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Summary

Sequential mammograms contain important information, such as changes of the

breast or developments of the masses, for diagnosis of disease. Comparison of se-

quential mammograms plays an important part for radiologists in identifying ma-

lignant masses. However, currently computer-aided detection (CAD) programs

can not use such information efficiently. The difficulties lie in the registration of

sequential mammograms.

Most of current methods register sequential mammograms based on control

points and image transformations. For these methods to work, extraction and cor-

respondence of the control points is essential. This thesis presents a new approach

in registering mammograms. The proposed method registers mammograms by

associating mass-like objects in sequential mammograms directly. The mass-like

objects appear in the images of normal breasts as well as images of breast with

cancer. When the mass-like objects in sequential mammograms are accurately

associated, measurements of changes in mass-like objects over time become pos-

sible. This is an important way to distinguish mass-like objects associated with

cancer from cysts or other benign objects.

The proposed method is based on graph matching. It uses the internal struc-

ture of the breast represented by the spatial relation between the mass-like ob-

jects to establish a correspondence between the sequential mammograms. In this

method, the mammogram is firstly segmented into separate components using an

adaptive pyramid (AP) segmentation algorithm. A series of filters, based on the

features of components, is then applied to the components to remove the unde-

sired ones. The remaining components, the mass-like objects, are represented by

a complete graph. The spatial relations between the remaining mass-like objects

are expressed by fuzzy spatial relation representation and are associated to the

edges of the graph as weights. Association of the mass-like objects of two sequen-

tial mammograms is realized by finding a common subgraph of the corresponding

two graphs using the backtrack algorithm.

The segmentation methods developed in the course of this work were tested

on a separate problem in computer-aided detection of breast cancer, namely the

automatic extraction of the pectoral muscle.

The graph matching method was tested independently of the segmentation

method on artificially distorted mammograms and the full process, including the

x



segmentation and the graph matching, was evaluated on 95 temporal mammo-

gram pairs. The present implementation indicates only a small improvement in

cancer detection rates but also presents opportunities for a substantial develop-

ment of the basic method in the future.
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Chapter 1

Introduction

This chapter provides background on breast cancer and mammography, and gives

the motivation of this thesis. The chapter is organized as follows. Section 1.1

describes current facts about the breast cancer, including the incidence and risk

of breast cancer. Section 1.2 introduces breast cancer screening. Two impor-

tant measures toward the efficiency of breast cancer screening, the sensitivity

and specificity, are described in Section 1.3. Section 1.4 is about the computer-

aided detection (CAD). Several studies about the efficiency of CAD programs

are described in this section. Motivation and approaches are given in Section 1.5.

Finally, in Section 1.6, we present an overview of this thesis.

1.1 Incidence of Breast Cancer

Breast cancer is the most common cancer among women worldwide. In 2003,

breast cancer was the most common cancer in Australian female population with

11,788 new cases diagnosed, and was the most common cancer death with 2,710

deaths (AIHW (Australian Institute of Health and Welfare) and AACR (Aus-

tralasian Association of Cancer Registries) 2007). According to the National

Breast Cancer Foundation of Australia, more than 13,000 new cases were ex-

pected in 2007 in Australia and more than 2000 in New Zealand. In America,

184,450 new cases of invasive breast cancer (182,460 female, 1,990 male), as well

as 67,770 (female) additional cases of in situ breast cancer are expected to be di-

agnosed and approximately 40,930 (40,480 female, 450 male) are expected to die

from breast cancer in 2008, making it the second common cancer death (after lung

cancer) (American Cancer Society 2008). In Europe, breast cancer was the most

common cancer in 2006 with 429,900 cases expected to be diagnosed and 131,900

estimated deaths (Ferlay, Autier, Boniol, Heanue, Colombet & Boyle 2007).

The incidence of breast cancer continues to rise. The Australian Institute

of Health and Welfare & National Breast Cancer Centre (2006) shows that the

number of new cases of breast cancer of Australia women increased from 5,318 in

1



CHAPTER 1. INTRODUCTION 2

1983 to 12,027 in 2002 and it is projected that there will be 13,261 new cases in

2006 and 14,818 in 2011. According to the report, the age-standardised incidence

of breast cancer in women increased from 80 per 100,000 population in 1983 to

98 per 100,000 in 1992 and 117 per 100,000 in 2002.

According to AIHW (Australian Institute of Health and Welfare) and AACR

(Australasian Association of Cancer Registries) (2007), breast cancer was the

highest risk in 2003 for Australian women, with a 1 in 11 chance before age

75 and a 1 in 9 chance before age 85. According to the National Breast Cancer

Foundation of Australia, women aged 50 to 69 are at the highest risk of developing

breast cancer, with 48 per cent of breast cancers occurring in this age group, and

75 per cent above the age of 50. In America, currently the lifetime risk of being

diagnosed with breast cancer was reported as 12.3 per cent (1 in 8) (American

Cancer Society 2007). In UK, according to the national statistics of UK, a rate

of 121 cases per 100,000 women was recorded in 2004.

While breast cancer continues to be the first cause of cancer related death in

females, more women are surviving this disease than ever before. AIHW (Aus-

tralian Institute of Health and Welfare) and AACR (Australasian Association of

Cancer Registries) (2007) show that deaths from breast cancer increased by 4 per

cent from 1993 to 2003, but the death rate for breast cancer decreased 20 per cent

from 1993 to 2003. Also, according to the National Breast Cancer Foundation of

Australia, the percentage of women diagnosed with breast cancer and expected

to live 5 years after the diagnosis increased from 71 per cent, in the period from

1982 to 1986, to 86 per cent. This is most likely due to the population-based

screening program and more effective treatments.

1.2 Breast Cancer Screening

If breast cancer is found at an early stage, there is a greater chance of successful

treatment. Early detection of breast cancer is believed to be the key to reducing

the mortality. Currently, mammography is the most effective method for early

breast cancer detection. Mammography can generally reveal benign and cancer-

ous growths before the patient or the physician can feel them. Breast cancer

screening has been introduced in many countries to provide intensive monitoring

of breast cancer. In Australia, women, primarily those between the age of 50 to

69, are recommended and invited to screening mammograms every two years. In

2002, a working group, consisting of 24 experts from 11 countries, convened by

the International Agency for Research on Cancer (IARC) of the World Health

Organization (WHO), found that the mammography screening reduces the mor-

tality from breast cancer among women between 50 and 69 by about 35 per cent.

For women aged 40-49 years, the working group found only limited evidence for

a reduction of mortality from breast cancer. Evidence of benefit for older women

over 70 was also not strong enough to recommend general routine screening. In
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Australia, all women aged 40 or more are eligible to attend screening.

A typical attending of breast cancer screening consists of following steps. The

examinee positions each of her breasts in turn between two flat plates on the

x-ray machine. The machine compresses the breast between the plates. This

compression helps to even out the breast tissue so that the tissue can be imaged

at the same thickness. It also reduces the amount of radiation needed to penetrate

through the tissue and reduces the amount of scatter radiation to the rest of the

body. After the positioning of the breast, low dose X-rays irradiate the positioned

breast and produce pictures of the inside of the breast. For each breast, there is

usually a set of two views to be taken, one from top to bottom, called cranial-

caudal (CC) view, and one from the side, called medio-lateral oblique (MLO)

view (Fig. 1.1).

Figure 1.1: Example of temporal mammograms. (a)-(d) and (e)-(h)

are two sets of mammograms taken in two consecutive screening ses-

sions. (a)-(d) were taken in a current screening session. (e)-(h) were

taken in a corresponding previous screening session. (a) and (e) are

CC view mammograms of the left breast, (b) and (f) are MLO view

mammograms of the left breast, (c)(g) and (d)(h) are CC and MLO

view mammograms of the right breast. White boxes in (a) and (b)

enclose malignant masses that were marked out by a radiologist.

The mammograms are then read by the radiologists. If any abnormalities are

identified by the radiologists, the woman is called back for further assessments.

In Australia, two radiologists read each case independently. A third radiologist

will read the case if there is disagreement between the first two readers.
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1.3 Sensitivity and Specificity of Mammogra-

phy

Screening may fail to catch the disease, on the other hand, some detected cancers

are not real cancers, causing unnecessary call back. Sensitivity and specificity are

two important measures of a screening program. The sensitivity measures the

success of mammography in detecting breast cancer. The definition of sensitivity

varies between studies. In Australian Institute of Health and Welfare 2008 (2007),

the sensitivity of the breast screening program was defined as the proportion

of invasive breast cancers detected within the BreastScreen Australia Program

out of all invasive breast cancers (interval cancers plus screen-detected cancers)

diagnosed in program-screened women in the screening interval. Studies have

shown that the sensitivity of the mammography in women aged over 50 ranges

from 68 per cent to over 90 per cent, with most trials achieving sensitivities of

around 85 per cent. Australian Institute of Health and Welfare 2008 (2007) shows

that the sensitivity of the Australia screening program in 2001, 2002 and 2003

in 24 months follow-up of women aged 50-69 years in the first screening round

was reported as 79 per cent. For subsequent screening rounds, the sensitivity for

women in the same age group in the same period was 71 per cent. The specificity

measures how reliably the mammography identifies a normal mammogram as

normal. It is defined as the number of women whose mammograms are identified

as negative divided by the number of women who truly do not have breast cancer.

Studies show that the specificity of mammography ranges between 82 per cent

and 97 per cent.

1.4 Computer-Aided Detection Program

A computer-aided detection (CAD) program is a system that incorporates ad-

vanced pattern recognition and image analysis techniques to detect abnormalities

in digitized mammograms. Typically, a CAD program involves several steps. The

first step is image preprocessing. In this step, the pectoral muscle and breast

boundary are usually extracted, and the image is usually filtered or normalized

to improve the quality of the image and to facilitate the next steps. After im-

age preprocessing, isolation to the region of interest (ROI) is usually performed

using different techniques. The ROIs include lesions and suspicious regions that

resemble lesions. The next step is feature extraction. A series of features are

extracted from the ROIs. Based on the extracted features, the final step is the

classification step. The ROIs are classified as malignant or not.

The CAD programs are not designed to replace the radiologists. This is

because, on one hand the CAD programs can not promise that the disease is

always detected, on the other hand, the false positive rate of CAD detection is
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normally high. The CAD programs assist radiologists in diagnosing disease by

providing detection results to the radiologists as second opinion.

Many studies have shown that CAD programs are effective in detecting ab-

normalities on mammograms. Freer & Ulissey (2001) performed a study to assess

the effect of the CAD program in interpreting mammograms. 12,860 mammo-

grams were used in this study. Performance of radiologists with the assistance

of CAD and without the assistance of CAD were compared. The effect of CAD

on the recall rate, positive predictive value for biopsy, cancer detection rate, and

stage of malignancies at detection were recorded. With the assistance of CAD,

this study observed an increase in recall rate from 6.5 per cent to 7.7 per cent, no

change in the positive predictive value for biopsy at 38 per cent, a 19.5 per cent

increase in the number of cancers detected, and an increase in the proportion of

early-stage malignancies detected from 73 per cent to 78 per cent. The result

of this study showed that the use of CAD increases the detection of early-stage

malignancies without undue effect on the recall rate or positive predictive value

for biopsy.

Brem, Baum, Lechner, Kaplan, Souders, Naul & Hoffmeister (2003) evaluated

radiologist detection of breast cancer with the assistance of a computer-aided

detection system. This study consisted of 377 mammograms which had no ma-

lignant findings previously but had cancer diagnosed later. The mammograms

were reviewed again by radiologists but with the assistance of CAD. The study

found that the use of CAD program significantly improved the detection of breast

cancer by increasing radiologist sensitivity by 21.2 per cent.

In the study conducted by Gur, Sumkin, Rockette, Ganott, Hakim, Hardesty,

Poller, Shah & Wallace (2004), 115,571 mammograms were interpreted by 24

experienced radiologists with and without the assistance of CAD. However, the

study found no significant changes in recall and breast cancer detection rates with

and without the help of CAD programs.

Brem, Hoffmeister, Zisman, DeSimio & Rogers (2005) assessed the ability of

a CAD system to detect biopsy-proven breast cancers, particularly tumors mea-

suring 1 cm or less. This study included 201 breast cancer patients, with a total

of 122 masses, 54 microcalcifications, and 25 mixed mass-and-microcalcification

lesions. The CAD program found 84 per cent of the masses, 98 per cent of the

microcalcifications and 92 per cent of the mixed mass-and-microcalcification le-

sions. In this study, the overall sensitivity of the CAD program was found to be

89 per cent.

Studies have shown that mammographic interpretation by two radiologists

improves breast cancer detection rate by 5 to 15 per cent. However, double read-

ing requires additional resources. Also with the increase in the complexity of

mammographic interpretation and the number of images per study, the radiolo-

gists are facing increasing working load. Single reading with CAD was suggested

in the aim of freeing up radiologists’ time while achieving similar accuracy as
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double reading. Comparisons between single reading with CAD and double read-

ing were explored in many studies. Bennett, Blanks & Moss (2006) reviewed

8 studies toward the comparison of single reading with CAD and double read-

ing. 6 of these 8 studies reported results of comparisons of both sensitivity and

specificity. Of these 6 studies, 3 showed no difference in both sensitivity and

specificity, one showed that single reading with CAD had a higher sensitivity at

the same specificity and one showed a higher specificity of single reading with

CAD at the same sensitivity. One study, in a real-life setting, showed that sin-

gle reading with CAD had a higher sensitivity but a lower specificity. Bennett

et al. (2006) concluded that most of the reviewed studies suggested that under

the most difficult test conditions where interval cancers and masses only were

used, there was limited evidence to show that single reading with CAD did not

perform equally well as double reading. Under less stringent test conditions with

screen-detected cancers seeded with normal films and with high sensitivities re-

ported with single reading, little evidence of a difference between double reading

and single reading with CAD was found. However, as most of these studies were

not based on real-life conditions, Bennett et al. (2006) found that the evidence

to the accuracy of a single reading with CAD in comparison with double reading

was limited. In another study (Gilbert, Astley, McGee, Gillan, Boggis, Griffiths

& Duffy 2006), 10267 mammograms obtained in women aged 50 years or older

were used. All images were double read previously. Eight different radiologists

were asked to read the mammograms again but with CAD. The study found a

significantly higher cancer detection rate of single reading with CAD than double

reading with 6.5 per cent more cancers detected by means of single reading with

CAD. However, the recall rate of single reading with CAD was also higher than

double reading (8.6 per cent vs 6.5 per cent).

1.5 Motivation and Approach

When interpreting mammograms, radiologists usually compare multiple mam-

mograms to diagnose the abnormalities. These multiple mammograms can be

bilateral mammograms, temporal mammograms or MLO-CC mammograms (Fig.

1.1). Bilateral mammograms are the same view mammograms of left and right

breast taken for the same women in the same screening session. Temporal mam-

mograms refer to the same view mammograms of the same breast taken in dif-

ferent screening session. MLO-CC mammograms are the MLO and CC view

mammograms (see Section 1.2 for MLO and CC) taken for the same breast in

the same screening session.

Comparison of the multiple mammograms provides crucial information re-

garding the likelihood of breast cancer. Asymmetries between the bilateral mam-

mograms are important hints of possible abnormalities. Differences between tem-

poral mammograms help to understand changes in the breast and help to diag-
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nose malignancies. For example, changes in sizes of the masses are good signs

of malignancies, without which the masses in a single mammogram might only

be identified as benign. Also, a bright region appearing in current mammogram

but not in previous mammogram may indicate a new malignant mass. These

malignancies can only be diagnosed by comparing temporal mammograms. A

mammogram is a two dimensional (2-D) projection of a three dimensional (3-D)

breast. The projection of a mass in the breast may overlap with that of other ob-

jects, showing in the mammogram an area of blended density region, and making

it difficult to distinguish the mass from the blended density region. Comparison

of MLO-CC mammograms helps to identify these masses.

Multiple mammograms contain important information toward diagnosing the

abnormalities. Automating the process of analyzing this information could play

an important role in CAD. Hadjiiski, Sahiner, Chan, Petrick, Helvie & Gurcan

(2001) compared the performance of CAD program with and without using the

temporal mammogram information. They found that by using the temporal

information, the AZ value (area under the ROC curve) was significantly increased

from 0.82 to 0.88. However, CAD programs currently have not been able to utilize

the information contained in multiple mammograms effectively because of severe

difficulties in registering the multiple mammograms. The registration problem is

compounded by natural changes of the breast over time not related to cancer,

differences in equipment used for image acquisition over time, differences in the

positioning of the breast, and inconsistent distortion of breast morphology at

acquisition.

Many researches have investigated the use of multiple mammograms to facili-

tate the computer aided detection of breast abnormalities. According to different

types of multiple mammograms that are focused on, these studies branch into

temporal, bilateral and MLO-CC mammogram studies. However, the division

is not strict, some methods claim that they can be applied to different types of

multiple mammograms.

Many attempts have been made in registering multiple mammograms. Some

early traditional methods register multiple mammograms by trying to simulate

rigid or affine deformations between multiple mammograms. However, both nat-

ural changes occurred in the breast and unpredictable motion of breast tissue

under varying amount of compression put on the breast during screening cause

nonrigid changes between multiple mammograms. Also many methods use simple

subtraction to analyze the difference between multiple mammograms. For these

methods to work, the mammograms need to be highly consistent in both geome-

try and intensity. Many methods register multiple mammograms by transforming

one to the other by using interpolation based on selection and matching of a set

of points of interest (also called control points). Many of these methods select

points of interest both from the breast boundary and interior breast. The success

of these methods heavily depends on the selection of the set of points of interest.

However, reliable and consistent points of interest are difficult to extract.
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This thesis presents a new approach in registering temporal mammograms.

The proposed method registers temporal mammograms by establishing corre-

spondence directly between the mass-like objects in temporal mammograms. The

novelty of this method lies on the use of spatial relations between the mass-like ob-

jects of single mammogram to establish correspondence between temporal mam-

mograms and the use of graph matching to establish the correspondence. Under

compression, motion of breast tissue is unpredictable and thus the relative posi-

tions of objects of interests are not necessarily consistent in consecutive images.

However, in most cases spatial relationships between salient regions remain fairly

consistent (Novak 1988). In this method, during the graph matching, constraints

put on the difference of spatial relations allows a certain degree of variance of spa-

tial relations of mass-like objects between temporal mammograms. The breast

boundary is also used in this method to provide global reference for the mass-

like objects. Unlike most of the methods that rely on the alignment of breast

boundaries of multiple mammograms to provide global registration, boundaries

are treated as mass-like objects and the spatial relations between the boundary

objects and the other mass-like objects are used. This is made possible by using

a fuzzy representation of spatial relation.

In this method, the mammograms were segmented by using an adaptive pyra-

mid (AP) algorithm. The segmentation produced both segmented components

and a graph whose nodes representing components of the mammogram and edges

connecting the nodes representing neighborhood relationships between the corre-

sponding components. The components were filtered to remove unwanted ones

based on the breast boundary and a series of component features. Spatial re-

lations between the remaining components were expressed using fuzzy spatial

relation representation. A weighted complete graph was constructed for each

mammogram with each node in the graph representing a remaining component,

a mass-like object. Fuzzy spatial relations between the mass-like objects were

used as weights that associated with the edges connecting corresponding mass-

like objects. Correspondence between the mass-like objects in temporal mammo-

gram pairs was established by finding the common subgraph isomorphism of the

corresponding graphs using graph matching.

As only spatial relations between mass-like objects are used during the graph

matching, rigid changes of mammogram, slight differences in shape and size of

masses and different size of breast do not affect the matching results. Thus

the proposed method accommodates both rigid and certain degree of nonrigid

deformation of mammogram.

Although this study focus mainly on temporal mammograms and the proposed

method was mainly developed based on the temporal mammograms, there is

no particular restrictions on the type of mammogram pairs. Thus this method

can also be applied to both bilateral and MLO-CC mammograms. However, as

the mass-like objects in MLO-CC mammograms may have very different spatial

relations due to the projection of 3D objects to 2D images in different direction,
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the MLO-CC mammograms might not be suitable for the proposed method, since

it was based on the spatial relations of mass-like objects.

Registration of multiple mammograms was the first step toward multiple

mammogram analysis. Based on this work, it might be possible to track the

changes of masses or reveal new masses by further analyzing the matched mass-

like objects and unmatched mass-like objects. However, this part of work was

not included in this thesis. As a more direct application, in this study, the corre-

spondence of mass-like objects was used to reduce the false positive detections.

When comparing temporal mammograms, radiologists usually try to find some

corresponding similar structures in temporal mammogram pairs first. The cor-

respondence established in this work can be used as a second opinion for the

radiologists.

1.6 Overview of the Thesis

This thesis is organized as follows. The current chapter introduces some back-

ground of breast cancer and mammography. Motivation and approach of this

thesis are also included in this chapter. Chapter 2 provides technique background

and literature review on temporal mammogram registration, graph matching and

pyramid based segmentation algorithms. An implementation of the AP segmen-

tation algorithm is explained in Chapter 3. Robustness of the AP algorithm in

terms of image deformation is also studied in this chapter. Extraction of the

pectoral muscle and the breast boundary are introduced in Chapters 4 and 5.

Chapter 6 introduces mass features that are used in this thesis. Details of the

graph matching method is presented in Chapter 7. Finally, experiments, discus-

sion and conclusions are made in Chapters 8 and 9.



Chapter 2

Technical Background and

Literature Review

This chapter provides technique background and reviews research in the field of

temporal mammogram registration, graph matching and pyramid based image

segmentation algorithms. Many valuable methods have been proposed in litera-

ture for registering sequential mammograms. Most of these techniques register

one mammogram to the paired temporal mammogram by means of interpola-

tion or warping based on a set of selected and matched points of interest. One

method matches salient regions between temporal mammogram pairs directly.

These methods are reviewed in section 2.1. In this thesis, weighted complete

graphs are used to represent the mass-like objects of the mammograms and the

relations between them. Correspondence between mass-like objects of mammo-

grams are established by finding a common subgraph between two graphs of two

mammograms using graph matching. Section 2.2 reviews the literature of graph

matching. In mammogram analysis, segmentation of mammograms always plays

one of the most important parts and is the basis of mammogram analysis. In

this thesis, the AP algorithm is implemented to segment the mammograms. A

literature review of pyramid methods is given in section 2.3.

2.1 Temporal Mammogram Registration

Mammogram registration is a challenging task. The difficulty of mammogram

registration sources from the high complexity of the images themselves. There are

usually no clear landmarks in a mammogram. Signs of disease in a mammogram

are usually subtle. Temporal mammograms, even taken in a short period of time,

may differ considerably. The difference is compounded by natural changes of the

breast over time not related to cancer, differences in equipment used for image

acquisition over time, differences in the positioning of the breast, and inconsistent

distortion of breast morphology at acquisition.

10
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Many methods have been proposed for registering and comparing mammo-

grams. Some early traditional methods register multiple mammograms by trying

to simulate rigid or affine deformations between multiple mammograms. How-

ever, both natural changes occurred in the breast and motion of breast tissue

under varying amount of compression put on the breast during screening cause

nonrigid change between multiple mammograms. Many methods analyzed the

difference of multiple mammograms by simple subtraction. For these methods to

work, the mammograms need to be highly consistent in both geometry and inten-

sity. As mammograms are highly complex images, consistency of geometry and

intensity seldom exists in multiple mammograms. Many methods register mul-

tiple mammograms by transforming one image to the other using interpolation

and based on selecting and matching of a set of points of interest. The success

of these methods heavily relies on the selection of points of interest. Points of

interest are often selected both from the breast boundary and interior breast.

The boundary of the breast is one of the distinct landmarks of the mammogram

and it is relatively easy to extract. The breast boundary provides important in-

formation about the deformation of the breast. Alignment of breast boundaries

of the mammograms provides partial global registration and thus was adopted

as an important step in many methods. To imitate the nonrigid deformations

between the multiple mammograms, points of interest from the interior of the

breast are necessary when registering one mammogram to the other using inter-

polation. However, it is difficult to extract reproducible or consistent points of

interest. This is because, on one hand, reproducible points of interest may not

exist due to the changing organic nature of the breast, the varying conditions in

obtaining the mammogram, and the 2-D projection nature. On the other hand,

the mammograms are complex images and it is sometimes difficult to extract rep-

resentative points of interest. The following paragraphs summarize some work

that has been done in registering and analyzing temporal mammograms.

