In Vitro Anti-skin Cancer Properties and Mechanisms of Action of Xanthones from the Mangosteen Pericarp

A thesis submitted in fulfillment of the requirement for the degree of

Doctor of Philosophy

By

Jing Jing WANG

Bachelor of Clinical Medicine

Department of Medical Biotechnology

School of Medicine

Faculty of Health Sciences

Flinders University of South Australia

September 2012
Candidate’s Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

Jing Jing Wang

September 2012
Thesis Summary

The incidence of skin cancer has increased more than 600% worldwide since the 1940s, and Australians have the highest incidence in the world, with at least 2 in 3 Australians diagnosed with skin cancer before the age of 70. The current chemotherapy is not effective, with new drugs in high demand. Plants are important sources for anti-cancer drugs. Mangosteen (*Garcinia mangostana* Linn.) is a tropical tree from South East Asia and its fruit pericarp is a well-known traditional medicine.

This study investigated the potential anti-skin cancer activity of the crude extract and major xanthone compounds from the pericarp of mangosteen by investigating the cytotoxicity and underlying cellular and molecular mechanisms. Two types of human skin cancer cell lines were used as *in vitro* models: melanoma SK-MEL-28 and squamous cell carcinoma A-431.

There were five major research outcomes. (i) Development of a methodology for extraction of mangosteen based on chemical composition and antioxidant activity. (ii) Demonstration of anti-proliferative activity towards skin cancer cell lines. The crude extract and six xanthone compounds tested had significant anti-cancer activities, with *IC*₅₀ values ranging from 2.39 to 7.61 µg/ml. The activity was selective against skin cancer cells with less effect on human normal skin fibroblast CCD-1064Sk and the keratinocyte HaCaT cell lines. *IC*₅₀ values of the xanthones were similar to, or much lower than, those of two most commonly used commercial drugs (5-fluorouracil and dacarbazine). (iii) Identification of cellular and molecular pathways. The anti-cancer action of xanthone compounds was found to be via activation of caspases together with the loss of mitochondrial membrane potential.
and inhibition of Akt and NFκB survival pathways. In melanoma SK-MEL-28 cells, downregulation of BRAF V600E mutation expression was observed after treatment with some xanthones, e.g. a maximum 6.8-fold decrease in the level of BRAF V600E relative to the untreated control. (iv) Identification of synergistic effects. Synergistic effects between α-mangostin and the other individual compounds were observed. However, no synergistic effect was found between xanthone compounds and commercial drugs under the tested conditions in the current study. (v) Evaluation of anti-metastatic activity of α-mangostin. Skin cancers, especially melanoma, have a high potential to metastasise. α-Mangostin exhibited significant inhibitive activity of invasion and migration at non-toxic doses on both skin cancer cell lines tested. The anti-metastatic activity of α-mangostin was associated with downregulation of mRNA expression of MMP-2 and MMP-9 through inhibiting NFκB and Akt pathways.

This study provides important scientific evidence of the potential antioxidant and antiproliferative activity of extracts and xanthone compounds from the pericarp of mangosteen, and increases understanding of their underlying mechanisms. These findings can contribute to the development of novel plant-derived antioxidant strategies in the treatment of skin cancers.

Keywords: skin cancer; mangosteen; xanthones; cytotoxicity; apoptosis; survival pathway; metastasis
Acknowledgements and Dedication

First and foremost, I would like to pay principal acknowledgement to my supervisors, Prof. Wei Zhang and Dr. Barbara Sanderson, for their very great help in supervision of the project, my PhD candidature and the laboratory.

Thank you, Wei, your concern for my project, career, and professional development provided the perfect role model for an all-round mentor and advisor, and for your encouragement of critical thinking and your high expectations of me.

Thank you, Barbara, for your continuous support, assistance, advice and perspective, especially your help with improving my scientific writing, at various points throughout my candidature. I am very grateful that I could always count on you whenever I needed your help.

