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Abstract 
Knee prostheses, particularly those used in knee arthroplasties, are commonly designed using 

mechanical modelling methods. Despite the benefits of these methods, there are persistent issues 

regarding chronic post-operative pain following implantation of prosthetic devices. As one of the 

significant indicators for revision surgery, it is important that the occurrence of chronic post-

operative pain is mitigated.  The integration of mechanical and neural modelling methods is yet to 

be explored extensively but may offer a solution to the issue. With integrated modelling methods, 

potential pain or discomfort may be predicted during the design phase, allowing for modifications 

to alleviate predicted complications prior to the device being physically created and implanted.  

 

As a first step towards developing a complete integrated mechanical/neural model for the knee, 

this project focused on adapting the Hodgkin-Huxley neural model for a single Ruffini ending. 

However, there is a significant lack of understanding regarding fundamental behaviours of the 

Ruffini and limited experimental data available. As a result, there are numerous discrepancies in 

the literature, in particular regarding what and how the Ruffini senses. Currently, Khalsa et al. 

(1996) provides the most complete set of experimental data that describes Ruffini behaviour and 

so this data was used as a guide for adaptation of the neural model (Khalsa, Hoffman et al. 1996).  

 

The Khalsa et al. (1996) experiment was replicated using computer modelling methods. This was 

expected to assist in determining what the Ruffini senses and the physical properties involved in 

how it senses. The specimen used in the original experiment was replicated using FEBio, while 

the Ruffini neural response was replicated using a Matlab adaptation of the Hodgkin-Huxley 

model. Successful integration of the mechanical and neural models was achieved, and the models 

were tested extensively using three material types and eighteen neural model input stimuli.  

 

None of the material/input stimuli combinations produced results that adequately described the 

original results, and the ‘correct’ input stimulus for the neural model is still unclear. Given that 

none of the models tested were able to adequately replicate the original results, two possible 

conclusions can be drawn: either there are physical features or characteristics missing from the 

mechanical or neural model that play part in the Ruffini behaviour, or there may have been 

complications in the original results that make them difficult to replicate (e.g. responses are from 

multiple Ruffini endings, or interference from other neurons). Overall, the goals of the project 

were not achieved and as such there is still an abundance of future work to be completed, including 

further adaptations to the mechanical and neural model and physically re-performing the original 

experiment.   
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1 Introduction 
A knee arthroplasty is a surgical operation during which the patient’s knee joint is reconstructed 

or replaced, either partially or totally, with artificial parts. The surgery may either be an initial 

knee replacement (primary surgery) or re-operation on a previous knee replacement (revision 

surgery), and has the aim of providing the patient with relief from pain and correcting physical 

deformities or misalignments within the joint (Wylde, Dieppe et al. 2007; Coolican 2015; Foran 

and Fischer 2015; Orthopedics SA 2019). Knee arthroplasty is currently accepted as the 

international standard treatment for both degenerative and rheumatologic knee diseases, including 

osteoarthritis and rheumatoid arthritis, but is also sometimes selected as a path of treatment for 

sporting knee injuries when other forms of treatment have failed to provide any benefit or relief to 

the patient (Kurtz, Ong et al. 2011; Orthopedics SA 2019).  

 

The total number of knee arthroplasties performed annually in Australia is rapidly increasing, to 

the point where knee replacement surgery is becoming almost as common as a heart attack or 

stroke (Australian Orthopedic Association 2018; Kim, Pearson-Chauhan et al. 2018; Australian 

Orthopedic Association 2019). In 2018 in Australia, there were 65,266 primary and revision knee 

replacement surgeries performed – a 2.2% increase in knee arthroplasty surgeries compared with 

the previous year (Australian Orthopedic Association 2018; Australian Orthopedic Association 

2019). This increase in number of annual knee arthroplasties has been observed internationally 

too; in the United States, there were approximately 700,000 knee arthroplasties performed in 2010, 

however this number has been predicted to grow to 3.48 million by 2030 based on projection of 

observed trends (Kim, Pearson-Chauhan et al. 2018).  

 

Alongside the increasing number of knee arthroplasties being performed annually, both nationally 

and internationally, there is an increasing incidence of post-operative patient dissatisfaction (Skou, 

Graven-Nielsen et al. 2013; Kim, Pearson-Chauhan et al. 2018; Orthopedics SA 2019). Various 

scoring systems have been developed as an attempt to quantify patient satisfaction to determine 

the success of the surgery and causes for dissatisfaction (Wylde, Dieppe et al. 2007; Coolican 

2015). From these scoring systems, chronic and persistent post-operative pain and knee instability 

have been identified as significant sources of patient dissatisfaction following knee arthroplasty 

(Coolican 2015; Kim, Pearson-Chauhan et al. 2018; Orthopedics SA 2019). Pain and instability 

following knee arthroplasty can stem from a range of identifiable causes including infection, part 

loosening, incorrect part sizing, part misalignment, and soft tissue impingement. However, there 

are a proportion of patients who present with symptoms of post-operative pain and instability but 
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show no obvious indication of the cause (Wylde, Dieppe et al. 2007; Coolican 2015; Kim, Pearson-

Chauhan et al. 2018; Orthopedics SA 2019).  

 

A systematic review of total hip and knee replacement surgery outcomes indicated that 

approximately 20% of all primary total knee replacement patients reported experiencing chronic 

post-operative pain (Beswick, Wylde et al. 2012). As one of the most significant sources of patient 

dissatisfaction, it is unsatisfactory for such a large proportion of knee arthroplasty patients to be 

experiencing chronic post-operative pain (Coolican 2015). Additionally, the Hip, Knee and 

Shoulder Arthroplasty 2018 Annual Report indicated that 19% of revision arthroplasties 

performed in 2018 were undertaken in an attempt to rectify chronic pain caused by, or which had 

not been alleviated by, previously performed primary arthroplasties (Australian Orthopedic 

Association 2018).The rising number of knee arthroplasties performed each year, combined with 

an increasing proportion of patients experiencing dissatisfaction following surgery, can be 

expected to result in an increase in the number of revision surgeries being performed. The 

likelihood of requiring multiple revision surgeries has been identified as 4-5 times greater than the 

risk of requiring an initial revision surgery (Skou, Graven-Nielsen et al. 2013; Australian 

Orthopedic Association 2019). Therefore, it is clearly undesirable for the rate of initial revision 

surgeries to increase. 

 

Recently, the use of mechanical modelling methods in knee prosthesis design (including those 

used for knee arthroplasties) has become increasingly common (Bendjaballah, Shirazi-Adl et al. 

1997; Halloran, Petrella et al. 2005; Trad, Barkaoui et al. 2018). Utilising mechanical modelling 

allows for the prediction of contact stresses and pressures that may occur within and around the 

prosthetic device and joint following implantation. As a result, there is an opportunity to revise the 

design and mitigate potential complications that may have occurred due to these stresses and 

pressures  (Halloran, Petrella et al. 2005). In theory, modifying the prosthesis to reduce the 

occurrence and /or magnitude of the predicted forces should improve both the longevity and 

comfort of the prosthesis once implanted and as such, reduce the need for revision surgeries. 

However, even with mechanical modelling in current practice, the continually increasing incidence 

of chronic pain and discomfort experienced following knee arthroplasties indicates that this 

mechanical modelling method alone is not enough to predict the discomfort that may be elicited 

by any particular prosthesis once it has been implanted.  

 

The combination of neural modelling with mechanical modelling may offer a potential solution to 

this problem. Neural modelling, which models the neural response of the body to various input 
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stimuli, could be adapted specifically for the receptors within the knee in order to determine how 

the stresses and contact pressures within a particular prosthesis design might be physically 

received by the patient following knee arthroplasty. Combining the two modelling methods is a 

concept which has not yet been explored in-depth, particularly with specific application to the 

knee. If successful, it could offer invaluable improvements in the medical field - it would re-

imagine the way prostheses are designed, providing the potential to improve patient satisfaction 

levels through early prediction and mitigation of pain points during the design process. As a result, 

the occurrence of chronic post-operative pain would be expected to reduce, which would in turn 

reduce the number of revision surgeries that are required.  
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2 Literature Review 
In order to successfully integrate neural and mechanical models specific to the knee, a fundamental 

understanding of human knee structure and how pain or discomfort is sensed within the knee is 

required. An in-depth analysis of existing literature in these areas was undertaken, along with an 

analysis of existing neural and mechanical model combinations.  

 

2.1 Anatomy and Physiology of the Human Knee 

2.1.1 Overview of the Knee Joint 

The human knee is a complex hinge joint that is formed by the femur, tibia and patella and is 

supported by various surrounding ligaments, tendons, muscles and cartilage (Souza and Doan 

2010; Gaillard, Shabani et al. 2015; Orthopedics SA 2019). The arrangement of the joint’s 

supporting elements and bones constrain the knee to a range of motion across three planes, 

allowing for six degrees of freedom comprised of three rotational and three translational motions 

(Komdeur, Pollo et al. 2002; Gaillard, Shabani et al. 2015; Jawad and Michael 2017). The greatest 

range of motion in the knee joint is flexion/extension (rotation) in the sagittal plane (Komdeur, 

Pollo et al. 2002). The remaining motions the knee is capable of, but with a more limited range, 

include internal/external rotation, varus/valgus rotation, anterior/posterior gliding, medial/lateral 

shifting, and compression/distraction (translation proximally/distally) (Figure 1) (Komdeur, Pollo 

et al. 2002; Gaillard, Shabani et al. 2015; Jawad and Michael 2017).  

 

This image has been removed due to copyright restrictions. Available online from 
[https://pubmed.ncbi.nlm.nih.gov/16333447] 

 
Figure 1. The six degrees of freedom of motion of the knee (Komdeur, Pollo et al. 2002). 

 

Both the intra-articular and extra-articular structures of the knee joint contribute to joint 

reinforcement and stability during movement in the prescribed degrees of freedom, ensuring that 

the joint’s range of motion is smooth and controlled (Gaillard, Shabani et al. 2015; Wodowski, 

Swigler et al. 2016; Orthopedics SA 2019). Extensive research regarding the knee joint and 

associated structures has led to an understanding that the ligaments of the knee are primarily 

responsible for joint stabilization, while the muscles, cartilage, and other structures surrounding 

the knee provide secondary support (Katonis, Papoutsidakis et al. 2008; Gaillard, Shabani et al. 

2015; Jawad and Michael 2017). Figure 2 illustrates the anatomy of the knee joint, detailing some 

of the structures which play an important role in knee stabilization.   
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This image has been removed due to copyright restrictions. Available online from 
[http://www.avalonorthopaedic.com.au/managing-complex-knee-injuries/] 

 
Figure 2. Illustration of the human knee showing primary structures pertinent to stability and movement (Avalon Orthopedic 

2019) 

 

The contribution of ligaments to knee stability and reinforcement of the joint is understood to be 

due to their extensive nerve supply which allows for proprioception (Gaillard, Shabani et al. 2015). 

The ligaments documented to have involvement in the primary support and stabilization of the 

knee joint include the patellar ligament, the medial and lateral collateral ligaments, and the anterior 

and posterior cruciate ligaments (Komdeur, Pollo et al. 2002; Jawad and Michael 2017). These 

ligaments all assist in preventing excessive displacements and rotations, therefore protecting the 

joint from unstable, uncontrolled movements that could result in injury to the joint structures 

(Jawad and Michael 2017). In particular, the anterior cruciate ligament (ACL) and the posterior 

cruciate ligament (PCL) have been identified as key ligaments that contribute to joint stabilization 

and reinforcement, with the ACL recognised to contribute to approximately 85% of the knee joint 

stabilization functionality (Komdeur, Pollo et al. 2002; Souza and Doan 2010; Jawad and Michael 

2017).   

 

There are multiple muscle groups that contribute to secondary support and active stabilization of 

the knee joint as well as being responsible for initiation of joint motion (Katonis, Papoutsidakis et 

al. 2008). The two main muscle groups contributing to this are the quadriceps and the hamstrings, 

while other smaller muscles involved include the gastrocnemius, plantaris and popliteus muscles 

(Souza and Doan 2010; Jawad and Michael 2017).  

 

The knee joint contains three fat pads - the quadriceps fat pad, the prefemoral fat pad, and the 

infrapatellar fat pad, all of which are located anteriorly within the knee (Souza and Doan 2010). 

While not all of the functions of the fat pads are known, there is speculation that they may 

contribute to stability and biomechanical support of the joint due to being rich in vascularization 

and innervation, similar to the other supporting structures of the knee (Souza and Doan 2010; 

Gaillard, Shabani et al. 2015).   

 

Another structure of the knee joint that is considered to assist in reinforcing knee stability is the 

joint capsule (Müller 1982). The joint capsule is strong, dense, collagen-rich connective tissue that 

attaches to the knee joint bones, sealing the joint space (Ralphs and Benjamin 1994; Souza and 

Doan 2010). The inner surface of the capsule is lined by a synovial membrane, and both the capsule 
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tissue itself and the synovial tissue are highly innervated (Ralphs and Benjamin 1994). The 

innervation of these tissues indicates that the joint capsule, alongside the other supporting 

structures, provides some stability and proprioception to the joint (Müller 1982; Ralphs and 

Benjamin 1994). 
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2.2 Neurons and the Nervous System 

2.2.1 Sensory Receptors 

Sensory receptors convey information regarding the internal body and the surrounding 

environment by converting stimuli into neural impulses (known as action potentials), which are 

then interpreted by the central nervous system (Widmaier, Raff et al. 2014; Wodowski, Swigler et 

al. 2016). These action potentials are only produced by the receptor if the strength of the given 

stimuli is above a given threshold, and the threshold varies between receptor types (Halata, Wagner 

et al. 1999). The various types of sensory receptors are classified according to the types of stimuli 

that activate them, or by their location within the body (Jawad and Michael 2017). In general, the 

types of sensory receptors include mechanoreceptors, chemoreceptors, thermoreceptors, 

photoreceptors, and nociceptors (Widmaier, Raff et al. 2014).  

 

Literature indicates that the types of receptors identified specifically within the internal knee are 

mechanoreceptors and nociceptors (Gillquist 1996; Katonis, Papoutsidakis et al. 2008; Wodowski, 

Swigler et al. 2016; Jawad and Michael 2017). Mechanoreceptors respond to mechanical stimuli 

such as pressure, stretch or vibration (Widmaier, Raff et al. 2014). One class of mechanoreceptor 

that is found within the knee is the proprioceptor, which provides the body with an awareness of 

its relative position in space (Johnson 2003; Wodowski, Swigler et al. 2016). Nociceptors are a 

type of receptor that detect noxious stimuli thereby allowing the body to interpret harmful stimuli 

as pain thereby preventing further tissue damage or injury (Widmaier, Raff et al. 2014). 

Nociceptors may respond to a range of stimuli including thermal, mechanical or chemical 

(Widmaier, Raff et al. 2014).   

 

While many aspects of human physiology are agreed upon, there is still some degree of 

controversy in regards to the types and locations of mechanoreceptors within the human knee 

(Wodowski, Swigler et al. 2016). This is due to limited research directly involving the human knee 

and its sensory receptors, although there have been multiple studies related to receptors located in 

other parts of the human body (such as the skin). On the other hand, there have been a number of 

studies performed relating to receptors in animals (Freeman and Wyke 1967; Burgess and Clark 

1969; Halata, Wagner et al. 1999; Grigg 2001).  

 

A major study by Freeman and Wyke (1967) identified four types of receptors within the cat knee 

– Ruffini endings, Pacinian corpuscles, Golgi-tendon organs, and free nerve endings (Freeman and 

Wyke 1967). This has been a widely accepted study that has been used by other researchers to 

draw conclusions regarding the human knee. There are a number of weaknesses in applying this 
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study directly to the human knee, including the lack of evidence that the cat and human knee are 

directly comparable. In addition, the study was conducted using cats’ knees with a small sample 

size of 31 individual cats and a total of 41 knees. However compared to other related studies 

performed on cats this was the most significant sample (Freeman and Wyke 1967; Burgess and 

Clark 1969; Grigg 2001).  

 

There have also been studies completed on knee joints of other animal species including rats, 

rabbits and sheep. One particular study involving sheep identified three of the four types of 

receptors classified by Freeman and Wyke (1967) within the sheep knee, including Ruffini 

endings, Pacinian corpuscles and free nerve endings (Halata, Wagner et al. 1999). The study also 

confirmed the rich supply of sensory nerves within the sheep ACL. The strengths of this study 

include the sheep knee joint being easily accessible for sample dissection, as well as the human 

and sheep knee joint and ligaments sharing anatomical similarities. However, there are always 

limitations in drawing conclusions regarding the human knee receptors from a non-human study. 

 

There have been two studies involving mechanoreceptors in human knees that have produced 

different findings to Freeman and Wyke (1967) (Schutte, Dabezies et al. 1987; Katonis, 

Papoutsidakis et al. 2008). Specifically, both studies found fewer receptors overall, and the study 

by Katonis et al. (2008) identified only three of the four receptor types classified by Freeman and 

Wyke (1967). The weaknesses in these two studies include their reliance on cadaver samples, 

amputation samples and samples obtained as a result of surgery. Samples obtained under these 

circumstances may not be representative of healthy human knees as there may have been diseased 

or damaged tissues amongst the samples or potential deterioration of sensory receptors. The use 

of human samples has allowed these studies to add some value to the body of knowledge regarding 

receptors in the human knee, however they have also created uncertainty by producing conflicting 

results compared to the Freeman and Wyke (1967) classifications.  

 

More recently, a human study was conducted which attempted to map the distributions of all 

mechanoreceptors within the ligaments and tendons surrounding the knee, as well as distinguish 

the types and densities of receptors (Çabuk and Kuşku Çabuk 2016). The study indicated the 

presence of three of the four receptor types identified by Freeman and Wyke (1967), however in 

contrast to other studies, the receptors identified were Golgi tendon organs, Ruffini endings and 

free nerve endings. A strength of this study is the use of a contemporary histological technique, 

while the weaknesses of the study are the small sample size of 8 cadavers and the possibility of 

deteriorated cadaver tissues. 
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Research regarding the densities of receptor types within the knee is variable between studies, 

mainly due to the varied sampling methodologies which included cadavers and damaged knee 

tissue, as well as varied species (Schultz, Miller et al. 1984; Schutte, Dabezies et al. 1987; Katonis, 

Papoutsidakis et al. 2008; Çabuk and Kuşku Çabuk 2016). Therefore, precise numbers of receptors 

within various structure of the human knee have not been accurately established.  

 

Despite there being some uncertainty as a result of conflicting studies, the Freeman and Wyke 

(1967) classification remains the predominant and most widely accepted study regarding receptors 

within the knee. Therefore, the receptors that will be further investigated will be those classified 

by Freeman and Wyke (1967). These receptor types, their structures and their functionality are 

summarised in Table 1. It should be noted that naming conventions of the receptor types differ 

between studies, however the names that will be used in the present paper are those listed in Table 

1.    

 



 

 

Table 1. Summary of the four receptor types identified by Freeman and Wyke (1967), including morphology and physiological function  

Type Common 
Name 

Location  
(in the knee) 

Structure and Size Parent Axon Perceived 
Stimulus 

Activation 
Threshold 

Adaptation 

I Ruffini 
ending 

Joint capsule, 
ligaments. 

Variable depending on species. 
Generally elongated with tapering 
ends, encapsulated.  
20µm-150µm in diameter, up to 
600µm in length. 

Myelinated, 5µm-
10µm in diameter.  
 
 

Stretch, tissue 
displacement. 

Low Slow 

II Pacinian 
corpuscle 

Fat pads, joint 
capsule, 
ligaments, 
menisci. 

Elongated, oval-shaped, 
encapsulated, multi-laminated. 
Up to 4mm length. 

Myelinated, 8-
15µm in diameter. 

Compression, 
pressure, 
vibration. 

Low Fast 

III Golgi 
tendon 
organ 

Tendons, 
ligaments, joint 
capsule, menisci. 

Elongated with tapering ends, 
encapsulated. Up to 600µm in 
length, 100µm in width. 

Myelinated, 
14µm - 16µm in 
diameter. 

Stretch 
(extreme, end 
limit). 

High Slow 

IV Free nerve 
ending 

All articular 
tissues except 
bone. 

Unencapsulated, branching or 
tightly meshed. 0.5µm-1.5µm in 
diameter. 

Unmyelinated, 1-
2µm in diameter 
OR 
Myelinated, 2-
4µm in diameter. 

Noxious 
mechanical 
stimuli. 

High Slow 
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2.2.2 Ruffini Endings 

Type I receptors, or Ruffini endings, are generally described as globular encapsulated corpuscles, 

appearing elongated with narrowing ends (Freeman and Wyke 1967; Zimny and Wink 1991; 

Fleming and Luo 2013). However, the findings regarding structure of the Ruffini are variable 

between studies. For example, Halata et al. (1985) described finding five types of Ruffini endings, 

all with varying shape and size, whereas Freeman and Wyke (1967) only described two variations 

of Ruffini ending (Freeman and Wyke 1967; Halata, Rettig et al. 1985). Regardless of structural 

differences reported in the literature, multiple researchers agree that Ruffini endings are embedded 

in the surrounding tissue. Two studies indicated that this is achieved by the intertwining of 

unmyelinated nerve fibres within the receptor capsule with the collagen fibres of the embedding 

tissue (Zimny and Wink 1991; Magee, Zachazewski et al. 2007). Figure 3 is an interpretive 

illustration by Das et al. (2017), adapted from Hall’s (2015) representation of the Ruffini ending, 

which depicts this intertwining of nerve fibres with the collagen fibres within the receptor capsule 

(Hall 2015; Das, Soni et al. 2017).  

 

This image has been removed due to copyright restrictions. Available online from 
[https://www.oatext.com/pdf/MDDE-2-116.pdf] 

 

Figure 3. Interpretive illustration of a singular of Ruffini ending (Das, Soni et al. 2017).  

 

Figure 4Figure 5 shows a gold chloride stain of a Ruffini ending within the glenoid capsule from 

the shoulder of a human cadaver, while Figure 5 shows a gold chloride stain of the Ruffini ending 

within the ACL of a rabbit (Aydog, Korkusuz et al. 2006; Witherspoon, Smirnova et al. 2014). 

Despite anatomical differences and potentially differing neuronal structures between the two 

species, the intertwining of the Ruffini ending fibres with the surrounding tissue is evident in both 

images.  

 

This image has been removed due to copyright restrictions. Available online from 
[https://onlinelibrary.wiley.com/doi/full/10.1111/joa.12215] 

 

Figure 4. Gold chloride stain of a Ruffini ending within the glenoid capsule of a cadaver (Witherspoon, Smirnova et al. 2014). 

 

This image has been removed due to copyright restrictions. Available online from 
[https://link.springer.com/article/10.1007%2Fs00167-005-0673-2] 

 

Figure 5. Gold chloride stain of Ruffini ending in the rabbit ACL (Aydog, Korkusuz et al. 2006) 
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The size of Ruffini endings has also been documented to vary, particularly between species, 

ranging from 20µm to 150µm in diameter, and up to 600µm in length (Freeman and Wyke 1967; 

Zimny and Wink 1991; Halata, Wagner et al. 1999). The parent axon of the Ruffini ending is a 

myelinated nerve fibre, generally 5µm-10µm in diameter (Freeman and Wyke 1967; Magee, 

Zachazewski et al. 2007). Ruffini endings are usually found in clusters of three to six, and are 

dispersed three-dimensionally within the tissue they are located in (Freeman and Wyke 1967). All 

capsules within the cluster are innervated by individual myelinated terminal axon branches 

approximately 2µm-5µm in diameter which originate from the same parent axon (Freeman and 

Wyke 1967; Magee, Zachazewski et al. 2007). It has been documented that a parent axon of a 

Ruffini ending will only innervate other Ruffini endings and not other receptor types (Freeman 

and Wyke 1967).  

 

The locations of the Ruffini endings has been reported differently across studies. One study 

indicated that they are not present on either cruciate ligament and are less frequently found in the 

medial and lateral collateral ligaments (Freeman and Wyke 1967), while another study suggested 

that they are found in more significant numbers in the PCL and ACL than in the lateral collateral 

ligament (Çabuk and Kuşku Çabuk 2016). The former study also indicated that the Ruffini is most 

prevalent in the joint capsule, while the latter suggested prevalence in the popliteal tendon. These 

differing results may be due to the subjects used in each of the studies, with the former study using 

samples from cats while the latter study involved human cadavers. In that regard, the latter study 

is more applicable to the anatomy of the human knee, and therefore provides a more accurate 

representation of the receptor locations. There is general consensus that Ruffini endings tend to be 

located within deeper tissues of the knee joint, and are not present in the fat pads and synovial 

membrane (Freeman and Wyke 1967; Zimny and Wink 1991; Halata, Wagner et al. 1999). 

   

Ruffini endings are primarily responsive to mechanical stimuli in the form of tissue deformation 

caused by stretch or displacement (Zimny and Wink 1991; Magee, Zachazewski et al. 2007; 

Fleming and Luo 2013). This responsiveness to the mechanical stimuli occurs for a range of joint 

positions, and as such the Ruffini ending is classified as a type of proprioceptor (Freeman and 

Wyke 1967; Magee, Zachazewski et al. 2007). A number of studies identified that the embedded 

nature of Ruffini endings allowed the sensing of deformation in the surrounding tissues, via 

transmission of tension through collagen fibres to the nerve terminal (Zimny and Wink 1991; 

Halata, Wagner et al. 1999; Magee, Zachazewski et al. 2007; Fleming and Luo 2013). The 

orientation of both the collagen fibres and the Ruffini structure are suggested to determine the 

directional sensitivity for tissue stretch, although the orientation of the Ruffini ending respective 
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to the collagen and other tissue fibres is unclear (Grigg and Hoffman 1982; Magee, Zachazewski 

et al. 2007). A study by Khalsa et al. (1996) indicated that Ruffini endings have a preferred 

direction of stretch sensitivity (Khalsa, Hoffman et al. 1996). Magee et al. (2007) suggested that 

this stretch sensitivity was along the long axis of the Ruffini capsule, however it is still unclear 

which orientation the Ruffini ending would be respective to the tissue fibres (Magee, Zachazewski 

et al. 2007). On the contrary, Palmer et al. (2012), proposed that the Ruffini does not have a 

preferred direction of stretch sensitivity itself, and that direction of stretch sensitivity depends 

instead on the material properties of the surrounding tissue in which the Ruffini is embedded 

(Palmer, Taylor et al. 2012).   

 

In a study relating to Ruffini endings within the skin, it was suggested that the receptors were also 

sensitive to velocity (Fleming and Luo 2013). Other studies involving Ruffini endings in knees 

have not indicated a similar finding in relation to velocity sensitivity, which raises the possibility 

of the Ruffini endings having different properties depending on their location within the body.     

 

Ruffini endings have been identified to have a low stimulus threshold before producing an action 

potential response (Halata, Wagner et al. 1999; Kahanov and Kato 2007). The exact threshold 

value is not clear however, as a number of experimental studies report variations in the threshold 

values recorded (ranging between 5kPa and 80kPa) (Eklund and Skoglund 1960; Grigg and 

Hoffman 1982; Khalsa, Hoffman et al. 1996). This variability in values could be reflective of 

differences in methodology between the experiments, but it may also be due to variations in the 

structure of the Ruffini endings or possibly differences between the tissues from which they were 

obtained. These mechanoreceptors are slowly adapting, meaning that the receptor response is 

sustained for the duration of the stimulus, provided the stimulus strength remains above the 

activation threshold (Johnson 2003; Kahanov and Kato 2007; Magee, Zachazewski et al. 2007). 

 

2.2.3 Pacinian Corpuscle 

Type II receptors, or Pacinian corpuscles, are elongated, oval-shaped, encapsulated end organs 

which can reach up to 4mm in length in humans (Kahanov and Kato 2007; Fleming and Luo 2013). 

Pacinian corpuscles in humans are significantly longer than those found in other species such as 

cats, where the length has been found to only reach up to 280µm (Freeman and Wyke 1967; 

Magee, Zachazewski et al. 2007). Each corpuscle has a thick multi-laminated connective tissue 

capsule, which results in an onion-like cross sectional appearance (Freeman and Wyke 1967; 

Fleming and Luo 2013). In the knee joint, Pacinian corpuscles are usually distributed in clusters 

of two to four corpuscles (Freeman and Wyke 1967). Each corpuscle within a cluster is innervated 
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by a thin myelinated axon (4-5µm in diameter), branching from a single myelinated parent axon 

(8-15µm in diameter) (Freeman and Wyke 1967). Figure 6 depicts an interpretation by Das et al. 

(2017) of the Pacinian corpuscle from within the human body, while Figure 7 shows a gold 

chloride stain image of a cluster of Pacinian corpuscles taken from a rabbit ACL (Aydog, Korkusuz 

et al. 2006). Comparing the interpretive image with the histological stain, it is clear that the shape 

of the Pacinian corpuscle is consistent, despite the anatomical differences between human and 

rabbit.  

 

This image has been removed due to copyright restrictions. Available online from 
[https://www.oatext.com/pdf/MDDE-2-116.pdf] 

 

Figure 6. Das et al. (2017) interpretation of the Pacinian corpuscle from the human body (Das, Soni et al. 2017). 

 

This image has been removed due to copyright restrictions. Available online from 
[https://link.springer.com/article/10.1007%2Fs00167-005-0673-2] 

 

Figure 7. Gold chloride stain of Pacinian corpuscle cluster in the rabbit ACL (Aydog, Korkusuz et al. 2006) 

  

The locations of Pacinian corpuscles vary significantly between species (Fleming and Luo 2013). 

