
Bayesian Inference of

Non-homogeneous Gaussian Hidden

Markov Models

by

Shin Sato, BSc (Hons)

College of Science and Engineering

April 2019

A thesis presented to the

Flinders University of South Australia

in total fulfilment of the requirements for the degree of

Master of Science (Mathematics)

Adelaide, South Australia, 2019
c© (Shin Sato, 2019)

i

Contents

List of Figures v

List of Tables xiii

List of Symbols xv

Abstract xvii

Certification xix

Acknowledgements xxi

1 Introduction 1

2 Literature Review 9

2.1 Hidden Markov Model . 10

2.1.1 Gaussian Hidden Markov Model 11

2.1.2 Non-homogeneous Gaussian Hidden Markov Model 18

2.2 Bayesian Inference . 21

2.2.1 Bayes’ Theorem . 22

2.3 Markov Chain Monte Carlo Algorithms 23

2.3.1 Metropolis-Hastings Algorithm 24

2.3.2 Gibbs Sampler . 26

2.3.3 Data Augmentation . 29

2.4 Advanced MCMC Algorithms . 32

ii

2.4.1 Adaptive Metropolis Algorithm 34

2.4.2 Multiple-try Metropolis-Hastings Algorithm 37

2.4.3 Delayed Rejection Metropolis-Hastings Algorithm 38

2.4.4 Symmetric Delayed Rejection Metropolis-Hastings Algorithm . . 40

2.5 Label Switching . 41

2.6 MCMC Convergence . 42

2.7 MCMC Algorithm Efficiency . 44

3 Univariate NHGHMM 45

3.1 The Model . 47

3.2 Prior Distributions . 48

3.3 Likelihood Function . 50

3.4 Posterior Distributions . 50

3.5 The MCMC Algorithms . 56

3.6 Simulation Study . 74

3.6.1 MCMC Convergence . 76

3.6.2 Performance of Parameter Estimation 86

3.7 Case Study . 93

3.7.1 The US Treasury Bill Rates . 93

4 Multivariate NHGHMM 101

4.1 The Model . 102

4.2 Prior Distributions . 103

4.3 Likelihood Function . 105

4.4 Posterior Distributions . 106

4.5 The MCMC Algorithms . 112

4.6 Simulation Study . 126

4.6.1 MCMC Convergence . 127

4.6.2 Performance of Parameter Estimation 139

4.7 Case Studies . 143

4.7.1 Icelandic river flow data . 143

iii

4.7.2 Rainfall in the UK . 152

5 Conclusion 159

A Unknown Number of Hidden States: Univariate NHGHMM 165

B Unknown Number of Hidden States: Multivariate NHGHMM 171

C Figures: Univariate NHGHMM (Simulation Study) 177

D Figures: Multivariate NHGHMM (Simulation Study) 185

E Source Code: Univariate NHGHMM 227

E.1 R c© . 227

E.2 C++ . 256

F Source Code: Multivariate NHGHMM 261

F.1 R c© . 261

F.2 C++ . 290

References 295

iv

v

List of Figures

2.1 Depiction of an HMM . 15

2.2 Trellis diagram of a 3-state HMM. The thick arrows represent the Viterbi

path. 16

2.3 Depiction of a non-homogeneous HMM 19

3.1 Trace plots (top), autocorrelation functions (middle), and marginal pos-

terior densities (bottom) of the MCMC samples with respect to the

parameter, θ, for a comparison between the standard random walk

Metropolis-Hastings and DRMH algorithms. The red curved line repre-

sents the target distribution. 67

3.2 Time series plot of Model (3.24): The hidden states st (top), and ob-

served values yt (bottom). 76

3.3 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

random walk Metropolis-Hastings algorithm without thinning 78

3.4 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the AM

algorithm without thinning . 79

3.5 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

symmetric DRAM algorithm without thinning 80

3.6 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

MTAM algorithm without thinning . 82

3.7 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

random walk Metropolis-Hastings algorithm with thinning 83

vi

3.8 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the AM

algorithm with thinning . 84

3.9 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

symmetric DRAM algorithm with thinning 85

3.10 Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the

MTAM algorithm with thinning . 86

3.11 Bar plot of log marginal likelihoods for model selection; the suffix number

of each algorithm in the plot corresponds to the number of hidden states. 87

3.12 Time series plots of the observations (top row) and the estimated hidden

state sequences (bottom row) for the AM algorithm, (a) & (d); the

symmetric DRAM algorithm, (b) & (e); and the MTAM algorithm, (c)

& (f). 92

3.13 Trace plots (a) and histograms (b) of µ & σ 97

3.14 Time series plots of medians and 95% CrI for the transition matrices,

qt1,1 (a), qt1,2 (b), qt2,1 (c), and qt2,2 (d), for each t ∈ {2, 3, . . . , 456} 98

3.15 Time series plot of the differenced US 3-month treasury bill rates. The

grey shaded areas represent the time duration for which the hidden states

are in State 2, namely the state with large fluctuations. 99

4.1 Time series plot of Model (4.26). The realisations of hidden states and

multivariate observed values are denoted by st, y
1
t and y2

t , respectively. 128

4.2 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the standard Metropolis-Hastings algorithm without thinning130

4.3 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the AM algorithm without thinning 131

4.4 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the symmetric DRAM algorithm without thinning 132

4.5 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the MTAM algorithm without thinning 133

4.6 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the standard Metropolis-Hastings algorithm with thinning . 135

vii

4.7 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the AM algorithm with thinning 136

4.8 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the symmetric DRAM algorithm with thinning 137

4.9 Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 &

α3,2 (c), for the MTAM algorithm with thinning 138

4.10 Bar plot of log marginal likelihoods for model selection; the suffix number

of each algorithm in the plot corresponds to the number of hidden states.140

4.11 Time series plots of the Jökulsá river flow (top), Vatnsdalsá river flow

(upper middle), precipitation (lower middle), and mean temperature

(bottom) . 144

4.12 Autocorrelation functions of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d) . 147

4.13 Trace plots of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d) 148

4.14 Histograms of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d) 149

4.15 Trace plots of 95% CrI for qt1,1 (a), qt1,2 (b),qt2,1 (c), and qt2,2 (d) where

t ∈ {2, 3, . . . , 1096} . 150

4.16 Time series plots of the Jökulsá (top) and the Vatnsdalsá (bottom).

The grey shaded areas represent the time duration for which the hidden

states are in State 2, namely the state with higher river flow rates. . . . 151

4.17 Plots of log odds ratio (a), and correlation (b) against distance between

the 12 stations . 154

4.18 Map of the United Kingdom and the Channel Islands. Each number on

the map corresponds to each station in Table 4.8. 155

C.1 Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and his-

tograms (d) of α1,2 & α2,1 for one of R = 100 replications using the AM

algorithm. Each of the true values for the parameters is represented by

the red line. 178

C.2 Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms

(d) of Qt2 for one of R = 100 replications using the AM algorithm. Each

of the true values for the parameters is represented by the red line. . . 179

viii

C.3 Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and his-

tograms (d) of α1,2 & α2,1 for one of R = 100 replications using the

symmetric DRAM algorithm. Each of the true values for the parame-

ters is represented by the red line. 180

C.4 Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms

(d) of Qt2 for one of R = 100 replications using the symmetric DRAM

algorithm. Each of the true values for the parameters is represented by

the red line. 181

C.5 Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and his-

tograms (d) of α1,2 & α2,1 for one of R = 100 replications using the

MTAM algorithm. Each of the true values for the parameters is repre-

sented by the red line. 182

C.6 Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms

(d) of Qt2 for one of R = 100 replications using the MTAM algorithm.

Each of the true values for the parameters is represented by the red line. 183

D.1 Autocorrelation functions of µ for the standard Metropolis-Hastings al-

gorithm without thinning . 186

D.2 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the standard

Metropolis-Hastings algorithm without thinning 187

D.3 Autocorrelation functions of µ for the AM algorithm without thinning 188

D.4 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the AM

algorithm without thinning . 189

D.5 Autocorrelation functions of µ for the symmetric DRAM algorithm with-

out thinning . 190

D.6 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric

DRAM algorithm without thinning . 191

D.7 Autocorrelation functions of µ for the MTAM algorithm without thinning192

D.8 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM

algorithm without thinning . 193

ix

D.9 Autocorrelation functions of µ for the standard Metropolis-Hastings al-

gorithm with thinning . 194

D.10 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the standard

Metropolis-Hastings algorithm with thinning 195

D.11 Autocorrelation functions of µ for the AM algorithm with thinning . . 196

D.12 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the AM

algorithm with thinning . 197

D.13 Autocorrelation functions of µ for the symmetric DRAM algorithm with

thinning . 198

D.14 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric

DRAM algorithm with thinning . 199

D.15 Autocorrelation functions of µ for the MTAM algorithm with thinning 200

D.16 Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM

algorithm with thinning . 201

D.17 Trace plots of µ for the AM algorithm. Each of the true values for the

parameters is represented by the red line. 202

D.18 Histograms of µ for the AM algorithm.Each of the true values for the

parameters is represented by the red line. 203

D.19 Trace plots of Σ1 (a), Σ2 (b), and Σ3 (a), for the AM algorithm. Each

of the true values for the parameters is represented by the red line. . . 204

D.20 Histograms of Σ1 (a), Σ2 (b), and Σ3 (a), for the AM algorithm. Each

of the true values for the parameters is represented by the red line. . . 205

D.21 Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the

AM algorithm. Each of the true values for the parameters is represented

by the red line. 206

D.22 Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the

AM algorithm. Each of the true values for the parameters is represented

by the red line. 207

D.23 Trace plots of Qt1 for the AM algorithm. Each of the true values for the

parameters is represented by the red line. 208

x

D.24 Trace plots of Qt2 for the AM algorithm. Each of the true values for the

parameters is represented by the red line. 208

D.25 Histograms of Qt1 for the AM algorithm. Each of the true values for the

parameters is represented by the red line. 209

D.26 Histograms of Qt2 for the AM algorithm. Each of the true values for the

parameters is represented by the red line. 209

D.27 Trace plots of µ for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 210

D.28 Histograms of µ for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 211

D.29 Trace plots of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric DRAM

algorithm. Each of the true values for the parameters is represented by

the red line. 212

D.30 Histograms of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric DRAM

algorithm. Each of the true values for the parameters is represented by

the red line. 213

D.31 Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the

symmetric DRAM algorithm. Each of the true values for the parameters

is represented by the red line. 214

D.32 Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the

symmetric DRAM algorithm. Each of the true values for the parameters

is represented by the red line. 215

D.33 Trace plots of Qt1 for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 216

D.34 Trace plots of Qt2 for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 216

D.35 Histograms of Qt1 for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 217

D.36 Histograms of Qt2 for the symmetric DRAM algorithm. Each of the true

values for the parameters is represented by the red line. 217

xi

D.37 Trace plots of µ for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 218

D.38 Histograms of µ for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 219

D.39 Trace plots of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM algorithm.

Each of the true values for the parameters is represented by the red line. 220

D.40 Histograms of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM algorithm.

Each of the true values for the parameters is represented by the red line. 221

D.41 Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), α3,1 & α3,2 (c), for the

MTAM algorithm. Each of the true values for the parameters is repre-

sented by the red line. 222

D.42 Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), α3,1 & α3,2 (c), for the

MTAM algorithm. Each of the true values for the parameters is repre-

sented by the red line. 223

D.43 Trace plots of Qt1 for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 224

D.44 Trace plots of Qt2 for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 224

D.45 Histograms of Qt1 for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 225

D.46 Histograms of Qt2 for the MTAM algorithm. Each of the true values for

the parameters is represented by the red line. 225

xii

xiii

List of Tables

3.1 Summary of Geweke’s diagnostics and ESS for the random walk Metropolis-

Hastings algorithm without thinning 78

3.2 Summary of Geweke’s diagnostics and ESS for the AM algorithm with-

out thinning . 79

3.3 Summary of Geweke’s diagnostics and ESS for the symmetric DRAM

algorithm without thinning . 80

3.4 Summary of Geweke’s diagnostics and ESS for the MTAM algorithm

without thinning . 81

3.5 Summary of Geweke’s diagnostics and ESS for the random walk Metropolis-

Hastings algorithm with thinning . 82

3.6 Summary of Geweke’s diagnostics and ESS for the AM algorithm with

thinning . 83

3.7 Summary of Geweke’s diagnostics and ESS for the symmetric DRAM

algorithm with thinning . 85

3.8 Summary of Geweke’s diagnostics and ESS for the MTAM algorithm

with thinning . 85

3.9 Summary of log marginal likelihoods for the Metropolis-Hastings (MH),

AM, symmetric DRAM, and MTAM algorithms 86

3.10 Summary statistics for each algorithm where R = 100 replications were

taken into account. A comparison of the three proposed MCMC al-

gorithms includes: point estimates, 95% CrI and coverage of the true

values. 89

xiv

3.11 Summary of the lowest bounds of MSE and MAE for the AM, symmetric

DRAM, and MTAM algorithms along with Diebold et al.’s model . . . 90

3.12 Comparison of the proposed MCMC algorithms for the univariate case 91

3.13 Summary for Geweke’s diagnostics and ESS of each parameter 95

3.14 Parameter estimation of the MCMC iterations for the case study of the

US 3-month treasury bill rates . 96

4.1 Summary statistics for Geweke’s diagnostics and ESS of the random walk

Metropolis-Hastings, AM, symmetric DRAM, and MTAM algorithms

without thinning . 129

4.2 Summary statistics for Geweke’s diagnostics and ESS of the random walk

Metropolis-Hastings, AM, symmetric DRAM, and MTAM algorithms

with thinning . 134

4.3 Summary of log marginal likelihoods for the Metropolis-Hastings (MH),

AM, symmetric DRAM, and MTAM algorithms 139

4.4 Summary statistics of estimates and coverage for random walk Metropolis-

Hastings algorithm, AM, symmetric DRAM, and MTAM algorithms . . 141

4.5 Comparison of the proposed MCMC algorithms for the multivariate case 142

4.6 Summary of Geweke’s diagnostics and ESS of the parameters for the

case study of Icelandic river flow data 146

4.7 Summary of estimates and 95% CrI of the parameters of interest 146

4.8 Summary of data from the UK network of stations during calendar win-

ter periods (December–February) from 1961/62 to 1988/89 153

4.9 Atmospheric measures as exogenous variables for the precipitation model

at daily discrete-time, t, during winter periods (December-February)

from 1961/62 to 1988/89 . 153

4.10 Summary of Geweke’s diagnostics and ESS for the parameters of interest

which failed to pass the tests . 156

xv

List of Symbols

Below are some details of the symbols and functions used throughout this thesis unless

stated otherwise.

{} Empty set

N = N>0 The set of natural numbers

Y Observation space

Ω Hidden state space

R The set of real numbers

Rm Euclidean m column space

Rm×n Vector space of m× n matrix

R>0 The set of positive real numbers

Θ Parameter space

Cov(·) Covariance

det(A) The determinant of a d× d square matrix A

E[·] The expected value

exp(·) Exponential function

Γd(·) The multivariate gamma function of order d

gcd{·} The greatest common divisor

log(·) The natural logarithm

log2(·) The logarithm with base 2

‖ · ‖ The Euclidean norm

Pr(·) Probability measure

tr(A) The trace of a d× d square matrix A

xvi

G(α, β) Gamma distribution with shape and rate parameters α and β, respec-

tively

N (µ, σ2) Univariate normal/Gaussian distribution with mean µ and variance σ2

Nd(µ,Σ) Multivariate normal/Gaussian distribution with mean µ and positive-

definite covariance matrix Σ

U(a, b) Uniform distribution over the interval a to b such that a, b ∈ R

W−1(γ,Φ) Inverse Wishart distribution with degrees of freedom γ and scale matrix

Φ

xvii

Abstract

This thesis specifically aims at investigating a non-homogeneous Gaussian hidden

Markov model (NHGHMM) under both univariate and multivariate settings. The

model is known to be able to capture non-homogeneity of transition probabilities be-

tween the hidden states. This advantage for the model can provide more flexibility on

a predictive ability in statistical inference.

A Bayesian approach was implemented for parameter estimation by proposing sev-

eral advanced Markov chain Monte Carlo (MCMC) algorithms to contribute to an

estimation aspect of the models. From a Bayesian perspective, the current literature

on multivariate extensions of an NHGHMM is scarce.

In terms of efficiency and convergence, I discovered that the three proposed MCMC

algorithms, the adaptive Metropolis, symmetric delayed rejection adaptive Metropolis,

and multiple-try adaptive Metropolis algorithms, were more efficient and achieved faster

convergence than the standard Metropolis-Hastings algorithm under the univariate set-

ting. For performances of parameter estimation, those three MCMC algorithms were

able to provide more reliable estimates compared to the conventional methods. In

addition, a case study was conducted by using the multiple-try adaptive Metropolis al-

gorithm, which was the most efficient MCMC algorithm amongst the three algorithms.

Likewise, the three proposed MCMC algorithms were more efficient compared to

the standard Metropolis-Hastings algorithm through the simulation studies within the

multivariate setting. For this particular simulation study, those proposed algorithms

achieved satisfactory convergence in the same number of iterations. In terms of per-

formances of parameter estimation, those three proposed algorithms generated reliable

xviii

estimates. Overall, the case studies were mainly satisfactory, but one of them left a

conundrum where the MCMC convergence was unachievable, creating a limitation with

the model.

The methodologies for such models have not been fully explored in the literature,

and thus, my original contributions are comprised of the proposed MCMC algorithms

and a research contribution to the multivariate NHGHMMs. A set of R c© and C++

code was specifically written to validate the proposed MCMC algorithms through the

extensive simulation studies which were conducted in this thesis, making up part of

my original contributions.

xix

Certification

I certify that this thesis does not incorporate without acknowledgement any material

previously submitted for a degree or diploma in any university; and that to the best

of my knowledge and belief it does not contain any material previously published or

written by another person except where due reference is made in the text.

As requested under Clause 14 of Appendix D of the Flinders University Research

Higher Degree Student Information Manual I hereby agree to waive the conditions

referred to in Clause 13(b) and (c), and thus

• Flinders University may lend this thesis to other institutions or individuals for

the purpose of scholarly research;

• Flinders University may reproduce this thesis by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

xx

xxi

Acknowledgements

This thesis represents the culmination of my studies as a Master of Science by research

student in the College of Science and Engineering at Flinders University.

I am indebted to my supervisors, Dr Darfiana Nur, and Dr Shaowen Qin for their

encouragement, patience, guidance, and readily accessible advice.

Finally, I am ever grateful for the support of my family and friends.

xxii

1

Chapter 1
Introduction

R
eal-world time series processes normally generate observable values which can

be characterised as signals, consisting of three main conditions. First, the

signals can be categorised into either discrete or continuous variables. Examples of

these are the discrete observable values to the extent of four bases in a DNA sequence:

adenine, cytosine, guanine, and thymine (Boys and Henderson, 2004); or the continu-

ous observable values as the monthly US 3-month treasury bill rates (Hamilton, 1988;

Meligkotsidou and Dellaportas, 2011). Second, the signal source can be either station-

ary (i.e. the signal properties do not vary over time) or non-stationary (i.e. the signal

properties vary over time). And finally, the signal can be comprised of either a single

source or multiple distinct sources (Rabiner, 1989).

Characterising such real-world signals has been a fundamental problem of interest

in terms of signal models. One possible signal model is called an observable Markov

model (Rabiner, 1989). This type of model assumes a system which may be described

as being in one of a set of distinct states. These states follow a Markov process, and the

stochastic process of observed values is equivalent to the process of states. Although

an observable Markov model is able to capture some characteristics of the signals, it is

too restrictive for more complicated signal modelling (Rabiner, 1989).

Due to the limitation of an observable Markov model, an extension of the model to

a more intricate one was attempted by allowing the observation to be a probabilistic

function of the state (Rabiner, 1989). Hence, the resulting model is called a hidden

Markov model (HMM). According to Rabiner (1989), first of all, the model is far richer

2 1. Introduction

in mathematical structure, and therefore, it can form the theoretical base in a wide

range of applications. Secondly, the model works extremely well with applications to

several important areas such as signal processing (Rabiner, 1989; Rabiner and Juang,

1986).

An ordinary HMM is referred to as a homogeneous hidden Markov model. This

type of HMM has a restrictive attribute due to constant transition probabilities of

the model. To relax this restrictive characteristic, the first non-homogeneous hidden

Markov model was proposed by Diebold et al. (1994). The time-varying transition

probabilities of such a model are able to depend on the underlying stochastic process

of interest.

Filardo and Gordon (1998) also discovered that constant transition probabilities of

hidden states are too restrictive for estimating the expected duration of a business cycle.

By allowing non-homogeneity for the transition probabilities, the result of expected

duration calculations was found to be very intuitive, as when the end of a recession

approaches, the expected duration of the recession plummets (Filardo and Gordon,

1998).

According to Spezia (2006), non-homogeneous hidden Markov models can be ap-

plied to many different real-world data sets as long as exogenous variables for time-

varying transition probabilities are available. In other words, non-homogeneous hidden

Markov models can provide more meaningful results than the standard homogeneous

HMMs.

In this thesis, I specifically deal with a non-homogeneous hidden Markov model

whose distribution of the observed values is Gaussian. Hence, a non-homogeneous

Gaussian hidden Markov model (NHGHMM) will be the core for the remainder of this

thesis.

There are two main methodologies in statistical inference, namely frequentist and

Bayesian approaches. For HMMs, both approaches have been extensively used to

estimate parameters of interest in the literature.

The very first practical application of frequentist inference on an HMM was devel-

oped by Rabiner and Juang (1986). Analyses of speech recognition have seen remark-

3

able improvements since Rabiner and Juang (1986)’s work. Ever since Rabiner and

Juang (1986) demonstrated the potential of the approach, other fields such as signal

processing (Crouse et al., 1998), finance (Diebold et al., 1994), meteorology (Bellone

et al., 2000; Hughes et al., 1999; Robertson et al., 2004), and array comparative ge-

nomic hybridisation analysis (Fridlyand et al., 2004) also utilised frequentist inference

for parameter estimation of their own HMMs.

Although the frequentist approach had been considered to be effective for an HMM,

Filardo and Gordon (1998) raised its limitations to the model where frequentist infer-

ence may be faced with technical issues. For instance, all possible permutations of

unobserved states must be considered in frequentist methods. In addition, assessing of

the uncertainty of the measure of the unobserved state is quite complicated (Filardo

and Gordon, 1998). Hence, the other main methodology, a Bayesian approach, was

proposed for parameter estimation of HMMs to avoid these problems.

The two primary differences between Bayesian and frequentist approaches are as

follows:

• Use of prior distributions such as informative priors in a Bayesian approach is

able to generate more intuitive results as opposed to a frequentist approach.

• A Bayesian approach treats parameters of interest as random variables whereas

the frequentist approach aims at estimating the parameters as unknown con-

stants. Bayesian inference provides the uncertainties of the parameters through

their marginal posterior distributions.

To estimate parameters of interest, the expectation-maximisation (EM) algorithm is

often implemented as maximum likelihood estimation (MLE) in frequentist inference.

As for HMMs, in addition to mixture models, the Baum-Welch algorithm is especially

used for parameter estimation, which follows the fashion of the EM algorithm (Rabiner,

1989; Rabiner and Juang, 1986).

A class of algorithms formulated within a Bayesian framework is called a Markov

chain Monte Carlo (MCMC) algorithm. The most common MCMC algorithm is known

as the Metropolis-Hastings algorithm which was invented by Metropolis et al. (1953)

and was later generalised by Hastings (1970). In spite of its popularity, the impact of

4 1. Introduction

the Metropolis-Hastings algorithm on statistics had been minute until the early 1990’s

(Brooks et al., 2011). Nevertheless, the algorithm has opened the door for Bayesian

inference to allow for the evaluation of more sophisticated statistical models. According

to Brooks et al. (2011), however, the Metropolis-Hastings algorithm requires a choice

of proposal distributions, and this choice defines the algorithm’s efficiency in terms of

autocorrelation functions and effective sample size.

Hence, more advanced MCMC algorithms will be applied in this thesis to improve

the choice of proposal distributions. The adaptive Metropolis algorithm is one of the

MCMC algorithms where it is able to learn about an optimal scaling of the proposal

distribution (Brooks et al., 2011). The algorithm was invented by Haario et al. (2001)

and allowed the computer to “learn” better parameter values automatically. This

autonomous adaptation of proposal distributions is also able to improve convergence

of the MCMC algorithm which is a crucial concept for parameter estimation of the

model.

In addition, the delayed rejection Metropolis-Hastings algorithm plays an important

role for a Bayesian analysis of NHGHMMs in this thesis. If acceptance probabilities of

a series of proposed values are too low, then a chain of MCMC samples stays in the

same parameter for a long period of time. The delayed rejection Metropolis-Hastings

aims at postponing this rejection process for a proposed parameter (Mira et al., 2001).

As Mira et al. (2001) stated, the delayed rejection Metropolis-Hastings algorithm

itself is not necessarily better than the Metropolis-Hastings algorithm; however, the

adaptation of proposal distributions is able to take advantage of newly acquired infor-

mation about parameters of interest. Hence, the symmetric delayed rejection adaptive

Metropolis algorithm which was proposed by Haario et al. (2006); Mira et al. (2001)

will be implemented in the hope of improving the acceptance probabilities.

Finally, the multiple-try Metropolis-Hastings algorithm will be introduced for greater

improvement in terms of efficiency. Liu et al. (2000) stated that the standard Metropolis-

Hastings algorithm can easily get trapped in a local mode, and hence, slow convergence

of the algorithm. Thus, increasing “searching region” of proposal distributions directly

leads to them being less localised. On the other hand, this “brute-force” way results

5

in a very small acceptance probability (Liu et al., 2000). Therefore, the multiple-

try Metropolis-Hastings algorithm was invented to tackle this conflict of interest by

proposing multiple draws at one time.

With a collection of the proposed MCMC algorithms, I investigate whether Bayesian

analyses of both the univariate and the multivariate NHGHMMs be able to generate

more fruitful results in the field of parameter estimation of NHGHMMs.

Having discussed the above, the main objective of this thesis is the development

and implementation of several proposed algorithms for parameter estimation of NHGH-

MMs. The detailed aims of this thesis are comprised of the following items:

(a) To present Bayesian inference of NHGHMMs under a univariate setting.

(b) To present Bayesian inference of NHGHMMs under a multivariate setting.

(c) For each of the models mentioned in (a) and (b), to propose more efficient MCMC

algorithms to estimate the parameters of the models.

(d) To demonstrate:

(1) the MCMC convergence, and

(2) the performance of parameter estimation

of each combination of the algorithms mentioned in (c) in parameter estimation

against both simulation and case studies.

It is crucial to emphasise that the current literature about a multivariate NHGHMM is

scarce. Moreover, a Bayesian analysis of such a model using Metropolis-Hastings type

algorithms for parameter estimation has been avoided due to technical difficulties,

except for Heaps et al. (2015) and Spezia et al. (2017). Those Metropolis-Hastings

type algorithms are usually replaced by Pólya-Gamma data augmentation for infer-

ring transition probabilities (Holsclaw et al., 2016, 2017; Koki et al., 2018). Finally,

a combination of the model with advanced MCMC algorithms such as the adaptive

Metropolis, the symmetric delayed rejection adaptive Metropolis, and the multiple-try

adaptive Metropolis algorithms is currently unavailable in the literature. Hence, this

thesis introduces a new Bayesian framework for the multivariate NHGHMM.

Having stated the aims above, the original contributions of this thesis are the fol-

lowing:

6 1. Introduction

(i) The main algorithm (Algorithm 6) which consists of the forward filtering back-

ward sampling algorithm (Algorithm 7), the Gibbs sampler (Algorithm 11), and

either the adaptive Metropolis (Algorithm 8), the symmetric delayed rejection

adaptive Metropolis (Algorithm 9), or the multiple-try adaptive Metropolis (Al-

gorithm 10) algorithms for the univariate NHGHMM (Section 3.5).

(ii) The main algorithm (Algorithm 12) which consists of the forward filtering back-

ward sampling algorithm (Algorithm 13), the Gibbs sampler (Algorithm 17), and

either the adaptive Metropolis (Algorithm 14), the symmetric delayed rejection

adaptive Metropolis (Algorithm 15), or the multiple-try adaptive Metropolis (Al-

gorithm 16) algorithms for the multivariate NHGHMM (Section 4.5).

(iii) Comparisons of (i) Algorithm 8, Algorithm 9 & Algorithm 10 (Section 3.6), and

(ii) Algorithm 14, Algorithm 15 & Algorithm 16 (Section 4.6) to the standard

Metropolis-Hastings algorithm by using:

(1) Geweke’s diagnostics, effective sample size, and autocorrelation functions

for the MCMC convergence, and

(2) point estimates, 95% credible intervals, and coverage for the performances

of parameter estimation.

(iv) A set of R c© (R Core Team, 2016) and C++ code to validate the proposed algo-

rithms in extensive simulation studies. The source code is listed in Appendices E

and F for univariate and multivariate settings, respectively.

The contents of this thesis are organised as follows. Chapter 2 contains a comprehen-

sive literature review of the models of interest, an HMM, GHMM, and NHGHMM,

in addition to a discussion of the MCMC algorithms and their algorithmic efficiencies.

Chapters 3 and 4 are composed of similar contents, but under univariate and multivari-

ate settings, respectively. Both chapters begin with the introduction of each model and

then describe the models in detail along with establishing prior distributions, likelihood

functions, and both joint and conditional posterior distributions. Most importantly, the

proposed MCMC algorithms are implemented under both univariate and multivariate

settings for simulation studies. After confirming the validity of the MCMC algorithms,

case studies of real-world data sets are conducted. Finally, Chapter 5 presents the

7

conclusion of this thesis, as well as a discussion of future work.

8 1. Introduction

9

Chapter 2
Literature Review

H
idden Markov model (HMM) is an extremely useful statistical model which is

applicable to a wide range of time series problems such as speech recognition

(Rabiner, 1989; Rabiner and Juang, 1986), signal processing (Crouse et al., 1998),

DNA sequence segmentation (Boys and Henderson, 2004; Boys et al., 2000; Churchill,

1989), array comparative genomic hybridisation analysis (Fridlyand et al., 2004; Rueda

et al., 2013), electrocardiogram analysis (Coast et al., 1990), protein folding (Stigler

et al., 2011), precipitation model (Ailliot et al., 2009; Heaps et al., 2015; Hughes et al.,

1997, 1999), business cycle analysis (Diebold et al., 1994; Filardo and Gordon, 1998),

and many others. Whilst the model has been applied in science, engineering, finance,

econometrics, and some other fields, the model’s mathematical structure is surprisingly

straightforward.

An HMM, in general, is explained by introducing a few applications, and other

types of the HMMs are also described in Section 2.1. Then, the core of statistical in-

ference in this thesis, Bayesian inference, is explained in Section 2.2. In Section 2.3, a

collection of algorithms which attempt to estimate parameters of interest is explained

in detail where the algorithms are to be constructed in a Bayesian framework. Given

the aforementioned algorithms, Section 2.4 aims at introducing more advanced algo-

rithms to accelerate convergence in a specific model. A collection of these proposed

algorithms is fabricated by my original contribution in this thesis. Section 2.5 describes

an intrinsic problem of the HMM, a label switching phenomenon. This issue needs to

be addressed in order to validate parameter estimation of HMMs in a Bayesian frame-

10 2. Literature Review

work. Furthermore, convergence of parameter estimation is discussed in Section 2.6

since it is as important as dealing with the label switching phenomenon. Finally, the

methodology of measuring performance for each proposed algorithm is presented in

Section 2.7 to argue the validity of the proposed algorithms.

2.1 Hidden Markov Model

A mathematical concept regarding the HMM was first developed by Baum and Eagon

(1967); Baum and Petrie (1966); Baum et al. (1970). They investigated statistical

estimation of probabilistic functions of Markov chains. The mathematics behind the

HMM naturally gives rise to different types of HMMs, and each type of the HMM is

defined by different mathematical architecture.

In fact, speech signals are impossible to be modelled meaningfully without consider-

ing such temporal variation. In the late 1980’s, Rabiner and Juang (1986) and Rabiner

(1989) studied characteristics of speech signals by considering a more complicated sig-

nal where a sinusoidal wave was embedded with noise and temporal variations of the

signal. They successfully implemented the HMM on the problem in order to estimate

the sine wave parameters (amplitude, frequency, and phase). In an attempt to model

the utterance of speech signals, the HMM was adequately effective to describe the

progressive change in signal characteristics in each state (Rabiner and Juang, 1986).

HMMs have also been applied in genetics. Since the Human Genome Project was

initiated, rapid growth in the database of human DNA sequences was seen. The base

composition of most DNA sequences was known to be heterogeneous, and sophisticated

statistical techniques were required to analyse the vast amount of such DNA sequence

data (Boys et al., 2000; Churchill, 1989). Observations in the model are four discrete

bases: adenine, cytosine, guanine, and thymine (i.e. {a, c, g, t}). Markov chains with

stationary transition probabilities have been used to model such naturally occurring

DNA sequences, although the Markov chain approach is unable to describe local struc-

ture of heterogeneity of the sequences. Churchill (1989), Boys et al. (2000), and Boys

and Henderson (2004) investigated the data to model the type of homogeneous segment

at each location in the DNA sequence by using the HMM. They showed that the HMM

2.1 Hidden Markov Model 11

was able to model the hidden label process which governed base transitions. As op-

posed to the Markov chain approach, the HMM was able to capture the heterogeneous

structure of DNA sequences.

Not only was an HMM implemented in computational biology, but the model was

also used in other engineering fields. In signal processing, it was known that the

wavelet-based statistical signal processing techniques lacked usefulness for many real-

world signals since such models treated wavelet coefficients as though they were in-

dependent. Such techniques simply disregarded the statistical dependencies between

the coefficients. Crouse et al. (1998) developed a new framework for statistical signal

processing based on wavelet-domain HMMs to tackle the problem where the statistical

dependencies were also considered. Their newly developed framework proved its utility

and flexibility with applications in many types of signal modelling problems. In light

of this new approach, they believed that other related fields such as speech recognition

and artificial intelligence would lead to even more sophisticated and accurate, yet still

tractable and robust wavelet-domain HMMs for signal processing (Crouse et al., 1998).

As such, applications of the HMM are ubiquitous in all kinds of disciplines. Zucchini

and MacDonald (2009) states that HMMs are incredibly flexible models for especially

discrete-valued time series data such as categorical series or series of counts. Nev-

ertheless, observations of the model can take a form of either discrete or continuous

values. In fact, some applications mentioned above are classified as a specific type of

the HMMs. Hereafter, an HMM whose distribution of observed variables is the Gaus-

sian distribution will be the centre of this research interest, and thus, the mathematical

structure behind such a model is described in Section 2.1.1.

2.1.1 Gaussian Hidden Markov Model

In this section, several papers about Gaussian HMMs were reviewed. Array compar-

ative genomic hybridisation is a technique to measure DNA copy number aberrations

quantitatively and map them onto genome sequences directly (Fridlyand et al., 2004).

The methodology in their study was an HMM approach where the observations were

continuous random variables, log2 ratios of a test intensity T , and reference intensity

12 2. Literature Review

R such that log2(T/R). Their method proved to be useful by finding real alterations,

and it could be applied to investigate breast cancer data for the purpose of revealing

the relationship between the frequencies and types of copy number alterations with

defects in the mechanisms (Fridlyand et al., 2004).

Likewise, Rueda et al. (2013) used the HMM to study the mechanisms of DNA copy

number alterations, but they let the number of the hidden states remain unknown. In

other words, the number of hidden states was regarded as a random variable instead

of the fixed number in other array comparative genomic hybridisation analysis litera-

ture. The HMM with an unknown number of hidden states was more effective from a

biological point of view in terms of parameter estimation (Rueda et al., 2013).

Cardiac arrhythmia is an event where a change in cardiac rhythms which causes

irregular heartbeats and deteriorates pumping efficiency. Certain ventricular arrhyth-

mias are known to show vulnerability to life-threatening conditions. Arrhythmia is

identifiable in the electrocardiogram, although P waves are hardly detectable in prac-

tice (Coast et al., 1990). There is a system which is able to detect P waves described

by Jenkins et al. (1979). The system attempts to insert an oesophageal electrode

with attached lead wire into a patient’s throat and position it near the atria. It is

possible to obtain high-amplitude P waves by this method; however, the system has

been limited due to the discomfort of the oesophageal electrode and lead wire. Coast

et al. (1990) used the HMM approach in electrocardiogram arrhythmia analysis to de-

tect low-amplitude P waves as well as the QRS complexes. Their results showed that

the accurate detection of the low-amplitude P waves in ambulatory electrocardiogram

recordings (Coast et al., 1990).

Protein folding is a complex mechanism to understand in terms of size and structure

of proteomes (protein genomes), and unfolding the mystery of the specific mechanism

requires a more intricate experimental method (Stigler et al., 2011). Stigler et al.