Thank you goes to all past and present members of the Department of Medical Biotechnology for assistance with experiments, for advice, and for their companionship. In particular, I would like to thank Professor Chris Franco, for his care and concern, in helping me to get through a difficult time. I wish to directly thank Mrs. Angela Binns and Mrs. Barbara Kupke. Without their continuous and generous help, I could not have completed my project so quickly and smoothly.

Thank you, Niki Sperou, for your interest in my project and your help with my slides; Julian Adams, for your help with everything and your sense of humour; Jeff Barrett, for spending time with me to refine my presentation slides. I further thank Onuma Kaewkla, Tanya Bernardo, Vicki Edwards, Hao Jiang, Peng Su, Fitri Widi, Liufei Tan, Shuang Peng, Mahnaz Ramezanpour, Xuelian Zhao, and Shan He for
their friendship. While there is not nearly enough room to mention you all, I believe you know that you all contributed to my completion.

Thank you, Dr. George Mayne, for guiding me in the use and analysis of real-time PCR; Mrs. Sheree Bailey and Mr. Eugene Ng for their helpful assistance with Flow cytometry; Mrs. Monica Dreimanis for her continuous help with cell culture techniques; and Dr. Jennifer Clark for her kind assistance with microscopy and image analysis.

Special thank you goes to Dr. He Wang, for the opportunity that he offered me to come to Australia to work as a research assistant and start my research career.

Personal thanks go first to my husband Lixin Li, my parents and my sister. Their patience, love, understanding and assistance enabled me to perform at my best. Thanks to Mrs Ilze Thomas, who has already become like one of my family, for her care, help, and friendship in the past years, and especially for her correction of my thesis in my final stage of PhD. Thanks to all my friends whose company and support kept me going over these years.

In memory of my special close friend, Mrs. Alita Larsens.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>AAPH</td>
<td>2, 2’-Azobis (2-amidinopropane) dihydrochloride</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>BRAF</td>
<td>Serine/threonine-protein kinase B-Raf</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent kinases</td>
</tr>
<tr>
<td>CKI</td>
<td>Cyclin-dependent kinases inhibitors</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclooxygenase-2</td>
</tr>
<tr>
<td>Ct</td>
<td>Threshold of cycle</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′, 6-Diamidino-2-phenylindole dihydrochloride</td>
</tr>
<tr>
<td>DMBA</td>
<td>7,12-dimethyl[a]benzanthracene</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2, 2-Diphenyl-1-picyrylhydrazyl</td>
</tr>
<tr>
<td>%DPPHRadSA</td>
<td>Percentage DPPH radical scavenging activity</td>
</tr>
<tr>
<td>DTIC</td>
<td>Dacarbazine</td>
</tr>
<tr>
<td>DW</td>
<td>Dry weight</td>
</tr>
<tr>
<td>EMEA</td>
<td>European agency for the evaluation of medicinal products</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>FAK</td>
<td>Focal adhesion kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and drug administration</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>5-FU</td>
<td>5-Fluorouracil</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>GAE</td>
<td>Gallic acid equivalents</td>
</tr>
<tr>
<td>GOI</td>
<td>Gene of interest</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HO⁻</td>
<td>Hydroxide ion</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>50% inhibitory concentration</td>
</tr>
<tr>
<td>IkB</td>
<td>Inhibitor of kappaB</td>
</tr>
<tr>
<td>IKK</td>
<td>IkB kinase</td>
</tr>
<tr>
<td>IL-8</td>
<td>Interleukin-8</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscoves Modified Dulbecco’s Medium</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun NH₂-terminal kinase</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
</tbody>
</table>
Publications, Presentations and Awards

Publications

- Jing J. Wang, Barbara J.S. Sanderson, Wei Zhang, 2011. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garcinia mangostana Linn.) on human melanoma cells. Food and Chemical Toxicology. 49: 2385–2391

- Jing J. Wang, Qing H. Shi, Wei Zhang, Barbara J.S. Sanderson, 2012. Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food and Chemical Toxicology. 50: 3004-3013.