Vujovic & Brzakovic (Oct. 1997) extracted points of interest by analyzing

elongated structures in the breast. Correspondences between mammograms were

then established by matching the extracted points of interest of mammograms

using an accumulator matrix and based on identified reference points and signa-

tures that capture local pattern characteristics. Twenty-nine mammogram pairs

were used in this study to test the proposed method. To evaluate the results,

3 observers, one of whom was a radiologist, were asked to visually identify the

points in the newer mammogram corresponding to the highlighted points in the

older mammogram. Performance of the algorithm was measured based on the Eu-

clidean distance between the observer identified points and the algorithm matched

points. An average of 9 pixel distance was found between the points determined

by the radiologists and the algorithm.

Sallam & Bowyer (1999) proposed a method to register mammograms in two

stages. In the first stage, points of interest were extracted along the breast

boundaries and were aligned. An initial unwarping function was calculated by
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interpolating aligned points based on thin-plate spline. In the second stage, a

feature selector based on steerable filters was used to select interest points from

interior of the breast region. These points of interest were matched by imposing

a locality constraint on the points based on the image alignment done in the first

stage. The matched points of interest were combined with those formed in the

first stage and were together used to construct a thin-plate spline interpolation

which unwarped one image to the other to produce a registered image. Finally a

difference image was generated by simply subtracting the registered image from

the compared image. The difference image was thresholded to extract suspicious

regions.

Kok-Wiles, Brady & Hignam (1998) used a saliency metric to pick up the

salient regions and used a nested tree structure to organize the salient regions.

Correspondence between the regions of the compared mammograms were made

by using a constraint-based region matching algorithm. The algorithm used 4

constraints; a smooth motion constraint; a topological constraint; an order con-

straint; a monotonicity of geometry constraint; and proceeded coarse to fine. The

method was tested on 2 temporal pairs and further tested on 26 bilateral pairs.

The results were claimed to be successful.

Sanjay-Gopal, Chan, Wilson, Helvie, Petrick & Sahiner (1999) proposed a

regional registration technique. In this method, breast boundaries of the tempo-

ral mammograms were first aligned based on the nipples manually identified by

the radiologist. The centroid of breast region was then estimated and a nipple-

centroid axis was defined for each mammogram. Next the suspicious regions were

automatically segmented in the current mammogram using a density-weighted

contrast enhancement (DWCE) technique. A polar coordinate system was de-

fined using the nipple as the origin and the previously defined nipple-centroid

axis as the 0 ◦ axis on both images. For each suspicious region in current mam-

mogram, a search for the matching region was performed in a fan-shaped region

in the previous mammogram. This fan-shaped region was defined based on the

established polar coordinate systems. The method was tested on 74 temporal

mammogram pairs. Evaluation of the accuracy of the registration was based on a

bounding box that was identified by the radiologist on the previous mammogram

which enclosed the corresponding region. The results were that 85% of the cases

had the centroid of the extracted matching masses inside the bounding boxes,

and the average distance between the centroid of the extracted matching masses

and the center of the bounding boxes was 2.8± 1.9 mm.

Mutual information (MI) is a measure of how much information a image con-

tains about a second image. Concretely, MI is a cost function used to measure the

similarity of images. MI has been used extensively in image registration. Typ-

ically, by optimizing MI, a transformation is obtained that optimally aligns the

images. Wirth, Narhan & Gray (2002) investigated the usage of MI in mammo-

gram registration. An initial global registration was first performed by using MI.

Usually only rigid or affine transformations was used in optimizing MI. To simu-
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late nonrigid changes between multiple mammograms, Wirth et al. divided the

mammogram into smaller sub-images and matched each sub-image independently

to imitate localized nonrigid change. Points of interest were then extracted from

the matched sub-images and used with thin-plate splines to register one mam-

mogram to the other. The method was tested on mammograms from the MIAS

digital mammogram database (Suckling, Parker, Dance, Astley, Hutt, Boggis,

Ricketts, Stamatakis, Cerneaz, Kok, Taylor, Betal & Savage 1994) and the re-

sults were reported as promising.

Engeland, Snoeren, Hendriks & Karssemeijer (Nov. 2003) compared 4 mam-

mogram registration methods, which were an alignment method based on nipple

location, an alignment method based on the center of mass of the breast area,

a method based on MI and a method based on warping. Performance of these

4 methods was measured based on the distance between the center of manually

identified abnormalities in the previous and current view before and after regis-

tration. The MI based method was found superior to the others. The benefit of

this method over the other methods was due to the use of the internal structure

of the breast, instead of just one or several points in the breast contour, and the

capacity for allowing rotation, scaling, and shearing. The method based on the

alignment of mass center worked reasonably well, especially when the pectoral

muscle was excluded when calculating the center of the mass. The method based

on the alignment of the nipple was found to work only when the nipple was visible

in the profile. The warping based method was found to be the worst.

Marias, Behrenbruch, Parbhoo, Seifalian & Brady (2005) proposed a method

to register sequential mammograms using a similar schema as used in Sallam

& Bowyer (1999). The method was also based on a set of points of interest

which were also selected both from the boundaries of breast and from interior

of the breast. In this method, the points of interest from the breast boundaries

were selected based on curvature analysis of the boundaries. The boundaries of

the mammograms were then aligned based on the selected points of interest using

thin-plate interpolation. To select the points of interest from interior of the breast,

first, ROIs were isolated using a nonlinear wavelet scale-space. The isolated

regions of the mammograms were matched based on the aligned breast and a

”search” window. Interior points of interest were then defined as the centroid of

the matched regions. All boundary points of interest and interior points of interest

together controlled a thin-plate spline approximation technique that was used to

register one mammogram to the other. Results of this method were evaluated on

50 temporal pairs and an additional 16 temporal pairs that had annotated masses

both quantitatively and visually. The results were visually judged by an expert

clinician and were found ”good” in 70% of the cases, ”average” in 25% of the

cases and ”poor” in 5% of the cases. The Euclidean distance between clinician

selected landmarks in a mammogram and its registered paired mammogram was

calculated to quantitatively measure the performance of the method. The average

and standard deviation of the distance after the final registration were found to
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be 3 and 2.7 mm.

Timp & Karssemeijer (2006) combined global and regional registration to

analyze the interval changes between temporal mammograms. The global reg-

istration was realized by aligning the images based on the center of the breast

area. After the global registration, regional registration was performed by finding

a corresponding region in the previous mammogram for each suspicious region in

the current mammogram. The coordinates of the suspicious regions were used as

initial locations of the corresponding regions in the previous image, since the two

images were globally registered. Analysis of the interval changes was made by

analyzing the corresponding regions based on a series of features. The method

was tested on 2873 temporal mammogram pairs and two measures, a correlation

measure from Sanjay-Gopal et al. (1999) and a cost measure, were used to assess

the matched regions. A highest number of 72% was reported for the correctly

matched regions.

Mart́ı, Raba, Oliver & Zwiggelaar (2006) proposed a points of interest based

registration method that used similar process as used by Sallam & Bowyer (1999)

and Marias et al. (2005). In this method, points of interest were also extracted

both from breast boundary and internal regions. The points of interest were

matched using a point matching algorithm based on a cost matrix. The points

were then transformed with an affine transformation followed by a thin-plate

spline based transformation. The method was evaluated both qualitatively and

quantitatively. The results were also compared with 2 other methods and was

reported being better.

Most of the methods described above are pixel level registration. Although

Sanjay-Gopal et al. (1999) and Timp & Karssemeijer (2006) find matched regions

between mammogram pairs, they are based on pixel level searching in the previ-

ous mammogram for a region to match the region in the current mammogram.

Because of the three dimensional deformation of the tissue at acquisition and all

the other differences in image acquisition mentioned previously, the same object

in one mammogram may be seen at a different angle, superimposed on a different

background, and have different size or shape than in another image, even if the

second image is nominally the same view (both MLO, for example). Accordingly,

the object cannot be expected to be represented by the same set of pixel intensi-

ties in sequential images. For this reason, the registration in this thesis is based

entirely on matching mass-like objects.

2.2 Graph Matching

Graphs are versatile data structures that are used to represent structural infor-

mation. Graph representation has been widely used in different domains such

as computer vision, scene analysis, chemistry, molecular biology, image analysis,

pattern recognition, and many others. In image analysis, typically a graph can
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be used to represent the content of an image with the vertices of the graph rep-

resenting regions of the image and the edges connecting the vertices representing

the relations between the regions.

To analyze and compare the information, an important task is to find a similar

or common structure between them. When graphs are used to represent the infor-

mation, the task becomes that of finding a similar or common subgraph between

the graphs (For a definition of subgraph, see Section 3.1). In image analysis,

finding a common subgraph of two graphs representing two corresponding images

helps to compare and recognize the objects in the images. The process of finding

a common subgraph within two graphs is called graph matching .

According to the difference in the possibly matched subgraphs, there are two

categories of graph matching, exact graph matching and inexact graph

matching . When a graph isomorphism exists between two graphs, and the

goal is to find this graph isomorphism, the corresponding problem is called ex-

act graph matching . Here a graph isomorphism is a one-to-one mapping

between the vertices of two graphs such that if there is an edge connecting two

vertices in one graph, then the vertices in the other graph corresponding to these

two vertices are also connected by an edge (see Section 3.1). Due to the differ-

ence in the size, edges or other factors, two graphs may not be isomorphic. If,

however, the smaller graph is isomorphic to a subgraph of the larger graph, the

corresponding graph matching is called exact sub-graph matching . Exact

sub-graph matching is also classified as exact graph matching. In many appli-

cations, it is not possible to identify an isomorphism between two graphs to be

matched. This is because of the different number of vertices, different edges or

different attributes. In these applications, the aim of graph matching is not to

find an exact isomorphism, but to find the best matches. This type of graph

matching is called inexact graph matching . More specifically, the goal of in-

exact graph matching is to find two subgraphs of two graphs that are isomorphic

to each other. Here the best match is defined according to particular application.

It can be the common subgraph that contains the maximal number of vertices,

or the common subgraph that maximizes or minimizes an objective function.

Graph matching is known to be a computationally expensive process. In fact,

both exact sub-graph matching and inexact graph matching have been proved

to be NP complete problems (Abdulkader 1998, Garey & Johnson 1979). The

complexity of exact graph matching has not been classified yet and remains to

be an opening theoretical problem. However, for some type of graphs, the com-

plexity of exact graph matching has been proved to be of polynomial complexity

(Hopcroft & Wong 1974). Although some methods were developed to deal with

some particular large graphs, it is generally difficult or even impossible to find

solutions for large graphs. Most of proposed graph matching algorithms aim at

small or medium size graphs (no more than 1000 nodes).

Many algorithms have been developed focusing on different types of graph

matching problems (Ullmann 1976, Krissinel & Henrick 2004, McGregor 1982).
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Some of these algorithms aim at finding the optimal solutions, they are opti-

mal algorithms. These algorithms usually require exponential running time and

space due to the NP completeness of the problem. Other algorithms target the

nearly-best solutions with relatively low computational costs. They are subopti-

mal, or approximative algorithms. Running time for these algorithms is usually

polynomially bounded. However, these algorithms may fail to find the optimal

solutions.

A well known algorithm, addressing the exact graph matching problems, was

proposed by Ullmann (1976) (UA) in 1976. It is widely accepted that the exact

graph matching was much more effectively solved due to this algorithm. Al-

though the algorithm mainly focused on the exact graph matching, the author

also suggested a way to employ it for the maximum common subgraph matching.

Briefly, the algorithm used the backtracking algorithm to enumerate all possible

matches to find the best solution. A binary vertex matching matrix M was used

in the algorithm with each entry mij = 1 meaning that vertex i of the first graph

is matchable to vertex j of the second graph. To prune unnecessary searching

branches during the enumeration, a so-called refinement procedure was used to

refine the matrix M in each step. This procedure was based on the following con-

dition: if a vertex vα of the first graph is mappable to a vertex vβ of the second

graph, then for each vertex vαi in the first graph that is adjacent to vα, there

must exist a vertex vβj of the second graph which is adjacent to vβ, such that vαi

and vβj are mappable. Although proposed in 1976, the algorithm is still widely

used today and is probably the most popular algorithm in graph matching.

Many modifications have been made to the backtracking schema provided in

UA aiming at finding ”better” solutions and saving more computational time by

rejecting more unsuitable search branches of the search tree. Among them, Mc-

Gregor (1982) proposed an efficient modification which was used to match the

structure of molecules. In his method, each vertex i of the first graph G1 was asso-

ciated with a ”priority subset” of vertices of the second graph G2 to which vertex

i can correspond. During the graph matching, vertices in the ”priority subset”

were always considered first to match the corresponding vertex of G1. Whenever

a match was formed during the graph matching, all subsets of unmatched vertices

of G1 were updated. The update was based on the condition that vertex j of G2

was in the subset of vertex i of G1, if in the current partially formed matches,

all the vertices of G1 that are adjacent to vertex i were mapped to the vertices

that are adjacent to vertex j. The method was found effective when matching

chemical molecules present before and after a reaction.

Krissinel & Henrick (2004) also proposed a version of modification to UA.

The proposed method also uses the backtracking schema to recursively enumer-

ate all possible mappings that satisfy the subgraph isomorphism condition. In

each step of the process, a procedure called Extendable was first performed to

see if the currently formed solution can still be extended. The process was con-

tinued if Extendable returned true. A PickVertex procedure was then used to
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pick a vertex from G1 for matching and a GetMappableVertices was used to se-

lect a set of vertices from G2 to map the selected vertex of G1. In many graph

matching algorithms, an earlier formed ”better” solution can help to cut off many

search branches and thus improves the efficiency of graph matching sharply. The

processes PickVertex and GetMappableVertices enable combinations of different

factors to be taken into account when picking vertices to match. In the algorithm,

PickVertex picked the vertex that has minimal number of possible matches in G2

and GetMappableVertices returned all the vertices in G2 that were matchable to

the picked vertex of G1. Krissinel & Henrick also analyzed the complexity of the

algorithm in terms of both time and space. The time complexity of the algorithm

was found to be between o(mn) and o(mn+1n) and the space complexity was

found to be O(mn2). The algorithm was found superior to the traditional maxi-

mal clique approaches which have time complexity between o(mn) and o((mn)n)

and space complexity O((mn)2).

For more information about graph matching algorithms, the readers are re-

ferred to Jolion (2003), Bunke (2000) and Conte, Foggia, Sansone & Vento (2004).

In multiple mammogram analysis, graphs representing multiple mammograms

are not expected to be of the same size. It is also unlikely that a graph represent-

ing a mammogram is isomorphic to a subgraph of a graph representing another

mammogram. Thus graph matching in this field can only be inexact graph match-

ing. Graph matching in mammogram analysis is further compounded by the fact

that, unlike other graph matching applications, the maximum common subgraph

might not be the best solution, since it may contain false matches, which is not

better than a shorter solution with more true matches.

2.3 Pyramid Based Image Segmentation

Graph pyramids were introduced by Tanimoto & Pavlidis (1975) and have been

applied widely in image processing since then. A graph pyramid is a stack of

successively reduced graphs. At each level in the stack, the graph is a reduction

of the graph at the previous level. A vertex of a graph at one level is connected

to a number of vertices at the previous level. The vertex in the higher level

is called the parent of the vertices in the previous level and the vertices to

which the parent is connected in the previous level are called the children of

the vertex. By transitivity of the ”parent-children” relation, a vertex of a graph

at any higher level is connected to a set of vertices in the bottom level graph.

This set of vertices is called the receptive field of the vertex. If the bottom

level graph is an image with each vertex in the graph corresponding to a pixel

of the image, then the receptive fields of the vertices of a graph in a higher

level constitute a segmentation of the image, with a receptive field of a vertex

comprising a segmented component. Thus the collection of graphs forms a multi-

resolution description of the image, but unlike multi-resolution representations
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via wavelets or filter banks, the connectivity between layers provides a vehicle

for tracking information from disparate components of the image. By tracing

along the ”parent-children” relations, as Jolion & Montanvert (1992) described,

”a global interpretation is obtained by a local evidence accumulation”.

The bottom graph is not necessary an image, in fact, it can be anything, for

example, it can be symbolic information or derived image properties.

A pyramidal structure is defined if the following three steps are specified which

together define how a new l + 1 level graph Gl+1 = (Vl+1, El+1) is derived from

the l level graph Gl = (Vl, El):

1. The selection of vertices Vl+1 from Vl.

The selected vertices from Vl are named the surviving vertices while the

unselected vertices are named non-surviving vertices.

2. The connection of non-surviving vertices to the surviving vertices.

This step defines the parent-children relationships between the correspond-

ing two levels of graph pyramid.

3. The definition of the adjacency relationships between vertices of Vl+1.

This step defines El+1 of Gl+1.

A graph pyramid is formed by iteratively executing these three steps. Step 1

defines how the vertices of a new level graph are selected out from the previous

level. The ratio between the numbers of vertices in level l and level l+1 is called

decimation ratio. If the decimation ratio is large, this means few vertices are

contained in l+1 level, and thus the image loses its information fast and also the

height of the graph pyramid is low. On the contrary, a small decimation ratio

results in more levels of the pyramid.

Depending on the structures used in the pyramids, the graph pyramids can

roughly be classified as regular pyramids and irregular pyramids (Fig. 2.1).

In a regular pyramid, the structures of the pyramids are rigid. The survivors of a

new level graph and the adjacency relations among them are predetermined. The

decimation ratio is constant. The size and number of vertices of each level in the

graph are fixed and known beforehand. Processing a regular pyramid is relatively

convenient. However, drawbacks of regular pyramids have been exposed. Due to

the rigid structure, the receptive field of any vertex can only be in a relatively

regular shape (The whole region might not be regular, but it is composed by

smaller regular shaped regions). Thus regular pyramids can not express irregular

shaped objects well. Regular pyramids are also reported to suffer from shift

variance (SV, see Chapter 3). Irregular pyramids, on the other hand, have flexible

structures. Receptive fields of vertices can be irregular shapes and thus can be

closer to the real shapes of objects. Survivors of a new level graph in an irregular

pyramid are not fixed and different factors can be combined into the selection

of the survivors. For irregular pyramids, the decimation ratio is not constant,
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neither is the height of the pyramids. As survivors are not fixed, the adjacency

relations among the survivors need to be defined and computed. The unfixed

height of an irregular pyramid and not well-defined adjacency relations increases

the computational complexity of irregular pyramids.

Except the normal simple graphs used in irregular pyramids, there are also

dual graphs and combinatorial maps (Kropatsch 1998, Brun & Kropatsch 2003).

Simple graphs used in irregular pyramids do not allow detection of boundaries

between the receptive fields. They also do not allow differentiation of an adja-

cency relationship between receptive fields. Dual graphs are proposed to resolve

the drawbacks of simple graphs. With dual graphs, each level of pyramid is rep-

resented by dual pair of graphs. Any operations on the pyramid are computed on

the dual graphs. Dual graphs can keep the boundary information of the image,

however, with dual graphs, computational complexity is increased. Combinatorial

maps can realize similar functionality as dual graph, but improve the efficiency

of computation. Combinatorial maps use planar graphs to represent each level

of the pyramids. The planar graph encodes the orientation of edges around the

vertices.

Many algorithms have been proposed to construct graph pyramids, each hav-

ing different ways of realizing the three steps. The following paragraphs review

work in this field.

(a) (b)

Figure 2.1: Regular and irregular pyramids. (a) depicts a regular

pyramid and (b) shows an irregular pyramid.

To overcome the drawbacks of the regular pyramids, Meer (1989) introduced

the stochastic pyramid. In the construction of a stochastic pyramid, to main-

tain a proper decimation ratio, two constraints were imposed on the selection of

survivors.

• Two neighbors at any given level can not both be survivors.

• For any non-surviving vertices, there exists at least one survivor in its neigh-

borhood.

To construct a new level graph Gl+1, three variables, two binary state variables

pi and qi, and a random variable xi uniformly distributed between [0,1], were
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used for each vertex vi in Gl. At the beginning, variable pl+1
i (1) was initialized

according to the following rule:

pl+1
i (1) = 1 if random variable xi of vi was the maximum among vi’s neighbors,

pl+1
i (1) = 0 otherwise.

All the state variables were updated iteratively as follows. At the beginning of

the kth iteration, variable ql+1
i (k) was initialized as:

ql+1
i (k) = 1 if all neighbors of vi having variable pl+1(k − 1) = 0,

ql+1
i (k) = 0 otherwise.

pl+1
i (k) was then set as follows for all vi having ql+1(k) = 1.

pl+1
i (k) = 1 if random variable xi of vi was the maximum among vi’s neighbors

having ql+1(k) = 1,

pl+1
i (k) = 0 otherwise.

These steps were iterated until no ql+1
i (n) = 1 remained. As the whole process

relied on random variables xi, the stochastic pyramid was not reproducible. The

stochastic decimation process used in this stochastic pyramid makes it possible to

build irregular pyramids. In fact, Montanvert, Meer & Rosenfeld (1991) proposed

a method to generate irregular tessellations which was believed to be the first

irregular pyramid.

Jolion & Montanvert (1992) proposed a framework to construct an adaptive

pyramid (AP). In this framework, a support set was defined for each vertex. The

support set Sij of vertex (i, j) is the set of all the neighbors of vertex (i, j). Sij is

initialized as the 3×3 neighborhood centered on (i, j). The same two constraints,

as used in stochastic pyramid, were also imposed in selection of survivors. A pro-

cess similar to the one used in the stochastic pyramid, was used to select the

survivors of a new level graph. But unlike the stochastic pyramid which used the

outcome of stochastic variable xi, in this adaptive pyramid, Jolion & Montanvert

used an interest operator to decide the value of each vertex which was used for

comparison in survivor selection. The interest operator is not fixed. Any image

characteristic, global or local, can be incorporated into the interest operator. For

example, Jolion & Montanvert used the variance of the intensity values within

the receptive fields as the interest operator. After the selection of survivors, all

non-survivors were linked to one of the survivors in their support sets who were

most similar to the non-survivors. During the construction of the pyramid, a com-

ponent in the original image may have all its pixels identified as non-survivors,

thus in the final (highest) level of the pyramid, there is no representative for this

component. In order to extract components during the construction of the adap-

tive pyramid and to leave a representative for each component, a root extraction

process was introduced. A non-survivors was identified as a root if it was very

different to the closest survivors in its support set and the size of it was large
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enough. If a non-survivor was identified as a root, it was retained as a survivor

and was kept in the final level of the pyramid.

Many algorithms have been developed based on the stochastic decimation

process and the adaptive pyramid. Strategies about survivor selection, linking

of non-survivors to survivors, pyramid height reduction, computational efficiency,

control of region growing, have been proposed. Among them, Lallich, Muhlenbach

& Jolion (2003) proposed a test to control the decimation process both locally

and globally. The test was based on Moran’s spatial autocorrelation coefficient.

Marfil, Molina-Tanco, Bandera, Rodŕıguez & Sandoval (2006) systematically

reviewed pyramid based segmentation algorithms, including both regular and

irregular pyramids. A comparison between two regular pyramid based algorithms

and 6 irregular pyramid based algorithms was also performed in this work. The

SV , a F function and a Q function were used to evaluate the performance of these

selected pyramid algorithms. The comparison verified that the classic regular

pyramids suffer from shift, rotation and scale variance.

Application of graph pyramids has been extensive and graph pyramids have

proved to be useful in analyzing images. However, Bister, Cornelis & Rosen-

feld (1990) found that when images were slightly shifted, rotated or re-scaled,

segmentation results produced by regular pyramids were changed. To verify the

shift, rotation and scale variance of regular pyramids, Bister et al. tested sev-

eral regular pyramid based segmentation algorithms on eight images and their

different shifted, rotated and re-scaled versions and verified the difference of the

segmentation results.