(2011) used ultrastable high-resolution optical tweezers incorporated with an HMM

to investigate the folding transitions of single calmodulin (calcium-modulated protein)

molecules. It follows that Stigler et al. (2011) concluded the model with 4 states

provided the greater level of detail about protein folding.

2.1 Hidden Markov Model 13

In fact, these applications utilise a statistical model called Gaussian hidden Markov

model (GHMM), and the model especially revolutionised modelling computational bi-

ology as well as an HMM for discrete observed values. Hence, the GHMM is an essential

stochastic model from that perspective. The model of interest is described as follows.

Mathematical structure

A GHMM is a stochastic model in which a sequence of real-valued observations is

dependent on the contemporary sequence of finite hidden states (Rabiner and Juang,

1986; Spezia, 2006). Here, let S = (S1, S2, . . . , Sn) be a sequence of m finite hidden

states, where m,n ∈ N \ {1} and St ∈ Ω = {1, 2, . . . ,m}, for any t ∈ {1, 2, . . . , n}.

Moreover, let Y = (Y1, Y2, . . . , Yn) be a sequence of conditionally independent real-

valued random variables given all hidden states (Rydén et al., 2008).

The stochastic process of the hidden states St, for any t ∈ {1, 2, . . . , n}, follows a

Markov process. For the stochastic process, there are two assumptions considered in

general.

The first assumption of the Markov process is that transitions between the hid-

den states are determined by the underlying Markov chain. Following Zucchini and

MacDonald (2009), the discrete-time pth order Markov chain is given as follows:

Pr(St = st |St−1 = st−1, . . . , S1 = s1) = Pr(St = st |St−1 = st−1, . . . , St−p = st−p),

(2.1)

where St ∈ Ω for any t ∈ {2, 3, . . . , n}. Equation (2.1) states that a probability of the

state at time t is dependent on the previous p states such that {st−1, st−2, . . . , st−p}.

The GHMM is based on the assumption where a Markov chain satisfies Markov property

if Equation (2.1) holds (Zucchini and MacDonald, 2009). For this thesis, the 1st order

Markov chain will be explained as follows:

Pr(St = st |St−1 = st−1, . . . , S1 = s1) = Pr(St = st |St−1 = st−1), (2.2)

where St ∈ Ω for any t ∈ {2, 3, . . . , n}. By Equation (2.2), it is possible to construct a

14 2. Literature Review

transition probability matrix Q as follows:

Q =



q1,1 q1,2 · · · q1,m

q2,1 q2,2 · · · q2,m

...
...

. . .
...

qm,1 qm,2 · · · qm,m


∈ Rm×m.

In this case, Q is an m×m right stochastic matrix such that

qi,j := Pr(St = j |St−1 = i), for all (i, j) ∈ Ω2

qi,j ≥ 0, for all (i, j) ∈ Ω2

m∑
j=1

qi,j = 1, for all i ∈ Ω.

The second assumption of a GHMM is a state dependent process where a probability

distribution of a realisation yt is only dependent on the current state st, regardless of

the history of a hidden state sequence (Zucchini and MacDonald, 2009). It can be

mathematically represented as follows:

Pr(yt | y1:t−1, s1:t) = Pr(yt | st) =: f(yt | st), for any t ∈ {1, 2, . . . , n}, (2.3)

where yu:v = (yu, yu+1, . . . , yv) for any u, v ∈ {1, 2, . . . , n} such that u ≤ v. Moreover,

yu:v = {} whenever u > v.

With the two assumptions altogether, the characteristic of a GHMM is defined as a

bivariate stochastic process, {(Yt)nt=1, (St)
n
t=1} (Rydén et al., 2008). This can be graph-

ically shown by Figure 2.1. This probabilistic graphical model simply represents the

observed random variable Yt which is conditionally independent on the corresponding

hidden state St, for any t ∈ {1, 2, . . .}.

The transition probability matrix for all states i, j ∈ Ω is denoted by Q, and the

m × m matrix of emission densities at each t ∈ {1, 2, . . . , n} is denoted by F (t). In

addition, the initial distribution is denoted by ρ such that

ρ = (ρ1, ρ2, . . . , ρm) = (Pr(S1 = 1),Pr(S1 = 2), . . . ,Pr(S1 = m)).

2.1 Hidden Markov Model 15

St−1 St St+1

Yt−1 Yt Yt+1

Figure 2.1: Depiction of an HMM

Equation (2.3) is sometimes called an emission density of the GHMM. Again, it is

possible to construct a time-dependent matrix F (t) whose dimension is m × m such

that

F (t) =



f(yt |St = 1) 0 · · · 0

0 f(yt |St = 2)
. . .

...

...
. 0

0 · · · 0 f(yt |St = m)


,

for any t ∈ {1, 2, . . . , n} (Zucchini and MacDonald, 2009). Formally, a GHMM is

defined as a triple of the following parameters:

M = (Q,F (t), ρ).

It is assumed that the probability density function of every observed value yt, for any

t ∈ {1, 2, . . . , n} is Gaussian distributed with a pair of state specific parameters. Hence,

the model is called Gaussian hidden Markov model (Spezia, 2006, 2010).

Since the hidden state sequence is unobservable, it can only be made “observation”

through the stochastic process which produces a sequence of observed values (Rabiner,

1989; Rabiner and Juang, 1986; Rydén et al., 2008; Zucchini and MacDonald, 2009).

Given the model M, it remains to contemplate whether the observation of the

GHMM is either univariate or multivariate. Hereafter, two types of observed values

are considered and formulated into mathematical expressions.

16 2. Literature Review

Univariate GHMM

Define y = (y1, y2, . . . , yn) as a sequence of observed values yt ∈ R, for any t ∈

{1, 2, . . . , n}. Mathematically, a stochastic process of the observed values yt, for any

t ∈ {1, 2, . . . , n}, follows that

yt = µi + εi, (2.4)

where yt ∈ R denotes the observations at time t, for any t ∈ {1, 2, . . . , n}; for any

state i ∈ Ω, µi ∈ R denotes the ith state specific mean, and εi ∼ N (0, σ2
i) denotes the

Gaussian noise with the ith state specific variance σ2
i (Spezia, 2006).

For example, if a GHMM is defined as a 3-state model (i.e. m = 3), then Figure 2.2

simulates the bivariate stochastic process {(yt)nt=1, (st)
n
t=1}. The resultant is called

trellis diagram (Rabiner, 1989). The solid arrows represent realisations of the Markov

process, and it is called Viterbi path. Figure 2.2 is able to help visualise a graphical

representation of the GHMM.

t− 1

1

2

3

yt−1

t

1

2

3

yt

t+ 1

1

2

3

yt+1

Figure 2.2: Trellis diagram of a 3-state HMM. The thick arrows represent the Viterbi
path.

The fundamental assumption of an HMM where observations are governed by hid-

den/latent discrete states can achieve the following main objectives in the analysis

(Box et al., 2015):

(i) Description of the Dynamics

to comprehend the features of the time series by inspecting intervals of observa-

tions,

2.1 Hidden Markov Model 17

(ii) Modelling

to explore an appropriate tool to reproduce the original data in order to obtain

a fitted series closely approximated to the actual one, and

(iii) Prediction

to investigate what will happen if time shifts forwards and aim at predicting

possible future values by a proposed probability distribution.

Multivariate GHMM

A univariate GHMM can indisputably be extended to a multivariate GHMM for

which the observations take multivariate continuous random variables such that Yt =

(Y 1
t , Y

2
t , . . . , Y

d
t) ∈ Rd, for any t ∈ {1, 2, . . . , n}. The stochastic process of the obser-

vations in multivariate GHMMs preserves the conditional independence of the obser-

vations on the hidden states which is identical to that of a univariate GHMM. Spezia

(2010) stated that this doubly stochastic process {(Yt)
n
t=1, (St)

n
t=1} is considered as a

“signal plus noise” model as follows:

Yt = µi + εi, (2.5)

where Yt ∈ Rd denotes observations when St = i ∈ Ω for any t ∈ {1, 2, . . . , n}; then,

µi ∈ Rd denotes a vector of m state specific means. Furthermore, εi ∼ Nd(0,Σi)

denotes the Gaussian noise, 0 is a d-dimensional zero vector and positive definite

covariance matrices Σ = (Σ1,Σ2, . . . ,Σm) where Σi ∈ Rd×d, for any state i ∈ Ω. A pair

of parameters for the multivariate Gaussian distribution (i.e. µi and εi) corresponds to

signal and noise, respectively. Hence, it follows that Yt |St = i ∼ Nd(µi,Σi) (Spezia,

2006).

So far, the hidden states of these models are assumed to be independent of discrete-

time t. They are called homogeneous GHMMs. Howbeit, they lack the predictive abil-

ity since constant transition probabilities are restrictive in many applications (Diebold

et al., 1994; Filardo and Gordon, 1998). In practice, transitions of hidden states are

considered to be time-varying. Thus, more sophisticated models whose transition prob-

abilities are treated as time-varying are introduced.

18 2. Literature Review

2.1.2 Non-homogeneous Gaussian Hidden Markov Model

Regional weather types can be regarded as hidden states, and in practice the HMM

was implemented by Ailliot et al. (2009) to model the spatiotemporal evolution of daily

rainfall. Hughes et al. (1997, 1999) were the pioneers to formulate the framework of

an HMM in precipitation. They developed a stochastic model which conditions local

precipitation on broad-scale atmospheric circulation (i.e. the downscaling model). The

model is a generalisation of existing weather state models, and one assumes that the

transition matrix of the hidden states depends on atmospheric circulation data, namely

a set of observed covariates (Hughes et al., 1997). A crucial advantage of their model

is that one can incorporate those atmospheric data which are thought to affect the

observations (Hughes et al., 1997, 1999). This feature makes the model different from

most existing weather state models.

Estimation of expected business cycle durations is the centre of attention for eco-

nomic agents and macroeconomists since it is pivotal for them to forecast when a

recession is going to end (Filardo and Gordon, 1998). In fact, the underlying business

cycle is unobservable. Hence, Filardo and Gordon (1998) implemented the HMM as

an appropriate statistical tool to forecast expected business cycle durations. Diebold

et al. (1994) pointed out that those models with constant transition probabilities failed

to forecast expected durations accurately. In other words, the HMM with time-varying

transition probabilities is more capable of capturing the complex behaviour of under-

lying economic fundamentals (Diebold et al., 1994; Filardo and Gordon, 1998).

Spezia (2006) introduced model selection with a Bayesian framework to determine

the unknown number of states in a non-homogeneous Gaussian hidden Markov model

(NHGHMM) via a logistic function. The framework allowed for the time-varying tran-

sition probabilities to be dependent on stochastic variables. It was claimed that when-

ever dynamic covariates are available, the method shows robust results for parameter

estimation and model selection in various types of NHGHMMs.

A non-homogeneous hidden Markov model in the multivariate observable random

variable setting gives rise to Hughes et al. (1999) for which the conditional distribution

of the observation given the hidden state was the Bernoulli distribution. The Bernoulli

2.1 Hidden Markov Model 19

distribution’s support is either 0 or 1, and hence, the observed values are not continuous

random variables. Nevertheless, Hughes et al. (1999)’s model had a framework of non-

homogeneity in the hidden Markov chain. This leads to modifying the model to the

Bayesian framework of the multivariate Gaussian non-homogeneous hidden Markov

models.

Zt−1 Zt Zt+1

St−1 St St+1

Yt−1 Yt Yt+1

Figure 2.3: Depiction of a non-homogeneous HMM

Figure 2.3 shows a graphical model of a non-homogeneous HMM. Unlike Figure 2.1,

a set of exogenous variables {Zt} governs the transition probabilities of the hidden

states, namely Pr(St |St−1), for any t ∈ {2, 3, . . .}, and hence, the non-homogeneity of

the model.

Given the graphical model of a non-homogeneous HMM, the mathematics behind

the model is elaborated as follows.

Mathematical structure

The crucial difference between homogeneous and non-homogeneous GHMMs is a Markov

process of the hidden states. Recall Equation (2.2). Instead of the transition prob-

ability matrix Q, the NHGHMM introduces another type of a transition probability

matrix Qt whose probabilities are also dependent on discrete-time t ∈ {2, 3, . . . , n}.

20 2. Literature Review

Mathematically, it is possible to define such a matrix Qt as follows:

Qt =



qt1,1 qt1,2 · · · qt1,m

qt2,1 qt2,2 · · · qt2,m
...

...
. . .

...

qtm,1 qtm,2 · · · qtm,m


∈ Rm×m.

Furthermore, Qt is a right stochastic matrix for any t ∈ {2, 3, . . . , n} such that

Pr(St = j |St−1 = i) = qti,j, for all (i, j) ∈ Ω2

qti,j ≥ 0, for all (i, j) ∈ Ω2 and t ∈ {2, 3, . . . , n}
m∑
j=1

qti,j = 1, for all i ∈ Ω and t ∈ {2, 3, . . . , n}.

Univariate NHGHMM

As for the univariate NHGHMM, the stochastic process of the model follows Equa-

tion (2.4). It is identical to that of a univariate GHMM, except a Markov process of

the hidden states is now dependent on discrete-time t ∈ {2, 3, . . . , n}. This dependence

is driven by a set of exogenous variables {Zt} which pertains to the non-homogeneity

of the model.

In finance, for example, the fundamentals such as revenue, earnings, assets, liabil-

ities, and growth are often regarded as exogenous variables for longitudinal data of

interest (Diebold et al., 1994; Filardo and Gordon, 1998).

Multivariate NHGHMM

Undeniably, multivariate observed values may also be introduced in an NHGHMM such

that a stochastic process of the observation follows Equation (2.5).

Given the bivariate stochastic processes, a generic model L for the NHGHMM is

defined as follows:

L = (Qt, F (t), ρ).

In fact, the literature about multivariate non-homogeneous Gaussian hidden Markov

2.2 Bayesian Inference 21

models is scarce. The aforementioned authors, Ailliot et al. (2009); Hughes et al.

(1997, 1999), intensively worked on non-homogeneous hidden Markov models, but none

of their work was related to the multivariate Gaussian distributions for the observed

values. Heaps et al. (2015) attempted to model rainfall data in the UK by introducing a

collection of Lamb weather types as discrete exogenous variables. Their work is much

more relevant to this thesis since the model introduced the multivariate log-normal

distribution, in addition to a Bayesian approach. Henceforth, Heaps et al. (2015)’s

work will be looked at closely.

Equation (2.5) is able to represent a multivariate NHGHMM where the observa-

tions are generated by unknown parameters θ = (µ,Σ, Qt). The methodologies of its

parameter estimation include: a two-state HMM whose transition probabilities depend

on exogenous variables through a logistic function (Diebold et al., 1994), the model

then demonstrates a correlation between the transition probabilities and the covari-

ates via probit models (Raymond and Rich, 1997), and the highly complex HMM with

non-homogeneous Markov chains defined on a state space with an unknown number of

hidden states whose parameters described by autologistic models (Hughes et al., 1999).

2.2 Bayesian Inference

In this thesis, Bayesian inference will be used to infer parameters of interest in NHGH-

MMs since it is capable of handling technical problems encountered by frequentist

inference (Filardo and Gordon, 1998). Bayesian inference has been implemented in a

wide range of applications such as artificial intelligence (Russell et al., 1995), machine

learning (Bishop, 2006; Murphy, 2012), robotics (Thrun et al., 2005), econometrics

(Putnam and Quintana, 1994; Quintana, 1992), psychology (Edwards et al., 1963;

Myung and Pitt, 1997; Rouder et al., 2009), and many others. Recently, it has success-

fully drawn much attention from various studies since the advent of high-performance

computing machines realised the practicality of Bayesian inference.

That being said, the fundamental theorem in Bayesian inference is reviewed in the

following section.

22 2. Literature Review

2.2.1 Bayes’ Theorem

The Reverend Thomas Bayes, an English clergyman, is known for the eponym who

formulated the beta-binomial posterior distribution, which is a special case of the well-

known theorem in probability and statistics, Bayes’ Theorem (Stigler, 1982). Bayes

left an obscure scholium, although he never published it during his lifetime. Bayes’

Theorem had not been disputed at the time Richard Price editing and publishing

Bayes’ obscure scholium, An Essay Towards Solving a Problem in the Doctrine of

Chances (Bayes et al., 1763), until Pierre-Simon Laplace formalised the theorem in

Théorie analytique des probabilités (de Laplace, 1820; Laplace, 1986). There had been

major critiques made by Sir Ronald Fisher, Karl Pearson, and Harold Jeffreys about

the principal defect in Bayes’ assumption since his wording was opaque and difficult

to fathom. Nonetheless, his justification for the assumption, an unknown probability

was uniformly distributed a priori, was interpreted very intuitively by Stigler (1982).

Consequently, Bayes’ much disputed assumption has now been renowned and accepted

by modern statistical literature.

Consider two events A and B. Then, the conditional probability of A given B is

defined as

Pr(A |B) =
Pr(A ∩B)

Pr(B)
, (2.6)

where Pr(B) 6= 0 is assumed, and the joint probability of events A and B is denoted

by Pr(A ∩B). Furthermore, the conditional probability of B given A is defined as

Pr(B |A) =
Pr(A ∩B)

Pr(A)
. (2.7)

Given Equations (2.6) and (2.7), the joint probability of A and B is given by

Pr(A ∩B) = Pr(A |B) Pr(B) = Pr(B |A) Pr(A),

and therefore,

Pr(A |B) =
Pr(B |A) Pr(A)

Pr(B)
. (2.8)

Equation (2.8) is now known as Bayes’ Theorem or Bayes’ Rule.

2.3 Markov Chain Monte Carlo Algorithms 23

In general, the conditional distribution of parameters of interest given observations

is defined as follows:

π(θ | y) =
f(y | θ)p(θ)

f(y)
=

f(y | θ)p(θ)∫
Θ
f(y | θ′)p(θ′) dθ′

, (2.9)

where θ ∈ Θ denotes the parameter of interest, and y ∈ Y denotes the observation.

In Equation (2.9), the term π(θ | y) is called a joint posterior distribution. It plays

a significant role in Bayesian inference for parameter estimation. The term f(y | θ)

is called a joint likelihood function. It is the core of statistics, especially frequentist

statistics, for MLE which includes a class of algorithms such as the EM algorithm

(Dempster et al., 1977). Also, note that a likelihood function need not be a probability

distribution. The term p(θ) is called a prior distribution, and this gives prior beliefs

about the parameters of interest. In Bayesian inference, the choice of this density

is crucial as it influences the posterior distribution as well as the methodologies of

inference. Finally, the term f(y) is called a marginal likelihood or normalising constant.

The term f(y) is a normalising constant of the joint posterior distribution, and in

fact, the integration part follows the law of total probability. For more intricate sta-

tistical models, calculating marginal likelihoods involves multidimensional integration,

and hence, computationally intensive. For this reason, Bayes’ Theorem was historically

impractical for statistical inference.

2.3 Markov Chain Monte Carlo Algorithms

The rise of computing machines opened the door for the Bayesian approach to enter

revolutionary inferential statistics in the century and overcame the impracticality of

Bayes’ Theorem. Computing power incorporated with tools of random number gener-

ation and simulations made Bayesian inference to solve many intractable problems in

inferential statistics. Metropolis and Ulam (1949) were the pioneers who challenged the

dominant frequentist methods. They developed a novel method to evaluate multiple

integrals approximately over multidimensional variables within intractable problems of

physical sciences where classical and statistical mechanics had the limitations. The

24 2. Literature Review

method is known as Monte Carlo method (Metropolis et al., 1953; Metropolis and

Ulam, 1949).

As such, the Bayesian approach has been fundamentally entangled with the power

of computing machines. Bayesian inference certainly allowed for statisticians to tackle

intractable problems in many cases and sometimes it is preferred over frequentist meth-

ods in some areas.

Nevertheless, the standard Monte Carlo methods sometimes suffer from poor ap-

proximation to values of interest (Brooks et al., 2011; Metropolis et al., 1953; Metropo-

lis and Ulam, 1949). Thus, one needs to define more sophisticated methodologies to

achieve greater accuracy. Furthermore, to evaluate the joint posterior distribution in

Equation (2.9) is often intractable since a closed form is unknown. Hence, a new

numerical methodology which is different from the standard Monte Carlo methods is

essential to facilitate Bayesian inference to maximise the joint posterior distribution in

Equation (2.9).

The following sections are to present Markov chain Monte Carlo (MCMC) algo-

rithms. The justification with regard to implementing a collection of MCMC algorithms

is the development of underpinning theories such as rates of convergence, laws of large

numbers and central limit theorems (Tierney, 1994). Indeed, Markov chain methods

proved to be more efficient in exploring posterior distributions than the ordinary Monte

Carlo methods (Brooks et al., 2011).

Furthermore, Mengersen et al. (1996) worked on providing necessary and sufficient

conditions for the MCMC algorithms to converge at a geometric rate. They evaluated

several different algorithms to explore the potential of the methods. Hereafter, a few

of the most well-known MCMC algorithms are introduced as follows.

2.3.1 Metropolis-Hastings Algorithm

The most famous MCMC algorithm and probably one of the most essential statistical

tools amongst scientists is called Metropolis-Hastings algorithms. The name of the al-

gorithm was coined by Metropolis et al. (1953) and Hastings (1970). The methodology

is considered to be originated from Metropolis et al. (1953), dealing with the prob-

2.3 Markov Chain Monte Carlo Algorithms 25

lem where equations of state for chemical substances consisting of individual particles

are described. In general, the method is suitable for fast computing machines to ex-

plore such chemical properties, and later the method proved useful in computational

statistics and stochastic simulation (Gamerman and Lopes, 2006).

The standard Monte Carlo methods can be computationally expensive since the

methods may require sampling from high dimensional probability distributions. Hence,

Hastings (1970) and his student, Peskun (1973), worked on generalising the Metropolis

algorithm to address the issue which was also pointed out by Metropolis et al. (1953).

A generalisation of the Metropolis algorithm involves utilising an irreducible Markov

chain to obtain a sequence of samples. With a current parameter θ, a new parameter

θ∗ proposed by a proposal distribution q(· | θ), and the target distribution π(·) as a

stationary distribution are defined on the Markov chain. Note that this target distri-

bution is proportional to a multiplicative constant of the joint posterior distribution in

Equation (2.9). Then, the acceptance probability of the current parameter to the new

parameter, θ → θ∗, is defined as follows:

r =
s(θ∗ | θ)

1 + π(θ)q(θ∗ | θ)/π(θ∗)q(θ | θ∗)
, (2.10)

where s(θ∗ | θ) = s(θ∗ | θ) is a symmetric function so that 0 ≤ r ≤ 1 (Brooks et al.,

2011; Hastings, 1970). That is,

s(θ∗ | θ) =


1 + π(θ)q(θ∗ | θ)/π(θ∗)q(θ | θ∗) , if π(θ∗)q(θ | θ∗)/π(θ)q(θ∗ | θ) ≥ 1

1 + π(θ∗)q(θ | θ∗)/π(θ)q(θ∗ | θ) , if π(θ∗)q(θ | θ∗)/π(θ)q(θ∗ | θ) ≤ 1

.

Consequently, this ratio in Equation (2.10) is known as Metropolis-Hastings ratio, and

it is considered as a generalised acceptance probability. Alternatively, the acceptance

probability in Equation (2.10) may be expressed by

r = min

{
1,
π(θ∗)q(θ | θ∗)
π(θ)q(θ∗ | θ)

}
.

The algorithm is known as Metropolis-Hastings algorithm. Nevertheless, such a se-

quence of samples obtained by the Metropolis-Hastings algorithm is usually correlated,

26 2. Literature Review

and thus, more careful assessment of estimation error may be required than indepen-

dent samples (Hastings, 1970).

The aforementioned algorithm is classified as the random walk Metropolis-Hastings

algorithm since the proposal distribution is centred at the previous value of MCMC

iterations. For example, at τ th MCMC iteration, a proposed parameter of interest θ(τ)

is distributed in the proposal distribution q(· | ·) such that θ(τ) ∼ q(· | θ(τ−1)). With that

being said, the distribution of the proposed parameter is dependent on the previous

parameter θ(τ−1).

There is another type of the Metropolis-Hastings algorithm called the independent

Metropolis-Hastings algorithm. This type of the Metropolis-Hastings algorithm’s pro-

posal distribution is independent of the previous value of MCMC iterations. As for

updating the parameter of interest, a proposed parameter is distributed in the proposal

distribution q(· | θ(τ−1)) = q(·), which is independent of the previous parameter.

Each algorithm differs in terms of convergence properties. A review of these algo-

rithms can be found in Mengersen et al. (1996).

It has been known for a while that the choice of the proposal distribution is crucial

to rapid convergence of the Metropolis-Hastings algorithm (Brooks et al., 2011). As

Metropolis et al. (1953) pointed out, if the maximum displacement of a proposed

parameter from the previous one is too large, most moves will be rejected. Moreover, if

too small, the configuration of the parameters will be insufficient (Brooks et al., 2011).

Hence, the Metropolis-Hastings algorithm has its own limitation in terms of MCMC

convergence.

Having said that, if conditional posterior distributions of parameters of interest have

standard forms, then the Gibbs sampler can be implemented to simulate the posterior

distribution.

2.3.2 Gibbs Sampler

A special case of the Metropolis-Hastings algorithm, Gibbs sampler, was developed by

Geman and Geman (1984). The Gibbs sampler has gained its popularity since the

paper was published by Geman and Geman (1984) for the study in image processing

2.3 Markov Chain Monte Carlo Algorithms 27

models (Casella and George, 1992). The original concept of Gibbs sampler is considered

to be originated from Metropolis et al. (1953), and it was then combined with the

improvement by Hastings (1970).

The algorithm aims at generating random variables from a marginal distribution

indirectly to avoid cumbersome calculations of the density. Despite the description of

the algorithm is simple and straightforward to illustrate, the mechanism which achieves

the sampling scheme has been left unexplained to its full extent (Casella and George,

1992). Gibbs sampler allows avoiding expensive computations of the density and gen-

erating an easier sequence of Markov chain in which the posterior means converge to

the stationary distribution (Casella and George, 1992).

The algorithm is extremely useful in Bayesian inference due to its ease of imple-

mentation. Furthermore, it has widely been applied in complex stochastic models with

a very large number of variables (Casella and George, 1992; Gelfand and Smith, 1990).

As for Bayesian inference, the method is used for generating posterior distributions.

To illustrate how the Gibbs sampler works, consider a given joint density function

f(θ, η1, η2, . . . , ηp). Calculating a marginal density of θ is performed by integrating out

other variables, that is,

f(θ) =

∫
· · ·
∫
f(θ, η1, η2, . . . , ηp) dη1dη2 . . . dηp, (2.11)

where η1, η2, . . . , ηp ∈ Θ is a set of dummy variables. Equation (2.11) is calculated in

order to obtain the desired characteristics of the marginal density such as the mean or

variance (Casella and George, 1992). Nevertheless, the integrations in Equation (2.11)

are often difficult to compute in practice regardless of analytical or numerical meth-

ods. The Gibbs sampler avoids computing or approximating the difficult integrations

to obtain f(θ). With a sufficient sample size, the Gibbs sampler effectively gener-

ates a sequence of θ(1), θ(2), . . . , θ(N) from f(θ) without performing the integrations in

Equation (2.11).

Let π(θ) be a joint posterior distribution of a vector of parameters θ = (θ1, θ2, . . . , θp).

Then, define θ−i = {θj : j 6= i} for i, j ∈ {1, 2, . . . , p}. Assuming full conditional den-

sities for each component θi are known and will be given by π(θi | θ−i) (Smith and

28 2. Literature Review

Roberts, 1993). Thus, a general scheme of the Gibbs sampler which samples from the

joint posterior distribution of parameters and given observations can be outlined as

follows.

Algorithm 1 Gibbs Sampler

1: Initialise a vector of parameters θ(1)

2: for τ = 2, 3, . . . , N do
3: Draw θ

(τ)
1 ∼ π(θ1 | θ(τ−1)

−1 , y).

4: Draw θ
(τ)
2 ∼ π(θ2 | θ(τ)

1 , θ
(τ−1)
3 , θ

(τ−1)
4 , . . . , θ

(τ−1)
p , y).

5: Draw θ
(τ)
3 ∼ π(θ3 | θ(τ)

1 , θ
(τ)
2 , θ

(τ−1)
4 . . . , θ

(τ−1)
p , y).

6:
...

7: Draw θ
(τ)
p ∼ π(θp | θ(τ)

−p , y).
8: end for

In theory, the distribution of a Gibbs sequence (θ(1), θ(2), . . . , θ(N)) converges to the

stationary distribution of interest as N → ∞. Nevertheless, it is crucial to determine

the number of iterations sufficiently large to achieve the convergence. A few methods

(refer to Section 2.6 for the details) are suggested to assess the convergence of such a

sequence (Cowles and Carlin, 1996) such as:

(i) treating the resulting sequence drawn by the Gibbs sampler as a time series

(Geweke et al., 1991), and

(ii) detecting non-stationarity in the resulting sequence and eliminating “initial tran-

sient” in which the simulation does not start off in its stationary distribution

(Heidelberger and Welch, 1983).

The Gibbs sampler appears to have slow convergence if highly correlated components

are sampled individually. This slow convergence can be avoided and more efficient sam-

pling may be performed by updating those correlated components in a block, although

it requires a multivariate conditional distribution (Smith and Roberts, 1993).

One of the approaches to improve the convergence of a Gibbs sequence is to deter-

mine the initial k iterations to discard for which the Gibbs sequence to converge to the

stationary distribution. This is called burn-in and the duration taken for the sequence

in order to converge is known as burn-in time (Rosenthal, 1995).

For statistical problems in which a computationally expensive method is required,

the empirical distribution of initial k iterations may converge to the stationary distri-

2.3 Markov Chain Monte Carlo Algorithms 29

bution in theory. From this point of view, one can determine the efficiency of the Gibbs

sampler by monitoring this rate of convergence and the rate is dependent on how fast

the Gibbs sampler explores the sample space (Casella and George, 1992).

Gelfand and Smith (1990) demonstrated a close relationship between the Gibbs

sampler and the data augmentation algorithm proposed by Tanner and Wong (1987).

Provided that the Gibbs sampling has access to full conditional distributions of θi | θ−i

for each i ∈ {1, 2, . . . , p}, a generalisation of the data augmentation algorithm may

prove to be more efficient than the Gibbs sampler since the data augmentation algo-

rithm allows sampling from correct p × (p − 1) distributions, including p conditional

posterior distributions at each iteration, on the other hand, the Gibbs sampler utilises

only full conditionals for sampling. Thus, the data augmentation algorithm is equiv-

alent to the Gibbs sampler in terms of the rate of convergence when some correction

distributions, apart from full conditionals, are accessible (Gelfand and Smith, 1990).

Latent variables are an important concept in HMMs, and the data augmentation

algorithm deals with the latent variables for its inference. The following describes a

brief structure of the algorithm.

2.3.3 Data Augmentation

The data augmentation algorithm, also known as the substitution algorithm (Gelfand

and Smith, 1990), is a standard mathematical tool to compute certain types of integral

equations. Tanner and Wong (1987) demonstrated that algorithm could potentially

be applied to statistical problems where observed data y might be augmented with

hidden states s, that is, (y, s). The augmented data (y, s) sometimes are referred to as

complete data whereas {y} is called incomplete data in HMMs. Complete data consist

of a set of missing and observed values (Tanner and Wong, 1987).

The data augmentation algorithm is essentially implemented for maximum likeli-

hood estimation (MLE) or maximum a posteriori (MAP) estimation. Both methods

are similar in terms of computing a point estimate. The MAP is based on a posterior

distribution whereas the MLE is only based on a likelihood function. The MLE is

usually performed by the EM algorithm further developed by Dempster et al. (1977)

30 2. Literature Review

where the algorithm involves two iterative steps such as:

(i) calculating expected values of the log likelihood function with the complete data,

and

(ii) maximising the log likelihood function to update parameters of interest.

On the other hand, the data augmentation algorithm introduces substitutions of pos-

terior and conditional densities involving integrable functions and integral transforma-

tion.

Consider θ ∈ Θ as parameters of interest. The joint posterior distribution of interest

is given by the following:

π(θ | y) =

∫
Ω

π(θ | s, y)p(s | y) ds, (2.12)

where π(θ | y) denotes the joint posterior distribution of the parameters of interest θ

given observed data y. Moreover, π(θ | s, y) denotes the conditional density of parame-

ters given the hidden states s and observed data y, and p(s | y) denotes the predictive

density of the hidden states s given observed data y. In the same fashion as Equa-

tion (2.12), the predictive density of the hidden state can be expressed as follows:

p(s | y) =

∫
Θ

p(s | ξ, y)p(ξ | y) dξ, (2.13)

where ξ ∈ Θ. Substitution of Equation (2.13) into Equation (2.12) yields the following

equation:

h(θ) =

∫
K(θ, ξ)h(ξ) dξ, (2.14)

where K(θ, ξ) =
∫
π(θ | s, y)p(s | ξ, y) ds. Following the definition of Equation (2.14),

suppose the integral transformation T which transforms any integrable function g(·)

into an integrable function Tg(·) such that

Tg(θ) =

∫
K(θ, ξ)g(ξ) dξ.

With an initial approximation h1(θ) to the posterior distribution π(θ | y), the iterative

2.3 Markov Chain Monte Carlo Algorithms 31

method for solving Equation (2.14) follows the following manner:

ht+1(θ) = (Tht)(θ). (2.15)

In practice, an implementation of analytical calculation for solving Equation (2.15)

is unavailable since the integrations in Equations (2.12) and (2.13) are difficult to be

performed (Tanner and Wong, 1987). Nevertheless, the MCMC method offers the

iterative method which allows the calculation of Equation (2.12) to be performed.

A data augmentation sampling scheme starts with an initial approximation h1(θ)

to π(θ | y) in the following manner.

Algorithm 2 Data Augmentation

1: for t = 1, 2, . . . , T do
2: Draw θ∗ ∼ ht(θ).
3: Draw s∗ ∼ p(s | θ∗, y).
4: Update the approximation ht+1 to π(θ | y) by the following iteration:

ht+1(θ) =
1

n

n∑
i=1

π(θ | s∗i , y).

5: end for

The calculation of π(θ | s, y) with any augmented data (y, s) is assumed to be

tractable as it is a prerequisite for data augmentation sampling scheme (Tanner and

Wong, 1987). With the larger number of n, generating θ∗ and s∗ which incorporates

with updating ht+1 provides a closer approximation to Equation (2.15). Furthermore,

the algorithm is insensitive to the number of samples since the average of π(θ | s, y)

over the augmented data patterns will converge to the π(θ | y) by the iterative method

above.

Howbeit, Tanner and Wong (1987) made a remark about the rate of convergence.

It is linear and depends on the initial value h1(θ) whenever the parameter space Θ is

unbounded. Although this should not be regarded as a weakness of the method, data

augmentation is not a desirable algorithm unless the parameter space Θ is compact

(Tanner and Wong, 1987).

32 2. Literature Review

2.4 Advanced MCMC Algorithms

In the earlier sections, standard MCMC simulation techniques such as the Metropolis-

Hastings algorithm, the Gibbs sampler, and the data augmentation algorithm were

introduced. Reducing the correlation of MCMC samples, in addition to accelerating

the convergence, often requires implementation of the following strategies (Gamerman

and Lopes, 2006):

• long MCMC iterations to be run,

• sampling parameters of interest in a block, or

• reparametrisation.

Nonetheless, MCMC convergence for more complex statistical models is difficult to

achieve with the standard MCMC algorithms mentioned above. For instance, it is es-

sential for the standard random walk Metropolis-Hastings algorithm to adjust the pro-

posal distribution in order to achieve the convergence in a Markov chain (Haario et al.,

2001; Liu et al., 2000). As long as the reversibility of the Markov chain is preserved, it is

a robust strategy to incorporate several MCMC schemes with the Metropolis-Hastings

algorithm (Robert and Casella, 1999; Tierney, 1994).

That being said, there is one crucial theorem for MCMC algorithms to be included

in Bayesian inference. The Ergodic Theorem is a fundamental theorem where it is able

to justify the convergence of an MCMC algorithm (Tweedie, 1975). It shows that an

MCMC sample average converges to the unique stationary distribution π(·), if it exists

(Birkhoff, 1931). That is,

lim
N→∞

1

N

N∑
τ=1

q
(
θ(τ)
)

=

∫
q(θ)π(θ) dθ,

where q(·) is a proposal distribution. This theorem states that the following condi-

tions must satisfy in order to achieve convergence to its unique stationary distribution

(Tweedie, 1975) such that

• aperiodicity,

• positive recurrence, and

• irreducibility.

2.4 Advanced MCMC Algorithms 33

Aperiodicity

The period of a state i is defined as

d(i) = gcd{ν ≥ 1 : Pr(θ(ν) = i | θ(1) = i) > 0}, (2.16)

where gcd is the greatest common divisor, and ν ∈ N \ {1} is the number of steps.