Publications in Submission

- Jing J. Wang, Wei Zhang, Barbara J.S. Sanderson, 2012. Altered mRNA expression related to the apoptotic effect of three xanthones on human melanoma SK-MEL-28 cell line. Food and Chemical Toxicology (Under review; manuscript No. FCT-6676).

Publications in preparation

- Jing J. Wang, Wei Zhang, Barbara J.S. Sanderson. Xanthones isolated from mangosteen pericarp induce apoptosis in human melanoma SK-MEL-28 cells.

- Jing J. Wang, Barbara J.S. Sanderson, Wei Zhang. Potential synergistic skin cancer suppression by combination of xanthones.

Presentations

- ASMR SA Scientific Meeting 6th June 2012. Adelaide, Australia. Oral Presentation "Inhibitory effect of α-mangostin on proliferation and metastasis of human melanoma SK-MEL-28 cell line"

Poster Presentation. “Anti-skin cancer activity of crude extract of mangosteen (Garcinia mangostana Linn.)”

- 13th World Congress on Cancers of the Skin. 7th -10th April 2010. Madrid, Spain. Oral Presentation “Evaluation of antiproliferation properties of xanthones from pericarp of mangosteen (Garcinia mangostana L.) on human melanoma cells”

Awards

- 2012 Ross Wishart Memorial Award finalist
- 2011 AusBiotech-GSK Student Excellence Award – State Winner
- 2011 Chinese Government Award for Outstanding Self-financed Students Abroad
- 2010 “Top Ten Cited Author in 2007 & 2008” from Mutation Research
- 2010 AusBiotech-GSK Student Excellence Award – State Finalist
- 2008 AusBiotech-GSK Student Excellence Award – State Finalist
- 2008 – 2012 EPRIS Scholarship, Flinders University, Australia

Professional Membership

- 2010- current AusBiotech (Australia’s Biotechnology Organisation)
- 2012 – 2013 Australian Society for Medical Research
- 2012-2013 Bioprocessing Network
Table of Content

Candidate’s Declaration ... i
Thesis Summary ... ii
Acknowledgements and Dedication ... iv
List of Abbreviations .. vi
Publications, Presentations and Awards .. viii
Professional Membership .. ix
Table of Content ... x
List of Tables .. xvi
List of Figures .. xvii

Chapter 1 INTRODUCTION AND LITERATURE REVIEW ... 1

1.1 Skin cancer .. 2
 1.1.1 The skin .. 2
 1.1.2 Major types of skin cancers ... 2
 1.1.3 Epidemiology of skin cancer ... 3
 1.1.4 Ultraviolet (UV) radiation, antioxidants, and skin cancers ... 4
 1.1.4.1 UV and skin cancers .. 4
 1.1.4.2 Antioxidants and UV-induced skin cancers ... 7
 1.1.5 Skin cancer development ... 8
 1.1.6 Current strategies for skin cancer prevention and therapies and their limitations 9
 1.1.6.1 Skin cancer prevention .. 9
 1.1.6.2 Skin cancer therapies .. 11
 1.1.7 Therapeutic strategies for skin cancers .. 12
 1.1.7.1 Targeting deregulation of cell cycle .. 13
 1.1.7.2 Targeting resistance to apoptotic cell death ... 17
 1.1.7.3 Targeting activation of survival pathways .. 21
 1.1.7.4 Targeting activation of invasion and metastasis ... 24
 1.2 The role of plant-derived natural products in skin cancer treatment and prevention 27
 1.2.1 Chemopreventive activity of plant secondary metabolites in skin cancers 27
 1.2.2 Cytotoxicity of plant secondary metabolites in skin cancers .. 31
 1.2.3 Anti-metastatic effect of plant secondary metabolites in skin cancers 37
 1.3 *Garcinia mangostana* Linn. ... 40
 1.3.1 Botanical description ... 40
 1.3.2 Traditional medical properties .. 41
 1.3.3 Xanthones in the mangosteen and their chemical structures .. 41
 1.3.4 Biological activities of extracts and pure compounds derived from mangosteen 50
 1.3.4.1 Antioxidant effect of mangosteen ... 50
 1.3.4.2 Cytotoxicity of mangosteen towards cancer cells .. 54
 1.3.4.3 Inhibition of metastasis .. 64
 1.3.4.4 Other effects ... 68
 1.4 Hypotheses .. 68
 1.5 Thesis scope and aims ... 69
 1.6 Significance ... 72
Chapter 2 Optimisation of the Extraction Methods and Characterisation of the Antioxidant Properties of Mangosteen Pericarp Extracts

