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Abstract 

Brain connectivity is gaining significant attention at present given its scope to unveil brain 

mechanisms and functions. Sleep, where brain undergoes cycles of distinct behaviours, is one of 

the complexities in neuroscience where several brain processes occur together. EEG is a 

commonly used modality in measuring brain electrophysiological signals and is known for a good 

temporal resolution. Near Infrared Spectroscopy (NIRS), however, is an emerging modality in 

neuroscience providing a good deal of information about cerebral hemodynamic with better spatial 

resolution than EEG. A combination of these two modalities can help reveal underlying 

neurophysiological and hemodynamic activities in complex brain behaviour such as sleep.  

The present study aims to measure brain connectivity during whole night sleep based on combined 

hemodynamic and electrophysiological signals and see if the measure can aid in differentiating 

sleep stages. In doing so, whole night sleep and NIRS data were obtained form 5 healthy volunteers 

and two common measures of connectivity: transfer entropy and cross-correlation were applied. 

The focus of the study is particularly on effective connectivity, in terms of prefrontal 

hemodynamic, and EEG covering frontal, central and occipital brain regions. Statistical validity 

and reproducibility of the findings were analysed with ANOVA and permutation test. 

Connectivity measures revealed causal influence to be directed from prefrontal to posterior brain 

regions. Also, the highest brain connectivity was found during NREM1 sleep with a fair decrease 

in the measure as sleep progresses to further stages. Significant difference in connectivity was 

found in the prefrontal region between wake and NREM1, NMREM2 and REM sleep stages. 

Hemodynamic changes during the different sleep stages could be better understood with these 

findings. 



 

Our findings suggest that brain connectivity measure using NIRS and EEG carry the potential to 

aid in sleep staging along with information about hemodynamic changes throughout sleep that can 

help better understand the regulation and functions of sleep. Nevertheless, further research with 

similar approaches, could help accurately estimate sleep stage and understand full picture of brain 

mechanisms for sleep regulation. 

Keywords: connectivity, sleep stages, hemodynamic, EEG, NIRS, oxyhemoglobin, de-

oxyhemoglobin      

  



 

List of abbreviations 

AASM: American Academy of Sleep Medicine 

EEG: Electroencephalography 

NIRS: Near Infrared Spectroscopy  

PSG: Polysomnography 

ANOVA: Analysis of variance 

HBO: Oxyhemoglobin 

HHB: De-oxyhemoglobin 

EOG: Electrooculogram 

EMG: Electromyogram 

MVAR: Multivariate autoregressive  

DTF: Directed Transfer Function  

PDC: Partial directed coherence 

GC: Granger causality  

PLV: Phase locking value  

KL: Kullback–Leibler 

EMA: Exponential moving average 

CBI: Correlation based index 



 

Table of contents 

 
Declaration............................................................................................................................... i 

Acknowledgement ....................................................................................................................ii 

Abstract .................................................................................................................................. iii 

List of abbreviations ................................................................................................................ v 

Table of contents .....................................................................................................................vi 

List of figures ..........................................................................................................................ix 

List of tables............................................................................................................................xi 

Chapter 1 : Introduction and objectives  .................................................................................... 1 

1.1 Introduction ............................................................................................................... 1 

1.2 Objectives...................................................................................................................... 3 

1.2.1 General objectives  ................................................................................................... 3 

1.2.2 Specific objectives ................................................................................................... 3 

Chapter 2 : Literature review.................................................................................................... 4 

2.1 Brain connectivity .......................................................................................................... 4 

2.2 Brain connectivity measures ........................................................................................... 7 

2.2.1 Classical linear methods........................................................................................... 7 

2.2.2 Model based methods .............................................................................................. 8 

2.2.3 Phase based method ................................................................................................10 

2.2.4 Information theory-based method ............................................................................11 

2.3 Modalities for characterizing brain activity ....................................................................16 

2.3.1 Electroencephalography (EEG) ...............................................................................17 

2.3.2 Near-infrared spectroscopy (NIRS) .........................................................................18 

2.4 Sleep ............................................................................................................................25 

2.4.1 Sleep stages ............................................................................................................25 

2.4.2 Sleep architecture  ...................................................................................................29 

2.4.3 Sleep disorders ..................................................................................................29 

2.4.4 Sleep study .............................................................................................................30 

2.5 Basis for combined use of EEG and NIRS for connectivity measure during sleep ............32 

Chapter 3 : Methodologies ......................................................................................................35 

3.1 Ethics ...........................................................................................................................35 



 

3.2 Participants...............................................................................................................35 

3.3 Protocol for data acquisition ......................................................................................35 

3.3.1 PSG data acquisition...............................................................................................35 

3.3.2 NIRS data acquisition .............................................................................................39 

3.4 Data pre-processing.......................................................................................................40 

3.4.1 Sleep data ...............................................................................................................40 

3.3.2 NIRS data..........................................................................................................40 

3.4.2 EEG data ...........................................................................................................45 

3.5 Data synchronisation and Segmentation.....................................................................45 

3.6 Connectivity measure................................................................................................46 

3.7 Experimental and Statistical analysis  .........................................................................47 

3.7.1 ANOVA and post hoc t-test................................................................................47 

3.7.2 Permutation test of independence ............................................................................48 

3.7.3 Experiments ...........................................................................................................49 

Chapter 4 : Connectivity between EEG and NIRS channels ......................................................50 

4.1 Connectivity between EEG and oxyhemoglobin (HBO) channels  ...............................50 

4.1.1 Measuring transfer entropy from HBO channels to EEG channels .......................50 

4.1.2 Measuring transfer entropy from EEG channels to HBO channels .......................53 

4.1.3 Connectivity during wake stage compared to NREM1, NREM2, NREM3 and REM 

sleep 55 

4.1.4 Connectivity during NREM1 stage compared to NREM2, NREM3 and REM sleep

 58 

4.1.5 Connectivity during NREM2 stage compared to NREM3 and REM ....................61 

4.1.6 Connectivity during NREM3 compared to REM .................................................62 

4.1.7 Conclusion .............................................................................................................63 

4.2 Connectivity between EEG and de-oxyhemoglobin (HHB) channels  ..........................63 

4.2.1 Measuring transfer entropy from HHB channels to EEG channels .......................63 

4.2.2 Measuring transfer entropy from EEG channels to HHB channels .......................66 

4.2.3 Connectivity during wake stage compared to NREM1, NREM2, NREM3 and REM 

sleep 68 

4.2.4 Connectivity during NREM1 stage compared to NREM2, NREM3 and REM sleep

 70 

4.2.5 Connectivity during NREM2 stage compared to NREM3 and REM ....................71 



 

4.2.6 Connectivity during NREM3 compared to REM .................................................72 

4.3 Channel specific causal influence  ..................................................................................72 

4.3 Cross-correlation between EEG and NIRS channels ...................................................75 

4.4 Conclusion....................................................................................................................76 

Chapter 5 : Connectivity between NIRS channels  ....................................................................77 

5.1 Cross-correlation between oxyhemoglobin (HBO) channels .......................................77 

5.2 Cross-correlation between de-oxyhemoglobin (HHB) channels  ..................................80 

5.3 Cross-correlation between HBO and HHB .................................................................83 

5.4 Discussion ....................................................................................................................86 

Chapter 6 : Conclusion ...........................................................................................................88 

Chapter 7 : Limitations and recommendations .........................................................................89 

Chapter 8 : Author’s Contribution ...........................................................................................90 

Chapter 9 : References ............................................................................................................91 

Appendix ............................................................................................................................. 106 

 

 

 

  



 

List of figures 

Figure 1: Brain networks derived from connectivity datasets [20] .............................................. 6 

Figure 2: 10-20 Electrode placement system with 21 channels [59]  ..........................................18 

Figure 3: Working principle of NIRS ......................................................................................19 

Figure 4: Absorption spectra of oxy (shown as HbO2) and de-oxyhemoglobin (shown as HbR) in 

near infrared region [61] .........................................................................................................20 

Figure 5: Portalite showing its receiver and transmitters, (b) Placement of Portalite on forehead for 

data collection, (c) Channels, optodes and optode distance for the Portalite [63].  ......................22 

Figure 6: Illustration of sleep stages in a sleep cycle. The cycle needs no to be exactly as shown 

here as a person may wake up before REM or may never enter REM sleep. ..............................26 

Figure 7: Characteristic EEG waveforms during different sleep stages [72]  ..............................28 

Figure 8: Sleep architecture of a normal person [72]  ................................................................29 

Figure 9: EEG electrode positions: Blue colour indicates frontal (F3 and F4), central (C3 and C4), 

and occipital (O1 and O2), electrodes, grey colour shows reference (M1 and M2), and black colour 

shows ground (Cz). .................................................................................................................36 

Figure 10: Electrodes and sensors on body and face [76] ..........................................................38 

Figure 11: Portalite probe position ..........................................................................................39 

Figure 12: Raw oxyhemoglobin (HBO) and de-oxyhemoglobin (HHB) signal ..........................41 

Figure 13: NIRS oxy-haemoglobin (HBO) signal after EMA filtering ......................................42 

Figure 14:  NIRS oxy-haemoglobin (HBO) signal after EMA + threshold filtering....................43 

Figure 15:  NIRS oxy-haemoglobin (HBO) signal after EMA + threshold + CBI filtering .........44 

Figure 16: Clean oxyhemoglobin (HBO) and de-oxyhemoglobin (HHB) signal after filtration and 

signal improvement ................................................................................................................44 

Figure 17: Anti-correlated HBO and HHB signals after CBI signal improvement ......................45 

Figure 18: Connectivity matrices for transfer entropy from HBO to EEG channels  ...................51 

Figure 19: ANOVA results for transfer entropy measure from HBO to EEG channels ...............52 

Figure 20: Connectivity matrices for Transfer entropy measure from EEG to HBO channels .....53 

Figure 21: ANOVA results for transfer entropy measure from EEG to HBO channels ...............54 

Figure 22:   Connectivity during wake stage compared to NREM1, NREM2, NREM3 and REM 

sleep ......................................................................................................................................56 

Figure 23: Connectivity during NREM1 stage compared to NREM2, NREM3 and REM ..........58 

Figure 24: Connectivity during NREM2 stage compared to NREM3 and REM.........................61 

Figure 25: Connectivity during NREM3 compared to REM .....................................................62 

Figure 26: Connectivity matrices for transfer entropy from HHB to EEG channels during different 

sleep stages. ...........................................................................................................................64 

Figure 27: ANOVA results for transfer entropy from HHB to EEG channels during different sleep 

stages .....................................................................................................................................65 

Figure 28: Connectivity matrices for transfer entropy form EEG to HHB channels  ...................66 

Figure 29: ANOVA results for transfer entropy from EEG to HHB channels  ............................67 

Figure 30: Connectivity derived from HHB during wake compared to NREM1, NREM2, NREM3 

and REM................................................................................................................................68 



 

Figure 31: Connectivity derived from HHB during NREM1 stage compared to NREM2, NREM3 

and REM................................................................................................................................70 

Figure 32: Connectivity derived from HHB during NREM2 stage compared to NREM3 and REM

 ..............................................................................................................................................71 

Figure 33: Connectivity derived from HHB during NREM3 stage compared to and REM .........72 

Figure 34: Connectivity matrices for cross correlation among HBO channels  ...........................78 

Figure 35: ANOVA results for cross correlation among HBO channels in different sleep stages 79 

Figure 36: Multiple comparison test showing connectivity wake stage to be significantly different 

from NREM1, NREM2, REM.................................................................................................80 

Figure 37: Connectivity matrices for cross correlation among HHB channels during different sleep 

stages .....................................................................................................................................81 

Figure 38: ANOVA results for cross-correlation among HHB channels in different sleep stages

 ..............................................................................................................................................82 

Figure 39: Multiple comparison test for cross correlation between HHB channels .....................83 

Figure 40: Connectivity matrices for cross correlation between HBO and HHB channels during 

different sleep stages ..............................................................................................................84 

Figure 41: ANOVA results for cross-correlation between HBO and HHB channels during different 

sleep stages ............................................................................................................................85 

Figure 42: Multiple comparison test for cross correlation between HBO and HHB channels  .....86 

 

 

 

 

  



 

List of tables 
 

Table 1: Location of electrodes and sensors on body and face [71] ...........................................30 

Table 2: Location of head electrodes for EEG [59] ...................................................................37 

Table 4: Directed causality from NIRS channels to EEG channels ............................................72 

Table 5: Directed causality from EEG channels to NIRS channels............................................74 



1 
 

Chapter 1 : Introduction and objectives 

1.1 Introduction  

Humans spend almost a third of their life sleeping which has its role in reenergising body cells, 

clearing wastes, developing memory and cognition, as well as in regulating mood and hunger [1]. 