Equation (2.16) indicates that the chain can only return to the same state i where the

chain started from with the period of d(i). A Markov chain is said to be aperiodic if all

states have the period of 1 (Meyn and Tweedie, 2012). This is because it is not ideal

for the chain to be stuck in some cycle between certain states.

Positive recurrence

A Markov chain is said to be positive recurrent if the mean recurrence time for state i,

that is, ti is finite (Meyn and Tweedie, 2012). It follows that

ti =
∞∑
ν=1

ν · f (ν)
ii <∞,

where f
(τ)
ii is the probability of first visit to state i at the νth step given that starting

from state i. In other words, the chain will return to every state in a finite number of

steps with probability 1.

Irreducibility

A Markov chain is said to be irreducible if all states communicate. That is,

i→ j and j → i, for all i, j ∈ X ,

where X is a state space. This means that, with a finite number of steps, any state

can be reached from any other states (Meyn and Tweedie, 2012).

These three conditions allow the chain to converge to its unique stationary distri-

bution π(·) from any given initial point where the chain starts. These properties lead

to statistical efficiency in both theoretical and practical points of view, namely the

34 2. Literature Review

MCMC convergence.

In this thesis, the following three advanced MCMC algorithms are to be reviewed

specifically.

2.4.1 Adaptive Metropolis Algorithm

The definition of the covariance matrix for parameters of interest {θ(ν) ∈ RK : ν ∈

{1, 2, . . . , τ}} is as follows:

Cov(θ(1), θ(2), . . . , θ(τ)) =
1

τ − 1

(
τ∑
ν=1

θ(ν)(θ(ν))ᵀ − τ θ̄(τ)(θ̄(τ))ᵀ

)
, (2.17)

where θ̄(τ) =
∑τ

ν=1 θ
(ν)
/
τ . Here, the recursive formula for Equation (2.17) is derived

in order to implement the adaptive method. It is easy to observe that an arithmetic

mean is reduced to the recursive formula such that

θ̄(τ) =
τ − 1

τ
θ̄(τ−1) +

1

τ
θ(τ). (2.18)

With Equation (2.18) and algebraic manipulations, the recursive formula for Equa-

tion (2.17) will be as follows:

Cov(θ(1), θ(2), . . . , θ(τ))

=
1

τ − 1

(
τ∑
ν=1

θ(ν)(θ(ν))ᵀ − τ θ̄(τ)(θ̄(τ))ᵀ

)

=
1

τ − 1

[
τ−1∑
ν=1

θ(ν)(θ(ν))ᵀ + θ(τ)(θ(τ))ᵀ − τ
(
τ − 1

τ
θ̄(τ−1) +

1

τ
θ(τ)

)
×
(
τ − 1

τ
(θ̄(τ−1))ᵀ +

1

τ
(θ(τ))ᵀ

)]
=

1

τ − 1

[
τ−1∑
ν=1

θ(ν)(θ(ν))ᵀ + θ(τ)(θ(τ))ᵀ − τ
(

(τ − 1)2

τ 2
θ̄(τ−1)(θ̄(τ−1))ᵀ

+
τ − 1

τ 2

(
θ̄(τ−1)(θ(τ))ᵀ + θ(τ)(θ̄(τ−1))ᵀ

)
+

1

τ 2
θ(τ)(θ(τ))ᵀ

)]
=

1

τ − 1

τ−1∑
ν=1

θ(ν)(θ(ν))ᵀ +
1

τ − 1
θ(τ)(θ(τ))ᵀ − τ − 1

τ
θ̄(τ−1)(θ̄(τ−1))ᵀ

− 1

τ

(
θ̄(τ−1)(θ(τ))ᵀ + θ(τ)(θ̄(τ−1))ᵀ

)
− 1

τ(τ − 1)
θ(τ)(θ(τ))ᵀ

2.4 Advanced MCMC Algorithms 35

=
1

τ − 1

τ−1∑
ν=1

θ(ν)(θ(ν))ᵀ − θ̄(τ−1)(θ̄(τ−1))ᵀ +
1

τ
θ(τ)(θ(τ))ᵀ +

1

τ
θ̄(τ−1)(θ̄(τ−1))ᵀ

− 1

τ

(
θ̄(τ−1)(θ(τ))ᵀ + θ(τ)(θ̄(τ−1))ᵀ

)
=

1

τ − 1

(
τ−1∑
ν=1

θ(ν)(θ(ν))ᵀ − (τ − 1)θ̄(τ−1)(θ̄(τ−1))ᵀ

)
+

1

τ

[
θ̄(τ−1)(θ̄(τ−1))ᵀ

−
(
θ̄(τ−1)(θ(τ))ᵀ + θ(τ)(θ̄(τ−1))ᵀ

)
+ θ(τ)(θ(τ))ᵀ

]
=
τ − 2

τ − 1
Cov(θ(1), θ(2), . . . , θ(τ−1)) +

1

τ

(
θ̄(τ−1) − θ(τ)

) (
θ̄(τ−1) − θ(τ)

)ᵀ
. (2.19)

Following Haario et al. (2001), by Equation (2.19), the covariance matrix for the Gaus-

sian proposal with the proposed sample θ(τ) as the mean is defined as follows:

Cτ =


C0, if τ ≤ τ0

sK Cov(θ(1), θ(2), . . . , θ(τ−1)) + sKεIK , if τ > τ0

,

where C0 is a covariance matrix of a choice, τ0 > 0 is the initial period, sK = 2.42/K,

ε > 0, and IK is a K ×K identity matrix. It remains to derive the recursive formula

for Cτ whenever τ > τ0 such that

Cτ = sK Cov(θ(1), θ(2), . . . , θ(τ−1)) + sKεIK

= sK

[
τ − 3

τ − 2
Cov(θ(1), θ(2), . . . , θ(τ−2))

+
1

τ − 1
(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ

]
+ sKεIK

= sK
τ − 3

τ − 2
Cov(θ(1), θ(2), . . . , θ(τ−2))

+
sK
τ − 1

(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ + sKεIK

=
τ − 3

τ − 2

(
sK Cov(θ(1), θ(2), . . . , θ(τ−2)) +

τ − 2

τ − 3
sKεIK

)
+

sK
τ − 1

(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ

=
τ − 3

τ − 2

sK Cov(θ(1), θ(2), . . . , θ(τ−2)) + sKεIK︸ ︷︷ ︸
Cτ−1

+
1

τ − 3
sKεIK


+

sK
τ − 1

(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ

=
τ − 3

τ − 2
Cτ−1 +

1

τ − 2
sKεIK +

sK
τ − 1

(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ

36 2. Literature Review

=
τ − 3

τ − 2
Cτ−1 +

sK
τ − 2

[
τ − 2

τ − 1
(θ̄(τ−2) − θ(τ−1))(θ̄(τ−2) − θ(τ−1))ᵀ + εIK

]
=
τ − 3

τ − 2
Cτ−1 +

sK
τ − 2

[
τ − 2

τ − 1

(
θ̄(τ−2)(θ̄(τ−2))ᵀ − (θ̄(τ−2)(θ(τ−1))ᵀ + θ(τ−1)(θ̄(τ−2))ᵀ)

+θ(τ−1)(θ(τ−1))ᵀ
)

+ εIK

]
=
τ − 3

τ − 2
Cτ−1 +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)θ̄(τ−2)(θ̄(τ−2))ᵀ −

((
(τ − 1)θ̄(τ−1) − θ(τ−1)

)
×(θ(τ−1))ᵀ + θ(τ−1)

(
(τ − 1)(θ̄(τ−1))ᵀ − (θ(τ−1))ᵀ

))
+ (τ − 2)θ(τ−1)(θ(τ−1))ᵀ

)
+ εIK

]
=
τ − 3

τ − 2
Cτ−1 +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)θ̄(τ−2)(θ̄(τ−2))ᵀ

−(τ − 1)(θ̄(τ−1)(θ(τ−1))ᵀ + θ(τ−1)(θ̄(τ−1))ᵀ) + τθ(τ−1)(θ(τ−1))ᵀ
)

+ εIK

]
=
τ − 3

τ − 2
Cτ−1 +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)θ̄(τ−2)(θ̄(τ−2))ᵀ

−(τ − 1)(θ̄(τ−1)(θ(τ−1))ᵀ + (θ̄(τ−1)(θ(τ−1))ᵀ)ᵀ) + τθ(τ−1)(θ(τ−1))ᵀ
)

+ εIK

]
.

(2.20)

The Gaussian proposal distribution is now able to contain the knowledge about the se-

quence of the random variables, (θ(1), θ(2), . . . , θ(τ−1)) such that qτ (· | θ(1), θ(2), . . . , θ(τ−1)).

Then, suppose that θ′ ∼ q(· | θ(1), θ(2), . . . , θ(τ−1)) was drawn. It follows that the accep-

tance probability of θ′ given θ(τ−1) is given as follows:

r = a(θ′ | θ(τ−1)) = min

{
1,

π(θ′)

π(θ(τ−1))

}
. (2.21)

For the current iteration θ(τ), θ′ is accepted by the following steps such that

θ(τ) =


θ′, if u ≤ r

θ(τ−1), if u > r

,

where u ∼ U(0, 1). It is important to note that Equation (2.21) is not based on the

detailed balance condition (reversibility), and hence, the chain of the random variables

is of a non-Markov property (Haario et al., 2001). Equation (2.20) allows one to

compute the covariance Cτ that contains all the information of the random variables

{θ(ν) : ν ∈ {1, 2, . . . , τ − 1}}.

2.4 Advanced MCMC Algorithms 37

Tierney and Mira (1999) discussed and conjectured how developing adaptive al-

gorithms to specific important classes of problems will play an important role in the

greatest progress in MCMC methods as a tool for Bayesian inference.

The following summarises the adaptive Metropolis algorithm, Algorithm 3.

Algorithm 3 The Adaptive Metropolis Algorithm

1: Initialise θ(1), sK , ε > 0, τ0, and C0.
2: for τ = 2, 3, . . . , N do
3: if τ <= τ0 then
4: Simulate θ′ ∼ NK(θ(τ−1), C0).
5: else
6: Simulate θ′ ∼ NK(θ(τ−1), Cτ−1).
7: end if
8: Calculate

r = min

{
1,

π(θ′)

π(θ(τ−1))

}
.

9: Draw u ∼ U(0, 1).
10: if u ≤ r then
11: θ(τ) = θ′

12: else
13: θ(τ) = θ(τ−1)

14: end if
15: if τ > τ0 then
16: Update Cτ by Equation (2.20).
17: end if
18: end for

2.4.2 Multiple-try Metropolis-Hastings Algorithm

It was well known that the standard Metropolis-Hastings algorithm might suffer from

slow convergence (Mengersen et al., 1996). Metropolis-type local moves often get

trapped in a local mode easily, and thus, it triggers slow convergence (Liu et al.,

2000). The multiple-try Metropolis-Hastings (MTM) algorithm was proposed by Liu

et al. (2000) in order to allow one for having a large searching region by simulating

multiple draws from a proposal distribution q(· | ·) at once. It is often challenging for

the Metropolis-Hastings algorithm to explore the entire target distribution of interest

effectively since the sampler can be trapped in the local mode (Gamerman and Lopes,

2006; Liu et al., 2000; Roberts et al., 1997).

To implement an MTM algorithm, the weight of a proposed draw θ′ given a current

38 2. Literature Review

draw θ(τ−1), that is, w(θ′ | θ) is defined as follows:

w(θ′ | θ(τ−1)) = π(θ′)q(θ′ | θ(τ−1))λ(θ′ |θ(τ−1)), (2.22)

where λ(θ′ | θ(τ−1)) is a non-negative symmetric function in (θ(τ−1), θ′) ∈ Θ2 whilst

λ(θ′ | θ(τ−1)) > 0 whenever q(θ′ | θ(τ−1)) > 0, for any τ ∈ {2, 3, . . . , N}. The simplest

form of the non-negative symmetric function is to set the function to be 1, that is,

λ(θ′ | θ(τ−1)) = 1. Another possible form is as follows:

λ(θ′ | θ(τ−1)) =

(
q(θ′ | θ(τ−1)) + q(θ(τ−1) | θ′)

2

)−1

. (2.23)

Note that the symmetric proposal distribution in Equation (2.23) allows the weighting

function in Equation (2.22) to be reduced to the posterior distribution itself (Liu et al.,

2000). One draws multiple random samples, say {θ∗1, θ∗2, . . . , θ∗k}, from a proposal dis-

tribution q(· | θ(τ−1)). Then, the proposed value θ′ is drawn from {θ∗1, θ∗2, . . . , θ∗k} with

probability which is proportional to {w(θ∗j | θ(τ−1))}, for j ∈ {1, 2, . . . , k}. Finally,

one draws multiple random samples {θ∗∗1 , θ∗∗2 , . . . , θ∗∗k−1} from the proposal distribution

q(· | θ′), and set θ∗∗k = θ(τ−1). Hence, a new acceptance ratio is defined as follows (Liu

et al., 2000):

r = a(θ′ | θ(τ−1)) = min

{
1,
w(θ∗1 | θ(τ−1)) + w(θ∗2 | θ(τ−1)) + · · ·+ w(θ∗k | θ(τ−1))

w(θ∗∗1 | θ′) + w(θ∗∗2 | θ′) + · · ·+ w(θ∗∗k | θ′)

}
.

(2.24)

The basic scheme of the MTM algorithm is summarised as follows.

2.4.3 Delayed Rejection Metropolis-Hastings Algorithm

Tierney and Mira (1999) and Mira and Tierney (2002) introduced the idea of delay-

ing a rejection step in the acceptance probability. It is an inherent property that a

proposed draw from a proposal distribution for the target distribution is rejected by

the Metropolis-Hastings ratio; however, the rejected draw may suggest that the pro-

posal distribution is of a bad fit for the density of interest. Thus, an adapted proposal

distribution based on the information of the rejected draw is able to help the MCMC

2.4 Advanced MCMC Algorithms 39

Algorithm 4 The Multiple-try Metropolis-Hastings Algorithm

1: Draw multiple random samples, {θ∗1, θ∗2, . . . , θ∗k}, from q(· | θ(τ−1)).
2: Sample θ′ from {θ∗1, θ∗2, . . . , θ∗k} with probability which is proportional to
{w(θ∗j | θ(τ−1))}, where j ∈ {1, 2, . . . , k}.

3: Draw {θ∗∗1 , θ∗∗2 , . . . , θ∗∗k−1} from q(· | θ′), and set θ∗∗k = θ(τ−1).
4: Calculate the acceptance probability as follows:

r = a(θ′ | θ(τ−1)) = min

{
1,
w(θ∗1 | θ(τ−1)) + w(θ∗2 | θ(τ−1)) + · · ·+ w(θ∗k | θ(τ−1))

w(θ∗∗1 | θ′) + w(θ∗∗2 | θ′) + · · ·+ w(θ∗∗k | θ′)

}
.

5: Draw u ∼ U(0, 1).
6: if u ≤ r then
7: θ(τ) = θ′

8: else
9: θ(τ) = θ(τ−1)

10: end if

algorithm be more efficient (Tierney and Mira, 1999).

Suppose a current draw θ(τ−1), for any τ ∈ {2, 3, . . . , N}, and a proposed draw

θ∗1 ∼ q1(· | θ(τ−1)) is rejected. Then, a proposed draw θ∗2 ∼ q2(· | θ∗1, θ(τ−1)) is generated.

It follows that θ∗2 is accepted according to the following acceptance probability such

that

a(θ∗2 | θ∗1, θ(τ−1)) = min

{
1,

π(θ∗2)q1(θ∗1 | θ∗2)q2(θ(τ−1) | θ∗1, θ∗2)[1− a(θ∗1 | θ∗2)]

π(θ(τ−1))q1(θ∗1 | θ(τ−1))q2(θ∗2 | θ∗1, θ(τ−1))[1− a(θ∗1 | θ(τ−1))]

}
,

(2.25)

where q1(· | θ(τ−1)) and q2(· | θ∗1, θ(τ−1)) are arbitrary proposal distributions.

Equation (2.25) preserves the detailed balance condition and proves the target

distribution π(·) invariant (Tierney and Mira, 1999). Mira et al. (2001) made a remark

on generalising Equation (2.25) to νth try such that

a(θ∗ν | θ∗ν−1, . . . , θ
∗
1, θ

(τ−1))

= min

{
1,

π(θ∗ν)q1(θ∗ν−1 | θ∗ν)q2(θ∗ν−2 | θ∗ν−1, θ
∗
ν) · · · qν(θ(τ−1) | θ∗1, θ∗2, . . . , θ∗ν−1, θ

∗
ν)

π(θ(τ−1))q1(θ∗1 | θ(τ−1))q2(θ∗2 | θ∗1, θ(τ−1)) · · · qν(θ∗ν | θ∗ν−1, θ
∗
ν−2, . . . , θ

∗
1, θ

(τ−1))

×
[1− a(θ∗ν−1 | θ∗ν)][1− a(θ∗ν−2 | θ∗ν−1, θ

∗
ν)] · · · [1− a(θ∗1 | θ∗2, θ∗3, . . . , θ∗ν)]

[1− a(θ∗1 | θ(τ−1))][1− a(θ∗2 | θ∗1, θ(τ−1))] · · · [1− a(θ∗ν−1 | θ∗ν−2, θ
∗
ν−3, . . . , θ

∗
1, θ

(τ−1))]

}
.

(2.26)

By Equation (2.26), the crucial difference between the delayed rejection Metropolis-

Hastings (DRMH) and MTM algorithms is that not only does some proposal at νth try

40 2. Literature Review

of the DRMH algorithm qν(θ
∗
ν | θ∗ν−1, θ

∗
ν−2, . . . , θ

∗
1, θ

(τ−1)) depend on the current draw

θ(τ−1), but it also relies on the sequence of rejected tries (θ∗1, θ
∗
2, . . . , θ

∗
ν−1). A simple

example of implementing different proposals is to define the initial proposal as an

independent Metropolis-Hastings proposal such that q1(θ∗1 | θ(τ−1)) = N (0, σ2), where

σ > 0 is arbitrary, and to define the second proposal q2(θ∗2 | θ∗1, θ(τ−1)) as the random

walk Metropolis-Hastings proposal such that θ∗2 ∼ N (θ∗1, σ
2) (Tierney and Mira, 1999).

Furthermore, delayed rejection strategy can be considered as a means of incorpo-

rating two or more different proposals for Metropolis-Hastings moves. For example,

either the first proposal which is computationally inexpensive to simulate can be tried

in order to enhance the computational time. Alternatively, the first kernel can take a

form of global search, namely with a large variance, to explore the state space more ef-

ficiently, and then, the second kernel can be more timid approach to allow the sampler

to implement a local search (Haario et al., 2006).

2.4.4 Symmetric Delayed Rejection Metropolis-Hastings Al-

gorithm

Suppose for any νth stage, the proposal distribution is symmetric and is only dependent

on the last rejected draw θ∗ν−1 such that

qν(θ
∗
ν | θ∗ν−1, θ

∗
ν−2, . . . , θ

∗
1, θ

(τ−1)) = q(θ∗ν | θ∗ν−1) = q(θ∗ν−1 | θ∗ν). (2.27)

By Equation (2.27), the acceptance ratio in Equation (2.26) is reduced to the following:

a(θ∗ν | θ∗ν−1, . . . , θ
∗
1, θ

(τ−1))

=
π(θ∗ν)q1(θ∗ν−1 | θ∗ν)q2(θ∗ν−2 | θ∗ν−1, θ

∗
ν) · · · qν(θ(τ−1) | θ∗1, θ∗2, . . . , θ∗ν−1, θ

∗
ν)

π(θ(τ−1))q1(θ∗1 | θ(τ−1))q2(θ∗2 | θ∗1, θ(τ−1)) · · · qν(θ∗ν | θ∗ν−1, θ
∗
ν−2, . . . , θ

∗
1, θ

(τ−1))

×
[1− a(θ∗ν−1 | θ∗ν)][1− a(θ∗ν−2 | θ∗ν−1, θ

∗
ν)] · · · [1− a(θ∗1 | θ∗2, θ∗3, . . . , θ∗ν)]

[1− a(θ∗1 | θ(τ−1))][1− a(θ∗2 | θ∗1, θ(τ−1))] · · · [1− a(θ∗ν−1 | θ∗ν−2, θ
∗
ν−3, . . . , θ

∗
1, θ

(τ−1))]

=
π(θ∗ν)���

���q(θ∗ν−1 | θ∗ν)(((((
((q(θ∗ν−2 | θ∗ν−1) · · ·����

�
q(θ∗1 | θ∗2)���

���
�

q(θ(τ−1) | θ∗1)

π(θ(τ−1))���
���

�
q(θ∗1 | θ(τ−1))���

��q(θ∗2 | θ∗1) · · ·(((((
((q(θ∗ν−1 | θ∗ν−2)���

���q(θ∗ν | θ∗ν−1)

×
[1− a(θ∗ν−1 | θ∗ν)][1− a(θ∗ν−2 | θ∗ν−1)] · · · [1− a(θ∗1 | θ∗2)]

[1− a(θ∗1 | θ(τ−1))][1− a(θ∗2 | θ∗1)] · · · [1− a(θ∗ν−1 | θ∗ν−2)]

2.5 Label Switching 41

=
π(θ∗ν)[1− a(θ∗ν−1 | θ∗ν)][1− a(θ∗ν−2 | θ∗ν−1)] · · · [1− a(θ∗1 | θ∗2)]

π(θ(τ−1))[1− a(θ∗1 | θ(τ−1))][1− a(θ∗2 | θ∗1)] · · · [1− a(θ∗ν−1 | θ∗ν−2)]
. (2.28)

Equation (2.28) relies on the assumption where the current proposal distribution only

depends on the last rejected draw in the MCMC samples. This has a drawback and

loses its inferential capability against Equation (2.26) in which the proposal utilises all

the rejected draws (Mira et al., 2001).

Algorithm 5 summarises both the DRMH and the symmetric delayed rejection

Metropolis algorithms.

Algorithm 5 Delayed Rejection Metropolis-Hastings Algorithm

1: Initialise θ(1) and the number of rejection stages, ν.
2: for τ = 2, 3, . . . , N do
3: Set ν ′ = 0.
4: repeat
5: ν ′ ← ν ′ + 1
6: Simulate θ∗ν′ ∼ q(· | θ∗ν′−1, θ

∗
ν′−2, . . . , θ

∗
1, θ

(τ−1)).
7: Calculate r = a(θ∗ν′ | θ∗ν′−1, θ

∗
ν′−2, . . . , θ

∗
1θ

(τ−1)) by either Equations (2.26) or
(2.28), depending on symmetricity of the proposal distribution, q(· | ·).

8: Draw u ∼ U(0, 1).
9: until Set θ(τ) = θ∗ν′ whenever u ≤ r. Otherwise, set θ(τ) = θ(τ−1) when ν ′ = ν.

10: end for

2.5 Label Switching

In Bayesian inference, it is quite common to encounter an issue where estimating pa-

rameters by posterior means or clustering using mixture models may not sometimes

lead to desired MCMC convergence. This problem is referred to as the label switching

problem caused by symmetry in the likelihood of the model parameters and its invari-

ance to permutations of the labels (Scott, 2011; Sperrin et al., 2010; Stephens, 2000).

A prior which is same for all the permutations of parameters has no information about

identifying the components. Such a prior also symmetrises the posterior distribution,

and thus, inference by their posterior means it provides unclear information.

The mixing of labels implies that MCMC convergence will be impossible to achieve

since estimation of all the parameters will be as close as each other (Celeux et al.,

2000). To circumvent this type of problem, there have been several strategies which

42 2. Literature Review

can be divided into three categories (Sperrin et al., 2010) such as

• identifiability constraints,

• deterministic relabelling algorithms, and

• probabilistic relabelling algorithms.

Identifiability constraints relabels the resulting MCMC samples for which the relabeling

satisfies a constraint on the state specific parameters. It sets a restriction on the

parameter space ΘX, so that there exists a unique permutation of parameters χ∗ ∈ X,

which satisfies (θ1
χ∗ , θ

2
χ∗ , . . . , θ

p
χ∗) ∈ Θ. A simple example of constraints in an HMM is

component means µ1 < µ2 < · · · < µm forcing a unique label on the MCMC output at

each iteration (Rydén et al., 2008; Stephens, 2000).

2.6 MCMC Convergence

It is always required to analyse whether the MCMC samples converge to their true val-

ues. Otherwise, the sampled sequences will be unfit for the analysis. There are several

methods in order to assess MCMC convergence. A comprehensive review on MCMC

convergence diagnostics is available in Cowles and Carlin (1996). Of the MCMC di-

agnostic tests in the literature, Geweke’s diagnostics was selected for this thesis. The

diagnostics are available in the statistical package ‘coda’ in R c©. The following sections

are dedicated to describing Geweke’s diagnostics.

Geweke et al. (1991) proposed a procedure based on the spectral analysis where

a Gibbs sequence being treated as time series. The convergence analysis proceeds to

estimate the mean of some function of parameters f(θ) in which the Gibbs sampler

is supposed to simulate the parameters θ. The nature of MCMC iterations and the

function f(·) are assumed to imply that there exists a spectral density Sf (ω), for

the resulting sequence as a time series. This time series is considered to have no

discontinuity at zero frequency, that is, ω = 0 (Cowles and Carlin, 1996). It follows

that the estimator E[f(θ)] with N iterations of the Gibbs sampler is given as follows:

f̄N(θ) =

∑N
ν=1 f(θ(ν))

N
.

2.6 MCMC Convergence 43

Also, the asymptotic variance is given by Sf (0)/N . Thus, the square root of this

asymptotic variance gives an estimate of the standard error of the mean. This standard

error was defined as a numeric standard error by Geweke et al. (1991).

Geweke’s diagnostics assesses MCMC convergence by calculating the mean differ-

ence of fNA(θ) with the first NA iterations and fNB(θ) with the last NB iterations, and

dividing by the numeric standard error of that mean difference. Then, a statistic of

Geweke’s diagnostics is given as follows:

f̄NB(θ)− f̄NA(θ)√
Sf (0)/N

, (2.29)

where f̄NA =
∑NA

ν=1 f(θ(ν))
/
NA , and f̄NB =

∑N
ν=N−NB+1 f(θ(ν))

/
NB .

By the central limit theorem, the distribution of Equation (2.29) should approach

a standard normal distribution as N tends to infinity under the constraint (NA +

NB)/N < 1. In practice, NA and NB are set to be NA = N/10 and NB = N/2 so

that the assumption of the central limit theorem can be met (Geweke et al., 1991).

If the value in Equation (2.29) lies between the 95% confidence interval about 0 in

a standard normal distribution, then the convergence diagnostic meets the criterion

where the resulting sequence has converged to the true value (Cowles and Carlin, 1996;

Geweke et al., 1991). Therefore, if a statistic of Geweke’s diagnostics lies between

approximately −2 and 2, then it may be claimed that the convergence is achieved.

This method was selected for several reasons. First of all, it is comparatively

easier to implement than other methods. Second of all, it may be applied with any

MCMC method (Cowles and Carlin, 1996). Although Geweke’s method is essentially

for univariate MCMC samples, it might also be used for assess convergence of the joint

posterior distributions whenever f(θ) is regarded as −2 times the log of the posterior

distribution (Cowles and Carlin, 1996).

Despite the fact that Geweke’s diagnostics is sensitive to the specification of the

spectral window and does not have a procedure for applying the method, I will adhere

to the default window spectral window to assess convergence of the joint posterior

distributions.

44 2. Literature Review

2.7 MCMC Algorithm Efficiency

A requirement of assessing the efficiencies of MCMC algorithms is considered to be cru-

cial since different algorithms generate different results. In the following, the measure

of an algorithm’s efficiency, effective sample size, is reviewed.

Effective sample size (ESS) represents the corresponding number of uncorrelated

samples in MCMC iterations (Gamerman and Lopes, 2006). An estimate of the ESS

for MCMC samples θ = (θ(1), θ(2), . . . , θ(N)) is given as follows:

ESS(θ) =
N

1 + 2
∑∞

k=1 Lk
,

where N is the number of MCMC samples, and Lk is the autocorrelation at the kth lag.

Note that the ESS can take a value that is greater than the original number of samples

whenever
∑∞

k=1 Lk < 0. The ESS can also be thought of as the size of a random sample

with the same posterior variance (Liu and Chen, 1995).

It is also one of the computations where one can assess whether chains of a sam-

pler mix well, and hence, the algorithm is robust in a sense of convergence (Del Moral

et al., 2012). The ESS takes values between 1 and N . Its interpretation is understood

in a way of how inference based on the N weighted samples is approximately equiva-

lent to inference based on ESS(W
(τ)
t) perfect samples from the posterior distribution

πt(·), where W
(τ)
t denotes the weighted samples of population t at τ th MCMC itera-

tion. It also gives an indication of how the estimator is accurate and assesses whether

re-sampling schemes are required whenever its value fails to be above the threshold

(Del Moral et al., 2012).

The equation for an ESS is given as follows:

ESS(W
(τ)
t) =

1∑N
τ=1

(
W

(τ)
t

)2 . (2.30)

At the end of N th iteration, Equation (2.30) can easily be computed for each population

t since the calculation of {W (τ)
t } for all τ ∈ {1, 2, . . . , N} is complete.

45

Chapter 3
Univariate NHGHMM

A
lthough the ordinary homogeneous GHMM has gained popularity in vari-

ous disciplines, it restricts transition probabilities to be constant and fails

to incorporate other important underlying variables such as economic fundamentals

(Diebold et al., 1994; Filardo and Gordon, 1998). Therefore, the first univariate non-

homogeneous GHMM was introduced in the econometric literature to overcome the

restrictive nature of the constant transition probabilities (Diebold et al., 1994). Unlike

a homogeneous GHMM, an NHGHMM consists of time-varying transition probabil-

ities between the hidden states to accommodate different transition probabilities of

segments in the GHMM.

Filardo and Gordon (1998) investigated the NHGHMM to model a business cycle.

In addition, they used a Bayesian approach which has differed from Diebold et al.

(1994)’s frequentist approach to tackle technical problems caused by classical tech-

niques. The development of conventional homogeneous Markov switching models was

motivated by the problem where the conditional duration of a phase is constant due to

the constant transition probabilities (Filardo and Gordon, 1998). An NHGHMM incor-

porated with a Bayesian approach was applied to the US financial data. Their model

was able to overcome the technical problems, and successfully evaluated its ability to

explain observed business cycle durations (Filardo and Gordon, 1998).

Spezia (2006) conducted Bayesian parameter estimation of an NHGHMM whose

transition probabilities depend on exogenous variables through a logistic function.

Spezia (2006) implemented the MCMC algorithms through the case study of ozone

46 3. Univariate NHGHMM

data. Bayesian inference proved to be useful and performed well by introducing time-

varying transition probabilities; however, Spezia (2006) used the standard Metropolis-

Hastings algorithm for parameter estimation of the transition probabilities.

One of the aims in this chapter is to extend Spezia (2006)’s work by introducing

more advanced MCMC algorithms in order to accelerate the MCMC convergence.

Then, I attempt to observe how effective the proposed MCMC algorithms are in

the model and make an appropriate comparison of those algorithms in terms of sim-

ulation efficiency and MCMC convergence. To validate these algorithms, I generate

100 independent simulated data sets of Diebold et al. (1994) where the true values of

parameters of interest were set to be identical. Finally, I compare my simulation study

result to that of Diebold et al. (1994) as I use Bayesian inference, not frequentist.

As we are aware, the first comprehensive Bayesian inference of NHGHMM was

conducted by Spezia (2006). He also developed several variants of HMMs such as

the homogeneous GHMM with the multivariate periodic component as a random effect

(Spezia et al., 2011), and the NHHMM whose observations being dichotomous variables

(Spezia et al., 2014). Another interesting type of the HMM, a spatial hidden Markov

model, was developed by Spezia et al. (2018), introducing an autologistic model in the

framework of the HMM. Nevertheless, the transition probabilities in these types of the

HMMs are not time-varying. Hence, the model is outside of the scope and I specifically

follow Spezia (2006) to focus on the aims of this thesis.

In this chapter, my original contribution is to implement those proposed MCMC

algorithms in NHGHMMs, namely the adaptive Metropolis, the symmetric delayed

rejection adaptive Metropolis, and the multiple-try adaptive Metropolis algorithms.

The approaches are essentially different from that of Spezia (2006).

This chapter is organised as follows. In Section 3.1, an NHGHMM is mathematically

defined in detail so that the time-varying probabilities can properly be introduced. In

Section 3.2, prior distributions of parameters of interest for the NHGHMM are specified.

In Section 3.3, a joint likelihood function is defined, followed by formal derivations of the

joint and conditional posterior distributions in Section 3.4. In Section 3.5, explanation

of the MCMC algorithms as part of my original contributions is presented. Lastly,

3.1 The Model 47

simulation and case studies are presented in Sections 3.6 and 3.7, respectively.

3.1 The Model

Recall the NHGHMM discussed in Section 2.1.2. First of all, it is required to specify

each parameter, prior distributions on the parameters of interest, a likelihood function,

and a joint posterior distribution. This is then followed by the proposed MCMC

algorithms.

Following Spezia (2006), let S = (S1, S2, . . . , Sn) be a discrete-time, first-order,

non-homogeneous Markov chain and St belong to a state space Ω = {1, 2, . . . ,m}, for

any t ∈ {1, 2, . . . , n}, where n,m ∈ N \ {1}. Furthermore, let Y = (Y1, Y2, . . . , Yn) be

a sequence of conditionally independent real-valued random variables Yt ∈ R, for any

t ∈ {1, 2, . . . , n}, on the contemporary hidden state St. That is,

Yt |St = i ∼ N (µi, λ
−1
i),

where i ∈ Ω. Now, let ρ = (ρ1, ρ2, . . . , ρm) be a vector of initial distributions such that

ρi = Pr(S1 = i), for each i ∈ Ω. Then, define zt = (1, z1
t , z

2
t , . . . , z

K−1
t) as a vector

of K deterministic exogenous variables, where K ∈ N \ {1} for any t ∈ {2, 3, . . . , n}.

Furthermore, let αi,j be a vector of K coefficients, that is, αi,j = (α1
i,j, α

2
i,j, . . . , α

K
i,j)

whenever i 6= j, and be a vector of K zeros when i = j.

Moreover, the transition matrices Qt, for all t ∈ {2, 3, . . . , n}, are computed as

logistic functions of αi,j and zt (Spezia, 2006) such that

Pr(St = j |St−1 = i) := qti,j =
exp(zᵀt αi,j)

1 +
∑
j∈Ω
j 6=i

exp(zᵀt αi,j)
. (3.1)

When at least one of {zkt }, for k ∈ {1, 2, . . . , K − 1}, is non-zero, it implies that the

Markov chain is non-homogeneous.

In addition, the model deals with time-varying stochastic matrices Qt, for all t ∈

{2, 3, . . . , n}, since it assumes non-homogeneity on the Markov chain. Hence, parameter

estimation of the transition probabilities differs from that of homogeneous GHMM.

48 3. Univariate NHGHMM

Consider that the distribution of observed values in a univariate NHGHMM is

Gaussian, the pairs of state specific parameters µi and λi, for any i ∈ Ω, and the

vector of K coefficients for transition probabilities, αi,j, for any {(i, j) ∈ Ω2 : i 6=

j}, in addition to the hidden state sequence s = (s1, s2, . . . , sn) are comprised of all

parameters of interest to be estimated in the model.

It is required to specify prior distributions for each parameter of interest. The prior

specification is carried out in the following section.

3.2 Prior Distributions

Following Spezia (2006), define θ = (µ, λ, α, s) as a vector of the parameters of interest,

where µ = (µ1, µ2, . . . , µm), λ = (λ1, λ2, . . . , λm) such that λ−1 = σ2, α = (αi,j), for

any (i, j) ∈ Ω2, and s = (s1, s2, . . . , sn).

The prior specification on the three vectors of the parameters, namely µ, λ, and α

is as follows (Spezia, 2006):

(i) Prior for µ: A truncated normal prior N (µi−1, λ
−1
Mi

) over the interval (µi−1,∞) is

placed on µi, for any i ∈ {2, 3, . . . ,m}. Define λMi
= 2M2/(λi−1 + λi) with some

positive constant M . Then, µ1 is drawn from the normal prior N (µM1 , λ
−1
M1

). The

truncated interval (µi−1,∞) is proposed to overcome unidentifiability of labels by

placing µi in an increasing order such that µi < µj, for any i, j ∈ Ω, so that i < j

(Spezia, 2006). Due to the truncated interval, the prior distribution of µi, for any

i ∈ {2, 3, . . . ,m} is conditioned on µi−1. Thus,

p(µ) = p(µ1)
m∏
i=2

p(µi |µi−1), (3.2)

where µ1 ∼ N (µM1 , λ
−1
M1

) and µi |µi−1 ∼ N (µi−1, λ
−1
Mi

), for any i ∈ {2, 3, . . . ,m}.