2.1 Introduction

2.2 Materials and methods

2.2.1 Materials

2.2.2 Preparation of mangosteen pericarp

2.2.3 Mangosteen pericarp extraction methods

2.2.4 Preparation of green tea extract

2.2.5 Chemical profile characterisation of mangosteen pericarp extracts

2.2.5.1 Total Phenolics (TP) analysis

2.2.5.2 Total flavonoid (TF) analysis

2.2.5.3 High performance liquid chromatography (HPLC) profile of mangosteen pericarp extracts

2.2.6 Antioxidant assays

2.2.6.1 DPPH radical scavenging activity

2.2.6.2 Ferric reducing antioxidant power (FRAP) assay

2.2.6.3 Oxygen radical absorbance capacity (ORAC) assay

2.2.7 Preparation of extracts for biological assays

2.2.8 Statistical analysis

2.3 Results

2.3.1 The mangosteen pericarp

2.3.2 Optimisation of extraction method

2.3.2.1 Effect of the extraction temperature

2.3.2.2 Effect of the pericarp/solvent ratio

2.3.2.3 Effect of the extraction duration

2.3.2.4 Effect of solvent concentration for MPEE

2.3.2.5 Optimal extraction conditions

2.3.3 Yield of extracts

2.3.4 Chemical profile characterisation of mangosteen pericarp extract

2.3.4.1 TP and TF contents

2.3.4.2 HPLC profile of mangosteen pericarp extracts

2.3.5 Antioxidant properties of the mangosteen pericarp extract

2.4 Discussion

2.4.1 Optimisation of the extraction methods

2.4.2 Antioxidant properties of the mangosteen pericarp extract

2.5 Summary

Chapter 3 Cytotoxic Effect of Crude Mangosteen Pericarp Extracts and Pure Xanthones on Human Skin Cell Lines