As complex as it is, several mysteries related to regulation and functions of sleep remain 

unexplored yet. Moreover, the prevalence and increasing incidences of sleep disorders [2] require 

the physiology and pathophysiology of sleep to be well understood. Sleep staging and architecture 

are two primary tools that help understand the phenomenon of sleep, and polysomnography (PSG) 

is the most commonly used technique at present to classify sleep stages and diagnose sleep 

disorders [3]. PSG, however, is a tedious tool requiring time and effort and sleep scoring is done 

manually by a person. Moreover, it doesn’t provide information about brain mechanisms during 

sleep. Hence, researches have been directed towards finding alternative to PSG in the form of 

automatic sleep scoring schemes as well as measures that could more precisely estimate integration 

of brain functions throughout sleep [4, 5]. 

Brain connectivity is a technique that establishes links between brain areas,  that could be 

structurally connected or located distant apart. Measures of brain connectivity provide quantified 

relation between such brain regions and help identify the patterns of communication, signal or 

information flow and functional integration during complexes processes [6]. 

Activities in brain are characteristically rendered by the electrophysiological signal arising from 

neuronal conductance while hemodynamic signals related to blood flow, oxygenation and 

physiological signals arising from other body parts such as respiration and heart rate, imply direct 

or indirect influences on brain activities [7]. At present, most of the connectivity measures are used 
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in combination with electrophysiological signals [8]. We hypothesize that connectivity measures 

that include two or more of these signals could infer wholesome knowledge regarding cerebral 

coordination as well as provide an advantage of extracting information about dual parameters 

during complex processes like sleep. Hence, we choose to apply connectivity measures to two 

kinds of brain signals: EEG signal, which is the brain electrical activity measured form the scalp, 

and NIRS signal, which is the measure of hemodynamic signals in brain cortex.  

 Sole application of EEG cannot infer hemodynamic changes while that of single NIRS device 

alone cannot infer causal connections because of the close-ended nature of NIRS channels, i.e., 

small distance between receiver and transmitter. Hence, this research aims at tracing the 

connectivity between EEG channels and NIRS channels distributed in the frontal, central, and 

occipital brain regions.  As such, connectivity during different stages of sleep will be analysed and 

in a broader sense, the research will examine if sleep staging can be simplified using NIRS or if it 

can act as a supplementary to EEG in PSG for sleep staging.  

Various measures of connectivity have been published so far with their own advantages and 

disadvantages [9]. Since the research aims to find out patterns of information flow and connections 

in brain during different sleep stages involving two different modalities, we choose two measures 

for our research: transfer entropy and cross-correlation. Cross-correlation measure can find out the 

functional connectivity [10] while transfer entropy can also detect causal influences [11]. Hence, 

these measures when applied to EEG and NIRS signals during different sleep stages could render 

important information about functional and causal relationships in brain. These relationships can 

be expected to vary throughout sleep given the scoring of sleep into different states each with its 

peculiar characteristics.   
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The report presents the research work carried out with sleep, EEG and NIRS signal in relation to 

brain connectivity, and is organised in to 5 important sections. The 1st part where we currently are, 

provides with the research, objectives, overview and executive summary. The second part deals 

with relevant literature, including necessary background knowledge on brain connectivity, 

connectivity measures, sleep and previous works in the related field. The 3rd part is the 

methodologies which serially describes the flow of this project run from sourcing the data to 

application of connectivity measures and data analysis. The 4th and 5th part of this report present 

the results and discussions over them.  

1.2 Objectives 

1.2.1 General objectives 

The major direction of this research work is to evaluate brain connectivity during the different 

sleep stages with the help of NIRS and EEG signal. If there exists substantial difference in 

connectivity across different stages, this fact could be used to develop a system for automatic sleep 

staging. The hypothesis is that the neuronal activities during sleep are accompanied by 

hemodynamic changes so that a measure of functional relation and direction of causal influence 

between these processes helps to better understand the regulation of sleep.  

1.2.2 Specific objectives 

1. To quantify connectivity as a measure of transfer entropy between EEG signal and 

oxyhemoglobin (HBO), and de-oxyhemoglobin (HHB) signal  

2. To measure cross-correlation between NIRS signal in the prefrontal region 

3. To assess changes in hemodynamic activities in the prefrontal region during different sleep 

stages. 
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Chapter 2 : Literature review 

2.1 Brain connectivity 

Brain delivers signals required to sustain life and perform functions ranging from simple senso-

motor to complex cognitive tasks. It does so via a complex network of regions that may be linked 

in structure, or spatially remote, but connected to one other in a particular manner. The relation 

between such brain regions is known as brain connectivity [12]. Brain connectivity is an essential 

tool in assessing the brain processes, the flow of information within brain, associated neuronal 

areas, and changed conditions during pathology. 

Connectivity can be established via ways of anatomical links, statistical dependencies, or via 

causal relationships. This gives rise to three different modes of connectivity as introduced by 

Friston [13]. 

2.1.1 Anatomical connectivity 

Anatomical connectivity arises due to physical or structural connections among brain regions. 

Microscale anatomical connectivity comprise of neuronal synapses and their strengths, which at 

present, are mostly traced by means of invasive studies. At higher scale, anatomical connectivity 

would refer to fibre-linked, widely distributed brain regions, as understood from various imaging 

techniques [14]. White matter tracts in cerebral cortex are the predominant anatomical connections 

on brain [15]. 

2.1.2 Functional connectivity 

Functional connectivity refers to the underlying synchrony between two brain regions without 

taking into account the cause of connection or casual influence of one region over the other [16]. 

It measures synchrony among different brain regions that may be spatially segregated. It accounts 
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to the activation or deactivation of functionally integrated brain areas to process and execute a 

common function.  

2.1.3 Effective connectivity 

Definition by Norbert Wiener [17] suggests effective connectivity to exist from time series X to Y 

if the future value of Y can be better predicted by knowing the past values of X rather than past 

values of Y alone. It thus considers the influence one brain region has on the other when executing 

a function and that may be direct or indirect [18]. Moreover, the influence of one brain region may 

call for activation or deactivation of another brain region in order to execute a task. Thus, effective 

connectivity is a notion of directed causal influence and is asymmetric. For instance, a signal 

released at one part of cerebral cortex may trigger or deactivate signal release at another brain 

region.  

The relation between the different types of connectivity is interesting. The anatomically attached 

brain regions might not have any functional relation while two distant regions may be integrated 

functionally and causally.  

2.1.4 Brain networks 

Brain networks are the mathematical illustrations of connections among different brain regions, 

normally deployed in the form of nodes connected by links. The nodes ideally represent regions 

of connections while the links are the modes of connection, i.e., structural, or functional or causal 

connections. Thus, networks pictorially dictate brain connectivity [19].  

The links in a brain network denote different properties based on their type. For instance, binary 

links are the ones which give information about existence of any connection. Weighted links give 

additional information about the strength of such connections in terms of density, size or 
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correlation. Another form of link is the directed or undirected form.  In representing anatomical 

and effective connectivity, directed links are often used as they can trace the direction of 

connection among the nodes [20].  

The figure below shows the brain network derived from structural, functional and effective 

connectivity datasets. Structural connectivity datasets are obtained from tract tracing and diffusion/ 

structural MRI, functional datasets from fMRI, EEG and MEG while effective connectivity 

datasets are derived from causal relations in functional connectivity data. Functional networks are 

normally undirected as the dataset contains information about functionally connected brain regions 

without considering the degree of influence, while effective brain networks provide directional 

information with regards to the influence one region has on the other. Anatomical connectivity, 

however, could result directed or undirected networks restating the fact that anatomical 

connectivity can be persistent in micro or macro level throughout the brain [19, 20].  

 

 

Figure 1: Brain networks derived from connectivity datasets [20] 
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2.2 Brain connectivity measures 

Brain connectivity can be quantified using mathematical relations and models. At present, with the 

growing interest towards understanding brain processes, numerous brain connectivity measures 

have been published [9]. These measures of connectivity can be categorized based on whether they 

measure functional or effective connectivity, based on their method they apply such as linear or 

non-linear analysis, model or model free analysis, and time or frequency domain analysis. This 

section details commonly known connectivity measures based on four different methods. 

2.2.1 Classical linear methods 

2.2.1.1 Cross-correlation  

Cross-correlation is a signal processing tool which identifies how two signals are identical in terms 

of relative displacement [21]. The cross-correlation between two linear time series: x(n) with its 

average 𝑥̅ and standard deviation 𝜎𝑥 ; and y(n) with mean  𝑦 and standard deviation 𝜎𝑦, each of 

length N is given by: 

 Cor = 
1

𝑁
∑

1

 𝜎𝑥𝜎𝑦, 
(𝑥(𝑛) −𝑁

𝑛=1  𝑥̅)(𝑦(𝑛) − 𝑦) 2-1 

Cross-correlation is normally used to analyse time series signals and their synchronization as it 

cannot infer causal relations [22]. Its use has been profound in studying resting state as well as 

task-based brain conditions and functional connectivity [23, 24]. Its value is between 0 and 1 where 

0 shows non-existence of synchrony and 1 shows maximal functional relation between the two 

signals under evaluation.  
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2.1.2. Coherence  

Coherence refers to the statistical derivation of relation accompanying two linear signals in the 

frequency domain. It is also called magnitude-squared coherence. Unlike cross correlation, this 

measure can estimate causal relation between signals if they are characterised by a linear transfer 

function. For two signals x(t) and y(t), the coherence is given as [25]:  

 
Cxy(f)=

|𝐺𝑥𝑦(𝑓)|2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
 

1-2 

Where, 

Gxy is cross-spectrum between the two signals, 

Gxx the x(t) auto-spectrum, 

Gyy the y(t) auto spectrum. 

2.2.2 Model based methods 

2.2.2.1 Granger causality (GC) 

Wiener’s definition of effective connectivity [6] was formalized for mathematical implementation 

by Granger by applying linear regression models. Granger suggested that reduction in the variance 

of prediction error in an autoregressive model for a time series Y by including the past values of 

time series X rather than just using past values of Y indicates the existence of effective connectivity 

from series X to Y [26].  

The bivariate auto regressive model representation is [26]:  

 X(t)= ∑ 𝐴
𝑝
𝑗=1 11

(j)X(t-j) +  ∑ 𝐴
𝑝
𝑗=1 12

(j) Y(t-j) + 𝑒1(t) 2-2 
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  Y(t)= ∑ 𝐴
𝑝
𝑗=1 22

(j) Y(t-j) +  ∑ 𝐴
𝑝
𝑗=1 21

(j) X(t-j) + 𝑒2(t) 2-3 

Where e(t) is the prediction error.  

The connectivity between these series can then be measured by incorporating the variation in 

prediction error. For instance, in signal Y, if variance in e2 (t2) is less than that in e2 (t1) after 

incorporating signal X in the prediction, the signal X has casual influence on Y and vice-versa.  

Connectivity measures using GC have been carried in extensive areas including resting state brain, 

[27], tasks requiring cognition and perception, [28] hemodynamic convolution, [29] and in 

anaesthesia. However, Granger Causality comes with the need to have a predefined model to 

compare with a bivariate autoregressive model limiting its use in non-linear, multivariate signal. 