In humans and other primates they are mostly located within fat pads of hands and feet, but are 

also found in joints, muscles, tendons and also some internal organs (Halata, Wagner et al. 1999; 

Fleming and Luo 2013). Freeman and Wyke (1967) studied cat knees and found that Pacinian 

corpuscles were entirely absent from all ligaments, menisci and synovial tissue (Freeman and 

Wyke 1967). This contrasts with a number of other studies. A broad review of human and animal 

studies by Katonis et al. (2008) found large numbers of Pacinian corpuscles present within the 

ACL and PCL (Katonis, Papoutsidakis et al. 2008). Halata et al. (1999) recorded the presence of 

these corpuscles within the ACL of sheep (Halata, Wagner et al. 1999). Magee et al. (2007) 

documented the presence of Pacinian corpuscles within the human knee joint capsule, ligaments 

and menisci (Magee, Zachazewski et al. 2007). This difference in documented locations supports 

the premise that there is significant interspecies variability. Despite there being variations in 

studies involving the different species, there are also similarities. In particular, Pacinian corpuscles 

within the knee are mostly found medially and laterally to the joint and are predominantly located 

within the fibrous and fatty structures within the joint capsule (Freeman and Wyke 1967; Magee, 

Zachazewski et al. 2007). 
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Pacinian corpuscles are sensitive to mechanical stimuli in the form of compression, and as such 

are classified as a type of proprioceptor. In particular, they are responsive to joint compression and 

increases in joint hydrostatic pressure (Magee, Zachazewski et al. 2007). Pacinian corpuscles are 

also considered to be sensitive to vibrations internal and external to the body (Magee, Zachazewski 

et al. 2007; Fleming and Luo 2013; Jawad and Michael 2017). Various researchers agree that 

Pacinian corpuscles are not sensitive to stretch (Magee, Zachazewski et al. 2007; Fleming and Luo 

2013; Jawad and Michael 2017).   

 

These receptors function as low-threshold, and rapidly adapting proprioceptors (Halata, Wagner 

et al. 1999; Kahanov and Kato 2007). Two studies agree that the Pacinian corpuscle’s ability to 

sense and rapidly adapt to a stimulus is due to the layered structure of the capsule (Johnson 2003; 

Fleming and Luo 2013). Johnson (2003) further suggested that the layers of the corpuscle move 

past each other and dissipate the pressure from the capsule into surrounding tissue (Johnson 2003). 

The change in neural membrane pressure during the onset and release of a stimulus is suggested 

to activate the receptor response, to which the receptor adapts and then returns to an inactive state 

(Johnson 2003). Johnson (2003) also indicated that, within the skin, Pacinian corpuscles are most 

sensitive to stimuli ranging between 200Hz - 300Hz. However, the literature is unclear whether 

this threshold can be extrapolated for Pacinian corpuscles located within the knee.  

 

2.2.4 Golgi Tendon Organ 

Type III receptors, or Golgi tendon organs (GTO), have been identified by researchers as ‘spray-

like’ endings enclosed within a fine elongated tissue capsule with narrowing ends (Zimny and 

Wink 1991; Magee, Zachazewski et al. 2007). GTOs within the knee joint have been described as 

appearing similar to Ruffini endings but tend to be larger and have a thicker innervating parent 

axon (Zimny and Wink 1991; Magee, Zachazewski et al. 2007). The parent axon is myelinated, 

and can range from 14µm-16µm in diameter (Zimny and Wink 1991). These receptors have been 

documented to reach up to 600µm in length and 100µm in width (Zimny and Wink 1991). Figure 

8 is an illustration of the Golgi tendon organ by Das et al. (2017), which appears to be very similar 

to the Ruffini ending depicted in Figure 3, as was expected based on the consensus within the 

literature that the two receptor types have very similar structures. Figure 9 shows a gold chloride 

stain of a Golgi tendon organ within the lateral collateral ligament of a cadaver elbow, where the 

distinctive elongated shape of the GTO described in the literature can clearly be observed 

(Kholinne, Lee et al. 2018). 
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This image has been removed due to copyright restrictions. Available online from 
[https://www.oatext.com/pdf/MDDE-2-116.pdf] 

 

Figure 8. Illustration by Das et al. (2017) of the Golgi tendon organ from the human knee (Das, Soni et al. 2017). 

 

This image has been removed due to copyright restrictions. Available online from 
[https://www.sciencedirect.com/science/article/pii/S2214687317303527?via%3Dihub] 

 

Figure 9. Gold chloride stain of a Golgi tendon organ in the lateral collateral ligament of a human elbow (Kholinne, Lee et al. 
2018). 

 

There have been conflicting studies regarding the presence of GTO’s within the knee, with three 

studies failing to identify the presence of these receptors (Schutte, Dabezies et al. 1987; Halata, 

Wagner et al. 1999; Katonis, Papoutsidakis et al. 2008). However, four studies did identify GTO’s 

within the knee (Freeman and Wyke 1967; Zimny and Wink 1991; Magee, Zachazewski et al. 

2007; Çabuk and Kuşku Çabuk 2016). In those studies that did identify the presence of GTO’s, 

they were only located within the tendons, ligaments, joint capsule, and menisci of the knee 

(Zimny and Wink 1991; Magee, Zachazewski et al. 2007; Çabuk and Kuşku Çabuk 2016). They 

have been reported to be most abundant within the PCL and the popliteal tendon, but have also 

been identified in smaller numbers within the patellar tendon and the semitendinosus tendon 

(Çabuk and Kuşku Çabuk 2016).  

 

GTOs have been identified as a type of proprioceptor due to their sensitivity to stretch (Zimny and 

Wink 1991; Magee, Zachazewski et al. 2007). Three studies have found GTOs to be inactive while 

the knee joint is stationary and indicated that they only become active towards the extreme limits 

of joint movement (Zimny and Wink 1991; Kahanov and Kato 2007; Magee, Zachazewski et al. 

2007). It is considered that because of this limit detection, GTO’s have high activation thresholds 

(Zimny and Wink 1991; Magee, Zachazewski et al. 2007). They have also been identified as 

slowly adapting receptors, producing action potentials for the entire duration of a stimulus above 

the given threshold (Kahanov and Kato 2007; Magee, Zachazewski et al. 2007).    

 

2.2.5 Free Nerve Endings 

Type IV receptors, or free nerve endings, can be further classified as Type IV(a) or IV(b). Type 

IV(b) endings will not be covered in this discussion as they have only been found within articular 

blood vessels, and are therefore not specifically related to the function of the knee joint (Freeman 

and Wyke 1967). Hence, the only free nerve endings referred to from this point forward will be 

Type IV(a).  
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Unlike the other three types of receptors described, free nerve endings are non-corpuscular, 

presenting either as tightly meshed unmyelinated nerve fibres (0.5µm-1.5µm in diameter) or 

branching unmyelinated axon terminals (<1µm in diameter) (Freeman and Wyke 1967; Zimny and 

Wink 1991; Halata, Wagner et al. 1999; Jawad and Michael 2017). Both formations of free nerve 

endings branch from parent axons that can either be unmyelinated C fibres (1-2µm in diameter) or 

thinly myelinated Ad fibres (2-4µm in diameter) (Halata, Rettig et al. 1985; Zimny and Wink 

1991; Johnson 2003). Two studies have indicated the identical morphological structure of free 

nerve endings across species and in varying locations (Heppelmann, Messlinger et al. 1995; 

Halata, Wagner et al. 1999). Therefore, it is plausible to extrapolate information pertaining to free 

nerve endings within non-human species to the human knee. Figure 10 is an illustration by Poláček 

(1966) depicting a branching free nerve ending (Poláček 1966). Figure 11 shows an 

immunohistochemical stain of a network of free nerve endings from a cadaver wrist (Rein, 

Semisch et al. 2015). It is clear from the similarities between the illustration and the 

immunohistochemical stain that there are minimal discrepancies regarding the structure of free 

nerve endings regardless of species or location, most likely due to being commonly identified and 

having been studied more widely than the other receptor types.  

 

This image has been removed due to copyright restrictions. Available online from 
[https://musculoskeletalkey.com/neurophysiology-of-the-joints-and-muscles/] 

 

Figure 10. Illustration by Poláček (1966), depicting the branching terminals of a free nerve ending (Poláček 1966). 

 

This image has been removed due to copyright restrictions. Available online from 
[https://pubmed.ncbi.nlm.nih.gov/26024577] 

 

Figure 11. An immunohistochemical stain of the free nerve endings from the wrist of a cadaver (Rein, Semisch et al. 2015). 

 

In all species studied, free nerve endings are the most commonly identified receptor type within 

the knee (Halata, Wagner et al. 1999; Çabuk and Kuşku Çabuk 2016). In the human knee 

specifically, they have also been documented as the most widely distributed receptor type and are 

located within most of the articular tissues (Freeman and Wyke 1967; Halata, Rettig et al. 1985; 

Zimny and Wink 1991; Magee, Zachazewski et al. 2007). Tightly meshed free nerve endings are 

mostly found within the fibrous and fat tissues of the joint, including the joint capsule and fat pads, 

but have been reported as absent from ligaments, menisci and synovial tissues (Freeman and Wyke 

1967). In contrast, terminal free nerve endings are most abundant in both the intra- and extra-
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articular ligaments but are also found in joint capsule tendons and deeper within the joint capsule, 

although , in much smaller numbers,  (Freeman and Wyke 1967). This latter form of free nerve 

ending has not been documented within the menisci or synovial tissues (Freeman and Wyke 1967). 

Numerous studies identified free nerve endings within ligaments of the knee, and it is assumed 

that these were the latter form of free nerve ending (Schutte, Dabezies et al. 1987; Johansson, 

Sjölander et al. 1991; Zimny and Wink 1991; Halata, Wagner et al. 1999; Çabuk and Kuşku Çabuk 

2016). Both Çabuk and Kuşku Çabuk (2016) and Halata et al. (1999) reported that free nerve 

endings were primarily located within the cruciate ligaments compared with other structures of the 

knee joint (Halata, Wagner et al. 1999; Çabuk and Kuşku Çabuk 2016).  

 

Free nerve endings are nociceptors that respond to noxious stimuli, transmitting information 

regarding pain or inflammation at the receptor site to the central nervous system (Zimny and Wink 

1991; Lobenhoffer, Biedert et al. 1996; Halata, Wagner et al. 1999). Although documented to 

respond to other types of noxious stimuli, free nerve endings within the articular structures of the 

knee tend to primarily respond to harmful mechanical stimuli (Halata, Wagner et al. 1999; Magee, 

Zachazewski et al. 2007). This includes functioning alongside proprioceptors where they may 

elicit a pain response at extreme limits of movement that may result in tissue damage, although 

the main role of the nociceptor depends on its location (Çabuk and Kuşku Çabuk 2016). Johnson 

(2003) suggested that the type of pain experienced depends on the fibre the receptor response 

originates from (Johnson 2003). It is suggested that receptors innervated by the unmyelinated C 

fibres to generate a burning sensation, while those innervated by Ad fibres generate a pricking or 

tickling sensation (Johnson 2003).  

 

Free nerve endings have been documented to have a high threshold, so a neural response tends to 

be triggered only for potentially damaging stimuli rather than during general movement (Halata, 

Wagner et al. 1999; Kahanov and Kato 2007; Magee, Zachazewski et al. 2007). In contrast to this, 

a study investigating changes to nociceptor response under experimental arthritic conditions 

indicated increases to sensitivity of free nerve endings in inflamed or swollen joints, therefore 

triggering neural responses at a lower threshold (Schaible and Schmidt 1985; Magee, Zachazewski 

et al. 2007). Free nerve endings are also documented to be slow-adapting receptors, which is 

suggested to be due to the nature of the stimuli activating the receptor (Johnson 2003). The process 

of slow adaptation to the stimulus allows the central nervous system to maintain alertness to 

potential tissue damage for the duration of the noxious stimulus, thereby increasing protection for 

the body (Johnson 2003; Widmaier, Raff et al. 2014).  
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2.3 Computational Modelling of Knees and Neurons 

2.3.1 Finite Element Method 

The Finite Element Method (FEM) is a numerical approach that is widely used in modelling the 

behavior of physical objects or systems. FEM modelling has direct application to the calculations 

associated with the design and simulation of prostheses, including those used in knee arthroplasties 

(Bendjaballah, Shirazi-Adl et al. 1997; Halloran, Petrella et al. 2005; Trad, Barkaoui et al. 2018). 

 

Findings from Halloran et al. (2005) have indicated that a complete understanding of joint contact 

mechanics, kinetics, and kinematics is crucial to designing successful knee replacement prostheses 

(Halloran, Petrella et al. 2005). Various structures and biomechanical behaviours of the human 

knee can be simulated using FEM models to aid in this understanding (Villa, Migliavacca et al. 

2004; Halloran, Petrella et al. 2005; Muller 2014). FEM modelling of the knee joint also allows 

prediction of mechanical properties that may be created by knee replacement prostheses, including 

stresses, deformations, and contact pressures (Villa, Migliavacca et al. 2004; Halloran, Petrella et 

al. 2005; Peña, Calvo et al. 2006). In turn, through stress analysis, it is possible to predict the 

success of knee arthroplasties and potentially prevent premature failure of knee protheses (Villa, 

Migliavacca et al. 2004; Halloran, Petrella et al. 2005). 

 

The application of FEM modelling to prosthetic design allows for changes to be made to 

geometrical elements and material components of prostheses prior to the production of prototypes 

(Villa, Migliavacca et al. 2004; Muller 2014). In addition to delivering a more effective prosthesis 

design, this method also results in time and cost savings (Muller 2014). Furthermore, the flexibility 

of a computational model provides the opportunity for model modification to account for 

differences in anatomy of individual patients (Muller 2014; Trad, Barkaoui et al. 2018).  

 

Whilst FEM modelling has considerable strengths in its application to the knee, it also presents 

limitations. More specifically, the performance of the model is dependent on how accurately the 

model is constructed, particularly in regard to the structure, dimensions and material 

(Panagiotopoulou 2009). This limitation is especially relevant when considering FEM modelling 

of the human knee due to its extremely complex structure, and as such, accurate modelling has 

proven to be difficult (Bendjaballah, Shirazi-Adl et al. 1997; Haut Donahue, Hull et al. 2002; 

Halloran, Petrella et al. 2005; Trad, Barkaoui et al. 2018). Additionally, the FEM calculations are 

only approximate due to the analysis being performed on a model rather than the real object, hence 

the importance of creating as accurate a model as possible (Panagiotopoulou 2009).  
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Regardless of the limitations presented, the strengths and benefits in using FEM modelling, 

particularly for applications such as knee prosthesis design, far outweigh the weaknesses (Muller 

2014).  

 

2.3.2 The Hodgkin-Huxley Model 

The Hodgkin-Huxley model provides a mathematical description of current flow through ion-

selective channels across neural membranes (Hodgkin and Huxley 1952; Nelson and Rinzel 1998). 

Current flow through these channels (above a given threshold) results in the generation of action 

potentials, and as such this model has provided the basis for understanding of neural responses 

(Appali, van Rienen et al. 2012). Hodgkin and Huxley (1952) based their studies on the axon of a 

giant squid, which allowed them to develop a mathematical model comprised of differential 

equations to describe the ion channels and ionic current (Hodgkin and Huxley 1952; Nelson and 

Rinzel 1998).  

 

Other models describing neural response have been developed since publication of the Hodgkin-

Huxley model in 1952, yet the Hodgkin-Huxley model is currently still the most established and 

widely accepted model in medicine and biological sciences (Nelson and Rinzel 1998). However, 

there are some limitations to the model.  

 

Firstly, the model is based upon research involving the giant squid axon, which raises questions in 

regard to applicability to human neurons. In particular, the giant squid axon is much thicker (up to 

1mm in diameter) than human axons (typically 1µm in diameter) (Nelson and Rinzel 1998). 

Thicker axons have faster conduction velocity, which results in the capacity for greater frequency 

of action potentials (Sadegh-Zadeh 2017). The model could be improved if adjustments are made 

to account for these differences in firing frequency across species. Also, the squid axon is 

unmyelinated whereas human axons can be myelinated or unmyelinated. Myelination is 

understood to increase the speed of action potentials, however it is unclear whether myelination 

may also influence action potential generation (Snaidero and Simons 2014; McDougall, Vargas 

Riad et al. 2018). Furthermore, the squid axon has evolved to produce rapid neural response 

specifically for the purpose of generating propulsive motion (Santamaria and Bower 2009). Many 

other species require a greater range of responses, and as such have more complex axon function 

than found in the squid which means the extrapolation of these results may be compromised 

(Nelson and Rinzel 1998; Santamaria and Bower 2009).  
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The model is a point neuron model which means it considers only how individual neurons respond 

to input voltage and does not take into account the combined effect of multiple neurons (Xu, Wen 

et al. 2008; Johnson and Chartier 2017). It also does not address the complexity of neurons, 

including size and shape (Xu, Wen et al. 2008). Also, although the model effectively describes 

aspects of the neural response, it is only based on the electrical aspects of the neuron (Appali, van 

Rienen et al. 2012). The model cannot describe other aspects of the action potential that are of 

non-electrical nature, including heat release and morphological changes in the axon itself (Appali, 

van Rienen et al. 2012).   

 

Despite limitations of the model, experimentation has demonstrated it to be effective in capturing 

most significant elements of the action potential (Appali, van Rienen et al. 2012). The 

mathematical nature of the model means that it can be adapted through minor adjustments to 

variables. For example, Xu et al. (2008) was able to adapt the model to take into account 

myelinated axons and muscle fibres in their study pertaining to the neural response of nociceptors 

in human skin (Xu, Wen et al. 2008). Similarly, Bell and Holmes (1992) were able to adapt the 

model to represent the neural response specifically from Pacinian corpuscles (Bell and Holmes 

1992). The adaptations made to the model in these studies indicate that many of the model’s 

limitations regarding application to human neural response can be mitigated through minor 

adaptations, and for this reason the model continues to have relevance regardless of its age 

(Santamaria and Bower 2009; Krouchev, Rattay et al. 2015).  

 

2.3.3 Integrative Work 

Researchers have considered combining various neural response models to produce an overall 

model that will more accurately replicate and describe neural responses within humans. For 

example, Appali et al. (2012) discussed the benefits of potentially combining the Hodgkin-Huxley 

model with the Soliton theory model to better describe both electrical and non-electrical aspects 

of action potentials (Appali, van Rienen et al. 2012).  

 

Interestingly, there has been limited research involving the combination of a mechanical model 

with a neural model, such as the FEM model and the Hodgkin-Huxley model described in the 

previous subsections. Two studies created a biological FEM model of a fingertip, and combined 

the FEM model analysis results with mechanoreceptor threshold values obtained from 

experimental data (Dandekar, Raju et al. 2003; Wu, Krajnak et al. 2006). By combining this data, 

both studies were able to predict the responses of various mechanoreceptors in the fingertip under 

a range of conditions. Another study by Quindlen-Hotek and Barocas (2018) created an FEM 
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model of Pacinian corpuscles embedded within skin, and combined this with a model to replicate 

the action potentials produced by the receptors (Quindlen-Hotek and Barocas 2018). The study 

allowed for investigation into the mechanical properties of Pacinian corpuscles by simulating the 

receptor response when vibration was applied to the FEM model.  

 

The few studies mentioned are all related to model combinations with application for skin, and 

there is evidently a significant lack of research in this area with specific application for the knee. 

Given the importance of FEM modelling in the successful design of prosthetics for knee 

arthroplasties, there is appropriate reason for investigation into the development of a more 

informative model. This could be achieved through combination of an FEM model of the human 

knee with an adapted Hodgkin-Huxley model for simulation of proprioception and nociception by 

the knee’s receptors. This model combination could provide designers of knee prostheses with 

greater insight into how the body may respond to the prosthesis following a knee arthroplasty, 

potentially predicting pain or instability that the patient may experience. This may assist to reduce 

the increasing level of post-operative patient dissatisfaction, and in turn reduce the number of 

revision surgeries performed.  

 

Although FEM modelling is already successfully used in prosthesis design, there is clearly a gap 

in relation to integrating FEM with Hodgkin-Huxley neural models, and even more specifically 

when applied to the knee. The Hodgkin-Huxley model has already proven to be adaptable, and as 

such, modification for specific application to the receptors within the human knee is likely to be 

achievable. However, there is an obvious lack of clarity in existing research regarding which 

receptors are actually present, their morphology, and their physiological responses – an 

understanding that is critical for accurate adaptation of the Hodgkin-Huxley model. Additionally, 

the Hodgkin-Huxley model has been developed to describe a single neural response only, so there 

may be challenges in accounting for combined responses from multiple receptors of varying types. 

Despite this, there is a range of experimental data across species and anatomical locations that 

could potentially be extrapolated for development of the model. Although this extrapolated data 

may not be ideal, it is the most complete data available at this time and could still provide a basis 

for replicating a receptor response that is somewhat comparable to that found in the human knee. 
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3 Methodology 
The first step towards developing a combined FEM and Hodgkin-Huxley model for the knee is to 

adapt individual neural models for each of the four types of mechanoreceptors within the knee. 

The individual neural models will then need to be combined to form a single neural model 

representative of all the mechanoreceptors in the knee, and that single neural model can then be 

integrated with an FEM model. Given the sizeable scale of the proposed work, this project is 

focused on the development of the Hodgkin-Huxley neural model for one receptor type only. The 

Ruffini ending was selected for the first neural model adaptation because, of the four identified 

receptors, the current literature indicates it has the most experimental data available relating to 

neural responses.  

 

Despite having experimental results on which to base adaptions to the Ruffini neural model on, 

accurately adapting the model is not a simple task. There is still a significant lack of understanding 

in the field regarding the fundamental properties of the Ruffini ending, including their size and 

structure, how they sense their surrounding environment, and to what they are sensitive. This 

makes it extremely difficult to correctly adapt the model, as there is little understanding regarding 

the Ruffini’s sensitivities and what will actually trigger a neural response – a key component 

required to develop the neural model. 

 

Currently, Khasla et al. (1996) provides the most complete set of experimental data available for 

Ruffini ending neural responses. The experiment performed by Khalsa et al. has been replicated 

in this project in an attempt to gain a better understanding of how the properties of the Ruffini and 

surrounding tissue might affect the neural response, and what adaptations may be required for the 

neural model. The experiment replication was implemented via computer modelling, using Matlab 

and FEBio. An overview of the original Khalsa et al. experiment is provided in Chapter 3.1, 

followed by the methodology for the experiment replication in Chapter 3.2 – Chapter 3.4.  

  

3.1 Khalsa et al. (1996) Experiment: An Overview 
The original experiment by Khalsa et al. (1996) documented Ruffini behaviour by stretching the 

joint capsules from the left knees of cats and recording the neural responses of Ruffini endings 

located within the capsules (Khalsa, Hoffman et al. 1996). This section provides an overview of 

the method and results reported by Khalsa et al.   
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The joint capsules were prepared with spherical surface markers for tracking displacement caused 

by the stretching, and the locations of the Ruffini endings were identified within a radius of 0.5mm. 

An example of a prepared specimen is given in Figure 12.  

 

 
Figure 12. Example of a prepared specimen, with relative locations of the Ruffini endings (numbered) and surface markers in the 

experiment performed by Khalsa et al. (1996) (Khalsa, Hoffman et al. 1996). This image has been reproduced with permission 
from The American Physiological Society. 

 

The joint capsules were then placed into a stretching apparatus and stretched in six different 

loading regimes. The loading regimes identified were uniform, biaxial, uniaxial x, uniaxial y, 

positive shear and negative shear loading (Figure 13).  
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Figure 13. Experimental loading regimes used to stretch the joint capsule in the experiment performed by Khalsa et. al: A. 

Uniform, B. Biaxial (Y), C. Uniaxial Y, D. Uniaxial X, E. Negative Shear, F. Positive Shear. (Khalsa, Hoffman et al. 1996). This 
image has been reproduced with permission from The American Physiological Society. 

 

Neural responses from the Ruffini endings were measured and the corresponding in-plane stresses 

and strains were calculated. The apparent in-plane strain was calculated using optical tracking of 

the surface markers before and after 4 seconds of deformation in the selected loading regime, while 

the apparent in-plane stress was calculated from the loads measured along the specimen edges. 

The local stress around the Ruffini ending was estimated using interpolation.  

 

The results for one neuron were presented by Khalsa et al. in the plot shown in Figure 14, with the 

neural response (NR) (i.e. firing frequency) plotted against six different stress variables for each 

of the loading regimes. These results were for neuron 13 which according to Khalsa et al. was a 

‘typical’ neuron (i.e. ‘Y-biased’), that was located in the centre of the specimen. The neural 

response results were not explicitly reported, or the raw results documented in the original paper 

– only summaries and results plots were provided.  
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Figure 14. Relationships between neural response and various stress variables for one neuron (Neuron 13), as presented in the 
Khalsa et al. (1996) study. A: X stress. B: Y stress. C: shear stress. D: 1st invariant of the stress tensor (I1). E: Maximum shear 
stress (MSS). F: strain energy density (SED) (Khalsa, Hoffman et al. 1996). This image has been reproduced with permission 

from The American Physiological Society. 

 

3.2 FEBio Modelling  
The specimen used in the Khalsa et al. experiment was replicated using the FEBio software suite. 

FEBio was also used to apply the loads for each loading regime to the specimen. 

 



 

 

 

35 

3.2.1 Modelling the Specimen 

The FEBio replica of the joint capsule specimen was created as a 7.5mm x 5mm x 0.5mm 

rectangular model consisting of 150 elements (Figure 15). The size of the specimen used in the 

Khalsa et al. experiment was not explicitly stated but was determined under the assumption that 

the example specimen diagram provided was to scale (Figure 12). Based on the 0.5mm radius 

spherical markers that were indicated in Figure 12, the capsule size was measured and scaled 

accordingly. The resulting size of the specimen was found to be similar to the cat knee specimen 

sizes documented by Hoffman et al. (1985) (Hoffman, Grigg et al. 1985).  

 

 
Figure 15. FEBio model replica of the Khalsa et al. (1996) joint capsule specimen. 

 

The loading tabs shown in the example specimen in Figure 12 were not modelled. The tabs were 

required in the physical experiment to eliminate stress concentrations caused by the attachment 

points between the stretching apparatus and the specimen. This, however, was not an issue in the 

computer model and so modelling the tabs was unnecessary. 

 

Given that the results reported by Khalsa were for a neuron located in the centre of the specimen, 

the FEBio element located in the corresponding central position on the model was identified as 

element 75. Element 75 was used as the location for stress and strain observation in the model, 

replicating the location for the apparent local stresses and strains reported by Khalsa et al. for 

neuron 13. 
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3.2.2 Model Material 

In literature, biological soft tissues are generally recognised as non-linear materials that exhibit 

inelastic and anisotropic properties and nearly incompressible behaviours (Fung 1993; Humphrey 

2003). Collagen fibres in particular are known to demonstrate transversely orthotropic material 

properties (Fung 1993). These characteristics were considered when replicating the joint capsule 

specimen used in the original Khalsa et al. experiment, particularly given the collagen-rich nature 

of the joint capsule. As such, three different materials were tested for the FEBio model in an 

attempt to find the most suitable model to provide the best replication of the original experiment 

results. In doing so, it was hoped that some understanding would be gained regarding how material 

properties of the surrounding tissue may play part in the neural response produced by the Ruffini 

ending.   

 

The three FEBio materials selected for testing were isotropic elastic, orthotropic elastic, and 

coupled transversely isotropic Mooney Rivlin. All of the material property values required for 

FEBio implementation of these materials were selected based on values found in the literature 

(Fung 1993; Humphrey 2003). While the three materials were modelled as closely as possible to 

encompass the identified characteristics of soft tissue, not all of the chosen materials would 

generally be considered appropriate for soft tissue modelling. Regardless, it allowed the 

opportunity to explore the effect of material properties on the Ruffini neural response and hence 

the responses when using different material models could be compared.  

 

The isotropic material was not expected to produce an accurate replication of the original 

experiment results due to the elastic and isotropic properties of the material as well as its 

application for modelling compressible materials. These properties do not correspond to the 

characteristics that would be expected for the joint capsule based on literature findings. However, 

the material was selected for initial testing due to the simplicity of modelling the material in FEBio, 

requiring fewer properties to be defined to implement the material in the model. The minimal 

effort and time cost involved meant that the material was worth testing on the chance that the 

results would be reasonable regardless of the material properties not aligning to what is generally 

understood about biological soft tissues.  

 

The orthotropic elastic material was the second material selected, as it provided the opportunity to 

incorporate anisotropic properties into the model. Unlike other anisotropic FEBio materials, this 

material was relatively simple to implement in FEBio (again due to few material properties 

requiring definition). However, like the isotropic material, this material also exhibits elastic and 
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compressible material behaviours. As such, it was not expected to provide completely accurate 

results, but it was expected to provide an improvement compared to the isotropic elastic results.  

 

The third material selected was the coupled transversely isotropic Mooney Rivlin material. This 

material, like the orthotropic material, was selected for the anisotropic properties it would add to 

the model. However, this material also allowed for fibre reinforcement of one fibre family along 

a single direction (e.g. collagen fibres aligned along a single direction, as may be found in joint 

capsule tissue) and implemented hyper-elastic material behaviour. This was a more complex 

material to implement compared to the isotropic and orthotropic materials, however of the three 

materials selected this material reflected the most similarities to biological tissue described in 

literature. As such, it was expected to provide the most accurate results of the three materials.  

 

3.2.3 Loading Regimes and Applied Loads 

The FEBio model from Figure 15 was duplicated six times - one model for each of the six loading 

regimes used by Khalsa et al. (pictured in Figure 13).   

 

Boundary conditions were applied to each bottom row node along the left and front faces of the 

model, as indicated by the arrows in Figure 16. The nodes along the left face, indicated with red 

arrows, were fixed in the X direction. The nodes along the front face, indicated with yellow arrows, 

were fixed in the Y direction. The node in the bottom left corner, indicated by the green arrow, 

was also fixed in the Z direction. These boundary conditions were applied to fix the model in space 

while still allowing for deformation in the X, Y and Z directions without producing a necking 

effect.  
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Figure 16. Location of fixed position boundary conditions on the FEBio model as indicated by the coloured arrows. Red: nodes 

fixed in the X direction. Yellow: nodes fixed in the Y direction. Green: node fixed in the z direction. 

 

Each model was set up with the load magnitudes corresponding to the given loading regime. The 

loads were applied to the opposite sides of the model to the boundary conditions (i.e. to the right 

and back faces). These were specified as nodal loads, to ensure that each load was applied 

uniformly along the model face.  

 

The magnitudes of the loads applied to the specimen in the original experiment were back-

calculated using Figure 14. Given that stress can be defined as the force per unit area, the 

calculation was made based on the surface area of the selected model face and the maximum stress 

recorded in that direction (i.e. maximum X stress or Y stress) for each loading regime.   

