and implementing a GIS sys-

tem.

Elangovan’s book (2006) discusses the fundamentals of GIS, database creation

and analysis in GIS and advanced GIS applications.

Longley, Goodchild, Maguire and Rhind['s book (2005)) gives a comprehensive
treatment of the field of GIS ranging from the fundamental principles to the

advanced features.

Shekhar and Chawlafs book (2002) discusses issues and approaches providing
a wide range of applications and methods for spatial data management that are
at the core of GIS.

3.3.7 Knowledge Base Aspect

Since the 1990s, a series of research achievements that are relevant to knowledge
bases have been reported from such fields as statistics, database management
and machine learning (Shimazu, Momma and Furukawa) 2003)). For example,
in the field of database management, deductive databases have been proposed
to combine logic programming with relational databases to construct systems
that support applications with very large datasets. As the ER model provides
an effective tool for organising the design of relational databases, it is a natural
extension that it should also be used to assist in the design of deductive databases
(Han and Li, 1992). In the field of machine learning, a logic approach called
Inductive Logic Programming (ILP) is a machine learning technique that has

been effective for deducing rules based upon qualitative and structural data.

This aspect includes ER extensions that are concerned with knowledge based
modelling or knowledge organisation within deductive databases (Battista and
Lenzerini, 1993; [Han and Li, [1992; Kerschberg, Baum and Hung), [1990; Storey,
Goldstein, Chiang and Dey|, |1994)) and inductive learning based on predicate logic
(Shimazu et al., 2003).

Examples of proposals for ER extensions that deal with knowledge, deductive

database and inductive learning are discussed as follows:

1. The Knowledge-based Entity-Relationship model (KORTEX). KO-
RTEX (Kerschberg et al., [1990)) is a prototype expert database system that
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supports knowledge-based extensions of the Extended ER (EER) model
(Teorey, Yang and Fry, [1986)) and incorporates knowledge-based concepts
such as rules and virtual objects. The main KORTEX knowledge com-
ponents are inferred attribute values and virtual objects. For inferred at-
tributes, their value may be determined by a function calculation or through
inference rules. In the case of virtual objects, they can represent entities or
relationships and are also referred to as inferred views. For virtual entities,
their actual values are inferred by the system from a related entity. From
a users’ perspective, these virtual objects appear as distinct objects in the

system.

A variety of tools have been provided that assist in the maintenance of
KORTEX such as in verifying the internal validity of inference rules or in
supplying schema information to the user. Although KORTEX utilises a
variety of constructs within the model, no supporting language has been

provided with this prototype.

2. The Deductive Entity-Relationship (Deductive-ER) model. This
proposal applies the ER approach to the design of deductive databases and
delivers a deductive-ER model (Han and Li, [1992) that is an integration of

two data models:

e a typical ER model and its refinements, and

e a typical Horn-Clause-Based logic data model.

A major motivation for the development of a deductive-ER model is the
need to organise knowledge in deductive databases. As a deductive database
is a deductive extension of a relational database, the model inherits many
features from relational and ER models. The outcome is an integrated
language called Deductive-ER, which takes advantage of both relational
and logic data languages and facilitates the construction of a structured

deductive database.

The Deductive-ER model provides the capability to define and manipulate
real, virtual and hybrid components, generalisation hierarchies, integrity
constraints and complex data objects (including tuple-valued, list-valued,
text-valued, set-valued and null-valued attributes). A data definition and
manipulation language is built into this model and is termed Deductive-ER.

The proposal also caters for the specification and use of constraints.
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3. The Refined Entity-Relationship (RER) model. RER (Shimazu
et al., [2003)) is an extended ER model that accommodates an additional
feature for each attribute (of an entity) and each relationship, which is used
to determine whether the value of these has been derived from another at-
tribute or relationship. These features are compliant with the input data
identification rules for Inductive Logic Programming (ILP) systems. As
ILP is one of the most expressive machine-learning algorithms, the RER
model facilitates adaptive data mining by directly connecting relational
databases and ILP systems. Their research provides specifications on the
interface based on the RER model that enables ILP systems to access re-
lational databases. However, the proposal does not include a discussion of

constraints or query languages that are specific to the RER model.

This thesis survey has identified the following relevant resources (listed in al-
phabetical order by first author) that provide the necessary data modelling and

design techniques for the knowledge base aspect.
Books:

Ohsuga, Kangassalo, Jaakkola, Hori and Yonezaki[s book (1992)) collated con-
ference papers that have a main theme of information modelling and knowledge
bases. Their article list is classified according to the following topics: Theory
of Concepts and Conceptual Modelling, Acquisition and Elicitation of Modelling
Knowledge, Knowledge Representation I and II, Database Design, Knowledge
Base Design and Software Engineering, and Different Approaches to Conceptual
Modelling.

A revised version of this book (Kangassalo, Jaakkola, Ohsuga and Wangler,
1995)) includes a survey of European-Japanese research on information modelling

and knowledge bases.

3.3.8 Fuzzy Data Aspect

Fuzzy data (imprecise or uncertain data) can arise whenever subjective judge-
ments or evaluations are part of the stored database (Yazici, George, Buckles
and Petry, [1992). The concept of fuzzy data has been incorporated into database
technologies in order to deal with ambiguous and uncertain data, provide support
to queries based on natural linguistics, and to allow for the modelling of data that

is inherently fuzzy. Extending data models to cater for imprecise and uncertain
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information is of particular interest given the incomplete nature of information in
the real world. Consider the example where you are given the information ‘ David
may be 62 years old’. Whilst this information retains some element of validity,

the exact value is indeterminant.

Within the context of relational databases, research into the use of fuzzy data
has predominantly occurred during the last two decades. The aim of this has been
on allowing the storage of imprecise or fuzzy data and developing query constructs
that can process and extract this information (Galindo, Urrutia and Piattini,
2006). More recent efforts have focused on fuzzy object-oriented databases. Re-
search into extending conceptual models to deal with fuzzy data has included the
Fuzzy IFO model (Ma, Ma and Zhang, [2000), which has focused on the modi-
fication to objects to deal with different levels of fuzziness, especially for is-a

relationships.

Other research that extends conceptual models has included the Fuzzy Ex-
tended Entity-Relationship (FEER) (Ma, Zhang, Ma and Chen) 2001), Fuzzy ER
(Zvieli and Chen, (1986)) and Fuzzy Enhanced Entity-Relationship (FuzzyEER)
(Galindo et al., 2006) models. The aim of these models is to deal with different
types of uncertainty in order to improve the expressiveness and usefulness of the
base ER/EER models. More recent proposals such as the AR-enriched-ER (AR-
EER) model (Chen, Ren, Yan and Guo, 2007), have attempted to extend the ER
model based on association rules (AR) to deal with more general, flexible and
linguistic based knowledge in fuzzy association rules. The transformation from

an AR-EER schema to a relational schema is also discussed in this proposal.

The major concepts of the Fuzzy ER and FuzzyEER models considered in

this thesis include:

1. The Fuzzy ER model. Fuzzy ER (Zvieli and Chen, [1986)) is an extension
of the ER model to incorporate fuzzy set theory, where fuzzy entities, at-
tributes and relationships are represented graphically in the model. Their

proposal considers fuzziness at three levels:

(a) The first level refers to the fuzziness at the model level, relating to

fuzzy entity types, fuzzy relationship types and fuzzy attributes.

(b) The second level concerns the fuzziness at the occurrence/instance

level of entities or relationships.

(¢) The third level is related to the fuzziness in attribute values.
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Whilst fuzzy participation constraints and cardinality constraints have been
discussed in their research, the model does not provide any query language

or the method of mapping the Fuzzy ER data model to a relational database.

2. The FuzzyEER model. FuzzyEER (Galindo et all 2006) extends the
EER model with fuzzy semantics and fuzzy notations to represent impre-
cision and uncertainty in entities, attributes and relationships. FuzzyEER
presents various fuzzy features for fuzzy modelling, e.g. fuzzy values in the
attributes, the degree of fuzziness of the value of an attribute, fuzzy enti-
ties, fuzzy relations, fuzzy aggregation, fuzzy constraints, and so on. The
possibility of expressing constraints by using the power and flexibility of
fuzzy set theory is a key feature that distinguishes their approach from var-
ious other fuzzy data treatments (Zvieli and Chen) 1986; Chen and Kerre,
1998; [Ma et al., 2001; Ma, 2005, 2006). Their approach considers many of
the essential modelling facilities including participation constraints, fuzzy
cardinality constraints and the method of mapping the FuzzyEER model to
the relational data model. A query language termed a Fuzzy SQL (FSQL)

is also provided for use with the fuzzy database.