Extensions to GC in the form of conditional GC (CGC) and multivariate GC (MVGC) to apply in 

multivariate signals, and functional GC (FGC) to apply in function domain signals have also been 

studied to meet the need of multiple applicability [30, 31, 32]. 

There are two other measures that analyse the multivariate data in frequency domain using Grange 

Causality [33, 34]: 

2.2.2.2 Directed Transfer Function (DTF) 

Multivariate autoregressive (MVAR) models make inferences about interregional dependencies 

among datasets by computing the past influence of one variable on the other. DTF is a MVAR 

model-based method which at a frequency f, uses transfer function matrix H (f) to compute causal 

relation between two channels. The DTF value lies between 0 and 1 [34].  

For two channels i and j, the DTF gives a ratio of input to channel i from j to input from all other 

channels as [34] 
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𝐷𝑇𝐹𝑗→𝑖

2 (𝑓) = 
|𝐻𝐼𝐽 (𝑓)|

2

∑ |𝐻𝑖𝑚 (𝑓)|2𝑘
𝑚=1

   
2-4 

2.2.2.3 Partial Directed Coherence (PDC) 

PDC is also a GC derived, MVAR model-based method which differs from DFT in the sense that 

it gives a ratio of output from channel (j) to (i), to all other output from the former channel [35]. 

Consider a Fourier transform matrix A (f) with the jth column as aj(f). Then the PDC is given by: 

 Pij(f) = 
𝐴𝑖𝑗(𝑓)

√𝑎𝑗
∗ (𝑓) 𝑎𝑗(𝑓)

     2-5 

2.2.3 Phase based method 

2.2.3.1 Phase locking value  (PLV) 

PLV is a functional connectivity measure based on the assumption that the difference in 

instantaneous phase of two signals from functionally connected brain regions remains fairly 

constant [36]. In order to obtain instantaneous phase, narrowband filtering for a number of times 

becomes a crucial step before applying PLV. Thereafter for two signals that have undergone N 

number of filtering trials, the phase difference (𝜃) between the two signals for nth trial at time point 

t is given by [36]: 

 PLV=
1

𝑁
 | ∑ 𝑒𝑖𝜃(𝑡,𝑛)𝑁

𝑛=1 |    2-6 

PLV thus focuses on the phase relationship of signals under evaluation and gives a result or either 

1 or 0, corresponding to peak phase synchrony and absence of synchrony respectively.  
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2.2.4 Information theory-based method 

Information theory was originally founded by Claud Shannon which measures information 

contained in a variable as its entropy, called Shannon entropy [37]. Measure of Shannon entropy 

of a specific variable reduces the uncertainty related to that variable.  

Shannon entropy [37]: 

 H= ∑ 𝑝(𝑥)𝐼(𝑥)𝑥  = - ∑ 𝑝(𝑥)𝑙𝑜𝑔𝑎(𝑝(𝑥))𝑥  2-7 

Where,  

I(x) is the information contained during an event, expressed with probability of occurrence of event 

x, as: 

I(x) = -log (p(x)) 

For two dependent systems x and y, Shannon entropy is given by: 

 H1 = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔(𝑝(𝑥, 𝑦))𝑥,𝑦  2-8 

Where, p(x, y) is now the joint probability of events x and y occurring together. 

If the systems are independent of each other, the expression is: 

 H2 =  − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔(𝑝(𝑥)𝑝(𝑦))𝑥,𝑦  2-9 

The difference between H1 and H2 gives the system output considering the two system are 

independent of each other, despite their actual relationship. This output is quantity of mutual 

information shared between the two processes. This information, however, is not enough to predict 

future values of the system based on present values [38]. 
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2.2.4.1 Kullback–Leibler (KL) divergence 

KL divergence is the deviation of a probability distribution from the reference probability 

distribution. It is thus not a statistic method but based on mere distribution given by expectation 

operation of difference in log of actual probability distribution and the reference probability 

distribution [39]: 

 DKL (p|q) =  ∑ 𝑝(𝑥𝑖). (𝑙𝑜𝑔 𝑝(𝑥𝑖) − 𝑙𝑜𝑔 𝑞(𝑥𝑖))𝑁
𝑖=1    2-10 

 

Which can also be written as: 

 DKL (p|q) =  ∑ 𝑝(𝑥𝑖). (𝑙𝑜𝑔
𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
 𝑁

𝑖=1 )   2-11 

Where, 

 p refers to probability distribution in the actual data to be analysed, 

 q is the reference probability distribution. 

A 0 KL divergence indicates two identical probability distributions [40]. It has been used in 

studying brain anatomy and structural connectivity [41].   

2.2.4.2 Transfer entropy (TE) 

TE is a measure of shared or transferred information between time series processes. Transfer 

entropy gives effective prediction of future values from present instances.  

Transfer entropy can be derived by defining entropy rate for the time series data. The entropy rate 

is in fact, the quantity of further information needed to predict future values of a time series data 

[42]. 
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Considering two systems x and y, entropy rate defined to predict the value of preceding observation 

in time series of one of these systems is given by: 

 h1= - ∑ 𝑝(𝑥𝑛+1, 𝑥𝑛, 𝑦𝑛)𝑙𝑜𝑔𝑎  𝑝𝑥𝑛+1
(𝑥𝑛+1|𝑥𝑛, 𝑦𝑛) 2-12 

From definition of probability and conditional probability [32] 

For x and y to be independent: 

 p(y|x)=p(y) 

or,  

 p(x, y)= p(y|x)p(x)=p(y)p(x)  

Considering that the value xn+1 is not dependent on the present value of yn, we can define another 

entropy rate given by: 

 h2 = - ∑ 𝑝(𝑥𝑛+1,𝑥𝑛,𝑦𝑛)𝑙𝑜𝑔𝑎  𝑝𝑥𝑛+1
(𝑥𝑛+1|𝑥𝑛) 2-13 

Then the transfer entropy form system y to x is given by the difference between h2 and h1 as: 

T.E from y to x: 

 h2 – h1 =  ∑ 𝑝(𝑥𝑛+1, 𝑥𝑛,𝑦𝑛)𝑙𝑜𝑔𝑎  𝑥𝑛+1,𝑥𝑛,𝑦𝑛 

𝑝(𝑥𝑛+1|𝑥𝑛 ,   𝑦𝑛)

𝑝(𝑥𝑛+1|𝑥𝑛)
   2-14 

Since tranfer entropy is assymetric measure, 

T.E from x to y: 

 h1 – h2=   ∑ 𝑝(𝑦𝑛+1, 𝑥𝑛,𝑦𝑛)𝑙𝑜𝑔𝑎  𝑦𝑛+1,𝑥𝑛,𝑦𝑛 

𝑝(𝑦𝑛+1|𝑥𝑛 ,   𝑦𝑛)

𝑝(𝑦𝑛+1|𝑦𝑛)
 2-15 

Now, extending equation (i) from definition of conditional probabilities [43], 

We get the TE as: 
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T.E (y→x): ∑ 𝑝(𝑥𝑛+1,𝑥𝑛,𝑦𝑛)  𝑙𝑜𝑔𝑎  𝑥𝑛+1,𝑥𝑛,𝑦𝑛 

𝑝(𝑥𝑛+1,𝑥𝑛 ,   𝑦𝑛).𝑝(𝑥𝑛)

𝑝(𝑥𝑛,𝑦𝑛).𝑝(𝑥𝑛+1,𝑥𝑛)
 

2-16 

 

 
T.E (x→y):  ∑ 𝑝(𝑦𝑛+1, 𝑥𝑛,𝑦𝑛)  𝑙𝑜𝑔𝑎  𝑦𝑛+1,𝑥𝑛,𝑦𝑛 

𝑝(𝑦𝑛+1,𝑥𝑛 ,   𝑦𝑛).𝑝(𝑦𝑛)

𝑝(𝑥𝑛,𝑦𝑛).𝑝(𝑦𝑛+1,𝑦𝑛)
 

  2-18 

 

Thus, TE output is such that a system Y provides certain digit of prediction to system X, and vice-

versa [44]. The range of output varies from 0 to infinity. 

According to Weiner, causal dependencies exist between X and Y if the predictability of values of 

Y is well resolved by applying the information from past of X rather than just relying on the past 

information of signal Y itself [17]. As such, reducing the uncertainty of one variable (Shannon 

entropy) and improving the predictability of another signal (effective connectivity) forms a basis 

of information based effective connectivity measure [45]. Connectivity measures based on 

information theory avoid the need to know about neural interactions beforehand and development 

of a respective model.  

2.2.4.2.1 Application of transfer entropy for brain connectivity measure  

The applicability of transfer entropy in finding effective connectivity as found by Schreiber (2000) 

has been successively followed by implementations in neurologic studies [45]. 

 Vakorin et al. (2000) explored functional connectivity in EEG data using transfer entropy. They 

have used it together with partial least square analysis of independent components in the data series 

[46]. Palus et al. (2001) applied transfer entropy to dig into synchronization events in epileptic 

patients using EEG data [47].  Sabesan et al., (2009) also analysed the significance of TE in 

measuring directed information flow in epileptic research [48]. Similarly, Garofalo et al., (2009) 

recommended TE as a good method to trace functional connectivity in existing neural networks 
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where data is obtained from multiples sites after they used the same technique for in-vitro networks 

[49]. Furthermore, Vicente et al., (2011) put an insight into the usefulness of TE to trace the 

effective connectivity using electro physiological signals from MEG. They found that transfer 

entropy is an efficient tool to assess effective connectivity in non-linear, model-free and 

multivariate data, along with those involving volume conductions such as EEG [50]. 

More recently, Faes et al., (2015) evaluated the sleep EEG rhythms together with elements of 

changing heart rate using TE and GC. They applied the measures to each pair between high 

frequency component of heart rate variability and EEG waves (alpha, beta, theta, sigma and delta 

power bands). The findings comprised of networks representing brain-heart interactions that 

predominantly consisted of links from heart rate variability to EEG waveforms during whole night 

sleep. They also suggested that non-linear dynamics and non-parametric TE measure is significant 

in revealing peculiar structure of information transferred between heart and brain during whole 

night sleep [51]. 

2.2.4.2.2 Pros and cons of using transfer entropy for brain connectivity 

The fact that transfer entropy avoids the need to develop a pre-model for neural interactions, makes 

it a suitable measurement tool where the actual process among brain regions is unknown. 

Moreover, its applicability to non-linear and multivariate data has been quite promising which 

broadens the scope of its implementation since most of the neuroscientific data is in these forms 

[38]. Specifically, in effective connectivity measure, the potential of transfer entropy in tracing out 

causal dependencies despite significant delays in signal transmission, as reported by Swadlow et 

al., (2012) is a strong advantage [52]. 

Despite these advantages, the usefulness of transfer entropy is limited by the fact that its output is 

a number that dictates the quantity of information shared between two brain areas. However, it 
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does not infer any solution regarding how the system operates. Moreover, the information obtained 

from transfer entropy does not lead to model development with actual variable involved in the 

system, such as amplitude or power of signals and state of activation or deactivation [38].  

This work intends to find the connectivity between EEG and NIRS during different sleep stages 

using the transfer entropy method whose output is in the form of bits of information carried by 

different channels. 

2.3 Modalities for characterizing brain activity 

At present, there are several modalities for mapping brain activity during different processes. The 

modalities can be grouped into two kinds based on the parameter they focus on: modalities 

characterizing brain electrophysiology and those mapping hemodynamic and metabolic brain 

responses. 

The most common modalities for assessing brain electrophysiology are: Electroencephalography 

(EEG) and Magneto-encephalogram (MEG). These are both based on the electrical signals 

developed in the brain by numerous neuronal interactions. EEG applies electrodes on scalp to get 

a measure of these electrical activities whereas MEG measures magnetic field produced by these 

electric fields within the brain. One drawback of MEG over EEG is - it requires highly specialized, 

shielded room to carry out tests to avoid magnetic interferences and hence is not very feasible for 

all kinds of experiments [53].  

There are a number of modalities for measuring brain hemodynamic and metabolic changes. 

