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Summary

Molecules based on the 4-amino-1,8-naphthalimide fluorophore combined with
powerful urea and thiourea recognition units have been shown to be excellent sensors
for anions including dihydrogen phosphate, acetate and fluoride. The majority of the
literature with regards to these particular sensors however reports solution phase
sensing. This thesis details the synthesis of a series of sensors based on the
combination of the 4-amino-1,8-naphthalimide fluorophore and a urea recognition
unit, incorporating a terminal double bond at the imide position. This terminal double
bond can then be used to immobilise the sensors onto a silica surface, broadening the

potential applications of this sensing technology.

The synthesis of eight different sensors each containing the 4-amino-1,8-
naphthalimide fluorophore and a urea or thiourea recognition group is described. The
fluorophore and the recognition group are connected covalently via a spacer molecule,
with the use of three different spacer molecules investigated; 2-aminobenzylamine, 4-
aminobenzylamine and 3-aminobenzylamine. Previous literature reports had indicated
that small changes in the sensor molecule influenced the properties of the sensors
towards different anions. Several changes to the recognition group were also
investigated (urea vs. thiourea, addition of a chloro group on the phenyl ring attached
to the recognition group, introduction of triethoxysilyl groups to enable a different

method of immobilisation).

The use of microwave irradiation as an alternative to conventional heating methods
was also trialled for the synthesis of three of the sensors. Reaction time was
decreased, whilst in some cases purity and yield were also improved. In one step the
reaction time was reduced from fourty-eight hours to sixty minutes, whilst in another a
product was able to be purified using recrystallisation, whereas column

chromatography was usually required when using conventional heating techniques.

After successful synthesis of the sensors, their ability to sense anions (dihydrogen

phosphate, acetate, fluoride and bromide) was monitored in the solution phase using



SUMMARY
both fluorescence spectrophotometry and *H NMR spectroscopy. Strong interactions
were observed upon addition of both dihydrogen phosphate and acetate to a solution
of sensor in DMSO, with quenching of the fluorescent emission signal observed and
also significant downfield shifts for the resonances assigned to the urea protons of
each sensor in the 'H NMR spectrum. Significant shifts were also observed for the 4-
amino NH proton resonance dependant on the sensor being evaluated. Little
quenching or changes in the *H NMR spectrum were observed upon addition of
bromide to a solution of sensor. The most interesting results were obtained upon the
addition of fluoride, with a colour change from yellow to red as greater amounts of
fluoride were added due to deprotonation of the 4-amino NH proton. Again significant

changes were noted in the 'H NMR spectrum of each sensor.

Finally after establishing the sensors were suitable for the detection of anions,
immobilisation onto a silica surface was investigated. Initially the terminal double bond
included in the sensor design was used to covalently attach the sensor to a hydride
modified silica gel wusing hydrosilation chemistry. Definitive spectroscopic
characterisation of the surface was hard to obtain, however deprotonation of the 4-
amino NH proton by addition of fluoride to the surface was observed, suggesting
successful attachment. Alternative immobilisation methods including building the
sensor onto a 3-aminopropyl functionalised silica surface and by condensing
triethoxysilyl groups (introduced in three of the sensors as part of the recognition unit)
onto mesoporous silica were also investigated, proving that immobilisation of the
sensors onto a silica surface is viable and may be an alternative to solution phase

sensing.
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