Therefore,

µi ∼ N (µM1 , λ
−1
M1

) =

√
λM1

2π
exp

(
−1

2

(µi − µM1)2

λ−1
M1

)
, if i = 1

µi |µi−1 ∼ N (µi−1, λ
−1
Mi

) = 2

√
λMi

2π
exp

(
−1

2

(µi − µi−1)2

λ−1
Mi

)
, if i > 1,

3.2 Prior Distributions 49

where supp{p(µi |µi−1)} = (µi−1,∞), for any i ∈ {2, 3, . . . ,m}.

(ii) Prior for λ: A gamma prior G(αΛ, βΛ) is placed on λi, for any i ∈ Ω. Each

parameter is independent, and therefore,

p(λ) =
m∏
i=1

p(λi), (3.3)

where λi ∼ G(αA, βA), for any i ∈ Ω. Henceforth,

p(λi) =
βαΛ

Λ

Γ(αΛ)
λαΛ−1
i exp(−βΛλi),

for any i ∈ {1, 2, . . . ,m}.

(iii) Prior for α: A multivariate normal prior of dimension K such that NK(µA,Λ
−1
A)

is placed on αi,j, for {(i, j) ∈ Ω2 : i 6= j}, and the parameters are independent of

each other as follows:

p(α) =
∏

(i,j)∈Ω2

i 6=j

p(αi,j), (3.4)

where αi,j ∼ NK(µA,Λ
−1
A), for {(i, j) ∈ Ω2 : i 6= j}, µA ∈ RK is a vector of means

and ΛA ∈ RK×K is a positive-definite precision matrix. Thus,

p(αi,j) = [(2π)K det(Λ−1
A)]−

1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
= det(2πΛ−1

A)−
1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
,

for any {(i, j) ∈ Ω2 : i 6= j}.

Note that the prior distributions for the parameters µ and λ are designed to be conju-

gate priors. As for the parameter α, the multivariate Gaussian distribution is chosen

for the prior distribution (Spezia, 2006). In an application of the NHGHMM to ozone

data, Spezia (2006) set the prior distribution of the parameter α to be non-informative.

Following him, the non-informative prior distribution for the parameter α is used to

avoid perturbing the posterior distribution of interest.

Now, it is required to derive the joint likelihood function of all the parameters in

50 3. Univariate NHGHMM

the model.

3.3 Likelihood Function

Within the framework of a univariate GHMM (Spezia, 2006), the joint likelihood func-

tion of the hidden states and the observed data (s, y) given other variables is given as

follows:

f(s, y |µ, λ, α, z, ρ) = f(s |µ, λ, α, z, ρ)f(y |µ, λ, s, α, z, ρ)

= f(s |α, z, ρ)f(y |µ, λ, s) (3.5)

= f(s1 | ρ)
n∏
t=2

f(st | st−1, α, zt)
n∏
t=1

f(yt |µst , λst , st) (3.6)

= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

1√
2πλ−1

st

exp

(
−1

2

(yt − µst)2

λ−1
st

)
, (3.7)

where z = (z1, z2, . . . , zn). The joint density of the hidden states is not conditioned on

(µ, λ), but is conditioned on (α, z, ρ) since qti,j is calculated according to Equation (3.1).

Moreover, the joint density of the observed data is not conditioned on those variables

(α, z, ρ). Thus, Equation (3.5) is true. From Equation (3.5) to Equation (3.6), the

density of s1 given the initial density ρ is simply the initial distribution. That is,

f(s1 | ρ) = Pr(S1 = s1) = ρs1 .

Note that the non-homogeneity of the model is reflected on the term qtst−1,st
, for any

t ∈ {2, 3, . . . , n}.

3.4 Posterior Distributions

Bayesian inference requires deriving a joint posterior distribution of the parameters

given the observed data. Given the prior distributions in Equations (3.2), (3.3), and

(3.4), and the likelihood function in Equation (3.7), the joint posterior distribution

of the parameters θ = (µ, λ, α, s) given the observed data y, and other deterministic

3.4 Posterior Distributions 51

variables is expressed as follows:

π(θ | y, z, ρ) = π(µ, λ, α, s | y, z, ρ)

∝ f(s, y |µ, λ, α, z, ρ)p(µ, λ, α, z, ρ)

= f(s |α, z, ρ)f(y |µ, λ, s)p(µ, λ, α, z, ρ)

= f(s |α, z, ρ)f(y |µ, λ, s)p(µ, λ, α | z, ρ)p(z, ρ)

∝ f(s1 | ρ)
n∏
t=2

f(st | st−1, α, zt)
n∏
t=1

f(yt |µst , λst , st)p(µ, λ, α)

= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

√
λst
2π

exp

(
−1

2

(yt − µst)2

λ−1
st

)
p(µ)p(λ)p(α)

= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

√
λst
2π

exp

(
−1

2

(yt − µst)2

λ−1
st

)

×

[
p(µ1)

m∏
i=2

p(µi |µi−1)

][
m∏
i=1

p(λi)

] ∏
(i,j)∈Ω2

i 6=j

p(αi,j)


= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

√
λst exp

(
−1

2

(yt − µst)2

λ−1
st

)

×

[√
λM1

2π
exp

(
−1

2

(µ1 − µM1)2

λ−1
M1

)
m∏
i=2

√
λMi

2π
exp

(
−1

2

(µi − µi−1)2

λ−1
Mi

)]

×

[
m∏
i=1

βαΛ
Λ

Γ(αΛ)
λαΛ−1
i exp(−βΛλi)

]

×

 ∏
(i,j)∈Ω2

i 6=j

det(2πΛ−1
A)−

1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
∝ ρs1

n∏
t=2

qtst−1,st

n∏
t=1

√
λst exp

(
−1

2

(yt − µst)2

λ−1
st

)

×

[
exp

(
−1

2

(
(µ1 − µM1)2

λ−1
M1

+
m∑
i=2

(µi − µi−1)2

λ−1
Mi

))]

×

(m∏
i=1

λi

)αΛ−1

exp(−βΛ

m∑
i=1

λi)



×

 ∏
(i,j)∈Ω2

i 6=j

exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

) . (3.8)

52 3. Univariate NHGHMM

Given the joint posterior distribution of the parameters of interest θ in Equation (3.8),

Bayesian inference of the parameters (µ(τ), λ(τ), α(τ)) requires conditional posterior dis-

tributions of µi, λi for each i ∈ Ω, and αi,j for all (i, j) ∈ Ω2. Alternatively, to estimate

a hidden state sequence at the τ th MCMC iteration, s(τ) = (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n), the

forward filtering backward sampling algorithm can be performed (Chib, 1996). The

derivations of the full conditional posterior distributions of the parameters of interest

are given below.

The conditional posterior distribution of s

The forward filtering backward sampling algorithm is implemented in order to realise

a sequence of the hidden states, namely s(τ) = (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n). The simulation

proceeds with estimating the hidden states from the joint posterior distribution of all

the states given the observed data and the remaining parameters (Chib, 1996; Spezia,

2006). It follows that

π(s | y, θ−s) = π(sn | y, θ−s)
n−1∏
t=1

π(st | st+1:n, y, θ−s),

where θ−s = (µ, λ, α, �s) = (µ, λ, α), si:j = (si, si+1, . . . , sj), if i < j, and si:j = si, if

i = j. Moreover, si:j = {} whenever i > j.

By Bayes’ Theorem, π(st | st+1:n, y, θ−s), for t ∈ {1, 2, . . . , n− 1}, can be reduced to

the following expression:

π(st | st+1:n, y, θ−s) ∝ f(st+1:n, yt+1:n | st, y1:t, θ−s)π(st | y1:t, θ−s)

∝ f(st+2:n, yt+1:n | st+1,��st , y1:t, θ−s)︸ ︷︷ ︸
1st order Markov chain

π(st+1 | st,��y1:t , θ−s)︸ ︷︷ ︸
Markov property

π(st | y1:t, θ−s)

= f(st+2:n, yt+1:n | st+1, y1:t, θ−s)︸ ︷︷ ︸
independent of st

π(st+1 | st, θ−s)π(st | y1:t, θ−s)

∝ π(st+1 | st, θ−s)π(st | y1:t, θ−s). (3.9)

Thus, the posterior distribution of the state at time t is reduced to a product of the

two terms in Equation (3.9), and hence, the recursive simulation of each state from

3.4 Posterior Distributions 53

that posterior distribution is able to be executed (Chib, 1996; Scott, 2002).

The conditional posterior distribution of α

For any {(i, j) ∈ Ω2 : i 6= j}, the full conditional posterior distribution of αi,j such

that π(αi,j | θ−α) is given as follows (Spezia, 2006):

π(αi,j | θ−α) ∝
∏

{t≥2: st−1=i∧ st=j}

qtst−1,st
exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)

(by Equation (3.8))

=
∏

{t≥2: st−1=i∧ st=j}

exp(zᵀt αi,j)

1 +
∑

j∈Ω
j 6=i

exp (zᵀt αi,j)
exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)

=

exp

(∑
{t≥2: st−1=i∧ st=j} z

ᵀ
t αi,j −

1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
∏
{t≥2: st−1=i∧ st=j}

(
1 +

∑
j∈Ω
j 6=i

exp(zᵀt αi,j)

) . (3.10)

The joint posterior distribution in Equation (3.10) has a non-standard form, and hence,

Gibbs sampler cannot be used for the parameter estimation. Therefore, Metropolis-

Hastings algorithm which is one of the MCMC algorithms is applied.

At each Metropolis-Hastings step, α
(τ)
i = (α

(τ)
i,1 , α

(τ)
i,2 , . . . , α

(τ)
i,i−1,0, α

(τ)
i,i+1, . . . , α

(τ)
i,m) ∈

RK×m is proposed from a proposal distribution (i.e. the multivariate Gaussian distri-

bution), where 0 is a vector of K zeros. Thus, the full conditional posterior distribution

of α
(τ)
i , for each i ∈ Ω is as follows:

π(α
(τ)
i | θ−α) ∝

exp

(∑
{t≥2: st−1=i} z

ᵀ
t α

(τ)
i,j −

1

2

∑
j∈Ω
j 6=i

(α
(τ)
i,j − µA)ᵀΛA(α

(τ)
i,j − µA)

)
∏
{t≥2: st−1=i}

(
1 +

∑
j∈Ω
j 6=i

exp(zᵀt α
(τ)
i,j)

) .

(3.11)

The conditional posterior distribution of λ

For λi | θ−λ, for any i ∈ Ω, it follows that

π(λi | θ−λ) ∝
∏

{t≥1: st=i}

λ
1
2
i exp

(
−1

2

(yt − µi)2

λ−1
i

)
λαΛ−1
i exp (−βΛλi)

54 3. Univariate NHGHMM

= λ
ν
(τ)
i
2

i λαΛ−1
i exp

−1

2
λi

∑
{t≥1: st=i}

(yt − µi)2

 exp (−βΛλi)

= λ
ν
(τ)
i
2

+αΛ−1

i exp

−
1

2

∑
{t≥1: st=i}

(yt − µi)2 + βΛ

λi

 . (3.12)

Therefore, λ
(τ)
i | θ−λ is drawn from the full conditional posterior distribution in Equa-

tion (3.12), that is,

λ
(τ)
i | θ−λ ∼ G

ν(τ)
i

2
+ αΛ,

1

2

∑
{t≥1: s

(τ)
t =i}

(yt − µ(τ−1)
i)2 + βΛ

 , (3.13)

where ν
(τ)
i is the number of observations in state i of s(τ) generated at the τ th iteration,

namely ν
(τ)
i = #{t ≥ 1 : s

(τ)
t = i} (Spezia, 2006).

The conditional posterior distribution of µ

For µi | θ−µ, for any i ∈ {2, 3, . . . ,m}, it follows that

π(µi | θ−µ) ∝

 ∏
{t≥1: st=i}

exp

(
−1

2

(yt − µi)2

λ−1
i

) exp

(
−1

2

(µi − µi−1)2

λ−1
Mi

)

∝ exp

(
−1

2

∑
{t≥1: st=i}(yt − µi)

2

λ−1
i

)
exp

(
−1

2

(µi − µi−1)2

λ−1
Mi

)

= exp

−1

2

λi ∑
{t≥1: st=i}

(y2
t − 2ytµi + µ2

i) + λMi
(µ2

i − 2µiµi−1 + µ2
i−1)


= exp

−1

2

λi ∑
{t≥1: st=i}

y2
t − 2λiµi

∑
{t≥1: st=i}

yt + λiνiµ
2
i + λMi

µ2
i

−2λMi
µiµi−1 + λMi

µ2
i−1

))
∝ exp

−1

2

(λiνi + λMi
)µ2

i − 2

λi ∑
{t≥1: st=i}

yt + λMi
µi−1

µi


= exp

(
−1

2
(λiνi + λMi

)

(
µ2
i − 2

(
λi
∑
{t≥1: st=i} yt + λMi

µi−1

λiνi + λMi

)
µi

))

= exp

−1

2
(λiνi + λMi

)

(
µi −

λi
∑
{t≥1: st=i} yt + λMi

µi−1

λiνi + λMi

)2

3.4 Posterior Distributions 55

−
(λi
∑
{t≥1: st=i} yt + λMi

µi−1)2

λiνi + λMi

)

∝ exp

−1

2
(λiνi + λMi

)

(
µi −

λi
∑
{t≥1: st=i} yt + λMi

µi−1

λiνi + λMi

)2
 . (3.14)

Therefore, µ
(τ)
i | θ−µ is drawn from the full conditional posterior distribution in Equa-

tion (3.14). It follows that

µ
(τ)
i | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λMi

µ
(τ)
i−1

λ
(τ)
i νi + λMi

,
1

λ
(τ)
i νi + λMi

 , (3.15)

for any i ∈ {2, 3, . . . ,m}. Assume without loss of generality, the full conditional

posterior distribution of µ1 | θ−µ replaces exp(−(µi − µi−1)2/2λ−1
Mi

) with exp(−(µ1 −

µM1)2/2λ−1
M1

) (Spezia, 2006). It follows that

π(µ1 | θ−µ) ∝

 ∏
{t≥1: st=i}

exp

(
−1

2

(yt − µi)2

λ−1
i

) exp

(
−1

2

(µ1 − µM1)2

λ−1
M1

)
...

∝ exp

−1

2
(λiνi + λM1)

(
µ1 −

λi
∑
{t≥1: st=i} yt + λM1µM1

λiνi + λM1

)2
 .

Thus, µ
(τ)
1 | θ−µ is drawn as follows:

µ
(τ)
1 | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λM1µM1

λ
(τ)
i νi + λM1

,
1

λ
(τ)
i νi + λM1

 . (3.16)

As the conditional posterior distributions of the parameters have been detailed, it

remains to construct a main algorithm (Algorithm 6) which executes each MCMC

sub-algorithm regarding the corresponding parameter.

Upon completing the theoretical components of a Bayesian analysis, the MCMC

algorithms to approximate the joint posterior distribution of the parameters in Equa-

tion (3.8) are detailed as follows.

56 3. Univariate NHGHMM

3.5 The MCMC Algorithms

Since the joint posterior distribution in Equation (3.8) is analytically intractable, nu-

merical methods such as the MCMC algorithms are used for parameter estimation.

To be more specific, a proposal density for the Metropolis-Hastings algorithm can be

any multivariate probability density functions of choice to carry out MCMC iterations

(Brooks et al., 2011). In this thesis, however, the multivariate Gaussian distribution is

used as the proposal density when updating the parameter αi, for any i ∈ {1, 2, . . . ,m}.

As the dimension of the multivariate Gaussian distribution increases (i.e. K increases),

there is an exponential increase in sampling space for approximating the conditional

posterior distribution in Equation (3.11) (Bellman, 2015; Donoho et al., 2000).

The standard Metropolis-Hastings algorithm in such an exhaustive sampling scheme

is likely to become computationally inefficient, in addition to the difficulty of deter-

mining proposal distributions (Brooks et al., 2011).

Hence, in this thesis, I propose the adaptive MCMC algorithms to tackle the curse

of dimensionality and improve the convergence optimally. By recalling Section 2.4, I

have proposed and implemented the following algorithms to accelerate the convergence

and to become more efficient:

Algorithm 8 the adaptive Metropolis (AM) algorithm,

Algorithm 9 the symmetric delayed rejection adaptive Metropolis (DRAM) algo-

rithm, and

Algorithm 10 the multiple-try adaptive Metropolis (MTAM) algorithm.

The motivations of proposing these algorithms are as follows.

The AM algorithm can be considered as the global adaptive strategy (Haario et al.,

2006). Based on the past MCMC samples of the Metropolis-Hastings algorithms, online

tuning of the proposal distribution is done so that one can choose the optimal choice of

proposed values (Haario et al., 2001). Nevertheless, the algorithm is classified as neither

Markovian nor reversible due to the form of its adaptation (Haario et al., 2006, 2001).

This adaptive method is designed to scale the covariance matrix of the multivariate

Gaussian proposal distribution, so that more efficient exploration of sample space with

regard to the parameter αi, for any i ∈ {1, 2, . . . ,m}, can be carried out.

3.5 The MCMC Algorithms 57

Then, the DRAM algorithm is able to combine different proposal distributions at

each rejection stage regardless of symmetry of the proposals. It aims at integrating

partial local adaptation of the DRMH algorithm at each step of the Markov chain

and the global adaptive strategy of the AM algorithm (Haario et al., 2006). For the

sake of simplicity, a symmetric proposal distribution was used for the algorithm. As

for the univariate NHGHMM, the symmetric DRAM algorithm is implemented. This

algorithm attempts to delay rejection of a proposed parameter whose acceptance proba-

bility was relatively low. By delaying the rejection, it is able to increase the acceptance

probability, in addition to treating those MCMC chains which get trapped in local

modes.

Finally, the MTAM algorithm is proposed to maintain much larger searching regions

at each Metropolis-Hastings step due to the means of an MTM algorithm’s brute-force

by exploiting multiple draws at once (Liu et al., 2000). The scheme of the MTM

algorithm is incorporated with that of the AM algorithm. Hence, the MTAM algorithm

is now able to propose more plausible values at each Metropolis-Hastings step for more

improved MCMC convergence. For the model of interest, the MTAM algorithm is able

to maintain both the large searching region and the high acceptance probability. Hence,

this algorithm may be ideal for sampling the parameter αi, for any i ∈ {1, 2, . . . ,m},

from the sample space which is potentially vast to cover.

These proposed algorithms implemented for the model essentially differ from that

method of Spezia (2006)’s in terms of updating the parameter α.

In the following, Algorithm 6 outlines procedural steps of MCMC iterations, which

consists of three sub-algorithms.

58 3. Univariate NHGHMM

Algorithm 6 The Main Algorithm (Univariate NHGHMM)

1: Initialise θ(1) = (µ(1), λ(1), α(1), s(1)).
2: for τ = 2, 3, . . . , N do
3: Forward Filtering Backward Sampling Step:
4: Update s(τ) |µ(τ−1), λ(τ−1), α(τ−1) by Algorithm 7.
5: AM/Symmetric DRAM/MTAM Step:
6: Update α(τ) | s(τ), µ(τ−1), λ(τ−1) by either Algorithm 8, Algorithm 9, or Algo-

rithm 10.
7: Gibbs Sampling Step:
8: Update λ(τ) | s(τ), α(τ), µ(τ−1) by Gibbs sampler.
9: Update µ(τ) | s(τ), α(τ), λ(τ) by Gibbs sampler with embedded label switching.

10: end for

Given the main algorithm (Algorithm 6), each step within the algorithm is de-

scribed.

Initialisation of the Parameters

The procedure of initialising the parameters is deterministic and closely follows that

of Rydén et al. (2008)’s. This initialisation method generates a reasonable sequence of

the hidden states which is crucial to calculation of subsequent transition probabilities.

For each i ∈ Ω, the parameter µ
(1)
i is initialised as follows:

µ
(1)
i = min{y}+

R

2m
+ (i− 1)

R

m
,

where R = max{y} −min{y}.

For each t ∈ {1, 2, . . . , n}, the parameter s
(1)
t is initialised as follows:

s
(1)
t = arg min

i∈Ω
(yt − µ(1)

i)2.

For each i ∈ Ω, the parameter λ
(1)
i is initialised as follows:

λ
(1)
i =

 1

ν
(1)
i

∑
{t≥1: s

(1)
t =i}

(yt − µ(1)
i)2

−1

,

where ν
(1)
i = #{t ≥ 1 : s

(1)
t = i}.

For each {(i, j) ∈ Ω2 : i 6= j}, define α◦i,j = (α2
i,j, α

3
i,j, . . . , α

K
i,j). Then, the parameter

3.5 The MCMC Algorithms 59

α
(1)
i,j is initialised as follows:

α
(1)
i,j = (log(ν

(1)
i,j /ν

(1)
i), α◦i,j),

where ν
(1)
i,j = #{t ≥ 2 : s

(1)
t−1 = i ∧ s

(1)
t = j}, and

α◦i,j ∼ NK−1(µ◦A, (Λ
◦
A)−1),

where µ◦A = (µ2
A, µ

3
A, . . . , µ

K
A) ∈ RK−1 and Λ◦A = (Λi,j

A)Ki,j=2 ∈ R(K−1)×(K−1) are the

hyperparameters defined in Equation (3.4).

Forward Filtering Backward Sampling Step

Now, the first sub-algorithm (Algorithm 7) within Algorithm 6 is described. The latter

term in Equation (3.9) is the transition probability from st to st+1 where its normalising

constant is the sum of all st ∈ Ω. It remains to calculate the former term recursively in

order to estimate the joint posterior distribution of all the states, (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n),

by the following procedure (Chib, 1996).

(i) At t = 1, initialise π(st | y1:t, θ
(τ−1)
−s) = π(s1 | y1, θ

(τ−1)
−s) = ρi = 1/m, for all i ∈ Ω.

(ii) By the law of total probability, it follows that

π(st+1 | y1:t, θ
(τ−1)
−s) =

∑
st∈Ω

π(st+1 | st, y1:t, θ
(τ−1)
−s)π(st | y1:t, θ

(τ−1)
−s)

=
∑
st∈Ω

π(st+1 | st, θ(τ−1)
−s)π(st | y1:t, θ

(τ−1)
−s); by Markov property.

(iii) By Bayes’ Theorem, it follows that

π(st+1 | y1:t+1, θ
(τ−1)
−s) ∝ π(st+1 | y1:t, θ

(τ−1)
−s)f(yt+1 | y1:t, st+1, θ

(τ−1)
−s),

and its normalising constant is given by

∑
st+1∈Ω

π(st+1 | y1:t, θ
(τ−1)
−s)f(yt+1 | y1:t, st+1, θ

(τ−1)
−s).

60 3. Univariate NHGHMM

(iv) Alternate the computations between π(st+1 | y1:t, θ
(τ−1)
−s) and π(st+1 | y1:t+1, θ

(τ−1)
−s) in

Steps (ii) and (iii), respectively, until obtaining π(sn | y, θ(τ−1)
−s). Then, realise s

(τ)
n

from π(sn | y, θ(τ−1)
−s).

(v) By Equation (3.9), it is possible to realise s
(τ)
t from π(st | st+1:n, y, θ

(τ−1)
−s) such that

π(st | st+1:n, y, θ
(τ−1)
−s) ∝ π(st | y1:t, θ

(τ−1)
−s)π(st+1 | st, θ(τ−1)

−s),

and its normalising constant is given by
∑

st∈Ω π(st | y1:t, θ
(τ−1)
−s)π(st+1 | st, θ(τ−1)

−s).

Thus, the realisation of hidden states (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n) at τ th iteration can be

obtained through the simulation in Step (v) for t ∈ {n− 1, n− 2, . . . , 1}.

The following summarises the steps in the first sub-algorithm (Algorithm 7).

Algorithm 7 Forward Filtering Backward Sampling Algorithm

1: Forward Filtering Step:
2: Set ρi = 1/m, and calculate F(S1 = i) = ρiφ(y1;µ

(τ−1)
i , λ

(τ−1)
i) for all i ∈ Ω,

where the forward variable is denoted by F(·), and the Gaussian density function
is denoted by φ(· ;µi, λi), for any i ∈ Ω.

3: Normalise F(S1 = i)← F(S1 = i)
/∑

i∈ΩF(S1 = i) , for all i ∈ Ω.
4: for t = 2, 3, . . . , n do
5: Calculate F(St = i) =

∑
j∈ΩF(St−1 = j)qtj,iφ(yt;µ

(τ−1)
i , λ

(τ−1)
i), for all i ∈ Ω.

6: Normalise F(St = i)← F(St = i)
/∑

i∈ΩF(St = i) , for all i ∈ Ω.
7: end for
8: Backward Sampling Step:
9: Update s

(τ)
n = arg maxi∈Ω B(Sn = i) ≡ arg maxi∈ΩF(Sn = i), where the backward

variable is denoted by B(·).
10: for t = n− 1, n− 2, . . . , 1 do
11: Calculate B(St = i) = F(St = i)qt+1

St=i,St+1=s
(τ)
t+1

.

12: Normalise B(St = i)← B(St = i)
/∑

i∈Ω B(St = i) .

13: Update s
(τ)
t from {1, 2, . . . ,m} with probability B(St = i).

14: end for

Updating the Parameter, α(τ)

The conditional posterior distribution of the parameter α(τ) in Equation (3.11) has

a non-standard form. Thus, it is required to use the Metropolis-Hastings algorithm

to update the parameter (recall Section 2.3.1 for a review of the Metropolis-Hastings

algorithm). Firstly, it is required to introduce some proposal distribution of α′i,j given

3.5 The MCMC Algorithms 61

α
(τ−1)
i,j . Following Spezia (2006), a proposal random walk is defined as follows:

α′i,j ∼ NK(α
(τ−1)
i,j , E),

where E ∈ RK×K is a constant covariance matrix. In this thesis, the constant covari-

ance matrix E is defined as follows:

εi,j =


13, if i = j

0, if i 6= j

,

where εi,j ∈ E, for any (i, j) ∈ {1, 2, . . . , K}2. This ensures a random walk covers the

entire posterior distribution of interest (Spezia, 2006). Thus, the proposal distribution

q(α′i,j |α
(τ−1)
i,j) is given by

q(α′i,j |α
(τ−1)
i,j) = (2π)−

K
2 det(E)

1
2 exp

(
−1

2
(α′i,j − α

(τ−1)
i,j)ᵀE−1(α′i,j − α

(τ−1)
i,j)

)
∝ exp

(
−1

2
(α′i,j − α

(τ−1)
i,j)ᵀE−1(α′i,j − α

(τ−1)
i,j)

)
.

Define α
(τ)
i = (α

(τ)
i,1 , α

(τ)
i,2 , . . . , α

(τ)
i,i−1,0, α

(τ)
i,i+1, . . . , α

(τ)
i,m) ∈ RK×m. Recall the definition

of an acceptance probability (Brooks et al., 2011; Metropolis et al., 1953). Then, the

acceptance probability of α′i given α
(τ−1)
i is given as follows:

a(α′i |α
(τ−1)
i) = π(α′i | θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j).

Similarly, the acceptance probability of α
(τ−1)
i given α′i is expressed by

a(α
(τ−1)
i |α′i) = π(α

(τ−1)
i | θ−α)

∏
j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j),

where π(· | θ−α) is the full conditional posterior distribution in Equation (3.11) (Spezia,

2006). Assume the detailed balance condition in which there exists the stationary

distribution for the full conditional posterior distribution of αi, for any i ∈ Ω. Then,

62 3. Univariate NHGHMM

it follows that

a(α′i |α
(τ−1)
i)

a(α
(τ−1)
i |α′i)

=

π(α′i | θ−α)
∏

j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

π(α
(τ−1)
i | θ−α)

∏
j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j)

.

Given that the proposal distribution is symmetric, the equation above is now reduced

to the following expression such that

a(α′i |α
(τ−1)
i)

a(α
(τ−1)
i |α′i)

=

π(α′i | θ−α)
���

���
���

��∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

π(α
(τ−1)
i | θ−α)

���
���

���
��∏

j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j)

=
π(α′i | θ−α)

π(α
(τ−1)
i | θ−α)

⇒ a(α′i |α
(τ−1)
i) := min

{
1,

π(α′i | θ−α)

π(α
(τ−1)
i | θ−α)

}
. (3.17)

By Equation (3.17), a Metropolis-Hastings move is accepted such that one sets α
(τ)
i = α′i

with probability a(α′i |α
(τ−1)
i) at τ th iteration. Otherwise, one rejects it with probability(

1− a(α′i |α
(τ−1)
i)

)
such that α

(τ)
i = α

(τ−1)
i .

Based on the acceptance probability in Equation (3.17), one can choose whether α′i

be accepted or not.

During the MCMC iterations, the covariance matrix E of a proposal distribution is

designed to be tuned so that an acceptance rate, A(τ) at the τ th iteration, is maintained

optimal. The acceptance rate is given as follows:

A(τ) = (τ − 1)−1

(
a(α′i |α

(τ−1)
i) +

τ−1∑
ν=2

a(α
∗(ν)
i |α(ν−1)

i)

)
, (3.18)

where α
∗(ν)
i denotes the parameter proposed at νth iteration, for any ν ∈ {1, 2, . . . , τ −

1}.

Regardless of tuning the covariance matrix E the Metropolis-Hastings algorithm

itself may suffer from slow convergence. Haario et al. (2001) demonstrated a problem

where the tuning of the proposal distribution according to the acceptance rate only may

lead to difficulties. Additionally, the problem becomes more prominent as the number of

dimensions of the target distribution increases (Haario et al., 2001). Furthermore, one

3.5 The MCMC Algorithms 63

cannot find more complicated improvements through this tuning method, for example

making the proposal covariance matrix proportional to the optimal one (Brooks et al.,

2011). I especially deal with updating the parameter α which potentially involves

sampling from the high dimensional multivariate Gaussian distribution.

On the other hand, the AM algorithm demonstrated the potential where it can

“learn” the target covariance matrix, as well as approach an optimal acceptance rate,

even in very high dimensions (Brooks et al., 2011; Haario et al., 2001).

As such, I need to introduce the AM algorithm to adapt the covariance matrix of

the proposal distribution so that the algorithm’s efficiency can be improved more.

The AM Step

In an attempt to propose a different sub-algorithm as an alternative to the Metropolis-

Hasting algorithm, I now discuss the AM algorithm.

An adequate choice of a proposal distribution for the MCMC algorithm is crucial

for fast convergence (Haario et al., 2001). This algorithm aims at accumulating the

information of the MCMC iterations and updating the multivariate Gaussian proposal

distribution along the process (recall Section 2.4.1 on Page 34).

Following Mira et al. (2001), let the covariance matrix, E, be a function of (α
(1)
i , α

(2)
i ,

. . . , α
(τ)
i) such that

E(α
(1)
i , α

(2)
i , . . . , α

(τ)
i) = E

(τ)
i ∈ RK×K ,

where α
(ν)
i = (α

(ν)
i,1 , α

(ν)
i,2 , . . . , α

(ν)
i,i−1,0, α

(ν)
i,i+1, . . . , α

(ν)
i,m) ∈ RK×m, for any i ∈ Ω, for each

ν ∈ {1, 2, . . . , τ}. Thus, E
(τ)
i is now able to store the history of the parameter up to

τ th MCMC iteration. By Equation (2.19) on Page 35, the covariance matrix for the

Gaussian proposal with mean of a current draw α
(τ)
i is defined as follows:

E
(τ)
i =


E0, if τ ≤ τ0

sK Cov(α
(1)
i , α

(2)
i , . . . , α

(τ−1)
i) + sKεIK , if τ > τ0

, (3.19)

where E0 is a constant covariance matrix of choice, τ0 > 0 is the initial period, sK =

2.42/K, ε > 0 is an infinitesimal value, and IK is a K ×K identity matrix.

64 3. Univariate NHGHMM

Following Equation (2.20) on Page 36, the derivation of a recursive formula for the

MCMC iterations of α
(τ)
i is given as follows:

E
(τ)
i =

τ − 3

τ − 2
E

(τ−1)
i +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)ᾱ

(τ−2)
i ᾱ

(τ−2)ᵀ
i

−(τ − 1)
(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i +

(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i

)ᵀ)
+ τα

(τ−1)
i α

(τ−1)ᵀ
i

)
+ εIK

]
.

(3.20)

The choice for the length of the initial segment τ0 > 0 is unspecified. Nonetheless, an

faster effect of the adaptation is anticipated with a smaller value of τ0 (Haario et al.,

2001).

Following that initial value setting of Haario et al. (2001)’s, the algorithm proceeds

as follows.

(i) Initialise sK = 2.42/K and ε = 10−6. Set the initial period, τ0 = 50.

(ii) If the current MCMC iteration τ = τ0, then initialise arithmetic means ᾱ
(τ−2)
i and

ᾱ
(τ−1)
i , for all i ∈ Ω.

(iii) If the current MCMC iteration, τ > τ0, then update the arithmetic means ᾱ
(τ−2)
i

and ᾱ
(τ−1)
i such that

ᾱ
(τ−2)
i ← ᾱ

(τ−2)
i +

α
(τ−2)
i − ᾱ(τ−2)

i

τ − 2

ᾱ
(τ−1)
i ← ᾱ

(τ−1)
i +

α
(τ−1)
i − ᾱ(τ−1)

i

τ − 1
,

respectively, for all i ∈ Ω.

(iv) Now, it is required to compute the covariance matrices of the multivariate Gaussian

distribution by Equation (3.20), for all i ∈ Ω.

(v) By monitoring the acceptance rate, A(τ) in Equation (3.18), tune the covariance

matrices E
(τ)
i , for all i ∈ Ω. If A(τ) < 0.25, then tune E

(τ)
i ← 0.952E

(τ)
i . If

A(τ) > 0.5, then tune E
(τ)
i ← 1.052E

(τ)
i .

(vi) It remains to propose a new parameter for α
(τ)
i , for each i ∈ Ω, from the proposal

3.5 The MCMC Algorithms 65

distribution such that

α′i,j ∼ NK(α
(τ−1)
i,j , E

(τ)
i), (3.21)

for all j ∈ Ω. Then, calculate the acceptance probability of α′i and α
(τ−1)
i , for

each i ∈ Ω, as in Equation (3.17). Since the proposal distribution q(α′i,j |α
(τ−1)
i,j) is

symmetric, for all j ∈ Ω. Therefore, the acceptance probability of α′i given α
(τ−1)
i

is the same as Equation (3.17).

The following summarises the steps in the sub-algorithm (Algorithm 8).

Algorithm 8 The Adaptive Metropolis Algorithm

1: Initialise the parameters of the AM algorithm, sK = 2.42/K and ε = 10−6 > 0.

2: Set the initial period of the MCMC iterations, τ0 and E
(τ0)
i = E0, for all i ∈

{1, 2, . . . ,m}.
3: Define αi = (αi,1, αi,2, . . . , αi,i−1,0, αi,i+1, . . . , αi,m), for all i ∈ Ω.
4: for i = 1, 2, . . . ,m do
5: if τ = τ0 then

6: Initialise ᾱ
(τ−2)
i =

∑τ−2
κ=1 α

(κ)
i

/
(τ − 2) and ᾱ

(τ−1)
i =

∑τ−1
κ=1 α

(κ)
i

/
(τ − 1).

7: end if
8: if τ > τ0 then

9: Compute ᾱ
(τ−2)
i ← ᾱ

(τ−2)
i + (α

(τ−2)
i − ᾱ(τ−2)

i)
/

(τ − 2) and ᾱ
(τ−1)
i ← ᾱ

(τ−1)
i +

(α
(τ−1)
i − ᾱ(τ−1)

i)
/

(τ − 1).

10: Compute

E
(τ)
i =

τ − 3

τ − 2
E

(τ−1)
i +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)ᾱ

(τ−2)
i ᾱ

(τ−2)ᵀ
i

−(τ − 1)
(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i +

(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i

)ᵀ)
+ τα

(τ−1)
i α

(τ−1)ᵀ
i

)
+ εIK

]
,

where IK denotes the identity matrix of K dimensions.
11: if A(τ) < 0.25 then

12: E
(τ)
i ← 0.952E

(τ)
i

13: end if
14: if A(τ) > 0.5 then

15: E
(τ)
i ← 1.052E

(τ)
i

16: end if
17: Random Walk Metropolis-Hastings Step: The random walk

Metropolis-Hastings algorithm, the DRMH algorithm or the MTM algorithm can
be implemented in this step to update α

(τ)
i .

18: end if
19: end for

Naturally, the adaptation of the covariance matrix becomes slower as the dimension

increases and may be more sensitive to an inadequate choice of the initial covariance

66 3. Univariate NHGHMM

(Haario et al., 2001). To overcome this problem with high dimensionality, Haario

et al. (2006) constructed the algorithm where the DRMH and AM algorithms were

combined. Such a means of proposing a new parameter can prevent both over- and

under-calibrated covariance matrices (Haario et al., 2006). Thus, faster convergence is

achievable in higher dimensional target distributions.