Positron emission tomography (PET) is one of them which involves injecting a radioactive 

molecule in the blood stream to analyses internal processes and hence not very suitable for whole 

night sleep studies as the radioactive molecule is absorbed by tissues and organs within an hour. 
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Moreover, it possesses risks for pregnant women, diabetic patients and infants, limiting its use.  

[54]. Magnetic Resonance Imaging (MRI) involves exposing the subject in a magnetic field to pick 

up changes related to blood oxygen level. It is heavy, noisy, requires shielded rooms and thus not 

suitable for long term studies [55]. Transcranial Doppler sonography is also a cerebral monitoring 

tool primarily functioning to measure relative cerebral blood velocity. It is not very useful in sleep 

studies because of its insensitivity to oxygenation changes and cannot provide information about 

regional blood flow [56]. Near infrared spectroscopy is a tool that can assess local blood flow 

along with oxygenation changes non-invasively. Its availability in portable form make its use 

preferential in sleep studies [57].  

This research uses EEG and NIRS to trace functional and effective connectivity in brain during 

different sleep stages. This way, the physiological basis of coupled electrical activities and blood 

oxygenation changes will be assessed.  

2.3.1 Electroencephalography (EEG) 

EEG is the electrophysiological recording of waves arising from the neuronal activities in the 

brain, particularly at post synapsis. It is obtained with the help of electrodes attached at different 

head locations covering major regions over the cerebral cortex. The difference in voltage between 

one electrode and another selected as a reference electrode forms an EEG channel. The number of 

required channels used can vary from 4 to 256 as per the nature and scope of the study [58]. 

The standard for placing electrodes to obtain EEG signal has been provided by the International 

Federation in Electroencephalography and Clinical Neurophysiology as the popularly known 10-

20 electrode placement system [59].  
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Figure 2: The 10-20 Electrode placement system with 21 channels [59] 

2.3.2 Near-infrared spectroscopy (NIRS) 

NIRS is an imaging modality which incorporates non-invasive, optical and portable features, and 

exerts radiations having near-infrared wavelengths (750-2500 nm). It has been used in several 

medical applications such as pulse oximetry, neuroimaging, blood sugar monitoring etc. The non-

invasive and non-ionizing feature, good temporal resolution and cheapness compared to MRI, 

makes NIRS an emerging technology for hemodynamic studies in sleep medicine [60].   

2.3.2.1 Principle 

NIRS can find the quantity of light absorbing tissue in the body relying on Beer-Lamberts law.  

which is given by [60]:  
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 OD ג= Log
𝐼0

𝐼
 = Ɛג.c.L 2-17 

Where,  

OD ג is the absorbing medium’s optical density, 

I0 is intensity of the light incident, 

I is intensity of the light transmitted,     

Ɛג is the extinction coefficient at given wavelength 

c is the light absorbing substance concentration  

L is the path travelled by light within the absorbing medium 

λ is the wavelength (nm) used. 

 

Figure 3: Working principle of NIRS 

As shown in figure (3), the NIR light is passed through the source to the tissue where the light is 

absorbed based on the concentration of absorbing material and the remaining is transmitted back 

to the detector on the device. Using pre-set Beer-Lambert’s algorithm on the absorbing material 

properties, the concentration is then calculated. 
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In case of oxyhemoglobin and de-oxyhemoglobin the absorption spectra are distinct in near 

infrared region as shown in figure (4). As a result, based on their difference in attenuation of 

incident infrared signals concentration of oxy and de-oxyhemoglobin can be calculated.  

 

Figure 4: Absorption spectra of oxyhemoglobin (shown as HbO 2) and de-oxyhemoglobin (shown as HbR) in near infrared 

region [61] 

2.3.2.2 NIRS during sleep 

The non-invasive and non-ionizing feature, good temporal resolution and cheapness makes NIRS 

an emerging technology in sleep medicine. During different sleep stages, the neuronal activities 

are accompanied by alterations in the amount of oxygen bonded haemoglobin [HBO] and oxygen 

free haemoglobin [HHB] showing oxygen-dependent absorption of near infrared spectrum. 

Moreover, consumption of 90% of oxygen in a cell is catalysed by an enzyme Cytochrome (Cyt. 
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Ox). So, a measure of the concentration changes in Cytochrome Ox can give a measure of oxygen 

concentration changes within a cell as well. Hence changes in oxygen concentration in brain during 

different sleep stages can be estimated from absorption spectrum and properties of oxidized 

Cytochrome in the NIR zone. 

However, the given Beer Lambert principle is for a non-scattering medium. For an oxygen 

independent scattering medium like human tissue, the Beer-Lamberts law has been modified as 

follow [62]. 

 OD ג = Ɛג. c. L. B + ODR,λ            18  

Where,  

ODR,λ is light intensity loss that is not depended on oxygen concentration due to other elements in 

the medium that are capable of scattering/absorbing the light. 

For a constant ODR,λ throughout data collection, the concentration change can be measured from 

optical density as:  

∆c= ODג / Ɛג. L. B 

 Hence, hemodynamic variations can be measured using this principle.  

2.3.2.3 Portalite 

Portalite is a device based on NIRS that is used in cerebral oxygenation measurement. It can be 

connected to a computer via Bluetooth for up to 100m. It comes with pre-developed software 

oxysoft which allows easy data collection and analysis. It allows sampling at the rate of upto 50 

Hz. It is small and portable making its use desirable in sleep studies [63]. 
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Portalite has three channels formed by combining 3 transmitters (LEDs) and 1 receiver/detector. 

Each transmitter transmits two wavelengths: 760 and 850 nm. A combination of one receiver and 

one transmitter forms an optode and distance between them is called optode distance (30, 35, 

40mm). One of the channels can be used to measure absolute oxygenated haemoglobin percentage, 

and the remaining three channels to measure relative concentrations [63]. 

 

Figure 5: Portalite showing its re ceiver and transmitters, (b) Placement of Portalite on forehead for data collection, (c) 

Channels, optodes and optode distance for the Portalite [63]. 

2.3.2.4 Noise in NIRS 

2.3.2.4.1 Types of noise 

Abdelnour et al., (2010) suggested three types of the noise accompanying NIRS signal: instrument 

noise which lie in the high frequency range, motion artefacts and noise caused by physiological 

signals such as blood flow, respiration and pulsations. [64]. Physiological noise includes that from 

other body signals like heart beats (1–2 Hz) and blood pressure (about 0.1 Hz) while motion 
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artefacts arise from body movement of the subject or relative motion of NIRS device on the body, 

primarily consisting of spikes and ripples [65].  

2.3.2.4.2 Method of noise removal 

2.3.2.4.2.1 Exponential moving average  (EMA) 

EMA is a noise removal method similar to the real-time band pass filtering [66]. It is a 1st order 

infinite impulse response filter that gives different weights to the data in different locations within 

the sampling window that decrease exponentially. The resulting signal is a difference between 

short-term S(t) and long-term L(t) moving averages of the signal.  If f(t) is the initial signal, the 

output signal G (t) is a filtered form obtained as [66]:  

𝐿(𝑡) =
1

𝛼𝐿
 f (t)+(1- 

1

𝛼𝐿
 )L(t-1) 

S(t) = 
1

𝛼𝐿
∑  𝑓(𝑡 − 𝑘)

𝛼𝑠
𝑘=0  

G(t)=S(t)-L(t) 

Where, αL is 100 and αs is 20.  

2.3.2.4.2.2 Threshold based method of motion artefact removal 

It is a software-based method developed by Fekete et al., (2011) that allows rectification of signal 

in only the contaminated segments [65]. The method first identifies the affected area as signal 

spikes and ripples followed by their rectification. Signal spikes are the short, almost instantaneous 

inflections of the signal soon returning to the baseline value while ripples are prolonged, often 

long-spanned events. Basically, the magnitude of inflection of spikes and ripple apexes together 

with the start and end points are computed and then the fluctuations are filtered out leaving only 

the closest extrema point.  
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2.3.2.4.2.3 Correlation Based Index method 

It is a method based on the inverse relation between two signals under consideration as explained 

by Cui et al., (2010) [67]. It can be assumed that the extracted signal of oxyhemoglobin (x) and 

de-oxyhemoglobin (y0)  is not pure but also comprises of noise that can produce similar effects on 

oxy and de-oxyhemoglobin signals (F) as well as some other forms of high frequency, equal 

intensity noises (N) with constant (α). For the true oxyhemoglobin (x0) and de-oxyhemoglobin (y0) 

signals,  

X= x0 + αF + N  

Y= y0 + F + N 

The method assumes that signal x0 and y0 are inversely correlated (maximum -1) 

x0 = -βy0 

Where, β addresses the amplitude difference between oxy and de-oxyhemoglobin signals.  

F= 
1

𝛼+ 𝛽
 (x + βy) 

x0 =
𝛽

𝛼+ 𝛽
 (x- ay) 

The second assumption is that x0 and Fare negatively correlated (minimum 0). Then, we have, 

∑ 𝑥2
𝑡 + (𝛽 – α) ∑ 𝑥𝑦𝑡  - αβ∑ 𝑦2

𝑡 = 0 

For α=β, 

We get,  

α = √(∑ 𝑥2)/  ∑ 𝑦2)  
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=std (x)/ std (y) 

Thus, we get,  

 x0 = 
1

2
(x-αy) 

y0= -
1

𝛼
x0  

 Based on these derivations, Cui et al., (2010) also suggested that anti-correlated HBO and HHB 

signals indicate that the signal is fairly free of motion artefacts [67]. 

2.4 Sleep 

Sleep is an everyday recurring phenomenon characterised by reduced sensory and motor activities, 

movements and reflexes. It forms a cycle with the awake stage in order to maintain the daily body 

requirements [68]. During sleep, the body’s systems like immune, endocrine, muscular, nervous 

and skeletal are replenished while also strengthening the cognitive and memory functions [69]. A 

normal person needs to sleep for an average of 8 hours although the fact may vary according to 

age and health condition of the person. Sleep occurs in various stages forming a sleep cycle. A 

sleep cycle runs for about 90-110 minutes with each stage contributing about 5-15 minutes [70].  

2.4.1 Sleep stages 

American Academy of Sleep Medicine (AASM) identifies that there are five distinct stages in a 

sleep cycle including wakefulness [71]: 
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Figure 6: Illustration of sleep stages.  

The cycle needs not to be exactly as shown here as a person may wake up before REM or may 

never enter REM sleep. 

Features of the different sleep stages have been discussed below [71, 72]:  

The wake stage (W) 

It is the time of the day when we are not asleep, aware of the surrounding and consciously 

interacting with the environment. In an awakened stage, brain and muscle activities are increased. 

The awakened stage has peculiar alpha waves having mixed frequency and a voltage in the range 

of 10 to 30 µV in the EEG signal.  
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Non-Rapid eye movement stage 1 (NREM 1) 

In this phase, a person is in light sleep, prone to be awakened quickly. It is characterized by reduced 

heart rate, slow eye movements, slowed down brain waves and reduced muscular activity. People 

get sensations of falling or sudden jerks at this stage of sleep. The 1st NREM sleep can be marked 

as a distinct stage by the appearance of theta waves in EEG which are similar to the alpha ones 

except that their highest voltage may reach up to 200µV. These waves are also in the mixed 

frequency range and can be accompanied by slow movements of eyes.  

Non-rapid eye movement stage 2 (NREM 2) 

In this stage, the person is about to get into deep sleep. The arousal and awakening threshold is 

higher at this stage than at N1. Brain waves slow down further, heart rate and temperature slightly 

drop down. NREM stage 2 has the presence of characteristic waves: sleep spindles along with 

some intermittently occurring K complexes in the EEG signal. As shown in figure 7, K complexes 

are intermittent, high negative amplitude waves while sleep spindles are higher frequency (12-14 

Hz) waves. The slow waves are absent in this stage unlike wake and N1 stages.  