 

The maximum stresses were estimated from the Khalsa et al. results figure. Later in the project, 

the Khalsa et al. results figure was digitized so the actual values of each marker on the figure were 

identified, but at the time of load calculation this digitization had not been performed. Time 

constraints did not permit running all the experiments again with the adjusted applied loads after 

digitization of the data. Recalculating the applied loads based on the actual maximum stresses 

could be performed in future project work, however it is unlikely to make a significant difference 

in the results as the estimated maximum stresses were similar to the actual maximum stresses 

(Table 2).  
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Table 2. Estimated maximum stress versus actual maximum stress from Khalsa et al. results in Figure 14. 

Loading Regime Estimated Max 
X Stress (KPa) 

Actual Max X 
Stress (KPa) 

Estimated Max 
Y Stress (KPa) 

Actual Max Y 
Stress (KPa) 

Uniform 72 72.2848 50 50.2788 
Biaxial 62 62.1748 51 51.2067 
Uniaxial X 53 53.7854 15 13.3107 
Uniaxial Y 0 -0.0314 50 49.4352 
Shear Positive 52 52.5252 35 34.9769 
Shear Negative 52 52.5392 34 34.3858 

 

Based on the dimensions of the model, the surface areas of the right (X) and back (Y) faces were 

2.5mm2 and 3.75mm2 respectively. Due to applying a nodal load rather than a surface load, the 

total load calculated had to be divided by the number of nodes on that face (i.e. 22 for the X face, 

32 for the Y face). The total load applied to the X and Y faces for each loading regime, as well as 

the nodal load applied (i.e. the point load applied to each node) are provided in Table 3.  

 

Table 3. Total and nodal loads to be applied to the x and y faces of the model 

Loading Regime Total Load X 
(N) 

Nodal Load X 
(N) 

Total Load Y 
(N) 

Nodal Load Y 
(N) 

Uniform 0.18 0.00818 0.27 0.00844 
Biaxial 0.155 0.00705 0.191 0.00598 
Uniaxial X 0.133 0.00602 0.0563 0.00176 
Uniaxial Y 0.000 0.000 0.188 0.00586 
Shear Positive 0.13 0.00591 0.131 0.00410 
Shear Negative 0.13 0.00591 0.128 0.00398 

 

3.3 Hodgkin-Huxley Model 
The Hodgkin-Huxley neural model used in this project was based on a Matlab adaptation for the 

original Hodgkin-Huxley mathematical model, developed by Jahn (2013). As such, the original 

Matlab code modelled the neural response of the axon of a giant squid. The code was subsequently 

modified for thermal nociceptors within the human skin by Azin Janani at Flinders University to 

replicate the findings and results presented by Xu et al. (Xu, Wen et al. 2008; Jahn 2013). This 

involved adjusting the code such that the neural response (firing rate) of the model was suitable 

for a human neuron rather than a giant squid neuron.  

 

As summarised in Table 1, the literature findings indicate that the Ruffini ending and free nerve 

endings have similar action potential responses. Despite having different firing activation 

thresholds to produce a neural response, both neurons are slow-adapting meaning that they have 
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continuous firing while a stimulus above the given threshold is applied. Due to this similarity, the 

Hodgkin-Huxley model adapted by Janani (originally by Jahn (2013)) was not significantly 

modified for this project – only minor adjustments were made. The first adaptation involved 

modifying the model to accept stress (or another mechanical variable) as the model input, rather 

than temperature. The second modification was made to the model’s induced current equation, to 

change the neuron firing activation threshold. No adaptations were made to the output of the 

model, which was presented as an action potential spike train.  

 

3.3.1 Input Stimuli  

The Hodgkin-Huxley model was adapted to accept a mechanical input rather than a thermal input. 

Given the numerous discrepancies within the literature regarding the fundamental properties of 

the Ruffini ending, it was unclear what mechanical stimuli the Ruffini might be sensitive to. 

Therefore, eighteen different mechanical stimuli were tested as the neural model inputs and the 

responses of the Ruffini (produced by the Hodgkin-Huxley model) to each stimulus were recorded. 

The eighteen stimuli are listed in Table 4.  

 

The Matlab code was modified such that the input stimulus could be scaled, or even combined 

with another type of stimulus. However, for this project all inputs were tested individually only 

and with a scale of 1, except in the case of no firing produced by the model. In those cases, the 

scale of the input was increased by a factor of 10 until firing was produced. This was to compensate 

for any potential errors in modifications made to scaling of the firing activation threshold.   

 

Table 4. List of tested input stimuli to the Hodgkin-Huxley neural model. 

Input Number Mechanical Stimulus 
1 X Stress (Sx) 
2 Y Stress (Sy) 
3 Shear Stress (Sxy) 
4 1st Invariant Stress Tensor (I1) 
5 Maximum Shear Stress (MSS) 
6 Strain Energy Density (SED) 
7 Hydrostatic Pressure (HS) 
8 1st Principal Stress (S1) 
9 2nd Principal Stress (S2) 
10 3rd Principal Stress (S3) 
11 Deviatoric Stress 1 (Dev1) 
12 Deviatoric Stress 2 (Dev2) 
13 Deviatoric Stress 3 (Dev3)  
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14 Shear A 
15 Shear B 
16 Shear C 
17 X Strain (Ex) 
18 Y Strain (Ey) 

 

3.3.2 Induced Current Equation  

The induced current equation (I_ST equation), represents the total stimulation induced current 

comprised of the current produced by the neuron’s heat, chemical and mechanical gated ion 

channels (Xu, Wen et al. 2008). When above a given threshold, this induced current results in the 

activation of neural firing. Modifications were made to the induced current equation to alter the 

activation threshold for neural firing of the Ruffini ending.  

  

The I_ST equation in the Hodgkin-Huxley model for the thermal nociceptor model was 

exponential, however when adapting the equation for the Ruffini ending the equation was modified 

to be linear for simplicity. Khalsa et al. reported the maximum and minimum stress and strain 

values that resulted in firing during the original experiment. The maximum and minimum I_ST 

current values required for firing activation in the thermal nociceptor model were also identified. 

This was achieved through trial and error, by testing various thermal inputs to the model and 

identifying when a neural response was produced and the corresponding I_ST value. To modify 

the firing activation threshold to be suitable for the Ruffini, the reported maximum and minimum 

mechanical values were linearly mapped to the maximum and minimum I_ST current values 

identified. Therefore, a mechanical input to the model within the maximum/minimum mechanical 

range would result in neural firing, while outside of this range no firing would be produced. This 

was achieved with Equation 1, where the mechanical input is the input to the neural model, 

mech_min and mech_max are the minimum and maximum mechanical values for firing activation, 

and IST_min and IST_max are the maximum and minimum I_ST current values for firing 

activation. I_shift was introduced in the original Xu et al. (2008) code to prevent firing below the 

specified threshold value, and so this was still included in the modified equation.  

 

Equation 1:  !!" = #($%&'()*&(+	*)-./	0	1234_167)∗(:!"_1;<	0	:!"_167)(1234_1;<	0	1234_167) + !%&_()*+ + !_,ℎ)./ 

 

The mech_min and mech_max values used in the I_ST equation had to be modified depending on 

the mechanical input being used. When the mechanical input was a stress value, these mech_min 

and mech_max values were based on the maximum and minimum stress values causing firing in 
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the original experiment. Alternatively, when strain was used as a mechanical input to the model, 

the mech_min and mech_max values were based on the maximum and minimum strain values 

reported to cause neural firing.  

 

3.4 Matlab Code Development 

3.4.1 Automating the Experiment 

Matlab code was developed by Associate Professor Kenneth Pope to automate the computer 

modelled experiment, providing efficiency and the flexibility to easily adapt and run the entire 

experiment via Matlab as many times as required. A script was developed to automatically create 

the six FEBio experiments (i.e. each loading regime) via Matlab, while another script 

automatically ran the experiments and facilitated seamless integration of the FEBio models with 

the Hodgkin-Huxley neural model. Mechanical variable values (e.g. X stress) resulting from the 

FEBio experiments were read directly from the FEBio results file into the Hodgkin-Huxley Matlab 

model as the neural model input stimulus. The neural response (NR) (i.e. firing frequency) was 

then derived from the action potential spike train output by the Hodgkin-Huxley model. The neural 

responses for each loading regime were then plotted against six mechanical variables to be 

presented in the same format as the results figure provided by Khalsa et al. (Figure 14). Presenting 

the results in this format allowed for direct visual comparisons between the replicated and original 

results. Using this method, upon inspection of each results subplot it was simple to visually identify 

whether distinct characteristics of the original results had been reproduced (e.g. if the Sx plot had 

uniaxial Y loading points firing with zero Sx stress).  

 

Minor adjustments were made to these Matlab scripts to fine-tune the tests that were run and ensure 

the output of the results was occurring as expected. This included adjusting the scripts so that the 

Matlab-developed FEBio model matched the model created using the FEBio graphical user 

interface (e.g. defining size and shape of the model, specifying the applied loads, selecting material 

and material properties). Modifications were made to allow additional mechanical variable options 

for selection as the input stimulus to the neural model. Also, there were adjustments made to 

provide alternative visualisation of the neural response results in addition to plotting them in the 

same format as the original results. This allowed for improved and quantifiable analysis of the 

results.  

 

3.4.2 Digitizing Khalsa et al. (1996) Results 

The results figure presented by Khasla et al. (Figure 14) was digitized to allow the results from the 

computer modelled experiment replication to be quantified against the original experiment results. 
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This digitization was performed using the Grabit graphical user interface on Matlab. The Khalsa 

et al. results figure was obtained from a digital copy of the original paper. Using Grabit, the points 

for each individual loading regime per subplot were manually selected from the results figure and 

each set of points was saved as an array Matlab. The average firing rates of each loading regime 

across the six subplots was calculated from the selected points to reduce the variability in the 

accuracy of the values due to the manual selection of the points. Then, adapting the code developed 

by Kenneth Pope for presenting the results in the same format as the original results figure, the 

digitized results were plotted in the original format (Figure 17). Producing this digital copy of the 

results was important as it provided quantifiable values for the neural responses recorded by 

Khalsa et al. which had not actually been explicitly reported in the paper. However, the accuracy 

of the digitized original results is limited by the image resolution and precision of the manual 

selection using the cursor on the Grabit interface.   
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Figure 17. Digitization of the results figure provided in the electronic paper by Khalsa et al. (1996) 

 

3.4.3 Linear regression plots 

While the results of the replicated experiment were plotted in the same form as the original 

experiment results (Figure 17), visual comparisons between the replicated and original plots is not 

adequate to determine how well the model replicates the results. Instead, it is important that there 

is a quantifiable method of determining the success of the results replication.  

  

With the flexibility of the digitized original experiment results, the linear regression of the 

replicated results versus the original experiment results was able to be calculated. The R2 fit, Root 

Mean Square Error (RMSE), and the slope values were calculated for each individual loading 
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regime and also the overall experiment (i.e. all loading regimes combined), for each material/input 

stimulus combination that was tested. This provided quantification for determining exactly how 

well the replicated results fit the original dataset. The regression plot of the results (original versus 

replicated, for all loading regimes) was produced via Matlab in order to visually emphasise the 

likeness and differences between the replicated values and the original values.  

 

If the replicated experiment results were a perfect replica of the original results, the plotted points 

would be completely linear (Figure 18).  The regression calculations would present with an R2 

value of 1, an RMSE of 0, and a slope of 1. Given that the likelihood of perfectly replicating the 

results is slim, for the replicated results to be considered as an adequate relative fit to the original 

data the R2 value should be at least 0.7 (however an R2 fit closer to 1 is more desirable). If adequate 

relative fit is achieved but the slope is not 1 (or close to 1), then it is likely that simple tuning 

adjustments may be required to the neural model to alter the magnitude of the results. Adequate 

absolute fit of the data is indicated with an RMSE value close to 0, however tuning the magnitude 

to improve the slope will improve the absolute fit of the data so it is more important to initially 

consider the relative fit.  

 

 
Figure 18. Linear regression plot of the original Khalsa et al. (1996) results versus perfectly replicated FEBio results.  
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4 Results  
This project considered three material types (isotropic elastic, orthotropic elastic, and coupled 

transversely isotropic Mooney Rivlin) and eighteen input stimuli. Each material/input stimulus 

combination was tested, and the results were presented in three ways. Firstly, the results were 

plotted in the same form as the Khalsa et al. results to allow for basic comparison of the replicated 

figure to the original experiment results figure. Secondly, a regression plot of the original versus 

replicated neural responses was provided as a direct visual comparison of the differences between 

the original and the replicated results. Thirdly, the linear regression statistical measures of the 

original versus replicated neural responses were calculated for each individual loading regime, and 

for the total plot (i.e. all loading regimes combined).  

 

4.1 Isotropic Elastic Material 
The first test was performed using the isotropic elastic material. To implement this material in 

FEBio, three material properties were required to be defined: density, Young’s modulus, and 

Poisson’s ratio. The values selected for each material property were based on findings in literature 

regarding biological tissue properties. These are provided in Table 5.  

 
Table 5. Isotropic elastic material properties required by FEBio and values selected. 

Isotropic Material Property Value Selected 
Density 1 
Young’s Modulus 1 
Poisson’s Ratio 0.49 

 

The model was tested with all eighteen input stimuli listed in Chapter 3.3.1 Input Stimuli. A 

summary of the linear regression statistical measures for the total plot (i.e. considering all loading 

regimes), for each input stimulus are given in Table 6.  
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Table 6. Linear regression statistical measures for the isotropic elastic material model, considering total plot (all loading 
regimes).  

* Numerical quirk in the result caused by zero firing produced in the replicated results 

Input Stimulus R2 RMSE Slope 
X Stress (Sx) 0.1578 4.4106 0.4218 
Y Stress (Sy) 0.2866 3.9820 0.5576 
XY Stress (Sxy) 0.0789 1.0887 0.0704 
1st Invariant Stress Tensor (I1) 0.2525 5.7699 0.7407 
Maximum Shear Stress (MSS) 0.2486 2.2465 0.2854 
Strain Energy Density (SED) 0.1746 1.2602 0.1280 
Hydrostatic Pressure (HS) 0.2273 2.8302 0.3390 
1st Principal Stress (S1) 0.2389 3.9735 0.4918 
2nd Principal Stress (S2) 0.2065 4.3202 0.4869 
3rd Principal Stress (S3) 0.1840 2.8193 0.2957 
Deviatoric Stress 1 (Dev1) 0.1684 1.7656 0.1755 
Deviatoric Stress 2 (Dev2) 0.1630 1.5032 0.1465 
Deviatoric Stress 3 (Dev3) * NaN 0.0000 0.0000 
Shear A 0.0002 0.8685 -0.0024 
Shear B 0.1906 2.2367 0.2397 
Shear C 0.2486 2.2465 0.2854 
X Strain (Ex) 0.0819 3.6571 0.2412 
Y Strain (Ey) 0.3047 3.1996 0.4679 
Average 0.1890 2.6766 0.2984 

 

Observing the R2 values in Table 6, none of the input stimuli tested with the isotropic material 

model produced an adequate relative fit for the total plot. The ‘best’ results (based on the relative 

fit) were produced when using Y strain as the neural model input. However, the replicated results 

were still not an adequate fit for the original results, as indicated by the R2 value of 0.3047. The 

regression plot (Figure 19) particularly emphasises the differences between the original and the 

replicated neural response results.  
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Figure 19. Regression plot of neural response (NR) from the isotropic elastic material model tested using Y strain as the input to 

the neural model. 

 

The Y strain results were examined in closer detail. It can be seen in Figure 19 that the plotted 

uniform, uniaxial Y and shear positive loading points display some linearity with a reasonable 

slope, as would be desired in a perfect replication of results. When considering the linear 

regression measures for each individual loading regime (Table 7), the results indicate that the 

uniform, uniaxial Y and shear positive loading did indeed provide adequate relative fits for the 

original data, as the R2 values were above 0.7. While the biaxial loading result showed some 

linearity in Figure 19, the relative fit (R2 = 0.4550) was not high enough to be considered adequate 

and as such the results would not be further improved with fine-tuning of the response magnitudes. 

No firing was produced by the uniaxial X loading resulting in a numerical quirk causing the R2 

value being calculated as ‘Not a Number’ (NaN). Given that the original results did produce firing 

for the uniaxial X loading, it is clear that the uniaxial X results were not an adequate replication 

of the original results. Interestingly, the shear negative loading produced a constant firing rate 

which resulted in Matlab calculating the R2 as 1. Generally, an R2 value of 1 indicates a perfect 

relative fit to the original results, however it is clear from Figure 19 and the other regression 
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measures in Table 7 that in this case the results do not currently describe the original data. This 

was caused by another numerical quirk.  

 
Table 7. Linear Regression statistical measurements for each individual loading regime when using Y Strain as the neural model 
input stimulus from the isotropic elastic material model.  

* Numerical quirk in the result caused by zero firing produced by the loading regime.  

** Numerical quirk in the result caused by the all the replicated firing values for the loading regime being the same – not actually 
a perfect fit. 

Loading Regime R2 RMSE Slope 
Uniform 0.9694 0.6840 0.7634 
Biaxial 0.4550 1.2192 4.9027 
Uniaxial X * NaN 0.0000 0.0000 
Uniaxial Y 0.8798 1.0562 1.9313 
Shear Positive 0.7225 0.2891 0.0856 
Shear Negative ** 1.000 0.0000 0.0000 

 

Overall, while some individual loading regime results produced an adequate R2 fit, there were 

other individual loading regimes which did not. Hence, the total plot could not be considered as a 

sufficient fit when using the Y strain input to the isotropic model. This was a similar pattern also 

observed in the results from the other tested input stimuli. This demonstrates that the combination 

of all loading regimes together must be considered to understand how the results overall match the 

original results, not just considering the fit of exclusive aspects of the results.  

 

The Khalsa replicated results plots and the linear regression statistical measures for each individual 

loading regime for the remaining input stimuli are provided in Error! Reference source not 
found.. 
 

4.2 Orthotropic Elastic Material  
The second test was performed using the orthotropic elastic material. Unlike the isotropic elastic 

material which had the same material properties in all directions, the orthotropic elastic material 

allowed the defining of different properties for different planes or axes of symmetry.  

 

A study by Hoffman et al. (1985) identified that there are three regions of stiffness in the joint 

capsule (Hoffman, Grigg et al. 1985). As indicated in Figure 20, the first and third layers of the 

joint capsule differ in stiffness by a ratio of approximately 1:5. Based on this finding, it was 

determined that a stiffness study would be performed on the orthotropic elastic material to 

determine whether the stiffness in the surrounding tissue would affect the replicated Ruffini 
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response. The stiffness (Young’s modulus) of the joint capsule was increased to the maximum 

value allowed in FEBio for a single direction, while keeping the stiffness in the other two 

directions constant. The maximum allowed stiffness in FEBio was dependent on the values 

selected for the other material properties.   

 

This image has been removed due to copyright restrictions. Available online from 

[https://eprints.soton.ac.uk/363112/] 

 

Figure 20. Varying regions of stiffness within the joint capsule (Hoffman, Grigg et al. 1985). Image by Palmer (Palmer 2013). 

 

To implement the orthotropic elastic material in FEBio, ten material properties had to be defined: 

density, shear modulus (X, Y and Z directions), Young’s modulus (X, Y and Z directions), and 

Poisson’s ratio (X, Y and Z directions). Two sources indicated that material properties (particularly 

Poisson’s ratio) were dependent with respect to the direction of fibre alignment (Fung 1993; Little 

and Khalsa 2005). The values for material properties were selected based on these two sources. 

Six combinations of material properties and stiffness directions (Table 8) were tested for the 

stiffness study. These tests were intended to help determine how the surrounding material 

properties affected the ability to adequately replicate the original Khalsa et al. results, and as a 

result indicate whether surrounding material properties play a part in how or what the Ruffini 

senses. 

 
Table 8. The six test combinations for the orthotropic elastic material model 

Test  Test Description 
1 Increasing X stiffness with same Poisson’s ratios for all directions (Poisson’s value 1) 
2 Increasing X stiffness with same Poisson’s ratios for all directions (Poisson’s value 2) 
3 Increasing X stiffness with differing Poisson’s ratios for each direction 
4 Increasing Y stiffness with same Poisson’s ratios for all directions (Poisson’s value 1) 
5 Increasing Y stiffness with same Poisson’s ratios for all directions (Poisson’s value 2) 
6 Increasing Y stiffness with differing Poisson’s ratios for each direction 

 

The material properties selected for each test are provided in Appendix B. Also included in 

Appendix B are the Khalsa replicated results plots and the linear regression measures for each 

individual loading regime for all tested stimuli, the linear regression measures of the total plots for 

each test.  
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When compared with the average relative fit of the isotropic test, the average relative fit of the 

results was improved for all orthotropic tests except Test 4. However, similar to the results of the 

isotropic elastic material test, all input stimuli for all six orthotropic elastic tests produced R2 

values below 0.7. As such, none of the tests provided an adequate replication of the original results.  

 

Of the six tests performed, Test 3 provided the best average improvement of relative total plot fits. 

The highest relative total plot fit for Test 3 was produced when using Y strain as the neural model 

input (Table 9), however only resulted in an R2 value of 0.3508.  

 
Table 9. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input stimulus 
tested with the orthotropic elastic model 3.  

* Numerical quirk in the result caused by zero firing produced in the replicated results 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1725 4.4296 0.4467 
Y Stress (Sy) 0.2808 4.1426 0.5718 
Shear Stress (Sxy) 0.0736 1.7552 0.1093 
1st Invariant Stress Tensor (I1) 0.2664 5.8166 0.7743 
Maximum Shear Stress (MSS) 0.2962 2.4903 0.3568 
Strain Energy Density (SED) 0.1747 1.2616 0.1282 
Hydrostatic Pressure (HS) 0.2327 3.0274 0.3683 
1st Principal Stress (S1) 0.2747 4.5111 0.6132 
2nd Principal Stress (S2) 0.2540 3.0820 0.3972 
3rd Principal Stress (S3) 0.1746 8.8833 0.9024 
Deviatoric Stress 1 (Dev1) 0.2917 2.4793 0.3515 
Deviatoric Stress 2 (Dev2) 0.1905 0.7638 0.0819 
Deviatoric Stress 3 (Dev3) * NaN 0.0000 0.0000 
Shear A 0.2252 1.4374 0.1712 
Shear B 0.2609 1.5256 0.2002 
Shear C 0.2962 2.4903 0.3568 
X Strain (Ex) 0.1340 0.8856 0.0769 
Y Strain (Ey) 0.3508 4.4411 0.7212 
Average 0.2323 2.9679 0.3682 

 

When inspecting the regression plot (Figure 21) and individual loading regime regression 

measures (Table 10) for Test 3 with the Y strain input, there are similarities to the isotropic elastic 

Y strain results. The linearity of the uniform, uniaxial Y and shear positive loading points can still 

clearly be seen in Figure 21, however there are also improvements to the linearity of the plotted 

shear negative loading points which were not present in the isotropic results. The regression 

measures confirm the adequate fit of these loading regime results to the original experiment results, 
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with all producing relative fits above 0.7. However, as with the isotropic results, the biaxial and 

uniaxial X loading regimes still do not fit the original data well (R2 < 0.7, with uniaxial X loading 

still not producing any firing). As such the relative fit for the total plot is not adequate.  

  

 
Figure 21. Regression plot of neural response (NR) from the orthotropic elastic material model 3 tested using Y strain as the 

input to the neural model. 

 

Table 10. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Ey as neural 
model input. 

* Numerical quirk in the result caused by zero firing produced by the loading regime.  

Loading Regime R2 RMSE Slope 
Uniform 0.9795 0.7995 1.0948 
Biaxial 0.4601 2.2587 9.1762 
Uniaxial X * NaN 0.0000 0.0000 
Uniaxial Y 0.8357 1.2581 1.9170 
Shear Positive 0.9609 0.2336 0.2124 
Shear Negative 0.9259 0.2749 0.5070 

 

While Test 3 produced the best average relative fit improvement of the six tests, the highest total 

plot R2 value was actually produced in Test 1. This highest R2 value was again produced when 
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using Y strain as the neural model input, but still only resulted in an R2 value of 0.3536. This was 

only a 0.79% improvement compared with the highest Test 3 result, and neither result was a 

significant improvement compared to the best isotropic test result.   

 

Interestingly, each orthotropic model tested with the stiffness increased in X direction resulted in 

the Y strain input producing the largest R2 value, however when stiffness was increased in the Y 

direction, the input stimulus that resulted in the largest R2 value was unpredictable. 

 

Overall, the direction in which the stiffness was increased did not significantly affect the relative 

fit of the results, apart from altering which input stimulus produced the best R2 value.  Changing 

the value for the Poisson’s ratio did not make any significant differences to the relative fit of the 

results either. Regardless of the direction of increased stiffness or Poisson’s ratio values, all R2 

values produced across all tests were still considered to be unacceptable, and so none of the results 

provided an adequate replication of the original results.  

 
4.3 Coupled Transversely Isotropic Mooney Rivlin Material 
The final model tested was created with the coupled transversely isotropic Mooney Rivlin 

material. Similar to the orthotropic elastic material, this material allowed for anisotropy in different 

planes/axes of symmetry which was desired due to the generally anisotropic nature of biological 

soft tissues (Fung 1993; Humphrey 2003). More specifically, this material allowed for fibre 

reinforcement along a specified direction to be introduced into the model. To keep the model 

simple, only one type of fibre family was implemented, although there is potential for adding 

multiple fibre families with varying directions if future work is pursued.  

 

Collagen fibres were selected for reinforcement in the model due to the joint capsule being heavily 

comprised of collagen (Ralphs and Benjamin 1994; Souza and Doan 2010). Two models were 

tested - both the X and Y directions of reinforcement, as the direction of fibres in the original 

experiment specimen was unclear. The FEBio values required to implement this model were 

originally based on values for a ligament but were adjusted so the model would exhibit more 

collagen-like stretch behaviour rather than ligament behaviour (Fung 1993; Freutel, Schmidt et al. 

2014; Chakraborty, Mondal et al. 2016). This was achieved by comparing the XY displacement 

for the previous isotropic and orthotropic models (which had been implemented using collagen-

based values identified from literature) with the XY displacement of the ligament-based Mooney 

Rivlin model (Figure 22). The Mooney Rivlin parameter 1 was then scaled by the factor of 
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difference between the displacements, until the model showed approximately the same maximum 

displacement as in the previous collagen-based tests.  

 

 
Figure 22. Scale of XY displacement (right) for Mooney Rivlin biaxial model after material property adjustment, so maximum 

displacement approximately matches the maximum displacement of previous isotropic and orthotropic tests. 

 

The selected values were the same for both the X and Y fibre reinforcement tests except for 

specification of fibre reinforcement direction (Table 11).  

 
Table 11. Coupled transversely isotropic Mooney Rivlin material properties required by FEBio and values selected for X fibre 
reinforcement test.  

Mooney Rivlin Material Property Value Selected 
Density 1 
Mooney Rivlin Parameter 1 (C1) 0.195 
Mooney Rivlin Parameter 2 (C2) 0 
Exponential Multiplier (C3) 0.0139 
Fibre Scale Factor (C4) 116.22 
Fibre Modulus - Linear Region (C5) 535.039 
Bulk-like Modulus (K) 73.2 
Max. Fibre Straightening Stretch (Lambda) 1 
Fibre Direction X  
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As found with the orthotropic tests, there were no significant differences between the regression 

measures produced by the two tested models, the only difference being which stimuli produced 

better results. The X fibre reinforced model on average produced slightly better results compared 

with the Y fibre reinforced model. Neither model, however, produced an average regression fit 

that was an improvement to the average isotropic or orthotropic model results. Regardless, the 

results were not significantly different from those produced by other models. As was found with 

every other model tested so far, no input stimuli on either X or Y reinforced model produced an 

adequate relative fit (R2 > 0.7) to the original results. Once again, the ‘best’ result was produced 

for this material model when using the X fibre reinforced model with Y strain as the neural model 

input (Table 12), however this was still only 0.3011.  

 

Table 12. Linear regression measures for total plot results produced by the coupled transversely isotropic Mooney Rivlin material 
model with collagen fibre reinforcement in the X direction.  

* Numerical quirk in the result caused by zero firing produced in the replicated results 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1183 2.5618 0.2073 
Y Stress (Sy) 0.2944 2.2902 0.3267 
Shear Stress (Sxy) 0.0400 2.1489 0.0969 
1st Invariant Stress Tensor (I1) 0.2092 4.5110 0.5125 
Maximum Shear Stress (MSS) 0.1879 1.3923 0.1479 
Strain Energy Density (SED) 0.0597 0.1640 0.0091 
Hydrostatic Pressure (HS) 0.2639 1.0904 0.1442 
1st Principal Stress (S1) 0.1778 2.4682 0.2536 
2nd Principal Stress (S2) 0.1823 2.6334 0.2747 
3rd Principal Stress (S3) 0.0627 1.3656 0.0780 
Deviatoric Stress 1 (Dev1) 0.0711 1.1909 0.0728 
Deviatoric Stress 2 (Dev2) 0.1605 0.5013 0.0484 
Deviatoric Stress 3 (Dev3) * NaN 0.0000 0.0000 
Shear A 0.0014 0.7319 0.0060 
Shear B 0.1867 1.2719 0.1346 
Shear C 0.1892 1.3662 0.1458 
X Strain (Ex) 0.0169 0.2820 0.0082 
Y Strain (Ey) 0.3011 2.4755 0.3589 
Average 0.1484 1.5803 0.3589 

 

Again, when analysing the result more closely, it can be seen that the uniform and uniaxial Y 

loading regime points are plotted linearly on the regression plot (Figure 23). The regression 

measures for the individual loading regimes (Table 13) indicate that those two loading regimes 

produced an adequate relative fit to the original results, although require some adjustment of firing 
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magnitude. As was seen for the isotropic material results, the biaxial, uniaxial X and shear loadings 

do not provide an adequate fit for the corresponding loading regime in the original results and 

therefore the overall relative total plot fit is unacceptable.  

 

 
Figure 23. Regression plot of neural response (NR) from the Mooney Rivlin material model 1 (X fibre reinforced) tested using Y 

strain as the input to the neural model. 

 

Table 13. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Ey as neural 
model input.  

* Numerical quirk in the result caused by zero firing produced by the loading regime.  

** Numerical quirk in the result caused by the all the replicated firing values for the loading regime being the same – not actually 
a perfect fit. 