Note that the fuzzy data aspect also includes the MDER model (La-Ongsri
et al 2008) as some information of complex structures that are used to describe
the domains of an attribute in MDER is inherently imprecise or fuzzy. For exam-
ple, location attributes such as City or Zip code that are constructed as a weighted
graph usually involve various forms of uncertainty such as close to, adjacent to

or in proxrimaity.

This thesis survey has identified the following relevant resources (listed in alpha-
betical order by first author) that cover the ways that the ER model has been

extended to enhance its fuzzy data aspect.
Survey Papers:

A recent review paper by |Ma and Yan| (2008]) introduces fuzzy database models
based on fuzzy relational and object-oriented databases. The paper also presents
an overview of imperfect information and fuzzy set theory. The paper precludes

any examination of fuzzy conceptual data models.

Yazici et al. (1992) surveyed two conceptual modelling approaches, the ER
model and the IFO model, that have been extended to incorporate fuzzy and

imprecise data. Their research also proposes relational models that may exist
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in either first normal form (INF) or non-first normal form (Non-1NF) which are

capable of representing imprecise information.
Books:

The recent book by (Galindo (2008) contains a collection of chapters devoted
to research on fuzzy information processing in databases. The book delves into
two critical challenges of fuzzy databases, namely what processes can be used to
extract fuzzy data and secondly, how can fuzzy data be stored in a database. The
book also offers topics about fuzzy data mining such as the extraction of fuzzy

association rules.

Galindo et al.’s book (2006)) examines extensions of EER models to provide
fuzzy capabilities. Their research forms the basis of a proposal, termed the Fuzzy-
EER model. Some of the extensions of the proposal include fuzzy attributes, fuzzy
aggregations, and other assorted specialisations such as fuzzy degrees and fuzzy

constraints.

Ma's book (2005) covers the then current research and practical applications
of fuzzy conceptual models (in particular, in ER/EER and UML model), fuzzy
databases (mainly, object-oriented databases and relational databases) and the
fuzzy XML model. Processes to transform fuzzy XML and fuzzy EER models

into fuzzy databases are also presented.

Another book by [Mal (2006) presents further advances for imprecise and un-

certain engineering information from a fuzzy database modelling perspective.

3.3.9 XML Data Aspect

The evolution of XML from a simple data exchange format to the native data
format of application components has led to its widespread use within many
application areas and its gradual acceptance as a fundamental element of any
system (Sengupta and Wilde, 2006). In recent years, application designers have
adopted XML schema to describe their requirements as a logical data model.
This cannot be achieved through the use of traditional conceptual models since

they do not have the modelling capacity to accommodate XML features.

Over the last decade, a number of extended conceptual models for XML data
have been proposed in the literature. These extensions are based on ORM (Bird,
Goodchild and Halpin|, |2000), UML (Combi and Oliboni, 2006; Lu, Yang and Liu,
2006} Routledge, Bird and Goodchild, |2002)), and ER models such as XSEM-ER



CHAPTER 3. A SURVEY ON ER MODELLING EXTENSIONS 89

(Necasky, 2007)), EReX (Manil, [2004), XER (Sengupta, Mohan and Doshi, [2003),
X-Entity (Losio, Salgado and Galvao, 2003) and ERX (Psailaj, 2000). These latter
XML-based conceptual models that are based on the ER model are of particular

relevance to this thesis survey.

Examples of these XML based ER models are described below:

1. The EReX (ER extended for XML) model. EReX (Mani, 2004)
extends the ER model with additional XML features that accommodate a
specification of structures (i.e. categories) and constraints (i.e. coverage and
order) which can be modelled using the ER model. The proposal provides
a mechanism to translate an EReX schema into XML, but difficulties arise
in dealing with the notion of document order. Document ordering is part of
the overall ordering of elements covered by XML, but in the case of EReX,
there is no corresponding notion of what these global documents represent
in real world applications. While the model uses standard XML, it does
not provide any additional operators or inferencing rules for querying and

manipulating XML data.

2. The XSEM-ER model. The main features of XML data are hierarchi-
cal and irregular structures, ordering and mixed contents. XSEM extends
the ER model to represent these features through a two phase approach
(Necasky, 2007). Firstly, XSEM-ER is used to produce a model represent-
ing the overall non-hierarchical conceptual schema of a domain and from
this first step non-hierarchical XSEM-ER constructions are generated. In
the second phase, operators transform these constructions into XSEM-H
constructions to provide a hierarchical organisation of all the structures.
Whilst the model uses standard XML and provides for integrity constraints
within the model, it omits to provide any additional operators or inferencing

rules for querying and manipulating XML data.

Another recent proposal for conceptual representation of XML content struc-
tures is the ER-XML model (Al-Kamha, Embley and Liddle|, 2007) that extends
the XER model proposed by [Sengupta et al.| (2003)). Their study discusses the
requirements necessary for the conceptual modelling of XML which address or-
dering, irregular and heterogeneous structure, document-centric data, constraints

and logical level mapping.

This thesis survey has identified the following relevant resources (listed in alpha-
betical order by first author) that cover the ways that the ER model has been
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extended to enhance its XML data aspect.
Survey Papers:

Necasky's survey (Necasky, 2006) describes five existing conceptual models
for XML, two of which are based on the ER model with the remainder are based
on the hierarchical approach. The survey proposes a list of requirements that
are considered as an essential feature of any XML based conceptual model, and

compares these various surveyed models against these requirements.

Sengupta and Mohan| (2003) surveyed eight data models for XML, only one
of which is related to extensions of conceptual modelling for the ER model. The
study classifies the models according to three characteristics, namely physical,

formal and conceptual.
Book:

Chaudhri, Rashid and Zicari’s book (2003) provides useful reference material
on general XML data management. One section of this book provides an XML-

based data model that is of particular relevance to this aspect.

3.4 A Comparative Study of ER Modelling Ex-

tensions

A conceptual model is a type of a data model. From a formal viewpoint, a
data model possesses at least three components, namely a structure component,
an integrity component and a manipulative component (Codd, 1980; Date and
Darwen, [1992). These components can be applied to any application created for

an organisation (Date and Darwen, [1992)).

The CERME framework has identified four key criteria that can be used as a
common framework for comparing all the surveyed models. These include data
structures, integrity constraints, languages and transformations. The first three

have been previously identified in the key considerations of a conceptual data
model (Chapter 2). A detailed description of these criteria is as follows:

Data Structures. A data structure of a data model is a representation of the
modelling constructs used to describe a database schema. Fundamental
modelling constructs of conceptual data models are represented by entity

types, relationship types and attributes.
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Integrity Constraints. Integrity constraints are general statements and rules
that define the set of consistent database states, or rules for determining
how a state may change, or both (Codd, [1980).

Languages. In the context of standard data models, languages define the algebra
of operations, calculus, DDL and DML. In general, these are commonly
referred to as query languages. A query language is a collection of opera-
tors or inferencing rules that can be applied to any valid instances of the
data structure types of the model, with the objective of manipulating and
querying data in those structures to achieve the required result (Codd,
1980).

Transformations. As the ER model is not supported by any DBMSs, another
mechanism is required to translate the ER schema into a logical model repre-
sentation (such as relational, object-relational or XML schemata) that can
support implementation. This mechanism is referred to as a transformation.
Transformation processes are crucial in creating logical schemata that serve
as the basis for any database implementation. For this reason it is included

as a necessary characteristic of the comparison framework.

The need for customising ER-based applications has led to a great deal of
research on developing extensions to the traditional ER model, which has aimed
at providing increased expressiveness and incorporating a richer set of semantics
into databases. This thesis survey shows that during the 1980s and 1990s, research
into extending the ER model was predominantly focused on temporal aspects. In
the current era, research has shifted more towards the use of XML data aspects

and developing modelling techniques to support this.