3.1 Introduction

3.2 Materials and methods

3.2.1 Materials

3.2.2 Cell lines and cell culture

3.2.2.1 Cell lines

3.2.2.2 Cell morphology

3.2.2.3 Cell culture

3.2.2.4 Cell doubling time

3.2.3 Treatment preparation

3.2.4 Trypan Blue exclusion assay

3.2.5 Cell proliferation assays

3.2.5.1 MTT Assay
3.2.5.2 Crystal Violet assay .. 108
3.2.5.3 Standard curves for the MTT assay and Crystal Violet assay 108
3.2.6 Statistical analysis .. 109
3.3 Results .. 109
3.3.1 Optimisation of cell adherence time and cell density per well 109
3.3.1.1 Cell adherence time ... 109
3.3.1.2 Cell density seeded per well .. 111
3.3.2 Comparison of MTT assay and the Crystal Violet assay 114
3.3.2.1 Standard curves .. 114
3.3.2.2 Cell viability .. 115
3.3.2.3 Intra- and inter-assay coefficients of variance (CV) 118
3.3.2.4 Summary of comparison of the MTT and Crystal Violet assays 118
3.3.3 Cytotoxicity of crude extracts and pure xanthone compounds from the mangosteen pericarp on human skin cells ... 119
3.3.3.1 Cellular morphological changes with or without treatment with xanthones .. 119
3.3.3.2 Cytotoxicity of MPEE and MPWE on human skin cancer cell lines 121
3.3.3.3 Cytotoxicity of MPEE on human normal skin cell lines 122
3.3.3.4 Cytotoxicity of pure xanthone compounds on human skin cancer and normal cell lines .. 123
3.3.3.5 Cytotoxicity of commercial drugs on human skin cell lines 124
3.4 Discussion ... 126
3.4.1 Cytotoxicity of crude extracts ... 126
3.4.2 Cytotoxicity of tested xanthone pure compounds 127
3.4.3 Cytotoxicity against cancer cells induced by MPEE and xanthones ... 128
3.4.4 Competitive advantage over the tested commercial drugs 129
3.4.5 Potential synergistic effect among individual xanthones 130
3.4.6 Structure-related cytotoxicity ... 130
3.5 Summary ... 131

Chapter 4 Underlying Mechanisms of Cytotoxic Effects of Crude Extract and Pure Xanthone Compounds .. 132
4.1 Introduction ... 133
4.2 Materials and methods .. 134
4.2.1 Materials ... 134
4.2.2 Cell lines and cell culture ... 134
4.2.3 Cell cycle analysis ... 134
4.2.4 Apoptosis analysis .. 135
4.2.5 Caspase 3/7, 8 and 9 assays ... 136
4.2.6 Mitochondrial membrane potential (△Ψm) detection 137
4.2.7 General methods for quantitative Real-time reverse transcription PCR (qRT-PCR) .. 137
4.2.7.1 Primer preparation for qRT-PCR .. 137
4.2.7.2 Total RNA extraction .. 140
4.2.7.3 Quantification of RNA concentration .. 140
4.2.7.4 Verification of RNA integrity .. 140
4.2.7.5 Removal of DNA contamination ... 141
4.2.7.6 Reverse transcription of total RNA to cDNA 141
4.2.7.7 Validation of qRT-PCR ... 142
4.2.7.8 qRT-PCR reactions ... 146
4.2.8 Statistical analysis ... 147
4.3 Results ... 148
4.3.1 Effect of xanthones on cell cycle in human skin cancer cells 148
4.3.2 Effect of xanthones on apoptosis induction in human skin cancer cells .. 152
4.3.3 Effect of xanthones on caspase activities in human skin cancer cells .. 155
4.3.3.1 Caspase 3/7 activities .. 155
4.3.3.2 Caspase 8 activities .. 155
4.3.3.3 Caspase 9 activities .. 156
4.3.4 Effect of xanthones on mitochondrial membrane potential (ΔΨm) in human skin cancer cells ... 160
4.3.5 Modulation of gene expressions involved in cytotoxicity induced by xanthones in human skin cancer cells ... 162
4.3.5.1 Modulation of cell cycle-related genes 162
4.3.5.2 Modulation of apoptosis-related genes 164
4.3.5.3 Modulation of genes in survival pathways 166
4.4 Discussion .. 171
4.4.1 Cell cycle modulatory effect of xanthones and the molecular mechanisms in human skin cancer cells ... 171
4.4.2 Apoptotic effect of xanthones and the cellular and molecular pathways in human skin cancer cells ... 173
4.4.2.1 Apoptosis-inducing activity of xanthones in human skin cancer cells ... 173
4.4.2.2 Mechanisms of xanthone-induced apoptosis 174
4.4.3 Modulation of genes in survival pathways 179
4.4.4 General discussion of the variation of results 184
4.5 Summary .. 185
Chapter 5 Potential Synergistic Effects of combining xanthones with commercial drugs or with α-mangostin ... 187
5.1 Introduction ... 188
5.2 Materials and Methods .. 189
5.2.1 Materials ... 189
5.2.2 Crystal Violet assay .. 189
5.2.3 Cell cycle analysis and apoptosis analysis 190
5.2.4 Experimental design for screening of potential synergistic cytotoxic effect .. 190
5.2.4.1 Combinations of xanthones with commercial drugs (5-FU & DTIC) .. 190
5.2.4.2 Combinations of α-mangostin with individual xanthone compounds .. 190
5.2.5 Statistical analysis .. 191
5.3 Results ... 192
5.3.1 Combinations with commercial drugs 192
5.3.2 Combinations of α-mangostin with another xanthone compound .. 194
5.3.2.1 Effects of combinations of α-mangostin with another xanthone on human squamous cell carcinoma A-431 cells .. 194
5.3.2.2 Effects of combinations α-mangostin with another xanthone on human melanoma SK-MEL-28 cells .. 198
5.3.3 Potential mechanisms of observed synergistic effects 203
5.3.3.1 The modulatory effect on cell cycle regulation after treatment with
combination of α-mangostin with another xanthone in skin cancer cells....203
5.3.3.2 Apoptosis-inducing effect after treatment with combinations of
α-mangostin with another xanthone in skin cancer cells.........................206
5.4 Discussion..208
5.4.1 No synergy observed when xanthones in combination with commercial
drugs ..208
5.4.2 Synergy found between α-mangostin and another xanthone in
inhibiting skin cancer cell proliferation...210
5.5 Summary..212