Loading Regime R2 RMSE Slope 
Uniform 0.9397 0.7175 0.5618 
Biaxial 0.3609 0.8799 2.9096 
Uniaxial X * NaN 0.0000 0.0000 
Uniaxial Y 0.9315 0.7500 1.8691 
Shear Positive 0.6424 0.2730 0.0671 
Shear Negative ** 1.0000 0.0000 0.0000 
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5 Discussion 
Three material models (a total of nine sub-models) and eighteen different input stimuli were tested 

exhaustively, and the linear regression measures for the replicated results versus the original 

experiment results were calculated for every material/input stimulus combination tested. The 

average relative fit of the total plot results for each material model (i.e. all loading regimes) was 

determined in order to compare the general performance of each material. The total plot relative 

fits for each material/input stimulus combination have also been individually considered to 

account for the potential of only one input stimulus being the ‘correct’ input to the model and 

providing accurate replication of results.  

 

Of the three tested materials, it was initially expected that the models created with the Mooney 

Rivlin material would provide the most accurate results due to the material having similar 

properties, according to literature, to those reported for biological soft tissue  (i.e. anisotropy, fibre 

direction reinforcement, hyper-elastic non-linear behaviour). Correspondingly, the isotropic 

material models were expected to provide the least accurate results due to differences between the 

material properties and properties reported in literature for soft tissue.  

 

Unexpectedly, the Mooney Rivlin material generally produced poorer relative fits of the total plots 

than both the orthotropic elastic and isotropic elastic materials. All of the orthotropic material 

models (except for Test 4) on average performed better than the other two materials, with 

orthotropic Test 3 overall providing the best average relative fit results. However, the average 

relative fit of both the isotropic elastic and Mooney Rivlin material results were not significantly 

lower than those produced by the orthotropic material tests. 

 

Of all the model combinations tested, the best replication of the original results was produced by 

orthotropic elastic Test 1 using Y strain as the neural model input, although the relative fit 

produced by this material/input stimulus combination was only 0.3536. Although this was the best 

result achieved across all tests performed, it did not provide a significant improvement compared 

to individual results from the other tests. In some cases, the weaker performing material models, 

on average, combined with certain input stimuli actually produced results that provided a 

marginally better relative fit than that produced with other material/input stimuli combinations. 

For example, the X fibre reinforced Mooney Rivlin model using Y strain as the neural model input 

stimulus produced better results than all orthotropic tests that used Y stress as the input stimulus.  
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It was observed that for models where the stiffness or fibre directions were reinforced along the X 

direction, the results were generally better than those where the stiffness and fibre directions were 

reinforced along the Y direction. Also, it was found that the best results for inputs with X direction 

reinforcement were achieved using Y strain as the input to the neural model, and the results 

achieved with these combinations provided the best relative fits across all models.  

 

Comparatively, the input stimulus that produced the best results in tests with Y direction 

reinforcement was unpredictable – there were no obvious patterns regarding which input stimuli 

produced the best results. Interestingly, Khalsa et al. had reported observing directional bias in the 

response of the cells, with the original results used in this project based on a ‘Y-biased’ neuron. It 

is unclear how a cell could have bias in an arbitrary direction without some method of orientation 

(e.g. cell orientation with respect to surrounding fibre direction). However, the minor differences 

observed in the results from the X and Y direction reinforcement models could be an indication of 

the directional bias that was observed by Khalsa et al. This could potentially support the theory 

proposed by Palmer et al. (2012) that the directional bias observed by Khalsa et al. was not due to 

the cells themselves sensing arbitrary orientation, but rather due to the properties of the 

surrounding material (Palmer, Taylor et al. 2012). The results, however, were not conclusive in 

actually proving or disproving this theory.   

 

Overall, the regression measures for the total plot of every test performed demonstrated relative 

fits which were well below an acceptable value (R2 < 0.7) to be considered an adequate replication 

of the original data. As such, these results demonstrated that none of the material/input 

combinations were able to adequately describe the original experiment results recorded by Khalsa 

et al.  

 

Despite the relative fit of the total plots for all tests being much lower than expected, breaking 

down each test and considering the fit of each individual loading regime indicated more positive 

results. While the relative fit of the total plot was not acceptable, in many cases individual loading 

regimes did provide acceptable fits when compared with the corresponding loading regime from 

the original results. Unfortunately, in these cases the relative fit of the total plots were lowered due 

to other loading regimes not providing adequate fits. This further detailed analysis of individual 

loading regimes was useful for identifying which loading regimes were not performing correctly 

and analysing the effect of changes to the model. If testing is continued using this modelling 

method, this analysis of individual loading regimes could potentially be used to tune the model to 

improve fit of specific loading regimes and track any improvements. While this break-down of 
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individual loading regime performance is useful, it is still important overall to base any 

conclusions on the total plot performance. By considering the overall performance, assessments 

can be made as to whether the model is adequate in describing the complete set of original results, 

rather than just part of the result. 

 

There could be a number of explanations for the extremely poor model performances. Firstly, it 

may indicate that the materials or material parameters selected were not truly representative of the 

material properties that would be observed in real life tissue. If the behaviour of the Ruffini was 

indeed reliant on the surrounding material properties and if certain characteristics of the 

surrounding material influenced how or what the Ruffini senses, then it is crucial that the 

surrounding material is modelled correctly. If this were the case, then modelling the joint capsule 

with materials that are not entirely representative of or accurate to a real-life joint capsule would 

clearly cause difficulties in attempting to accurately replicate the Ruffini responses.  

 

Alternatively, the minor differences between the general performance of each material model 

could potentially be an indication that the surrounding material properties do not affect the 

behaviour or response of the Ruffini ending. If this is the case, then it raises numerous questions 

regarding what might be physically missing from the mechanical model that will allow the Khalsa 

et al. results to be replicated, and where this may lead future work.  

 

Following from this, it is also possible that there are other physical characteristics of the Ruffini 

or surrounding material that have not yet been accounted for which may influence the Ruffini 

behaviour. This could potentially include the size, shape, orientation or material composition of 

the Ruffini, the number of Ruffini endings present, or the position of the cell in the surrounding 

material. These are all areas which could be investigated in future work if further adaptations to 

the model were to be explored. 

 

It may be possible that the correct input stimulus to the neural model is not one of the eighteen 

mechanical stimuli tested in this project. Although there was a pattern observed in which using Y 

strain as the input stimulus to X direction reinforced models produced the best results of all the 

tests, the relative fits were not high enough that the material/input combination could be considered 

to adequately describe the Khalsa et al. results. Therefore, no conclusions can be drawn in regard 

to whether Y strain is the correct input for the model and the mechanical stimulus that the Ruffini 

senses. The poor relative fit of the replicated results could otherwise indicate that the correct input 

stimulus has perhaps not yet been identified or tested, and this may be why none of the stimuli 
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tested produced adequate replications of the original results. If this were the case, there may be 

difficulties in identifying what the Ruffini senses particularly given the discrepancies surrounding 

this in literature. It is unclear whether the Ruffini may be sensing a mechanical value that can be 

measured or one which is not measurable or possibly even perceivable to humans. There is also a 

possibility that the Ruffini could be sensing a combination of mechanical stimuli rather than just 

a single stimulus. Alternatively, if the surrounding material properties do impact how and what 

the Ruffini senses, then perhaps one of the inputs already tested is in fact correct but has not yet 

been combined with the correct material. 

 

Apart from input stimulus, there may also be other adaptations that are required for the neural 

model. This could include adjustments to the induced current equation, or even potentially 

modifications to the physiological workings of the model. It is difficult to identify where the neural 

model may require adjustments as there is little information in literature regarding physiological 

level similarities between the Ruffini ending and nociceptors, as well as human neurons compared 

to giant squid neurons. 

 

The explanations and conclusions that can be drawn regarding the results are limited. This is 

mostly significantly caused by the current lack of clear understanding in literature regarding 

Ruffini endings and their behaviours. Without this fundamental understanding there is little way 

of knowing what determines the Ruffini behaviour and responses, and as such it is extremely 

difficult to determine why the results do not adequately replicate the original results. Also, there 

is a significant lack of experimental data available that can be used to corroborate the model 

results, and therefore it becomes difficult to determine whether the model is correct and acting as 

it should.  

 

Nevertheless, there are limitations within the project itself which may potentially explain the 

difficulties faced in replicating the original Khalsa et al. results. One significant limitation to the 

project is the possibility that the original Khalsa et al. results are not a reliable representation of 

Ruffini behaviour. This could be due to methods in performing the experiment, as well as 

unanticipated experimental complications which make the results difficult to replicate. Based on 

the reported methodology in the original Khalsa et al. paper, there are a number of factors in the 

original experiment which could have resulted in unaccounted-for complications.  

 

Firstly, there were limitations in the method used by Khalsa et al. for localisation and isolation of 

the Ruffini endings. The receptive fields of Ruffini endings in the capsule were located using a 
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combination of the following three techniques: indentation with a blunt probe, in-plane stretching 

using fine forceps, and local electrical stimulation of the capsule surface using bipolar electrodes 

(Khalsa, Hoffman et al. 1996). However, this combination of techniques still only allowed for 

localisation within a radius of 0.5mm. Given that the size of the Ruffini endings are measured on 

a micro-scale, this 0.5mm localisation radius may not have been adequate to isolate single 

receptors, particularly as literature indicates that multiple Ruffini endings may branch from a 

single parent axon (Freeman and Wyke 1967; Magee, Zachazewski et al. 2007). This potentially 

means that the original results are not indicative of a single Ruffini receptor as expected, but 

instead multiple Ruffini receptors. However the literature also states that the parent axon of a 

Ruffini will only innervate other Ruffini endings (and no other receptor types), and as such, it is 

expected that there would not be other receptor types within the isolated receptive field (Freeman 

and Wyke 1967). However, it is difficult to conclude whether the methods of measuring the 

receptor response would be robust enough to completely isolate the Ruffini ending/s, or whether 

there may still be some interference from nearby receptors (with potentially overlapping receptive 

fields).  

 

Another limitation of the original experiment is that it was performed 25 years ago, and as such 

methods for measuring the stresses, strains and neural responses have advanced since that time. In 

particular, in the original experiment the displacements of the surface markers on the specimen 

were optically tracked with a CCD camera mounted on the operating microscope over the 

stretching apparatus. Digital images of the control and deformed state were acquired using a frame 

grabber. The capsule strains were then measured optically by measuring displacements of surface 

markers glued onto the capsule, using a 0.25mm calibrated ruler under an operating microscope 

(Khalsa, Hoffman et al. 1996). This method for measuring the apparent strain experienced by the 

specimen is limited by the precision of the displacement measurements. Also, this technique 

allowed only for the apparent strain to be measured, and apparent stress to be estimated based on 

the loads applied to the specimen. However, the local stresses and strains may not be the same as 

the apparent stress and strains measured by Khalsa et al, and as such the results are limited because 

the local stresses and strains could not be measured.  

 

Additionally, the extent of the results documented by Khalsa et al. is limited – only summaries of 

results and results plots have been provided. There was only one set of relevant data available (i.e. 

results for one neuron) and consequently the models developed in this project have been based on 

those results only. The results from this project may be more substantial if there were multiple 

data sets available, allowing the neural model to be corroborated across multiple neuron data sets 
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rather than just based on data from a single neuron. This would provide better credibility to the 

developed neural/mechanical model. Also, given that the raw data had not been archived, the 

original results had to be digitized from the figure provided in the original Khalsa et al. paper in 

order to be used. The digitization process, using Grabit on Matlab, results in some degree of error 

in the data, as the accuracy of the selected points is dependent on the image resolution and the 

accuracy of the manual selection of the data points on the image using a mouse cursor.  

 

Given these numerous limitations to the original experiment and the fact that the entirety of this 

project has been based upon the original Khalsa et al. results, the reliability of both the mechanical 

and neural model and the results produced may be compromised.  

 

Overall, the original Khalsa et al. results were not able to be adequately replicated and the 

outcomes of this project have not provided any clarification to the discrepancies in literature 

regarding fundamental Ruffini behaviours (i.e. what it senses and how). As a result, further 

questions have been raised and multiple avenues for future work have been exposed. Regardless 

of the results, successful integration between FEBio mechanical models and the Matlab adaptation 

of the Hodgkin-Huxley neural model was achieved. This demonstrates the possibility of 

combining neural and mechanical models and provides the first step towards development of a 

completely integrated model. 
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6 Conclusions 
Literature relating to the combination of mechanical and neural modelling methods is sparse. 

While there have been some attempts at combining mechanical modelling methods with other 

model types, mechanical and neural modelling methods are yet to be successfully combined. The 

concept of combining FEM modelling with Hodgkin-Huxley neural modelling is new territory, 

but if successful could produce significant benefits in the medical field. When applied to 

applications such as prosthesis design (specifically prostheses for knee arthroplasties), this 

modelling combination could allow for prediction of patient pain and discomfort based on the 

predicted stresses and strains produced by a given prosthesis. The ability to try and test prostheses 

without first physically implanting them would be expected to decrease levels of patient 

dissatisfaction caused by chronic post-operative pain and instability, in turn leading to a reduction 

in the number of revision arthroplasties required.  

 

Unfortunately, the mechanoreceptors within the human knee are still quite poorly understood, as 

indicated by the many discrepancies within the literature in relation to the fundamental properties 

of the receptors, including their size, structure, locations, material composition, and sensitivities. 

Consequently, creating a complete neural model of the knee to combine with an FEM model is no 

small feat, and given the time constraints of this project and the nature of the task at hand, it was 

not viable to complete the entire neural model within this project. Instead, the focus of this project 

was to adapt the Hodgkin-Huxley model for the Ruffini ending only, while also attempting to 

clarify and explain the documented Ruffini behaviours through replication of the Khalsa et al. 

(1996) experiment using FEBio modelling and the adapted Hodgkin-Huxley Ruffini model. 

 

A simple rectangular model representing the joint capsule specimen used by Khalsa et al. was 

created with FEBio. The model was tested in the same six loading regimes that were used by 

Khalsa et al. (uniform, biaxial, uniaxial X and Y, positive and negative shear), with three different 

material types (isotropic elastic, orthotropic elastic, and coupled transversely isotropic Mooney 

Rivlin). This was done in an attempt to identify the effect of material properties on the behaviour 

of the Ruffini ending, so as to accurately reproduce the Khalsa et al. results. Successful integration 

between the FEBio mechanical model and the Matlab adaptation of the Hodgkin-Huxley neural 

model was achieved, along with exhaustive testing of three material types and eighteen input 

stimuli. Regardless of the material type, material properties specified for the specimen model, or 

the input stimulus, the results did not adequately reflect the results that were observed in the Khalsa 

et al. experiment.  
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Based on these results, it is understood that everything that has been tested and investigated up 

until this point still does not produce or describe the Ruffini ending behaviours that were observed 

by Khalsa et al. Therefore, this leads to one of two conclusions; either there is something missing 

from the model - whether it be the FEBio specimen model, the Ruffini ending neural model, or 

both - or alternatively there were abnormalities in the results recorded by Khalsa et al., perhaps 

due to issues with methodology. Regardless, based on these conclusions, it is clear that there are 

many questions still unanswered regarding Ruffini behaviour and the properties which may 

influence the Ruffini’s response, and as such there is an abundance of future work to be 

undertaken.  
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7 Future Work 
Considering the time and resources required versus the likelihood of producing expected or useful 

results, the best option forward would be to physically re-perform Khalsa et al. experiment, or an 

improved version of the experiment. While this might require more time and resources than just 

adjusting the computational model, it is the only way to determine if the Khalsa et al. results 

actually accurately describe the behaviour of the Ruffini ending, as well as to study and document 

other physical characteristics of the mechanoreceptor. Repeating the Khalsa et al. experiment 

would provide a good basis for ensuring the Ruffini neural model adaptation is based on accurately 

recorded Ruffini responses.  

 

Another option for future work is to continue to make changes and adaptations to the FEBio model 

and Hodgkin-Huxley neural model, in an attempt to determine the properties which result in the 

Ruffini behaviours observed by Khalsa et al. Although repeating the Khalsa et al. experiment is 

ideal, adapting the current FEBio and neural model could still be a useful avenue for understanding 

the Ruffini ending behaviour as it is not particularly time or resource intensive. However, there 

always remains the risk that the Khalsa et al. results are not reliable due to complications in the 

original experiment that make the results difficult to reproduce. If this is the case, the FEBio and 

neural model developed based on the original Khalsa et al. results may not be accurate.  

 

7.1 Repeating Khalsa et. al Experiment 
As mentioned, it is recommended that the first avenue for future work is to physically re-perform 

the Khalsa et al. experiment due to the limitations encountered in both the original experiment and 

this project. While the repeated experiment may not be exactly the same as the original experiment, 

it provides the opportunity to obtain a new set of results for the Ruffini ending behaviours using 

improved methodology. This would allow for a full set of raw results to be properly archived for 

future use, adding to the currently limited store of experimental data in the literature regarding 

Ruffini behaviours. It would also assist to dispel any uncertainty regarding the accuracy and 

reliability of the original Khalsa et al. results. There are three particular areas identified where 

improvements could be made in the repeated experiment.  

 

Firstly, the original experiment used joint capsules from the knees of adult cats. In re-performing 

the experiment, the joint capsules may not necessarily be from the knees of cats but instead from 

another animal. Due to the differences documented in literature regarding Ruffini endings in 

different species, it would be expected that using the Ruffini endings from another species may 
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produce different results to the original experiment. However, a species which has more 

anatomical and physiological similarities to humans could be selected instead, which would likely 

produce results that are more similar to the results that would be obtained from a human. This 

would be ideal, as the overall aim is to adapt a neural model for the human knee – if the 

experimental results used to tune the model are similar to human results, the neural model will be 

more accurate. 

 

Secondly, techniques for neural mapping and identification have progressed beyond what was used 

25 years ago.  Repeating the experiment provides the opportunity to improve on areas of the 

original experiment methodology. In particular, the new experiment could improve upon the 

method for the measurement of the stress and strain in the specimen. The original experiment 

calculated only the apparent strain through measurement of surface marker displacement (to 

0.25mm accuracy), while the average apparent stress of the joint capsule was estimated based on 

the loads applied from the stretching apparatus. However, the local stress and strain experienced 

around the Ruffini ending may not be the same as the apparent stress and strain that was calculated 

by Khalsa et al. The experiment could be substantially improved by using modern techniques, such 

as Digital Image Correlation, to measure the local strain around the Ruffini ending with high 

resolution. This method has already been used with success in a similar application by Palmer et 

al. (2017) with viscerofugal neurons within gut tissue, as well as in other biological applications 

(Dickinson, Taylor et al. 2012; Wentzell, Sterling Nesbitt et al. 2013; Hokka, Mirow et al. 2015; 

Palmer, Hibberd et al. 2017).  

 

Finally, another point of uncertainty in the original results of the Khalsa et al. experiment was 

whether the results were recorded from a single Ruffini ending or from multiple endings. As the 

literature review indicated, Ruffini endings tend to be found in clusters of three to six with a single 

parent axon. Khalsa et al. noted that the location of the Ruffini endings were found within a radius 

of 0.5mm using a combination of three techniques, however the identified ‘single receptive fields’ 

may have included multiple receptors with the same parent axon. Therefore, it is important that in 

the repeated experiment it is made clear whether the results are recorded from a single Ruffini cell 

or from a cluster of cells (and how many within the cluster). The original experiment methodology 

for identifying the presence and localisation of the neurons could be improved through use of 

histological staining techniques, which have already been proven successful and reliable 

(Witherspoon, Smirnova et al. 2014; Rein, Semisch et al. 2015; Kholinne, Lee et al. 2018). If 

Ruffini behaviour could be recorded from individual Ruffini cells rather than a cluster, it would 
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become much simpler to isolate the properties of an individual cell and as a result understand how 

and why the response is produced. 

 

With these three main adaptations to the re-performed experiment, and with careful recording of 

results, there is likely to be progress towards greater understanding of Ruffini behaviour. 

 

7.2 FEBio and Hodgkin-Huxley Model Adaptations  

There are a number of adaptations that could be made to the FEBio model and the Hodgkin-Huxley 

Matlab model further to what was already presented in this project. Such changes could assist in 

identifying which properties of the Ruffini ending and the surrounding material influence the 

receptor response, therefore providing a better understanding of the Ruffini ending behaviour. This 

could be a suitable path to explore for future work due to the relatively low resource and time 

costs. However as mentioned previously, if the Khalsa et al. experiment results are not accurate, 

then the adapted neural model may not perform as it should and understandings gained through 

adapting the model may not be correct.  

 

Ideally, any changes made to the Hodgkin-Huxley model would be very minimal as the model 

should already be fundamentally correct, assuming that Ruffini endings and giant squid axons are 

fundamentally similar in their behaviours. Regardless, there may still be small adaptations required 

to alter the firing activation threshold for the neural model.  

 

More significant changes are likely to be required for the FEBio model, however the order in 

which this work is undertaken should depend on the time required to change the model versus the 

perceived benefits of doing so. It should also be noted that structural changes to the FEBio model 

may take longer to replicate into the Matlab script for automating the running of the experiments. 

If the perceived benefit is small, then it may be worth using the FEBio GUI to begin with, to test 

if there are any significant benefits, before implementing it into the code.  

 

7.2.1 Modelling the Cell 

7.2.1.1 Single Cell Body 

First and foremost, a number of changes should be made to the FEBio specimen model. The current 

model is a simple rectangular model, however in reality, the specimen was likely not so simple.  

 

As such, it would be a good idea to first model a single Ruffini cell body into the specimen in 

order to determine the effects of the size and shape of the cell on the cell’s response. This will 
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likely have a significant effect on the results, due to the relatively large size of the cell and its 

elongated shape and the stress that will concentrate around the cell body rather than being 

relatively uniform (as it was throughout the continuous rectangular model). This modelling should 

also take into account the orientation of the cell.  

 

7.2.1.2 Cell Material Properties 

Similar to the tests performed to investigate the material properties of the specimen itself, the 

material properties of the cell body should also be investigated. This could include investigating 

the effects of the cell body being fluid filled, or fibre reinforced.  Given that changing the material 

type and material properties on FEBio is quite simple, this is a good option for future work that 

requires minimal time but may produce significant results. It would also help establish an 

understanding of the extent to which the material properties of the Ruffini ending itself affect the 

sensitivity of the cell to particular inputs.   

 

7.2.1.3 Modelling Cell Cluster 

If the results of modelling a simple cell and altering the material properties of that cell have still 

not indicated any explanation for Ruffini behaviours, the next step would be to model the Ruffini 

as a cluster. This could be particularly useful to test if still comparing to the original Khalsa et al. 

experiment results, because the Khalsa et al. experiment could not identify whether there were 

multiple cells within the single receptive field. If the test results improve in similarity to the Khalsa 

et al. results, this could potentially confirm whether or not the Khalsa et al. experiment identified 

and recorded responses from a single Ruffini ending or a cluster.  

 

7.2.2 Modelling the Joint Capsule 

Finally, of the changes to be made to the FEBio model, further modifications to the joint capsule 

could be explored. Palmer et al. (2012) indicated that the Khalsa et al. findings regarding 

directional sensitivities of the Ruffini may have actually been caused by the surrounding material 

properties. Therefore, it may be beneficial to further investigate which properties of the 

surrounding tissue might cause this behaviour (Palmer, Taylor et al. 2012).   

 

There are four possible areas for investigation. Firstly, additional materials for the FEBio joint 

capsule model could be investigated. Only three materials were investigated in this project 

however there are many more materials available on FEBio - some of which may potentially 

provide a better simulation of soft tissue properties than the materials tested in this study.    
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The second area for investigation involves modelling the outer fibrous and inner synovial layers 

of the joint capsule rather than modelling the joint capsule as a single uniform piece of material. 

As fibrous and synovial materials have significantly different properties, modelling the two 

material layers could indeed have an effect on the results of the testing, particularly depending on 

where the Ruffini cell is embedded within the layers – whether it is within one material or the 

other, or spans across both. However, before commencing work on modelling the two layers, it 

would be beneficial to review the literature for any information regarding material property 

differences between the layers, or if there is any literature which already demonstrates whether the 

layers have a significant effect on the properties of the joint capsule.  

 

The third area for investigation is modelling the three regions of stiffness of the joint capsule as 

identified by Hoffman et al. (1985) (Figure 20). Combining multiple stiffness layers may be 

significant enough to alter the way the specimen is deformed and how the stress concentrates, 

however the stiffness study performed on the orthotropic elastic material in this project did not 

indicate any major differences in Ruffini responses. Again, the results may also depend on where 

the Ruffini cell is embedded, and whether it spans more than one stiffness region.  

 

Finally, further consideration could be made to modelling fibre reinforcement within the joint 

capsule. Multiple fibre directions were not accounted for during this project, although Khalsa et 

al. (1996) identified that there were varying orientations of fibre direction within the joint capsule 

specimen used in their experiment. Khalsa et al. (1996) also stated that the local orientation of the 

Ruffini endings varied depended on the fibre directions within the capsule. Modelling multiple 

fibre directions within the one model could be worth exploring, particularly if the cell body is also 

modelled, as it would provide a closer replication to the specimen used in the original experiment. 

This is an avenue which could provide insight into whether both/either fibre direction or cell 

orientation influences the Ruffini behaviour.  

 

7.2.3 Hodgkin-Huxley Model Adaptations 

The Hodgkin-Huxley model for the Ruffini ending was adapted for this project based on a 

Hodgkin-Huxley Matlab code adaptation for the Xu et al. (2008) modelling. The Xu et al. 

experiment was based on thermal nociceptors within the skin, while the adaptations made were 

for the Ruffini ending mechanoreceptors within the knee joint capsule. Changes were made to 

allow for mechanical rather than thermal input, and the I_ST equation was adapted in order to 

lower the firing threshold. No further adaptations were made, which leaves sections of the neural 

model open to explore in future work.  
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7.2.3.1 Inducing Current (I_ST) Equation  

The I_ST equation was adapted in order to lower the firing rate of the neural model, given that the 

firing activation threshold of Ruffini endings is lower than free nerve endings. One I_ST equation 

which linearly mapped the new firing values to the original firing values was already investigated 

in this project. Other options for the I_ST equation should be considered, including the possibility 

of a non-linear equation such as the one used for the thermal nociceptor neural model, or a linear 

model which only uses a ‘fudge factor’ for scaling the input. If this avenue is explored, it would 

be beneficial to consider developing code to optimise any ‘fudge factors’ or scaling values used in 

the equation based on the input value or stimulus type.  

 

7.2.3.2 Input Stimuli 

Considering that there have been no conclusive results to suggest what the Ruffini ending is 

sensitive to and thus what the input to the Hodgkin-Huxley model should be, further work should 

be conducted to determine this. This could include testing other mechanical inputs apart from the 

eighteen that were considered in this project, as well as considering a combination of the inputs. 

The Matlab code has already been modified such that multiple mechanical terms can be combined, 

with varying scale and weighting, as the input stimulus for the Hodgkin-Huxley model. Further 

exploration in this area may be beneficial by aiding understanding of what the Ruffini ending 

actually senses and responds to.  

 

7.2.3.3 Physiological Changes: Ionic Properties  

As a final suggestion for possible changes that could be made to the models, the physiological 

differences between a Ruffini ending and a thermal nociceptor could be considered. More 

specifically, further research could investigate whether there are significant fundamental 

differences in terms of the ionic properties of the two receptors.  

 

Given that the Ruffini neural model was adapted from Hodgkin-Huxley Matlab code for 

nociceptor response to temperature, it could be useful to determine whether the type of receptor 

(i.e. mechanoreceptor, thermal receptor, chemical receptor) has any correlation with the ionic 

properties or ion gated channels of the cell. If there were differences, then these would need to be 

incorporated into the Hodgkin-Huxley Ruffini model to ensure the responses are accurate.  

 

It seems unlikely however, that these physiological changes would be significant when the Ruffini 

ending and nociceptor have very similar firing patterns, just with different thresholds. Also, the 
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literature available regarding this is likely to be quite limited given the very specific nature of the 

query and the lack of confirmed knowledge regarding mechanoreceptors. Therefore, this work 

should potentially only be pursued if all other options have been exhausted.  