This thesis survey also illustrates how few of these proposals for ER extensions
are able to fulfil all the key considerations or criteria (data structures, integrity
constraints and languages) of conceptual data models. The main proposals that
have been considered in the CERME framework are shown in along
with a tabular comparison of whether each can support the essential features of
data models. As discussed by (Codd (1980)), any extension that omits to define
integrity constraints or languages in their data models should be regarded as
being incomplete. [Table 3.2] shows these deficiencies in the surveyed models.
Thus, the focus of any research into new extensions of conceptual data models
must clearly address these two criteria as they are essential in providing the key

to understanding how structures behave.
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Table 3.2: A comparison of the main CERME proposals (“y/” indicates support).

No. | Proposal Year Strl:l.)]?:tt?ll’e Clgrfs%:;ﬁt Language fo-:'-rr:;]t?(_)n
Structural Aspect

1 | R 1989 J J J

2. | HERM 1990/2000 J J v J

3. | MDER 2008 J J J v
Data Abstraction Aspect

4. | Erc+ 1992 J v v v

5. | EER 1994/2007 v v v
Temporal Aspect

6. | TIMEER 1998/2004 J v 4

7. | TIMEERplus 2005 J v v
Spatio-Temporal Aspect

8. | STER 1999 v

9. | MADS 1909/2006] J J J

10. | DISTIL 2001 J J
Data Warehousing Aspect

11. | MER 1998 J

12. | starER 1999 v

13. | MultiDimER 2006 J N v
Domain-Specific Application Aspect

14. | HDM2 1994 v

15. | SEER 1995 v

16. | Geo-ER 1997 J
Knowledge Base Aspect

17. | KORTEX 1990 v v

18. | Deductive-ER | 1992 v J J

19. | RER 2003 J
Fuzzy Data Aspect

20. | Fuzzy ER 1986 v v

21. | FuzzyEER 2006 v J v v

3. | MDER 2008 J v v v

XML Data Aspect

22. | ERex 2004 v J v/

23. | XSEM-ER 2007 v v J

It is also expected that the key criteria (data structures, integrity constraints
and languages) that have been identified as representing the core properties of
conceptual data model can also be used as a guideline in identifying the new
modelling constructs or components that must be considered whenever a new
data model is proposed. These criteria have also been used to form the common

basis for the comparative examination of all the CERME proposals.

This study includes previous survey papers, bibliographies and books that
are relevant to each of the CERME aspects. Through this survey, it is apparent
that research is predominantly focused on expanding the expressiveness and ap-
plicability of models, rather than in surveying existing proposals or undertaking

further research into the fundamental theory of modelling. For instance, there
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Table 3.3: Resources available for each CERME aspect.

Resources
No. ERME A .
ol C spect Survey Paper Bibliography Paper Book
1.
Structural Thalheim (2000)
2. | Data Abstraction Saiedian (1997) Elmasri and Navathe
(2007)
3. | Temporal 1) Gregersen and Jensen 1) Bolour et al. (1982) 1) Date et al. (2003)
(1999) 2) Kline (1993) 2) Snograss (2000)
2) Ozsoyoglu and Snodgrass | 3) McKenzie (1986)
(1995) 4) Soo (1991)
3) Roddick and Patrick 5) Stam and Snodgrass
(1992) (1988)
4) Roddick and Spiliopoulou | 6) Tsotras and Kumar
(2002) (1996)
5) Theodoulidis and 7) Wu et al. (1998)
Loucopoulos
(1991)
4. | Spatio-Temporal 1) Abraham and Roddick 1) Al-Taha etal. (1993) | 1) Ott and Swiaczny
(1999) 2) Al-Taha et al. (1994) (2001)
2) Friis-Christensen et al. 3) Roddick et al. (2001) | 2) Parent et al.
(2001) 4) Roddick et al. (2004) (2006)
3) Pelekis et al. (2004)
4) Wang et al. (2000)
5. | Data Warehousing 1) Imhoff et al. (2003)
2) Malinowski and
Zimanyi (2008)
6. | Domain-Specific 1) DeMers (2005)
Application 2) Elangovan (2006)
3) Longley et al. (2005)
4) Shekhar and
Chawla (2002)
7. | Knowledge Base Kangassalo et al. 1) Ohsuga et al.
(1995) (1992)
2) Kangassalo et al.
(1995)
8. | Fuzzy Data 1) Ma and Yan (2008) 1) Galindo (2008)
2) Yazici et al. (1992) 2) Galindo et al. (2006)
3) Ma (2005)
4) Ma (2006)
9. | XML Data 1) Necasky (2006) Ghaudbri et al.
2) Sengupta and Mohan (2003)
(2003)

93

has been much research on fuzzy databases and incorporating XML into concep-

tual modelling, but there have been limited survey reviews of these areas. This

bias has provided a good reference point for identifying opportunities for further
potential areas of research. provides a summary of the resources that
are available to support each of the CERME aspects.
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3.5 Summary

Discussion on the enhanced power for modelling has accompanied the ER ap-
proach for three decades and this will continue into the future. As argued by
Badia (2004) and Kroenke and Gray| (2006]), no conceptual model will ever be
able to fully capture all the semantics of an application. Thus, the limitations
of each ER model must be weighed up against their benefits, such as their ease
of use, intuitive appeal and clarity of semantics. Establishing a balance between
the expressiveness of a model and its complexity of use will always be a challenge

for database developers and researchers.

The motivation behind various extensions to the ER model is to enhance data
model expressiveness. In this context, the term expressiveness is used to represent
any required meaning. This is achieved through proposed constructs that can be

assigned given meanings (semantics).

This study proposes that various semantic features can be supported through
a classification system referred to as the CERME framework. This framework
classifies ER extensions according to the following nine CERME aspects:

e structural,

e data abstractions,

e temporal,

e spatio-temporal,

e data warehousing,

e domain specific applications,

e knowledge base,

e fuzzy data, and

e XML data.

It is clear that there are substantial weaknesses with the traditional ER model
that require the enhancement of various new extensions to the model. Research

must be directed to overcoming these limitations and to deliver a data model that

is sufficiently adaptable to deal with emerging user needs and the complexity of
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applications. As stated by |Chen| (2006), this vision must not be constrained by
restrictive constructs, and must have sufficient versatility to deal with all aspects

of the real world, its changes and activities under different perspectives.

Periodic surveys of new model proposals should be undertaken in an attempt
to maintain this surveyed model list and to document any new CERME aspects
and proposals that must be considered. For instance, any future research into ex-
panding the ER model to handle the semantics of ontologies should be added into
this list. Greater awareness of the potential for new semantics, content and ap-
proaches can lead to the development of more advanced, high-quality conceptual

level information systems (Spaccapietra, March and Kambayashi, [2002).

This thesis survey contributes to the general understanding of the various
potential uses and applicability of the various extensions of the ER model that
have been promoted over the last three decades. This work reflects upon some of
the common limitations of the extensions that have been proposed and provides
guidelines on core elements that must be considered for all new conceptual models.

This guide and survey will serve as a valuable reference for future research.

The CERME framework has been a useful mechanism to categorise those ER
model extensions that have been designed to deal with specific aspects associ-
ated with modelling while also incorporating an assessment of their completeness
according to the criteria of data structures, integrity constraints, languages and

transformation.

This framework is a valuable tool that can assist developers in raising aware-
ness of what needs to be considered when developing new proposals. Specifically,
the comparison chart in identifies which conceptual data model propo-
sals can be considered as complete within each of the CERME aspects. Using this
guide, researchers have a valuable point of reference for evaluating the complete-
ness of their proposed data models and for identifying prior effective examples
of modelling extensions that may inspire new proposals in their specific area of

research interest.



Chapter 4

Mesodata in Conceptual
Modelling

This thesis chapter serves to provide some of the answers to support Objectives
1 and 2 of the thesis as stated in Chapter 1 (particularly Section 1.5.1) and as
indicated in [Figure 1.3 The focus of this chapter is in exploring the concep-
tual modelling extensions to accommodate the concept of mesodata and how this
concept can be used to increase the expressiveness of conceptual modelling ap-
proaches. Mesodata modelling is a recently developed approach for enhancing a
data model’s capabilities by providing for more advanced semantics to be asso-
ciated with the domain of an attribute. Mesodata supplies both an inter-value
structure to the domain and a set of operations applicable to that structure that
may be used to facilitate additional functionality in a database. Through each of
the following chapter sections, the thesis demonstrates that conceptual models are
able to retain more meaningful information pertaining to their model of their real
world application if they were able to incorporate the semantics of complex data
types into the attribute domains. This chapter investigates the accommodation
of mesodata into the entity-relationship and object role modelling techniques,
presenting the Mesodata Entity-Relationship (MDER) model and Mesodata Ob-
ject Role Modelling (MDORM), which show how the mesodata concept can be
incorporated into conceptual modelling methodologies to include the semantics

of complex domain structures.