Chapter 3

Mammogram Segmentation using

Adaptive Pyramid Algorithm

In this chapter we describe our implementation of the AP algorithm (Jolion

& Montanvert 1992) to segment mammograms. A segmentation method based

on graph theory was chosen for this study for three reasons. First, graph theory

methods form a flexible class of techniques capable of incorporation both local and

global image information. Second, the graph structure obtained during segmen-

tation is conjectured to provide information useful for registration. Third, while

several mature methods exist for detecting masses or clustered microcalcification

in mammograms, the objective here is not to identify specific manifestations of

cancer but to summarize the information content of the image. This information

content should include masses and calcifications but also structures such as the

nipple, the pectoral muscle, regions of dense tissue, patches of anomalous texture,

etc.

Graph pyramids are powerful tools for representing images. Based on graph

theory, the flexible structures of graph pyramids make it convenient to manipulate

the graph pyramids, and thus to manipulate the content of the images. AP

provides a way to construct irregular pyramids and is relatively convenient to

implement. Objects, such as masses, often appear as fuzzy bright regions and

many times there are no clear boundaries around these bright regions. Thus

dual graphs and combinatorial maps, which are capable of preserving boundary

information, are not considered in this thesis.

A certain degree of deformation normally happens between temporal mam-

mograms. This can be caused by different positioning of breasts during exam-

ination and different pressure put on the breasts. A shift variant segmentation

algorithm, when used to segment similar but slightly deformed images, such as

temporal mammograms, may produce very different segmentation results. When

registering multiple images based on these results, the same object in the multiple

images may be registered as different objects. Thus the SV of a segmentation

algorithm affects the registration. In this chapter, we also investigate the robust-

22
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ness of the primary algorithm in terms of image distortions. Since salient objects

are of interest in mammogram analysis, we especially investigate the SV of the

segmentation algorithm on the salient objects. For comparison, a minimum span-

ning tree (MST) based segmentation, previously developed by our research team

(Ma, Bajger, Slavotinek & Bottema 2007, Bajger, Ma & Bottema 2005), is also

used.

This chapter starts by first introducing some basic notation and terminology

of graph theory in Section 3.1. Details of the implementation of AP and the

tunning for mammogram segmentation are described in Section 3.2. Section 3.3

presents a component merging process to merge over-segmented components. The

robustness of the segmentation algorithm with respect to image shifts, rotations,

and warping is evaluated in Section 3.4.

3.1 Basic Notation and Terminology

A graph is a 2-tuple G = (V,E), where V = {vi, i = 1 . . . n} is a non-null set of

vertices, E = {eij} ⊂ V × V is a set of edges with edge eij connecting vertex vi

and vj. An edge e connecting vertices u and v can also be denoted as e = (u, v).

Two vertices u and v are said to be neighbors or adjacent if they are connected

by an edge. The size of a graph G is defined as the number of vertices of G and

is denoted as |G|.

If edges of a graph G have no direction, G is called undirected graph . In

an undirected graph, edge (u, v) = (v, u). When edges in a graph are directed,

thus edge (u, v) and (v, u) are distinguished, the corresponding graph is called a

directed graph .

A graph is called complete if every two vertices in this graph are connected

with an edge.

When using a graph to represent information, vertices and edges of the graph

are usually associated with information. A graph having attributes attached to

its vertices or edges is called attributed graph or weighted graph .

A subgraph of graph G = (V,E) is a graph H = (W,F ), denoted as H ⊆ G,

if W ⊆ V and F = E ∩ (W ×W ). A graph is a subgraph of itself.

A graph isomorphism is a bijection (a one-to-one and onto mapping) be-

tween the vertices of two graphs G1 = (V1, E1) and G2 = (V2, E2),

f : V1 → V2,

with the property that eu,v ∈ E1 if and only if ef(u),f(v) ∈ E2. A common

subgraph isomorphism (CSI) between graphs G1 and G2 is a pair of graphs

H1 and H2, such that H1 ⊆ G1, H2 ⊆ G2 and H1 and H2 are isomorphic to each

other.
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3.2 Segmentation by AP

The AP algorithm segments an image into many layers which together form a

pyramid structure. In this pyramid structure, any higher layer is a blurred version

of the lower layer. The bottom layer is usually the original image. A vertex in

a higher layer is connected to one or several vertices in the lower layer and is

called the parent of these vertices. The vertices to which the parent is connected

in the previous layer are called the children of the vertex. Following the ”parent-

children” relation, a vertex in the top layer connects to a set of vertices in the

bottom layer and so represents a component in the original image.

The AP algorithm implemented in this thesis is based on the framework pro-

posed by Jolion & Montanvert (1992). In this framework, a support is first

defined for each pixel. The support of vi is the set Si = {vj : (vi, vj) ∈ E}. At the

base layer, the support of a vertex is its immediate 3×3 neighborhood. Supports

evolve with the construction of each layer graph in the pyramid and the supports

of the non-survivors are merged into the supports of their selected parents.

Based on the support, an interest operator, h, is used to determine survivor

selection (step 1 of the 3 steps listed in Section 2.3). In principle, the interest

operator can be chosen to exploit a wide variety of image characteristics. In this

study, h(vi) is the variance of the image intensities computed over the receptive

field of vi (Jolion & Montanvert 1992). At the base level of the pyramid, the

receptive field is not defined and h(vi) is the variance over Si.

Three variables are involved in selecting surviving vertices; two binary state

variables p, q, and the outcome of the interest operator, h. To simplify the

notation, hi, pi, qi will denote h(vi), p(vi), and q(vi) respectively. The selection

process works in two steps. In the first step, the state variable pi is set as

pi =

{
1, if hi = min{hj : vj ∈ Si},
0, otherwise.

(3.1)

In the second step, the state variable qi is set and some of the pi are updated

according to the following rules:

qi =

{
1, if pj = 0 ∀ vj ∈ Si,

0, otherwise.
(3.2)

pi = 1, if hi = min
vj∈Si

{hj : qj = 1}. (3.3)

A vertex vi is retained for the next level if pi = 1. The condition in Eq. (3.1)

insures that two vertices sharing an edge at one level cannot both survive to

the next level. The conditions in Eq. (3.2) and (3.3) insure that for each non-

surviving vertex, there is at least one surviving vertex in its support.
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To make the connection between non-surviving vertex and the surviving vertex

(step 2), a contrast operator is used. A non-surviving vertex vi will be connected

to its surviving neighbor vj, if and only if

|µi − µj| = min
vm∈Si and pm=1

|µi − µm|,

where µi denotes the mean intensities of the receptive fields of vi.

Whenever a non-surviving vertex vi is connected to a surviving vertex vj, Sj

is updated by Sj = Si ∪ Sj. Thus the new adjacency relationships are formed

(step 3).

In the framework proposed by Jolion & Montanvert (1992), a root extraction

process is used to detect roots of the components of the original image during the

construction of the pyramid. A root is a non-surviving vertex that is sufficiently

different from its neighbors. More specifically, a non-surviving vertex vi is called

a root if and only if

|µi − µj| > Fio(Ai) whenever vj ∈ Si and pj = 1,

where Ai is the number of pixels in the receptive field of vi and the function Fio

is defined by

Fio(x) =

{
min contrast if x >min size,

min contrast ∗ eα(min size−x) otherwise.
(3.4)

The purpose of the function Fio is to compensate for the fact that in small sets,

intensity statistics are not necessarily robust. The parameter min contrast con-

trols the minimum contrast for assigning roots, while min size and α determine

details of root assignment for vertices with small supports.

When applying AP to mammograms, it was found that no single value of

min contrast was satisfactory. Low values of min contrast resulted in masses in

bright regions with high variance being segmented into several components. High

values of min contrast resulted in subtle masses in uniform regions of the breast

being incorporated into large background components. Accordingly, the function

Fio was replaced in this study by

Fio(x) = A(x)B(x)Fio(x) (3.5)

where A(x) and B(x) are defined by

A(x) =

{
1 if x < 1000,

( 1
a
)x−1000 otherwise,

and

B(x) =

{
bVar(Si) if x < 300 and Var(Si) > 5,

1 otherwise,
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where Var(Si) is the variance of Si and a and b are empirically chosen parameters

(in this study, a = 1.0024 and b = 1.1040 for mammograms from Mini-MIAS

database (see Sections 3.4.1), and a = 2.1041 and b = 2.0024 for mammograms

from a local screening archives (see Sections 8.2.1)). This new Fio(x) is designed

for the purpose of better segmenting the mass components and at the same time

preventing components belonging to the uniform and relatively low contrast areas

being merged together. The numbers used in A(x) and B(x) are set based on the

characteristics of the masses. Although sizes of mass components vary greatly,

they are usually relatively small, and most of them are smaller than 1000. When

the size of a component is bigger than 1000, A(x) decreases the Fio(x) sharply,

preventing large components belonging to relative low contrast areas from being

merged. ROIs usually have high intensity contrast and are thus more likely to be

segmented into several pieces. These pieces usually have sizes less than 300 and

have intensity variances larger than 5. When a component meets these conditions,

B(x) increases the Fio(x) to facilitate the merging of the components.

If a non-surviving pixel vi is identified as a root, it will be retained to be a

survivor and will appear in the highest level graph. The root extraction process

prevents components of the original image from disappearing during the con-

struction of the graph pyramid and insures that each significant component of

the original image has a representative vertex in the highest level graph.

The highest level graph is reached when no non-survivor can be selected. All

the remaining vertices are roots. Each vertex in this level graph represents a

component of the original image. The component represented by a vertex can be

recovered by tracing the receptive fields down to the base level.

Figure 3.1: Examples of components after initial segmentation by AP.

The image used is mdb003 from the Mini-MIAS database (Suckling

et al. 1994). (a) The original image. In panels (b) - (f), the shaded re-

gion is the segmented component. (b) a non-breast component (back-

ground), (d) a component belonging to the pectoral muscle, (f) the

image label. (c) and (e) are two components within the breast.

Examples of the components segmented by AP are listed in Fig. 3.1. Exam-

ples of mass segmentation can be found in Fig. 3.2 and the following figures.
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Figure 3.2: Examples of mass segmentation: mini-MIAS images. The

images in the left column are the original mammograms with masses

marked out by circles. In the corresponding images in the right column,

components corresponding to the true mass were selected from all

segmented components and were marked out in black. In the first

two images ((b) and (d)), the segmented components well covered the

masses. In (f), the mass was under segmented and so the corresponding

segmented component was bigger than the true mass. In (g), a large

area was enclosed in the circle. Compared with the mass in (g), the

mass segmented by AP in (h) was over segmented.



CHAPTER 3. ADAPTIVE PYRAMID SEGMENTATION 28

3.3 Merging Segmented Components

The modified root extraction process (Eq. 3.5) helps to isolate the high con-

trast components with more accurate boundaries and at the same time prevents

large components belonging to relatively low contrast or uniform areas from be-

ing merged together. In our experiments, boundaries obtained by the algorithm

for true masses were closer to the true boundaries that were annotated by the

radiologists with the use of the modified root extraction process (Fig. 3.2, 3.3).

However, conditions of mass components, such as the size, the variance of inten-

sity, are complex and vary greatly. In our experiments, some mass components

with high intensity contrast or large size were segmented into several pieces (Fig.

3.4). On the other hand, in this thesis, we select the parameters involved in the

segmentation so that ROI with low intensity contrast can be isolated (Fig. 3.3).

Thus, the segmentation results tend to be over-segmented. To compensate for

this problem, we use a merging process to merge the over-segmented components.

Figure 3.3: Examples of mass segmentation: local images. White boxes

in the left column images indicate the radiologist’s annotation, black

outlines in the right column images indicate the boundaries of compo-

nents found by the AP algorithm.

The merging process involves a set of criteria which are based on the size, in-

tensity and shape of the components. Masses are usually bright and high contrast

components and so are more likely to be segmented into several subtle compo-

nents. The merging process aims to merge the subtle components belonging to
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Figure 3.4: Examples of merged components. (a)(b)(c)(d) are four

segmented components. After the merging process, (a)(b)(c)(d) are

merged together and (e) is the resulting component.

a single ROI. For this purpose, at the beginning of the merging process, a set of

filters is used. Components meeting one of the following conditions

• area > 4400

• solidity < 0.56

• major axis
minor axis

< 5.6

are excluded from merging process. These filters are based on the characteristics

of the masses of a training dataset (see Section 8.2.1).

Components R1 and R2 are merged if they meet the following 4 conditions.

• area(R1) + area(R2) < 4400,

• | Var(R1)
area(R1)

− Var(R2)
area(R2)

| ≤ 0.09,

• |E(R1)− E(R2)| ≤ 20,

• circu(R1, R2) ≤ 0.1 ∗ log(2(area(R1) + area(R2))).

Here Var(R) is the intensity variance of component R and E(R) is the mean

intensity of R and circ(R1, R2) is defined as the proportion of pixels in R1 ∪ R2

that lie in the intersection of R1∪R2 and the disk centred at the centroid of R1∪R2

and having the same area as R1∪R2. Again, the conditions were developed based

on a training dataset (see Section 8.2.1). Fig. 3.4 gives an example of merged

components.

Beside the 4 conditions above, components satisfying a ”surrounded” relation

and meeting the area condition are further merged. That is, if component R1

is surrounded by another component R2, and area(R1) + area(R2) < 600, then

R1 and R2 are merged. In the graph naturally generated from AP segmentation,

a vertex corresponding to the component surrounded by another component has
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only one neighbor which is the surrounding component. Thus based on the graph,

the ”surrounded” relation can be easily extracted. Fig. 3.5 gives examples of

surrounded components.

Figure 3.5: Examples of surrounded components. Components in the

first row are surrounded by the corresponding components in the sec-

ond row. The components in the first row are merged to the corre-

sponding components in the second row by the merging process.

3.4 Robustness of AP

SV of regular pyramid based algorithms has been reported and verified (Bister

et al. 1990, Marfil et al. 2006). The comparison experiments carried out by Marfil

et al. (2006) showed that SV also slightly affects six irregular pyramid based

algorithms, though the SV measures are much higher with regular pyramid based

algorithms. This section investigates the robustness of the AP algorithm to image

shifts, rotations, and warping. The performance of the segmentation method to

image distortion is crucial for temporal analysis of screening mammograms where

natural changes in the breast plus inherent deformation of soft tissue during

image acquisition result in severe image registration problems. In this study, the

robustness of the segmentation is measured according to how similarly the same

object is segmented in the two images, not how well boundaries of segmented

objects match true boundaries or boundaries drawn by experts.



CHAPTER 3. ADAPTIVE PYRAMID SEGMENTATION 31

3.4.1 Methods

Twenty MLO view images from the Mammographic Image Analysis Society (Mini-

MIAS) database of mammographic images (Suckling et al. 1994) were selected

for this study. Images were subsampled by 4 × 4 → 1 resulting images of size

256× 256 pixels and spatial resolution of 800 µm per pixel. For this experiment,

the same root extraction method, provided in the framework proposed by Jolion

& Montanvert (1992) (Eq. 3.4), was used. The merging process (Section 3.3) is

not used for this experiment. The parameters min size and min contrast were

set as 100 and 5 respectively. Parameter α was set so that Fio(1) = 64. For each

image, three derived images were computed: a shifted version, a rotated version

and a warped version.

The shifted image was obtained by removing 100 rows from the top of the

image and 100 columns from the side of the image away from the chest wall, and

then adding 100 rows of zeros to the bottom of the image and 100 zero columns

to the chest wall side of the image.

The rotated image was obtained by resampling the original image at a grid

oriented 10 degrees with respect to the rows and columns in the original image

using nearest neighbor interpolation.

The warped image was obtained by automatically selecting 4 equally spaced

control points along the pectoral muscle boundary, 6 equally spaced control points

from the breast boundary, and 5 control points from the chest wall edge of the

image. The 5 points from the chest wall edge were kept fixed in order to retain

a straight edge in the warped image. The control points along the pectoral

muscle were moved 10 pixel units into the breast in the direction normal to the

pectoral muscle boundary. The first two and last two control points along the

breast boundary were moved 20 pixel units away from the breast in the direction

normal to the breast boundary and the middle two control points along the breast

boundary were moved 25 pixels outward (Fig. 3.6). These distances were adjusted

in images with large breast if some of the points would otherwise fall outside the

image. Thin plate splines (Bookstein 1989) based on these 15 pairs of control

points was used to form the warped image.

For a comparison, a minimum spanning tree (MST) based segmentation al-

gorithm was used (Ma et al. 2007). All 80 images (20 original + 20 shifted +

20 rotated + 20 warped) were segmented twice, once using the MST method

and once using the AP. The segmented original version of each image was then

shifted, rotated and warped as before so that for each deformation type (shift,

rotate, warp), each algorithm (MST and AP) and each image, a pair of segmen-

tations was available for which the true alignment of components was known.

For each true component pair, C0 and Cd, a match score was assigned as

m(C0, Cd) = |C0 ∩ Cd|/|C0 ∪ Cd|. A pair of true components was viewed as

matched correctly if m(C0, Cd) > 0.25 (Fig. 3.7).
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Figure 3.6: Control points for image warping. The open circles repre-

sent the initial locations of the control points and stars (∗) represent

the final positions. The control points along the left edge (chest wall

edge) are stationary and so the initial and final positions for these

points coincide.

In addition, a salience score was assigned to each component in each image as

S(C) = |E(C) − E(BC)|/E(C), where E(C) is the mean intensity of set C and

BC is the ”background” set of C obtained by dilating the component C by D5,

the disk of radius 5, and then removing C. Hence BC = (C ⊕D5) \ C.

The SV was computed for each original and distorted image pair as follows.

For each component in the segmentation of the original image, the pixel values

were set equal to the mean of the original image intensity values within that

component. Similarly, for each component in the distorted image, the pixel values

were set equal the mean of the image intensities of that component in the distorted

image. The original image with these adjusted pixel values was then distorted

(shifted, rotated, or warped) in the same way as was used to obtain its distorted

pair. Thus one image was obtained by segmentation followed by distortion and

the other was obtained by distortion followed by segmentation. In each image,

pixel values within segmented components were set to the mean intensity of the

component. The SV for the pair was summarized in two ways; the root mean

square difference (RMSD) and the average difference (Av. dif).

RMSD =

√ ∑
d2

ij

size of the image
,

Av. diff =

∑
|dij|

size of the image
,



CHAPTER 3. ADAPTIVE PYRAMID SEGMENTATION 33

Figure 3.7: Matched and unmatched component pairs. (a) A com-

ponent of image mdb005 (b) A corresponding component in warped

image mdb005 (c) Original image mdb005 was warped again and was

compared with warped image. Component of original mdb005 is in

light boundary and component of warped mdb005 is in dark bound-

ary. The shaded region is the overlapped part of these two components.

This component pair has a match score of 0.32 and thus was identified

as a true pair. (d)(e)(f) are the same as (a)(b)(c) but for a different

component. In this case, the match score was 0.23 and hence this

example was identified as unmatched.

where dij is the difference of the value of the (i, j)th pixel between the segmented

image of the original image and the segmented image of the distorted image.

Thus the SV for an image with respect to a distortion is zero if and only if the

segmentation of the original image and the segmentation of the distorted image

are identical both in terms of the location of the boundaries of all the components

and in terms of the mean intensity of each component.

3.4.2 Results

In general, the number of components in the segmentation of the original is not the

same as the number of components in the segmentation of the distorted image.

The maximum number of correct matches is therefore equal to the minimum

number of components found in two images. Hence the matching rate (Table

3.1) for each image is the number of correct matches divided by the minimum of

the number of components found in the original and the number of components

found in the distorted image.
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mean std

AP MST AP MST p-value

shift 0.668 0.996 0.146 0.005 5.52× 10−9

rotate 0.523 0.659 0.049 0.039 8.54× 10−10

warp 0.486 0.820 0.048 0.043 3.53× 10−17

Table 3.1: Mean and STD of the proportion of possible components

matched for AP and MST. For each type of distortion (shift, rotation,

warp) the table shows the mean and the standard deviation (std) of

the proportion of possible components matched over all 20 images for

both the AP and MST algorithms. The last column shows the p-value

for the hypothesis that the difference of the means is zero (pairwise

test).

To test the relationship between the salience of a component pair and the

matching score, the salience of a true matching pair C0, Cd was taken to be the

mean of their salience scores S(C0, Cd) = (S(C0) + S(Cd))/2. The proportion of

true pairs with m(C0, Cd) < 0.25 was recorded for pairs with S(C0, Cd) ≤ 1 and

for pairs with S(C0, Cd) > 1 (Table 3.2).

shift rotate warp

S ≤ 1 S > 1 S ≤ 1 S > 1 S ≤ 1 S > 1

AP 0.098 0 0.200 0.022 0.240 0.074

MST 0.0003 0 0.096 0 0.024 0

Table 3.2: The proportion of pairs in each group with match scores

less than 0.25.

3.4.3 Discussion and Conclusion

The proportions of correctly matched pairs (m(C0, Cd) > 0.25) are difficult to

interpret on their own (Table 3.1). First, the fact that the proportion of success-

fully matched pairs is greater for warped images than for rotated images for MST

is largely a consequence of the level of each distortion. The rotation by 10 degrees

was chosen because, in practice, the variation of rotation due to positioning of

the breast during acquisition is within this amount. The level of warping was

chosen to loosely imitate distortions seen in practice but represents a qualitative

judgement that may not be realistic. Second, the proportions include all compo-

nents that together tessellate the image. By necessity, components are included

that comprise components within roughly uniform background tissue and provide

little information content regarding temporal image analysis (Fig. 3.8 - 3.10).
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shift rotate warp

AP
RMSD 4.45 ± 1.22 4.69 ± 0.71 6.43 ± 0.71

Av. diff 1.95 ± 0.73 1.61 ± 0.27 3.44 ± 0.44

MST
RMSD 1.47 ± 0.87 5.58 ± 0.82 6.39 ± 1.33

Av. diff 0.13 ± 0.10 1.72 ± 0.31 2.48 ± 0.62

Table 3.3: Mean and STD of RMSD and Av. diff: measurements of

SV. Mean and STD of RMSD and Av. diff for original and distorted

image pairs for 20 images and three distortions (shift, rotate, warp).

Useful segmentation in the context of temporal analysis of mammograms only

requires robustness with respect to shifts, rotation, and warping for salient fea-

tures. Accordingly, greater interest lies in the proportion of true pairs with

high salience scores but low match values (Table 3.2). From this perspective

both algorithms are quite successful. For true pairs with mean salience measure

S(C0, Cd) > 1, there were no pairs with m(C0, Cd) > 0.25 for MST and very few

for AP.

The proportion of total matches was higher for the MST algorithm than the

AP algorithm (Table 3.1). The MST algorithm also performed better in terms

of proportion of high salience features with low match scores (Table 3.2). The

average RMSD measure of SV was significantly greater for AP than MST for

shifts but was similar for AP and MST for rotations and warping. The Av. diff

measure of SV was significantly greater for AP than MST for shifts and warping

but was marginally less for MST than AP for rotation (Table 3.3).

No shift-variant has been reported with MST based segmentation algorithms.

By comparing a SV immunized segmentation algorithm of MST, this experiment

shows that irregular pyramids based AP is also slightly affected by SV, which has

been shown in Marfil et al.’s (2006) work. However, the experiment also shows

that SV affects of AP on salient features are little (Fig. 3.8 - 3.10). Performance

of AP on salient components is quite successful. Although MST performs better

than AP in terms of image distortion, in a previous study on segmenting the

pectoral muscle in screening mammograms, the AP algorithm outperformed the

MST algorithm (Ma et al. 2007). In this case, the criterion for good segmentation

was based on expert drawn boundaries and so concentrated more on the detailed

shape of the segmented component instead of the robustness to distortion.