 

7.2.3.4 Alternative Hodgkin-Huxley Adaptations 

Finally, it would be beneficial to also investigate other Hodgkin-Huxley adaptations which already 

exist in literature, especially if the adaptations are for other human receptor types. This could 

provide significant insight into what might be required for further adaptation of the Ruffini model 

or in the future, the neural models for the other mechanoreceptor types. It may also identify 

techniques that were successfully used during model adaptation that may also be applicable in this 

case.  
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8 Final Comments 
To conclude, while there have not been any significant results to explain or describe Ruffini 

behaviour throughout the span of this project itself, there are many possibilities of where the 

project could be taken to next and how it can progress. As is commonly found in research, more 

questions arise as the project progresses, which is certainly the case here. This area of research is 

certainly innovative and there is plenty of work still to be done before significant progress is likely 

to be made. The end goal, however, could provide significant benefits – particularly in the medical 

field – and so is certainly worth exploring further.   
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Appendix A: Isotropic Elastic Material Results 
A.1 Test 1  

A.1.1 X Stress (Sx) 

 
Figure A - 1. Neural responses (NR) output by the isotropic elastic FEBio model using Sx as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 
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Table A - 1. Linear regression measures for individual loading regime results from the isotropic elastic model with Sx as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9857 0.6524 1.0745 
Biaxial 0.4347 2.0246 7.8125 
Uniaxial X 0.4794 2.0225 -0.8415 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.6746 0.5411 0.1429 
Shear Negative 0.7736 0.4122 0.3976 
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A.1.2 Y Stress (Sy) 

 
Figure A - 2. Neural responses (NR) output by the isotropic elastic FEBio model using Sy as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 

Table A - 2. Linear regression measures for individual loading regime results from the isotropic elastic model with Sy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9892 0.5590 1.0595 
Biaxial 0.4815 1.8109 7.6790 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8876 0.9385 1.7822 
Shear Positive 0.7143 0.4102 0.1189 
Shear Negative 0.2318 0.4526 0.1297 
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A.1.3 Shear Stress (Sxy) 

 
Figure A - 3. Neural responses (NR) output by the isotropic elastic FEBio model using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 3. Linear regression measures for individual loading regime results from the isotropic elastic model with Sxy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9559 0.4099 0.3499 
Shear Negative NaN 0.0000 0.0000 
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A.1.4 1st Invariant Stress Tensor (I1) 

 
Figure A - 4. Neural responses (NR) output by the isotropic elastic FEBio model using I1 as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 

Table A - 4. Linear regression measures for individual loading regime results from the isotropic elastic model with I1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9666 1.2325 1.3144 
Biaxial 0.3509 3.9951 12.9266 
Uniaxial X 0.3333 1.9306 -0.5918 
Uniaxial Y 0.8855 0.9505 1.7865 
Shear Positive 0.9557 0.3960 0.3373 
Shear Negative 0.8970 0.5217 0.8036 
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A.1.5 Maximum Shear Stress (MSS) 

 
Figure A - 5. Neural responses (NR) output by the isotropic elastic FEBio model using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 5. Linear regression measures for individual loading regime results from the isotropic elastic model with MSS as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9906 0.3112 0.6348 
Biaxial 0.4309 1.2260 4.6951 
Uniaxial X 0.0886 1.2487 -0.1689 
Uniaxial Y 0.9387 0.3950 1.0449 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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A.1.6 Strain Energy Density (SED) 

 
Figure A - 6. Neural responses (NR) output by the isotropic elastic FEBio model using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 6. Linear regression measures for individual loading regime results from the isotropic elastic model with SED as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.8488 0.8623 0.4052 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.7 Hydrostatic Pressure (HS) 

 
Figure A - 7. Neural responses (NR) output by the isotropic elastic FEBio model using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 7. Linear regression measures for individual loading regime results from the isotropic elastic model with HS as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9904 0.3666 0.7383 
Biaxial 0.4386 1.6083 6.2559 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9677 0.1826 0.6750 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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A.1.8 1st Principle Stress (S1) 

 
Figure A - 8. Neural responses (NR) output by the isotropic elastic FEBio model using S1 as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 

Table A - 8. Linear regression measures for individual loading regime results from the isotropic elastic model with S1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9856 0.6542 1.0752 
Biaxial 0.4346 2.0244 7.8104 
Uniaxial X 0.4795 2.0223 -0.8416 
Uniaxial Y 0.8876 0.9386 1.7822 
Shear Positive 0.8402 0.4353 0.1831 
Shear Negative 0.7331 0.4926 0.4259 
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A.1.9 2nd Principle Stress (S2) 

 
Figure A - 9. Neural responses (NR) output by the isotropic elastic FEBio model using S2 as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 

Table A - 9. Linear regression measures for individual loading regime results from the isotropic elastic model with S2 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9892 0.5578 1.0586 
Biaxial 0.4813 1.8115 7.6785 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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A.1.10 3rd Principle Stress (S3) 

 
Figure A - 10. Neural responses (NR) output by the isotropic elastic FEBio model using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 10. Linear regression measures for individual loading regime results from the isotropic elastic model with S3 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9673 0.5867 0.6324 
Biaxial 0.4512 1.5618 6.2315 
Uniaxial X 0.3574 1.5553 -0.5030 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8701 0.4861 0.2308 
Shear Negative 0.8855 0.4791 0.6953 
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A.1.11 Deviatoric Stress 1 (Dev1) 

 
Figure A - 11. Neural responses (NR) output by the isotropic elastic FEBio model using Dev1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 11. Linear regression measures for individual loading regime results from the isotropic elastic model with Dev1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9776 0.3583 0.4698 
Biaxial 0.3652 1.1738 3.9184 
Uniaxial X 0.3760 1.3447 -0.4526 
Uniaxial Y 0.9375 0.4915 1.2861 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.12 Deviatoric Stress 2 (Dev2) 

 
Figure A - 12. Neural responses (NR) output by the isotropic elastic FEBio model using Dev2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 12. Linear regression measures for individual loading regime results from the isotropic elastic model with Dev2 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9893 0.2242 0.4281 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.13  Deviatoric Stress 3 (Dev3) 

 
Figure A - 13. Neural responses (NR) output by the isotropic elastic FEBio model using Dev3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 13. Linear regression measures for individual loading regime results from the isotropic elastic model with Dev3 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.14 Shear Stress A  

 
Figure A - 14. Neural responses (NR) output by the isotropic elastic FEBio model using ShearA as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 14. Linear regression measures for individual loading regime results from the isotropic elastic model with ShearA as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.0889 1.2456 -0.1687 
Uniaxial Y 0.9395 0.3915 1.0425 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.15 Shear Stress B 

 
Figure A - 15. Neural responses (NR) output by the isotropic elastic FEBio model using ShearB as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 15. Linear regression measures for individual loading regime results from the isotropic elastic model with ShearB as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9785 0.4403 0.5896 
Biaxial 0.3661 1.1680 3.9058 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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A.1.16 Shear Stress C 

 
Figure A - 16. Neural responses (NR) output by the isotropic elastic FEBio model using ShearC as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 16. Linear regression measures for individual loading regime results from the isotropic elastic model with ShearC as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9906 0.3112 0.6348 
Biaxial 0.4309 1.2260 4.6951 
Uniaxial X 0.0886 1.2487 -0.1689 
Uniaxial Y 0.9387 0.3950 1.0449 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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A.1.17 X Strain (Ex) 

 
Figure A - 17. Neural responses (NR) output by the isotropic elastic FEBio model using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table A - 17. Linear regression measures for individual loading regime results from the isotropic elastic model with Ex as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9475 0.9243 0.7786 
Biaxial 0.5449 1.5433 7.4316 
Uniaxial X 0.3492 2.5178 -0.7997 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8828 0.3338 0.1680 
Shear Negative 0.8868 0.3304 0.4825 
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A.1.18 Y Strain (Ey) 

 
Figure A - 18. Neural responses (NR) output by the isotropic elastic FEBio model using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 
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Appendix B: Orthotropic Elastic Material Results 
B.1 Test 1 
 

Table B - 1. Values selected for material properties during FEBio implementation of orthotropic elastic material test 1. 

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 2.6 
Young’s Modulus (Y) 1 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 0.9 
Shear Modulus (YZ) 0.345 
Shear Modulus (XZ) 0.345 
Poisson’s Ratio (XY) 0.45 
Poisson’s Ratio (YZ) 0.45 
Poisson’s Ratio (XZ) 0.45 

 

 

Table B - 2. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the orthotropic elastic model 1. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1650 4.3936 0.4315 
Y Stress (Sy) 0.2862 4.0749 0.5699 
Shear Stress (Sxy) 0.0795 1.3171 0.0855 
1st Invariant Stress Tensor (I1) 0.2545 5.8150 0.7506 
Maximum Shear Stress (MSS) 0.2495 2.2739 0.2896 
Strain Energy Density (SED) 0.1747 1.2610 0.1282 
Hydrostatic Pressure (HS) 0.2305 2.9756 0.3597 
1st Principal Stress (S1) 0.2533 3.9731 0.5112 
2nd Principal Stress (S2) 0.2054 4.3724 0.4910 
3rd Principal Stress (S3) 0.2178 6.4738 0.7546 
Deviatoric Stress 1 (Dev1) 0.1894 1.7983 0.1920 
Deviatoric Stress 2 (Dev2) 0.1639 1.3866 0.1356 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.0002 0.8184 -0.0024 
Shear B 0.1908 2.2294 0.2392 
Shear C 0.2495 2.2739 0.2896 
X Strain (Ex) 0.0802 1.8441 0.1203 
Y Strain (Ey) 0.3536 4.0991 0.6696 
Average 0.1967 2.8545 0.3342 
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B.1.1 X Stress (Sx) 

 
Figure B - 1. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 3. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9855 0.6552 1.0716 
Biaxial 0.5056 2.0135 8.9605 
Uniaxial X 0.4805 2.0151 -0.8404 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7165 0.5491 0.1601 
Shear Negative 0.7737 0.4120 0.3975 
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B.1.2 Y Stress (Sy) 

 
Figure B - 2. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 4. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9858 0.6501 1.0759 
Biaxial 0.3680 2.2632 7.5998 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8857 0.9489 1.7847 
Shear Positive 0.7167 0.3956 0.1154 
Shear Negative 0.2318 0.4526 0.1297 
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B.1.3 Shear Stress (Sxy) 

 
Figure B - 3. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 5. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9593 0.4775 0.4254 
Shear Negative NaN 0.0000 0.0000 
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B.1.4 1st Invariant Stress Tensor (I1) 

 

Figure B - 4. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 6. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9655 1.2645 1.3277 
Biaxial 0.3492 4.0153 12.9428 
Uniaxial X 0.3637 1.8660 -0.6117 
Uniaxial Y 0.8982 0.9449 1.8964 
Shear Positive 0.9558 0.3944 0.3364 
Shear Negative 0.8798 0.6130 0.8653 
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B.1.5 Maximum Shear Stress (MSS) 

 
Figure B - 5. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 7. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9901 0.3247 0.6436 
Biaxial 0.4274 1.2339 4.6912 
Uniaxial X 0.0886 1.2490 -0.1689 
Uniaxial Y 0.9380 0.4128 1.0852 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.1.6 Strain Energy Density (SED) 

 
Figure B - 6. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 8. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.8516 0.8535 0.4055 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.1.7 Hydrostatic Pressure (HS) 

 
Figure B - 7. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 9. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9731 0.6672 0.7953 
Biaxial 0.4662 1.5794 6.4951 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9716 0.1839 0.7265 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.1.8 1st Principle Stress (S1) 

 
Figure B - 8. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 10. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9841 0.7018 1.0941 
Biaxial 0.5060 2.0135 8.9672 
Uniaxial X 0.4805 2.0151 -0.8404 
Uniaxial Y 0.8856 0.9490 1.7847 
Shear Positive 0.8705 0.4718 0.2244 
Shear Negative 0.7665 0.5484 0.5185 
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B.1.9 2nd Principle Stress (S2) 

 
Figure B - 9. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 11. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9891 0.5602 1.0602 
Biaxial 0.3685 2.2619 7.6041 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.1.10 3rd Principle Stress (S3) 

 
Figure B - 10. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 12. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9409 1.5263 1.2082 
Biaxial 0.4316 4.0069 15.3664 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8701 0.4737 0.2249 
Shear Negative 0.9269 0.7343 1.3639 
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B.1.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 11. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 13. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9812 0.3446 0.4942 
Biaxial 0.3667 1.1658 3.9039 
Uniaxial X 0.3753 1.3451 -0.4521 
Uniaxial Y 0.9371 0.4928 1.2857 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.1.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 12. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 14. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9798 0.2855 0.3946 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.1.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 13. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 15. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.1.14 Shear Stress A  

 
Figure B - 14. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 16. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.0987 1.1473 -0.1646 
Uniaxial Y 0.9299 0.3943 0.9706 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.1.15 Shear Stress B 

 
Figure B - 15. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 17. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9801 0.4217 0.5873 
Biaxial 0.3652 1.1740 3.9187 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.1.16 Shear Stress C 

 
Figure B - 16. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 18. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9901 0.3247 0.6436 
Biaxial 0.4274 1.2339 4.6912 
Uniaxial X 0.0886 1.2490 -0.1689 
Uniaxial Y 0.9380 0.4128 1.0852 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 



 

 

 

113 

B.1.17 X Strain (Ex) 

 
Figure B - 17. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 19. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9883 0.2233 0.4064 
Biaxial 0.4081 1.0158 3.7120 
Uniaxial X 0.5165 1.0832 -0.4854 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.3035 0.2479 0.0300 
Shear Negative 0.2318 0.2272 0.0651 
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B.1.18 Y Strain (Ey) 

 
Figure B - 18. Neural responses (NR) output by the orthotropic elastic FEBio model 1 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 20. Linear regression measures for individual loading regime results from the orthotropic elastic model 1, with Ey as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9893 0.5439 1.0364 
Biaxial 0.3872 2.1237 7.4290 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8450 1.2402 1.9564 
Shear Positive 0.8824 0.3838 0.1928 
Shear Negative 0.8050 0.3715 0.3938 
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B.2 Test 2 
 

Table B - 21. Values selected for material properties during FEBio implementation of orthotropic elastic material test 2.  

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 9.4 
Young’s Modulus (Y) 1 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 3.62 
Shear Modulus (YZ) 0.385 
Shear Modulus (XZ) 0.385 
Poisson’s Ratio (XY) 0.299 
Poisson’s Ratio (YZ) 0.299 
Poisson’s Ratio (XZ) 0.299 

 
 

Table B - 22. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the orthotropic elastic model 2. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1693 4.4584 0.4446 
Y Stress (Sy) 0.2800 4.1261 0.5684 
Shear Stress (Sxy) 0.0756 1.6098 0.1017 
1st Invariant Stress Tensor (I1) 0.2616 5.8521 0.7695 
Maximum Shear Stress (MSS) 0.2667 2.2999 0.3064 
SED (Strain Energy Density) 0.1747 1.2614 0.1282 
Hydrostatic Pressure (HS) 0.2453 2.9957 0.3772 
1st Principal Stress (S1) 0.2776 4.0427 0.5536 
2nd Principal Stress (S2) 0.2009 4.1762 0.4625 
3rd Principal Stress (S3) 0.1827 7.8902 0.8240 
Deviatoric Stress 1 (Dev1) 0.2492 1.7930 0.2282 
Deviatoric Stress 2 (Dev2) 0.1841 1.1386 0.1195 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.0141 0.7536 0.0199 
Shear B 0.1927 2.1446 0.2315 
Shear C 0.2667 2.2999 0.3064 
X Strain (Ex) 0.1288 0.7420 0.0630 
Y Strain (Ey) 0.3496 4.4746 0.7246 
Average 0.2070 2.8922 0.3461 
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B.2.1 X Stress (Sx) 

 
Figure B - 19. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 23. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9843 0.6904 1.0830 
Biaxial 0.5073 2.0125 8.9864 
Uniaxial X 0.4743 1.9235 -0.7922 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.6748 0.5406 0.1428 
Shear Negative 0.4736 0.6155 0.3047 
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B.2.2 Y Stress (Sy) 

 
Figure B - 20. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 24. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9855 0.6582 1.0768 
Biaxial 0.4005 2.2830 8.2117 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8835 0.9508 1.7695 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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B.2.3 Shear Stress (Sxy) 

 
Figure B - 21. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 25. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9797 0.3935 0.5017 
Shear Negative NaN 0.0000 0.0000 
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B.2.4 1st Invariant Stress Tensor (I1) 

 
Figure B - 22. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 26. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9631 1.3161 1.3343 
Biaxial 0.3471 4.0716 13.0653 
Uniaxial X 0.4814 2.0033 -0.8369 
Uniaxial Y 0.9420 0.7484 2.0373 
Shear Positive 0.9561 0.3578 0.3061 
Shear Negative 0.8970 0.5214 0.8030 



 

 

 

120 

B.2.5 Maximum Shear Stress (MSS) 

 
Figure B - 23. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 27. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9859 0.3970 0.6577 
Biaxial 0.3983 1.4145 5.0649 
Uniaxial X 0.0886 1.2491 -0.1689 
Uniaxial Y 0.9464 0.4222 1.1991 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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B.2.6 Strain Energy Density (SED) 

 
Figure B - 24. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 28. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.8521 0.8521 0.4056 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

122 

B.2.7 Hydrostatic Pressure (HS) 

 
Figure B - 25. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 29. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9676 0.7380 0.7995 
Biaxial 0.5022 1.5803 6.9847 
Uniaxial X 0.0076 0.6100 -0.0232 
Uniaxial Y 0.8888 0.3626 0.6929 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 



 

 

 

123 

B.2.8 1st Principle Stress (S1) 

 
Figure B - 26. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 30. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9819 0.7745 1.1303 
Biaxial 0.3872 2.5832 9.0363 
Uniaxial X 0.4728 1.9303 -0.7926 
Uniaxial Y 0.8835 0.9508 1.7694 
Shear Positive 0.8570 0.6297 0.2828 
Shear Negative 0.7544 0.6108 0.5586 
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B.2.9 2nd Principle Stress (S2) 

 
Figure B - 27. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 31. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9723 0.8568 1.0069 
Biaxial 0.3999 2.1330 7.6621 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.2.10 3rd Principle Stress (S3) 

 
Figure B - 28. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 32. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9497 1.4970 1.2899 
Biaxial 0.4235 4.4959 16.9576 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative 0.9108 0.5572 0.9289 
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B.2.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 29. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 33. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9924 0.2219 0.5036 
Biaxial 0.3476 1.1445 3.6767 
Uniaxial X 0.3584 1.3410 -0.4346 
Uniaxial Y 0.9380 0.4695 1.2340 
Shear Positive 0.6964 0.4741 0.1317 
Shear Negative 0.2318 0.4526 0.1297 
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B.2.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 30. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 34. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9481 0.4117 0.3491 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.2.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 31. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 35. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.2.14 Shear Stress A  

 
Figure B - 32. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 36. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.3998 0.3465 0.0561 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.0970 1.1626 -0.1653 
Uniaxial Y 0.9243 0.3585 0.8468 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.2.15 Shear Stress B 

 
Figure B - 33. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 37. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9822 0.3855 0.5683 
Biaxial 0.3527 1.1539 3.7485 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.2.16 Shear Stress C 

 
Figure B - 34. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 38. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9859 0.3970 0.6577 
Biaxial 0.3983 1.4145 5.0649 
Uniaxial X 0.0886 1.2491 -0.1689 
Uniaxial Y 0.9464 0.4222 1.1991 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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B.2.17 X Strain (Ex) 

 
Figure B - 35. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 39. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9071 0.2486 0.1541 
Biaxial 0.0001 0.3390 -0.0153 
Uniaxial X 0.0076 0.3053 -0.0116 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.6424 0.2730 0.0671 
Shear Negative 0.8275 0.2627 0.3002 
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B.2.18 Y Strain (Ey) 

 
Figure B - 36. Neural responses (NR) output by the orthotropic elastic FEBio model 2 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 40. Linear regression measures for individual loading regime results from the orthotropic elastic model 2, with Ey as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9764 0.8452 1.0786 
Biaxial 0.4896 2.2153 9.5488 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8331 1.2685 1.9151 
Shear Positive 0.9604 0.2446 0.2211 
Shear Negative 0.8961 0.3529 0.5408 
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B.3 Test 3 
 
Table B - 41. Values selected for material properties during FEBio implementation of orthotropic elastic material test 3. 

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 7.4 
Young’s Modulus (Y) 1 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 2.85 
Shear Modulus (YZ) 0.336 
Shear Modulus (XZ) 0.385 
Poisson’s Ratio (XY) 0.299 
Poisson’s Ratio (YZ) 0.488 
Poisson’s Ratio (XZ) 0.299 
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B.3.1 X Stress (Sx) 

 
Figure B - 37. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 42. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9836 0.7123 1.0953 
Biaxial 0.5149 1.9886 9.0160 
Uniaxial X 0.4813 2.0130 -0.8408 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8407 0.4334 0.1826 
Shear Negative 0.7102 0.5413 0.4421 
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B.3.2 Y Stress (Sy) 

 
Figure B - 38. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 43. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9850 0.6766 1.0865 
Biaxial 0.3991 2.2999 8.2485 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8959 0.9403 1.8640 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.4848 0.4540 0.2298 
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B.3.3 Shear Stress (Sxy) 

 
Figure B - 39. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 44. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9749 0.4693 0.5369 
Shear Negative NaN 0.0000 0.0000 
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B.3.4 1st Invariant Stress Tensor (I1) 

 
Figure B - 40. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 45. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9639 1.3179 1.3508 
Biaxial 0.3432 4.1133 13.0858 
Uniaxial X 0.3358 1.9177 -0.5913 
Uniaxial Y 0.9408 0.7486 2.0170 
Shear Positive 0.9548 0.4173 0.3518 
Shear Negative 0.9126 0.5497 0.9267 
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B.3.5 Maximum Shear Stress (MSS) 

 
Figure B - 41. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 46. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9839 0.4577 0.7091 
Biaxial 0.4418 1.5966 6.2507 
Uniaxial X 0.4230 0.9393 -0.3487 
Uniaxial Y 0.8924 0.6474 1.2596 
Shear Positive 0.8702 0.4738 0.2251 
Shear Negative 0.4848 0.4540 0.2298 
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B.3.6 Strain Energy Density (SED) 

 
Figure B - 42. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 47. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.8522 0.8518 0.4057 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.3.7 Hydrostatic Pressure (HS) 

 
Figure B - 43. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 48. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9626 0.8058 0.8112 
Biaxial 0.5045 1.5824 7.0263 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.8891 0.3628 0.6942 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative 0.2318 0.4526 0.1297 
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B.3.8 1st Principle Stress (S1) 

 
Figure B - 44. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 49. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9833 0.7804 1.1875 
Biaxial 0.3954 2.8186 10.0316 
Uniaxial X 0.4812 2.0138 -0.8410 
Uniaxial Y 0.8497 1.1723 1.8832 
Shear Positive 0.9524 0.4999 0.4101 
Shear Negative 0.8706 0.5629 0.7617 
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B.3.9 2nd Principle Stress (S2) 

 
Figure B - 45. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 50. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9561 0.8912 0.8247 
Biaxial 0.4186 1.8012 6.7256 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8999 0.3699 0.7497 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.3.10 3rd Principle Stress (S3) 

 
Figure B - 46. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 51. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9544 1.5286 1.3863 
Biaxial 0.5590 4.2443 21.0309 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative 0.8937 1.0625 1.6072 
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B.3.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 47. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 52. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9854 0.4347 0.7089 
Biaxial 0.4456 1.5771 6.2224 
Uniaxial X 0.3760 1.3451 -0.4527 
Uniaxial Y 0.8978 0.6358 1.2733 
Shear Positive 0.8573 0.6276 0.2822 
Shear Negative 0.4739 0.6142 0.3042 



 

 

 

146 

B.3.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 48. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 53. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.4931 1.0978 0.2148 
Biaxial 0.2119 0.5615 1.2811 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.3.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 49. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 54. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.3.14 Shear Stress A  

 
Figure B - 50. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 55. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9879 0.2398 0.4296 
Biaxial 0.1061 0.8348 1.2657 
Uniaxial X 0.0976 1.1576 -0.1651 
Uniaxial Y 0.9689 0.1819 0.6858 
Shear Positive 0.6864 0.5049 0.1370 
Shear Negative 0.2318 0.4526 0.1297 



 

 

 

149 

B.3.15 Shear Stress B 

 
Figure B - 51. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 56. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9771 0.3603 0.4671 
Biaxial 0.3209 0.8275 2.5032 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9716 0.1841 0.7282 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.3.16 Shear Stress C 

 
Figure B - 52. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 57. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9839 0.4577 0.7091 
Biaxial 0.4418 1.5966 6.2507 
Uniaxial X 0.4230 0.9393 -0.3487 
Uniaxial Y 0.8924 0.6474 1.2596 
Shear Positive 0.8702 0.4738 0.2251 
Shear Negative 0.4848 0.4540 0.2298 
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B.3.17 X Strain (Ex) 

 
Figure B - 53. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 58. Linear regression measures for individual loading regime results from the orthotropic elastic model 3, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9500 0.2270 0.1962 
Biaxial 0.1291 0.4948 0.8383 
Uniaxial X 0.0076 0.4551 -0.0173 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.6424 0.2730 0.0671 
Shear Negative 0.7507 0.2579 0.2334 
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B.3.18 Y Strain (Ey) 

 
Figure B - 54. Neural responses (NR) output by the orthotropic elastic FEBio model 3 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

  



 

 

 

153 

B.4 Test 4 
 
Table B - 59. Values selected for material properties during FEBio implementation of orthotropic elastic material test 4. 

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 1 
Young’s Modulus (Y) 2.6 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 0.345 
Shear Modulus (YZ) 0.9 
Shear Modulus (XZ) 0.345 
Poisson’s Ratio (XY) 0.45 
Poisson’s Ratio (YZ) 0.45 
Poisson’s Ratio (XZ) 0.45 

 

 
Table B - 60. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the orthotropic elastic model 4. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1619 4.4193 0.4290 
Y Stress (Sy) 0.2900 3.8589 0.5447 
Shear Stress (Sxy) 0.0898 0.7181 0.0498 
1st Invariant Stress Tensor (I1) 0.2531 5.7533 0.7398 
Maximum Shear Stress (MSS) 0.2457 2.2094 0.2785 
Strain Energy Density (SED) 0.1602 0.4938 0.0476 
Hydrostatic Pressure (HS) 0.2214 2.7780 0.3272 
1st Principal Stress (S1) 0.2480 3.9374 0.4994 
2nd Principal Stress (S2) 0.2080 4.1837 0.4735 
3rd Principal Stress (S3) 0.2109 6.0172 0.6872 
Deviatoric Stress 1 (Dev1) 0.1913 1.7654 0.1896 
Deviatoric Stress 2 (Dev2) 0.1619 1.3875 0.1347 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.0000 0.8594 -0.0011 
Shear B 0.1918 2.1790 0.2345 
Shear C 0.2457 2.2094 0.2785 
X Strain (Ex) 0.0917 3.8468 0.2700 
Y Strain (Ey) 0.0251 1.3824 0.0490 
Average 0.1763 2.6666 0.2907 
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B.4.1 X Stress (Sx) 

 
Figure B - 55. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 61. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9856 0.6571 1.0781 
Biaxial 0.4348 2.0247 7.8153 
Uniaxial X 0.4790 2.0320 -0.8448 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7165 0.5488 0.1600 
Shear Negative 0.4624 0.6753 0.3268 
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B.4.2 Y Stress (Sy) 

 
Figure B - 56. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 62. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9811 0.7145 1.0197 
Biaxial 0.4765 1.8277 7.6745 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8877 0.9362 1.7785 
Shear Positive 0.7143 0.4101 0.1189 
Shear Negative 0.2318 0.4526 0.1297 
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B.4.3 Shear Stress (Sxy) 

 
Figure B - 57. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 63. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8647 0.5485 0.2543 
Shear Negative NaN 0.0000 0.0000 
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B.4.4 1st Invariant Stress Tensor (I1) 

 
Figure B - 58. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 64. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9660 1.2387 1.3087 
Biaxial 0.3518 3.9977 12.9618 
Uniaxial X 0.3649 1.8728 -0.6155 
Uniaxial Y 0.8863 0.9447 1.7822 
Shear Positive 0.9497 0.4374 0.3485 
Shear Negative 0.8796 0.5507 0.7767 
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B.4.5 Maximum Shear Stress (MSS) 

 
Figure B - 59. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 65. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9898 0.3243 0.6333 
Biaxial 0.4250 1.2365 4.6784 
Uniaxial X 0.3035 1.0123 -0.2898 
Uniaxial Y 0.9393 0.3932 1.0452 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative NaN 0.0000 0.0000 
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B.4.6 Strain Energy Density (SED) 

 
Figure B - 60. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 66. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.6625 0.5481 0.1523 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.4.7 Hydrostatic Pressure (HS) 

 
Figure B - 61. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 67. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9831 0.4681 0.7076 
Biaxial 0.4379 1.6100 6.2530 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9123 0.2659 0.5794 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.4.8 1st Principle Stress (S1) 

 
Figure B - 62. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 68. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9855 0.6591 1.0780 
Biaxial 0.4347 2.0248 7.8144 
Uniaxial X 0.4790 2.0320 -0.8448 
Uniaxial Y 0.8877 0.9362 1.7785 
Shear Positive 0.8675 0.4728 0.2219 
Shear Negative 0.7104 0.5407 0.4419 
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B.4.9 2nd Principle Stress (S2) 

 
Figure B - 63. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 69. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9785 0.7604 1.0169 
Biaxial 0.4765 1.8280 7.6744 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 



 

 

 

163 

B.4.10 3rd Principle Stress (S3) 

 
Figure B - 64. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 70. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9584 1.1891 1.1324 
Biaxial 0.3125 3.7006 10.9791 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9108 0.2279 0.4922 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.4.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 65. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 71. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9804 0.3478 0.4876 
Biaxial 0.3650 1.1736 3.9159 
Uniaxial X 0.3763 1.3442 -0.4527 
Uniaxial Y 0.9371 0.4919 1.2834 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.4.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 66. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 72. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9814 0.2717 0.3912 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.4.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 67. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 73. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.4.14 Shear Stress A  

 
Figure B - 68. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 74. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.0967 1.1658 -0.1654 
Uniaxial Y 0.9391 0.3925 1.0416 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.4.15 Shear Stress B 

 
Figure B - 69. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 75. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9743 0.4731 0.5780 
Biaxial 0.3562 1.1455 3.7499 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

169 

B.4.16 Shear Stress C 

 
Figure B - 70. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 76. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9898 0.3243 0.6333 
Biaxial 0.4250 1.2365 4.6784 
Uniaxial X 0.3035 1.0123 -0.2898 
Uniaxial Y 0.9393 0.3932 1.0452 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative NaN 0.0000 0.0000 
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B.4.17 X Strain (Ex) 

 
Figure B - 71. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Ex as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 77. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9777 0.6322 0.8305 
Biaxial 0.4178 2.0253 7.5510 
Uniaxial X 0.3474 2.5310 -0.8007 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8904 0.3409 0.1782 
Shear Negative 0.9123 0.2919 0.4913 
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B.4.18 Y Strain (Ey) 

 
Figure B - 72. Neural responses (NR) output by the orthotropic elastic FEBio model 4 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 78. Linear regression measures for individual loading regime results from the orthotropic elastic model 4, with Ey as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9313 0.4629 1.1517 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.5 Test 5 
 
Table B - 79. Values selected for material properties during FEBio implementation of orthotropic elastic material test 5. 