Step (vi) of the AM algorithm can take several forms of proposing a new parameter

for α
(τ)
i . Following Haario et al. (2006), I have combined the symmetric delayed rejec-

tion Metropolis and the AM algorithms to construct the ensure faster convergence and

more efficiency. The resulting algorithm, the symmetric DRAM algorithm, is described

below.

The Symmetric DRAM Step

This algorithm is a combination of the symmetric delayed rejection Metropolis (recall

Section 2.4.4 on Page 40) and the adaptive Metropolis algorithms. The algorithm

differs from the random walk Metropolis-Hastings algorithm for which rejection of a

new parameter is delayed by subsequent rejection stages (Mira and Tierney, 2002;

Tierney and Mira, 1999). It modifies the manner of proposing a new parameter in

Equation (3.21).

Figure 3.1 shows the comparison between the standard Metropolis-Hastings algo-

rithm and the DRMH algorithm. The target distribution is as follows:

π(θ) =
9

10
ϕ(θ; 0, 1) +

1

10
ϕ(θ; 10, 1),

where ϕ(· ;µ, σ2) denotes the Gaussian density function with the mean µ and the

variance σ2. This toy example follows that of Gamerman and Lopes (2006)’s. This

suggests that the MCMC iterations in the DRMH algorithm mix better than those

of the Metropolis-Hastings algorithm. In this thesis, the symmetric delayed rejection

Metropolis algorithm was specifically used since the proposal distribution is the mul-

tivariate Gaussian density which is symmetric (Mira et al., 2001). The symmetric

3.5 The MCMC Algorithms 67

0 5000 10000 15000

0
5

10

Random walk Metropolis−Hastings

Iteration

0 5000 10000 15000

−
5

0
5

10

Delayed rejection Metropolis−Hastings

Iteration

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

D
en

si
ty

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

D
en

si
ty

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 3.1: Trace plots (top), autocorrelation functions (middle), and marginal pos-
terior densities (bottom) of the MCMC samples with respect to the parameter, θ,
for a comparison between the standard random walk Metropolis-Hastings and DRMH
algorithms. The red curved line represents the target distribution.

proposal distribution only depends on the last rejected sample such that

q(α′i,j(κ) |α′i,j(κ−1), α
′
i,j(κ−2), . . . , α

′
i,j(1), α

(τ−1)
i,j) = q(α′i,j(κ) |α′i,j(κ−1)) = q(α′i,j(κ−1) |α′i,j(κ)),

where α′i,j(κ) ∼ NK(α′i,j(κ−1), E
(τ)
i), for any κ ∈ {2, 3, . . . , ν} and any {(i, j) ∈ Ω2 : i 6=

j}. The algorithm proceeds as follows (Haario et al., 2006, 2001; Mira et al., 2001).

(i) Set a rejection stage indicator, κ = 1, and the maximum rejection stage, ν.

(ii) If κ < 2, then propose α′i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i), for all {(i, j) ∈ Ω2 : i 6= j}. Then,

68 3. Univariate NHGHMM

define α′i(κ) = (α′i,1(κ), α
′
i,2(κ), . . . , α

′
i,i−1(κ),0, α

′
i,i+1(κ), . . . , α

′
i,m(κ)), and set α∗i = α′i(κ).

(iii) Since the symmetric proposal distribution was implemented, the acceptance prob-

ability is given as follows:

r1 = min

{
1,

π(α′i(κ) | θ−α)

π(α
(τ−1)
i | θ−α)

}
,

where π(αi | θ−α) is the conditional posterior distribution, for any i ∈ Ω in Equa-

tion (3.11). Draw u ∼ U(0, 1). If u ≤ r1, then accept α
(τ)
i = α′i(κ) and terminate

the algorithm. Otherwise, set κ← κ+ 1 and move to Step (iv).

(iv) If κ ≥ 2, then propose α′i,j(κ) ∼ NK(α′i,j(κ−1), E
(τ)
i), for all {(i, j) ∈ Ω2 : i 6= j}.

(v) Calculation of the acceptance probability is now different from that of Step (iii).

Therefore,

r2 = min

{
1,

π(α′i(κ) | θ−α)− π(α∗i | θ−α)

π(α
(τ−1)
i | θ−α)− π(α∗i | θ−α)

}
.

(vi) If π(α′i(κ) | θ−α) > π(α∗i | θ−α), then set α∗i = α′i(κ).

(vii) Draw u ∼ U(0, 1). If u ≤ r2, set α
(τ)
i = α′i(κ) and terminate the algorithm. Oth-

erwise, set κ ← κ + 1 and move to Step (ii). If κ > ν, then the algorithm is

terminated.

Algorithm 9 summarises the steps in the symmetric DRAM algorithm. The symmet-

ric delayed rejection Metropolis algorithm is schematically different from the MTM

algorithm. The symmetric delayed rejection Metropolis algorithm preserves the last

rejected sample whilst the random walk resumes at that candidate.

On the other hand, the MTM algorithm draws multiple candidates about the last

MCMC iteration from the multivariate Gaussian distribution, and then, a proposed

value for the next MCMC iteration is selected from a pool of multiple candidates (Liu

et al., 2000). The multiple candidates can be seen as a means of preserving a wide

searching region so that each Metropolis-Hastings step become less localised.

Several modifications of the MTM algorithm were proposed by Bédard et al. (2012);

Craiu and Lemieux (2007). The original MTM algorithm utilised a pool of independent

3.5 The MCMC Algorithms 69

Algorithm 9 The Symmetric Delayed Rejection Adaptive Metropolis Algorithm

1: Initialise a rejection stage indicator, κ = 1, and the maximum rejection stage, ν.
2: for i = 1, 2, . . . ,m do
3: repeat
4: if κ < 2 then
5: for j ∈ Ω such that j 6= i do
6: Simulate α′i,j(κ) ∼ NK(α

(τ−1)
i,j , E

(τ)
i).

7: end for
8: Define α′i(κ) = (α′i,1(κ), α

′
i,2(κ), . . . , α

′
i,i−1(κ),0, α

′
i,i+1(κ), . . . , α

′
i,m(κ)), and set

α∗i = α′i(κ).
9: Calculate

r1 = min

{
1,

π(α′i(κ) | θ−α)

π(α
(τ−1)
i | θ−α)

}
.

10: Draw u ∼ U(0, 1).
11: if u ≤ r then
12: α

(τ)
i = α′i(κ)

13: else
14: κ← κ+ 1, and move onto the next rejection stage.
15: end if
16: else
17: for j ∈ Ω such that j 6= i do
18: Simulate α′i,j(κ) ∼ NK(α′i,j(κ−1), E

(τ)
i).

19: end for
20: Calculate

r2 = min

{
1,

π(α′i(κ) | θ−α)− π(α∗i | θ−α)

π(α
(τ−1)
i | θ−α)− π(α∗i | θ−α)

}
.

21: if π(α′i(κ) | θ−α) > π(α∗i | θ−α) then
22: Set α∗i = α′i(κ).
23: end if
24: Draw u ∼ U(0, 1).
25: if u ≤ r then
26: α

(τ)
i = α′i(κ)

27: else
28: κ← κ+ 1, and move onto the next rejection stage.
29: end if
30: end if
31: until α′i(κ) is accepted or the loop reaches the νth stage of rejection.
32: end for

multiple candidates, whereas Craiu and Lemieux (2007)’s modified MTM algorithm,

multiple correlated-try Metropolis algorithm, aimed at adapting the MTM algorithm

to dependent multiple candidates. Furthermore, Bédard et al. (2012) extended Craiu

and Lemieux (2007)’s work to even more extreme form of dependence in which all the

candidates are drawn using a common random variable, multiple-try Metropolis with

70 3. Univariate NHGHMM

common random variables algorithm.

Thus, the MTM and AM algorithms can be undeniably combined to obtain a larger

searching region and adapt the covariance matrix of a proposal distribution simulta-

neously. Hence, I hope to obtain a larger searching region than that of the symmetric

DRAM algorithm’s. In the following, the resulting algorithm, the MTAM algorithm,

is described in detail.

The MTAM Step

Likewise, this algorithm is another combination of the two algorithms, namely the

MTM (recall Section 2.4.2 on Page 37) and AM algorithms. Firstly, it is required to

define a weighting function w(· | ·) in order to perform the MTAM algorithm. Recall

Equations (2.22) and (2.23) on Page 38. Then, the weighting function is given as

follows:

w(α′i |α
(τ−1)
i) = π(α′i | θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)λ(α′i,j |α

(τ−1)
i,j)



= π(α′i | θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

(
q(α′i,j |α

(τ−1)
i,j) + q(α

(τ−1)
i,j |α′i,j)

2

)−1



= π(α′i | θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

(
�2q(α′i,j |α

(τ−1)
i,j)

�2

)−1


(since q(α′i,j |α

(τ−1)
i,j) = q(α

(τ−1)
i,j |α′i,j), for any {j ∈ Ω : j 6= i})

= π(α′i | θ−α)

∏
j∈Ω
j 6=i

���
���

��
q(α′i,j |α

(τ−1)
i,j)

1

���
���

��
q(α′i,j |α

(τ−1)
i,j)


= π(α′i | θ−α). (3.22)

An acceptance probability of the MTAM algorithm is computed by Equation (2.24) on

Page 38. Since the weighting function is merely equal to the posterior distribution as

3.5 The MCMC Algorithms 71

shown in Equation (3.22), the acceptance probability is given as follows:

r3 = a(α′i |α
(τ−1)
i) := min

{
1,
π(α∗i(1) | θ−α) + π(α∗i(2) | θ−α) + · · ·+ π(α∗i(κ) | θ−α)

π(α∗∗i(1) | θ−α) + π(α∗∗i(2) | θ−α) + · · ·+ π(α∗∗i(κ) | θ−α)

}
,

(3.23)

where κ ∈ N is the number of multiple tries. It is apparent that computational costs

will increase as the number of multiple tries increases (Liu et al., 2000). It was found

that 10 multiple tries make the sufficient number of trials, yet still computationally

inexpensive. Thus, I set κ = 10 in the main algorithm. The algorithm is then described

as follows (Liu et al., 2000; Mira et al., 2001).

(i) For j ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,m}, simulate multiple samples, {α∗i,j(1), α
∗
i,j(2), . . . ,

α∗i,j(κ)}, by drawing i.i.d. samples α∗i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i), for each κ ∈ {1, 2, . . . ,κ}.

(ii) Define α∗i(κ) = (α∗i,1(κ), α
∗
i,2(κ), . . . , α

∗
i,i−1(κ),0, α

∗
i,i+1(κ), . . . , α

∗
i,m(κ)), and draw a pro-

posed value, α′i, from {α∗i(1), α
∗
i(2), . . . , α

∗
i(κ)} with probability proportional to

{π(α∗i(κ) | θ−α)}, for any κ ∈ {1, 2, . . . ,κ}.

(iii) For j ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,m}, simulate multiple samples, {α∗∗i,j(1), α
∗∗
i,j(2), . . . ,

α∗∗i,j(κ−1)}, by drawing i.i.d. samples, α∗∗i,j(κ) ∼ NK(α′i,j, E
(τ)
i), for each κ ∈ {1, 2, . . . ,

κ − 1}. Then, set α∗∗i(κ) = α
(τ−1)
i , and hence, it follows that {α∗∗i(1), α

∗∗
i(2), . . . , α

∗∗
i(κ)}.

(iv) Calculate the acceptance probability provided by Equation (3.23). That is,

r3 = min

{
1,
π(α∗i(1) | θ−α) + π(α∗i(2) | θ−α) + · · ·+ π(α∗i(κ) | θ−α)

π(α∗∗i(1) | θ−α) + π(α∗∗i(2) | θ−α) + · · ·+ π(α∗∗i(κ) | θ−α)

}
.

(v) Draw u ∼ U(0, 1). If u ≤ r3, then set α
(τ)
i = α′i. Otherwise, set α

(τ)
i = α

(τ−1)
i , for

all i ∈ Ω.

(vi) Repeat Steps (i)–(v), for all i ∈ Ω.

Now, Algorithm 10 summarises the steps in the MTAM algorithm. After updating the

parameter, α(τ), it remains to update λ(τ) and µ(τ) by the Gibbs sampler.

72 3. Univariate NHGHMM

Algorithm 10 The Multiple-try Adaptive Metropolis Algorithm

1: for i = 1, 2, . . . ,m do
2: for j ∈ Ω such that j 6= i do
3: Simulate multiple random samples, {α∗i,j(1), α

∗
i,j(2), . . . , α

∗
i,j(κ)}, by proposing

α∗i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i), for any κ ∈ {1, 2, . . . ,κ}.

4: end for
5: Define α∗i(κ) = (α∗i,1(κ), α

∗
i,2(κ), . . . , α

∗
i,i−1(κ),0, α

∗
i,i+1(κ), . . . , α

∗
i,m(κ)), and draw

α′i from {α∗i(1), α
∗
i(2), . . . , α

∗
i(κ)} with probability which is proportional to

{π(α∗i(κ) | θ−α)}, where κ ∈ {1, 2, . . . ,κ}.
6: for j ∈ Ω such that j 6= i do
7: Simulate multiple random samples, {α∗∗i,j(1), α

∗∗
i,j(2), . . . , α

∗∗
i,j(κ−1)}, by propos-

ing α∗∗i,j(κ) ∼ NK(α′i,j, E
(τ)
i), for any κ ∈ {1, 2, . . . ,κ − 1}.

8: end for
9: Set α∗∗i(κ) = α

(τ−1)
i , and calculate the acceptance probability as follows:

r3 = min

{
1,
π(α∗i(1) | θ−α) + π(α∗i(2) | θ−α) + · · ·+ π(α∗i(κ) | θ−α)

π(α∗∗i(1) | θ−α) + π(α∗∗i(2) | θ−α) + · · ·+ π(α∗∗i(κ) | θ−α)

}
.

10: Draw u ∼ U(0, 1).
11: if u ≤ r3 then
12: α

(τ)
i = α′i

13: else
14: α

(τ)
i = α

(τ−1)
i

15: end if
16: end for

Gibbs Sampling Step

In Section 3.4, the full conditional posterior distributions are obtained in Equation (3.13)

for λ(τ), and Equations (3.16) & (3.15) for µ
(τ)
1 and {µ(τ)

i }mi=2, respectively. All those

full conditional posterior distributions have standard forms. Therefore, the Gibbs sam-

pler is considered as an appropriate MCMC algorithm for these full conditionals. The

Gibbs sampler proceeds as follows (Spezia, 2006).

(i) For each i ∈ Ω, simulate

λ
(τ)
i | θ−λ ∼ G

ν(τ)
i

2
+ αΛ,

1

2

∑
{t≥1: s

(τ)
t =i}

(yt − µ(τ−1)
i)2 + βΛ

 ,

where G(·, ·) denotes the gamma distribution, ν
(τ)
i = #{t ≥ 1 : s

(τ)
t = i}, and αΛ &

βΛ are hyperparameters.

3.5 The MCMC Algorithms 73

(ii) Simulate

µ
(τ)
1 | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λM1µM1

λ
(τ)
i ν

(τ)
i + λM1

,
1

λ
(τ)
i ν

(τ)
i + λM1

 ,

where µM1 = min{y}+ (max{y} −min{y})/2m, and

λM1 = ν
(1)
1

/∑
{t≤1: s

(1)
t =1}(yt − µ

(1)
1)2 .

(iii) For each i ∈ {2, 3, . . . ,m}, simulate

µ
(τ)
i | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λMi

µ
(τ)
i−1

λ
(τ)
i νi + λMi

,
1

λ
(τ)
i νi + λMi

 ,

where a normal prior, N (µ
(τ)
i−1, λMi

), is truncated to the interval, (µi−1,∞), and

λMi
= 2M2/(λ

(τ)
i−1+λ

(τ)
i) such thatM is a positive constant, for any i ∈ {2, 3, . . . ,m}.

The scheme of the Gibbs sampler is summarised in the following (Algorithm 11).

Algorithm 11 Gibbs Sampler (Univariate NHGHMM)

1: for i = 1, 2, . . . ,m do
2: Simulate

λ
(τ)
i | θ−λ ∼ G

ν(τ)
i

2
+ αΛ,

1

2

∑
{t≥1: s

(τ)
t =i}

(yt − µ(τ−1)
i)2 + βΛ

 .

3: end for
4: Simulate

µ
(τ)
1 | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λM1µM1

λ
(τ)
i ν

(τ)
i + λM1

,
1

λ
(τ)
i ν

(τ)
i + λM1

 .

5: for i = 2, 3, . . . ,m do
6: Simulate

µ
(τ)
i | θ−µ ∼ N

λ(τ)
i

∑
{t≥1: s

(τ)
t =i} yt + λMi

µ
(τ)
i−1

λ
(τ)
i νi + λMi

,
1

λ
(τ)
i νi + λMi

 ,

where the prior distribution, N (µ
(τ)
i−1, λMi

), is truncated to the interval, (µi−1,∞),

and M is some positive constant for λMi
= 2M2/(λ

(τ)
i−1 + λ

(τ)
i).

7: end for

This concludes a single τ th MCMC iteration for τ ∈ {2, 3, . . . , N}. The main algorithm

74 3. Univariate NHGHMM

iterates this single iteration N times until all the parameters of interest are believed

to reach the convergence jointly.

By applying a series of these three proposed MCMC algorithms, I anticipate there

should exist some improvements in algorithms’ efficiencies and MCMC convergence as

a result. My original contribution in this chapter is comprised of incorporating these

MCMC algorithms into the main algorithm and constructing a set of R c© & C++ code

for the algorithms. The simulation was run on an 8-core 3.60 GHz Intel(R) Core(TM)

i7-4790 central processor unit with 8 GB of random access memory.

A univariate NHGHMM is now simulated to validate the MCMC algorithms through

simulation studies in the next section.

3.6 Simulation Study

The following model was simulated by Diebold et al. (1994) to demonstrate how time-

varying transition probabilities are more effective to estimate a sequence of the hidden

states than constant transition probability. That simulation study of Diebold et al.

(1994)’s did not provide 95% confidence intervals and coverage for the parameters

of interest (Diebold et al., 1994). Moreover, the point estimates for one of the two

transition probability matrices in the identical model was quite biased. Thus, a series

of the proposed MCMC algorithms was implemented for the model. I expect to observe

that Bayesian framework is able to estimate the parameters more accurately than that

of Diebold et al. (1994)’s by the following reasons:

(i) the framework is of a Bayesian approach, and

(ii) Bayesian inference works better for data sets with small sample size as long as

the prior sensitivity is heeded (McNeish, 2016).

There are two aspects regarding the proposed MCMC algorithms being considered:

(a) the MCMC convergence, and

(b) the performance of parameter estimation.

3.6 Simulation Study 75

The model is a two-state model (i.e. m = 2), and its parameters are as follows:

Yt | st = i ∼ f(yt | θi) =
1√

2πσ2
exp

(
−1

2

(yt − µi)2

σ2

)
, t ∈ {1, 2, . . . , 100}, i ∈ {1, 2}

(µ1, µ2) = (−1, 1)

(σ1, σ2) = (2, 2)

α1,1 = (0, 0), α1,2 = (3.529,−5.205)

α2,1 = (−5.320, 5.205), α2,2 = (0, 0)

zt1 = (1.0, 0.6), zt2 = (1.0, 1.1)

Qt1 =

0.4 0.6

0.1 0.9

 , Qt2 =

0.9 0.1

0.6 0.4

 ,

(3.24)

where

t1 ∈ {2, 3, . . . , 20} ∪ {41, 42, . . . , 60} ∪ {81, 82, . . . , 100}

t2 ∈ {21, 22, . . . , 40} ∪ {61, 62, . . . , 80}.

Figure 3.2 graphically represents a simulated data from Model (3.24) where st is a

sequence of hidden states, and yt is a sequence of univariate observed values, for any

t ∈ {1, 2, . . . , 100}. This particular simulated data set was chosen since it is a good

example to demonstrate Bayesian inference may outperform a frequentist approach.

Increasing the sample size of this data set was not attempted in order to maintain the

identical parameter set.

In the simulation study, a standard deviation σ is preferred over a precision λ since

statistical software R c© deals with the former. Note that Diebold et al. (1994) set

the parameters α11 and α22 as non-zero values. Nonetheless, Model (3.24) is able to

estimate transition probabilities by following Spezia (2006)’s algorithm.

As for the prior distributions, the framework of Spezia (2006) is followed by setting:

(i) normal priors, N (0, 10/3), for any µi in Equation (3.2),

(ii) gamma priors, G(1/2, 1/2), for any λi = 1/σ2
i in Equation (3.3), and

(iii) multivariate Gaussian priors, N(2)(µA,ΣA), in Equation (3.4) where µA = 0 and

76 3. Univariate NHGHMM

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

−
6

−
4

−
2

0
2

4

0 20 40 60 80 100

t

A simulated model
s t

y t

Figure 3.2: Time series plot of Model (3.24): The hidden states st (top), and observed
values yt (bottom).

Σi,j
A = 10, for any (i, j) ∈ {1, 2} × {1, 2} whenever i = j. Otherwise, Σi,j

A = 0,

whenever i 6= j.

As Spezia (2006) stated that the prior distribution for the parameter α is quite vague.

Thus, a non-informative prior distribution for that parameter of interest is also used

here.

3.6.1 MCMC Convergence

It is a common strategy to reduce autocorrelations of MCMC samples by taking every

νth iteration, where ν ∈ N \ {1}, and this is called thinning (Owen, 2017). It is

3.6 Simulation Study 77

also known to be useful for memory storage management. Note that some authors,

however, are against the thinning technique by stating “usually unnecessary and always

inefficient” (Link and Eaton, 2012; MacEachern and Berliner, 1994).

Therefore, I investigate the MCMC iterations in two ways, without and with thin-

ning, to observe successive improvements by this autocorrelation reducing technique

and the proposed MCMC algorithms.

The MCMC algorithms without thinning

Firstly, I implemented the AM, symmetric DRAM, and MTAM algorithms within the

main algorithm (Algorithm 6) without thinning. The total number of MCMC iterations

was N = 1, 500, 000 and burn-in time of 1,490,000. Thus, the last 10,000 MCMC

iterations for every parameter were taken into account. These particular numbers were

chosen to ensure the MCMC convergence since the sample size of the simulated data

set is considerably small.

Although MCMC algorithms have gained their enormous popularity in many ap-

plications, it is often difficult to claim MCMC samples are true representatives of

target distributions of interest. Therefore, it is crucial for a Bayesian analysis to con-

clude when an MCMC algorithm has reached to the convergence (Cowles and Carlin,

1996). As such, Algorithms 8, 9, and 10 described in Section 3.5 are proposed to en-

sure the convergence of parameters of interest, especially the parameter αi,j, for any

(i, j) ∈ {(1, 2), (2, 1)}.

In this simulation study, Geweke’s diagnostics (Section 2.6), ESS and autocorrela-

tion functions are used to monitor the MCMC convergence.

78 3. Univariate NHGHMM

Table 3.1: Summary of Geweke’s diagnostics and ESS for the random walk Metropolis-
Hastings algorithm without thinning

Parameter Geweke’s diagnostics ESS

µ1 −0.288 10 000
µ2 1.241 10 000

σ1 −0.648 9 082
σ2 −0.885 9 594

α1
1,2 −0.721 134
α2

1,2 0.591 130

α1
2,1 1.418 135
α2

2,1 −1.289 140

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
α1, 2

1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
α2, 1

2

(b)

Figure 3.3: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the random
walk Metropolis-Hastings algorithm without thinning

Table 3.1 shows the result of Geweke’s diagnostics and ESS for the Metropolis-

Hastings algorithm. The ESS of the parameters α1,2 and α2,1 are significantly low.

Moreover, the corresponding autocorrelation functions of the parameters also indicate

the dependencies between the MCMC samples in Figure 3.3. Therefore, the conver-

gence for these resulting MCMC samples was not met.

To improve mixing, the proposed MCMC algorithms were implemented on the

simulated model.

3.6 Simulation Study 79

Table 3.2: Summary of Geweke’s diagnostics and ESS for the AM algorithm without
thinning

Parameter Geweke’s diagnostics ESS

µ1 −0.924 10 000
µ2 1.141 10 000

σ1 −1.552 9 226
σ2 −1.131 10 000

α1
1,2 −1.780 1 017
α2

1,2 1.578 1 087

α1
2,1 0.783 1 077
α2

2,1 −0.929 1 037

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.4: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the AM
algorithm without thinning

Table 3.2 represents the result of the AM algorithm, and shows Geweke’s diagnostics

and ESS for the parameters of interest.

It can be observed that the parameters σ1 and α1
1,2 almost failed Geweke’s diagnos-

tics although every parameter passed the test. In general, it is a quite difficult task

to confirm the convergence. Therefore, analyses of autocorrelation functions for the

parameters of interest are conducted. The ESS of Gibbs samples µ and σ show that

those MCMC samples have converged. Having said that, the ESS of the AM algorithm

performed very poorly and it was claimed that those MCMC samples are invalid to be

used for the parameter estimation.

80 3. Univariate NHGHMM

By Figure 3.4, the result of convergence tests suggests that the MCMC samples

have not converged jointly and the convergence is not confirmed yet as the autocorre-

lation functions of the parameters α1,2 and α2,1 are fairly correlated. Hence, parameter

estimation for these MCMC samples is invalid for the inference.

The next attempted MCMC algorithm is the symmetric DRAM algorithm which is

described in Section 2.4.4. The number of stages was set to 10, and after the rejection

of the 10th try, the MCMC chain stays in the current draw. Summary statistics of the

convergence test for the symmetric DRAM algorithm is shown in Table 3.3.

Table 3.3: Summary of Geweke’s diagnostics and ESS for the symmetric DRAM algo-
rithm without thinning

Parameter Geweke’s diagnostics ESS

µ1 1.110 10 000
µ2 0.998 9 276

σ1 −0.077 9 421
σ2 −0.930 10 405

α1
1,2 0.002 2 253
α2

1,2 0.017 2 259

α1
2,1 −0.568 2 184
α2

2,1 0.766 2 216

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.5: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the sym-
metric DRAM algorithm without thinning

An improvement of the convergence can be seen clearly compared to the AM algo-

3.6 Simulation Study 81

rithm above. The ESS of the parameters α1,2 and α2,1 in Table 3.3 slightly increased.

More importantly, all the parameters of interest have passed Geweke’s diagnostics.

In addition, the autocorrelation functions of the parameters α1,2 and α2,1 especially

improved as shown in Figure 3.5. Nevertheless, the ESS may improve more by another

scheme of a distinct MCMC algorithm.

Therefore, the MTAM algorithm was implemented, which is described in Sec-

tion 2.4, to obtain even better results of Geweke’s diagnostics and to reduce the

dependencies of the samples as much as possible to ensure the convergence. In the

multiple-try sampling scheme, 10 tries at each MCMC iteration were attempted. The

following table shows the result of the algorithm.

Table 3.4: Summary of Geweke’s diagnostics and ESS for the MTAM algorithm without
thinning

Parameter Geweke’s diagnostics ESS

µ1 −0.139 10 000
µ2 1.771 10 000

σ1 −0.076 9 281
σ2 1.015 9 480

α1
1,2 −0.162 3 544
α2

1,2 −0.438 3 677

α1
2,1 1.423 3 086
α2

2,1 −0.924 3 257

As observed in Table 3.4, all the parameters have passed Geweke’s diagnostics.

Moreover, it can be seen an improvement on the ESS of the parameter α. Therefore,

it may be claimed that the MTAM algorithm is more effective at improving the ESS

than the symmetric DRAM algorithm is.

Figure 3.6 suggests that the dependencies of all the parameters are almost non-

existent, although the autocorrelation functions of the parameters α1,2 and α2,1 still

show somewhat dependencies between the MCMC samples.

The MCMC algorithms with thinning

Hereafter, the thinning technique is used to reduce the dependencies and enhance ESS

as much as possible. Hence, the MCMC samples were simulated by setting burn-in

82 3. Univariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.6: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the MTAM
algorithm without thinning

time to be 1,000,000 and then every 50th iteration was thinned, so that the number of

MCMC iterations for the inference is consistent with the last 10,000 MCMC iterations

in the earlier inference. This scheme was attempted for the random walk Metropolis-

Hastings, AM, symmetric DRAM, and MTAM algorithm in order.

Table 3.5: Summary of Geweke’s diagnostics and ESS for the random walk Metropolis-
Hastings algorithm with thinning

Parameter Geweke’s diagnostics ESS

µ1 −0.837 10 000
µ2 0.269 10 650

σ1 −2.461 10 965
σ2 −0.545 9 390

α1
1,2 −0.311 5 614
α2

1,2 0.253 4 950

α1
2,1 0.180 5 731
α2

2,1 −0.509 5 607

Table 3.5 shows that Geweke’s diagnostics of the parameter σ1 indicates a failure

for the MCMC convergence. Thus, it is concluded that the algorithm has failed to

converge every parameter jointly. In addition, the ESS of the parameters α1,2 and

α2,1 are relatively small. By Figure 3.7, the corresponding autocorrelation functions of

those parameters show the existence of dependencies and explain the small ESS.

3.6 Simulation Study 83

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.7: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the random
walk Metropolis-Hastings algorithm with thinning

Given that the random walk Metropolis-Hastings algorithm was unsuccessful in the

convergence assessment, the AM algorithm is then examined for the test.

Table 3.6: Summary of Geweke’s diagnostics and ESS for the AM algorithm with
thinning

Parameter Geweke’s diagnostics ESS

µ1 0.510 10 635
µ2 0.002 10 000

σ1 −1.498 10 000
σ2 −0.909 10 981

α1
1,2 −0.175 10 000
α2

1,2 −0.621 10 000

α1
2,1 0.144 9 400
α2

2,1 −0.235 10 000

84 3. Univariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.8: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the AM
algorithm with thinning

Table 3.6 shows all the parameters of interest passed Geweke’s diagnostics. In

addition, the ESS of every parameter is on a satisfactory level, which is very close to

the number, N = 10, 000.

Furthermore, Figure 3.8 represents that dependencies between each MCMC sample

are non-existent. The results for the AM algorithm with thinning showed that the

MCMC samples have converged and the statistical inference is acceptable to be used.

Given the result of the AM algorithm with thinning above was successful in terms

of every test, the MCMC samples of the symmetric DRAM and MTAM algorithms

are also thinned by the same manner. Thus, a comparison between the AM and the

aforementioned algorithms is able to be made. The result of the symmetric DRAM

algorithm is as follows.

Given Table 3.7, all the parameters passed Geweke’s diagnostics and the ESS of

every parameter is highly satisfactory.

By Figure 3.9, autocorrelation functions also corroborate the conclusion in which

the MCMC samples have converged.

Finally, the assessment of the MCMC convergence for the MTAM algorithm con-

cludes all the tests. The number of the multiple tries remains the same as the one

without thinning. The result is presented as follows.

3.6 Simulation Study 85

Table 3.7: Summary of Geweke’s diagnostics and ESS for the symmetric DRAM algo-
rithm with thinning

Parameter Geweke’s diagnostics ESS

µ1 −0.733 10 000
µ2 −0.988 10 000

σ1 −1.374 10 000
σ2 −0.743 9 287

α1
1,2 1.006 10 000
α2

1,2 −0.289 10 000

α1
2,1 0.539 10 000
α2

2,1 0.067 10 000

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.9: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the sym-
metric DRAM algorithm with thinning

Table 3.8: Summary of Geweke’s diagnostics and ESS for the MTAM algorithm with
thinning

Parameter Geweke’s diagnostics ESS

µ1 0.636 8 600
µ2 0.450 10 000

σ1 −0.617 10 000
σ2 −0.599 10 257

α1
1,2 0.869 10 173
α2

1,2 −0.953 10 000

α1
2,1 −0.333 10 369
α2

2,1 0.563 10 000

86 3. Univariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

σ2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

(b)

Figure 3.10: Autocorrelation functions of µ & σ (a), and α1,2 & α2,1 (b), for the MTAM
algorithm with thinning

3.6.2 Performance of Parameter Estimation

As expected, all the convergence tests confirm that the MCMC samples of the param-

eters have converged since Table 3.8 shows the quite satisfactory values of Geweke’s

diagnostics and ESS. By Figure 3.10, it is evident that the dependencies between the

MCMC samples are non-existent.

Prior to the simulation study, several pilot runs were carried out for model selection

of the model by the random walk Metropolis-Hastings, AM, symmetric DRAM, and

MTAM algorithms.

The case where the number of hidden states is equal to 1 (i.e. m = 1), is omitted

since such a model is insensible in the non-homogeneous setting (Spezia, 2006). The

case where m ≥ 4 is also not considered due to the small sample size. Therefore, the

number of hidden states where m ∈ {2, 3} is considered. The results of model selection

are shown as follows.

Table 3.9: Summary of log marginal likelihoods for the Metropolis-Hastings (MH),
AM, symmetric DRAM, and MTAM algorithms

MH AM DRAM MTAM

m = 2 −209.961 −209.991 −209.940 −209.736
m = 3 −213.555 −214.042 −214.050 −214.020

3.6 Simulation Study 87

● ●
●

●

●

● ● ●

−
21

4
−

21
3

−
21

2
−

21
1

−
21

0

lo
g

f̂(y
)

M
H

2

A
M

2

D
R

A
M

2

M
TA

M
2

M
H

3

A
M

3

D
R

A
M

3

M
TA

M
3

Figure 3.11: Bar plot of log marginal likelihoods for model selection; the suffix number
of each algorithm in the plot corresponds to the number of hidden states.

According to Table 3.9, the MTAM algorithm with the number of hidden states with

m = 2, evaluates the maximum log marginal likelihood amongst all the other competing

models. By Figure 3.11, it is conclusive that the model selection has been successful.

The result is consistent with the true number of hidden states in the simulated model.

Provided that the successful result of convergence assessment and model selection,

the AM, symmetric DRAM, and MTAM algorithms are implemented for the following

parameter estimation.

Therefore, I now simulate R = 100 replications in order to complete my simulation

studies with the AM algorithm, the symmetric DRAM algorithm, and the MTAM

algorithm. Then, I compare the results of the three algorithms in terms of the mean

88 3. Univariate NHGHMM

squared error (MSE) and the mean absolute error (MAE) of the estimated hidden state

sequences and the performances of parameter estimation.

The performance describes the proportion of the replications for which the 95%

credible intervals (CrI) of the parameters include the true values. The number of

the MCMC iterations was set to N = 1, 500, 000 and the burn-in time of 1,000,000.

Then, the MCMC samples of the parameters for all the three proposed algorithms were

thinned by every 50th iteration. Table 3.10 shows the summary of parameter estima-

tion for the AM algorithm, the symmetric DRAM algorithm, the MTAM algorithm,

respectively. As the standard Metropolis-Hastings algorithm was unable to generate

the convergent MCMC chains, the estimates of the algorithm are not presented here.

Overall, the performances of the three algorithms are reasonably reliable; however,

some parameters such as α2
1,2, α1

2,1, qt12,1, qt12,2, qt21,1 and qt21,2, indicated quite poor coverage.

Such results may be caused by the large values for σ and small sample size (i.e. n =

100).

In Appendix C, all the trace plots and histograms of the parameters for the AM,

symmetric DRAM, and MTAM algorithms are shown in Figures C.1 & C.2, C.3 & C.4,

and C.5 & C.6, respectively. Each simulated data set is chosen by the lowest MSE and

MAE of the estimated state sequence out of R = 100 replications during the course of

the simulation study.

By Figures C.1a and C.1b, it was observed for the AM algorithm that the parame-

ters µ1 and µ2 were under- and over-estimated, respectively. These biases were driven

by the small sample size of the simulated data set. Most importantly, the estimation

of the transition parameters is quite reasonable as the central tendencies were very

close to their true values. Conversely, the parameters qt22,1 and qt22,2 were slightly biased.

Nevertheless, all the other parameters reasonably covered the true values.

As for the symmetric DRAM algorithm, the biases of the parameters µ1 and σ1 are

quite remarkable as observed in Figures C.3a and C.3b. Hence, it might be claimed

that the parameter estimation for Gaussian parameters of State 1 was unsuccessful.

In addition, by Figures C.4c and C.4d, the MCMC samples of Qt2 were found to be

biased. This bias might have been caused by the small number of sample size.

3.6 Simulation Study 89

T
ab

le
3.

10
:

S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

ea
ch

al
go

ri
th

m
w

h
er

e
R

=
10

0
re

p
li
ca

ti
on

s
w

er
e

ta
ke

n
in

to
ac

co
u
n
t.

A
co

m
p
ar

is
on

of
th

e
th

re
e

p
ro

p
os

ed
M

C
M

C
al

go
ri

th
m

s
in

cl
u
d
es

:
p

oi
n
t

es
ti

m
at

es
,

95
%

C
rI

an
d

co
ve

ra
ge

of
th

e
tr

u
e

va
lu

es
.

P
ar

am
et

er
T

ru
e

va
lu

e
A

M
D

R
A

M
M

T
A

M
D

ie
b

ol
d

et
al

.
E

st
im

at
e

95
%

C
rI

C
ov

er
ag

e
E

st
im

at
e

95
%

C
rI

C
ov

er
ag

e
E

st
im

at
e

95
%

C
rI

C
ov

er
ag

e
E

st
im

at
e

µ
1

−
1

−
1.