Graph theory methods for segmentation have the advantage of providing both

a segmentation of the image and a graph that encodes relationships between

components. Accordingly, the output comprises more information than just the

segmentation and hence the graph can be used, in principle, to improve subse-

quent tasks such as image registration, detection of anomalies, classification of

tissue types, and detection of changes in the breast over time. In each of these
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Figure 3.8: Examples of robust and non-robust segmentation. (a) Im-

age mdb005. The thick line indicates a salient component, C1, of the

mammogram and the thin line indicates a poorly defined component,

C2, found by the AP algorithm. The salience values are S(C1) = 0.131

and S(C2) = 0.0268. (b) The shifted image with the same compo-

nents. The match scores are m(C1,O, C1,d) = 0.414 for the salient com-

ponent and m(C2,O, C2,d) = 0.410 for the poorly defined component. (c)

The rotated image. Here the match scores are m(C1,O, C1,d) = 0.517

and m(C2,O, C2,d) = 0.373. (d) The warped image with match scores

m(C1,O, C1,d) = 0.588 and m(C2,O, C2,d) = 0.299. Although both compo-

nents are identified correctly under all three distortions, C1 maintains

high match scores while the match scores for C2 deteriorate under ro-

tation and warping.

cases, robustness of segmentation is only required for salient features and not

all components. This observation allows the use of pyramid based methods such

as the AP algorithm, though regular pyramid based algorithms have previously

been shown not to be robust in general. Although runtime is generally not an

issue in mammogram application, the average runtime of AP on a Pentium 4,
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Figure 3.9: Examples of segmentation of salient components. These

five components of mdb019 segmented by AP are from relatively salient

area, they are consistently segmented out by AP in original mammo-

gram and its shifted, rotated and warped version. (a)(b)(c)(d) are the

original, the shifted, rotated and warped mdb019.

2.80 GHz computer with 1GB memory for segmenting subsampled 256× 256 size

Mini-MIAS database mammogram was approximately 3 seconds.

To achieve reliable correspondence between the components of temporal mam-

mograms and effective analysis for the detection of malignant masses, a mammo-

gram segmentation method needs to be both robust and effective. Effectiveness

of the segmentation means that the boundaries of the isolated objects are close to

their true boundaries. An accurately segmented boundary of an object allows bet-

ter extraction of object features and thus facilitates recognition of manifestations

of malignancy in masses. For an accurate evaluation of the effectiveness of the

mammogram segmentation, true boundaries of the masses need to be identified

and compared to the segmented boundaries. However, identification of the true

boundaries of the masses is difficult, even for an experienced radiologist. In fact,

a member of our research team, who is an experienced radiologist, was asked to

mark the boundaries of the masses. However, he can only give a box that covers

the whole mass, as he believes that in many cases, masses do not have percepti-

ble boundaries. In this thesis, the number of the successfully isolated masses in

the experimental dataset was used as a rough evaluation of the effectiveness of

the segmentation. A mass was identified as unsuccessfully segmented if the cor-

responding segmented component was too big (under-segmented, containing too

much non-mass area) or too small (over-segmented, the component was only a
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Figure 3.10: Examples of segmentation of non-salient components.

Three non-salient components of mdb019 segmented out by AP are

shown in (a)(b)(c)(d), the original, shifted, rotated and warped

mdb019. Segmentation on these three components differ significantly.

small part of the true mass). The AP algorithm successfully segmented all of the

masses in the selected Mini-MIAS mammograms (see Section 3.4.1, 8.1.1) and in

the training dataset (see Section 8.2.1), and only missed two in the testing dataset

(see Section 8.2.1). In terms of the number of successfully segmented masses in

the data sets used, the AP algorithm outperformed the MST algorithm. In this

thesis, the AP algorithm was used to segment the mammograms.



Chapter 4

Automatic Pectoral Muscle

Extraction on MLO View

Mammograms

In the previous chapter, the robustness of the AP segmentation was evaluated

in terms of image shifts, rotations, and warping. The effectiveness of the AP

segmentation was roughly estimated based on the number of successfully isolated

masses. However, as stated before, there is no easy way to measure the effec-

tiveness of the segmentation for masses because of the difficulty of defining the

true boundary. In order to quantify the accuracy of the segmentation method

and to compare it with other segmentation routines one has to choose a segmen-

tation task with the following properties. (i) The task should be the detection of

some class of objects in mammograms (as opposed to the other class of images)

so that the image properties are similar to the task of segmenting masses. (ii)

Expert drawn boundaries should be available or possible to obtain and should

be somewhat reliable (iii) Data sets should be used that have been used in other

studies so that direct comparisons can be made. The task of pectoral muscles

segmentation satisfies all these criteria.

The pectoral muscle is one of the few anatomical features that appears clearly

and reliably in most MLO view mammograms (see e.g. Fig. 4.4, 4.7 and 4.8). The

pectoral muscle is an important landmark both for providing contextual infor-

mation regarding anatomies and for image registration. Accurate segmentation

of the pectoral muscle is among the many tasks that is needed to improve CAD

for mammography. Exclusion of the pectoral muscle saves processing time and

boosts performance of many applications.

To a first approximation, the pectoral muscle appears as a bright triangular

patch in the upper left or upper right corner (depending on right or left breast)

of the image. This motivated initial algorithms based on the Hough transform

(Karssemeijer 1998, Ferrari, Rangayyan, Desautels, Borges & Frère 2004a). The

pectoral muscle is usually not exactly triangular and more accurate segmentation

39
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was achieved by using Gabor wavelets to segment the pectoral muscle without

assuming straight boundaries (Ferrari et al. 2004a). Aside from incorporating

the general shape and location assumptions of the pectoral muscle, these methods

rely only on local image information.

This chapter describes a method to extract the pectoral muscle boundary au-

tomatically. In this method, the AP segmentation algorithm is used to segment

the mammogram into many components. The same settings of the AP algorithm,

as introduced and used in the previous chapter (see Section 3.2), is used in this

method. After the segmentation, components belonging to the pectoral muscle

were identified based in three steps. Section 4.1 presents these three steps. An

initial pectoral muscle boundary is extracted from these components. An adap-

tive deformable contour model is then used to refine the initial boundary. The

adaptive deformable contour model is described in Section 4.2. An experiment

is designed to measure the performance of the method. Section 4.3 introduces

the database used for the experiment. Results from the experiment are presented

in Section 4.4. For comparison, the results of this method are compared to the

results obtained by the Hough transform method, the Gabor wavelets method

and an MST based method. Finally, discussion and conclusion are presented in

Section 4.5.

4.1 Identification of Pectoral Muscle Components

Typically, the AP algorithm segments the mammogram into one to three big

components belonging to the non-breast area and dozens of small and medium

components belonging to the breast area (Fig. 3.1). The pectoral muscle is

generally separated into a number of components. Accordingly, it is necessary to

develop rules for assigning the components as forming part of the pectoral muscle

or not. This is accomplished by using prior geometric information in three steps.

Step 1: Since the pectoral muscle always occupies the upper left corner of the

image, the pixel at position (1, 1) will be part of pectoral muscle. (In digitized

mammograms, the edges of the mammogram may not be flush with sides of

the digitized image. Also, in some data sets, like e.g. the Mini-MIAS database

(see Section 4.3), the digitized mammograms are embedded into larger images in

order to maintain fixed image sizes. Accordingly, it is necessary to distinguish

between the first and the last column of the overall image and the first and the

last column of the mammogram. The reference to the position (1, 1) above is with

respect to the mammogram and not the image.) The root of this pixel is taken

to represent the seed component for the pectoral muscle. In cases where this first

candidate component, C1, is too small (less than 100 pixels in our experiments),

the root of the pixel at location (I + 1, J + 1) is used as the seed component,

where J = max{j : (i, j) ∈ C1} and I = max{i : (i, j) ∈ C1}.
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Step 2: Other components are considered as candidates for forming part of the

pectoral muscle if they meet the following intensity, size and location restrictions.

Numbers used in these restrictions were selected based on the mammograms from

the Mini-MIAS database (Suckling et al. 1994).

1. Intensity restriction. The mean intensity of the component is within 80

units of the seed component.

2. Size restriction. The size is in the range [15,4500].

3. Location restriction. Here two location restrictions are used. First, the root

of the component is inside the ”triangle of interest” (The triangle of interest

is the upper left triangle formed by cutting the smallest box containing the

breast component by the diagonal joining the upper right corner to the

lower left corner). Second, the distance between the root of the component

and the root of the seed component is less than the distance between the

root and the diagonal boundary of the triangle of interest.

The above restrictions used the mean intensity, size and location of the root

of each component, which were naturally produced by the segmentation and

associated with each root, and thus requires little computation.

Step 3: The previous step disqualifies most of the candidate components.

In this step, the candidate components are further investigated and a candidate

components is disqualified if the location, shape, orientation, or right boundary is

unrealistic. The measurements in this step involves all vertices of each component.

The location is considered unrealistic if the geometric center of the component

is located more than 30 pixels from the edge of the seed component. The shape

is considered unrealistic if the area of the component divided by the area of its

smallest bounding box is less than 5. To judge the orientation and right boundary,

best straight line fits (in the least square sense) are found for both the left and

right boundaries of the candidate component. For each row, the error between

the best straight line fit to the right boundary and the right boundary is recorded.

The average right boundary error (ARBE) is found by summing these errors and

dividing by the number of rows containing pixels from the candidate component.

If the slope of either the left or right best fitting line has sign opposite to the

sign of the slope of the hypotenuse of the triangle of interest, the orientation is

considered unrealistic. The right boundary is considered unrealistic if ARBE is

greater than four. Again, the numbers used in this step are developed for images

from the Mini-MIAS database.

4.2 Adaptive Deformable Contour Model

The AP provides estimates of the pectoral muscle that corresponds well to the

true pectoral muscle in terms of location and general shape. However, boundaries
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are ragged and generally appear somewhat to the left of the visually apparent

boundary (Figs. 4.4, 4.7, 4.8, 4.9 and 4.10). To improve the detail of the segmen-

tation, the boundaries found by AP are used to initialize a local segmentation

method based on active contours. Active contours were introduced by Kass,

Witkin & Terzopoulos (1987) and have evolved in a number of directions. The

version used here is based on work by Lobregt & Viergever (1995), Williams &

Shah (1992), and Ferrari, Rangayyan, Desautels, Borges & Frère (2004b).

The algorithm for implementing active contours will be described as it applies

to the left breast. Let V = {v1, v2, ..., vN} denotes the set of pixels forming

the current pectoral muscle boundary. Let (xi, yi) denote the coordinates of

vi, i = 1, 2, ..., N . The active contour model works by moving the boundary

through the spatial domain of the image to minimize a measure of energy based

on the following formulas.

Ei = αEin,i + βEex,i,

where α, β are two weights controlling the internal and external energies Ein,i and

Eex,i. The internal and external energies are given by

Ein,i = a1V
′(vi) + a2V

′′(vi)

Eex,i = − |Ix(vi)| /max
I

(Ix),

where V ′(vi) and V ′′(vi) are the first and second derivatives of the contour V at

vi, I is the image, and

Ix =
∂I

∂x
.

The weights a1 and a2 are used to control the relative contributions of V ′(vi) and

V ′′(vi) and are fixed for this study at a1 = 1 and a2 = 2.

The internal energy serves to reduce the curvature of the contour. This is

important since the pectoral muscle has a general smooth straight shape. The

external energy drives the contour toward strong edges in the image. This is also

important since the pectoral muscle generally appears much brighter in the image

than surrounding tissue.

The active contour is an open curve that only moves horizontally in the image.

This simplification takes advantage of prior information regarding the general

appearance and location of the pectoral muscle in the image. The advantages are

a reduction of complexity and the convenience of using row numbers as a fixed

index for points at which the active contour is evaluated.

At every point vi, the energies are computed on an asymmetric neighborhood

(Fig. 4.1)

Ωi = [(xi − 5, yi), . . . , (xi + 3, yi)] (left breast). (4.2)
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Figure 4.1: Example of asymmetric neighborhood used in adaptive

deformable contour model. This example shows the domain Ω of vi. In

this case, the chest wall is left hand side positioned. The vi is modified

to ej if the minEi is reached in ej.

Asymmetric neighborhoods are used since the initial pectoral muscle boundary

usually appears closer to the chest wall than the true boundary.

Unlike in other implementations of deformable contour models, the weights

for internal and external energy, α and β, are adjusted automatically as follows.

α = |xi − xi−1|+ |xi+1 − xi| − 2 ∗ d, where d = (x1 − xN)/N

β = exp((max
Ωi

|Ix| −min
Ωi

|Ix|)/mean
Ωi

|Ix|)

The parameter α measures the local deviation of the slope from the global

average slope. When this value is small, the external forces are allowed to domi-

nate in order to push the active contour toward boundary. When α is large, the

internal forces dominate to straighten the active contour. Similarly, β forces the

active contour to converge to the boundary quickly when the active contour is far

away, but favors local straightening of the active contour over the rate at which it

approaches the boundary when it is close. As a result the active contour attains

an anatomically realistic local shape as it moves toward the boundary.

The elements of Ωi will be denoted by ej, j = 1, 2, .., 9, and the internal and

external energies at these points will be denoted by Ej
in,i and Ej

ex,i respectively.

Thus

Ej
in,i = a1V

′
(ej) + a2V

′′
(ej)

Ej
ex,i = − |Ix(ej)| /max

I
(Ix),

where V
′
(ej) and V

′′
(ej) are the derivatives along the curve obtained by replacing

vi by ej.

To allow comparison between the different energy terms, it is necessary to

rescale them to the range [0, 1].

Êj
in,i =

Ej
in,i − Emin

in,i

Emax
in,i − Emin

in,i

,

Êj
ex,i =

Ej
ex,i − Emin

ex,i

Emax
ex,i − Emin

ex,i

,
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where the superscripts min and max denote the minimum and maximum of the

respective quantities over the domain Ωi. Thus the contour is driven to minimise

Êi = αÊin,i + βÊex,i.

The energy of the contour is minimised iteratively. Each iteration consists of

minimising Êi for i = 1, . . . , N consecutively. At a given step, the point vi will

be replaced by the point ej, if

Êj
i = min Êk

i , k = 1, 2, ..., 9.

In this study the number of iterations is fixed at 30 though experiments show

that a stable contour is generally reached in fewer than 8 iterations.

4.3 Database

To evaluate and compare the performance of the proposed method with state-

of-the-art methods reported in the literature, 84 images were obtained from the

Mini-MIAS database of mammographic images (Suckling et al. 1994). The same

images were selected as those used in the study on identifying the pectoral muscle

conducted by Ferrari et al. (2004a). The spatial resolution of these images is

200 µm and depth resolution is 8 bit. The images in the database are 1024×1024

pixels in size. For this study, the images were further subsampled to 256 × 256

pixels. In the work by Ferrari et al. (2004a), boundaries found by the algorithm

were compared to boundaries drawn by a radiologist. The coordinates of the

lines drawn by the radiologist in that study were kindly provided by Ferrari and

Rangayyan so that our results could be compared to the same standard.

4.4 Results

Area between the algorithm identified pectoral muscle boundary and the bound-

ary drawn by the radiologists is used as segmentation error to measure the per-

formance of the method. To compensate for the variation of the size of the

pectoral muscle in different mammograms, the error area is normalized in two

different ways; both by the area of the radiologist identified pectoral muscle and

by the number of rows in the radiologist identified pectoral muscle. According to

these two different normalization methods, the measurements are called the area

normalized error and the row normalized error, respectively.

Results are compared with Hough transform method, Gabor wavelet method

and the MST based method. Pectoral muscle extraction using Hough transform

method and Gabor wavelet method were reported by Ferrari et al. (2004a). The

MST based method uses a similar framework as used by the method described
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in this chapter but based on the MST segmentation results. An initial pectoral

muscle boundary is also extracted from the MST segmentation results and the

same active contour model, as described in Section 4.2, is used to refine the initial

boundary. In the following paragraph, the MST based method will be referred

to as MST and the method presented in this chapter will be referred to as AP.

Since the manually identified boundaries are obtained from the original full-

size images (1024×1024 pixels), while the results of this study are extracted from

the down-sampled images of size 256× 256, the detection results are transferred

back to the original size by interpolation.

4.4.1 Area Normalized Error

The area normalized error is the same as the one used in the work (Ferrari

et al. 2004a) to measure the performance of Hough transform method and Gabor

wavelet method. By using the area normalized error, results obtained in this the-

sis can be compared to the results achieved by using Hough transform method

and Gabor wavelet method (Ferrari et al. 2004a).

Figure 4.2: False positive and false negative. The solid straight line

represents the radiologist drawn pectoral muscle boundary and the

dashed line is the algorithm detected boundary. The green region is

outside the radiologist identified pectoral muscle area but inside the

algorithm detected pectoral muscle area and is FP area. The blue area

is FN area.

In the area normalized error, the error area is separated into false positive

(FP) area and false negative (FN) area (Fig. 4.2). The FP area is the area
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inside the algorithm detected pectoral muscle but outside the radiologist iden-

tified pectoral muscle. On the other side, the FN area is the area included by

the radiologist drawn pectoral muscle boundary but excluded by the algorithm

detected boundary. The use of FP and FN in this context is slightly contrary to

the standard use of these terms (In ROC analysis, for example) but is used here

to reflect several papers in the literature that address this specific problem. With

the definition of FP and FN area, for a left breast, the FP rate (FPI) and FN

rate (FNI) for an image I were calculated as

FPI =
1

A(I)

p∑
i=1

max{0, Balg(i)−Brad(i)},

FNI =
1

A(I)

p∑
i=1

max{0, Brad(i)−Balg(i)},

whereBrad(i) andBalg(i) are horizontal coordinates of the ith points in the bound-

aries identified by the radiologist and determined by the algorithm, respectively.

A(I) is the area of the pectoral muscle identified by the radiologist and p is the

maximum of the number of rows in radiologist identified pectoral muscle and the

number of rows in algorithm detected pectoral muscle. Balg(i) and Brad(i) are set

to 0 if i exceeds the total number of points in algorithm detected boundary and

radiologist identified boundary. The average rate of FP and FN for the collection

of images Ii, i = 1, ..., N in the data set are computed by

FPave =
1

N

N∑
i=1

FPi,

FNave =
1

N

N∑
i=1

FNi.

The MST algorithm did not identify any components belonging to the pectoral

muscle for images mdb098 and mdb109 (Fig. 4.3). Accordingly, the FPave and

FNave rates for the MST method are based on 82 images.

Table 4.1 presents FP/FN rates for Hough transform method, Gabor wavelet

method, MST and AP. From the table, MST shows comparable results to the

Hough transform method in terms of FPave, but AP did not performs as well

as either the Hough transform or Gabor wavelets. In terms of FNave, AP out-

performed the Hough transform and is comparable to the Gabor wavelets.

The FPave and FNave are greatly influenced by few difficult cases. For ex-

ample, the radiologist drawn pectoral muscle boundary of image mdb055 seems

incomplete (Fig. 4.4). Although AP and MST both found visually acceptable

boundaries for this image, FPI is very huge for both MST and AP on this case.

In the case of AP, when mdb005 is excluded from the analysis, the value of FPave

drops from 0.0371 (Table 4.1) to 0.0270.
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Figure 4.3: Two images with pectoral muscle absence. Unlike most

MLO view mammograms the pectoral muscle is essentially absent in

these two images (mdb109 on the left and mdb098 on the right).

Hough Gabor MST AP

FPave 0.0198 0.0058 0.0255 0.0371

FNave 0.2519 0.0577 0.1168 0.0595

FPI < 0.05, FNI < 0.05 10 45 40 50

min(FPI , FNI) < 0.05 0 0 20 18

0.05 < max(FPI , FNI) < 0.10

min(FPI , FNI) < 0.05 0 0 18 11

max(FPI , FNI) > 0.10

0.05 < FPI < 0.10 8 22 0 0

0.05 < FNI < 0.10

0.05 < min(FPI , FNI) < 0.10 0 0 1 0

max(FPI , FNI) > 0.10

FPI > 0.10, FNI > 0.10 66 17 3 5

Table 4.1: FP and FN proportion and distribution according to the

area method: pectoral muscle boundary extraction results of 4 meth-

ods. The first two rows report the proportion of FP and the proportion

of FN pixels averaged over all the images. The next six rows indicate

the distributions of FP and FN proportions. For example, the third

row lists the number of images for which the proportion of FP pix-

els and the proportion of FN pixels were both less than 0.05. Values

for the Hough transform and Gabor wavelet method were reported

previously by Ferrari et al. (2004a).
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Figure 4.4: False source of error. (a) Image mdb055, (b) the radiologist

drawn boundary (white), (c) the boundary found by MST before ap-

plying active contours (black), (d) the boundary after active contours

(black), (e) and (f) the same as (c) and (d) but for the AP method.

The radiologist’s boundary terminates prematurely but both MST and

AP find reasonable boundaries. Although the raw boundaries found

by MST and AP are nominally correct, the raggedness of the lines is

not anatomically reasonable.
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From this view point, the number of images for which both FPI and FNI

are small (row 3 of Table 4.1) provides a more robust measure of segmentation

performance. In this case the AP shows slightly better performance than Gabor

wavelets and MST and all three of these are vastly superior to the Hough trans-

form. Both the MST and AP perform well according to the number of images for

which at least one of FPI or FNI is less than 0.05 and both are less than 0.01

(rows 3 and 4 of Table 4.1). The number of images for which both FPI and FNI

are large (Table 4.1, last row) is much smaller for AP and MST than for Gabor

wavelets and Hough transforms.

Figure 4.5: Area normalized error affected by different breast position-

ings. The sketch shows two different images (two squares) of a same

breast which is caused by different positionings of the breast. The

dotted line is a hypothetical boundary found by the algorithm and

the parallel solid line is the hypothetical true pectoral muscle bound-

ary. The two shaded regions are the hypothetical pectoral muscles. In

these two images, the area between the algorithm detected boundary

and the true boundary is exactly the same. However, as the areas of

the pectoral muscle in these two images are very different, both FPI

and FNI rates computed by the area normalized error will be very

different. The RNE value (Eq. 4.3) is the same for the two images.

4.4.2 Row Normalized Error

The area normalized error heavily depends on the amount of the pectoral muscle

appearing in the mammogram, which is greatly affected by the positioning of the

breast during the examination and so is not well controlled (Fig. 4.5). The row

normalized error, on the other hand, normalizes the error area by the number of

rows included in the radiologist identified pectoral muscle and thus is independent

of the positioning of the breast at image acquisition. The row normalized error
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(RNE) for image I is defined as

RNE(I) =
1

p

p∑
i=1

|Brad(i)−Balg(i)| (4.3)

The total error RNE is a single quantity. Dividing the total error area into

FP and FN area provides insight into the nature of the errors encountered and

is clearly useful during the development of the algorithm. However, there is no

clear medical reason for greater for FP or FN and so RNE is a suitable measure

of error.

For MST, RNE(I) is only computed on 82 images as it did not detect any

boundary for images mdb098 and mdb109 (Fig. 4.3).

For both the AP and MST algorithms, more than 80% of the images had

RNE scores less than 10 pixels (2.0 mm) per row (Fig. 4.6). In the case of the

AP algorithm, only two images had mean error greater than 25 pixels (5.0 mm).

Figure 4.6: Histogram of RNE of AP and MST segmentation. His-

tograms showing the proportion of images with error values (as mea-

sured by RNE) in various ranges. The first bar represents images with

average errors in the range (0, 5] pixels, the second bar represents

the range (5, 10], and so on. Five pixels correspond to 1mm actual

size. Hence, approximately 60% of the images have errors of less than

1.0mm per row and 97% have errors less than 5.0mm per row.
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4.5 Discussion and Conclusion

The proposed AP method does not clearly perform better than the method based

on Gabor wavelets studied by Ferrari et al. (2004a) in segmenting the pectoral

muscle in mammograms. However, in the case of the number of images with small

error, the proposed method surpasses other methods (Table 4.1). In a previous

study conducted by our research team (Ma, Bajger, Slavotinek & Bottema 2006),

4 radiologists drawn pectoral muscle boundaries of the same set of mammograms

as used in this study were compared with the boundaries obtained by both AP

and MST methods, the study found that the performance of the AP method is

not statistically different from radiologists.