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 1 
Young’s Modulus (Y) 9.4 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 0.385 
Shear Modulus (YZ) 3.62 
Shear Modulus (XZ) 0.385 
Poisson’s Ratio (XY) 0.299 
Poisson’s Ratio (YZ) 0.299 
Poisson’s Ratio (XZ) 0.299 

 

 
Table B - 80. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the orthotropic elastic model 5. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1623 4.3806 0.4259 
Y Stress (Sy) 0.2904 3.7956 0.5363 
Shear Stress (Sxy) 0.0908 0.4323 0.0302 
1st Invariant Stress Tensor (I1) 0.2516 5.7047 0.7306 
Maximum Shear Stress (MSS) 0.3047 1.9997 0.2924 
Strain Energy Density (SED) 0.1606 0.5014 0.0484 
Hydrostatic Pressure (HS) 0.2230 2.7709 0.3279 
1st Principal Stress (S1) 0.2941 3.6532 0.5208 
2nd Principal Stress (S2) 0.2228 3.9674 0.4692 
3rd Principal Stress (S3) 0.2200 4.5314 0.5317 
Deviatoric Stress 1 (Dev1) 0.2696 1.6095 0.2160 
Deviatoric Stress 2 (Dev2) 0.1695 1.1861 0.1184 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.0042 0.8626 0.0124 
Shear B 0.2415 1.9108 0.2382 
Shear C 0.3047 1.9997 0.2924 
X Strain (Ex) 0.1116 4.3760 0.3427 
Y Strain (Ey) 0.0226 0.5082 0.0171 
Average 0.1967 2.4550 0.2861 
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B.5.1 X Stress (Sx) 

 
Figure B - 73. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 81. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9863 0.6326 1.0662 
Biaxial 0.4402 2.0208 7.8857 
Uniaxial X 0.4803 2.0221 -0.8429 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7165 0.5487 0.1600 
Shear Negative 0.4684 0.6437 0.3153 



 

 

 

174 

B.5.2 Y Stress (Sy) 

 
Figure B - 74. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 82. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9713 0.8619 0.9952 
Biaxial 0.4750 1.8325 7.6703 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8868 0.9399 1.7772 
Shear Positive 0.7167 0.3960 0.1155 
Shear Negative 0.2318 0.4526 0.1297 
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B.5.3 Shear Stress (Sxy) 

 
Figure B - 75. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 83. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7172 0.5368 0.1568 
Shear Negative NaN 0.0000 0.0000 
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B.5.4 1st Invariant Stress Tensor (I1) 

 
Figure B - 76. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 84. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9648 1.2426 1.2907 
Biaxial 0.3519 3.9640 12.8556 
Uniaxial X 0.3646 1.8657 -0.6128 
Uniaxial Y 0.8863 0.9427 1.7788 
Shear Positive 0.9554 0.3979 0.3378 
Shear Negative 0.8815 0.5456 0.7766 
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B.5.5 Maximum Shear Stress (MSS) 

 
Figure B - 77. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 85. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9903 0.3204 0.6426 
Biaxial 0.4244 1.2380 4.6776 
Uniaxial X 0.3911 1.0328 -0.3589 
Uniaxial Y 0.9388 0.3948 1.0446 
Shear Positive 0.9578 0.3344 0.2924 
Shear Negative 0.8824 0.5428 0.7759 
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B.5.6 Strain Energy Density (SED) 

 
Figure B - 78. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 86. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.6646 0.5549 0.1549 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.5.7 Hydrostatic Pressure (HS) 

 
Figure B - 79. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 87. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9884 0.3873 0.7104 
Biaxial 0.4407 1.6011 6.2542 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9119 0.2677 0.5818 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.5.8 1st Principle Stress (S1) 

 
Figure B - 80. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 88. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9844 0.6893 1.0863 
Biaxial 0.4397 2.0202 7.8760 
Uniaxial X 0.4802 2.0222 -0.8428 
Uniaxial Y 0.8868 0.9399 1.7772 
Shear Positive 0.9570 0.4836 0.4182 
Shear Negative 0.8903 0.7040 1.0467 
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B.5.9 2nd Principle Stress (S2) 

 
Figure B - 81. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 89. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9769 0.7657 0.9881 
Biaxial 0.4750 1.8334 7.6741 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7143 0.4102 0.1190 
Shear Negative 0.4848 0.4540 0.2298 
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B.5.10 3rd Principle Stress (S3) 

 
Figure B - 82. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 90. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9800 0.7501 1.0423 
Biaxial 0.3832 2.5925 8.9919 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

183 

B.5.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 83. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 91. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9862 0.2875 0.4826 
Biaxial 0.3657 1.1708 3.9126 
Uniaxial X 0.3759 1.3450 -0.4526 
Uniaxial Y 0.9369 0.4939 1.2855 
Shear Positive 0.8872 0.5508 0.2834 
Shear Negative 0.7462 0.7288 0.6521 
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B.5.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 84. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 92. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9779 0.2596 0.3422 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.5.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 85. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 93. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

186 

B.5.14 Shear Stress A  

 
Figure B - 86. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 94. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.1058 1.0863 -0.1620 
Uniaxial Y 0.9390 0.3931 1.0426 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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B.5.15 Shear Stress B 

 
Figure B - 87. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 95. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9892 0.2763 0.5239 
Biaxial 0.3544 1.1494 3.7477 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7165 0.5490 0.1601 
Shear Negative 0.7546 0.4490 0.4109 
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B.5.16 Shear Stress C 

 
Figure B - 88. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 96. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9903 0.3204 0.6426 
Biaxial 0.4244 1.2380 4.6776 
Uniaxial X 0.3911 1.0328 -0.3589 
Uniaxial Y 0.9388 0.3948 1.0446 
Shear Positive 0.9578 0.3344 0.2924 
Shear Negative 0.8824 0.5428 0.7759 
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B.5.17 X Strain (Ex) 

 
Figure B - 89. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 97. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9750 0.7688 0.9513 
Biaxial 0.3756 2.2701 7.7484 
Uniaxial X 0.3442 2.5540 -0.8022 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9584 0.2539 0.2236 
Shear Negative 0.9203 0.3334 0.5910 
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B.5.18 Y Strain (Ey) 

 
Figure B - 90. Neural responses (NR) output by the orthotropic elastic FEBio model 5 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 98. Linear regression measures for individual loading regime results from the orthotropic elastic model 5, with Ey as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8473 0.1874 0.2983 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.6 Test 6 
 
Table B - 99. Values selected for material properties during FEBio implementation of orthotropic elastic material test 6. 

Orthotropic Material Property Value Selected 
Density 1 
Young’s Modulus (X) 1 
Young’s Modulus (Y) 7.4 
Young’s Modulus (Z) 1 
Shear Modulus (XY) 0.385 
Shear Modulus (YZ) 2.85 
Shear Modulus (XZ) 0.336 
Poisson’s Ratio (XY) 0.299 
Poisson’s Ratio (YZ) 0.299 
Poisson’s Ratio (XZ) 0.488 

 

 
Table B - 100. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the orthotropic elastic model 6. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.1613 4.4218 0.4283 
Y Stress (Sy) 0.2770 4.0022 0.5472 
Shear Stress (Sxy) 0.0889 0.3818 0.0263 
1st Invariant Stress Tensor (I1) 0.2514 5.7834 0.7403 
Maximum Shear Stress (MSS) 0.2867 2.2642 0.3170 
Strain Energy Density (SED) 0.1586 0.5348 0.0513 
Hydrostatic Pressure (HS) 0.2288 2.8364 0.3412 
1st Principal Stress (S1) 0.3051 3.9153 0.5731 
2nd Principal Stress (S2) 0.2220 3.5283 0.4164 
3rd Principal Stress (S3) 0.1988 7.5955 0.8358 
Deviatoric Stress 1 (Dev1) 0.3341 1.9817 0.3101 
Deviatoric Stress 2 (Dev2) 0.1708 0.4950 0.0496 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.2541 0.9368 0.1208 
Shear B 0.2617 1.7145 0.2255 
Shear C 0.2867 2.2642 0.3170 
X Strain (Ex) 0.1112 4.3581 0.3405 
Y Strain (Ey) 0.0243 0.6264 0.0218 
Average 0.2130 2.6467 0.3146 
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B.6.1 X Stress (Sx) 

 
Figure B - 91. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 101. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Sx as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9856 0.6580 1.0780 
Biaxial 0.4316 2.0263 7.7703 
Uniaxial X 0.4778 2.0430 -0.8473 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7170 0.5456 0.1593 
Shear Negative 0.4629 0.6724 0.3257 
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B.6.2 Y Stress (Sy) 

 
Figure B - 92. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 102. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Sy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9878 0.5794 1.0339 
Biaxial 0.3937 2.1601 7.6603 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8858 0.9465 1.7813 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.2318 0.4526 0.1297 
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B.6.3 Shear Stress (Sxy) 

 
Figure B - 93. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 103. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Sxy as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.6864 0.5048 0.1370 
Shear Negative NaN 0.0000 0.0000 
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B.6.4 1st Invariant Stress Tensor (I1) 

 
Figure B - 94. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 104. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with I1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9651 1.2565 1.3113 
Biaxial 0.3503 3.9860 12.8807 
Uniaxial X 0.3652 1.8838 -0.6195 
Uniaxial Y 0.8851 0.9527 1.7870 
Shear Positive 0.9558 0.3941 0.3361 
Shear Negative 0.8992 0.5180 0.8071 
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B.6.5 Maximum Shear Stress (MSS) 

 
Figure B - 95. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 105. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9922 0.3057 0.6844 
Biaxial 0.4320 1.4013 5.3775 
Uniaxial X 0.3607 1.3375 -0.4356 
Uniaxial Y 0.9381 0.4119 1.0833 
Shear Positive 0.9897 0.2324 0.4171 
Shear Negative 0.9096 0.7155 1.1841 
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B.6.6 Strain Energy Density (SED) 

 
Figure B - 96. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 106. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.6506 0.6063 0.1641 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.6.7 Hydrostatic Pressure (HS) 

 
Figure B - 97. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 107. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with HS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9901 0.3729 0.7404 
Biaxial 0.4661 1.5770 6.4847 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9676 0.1824 0.6733 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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B.6.8 1st Principle Stress (S1) 

 
Figure B - 98. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 108. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with S1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9942 0.4367 1.1307 
Biaxial 0.4227 2.6274 9.8933 
Uniaxial X 0.4778 2.0430 -0.8473 
Uniaxial Y 0.8858 0.9465 1.7813 
Shear Positive 0.9899 0.2799 0.5079 
Shear Negative 0.9607 0.5019 1.2942 
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B.6.9 2nd Principle Stress (S2) 

 
Figure B - 99. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 109. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with S2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9675 0.8311 0.8992 
Biaxial 0.4114 1.8607 6.8462 
Uniaxial X 0.0076 0.6100 -0.0232 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.7103 0.4272 0.1227 
Shear Negative 0.4782 0.5901 0.2948 
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B.6.10 3rd Principle Stress (S3) 

 
Figure B - 100. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 110. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with S3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9512 1.4445 1.2651 
Biaxial 0.4294 4.3307 16.5319 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.6.11 Deviatoric Stress 1 (Dev1) 

 
Figure B - 101. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Dev1 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 111. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Dev1 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9914 0.2989 0.6352 
Biaxial 0.4258 1.2376 4.6899 
Uniaxial X 0.3767 1.3436 -0.4529 
Uniaxial Y 0.9375 0.4928 1.2898 
Shear Positive 0.9626 0.4637 0.4313 
Shear Negative 0.9027 0.6727 1.0693 
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B.6.12 Deviatoric Stress 2 (Dev2) 

 
Figure B - 102. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Dev2 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 112. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Dev2 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.7863 0.4140 0.1575 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.6.13 Deviatoric Stress 3 (Dev3) 

 
Figure B - 103. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Dev3 as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 113. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Dev3 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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B.6.14 Shear Stress A  

 
Figure B - 104. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using ShearA as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 114. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with ShearA 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9440 0.2976 0.2424 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9391 0.3932 1.0438 
Shear Positive 0.7112 0.5880 0.1692 
Shear Negative 0.4781 0.5908 0.2950 
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B.6.15 Shear Stress B 

 
Figure B - 105. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using ShearB as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 115. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with ShearB 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9840 0.3151 0.4904 
Biaxial 0.4220 0.8639 3.2484 
Uniaxial X 0.0076 0.6100 -0.0232 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8600 0.5907 0.2685 
Shear Negative 0.7214 0.7895 0.6630 
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B.6.16 Shear Stress C 

 
Figure B - 106. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using ShearC as the neural model input, 
plotted against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: 
maximum shear stress. SED: strain energy density. 

Table B - 116. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with ShearC 
as neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9922 0.3057 0.6844 
Biaxial 0.4320 1.4013 5.3775 
Uniaxial X 0.3607 1.3375 -0.4356 
Uniaxial Y 0.9381 0.4119 1.0833 
Shear Positive 0.9897 0.2324 0.4171 
Shear Negative 0.9096 0.7155 1.1841 
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B.6.17 X Strain (Ex) 

 
Figure B - 107. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 117. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Ex as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9767 0.7371 0.9465 
Biaxial 0.3623 2.2823 7.5714 
Uniaxial X 0.3440 2.5546 -0.8022 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.9571 0.2596 0.2248 
Shear Negative 0.9139 0.3309 0.5625 
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B.6.18 Y Strain (Ey) 

 
Figure B - 108. Neural responses (NR) output by the orthotropic elastic FEBio model 6 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table B - 118. Linear regression measures for individual loading regime results from the orthotropic elastic model 6, with Ey as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9594 0.1394 0.4579 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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Appendix C: Coupled Transversely Isotropic Mooney Rivlin 

Material Results 
C.1 Test 1 

C.1.1 X Stress (Sx) 

 

 
Figure C - 1. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 
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Table C - 1. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Sx as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9751 0.5592 0.6940 
Biaxial 0.1997 1.1273 2.4783 
Uniaxial X 0.3658 1.5328 -0.5048 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.2 Y Stress (Sy) 

 
Figure C - 2. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 2. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Sy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9437 0.8196 0.6654 
Biaxial 0.2200 1.1308 2.6429 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9217 0.7596 1.7609 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.3 Shear Stress (Sxy) 

 
Figure C - 3. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 3. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Sxy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.8755 0.8839 0.4300 
Shear Negative NaN 0.0000 0.0000 
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C.1.4 1st Invariant Stress Tensor (I1) 

 
Figure C - 4. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using I1 as the neural model input, plotted against 
six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum shear 
stress. SED: strain energy density. 

Table C - 4. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with I1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9704 1.0212 1.1606 
Biaxial 0.3662 1.6432 5.4966 
Uniaxial X 0.3674 1.5270 -0.5045 
Uniaxial Y 0.9087 0.8416 1.7939 
Shear Positive 0.5096 0.4043 0.0756 
Shear Negative 0.4848 0.4540 0.2298 
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C.1.5 Maximum Shear Stress (MSS) 

 
Figure C - 5. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 5. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with MSS as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9396 0.5361 0.4195 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9352 0.3637 0.9336 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.6 Strain Energy Density (SED) 

 
Figure C - 6. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 6. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with SED as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.1966 0.3006 0.0295 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

217 

C.1.7 Hydrostatic Pressure (HS) 

 
Figure C - 7. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 7. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with HS as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.7707 1.0110 0.3676 
Biaxial 0.2119 0.5615 1.2811 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.9155 0.2492 0.5544 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.8 1st Principle Stress (S1) 

 
Figure C - 8. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 8. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with S1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9614 0.6623 0.6554 
Biaxial 0.1997 1.1273 2.4783 
Uniaxial X 0.3658 1.5328 -0.5048 
Uniaxial Y 0.9217 0.7598 1.7609 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

219 

C.1.9 2nd Principle Stress (S2) 

 
Figure C - 9. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 9. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with S2 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9876 0.4089 0.7244 
Biaxial 0.3637 0.9474 3.1522 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.10 3rd Principle Stress (S3) 

 
Figure C - 10. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 10. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with S3 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.5511 0.4378 0.0962 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8875 0.8088 1.5347 
Shear Positive NaN 0.0000 0.0000 
Shear Negative 0.2318 0.4526 0.1297 
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C.1.11 Deviatoric Stress 1 (Dev1) 

 
Figure C - 11. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Dev1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 11. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.7987 0.6325 0.2499 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.3429 0.9130 -0.2860 
Uniaxial Y 0.9385 0.4223 1.1150 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.12 Deviatoric Stress 2 (Dev2) 

 
Figure C - 12. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Dev2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 12. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.6642 0.5551 0.1548 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.13 Deviatoric Stress 3 (Dev3) 

 
Figure C - 13. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Dev3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 13. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

224 

C.1.14 Shear Stress A  

 
Figure C - 14. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using ShearA as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 14. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with ShearA as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9340 0.3640 0.9251 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.15 Shear Stress B 

 
Figure C - 15. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using ShearB as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 15. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with ShearB as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9212 0.5871 0.3981 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.16 Shear Stress C 

 
Figure C - 16. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using ShearC as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 16. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with ShearC as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9300 0.5719 0.4135 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.2082 0.6292 -0.1399 
Uniaxial Y 0.9352 0.3637 0.9336 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 



 

 

 

227 

C.1.17 X Strain (Ex) 

 
Figure C - 17. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 17. Linear regression measures for individual loading regime results from the Mooney Rivlin model 1, with Ex as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.3998 0.3465 0.0561 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.0076 0.6100 -0.0232 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.1.18 Y Strain (Ey) 

 
Figure C - 18. Neural responses (NR) output by the Mooney Rivlin FEBio model 1 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 
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C.2 Test 2 
 

Table C - 18. Values selected for material properties during FEBio implementation of coupled transversely isotropic Mooney 
Rivlin model 2.  

Mooney Rivlin Material Property Value Selected 
Density 1 
Mooney Rivlin Parameter 1 (C1) 0.195 
Mooney Rivlin Parameter 2 (C2) 0 
Exponential Multiplier (C3) 0.0139 
Fibre Scale Factor (C4) 116.22 
Fibre Modulus - Linear Region (C5) 535.039 
Bulk-like Modulus (K) 73.2 
Max. Fibre Straightening Stretch (Lambda) 1 
Fibre Direction Y 

 

 

Table C - 19. Linear regression measures for total plot results (i.e. considering all loading regimes combined), for each input 
stimulus tested with the Mooney Rivlin model 2. 

Input Stimuli R2 RMSE Slope 
X Stress (Sx) 0.0732 2.6860 0.1668 
Y Stress (Sy) 0.2310 2.6438 0.3200 
Shear Stress (Sxy) 0.0532 0.1645 0.0086 
1st Invariant Stress Tensor (I1) 0.1536 4.9325 0.4642 
Maximum Shear Stress (MSS) 0.1470 1.1072 0.1015 
Strain Energy Density (SED) 0.1117 0.2221 0.0174 
Hydrostatic Pressure (HS) 0.1357 1.8422 0.1613 
1st Principal Stress (S1) 0.1152 2.5948 0.2068 
2nd Principal Stress (S2) 0.1783 2.4794 0.2551 
3rd Principal Stress (S3) 0.0337 2.0138 -0.0830 
Deviatoric Stress 1 (Dev1) 0.0724 1.2797 0.0790 
Deviatoric Stress 2 (Dev2) 0.1743 0.6250 0.0634 
Deviatoric Stress 3 (Dev3) NaN 0.0000 0.0000 
Shear A 0.0018 0.6937 -0.0065 
Shear B 0.1655 1.2660 0.1246 
Shear C 0.1376 1.5192 0.1341 
X Strain (Ex) 0.0411 3.2378 0.1482 
Y Strain (Ey) 0.1592 0.3516 0.0338 
Average 0.1167 1.6477 0.1220 
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C.2.1 X Stress (Sx) 

 
Figure C - 19. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Sx as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 20. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Sx as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9598 0.6796 0.6589 
Biaxial 0.1864 1.1014 2.3201 
Uniaxial X 0.4892 1.7565 -0.7453 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.2 Y Stress (Sy) 

 
Figure C - 20. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Sy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 21. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Sy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9882 0.4011 0.7294 
Biaxial 0.3635 0.7538 2.5066 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.8992 0.7363 1.4863 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.3 Shear Stress (Sxy) 

 
Figure C - 21. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Sxy as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 22. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Sxy as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.3035 0.3809 0.0461 
Shear Negative NaN 0.0000 0.0000 
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C.2.4 1st Invariant Stress Tensor (I1) 

 
Figure C - 22. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using I1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 23. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with I1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9767 0.8890 1.1409 
Biaxial 0.2947 1.6651 4.7367 
Uniaxial X 0.3590 1.5692 -0.5092 
Uniaxial Y 0.8992 0.7364 1.4863 
Shear Positive 0.6756 0.3488 0.0923 
Shear Negative 0.2318 0.4526 0.1297 
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C.2.5 Maximum Shear Stress (MSS) 

 
Figure C - 23. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using MSS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 24. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with MSS as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.8307 0.7248 0.3185 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.1051 1.0921 -0.1623 
Uniaxial Y 0.9082 0.3811 0.8099 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.6 Strain Energy Density (SED) 

 
Figure C - 24. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using SED as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 25. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with SED as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.3998 0.3465 0.0561 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.7 Hydrostatic Pressure (HS) 

 
Figure C - 25. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using HS as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 26. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with HS as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9272 0.6634 0.4695 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.0076 0.6100 -0.0232 
Uniaxial Y 0.8107 0.2512 0.3513 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.8 1st Principle Stress (S1) 

 
Figure C - 26. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using S1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 27. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with S1 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9547 0.6989 0.6363 
Biaxial 0.2293 0.9151 2.1969 
Uniaxial X 0.4892 1.7565 -0.7453 
Uniaxial Y 0.8992 0.7363 1.4863 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.9 2nd Principle Stress (S2) 

 
Figure C - 27. . Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using S2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 28. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with S2 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9786 0.5108 0.6845 
Biaxial 0.3209 0.8275 2.5032 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.10 3rd Principle Stress (S3) 

 
Figure C - 28. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using S3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 29. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with S3 as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9258 0.5830 0.4085 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.4902 2.2589 -0.9604 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative 0.9594 0.2691 0.6826 
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C.2.11 Deviatoric Stress 1 (Dev1) 

 
Figure C - 29. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Dev1 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 30. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Dev1 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9153 0.4591 0.2993 
Biaxial 0.0001 0.5164 -0.0233 
Uniaxial X 0.3947 1.1789 -0.4127 
Uniaxial Y 0.9884 0.1801 1.1209 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.12 Deviatoric Stress 2 (Dev2) 

 
Figure C - 30. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Dev2 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 31. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Dev2 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.7936 0.5185 0.2017 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.13 Deviatoric Stress 3 (Dev3) 

 
Figure C - 31. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Dev3 as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 32. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Dev3 as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.14 Shear Stress A  

 
Figure C - 32. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using ShearA as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 33. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with ShearA as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform NaN 0.0000 0.0000 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.1053 1.0903 -0.1622 
Uniaxial Y 0.9081 0.3808 0.8088 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.15 Shear Stress B 

 
Figure C - 33. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using ShearB as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 34. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with ShearB as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9210 0.5756 0.3898 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.16 Shear Stress C 

 
Figure C - 34. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using ShearC as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 35. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with ShearC as 
neural model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9648 0.4199 0.4358 
Biaxial NaN 0.0000 0.0000 
Uniaxial X 0.1051 1.0921 -0.1623 
Uniaxial Y 0.9082 0.3811 0.8099 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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C.2.17 X Strain (Ex) 

 
Figure C - 35. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Ex as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 36. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Ex as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.9208 1.0607 0.7176 
Biaxial 0.2366 0.5191 1.2719 
Uniaxial X 0.3705 1.8174 -0.6045 
Uniaxial Y NaN 0.0000 0.0000 
Shear Positive 0.5234 0.2908 0.0559 
Shear Negative 0.2318 0.2579 0.0739 
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C.2.18 Y Strain (Ey) 

 
Figure C - 36. Neural responses (NR) output by the Mooney Rivlin FEBio model 2 using Ey as the neural model input, plotted 
against six different stress variables. Sx: X stress. Sy: Y stress. Sxy: shear stress. I1: 1st invariant stress tensor. MSS: maximum 
shear stress. SED: strain energy density. 

Table C - 37. Linear regression measures for individual loading regime results from the Mooney Rivlin model 2, with Ey as neural 
model input. 

Loading Regime R2 RMSE Slope 
Uniform 0.5703 0.3358 0.0767 
Biaxial NaN 0.0000 0.0000 
Uniaxial X NaN 0.0000 0.0000 
Uniaxial Y 0.7874 0.2824 0.3672 
Shear Positive NaN 0.0000 0.0000 
Shear Negative NaN 0.0000 0.0000 
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Appendix D: Matlab Code 
The relevant Matlab scripts that were developed and/or adapted for this project are included in 

this appendix.  

 

D.1 HH_ruffini.m 
function [V, I_ST] = HH_ruffini( stresses, dt) 
%        [V, I_ST] = HH_ruffini( stresses, dt, varargs) 
% 
% Function for calculating the cell membranne potential V (mV) of a ruffini 
% neuron given a time series of stresses (kPa) and a time step dt (ms) (ie 
% the sampling period). 
% Based on the work of Xu et al 1996 on nociception of skin 
% Code adapted from http://andysbrainblog.blogspot.com/2013/10/introduction-

to-computational-modeling.html 
% Adapted for ruffini neurons 2019, Daina Ross, Kenneth Pope 

  

%% write some code to parse the inputs 
assert( isvector( stresses), 'stresses must be a vector of stresses'); 
assert( isscalar( dt), 'dt must be a scalar'); 
assert( dt > 0, 'dt must be positive'); 

  

% extract useful information 
Ns = numel( stresses); 

  

%% Constants and definitions 
% Hogdkin Huxley constants 
Cnst_Cm = 1;        % uF/cm^2; Membrane Capcitance;  Cm=0.01 
Cnst_ENa = 55;      % mv; Na reversal potential;  ENa=55 
Cnst_EK = -72;      % mv; K reversal potential; EK=-72 
Cnst_El = 10;       % mv; Leakage reversal potential; El=10; 
Cnst_gbarNa = 120;  % mS/cm^2; Na conductance gbar; Na=1.2 
Cnst_gbarK = 36;    % mS/cm^2; K conductance gbar 
Cnst_gbarl = 0.3;   % mS/cm^2; Leakage conductance gbarl 
Cnst_gbarA = 47.7; 

  

% original code from Gwen made these comments 
% Cnst_ENa controls amplitude of voltage 
% Cnst_El controls firing frequency 

  

% Shapiro and Lenherr 1972 vary epsilon between 1 and 10 
epsilon = 1;        % default value is 1, not sure why 
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% fudge factor introduced by Xu to stop firing below threshold value. This 
% influences the threshold of firing. 
% If Cnst_ENa=50, I_shift = -1 
% If Cnst_ENa=55, I_shift = -4 
% If Cnst_ENa=100, I_shift = -15 
I_shift = -4; 

  

% experimental conditions 
V0 = -40;       % initial membrane voltage 

  

% These are defined but never used, delete them? 
% REF_I = 0.00;   % external applied current 
% GL = 0.3; 

  

% These determine the mapping from stress to current I_ST 
Ch1 = 0.382; 
Ch2 = 0.064; 
Ch3 = 0.355; 
FF = 1; % Fudge factor to scale stress input to the I_ST value necessary for 

an output response 
MN = 25;  % Our magic number to scale how far above threshold we are to 

sensible current 

  

% Not sure what these are 
VA = -50;       % default value is -50 
A_fac = 7; 
B_fac = 7; 
m_fac = 0.263; 
h_fac = 0.263; 
n_fac = 2.63; 
k = 0.15;       % This influences the rate of firing, range 0.03 to 0.15 is 

reasonable 

  

%% calculate the outputs 
% make space for the state variables and the output 
A = zeros( 1, Ns); 
B = zeros( 1, Ns); 
n = zeros( 1, Ns); 
m = zeros( 1, Ns); 
h = zeros( 1, Ns); 
I_ST = zeros( 1, Ns); 
alpha_n = zeros( 1, Ns); 
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beta_n = zeros( 1, Ns); 
alpha_m = zeros( 1, Ns); 
beta_m = zeros( 1, Ns); 
alpha_h = zeros( 1, Ns); 
beta_h = zeros( 1, Ns); 
alpha_A = zeros( 1, Ns); 
beta_A = zeros( 1, Ns); 
alpha_B = zeros( 1, Ns); 
beta_B = zeros( 1, Ns); 
V = [ V0 zeros( 1, Ns - 1)]; 

  

% loop over time 
for ti = 1:( Ns - 1) 

     

    % Calculate the HH model - lots of magic numbers etc :-( 
    % Equations 12, 13, 20, 21, 23, 24 
    alpha_n( ti) = (1/n_fac) * (epsilon*( -.01 * ( (50+V(ti)) / (exp(-

(V(ti)+50)/10)-1) ))); 
    beta_n( ti) = (1/n_fac) * ( epsilon*(.125*exp((-(V(ti)+60)/80)))); 
    alpha_m( ti) = (1/m_fac) * (-0.1*( (V(ti)+35) / (exp(-(V(ti)+35)/10)-1) 

)); 
    beta_m( ti) = (1/m_fac) * (4*exp(-(V(ti)+60)/18)); 
    alpha_h( ti) = (1/h_fac) * (0.07*exp(-(V(ti)+60)/20)); 
    beta_h( ti) = (1/h_fac) * (1/(exp(-(V(ti)+30)/10)+1)); 
    % more equations 
    A_inf = 

((0.0761*exp((V(ti)+94.22)/31.84))/(1+exp((V(ti)+1.17)/28.93)))^(1/3); 
    Ta_A = A_fac*(0.3632+(1.158/(1+exp((V(ti)+55.96)/20.12)))); 
    alpha_A( ti) = A_inf/Ta_A; 
    beta_A( ti) = (1-A_inf)/Ta_A; 
    B_inf = (1/(1+exp((V(ti)+53.3)/14.54)))^4; 
    Ta_B = B_fac*(1.24+(2.678/(1+exp((V(ti)+50)/16.027)))); 
    alpha_B( ti) = B_inf/Ta_B; 
    beta_B( ti) = (1-B_inf)/Ta_B; 

     

    % Handle initial conditions for A, B, n, m and h separately 
    if ti == 1 
        A(1) = alpha_A( 1) / ( alpha_A( 1) + beta_A( 1)); 
        B(1) = alpha_B( 1) / ( alpha_B( 1) + beta_B( 1)); 
        n(1) = alpha_n( 1) / ( alpha_n( 1) + beta_n( 1)); % equation 9 
        m(1) = alpha_m( 1) / ( alpha_m( 1) + beta_m( 1)); % equation 18 
        h(1) = alpha_h( 1) / ( alpha_h( 1) + beta_h( 1)); % equation 18 
    end 
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    % calculate I_ST (total stimulation-induced current, comprised of 
    % current from heat, mechanical and chemical gated ion-channels) 
    % Based off of the temperature-sensitive nociceptors 
    IST_min = 0.737;      % I_ST min value that produces firing 
    IST_max = 30.2631;    % I_ST max value that produces firing 
    mech_min = 5;         % min stress threshold reported by Khalsa (5) 
    mech_max = 125;       % max stress threshold reported by Khalsa (125) 
%     mech_min = 0;       % min strain threshold reported by Khalsa (0) 
%     mech_max = 0.08;    % max strain threshold reported by Khalsa (0.8) 

  