48
2

(
−

2.
14

7,
−

0.
82

1
)

54
%

−
1.

51
6

(
−

2.
16

4,
−

0.
86

5
)

49
%

−
1.

38
1

(
−

2.
01

7,
−

0.
74

7
)

73
%

−
1.

62
µ

2
1

1.
28

4
(

0.
72

8,
1.

83
5

)
74

%
1.

31
4

(
0.

71
6,

1.
90

8
)

72
%

1.
34

0
(

0.
78

2,
1.

89
5

)
62

%
1.

27

σ
1

2
1.

78
3

(
1.

36
1,

2.
34

4
)

76
%

1.
74

1
(

1.
32

6,
2.

29
1

)
80

%
1.

78
5

(
1.

37
9,

2.
31

8
)

74
%

1.
68

σ
2

2
1.

78
8

(
1.

43
4,

2.
23

2
)

81
%

1.
83

7
(

1.
45

9,
2.

32
3

)
84

%
1.

75
8

(
1.

40
3,

2.
20

5
)

70
%

1.
72

α
1 1
,2

3.
52

9
1.

68
4

(
−

1.
42

3,
4.

95
2

)
85

%
1.

56
8

(
−

1.
67

7,
4.

98
7

)
85

%
1.

63
9

(
−

1.
30

3,
4.

73
0

)
89

%
N

A
α

2 1
,2

−
5.

20
5

−
1.

97
8

(
−

5.
57

3,
1.

53
3

)
60

%
−

1.
98

7
(

−
5.

78
9,

1.
73

7
)

64
%

−
2.

10
1

(
−

5.
57

8,
1.

29
5

)
61

%
N

A

α
1 2
,1

−
5.

32
0

−
2.

35
2

(
−

5.
17

3,
0.

37
0

)
47

%
−

2.
29

6
(

−
5.

20
6,

0.
51

2
)

50
%

−
2.

36
0

(
−

5.
07

3,
0.

28
2

)
45

%
N

A
α

2 2
,1

5.
20

5
2.

23
8

(
−

1.
24

7,
5.

85
2

)
70

%
2.

11
4

(
−

1.
49

6,
5.

83
5

)
69

%
2.

31
3

(
−

1.
11

1,
5.

85
7

)
72

%
N

A

qt
1 1
,1

0.
4

0.
41

2
(

0.
18

5,
0.

68
4

)
84

%
0.

43
2

(
0.

20
0,

0.
70

8
)

81
%

0.
43

9
(

0.
21

4,
0.

69
2

)
72

%
0.

04
qt

1 1
,2

0.
6

0.
58

8
(

0.
31

6,
0.

81
5

)
84

%
0.

56
8

(
0.

29
2,

0.
80

0
)

81
%

0.
56

1
(

0.
30

8,
0.

78
6

)
72

%
0.

96
qt

1 2
,1

0.
1

0.
30

8
(

0.
16

9,
0.

47
9

)
51

%
0.

29
9

(
0.

15
3,

0.
47

7
)

57
%

0.
30

5
(

0.
16

4,
0.

48
1

)
53

%
0.

10
qt

1 2
,2

0.
9

0.
69

2
(

0.
52

1,
0.

83
1

)
51

%
0.

70
1

(
0.

52
3,

0.
84

7
)

57
%

0.
69

5
(

0.
51

9,
0.

83
6

)
53

%
0.

90

qt
2 1
,1

0.
9

0.
61

8
(

0.
39

9,
0.

81
1

)
43

%
0.

61
9

(
0.

40
7,

0.
81

5
)

51
%

0.
64

0
(

0.
44

5,
0.

81
1

)
53

%
0.

62
qt

2 1
,2

0.
1

0.
38

2
(

0.
18

9,
0.

60
1

)
43

%
0.

38
1

(
0.

18
5,

0.
59

3
)

51
%

0.
36

0
(

0.
18

9,
0.

55
5

)
53

%
0.

38
qt

2 2
,1

0.
6

0.
51

4
(

0.
23

5,
0.

76
9

)
78

%
0.

49
1

(
0.

20
1,

0.
76

6
)

78
%

0.
52

4
(

0.
23

9,
0.

80
2

)
83

%
0.

62
qt

2 2
,2

0.
4

0.
48

6
(

0.
23

1,
0.

76
5

)
78

%
0.

50
9

(
0.

23
4,

0.
79

9
)

78
%

0.
47

6
(

0.
19

8,
0.

76
1

)
83

%
0.

38

90 3. Univariate NHGHMM

Finally, coverage of the parameters µ, σ, and α for the MTAM algorithm was

superior to the other two MCMC algorithms as seen in Figure C.5. Although the

central tendencies of the transition probabilities qt12,1, qt12,2, qt21,1, and qt21,2 were quite

accurate to their true values, those of the other transition probabilities were slightly

biased by Figure C.6.

Overall, the simulation study in this thesis generated the more meaningful result

than that of Diebold et al. (1994)’s given the same sample size (i.e. n = 100).

Table 3.11: Summary of the lowest bounds of MSE and MAE for the AM, symmetric
DRAM, and MTAM algorithms along with Diebold et al.’s model

AM DRAM MTAM Diebold et al.

MSE 0.09 0.08 0.10 0.11
MAE 0.18 0.14 0.20 NA

Table 3.11 shows the lowest MSE and MAE for each of the particular simulated data

sets. According to the resultant, all of the proposed algorithms in this thesis generated

lower MSE than that of Diebold et al. (1994)’s. The corresponding estimated state

and the actual sequences are shown in Figures 3.12d, 3.12e, and 3.12f for the AM,

symmetric DRAM, and MTAM algorithms, respectively.

Furthermore, by exploiting a set of exogenous variables, it was observed that the

estimation of the hidden state sequences in NHGHMMs proved more effective than ho-

mogeneous GHMMs in Figure 3.12. As Diebold et al. (1994) pointed out, NHGHMMs

were able to relax the restrictive constant transition probabilities in my simulation

study.

Also, a comparison of the proposed MCMC algorithms was carried out to examine

each algorithm’s computational cost by using ‘rbenchmark’ package in R c©. A test

model was chosen to be Model (3.24).

For each algorithm, the number of MCMC iterations was set to be N = 500. The

symmetric DRAM and MTAM algorithms were specifically the focus of this comparison

with regard to their number of tries and the corresponding computational expenses.

The MCMC run was repeated 100 times for each algorithm. The comparison is detailed

in the following table.

3.6 Simulation Study 91

Table 3.12: Comparison of the proposed MCMC algorithms for the univariate case

Algorithm No. of tries Replications Elapsed time (s) Relative

AM 1 100 80.94 1.00

DRAM 10 100 267.03 3.30
DRAM 25 100 552.86 6.83
DRAM 50 100 1 019.75 12.60

MTAM 10 100 220.75 2.73
MTAM 25 100 348.64 4.31
MTAM 50 100 591.97 7.31

As the AM algorithm being a reference algorithm, computational costs of the sym-

metric DRAM and MTAM algorithms will increase linearly with respect to the number

of tries for each MCMC iteration. More importantly, the symmetric DRAM algorithm

was found to be a more computationally expensive algorithm than the MTAM algo-

rithm whilst the latter has been the most efficient algorithm in terms of autocorrelation

functions and ESS.

Last but not least, the computational time for the simulation study of each al-

gorithm was 2.75 days for the AM algorithm, 8.20 days for the symmetric DRAM

algorithm, and 7.16 days for the MTAM algorithm.

92 3. Univariate NHGHMM

0
20

40
60

80
100

−6 −4 −2 0 2 4 6 8

t

y
t

µ
s

t =
 −

1,1

(a)

0
20

40
60

80
100

−6 −4 −2 0 2 4 6 8

t

y
t

µ
s

t =
 −

1,1

(b
)

0
20

40
60

80
100

−6 −4 −2 0 2 4 6

t

y
t

µ
s

t =
 −

1,1

(c)

0
20

40
60

80
100

t

1 2State

0 0.2 0.4 0.6 0.8 1
Probability

A
ctual sequence

S
tate probability

(d
)

0
20

40
60

80
100

t

1 2State

0 0.2 0.4 0.6 0.8 1
Probability

A
ctual sequence

S
tate probability

(e)

0
20

40
60

80
100

t

1 2State

0 0.2 0.4 0.6 0.8 1
Probability

A
ctual sequence

S
tate probability

(f)

F
igu

re
3.12:

T
im

e
series

p
lots

of
th

e
ob

servation
s

(top
row

)
an

d
th

e
estim

ated
h
id

d
en

state
seq

u
en

ces
(b

ottom
row

)
for

th
e

A
M

algorith
m

,
(a)

&
(d

);
th

e
sy

m
m

etric
D

R
A

M
algorith

m
,

(b
)

&
(e);

an
d

th
e

M
T

A
M

algorith
m

,
(c)

&
(f).

3.7 Case Study 93

3.7 Case Study

Having completed the simulation studies in the previous section, a case study of the

univariate NHGHMM from the following real-world financial data set is now presented

in this section. The data set analysed in this case study can be obtained from Quandl

(https://www.quandl.com/) by using ‘Quandl’ package in R c©.

3.7.1 The US Treasury Bill Rates

Economic and financial time series modelling through HMMs has been proposed by

Hamilton (1994). One of the crucial applications of the HMMs is forecasting, but a ho-

mogeneous HMM lacks the capability of predicting hidden state sequence as mentioned

in the earlier sections.

Considering the limitation of the homogeneous HMM’s predictive ability, Meligkot-

sidou and Dellaportas (2011) applied an NHGHMM to the data set of the monthly

US 3-month treasury bill rates from January 1962 to December 1999. In addition to

the time-varying transition probabilities, Bayesian inference was taken into account

for parameter estimation as Filardo and Gordon (1998) suggested the methodology to

avoid the technical problems pertaining to a frequentist approach (Meligkotsidou and

Dellaportas, 2011).

As for the data set of the monthly US 3-month treasury bill rates, Dellaportas et al.

(2007) utilised regime switching models with the reversible jump MCMC algorithm

and identified different regimes in the data set. Moreover, they introduced six financial

variables to describe the episodes of mean-reverting tendencies which appear in interest

rate levels (Meligkotsidou and Dellaportas, 2011).

Following Meligkotsidou and Dellaportas (2011), a two-state NHGHMM was pro-

posed in the case study and the six financial variables were used as exogenous variables

within the model. The financial variables include:

z1
t : the US annual inflation rate (INF),

z2
t : the trade-weighted US dollar index against other major currencies (CUR),

z3
t : the US producer price index (PPI),

z4
t : the national association of purchasing management index (NAPM),

https://www.quandl.com/

94 3. Univariate NHGHMM

z5
t : the US consumer price index (CPI), and

z6
t : the 10-year US treasury yield (LTR).

All the exogenous variables zt = (1, z1
t , z

2
t , z

3
t , z

4
t , z

5
t , z

6
t), for any t ∈ {2, 3, . . . , 456},

were differenced before the statistical analysis except for LTR (Meligkotsidou and Del-

laportas, 2011). Hence, I compute the first difference of those exogenous variables and

leave the economic variable, LTR, intact. The variable, CUR, only consists of data

points ranging from January 1973 to December 1999. A two-state GHMM is a very

common model in such a type of time series. It was found that an NHGHMM with

the six exogenous variables on the data set of a monthly interest rates return possesses

the better predictive ability compared to a homogeneous GHMM (Meligkotsidou and

Dellaportas, 2011).

I now consider the identical data set, but a slightly different model from that of

Meligkotsidou and Dellaportas (2011)’s. In addition, the model does not take the

forecasting ability of the NHGHMM into consideration since it is simply beyond the

scope of the research aims in this thesis. Thus, the observed data from January 1973

to December 1999 were used whereas Meligkotsidou and Dellaportas (2011) applied

their NHGHMM to the truncated observed data up to December 1997 for generating

the fitted observations. The parameters of interest in this case study are:

• µi, for all i ∈ {1, 2},

• σi, for all i ∈ {1, 2},

• αi,j = (α1
i,j, α

2
i,j, α

3
i,j, α

4
i,j, α

5
i,j, α

6
i,j, α

7
i,j), for (i, j) ∈ {(1, 2), (2, 1)},

• Qt
i,j, for all (i, j) ∈ {1, 2} × {1, 2} and t ∈ {2, 3, . . . , 456}, namely from January

1962 to December 1999, and

• St, where St ∈ {1, 2}, for any t ∈ {1, 2, . . . , 456}, namely the estimated hidden

state sequence.

In this model, the sequence of the observations in the monthly US 3-month treasury

bill rates, yt, was differenced such that

∆yt = µst + εt, εt ∼ N (0, σ2
st), (3.25)

3.7 Case Study 95

where ∆yt = yt − yt−1, for any t ∈ {1, 2, . . . , 456} and y0 denotes the observation in

December 1961. Note that it is equivalent to state as follows:

∆yt ∼ N (µst , σ
2
st), for any t ∈ {1, 2, . . . , 456}.

The MCMC method includes the Gibbs sampler and the MTAM algorithm. The total

number of the MCMC iterations was 5,000,000, and the burn-in time was set to be

4,000,000. After the burn-in time, the thinning of every 100th iteration was taken into

account so that the last 10,000 iterations are the parameters of interest.

The parameter αi,j, for any (i, j) ∈ {(1, 2), (2, 1)}, is distributed in the 7-dimensional

Gaussian distribution. Therefore, following the finding of Heaps et al. (2015), the thin-

ning of every 100th iteration was carried out to ensure that every parameter of interest

converge jointly, instead of every 10th iteration in the simulation study.

Firstly, it is crucial to assess convergence of the parameters. Table 3.13 shows

Geweke’s diagnostics, ESS, and relative numerical efficiency of each parameter.

Table 3.13: Summary for Geweke’s diagnostics and ESS of each parameter

Parameter Geweke’s diagnostics ESS

µ1 −0.851 10 000
µ2 1.282 10 609

σ1 0.074 9 068
σ2 −0.344 10 000

α1
1,2 −0.213 10 460
α2

1,2 −0.786 10 000
α3

1,2 0.194 10 000
α4

1,2 0.685 10 972
α5

1,2 0.090 9 621
α6

1,2 0.602 10 000
α7

1,2 0.483 10 476

α1
2,1 −0.121 10 712
α2

2,1 −1.087 10 439
α3

2,1 0.274 10 000
α4

2,1 −0.465 10 000
α5

2,1 0.469 10 000
α6

2,1 −0.724 10 000
α7

2,1 0.383 10 709

All the parameters of interest passed Geweke’s diagnostics. Furthermore, the ESS

96 3. Univariate NHGHMM

of each parameter is at a satisfactory level, and is showing no correlation between the

MCMC samples. The case study found the identifiability of σ such that σ1 < σ2, and

thus, the other parameters are relabelled as such. That being said, no label switching

phenomenon was detected. Likewise, Meligkotsidou and Dellaportas (2011) observed

no label switching amongst the parameters of interest.

Figure 3.15 shows the differenced US 3-month bill rates and the grey shaded areas.

The shaded areas indicate the hidden state sequence is in the state where the observa-

tions with large fluctuations. The case study identified the duration between November

1970 & August 1971, June 1973 & February 1975, September 1979 & November 1982,

and September 1984 & June 1985 as the period in which the observations with the

large fluctuations. The estimates and 95% CrI of the parameters for this case study

are given by Table 3.14.

Table 3.14: Parameter estimation of the MCMC iterations for the case study of the
US 3-month treasury bill rates

Parameter Estimate 95% CrI

µ1 0.024 (0.000, 0.048)
µ2 −0.081 (−0.326, 0.165)

σ1 0.233 (0.216, 0.253)
σ2 1.124 (0.958, 1.332)

α1
1,2 −5.637 (−9.229, −2.301)
α2

1,2 1.490 (−2.401, 5.421)
α3

1,2 0.247 (−0.580, 1.238)
α4

1,2 0.774 (−3.991, 5.489)
α5

1,2 −0.192 (−0.732, 0.349)
α6

1,2 −0.230 (−6.469, 6.034)
α7

1,2 0.035 (−0.471, 0.489)

α1
2,1 0.689 (−4.355, 6.161)
α2

2,1 −4.247 (−8.820, −0.248)
α3

2,1 −1.392 (−2.818, −0.258)
α4

2,1 −2.895 (−8.628, 2.468)
α5

2,1 0.132 (−0.308, 0.650)
α6

2,1 −2.228 (−8.506, 3.944)
α7

2,1 −0.778 (−1.741, −0.064)

The results differ from that of Meligkotsidou and Dellaportas (2011)’s since their

model is essentially different from the model being proposed in this thesis. Nevertheless,

the model was able to estimate similar transition probabilities to Meligkotsidou and

3.7 Case Study 97

Dellaportas (2011)’s estimation by Figure 3.14.

The statistical summary of MCMC iterations are shown in Figure 3.14, and the

trace plots and histograms of µ and σ are shown in Figure 3.13.

0 2000 4000 6000 8000 10000

−
0.

4
0.

0
0.

4

Iteration

µ1 µ2

0 2000 4000 6000 8000 10000

0.
5

1.
0

1.
5

2.
0

Iteration

σ1 σ2

(a)

µ1

D
en

si
ty

−0.02 0.00 0.02 0.04 0.06

0
5

10
15

20
25

30

µ2

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0.
0

1.
0

2.
0

3.
0

σ1

D
en

si
ty

0.20 0.22 0.24 0.26
0

10
20

30
40

σ2

D
en

si
ty

0.8 1.0 1.2 1.4 1.6

0
1

2
3

4

(b)

Figure 3.13: Trace plots (a) and histograms (b) of µ & σ

The model is a non-homogeneous GHMM, and hence, there are 2× 2× (456− 1) =

1820 transition probabilities to be estimated. Figure 3.14 summarises the 95% CrI of

each transition probability at time t ∈ {2, 3, . . . , 456}. A combination of the parameter

α and the exogenous variable z defines the transition probabilities, and its acceptance

rates of MCMC iterations for α12 and α21 were approximately 47.63% and 49.66%,

respectively.

The assessment of convergence was a particularly difficult task since MCMC sam-

ples in the MTAM algorithm were in the 7-dimensional space. It was necessary to

increase the size of tries in the MCMC algorithm or other techniques to accelerate the

convergence. This will be part of my future work.

In this case study, I used Model (3.25) which is different from Meligkotsidou and

Dellaportas (2011)’s. That fitted model of Meligkotsidou and Dellaportas (2011)’s is

given as follows:

∆yt = µst + bstyt−1 + εt, εt ∼ N (0, σ2
st),

where bst is the state specific parameter of the autoregressive model of order 1.

98 3. Univariate NHGHMM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q1, 1
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1966 Jan 1974 Jan 1982 Jan 1990 Jan 1998

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q1, 2
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1966 Jan 1974 Jan 1982 Jan 1990 Jan 1998

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q2, 1
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1966 Jan 1974 Jan 1982 Jan 1990 Jan 1998

(c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q2, 2
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1966 Jan 1974 Jan 1982 Jan 1990 Jan 1998

(d)

Figure 3.14: Time series plots of medians and 95% CrI for the transition matrices, qt1,1
(a), qt1,2 (b), qt2,1 (c), and qt2,2 (d), for each t ∈ {2, 3, . . . , 456}

3.7 Case Study 99

−4−202

T
he

 d
iff

er
en

ce
d

U
S

 3
−m

on
th

 b
ill

 r
at

es

T
im

e

∆yt

Ja
n

19
62

Ja
n

19
66

Ja
n

19
70

Ja
n

19
74

Ja
n

19
78

Ja
n

19
82

Ja
n

19
86

Ja
n

19
90

Ja
n

19
94

Ja
n

19
98

−4−202

F
ig

u
re

3.
15

:
T

im
e

se
ri

es
p
lo

t
of

th
e

d
iff

er
en

ce
d

U
S

3-
m

on
th

tr
ea

su
ry

b
il
l

ra
te

s.
T

h
e

gr
ey

sh
ad

ed
ar

ea
s

re
p
re

se
n
t

th
e

ti
m

e
d
u
ra

ti
on

fo
r

w
h
ic

h
th

e
h
id

d
en

st
at

es
ar

e
in

S
ta

te
2,

n
am

el
y

th
e

st
at

e
w

it
h

la
rg

e
fl
u
ct

u
at

io
n
s.

100 3. Univariate NHGHMM

101

Chapter 4
Multivariate NHGHMM

P
rior to discussing a multivariate NHGHMM, it is necessary to mention the

first multivariate non-homogeneous hidden Markov model. The model gives

rise to Hughes et al. (1997, 1999)’s work where it was fitted to broad scale atmospheric

circulation patterns, namely a downscaling problem. The model dealt with precipi-

tation occurrences, which were not exactly Gaussian random variables. Nevertheless,

they established the stochastic process of hidden states being non-homogeneous, and

consequently relaxed the restrictive attribute of constant transition probabilities.

Ailliot et al. (2009) fitted an NHGHMM to daily rainfall data from a small network

of stations in New Zealand. They successfully modelled regional weather types that

govern the temporal dependence of the rainfall, although the parameter estimation was

carried out by a frequentist approach.

As such, a collection of literature about Bayesian analyses of multivariate non-

homogeneous Gaussian HMMs is indeed scarce. With that being said, Heaps et al.

(2015) studied rainfall data in the UK using an NHGHMM through a Bayesian ap-

proach. They found that Lamb weather types in climatology had a large impact on

the atmospheric status, and thus, the NHGHMM was an appropriate stochastic model

for spatiotemporal analysis of the observed rainfall data (Heaps et al., 2015).

This section is largely motivated by the scarcity of detailed literature about Bayesian

analyses of multivariate NHGHMMs. Hence, the aim in this chapter is to develop

various MCMC algorithms within a Bayesian framework which is extended from the

univariate setting in Chapter 3.

102 4. Multivariate NHGHMM

This chapter is organised as follows. In Section 4.1, the multivariate NHGHMM is

mathematically defined, which completely differs from the univariate model in Chap-

ter 3. In Section 4.2, prior distributions for the parameters of interest are specified in

order to conduct a Bayesian analysis. Then, a joint likelihood function for the multi-

variate NHGHMM is defined in Section 4.3. In Section 4.4, a joint posterior distribution

is defined, and subsequently, conditional posterior distributions for all the parameters

of interest are defined. In Section 4.5, I propose the MCMC algorithms, the AM, the

symmetric DRAM, and the MTAM algorithms for the multivariate NHGHMM. This

section also contributes to highlighting my original contributions to Bayesian analyses

of multivariate NHGHMMs. Finally, the results for a simulation study and case studies

are presented in Sections 4.6 and 4.7, respectively.

4.1 The Model

This section is dedicated to introducing a multivariate NHGHMM whose observations

are a sequence of d-dimensional continuous random variables, Yt = (Y 1
t , Y

2
t , . . . , Y

d
t) ∈

Rd, where d ∈ N \ {1} with discrete-time t ∈ {1, 2, . . . , n} (Spezia, 2010). The obser-

vations are assumed to be Gaussian distributed with a vector of state specific means

µi ∈ Rd and a state specific positive-definite covariance matrix Σi ∈ Rd×d, for any

i ∈ Ω = {1, 2, . . . ,m}. Hence, the observations are conditionally independent of other

observed variables on a sequence of hidden states S = (S1, S2, . . . , Sn) such that

Yt |St = i ∼ Nd(µi,Σi), (4.1)

where St ∈ Ω, for any t ∈ {1, 2, . . . , n}. Following Spezia (2006), the initial distribution

of the hidden state is defined as ρ = (ρ1, ρ2, . . . , ρm), where ρi = Pr(S1 = i) for any

i ∈ Ω. Then, the transition probabilities of St−1 = i to St = j, where i, j ∈ Ω, are

defined as follows:

Pr(St = j |St−1 = i) := qti,j =
exp(zᵀt αi,j)

1 +
∑
j∈Ω
j 6=i

exp(zᵀt αi,j)
, (4.2)

4.2 Prior Distributions 103

where zt = (1, z1
t , z

2
t , . . . , z

K−1
t) is a vector of K deterministic exogenous variables

for any t ∈ {2, 3, . . . , n}, and the multivariate Gaussian distributed random variable

αi,j = (α1
i,j, α

2
i,j, . . . , α

K
i,j) ∈ RK , for any {(i, j) ∈ Ω2 : i 6= j} (Spezia, 2006).

Let the parameters of interest be a vector of the parameters for the multivariate

Gaussian distributions (µ,Σ), the parameter α for Equation (4.2), and a sequence of

the estimated hidden states s = (s1, s2, . . . , sn) such that

θ = (µ,Σ, α, s),

where µ = (µ1,µ2, . . . ,µm), Σ = (Σ1,Σ2, . . . ,Σm), and α = (αi,j), for any {(i, j) ∈

Ω2 : i 6= j}.

4.2 Prior Distributions

Bayesian inference for the multivariate NHGHMM requires the important step to spec-

ify prior distributions for the parameters of interest. A set of those parameters is

comprised of µ, Σ, and α. Following Richardson and Green (1997)’s advice, non-

informative prior density functions on the parameters µ and Σ were chosen to allow

the priors to vary on the interval of the data (Spezia, 2010). A prior density function

on the parameter α is also chosen to be non-informative by following Spezia (2006).

Therefore, the prior specification is as follows.

(i) Prior for µ: A vector of m means which are d-dimensional real-valued vectors

µ = (µ1,µ2, . . . ,µm). The multivariate Gaussian distribution is defined as the

prior for µi, for any i ∈ {1, 2, . . . ,m}, such that

p(µ) =
m∏
i=1

p(µi), (4.3)

where µi ∼ Nd(ϕ,Ψ), and ϕ is a vector of m midpoints for each sequence of uni-

variate observations yjt , j ∈ {1, 2, . . . , d}. The positive-definite covariance matrix

104 4. Multivariate NHGHMM

Ψ is defined as follows (Spezia, 2010):

Ψ =



〈y1
t 〉

δ1,2
2

√
〈y1
t 〉〈y2

t 〉 · · ·
δ1,d

2

√
〈y1
t 〉〈ydt 〉

δ2,1
2

√
〈y2
t 〉〈y1

t 〉 〈y2
t 〉 · · · δ2,d

2

√
〈y2
t 〉〈ydt 〉

...
...

. . .
...

δd,1
2

√
〈ydt 〉〈y1

t 〉
δd,2

2

√
〈ydt 〉〈y2

t 〉 · · · 〈ydt 〉


, (4.4)

where 〈yjt 〉 = max{yjt}−min{yjt} denotes the range of the observed data yjt , for any

j ∈ {1, 2, . . . , d}, and δj,k denotes the sign function such that

δj,k =


1, when yjt and ykt are positively correlated

−1, when yjt and ykt are negatively correlated

, (4.5)

for any {(j, k) ∈ {1, 2, . . . , d}2 : j 6= k}. Hence,

p(µi) = [(2π)d det(Ψ)]−
1
2 exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)
= det(2πΨ)−

1
2 exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)
,

for any i ∈ {1, 2, . . . ,m}.

(ii) Prior for Σ: A vector of m positive-definite covariance matrices which are (d× d)-

dimensional Σ = (Σ1,Σ2, . . . ,Σm). The inverse Wishart distribution is defined as

the prior for Σi, for any i ∈ {1, 2, . . . ,m}, such that

p(Σ) =
m∏
i=1

p(Σi), (4.6)

where p(Σi) =W−1(γ,Φ), γ = int{(d+1)/2}+1 in which int{·} denotes the integer

part of an arbitrary argument. Furthermore, Φ = (φj,k) is a (d × d)-dimensional

positive-definite matrix such that

φj,k =


γ, if j = k

δj,k
γ

2
, if j 6= k

, (4.7)

4.3 Likelihood Function 105

for which δj,k is defined as in Equation (4.5). Thus,

Σi ∼ W−1(γ,Φ) =
det(Φ)

γ
2

2
γd
2 Γd

(
γ
2

) det(Σi)
− γ+d+1

2 exp

(
−1

2
tr(ΦΣ−1

i)

)
,

for any i ∈ {1, 2, . . . ,m} where Γd(·) is the multivariate gamma function of order

d, and tr(·) is the trace function.

(iii) Prior for α: A matrix of αi,j = (α1
i,j, α

2
i,j, . . . , α

K
i,j) ∈ RK such that α = (αi,j),

where {(i, j) ∈ Ω2 : i 6= j}. The multivariate Gaussian distribution is the prior

distribution for the parameter αi,j such that

p(α) =
∏

(i,j)∈Ω2

i 6=j

p(αi,j), (4.8)

where αi,j ∼ NK(µA,Λ
−1
A), for {(i, j) ∈ Ω2 : i 6= j}, and µA ∈ RK & ΛA ∈ RK×K

are the hyperparameters of αi,j. Hence,

p(αi,j) = [(2π)K det(Λ−1
A)]−

1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
= det(2πΛ−1

A)−
1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
,

for any {(i, j) ∈ Ω2 : i 6= j}.

4.3 Likelihood Function

The following notations will be used in this chapter:

θ−µ = (��µ ,Σ, α, s) = (Σ, α, s)

θ−Σ = (µ,��Σ , α, s) = (µ, α, s)

θ−α = (µ,Σ,�α, s) = (µ,Σ, s)

θ−s = (µ,Σ, α, �s) = (µ,Σ, α).

106 4. Multivariate NHGHMM

The observations are assumed to be distributed in the multivariate Gaussian distribu-

tion given the hidden state of a Markov chain. The joint likelihood function of sequences

of the observations and the hidden states given the rest of parameters, f(y, s |θ−s, z, ρ),

for the model is defined as follows (Spezia, 2010):

f(y, s |θ−s, z, ρ) = f(y, s |µ,Σ, α, z, ρ)

= f(s |µ,Σ, α, z, ρ)f(y |µ,Σ, α, s, z, ρ)

= f(s1 | ρ)
n∏
t=2

f(st |st−1, α, zt)
n∏
t=1

f(yt |µst ,Σst , st)

= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

det(2πΣst)
− 1

2 exp

(
−1

2
(yt − µst)

ᵀΣ−1
st (yt − µst)

)
,

(4.9)

where qtst−1,st
, for any t ∈ {2, 3, . . . , n} is defined as in Equation (4.2).

4.4 Posterior Distributions

Given the prior density functions in Equations (4.3), (4.6), and (4.8), and the joint

likelihood function in Equation (4.9), the joint posterior distribution of the parameters

given the observed data and the rest of variables of interest is derived as follows:

π(θ |y, z, ρ) = π(µ,Σ, α, s |y, z, ρ)

∝ f(y, s |µ,Σ, α, z, ρ)p(µ,Σ, α, z, ρ)

= f(s |µ,Σ, α, z, ρ)f(y |µ,Σ, α, s, z, ρ)p(µ,Σ, α | z, ρ)p(z, ρ)

∝ f(s |µ,Σ, α, z, ρ)f(y |µ,Σ, α, s, z, ρ)p(µ,Σ, α)

= f(s |µ,Σ, α, z, ρ)f(y |µ,Σ, α, s, z, ρ)p(µ)p(Σ)p(α)

= f(s1 | ρ)
n∏
t=2

f(st |st−1, α, zt)
n∏
t=1

f(yt |µst ,Σst , st)

×
m∏
i=1

p(µi)
m∏
i=1

p(Σi)
∏

(i,j)∈Ω2

i 6=j

p(αi,j)

= ρs1

n∏
t=2

qtst−1,st

n∏
t=1

(2π)−
d
2 det(Σst)

− 1
2 exp

(
−1

2
(yt − µst)

ᵀΣ−1
st (yt − µst)

)

4.4 Posterior Distributions 107

×

[
m∏
i=1

det(2πΨ)−
1
2 exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)]

×

[
m∏
i=1

det(Φ)
γ
2

2
γd
2 Γd

(
γ
2

) det(Σi)
− γ+d+1

2 exp

(
−1

2
tr(ΦΣ−1

i)

)]

×

 ∏
(i,j)∈Ω2

i 6=j

det(2πΛ−1
A)−

1
2 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
∝ ρs1

n∏
t=2

qtst−1,st

n∏
t=1

det(Σst)
− 1

2 exp

(
−1

2
(yt − µst)

ᵀΣ−1
st (yt − µst)

)

×

[
m∏
i=1

exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)]

×

[
m∏
i=1

det(Σi)
− γ+d+1

2 exp

(
−1

2
tr(ΦΣ−1

i)

)]

×

 ∏
(i,j)∈Ω2

i 6=j

exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

) . (4.10)

Likewise, Bayesian inference of the multivariate NHGHMM proceeds in a similar man-

ner as the univariate NHGHMM does. The parameters (µ(τ),Σ(τ), α(τ), s(τ)) are up-

dated by the Gibbs sampler and Metropolis-Hastings algorithms at τ th iteration, de-

pending on their conditional posterior distributions. Given the joint posterior distri-

bution in Equation (4.10), the derivation of the conditional posterior distributions of

the parameters is detailed as follows.

The conditional posterior distribution of s

The forward filtering backward sampling algorithm was implemented anew in order to

estimate a sequence of the hidden states at τ th iteration in the multivariate NHGHMM

such that s(τ) = (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n). The joint posterior distribution of s is given as

follows:

π(s |y,θ−s) = π(s1 | s2, s3, . . . , sn,y,θ−s)

× π(s2 | s3, s4, . . . , sn,y,θ−s)

...

108 4. Multivariate NHGHMM

× π(sn−1 | sn,y,θ−s)

× π(sn |y,θ−s)

= π(sn |y,θ−s)
n−1∏
t=1

π(st | st+1:n,y,θ−s).

For any t ∈ {1, 2, . . . , n−1}, the conditional posterior distribution of st will be reduced

by Bayes’ Theorem as follows:

π(st | st+1:n,y,θ−s) ∝ f(st+1:n,yt+1:n | st,y1:t,θ−s)π(st |y1:t,θ−s)

∝ f(st+2:n,yt+1:n | st+1,��st ,y1:t,θ−s)︸ ︷︷ ︸
1st order Markov chain

π(st+1 | st,��y1:t ,θ−s)︸ ︷︷ ︸
Markov property

π(st |y1:t,θ−s)

= f(st+2:n,yt+1:n | st+1,y1:t,θ−s)︸ ︷︷ ︸
independent of st

π(st+1 | st,θ−s)π(st |y1:t,θ−s)

∝ π(st+1 | st,θ−s)π(st |y1:t,θ−s). (4.11)

Therefore, the conditional posterior distribution of the hidden state at time t is given

as above. Calculation of filtered probabilities up to time t = n is performed, and it is

followed by sampling hidden states from the full conditional posterior distribution in

Equation (4.11) in reverse time t ∈ {n, n− 1, . . . , 1} (Chib, 1996; Scott, 2002).

The conditional posterior distribution of α

For any {(i, j) ∈ Ω2 : i 6= j}, the full conditional posterior distribution of αi,j is given

as follows:

π(αi,j |θ−α) ∝

 ∏
{t≥2: st−1=i∧ st=j}

qti,j

 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)

(by Equation (4.10))

=

 ∏
{t≥2: st−1=i∧ st=j}

exp(zᵀt αi,j)

1 +
∑

j∈Ω
j 6=i

exp(zᵀt αi,j)

 exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)

=
exp

(∑
{t≥2: st−1=i∧ st=j} z

ᵀ
t αi,j

)
∏
{t≥2: st−1=i∧ st=j}

(
1 +

∑
j∈Ω
j 6=i

exp(zᵀt αi,j)

) exp

(
−1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)

4.4 Posterior Distributions 109

=

exp

(∑
{t≥2: st−1=i∧ st=j} z

ᵀ
t αi,j −

1

2
(αi,j − µA)ᵀΛA(αi,j − µA)

)
∏
{t≥2: st−1=i∧ st=j}

(
1 +

∑
j∈Ω
j 6=i

exp(zᵀt αi,j)

) . (4.12)

The conditional posterior distribution in Equation (4.12) has a non-standard form,

and hence, the Gibbs sampler can no longer be implemented for parameter estimation.

Thus, the Metropolis-Hastings algorithm will be used. The multivariate Gaussian

distribution is used for α
(τ)
i = (α

(τ)
i,1 , α

(τ)
i,2 , . . . , α

(τ)
i,i−1,0, α

(τ)
i,i+1, . . . , α

(τ)
i,m) ∈ RK×m. The

conditional posterior distribution of αi, for any i ∈ {1, 2, . . . ,m}, is given as follows:

π(α
(τ)
i |θ−α) ∝

exp

(∑
{t≥2: st−1=i} z

ᵀ
t α

(τ)
i,j −

1

2

∑
j∈Ω
j 6=i

(α
(τ)
i,j − µA)ᵀΛA(α

(τ)
i,j − µA)

)
∏
{t≥2: s

(τ)
t−1=i}

(
1 +

∑
j∈Ω
j 6=i

exp(zᵀt α
(τ)
i,j)

) ,

(4.13)

for any τ ∈ {2, 3, . . . , N}.