Factors that cause difficulties in segmenting pectoral muscle include dense

tissue appearing near the pectoral muscle, very small pectoral muscle (occupies

an extremely small portion of the image) and strong lines parallel to the true

boundary existing in the pectoral muscle region. In this study, the presence of

dense components near pectoral muscle boundary does not cause serious errors

to the method proposed in this chapter. This is due to the implementation of the

AP. The steps described in Section 4.1 avoid dense components outside pectoral

muscle to be picked up. A small pectoral muscle also does not cause trouble

to the proposed method. The main source of significant error is the presence

of strong lines within the pectoral muscle region parallel to the true boundary.

Such lines appeared in approximately 10% of the images. Although the proposed

method identified the correct boundary in some of these examples (Fig. 4.7, 4.8

and 4.9), it failed in others (Fig. 4.10). AP identified the wrong line in two such

images and these were the only two images for which it produced a boundary

with RNE greater than 25 pixels (5 mm). In real mammogram diagnosis, both

of these two images are not of diagnostic standard. The strong lines within the

pectoral muscle region are due to skin folds. If these appear, the mammogram is

usually rejected and a new image is acquired.
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Figure 4.7: Pectoral muscle boundary extraction for mdb033. (a) Orig-

inal image (b) Hand-drawn pectoral muscle edge (c) and (d) Pectoral

muscle edge detected by AP method and adaptive deformable contour

model, respectively.

Figure 4.8: Pectoral muscle boundary extraction for mdb110. (a) Orig-

inal image (b) Hand-drawn pectoral muscle edge (c) and (d) Pectoral

muscle edge detected by AP method and adaptive deformable contour

model, respectively.
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Figure 4.9: Example of pectoral muscle boundary extraction with bad

initial boundary. (a) image mdb123, (b) the radiologist drawn bound-

ary (white), (c) the boundary found by MST before applying active

contours (black), (d) the boundary after active contours (black), (e)

and (f) the same as (c) and (d) but for the AP method. The strong

cleft parallel to the true boundary did not prevent the MST and AP

algorithms from finding the correct components associated with the

pectoral muscle. In this case, both algorithms could not find compo-

nents that extended to the full length of the pectoral muscle, but the

active contour step provided reasonable extension, smoothing, and fine

tuning of location.
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Figure 4.10: Example of poor pectoral muscle boundary extraction.

(a) image mdb039, (b) the radiologist drawn boundary (white), (c)

the boundary found by MST before applying active contours (black),

(d) the boundary after active contours (black), (e) and (f) the same as

(c) and (d) but for the AP method. In this example, the strong edge

parallel to the true boundary fooled both the MST and AP algorithms.

Similar failure occurred in image mdb068, but these were the only two

images for which the boundary found by the AP algorithm was not

essentially correct.



Chapter 5

Automatic Breast Boundary

Segmentation

Accurate detection of the breast boundary is an important task in CAD systems.

An accurate extracted breast boundary allows removal of the background of the

image and thus avoids unnecessary processing time. Artifacts, such as patient and

imaging information labels, are normally present in mammograms and may affect

the performance of the CAD systems. By removing the background subsequent

to breast boundary detection, these artifacts may be removed.

The breast boundary is also used in many mammogram registration methods

(Section 2.1). In these methods, global registration of the multiple mammograms

is realized by aligning the corresponding breast boundaries. For these methods,

accurate extraction of breast boundaries is essential. In many other tasks of the

mammography, the breast boundary is used as additional information. In this

thesis, the breast boundary is used to remove the segmented components that

belong to the background (Section 6.4). During graph matching (Section 7.2),

global reference is provided by using the fuzzy spatial relations between the breast

boundary and the mass-like objects.

As one of the few reliable anatomic landmarks on the breast, the localization

of the nipple is of great importance. It serves as an alignment pivot in many

mammogram analysis algorithms (Chandrasekhar & Attikiouzel 1997, Marias

et al. 2005, Sanjay-Gopal et al. 1999). A breast boundary with the nipple well

preserved is a prerequisite of nipple localization algorithms applied to the detected

boundary.

Although detection of the breast boundary may seem quite straightforward, it

has been shown not to be an easy task. Difficulties of breast boundary extraction

include the presence of artifacts, which may present near or overlap the breast

boundary, and noise. Many methods have been proposed to detect the breast

boundary. Thresholding and histogram analysis have been used in many of these

algorithms (Bick, Giger, Schmidt, Nishikawa, Wolverton & Doi 1995, Abdel-

Mottaleb, Carman, Hill & Vafai 1996, Ojala, Näppi & Nevalainen 2001). Recent

55
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advances in breast boundary identification include active contour models based

methods (Ferrari et al. 2004b) and dependency approach (Sun, Suri, Desautels

& Rangayyan 2006).

This chapter describes two methods for automatic extraction of breast bound-

ary. An initial method, based on the AP segmentation results, is presented in

Section 5.1. A more robust method, based on real rational orthogonal wavelets

(ROW) and Markov Random Field (MRF) smoothing is described in Section 5.2.

Robustness of this method comes from the ROW filtering. Another advantage

of this method is its ability of preserving the nipple. Performance of these two

methods is analyzed in Section 5.3. Discussion and conclusion are made in Sec-

tion 5.4.

5.1 Breast Boundary Extraction Based on AP

Segmentation

The AP algorithm segments the image into components. The background of

the mammogram is usually represented by one or several components. A breast

boundary detection method was developed based on the AP segmentation results.

The first postprocessing step is to identify the components belonging to the back-

ground. Based on the experiments on the mammograms both from Mini-MIAS

database and from a local archive, it was observed that the components belong-

ing to the background usually have large size and low average intensity. Simple

thresholding on the size and average intensity of the components is sufficient to

identify the components belonging to the background.

After the identification of the background components, the whole breast region

is isolated by simply removing the identified background components from the

mammogram. An initial breast boundary is then extracted from the isolated

breast region.

The initial boundary is generally close to the true boundary but somewhat

inside the true boundary. Due to the noise that may be present near the boundary,

the initial boundary may have discontinuities. A simple procedure is used to fix

the discontinuities and to draw the initial boundary to the true boundary.

The procedure detects discontinuities in the initial breast boundary based on

the first derivative of the y coordinates of the boundary with respect to the x

coordinates. The first derivative of the boundary at (xi, yi) is calculated as

y′i =
yi+1 − yi

xi+1 − xi

.

Here the coordinate system is defined with the upper left corner (1, 1) as origin

and the top to bottom direction as x-coordinate and left to right direction as y-

coordinate (Fig. 5.1). Any point in the initial boundary with the first derivative
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bigger than 4 is identified as a discontinuity. Discontinuities are corrected by

replacing the points with the mean of its corresponding nearest points. Thus a

discontinuity at (xi, yi) is replaced by the point nearest to (xi−1+xi+1

2
, yi−1+yi+1

2
).

The scanning for the discontinuity ends when no discontinuity can be detected.

Figure 5.1: Coordinate system defined for the mammogram. The up-

per left corner (1, 1) is the origin and the x-coordinate from top to

bottom and y-coordinate from left to right.

After discontinuity correction, a simple procedure is used to push the ini-

tial boundary out to the true boundary. The push-out procedure is based on

the intensity and pushes the boundary out both horizontally and vertically.

For the horizontal push-out, for a boundary point vi at (xi, yi), a neighbor-

hood point set of vi, Si, is firstly identified. Si consists of the 30 pixels to

the right of vi and the 80 pixels to the left of vi (for left breast). Thus Si =

{(xi−30, yi), (xi−29, yi), . . . , (xi, yi), (xi+1, yi), . . . , (xi+80, yi)}. Let Smean
i , Smin

i be

the mean and minimum intensity of Si, a new pixel v′i ∈ Si is selected to replace

vi according to the following judgements.

1: if Smin
i < 3 then

2: if Smean
i < 25 then

3: v′i be the first pixel in Si having intensity less than or equal to Smin
i + 2,

4: else

5: v′i be the first pixel in Si having intensity less than 10,

6: end if

7: else

8: if Smean
i ≥ 10 then

9: v′i be the first pixel in Si having intensity equal to Smin
i ,

10: else

11: v′i be the first pixel in Si having intensity less than or equal to Smean
i

12: end if

13: end if

Depending on the physical profile of the breast boundary, for some breasts,
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the slope of the boundary in the bottom part is big (according to the coordi-

nate system defined in Fig. 5.1). For these breasts, the vertical push-out is

applied to push the bottom part of the boundary out. In the vertical push-

out, Si consists of the 50 pixels above vi and the 300 pixels below vi. Thus

Si = {(xi, yi−50), (xi, yi−49), . . . , (xi, yi), (xi, yi+1), . . . , (xi, yi+300)}. The criteria

for the selection of the new v′i is also different. The first pixel in Si having inten-

sity value less than 5 is selected as v′i. In case no pixels in Si have intensity value

less than 5, then the first pixel having intensity value less than 10 is selected.

This push-out procedure was developed for the Mini-MIAS mammograms.

Although very simple, in the experiments, it works well in drawing the initial

breast boundary to the true boundary (Table 5.1).

5.2 Breast Boundary Extraction Based on ROW

Filters and MRF Smoothing

In the initial method described in the previous section, both filters used to identify

the background components and the thresholds used in the push-out procedure

were determined empirically. The thresholds used in the filters for identification of

background components were set according to the experimental database. In fact,

in experiments, thresholds of 1800 and 15 are used for the size and average inten-

sity for the Mini-MIAS database and 4500 and 60 for our local archive. For the

threshold set used in the push-out procedure, the same set, chosen for the Mini-

MIAS database, was also used for the local archive mammograms and produced

satisfactory results. Another drawback of the initial method is its dependency

on the AP segmentation. Poor segmentation of the background components may

result in a poor breast boundary extracted.

To overcome the drawbacks of the initial method, a new method was devel-

oped, based on ROW wavelets filtering and MRF smoothing. The method uses

ROW wavelets to pre-filter the image. A Canny edge detector is used on the

filtered image, resulting in a binary image. An initial boundary is extracted by

scanning the binary image. The initial boundary is then smoothed using MRF

model and iterated conditional modes (ICM) relaxation.

5.2.1 Pre-filtering with ROW Filters

The ROW were derived by Auscher (1992) under the framework of rational mul-

tiresolution analysis (MRA). Baussard, Nicolier & Trucheter (2004) generalized

this class of wavelets by permitting more general types of roll-off in the transition

bands of the frequency spectrum. Yu & White (2005) derived explicit formulas

for a special class of rational wavelets with rational dilation factor of a = q+1
q

and

whose spectrum has no constant passband between two transition bands.
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The ROW has recently found its application in communications (Yu & White

2007, Yu & White 2006). Application of ROW in image processing has not been

explored. In this method, ROW is utilized to construct image filters which are

highly adaptive to varying statistics of mammograms regarding the pixel intensity.

The corresponding ROW basis function ψ(t) is defined in the frequency do-

main by

Ψ(ω) =


(2π)−

1
2 ej w

2 sin(π
2
β( q

ω1
|ω| − q)), ω1 ≤ |ω| ≤ ω2

(2π)−
1
2 ej w

2 cos(π
2
β( q

ω2
|ω| − q)), ω2 ≤ |ω| ≤ ω3

0, |ω| /∈ [ω1, ω3],

(5.1)

and the corresponding ROW scaling function φ(t) is defined by

Φ(ω) =


(2π)−

1
2 , |ω| ≤ ω1

(2π)−
1
2 cos(π

2
β( q

ω1
|ω| − q)), ω1 ≤ |ω| ≤ ω2

0, |ω| > ω2,

(5.2)

where

ω1 = (q − q

2q + 1
)π,

ω2 = aω1,

ω3 = aω2 = a2ω1, (5.3)

and β(t) is the construction function which is not unique. One construction

function that leads to fast decay property of the wavelet is defined by β(t) =

t4(35 − 84t + 70t2 − 20t3). The variables ω, ω1, ω2 and ω3 are in radians. The

functions Φ(ω) and Ψ(ω) are the Fourier transform (FT) of φ(t) and ψ(t) respec-

tively. The waveforms and spectra of three ROWs are illustrated in Fig. 5.2.

The two-dimensional (2-D) image filter is constructed based on the waveform

of the ROW scaling function φ(t) (Eq. 5.2). More detail about the ROW can be

found in Yu & White (2005), Yu & White (2006) and Yu & White (2007).

After the ROW wavelet filtering, a Canny edge detector is applied to the

filtered image to detect the breast boundary. The low sensitivity and high sen-

sitivity of the canny edge detector were set 0.18 and 0.26 empirically. Several

ROW wavelet filtered results are shown in Fig. 5.3 - 5.5. The images in Fig. 5.4

are examples of difficult boundaries. The image in (a) has a label close to the

boundary. The images in (b) and (d) have noisy backgrounds and images (b) and

(c) include a bright line artifact. With ROW filter, the breasts in these images

clearly emerged. However, ROW gave poor results in some cases (Fig. 5.5). In

(a) of Fig. 5.5, the ROW filter causes a bright area in the top of the image. The

corresponding piece of the breast boundary is missed by the Canny edge detector.

In (b), the Canny edge detector failed to give a clear breast boundary, due to the

dark band near the true boundary in the filtered image.
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Figure 5.2. Real rational orthogonal wavelets with q = 1, 2 and 3.

(a) (b) (c)

Figure 5.3: Example of ROW filtering and the Canny edge detection (a)

original image, (b) ROW filtered image, (c) the Canny edge detected

image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Examples of ROW filtered images. (a)(b)(c)(d) are the

original images (mdb042, mdb068, mdb115, mdb004) and (e)(f)(g)(h)

are the corresponding filtered images.

(a) (b)

(c) (d)

Figure 5.5: Examples of poor ROW filtered images. (a)(c) are the

ROW filtered images for mdb034 and mdb090 and (b)(d) are the cor-

responding Canny edge detected results.
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5.2.2 Breast Boundary Modelling and Smoothing via 1-D

MRF and ICM

The initial breast boundary obtained by the canny edge detector has high fidelity

compared with the true boundary marked by the radiologists, except for some

discontinuities and noise introduced in conjunction with the binarisation and

the scanning procedure. To smooth the initial boundary, a 1-D MRF model is

developed to model the breast boundary, and an iterated smoothing algorithm,

the ICM algorithm, is applied to smooth the initial breast boundary. The MRF

model and ICM algorithm were based entirely on the work by the first author

of the study (Yu, Ma, Jayasuriya, Sigelle & Perreau 2007). For details of these

two parts, readers are referred to this study (Yu et al. 2007). Compared with

many other smoothing methods, which have reported good results in boundary

smoothing, the advantage of the proposed smoothing algorithm is its capability

in preserving nipple while smoothing the whole boundary.

The initial breast boundary obtained from the ROW filtered binary image

is saved as a 2-D signal (xi, yi), i = 1, · · · , N , where (xi, yi) is the x- and y-

coordinates of the ith point in the boundary, and N is the length of the boundary.

The physical profile of the breast determines that at the top and bottom parts

of the boundary, one of the coordinates is single valued with respect to the other

coordinates. The smoothing of the 2-D signal is simplified into a 1-D signal

smoothing problem.

According to the physical profile of the boundary, the mammograms can be

classified into two categories. In one case the y-coordinates are single valued along

the whole boundary as shown in Fig. 5.6(a) and (b). In this case, the smoothing

problem is a straightforward 1-D signal smoothing problem. The signal to be

smoothed is {yi}, i = 1, · · · , N while {xi} takes on the natural order. The

other category, as shown in Fig. 5.6(c) and (d), the y-coordinates are not single

valued along the whole boundary. For this category, we divide the boundary

into two pieces, each of which is single valued at one coordinates with respect

to the other coordinates, by finding a turning point of the boundary (Fig. 5.7).

Two 1-D signals are generated accordingly and are smoothed separately. The

signal regarding the top piece of the contour is {yi}, i = 1, · · · , N1 and {xi}
takes on the natural order. For the bottom piece, the signal to be smoothed is

{xi}, i = 1, · · · , N2 and {yi} takes on the natural order. The smoothing problem

in the first category can be treated as a special case of the second category where

only the top piece smoothing is required.

The two pieces are smoothed separately both using 1-D MRF model and

ICM algorithm. The two smoothed boundaries are then combined to form the

final whole breast boundary. To treat the possible discontinuity caused by 2-

piece smoothing, a small portion of the initial boundary is retained near the

connection point. This may slightly degrade the smoothness of the boundary

near the connection point but ensures a smooth connectivity of the two pieces.



CHAPTER 5. AUTOMATIC BREAST BOUNDARY SEGMENTATION 63

Figure 5.6: Two categories of the profile of the breast boundary. In

(a)(mdb003) and (b)(mdb004), the y-coordinates are single valued with

respect to the x-coordinates along the whole boundary. In (c)(mdb049)

and (d)(mdb050), y-coordinates of the boundary are not single valued

along the whole boundary.

Figure 5.7: Division of the breast boundary into two single valued

parts. The y-coordinates of the breast boundary with respect to the

x-coordinates are not single valued along the whole boundary. A turn

point is located and the whole boundary is divided into two parts,

one coordinates of each of which are single valued with respect to the

other coordinates. The two parts are smoothed separately by 1-D MRF

smoothing.

5.3 Performance Analysis

To evaluate the performance, both of the methods were applied to 82 MLO view

mammograms from the Mini-MIAS database. The same images were selected

and used in Ferrari et al. (2004b). However, the images selected in Ferrari

et al. (2004b) included 84 mammograms. Two cases are excluded in this analysis.
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Analysis of these two cases is given in Section 5.4.

The detected boundaries are compared to the ground-truth (GT) boundaries.

The same GT boundaries, used in Ferrari et al. (2004b), traced by a radiologist,

were used in this thesis. These manually drawn boundaries were kindly provided

by Rangaraj M. Rangayyan. Pixels assigned by the algorithm to the breast but

assigned by the radiologist to background are labelled false positive (FP) and the

pixels assigned by the algorithm to background but assigned by the radiologist as

part of the breast are labelled false negative (FN). Table 5.1 presents the results

obtained by both of the methods together with the results obtained in Ferrari

et al. (2004b).

ACM AP boundary RM boundary

FPave 0.41± 0.25 0.70 0.59± 0.78

FNave 0.58± 0.67 0.81 0.69± 0.67

FPI < 0.05, FNI < 0.05 33 22 46

0.05 < FPI , FNI < 0.10 38 24 14

max(FPI , FNI) > 0.10 13 36 22

Table 5.1: FP and FN proportion and distribution: breast boundary

extraction results of three methods. Here ACM refers to the active

contour model reported by Ferrari et al. (2004b). AP boundary refers

to our initial method and RM boundary refers to the ROW and MRF

based method. The first two rows report the proportion of FP and the

proportion of FN pixels averaged over all images. The next three rows

indicate the distributions of FP and FN proportions. Standard devi-

ations for the initial method (AP boundary) are not provided as the

results were obtained earlier and no standard deviations were obtained

at that time.

Two examples of the detection results obtained by the ROW and MRF based

method are illustrated in Fig. 5.8 and Fig. 5.9. In Ferrari et al. (2004b), these two

mammograms (mdb003 and mdb068) were singled out because of the bad results.

The reason for mdb003 is the non-detection of the nipple region which leads to

poor FN statistics. For image mdb068, both the FP and FN percentages are

greater than 1% because the boundary was attracted to high density region in

breast. With the ROW and MRF based method, we achieved satisfactory results

for both cases. The FP and FN percentages are FP = 0.32% and FN = 0.46%

for mdb003. The percentages are FP = 0.15% and FN = 0.79% for mdb068.

To investigate the performance of the second method in preserving nipples, we

selected the mammograms whose nipples can be identified from the GT bound-

aries. Among the 82 mammograms, thirty four mammograms had visible nipples

in the radiologist drawn boundary. For these thirty four mammograms, the aver-

age percentage of FP and FN were FP = 0.50±0.58% and FN = 0.53±0.24%,

respectively. Nipple information is preserved in the detected breast boundary in
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Figure 5.8: Breast boundary extraction for mdb003 (a) original mam-

mogram, (b) filtered image, (c) detected contour, (d) contour drawn

by radiologist

Figure 5.9: Breast boundary extraction for mdb068 (a) original mam-

mogram, (b) filtered image, (c) detected contour, (d) contour drawn

by a radiologist

31 images. In the other 3 cases, the contours of the nipple are weak with nipple

information lost in only 1 case (Fig 5.10). An illustration of the filtering and ICM

smoothing on the nipple area is shown in Fig. 5.11. The smoothness parameter

β = 100 is selected in the analysis.

The results reported in this section are based on the image filter constructed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.10: Examples of bad nipple preservation. (a)(e)(i) are

the original images of mdb119, mdb044 and mdb105 with superim-

posed GT boundaries, (b)(f)(j) are the corresponding filtered images,

(e)(g)(k) the canny edge detected images and (d)(h)(l) the original

images with algorithm identified boundaries.

Figure 5.11: Example of contour smoothing around nipple area

(mdb003) (a) GT contour, (b) initial contour, (c) smoothed contour

by ROW (q = 3). Compared with other ROWs with different dilation factors,

such as ROW (q = 2) and ROW (q = 4), the performance of ROW (q = 3) is the

best in statistics while ROW (q = 2) or ROW (q = 4) achieves better results for

certain mammogram cases.
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(a) (b)

(c) (d)

Figure 5.12: Dropped image case: mdb097. (a) Original image with su-

perimposed GT boundary, (b) ROW filtered image, (c) the Canny edge

detected image. (d) Original image with algorithm detected boundary.

A piece of the boundary in the bottom is missed, causing misleading

FP and FN . This image is excluded in the performance analysis.

5.4 Discussion and Conclusion

Images mdb097 and mdb106 were removed from this analysis. Fig. 5.12 and

Fig. 5.13 show these two cases. Image mdb097 is removed because a piece is

missed in the final boundary, which totally biased the results. The filtered image

of mdb106 ((b) of Fig. 5.13) is very unclear and the canny edge detector can only

capture part of the breast boundary, causing a very bad result. The histogram of

the intensity of this image is very different from the other images. For this special

case, we developed a simple histogram adjustment procedure to correct the his-

togram distribution. (d)(e)(f) of Fig. 5.13 show the results of histogram adjusted

image mdb106. A good result is obtained with the histogram adjustment.

The robustness of the ROW and MRF based method lies in the robust ROW

filtering owing to the flexible spectrum control via rational dilation factor speci-

fication, high regularity and fast decay properties of ROW (Yu & White 2006).

The ROW is adaptive to varying statistics of mammograms regarding the pixel

intensity. In fact, the method was applied to the mammograms from our local

archive without changing any settings and good results were obtained. In com-

parison with techniques relying on the calculation of varying thresholds based on

histogram analysis, a single fixed ROW image filter is sufficient for all mammo-
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Dropped image case: mdb106. (a) Original image with

superimposed GT boundary, (b) ROW filtered image, (c) the Canny

edge detected image, (d) Histogram adjusted and ROW filtered image,

(e) the Canny edge detected image after histogram adjustment and

ROW filtering, (f) Image with final breast boundary.

grams being analyzed.

MRF theory and the ICM algorithm have been widely used in image pro-

cessing (Geman & Geman 1984, Besag 1986, Dubes & Jain 1989). Based on the

MRF modelling for breast contour, the ICM smoothing algorithm developed here

smoothes the initial contour with fast convergence. The piece-wise smoothing

technique introduced in section 5.2.2 transforms a 2-D MRF modelling and re-

laxation problem to a 1-D MRF modelling and therefore the complexity of the

relaxation algorithm is greatly reduced.

Results prove the robustness of the proposed detection algorithm for 82 mam-

mograms. We notice that the main reason for the degradation of the FN and FP

statistics of the proposed algorithm is the gap along the top and bottom edges of

the detected contour. This gap is related to the edge scan procedure after ROW

filtering. The performance of the proposed method can be further improved by

refining the edge scan step in the algorithm to mitigate the gaps in the initial

contour.



Chapter 6

Mass Features

Features play the essential role in the classification of malignant masses. Various

features have been explored in the literature. Among them, shape and texture

features are the two common and important categories.