The structure of this chapter is as follows. provides an overview to
this topic. contains a discussion on the concept of mesodata approach.
shows how mesodata can be accommodated into the ER model.
discusses the accommodation of mesodata into the ORM technique.
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[tion 4.5 presents examples of MDER and MDORM schemata. provides

some general insights and outlines the directions of future work.

4.1 Introduction

The process of conceptual modelling plays a major role in assisting the description
of some part of the real world, the Universe of Discourse (UoD), as a concise
description of the user’s database requirements. The conceptual model ignores
physical level aspects such as the physical storage structure, indexes, clustering
and access paths, as well as external level aspects such as user views, screen forms
and report interfaces. The result is a conceptual schema that is independent of
the DBMS but which can be implemented by mapping onto a logical schema
supported by the chosen data model (relational, object-oriented, object-relational
and so on) (Halpin and Proper} 1995).

While the entities, their attributes and the relationships between entities are
explicitly denoted, in a typical conceptual model of an enterprise any under-
standing of the domains of the attributes is only implicitly included, at best.
For example, attributes such as DayofWeek, DiseaseCode or Colour would rarely
have their semantics recorded in the conceptual model. Mesodata makes a strong
distinction between the type of an attribute and its domain (the open or closed
set of values that an instance of an attribute is permitted to take). It should be
noted that while complex types in the relational and object-oriented data models
have been widely explored, complex domain structures have not been examined

to the same depth.

Several extensions have been presented to enrich the semantic expressive-

ness of the original entity-relationship (ER) model (Chen| 1976) by providing,
for example, the valence concept (Baumann, 1989)), representation for security

semantics (Pernul, Winiwarter and Tjoa, |1993)), dynamic phenomena (events)
(Falkenberg, |1993), fuzzy data types (Galindo et al. 2006), multidimensional

data (Sapia et al., [1998) and abstraction mechanisms, such as specialisation, ag-

gregation, association and categories (Batini et al), [1992; Elmasri et al. [1985;
Elmasri and Navathe, 2007). The regular ER model is focused on the modelling
of static structures and as a result, there are several temporal extensions
proggel [1981; Tauzovichl [1991; 'Theodoulidis et al.l [1991a; [McBrien et al., 1992}
Zimanyi et al. 1997) which add dynamic aspects to the ER model. Refer to
for a discussion on other extensions to the ER model.
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There have been similar extensions to Object Role Modelling (ORM). As
with the ER model, ORM is a powerful semantic conceptual model. ORM has
gained the attention of the conceptual modelling community and is now sup-
ported by a variety of modelling tools such as VisioModeler, Microsoft’s Visio
Enterprise 2000, DogmaModeler and NORMA. Research has explored its use in

conceptual modelling, including ORM-based approaches for modelling contex-

tual information (Henricksen, Indulska and McFadden| 2005), e-tutorial systems

(Leelawatananon and Chittayasothorn) 2004)), web systems (De Troyer, Caste-|

leyn and Plessers, 2005) and in-house decision support systems (Pierson and
, 2005). ORM has also been used for business rules as a markup language

(Demey et al., |2002) as well as for an ontology engineering framework and tool
(Jarrar et al., 2003). Reactive behaviour (Halpin and Wagner, 2003) and tempo-
ral extensions have been proposed (Pornphol and Chittayasothorn| [2004; Proper,

Hoppenbrouwers and van der Weide, 2005). Extensions to ORM’s precursor,
NIAM (Nijssen, (1977} |1985)), have also been proposed (Puntheeranurak and Chit-
tayasothorn|, 2002; |Creasy, [1989; (Chankuang and Chittayasothorn|, 2004} Yulianal
and Chittayasothorn, 2005, including a transformation from NIAM into Opti-
mal Normal Form (ONF)[| (Leung and Nijssen| [1987] [1988), a set of rules for
schema conversion from NIAM to EER and vice versa (Song and Forbes, [1991)),
a semantic comparison of the ER model and NTAM (Laender and Flynn| 1993)
and the EER model and NIAM (Kim and March| [1995), as well as an analyti-
cal evaluation of NIAM’s grammar for conceptual schema diagrams

Zhang;, [1996)).

However, with the exception of work such as FuzzyEER (Galindo et al.; 2006)),
most extensions to the ER/EER and NTAM/ORM models do not deal with the se-

mantics of complex attribute domains. In the classical models, attribute domains

are, in practice, restricted to simple scalar types such as the set of integers, reals,
character strings and so on. This thesis argues that in order to reflect real-world
domains, a conceptual modelling tool should be powerful enough to represent
the semantics of complex attribute domains such as graphs, trees and lists. As
a simple example, consider the extensive use of reference or lookup files — files
that simply enumerate the values that an attribute may take. These reference
files may either refer to information that can be designed as non-inclusion or
inclusion, as shown in the example in In practice, as they require
an additional relationship type and entity type to be included, these are often

LONF is 5NF with a minimal number of relations.
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CountryOfBirth CountryOfBirth
N

PERSON PERSON WAS_BORN_IN ! COUNTRY

@) (b)

Figure 4.1: Examples of reference files (a) non-inclusion, and (b) inclusion.

left off conceptual diagrams with their existence noted elsewherdﬂ More complex

domains, such as hierarchies, cannot be easily included at all.

Mesodata adds power to the relational data model by providing greater se-
mantics to the domain of an attribute by allowing attributes to be defined over
complex domain structures (de Vries and Roddick, [2004). Importantly for back-
wards compatibility, the type of an attribute remains a simple scalar type; it is
the domain of the attribute that allows the values taken by the attribute to be

placed within some complex structure.

Consider the example of an attribute CountryofBirth that is defined as
CHAR(30), where country names exist within the domain which is a weighted
graph. This domain of CountryofBirth includes all country names (current and
superceded), which are then accessible to the DBMS with the extended SQL
operators. Assuming these exist in table countryrel, mesodata can be used to

create a relational table as follows:
CREATE DOMAIN COUNTRIES

AS wgraph

OF CHAR(30)

OVER countryrel;
CREATE TABLE person (

PersonID CHAR(6) NOT NULL,

Name CHAR (40),

Country0fBirth COUNTRIES,

PRIMARY KEY PersonlID,

After defining CountryOfBirth over the mesodata domain COUNTRIES, the query

SELECT PersonID
FROM person
WHERE Country0fBirth EQUALTO ‘USA’;

would return those people where their country of birth is equivalent to any value in
the domain that is synonymous with ‘USA’, namely ‘U.S.”, ‘US’, ‘USA’, ‘America’,

2This issue also leads to semantic ambiguity as discussed by [Wand et al.| (1999).
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‘United States’, ‘United States of America’, etc. In this case, EQUALTO is an
operation available to domains defined as wgraph. Without mesodata, the user
would have to enumerate each of these values and may still remain unaware of

changes or other variations to the country name.

The Object-Oriented Data Model (OODM) and the Object-Relational Data
Model (ORDM) have both emerged in response to the increasing complexity
of database applications. Moreover, semantic extensions such as Data Blades
in Informix and Data Cartridges in Oracle enhance an RDBMS by providing
a specific data type extension for some application domains, such as spatial,
time series, text or image databases (Elmasri and Navathe, |2007; Stonebraker,
Brown and Moore, |1999). A number of data types and various operators on the
data types have been provided, for example, spatial data types include point,
line, polygon, path, circle and so on and spatial operators including overlap,
contains, above, below, nearest and so on. Such extensible data types have
been implemented as add-on packages that can be included as abstract data
type (ADT) libraries whenever users need to implement the types of application
they support (Elmasri and Navathe, |2007). None of these provides the semantic
extension offered by the mesodata concept. Furthermore, although the support
for additional or extensible data types in ORDBMS seems similar to mesodata
modelling, there is a distinct difference in that the former provides specific data
type extensions for complex attributes while mesodata provides the ability to

describe and use complex domains.