Non-Rapid eye movement stage 3 and 4 (NREM 3) 

It is the stage of complete, slow wave sleep, where it would be difficult to awaken a person. This 

is the reason that people with disorders such as parasomnia and sleep walking are difficult at 

control at this phase. This stage of sleep provides the maximum restoration of body organs and 

functions. The stage of deep sleep is characterized by instances of slow waveforms for less than 

half of the epoch. These are the delta waves with a frequency and voltage amplitude of about 2Hz 

and 75µV. 
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Stage R: Rapid Eye movement sleep stage 

This phase of sleep is featured with rapid movement of eyeballs within closed eyelids. This can be 

explained by the increased brain activities and neuronal signals during this stage of sleep. The 

stage is particularly a dreaming stage where the person literally feels that he is in a place that he 

sees on the concurrent dream. The REM sleep stage has a presence of characteristic sawtooth 

waves throughout with intermittent, slower delta waves for most of the epoch. During a PSG, this 

stage shows occasional rapid eye movements in the EOG.  

 

Figure 7: Characteristic EEG waveforms during different sleep stages [72] 
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2.4.2 Sleep architecture 

Sleep architecture refers to the hypnogram plot of continuous sleep stages against time in hours 

during a whole night study. A sleep architecture reveals that there are normally 5-6 cycles of sleep 

in a night in an ordinary person. Moreover, the instances of N3 are mostly seen during the early 

hours of sleep while that of R stages are usually on the later hours of the night as shown in a sleep 

architecture of a normal person below [73]. 

 

 

Figure 8: Sleep architecture of a normal person [72] 

2.4.3 Sleep disorders 

Sleep disorders include the noticed or unnoticed sleep behaviours such as apnoea, sleep walking, 

parasomnias, bed-wetting, restless leg syndrome, and night terrors. The result is not just a disturbed 

sleep but also an affected next-day-performance including day-time sleepiness, reduced 

productivity, etc. Furthermore, the long-term consequences include invasion of diseases such as 

cardiopulmonary and kidney diseases attributing to physiological disturbances caused by sleep 

disorders [74]. 
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Sleep disorders not only affect the individual person but in long run it can be noticed that the 

economic burden created by these disorders is even scarier. According to Hilman et al (2006), in 

the year 2004 alone, the overall cost associated with sleep disorders was USD 7,494 million which 

included the direct treatment cost, cost of injuries at workplace, accidents while driving, and loss 

of efficiency at work; all borne by the sleep disorders in one or other form [75] It is hence, of 

utmost importance that the diagnosis of sleep disorders be easier, systematic and detailed so that 

the conditions can be treated on time.  

2.4.4 Sleep study 

The commonly practiced method of sleep study is an overnight polysomnography (PSG). EEG is 

one of the vital components in sleep study and is carried out with the help of electrodes placed on 

the scalp as specified by the 10-20 International system of EEG electrode placement [59]. Besides 

EEG, it includes evaluation of the brain (EEG), muscles (EMG), eyes (EOG), and heart signals 

(ECG), along with the use of pulse oximeters, position sensors, nasal cannula and thermistors, 

snore sensors, leg motion sensors, respiratory bands and abdominal bands to get the measure of 

important physiological variables that are needed for sleep scoring [76]. As such the conduction 

of Polysomnography involves lots of electrodes and wires attached to the subjects/patients that can 

be messy and not very portable. A full PSG is normally applied in diagnosing persistence of sleep 

disorders of any form. 

Table 1: Location of electrodes and sensors on body and face [71] 

Name of 

 Electrode/ 

sensors 

Location Use  
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EOG1 1cm out and 1cm up from right eye Recording of right eye movement 

EOG2 1cm out and 1cm down from the left eye Recording of left eye movement 

Chin EMG1 On the chin at which the muscle can be 

felt beneath the skin when the jaw is 

clenched 

Recording of chin muscle tension 

Chin EMG2 Between EMG1 and EMG2 Recording of chin muscle tension 

Chin EMG3 On the chin at which the muscle can be 

felt beneath the skin when the jaw is 

clenched 

Recording of chin muscle tension 

ECG1(-) Over the right clavicle Recording heart signals 

ECG2(GND) Over the left clavicle Recording heart signals 

ECG3(+) Between the fifth and sixth rib of left 

side. 

Recording heart signals 

Thoracic 

respiratory 

band 

Around the patient's chest Sleep staging 

Abdominal 

respiratory 

band 

As low as possible around the abdomen Sleep staging 

Nasal cannula 

and 

thermocouple 

Nostril  Respiratory measurement in Sleep 

staging 
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Oximeter One of the fingers Recording blood oxygen saturation  

Limb motion 

sensors 

Over the bulk of the tibialis anterior 

muscle 

Recording leg movements 

Position 

sensor 

Placed together with thoracic respiratory 

band 

Recording body position during 

sleep  

Snore sensor Over Adam’s apple Recording instances of snore 

 

2.5 Basis for combined use of EEG and NIRS for connectivity measure during 

sleep 

EEG has been commonly used in sleep studies within PSG. NIRS on the other hand, is a new tool 

in sleep studies. The applicability of NIRS was first reported by Jobsis (1977) who intended to use  

it as an optical tool to measure the concentration of cytochrome oxidase enzyme in monitoring 

tissue metabolism [77]. Therafter, NIRS was used in neonatal and adult cerebral oxygenation 

monitoring [78, 79]. Followed by this, the applicability of NIRS to measure volume of blood in 

brain, variations in flow rate as well as muscle oxygenation were also studied [80, 81, 82]. 

Besides, NIRS has been a technique of interest for many neuroimaging researchers given its ability 

to measure the concentration changes non-invasively [80, 81]. As a result, the usefulness of NIRS 

has been depicted in evaluating language learning, cognitive functions, and palaeoecological 

functions [82, 83, 84]. 

Nasi et al (2011) used the NIRS device in order to record the hemodynamic changes in brain 

oxygenation during a whole night sleep study. Their study focused on identifying hemodynamic 

changes during the transition of sleep stage from one to another. They found that spontaneous 

hemodynamic activity during slow wave sleep (characterised by delta waves in EEG) is greatly 
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reduced compared to wakefullnes. Furthermore, the research suggests that transition from 

wakefullness to light sleep is characterised by reduced physiological activity, that from slow wave 

sleep to light sleep by increased heart rate and vasoconstiction, and from light sleep to REM 

byincreased sympathetic activity relating to rapid eye movements and intense dreaming, as 

obtained form the NIRS hemodynamic parameters [85]. 

 Some researchers have directed their focus on using NIRS in monitoring potients with obstrctive 

sleep apnoea and in charatcerising transitions from sleep to awake stage [86, 87]. These studies 

suggest that NIRS carries the potential to aid in sleep staging. This fact has further been studied 

by Münger et al (1998) who found the connection between the different sleep stages and variations 

in cerebral oxygenation level in healthy infants [88]. Similarly, Onoe et al., (1991), found in a 

research with monkeys that REM stage is accompanied by distinct hemodynamic changes in the 

forebrain [89]. 

Despite these many researches with NIRS, small attention has been paid to the connectivity 

measure between NIRS data and EEG during the sleep stages. Wallois et al., (2012), used 

simultaneous measurement of EEG and NIRS in understanding language learning patterns in the 

brain. They present the fact that synchronisation in brain can result from multiple synaptic or non-

synaptic means of communication among neuronal and glial cells revealing that even before 

synchronisation takes place, there can occur significant hemodynamic changes. These patterns of 

synchronisation cannot be detected by using only the electrical recordings but rather by getting the 

simultaneous hemodynamic signals as well. [90].  

Roche‐ Labarbe et al., (2011), found out that there is a correlation between electric discharges and 

hemodynamic changes in epileptic children by means of simultaneous EEG and NIRS monitoring 

[91]. 
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Similarly, advantage of acquiring EEG and NIRS simultaneously to understand cognitive 

behaviour and possible usage in brain computer interfaces have been studied. Interestingly, in a 

study by Nguyen et al., (2017), it was found that combined EEG and NIRS measurement allowed 

detection of drowsy state in drivers differentiating it from the conscious awake stage. The direction 

of the study was to track if combined EEG and NIRS would be an effective tool to detect 

drowsiness which seemed to be as expected showing changes in hemodynamic levels and beta 

bands in the EEG during transitions from awake to drowsy states [92]. 

 These studied have provided with a recommendation that simultaneous EEG and NIRS data 

collection can aid in deriving important conclusions regarding complex brain behaviours during 

whole night sleep [93, 94]. 
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Chapter 3 : Methodologies 

3.1 Ethics  

The study involving whole night PSG and NIRS was approved by the Flinders University Social 

and Behavioural Research Ethics Committee (project number: 8267). The experimental protocol 

was considered to be in compliance with the National Statement on Ethical Conduct in Human 

Research [95]. The study was carried out at the sleep lab based at Adelaide Institute for Sleep 

Health, Flinders University. All participants filled and signed a written, consent form before data 

collection.  

3.2 Participants 

2 male and 3 female participants (mean age 29.2 years) volunteered for data collection. Potential 

participants with any prominent sleep disorders were excluded. Prior to study, the experimental 

protocol was explained to each of them. Each subject also completed the Epworth Sleepiness Scale 

[96] and Pittsburgh Sleep Quality Index [97] questionnaire form and declared that they had no 

medical condition of concern.  

3.3 Protocol for data acquisition 

Upon arrival at the sleep lab, the participants got their anthropometric measurements done which 

included their height, weight and age followed by the PSG and the Portalite probe set up for data 

acquisition 

3.3.1 PSG data acquisition 

Whole night PSG data was acquired using the Grael PSG by Compumedics®. The procedures 

followed the standard in-lab PSG as per the AASM guidelines [71]. The EEG channels were notch 

filtered at 50 Hz.  Also, HPF and LPF with cut-off at 0.3 Hz and 30 Hz respectively were 

https://nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
https://nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
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implemented for EEG, EOG and ECG signals.  The EMG signal was also subjected to HPF and 

LPF with cut-off at 10 Hz and 100 Hz respectively. 

3.3.1.1 Electrodes on head 

EEG signals were obtained based on the 10-20 International system of EEG electrode placement 

[59] from 6 channels: two frontal (F3-M2, F4-M1), two central (C3-M2, C4-M1), and two 

occipitals (O1-M2 and O2-M1) with respect to the mastoids on their contralateral side  and ground 

was taken at Cz.  

 

Figure 9: EEG electrode positions: Blue colour indicates frontal, central and occipital e lectrodes, grey colour shows 

reference, and black colour shows ground. 

F3 F4 

C3 C4 

O1 O2 

M2

11 

M1

11 
Cz 
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Table 2: Location of head electrodes for EEG [59] 

Naison is the point at the top of nose and inion is a bump present at the base of skull that can be 

felt externally on the head. 

Name of 

 

electrode 

Location 

Cz Point of intersection at: 

50% of the total distance (a) from naison to inion, 

50% of the total distance (b) from left ear to the right ear 

Fz 20% total distance (a) towards nose from Cz 

Fpz 20% total distance (a) towards nose from Fz 

Pz 20% total distance (a) towards back from Cz 

Oz 20% total distance (a) towards back from Pz 

C3 20% total distance (b) towards the left ear from Cz 

C4 20% total distance (b) towards the right ear from Cz 

T7 20% total distance (b) towards left ear from C3 

T8 20% total distance (b) towards right ear from C3 

Oz 50% of total circumference of the head intersecting Fpz, T7 and T8 

O1 10% half-circumference towards the left ear from Oz 

O2 10% half-circumference towards the right ear from Oz 

Fp1 10% half-circumference towards the left ear from Fpz 

Fp2 10% half-circumference towards the right ear from Fpz 
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F3 50% of distance from Fp1 to 50% of distance between Fp1 and 01 intersecting at 

C3 

F4 50% of distance from Fp2 to 50% of distance between Fp2 and 02 intersecting at 

C4 

M1 The bone behind the left ear 

M2 The bone behind the right ear 

 

3.3.1.2 Electrodes and sensors on the face and body 

 

Figure 10: Electrodes and sensors on body and face [76] 

Figure 2 shows the placement of electrodes and sensors on the face and body. Left and right 

electro-occulograms (EOG) were used for measuring eye movements; left, right and central sub-

mentalis electromyograms (EMG) for chin movement, required in sleep staging; a modified lead 
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II electrocardiogram (ECG) to monitor heart rate and rhythm. Nasal cannula and thermocouple 

were used to measure nasal airflow parameters, a pulse oximeter to measure peripheral 

haemoglobin oxygenation, pulse rate and blood flow changes, and a snore sensor to monitor 

snoring. Respiratory effort was measured with bands around thorax and chest along with a position 

sensor to detect sleep positions (supine, prone, left and right) throughout study. Right and left leg 

EMG were recorded to sense leg movements. 