The shape of an object usually contains important information about the

object. The shape features have been found important and useful in mass classi-

fication in mammography. Masses may have circumscribed, spiculated or stellate

shapes. Cancerous lesion usually have a more irregular shape than benign le-

sions. Compared to the malignant masses, benign masses generally have better

defined boundaries. Shape based features are expected to be effective in distin-

guishing these differences. Ackerman & Gose (1972) used spicularity, roughness

and shape features extracted by computers to classify masses or clusters of mi-

crocalcifications as benign or malignant. Shen, Rangayyan & Desautels (1993,

1994) developed several position-, size-, and orientation-invariant shape features

for classification of calcifications in mammograms. Brzakovic, M. & Brzakovic

(1990) used area, shape, edge distance variation, and edge intensity variation de-

termined by computer to differentiate benign from malignant lesions. In Sahiner,

Petrick, Chan, Hadjiiski, Paramagul, Helvie & Gurcan’s (2001) study, normalized

radial length, standard deviation, entropy, area ratio and convexity are used to

classify malignant masses.

The texture of an object contains information about the structural arrange-

ment of the surfaces of the object and their relations to the surrounding envi-

ronment. Many texture based features have been created and investigated in the

literature. Haralick, Shanmugam & Dinstein (1973) used many texture features

in category identification tasks in three different image data. Chan, Wei, Helvie,

Sahiner, Adler, Goodsitt & Petrick (1995) and Wei, Chan, Helvie, Sahiner, Pet-

rick, Adler & Goodsitt (1995) investigated the use of image texture features for

classification of masses and normal tissue on mammograms. Their results indi-

cated that image texture contains useful information that can be used to effec-

tively distinguish masses from normal tissue. Mudigonda, Rangayyan & Desau-

tels (2000) use gradient-based features and texture measures based on gray-level

69
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co-occurrence matrices (GCMs) for the classification of mammographic masses

as benign or malignant.

In this thesis, 7 shape based features and 5 texture based features are used for

mass characterization. This chapter describes these features. A short summary

of these features is given in Table 6.1. Section 6.1 and Section 6.2 give detailed

definitions of these shape based features and texture based features respectively.

Location of a ROI is an important feature for malignant mass identification.

Section 6.3 describes a location feature based on a specially defined coordinate

system. Based on the extracted features, a filter is set up to remove uninteresting

components. Section 6.4 describes the details of the filter. To indicate how likely

a component is a true mass, a mass like score is calculated for each component

based on the component features. Calculation of the mass like score is described

in Section 6.5.

The following notations are used in this chapter. The ith component of a

mammogram is represented by Ri. |R| represents the number of pixels in com-

ponent R. The set of pixels outside component R but within t pixels distance is

represented by Ot. E(R) is the mean intensity value of the pixels in the compo-

nent R and σ(R) is the standard deviation of the intensity of pixels in R. P (R, i)

represents the proportion of pixels in component R with intensity i.

6.1 Shape Based Features

In this section, we introduce seven shape based features used in this thesis for

characterizing components.

area. The number of pixels in the component (Brzakovic et al. 1990).

area = |R|

s1. The proportion of pixels in the convex hull that are also in the component

(Sahiner et al. 2001). Here the convex hull is the smallest convex polygon that can

contain the component. When an object is convex, this feature would approach

its maximum value. On the contrary, the value of this feature would be small

when the shape of the object is highly nonconvex, as is the case with many

malignant masses.

s1 =
area

area of convex hull

s2. The ratio of the area of the component to the area of the bounding box which

is the smallest rectangle containing the component.

s2 =
area

area of bounding box
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ratio. Ratio between the length of the major and minor axis of the ellipse that

has the same normalized second central moments as the component. Fig. 6.1

illustrates the axis of the ellipse.

ratio =
major axis length

minor axis length
,

Figure 6.1: Axis of the ellipse having the same normalized second

central moments as the component. Figure in the left side shows a

segmented component with black boundary and the ellipse with dashed

boundary having the same normalized second central moments as the

component. The right side figure shows the same ellipse with the axis

in solid lines. The two black dots are the foci of the ellipse.

dradi. Standard deviation of the radial distance (Sahiner et al. 2001). Here the

radial distance is the Euclidean distance of edge points to the centroid of the

component. Fig. 6.2 illustrates the radial distance.

Figure 6.2: Radial distance of component. The radial distance is the

Euclidean distance of edge points to the centroid of the component.

radi. The average value of the radial distance (Sahiner et al. 2001).

circularity. Circularity measures to what extent a component is circularly shaped

(Gonzalez & Wintz 1987). The smallest value of this feature is 12.56. When the

circle deviates towards more complicated shape, the value of this feature becomes

larger. This feature is invariant to the translation, rotation, and scale.

circularity =
p2

area
.

Here p is the perimeter of the component. A larger value of circularity describes a

irregular and elongated object while a smaller value represents a more symmetric

object.
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6.2 Texture Based Features

This section introduces 5 texture based features, int, relint, pri, c2 and c3, that

are used in this thesis. The same features c2 and c3 were used in Timp &

Karssemeijer (2006).

int. The average intensity value of the component.

int = E(R).

relint. The average intensity value of the component divided by the average

intensity value of the whole breast.

relint =
E(R)

E(Bst)
,

here Bst represents the region of the whole breast.

pri. Intensity variance along the boundary of the component.

pri =
|E(R)− E(O2)|
E(R) + E(O2)

,

c2. A measure of intensity contrast.

c2 =
(E(R)− E(Od))

2

σ(R) + σ(Od)
,

here d is defined as

d =

√
area

π
.

c3. A measure of intensity contrast.

c3 =
∑

i

|P (R, i)− P (Od, i)|,

here d is the same as defined in c2.

6.3 Location Based Feature

The location of a ROI within the mammogram can provide information useful

for classifying the component as malignant mass. As reported by Caulkin, Ast-

ley, Asquith & Boggis (1998), the upper outer quadrant of the breast is more

likely to develop malignant masses. Registration of the temporal mammogram

might also benefit from the location information of the segmented components.

However, the absolute locations of the components can not be used, due to the

different compression and positioning of breast involved in image acquisition. A
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Feature Name Description

area area of the component

s1 solidity of the component

s2 solidity of the component

ratio ratio between length of major and minor axis

radi average radial distance

dradi standard deviation of the radial distance

circularity ratio between perimeter and area

int mean intensity of the component

relint relative intensity

pri intensity variance along the boundary

c2 intensity contrast

c3 intensity contrast

Table 6.1. List of component features used in this thesis.

coordinate system, based on the fitted line to the pectoral muscle boundary (for

MLO view mammogram) or chest wall boundary (for CC view mammogram)

and the longest distance from the fitted line to the breast boundary points (see

Fig. 6.3), as also reported by Timp, Varela & Karssemeijer (Jul. 2007), may be

helpful in providing location information. However, our experiments showed that

this location feature is very sensitive to the pectoral muscle boundary (for MLO

view mammogram) and breast boundary (results not shown). A little deviation

in the boundaries may change the coordinate system substantially. In tempo-

ral mammogram registration, this sensitivity may cause components of temporal

mammograms, that correspond to the same part of breast, having very different

coordinates. For this reason, this location feature is not used in this study.

Figure 6.3: The coordinate system for MLO view mammogram. The

coordinate system is defined with a fitted line to the pectoral muscle

boundary as x axis and the line perpendicular to the pectoral muscle

boundary fitted line and having longest distance from the fitted line

to the breast boundary points as y axis. Positions of any components

under this coordinate are determined regarding to the positions of the

centroids of the components.
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6.4 Feature Filter

The AP algorithm results in a tessellation of the breast by components (Chapter

3). In our experiments on 95 temporal mammogram pairs (Section 8.2.1), the

number of segmented components per breast varies from the minimum 114 to the

maximum 533. As the processing complexity of graph matching is highly related

to the number of vertices, a large number of components increases the processing

time to become prohibitively large. On the other hand, only components repre-

senting information relevant to the presence of breast cancer are of interest. A

set of component features together with the breast template are used to reduce

the number of components.

In our application, a template is extracted for each mammogram using the

method introduced in Chapter 5, which is based on ROW filtering and MRF

smoothing. The templates are applied to the components and any components

that are outside the breast are filtered out.

Four features, including area, ratio, s1, s2, are used to further reduce the

unwanted components. The reason for selecting these four features for the fil-

tering is that, in our application, computation of these four features is relatively

convenient. Two other features int and relint are naturally derived from the

AP segmentation and thus are also convenient to include. However, these two

features are more database dependant, and hence are not used. The filter is set

by simply thresholding the four features. In the experiment, a training dataset

(see Section 8.2.1) is used to select the thresholds. The maximum and minimum

value of each feature within all the malignant masses of the training dataset are

used as the thresholds.

6.5 Mass-like Score

A mass-like score is assigned to each component to indicate how likely a compo-

nent is a mass. The mass-like score is used during the graph matching and the

components with higher mass-like score are to be matched first.

Before computing the mass-like score, all features are normalized to zero mean

and unit variance according to the following formula,

f ′ =
f − E(f)

σ(f)
.

To compute the mass-like score, features are linearly combined.

mass-like score =
∑
i=1

aifi,

where fi is the ith feature. Parameters ai are optimized based on Fisher linear

discriminant analysis (LDA) on the training dataset.
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Figure 6.4: ROC curve for 3 different combinations of features based on

the entire data set (see Section 8.2.1). The legend in the image shows

the detailed combinations and their Az score. Numbers in the legend

represent different features. The correspondence of the numbers and

the features are as follows: s1-1, ratio-2, area-3, relint-4, int-5, dradi-

6, pri-7, s2-9, radi-10, circularity-11, c2-12, c3-13.

Based on reports in the literature and some initial experiments with our own

data, some different combinations of features were tested for their ability to dis-

tinguish between malignant and benign masses. The receiver operating char-

acteristic (ROC) analysis is used to evaluate the performance of these different

subset of features in classification of malignant masses. For this purpose, the 190

mammograms (the same set of mammograms as described in Section 8.2.1) are

divided into two groups, those having malignant masses forming one group and

the others forming the other group. The area under the ROC curve, the Az score,

is used for the feature subset selection. Figure 6.4 shows the ROC performance of

three different combinations of features together with the Az scores. The highest

Az score is 0.85 reached by the combination of feature s1, area, int, dradi, pri,

relint, s2, radi and circularity. Figure 6.6 shows the distribution of this com-

bination. However, in our application, we used solidity, ratio, area, dradi, pri,

radi, circularity, c2 and c3 for the computation of mass-like score. The int and

relint are not selected, due to their database dependency. Most of the malignant

masses in our experimental dataset are bright. Thus the inclusion of int and re-

lint increases the performance in classification for the used dataset. Distribution

of the used combination of features is shown in Figure 6.5.

Based on the mass-like score, the components are further filtered to reduce the

number. In this thesis, for time processing reasons, only the components having
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Figure 6.5: Distribution of the combination of the features used in

this study. The features are solidity, ratio, area, dradi, pri, radi,

circularity, c2 and c3. This set of features is used for the mass-like

score in this thesis.

Figure 6.6: Distribution of the best combination of the features. The

features are s1, area, int, dradi, pri, relint, s2, radi and circularity.

mass-like scores in top 50 are kept for further investigation.



Chapter 7

Graph Matching

In this chapter we describe our method of matching corresponding mass-like ob-

jects in temporal mammograms based on spatial relations between the mass-like

objects and a graph matching technique. A fuzzy spatial relation representation

is used to represent the spatial relations between the mass-like objects. Section

7.1 describes the fuzzy spatial relation representation. A detailed description of

the graph matching algorithm is introduced in section 7.2.

7.1 Fuzzy Spatial Relation Representation

A spatial representation between two objects given by the angle and distance

between the centroid of the objects was initially used in our experiments. The

angle is made by the line connecting the centroid of two objects and the vertical

line, and the distance is measured between the centroid of two objects. Our

experiments showed that this spatial representation only performs well when two

objects are small and far apart. Fig. 7.1 illustrates the drawback of the angle

and distance spatial representation.

In many situations, especially in representing spatial relations between com-

plex objects, ”all-or-nothing” relations lead to unsatisfactory results. Freeman

(1975) proposed to use primitive spatial relations to describe the spatial rela-

tions between objects. He also proposed to use fuzzy set theory in representing

spatial relations. Many approaches have been made in representing spatial rela-

tions based on the fuzzy set theory (e.g. Miyajima & Ralescu 1994, Matsakis &

Wendling 1999, Bloch 1999). Rather than giving an explicit number (e.g. angle,

distance) to describe the spatial relation, fuzzy spatial relation representation

defines the spatial relation between objects as a fuzzy set. In this thesis, a fuzzy

spatial relation representation introduced by Miyajima & Ralescu (1994) is im-

plemented. This representation takes into account the geometric properties of the

objects by using the histogram of all possible angles between all pairs of points

in the considered objects (Fig. 7.2). In this method, four spatial relations, ”right

77
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Figure 7.1: Ambiguity spatial representation by using centroid of ob-

jects. Using centroids of the objects to represent the spatial relation,

objects in (a) and (b) have exactly the same spatial relation. However,

shape, size and orientation of object A in (a) and (b) are different. The

centroid spatial relation representation can not accurately express the

spatial relations between the objects in this example.

Figure 7.2: Fuzzy spatial relation representation. Angles between all

pairs of points are calculated in the implemented fuzzy spatial relation

representation.

of”, ”left of”, ”below”, ”above”, are considered. The spatial relations between

two points p and q are determined by the angle θ made by the line passing through

p and q and the x-axis. The spatial relations between points p and q are fuzzy

sets whose membership functions are given by the trigonometric functions.

µright(θ) =

{
cos2 θ if −π

2
≤ θ ≤ π

2
,

0 otherwise,

µbelow(θ) =

{
sin2 θ if 0 ≤ θ ≤ π,

0 otherwise,

µabove(θ) =

{
sin2 θ if − π ≤ θ ≤ 0,

0 otherwise,

µleft(θ) =

{
cos2 θ if − π ≤ θ ≤ −π

2
, π

2
≤ θ ≤ π,

0 otherwise.
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For two objects A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bm}, to calculate the

spatial relations between them, all m× n pairs of points (ai, bj), i = 1, . . . , n, j =

1, . . . ,m, are considered. Let Θ denote the collection of angles θij = ∠(ai, bj), ai ∈
A, bj ∈ B. As different pairs of points may have same angle, Θ is a multiset. For

each θ ∈ Θ, let fθ be the number of pairs (ai, bj) for which ∠(ai, bj) = θ, the

histogram associated with Θ is defined as

HΘ(A,B) = {(θ, fθ)}.

The frequency fθ is normalized by the largest frequency, fθ = fθ/max(fθ).

To evaluate the degree to which the spatial relation between HΘ and each

of four spatial relations holds, the histogram HΘ is treated as a fuzzy set with

membership function µH defined as

µHΘ
(θ) = fθ, where (θ, fθ) ∈ HΘ.

The problem of to what extent is HΘ each of four spatial relations is then treated

as a problem of compatibility of fuzzy sets (Miyajima & Ralescu 1994). Let G

be one of the four spatial relations and µG be the corresponding membership

function, the compatibility of the fuzzy set HΘ to a fuzzy set G is a fuzzy set

CP (HΘ;G) whose membership function is defined as

µCP (HΘ;G)(v) =

{
supθ,v=µG(θ) µHΘ

(θ) if µ−1
G (v) 6= ∅,

0 if µ−1
G (v) = ∅.

To obtain the final degree to which a spatial relation holds, the compatibility

fuzzy set CP (HΘ;G) is defuzzyficated using the center of gravity of the fuzzy set∑
v v · µCP (HΘ;G)(v)∑

v µCP (HΘ;G)(v)
.

7.2 Graph Matching

Graph matching for temporal mammogram registration is inexact graph match-

ing. This is because on one hand, the same object of a breast may appear very

different in temporal mammograms. This may be caused by natural changes in

breast tissue, different dosages, deformation at image acquisition in combination

with the fact that mammograms are projection of 3D objects onto 2D images.

On the other hand, mammograms are very complex images. Accurate isolation

of the ROIs is a difficult task. Thus it is highly unlikely that the segmentation

results of temporal mammograms are strictly identical or a graph isomorphism

can be found between the graphs of temporal mammograms.

In many image analysis applications, matching of the objects in analyzed

images is based on a set of features measured on the segmented objects. In
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temporal mammogram analysis, however, the success of feature based matching

is limited by the variations of the segmented objects which may be caused by the

changes of the temporal mammograms or by the segmentation.

This section describes our graph matching algorithm that is based on the

spatial relations between the mass-like objects.

7.2.1 Complete Graph Representation

In many applications, graphs are built based on the neighborhood relations of

the segmented components, that is, two vertices in the graph are connected if the

components they represent are neighbors. In this application, a graph is natu-

rally generated with the AP segmentation algorithm to represent the segmented

components. As the AP algorithm is based on the neighborhood relations of the

vertices, so is the generated graph. The AP produced graph was initially used

in our graph matching. However, the matching based on the generated graph

results in false matches (Fig. 7.3). In this thesis, after segmentation and filtering,

a weighted complete graph (see Section 3.1) is used to represent the mammogram

with each vertex in the graph representing a mass-like object of the mammogram.

Figure 7.3: Problem with graph constructed based on neighborhood

relation of objects. The big circle and big rectangle of (a) should match

the big circle and big rectangle of (c). Because of the complexity of

mammogram segmentation, a small extra circle in (c) adds an extra

node in its corresponding graph (d). Graph matching based on (b) and

(d) can only result in the big circle of (a) matching to the big circle

of (c), the rectangle of (a) matching to the small circle of (c) or the

big circle of (a) matching to the small circle of (c), the rectangle of (a)

matching to the rectangle of (c), either of which yields a false match.

The desired match can be reached when (d) is replaced by (e).

7.2.2 Match Cost Function

In inexact graph matching, a match cost function is usually involved to measure

the similarity of subgraphs and thus to allow comparison between the different
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solutions. The match cost function is usually based on the weights or attributes

associated with vertices or edges. In this thesis, to find the best common sub-

graph between two weighted complete graphs that has the most similar spatial

relations between the vertices of the graphs, the difference of four spatial rela-

tions between vertices is used to measure the spatial similarity. The similarity

of spatial relations between an individual pair of matched vertices is defined as

follows. Let Hc = {Vc, Ec}, Vc = {v1
c , v

2
c , . . . , v

n
c }, denote the subgraph of the

weighted complete graph Gc of a current mammogram Mc and Hp = {Vp, Ep},
Vp = {v1

p, v
2
p, . . . , v

n
p }, denote the subgraph of the weighted complete graph Gp of

a previous mammogram Mp. Suppose vk
c ∈ Vc matches vk

p ∈ Vp. The similarity

between vk
c and vk

p in terms of spatial relation µt is defined based on the difference

of corresponding spatial relations between vk
c to Vc\{vk

c } and vk
p to Vp\{vk

p}

C(vk
c , v

k
p) =

√√√√ n∑
i=1

(µt(vk
c , v

i
c)− µt(vk

p , v
i
p))

2.

Here t is one of the four spatial relations and µt(vm, vn) is the µt spatial relation

between vertices vm and vn. Vc\{vk
c } is the set Vc but with element vk

c removed.

µt(v
k
c , v

k
c ) is set to 0.

Based on the spatial similarity measure for the single match, the global spatial

similarity measure of subgraphs Hc and Hp in terms of spatial relation µt is

calculated as follows

φ(µt) =
n∑

i=1

C(vi
c, v

i
p).

The final match cost function Φ(Hc, Hp) is the sum of four spatial relations

Φ(Hc, Hp) = φ(µleft) + φ(µright) + φ(µabove) + φ(µbelow). (7.1)

However, as only spatial relations between mass-like objects, which are local in-

formation, are used, it may happen that one of the matched subgraph globally

offsets the other one, causing match error. Figure 7.4 gives an example of this

problem. To avoid the global offset, the breast boundary is treated as a mass-

like object and the spatial relation between other mass-like objects and the breast

boundary is included in the match cost function. Let Bc, Bp be the breast bound-

aries of current and previous mammogram Mc,Mp. The similarity between vk
c

and vk
p in terms of spatial relation µt is redefined as

C(vk
c , v

k
p) =

√√√√ n∑
i=1

(µt(vk
c , v

i
c)− µt(vk

p , v
i
p))

2 + (µt(vk
c , Bc)− µt(vk

p , Bp))2. (7.2)

Breast boundaries are used in many multiple mammogram registration meth-

ods to provide partial global registration of multiple mammograms (see Chapter 2,
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Figure 7.4: Example of global offset of mass-like objects. The spatial

relations between the mass-like objects of the two mammograms are

exactly the same, but mass-like objects in one mammogram are sig-

nificantly shifted with respect to the mass-like objects of the second

mammogram.

Section 2.1). In most of these methods, the breast boundaries of multiple mam-

mograms are aligned and mammograms are transformed based on the aligned

boundaries. For these methods to work, the breast boundaries need to be both

accurately extracted and aligned, which is not a trivial task. The fuzzy spatial

representation adopted in this thesis enables the spatial relation between any

mass-like objects and the boundaries to be represented. By using the spatial

relations between mass-like objects and the boundary in measuring the similarity

of the subgraphs, we avoid the strict condition of accurate alignment of breast

boundaries and still promise a global reference.

7.2.3 Identification of the Best Solution

Many inexact graph matching applications restrict themselves to finding a vertex

in the bigger graph for each vertex of the smaller graph to match. For these appli-

cations, the length of the solution is fixed and the best solution is reached when

the match cost function attains its minimum or maximum. Here a solution means

a common subgraph of two graphs. The length of the solution is the number of

the vertices of the common subgraph (the size of the common subgraph). In some

real graph matching applications, however, vertices in the smaller graph may not

have correspondences in the bigger graph. This can be due to the segmentation, if

for example, the corresponding objects are segmented to be combined with other

objects, or due to the fact that a new tumor has developed and so does not have

a correspondence, or if filters are applied and one object of a corresponding pair

is removed. For this type of inexact graph matching, the length of the solution

is not fixed, and in many cases, is unknown. Finding the solution for this type

of inexact graph matching is thus more complex. Some methods address this

problem by using so-called null vertex or dummy vertex, which represents a null

value. These methods still find at least one vertex in the bigger graph for each

vertex of the smaller graph to match, but allowing vertices in the smaller graph

to match the dummy vertex.
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Due to the changes that can happen in the temporal mammograms, as men-

tioned before, temporal mammograms, even taken in a short period of interval,

can be quite different. The difference between the corresponding segmented mass-

like objects in a temporal mammogram pair is exaggerated by the difficulties in

segmenting complex mammograms. Thus vertices in one of the graphs do not

necessary have corresponding vertices in the other graph. To pick up the best se-

quence of matches during graph matching, not only the same length sequences of

matches need to be compared, but also the different length sequences of matches.

Kumar, Sallam & Goldgof (2001) reported the same problem. To solve the prob-

lem, Kumar et al. (2001) combined the matching results obtained by using both

the Greedy Algorithm and Hungarian Method and simply ignored the conflicted

matches. Unlike the case in this thesis, however, Kumar et al. (2001) used a

weighted bipartite graph and matched two sets of vertices of the bipartite graph

by finding a match vertex in one set for each of the vertices of the other set. Also,

the graph matching in this thesis is based on the backtracking schema. We devel-

oped a new strategy to deal with the problem. We first find the best sequence of

matches for each possible sequence of matches length. Thus for two graphsG1 and

G2, assume the longest possible sequence of matches has length k, we find k se-

quences of matches S1, S2, · · · , Sk, with Si = {(xi,1, yi,1), (xi,2, yi,2), · · · , (xi,i, yi,i)}
the best sequence of matches having length i. We then combine all these sequences

of matches together to form one final sequence S = S1 ∪ S2 ∪ · · · ∪ Sk. The final

solution is derived by further filtering this final sequence.

7.2.4 Graph Matching Algorithm

In this section, we develop a graph matching algorithm which is based on the

backtracking schema. This algorithm is based on the work proposed by Krissinel

& Henrick (2004).

Graph matching is a computationally expensive process, with the increase

of the size of graphs, the processing time increases exponentially. To keep the

running time in a reasonable range, for each mammogram, we only use the com-

ponents whose mass-like score is in the top 50. Experiments on the training data

set shows that most malignant masses are within top 10, a worst case is with the

malignant mass on a position 28. Thus 50 is a safe number to reduce processing

components whilst retaining a very high percentage of masses.