To date, the incorporation of mesodata into conceptual modelling has not
been adequately investigated. Since the structure of the domain is an important
design decision, it is believed that the conceptual schema itself should be modified
to support domain semantics with respect to complex data types. To that end,
this thesis shows how mesodata can be accommodated into two well-known but
very different modelling techniques to demonstrate how the mesodata concept
can be extended to enhance the semantics of complex domain structures in data
modelling. The Mesodata Entity-Relationship (or MDER) model is presented here
as an extension to the ER/EER model and the Mesodata Object Role Modelling
(or MDORM) as an extension to the ORM model.

For MDER, the concepts of mesodata entity type, mesodata mapping and
total mesodata domain participation constraint are introduced. A transformation
algorithm from an MDER schema into a corresponding relational database schema
is provided in . These proposed extensions are similar (and orthogonal)
to those of the Enhanced Entity-Relationship (EER) model that extend the ER
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model’s representational capabilities. The EER model allows the use of additional
concepts such as subclass, superclass and category (Elmasri and Navathe], 2007))
while the MDER model allows the use of mesodata types, mesodata domains and
the mesodata layer to represent the richer semantics of complex data types for

attribute domains.

The second example, MDORM, extends ORM. ORM is a popular, fact-
oriented model with several strengths with respect to richer business rule capture,
greater stability given changes to any application domain and easier verbalisation
and population (Halpin) |2001). MDORM introduces new constructs that are able
to represent the mesodata concept within a conceptual schema. The proposed
constructs are integrated with the existing features of the ORM approach with-
out any conflict with current ORM diagrammatic notations. The concepts of
mesodata value type and mesodata mandatory role constraint are defined. An

algorithm to transform an MDORM conceptual schema into a relational database

schema is provided in [Chapter §|

Some complex structures can also be expressed as complex objects formulated
using the Unified Modelling Language (UML) (Booch et al., 2005, Muller} |1999)).
However, this thesis suggests that the distinction between objects and domain
values is important since not every complex domain structure also meets the
intuitive concept of an object. From a semantic point of view, the data component
is the kernel of the object component because data types are commonly used
as attribute domains as well as for query results (Engels et al., [1992). This
thesis thus argues that complex data types should directly be modelled in the
conceptual schema to reflect the structures and complexities of some real world
domain to meet the challenges of new application development trends. As with
the investigation of mesodata in ORM, this thesis suggests that mesodata can
also be modelled in UML class diagrams to represent the structures of complex

domains.

4.2 Mesodata Approach

Mesodata is a recent modelling approach to facilitate the definition of attributes
over complex domain structures such as graphs, trees and lists thus providing for
more advanced semantics to the domain of an attribute and enhancing a data
model’s capabilities (de Vries et al., [2004).
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Figure 4.2: Mesodata layer between metadata and data (based on de Vries,
2006).

4.2.1 What is Mesodata?

Mesodata is a concept that provides an intermediate conceptual layer of domain
definition between the metadata and data as shown in to accommo-
date the definition of complex domain structures within the database (de Vries,
2006; [de Vries and Roddick, 2004). This new layer is introduced to the rela-
tional database which is traditionally a two-layered framework consisting of the
metadata and the data (de Vries and Roddick, 2007)). This middle layer, called
mesodata, separates the schema definition of an attribute from the semantics of
its domain (de Vries, 2006; de Vries and Roddick, [2004, [2007). Commonly used
data structures, such as lists, graphs and trees (called mesodata types), and opera-
tions for the manipulation of these data structures are defined in the mesodata

layer.

Earlier research by de Vries (2006) and |de Vries and Roddick! (2007) pointed
out the important difference between a graph as a mesodata type and a graph as
a user-defined abstract data type (ADT) as follow:

e In the former, an attribute in a relation would take as its value from an

instance of an elementary type that exists within a graph.

e In the latter, the value of the attribute exists in the relation.

In other words, a mesodata type represents the structure of the domain
whereas an ADT represents the structure of the data value. In addition, un-

like the provision of libraries of user-defined ADTs, a mesodata type graph is not
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Table 4.1: Examples of mesodata types and their operators (adapted from
de Vries and Roddick| (2007))).

Mesodata Type Operator (Extended SQL Operator)

GRAPH NEXTTO

WGRAPH NEXTTO, CLOSETO, FAR, EQUALTO

DGRAPH NEXTTO

DWGRAPH NEXTTO, CLOSETO, FAR

TREE INTREE, DESCENDENT, PARENT, CHILD, SIBLING, ANCESTOR

WTREE CLOSETO, FAR, INTREE, DESCENDENT, PARENT, CHILD,
SIBLING, ANCESTOR

LIST NEXT, PREVIOUS, FIRST, LAST, INBETWEEN

CLIST NEXT, PREVIOUS, INBETWEEN

SET INSET

Tri-State Logical MAYBE

directly accessible or manipulable through the attribute (de Vries, 2006). Rice,
Roddick and de Vries (2006]) further extend the mesodata concept to accom-
modate attribute domains defined over multiple types. Their work identifies the
important distinction between mesodata techniques and object-oriented concepts,
in that the former introduces the idea of storing complex domain values in the
databases while the latter are concerned with complex attribute values. Earlier
discussion regarding mesodata concepts can be found in|de Vries| (2006), de Vries
and Roddick| (2004), de Vries et al.| (2004), de Vries and Roddick! (2007)) and Rice
et al. (2006]).

4.2.2 Key Components of Mesodata

As discussed by |de Vries| (2006), de Vries and Roddick| (2004) and |de Vries et al.
(2004), mesodata includes the following key components to facilitate the imple-

mentation of semantically-rich domains.

Mesodata layers. A mesodata layer contains domain structures such as graphs
and trees, including their values and inter-relationships and is able to accom-

modate domain variability by mapping between different representations.

Mesodata Types and Operators. Mesodata types are domain structures that

are typically in the form of complex data types with built-in operators for
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Table 4.2: Examples of mesodata types and the structure of source relations.
(adapted from |de Vries and Roddick| (2007)).

Mesodata Type Source Schema

GRAPH R (FROM, TO)

WGRAPH R (FROM, TO, WEIGHT)
DGRAPH R (FROM, TO)

DWGRAPH R (FROM, TO, WEIGHT)
TREE R (PARENT, CHILD)

WTREE R (PARENT, CHILD, WEIGHT)
LIST R (SEQUENCE, ITEM)

CLIST R (SEQUENCE, ITEM)

SET R (ITEM)

Tri-State Logical —

manipulation and comparison that can be used to develop mesodata do-
mains. presents examples of mesodata types with operators that
can be executed over domain structures. These operators extend the cur-
rently available SQL operators and enhance querying power. Having defined
a domain of an attribute over a mesodata type, these additional operators
become available according to the mesodata type selected. Mesodata types

are populated by values that are stored in source relations.

Source Relations. A source relation is used to hold the specific structural in-
formation for the domain. The structure of the source relation relies on the
mesodata type selected as shown in [Table 4.2] For example, the weighted
graph (WGRAPH) mesodata type presents a structure of the source relation
as R (FROM, TO, WEIGHT), where R is a name of a source relational schema
and has a composite key consisting of both attributes (denoted by under-

lining both FROM and TO attributes) as a primary key for the schema.

Mesodata domains. A mesodata domain is built by matching a mesodata type
with a base type and a source relational schema to hold the specific struc-
tural information for the domain. An example of the base type, such as
INTEGER or CHAR(12), could form a simple domain or it could in turn be-
come a mesodata domain based on a mesodata type, for example, a weighted

graph of integers or strings.
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Table 4.3: A relation zipcoderel (an example of a source relation for the mesodata
type weighted graph).

ZIPCODEREL

‘ Zipcodel | Zipcode2 | Weight ‘
5042 5042 0.0
5042 5050 0.1
5042 5043 0.1
5042 5047 0.1
5042 5051 0.2
5050 5051 0.1
5050 5043 0.15
5050 5047 0.15

4.2.3 Example Use of Mesodata

As discussed by de Vries and Roddickl (2007)), modelling data in traditional rela-
tional databases requires specifying attributes over a restricted set of data types.
In general, these modelling techniques capture the format of the data value but
do not capture information about the attributes domain or how a specific value

may be related to other values within that domain.

Consider the example of an attribute within a database that is used to record a
zip code. Basic data types of this attribute have standard collating sequences that
may be defined as CHAR(4). However, interpreting zip code to capture advance
semantics such as closeness requires a domain knowledge of the unit of measure
and its relationships to other values (de Vries and Roddick} 2007). For example,
the zip code Bedford Park 5042 is adjacent to zip codes 5043, 5047 and 5050

(refer to [Figure 4.6/(b), Page [L10).