    I_ST( ti) = ((((stresses( ti) - mech_min) * ( IST_max - IST_min)) / ( 

mech_max - mech_min)) + IST_min) + I_shift; 
%     I_ST( ti) = stresses( ti) * FF + I_shift; 
%     I_ST( ti) = ( Ch1 * exp((( stresses( ti) - 5) / 5) / Ch2) + Ch3) + 

I_shift; 

  

    %  calculate the currents 
    I_Na = ( m( ti)^3) * Cnst_gbarNa * h(ti) * ( V(ti) - Cnst_ENa); % 

equations 3 and 14 
    I_K = ( n( ti)^4) * Cnst_gbarK * ( V( ti) - Cnst_EK); % equations 4 and 6 
    I_L = Cnst_gbarl * ( V( ti) - Cnst_El); % equation 5 
    I_k2 = Cnst_gbarA * ( A( ti)^3) * B( ti) * ( V(ti) - VA); % not sure 

about VA 
    I_ion = I_ST( ti) - I_K - I_Na - I_L - I_k2; 

     

    % calculate initial conditions for next time sample 
    % using the derivatives from the Euler first order approximation 
    V( ti+1) = V( ti) + dt * I_ion/Cnst_Cm; 
    n( ti+1) = n( ti) + dt * (( alpha_n( ti) * (1-n( ti)) - beta_n( ti) * n( 

ti))*k); % equation 7 
    m( ti+1) = m( ti) + dt * (( alpha_m( ti) * (1-m( ti)) - beta_m( ti) * m( 

ti))*k); % equation 15 
    h( ti+1) = h( ti) + dt * (( alpha_h( ti) * (1-h( ti)) - beta_h( ti) * h( 

ti))*k); % equation 16 
    A( ti+1) = A( ti) + dt * ( alpha_A( ti) * (1-A( ti)) - beta_A( ti) * A( 

ti)); % for Ik2 
    B( ti+1) = B( ti) + dt * ( alpha_B( ti) * (1-B( ti)) - beta_B( ti) * B( 

ti)); % for Ik2 

     

end 
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D.2 Pipeline.m 
% pipeline for running feobio and analysing the results automatically 
% Developed to replicate Khalsa et al. (1996) experiment 
% Written 2019 by Kenneth Pope, adapted 2019 by Daina Ross  
  
%% definitions 
  
% what experiments do we want to run 
loading_forces = linspace( 0, 1, 10); 
experiments( 1).type = 'Uniform'; % etc etc 
experiments( 2).type = 'Biaxial'; 
experiments( 3).type = 'Uniaxial X'; 
experiments( 4).type = 'Uniaxial Y'; 
experiments( 5).type = '+Shear'; 
experiments( 6).type = '-Shear'; 
  
% definitions 
folder = '/Users/dainaross/Desktop/Uni/Masters/Practical/Testing'; 
febio_files = { 'khalsa_uniform_matlab', 'khalsa_biaxial_matlab', ... 
    'khalsa_uniaxial_x_matlab', 'khalsa_uniaxial_y_matlab', ... 
    'khalsa_pos_shear_matlab', 'khalsa_neg_shear_matlab'}; 
  
subplots = { '321', 'sx'; '322', 'sy'; '323', 'sxy'; ... 
    '324', 'I1'; '325', 'MSS'; '326', 'sed'}; 
  
% display definitions 
display_variables = { 'Sx', 'Sy', 'Sxy', 'I1', 'MSS', 'SED'}; 
experiment_markers = { 'k+', 'kd', 'ks', 'k.', 'k^', 'kp'}; 
  
% the test material is 16 x 11 x 2, with distance 0.5 between nodes 
[ nodes, elements] = make_febio_box( [ 16 11 2], [ 0.5 0.5 0.5]); 
  
% HH model time step in ms 
dt = 0.05;  
% The input to the HH model is some weighted combination of the following: 
% sx, sy , sz, sxy, sxz, syz, SED, MSS, HS, I1, Dev1, Dev2, Dev3, s1, s2, s3 
% HH_model_input should be a set of pairs of variable name and weight 
HH_model_input = { 'sx', 1.0; 'sy', 0.0; 'sxy', 0.0; ... 
    'I1', 0.0; 'MSS', 0.0; 'sed', 0.0; 'HS', 0.0; 's1', 0.0; ... 
    's2', 0.0; 's3', 0.0; 'Dev1', 0.0; 'Dev2', 0.0; 'Dev3', 0.0; ... 
    'shearA', 0.0; 'shearB', 0.0; 'shearC', 0.0; 'Ex', 0.0; 'Ey', 0.0}; 
  
% derived 
Ndisplay_variables = numel( display_variables); 
Nexperiments = numel( experiments); 
Nloads = numel( loading_forces); 
Ninputs = size( HH_model_input, 1); 
firing_freqs = zeros( Nexperiments, Nloads); 
save_input = zeros( Nexperiments, Nloads); 
  
  
%% loop over each experiment 
  
% for each experiment 
for ei = 1:Nexperiments 
  
    % prepare the febio .feb file 
  
    % what experiment will we run? 
    experiment = []; 
    switch experiments( ei).type 
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        case 'Uniform' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load( 1).face = 'right'; 
            experiment.load( 1).type = 'load'; 
            experiment.load( 1).axis = 'x'; 
            experiment.load( 1).scale = 0.00818; 
            experiment.load( 1).relative = 0; 
            experiment.load( 2).face = 'back'; 
            experiment.load( 2).type = 'load'; 
            experiment.load( 2).axis = 'y'; 
            experiment.load( 2).scale = 0.00844; 
            experiment.load( 2).relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries) 
  
         case 'Biaxial' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load( 1).face = 'right'; 
            experiment.load( 1).type = 'load'; 
            experiment.load( 1).axis = 'x'; 
            experiment.load( 1).scale = 0.00705; 
            experiment.load( 1).relative = 0; 
            experiment.load( 2).face = 'back'; 
            experiment.load( 2).type = 'load'; 
            experiment.load( 2).axis = 'y'; 
            experiment.load( 2).scale = 0.00598; 
            experiment.load( 2).relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries) 
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        case 'Uniaxial X' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load.face = 'right'; 
            experiment.load.type = 'load'; 
            experiment.load.axis = 'x'; 
            experiment.load.scale = 0.00602; 
            experiment.load.relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries) 
  
        case 'Uniaxial Y' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load.face = 'back'; 
            experiment.load.type = 'load'; 
            experiment.load.axis = 'y'; 
            experiment.load.scale = 0.00586; 
            experiment.load.relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries) 
  
  
        case '+Shear' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load( 1).face = 'right_vertical1/3'; 
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            experiment.load( 1).type = 'load'; 
            experiment.load( 1).axis = 'x'; 
            experiment.load( 1).scale = 0.000985; 
            experiment.load( 1).relative = 0; 
            experiment.load( 2).face = 'right_vertical2/3'; 
            experiment.load( 2).type = 'load'; 
            experiment.load( 2).axis = 'x'; 
            experiment.load( 2).scale = 0.00197; 
            experiment.load( 2).relative = 0; 
            experiment.load( 3).face = 'right_vertical3/3'; 
            experiment.load( 3).type = 'load'; 
            experiment.load( 3).axis = 'x'; 
            experiment.load( 3).scale = 0.00295; 
            experiment.load( 3).relative = 0; 
            experiment.load( 4).face = 'back_vertical1/3'; 
            experiment.load( 4).type = 'load'; 
            experiment.load( 4).axis = 'y'; 
            experiment.load( 4).scale = 0.000684; 
            experiment.load( 4).relative = 0; 
            experiment.load( 5).face = 'back_vertical2/3'; 
            experiment.load( 5).type = 'load'; 
            experiment.load( 5).axis = 'y'; 
            experiment.load( 5).scale = 0.00137; 
            experiment.load( 5).relative = 0; 
            experiment.load( 6).face = 'back_vertical3/3'; 
            experiment.load( 6).type = 'load'; 
            experiment.load( 6).axis = 'y'; 
            experiment.load( 6).scale = 0.00205; 
            experiment.load( 6).relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries) 
  
        case '-Shear' 
            % define the type of experiment 
            experiment.boundary( 1).face = 'left'; 
            experiment.boundary( 1).axis = 'x'; 
            experiment.boundary( 2).face = 'front'; 
            experiment.boundary( 2).axis = 'y'; 
            experiment.boundary( 3).face = 'origin'; 
            experiment.boundary( 3).axis = 'z'; 
            experiment.load( 1).face = 'right_vertical1/3'; 
            experiment.load( 1).type = 'load'; 
            experiment.load( 1).axis = 'x'; 
            experiment.load( 1).scale =  0.00295; 
            experiment.load( 1).relative = 0; 
            experiment.load( 2).face = 'right_vertical2/3'; 
            experiment.load( 2).type = 'load'; 
            experiment.load( 2).axis = 'x'; 
            experiment.load( 2).scale = 0.00197; 
            experiment.load( 2).relative = 0; 
            experiment.load( 3).face = 'right_vertical3/3'; 
            experiment.load( 3).type = 'load'; 
            experiment.load( 3).axis = 'x'; 
            experiment.load( 3).scale = 0.000985; 
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            experiment.load( 3).relative = 0; 
            experiment.load( 4).face = 'back_vertical1/3'; 
            experiment.load( 4).type = 'load'; 
            experiment.load( 4).axis = 'y'; 
            experiment.load( 4).scale = 0.00199; 
            experiment.load( 4).relative = 0; 
            experiment.load( 5).face = 'back_vertical2/3'; 
            experiment.load( 5).type = 'load'; 
            experiment.load( 5).axis = 'y'; 
            experiment.load( 5).scale = 0.00133; 
            experiment.load( 5).relative = 0; 
            experiment.load( 6).face = 'back_vertical3/3'; 
            experiment.load( 6).type = 'load'; 
            experiment.load( 6).axis = 'y'; 
            experiment.load( 6).scale = 0.000664; 
            experiment.load( 6).relative = 0; 
            experiment.displacement = []; 
  
            % constraints 
            [ boundaries, nodesets] = make_febio_constraints( nodes, 
experiment, ... 
                'front', 'y', 'left', 'x' , 'origin', 'z'); 
  
            % write out to file 
            write_dot_feb( fullfile( folder, [ febio_files{ ei} '.feb']), ... 
                'displacement', experiment.displacement, ... 
                'load', experiment.load, 'nodes', nodes, 'elements', 
elements, ... 
                'nodesets', nodesets, 'boundaries', boundaries)        
  
        otherwise 
            warning( 'Unknown experiment %s', experiments( ei).type); 
            continue 
    end 
  
    % run febio 
    run_febio( 'fpath', folder, 'configfile', [ febio_files{ ei} '.feb']); 
  
  
    %% read in the results from febio 
  
    % load the febio output 
    febio_output{ ei} = readfebio( fullfile( folder, [ febio_files{ ei} 
'_stress.txt'])); 
  
    % calculate some things if required 
%     if ~isfield( febio_output{ ei}, 's1') 
%         febio_output{ ei}.s1 = febio_output{ ei}.sx - febio_output{ ei}.sy; 
%     end 
%     if ~isfield( febio_output{ ei}, 's2') 
%         febio_output{ ei}.s2 = febio_output{ ei}.sx - febio_output{ ei}.sz; 
%     end 
%     if ~isfield( febio_output{ ei}, 's3') 
%         febio_output{ ei}.s3 = febio_output{ ei}.sy - febio_output{ ei}.sz; 
%     end 
%     if ~isfield( febio_output{ ei}, 'SED') 
%         febio_output{ ei}.SED = febio_output{ ei}.sx - febio_output{ 
ei}.sy; 
%     end 
     
    % Check if SED is provided by FEBIO output 
    assert( isfield( febio_output{ ei}, 'sed'), 'SED not calculated in 
febio'); 
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    % derived 
    febio_output{ ei}.shearA = abs( febio_output{ ei}.s1 - febio_output{ 
ei}.s2) / 2; 
    febio_output{ ei}.shearB = abs( febio_output{ ei}.s2 - febio_output{ 
ei}.s3) / 2; 
    febio_output{ ei}.shearC = abs( febio_output{ ei}.s1 - febio_output{ 
ei}.s3) / 2; 
  
    % calculate extra display variables for the 
    % 1st invariant of stress tensor, strain energy density, max shear 
stress, 
    % hydrostatic stress, deviatoric stress 1, 2 and 3 
    febio_output{ ei}.I1 = febio_output{ ei}.s1 + febio_output{ ei}.s2 + 
febio_output{ ei}.s3; 
    febio_output{ ei}.MSS = max( cat( 3, febio_output{ ei}.shearA, 
febio_output{ ei}.shearB, febio_output{ ei}.shearC), [], 3); 
    febio_output{ ei}.HS = febio_output{ ei}.I1 / 3; 
    febio_output{ ei}.Dev1 = febio_output{ ei}.s1 - febio_output{ ei}.HS; 
    febio_output{ ei}.Dev2 = febio_output{ ei}.s2 - febio_output{ ei}.HS; 
    febio_output{ ei}.Dev3 = febio_output{ ei}.s3 - febio_output{ ei}.HS; 
  
    % and for convenience 
    febio_output{ ei}.Nelements = size( febio_output{ ei}.sx, 1); 
  
  
    %% do our analysis 
  
    % HH model experiment length 
    HH_total_time = 2000; %1000 
    HH_calculation_time = 1000; %500  
    freq_MPP = 10; 
  
    % derived 
    element = ceil( febio_output{ ei}.Nelements / 2); 
     
              
    for lfi = 1:Nloads 
        input = 0; 
  
        % loop over the inputs to the HH model, multiply by 1000 to convert 
        % from Mpa to Kpa  
        for ii = 1:Ninputs 
            input = input + ... 
                HH_model_input{ ii, 2} * ... 
                febio_output{ ei}.( HH_model_input{ ii, 1})( element, 
lfi)*1000; 
  
        end 
                 
        [ V, I_ST] = HH_ruffini( input * ones( 1, HH_total_time / dt), dt); 
  
        % estimate the firing frequency         
        [ ~, peak_locations] = findpeaks( V( ( end - HH_calculation_time / 
dt):end), ... 
            'MinPeakProminence', freq_MPP); 
        if isempty( peak_locations) 
            ff = 0; 
        elseif isscalar( peak_locations) 
            ff = 1 / ( HH_calculation_time / 1000); 
        else 
            ff = 1 / ( mean( diff( peak_locations)) * dt / 1000); 
        end 
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        firing_freqs( ei, lfi) = ff; 
  
    end 
end  
%% display the results 
Khalsa_figure6 
  
%% Reproduce Khalsa Fig 6 digitized results 
% ReproduceKhalsa_Fig6 
  
%% Show linear regression of results 
results 
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D.3 Khalsa_figure6.m 
% script to recreate Figure 6 from the Khalsa paper 
  
    % reproduce Figure 6 in the Khalsa paper 
    % febio model should give us stresses/strains at increasing applied 
    % loads, we use the central node and loop over the applied loads, 
    % taking the output for that load and replicating it in time for the HH 
    % model to settle and allow us to estimate the firing frequency. They 
    % run the experiment for 4 seconds and estimate from the last 0.5 
    % seconds. We need to identify the settling time, and then estimate 
    % carefully from the last few action potential. 
    
    % Created by Kenneth Pope 2019, adapted by Daina Ross 2020 
  
%% pull together all the results and make the figure 
  
% definitions 
Force_axes_to_match_Khalsa = true; 
subplots = { '321', 'sx'; '322', 'sy'; '323', 'sxy'; ... 
    '324', 'I1'; '325', 'MSS'; '326', 'sed'}; 
loading_regimes = { 'Uniform', 'k+', 6; 'Biaxial', 'kd', 6; ... 
    'UniaxialX', 'ks', 8; 'UniaxialY', 'k.', 20; ... 
    'ShearPos', 'k^', 6; 'ShearNeg', 'kp', 8}; 
  
% derived 
Nloading_regimes = size( loading_regimes, 1); 
Nloading_forces = numel( loading_forces); 
Nsubplots = size( subplots, 1); 
  
  
%% display the results 
  
% figure( 1), clf, hold off; 
% subplot( 3, 3, 1), plot( febio_output.sx( element, :)), title( 'sx') 
% subplot( 3, 3, 2), plot( febio_output.sy( element, :)), title( 'sy') 
% subplot( 3, 3, 3), plot( febio_output.sxy( element, :)), title( 'sxy') 
% subplot( 3, 3, 4), plot( febio_output.I1( element, :)), title( 'I1') 
% subplot( 3, 3, 5), plot( febio_output.MSS( element, :)), title( 'MSS') 
% subplot( 3, 3, 6), plot( febio_output.SED( element, :)), title( 'SED') 
% subplot( 3, 3, 7), plot( shearA( element, :)), title( 'shearA') 
% subplot( 3, 3, 8), plot( shearB( element, :)), title( 'shearB') 
% subplot( 3, 3, 9), plot( shearC( element, :)), title( 'shearC') 
  
% set up figure 
figure( 1), hold off, clf; 
save_input = 0;  
% loop over subplots 
for spi = 1:Nsubplots 
    % prepare subplot 
    subplot( subplots{ spi, 1}); 
    if spi == 2 
        hld = zeros( 1, Nloading_regimes); 
        for lri = 1:Nloading_regimes 
            hld( lri) = plot( -rand * 25 - 12, -rand, loading_regimes{ lri, 
2}, 'MarkerSize', loading_regimes{ lri, 3});   
            hold on 
        end 
        hl = legend( loading_regimes( :, 1), 'AutoUpdate', 'off', ... 
            'Box', 'off', 'Location', 'SouthEast'); 
        title(hl,'Loading');  
        delete( hld); 
    end 
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    % loop over loading regimes and load forces 
    for lri = 1:Nloading_regimes 
        if ( ( spi == 3) && ( lri ~= 5) && ( lri ~= 6)) 
            continue 
        else  
            for lfi = 1:Nloading_forces                 
                plot( febio_output{ lri}.(subplots{ spi, 2})( element, 
lfi)*1000, firing_freqs( lri, lfi), ... 
                    loading_regimes{ lri, 2}, 'MarkerSize', loading_regimes{ 
lri, 3}); 
                hold on 
                 
                %save input stresses and firing freqs for later 
                febio_results{ lri}.( subplots{ spi, 2})( lfi,1) = 
febio_output{ lri}.(subplots{ spi, 2})( element, lfi)*1000; 
                febio_results{ lri}.( subplots{ spi, 2})( lfi,2) = 
firing_freqs( lri, lfi); 
            end 
             
        end  
  
    end 
     
    % label the graph 
    xlabel( [ display_variables{ spi} ' (kPa)']); 
    ylabel( 'NR (imp/sec.)'); 
    % adjust each subplot axes limits to match khalsa figure to allow for 
    % direct comparisons 
    if Force_axes_to_match_Khalsa == true 
        switch ( spi) 
            %subplot A - sx 
            case 1 
                set( gca, 'XLim', [ 0 80], 'XTick', 0:20:80, 'YLim', [ 0 16], 
'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
            %subplot B - sy 
            case 2 
                set( gca, 'XLim', [ 0 80], 'XTick', 0:20:80, 'YLim', [ 0 16], 
'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
            %subplot C - sxy 
            case 3 
                set( gca, 'XLim', [ -20 20], 'XTick', -20:10:20, 'YLim', [ 0 
16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
            %subplot D - I1 
            case 4 
                set( gca, 'XLim', [ 0 125], 'XTick', 0:25:125, 'YLim', [ 0 
16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
            %subplot E - MSS 
            case 5 
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                set( gca, 'XLim', [ 0 25], 'XTick', 0:5:25, 'YLim', [ 0 16], 
'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
            %subplot F - SED 
            case 6 
                set( gca, 'XLim', [ 0 5], 'XTick', 0:1:5, 'YLim', [ 0 16], 
'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
            %if none of the other cases match 
            otherwise 
                set( gca, 'YLim', [ 0 16], 'YTick', 0:4:16, 'YMinorTick', 
'on'); 
        end  
    end  
         
    % a few more adjustments so figure looks more like Khalsa Fig 6 
    xlim = get( gca, 'XLim'); 
    ylim = get( gca, 'YLim'); 
    text( xlim(1), ylim(2), char( 'A' + spi - 1), ... 
        'FontSize', 12, 'FontWeight', 'bold', ... 
        'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom');     
    axis square;  
    set( gca, 'Box', 'off');  
     
end 
  
% adjust figure size to be big but like Khalsa 
mp = get( 0, 'MonitorPositions'); 
pos = get( gcf, 'Position'); 
set( gcf, 'Color', [ 1 1 1]) 
best_height = mp( 1, 4) - 120; 
set( gcf, 'Position', floor( [ 25, 40, best_height / 1.54, best_height]));   
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D.4 ReproduceKhalsa_Fig6.m 
% script to recreate Figure 6 from the Khalsa paper 
    % reproduce Figure 6 in the Khalsa paper 
    % using that data from the figures in the Khalsa paper  
    % obtained via Grabit 
  
% Adapted from Khalsa_figure6.m (Kenneth Pope 2019) 
% Adapted by Daina Ross 2020 
  
% definitions 
folder = 
'/Users/dainaross/Desktop/Uni/Masters/Practical/Matlab_Code/Khalsa_Fig6_grabi
t/'; 
subplots = { '321', 'sx'; '322', 'sy'; '323', 'sxy'; ... 
    '324', 'I1'; '325', 'MSS'; '326', 'sed'}; 
loading_regimes = { 'Uniform', 'k+', 6; 'Biaxial', 'kd', 6; ... 
    'UniaxialX', 'ks', 8; 'UniaxialY', 'k.', 20; ... 
    'ShearPos', 'k^', 6; 'ShearNeg', 'kp', 8}; 
display_names = { 'Sx'; 'Sy'; 'Sxy'; ... 
    'I1'; 'MSS'; 'SED'}; 
  
loading_forces = linspace( 0, 1, 10); %number of points on plot 
Force_axes_to_match_Khalsa = true;  
  
% derived 
Nloading_regimes = size( loading_regimes, 1); 
Nloading_forces = numel( loading_forces); 
Nsubplots = size( subplots, 1); 
  
%% display the results 
% set up figure 
figure( 2), hold off, clf; 
  
%set up subplots to plot the khalsa data 
Khalsa_output = cell( 1, Nloading_regimes); 
%Fill with NaN instead of zeros 
% Khalsa_output(:,:) = {NaN}; 
for spi = 1:Nsubplots 
    %prepare subplot 
    subplot( subplots{ spi, 1}); 
    if spi == 2 
        hld = zeros( 1, Nloading_regimes); 
        for lri = 1:Nloading_regimes 
            hld( lri) = plot( -rand * 25 - 12, -rand, loading_regimes{ lri, 
2}, 'MarkerSize', loading_regimes{ lri, 3});   
            hold on 
        end 
        hl = legend( loading_regimes( :, 1), 'AutoUpdate', 'off', ... 
            'Box', 'off', 'Location', 'SouthEast'); 
        title(hl,'Loading');  
        delete( hld); 
    end 
  
    for lri = 1:Nloading_regimes 
        if (isfile(fullfile( folder, [ loading_regimes{ lri, 1} '/' subplots{ 
spi, 2} '.mat']))) 
            load(fullfile( folder, [ loading_regimes{ lri, 1} '/' subplots{ 
spi, 2} '.mat'])); 
        else  
            continue 
        end 
  
        switch( spi) 
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            case 1 
                [~, idx] = sort([sx(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    sx(idx,:); 
                plot( sx(:,1), sx(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
            case 2 
                [~, idx] = sort([sy(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    sy(idx,:); 
                plot( sy(:,1), sy(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
            case 3 
                [~, idx] = sort([sxy(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    sxy(idx,:); 
                plot( sxy(:,1), sxy(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
            case 4 
                [~, idx] = sort([I1(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    I1(idx,:); 
                plot( I1(:,1), I1(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
            case 5 
                [~, idx] = sort([MSS(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    MSS(idx,:); 
                plot( MSS(:,1), MSS(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
            case 6 
                [~, idx] = sort([SED(:,1)], 'ascend'); 
                 Khalsa_output{ lri}.( subplots{ spi, 2}) = ... 
                    SED(idx,:); 
                plot( SED(:,1), SED(:,2), loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3}); 
  
        end  
        hold on  
         
    end 
     
    % adjust each subplot axes limits to match khalsa figure to allow for 
    % direct comparisons 
  
    if Force_axes_to_match_Khalsa == true 
        switch ( spi) 
            %subplot A - sx 
            case 1 
                set( gca, 'XLim', [ -1 80], 'XTick', 0:20:80, 'YLim', [ 0 
17], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
           
            %subplot B - sy 
            case 2 
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                set( gca, 'XLim', [ 0 80], 'XTick', 0:20:80, 'YLim', [ 0 16], 
'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
            %subplot C - sxy 
            case 3 
                set( gca, 'XLim', [ -20 20], 'XTick', -20:10:20, 'YLim', [ 0 
16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
            %subplot D - I1 
            case 4 
                set( gca, 'XLim', [ 0 125], 'XTick', 0:25:125, 'YLim', [ 0 
16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
            %subplot E - MSS 
            case 5 
                set( gca, 'XLim', [ 0 27], 'XTick', 0:5:25, 'YLim', [ -0.25 
16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
            %subplot F - SED 
            case 6 
                set( gca, 'XLim', [ -0.25 5.5], 'XTick', 0:1:5, 'YLim', [ -
0.25 16], 'YTick', 0:4:16);  
                set( gca, 'XAxisLocation', 'origin', 'YAxisLocation', 
'origin'); 
                set( gca, 'XMinorTick', 'on', 'YMinorTick', 'on'); 
                set( get( gca, 'YAxis'), 'Visible', 'off'); 
                xticks(gca,0:1:5); 
                xticklabels(gca,{'0','1','2','3','4', '5'}) 
                yticks(gca,0:4:16); 
                yticklabels(gca,{'0','4','8','12','16'}) 
            %if none of the other cases match 
            otherwise 
                set( gca, 'YLim', [ 0 16], 'YTick', 0:4:16, 'YMinorTick', 
'on'); 
        end  
    end  
     
  
    % a few more adjustments so figure looks more like Khalsa Fig 6 
    xlim = get( gca, 'XLim'); 
    ylim = get( gca, 'YLim'); 
    text( xlim(1), ylim(2), char( 'A' + spi - 1), ... 
        'FontSize', 16, 'FontWeight', 'bold', ... 
        'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom');     
    axis square;  
    set( gca, 'Box', 'off');  
     
    % label the graph 
    if spi == 5 || spi == 6 
        xlabel( [ display_names{ spi} ' (kPa)'], 'HorizontalAlignment', 
'center','VerticalAlignment', 'middle', 'Position', [xlim(2)/2 -3]); 
    else 
        xlabel( [ display_names{ spi} ' (kPa)']); 
    end  
    if spi == 1 
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        ylabel( 'NR (imp/sec.)', 'HorizontalAlignment', 
'center','VerticalAlignment', 'middle', 'Rotation', 90, 'Position', [-17, 
ylim(2)/2]); 
    else  
        ylabel( 'NR (imp/sec.)'); 
    end  
     
    %change font size of axes labels and tick labels 
    x_title = get(gca,'XLabel'); 
    y_title = get(gca,'YLabel'); 
    x_ticks = get(gca,'XAxis'); 
    y_ticks = get(gca,'YAxis'); 
    set(x_ticks,'FontSize', 12); 
    set(y_ticks,'FontSize', 12); 
    set(x_title, 'FontSize', 14); 
    set(y_title, 'FontSize', 14); 
       
end 
  
% adjust figure size  
mp = get( 0, 'MonitorPositions'); 
pos = get( gcf, 'Position'); 
set( gcf, 'Color', [ 1 1 1]) 
best_height = mp( 1, 4) - 120; 
set( gcf, 'Position', floor( [ 25, 40, best_height / 1.54, best_height]));   
set(gcf, 'PaperUnits', 'centimeters', 'PaperPosition', [1, 1, 15, 15]) 
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D.5 Regression_results.m 
% Script to plot the linear regressions of the results of FEBio experiment  
% versus the Khalsa et al. (1996) experiment results 
  
% Adapted from Khalsa_figure6.m (Kenneth Pope 2019) 
% Adapted by Daina Ross 2020 
  
%% derived 
Khalsa_ff = zeros( Nexperiments, Nloads); 
khalsa_lfi = {10; 5; 4; 6; 6; 5};  
  
% Average the Khalsa output for each loading regime (i.e. for lri = #, avg of 
all 
% firing rates for that lri from the subplots) 
% i.e. sorting the Khalsa data into the correct format 
  
for lri = 1:Nloading_regimes 
    % get the name of each subplot 
    subplots_khalsa = (fieldnames(Khalsa_output{ lri}));  
     
    for lfi = 1:Nloads 
        if lfi > khalsa_lfi{ lri } 
            %fill with NaN if less than 10 firing rates for that loading 
regime 
            Khalsa_ff( lri, lfi) = NaN; 
        else 
        % For each subplot applicable for the loading regime find the 
        % average firing rate 
            for rpi = 1:numel(fieldnames(Khalsa_output{ lri})) 
                    Khalsa_ff( lri, lfi) = Khalsa_ff( lri, lfi) + 
Khalsa_output{ lri}.( subplots_khalsa{ rpi, 1})( lfi, 2); 
            end 
            Khalsa_ff( lri, lfi) = Khalsa_ff( lri, lfi) / rpi; 
        end  
    end     
end  
  
%% Plot figure  
% plot comparison figure 
figure( 3), hold off, clf; 
  
hld = zeros( 1, Nloading_regimes); 
for lri = 1:Nloading_regimes 
    hld( lri) = plot( -rand * 25 - 12, -rand, loading_regimes{ lri, 2}, 
'MarkerSize', loading_regimes{ lri, 3});   
    hold on 
end 
hl = legend( loading_regimes( :, 1), 'AutoUpdate', 'off', ... 
    'Box', 'off', 'Location', 'SouthEast'); 
title(hl,'Loading');  
delete( hld); 
         
    % loop over loading regimes and load forces 
for lri = 1:Nloading_regimes 
    for lfi = 1:Nloading_forces 
        if isnan(Khalsa_ff( lri, lfi)) 
            continue 
        else            
%             plot( Khalsa_ff( lri, lfi), firing_freqs( lri, lfi), ... 
              plot( Khalsa_ff( lri, lfi), Khalsa_ff( lri, lfi), ... 
                loading_regimes{ lri, 2}, 'MarkerSize', loading_regimes{ lri, 
3}); 
            hold on 
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        end  
    end  
end 
  