Function Backtrack (Function 1) lists the main steps that are used to recur-

sively enumerate all possible matches to find the best solutions. The function

accepts two parameters, M and Depth. Depth records the number of pairs that

have been matched in current solution. The matched vertices are kept in two

vectors X and Y . For graphs G1 = {V1, E1} and G2 = {V2, E2} with |V1| = n1

and |V2| = n2, M is defined as an n1 × n2 logic matrix. mij = 1 indicates that

the ith vertex of G1 can be matched to the jth vertex of G2.
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Function 1 Backtrack(M,Depth)

1: p = PickupVertex

2: if not p is null then

3: Depth = Depth+ 1

4: for all vertex q in G2 do

5: if M(p, q) 6= 0 then

6: Store p, q to X, Y

7: M1 = Refine(M)

8: EvaluateMatch(X, Y,Depth,M)

9: Backtrack(M1, Depth)

10: end if

11: end for

12: Depth = Depth− 1

13: M1 = M

14: M1(p, :) = 0

15: Backtrack(M1, Depth)

16: end if

In each entry to Backtrack, the function PickupVertex is called to pick up a

vertex p from G1 to match. If the current solution is still extendable, then p will

be not null, thus a new pair is to be formed and Depth increases by 1. Vertex p

of graph G1 is then tested as a match to all unmatched vertices q in G2 in line 4.

If in step 5, p and q are matchable, the new match p and q is added to the current

solution by storing them in X and Y . Next, a Refine function is called to refine

matrix M based on the new formed match. Backtrack is recursively called after

the refinement to search for the next match for the current solution. After all

the vertices of G2 has been tested as a match to p, in step 14 of BackTrack, p is

temporarily removed from G1 by setting the pth row of M to 0. This is because

the best solution may not contain the particular vertex p of G1. After removing p,

BackTrack is called again to search for the best solution not containing particular

vertex p.

For a simple version, PickupVertex only needs to pick up an unmatched vertex

ofG1. However, complex selections can be combined into the picking up procedure

to facilitate any particular purpose. In this study, we combine the mass-like score

to pick up the next vertex to match. Within all the remaining vertices of G1, we

always pick up the one having biggest mass-like score. The bigger the mass-like

score is, the more likely the corresponding mass-like object is a mass. By picking

up the vertex with largest mass-like score first, the matching process is focusing

more on the suspicious mass-like objects.

Whenever a new pair has been matched, matrix M is refined to remove

the search branch that will not lead to the best solution. The main idea of

this refinement is based on the spatial relation compatibility. Assume X =

{x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} is the current solution. Then for any un-
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mapped vertices xk+1 of G1, a unmapped vertex yk+1 of G2 is matchable to

xk+1 if for any spatial relation µt, µt(yi, yk+1) ∝ µt(xi, xk+1), i = 1, . . . , k, t =

left of, right of, above, below. Here ∝ denotes compatibility. For a perfect case,

the spatial relations related to the matched vertices should be exactly the same,

thus the spatial compatibility between spatial relations µt(yi, yk+1) and µt(xi, xk+1)

for this ideal case means

|µt(yi, yk+1)− µt(xi, xk+1)| = 0, i = 1, . . . , k, t = left of, right of, above, below.

However, nonrigid changes between the temporal mammograms may cause slight

differences of the spatial relations between the corresponding matched vertices.

The differences are usually very small. In this graph matching algorithm, we re-

lax the definition of the spatial relation compatibility to allow for small nonrigid

changes that may happen to the temporal mammograms. The spatial compati-

bility between spatial relations µt(yi, yk+1) and µt(xi, xk+1) is defined as

|µt(yi, yk+1)− µt(xi, xk+1)| < γ, i = 1, . . . , k, t = left of, right of, above, below.

As nonrigid changes may happen in all four directions, the four spatial relations

are treated equally and the same γ is used for all four spatial relations. In this

thesis, γ was determined empirically and γ = 0.1 was used for all four spatial

relations ”left of”, ”right of”, ”above”, ”below”.

The function EvaluateMatch is called after refine whenever a new pair is

formed. EvaluateMatch calculates the match cost of current solution according

to Eq. 7.1. The best solutions of different length are saved in a global variable.

The match cost of current solution is compared to the same length best solution

that has been found so far. The length of the current solution is recorded by

Depth, so the match cost of the current solution will be compared to the stored

best solution that also has length Depth. If the current solution is better than

the stored best solution, the current solution will replace the stored best solution.

7.2.5 Final Result Filtering

After graph matching, the best solutions of different length are combined together.

For two graphs G1 and G2, assuming that longest possible sequence of matches

has length k, we have k sequences of matches S1, S2, · · · , Sk, with

Si = {(xi,1, yi,1), (xi,2, yi,2), · · · , (xi,i, yi,i)} the best sequence of matches having

length i. All these sequences of matches are then combined together to form one

final sequence S = S1 ∪ S2 ∪ · · · ∪ Sk. It is obvious that this final sequence of

matches S may contain duplicate matches and false matches. The final sequence

of matches is then cleaned to remove duplicate matches. To reduce false matches,

we next apply a filter on the final sequence S. The filter is based on the similarity

of fuzzy spatial relations of the matched mass-like objects to the boundaries of

the breast and the relative gray level differences.
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The similarity of fuzzy spatial relations of the matched mass-like objects to

the boundary is computed as follows. For matched pair (xi, yi), the similarity di

of fuzzy spatial relation of xi, yi to the corresponding boundaries of current and

previous mammogram Bc, Bp is defined as

di =
∑

t=”left of”, ”right of”, ”above”, ”below”

|µt(xi, Bc)− µt(yi, Bp)|.

If di > E(D)+σ(D), matched pair (xi, yi) is removed. Here D = {d1, d2, · · · , dn}
with n being the number of total pairs in the final sequence and E(D), σ(D) are

the mean and standard deviation of D.

The fuzzy spatial relation promises compatible spatial relations between the

mass-like objects but does not promise compatible gray level of the matched mass-

like objects. Thus it is possible that a bright mass-like object in one mammogram

matches to a dark mass-like object in the other mammogram. The relative gray

level difference is used to remove these false matches. As the intensities of mass-

like objects of different mammograms are not directly comparable, the gray level

of one mammogram is transformed to match the gray level histogram of the

paired mammogram. The first step of this transformation is to calculate the

cumulative histograms of the intensity inside the breast area. For intensity level

t, the cumulative histogram f(t) of the mammogram is defined as

f(t) =
1

Q

t∑
i=0

Hhisto(i),

where Hhisto is the intensity histogram calculated inside the breast area, and Q

is the total number of pixels inside the breast area. Let f1 be the cumulative

histogram of the first mammogram and f2 be the cumulative histogram of the

paired mammogram. Each gray level t in f1 is then transformed to

t̃ = f−1
2 (f1(t)).

After the histogram match, the relative gray level difference of matched pair (x, y)

was measured as

Diff =
|E(x)− E(y)|
E(x) + E(y)

,

where E(x) is the mean gray level of mass-like object x.

A threshold ξ is then set, and those pairs with Diff > ξ are filtered out. In

this thesis, based on a training dataset, ξ is set to 2.45.



Chapter 8

Experiments and Results

In this chapter we investigate the performance of the proposed registration method.

The method is applied both to constructed mammogram pairs and to real tem-

poral mammogram pairs. The constructed mammogram pairs are used to inves-

tigate the performance of the matching process independent of the segmentation

process. Section 8.1 introduces the experiments with constructed mammogram

pairs. To evaluate the performance of the method on real temporal mammo-

grams, 95 pairs of temporal mammograms are selected from a local screening

archives. Section 8.2 describes the experiments on the temporal mammograms.

8.1 Experiments with Constructed Mammogram

Pairs

In this thesis, the results of the AP segmentation algorithm (Chapter 3) are used

as the input to the proposed registration method. Good matching depends on the

quality of the segmentation step as well as the quality of the matching algorithm

itself. In order to evaluate the performance of the matching step independently

of the segmentation, this section describes the performance of the matching pro-

cess on constructed mammogram pairs. By this, we mean that the matching

process is applied to a real mammogram and a derived version of the mammo-

gram obtained by applying known transformations to the original mammogram.

The constructed mammogram is designed to imitate the deformation that can be

expected over time. It provides an ideal ”segmentation” which allows evaluation

of the performance of matching process eliminating a poor segmentation effect.

Artificial data are used in many mammogram registration applications to eval-

uate the registration method. Evaluation of complex registration with artificial

data is convenient as ”true answers” are already known. In many of these appli-

cations, a new mammogram is created by transforming an existing real mammo-

gram. The registration method is then applied to the real mammogram and the

87
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transformed mammogram. A slightly different approach is taken in this section.

The proposed method is also applied to the real mammograms and their derived

images. The real mammograms are segmented using the AP algorithm resulting

label images. To create an ”ideal” segmentation and thus to avoid segmentation

effect, instead of using AP to segment the derived images, the ”segmentation”

to the derived images is realized by transforming the label images of the original

mammograms in a same way that is used to obtain the derived images from the

original mammograms. This way, the generated label images and their original

label images originate from the same segmentations.

8.1.1 Database and Methods

For this experiment, 18 MLO view mammograms from Mini-MIAS database were

used. As there were no particular requirements to the images, we simply used

the first 20 images (mdb001 to mdb020). Images mdb007 and mdb008 were

excluded because relevant data of these two images, such as pectoral muscle

boundary and breast boundary, were not available. All images were preprocessed

as described in Section 3.4.1 so that the resulting images were of size 256 × 256

which corresponds to spatial resolution of 800 µm per pixel. All 18 images were

preprocessed to obtain the pectoral muscle boundaries and breast boundaries as

described in Chapter 4 and Chapter 5.

All 18 images were segmented by the AP segmentation algorithm. A label

image was generated from the segmentation for each mammogram with all pixels

belonging to a same segmented component being labelled by the same number.

The label image was relabelled, shifted and warped to form new label images. By

relabelling, shifting and warping the label image, the resulted new label images

contained exactly the same segmentations. The shifting and warping are de-

signed to imitate the deformation that can be expected between temporal pairs

of mammograms. With shifting and warping, the images are slightly deformed.

Relabelling does not change the images at all, it simply relabels each segmented

component.

The registration method was applied to the image pairs consisting of the orig-

inal images and the derived images. All images were filtered before the matching

process by both template filter and feature filters. The pre extracted pectoral

muscle boundary and breast boundary were used to create a template for each

image. To set the feature filters, a different set of 20 mammograms was selected

from Mini-MIAS database. The images were selected based on the criteria that

a mass exists in the image (either benign or malignant). All 20 images were

segmented using AP algorithm. We then recorded the component that mostly

covers the mass for each image. We call these components the mass objects. Fea-

tures were calculated for all mass objects and were used to set the feature filter

and mass-like score. The features used for the feature filter include area, s1, s2,
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relint, ratio. In this experiment, the features were not normalized as introduced

in Section 6.5. The settings of the filters are as follows.

• area < 10

• s1 < 0.35

• s2 < 0.18

• relint < 1.2

• ratio > 8.0 and relint < 1.38

• area > 1000 and s1 < 0.5

The mass-like score was calculated based on four features, s1, dradi, pri, relint.

Based on the calculated features of mass objects and Fisher LDA, the mass-like

score was calculated as follows

mass-like score = 0.8649× s1 + 0.0073× dradi

+ 0.1930× pri+ 0.4633× relint (8.1)

Based on the mass-like score, for the convenience of processing, in the exper-

iments, only components with their mass-like score in the top 20 were kept for

the matching process. In many images, however, the total number of remaining

components was less than 20. In these cases, all remaining components were kept

for the matching.

Three separate experiments were conducted. In the first experiment, described

in section 8.1.2, no transformation was applied to create the second image. The

second image was created by relabelling the segments in the original image. In

the second experiment, described in section 8.1.3, the second image was created

by applying a shift to the original mammogram and segmentation to the second

image was obtained by relabelling the original label image and then applying

the same shift. In the third experiment, described in section 8.1.4, the second

image was created by warping the original mammogram and was segmented by

relabelling and warping the original label image. Figure 8.1 outlines these three

experiments. For convenience, in the following sections, the second images will be

called the relabelled images, the relabelled and shifted images and the relabelled

and warped images respectively.

Several parameters were used to describe the graph matching results. Total

matches found is the number of matches that were identified by the graph match-

ing process. As the relation between the original images and their constructed

images is preknown, the correspondence between the mass-like objects of origi-

nal and constructed images can be pre-identified. Total true matches represents
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Figure 8.1. Outline of three experiments.

the maximal number of matches that can be identified. Note that in the shifted

and warped image test, as the images are deformed, the number of the mass-like

objects that will attend the graph matching process may not be the same for

the original images and the deformed images. For example, for a mammogram

M1, after the filtering, there may be only 15 mass-like objects left for the graph

matching, and for its deformed version M2, there may be 13 mass-like objects left.

Even the leftover mass-like objects in M2 may not correspond mass-like objects

in M1 since, for example, a mass-like object may lie in the strip of the image that

is removed during the shifting process. Hence the total true matches for this pair

may be less than 13. Correct matches found is the number of matches that were

identified by the graph matching process and that are true matches. The correct

match rate (cmr) is defined as cmr = correct matches found / total matches

found. The match efficiency (me) is calculated as

me =
correct matches found

total true matches
− total matches found - correct matches found

total true matches
.

8.1.2 Relabelled Images

In this experiment, the second image is the same as the original mammogram.

To segment the second image, for each label image of the original mammogram,

a second label image was obtained by randomly re-assigning the labels in the

original label image. Thus the segmentation is identical for the two images except

that labels of the segments do not match. This simple experiment checks the

performance of the matching process without the influence of the segmentation

process. Table 8.1 shows the results of matching on relabelled images. The table

shows that the registration method obtains perfect results under the most ideal

circumstances with 100% of correct match rate and match efficiency in all 18

images. An example is shown in Figure 8.2.
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Figure 8.2: Example of matching results for a relabelled image. (a) is

the original mdb019. Eight matched mass-like objects are marked out

with white boundary in (b) and (c). Mass-like objects in (b) are from

the original labelled image and mass-like objects in (c) are from the

relabelled image.

8.1.3 Relabelled and Shifted Images

In this experiment, to create the segmentation of the shifted images, the original

label images are first relabelled, and then shifted. The same shifting method as

described in Chapter 3, Section 3.4.1 is used to create both the second image and

its label image. Breast boundaries of second images are obtained by shifting the

boundaries of the original images in the same way. Table 8.2 lists the results of

the matching on the original images and the relabelled and shifted images. The

proposed method reached almost perfect results on all 18 images, with 100% of

correct match rate on all 18 images and 100% match efficiency on most of images.

Figure 8.3 shows an example of matching results.
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total matches total true correct matches
mammogram found matches found cmr me

mdb001 20 20 20 100% 100%
mdb002 13 13 13 100% 100%
mdb003 9 9 9 100% 100%
mdb004 13 13 13 100% 100%
mdb005 20 20 20 100% 100%
mdb006 14 14 14 100% 100%
mdb009 11 11 11 100% 100%
mdb010 14 14 14 100% 100%
mdb011 17 17 17 100% 100%
mdb012 17 17 17 100% 100%
mdb013 17 17 17 100% 100%
mdb014 17 17 17 100% 100%
mdb015 19 19 19 100% 100%
mdb016 17 17 17 100% 100%
mdb017 10 10 10 100% 100%
mdb018 5 5 5 100% 100%
mdb019 20 20 20 100% 100%
mdb020 18 18 18 100% 100%

Table 8.1. Matching results for relabelled images.

total matches total true correct matches
mammogram found matches found cmr me

mdb001 20 20 20 100% 100%
mdb002 12 12 12 100% 100%
mdb003 9 9 9 100% 100%
mdb004 10 11 10 100% 90.1%
mdb005 20 20 20 100% 100%
mdb006 12 12 12 100% 100%
mdb009 9 10 9 100% 90%
mdb010 13 13 13 100% 100%
mdb011 16 17 16 100% 94.1%
mdb012 17 17 17 100% 100%
mdb013 16 17 16 100% 94.1%
mdb014 16 16 16 100% 100%
mdb015 16 16 16 100% 100%
mdb016 16 16 16 100% 100%
mdb017 9 9 9 100% 100%
mdb018 4 4 4 100% 100%
mdb019 18 18 18 100% 100%
mdb020 17 17 17 100% 100%

Table 8.2. Matching results for relabelled and shifted images.
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Figure 8.3: Example of matching results for a relabelled and shifted

image. (a) is the original mdb019. (b) is the shifted version of mdb019.

Eight matched mass-like objects are marked out with white boundary

in (c) and (d). Mass-like objects in (c) are from the original labelled

image and mass-like objects in (d) are from the relabelled and shifted

image.
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8.1.4 Relabelled and Warped Images

For this test, the proposed matching method is applied to the original images

and their warped images. Segmentation of the warped images is obtained by

first relabelling, and then warping the label images of the original mammograms.

The same warping method as used in Chapter 3, Section 3.4.1 is used for this

experiment. In this experiment, the breast boundaries of the warped images are

obtained by using the AP segmentation based initial breast boundary extraction

method (see Section 5.1) on the warped images. Results on all 18 images are

presented in Table 8.3. The matching failed dramatically in one case (mdb017).

The correct match rate is high in most of the images with 100% in 14 images.

However, match efficiency varies between images. The failed case (mdb017) is

shown in Figure 8.4 and Figure 8.5 shows a more typical example.

total matches total true correct matches
mammogram found matches found cmr me

mdb001 13 13 13 100% 100%
mdb002 6 11 4 66.7% 18.1%
mdb003 7 7 7 100% 100%
mdb004 11 13 11 100% 84.6%
mdb005 16 17 16 100% 94.1%
mdb006 14 14 14 100% 100%
mdb009 4 4 4 100% 100%
mdb010 8 13 7 87.5% 46.1%
mdb011 8 9 7 87.5% 66.7%
mdb012 9 16 9 100% 56.2%
mdb013 12 12 12 100% 100%
mdb014 13 16 13 100% 81.3%
mdb015 8 11 8 100% 72.7%
mdb016 14 17 14 100% 82.4%
mdb017 3 3 0 0% -100%
mdb018 3 5 3 100% 60%
mdb019 16 16 16 100% 100%
mdb020 16 18 16 100% 88.9%

Table 8.3. Matching results for relabelled and warped images.
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Figure 8.4: Example of matching results of mdb017 and its relabelled

and warped image. (a) is the original mdb017. (b) is the warped

image of mdb017. Three matched mass-like objects are marked out

with boundaries (both in black and white) in (c) and (d). Mass-like

objects pointed out by the same number in (c) and (d) are the matched

mass-like objects. Mass-like objects in (c) are from the original image

and mass-like objects in (d) are from the relabelled and warped image.
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Figure 8.5: Example of matching results for a relabelled and warped

image. (a) is the original mdb019. (b) is the warped image of mdb019.

Eight matched mass-like objects are marked out with white boundary

in (c) and (d). Mass-like objects in (c) are from the original image and

mass-like objects in (d) are from the relabelled and warped image.
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8.2 Experiments with Real Temporal Mammo-

grams

Although artificial data is convenient in evaluation of complex registration prob-

lems, Marias et al. (2005) pointed out that the artificial data can not mimic

the actual changes that happened on the breast. Further more, the registered

pairs are not generally expected to be identical as breast structure may change

significantly over time.

In this section, the real temporal mammograms are used to evaluate the per-

formance of the proposed registration method. The difficulty with real temporal

data is that the true correspondences between the mass-like objects of tempo-

ral mammograms are never known with absolute certainty. As breast structure

can be significantly different between consecutive examination, and due to the

compression and twist that happens during the image acquisition, correspondence

between the mass-like objects of temporal mammograms may not exist at all. For

this reason, as also pointed out by Marias et al. (2005), the registration method

needs to be evaluated both with quantitative measures and by the judgment of

experts. In this section, the matching results are evaluated in two ways. First,

results are visually assessed and classified into ”good”, ”average”, ”poor” and

”unknown”. Second, the match results are applied directly to the mass detection

to reduce the false detection rate of an existing mass detection scheme.

8.2.1 Dataset

The dataset used for the experiments is composed of 95 temporal mammogram

pairs. Each pair consists of a current mammogram that was called back at screen-

ing and a previous same view mammogram taken for the same breast. The mam-

mograms were randomly selected from a local screening archives from the same

time period under the restriction that the woman was recalled based on the cur-

rent mammogram and that a previous mammogram (less than 3 years old), that

had not resulted in recall, was available.

Images were digitized using a Vidar Diagnostic Pro Advantage digitizer (48

µm spatial resolution and 12 bit depth). All images are originally 5296 × 3478

pixels in size. For processing, images were downsampled by a factor of 8×8 → 1.

The mammogram pairs were divided into a training dataset and a testing

dataset. Table 8.4 summarizes the information of each dataset. The train-

ing dataset contains 51 temporal mammogram pairs, 25 of which are CC views

and 26 are MLO views. This set contains 21 malignant masses (confirmed by

histopathology). The testing set contains 44 temporal mammogram pairs, with

19 CC view mammogram pairs, 25 MLO view mammogram pairs and 23 malig-

nant masses. This set became available later than the training dataset and thus

is used as testing dataset.
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training dataset testing dataset

no. of image pairs 51 44

no. of malignant images 21 23

MLO views 26 25

CC views 25 19

Table 8.4: Composition of the datasets from a local database used for

the experiments.

All malignant images in both datasets were annotated by an experienced

radiologist. For each malignant mass, a box was drawn by the radiologist to

include the whole mass. The coordinates of four vertices of the box were stored

in a file.

8.2.2 Feature Filter and Mass-like Score

Parameters involved in the feature filters and mass-like score (see Section 6.4 and

Section 6.5) were selected based on the training dataset. For this purpose, for

each malignant mass in the training dataset, based on the radiologist marked

box, we manually pick up the segmented component that best covers the mass

(Fig. 8.6). Features were then calculated for these manually picked components.

Parameters used in the feature filters were set as the minima or maxima of the

corresponding features measured on the manually recorded masses. In this way,

the filters did not remove the malignant masses.

Based on the training dataset, the filters were set as follows.

• −0.58 < area < 1.6

• −2.38 < s1 < 1.78

• −1.1 < ratio < 1.28

• −1.63 < s2 < 2.24

To set the coefficients for the mass-like score calculation, the segmented com-

ponents of each mammogram were filtered by both the template filter and the

feature filters. Features listed in Section 6.4 were calculated on all remaining

components. Next, the remaining components of all mammograms in the training

dataset were put together and divided into two groups, those that were manually

picked up as malignant masses forming one group, all other components that are

not associated with malignant masses forming the other group. Figure 6.5 shows

the distribution of these two groups. Coefficients used to compute the mass-like
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Figure 8.6: Examples of malignant mass components. The images in

the left column show three malignant masses enclosed in boxes marked

by the radiologist. The components that best cover the masses are

shown in the corresponding right column with the boundaries of the

components marked out in black line.
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score were optimized using Fisher LDA on the two groups. In this thesis, the

coefficients were

mass-like score = −0.10820143991282× solidity + (−0.00251710862324)× ratio

+ (−0.12595050961751)× areas+ (−0.53221670446709)× dradi

+ 0.12273889473518× pri+ 0.79985455221125× radi

+ (−0.10625337678614)× circularity + 0.13674010732452× c2

+ 0.06594075503656× c3 (8.2)

8.2.3 Evaluation Based on Visual Perception

The process of visual perception evaluation is as follows. First, the examiner

identified several correspondences between the mammograms. Distinct objects

(landmarks), such as line structures or clear masses, were picked up to establish

the correspondence. Figure 8.7 shows two examples with corresponding objects

marked. The matched mass-like objects were then compared, based on those

identified correspondence. A match was ”good” if according to the reference

landmarks, they were exactly the same mass-like object. If the mass-like objects

were not exactly the same, but were very close by, they were identified as ”aver-

age”. ”poor” matches refer to those that were clearly different mass-like objects,

and also not close by mass-like objects. In some cases, even with clearly identified

corresponding landmarks, it was still difficult to identify a match as correspond-

ing well or not. These matches were marked as ”unknown”. Figures 8.8 - 8.11

give examples of each type.