The mesodata solution for the attribute Zipcode is to use the mesodata type
WGRAPH for defining the mesodata domains of zip code. The operators such as
NEXTTO, CLOSETO and EQUALTO are then available to operate over this domain
structure. To define such domains based on mesodata type WGRAPH, it also requires
the source relational schema that describes the specific structural information of
the weighted graph. For example, assume this source exists in a relation zipcoderel
, which has a composite key (Zipcodel and Zipcode2) as a primary key
for this relation. Thus, a mesodata type weighted graph and its source relational
schema can be used to create the mesodata domain for attribute Zipcode, that

can then be used to relate Zipcode to the mesodata domain as shown below:
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CREATE DOMAIN  LOCATIONS

AS wgraph

OF CHAR.(4)

OVER zipcoderel;
CREATE TABLE person (

Emp_ID CHAR(4) NOT NULL,

Name CHAR(30),

Zipcode LOCATIONS,

PRIMARY KEY ... );

To provide answers to questions such as Find all persons who live in suburbs

adjacent to zip code 5042, the following type of query can be used:

SELECT Name
FROM person
WHERE Zipcode NEXTTO ‘5042’;

This would return those persons recorded with any of zip codes adjacent to ‘5042,
which in this case are ‘5043’, ‘5047 and ‘5050’. In this case, NEXTTO is an operator
available to domains defined as WGRAPH. Note that the values of Zipcode that
result from this query exist within a weighted graph of LOCATIONS domain, not

in a relation person.

4.3 The Mesodata Entity-Relationship (MDER)
Model

Conceptual data modelling is typically carried out using graphical tools allowing
users to model enterprise data and their relationships in an intuitive way. The
Entity-Relationship Model (ER) (Chen, 1976) is a high-level conceptual data
model consisting of inter alia entity types, relationship types and attributes.
These basic components, visually represented by the Entity-Relationship dia-
gram, are used to view (and to reach some form of agreement on) the real world

as a construct of entity types and associations between entity types.

This thesis presents an extension to the ER model, termed the MesoData
Entity-Relationship (or MDER) model, which includes the concepts of mesodata
types, mesodata domains and the mesodata layer. Such concepts are modelled as
mesodata entity types. At the conceptual level, the focus is on the structure of the
data used in an organisation, the relationships between values and the constraints
imposed on their use. MDER also includes the idea of mesodata mappings and

introduces a total mesodata domain participation (TMDP) constraint. All of the
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Figure 4.3: Symbols of major components in the MDER model.

original ER concepts and symbols remain available together with the new concept
of mesodata entity type. Additionally, EER extensions are orthogonal to the
MDER extension and can also be included. shows symbols for the
major components in the MDER model comprising the basic ER constructs, the

new mesodata entity types, the mesodata mappings and the TMDP constraint.

Formally, there are three main criteria for considering the representation of
data models — data structures, integrity constraints and languages. The follow-

ing sections describe how these criteria apply to the MDER model.

4.3.1 MDER Data Structures

The MDER model includes all the modelling constructs and concepts of the
ER/EER models. In addition, it extends the attributes in the ER/EER model

with the support of mesodata domains.

The basic mesodata construct is a complex domain structure termed the meso-
data type, while the enumerated values, that can be taken from a simple data type
or another mesodata type, are termed the mesodata domain. These constructs
are modelled as mesodata entity types. In addition, mesodata includes map-
ping to convert a value from source relations to a domain value. This is modelled

as mesodata mappings.
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COUNTRIES
WGRAPH

Figure 4.4: A COUNTRIES mesodata entity type with WGRAPH mesodata type (as

per the example discussed in [Section 4.1J).

4.3.1.1 Mesodata Entity Types

A mesodata entity type is a complex-domain entity type that represents a meso-
data domain for an attribute. Each mesodata entity type has a name and a
mesodata type. For example, a COUNTRIES mesodata entity type may have the
name COUNTRIES and a weighted graph (WGRAPH) mesodata type. This WGRAPH
mesodata type has built-in operators such as NEXTTO and CLOSETO for manipu-
lating values provided in the graph structure. Conceptually, all mesodata is stored
in a mesodata layer (although in practice, they may be split between other system

files and user relations as appropriate).

Mesodata entity types in MDER are depicted as hexagons: the top section

holds the name of mesodata domain, the bottom section the mesodata type as

shown in [Figie 1.4

Mesodata Type. The mesodata type defines the domain structure and is typi-
cally a complex data structure (such as a graph, tree or list). It is also
likely to have associated operations (refer to EQUALTO in the example in
and NEXTTO in the example in [Section 4.2)). In general, the
range of mesodata types is fixed by the database implementation although
a variety of specialisations may be available (e.g. for graphs, users can
choose from weighted or unweighted, directed or undirected, etc.). It is also
possible to define a complex mesodata type in terms of another mesodata

type (a directed graph of circular lists for example).

The weighted graph mesodata type is constructed with built-in operators
(such as CLOSETO and EQUALTO) and stores relationships and paths between
nodes providing the metrics for proximity and adjacency. The weighted
arcs between two data values (nodes), with values from 0 to 1, represent the

degree of similarity. An example of weighted graph is shown in [Figure 4.5|

While an attribute’s type is normally a simple scalar type, the domain

from which the values are taken can have a complex internal structure (i.e.
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Figure 4.5: An example of a Suburb connectivity.

mesodata type) that is not only a collection of values but also characterises
the way in which these values are related. That is, a mesodata type consists
of a set of values which can be structured, for example, as a graph, a tree,

a list, etc., together with a set of operations (functions). The values are

provided in a source relation (Figure 4.6(a)).

Mesodata Domain. A domain is a set of values representing some property. In
most cases, the values that constitute a domain are implied through its data
type. Similarly, the values that constitute a mesodata domain are specified

by a mesodata type.

The mesodata domain is a set of atomic values taken from either a simple
domain or another mesodata domain. For example, a weighted graph of
characters refers to a weighted graph mesodata type being constructed from
a base type in which its component nodes are characters. An attribute
defined over such a domain would take an instance of an elementary value

that exists within the mesodata structure.

In the example in [Figure 4.6 the base type for the Suburb attribute would
remain unchanged (e.g. CHAR(25)) as would the data values. The Sub-
urb would take its value as an instance of a base type that exists within
a weighted graph mesodata type, where the intrinsic operations such as

CLOSETO are defined to operate over such specific domain structures.

shows an example in which the three of the five attributes of
person (namely Dept, Suburb and Salary) are defined over mesodata domains
NEWDEPTS and OLDDEPTS, LOCATIONS and SALARIES respectively (the second with
total mesodata domain participation). An attribute with more than one associ-

ated mesodata domain can take its value from any of the linked domains (which
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EmpID Name Dept Suburb Salary
5050 )
1242 David Leeds Engineering | Sturt 75,000 Bellevue 5051
15 Heights Black
2047 Michael Farrel Marketing Seaview Downs 66,500 504 ackwood
Darlington
3215 Lyn Ford Personal Blackwood 58,600 5047
Seaview
3320 Mia Larson Financial Bellevue Heights | 56,345 Downs
3976 Nadia Anderson | Accounting | Bedford Park 70,000 (b)
SUBURBREL i
Suburb1 Suburb?2 Distance
(©) )
Bellevue Heights Bedford Park 0.1
Bellevue Heights Eden Hills 0.1
Bellevue Heights Blackwood 0.15
Bedford Park Sturt 0.1
Bedford Park Clovelly Park 0.1
Bedford Park Mitchell Park 0.15
Bedford Park Darlington 0.15
Bedford Park Bedford Park 0.0

(@)

Figure 4.6: An example of Suburb attribute referencing a weighted graph meso-
data type (a) a source relation for the weighted graph mesodata type, (b) a
weighted graph mesodata type and (c) a person relation .

can be of use in dealing with changes to domain structure (cf.
Roddick] (2004} [2007)).

The definition of mesodata domain can be specified by three associated com-
ponents: (1) the mesodata type, (2) the simple (base) data type of an associated
attribute, and (3) the source schema describing a specific structure of the meso-
data type. These components can be explicitly declared to create a mesodata do-

main and to allow attribute specifications to refer to the mesodata domains (refer
to a transformation from the MDER schema to a relational schema in [Chapter §|).