3.3.2 NIRS data acquisition 

NIRS data was acquired using the Portalite by Artinis Medical Systems (Netherlands), at a 

sampling rate of 10Hz. This frequency was selected for NIRS data acquisition because 

hemodynamic responses of our concern are well below 5 Hz [85] and using 50 Hz would mean 

merely a lot of memory consumption and processing time. The Portalite consists of 3 transmitters 

and 1 receiver with each transmitter emitting lights of wavelengths 760nm and 850 nm. Thus, there 

are 6 different NIRS channels, 3 corresponding to oxy-haemoglobin (HBO) and remaining 3 to 

de-oxyhemoglobin signal (HHB). The Portalite probe was placed on the right prefrontal region 

and then covered by a black headband to prevent light interference. For synchronisation with PSG, 

the C3 electrode and the Portalite probe were simultaneously tapped and an event marker was 

placed on the recording systems by the operator           .  

 

Figure 11: Portalite probe position 
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3.4 Data pre-processing 

3.4.1 Sleep data 

The PSG data was used for sleep scoring independently by trained personnel based on the guideline 

by AASM [71]. Whole night sleep was scored into 5 different stages: Stage Wake (W), NREM1, 

NREM2, NREM3 and REM stage in 30 second epochs.  

3.3.2 NIRS data 

3.4.2.1 Preparing NIRS data 

The raw NIRS data consisted of oxy-haemoglobin and de-oxyhemoglobin signals together with 

total haemoglobin, differential haemoglobin, and tissue saturation factors. Firstly, only the  

oxyhaemoglobin (HBO) and de-oxyhemoglobin (HHB) signals were extracted from the raw NIRS 

data (figure 12).  

 



41 
 

 

Figure 12: Raw oxyhemoglobin (HBO) and de -oxyhemoglobin (HHB) signal 

3.4.2.2 Cleaning data 

The NIRS raw data was subjected to a series of data cleaning tools 

3.4.2.2.1 Exponential Moving Average (EMA) filter 

EMA filter with a 2s short-term window and 10s long-term window was implemented to the raw 

NIRS signal. As shown in figure 13, random fluctuations from the HBO time series data, which 
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could be a form of instrument noise, have been smoothened by EMA filtering revealing the actual 

behaviour of the signal over time.  

 

Figure 13: NIRS oxy-haemoglobin (HBO) signal after EMA filtering 

3.4.2.3 Removing motion artefact using threshold method 

The data was then subjected to threshold-based method of motion artefact removal using the NIRS 

analysis package (NAP) toolbox in MATLAB provided by Fekete et al., (2011) [65]. The threshold 

for spikes detection was set to 0.2 and then a Butterworth filter (order: 4, sampling rate: 10Hz, and 

cut-off: 0.01Hz) was applied. Similarly, thresholds of 4, 150 and 250 were set for ripple detection 

followed by the application of same Butterworth filter at a sampling rate of 0.1 Hz. The HBO 
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signal as shown in figure 14 is much smoother as the suspected artefact data points resulting from 

motion have been restructured from the EMA filtered signal. 

 

Figure 14:  NIRS oxy-haemoglobin (HBO) signal after EMA + threshold fi ltering 

 

3.4.2.3 Removing motion artefact based on CBI method 

The signal was finally subjected to correlation-based method (figure 15) of signal improvement 

[67]. The result is such that HBO and HHB data are now anti-correlated (figure 17) indicating that 

the signal is now free from motion artefacts [67]. 
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Figure 15:  NIRS oxy-haemoglobin (HBO) signal after EMA + threshold + CBI filtering  

 

Figure 16: Clean oxyhemoglobin (HBO) and de -oxyhemoglobin (HHB) signal after filtration and signal improvement 
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Figure 17: Anti-correlated HBO and HHB signals after CBI signal improvement 

3.4.2 EEG data 

EEG data was obtained as a part of the PSG and hence, the first step towards processing it was to  

extract only the required EEG channels from the available PSG data. Two frontal (F3-M2, F4-

M1), two central (C3-M2, C4-M1), and two occipitals (O1-M2 and O2-M1) channels were labelled 

and cleaned using the EEGLAB toolbox and clean_rawdata function with default parameters in 

MATLAB [98]. Signal from one of the channels, O2-M1, was very noisy and was lost in the 

cleaning process from all subjects when using the cleaning tool. Hence, we now have 5 EEG 

channels and 6 NIRS channels, giving a total of 11 channels for further processing. 

3.5 Data synchronisation and Segmentation  

The EEG, NIRS and sleep scored data were synchronised by implementing respective time delays 

based on the event marker on the acquisition systems following simultaneous tapping of the C3 
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electrode and Portalite probe. NIRS signal was up-sampled from 10 Hz to 100Hz and EEG data 

was down-sampled to 100Hz using resample function in MATLAB. 100 Hz frequency was used 

for EEG signal because initially it was notch filtered at 50 Hz and having a sampling frequency 

twice the desired signal range ensures that the Nyquist criterion is fulfilled [118]. 

The EEG data was then subjected to HPF with cut-off of 0.5 Hz in order to get rid of the noises 

which were low frequency, baseline wanders as suggested by Palaniappan (2011) [99]. The entire 

dataset was then segmented by using a 10-minute window. Hereafter, an artefact mask was 

implemented such that any artefact containing segment is labelled 1 and a clean segment is labelled 

0. The artefact mask algorithm computed the average amplitude of the signal throughout the entire 

length and segments with amplitude higher than the average were extracted using start and end 

points masking them as 1.  Segments with artefacts were discarded and only clean segments were 

processed for connectivity measure.  

3.6 Connectivity measure 

Cross-correlation measure was applied to all EEG and NIRS channels in order to trace functional 

connectivity between the regions covered by these channels. The measure was implemented using 

a 100ms sliding window hence the range of lag being -100ms to +100ms. Thereafter, transfer 

entropy was implemented to produce an 11*11 connectivity matrix (5 EEG channels, 6 NIRS 

channels) for each sleep stage and subject, with different number of segments since each subject 
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spent variable time at various intervals in these sleep states. Thus, we have 5 (11*11* X *5) 

matrices for 5 sleep states, X number of segments and 5 subjects. 

3.7 Experimental and Statistical analysis 

3.7.1 ANOVA and post hoc t-test  

According to Hilton et al., (2006), ANOVA (Analysis of variance) is a statistical method of 

comparing groups of data to see if these groups differ from each other to a reasonable extent [100]. 

A one-way ANOVA test finds the difference between two specific groups (two sleep stages in our 

case). The test holds the null hypothesis that means of two groups under comparison is same. A 

significant p –value of ANOVA test would mean that the groups under comparison aren’t same 

and have different means, thus rejecting the null hypothesis. Higher p–values (>0.05) indicate that 

there is no reasonable variation among the groups, and population means might have been different  

by chance, whereas lower p-value (<0.05) indicates that there exists some significant differences 

among the group, and the difference is not merely by chance. The information provided by 

ANOVA test is limited to finding of existence of difference among groups but not the precise two 

groups which have different means. In order to find out which two groups have significant 

difference in their mean, post-hoc test is required.  

Tukey’s post-hoc test (t-test) is one of the commonly used post-hoc tests after rejecting null 

hypothesis in ANOVA. It is a multiple comparison test that makes a pairwise comparison between 

groups of interest and finds such two groups, which have their means significantly different from 

one another. 

As a matter of fact, even when the ANOVA result is significant, one may not find any two groups 

of data having statistically different means from post-hoc t-tests. This is because the significance 
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in ANOVA test might come from combined means of two groups compared to the combined 

means of other two groups. Nevertheless, when we require to find out if the means of groups under 

analysis are different, ANOVA test and post hoc t-test seem quite useful [100].  

3.7.2 Permutation test of independence 

According to Good (2013), permutation test of independence is a non-parametric test that 

compares two groups as independent datasets and computes the difference between them [101]. 

The significant outcome of permutation test does not suggest a value equal to difference of medians 

of the two groups but rather infers that the two groups differ significantly. A p-value is obtained 

by resampling the data over repeated number of times. The null hypothesis is that the data are 

drawn from the same pool and do not have significant difference. P-value < 0.05 indicates that 

there exists significant difference between the group of datasets [101].  
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3.7.3 Experiments 

In the first round, the measure was averaged over the number of segments (3rd dimension) and then 

over the number of subjects (4th dimension) giving five 11*11 matrices for 5 different stages of 

sleep. For better analysis, the adjacency matrix was extracted in smaller sizes corresponding to 

connectivity between EEG and oxyhemoglobin (HBO) and de-oxyhemoglobin (HHB). 

Furthermore, transfer entropy from EEG to HBO and HHB, and that from HBO and HHB to EEG 

were separately extracted to analyse connectivity between these channels individually. The output 

was then subjected to statistical analysis using ANOVA test. P-values below the significant level 

of 0.05 were considered to carry statistical significance of difference in means. The results of this 

experiment were not sufficient to derive any conclusion and hence we changed our path to 

performing a non-parametric randomisation test.  

In the second round, the sleep stages for all subjects were concatenated together and a permutation 

test was carried out (significant for p-value< 0.05). For datasets with significant p-value, the 

connectivity was plotted on the head using 5 EEG channels and 3 locations corresponding to 

approximate position of NIRS sensors on the NIRS probe. The arrow on the plot shows the 

direction of connectivity.  

It was found that randomisation test (permutation) is more effective in catching up the details in 

data sets than statistical ANOVA test and that could be because of the small dataset obtained from 

5 subjects.  
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Chapter 4 : Connectivity between EEG and NIRS channels 

4.1 Connectivity between EEG and oxyhemoglobin (HBO) channels 

For average connectivity over number of subjects, adjacency matrices were extracted individually 

for connectivity from EEG to NIRS channels and vice versa. It was clearly evident that causal 

influence from NIRS channels to EEG channels was stronger than that from EEG channels to 

NIRS channels, as derived from both HBO and HHB. However, upon ANOVA analysis, no 

significant difference between the connectivity in the 5 sleep stages was found between any of the 

EEG and NIRS channels. 

4.1.1  Measuring transfer entropy from HBO channels to EEG channels 

The connectivity matrices extracted for transfer entropy from HBO to EEG channels showed 

increasing values from wake stage to NREM1 stage but decreasing in NREM2 stage (figure 18). 

Comparing NREM3 and REM stage, the connectivity is higher in the former stage. In short, there 

seems to exist rise-fall trend in connectivity throughout these sleep stages.  
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Figure 18: Connectivity matrices for transfer entropy from HBO to EEG channels  
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ANOVA results were insignificant with p-value of 0.7575 (figure 19). Hence, we cannot draw out 

any conclusion regarding the connectivity changes at this point. 

 

 

Figure 19: ANO VA results for transfer entropy measure from HBO to EEG channels  
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4.1.2 Measuring transfer entropy from EEG channels to HBO channels 

 

Figure 20: Connectivity matrices for Transfer entropy measure from EEG to HBO  channels  

It can be seen that the connectivity values are lower when directed from EEG to HBO channels 

(figure 20) than vice versa (figure 18). This suggests that the information flow is strong in the 
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direction of HBO to EEG channels. Besides this, no conclusion can be derived in relation to 

connectivity across different sleep states as the statistical test was insignificant as shown in (figure 

21).  