An average of 13.2 matches were made over all the mammogram pairs from

both data sets. 63.5% of matches were identified as ”good”, and 23.6% as ”aver-

age”. The percentages of ”poor” and ”unknown” were 10.9% and 2% respectively.

An example of matching appears in Figure 8.12.

Figure 8.7: Examples of manual matching. In mammogram pair (a)

and (b), three correspondences, two elongated structures (arrows) and

one bright region (circle) are marked out. In (c) and (d), 3 correspond-

ing bright regions are identified in the pair.
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Figure 8.8: Example of a good match. (a)(b) are paired mammograms

and (c)(d) are the same as (a)(b) with one matched mass-like object

marked out by a white border. This match was identified as a ”good”

match.

Figure 8.9: Example of an average match. (a)(b) are paired mammo-

grams and (c)(d) are the same as (a)(b) with one matched mass-like

object marked out by a white border. This match was identified as an

”average” match.
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Figure 8.10: Example of a poor match. (a)(b) are paired mammograms

and (c)(d) are the same as (a)(b) with one matched mass-like object

marked out by a white border. The match in this example is identified

as ”poor”.

Figure 8.11: Example of an unknown match. (a)(b) are paired mam-

mograms and (c)(d) are the same as (a)(b) with one matched mass-like

objects marked out by a white border. Although the matched in (c)

and (d) are in relatively similar position, the nearby structures, espe-

cially the elongated structures close to the marked mass-like objects

are different. This match was identified as ”unknown”.

8.2.4 Evaluation Based on False Positive Detection Re-

duction

In mammography, a new born malignant mass means that no malignant mass was

found in the prior examination but it exists in current mammogram. Detection

of new born malignant masses is one of the most important task in mammog-

raphy. In this experiment, the testing images were selected so that masses were

not found in the previous mammogram but found in the current mammogram

(Section 8.2.1). These images imitate the most common scenario in mammogram

interpretation: radiologists compare the current mammograms with the previous

ones, which do not have malignant masses detected, to see if there are new born

malignant masses. With these images, we assume that the malignant masses in

current mammograms do not have matches in the prior mammograms.
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Figure 8.12: Example of matching results. (a) and (b) are the mammo-

gram pair. Matched mass-like objects of mammogram (a) are displayed

in (c)(e)(g) with mass-like objects marked out by a white boundary.

(d)(f)(h) are the same as (b) with matched mass-like objects inclosed

by a white line. Matched mass-like objects are in similar location in

(c) and (d), (e) and (f), (g) and (h).

Figure 8.13: ROC curves with and without graph matching. (a) train-

ing data, (b) test data.

In this section, the results of proposed registration method was used to im-

prove the performance of new born malignant mass detection by reducing the false

positive detections. The process of using the AP algorithm to segment a mammo-

gram, extracting features for segmented components, assigning a mass-like score

to each component and using this score to classify each component as malignant

or not, constitutes a mass detection scheme. We refer to this scheme as mass

detection without matching. Under our assumption, mass-like objects that are

associated with true malignant masses do not have corresponding components in

the previous mammogram, thus a mass-like object in current mammogram that

was matched to a mass-like object in the previous mammogram is not likely to

be a true mass. The match results are used to reduce the false positive detections
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by rejecting the candidate masses detected without matching if the associated

mass-like object is matched to a mass-like object in the previous mammogram.

The resulting detection scheme will be referred to as the detection with matching.

To test the contribution of the matching method, separate ROC curves were

constructed for detection without matching and for detection with matching for

both the training set and the testing set (Figure 8.13). For the training set, the

Az score (area under the ROC curve) with graph matching was 0.80 while Az

was 0.79 without graph matching. For the testing set, Az was 0.69 with graph

matching and 0.62 without.

8.3 Discussion

cmr measures how correct the registration method is in corresponding the mass-

like objects of multiple mammograms of the same breast. me measures how

efficient the method is in identifying the corresponding mass-like objects. False

matches falsely bind up the mass-like objects belonging to different parts of breast

and thus prejudice the registration and result in false information. On the other

hand, very few matches can not register the multiple mammograms well. How-

ever, once there are enough matches to establish good correspondence, the total

number of matches is not important. This is the reason why cmr is defined in

terms of the total matches found instead of the total true matches. The cmr val-

ues for the experiments with relabelled and warped images (Section 8.1.4) indicate

that mostly correct matches are found. This leaves the question as to whether

sufficient matches are found to establish a useful correspondence. This cannot be

judged by experiments with constructed mammograms as in sections 8.1 but can

only be judged within a real application. The results of section 8.2 indicate that,

at least in this application, the number of correspondences is sufficient.

Positioning of the breast is an important factor to many mammogram regis-

tration methods. In fact, correct positioning of the breast is a prerequisite for a

nipple location based registration method (Engeland et al. Nov. 2003). Differ-

ently positioned mammogram pairs have different profile of the breasts and so

may cause difficulties to mammogram registration methods based on the align-

ment of breast boundaries. As mainly based on the internal structure of the

breast, the proposed method can cope with differently positioned mammogram

pairs and mammograms with varying sizes. Figures 8.14 and 8.15 show examples

of these situations.

For two cases in the training set, and one in the testing set, the segmentation

step identified a bright region in the previous mammogram that was similar in

appearance and location to the true mass in the current mammogram (Fig. 8.16,

8.17 and 8.18). Since a matching mass was found in the previous image, the

true mass was rejected as a false positive. However, since a mass-like object was

detected in the previous image, it is possible that the mass would have been
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Figure 8.14: Example of differently positioned breasts. (a) and (b) are

the paired mammogram. (c) and (d) are the same as (a) and (b) except

that the matched mass-like objects are marked out by colored bound-

ary with the matched mass-like objects in same color. The breasts in

(a) and (b) are in totally different size, the size of pectoral muscles are

different. Several good correspondence were found in this case.

Figure 8.15: Another example of differently positioned breasts.

(a)(b)(c) are the same mammogram and (d)(e)(f) are the same paired

mammogram of (a)(b)(c). The same color line enclosed mass-like ob-

jects in (a) and (d), (b) and (e), and (c) and (f) are the matched

mass-like objects.
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Figure 8.16: Example of a falsely rejected true mass in the training

set. A component in the current mammogram (left) associated to a

true mass was matched to a component in the previous mammogram

(right) and so was rejected as a true mass.

detected at the previous round if graph matching had been used to compare the

image from the screening round before the previous round. Such an image was not

available for this study and so this could not be tested. Also, it is not possible to

know if the bright region found in the previous image was indeed an early stage of

the true cancer found in the current image or a bright region unrelated to cancer.

In this study, the performance was measured against the performance of the

without-matching scheme. However, the without-matching scheme was not de-

signed for mass detection on its own. A better test would be to compare results

with state-of-the-art mass detection methods on a common set of images. Un-

fortunately, implementations of such methods were not available. Accordingly,

a good estimate of the contribution of graph matching to the reduction of false

positive detections is not yet known.
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Figure 8.17: False rejection of a true mass in the training set. (a)

current mammogram. (b) previous mammogram. (c) Same as (a)

but with the boundary of a true mass marked according to the AP

segmentation results. (d) Same as (b) but with the boundary marked

according to the AP segmentation results. Since the mass was detected

in the previous image, the true mass was rejected as a false positive in

the current screening round.

Figure 8.18: False rejection of a true mass in the testing set. A malig-

nant mass in current mammogram (a)(c) was matched to a non-mass

component of previous mammogram (b)(d).



Chapter 9

Final Remarks and Conclusion

This chapter consists of final remarks in Section 9.1 and the conclusion of the

thesis in Section 9.2.

9.1 Final Remarks

In the proposed method, the breast boundary plays an important role, both

during the graph matching process and in the final filter step. For this reason,

a substantial effort was made to develop a very reliable method for finding the

breast boundary (Section 5.2). The breast boundary as an entire entity provides a

global spatial reference. Since the entire boundary is viewed as a single object, the

extraction of this global reference is much more robust than individual landmark

points. However, because the breast boundary plays such an important role,

when the boundary is not determined correctly, graph matching results are likely

to be very poor. Figure 9.1 illustrates such an example. This example is an

extreme case and failed because the natural boundary of the breast lies, in part,

outside the mammogram. For images in which the entire boundary appears on

the mammogram the methods developed here work extremely well. For a full

clinical application of graph matching to false positive mass reduction or to mass

detection, a method must be found to treat cases in which the mass boundary

extends outside the mammogram.

In this thesis, the effectiveness of the AP segmentation was only roughly es-

timated based on the number of successfully isolated true masses in the training

set and the AP segmentation method does not find boundaries of masses that

necessarily agree well with the true boundary (Section 3.4.3). The results of the

AP segmentation was used as the input to the graph matching process without

more careful effectiveness evaluation. This was done deliberately for three rea-

sons. (i) If a method relies heavily on very accurate boundaries, this provides

another opportunity for the method to fail at an early stage. (ii) Since changes

in the boundary are expected for the same object in temporal images, the details

108
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Figure 9.1: Example of poor boundary resulting in false matches. (a)

and (d) are the paired mammograms. (b) and (e) are the templates

of (a) and (d) with breast area in white and background in black. (c)

and (f) display several selected matched mass-like objects with each

matched mass-like objects in same color. Many false matches were

formed in this case because of the unprecise boundaries.

of boundaries may confuse rather than enhance matching. (iii) State of the art

mass detection algorithms, though reported in the literature to some extent, are

not readily available for implementation. However, it may be possible to im-

prove results by employing a very good mass segmentation scheme. Although the

same mass may have different boundary details between images, these differences

could be absorbed in the matching criteria. A careful study on a large data base

could determine the nature of changes in boundary details expected of malignant

masses compared to benign masses or non-mass components.

Although the experimental results show improvements on new born malig-

nant mass detection by reducing the false positive rate (see Section 8.2.4) and

capability in corresponding mass-like objects in temporal mammograms (see Sec-

tion 8.1 and 8.2.3), the proposed method is not ready for clinical use. A clinical

ready program should take care of all possible situations, such as breasts with

boundaries that spill outside the mammogram (Fig. 9.1). Another reason for

the proposed method not being clinical ready is, the without-matching scheme

used in the experiments (see Section 8.3) on its own was not designed for mass
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detection.

In this thesis, the proposed method was applied to both MLO view and CC

view mammogram pairs without any modification. As no particular restrictions

are applied, the method can be applied to other type multiple mammograms

(MLO-CC, bilateral mammograms). However, in MLO-CC mammogram pairs,

the mass-like objects may not have compatible spatial relations between them.

As the proposed method is based on the spatial relations between the mass-like

objects, the proposed registration method may produce poor results in MLO-CC

view mammogram pairs.

9.2 Conclusion

In this thesis, we have presented a temporal mammogram registration method. In

this method, spatial relationships between the mass-like objects were used to es-

tablish the correspondence between mass-like objects of temporal mammograms.

The establishment of the correspondence is realized by using the graph matching

to find a common subgraph between two graphs representing two mammograms

of a mammogram pair.

We have tested the proposed method on both artificial data and real temporal

mammograms. Artificial data were made by relabelling, shifting and warping

the label images, which were resulted from the segmentation, for the purpose

of investigating the performance of the method without the affection of poor

segmentation. Experiments on artificial data provided initial evaluation of the

proposed method. The results of the proposed registration method in relabelled

and shifted image test were perfect. On the warped image test, a mean cmr of

91% was realized (when a failed cased was excluded, the mean cmr was 97%).

For the real temporal mammogram test, 95 mammogram pairs were selected

out from a local archive. The selected mammogram pairs were divided into a

training dataset and a testing set. The proposed method was trained using the

training dataset and was then applied to the testing dataset. The results were

evaluated based on both visual perception and false positive reduction. Based

on visual perception, an average of 63.5% of matches were identified as ”good”,

23.6% of them were ”average”. The results were ”poor” on 10.9% of the matches

and ”unknown” on 2% of the matches. For the quantitative assessment, the

matching results were used to reduce the false detection rate. On both sets, Az

was improved with graph matching. For the training set, the Az score improved

from 0.79 to 0.80 with graph matching. For the testing set, Az rise from 0.62 to

0.69 with graph matching.

The proposed registration method solves an important problem in the regis-

tration of mammograms. The method inherently allows for the natural changes

in breast over time and the differences due to image acquisition. However, the
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method as presented here is not ready for incorporation into existing hardware

for computer-aided mammography (Section 9.1). However, as also described in

section 9.1, the method does allow for natural extensions that could provide sig-

nificant improvement in the use of multiple mammogram in the early detection

of breast cancer.



Bibliography

Abdel-Mottaleb, M., Carman, C., Hill, C. & Vafai, S. (1996), Locating the bound-

ary between the breast skin edge and the background in digitized mammo-

grams, in ‘Proceedings of the 3rd international workshop on digital mam-

mography’, Chicago IL, pp. 467–470.

Abdulkader, A. M. (1998), Parallel Algorithms for Labelled Graph Matching, PhD

thesis, Colorado School of Mines.

Ackerman, L. V. & Gose, E. E. (1972), ‘Breast lesion classification by computer

and xeroradiography’, Cancer 30, 1025–1035.

AIHW (Australian Institute of Health and Welfare) and AACR (Australasian

Association of Cancer Registries) (2007), Cancer in Australia: an overview,

2006, Cancer series no. 37. Cat. no. CAN 32., Canberra: AIHW.

American Cancer Society (2007), Breast Cancer Facts & Figures 2007-2008, At-

lanta: American Cancer Society, Inc.

American Cancer Society (2008), Cancer Facts & Figures 2008, Atlanta: Ameri-

can Cancer Society.

Auscher, P. (1992), ‘Wavelet bases for L2(R) with rational dilation factor’,

Wavelets and their applications, Boston Jones and Barlett pp. 439–451.

Australian Institute of Health and Welfare & National Breast Cancer Centre

(2006), Breast cancer in Australia: an overview, 2006, Cancer series no. 34.

cat. no. CAN 29., Canberra: AIHW.

Australian Institute of Health and Welfare 2008 (2007), BreastScreen Australia

Monitoring Report 2004-2005, Cancer series no. 42. Cat. no. CAN 37., Can-

berra: AIHW.

Bajger, M., Ma, F. & Bottema, M. J. (2005), Minimum spanning trees and active

contours for identification of the pectoral muscle in screening mammograms,

in B. C. Lovell, A. J. Maeder, T. Caelli & S. Oursellin, eds, ‘Digital Image

Computing Techniques and Applications’, IEEE Computer Society Confer-

ence Publishing Service, Cairns, Qld Australia.

112



BIBLIOGRAPHY 113

Baussard, A., Nicolier, F. & Trucheter, F. (2004), ‘Rational multiresolution anal-

ysis and fast wavelet transform: application to wavelet shrinkage denoising’,

Signal Processing 84 ELSEVIER pp. 1735–1747.

Bennett, R. L., Blanks, R. G. & Moss, S. M. (2006), ‘Does the accuracy of single

reading with CAD (computer-aided detection) compare with that of double

reading?: A review of the literature’, Clinical Radiology 61, 1023–1028.

Besag, J. (1986), ‘On the statistical analysis of dirty pictures’, J. Roy. Stat. Soc.

48, 259 – 302.

Bick, U., Giger, M., Schmidt, R., Nishikawa, R., Wolverton, D. & Doi, K. (1995),

‘Automated segmentation of digitized mammograms’, Acad Radiol 2(1), 1–9.

Bister, M., Cornelis, J. & Rosenfeld, A. (1990), ‘A critical view of pyramid seg-

mentation algorithms’, Pattern Recognition Letters 11(9), 605–617.

Bloch, I. (1999), ‘Fuzzy relative position between objects in image processing:

a morphological approach’, IEEE Trans. on Pattern Analysis and Machine

Intelligence 21(7), 657–664.

Bookstein, F. L. (1989), ‘Principal warps: thin-plate splines and the decom-

position of deformations’, IEEE Trans. on Pattern Analysis and Machine

Intelligence 11(6), 567–585.

Brem, R. F., Baum, J., Lechner, M., Kaplan, S., Souders, S., Naul, L. G.

& Hoffmeister, J. (2003), ‘Improvement in sensitivity of screening mam-

mography with computer-aided detection: a multiinstitutional trial’, AJR

181, 687–693.

Brem, R. F., Hoffmeister, J. W., Zisman, G., DeSimio, M. P. & Rogers, S. K.

(2005), ‘A computer-aided detection system for the evaluation of breast can-

cer by mammographic appearance and lesion size’, AJR 184, 893–896.

Brun, L. & Kropatsch, W. G. (2003), Construction of combinatorial pyramids,

in E. Hancock & M. Vent., eds, ‘Graph Based Representations in Pat-

tern Recognition, Lecture Notes in Computer Science’, Vol. 2726, Springer,

Berlin, pp. 1–12.

Brzakovic, D., M., L. X. & Brzakovic, P. (1990), ‘An approach to automated

detection of tumors in mammograms’, IEEE Trans. Med. Imaging 9, 233–

241.

Bunke, H. (2000), ‘Recent developments in graph matching’, Proc. of ICPR’00

2, 117–124.



BIBLIOGRAPHY 114

Caulkin, S., Astley, S., Asquith, J. & Boggis, C. (1998), Sites of occurence of ma-

lignancies in mammograms, in ‘Proceedings of the 4th International Work-

shop on Digital Mammography’, IWDM 1998, Nijmegen, The Netherlands,

pp. 279–282.

Chan, H.-P., Wei, D., Helvie, M. A., Sahiner, B., Adler, D. D., Goodsitt, M. M. &

Petrick, N. (1995), ‘Computer-aided classification of mammographic masses

and normal tissue: Linear discriminant analysis in texture feature space’,

Phys. Med. Biol. 40, 857–876.

Chandrasekhar, R. & Attikiouzel, Y. (1997), ‘A simple method for automat-

ically locating the nipple on mammograms’, IEEE Trans. Med. Imaging

16(5), 483–494.

Conte, D., Foggia, P., Sansone, C. & Vento, M. (2004), ‘Thirty years of graph

matching in pattern recognition’, Internat. J. Pattern Recognit. Artif. Intell.

18(3), 265–298.

Dubes, R. C. & Jain, A. K. (1989), ‘Random field models in image analysis’, J.

Applied Statistics 16, 131 – 164.

Engeland, S. V., Snoeren, P., Hendriks, J. & Karssemeijer, N. (Nov. 2003), ‘A

comparison of methods for mammogram registration’, IEEE Trans. Med.

Imaging 22(11), 1436–1444.

Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M. & Boyle, P. (2007),

‘Estimates of the cancer incidence and mortality in europe in 2006’, Ann

Oncol. 18(3), 581–592.

Ferrari, R. J., Rangayyan, R. M., Desautels, J. E. L., Borges, R. A. & Frère, A. F.

(2004a), ‘Automatic identification of the pectoral muscle in mammograms’,

IEEE Trans. Med. Imaging 23(2), 232–245.

Ferrari, R. J., Rangayyan, R. M., Desautels, J. E. L., Borges, R. A. & Frère,

A. F. (2004b), ‘Identification of the breast boundary in mammograms using

active contour models’, Med. Biol. Eng. Comput. 42, 201–208.

Freeman, J. (1975), ‘The modelling of spatial relations’, Computer Graphics and

Image Processing 4, 156–171.

Freer, T. W. & Ulissey, M. J. (2001), ‘Screening mammography with computer-

aided detection: prospective study of 12,860 patients in a community breast

center’, Radiology 220, 781–786.

Garey, M. R. & Johnson, D. S. (1979), ‘Computers and intractability: A guide

to the theory of np-completeness’, W. H. Freeman, New-York .



BIBLIOGRAPHY 115

Geman, S. & Geman, D. (1984), ‘Stochastic relaxation Gibbs distributions, and

the Bayesian restoration of images’, IEEE Trans. on Pattern Analysis and

Machine Intelligence 6(2), 721 – 741.

Gilbert, F. J., Astley, S. M., McGee, M. A., Gillan, M. G. C., Boggis, C. R. M.,

Griffiths, P. M. & Duffy, S. W. (2006), ‘Single reading with computer-aided

detection and double reading of screening mammograms in the united king-

dom national breast screening program’, Radiology 241(1), 47–53.

Gonzalez, R. C. & Wintz, P. (1987), Digital Image Processing, Addison-Wesley,

Reading, MA.

Gur, D., Sumkin, J. H., Rockette, H. E., Ganott, M., Hakim, C., Hardesty, L.,

Poller, W. R., Shah, R. & Wallace, L. (2004), ‘Changes in breast cancer de-

tection and mammography recall rates after the introduction of a computer-

aided detection system’, Journal of the National Cancer Institute 96(3), 185–

190.

Hadjiiski, L., Sahiner, B., Chan, H. P., Petrick, N., Helvie, M. & Gur-

can, M. (2001), ‘Analysis of temporal changes of mammographic features:

computer-aided classification of malignant and benign masses’, Med. Phys.

28(11), 2309–2317.

Haralick, R. M., Shanmugam, K. & Dinstein, I. (1973), ‘Textural features for

image classification’, IEEE Trans. Syst., Man, Cybern. SMC-3(2), 610–621.

Hopcroft, J. & Wong, J. (1974), ‘Linear time algorithm for isomorphism of planar

graphs’, Sixth ACM Symposium on Theory of Computing .

Jolion, J. M. (2003), ‘Graph matching: what are we talking about ?’, Pattern

Recognition Letters 24(8).

Jolion, J. M. & Montanvert, A. (1992), ‘The adaptive pyramid: a framework

for 2D image analysis’, Computer Vision, Graphics, and Image Processing

55(3), 339–348.

Karssemeijer, N. (1998), ‘Automated classification of parenchymal patterns in

mammograms’, Phys. Med. Biol. 43(2), 365–378.

Kass, M., Witkin, A. & Terzopoulos, D. (1987), ‘Snakes: active contour models’,

International Journal of Computer Vision 1(4), 321–331.

Kok-Wiles, S. L., Brady, M. & Hignam, R. (1998), Comparing mammogram pairs

for the detection of lesions, in ‘Proceedings of the 4th International Work-

shop on Digital Mammography’, IWDM 1998, Nijmegen, The Netherlands,

pp. 103–110.



BIBLIOGRAPHY 116

Krissinel, E. B. & Henrick, K. (2004), ‘Common subgraph isomorphism de-

tection by backtracking search’, Softw. Pract. Exper 34, 591–607 (DOI:

10.1002/spe.588).

Kropatsch, W. G. (1998), From equivalent weighting functions to equivalent con-

traction kernels, in E. Wenger & L. I. Dimitrov, eds, ‘Digital Image Pro-

cessing and Computer Graphics: Applications in Humanities and Natural

Sciences’, Vol. 3346, SPIE, pp. 310–320.

Kumar, S., Sallam, M. & Goldgof, D. (2001), ‘Matching point features under

small nonrigid motion’, Pattern Recognition 34(12), 2353–2365.

Lallich, S., Muhlenbach, F. & Jolion, J. M. (2003), ‘A test to control a region

growing process within a hierarchical graph’, Pattern Recognition 36, 2201–

2211.

Lobregt, S. & Viergever, M. A. (1995), ‘A discrete dynamic contour model’, IEEE

Trans. Med. Imaging 14(1), 12–24.

Ma, F., Bajger, M., Slavotinek, J. P. & Bottema, M. J. (2006), Validation of

graph theoretic segmentation of the pectoral muscle, in ‘Digital Mammogra-

phy, IWDM 2006, 8th International Workshop’, Springer, Manchester, UK,

pp. 642 – 649.

Ma, F., Bajger, M., Slavotinek, J. P. & Bottema, M. J. (2007), ‘Two graph theory

based methods for identifying the pectoral muscle in mammograms’, Pattern

Recognition 40, 2592–2602.

Marfil, R., Molina-Tanco, L., Bandera, A., Rodŕıguez, J. A. & Sandoval, F.
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