Chapter 6 Anti-metastatic effect of α-mangostin on human skin cancer cells....
..213
6.1 Introduction..214
6.2 Materials and methods..215
6.2.1 Materials..215
6.2.2 Cell lines and cell culture ...216
6.2.3 Treatment preparation ..216
6.2.4 Cell viability assay ..216
6.2.5 Wound healing Assay ..216
6.2.6 Boyden chamber invasion and migration assay217
6.2.7 Cell-matrix adhesion assay ...218
6.2.8 Real-time polymerase chain reaction (qRT-PCR)..........................218
6.2.9 Statistical analysis ..219
6.3 Results..219
6.3.1 α-Mangostin inhibits the motility of skin cancer cells219
6.3.2 α-Mangostin inhibits the migration and invasion of skin cancer cells..222
6.3.3 α-Mangostin inhibits the adhesion of skin cancer cells...............225
6.3.4 α-Mangostin modulates the metastasis-related genes of skin cancer
cells ..227
6.4 Discussion..229
6.4.1 Inhibition of skin cancer cell motility, migration and invasion by α-
mangostin...230
6.4.2 Inhibition of skin cancer cell adhesion by α-mangostin..................230
6.4.3 Inhibition of mRNA expression of MMP-2 and MMP-9 by α-
mangostin...231
6.4.4 Inhibition of NFκB, Akt1, and BRAF V600E involved in the anti-
metastatic activity induced by α-mangostin..232
6.5 Summary..235

Chapter 7 Conclusions & future directions ..236
7.1 Conclusions and future directions ...237
7.1.1 Characterisation of standardised crude extracts from the pericarp of
mangosteen ...238
7.1.2 Significant cytotoxicity induced by MPEE and xanthones238
7.1.3 Cytotoxicity induced by MPEE and xanthones via multiple modes of
action ..240
7.1.4 Synergistic effect was found when α-mangostin was combined with
another xanthone...242
7.1.5 Anti-metastatic activity ..244
7.2 Overall conclusion ..245

References ..249
Appendix

A1 Stock solutions

A2 Identification and quantification of xanthones in the mangosteen pericarp ethanol extract

A2.1 HPLC profile of mangosteen pericarp ethanol extract

A2.2 Molecular weight and composition of xanthones in the mangosteen pericarp ethanol extract