The conditional posterior distribution of µ

For µi for any i ∈ {1, 2, . . . ,m}, define ν
(τ)
i = #{t ≥ 1 : st = i}. Then,

π(µi |θ−µ) ∝

 ∏
{t≥1: st=i}

exp

(
−1

2
(yt − µi)ᵀΣ−1

i (yt − µi)
)

× exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)

= exp

−1

2

∑
{t≥1: st=i}

(yt − µi)ᵀΣ−1
i (yt − µi)


× exp

(
−1

2
(µi −ϕ)ᵀΨ−1(µi −ϕ)

)

= exp

−1

2

∑
{t≥1: st=i}

[
yᵀ
tΣ
−1
i yt − yᵀ

tΣ
−1
i µi − µ

ᵀ
iΣ
−1
i yt + µᵀ

iΣ
−1
i µi

]
× exp

(
−1

2

[
µᵀ
iΨ
−1µi − µ

ᵀ
iΨ
−1ϕ−ϕᵀΨ−1µi +ϕᵀΨ−1ϕ

])

∝ exp

−1

2

∑
{t≥1: st=i}

[
−yᵀ

tΣ
−1
i µi − µ

ᵀ
iΣ
−1
i yt + µᵀ

iΣ
−1
i µi

]
× exp

(
−1

2

[
µᵀ
iΨ
−1µi − µ

ᵀ
iΨ
−1ϕ−ϕᵀΨ−1µi

])

110 4. Multivariate NHGHMM

= exp

−1

2

 ∑
{t≥1: st=i}

µᵀ
iΣ
−1
i µi + µᵀ

iΨ
−1µi −

∑
{t≥1: st=i}

yᵀ
tΣ
−1
i µi

−
∑

{t≥1: st=i}

µᵀ
iΣ
−1
i yt − µᵀ

iΨ
−1ϕ−ϕᵀΨ−1µi


= exp

−1

2

µᵀ
i (νiΣ

−1
i + Ψ−1)µi − µ

ᵀ
i

Σ−1
i

 ∑
{t≥1: st=i}

yt

+ Ψ−1ϕ


−

 ∑
{t≥1: st=i}

yᵀ
t

Σ−1
i −ϕᵀΨ−1

µi
 .

Define

Ai = νiΣ
−1
i + Ψ−1, and bi = Σ−1

i

 ∑
{t≥1: st=i}

yt

+ Ψ−1ϕ.

Since Ψ−1 and Σ−1
i , for any i ∈ {1, 2, . . . ,m}, are positive definite and symmetric

matrices, it follows that

(Σ−1
i)ᵀ = (Σᵀ

i)
−1 = Σ−1

i , and (Ψ−1)ᵀ = (Ψᵀ)−1 = Ψ−1.

Furthermore, Ai = νiΣ
−1
i + Ψ−1 is invertible since it is the weighted sum of two sym-

metric, full-rank covariance matrices. Therefore, there exists A−1
i such that A−1

i Ai =

AiA
−1
i = I. It follows that

π(µi |θ−µ) ∝ exp

(
−1

2
[µᵀ

iAiµi − µ
ᵀ
ibi − bᵀ

iµi]

)
= exp

(
−1

2
[µᵀ

iAiµi − µ
ᵀ
ibi − bᵀ

iµi]

)
exp

(
−1

2
bᵀ
iA
−1
i bi +

1

2
bᵀ
iA
−1
i bi

)
∝ exp

(
−1

2
[µᵀ

iAiµi − µ
ᵀ
ibi − bᵀ

iµi]

)
exp

(
−1

2
bᵀ
iA
−1
i bi

)
= exp

(
−1

2

[
µᵀ
iAiµi − µ

ᵀ
ibi − bᵀ

iµi + bᵀ
iA
−1
i bi

])
= exp

(
−1

2

[
µᵀ
iAiµi − µ

ᵀ
iAiA

−1
i bi − bᵀ

iA
−1
i Aiµi + bᵀ

iA
−1
i AiA

−1
i bi

])
.

Define Σ$(i) = A−1
i , and µ$(i) = A−1

i bi. Then,

π(µi |θ−µ) ∝ exp

(
−1

2
[µᵀ

iΣ
−1
$(i)µi − µ

ᵀ
iΣ
−1
$(i)µ$(i) − µ

ᵀ
$(i)Σ

−1
$(i)µi + µᵀ

$(i)Σ
−1
$(i)µ$(i)]

)

4.4 Posterior Distributions 111

= exp

(
−1

2
(µi − µ$(i))

ᵀΣ−1
$(i)(µi − µ$(i))

)
. (4.14)

Equation (4.14) is in a standard form expression, and hence, the Gibbs sampler is used

for updating the parameter. Given that the standard form is known, the parameter of

interest is distributed as follows:

µ
(τ)
i |θ−µ ∼ Nd(µ$(i),Σ$(i)), (4.15)

where µ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1 [(
Σ

(τ−1)
i

)−1 (∑
{t≥1: st=i} yt

)
+ Ψ−1ϕ

]
, and

Σ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1

, for any τ ∈ {2, 3, . . . , N}.

The conditional posterior distribution of Σ

With respect to Σi for any i ∈ {1, 2, . . . ,m},

π(Σi |θ−Σ) ∝

 ∏
{t≥1: st=i}

det(Σi)
− 1

2 exp

(
−1

2
(yt − µi)ᵀΣ−1

i (yt − µi)
)

× det(Σi)
− γ+d+1

2 exp

(
−1

2
tr(ΦΣ−1

i)

)
= det(Σi)

− νi
2 det(Σi)

− γ+d+1
2

× exp

−1

2

∑
{t≥1: st=i}

(yt − µi)ᵀΣ−1
i (yt − µi)

 exp

(
−1

2
tr(ΦΣ−1

i)

)

= det(Σi)
− νi+γ+d+1

2

× exp

−1

2

 ∑
{t≥1: st=i}

(yt − µi)ᵀΣ−1
i (yt − µi) + tr(ΦΣ−1

i)


= det(Σi)

− νi+γ+d+1

2

× exp

−1

2

tr

 ∑
{t≥1: st=i}

(yt − µi)(yt − µi)ᵀΣ−1
i

+ tr(ΦΣ−1
i)


= det(Σi)

− νi+γ+d+1

2

× exp

−1

2
tr

 ∑
{t≥1: st=i}

(yt − µi)(yt − µi)ᵀΣ−1
i + ΦΣ−1

i


= det(Σi)

− νi+γ+d+1

2

112 4. Multivariate NHGHMM

× exp

−1

2
tr

 ∑
{t≥1: st=i}

(yt − µi)(yt − µi)ᵀ + Φ

Σ−1
i

 .

(4.16)

Equation (4.16) now has a standard form expression. Therefore, the Gibbs sampler is

used for updating the parameter. The parameter of interest is distributed as follows:

Σ
(τ)
i |θ−Σ ∼ W−1

ν(τ)
i + γ,

∑
{t≥1: s

(τ)
t =i}

(yt − µ(τ)
i)(yt − µ(τ)

i)ᵀ + Φ

 , (4.17)

for any τ ∈ {2, 3, . . . , N}.

The conditional posterior distributions of the parameters derived in Equations (4.11),

(4.13), (4.14), and (4.16) have been defined. It remains to outline the algorithmic struc-

ture for sampling from those conditional posterior distributions of the multivariate

NHGHMM in the following section.

4.5 The MCMC Algorithms

Recall that the parameters of interest comprise state specific parameters for the multi-

variate Gaussian distribution (µi,Σi), for any i ∈ Ω, the parameter for the transition

probability matrices αi,j, for any {(i, j) ∈ Ω2 : j 6= i}, and hidden states st, for

all t ∈ {1, 2, . . . , n}. Therefore, a vector (µ,Σ, α, s) is estimated in the parameter

estimation.

In this section, the main algorithm (Algorithm 12) is performed, followed by the

forward filtering backward sampling algorithm (Algorithm 13) to update a sequence of

the hidden states.

As for updating the parameter α, three MCMC algorithms were proposed to add

my original contributions to the literature about Bayesian analyses of multivariate

non-homogeneous Gaussian HMM. The algorithms include:

Algorithm 14 the AM algorithm,

Algorithm 15 the symmetric DRAM algorithm, and

Algorithm 16 the MTAM algorithm.

4.5 The MCMC Algorithms 113

The main objective of proposing Algorithms 14, 15, and 16 is to achieve faster conver-

gence since the standard Metropolis-Hastings algorithm may suffer from poor mixing

in high dimensions (Brooks et al., 2011). These algorithms are motivated by the fact

that it is optimal to have a proposal covariance matrix for the multivariate Gaussian

distributed parameter α (Brooks et al., 2011).

In addition, the AM, symmetric DRAM, and MTAM algorithms are indeed able to

adapt the target covariance matrix even in very high dimensions such as the multivari-

ate Gaussian distribution of the parameter α (Roberts and Rosenthal, 2009).

The main algorithm for parameter estimation is described in Algorithm 12 as fol-

lows.

Algorithm 12 The Main Algorithm (Multivariate NHGHMM)

1: Initialise θ(1) = (µ(1),Σ(1), α(1), s(1)).
2: for τ = 2, 3, . . . , N do
3: Forward Filtering Backward Sampling Step:
4: Update s(τ) |µ(τ−1),Σ(τ−1), α(τ−1) by Algorithm 13.
5: AM/Symmetric DRAM/MTAM Step:
6: Update α(τ) | s(τ),µ(τ−1),Σ(τ−1) by either Algorithm 14, Algorithm 15, or Algo-

rithm 16.
7: Gibbs Sampling Step:
8: Update µ(τ) | s(τ), α(τ),Σ(τ−1) by the Gibbs sampler.
9: Update Σ(τ) | s(τ), α(τ),µ(τ) by the Gibbs sampler.

10: end for
11: Label switching algorithm is implemented to relabel the parameters by identifia-

bility such that µ1 ≺ µ2 ≺ · · · ≺ µm in a lexicographic order.

Initialisation of the Parameters

For each i ∈ Ω, the parameter µ
(1)
i is initialised by using Hartigan-Wong algorithm to

minimise the following expression:

arg min
C

∑
i∈Ω

∑
y∈Ci

‖y − µ(1)
i ‖2,

where C = (C1, C2, . . . , Cm) is a collection of clusters Ci, and the centroid for the

corresponding cluster is denoted by the parameter µ
(1)
i . The function, kmeans, is

available from ‘stats’ package in R c©.

114 4. Multivariate NHGHMM

For each t ∈ {1, 2, . . . , n}, the parameter s
(1)
t is initialised as follows:

s
(1)
t = arg min

i∈Ω
(yt − µ(1)

i)2.

For each i ∈ Ω, the parameter Σ
(1)
i is initialised as follows:

Σ
(1)
i =

1

ν
(1)
i − 1

∑
{t≥1: s

(1)
t =i}

(yt − µ(1)
i)(yt − µ(1)

i)ᵀ,

where ν
(1)
i = #{t ≥ 1 : s

(1)
t = i}.

For each {(i, j) ∈ Ω2 : i 6= j}, define α◦i,j = (α2
i,j, α

3
i,j, . . . , α

K
i,j). Then, the parameter

α
(1)
i,j is initialised as follows:

α
(1)
i,j = (log(ν

(1)
i,j /ν

(1)
i), α◦i,j),

where ν
(1)
i,j = #{t ≥ 2 : s

(1)
t−1 = i ∧ s

(1)
t = j}, and

α◦i,j ∼ NK−1(µ◦A, (Λ
◦
A)−1),

where µ◦A = (µ2
A, µ

3
A, . . . , µ

K
A) ∈ RK−1 and Λ◦A = (Λi,j

A)Ki,j=2 ∈ R(K−1)×(K−1) are the

hyperparameters defined in Equation (4.8).

Forward Filtering Backward Sampling Step

This algorithm aims to reconstruct a hidden state sequence in the multivariate NHGHMM.

The observed values are now multivariate normally distributed. Therefore, the algo-

rithm is required to take that distribution into account. It is intrinsically different from

Algorithm 7 in that sense. The forward filtering backward sampling algorithm for the

multivariate NHGHMM is described as follows (Chib, 1996).

(i) At t = 1, initialise π(st |y1:t,θ
(τ−1)
−s) = π(s1 |y1,θ

(τ−1)
−s) = ρi = 1/m, for all i ∈ Ω.

(ii) By the law of total probability, it follows that

π(st+1 |y1:t,θ
(τ−1)
−s) =

∑
st∈Ω

π(st+1 | st,y1:t,θ
(τ−1)
−s)π(st |y1:t,θ

(τ−1)
−s)

4.5 The MCMC Algorithms 115

=
∑
st∈Ω

π(st+1 | st,θ(τ−1)
−s)π(st |y1:t,θ

(τ−1)
−s).

(by Markov property)

(iii) By Bayes’ Theorem, it follows that

π(st+1 |y1:t+1,θ
(τ−1)
−s) ∝ π(st+1 |y1:t,θ

(τ−1)
−s)f(yt+1 |y1:t, st+1,θ

(τ−1)
−s),

and its normalising constant is given by

∑
st+1∈Ω

π(st+1 |y1:t,θ
(τ−1)
−s)f(yt+1 |y1:t, st+1,θ

(τ−1)
−s).

(iv) Alternate the computations between π(st+1 |y1:t,θ
(τ−1)
−s) and π(st+1 |y1:t+1,θ

(τ−1)
−s)

in Steps (ii) and (iii), respectively, until obtaining π(sn |y,θ(τ−1)
−s). Then, sample

s
(τ)
n from π(sn |y,θ(τ−1)

−s).

(v) By Equation (4.11), it is possible to sample s
(τ)
t from π(st | st+1:n,y,θ

(τ−1)
−s) such

that

π(st | st+1:n,y,θ
(τ−1)
−s) ∝ π(st |y1:t,θ

(τ−1)
−s)π(st+1 | st,θ(τ−1)

−s),

and its normalising constant is given by
∑

st∈Ω π(st |y1:t,θ
(τ−1)
−s)π(st+1 | st,θ(τ−1)

−s).

Thus, the realisation of hidden states (s
(τ)
1 , s

(τ)
2 , . . . , s

(τ)
n) at τ th iteration can be

obtained through the simulation in Step (v), for t ∈ {n− 1, n− 2, . . . , 1}.

116 4. Multivariate NHGHMM

Algorithm 13 Forward Filtering Backward Sampling Algorithm

1: Forward Filtering Step:
2: Set ρi = 1/m, and calculate F(S1 = i) = ρiφ(d)(y1;µ

(τ−1)
i ,Σ

(τ−1)
i) for all i ∈ Ω,

where the forward variable is denoted by F(·), and the d-dimensional Gaussian
density function is denoted by φ(d)(· ;µi,Σi) for any i ∈ Ω.

3: Normalise F(S1 = i)← F(S1 = i)
/∑

i∈ΩF(S1 = i) , for all i ∈ Ω.
4: for t = 2, 3, . . . , n do
5: Calculate F(St = i) =

∑
j∈ΩF(St−1 = j)qtj,iφ(d)(yt;µ

(τ−1)
i ,Σ

(τ−1)
i), for all i ∈ Ω.

6: Normalise F(St = i)← F(St = i)
/∑

i∈ΩF(St = i) , for all i ∈ Ω.
7: end for
8: Backward Sampling Step:
9: Update s

(τ)
n = arg maxi∈Ω B(Sn = i) ≡ arg maxi∈ΩF(Sn = i), where the backward

variable is denoted by B(·).
10: for t = n− 1, n− 2, . . . , 1 do
11: Calculate B(St = i) = F(St = i)qt+1

St=i,St+1=s
(τ)
t+1

.

12: Normalise B(St = i)← B(St = i)
/∑

i∈Ω B(St = i) .

13: Update s
(τ)
t from {1, 2, . . . ,m} with probability B(St = i).

14: end for

Updating the Parameter, α(τ)

Following Spezia (2006), define a proposal distribution of the parameter αi,j given

α
(τ−1)
i,j , for any {(i, j) ∈ Ω2 : j 6= i}, as the K-dimensional multivariate Gaussian

distribution. Therefore, a proposed value α′i,j is distributed as follows:

α′i,j ∼ NK(α
(τ−1)
i,j , E),

where E ∈ RK×K is a constant covariance matrix of choice. In this thesis, the constant

covariance matrix E is defined as follows:

εi,j =


13, if i = j

0, if i 6= j

, (4.18)

where εi,j ∈ E, for any (i, j) ∈ {1, 2, . . . , K}2. This ensures a random walk covers the

entire posterior distribution of interest (Spezia, 2006). Hence, the proposal distribution

q(α′i,j |α
(τ−1)
i,j) is given by

q(α′i,j |α
(τ−1)
i,j) = (2π)−

K
2 det(E)

1
2 exp

(
−1

2
(α′i,j − α

(τ−1)
i,j)ᵀE−1(α′i,j − α

(τ−1)
i,j)

)

4.5 The MCMC Algorithms 117

∝ exp

(
−1

2
(α′i,j − α

(τ−1)
i,j)ᵀE−1(α′i,j − α

(τ−1)
i,j)

)
.

Define α
(τ)
i = (α

(τ)
i,1 , α

(τ)
i,2 , . . . , α

(τ)
i,i−1,0, α

(τ)
i,i+1, . . . , α

(τ)
i,m) ∈ RK×m, and an acceptance

probability of α′i given α
(τ−1)
i is given as follows (Spezia, 2006):

a(α′i |α
(τ−1)
i) = π(α′i |θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j).

Moreover, an acceptance probability of α
(τ−1)
i given α′i is given by

a(α
(τ−1)
i |α′i) = π(α

(τ−1)
i |θ−α)

∏
j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j),

where π(· |θ−α) is the conditional posterior distribution in Equation (4.13). The de-

tailed balance condition is assumed where there exists the stationary distribution,

π(αi |θ−α), for any i ∈ Ω. Hence, it follows that

a(α′i |α
(τ−1)
i)

a(α
(τ−1)
i |α′i)

=

π(α′i |θ−α)
∏

j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

π(α
(τ−1)
i |θ−α)

∏
j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j)

. (4.19)

Since the proposal distribution of αi,j is symmetric, Equation (4.19) will be reduced to

the following expression (Spezia, 2006):

a(α′i |α
(τ−1)
i)

a(α
(τ−1)
i |α′i)

=

π(α′i |θ−α)
��

���
���

���∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

π(α
(τ−1)
i |θ−α)

���
���

���
��∏

j∈Ω
j 6=i

q(α
(τ−1)
i,j |α′i,j)

=
π(α′i |θ−α)

π(α
(τ−1)
i |θ−α)

⇒ a(α′i |α
(τ−1)
i) = min

{
1,

π(α′i |θ−α)

π(α
(τ−1)
i |θ−α)

}
. (4.20)

By Equation (4.20), one accepts the proposed value α′i and sets α
(τ)
i = α′i with

probability a(α′i |α
(τ−1)
i) at τ th iteration. Otherwise, one rejects it with probability

1− a(α′i |α
(τ−1)
i), and sets α

(τ)
i = α

(τ−1)
i .

As discussed earlier, the standard Metropolis-Hastings algorithm may be faced with

118 4. Multivariate NHGHMM

poor mixing. Additionally, sampling from the K-dimensional Gaussian distribution

may lead to a problem with high dimensionality as the dimension K increases (Brooks

et al., 2011). Having said that, the AM algorithm showed highly impressive perfor-

mance in high dimensions (Roberts and Rosenthal, 2009), and thus, the AM algorithm

is preferred over the standard Metropolis-Hastings algorithm in this thesis. Therefore,

I propose an alternative algorithm to updating the parameter α by constructing the

AM algorithm for the multivariate NHGHMM in the following section.

The AM Step

Since hidden states of the multivariate NHGHMM are univariate, it follows that the

AM algorithm for the model is equivalent to that of the univariate model. Once again,

recall Section 2.4.1 on Page 34 for a review of the algorithm.

Let the covariance matrix E be a function of (α
(1)
i , α

(2)
i , . . . , α

(τ)
i) such that

E(α
(1)
i , α

(2)
i , . . . , α

(τ)
i) = E

(τ)
i ∈ RK×K ,

where α
(ν)
i = (α

(ν)
i,1 , α

(ν)
i,2 , . . . , α

(ν)
i,i−1,0, α

(ν)
i,i+1, . . . , α

(ν)
i,m) ∈ RK×m, for any i ∈ Ω, and for

each ν ∈ {1, 2, . . . , τ}. By Equation (2.19) on Page 35, the covariance matrix for the

Gaussian proposal with mean of a current draw α
(τ)
i is defined as follows (Haario et al.,

2001):

E
(τ)
i =


E0, if τ ≤ τ0

sK Cov(α
(1)
i , α

(2)
i , . . . , α

(τ−1)
i) + sKεIK , if τ > τ0

, (4.21)

where E0 is a constant covariance matrix of choice, τ0 > 0 is the initial period, sK =

2.42/K, ε > 0 is an infinitesimal value, and IK is a K ×K identity matrix. Following

Equation (2.20) on Page 36, the derivation of a recursive formula for the MCMC

iterations of α
(τ)
i is given as follows (Haario et al., 2001):

E
(τ)
i =

τ − 3

τ − 2
E

(τ−1)
i +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)ᾱ

(τ−2)
i ᾱ

(τ−2)ᵀ
i

−(τ − 1)
(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i +

(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i

)ᵀ)
+ τα

(τ−1)
i α

(τ−1)ᵀ
i

)
+ εIK

]
,

(4.22)

4.5 The MCMC Algorithms 119

where ᾱ
(τ)
i = τ−1

∑τ
ν=1 αi, for any i ∈ Ω, and for any τ ∈ {1, 2, . . . , N}. The algorithm

is then described as follows (Haario et al., 2001).

(i) Initialise sK = 2.42/K and ε = 10−6. Set the initial period, τ0 = 50.

(ii) If the current MCMC iteration, τ = τ0, then initialise arithmetic means ᾱ
(τ−2)
i and

ᾱ
(τ−1)
i , for all i ∈ Ω.

(iii) If the current MCMC iteration τ > τ0, then update the arithmetic means ᾱ
(τ−2)
i

and ᾱ
(τ−1)
i such that

ᾱ
(τ−2)
i ← ᾱ

(τ−2)
i +

α
(τ−2)
i − ᾱ(τ−2)

i

τ − 2

ᾱ
(τ−1)
i ← ᾱ

(τ−1)
i +

α
(τ−1)
i − ᾱ(τ−1)

i

τ − 1
,

respectively, for all i ∈ Ω.

(iv) Now, it is required to compute the covariance matrices of the multivariate Gaussian

distribution by Equation (4.22), for all i ∈ Ω.

(v) By monitoring an acceptance rate at τ th iteration, A(τ), tune the covariance ma-

trices, E
(τ)
i , for all i ∈ Ω. If the acceptance rate is less than 0.25, then up-

date E
(τ)
i ← 0.952E

(τ)
i . If the acceptance rate is greater than 0.5, then update

E
(τ)
i ← 1.052E

(τ)
i .

(vi) It remains to propose a new parameter for α
(τ)
i , for each i ∈ Ω, from the proposal

distribution such that

α′i,j ∼ NK(α
(τ−1)
i,j , E

(τ)
i), (4.23)

for all j ∈ Ω. Then, calculate the acceptance ratio of α′i and α
(τ−1)
i , for each

i ∈ Ω. Since the proposal distribution q(α′i,j |α
(τ−1)
i,j) is symmetric, for all j ∈ Ω,

the acceptance probability of α′i given α
(τ−1)
i is same as Equation (4.20).

The performance of the AM algorithms in a problem with high dimensionality indeed

surpasses that of the standard Metropolis-Hastings algorithm, although optimal scaling

of the covariance matrix may still be improved by calibrating proposal distributions at

120 4. Multivariate NHGHMM

each MCMC iteration (Haario et al., 2006). Hence, Haario et al. (2006) suggested com-

bining the DRMH and the AM algorithms to prevent both over- and under-calibrated

proposal distributions.

Since the proposal distribution of interest is symmetric, I attempt to implement a

special case of the DRMH algorithm, namely the symmetric delayed rejection Metropo-

lis algorithm.

Algorithm 14 The Adaptive Metropolis Algorithm

1: Initialise the parameters of the AM algorithm, sK = 2.42/K and ε = 10−6 > 0.

2: Set the initial period of the MCMC iterations τ0, and E
(τ0)
i = E0, for all i ∈

{1, 2, . . . ,m}.
3: Define αi = (αi,1, αi,2, . . . , αi,i−1,0, αi,i+1, . . . , αi,m), for all i ∈ {1, 2, . . . ,m}.
4: repeat
5: for i = 1, 2, . . . ,m do
6: if τ = τ0 then

7: Initialise ᾱ
(τ−2)
i =

∑τ−2
κ=1 α

(κ)
i

/
(τ − 2) and ᾱ

(τ−1)
i =

∑τ−1
κ=1 α

(κ)
i

/
(τ − 1).

8: end if
9: if τ > τ0 then

10: Compute ᾱ
(τ−2)
i ← ᾱ

(τ−2)
i + (α

(τ−2)
i − ᾱ(τ−2)

i)
/

(τ − 2) and ᾱ
(τ−1)
i ←

ᾱ
(τ−1)
i + (α

(τ−1)
i − ᾱ(τ−1)

i)
/

(τ − 1).

11: Compute

E
(τ)
i =

τ − 3

τ − 2
E

(τ−1)
i +

sK
τ − 2

[
1

τ − 1

(
(τ − 2)ᾱ

(τ−2)
i ᾱ

(τ−2)ᵀ
i

−(τ − 1)
(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i +

(
ᾱ

(τ−1)
i α

(τ−1)ᵀ
i

)ᵀ)
+ τα

(τ−1)
i α

(τ−1)ᵀ
i

)
+ εIK

]
,

where IK denotes the identity matrix of K dimensions.
12: if A(τ) < 0.25 then

13: E
(τ)
i ← 0.952E

(τ)
i

14: end if
15: if A(τ) > 0.5 then

16: E
(τ)
i ← 1.052E

(τ)
i

17: end if
18: Random Walk Metropolis-Hastings Step: The random walk

Metropolis-Hastings algorithm, the DRMH algorithm or the MTM algorithm can
be implemented in this step to update α

(τ)
i .

19: end if
20: end for
21: τ ← τ + 1
22: until N th iteration is reached.

4.5 The MCMC Algorithms 121

The Symmetric DRAM Step

Recall Section 2.4.4 on Page 40 for the symmetric delayed rejection Metropolis al-

gorithm. This algorithm aims to enhance the way of proposing a new parameter in

Equation (4.23). The symmetric proposal distribution is used in the algorithm, and

only depends on the last rejected sample, that is,

q(α′i,j(κ) |α′i,j(κ−1), α
′
i,j(κ−2), . . . , α

′
i,j(1), α

(τ−1)
i,j) = q(α′i,j(κ) |α′i,j(κ−1)) = q(α′i,j(κ−1) |α′i,j(κ)),

where α′i,j(κ) ∼ NK(α′i,j(κ−1), E
(τ)
i), for any κ ∈ {2, 3, . . . , ν} and any {(i, j) ∈ Ω2 : i 6=

j}. The algorithm is described as follows.

(i) Set a rejection stage indicator κ = 1, and the maximum rejection stage ν.

(ii) If κ < 2, then propose α′i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i), for all {(i, j) ∈ Ω2 : i 6= j}. Then,

define α′i(κ) = (α′i,1(κ), α
′
i,2(κ), . . . , α

′
i,i−1(κ),0, α

′
i,i+1(κ), . . . , α

′
i,m(κ)), and set α∗i = α′i(κ).

(iii) Since the symmetric proposal distribution is implemented, the acceptance proba-

bility is given as follows:

r1 = min

{
1,

π(α′i(κ) |θ−α)

π(α
(τ−1)
i |θ−α)

}
,

where the π(· |θ−α) is the conditional posterior distribution in Equation (4.13).

Then, accept α
(τ)
i = α′i(κ) with probability r and terminate the algorithm. Other-

wise, set κ← κ+ 1 and move to Step (iv).

(iv) If κ ≥ 2, then propose α′i,j(κ) ∼ NK(α′i,j(κ−1), E
(τ)
i), for all {(i, j) ∈ Ω2 : i 6= j}.

(v) Calculation of the acceptance probability is now different from that of Step (iii).

Therefore,

r2 = min

{
1,

π(α′i(κ) |θ−α)− π(α∗i |θ−α)

π(α
(τ−1)
i |θ−α)− π(α∗i |θ−α)

}
.

(vi) If π(α′i(κ) |θ−α) > π(α∗i |θ−α), then set α∗i = α′i(κ).

(vii) Draw u ∼ U(0, 1). If u ≤ r, set α
(τ)
i = α′i(κ) and terminate the algorithm. Otherwise,

set κ← κ+ 1 and move to Step (ii). If κ > ν, then the algorithm is terminated.

122 4. Multivariate NHGHMM

As such, the symmetric DRAM algorithm indeed improves the MCMC convergence

by suppressing both over- and under-calibrated proposal distributions (Haario et al.,

2006). On the other hand, the MTM algorithm utilises a brute-force strategy to in-

crease a searching region of the target distribution (Liu et al., 2000). Furthermore, Liu

et al. (2000) showed that combining the MTM algorithm with the adaptive direction

sampling method was able to produce a better sampler. As Gilks et al. (1994, 1998)

pointed out, the adaptive direction sampling leaves two issues such as

(i) how one can select a meaningful direction, and

(ii) how one can sample from the target distribution effectively.

By using the MTM algorithm, Liu et al. (2000) showed that the novel method was able

to perform significantly better.

Thus, it is indisputably rational in this thesis to combine the MTM algorithm and

the AM algorithm. By doing so, the MTAM algorithm is expected to achieve a larger

searching region than that of the symmetric DRAM algorithm.

The MTAM Step

Recall Section 2.4.2 on Page 37 for the review. It is necessary to construct a weighting

function w(· | ·), for the calculation of an acceptance ratio in the algorithm. Given

Equations (2.22) and (2.23) on Page 38, the weighting function is given as follows:

w(α′i |α
(τ−1)
i) = π(α′i |θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)λ(α′i,j |α

(τ−1)
i,j)



= π(α′i |θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

(
q(α′i,j |α

(τ−1)
i,j) + q(α

(τ−1)
i,j |α′i,j)

2

)−1



= π(α′i |θ−α)

∏
j∈Ω
j 6=i

q(α′i,j |α
(τ−1)
i,j)

(
�2q(α′i,j |α

(τ−1)
i,j)

�2

)−1


(since q(α′i,j |α

(τ−1)
i,j) = q(α

(τ−1)
i,j |α′i,j), for any {j ∈ Ω : j 6= i})

4.5 The MCMC Algorithms 123

Algorithm 15 The Symmetric Delayed Rejection Adaptive Metropolis Algorithm

1: Initialise a rejection stage indicator κ = 1, and the maximum rejection stage ν.
2: for i = 1, 2, . . . ,m do
3: repeat
4: if κ < 2 then
5: for j ∈ Ω such that j 6= i do
6: Simulate α′i,j(κ) ∼ NK(α

(τ−1)
i,j , E

(τ)
i).

7: end for
8: Define α′i(κ) = (α′i,1(κ), α

′
i,2(κ), . . . , α

′
i,i−1(κ),0, α

′
i,i+1(κ), . . . , α

′
i,m(κ)), and set

α∗i = α′i(κ).
9: Calculate

r1 = min

{
1,

π(α′i(κ) |θ−α)

π(α
(τ−1)
i |θ−α)

}
.

10: Draw u ∼ U(0, 1).
11: if u ≤ r1 then
12: α

(τ)
i = α′i(κ)

13: else
14: κ← κ+ 1, and move onto the next rejection stage.
15: end if
16: else
17: for j ∈ Ω such that j 6= i do
18: Simulate α′i,j(κ) ∼ NK(α′i,j(κ−1), E

(τ)
i).

19: end for
20: Calculate

r2 = min

{
1,

π(α′i(κ) |θ−α)− π(α∗i |θ−α)

π(α
(τ−1)
i |θ−α)− π(α∗i |θ−α)

}
.

21: if π(α′i(κ) |θ−α) > π(α∗i |θ−α) then
22: Set α∗i = α′i(κ).
23: end if
24: Draw u ∼ U(0, 1).
25: if u ≤ r2 then
26: α

(τ)
i = α′i(κ)

27: else
28: κ← κ+ 1, and move onto the next rejection stage.
29: end if
30: end if
31: until α′i(κ) is accepted or the loop reaches the νth stage of rejection.
32: end for

= π(α′i |θ−α)

∏
j∈Ω
j 6=i

���
���

��
q(α′i,j |α

(τ−1)
i,j)

1

���
���

��
q(α′i,j |α

(τ−1)
i,j)


= π(α′i |θ−α). (4.24)

124 4. Multivariate NHGHMM

Therefore, By Equation (4.24), the weighting function is equivalent to the full con-

ditional posterior distribution. An acceptance probability of the MTAM algorithm is

calculated by Equation (2.24) on Page 38, and hence, it is given as follows:

r3 = a(α′i |α
(τ−1)
i) := min

{
1,
π(α∗i(1) |θ−α) + π(α∗i(2) |θ−α) + · · ·+ π(α∗i(κ) |θ−α)

π(α∗∗i(1) |θ−α) + π(α∗∗i(2) |θ−α) + · · ·+ π(α∗∗i(κ) |θ−α)

}
,

(4.25)

where κ ∈ N is the number of multiple tries. The maximum number of multiple tries

was set to be 10 such that κ = 10, so that the algorithm is executed in a reasonable

amount of time. The MTAM algorithm proceeds as follows.

(i) For j ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,m}, simulate multiple samples, {α∗i,j(1), α
∗
i,j(2), . . . ,

α∗i,j(κ)}, by drawing i.i.d. samples, α∗i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i), for each κ ∈ {1, 2, . . . ,

κ}.

(ii) Define α∗i(κ) = (α∗i,1(κ), α
∗
i,2(κ), . . . , α

∗
i,i−1(κ),0, α

∗
i,i+1(κ), . . . , α

∗
i,m(κ)), and draw a pro-

posed value, α′i, from {α∗i(1), α
∗
i(2), . . . , α

∗
i(κ)} with probability proportional to

{π(α∗i(κ) |θ−α)}, for any κ ∈ {1, 2, . . . ,κ}.

(iii) For j ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,m}, simulate multiple samples, {α∗∗i,j(1), α
∗∗
i,j(2), . . . ,

α∗∗i,j(κ−1)}, by drawing i.i.d. samples, α∗∗i,j(κ) ∼ NK(α′i,j, E
(τ)
i), for each κ ∈ {1, 2, . . . ,

κ − 1}. Then, set α∗∗i(κ) = α
(τ−1)
i , and hence, it follows that {α∗∗i(1), α

∗∗
i(2), . . . , α

∗∗
i(κ)}.

(iv) Calculate the acceptance probability provided by Equation (4.25). That is,

r3 = min

{
1,
π(α∗i(1) |θ−α) + π(α∗i(2) |θ−α) + · · ·+ π(α∗i(κ) |θ−α)

π(α∗∗i(1) |θ−α) + π(α∗∗i(2) |θ−α) + · · ·+ π(α∗∗i(κ) |θ−α)

}
.

(v) Draw u ∼ U(0, 1). If u ≤ r, then set α
(τ)
i = α′i. Otherwise, set α

(τ)
i = α

(τ−1)
i , for all

i ∈ Ω.

(vi) Repeat Steps (i)–(v), for all i ∈ Ω.

After updating the parameter α(τ), it remains to update the rest of parameter of interest

(µ(τ),Σ(τ)).

4.5 The MCMC Algorithms 125

Algorithm 16 The Multiple-try Adaptive Metropolis Algorithm

1: for i = 1, 2, . . . ,m do
2: for j ∈ Ω such that j 6= i do
3: Simulate multiple random samples {α∗i,j(1), α

∗
i,j(2), . . . , α

∗
i,j(κ)}, by proposing

α∗i,j(κ) ∼ NK(α
(τ−1)
i,j , E

(τ)
i) for any κ ∈ {1, 2, . . . ,κ}.

4: end for
5: Define α∗i(κ) = (α∗i,1(κ), α

∗
i,2(κ), . . . , α

∗
i,i−1(κ),0, α

∗
i,i+1(κ), . . . , α

∗
i,m(κ)), and draw

α′i from {α∗i(1), α
∗
i(2), . . . , α

∗
i(κ)} with probability which is proportional to

{π(α∗i(κ) |θ−α)}κκ=1.
6: for j ∈ Ω such that j 6= i do
7: Simulate multiple random samples {αi,j(1), αi,j(2), . . . , αi,j(κ−1)}, by propos-

ing αi,j(κ) ∼ NK(α′i,j, E
(τ)
i) for any κ ∈ {1, 2, . . . ,κ − 1}, and set αi(κ) = α

(τ−1)
i .