 

 

Figure 21: ANO VA results for transfer entropy measure from EEG to HBO  channels  
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4.1.3 Connectivity during wake stage compared to NREM1, NREM2, NREM3 

and REM sleep 

Although the statistical ANOVA test was insignificant, when the connectivity during all sleep 

stages were concatenated for all subjects and a permutation test was carried out so as to measure 

the difference in connectivity between every other sleep stage, significant results were obtained as 

seen on the head plot. The plots indicate overall network of casual influence between EEG and 

NIRS channels (HBO and HHB). 
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Figure 22:   Connectivity during wake stage compared to NREM1, NREM2, NREM3 and REM sleep 

4.1.3.1 Significant findings 

Overall, whole brain connectivity during wake stage is less than that in NREM1 stage and 

connectivity between frontal and central region in wake is less than that in NREM2 and NREM3 

stage. 
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4.1.3.2 Discussion 

The comparison between wake and NREM1 state clearly shows that the whole brain connectivity 

is lower in wake stage as compared to that in NREM1 stage. As suggested by fewer number of 

networks, connectivity during wake is less than that in NREM2 and NREM3, but greater than in 

REM stage. This finding of ours when compared to literature shows that the finding is consistent 

with respect to NREM1, NREM2 but contradicts in case of NREM3 as found by Tagliazucchi et 

al., (2014) that connectivity during wake is less than that in NREM1 and NREM2 but greater than 

that in NREM3 [102]. The difference could be better concluded with a greater number of networks 

revealing the difference.  
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4.1.4 Connectivity during NREM1 stage compared to NREM2, NREM3 and 

REM sleep 

 

 

Figure 23: Connectivity during NREM1 stage compared to NREM2, NREM3 and REM 
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4.1.4.1 Significant findings 

1. Effective connectivity from HBO channels to O1 is greater in NREM1 stage than NREM2, 

NREM3 and REM stage. Further, the difference between connectivity in NREM1 and the 

other stage is increasing from NREM2 to REM as: 

(NREM1-REM) > (NREM1-NREM3) > (NREM1-NREM2)  

2. Effective connectivity from HBO channels to C3 is highest in NREM1 satge such that: 

(NREM1-NREM2) > (NREM1-REM)  

3. There is the existence of a feedback loop from 

i. F3 to HBO1 and F4 to HBO2 which is stronger in NREM1 stage than NREM2. 

ii. Also from O1 to HBO1 and HBO2 which is stronger in NREM1 than NREM3.  

iii. Aalso from F4 to HBO3 which is stronger in NREM1 than REM. 

4. As comapred to NREM3, effective connectivtiy from O1, C3 and F4 channels to HBO 

channels is greter in NREM1 stage. The difference in this directionality is barely present 

when NREM1 is compared to other sleep stages.  

4.1.4.2 Discussion 

4.1.4.2.1 Feedback loop in NREM sleep  

The persistence of feedback loops in NREM sleep connectivity network is interesting. It can be 

related to the cortico-thalamic-cortical loop involved in regulating sleep spindles, K-complexes 

and slow wave activity during NREM sleep [103, 104, 105].  

According to Krone et al., (2017), a pathway involved in regulating sleep-wake cycle is the bottom-

up pathway that originates in the brainstem and propagates along thalamo-cortical region [106]. 

During NREM sleep, the anterior cortical areas are least activated as compared to the wake stage 

giving rise to slow wave oscillations between cortex and thalamus [107]. These slow wave 
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oscillations are travelling waves that propagate from frontal to posterior brain regions [103]. On 

the same side, the occasional bursts of sleep spindles and K-complexes in NREM sleep are 

regulated by a loop existing over thalamo-cortical route: the thalamo-cortico-thalamic loop [105]. 

Additionally, Steriade, M., (2003) suggested that instances of sleep spindles correspond to the 

maximum blockage of afferent signals to the cortex preventing a person from being aware of the 

environment [104] indicating why a person loses consciousness on onset of NREM sleep.  

Migliorelli et al., (2019) suggested that a measure of brain connectivity is related to the loop of 

slow wave regulation along with periodic appearances of sleep spindles and K-complexes [108]. 

As such, we could hypothesise that the connectivity directed from frontal to central and occipital 

regions could correspond to the propagation of slow waves in NREM sleep and the appearance of 

feedback loops in the connectivity plot corresponds to cortico-thalamic-cortical loop involved in 

regulation of sleep spindles and K-complexes. Our findings could be strengthened and validated 

with measurements done with stereo EEG providing direct thalamic measurements rather than 

from scalp electrodes. 

4.1.4.2.2 Brain connectivity decreases in NREM2 stage 

It is evident that the brain connectivity in NREM2 stage decreases as compared to NREM1 stage 

and can be claimed to be statically significant since the head plot comes from only significant p-

values of permutation test. It is also observed that effective connectivity in brain from right 

prefrontal region (considering all NIRS channels) to left occipital region (O1) is highest during 

NREM1, followed by NREM2, NREM3 and least during REM stage of sleep. Furthermore, the 

connectivity between these channels seems to fairly decrease along NREM2, NREM3 and REM 

stage based on simple algebra of increasing difference in the connectivity during these states as 

compared to NREM1 stage, although further statistical validation would be required to give a 
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strong conclusion.  Jurysta et al., (2012) demonstrated using only EEG signals that information 

flow to posterior brain regions follow a decreasing trend as sleep progresses from NREM1 to 

NREM3 which is similar to our finding of decreasing entropy transfer along these states [109]. 

The fact that functional connectivity decreases in NREM2 stage has been depicted by Migliore lli 

et al., (2019), though the findings could not compare in relation to effective connectivity [108].  

4.1.5 Connectivity during NREM2 stage compared to NREM3 and REM 

 

 

Figure 24: Connectivity during NREM2 stage compared to NREM3 and REM 

4.1.5.1 Significant findings  

1. No significant difference between NREM2 and NREM3. 

2. As compared to REM, connectivity from HBO channels to F3 and O1 is higher in NREM2.  

4.1.5.2 Discussion 

As obtained from comparing NREM1 stage with NREM2 and NREM3, connectivity during 

NREM1> NREM2, and NREM1> NREM3. But when we compare NREM2 and NREM3 directly, 
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no statistically significant difference was found between the connectivity during these two states. 

Hence, the relation between connectivity during NREM2 and NREM3 cannot be stated accurately, 

although it can be expected for NREM2 stage to have higher connectivity than NREM3 based on 

simple algebra and literature [8].  

Comparing NREM2 with REM stage, we may notice that the number of networks has been reduced 

compared to previous plots of NREM1 stage. However, frontal to occipital connectivity is greater 

in NREM2 stage than in REM stage.  

4.1.6 Connectivity during NREM3 compared to REM 

 

Figure 25: Connectivity during NREM3 compared to REM 

It can be seen that the number of networks with statistically significant difference in connectivity 

is only one. However, it reveals that the connectivity from HBO2 channel to O1 in NREM3 stage 

is greater than that in REM. 
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4.1.7 Conclusion 

Whole brain connectivity is highest during NREM 1 sleep stage as compared to wake or any other 

sleep stages. The difference between connectivity during NREM2 and NREM3 stages cannot be 

concluded in terms of statistical significance, though it can be anticipated that NREM2 shows 

higher connectivity than NREM3. Finally, there are lesser number of networks to compare 

connectivity during REM sleep with wake to NREM stages. One channel revelation indicates that 

frontal to occipital connectivity in NREM3 stage is greater than in REM sleep. As such, our 

findings suggest that connectivity decreases as sleep progresses form NREM to REM sleep. 

4.2 Connectivity between EEG and de-oxyhemoglobin (HHB) channels 

4.2.1 Measuring transfer entropy from HHB channels to EEG channels 

The connectivity results derived from HHB to EEG channels were in agreement with that obtained 

from HBO to EEG indicating rising and falling trends in connectivity throughout sleep (figure 26).  
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Figure 26: Connectivity matrices for transfer entropy from HHB to EEG channels during different sleep stages.  

The statistical ANOVA test is still insignificant with a p-value of 0.7544 so that no dervations can 

be made on connectivity changes along sleep states.  
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Figure 27: ANO VA results for transfer entropy from HHB to EEG channels during different sleep stages 

  



66 
 

4.2.2 Measuring transfer entropy from EEG channels to HHB channels 

HHB channel derivations (figure 28) for transfer entropy measure averaged over number of 

subjects resembles the findings from HBO channel (figure, with similar pattern (figure 20). 

 

Figure 28: Connectivity matrices for transfer entropy form EEG to HHB channels  
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The general pattern of connectivity difference can be seen in figure (29) although the facts are not 

statistically significant. In conclusion, ANOVA analysis for subject averaged connectivity 

between EEG and all NIRS channel merely indicates that connectivity is highest in NREM1 stage 

as seen in general pattern. But the actual differences need more rigorous tool to find out actual 

significance.  

 

 

 

Figure 29: ANO VA results for transfer entropy from EEG to HHB channels 
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4.2.3 Connectivity during wake stage compared to NREM1, NREM2, NREM3 

and REM sleep 

The findings derived from permutation test of transfer entropy measure HHB channels are 

similar to that derived from HBO channels except a few forms of information that only HHB 

channels derived.  

 

Figure 30: Connectivity derived from HHB during wake compared to NREM1, NREM2, NREM3 and REM 
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Connectivity during wake is less than that in NREM2, while no statistically significant difference 

can be seen from that of NREM3. Interestingly, the greater effective connectivity during wake as 

compared to REM from frontal HHB channel to occipital region has been revealed here.  

 



70 
 

4.2.4 Connectivity during NREM1 stage compared to NREM2, NREM3 and 

REM sleep 

 

Figure 31: Connectivity derived from HHB during NREM1 stage compared to NREM2, NREM3 and REM 

The findings are similar to that from HBO channels with a feedback loop prominent in NREM1 

stage compared to NREM3.  
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4.2.5 Connectivity during NREM2 stage compared to NREM3 and REM 

 

Figure 32: Connectivity derived from HHB during NREM2 stage compared to NREM3 and REM 

NREM2 stage shows greater connectivty than REM stage which is consistent with the finding 

from HBO channels. Comparing NREM2 and NREM3, it can also be seen that frontal to occipital 

conncetivity is greater in NREM2 stage as compared to NREM3. Finally, we may conclude that 

our findings suggest connectivity decreases from NREM1 sleep to REM sleep, specifically from 

right pre-frontal region to left occipital region.  
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4.2.6 Connectivity during NREM3 compared to REM 

 

Figure 33: Connectivity derived from HHB during NREM3 stage compared to and REM 

No significant difference can be found in the connectivity during NREM3 and REM stage from 

HHB signal derivation (figure 33) while HBO derivations (figure 25) suggested that NREM3 has 

higher connectivity than REM from one connection along HBO to O1.  