% Combine data for comparing all loading regime points together       
all_Khalsa = horzcat(Khalsa_ff( 1, 1:khalsa_lfi{1}), Khalsa_ff( 2,  
1:khalsa_lfi{2}), Khalsa_ff( 3, 1:khalsa_lfi{3}), Khalsa_ff( 4, 
1:khalsa_lfi{4}), Khalsa_ff( 5, 1:khalsa_lfi{5}), Khalsa_ff( 6, 
1:khalsa_lfi{6})); 
all_Febio = horzcat(firing_freqs( 1, 1:khalsa_lfi{1}), firing_freqs( 2,  
1:khalsa_lfi{2}), firing_freqs( 3, 1:khalsa_lfi{3}), firing_freqs( 4, 
1:khalsa_lfi{4}), firing_freqs( 5, 1:khalsa_lfi{5}), firing_freqs( 6, 
1:khalsa_lfi{6})); 
  
% label the graph 
xlabel( ' Khalsa NR (imp/sec.)'); 
ylabel( 'FeBio NR (imp/sec.)'); 
set( gca, 'YLim', [ 0 18], 'YTick', 0:2:18, 'YMinorTick', 'on'); 
set( gca, 'XLim', [ 0 18], 'XTick', 0:2:18, 'XMinorTick', 'on'); 
  
% a few more adjustments so figure looks more presentable 
xlim = get( gca, 'XLim'); 
ylim = get( gca, 'YLim'); 
axis square;  
set( gca, 'Box', 'off');  
mp = get( 0, 'MonitorPositions'); 
pos = get( gcf, 'Position'); 
set( gcf, 'Color', [ 1 1 1]) 
best_height = mp( 1, 4) - 120; 
set( gcf, 'Position', floor( [ 25, 40, best_height / 1.54, best_height]));   
  
%% Calculate linear regression 
% For each individual set of loading regime points and for the whole plot 
uniform = fitlm( Khalsa_ff( 1, 1:khalsa_lfi{1}), firing_freqs( 1, 
1:khalsa_lfi{1})); 
biaxial = fitlm( Khalsa_ff( 2, 1:khalsa_lfi{2}), firing_freqs( 2, 
1:khalsa_lfi{2})); 
uniaxialX = fitlm( Khalsa_ff( 3, 1:khalsa_lfi{3}), firing_freqs( 3, 
1:khalsa_lfi{3})); 
uniaxialY = fitlm( Khalsa_ff( 4, 1:khalsa_lfi{4}), firing_freqs( 4, 
1:khalsa_lfi{4})); 
PosShear = fitlm( Khalsa_ff( 5, 1:khalsa_lfi{5}), firing_freqs( 5, 
1:khalsa_lfi{5})); 
NegShear = fitlm( Khalsa_ff( 6, 1:khalsa_lfi{6}), firing_freqs( 6, 
1:khalsa_lfi{6})); 
total_regression = fitlm( all_Khalsa( :, :), all_Febio( :, :)); 
  
%Store in an array for use later 
lin_regression(1,1) = uniform.Rsquared.Ordinary; 
lin_regression (1,2) = uniform.RMSE; 
lin_regression (1,3) = uniform.Coefficients.Estimate(2,1); 
lin_regression (2,1) = biaxial.Rsquared.Ordinary; 
lin_regression (2,2) = biaxial.RMSE; 
lin_regression (2,3) = biaxial.Coefficients.Estimate(2,1); 
lin_regression (3,1) = uniaxialX.Rsquared.Ordinary; 
lin_regression (3,2) = uniaxialX.RMSE; 
lin_regression (3,3) = uniaxialX.Coefficients.Estimate(2,1); 
lin_regression (4,1) = uniaxialY.Rsquared.Ordinary; 
lin_regression (4,2) = uniaxialY.RMSE; 
lin_regression (4,3) = uniaxialY.Coefficients.Estimate(2,1); 
lin_regression (5,1) = PosShear.Rsquared.Ordinary; 
lin_regression (5,2) = PosShear.RMSE; 
lin_regression (5,3) = PosShear.Coefficients.Estimate(2,1); 
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lin_regression (6,1) = NegShear.Rsquared.Ordinary; 
lin_regression (6,2) = NegShear.RMSE; 
lin_regression (6,3) = NegShear.Coefficients.Estimate(2,1); 
lin_regression (7,1) = total_regression.Rsquared.Ordinary; 
lin_regression (7,2) = total_regression.RMSE; 
lin_regression (7,3) = total_regression.Coefficients.Estimate(2,1); 
  
 
  



 

 

 

269 

D.6 FEBio Automation 

D.6.1 Make_febio_box.m 
function [ nodes, elements] = make_febio_box( Nelements, separations, name) 
  
% Written 2019 by Kenneth Pope 
  
% parse inputs 
assert( all( size( Nelements) == [ 1 3]), ... 
    'Nelements must be 1 row vector of length 3 (it specifies the number of 
elements in the x, y and z axes)'); 
assert( all( isint( Nelements) & ( Nelements > 0)), ... 
    'Nelements must contain positive integers (it specifies the number of 
elements in the x, y and z axes)'); 
assert( all( size( separations) == [ 1 3]), ... 
    'separations must be 1 row vector of length 3 (it specifies the 
separation between nodes in the x, y and z axes)'); 
assert( all( separations > 0), ... 
    'separations must contain positive numbers (it specifies the separation 
between nodes in the x, y and z axes)'); 
if ~exist( 'name', 'var') || isempty( name) 
    name = 'Object01'; 
end 
  
% Work out the first and last node (x,y,z) coordinates 
% We are assuming that the box is centred on zero in the x and y axes, 
% whereas in the z axis we start at zero and increase in value  
node1n = [ ( 1 - Nelements( 1:2)) / 2 .* separations( 1:2), 0]; 
nodeNn = [ -node1n( 1:2), ( Nelements( 3) - 1) * separations( 3)]; 
  
% put together the nodes structure 
nodes.name = name; 
nodes.locations = [ kron( ( node1n( 1):separations( 1):nodeNn( 1))', ... 
    ones( prod( Nelements( 2:3)), 1)), ... 
    kron( kron( ones( Nelements( 1), 1), ... 
    ( node1n( 2):separations( 2):nodeNn( 2))'), ... 
    ones( Nelements( 3), 1)), ... 
    kron( ones( prod( Nelements( 1:2)), 1), ... 
    ( node1n( 3):separations( 3):nodeNn( 3))')]; 
  
% which nodes go into making an element? 
base = [ 0, Nelements( 2), Nelements( 2) + 1, 1] * Nelements( 3); 
nodeinds = [ base, base + 1] + 1; 
nodeinds = kron( ones( Nelements( 3) - 1, 1), nodeinds) + ... 
    kron( ( 0:( Nelements( 3) - 2))', ones( size( nodeinds))); 
nodeinds = kron( ones( Nelements( 2) - 1, 1), nodeinds) + ... 
    kron( ( 0:( Nelements( 2) - 2))', ones( size( nodeinds))) * Nelements( 
3); 
nodeinds = kron( ones( Nelements( 1) - 1, 1), nodeinds) + ... 
    kron( ( 0:( Nelements( 1) - 2))', ones( size( nodeinds))) * prod( 
Nelements( 2:3)); 
  
% put together the elements structure 
elements.name = 'Part1'; 
elements.material = '1'; 
elements.nodes = nodeinds; 
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D.6.2 Make_febio_constraints.m 
function [ boundaries, nodesets] = make_febio_constraints( varargin) 
  
% Written 2019 by Kenneth Pope 
  
% parse inputs 
p = inputParser; 
p.KeepUnmatched = true; 
addRequired( p, 'nodes', @isstruct); 
addRequired( p, 'experiment', @isstruct); 
parse( p, varargin{ :}); 
  
% extract useful things 
nls = p.Results.nodes.locations; 
boundary_faces = { p.Results.experiment.boundary.face}; 
load_faces = { p.Results.experiment.load.face}; 
if isfield( p.Results.experiment.displacement, 'face') 
    displacement_faces = { p.Results.experiment.displacement.face}; 
else 
    displacement_faces = []; 
end 
constraint_faces = fieldnames( p.Unmatched)'; 
unique_faces = unique( cat( 2, boundary_faces, load_faces, ... 
    displacement_faces, constraint_faces)); 
  
% make the sets 
for bi = numel( constraint_faces):-1:1 
    boundaries( bi).nodeset = constraint_faces{ bi}; 
    boundaries( bi).axes = p.Unmatched.( constraint_faces{ bi}); 
end 
     
% make the nodesets 
for nsi = numel( unique_faces):-1:1 
    % which face of the box are we after? 
    switch unique_faces{ nsi} 
        case 'right_vertical1/3' 
            threshold = max( nls( :, 2)) / 3 + min( nls( :, 2)) * 2 / 3; 
            nodeids = find( ( nls( :, 1) == max( nls( :, 1))) & ... 
                ( nls( :, 2) <= threshold)); 
        case 'right_vertical2/3' 
            low_threshold = max( nls( :, 2)) / 3 + min( nls( :, 2)) * 2 / 3; 
            high_threshold = max( nls( :, 2)) * 2 / 3 + min( nls( :, 2)) / 3; 
            nodeids = find( ( nls( :, 1) == max( nls( :, 1))) & ... 
                ( nls( :, 2) <= high_threshold) & ( nls( :, 2) >= 
low_threshold)); 
        case 'right_vertical3/3' 
            threshold = max( nls( :, 2)) * 2 / 3 + min( nls( :, 2)) / 3; 
            nodeids = find( ( nls( :, 1) == max( nls( :, 1))) & ... 
                ( nls( :, 2) >= threshold)); 
        case 'back_vertical1/3' 
            threshold = max( nls( :, 1)) / 3 + min( nls( :, 1)) * 2 / 3; 
            nodeids = find( ( nls( :, 2) == max( nls( :, 2))) & ... 
                ( nls( :, 1) <= threshold)); 
        case 'back_vertical2/3' 
            low_threshold = max( nls( :, 1)) / 3 + min( nls( :, 1)) * 2 / 3; 
            high_threshold = max( nls( :, 1)) * 2 / 3 + min( nls( :, 1)) / 3; 
            nodeids = find( ( nls( :, 2) == max( nls( :, 2))) & ... 
                ( nls( :, 1) <= high_threshold) & ( nls( :, 1) >= 
low_threshold)); 
        case 'back_vertical3/3' 
            threshold = max( nls( :, 1)) * 2 / 3 + min( nls( :, 1)) / 3; 
            nodeids = find( ( nls( :, 2) == max( nls( :, 2))) & ... 
                ( nls( :, 1) >= threshold)); 
        case 'right' 
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            nodeids = find( nls( :, 1) == max( nls( :, 1))); 
        case 'left' 
            nodeids = find( nls( :, 1) == min( nls( :, 1))); 
        case 'back' 
            nodeids = find( nls( :, 2) == max( nls( :, 2))); 
        case 'front' 
            nodeids = find( nls( :, 2) == min( nls( :, 2))); 
        case 'top' 
            nodeids = find( nls( :, 3) == max( nls( :, 3))); 
        case 'bottom' 
            nodeids = find( nls( :, 3) == min( nls( :, 3))); 
        case 'origin' 
            nodeids = intersect( intersect( ... 
                find( nls( :, 1) == min( nls( :, 1))), ... 
                find( nls( :, 2) == min( nls( :, 2)))), ... 
                find( nls( :, 3) == min( nls( :, 3))));             
        otherwise 
    end 
    nodesets( nsi).name = unique_faces{ nsi}; 
    nodesets( nsi).ids = nodeids; 
end 
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D.6.3 Write_dot_feb.m 
function write_dot_feb( fout, varargin) 
%        write_dot_feb( fout, varargin) 
% 
% Function for creating .feb file from FEBio model 
% Written 2019 by Kenneth Pope, adapted 2019 by Daina Ross  
  
% useful materials 
%isotropic elastic 
isotropic_elastic.id = 1; 
isotropic_elastic.name = 'Material1'; 
isotropic_elastic.type = 'isotropic elastic'; 
isotropic_elastic.density = 1; 
isotropic_elastic.E = 1; 
isotropic_elastic.v = 0.49; 
  
% orthotropic elastic 
orthotropic_elastic.id = 1; 
orthotropic_elastic.name = 'Material1'; 
orthotropic_elastic.type = 'orthotropic elastic'; 
orthotropic_elastic.density = 1; 
orthotropic_elastic.E1 = 1; 
orthotropic_elastic.E2 = 7.4; 
orthotropic_elastic.E3 = 1; 
orthotropic_elastic.G12 = 0.385; 
orthotropic_elastic.G23 = 2.85; 
orthotropic_elastic.G31 = 0.336; 
orthotropic_elastic.v12 = 0.299; 
orthotropic_elastic.v23 = 0.299; 
orthotropic_elastic.v31 = 0.488; 
  
%Mooney Rivlin 
mooney_rivlin.id = 1; 
mooney_rivlin.name = 'Material1'; 
mooney_rivlin.type = 'coupled trans-iso Mooney-Rivlin'; 
mooney_rivlin.density = 1; 
mooney_rivlin.c1 = 0.195; 
mooney_rivlin.c2 = 0; 
mooney_rivlin.c3 = 0.0139; 
mooney_rivlin.c4 = 116.22; 
mooney_rivlin.c5 = 535.039; 
mooney_rivlin.k = 73.2; 
mooney_rivlin.lambda = 1; 
mooney_rivlin.fiber_type = '0,1,0'; 
  
% default simple box 
[ nodes0, elements0] = make_febio_box( [ 3 3 3], [ 1 1 1]); 
  
% standard experiment 
experiment0.boundary( 1).face = 'left'; 
experiment0.boundary( 1).axis = 'x'; 
experiment0.boundary( 2).face = 'front'; 
experiment0.boundary( 2).axis = 'y'; 
experiment0.boundary( 3).face = 'origin'; 
experiment0.boundary( 3).axis = 'z'; 
experiment0.load.face = 'right'; 
experiment0.load.type = 'load'; 
experiment0.load.axis = 'x'; 
experiment0.load.scale = 1; 
experiment0.load.relative = 0; 
experiment0.displacement = []; 
  
% parse inputs to control what we put in the .feb file 
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p = inputParser; 
addParameter( p, 'spec_version', 2.5, @isscalar); 
addParameter( p, 'module_type', 'solid', @isstring); 
addParameter( p, 'globals', { 'T', 0; 'R', 0; 'Fc', 0}, @iscell); 
addParameter( p, 'materials', isotropic_elastic, @isstruct); 
% addParameter( p, 'materials', orthotropic_elastic, @isstruct); 
% addParameter( p, 'materials', mooney_rivlin, @isstruct); 
addParameter( p, 'nodes', nodes0, @isstruct); 
addParameter( p, 'elements', elements0, @isstruct); 
addParameter( p, 'nodesets', [], @isstruct); 
addParameter( p, 'boundaries', experiment0.boundary, @isstruct); 
addParameter( p, 'load_curve', 'linear', @ischar); 
addParameter( p, 'output', { 'displacement', 'stress'}, @iscell); 
addParameter( p, 'time_steps', 10, @isscalar); 
addParameter( p, 'step_size', 0.1, @isscalar); 
addParameter( p, 'load', experiment0.load, @isstruct); 
addParameter( p, 'displacement', experiment0.displacement, @( x) isempty( x) 
|| isstruct( x)); 
addParameter( p, 'logfile_outputs', { 'stress', 'strain'}, @iscell); 
parse( p, varargin{ :}); 
pr = p.Results; 
  
% open file to write 
[ folder, filename, extension] = fileparts( fout); 
fid = fopen( fout, 'w'); 
  
% header information 
fprintf( fid, '<?xml version="1.0" encoding="ISO-8859-1"?>\n'); 
fprintf( fid, '<febio_spec version="%0.1f">\n', pr.spec_version); 
fprintf( fid, '\t<Module type="%s"/>\n', pr.module_type); 
  
% global variables 
fprintf( fid, '\t<Globals>\n'); 
fprintf( fid, '\t\t<Constants>\n'); 
for i = 1:size( pr.globals, 1) 
    fprintf( fid, '\t\t\t<%s>%d</%s>\n', pr.globals{ i, [ 1 2 1]}); %, ... 
    %         pr.globals{ i, 2}, pr.globals{ i, 1}); 
end 
fprintf( fid, '\t\t</Constants>\n'); 
fprintf( fid, '\t</Globals>\n'); 
  
% material 
fprintf( fid, '\t<Material>\n'); 
for i = 1:numel( pr.materials) 
    fprintf( fid, '\t\t<material id="%d" name="%s" type="%s">\n', ... 
        pr.materials( i).id, pr.materials( i).name, pr.materials( i).type); 
    fprintf( fid, '\t\t\t<density>%d</density>\n', pr.materials( i).density); 
  
% uncomment section for required material type 
% Orthotropic material 
%     fprintf( fid, '\t\t\t<E1>%d</E1>\n', pr.materials( i).E1); 
%     fprintf( fid, '\t\t\t<E2>%d</E2>\n', pr.materials( i).E2); 
%     fprintf( fid, '\t\t\t<E3>%d</E3>\n', pr.materials( i).E3); 
%     fprintf( fid, '\t\t\t<G12>%d</G12>\n', pr.materials( i).G12); 
%     fprintf( fid, '\t\t\t<G23>%d</G23>\n', pr.materials( i).G23); 
%     fprintf( fid, '\t\t\t<G31>%d</G31>\n', pr.materials( i).G31); 
%     fprintf( fid, '\t\t\t<v12>%d</v12>\n', pr.materials( i).v12); 
%     fprintf( fid, '\t\t\t<v23>%d</v23>\n', pr.materials( i).v23); 
%     fprintf( fid, '\t\t\t<v31>%d</v31>\n', pr.materials( i).v31); 
   
% Isotropic material 
    fprintf( fid, '\t\t\t<E>%d</E>\n', pr.materials( i).E); 
    fprintf( fid, '\t\t\t<v>%d</v>\n', pr.materials( i).v); 
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% Mooney-Rivlin material 
%     fprintf( fid, '\t\t\t<c1>%d</c1>\n', pr.materials( i).c1); 
%     fprintf( fid, '\t\t\t<c2>%d</c2>\n', pr.materials( i).c2); 
%     fprintf( fid, '\t\t\t<c3>%d</c3>\n', pr.materials( i).c3); 
%     fprintf( fid, '\t\t\t<c4>%d</c4>\n', pr.materials( i).c4); 
%     fprintf( fid, '\t\t\t<c5>%d</c5>\n', pr.materials( i).c5); 
%     fprintf( fid, '\t\t\t<k>%d</k>\n', pr.materials( i).k); 
%     fprintf( fid, '\t\t\t<lambda>%d</lambda>\n', pr.materials( i).lambda); 
%     fprintf( fid, '\t\t\t<fiber type="vector">%s</fiber>\n', pr.materials( 
i).fiber_type); 
   
    fprintf( fid, '\t\t</material>\n'); 
end 
fprintf( fid, '\t</Material>\n'); 
  
% start geometry 
fprintf( fid, '\t<Geometry>\n'); 
  
% nodes 
for ni = 1:numel( pr.nodes) 
    fprintf( fid, '\t\t<Nodes name="%s">\n', pr.nodes( ni).name); 
    for li = 1:size( pr.nodes( ni).locations, 1) 
        fprintf( fid, '\t\t\t<node id="%d"> % 0.7e, % 0.7e, % 0.7e</node>\n', 
... 
            li, pr.nodes( ni).locations( li, :)); 
    end 
    fprintf( fid, '\t\t</Nodes>\n'); 
end 
  
% elements 
for ei = 1:numel( pr.elements) 
    fprintf( fid, '\t\t<Elements type="hex8" mat="%s" name="%s">\n', ... 
        pr.elements( ei).material, pr.elements( ei).name); 
    for ni = 1:size( pr.elements( ei).nodes, 1) 
        fprintf( fid, '\t\t\t<elem id="%d"> %5d, %5d, %5d, %5d, %5d, %5d, 
%5d, %5d</elem>\n', ... 
            ni, pr.elements( ei).nodes( ni, :)); 
    end 
    fprintf( fid, '\t\t</Elements>\n'); 
end 
  
% nodesets 
for nsi = 1:numel( pr.nodesets) 
    fprintf( fid, '\t\t<NodeSet name="%s">\n', pr.nodesets( nsi).name); 
    for nii = 1:numel( pr.nodesets( nsi).ids) 
        fprintf( fid, '\t\t\t<node id="%d"/>\n', pr.nodesets( nsi).ids( 
nii)); 
    end 
    fprintf( fid, '\t\t</NodeSet>\n'); 
end 
  
% finished geometry 
fprintf( fid, '\t</Geometry>\n'); 
  
% boundary conditions 
fprintf( fid, '\t<Boundary>\n'); 
for bi = 1:numel( pr.boundaries) 
    fprintf( fid, '\t\t<fix bc="%s" node_set="%s"/>\n', ... 
        pr.boundaries( bi).axes, pr.boundaries( bi).nodeset); 
end 
fprintf( fid, '\t</Boundary>\n'); 
  
% load curve data 
switch pr.load_curve 
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    case 'linear' 
        points = [ 0 0; 1 1]; 
    case 'constant' 
        points = [ 0 1; 1 1]; 
    otherwise 
        error( 'unknown load curve'); 
end 
fprintf( fid, '\t<LoadData>\n'); 
fprintf( fid, '\t\t<loadcurve id="1" type="smooth">\n'); 
for pi = 1:size( points, 1) 
    fprintf( fid, '\t\t\t<point>%d,%d</point>\n', points( pi, :)); 
end 
fprintf( fid, '\t\t</loadcurve>\n'); 
fprintf( fid, '\t\t<loadcurve id="2" type="smooth">\n'); 
for pi = 1:size( points, 1) 
    fprintf( fid, '\t\t\t<point>%d,%d</point>\n', points( pi, :)); 
end 
fprintf( fid, '\t\t</loadcurve>\n'); 
fprintf( fid, '\t</LoadData>\n'); 
  
% output 
fprintf( fid, '\t<Output>\n'); 
fprintf( fid, '\t\t<plotfile type="febio">\n'); 
for oi = 1:numel( pr.output) 
    fprintf( fid, '\t\t\t<var type="%s"/>\n', pr.output{ oi}); 
end 
fprintf( fid, '\t\t</plotfile>\n'); 
for li = 1:numel( pr.logfile_outputs) 
    fprintf( fid, '\t\t<logfile>\n'); 
    switch pr.logfile_outputs{ li} 
        case 'stress' 
            fprintf( fid, '\t\t\t<element_data 
data="sx;sy;sz;sxy;sxz;syz;s1;s2;s3;sed;Ex;Ey" delim=", " file="%s"/>\n', ... 
                [ filename '_' pr.logfile_outputs{ li} '.txt']); 
        case 'strain' 
            fprintf( fid, '\t\t\t<element_data 
data="Ex;Ey;Ez;Exy;Exz;Eyz;E1;E2;E3" delim=", " file = "%s"/>\n', ... 
                [ filename '_' pr.logfile_outputs{ li} '.txt']); 
        otherwise 
            error( 'Unknown logfile'); 
    end 
    fprintf( fid, '\t\t</logfile>\n'); 
end 
fprintf( fid, '\t</Output>\n'); 
  
% steps in the control algorithm 
fprintf( fid, '\t<Step name="Step1">\n'); 
fprintf( fid, '\t\t<Control>\n'); 
fprintf( fid, '\t\t\t<time_steps>%d</time_steps>\n', pr.time_steps); 
fprintf( fid, '\t\t\t<step_size>%d</step_size>\n', pr.step_size); 
fprintf( fid, '\t\t\t<max_refs>15</max_refs>\n'); 
fprintf( fid, '\t\t\t<max_ups>10</max_ups>\n'); 
fprintf( fid, '\t\t\t<diverge_reform>1</diverge_reform>\n'); 
fprintf( fid, '\t\t\t<reform_each_time_step>1</reform_each_time_step>\n'); 
fprintf( fid, '\t\t\t<dtol>0.001</dtol>\n'); 
fprintf( fid, '\t\t\t<etol>0.01</etol>\n'); 
fprintf( fid, '\t\t\t<rtol>0</rtol>\n'); 
fprintf( fid, '\t\t\t<lstol>0.9</lstol>\n'); 
fprintf( fid, '\t\t\t<min_residual>1e-20</min_residual>\n'); 
fprintf( fid, '\t\t\t<qnmethod>0</qnmethod>\n'); 
fprintf( fid, '\t\t\t<time_stepper>\n'); 
fprintf( fid, '\t\t\t\t<dtmin>0.01</dtmin>\n'); 
fprintf( fid, '\t\t\t\t<dtmax>0.1</dtmax>\n'); 
fprintf( fid, '\t\t\t\t<max_retries>5</max_retries>\n'); 
fprintf( fid, '\t\t\t\t<opt_iter>10</opt_iter>\n'); 
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fprintf( fid, '\t\t\t</time_stepper>\n'); 
fprintf( fid, '\t\t\t<analysis type="static"/>\n'); 
fprintf( fid, '\t\t</Control>\n'); 
% applied displacements? 
if ~isempty( pr.displacement) 
    fprintf( fid, '\t\t<Boundary>\n'); 
    for bi = 1:numel( pr.displacement) 
        fprintf( fid, '\t\t\t<prescribe bc="%s" node_set="%s">\n', ... 
            pr.displacement( bi).axis, pr.displacement( bi).face); 
        fprintf( fid, '\t\t\t\t<scale lc="1">%d</scale>\n', ... 
            pr.displacement( bi).scale); 
        fprintf( fid, '\t\t\t\t<relative>%d</relative>\n', ... 
            pr.displacement( bi).relative); 
        fprintf( fid, '\t\t\t</prescribe>\n'); 
    end 
    fprintf( fid, '\t\t</Boundary>\n'); 
end 
% applied forces 
if ~isempty( pr.load) 
    fprintf( fid, '\t\t<Loads>\n'); 
    for li = 1:numel( pr.load) 
        if ~isempty( pr.load( li).face) 
            fprintf( fid, '\t\t\t<nodal_load bc="%s" node_set="%s">\n', ... 
                pr.load( li).axis, pr.load( li).face); 
        elseif ~isempty( pr.load( li).node) 
            fprintf( fid, '\t\t\t<nodal_load bc="%s" node_set="%s">\n', ... 
                pr.load( li).axis, pr.load( li).node); 
        else 
            error( 'unknown load location'); 
        end 
        fprintf( fid, '\t\t\t\t<scale lc="1">%d</scale>\n', ... 
            pr.load( li).scale); 
%         fprintf( fid, '\t\t\t\t<relative>%d</relative>\n', ... 
%             pr.load( li).relative); 
        fprintf( fid, '\t\t\t</nodal_load>\n'); 
    end 
    fprintf( fid, '\t\t</Loads>\n'); 
end 
fprintf( fid, '\t</Step>\n'); 
  
% \Boundary \prescribe for fixed displacements as a load 
% \Loads \nodal_load for fixed force as a load 
  
% finalise and tidy up 
fprintf( fid, '</febio_spec>\n'); 
fclose( fid); 
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D.6.4 Run_febio.m 
function status = run_febio( varargin) 
% code for running febio 
% parameter pairs allowed: 
% fpath : path for input and output files 
% configfile : filename for configuration file 
% febiopath : path and filename for executable 
  
% Written 2019 by Kenneth Pope 
  
% parse inputs 
p = inputParser; 
addParameter( p, 'fpath', 
'/Users/dainaross/Desktop/Uni/Masters/Practical/Matlab_Code/', ... 
    @ischar); 
addParameter( p, 'febiopath', '/Applications/FEBio2.9.1/bin/febio2', ... 
    @ischar); 
addParameter( p, 'configfile', 'temp.feb', @ischar); 
parse( p, varargin{ :}); 
pr = p.Results; 
  
% Execute system command to run febio .feb file 
status = system(  [ pr.febiopath ' -i ' fullfile( pr.fpath, pr.configfile)]); 
  
% % check the system command was successful 
% assert( status == 0, ... 
%     ' System command was not executed successfully'); 
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D.6.5 Readfebio.m 
function data = readfebio( fname) 
%        output = readfebio( fname) 
% Read in stress or strain values from febio output file 
% This is version 3, might be worth generalising this to identify what sort 
% of output file we are looking at (headers / no headers etc) and calling 
% the appropriate read function 
  
% parse inputs 
assert( exist( fname, 'file') == 2, 'Input file does not exist'); 
  
% open file 
fid = fopen( fname, 'r'); 
  
% for each time step 
step = 0; 
while ~feof( fid) 
     
    % might be worth generalising this to allow any headers etc 
     
    % read in the *Step line 
    l = fgetl( fid); 
    assert( strcmp( l( 1:5), '*Step'), ... 
        'First line of step %d isn''t "*Step"', step + 1); 
    [ ~, stepstr] = strtok( l, '='); 
    step = sscanf( stepstr( 3:end), '%d'); 
     
    % read in the *Time line 
    l = fgetl( fid); 
    assert( strcmp( l( 1:5), '*Time'), ... 
        'Second line of step %d isn''t "*Time"', step); 
    [ ~, timestr] = strtok( l, '='); 
    data.time( step) = sscanf( timestr( 3:end), '%f'); 
     
    % read in the *Data line 
    l = fgetl( fid); 
    assert( strcmp( l( 1:5), '*Data'), ... 
        'Third line of step %d isn''t "*Data"', step); 
    [ ~, datastr] = strtok( l, '='); 
    outputs = strsplit( datastr( 3:end), ';'); 
    Noutputs = numel( outputs); 
    data.outputs = outputs; 
     
    % parse the data 
    while ~feof( fid) 
        l = fgetl( fid); 
        if strcmp( l( 1:5), '*Step') 
            fseek( fid, -( 1 + numel( l)), 'cof'); 
            break 
        end 
        data_line = sscanf( l, '%f,'); 
        assert( numel( data_line) == Noutputs + 1, ... 
            'Wrong number of data for node %d', data_line( 1)); 
        for oi = 1:Noutputs 
            data.( outputs{ oi})( data_line( 1), step) = data_line( oi + 1); 
        end 
    end 
     
end 
  
% add some more useful information 
[ data.Nnodes, data.Nsteps] = size( data.outputs{ 1}); 