A3 Mycoplasma detection using PCR

A3.1 Master mix and primer sequences for PCR

A3.2 Result for the mycoplasma test

A4 Cell growth curve as determined by the Trypan Blue assay over the period of 144 h

A5 Comparison of the MTT and Crystal Violet assay

A6 Cytotoxicity of 5-FU and DTIC on human skin cell lines

A7 One example of histogram for cell cycle analysis

A8 Supplementary data for apoptosis analysis

A8.1 Late apoptotic or necrotic cell population after treatment with xanthones in two skin cancer cell lines

A8.2 One example of dot plot for apoptosis analysis

A9 Principle of caspase 3/7, 8, and 9 assays

A10 One example of dot plot for the mitochondrial membrane potential detection assay

A11 Supplementary data for qRT-PCR

A11.1 Efficacy of DNase treatment

A11.2 Detection of genomic DNA contamination by PCR

A11.3 Comparison of three different commercial master mixes

A11.4 Optimisation of qRT-PCR conditions

A11.5 Verification of PCR product size by running agarose gel

A11.6 Stability of housekeeping gene (β-actin) expression

A11.7 Reproducibility of qRT-PCR

A11.8 One example of qRT-PCR standard curve

A11.8.1 Standard curve

A11.8.2 Amplification efficiency (AE)

A11.9 One example of raw data of qRT-PCR standard curve

A11.10 qRT-PCR melt curve for each gene

A12 Cytotoxicity of α-mangostin at low concentrations on A-431 and SK-MEL-28 cells
List of Tables

Table 1-1 ... 10
Table 1-2 ... 16
Table 1-3 ... 16
Table 1-4 ... 25
Table 1-5 ... 30
Table 1-6 ... 34
Table 1-7 ... 38
Table 1-8 ... 41
Table 1-9 ... 45
Table 1-10 ... 53
Table 1-11 .. 57
Table 1-12 .. 61
Table 1-13 .. 66
Table 2-1 ... 75
Table 2-2 ... 78
Table 2-3 ... 88
Table 2-4 ... 90
Table 3-1 ... 101
Table 3-2 ... 118
Table 3-3 ... 126
Table 4-1 ... 139
Table 4-2 ... 142
Table 4-3 ... 142
Table 4-4 ... 151
Table 4-5 ... 152
Table 5-1 ... 190
Table 5-2 ... 191
Table 5-3 ... 202
Table 7-1 ... 248
List of Figures

Figure 1-1 ... 2
Figure 1-2 ... 3
Figure 1-3 ... 6
Figure 1-4 ... 9
Figure 1-5 .. 13
Figure 1-6 ... 15
Figure 1-7 ... 19
Figure 1-8 ... 20
Figure 1-9 ... 22
Figure 1-10 .. 26
Figure 1-11 ... 40
Figure 1-12 ... 44
Figure 1-13 ... 63
Figure 1-14 ... 64
Figure 1-15 ... 68
Figure 1-16 ... 71
Figure 2-1 ... 86
Figure 2-2 ... 86
Figure 2-3 ... 89
Figure 3-1 ... 102
Figure 3-2 ... 111
Figure 3-3 ... 113
Figure 3-4 ... 115
Figure 3-5 ... 117
Figure 3-6 ... 120
Figure 3-7 ... 122
Figure 3-8 ... 123
Figure 3-9 ... 125
Figure 4-1 .. 134
Figure 4-2 .. 150
Figure 4-3 .. 154
Figure 4-4 .. 157
Figure 4-5 .. 158
Figure 4-6 .. 159
Figure 4-7 .. 161
Figure 4-8 .. 163
Figure 4-9 .. 165
Figure 4-10 ... 166
Figure 4-11 ... 168
Figure 4-12 ... 169
Figure 4-13 ... 170
Figure 4-14 ... 171
Figure 4-15 ... 172
Figure 4-16 ... 175
Figure 4-17 ... 179
Figure 5-1 ... 193
Figure 5-2 ... 193