4.3.1.2 Mesodata Mappings

A mesodata mapping between a mesodata entity type and an attribute defines

a set of mappings required to interpret a data value within a specific and well
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Figure 4.7: An MDER Example.

recognised concept. This includes mapping to convert a value from source rela-
tions to a domain value. Mesodata mapping, which is typically created and used
internally by the system, is specified to convert a value to its meaning. Built-in
mesodata mappings also allow regularly used mappings to be accommodated in
the DBMS to provide additional functionality.

Consistent with other EER extensions, the MDER diagrammatic notation for
mesodata mapping is represented as a circled m as demonstrated in Figures
and A mesodata mapping connecting an attribute to more than one meso-

data domain is shown by the mesodata mapping connected to attribute Dept in

igure 4.7}

4.3.2 MDER Integrity Constraints

A database schema is a formal and abstract definition of the semantics and con-
straints of the corresponding real-world system (Lukovic, Ristic and Mogin, [2003)).
The set of integrity constraints that arise from business rules are crucial to the

structure of a database schema in order to maintain data consistency.

Constraints are specified on database schema to reflect restrictions on data
values in the real-world. Constraints can be specified in various ways including
their specification in the schema of the data model via the DDL so that the
DBMS can automatically enforce them while others need to be checked within

application programs.

The MDER model includes all the contraints of the ER/EER models. In ad-
dition, it includes one new constraint — the total mesodata domain participation
or TMDP, requiring an attribute to take its value from one of the values recorded
in the mesodata domain. If these constraints are not imposed then an attribute
may take any value consistent with the attribute’s base domain. An attribute

that references a mesodata type can be defined to participate either totally or
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partially. The TMDP constraint specifies that every attribute value must corre-
spond to values that exist within the mesodata domain. If TMDP is not specified
the value must still adhere to the base type but may hold values not enumerated

in the domain.

In MDER diagrams, TMDP is shown as a double line connecting the partici-
pating attribute to the mesodata mapping as shown in Figures and

4.3.3 MDER Languages

Each relational DBMS provides a Data Definition Language (DDL) for defining
the conceptual and internal schemata, including their mappings, and a Data
Manipulation Language (DML) for manipulating and querying the data. As the
implementation of the mesodata was based on a relational database, the mesodata
language specified by |[de Vries (2006]) and de Vries et al.| (2004) was given as an

extension to SQL to define and manipulate the mesodata type.

The mesodata DDL (MDDL) extends SQL’s DDL commands (such as CREATE,
ALTER and DROP) to implement mesodata types. For instance, the CREATE DOMAIN
command was extended to allow for the specification of the complex domain
structure (the mesodata type) in the mesodata layer, and the CREATE TABLE
command was extended to allow attribute specifications to refer to the mesodata
domains. Similarly, the mesodata DML (MDML) extends SQL’s DML commands
to query records that are defined over the mesodata domains. For example, the
SELECT statement was extended to allow for the new mesodata operators which

are associated with the mesodata types.

4.4 The Mesodata Object Role Modelling (MD-
ORM) Model

Like the ER model, ORM cannot handle the semantics of complex attribute do-
mains. To capture such semantics, ORM must be extended to capture mesodata
domains and types. This thesis introduces an extension to ORM, termed the
Mesodata Object Role Modelling (or MDORM) which allows the mesodata con-
cepts to be modelled with ORM’s value types. It is assumed that the reader
already has a basic familiarity with ORM; a detailed discussion of database de-
sign using ORM approach can be found elsewhere (Nijssen and Halpin| [1989;
Halpin| 2001]).



CHAPTER 4. MESODATA IN CONCEPTUAL MODELLING 113

Symbol Meaning

- Mesodata value type MT
MT ) (where MT denotes mesodata type e.g.
g TREE, LIST, WTREE, GRAPH or WGRAPH)

Mesodata mandatory role constraint
{ MT o - (mesodata role r is mandatory for the
, population of O, specified as a black dot)

Figure 4.8: ORM Symbols Extension.

Compared with the top-down structured design methodology of the ER model,
ORM can be considered as a bottom-up approach since it builds up from atomic
objects in terms of elementary relationships. The ORM design method, some-
times known as a binary semantic model (Kent, 1984) and often referred to as
NIAM (Nijssen and Halpin, [1989; Verheijen and van Bekkum, [1982), is a fact-
oriented approach for modelling information at a conceptual level. It was deve-
loped in the early 1970s based on the binary approach (Senko, (1975, [1976)) and is
well established as a conceptual modelling tool for relational databases. With its
emphasis on fact types, ORM is also called fact-oriented modelling (Nijssen and
Halpin), |1989).

As discussed by Halpin! (1998)) and [Halpin and Morgan! (2008)), ORM differs
from both ER and UML, in that it makes no explicit use of attributes as a base
construct but instead uses the relationship type to express all fact types. For
example, instead of using CountryOfBirth as an attribute of person, ORM uses
the relationship type Person was born in Country. This attribute-free approach
leads to stable semantics in conceptual model and conceptual queries (attributes
may evolve into entities or relationships). For example, if it is decided to record
the population of a country, then CountryOfBirth needs to be reformulated as
a relationship. To do this in ORM, the country type is simply declared to be
independent. The object type country may be populated by a reference object

that contains those country codes of interest.

As an extension of ORM, MDORM supports all the current ORM concepts and
symbols together with the new concepts of mesodata value type and mesodata
mandatory role constraint. |Figure 4.8 shows the graphical notations for the

additional constructs.
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Figure 4.9: Example of a Suburb where the suburb names have the WGRAPH
structure and are restricted by the mesodata mandatory role constraint.

{ WGRAPH

4.4.1 MDORM Data Structures

MDORM includes all the modelling contructs and concepts of ORM. In addition, it
extends value types in ORM with mesodata types. The idea behind the MDORM
approach is to provide a seamless extension to the ORM model. Starting with the
basic ORM model, a mesodata type is added to the value type, termed a mesodata
value type. A mesodata value type is a value type whose values are associated
with a mesodata type. This is indicated by placing a MT (mesodata type) in a
dotted ellipse (refer . The MT can be labelled as, for example, TREE,
GRAPH or WGRAPH that represents a mesodata type.

Each mesodata value type is annotated as a name of mesodata type in a
dotted ellipse. |[Figure 4.9| expresses a relationship between a suburb entity type
and the WGRAPH value type. When verbalising information from this example as

elementary facts, the elementary sentences are stated as follows:
—Employee with employeeNr ‘3320" lives in the Suburb.

—Suburb with suburbname ‘Bellevue Heights’ has structure as WGRAPH.

4.4.2 MDORM Integrity Constraints

ORM has a powerful and extensive graphical notation for representing con-
straints. Several researchers have addressed the strengths of this model in terms
of a rich set of integrity constraints (Halpin, |2001}[2004; Halpin and Bloeschl,[1999;
Laender and Flynn, |1993; |Song and Forbes, 1991)). In practice there are usually
several other kinds of constraints that need to be considered since business rules

representing a certain aspect of a business domain or policy may change regularly.

MDORM includes all the constraints of ORM. Additionally, it proposes a new
constraint applicable to mesodata domains. Similar to the TMDP constraint
as discussed in [Section 4.3] mesodata modelling requires a constraint, termed
the Mesodata Mandatory Role (MMR) constraint, to indicate that the values of

the object type must be taken from one of the values recorded in the mesodata
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Figure 4.10: MDER diagram for an example INVENTORY database.

domain. This is specified as a black dot on the entity type that connects to the
roles of mesodata reference types. The mesodata reference types are relationships
between entity types and the mesodata value types. This constraint, as shown
in declares that every instance in the population of the role’s suburb
involving the WGRAPH must play that role.

4.4.3 MDORM Languages

The first implementation of mesodata (de Vries, 2006)) was based on the relational
model (Codd}, 1970} 1979), which is the most widely implemented data model in
current commercial databases. Due to this popularity, this thesis continues this

approach and uses SQL in providing support for languages in the MDORM model.

The use of the language support for MDORM is demonstrated in the transfor-
mation of an MDORM schema into a relational schema as discussed in [Chapter §|
In particular, examples of the use of Mesodata DDL (MDDL) is demonstrated in

the process associated with specifying schema definitions in that chapter.
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4.5 Example MDER and MDORM Schemata

The motivation behind MDER and MDORM is to provide easy-to-use constructs
with which to capture the semantics of an attribute’s domain while keeping the
graphical representation simple. Thus, the number of additional elements re-
quired is kept to a minimum and should be easy to learn and use. Note that the
inclusion of mesodata may also have the effect of simplifying a conceptual model
by replacing relationships with reference entities. For example, a person entity
type linked with a relationship type of was_born_in to a country entity type (as
described earlier in could be more appropriately described using an
enumerated list for the countries mesodata domain. In practice, ER and ORM

diagrams which include reference/lookup file entities are not uncommon.