4.3 Channel specific causal influence 

A summary of important results from the obtained head plot is tabulated below: 

Table 3: Directed causality from NIRS channels to EEG channels 

Difference in 

effective 

connectivity (EC) 

between sleep 

stages 

Symbolic 

representation 

Referring channels and direction  

Derived from HBO Derived from HHB  
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EC in wake stage is 

less than that in 

NREM1, NREM2, 

NREM3 stage and 

greater than that in 

REM stage 

W < NREM1 HBO1 to F3  

HBO2 to C3 and C4 

HBO3 to F3, C3 and 

O1 

HHB1 to C3 and O1 

HHB2 to O1 

HHB3 to F3, C3 and 

O1 

 

W < NREM2 HBO2 to C4 

HBO3 to F3 

HHB3 to F3 

W < NREM3 HBO2 to C4 - 

W > REM HBO2 to F4 HHB2 to O1 

EC in NREM1 

stage is greater than 

that in NREM2, 

NREM3 and REM 

stage  

NREM1> NREM 2 HBO1 to F3, C3 and 

O1 

HBO2 to F4 , C3, O1 

HBO3 to F4, F3, C3, 

O1 

HHB1 to F3, F4, C3 

and O1 

HHB2 to F4 and O1 

HHB3 to F3 and O1 

NREM1 > NREM 3 HBO1 to O1 

HBO2 to O1 

HBO3 to O1 

HHB1 to O1 

HHB2 to O1, F4 

HHB3 to O1 

NREM 1> REM HBO1 to C3, O1 

HBO2 to C3, F4, O1 

HBO3 to F3, F4C3, 

O1 

HHB1 to F3, C3, O1 

HHB2 to F4, C3, O1 

HHB3 to F3, C3, O1  

NREM2 > NREM 3 - HHB 1 to F4 and O1 



74 
 

EC in NREM2 

stage is greater than 

that in NREM3 and 

REM stage 

HHB 2 to O1 

HHB 3 to O1 

NREM2 > REM HBO2 to O1 

HBO3 to F3, O1 

HHB2 to F4, O1 

HHB3 to O1 

EC in NREM3 

stage is greater than 

that in REM stage  

NREM3 > REM HBO2 to O1 - 

EC in wake stage 

(W) is greater than 

that in REM stage  

W > REM HBO2 to F4 HHB2 to O1 

 

While most of the channels were accompanied by predominant effective connectivity from 

prefrontal to central and occipital region, some channels showed significant difference in 

connectivity directed in the opposite direction, i.e., from central and occipital region to prefrontal 

region: 

Table 4: Directed causality from EEG channels to NIRS channels 

Difference in effective 

connectivity (EC) 

between sleep stages 

 

Symbolic 

representation 

Referring channels and direction  

Derived from 

HBO 

Derived from HHB 
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EC in wake stage (W) 

is less than that in 

NREM1 stage (N1) 

W < NREM1 - F3 to HHB1 

 

EC in NREM1 stage 

(N1) is greater than 

that in NREM2 stage 

(N2) 

NREM1> NREM 2 F3 to HBO1 

F4 to HBO 2 

- 

 

EC in NREM1 stage 

(N1) is greater than 

that in NREM2 stage 

(N3) 

NREM1> NREM 3 F4 to HBO1 

and HBO2 

C3 to HBO1 

O1 to HBO1 

and HBO2 

O1 to HHB1 and HHB 3  

EC in NREM1 stage 

(N1) is greater than 

that in REM stage (R) 

NREM 1 > REM F4 to HBO3 - 

 

Effective connectivity from occipital region to prefrontal region is higher in NREM1 stage of sleep 

than NREM3, REM and wake stage. Also, effective connectivity from central region to prefrontal 

is higher in NREM1 stage than NREM2 and REM stages.  

4.3  Cross-correlation between EEG and NIRS channels 

No cross-correlation was found between EEG channels and any of the NIRS channels. However, 

this does not indicate absence of relation between EEG and NIRS signals. This can be explained 

by the fact that the cross-correlation measure is applied using a 100ms sliding window and the 
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difference in speed of neuronal conductions (generally 50-60 m/s) are higher than hemodynamic 

changes (about 60 cm/seconds) so that the relation cannot be traced [110, 111]. As a result, we get 

a connectivity matrix with 0 value for each element.  

4.4 Conclusion 

The information derived from HHB channels are in agreement with that from HBO channels 

except a few differences in specific channels depicting the connectivity. However, the inferences 

that we could make froth ese derivations remain pretty much the same. HHB derivations also show 

that NREM2 stage has higher connectivity than NREM3 which couldn’t be otherwise detected. 

The findings further strengthen that connectivity during sleep decreases as we proceed from 

NREM to REM sleep. 
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Chapter 5 : Connectivity between NIRS channels 

Cross-correlation was applied as a measure of connectivity to the NIRS and EEG signals. The 

connectivity was averaged over number of segments where each sleep stage occurred and then 

over the number of subjects. The connectivity matrix for NIRS channels was extracted separately 

for HBO and HHB.  

5.1 Cross-correlation between oxyhemoglobin (HBO) channels 

The cross-correlation between HBO channels was found to be increasing form wake stage through 

NREM1 stage to NREM2 stage and then decreasing in NREM3 stage (slow wave sleep) (figure 

34). 
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Figure 34: Connectivity matrices for cross correlation among HBO channels  
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The ANOVA test showed p-value 0.0059 which is less than the significance level indicating that 

there are some differences in the means of the groups. Connectivity is highest in NREM2 stage 

and least in wake. 

  

 

Figure 35: ANO VA results for cross correlation among HBO channels in different sleep stages  

Hereafter, a post-hoc t-test was carried out to compare the means of different groups. It showed 

that the mean connectivity is significantly less in wake stage than that in REM, NREM2 and 

NREM1 stage. Thus, the difference in connectivtiy between HBO channels during wake, NREM 

and REM sleep is statistically significant.  
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Figure 36: Multiple comparison test showing connectivity wake stage to be significantly different from NREM1, NREM2, 

REM 

5.2 Cross-correlation between de-oxyhemoglobin (HHB) channels 

The measures derived from HHB channels agreed with that derived from HBO channels showing 

increased connectivity from wake stage to NREM2 stage until it decreased in NREM3 stage (figure 

37).  



81 
 

 

Figure 37: Connectivity matrices for cross correlation among HHB channels during different 

sleep stages 
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ANOVA test was significant with p-value of 0.0403 and post hoc t-test showed that the mean 

connectivity during NREM2 stage is significantly greater than that in wakefulness.  

 

 

Figure 38: ANO VA results for cross-correlation among HHB channels in different sleep stages 
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Figure 39: Multiple comparison test for cross correlation between HHB channels  

5.3  Cross-correlation between HBO and HHB 

The cross-correlation measure between HBO and HHB channels showed anti-correlated signals at 

all stage. This is an indication that when concentration of HBO increases, HHB decreases and vice 

versa. Tong et al., (2011) provide similar suggestion for their finding on anti-correlated HBO and 

HHB signals [112].  
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Figure 40: Connectivity matrices for cross correlation between HBO and HHB channels during different sleep stages  

The ANOVA test showed p-value 0.0355 which was significant and hence a post hoc t-test was 

carried out which showed that stages NREM2 and wake had significant difference in their mean 

connectivity, the former with higher negative correlation. 
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Figure 41: ANO VA results for cross-correlation between HBO and HHB channels during different sleep stages 
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Figure 42: Multiple comparison test for cross correlation between HBO and HHB channels 

The findings from cross correlation between NIRS channels suggest that there exist statistically 

significant differences between connectivity during wake and NREM2 stage for all NIRS channel 

derivations. Also, HBO derivations show difference in connectivity during wake stage from 

NREM and REM sleep. Above all, highest correlation between HBO channels and also between 

HHB channels exist during NREM2 stage and the least during wake. 

5.4 Discussion 

5.4.1 Functional connectivity in prefrontal region: A cross-correlation measure  

As obtained from the cross-correlation measure for averaged connectivity between NIRS channels, 

it was observed that brain functional connectivity first increases from wake to NREM1 and 

NREM2, and then decreases in NREM3 stage of sleep as sleep progresses. We are unable to 

directly compare this finding with that in literature directly because they either involve other 
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modalities like EEG and MRI, or exclude NREM3 stage of sleep, or only focus on hemodynamic 

changes rather than brain connectivity [85, 113]. Nevertheless, the finding is somewhat similar to 

the one by Horovitz et al., (2009) and Sämann et al., (2011) who depicted reduced brain 

connectivity in the prefrontal region during slow wave sleep using functional MRI [114, 115].  

Also, functional connectivity of occipital region with frontal and central brain regions increase 

during REM sleep as indicated by the adjajency matrix. This finding could account for the 

increased eye movements in REM sleep because of the activation of visual cortex located in the 

occipital region. Igawa et al., (2001) found an increase in oxyhemoglobin concentration in the 

visual cortex during REM sleep and suggested that this could also explain the intense dreaming 

activities at this stage of sleep [116]. 

5.4.2 Hemodynamic changes during sleep 

The decrease in cross-correlation measure between NIRS channels in NREM3 stage can 

correspond to reduced cerebral hemodynamic activity in this particular stage as per Nasi et al., 

(2011) where they showed prevalence of reduced spontaneous, slow hemodynamic oscillations in 

the slow wave sleep [85]. This leads to an inference that reduced hemodynamic activity in the 

prefrontal cortex is accompanied by reduced hemodynamic activity itself. Furthermore, this 

inference can also put an insight to the fact that a person is difficult to awaken when he is in deep 

or NREM3 sleep due to reduced hemodynamic activity and prefrontal connectivity during NREM3 

stage of sleep.  

Also, the increased connectivity in REM stage can account for the fact that there is increased 

hemodynamic activity during REM sleep in the activated dorsolateral pre-frontal cortex as 

compared to that in slow wave sleep [85, 117]. Kubota et al., (2011) also suggested that the 
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increased hemodynamic activity might also account for the role of REM sleep in cognitive 

functions [117].   

Chapter 6 : Conclusion 

The exploration of sleep science needs a rigorous tool able to provide important physiological 

details such as oxygenation and electric activity throughout sleep. While most of the researches 

with NIRS have been targeted towards finding out the cerebral oxygenation and concentration 

changes, the understanding of connectivity changes in relation to electrophysiology and 

hemodynamic during a whole night sleep study has yet not been explored. Moreover, the possible 

relation between cerebral oxygenation changes and electrical activities during these sleep stages 

remains unexplored.  

As found in this research, the significant difference in connectivity along right prefrontal cortex 

and left occipital using NIRS and EEG signals, as well as that in the right prefrontal cortex using 

only NIRS, across the different sleep stages suggests that measure of connectivity can be a useful 

tool in classifying sleep stages as well as in understanding phenomenon of sleep. Moreover, the 

connectivity networks derived from the measure can provide supporting evidence to researches so 

far in the field of sleep and sleep medicine. Further research with brain connectivity during whole 

night sleep can provide valuable information on cerebral mechanisms.  
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Chapter 7 : Limitations and recommendations 

Although the research outcome provides an insight into the potential of brain connectivity 

measures in defining sleep phenomenon, there are certain limitations. Firstly, the sample size is 

limited to 5 subjects, thus giving us a small dataset. Secondly, the process of synchronisation 

between PSG and NIRS data is not automatic and digital, but rather manual. It is recommended 

that the study be carried out with some robust synchronisation tools so that the outcomes are more 

precise. Furthermore, the location of NIRS sensors used in the research for head plot of 

connectivity across channels is approximate. The results can be better demonstrated with precise 

location of the three transmitters. 

The research uses only two measures of connectivity, while there are multiple options available. 

Reproduction of the research outcomes could be done by changing these measures as well.  The 

fact that connectivity measures are affected by the choice of EEG electrode reference point forms 

another consideration to be done in reproduction of the research results as it can be redone by 

choosing reference electrodes more deliberately to avoid chances of bias caused by reference 

issues. 
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Chapter 8 : Author’s Contribution 

The author’s primary role has been in developing the protocol for data acquisition, screening and 

setting subjects up for data collection and monitoring them whole night, cleaning and preparing 

the signals for further processing, designing experiments to obtain meaningful results and finally 

analysing the connectivity outcomes. The MATLAB codes for data processing and connectivity 

measures were primarily written by A / P Kenneth Pope and Hanieh Bakhshayesh, while they were 

edited and modified as required for the project by the author. Previous work in this field by them 

has been limited to functional connectivity measures using EEG only while this research focuses 

on effective connectivity with additional NIRS signals.  
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Appendix 

Sleep statistics 

The timings of each subject in different stages of their sleep during the whole night varied 

considerably from one another as shown in the table below. The times are shown in minutes.  

 Subject1 Subject 2 Subject 3 Subject 4 Subject 5 

Wake 36.0 75.0 16.5 13.0 7.0 

NREM1 23.5 25.0 37.0 25.5 16.5 

NREM2 145.5 280.5 170.0 214.0 207.5 

NREM3 43.0 28.0 68.0 128.5 166.0 

REM 37.5 97.0 39.5 77.0 390.0 

 

 