As an example database application, consider the INVENTORY schema shown
in Figures and [4.11], based on the ER model and ORM approach respectively,
which keeps track of products, orders, suppliers and customers. Typically dis-
cussions between a user and the analyst/modeller often contain examples of the
queries that an organisation wishes to be able to execute over their data. Consider

the following queries, none of which is particularly unusual:

List all orders for a chair or lounge (of any description) which is some shade of

green,

List all products held which are similar, but not identical, in colour to the stan-

dard stock colours,
List all customers who liwve close to the Norwood store,
List all customers who liwve close to their suppliers, and

List all customers whose area code does not correspond to their zip code.

Each of these queries would require knowledge of the domain. Thus, the
attributes ProdType, Colour, Zipcode and AreaCode in the MDER schema and
the mesodata value types in the MDORM schema are identified as requiring a

complex domain so as to assist with providing such answers.

4.6 Summary

This chapter shows that capturing semantics of complex domain structures has

become increasingly important in dealing with emerging information demands
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Figure 4.11: MDORM schema for an example INVENTORY database.

and that these semantics should be explicitly represented in conceptual schemata.
Mesodata can be a very powerful mechanism to map such semantics directly into

SQL.

A mechanism for accommodating mesodata into two conceptual modelling
methodologies has been presented — the Mesodata Entity-Relationship (MDER)
model and Mesodata Object Role Modelling (MDORM). The proposed constructs
are simple and easy to use without introducing any conflict with current methods
and mesodata modelling in ER and ORM and can be easily learned by database
designers. Incorporating mesodata domains can also enhance the power of a
DBMS’s query language by adding advanced semantic concepts to comparison

operators used to retrieve information from databases.

While the focus of this research was on the Entity-Relationship model and
Object Role Modelling, this thesis explores the wider modelling issues relating to
mesodata as a conceptual tool. As well as investigating the accommodation of the
mesodata in other modelling approaches (such as UML) this thesis suggests that
the complexity of (and some of the restrictions relating to) current ontologies can
be reduced. In some worked examples of larger ER models this thesis has found
that either the ER model can be simplified using mesodata (by removing purely

referential entities) and/or the semantics of the model can be enhanced through
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the inclusion of additional constructs that can be assigned given meanings into
the model.

In conjunction with this research that incorporates mesodata into two different
modelling approaches, this thesis has found that the ORM approach (attribute-
free approach) can be naturally extended and annotated with mesodata concepts
and constraints more so than attribute-based modelling approaches such as ER
and UML. As this research aim focuses on the broad issues relating to conceptual
modelling, other challenges still remain in other modelling areas such as with the

methodologies used for data warehousing.

The value of the suggested models that have been introduced in this chapter
is ultimately measured in the practicability of their schemata that can be ma-
nipulated by a relational database system (refer to . This chapter has
served to address Objective 2 of the thesis, namely to extend conceptual data
models to enhance expressiveness. The practicability of these models is covered
under Objective 4 that describes how these models can be mapped to the par-

ticular implementation platform to show the validity of the suggested conceptual

models, which is discussed in [Chapter 8|



Chapter 5

Ontology in Conceptual
Modelling

This thesis chapter serves to provide some of the answers to support Objectives
1 and 2 of the thesis as stated in Chapter 1 (particularly Section 1.5.1) and as
indicated in [Figure 1.3 The focus of this chapter is in exploring the concep-
tual modelling extensions to incorporate the concept of ontologies and how this
concept can be used to increase the expressiveness of conceptual modelling ap-
proaches. With the increasing complexity of applications and user needs, recent
research has shifted from a data information level to a human semantic level in-
teraction. Research has begun to address the increasing use and development
of ontologies in various applications, strongly motivated by the semantic web
initiative. However, existing conceptual models are not rich enough to incorpo-
rate ontologies in one single conceptual schema. To improve this situation, it
is necessary to refine modelling formalisms and make them more expressive and
semantically sound. It is argued that conceptual modelling methodologies would
be semantically richer if they were able to express the semantics of a domain that
arises in concrete application scenarios. This chapter investigates the incorpora-
tion of ontologies into three conceptual modelling methodologies, presenting the
Ontological Entity-Relationship (OntoER) model, Ontological Object Role Mo-
delling (OntoORM) and the Ontological Unified Modelling Language (OntoUML)
Class Diagram. An extended conceptual framework for modelling ontologies is

also discussed.

The structure of this chapter is as follows. provides an overview to
this topic. introduces an insight into ontologies. contains

further discussion on the concept of ontological class hierarchy modelling. Sec-

119
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tions [5.4] [5.5] and [5.6] show how ontologies can be accommodated into these con-
ceptual modelling approaches — the ER, ORM and UML class diagram, respec-
tively. presents examples of OntoER/OntoORM/OntoUML schemata,

followed by a summary in [Section 5.8|

5.1 Introduction

Ontologies have been applied in a multitude of areas in computer science. The
first significant growth of interest in the subject appeared in the mid 1990s which
was motivated by the need to create principled representations of domain know-
ledge for the knowledge sharing and reuse community in the field of artificial
intelligence (AI) (Guizzardi, 2006). A major challenge with ontologies is how to

access, store and manage them. This research direction has included:

e supporting ontology-based semantic matching, querying and referential con-
straints in RDBMS (Das, Chong, FEadon and Srinivasan), 2004; Chong, Das,
Eadon and Srinivasan, 2006; Necip and Freytag, [2003) leading to recent
advances in ontology management in DBMSs such as those introduced by

Oracle,

e implementing ontology systems or tools that support ontology-based ap-
plications (Corcho, Fernandez-Lopez and Goémez-Pérez, 2003; Cui and
O’Brienl, 2000; Dameron, Noy, Knublauch and Musen, 2004; |[Valo, Hyvonen
and Komulainen, 2005), such as Protégé, which is an ontology and
knowledge-base editor that allows the user to construct a domain ontology,

customise data entry forms and enter data (Protégé, 2008]).

Another challenge driving the database community is to create better data
models. These research projects have attempted to use conceptual data modelling
in supporting ontologies (Jarrar et al., 2003; [Spaccapietra et al., 2004). For exam-
ple, this has included research into methodologies for supporting database design
creation and evaluation that makes use of domain-specific knowledge about an
application stored in the form of domain ontologies (Sugumaran and Storey}, 2006],
2002). In a further example, a theory of ontology was promoted that can be used
to clarify the meaning of relationship constructs that are widely used to undertake

conceptual modelling (Wand et al 1999).

However, the conceptual modelling for ontologies and its transformation into

relational database schema, has not been adequately investigated. This thesis
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supports the argument that introducing ontologies into conceptual modelling can
enhance the semantics of the model. This thesis suggests extensions to high-
level conceptual models to represent the relationship between ontologies and the

underlying conceptual schema.

With the increasing complexity of actual application scenarios and user needs,
there is a requirement to shift from the data and information level to the hu-
man semantic level interaction. Consequently, semantic representation becomes
important and to maximise the level of semantics requires that these representa-
tions become increasingly explicit. Humans learn to deal with the ambiguity of
language by understanding the context in which terms are used. Data rich sys-
tems can emulate this by referencing data through structures such as ontologies

that represent terms and their interrelationships (Das et al., [2004)).

The main deficiency with traditional conceptual modelling practice is that
ontologies are not semantically represented. This problem requires investigation
to refine modelling formalisms to allow for the integration of ontologies into the
conceptual schema. This thesis argues that conceptual modelling methodologies
must be expanded to facilitate ontologies, including the reuse of existing ontolo-
gies, to enrich the semantic expressiveness of the data model. In addition, this
approach caters for the ability to query the data in the context of its associated

ontologies in the same way as querying simple relational data.

Consider a particular example of a medical database application that requires
ontologies, specifically the knowledge associated with a hierarchical domain. For
a simple application of a patient’s visit to a doctor, a relational table with a Di-
agnosis attribute as shown in (a) can describe the type of diagnosis of
a patie