8: end for
9: Calculate the acceptance probability as follows:

r3 = min

{
1,
π(α∗i(1) |θ−α) + π(α∗i(2) |θ−α) + · · ·+ π(α∗i(κ) |θ−α)

π(αi(1) |θ−α) + π(αi(2) |θ−α) + · · ·+ π(αi(κ) |θ−α)

}
.

10: Draw u ∼ U(0, 1).
11: if u ≤ r then
12: α

(τ)
i = α′i

13: else
14: α

(τ)
i = α

(τ−1)
i

15: end if
16: end for

Gibbs Sampling Step

I implemented the Gibbs sampler on the parameters (µ,Σ), rather than the Metropolis-

Hastings algorithm or its variants, similar to the Metropolis-Hastings-within-Gibbs

algorithms used by Heaps et al. (2015). The full conditional posterior distributions are

obtained in Equation (4.14) for µ
(τ)
i , and Equation (4.17) for Σ

(τ)
i , respectively, for all

i ∈ Ω, and any τ ∈ {2, 3, . . . , N}. Then, the Gibbs sampler proceeds as follows.

(i) For each i ∈ Ω, simulate

µ
(τ)
i |θ−µ ∼ Nd(µ$(i),Σ$(i)),

where µ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1 [(
Σ

(τ−1)
i

)−1 (∑
{t≥1: st=i} yt

)
+ Ψ−1ϕ

]
,

and Σ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1

, for any τ ∈ {2, 3, . . . , N}. Ψ and ϕ are the

priors defined in Equations (4.4) and (4.7), respectively.

126 4. Multivariate NHGHMM

(ii) For each i ∈ Ω, simulate

Σ
(τ)
i |θ−Σ ∼ W−1

ν(τ)
i + γ,

∑
{t≥1: s

(τ)
t =i}

(yt − µ(τ)
i)(yt − µ(τ)

i)ᵀ + Φ

 ,

where W−1(·, ·) denotes the inverse Wishart distribution.

After completing N iterations, the label switch algorithm was implemented on the

MCMC samples to relabel the parameters. It was carried out by identifiability of the

parameter µ with a lexicographic order such that µ1 ≺ µ2 ≺ · · · ≺ µm. Hence, the

statistical inference of the model should be meaningful.

Algorithm 17 Gibbs Sampler (Multivariate NHGHMM)

1: for i = 1, 2, . . . ,m do
2: Simulate µ

(τ)
i |θ−µ ∼ Nd(µ$(i),Σ$(i)),

where µ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1 [(
Σ

(τ−1)
i

)−1 (∑
{t≥1: st=i} yt

)
+ Ψ−1ϕ

]
,

and

Σ$(i) =

(
νi

(
Σ

(τ−1)
i

)−1

+ Ψ−1

)−1

.

3: end for
4: for i = 1, 2, . . . ,m do

5: Simulate Σ
(τ)
i |θ−Σ ∼ W−1

(
ν

(τ)
i + γ,

∑
{t≥1: s

(τ)
t =i}(yt − µ

(τ)
i)(yt − µ(τ)

i)ᵀ + Φ
)

.

6: end for

As for the computational task, the identical computer was used for the simulation.

The specification is exactly the same; an 8-core 3.60 GHz Intel(R) Core(TM) i7-4790

central processor unit with 8 GB of random access memory.

4.6 Simulation Study

To validate the proposed MCMC algorithms, an extensive simulation study of the

multivariate NHGHMM is conducted in this section. The number of hidden states

is defined as m = 3, and the dimension of the process being as d = 2. Hence, the

observations are bivariate normally distributed. The length of observations is set to be

n = 300. By Equation (4.1), the stochastic process of bivariate Gaussian distributed

4.6 Simulation Study 127

observations is defined as follows:

Yt |St = i ∼ N2(µi,Σi),

where Yt,µi ∈ R2 and Σi ∈ R2×2, for any i ∈ {1, 2, 3} and for any t ∈ {1, 2, . . . , 300}.

Since the model assumes non-homogeneity, two transition matrices are introduced

where every 60th observations, the two matrices alternate. The model is stated be-

low and Figure 4.1 shows its time series plots of a hidden state sequence and observed

values.

µ1 = (1, 2), µ2 = (3, 0), µ3 = (5, 4)

Σ1 =

1.5 0.5

0.5 1.0

 , Σ2 =

2.0 0.6

0.6 1.0

 , Σ3 =

 1.5 −0.5

−0.5 2.0


α1,1 = (0, 0), α1,2 = (−1.109, 0.555), α1,3 = (−3.039, 1.664)

α2,1 = (−3.193, 1.485), α2,2 = (0, 0), α2,3 = (−2.361, 0.376)

α3,1 = (−2.867, 1.433), α3,2 = (−1.282, 0.785), α3,3 = (0, 0)

zt1 = (1.00, 0.75), zt2 = (1.00, 2.00)

Qt1 =


0.6 0.3 0.1

0.1 0.8 0.1

0.1 0.3 0.6

 , Qt2 =


0.3 0.3 0.4

0.4 0.5 0.1

0.3 0.4 0.3

 ,

(4.26)

where

t1 = {2, 3, . . . , 60} ∪ {121, 122, . . . , 180} ∪ {241, 242, . . . , 300}

t2 = {61, 62, . . . , 120} ∪ {181, 182, . . . , 240}.

4.6.1 MCMC Convergence

Firstly, the number of MCMC iterations for each parameter was set to 1,500,000 and

the burn-in time of 1,490,000 was chosen without thinning.

In terms of Geweke’s diagnostics and ESS, the MCMC convergence assessments of

128 4. Multivariate NHGHMM

1.
0

1.
5

2.
0

2.
5

3.
0

−
2

0
2

4
6

8
−

2
0

2
4

6

0 50 100 150 200 250 300

t

A simulated model
s t

y t1
y t2

Figure 4.1: Time series plot of Model (4.26). The realisations of hidden states and
multivariate observed values are denoted by st, y

1
t and y2

t , respectively.

the standard Metropolis-Hastings, AM, symmetric DRAM, and MTAM algorithms are

shown in Table 4.1 as follows.

4.6 Simulation Study 129

Table 4.1: Summary statistics for Geweke’s diagnostics and ESS of the random walk
Metropolis-Hastings, AM, symmetric DRAM, and MTAM algorithms without thinning

Parameter
Metropolis-Hastings AM DRAM MTAM
Geweke’s

ESS
Geweke’s

ESS
Geweke’s

ESS
Geweke’s

ESS
diagnostics diagnostics diagnostics diagnostics

µ1
1 −0.931 10 000 −3.651 8 923 1.265 9 708 0.812 10 647
µ2

1 −0.305 10 000 −2.166 10 338 0.268 11 621 0.208 9 845
µ1

2 −1.378 10 000 0.550 10 000 −1.342 10 000 1.928 9 710
µ2

2 0.341 10 000 0.900 11 055 −1.454 9 630 0.285 10 000
µ1

3 2.137 10 000 0.480 9 027 −0.253 10 000 −1.187 10 000
µ2

3 −0.678 10 000 −0.636 10 000 0.186 9 558 0.637 10 000

Σ1,1
1 0.790 10 000 −0.404 9 719 0.125 10 000 −0.072 9 113

Σ1,2
1 −0.165 10 329 0.194 9 993 −0.324 10 000 1.304 10 000

Σ2,1
1 −0.165 10 329 0.194 9 993 −0.324 10 000 1.304 10 000

Σ2,2
1 0.664 9 512 −0.391 11 618 −0.333 9 552 −0.695 10 000

Σ1,1
2 −1.266 10 000 −1.249 9 499 −0.618 9 380 0.474 10 000

Σ1,2
2 −0.665 10 000 −0.159 9 781 −0.785 10 000 −0.183 10 000

Σ2,1
2 −0.665 10 000 −0.159 9 781 −0.785 10 000 −0.183 10 000

Σ2,2
2 0.411 10 000 1.184 10 201 −2.129 10 000 −0.590 10 047

Σ1,1
3 −1.029 9 456 0.653 10 000 −0.925 10 000 1.074 10 000

Σ1,2
3 0.888 9 614 1.059 9 595 −0.537 10 000 −0.292 9 552

Σ2,1
3 0.888 9 614 1.059 9 595 −0.537 10 000 −0.292 9 552

Σ2,2
3 −0.422 9 527 −0.776 10 000 −1.188 9 535 0.384 10 000

α1
1,2 0.154 100 −0.465 566 −0.831 1 021 0.536 1 893
α2

1,2 −0.190 127 −0.237 491 0.202 907 −0.341 1 895
α1

1,3 1.022 83 −0.862 630 −0.581 976 −1.057 2 005
α2

1,3 −1.117 97 0.351 640 0.013 1 068 1.032 2 092

α1
2,1 2.329 128 −0.471 573 0.144 990 −0.010 1 990
α2

2,1 −2.393 124 0.607 643 −0.050 1 222 0.249 2 129
α1

2,3 2.733 95 0.042 497 −1.024 983 0.031 1 626
α2

2,3 −2.774 107 0.445 446 1.103 895 −0.525 1 612

α1
3,1 0.583 75 −1.437 476 −1.525 712 0.476 1 340
α2

3,1 −0.530 101 1.642 480 1.805 738 −0.651 1 611
α1

3,2 0.966 134 −0.418 920 −2.899 1 333 −1.471 2 053
α2

3,2 −0.691 144 1.289 838 2.100 1 244 1.591 1 985

The values in red represent that the corresponding parameters have failed to pass

Geweke’s diagnostics. As such, the standard Metropolis-Hastings, AM, and symmetric

DRAM algorithms failed to converge jointly. In addition, each of the ESS of those

algorithms is remarkably low. This suggests that there exist dependencies between the

MCMC samples.

On the other hand, only the MTAM algorithm passed Geweke’s diagnostics al-

though the ESS of the parameters α1,2, α1,3, α2,1, α2,3, α3,1, and α3,2 remain low.

Therefore, it is claimed that all the MCMC algorithms are invalid for parameter esti-

mation. Figures 4.2–4.5 show autocorrelation functions of those parameters with low

ESS for each algorithm. As for the rest of the parameters with respect to autocorrela-

130 4. Multivariate NHGHMM

tion functions, see Figures D.1–D.8 in Appendix D. Now, the burn-in time is chosen to

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.2: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the standard Metropolis-Hastings algorithm without thinning

be 1,000,000. Then, thinning of every 50th iteration was performed for the last 500,000

iterations, and hence, the 10,000 MCMC samples were taken into account.

The MCMC convergence assessment using Geweke’s diagnostics, ESS, and auto-

correlation functions was performed for the standard Metropolis-Hastings, and all the

three modified MCMC algorithms, the AM, symmetric DRAM, and MTAM algorithms

on Metropolis updates. The results are shown in Table 4.2. As observed, every algo-

4.6 Simulation Study 131

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
α3, 1

2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.3: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the AM algorithm without thinning

rithm has passed Geweke’s diagnostics by performing thinning. Nevertheless, the ESS

of the parameters α1,2, α1,3, α2,1, α2,3, α3,1, and α3,2 for the standard Metropolis-

Hastings algorithm are relatively low. There must exist much dependency between

those MCMC samples. Hence, the standard Metropolis-Hastings algorithm is now dis-

regarded for the simulation study. Nevertheless, the result of the algorithm for model

selection is still presented in the following.

Even though all the proposed MCMC algorithms have passed Geweke’s diagnostics,

132 4. Multivariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.4: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the symmetric DRAM algorithm without thinning

some of the ESS indicates possible dependencies between the MCMC samples, espe-

cially the ESS of the parameter α2
2,3 for the symmetric DRAM algorithm. Therefore,

autocorrelation functions of the parameters, especially α, are investigated to ensure

that the MCMC convergence has been met.

4.6 Simulation Study 133

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.5: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the MTAM algorithm without thinning

134 4. Multivariate NHGHMM

Table 4.2: Summary statistics for Geweke’s diagnostics and ESS of the random walk
Metropolis-Hastings, AM, symmetric DRAM, and MTAM algorithms with thinning

Parameter
Metropolis-Hastings AM DRAM MTAM
Geweke’s

ESS
Geweke’s

ESS
Geweke’s

ESS
Geweke’s

ESS
diagnostics diagnostics diagnostics diagnostics

µ1
1 0.871 10 000 −0.470 10 000 0.601 9 744 −0.513 10 000
µ2

1 0.078 8 883 −1.076 10 000 −0.007 10 000 −1.239 11 186
µ1

2 −0.541 10 044 0.077 10 000 −0.187 10 000 0.788 9 669
µ2

2 −0.498 10 000 −0.250 9 474 0.860 9 050 0.862 10 000
µ1

3 −0.054 10 245 −0.864 10 000 −0.015 10 317 0.227 9 696
µ2

3 0.219 9 674 −1.097 10 000 0.579 10 000 −0.475 10 000

Σ1,1
1 −0.028 10 000 −1.139 10 000 −0.352 10 000 −0.514 10 000

Σ1,2
1 −0.499 9 628 −1.059 9 751 −0.376 10 000 0.768 10 000

Σ2,1
1 −0.499 9 628 −1.059 9 751 −0.376 10 000 0.768 10 000

Σ2,2
1 −0.305 10 000 −1.710 9 626 1.021 10 339 0.936 10 000

Σ1,1
2 −1.440 8 152 0.832 10 000 −1.354 10 000 −0.408 10 000

Σ1,2
2 0.270 10 000 0.620 10 000 −1.820 9 654 0.273 10 000

Σ2,1
2 0.270 10 000 0.620 10 000 −1.820 9 654 0.273 10 000

Σ2,2
2 0.225 10 000 1.783 10 588 1.566 10 000 0.008 10 000

Σ1,1
3 0.198 10 000 0.757 10 000 1.295 10 000 −0.194 10 000

Σ1,2
3 −1.192 10 000 0.646 10 000 1.052 10 000 1.359 10 000

Σ2,1
3 −1.192 10 000 0.646 10 000 1.052 10 000 1.359 10 000

Σ2,2
3 −0.443 10 000 0.258 9 685 −0.726 9 286 0.845 10 000

α1
1,2 0.225 2 871 0.062 10 000 −0.052 10 000 −1.522 10 000
α2

1,2 0.085 2 770 0.183 10 000 0.734 10 600 1.045 10 000
α1

1,3 1.459 3 212 0.353 10 000 0.116 10 637 −0.155 10 000
α2

1,3 −1.403 3 335 −0.307 10 000 0.275 8 873 −0.286 9 581

α1
2,1 1.305 5 151 0.103 10 000 1.081 10 000 0.221 10 000
α2

2,1 −1.184 5 177 0.124 10 000 −0.717 10 000 0.779 10 000
α1

2,3 1.424 3 614 0.468 10 000 0.425 10 358 0.548 10 000
α2

2,3 −1.786 3 733 −0.621 9 620 0.241 7 906 0.145 10 000

α1
3,1 0.225 2 330 −0.914 9 632 0.711 9 148 0.478 10 000
α2

3,1 −0.427 2 479 0.744 10 000 −0.917 9 108 −0.825 9 834
α1

3,2 0.005 5 686 0.014 9 554 −0.039 10 000 1.696 10 310
α2

3,2 −0.077 5 803 −0.248 9 977 0.424 10 000 −1.479 10 961

4.6 Simulation Study 135

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.6: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the standard Metropolis-Hastings algorithm with thinning

136 4. Multivariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.7: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the AM algorithm with thinning

4.6 Simulation Study 137

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.8: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the symmetric DRAM algorithm with thinning

138 4. Multivariate NHGHMM

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 3
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 3
2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α3, 2
2

(c)

Figure 4.9: Autocorrelation functions of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2

(c), for the MTAM algorithm with thinning

4.6 Simulation Study 139

According to Figure 4.6, there are still some dependencies between the MCMC

samples. Thus, it is claimed that the MCMC convergence of the standard Metropolis-

Hastings algorithm has not been achieved.

On the other hand, by Figures 4.7–4.9 of autocorrelation functions, it is evident

that the MCMC samples of all the parameters of interest are uncorrelated. There-

fore, it is sufficient to claim that the MCMC convergence has been satisfied. As for

the autocorrelation functions of the rest of the parameters, see Figures D.9–D.16 in

Appendix D.

With the same setting of the convergence, pilot runs of the MCMC algorithms were

performed for model selection. The number of hidden states was set to range from 2

to 5, namely m ∈ {2, 3, 4, 5}. For each competing model, the log marginal likelihood

was estimated by Equation (B.8). For more details of model selection for multivariate

NHGHMMs, see Appendix B. The results are shown in Table 4.3 and Figure 4.10.

Table 4.3: Summary of log marginal likelihoods for the Metropolis-Hastings (MH),
AM, symmetric DRAM, and MTAM algorithms

MH AM DRAM MTAM

m = 2 −1 198.272 −1 198.294 −1 198.283 −1 198.286
m = 3 −1 170.641 −1 170.489 −1 170.581 −1 170.462
m = 4 −1 176.340 −1 179.933 −1 177.513 −1 176.136
m = 5 −1 254.376 −1 255.862 −1 259.930 −1 252.532

The maximum log marginal likelihood has been determined as the MTAM algorithm

with the number of hidden states (i.e. m = 3). This result is consistent with the true

simulated model.

4.6.2 Performance of Parameter Estimation

Considering the results of convergence assessment and model selection being satisfac-

tory, it is now required to conduct a simulation study of all the proposed algorithms.

The number of 1,500,000 MCMC iterations was run on each of 100 simulated data sets

from Model (4.26). Burn-in time and the thinning were set identical to those of the

single data set so that each parameter of interest comprises 10,000 MCMC iterations

for statistical inference. The result of point estimates, 95% CrI and coverage of each

140 4. Multivariate NHGHMM

● ● ● ●

● ● ● ●

●

●

●
●

●
●

●

●

−
12

60
−

12
40

−
12

20
−

12
00

−
11

80

lo
g

f̂(y
)

M
H

2

A
M

2

D
R

A
M

2

M
TA

M
2

M
H

3

A
M

3

D
R

A
M

3

M
TA

M
3

M
H

4

A
M

4

D
R

A
M

4

M
TA

M
4

M
H

5

A
M

5

D
R

A
M

5

M
TA

M
5

Figure 4.10: Bar plot of log marginal likelihoods for model selection; the suffix number
of each algorithm in the plot corresponds to the number of hidden states.

parameter is shown in Table 4.4.

After completing the simulation study by taking arithmetic means of each param-

eter in 100 simulated data sets, the proposed algorithms consolidate the true values

in terms of estimates, coverage and 95% CrI. All the three algorithms showed similar

point estimates, 95% CrI, and coverage. Given that the number of observations was

300 for each simulated data set, all the algorithms demonstrated reasonable accuracy.

The detailed findings for the AM, symmetric DRAM, and MTAM algorithms are as

follows.

The AM algorithm was able to estimate the parameters of interest reasonably well

although some parameters with regard to the Gibbs sampler showed relatively low cov-

4.6 Simulation Study 141

Table 4.4: Summary statistics of estimates and coverage for random walk Metropolis-
Hastings algorithm, AM, symmetric DRAM, and MTAM algorithms

Parameter True value
AM DRAM MTAM

Estimate 95% CrI Coverage Estimate 95% CrI Coverage Estimate 95% CrI Coverage

µ1
1 1 1.070 (0.760, 1.381) 76% 1.025 (0.716, 1.334) 88% 1.087 (0.773, 1.401) 78%
µ2

1 2 1.913 (1.651, 2.176) 80% 1.928 (1.666, 2.192) 83% 1.984 (1.723, 2.245) 85%
µ1

2 3 3.022 (2.779, 3.265) 90% 3.006 (2.765, 3.249) 88% 3.007 (2.767, 3.249) 94%
µ2

2 0 0.001 (−0.183, 0.196) 91% −0.019 (−0.192, 0.154) 87% −0.008 (−0.180, 0.165) 89%
µ1

3 5 4.933 (4.611, 5.257) 92% 4.979 (4.663, 5.295) 93% 5.011 (4.690, 5.330) 89%
µ2

3 4 3.901 (3.508, 4.287) 81% 3.970 (3.582, 4.359) 79% 3.959 (3.575, 4.346) 92%

Σ1,1
1 1.5 1.614 (1.119, 2.297) 88% 1.625 (1.129, 2.310) 85% 1.674 (1.161, 2.379) 85%

Σ1,2
1 0.5 0.456 (0.117, 0.869) 90% 0.511 (0.169, 0.931) 88% 0.514 (0.169, 0.938) 84%

Σ2,1
1 0.5 0.456 (0.117, 0.869) 90% 0.511 (0.169, 0.931) 88% 0.514 (0.169, 0.938) 84%

Σ2,2
1 1.0 1.134 (0.782, 1.617) 85% 1.150 (0.793, 1.640) 84% 1.145 (0.789, 1.631) 83%

Σ1,1
2 2.0 2.013 (1.558, 2.596) 94% 2.047 (1.596, 2.609) 93% 1.965 (1.525, 2.514) 87%

Σ1,2
2 0.6 0.607 (0.345, 0.922) 90% 0.630 (0.371, 0.934) 83% 0.577 (0.325, 0.872) 87%

Σ2,1
2 0.6 0.607 (0.345, 0.922) 90% 0.630 (0.371, 0.934) 83% 0.577 (0.325, 0.872) 87%

Σ2,2
2 1.0 1.041 (0.801, 1.352) 88% 1.032 (0.802, 1.322) 90% 0.993 (0.767, 1.277) 88%

Σ1,1
3 1.5 1.622 (1.106, 2.335) 89% 1.485 (1.016, 2.148) 93% 1.584 (1.092, 2.277) 89%

Σ1,2
3 −0.5 −0.419 (−0.956, 0.059) 86% −0.452 (−0.989, 0.013) 95% −0.461 (−1.011, 0.019) 88%

Σ2,1
3 −0.5 −0.419 (−0.956, 0.059) 86% −0.452 (−0.989, 0.013) 95% −0.461 (−1.011, 0.019) 88%

Σ2,2
3 2.0 2.087 (1.412, 3.026) 93% 2.120 (1.428, 3.097) 87% 2.194 (1.495, 3.171) 92%

α1
1,2 −1.109 −0.952 (−2.571, 0.592) 94% −0.892 (−2.459, 0.604) 93% −0.935 (−2.560, 0.623) 96%
α2

1,2 0.555 0.305 (−0.831, 1.424) 94% 0.348 (−0.707, 1.402) 90% 0.263 (−0.900, 1.393) 86%
α1

1,3 −3.039 −2.856 (−5.099, −0.956) 95% −2.918 (−5.269, −0.951) 94% −2.857 (−5.166, −0.927) 97%
α2

1,3 1.664 1.559 (0.405, 2.848) 92% 1.544 (0.362, 2.872) 95% 1.513 (0.339, 2.835) 95%

α1
2,1 −3.193 −3.211 (−4.578, −1.981) 95% −3.279 (−4.665, −2.057) 91% −3.167 (−4.567, −1.927) 93%
α2

2,1 1.485 1.502 (0.645, 2.389) 96% 1.555 (0.726, 2.435) 92% 1.481 (0.625, 2.384) 92%
α1

2,3 −2.361 −1.969 (−3.618, −0.247) 98% −1.922 (−3.608, −0.117) 91% −1.976 (−3.650, −0.183) 90%
α2

2,3 0.376 −0.245 (−2.063, 1.184) 87% −0.351 (−2.291, 1.131) 85% −0.184 (−2.103, 1.253) 90%

α1
3,1 −2.867 −2.773 (−5.134, −0.747) 97% −2.701 (−5.055, −0.687) 98% −2.540 (−4.931, −0.506) 91%
α2

3,1 1.433 1.328 (−0.081, 2.813) 95% 1.284 (−0.101, 2.749) 95% 1.113 (−0.309, 2.590) 93%
α1

3,2 −1.282 −1.127 (−2.676, 0.365) 96% −1.279 (−2.910, 0.256) 90% −1.148 (−2.744, 0.355) 96%
α2

3,2 0.785 0.678 (−0.463, 1.829) 89% 0.754 (−0.371, 1.916) 88% 0.675 (−0.410, 1.800) 92%

qt11,1 0.6 0.570 (0.393, 0.737) 89% 0.561 (0.383, 0.732) 90% 0.579 (0.399, 0.745) 98%
qt11,2 0.3 0.296 (0.151, 0.476) 91% 0.311 (0.161, 0.495) 92% 0.290 (0.144, 0.471) 95%
qt11,3 0.1 0.122 (0.040, 0.271) 96% 0.116 (0.036, 0.263) 96% 0.120 (0.038, 0.269) 97%
qt12,1 0.1 0.107 (0.053, 0.186) 88% 0.105 (0.051, 0.184) 93% 0.109 (0.052, 0.192) 95%
qt12,2 0.8 0.787 (0.690, 0.866) 93% 0.794 (0.698, 0.872) 92% 0.785 (0.684, 0.866) 92%
qt12,3 0.1 0.101 (0.049, 0.179) 95% 0.097 (0.046, 0.173) 96% 0.102 (0.049, 0.183) 97%
qt13,1 0.1 0.115 (0.037, 0.259) 94% 0.119 (0.036, 0.270) 97% 0.122 (0.038, 0.274) 94%
qt13,2 0.3 0.313 (0.164, 0.494) 98% 0.295 (0.149, 0.479) 94% 0.307 (0.157, 0.492) 96%
qt13,3 0.6 0.560 (0.385, 0.728) 94% 0.574 (0.393, 0.744) 93% 0.559 (0.379, 0.729) 95%

qt21,1 0.3 0.327 (0.187, 0.497) 88% 0.324 (0.182, 0.494) 95% 0.344 (0.195, 0.519) 87%
qt21,2 0.3 0.254 (0.128, 0.420) 82% 0.281 (0.149, 0.448) 85% 0.248 (0.120, 0.418) 86%
qt21,3 0.4 0.408 (0.248, 0.582) 91% 0.384 (0.232, 0.555) 89% 0.396 (0.236, 0.574) 92%
qt22,1 0.4 0.413 (0.251, 0.584) 94% 0.424 (0.269, 0.588) 91% 0.410 (0.249, 0.583) 92%
qt22,2 0.5 0.498 (0.334, 0.667) 97% 0.499 (0.339, 0.661) 90% 0.498 (0.331, 0.666) 90%
qt22,3 0.1 0.079 (0.026, 0.195) 79% 0.068 (0.020, 0.174) 79% 0.082 (0.025, 0.204) 84%
qt23,1 0.3 0.296 (0.144, 0.496) 81% 0.288 (0.134, 0.491) 88% 0.259 (0.114, 0.460) 90%
qt23,2 0.4 0.385 (0.211, 0.582) 81% 0.387 (0.207, 0.593) 88% 0.400 (0.216, 0.605) 88%
qt23,3 0.3 0.304 (0.152, 0.498) 86% 0.309 (0.152, 0.512) 94% 0.326 (0.163, 0.526) 91%

erage such as µ1
1 and µ2

1. On the other hand, estimates and coverage of the parameter

α were relatively accurate. This means that the choice of the exogenous variables was

adequate. Subsequently, estimation of the parameter Qt1 was reasonably accurate al-

though that of the transition probability Qt2 was not as satisfactory as Qt1 ’s, especially

qt22,3.

The symmetric DRAM algorithm also shows the similar result to that of the AM

algorithm in terms of estimate and coverage; however, the Gibbs sampler has outper-

formed the AM algorithm’s. In addition, every 95% credible interval includes the true

values of the model. Likewise, coverage of the parameter qt22,3 was relatively poor.

Finally, the MTAM algorithm recorded the highest value of coverage in the param-

142 4. Multivariate NHGHMM

eter qt22,3, which was 84%, and thus, the MTAM algorithm is proven to be the most

favourable algorithm in terms of statistical inference of the model. As for 95% CrI, all

the parameters of interest in Model (4.26) are included within the intervals.

Trace plots and histograms of all the parameters of interest are shown by Fig-

ures D.17–D.46 in Appendix D.

With this simulation study, parameter estimation was completed with great accu-

racy for especially the parameters pertaining to the transition probabilities such as α,

Qt1 , and Qt2 . That being said, it has implied that the choice of exogenous variables

was appropriate, and hence, such an accurate result was obtained.

Compared to the simulation study of the univariate NHGHMM in Section 3.6,

relatively small values of noise were selected for the parameters Σ = (Σ1,Σ2,Σ3) for

Model (4.26). Consequently, the MCMC samples were able to achieve higher values of

coverage in the simulation study.

For a comparison of the proposed MCMC algorithms, Model (4.26) was used for a

test model. The number of MCMC iterations were selected as N = 500 with replica-

tions of 100 for each of the algorithms. The results are shown in the following table.

Table 4.5: Comparison of the proposed MCMC algorithms for the multivariate case

Algorithm No. of tries Replications Elapsed time (s) Relative

AM 1 100 259.14 1.00

DRAM 10 100 1 276.00 4.92
DRAM 25 100 2 752.69 10.62
DRAM 50 100 5 195.16 20.05

MTAM 10 100 724.46 2.80
MTAM 25 100 1 453.94 5.61
MTAM 50 100 2 639.73 10.19

According to the table above, it was found to be more computationally expensive to

run the algorithms in the multivariate setting than in the univariate setting. Overall,

the symmetric DRAM algorithm is more computationally expensive than the MTAM

algorithm with respect to the number of tries for each MCMC iteration. Moreover,

the computational costs increase linearly as the number of tries increases for both the

algorithms.

4.7 Case Studies 143

Finally, the computational time for each algorithm was 10.90 days for the AM

algorithm, 30.39 days for the symmetric DRAM algorithm, and 30.08 days for the

MTAM algorithm.

Despite the observations with small sample size of 300 for each simulated data set,

the result for the multivariate model was considerably successful. Simulation study

with 1,000 observations for each simulated data set may be considered and carried out

to explore the validity of the algorithms.

4.7 Case Studies

Given that the successful simulation study of the multivariate NHGHMM, it remains

to apply the model on real-world data sets. In this section, data sets of Icelandic river

flow and rainfall in the UK were selected.

4.7.1 Icelandic river flow data

The multivariate NHGHMM was applied to the Icelandic daily river flow data from

the 1st of January, 1972 to the 31st of December, 1974, where the year 1972 was a leap

year. The daily river flow data with length of 1,096 were measured in cubic metres per

second (m3/s) at the two rivers, the Jökulsá and the Vatnsdalsá. In addition, daily pre-

cipitation (mm) and mean daily temperature (◦C) over the same period were recorded

in Hveravellir, and these measurements are used as a set of exogenous variables in this

case study. The data are available at the the Hydrological Survey of the National

Energy Authority of Iceland (https://nea.is/the-national-energy-authority/

map-servers/energy-resource-data-viewer/).

The first statistical analysis of the data set was conducted by Tong et al. (1985).

In their investigation, a threshold model was more adequate than conventional linear

models to capture different hydrological characteristics of the rivers. The observed flow

data of the two rivers were analysed individually.

Another investigation of the Icelandic river flow data was carried out by Tsay

(1998). The model was designed to analyse the bivariate observed data jointly using

the multivariate threshold autoregressive model. The residual analysis showed that

https://nea.is/the-national-energy-authority/map-servers/energy-resource-data-viewer/
https://nea.is/the-national-energy-authority/map-servers/energy-resource-data-viewer/

144 4. Multivariate NHGHMM

the fitted model was appropriate, although several clusters of large residuals suggested

there was the possibility of minor periodic behaviour in the river flow such as seasonal

fluctuations (Tsay, 1998).

In this section, the multivariate NHGHMM was applied to analyse the flow data of

the two rivers jointly. This model is considerably different from the threshold model

applied by Tsay (1998).

According to Tsay (1998), a two-regime setting for the threshold model seemed to

be feasible. Hence, the number of hidden states, where m = 2 is used for the case study

in this section. Time series plots of the river flow, precipitation, and temperature data

are shown in Figure 4.11.

20
60

10
0

14
0

10
20

30
40

50
0

20
40

60
80

−
20

−
10

0
10

Jan 1972 Jul 1972 Jan 1973 Jul 1973 Jan 1974 Jul 1974

Time

z t2
z t1

y t2
y t1

Figure 4.11: Time series plots of the Jökulsá river flow (top), Vatnsdalsá river flow
(upper middle), precipitation (lower middle), and mean temperature (bottom)

4.7 Case Studies 145

Following Tong et al. (1985), the precipitation data are shifted forward by 1 due to

the fact that the recorded values are the accumulated rain at 9:00 a.m. from the same

time the day before. As a result, there are 1,095 observations for the precipitation after

the shift.

For the case study, the following model was used. That is,

yt = µst + εt, εt ∼ N2(0,Σst), (4.27)

where yt = (y1
t , y

2
t) denotes the bivariate observations at t ∈ {1, 2, . . . , 1096}, and

0 = (0, 0) is the 2-dimensional zero vector. In addition, y1
t indicates the Jökulsá river

flow, and y2
t represents the Vatnsdalsá river flow.

Most importantly, the exogenous variables zt = (1, z1
t , z

2
t), for any t ∈ {2, 3, . . . , 1096},

are also included implicitly in the model, where z1
t denotes the daily precipitation, and

z2
t denotes the mean daily temperature.

The number of MCMC iterations was set to be N = 350, 000 with the burn-in time

of 50,000. Then, thinning of every 30th iteration was carried out so that the resulting

10,000 iterations were taken into account.

To ensure MCMC convergence of the parameters, especially α1,2 and α2,1, the

MTAM algorithm was implemented with the number of multiple tries being 30.

Hereafter, the MCMC convergence assessments of the parameters were carried out.

The results of Geweke’s diagnostics and ESS are shown in the following table. As seen

in Table 4.6, both Geweke’s diagnostics and ESS of the parameters were satisfactory.

To ensure the MCMC convergence of those parameters, the autocorrelation functions

were also investigated and the results are shown below.

According to Figure 4.12, it is concluded that all the parameters of the model have

converged since the dependencies are non-existent.

Provided that every convergence test was successful, parameter estimation of the

parameters is then performed. The results are shown below.

There was no label switching phenomenon occurred during the MCMC iterations.

Thus, relabelling the parameters was not required. Table 4.7 suggested that the obser-

vations, where {t ≥ 1 : St = 2} were pertaining to the higher mean river flow rate with

146 4. Multivariate NHGHMM

Table 4.6: Summary of Geweke’s diagnostics and ESS of the parameters for the case
study of Icelandic river flow data

Parameter Geweke’s diagnostics ESS

µ1
1 −0.520 10 000
µ2

1 0.704 10 000
µ1

2 1.781 10 000
µ2

2 0.236 11 271

Σ1,1
1 0.627 10 000

Σ1,2
1 0.666 10 000

Σ2,1
1 0.666 10 000

Σ2,2
1 0.536 10 000

Σ1,1
2 −0.044 10 348

Σ1,2
2 0.989 10 000

Σ2,1
2 0.989 10 000

Σ2,2
2 −1.083 10 000

α1
1,2 −0.629 10 000
α2

1,2 −0.164 9 623
α3

1,2 0.890 10 000

α1
2,1 −1.089 10 000
α2

2,1 −0.871 10 000
α3

2,1 −0.786 10 000

Table 4.7: Summary of estimates and 95% CrI of the parameters of interest

Parameter Estimate 95% CrI

µ1
1 26.84 (26.65, 27.05)
µ2

1 6.75 (6.60, 6.93)
µ1

2 54.66 (52.78, 56.54)
µ2

2 11.01 (10.43, 11.60)

Σ1,1
1 4.50 (3.88, 5.26)

Σ1,2
1 1.36 (0.99, 1.81)

Σ2,1
1 1.36 (0.99, 1.81)

Σ2,2
1 2.84 (2.42, 3.45)

Σ1,1
2 473.60 (420.95, 532.74)

Σ1,2
2 42.44 (29.30, 56.01)

Σ2,1
2 42.44 (29.30, 56.01)

Σ2,2
2 51.43 (45.52, 57.76)

α1
1,2 −3.25 (−4.44, −2.34)
α2

1,2 −0.06 (−0.27, 0.08)
α3

1,2 1.14 (0.70, 1.70)

α1
2,1 −3.15 (−3.86, −2.55)
α2

2,1 0.01 (−0.06, 0.06)
α3

2,1 −0.44 (−0.60, −0.29)

4.7 Case Studies 147

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

µ2
2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(c)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag
A

C
F

α1, 2
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α1, 2
3

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

α2, 1
3

(d)

Figure 4.12: Autocorrelation functions of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d)

more volatility in the river flow for both the rivers. Figures 4.13 and 4.14 represent

trace plots and histograms of the parameters, respectively.

Except for the 95% CrI of the parameter, Σ2, those of every other parameter indi-

cated quite narrow credible intervals, and hence, great accuracy was achieved. More

importantly, the 95% CrI of α1,2 and α2,1 were also narrow.

Here, the marginal posterior distributions are considered for the multivariate case.

It is noted that the inference, however, is unable to be comprehensive with respect to

correlations between each parameter.

Therefore, parameter estimation of the transition probabilities was quite satisfac-

148 4. Multivariate NHGHMM

0 2000 4000 6000 8000

26
.6

26
.8

27
.0

27
.2

27
.4

µ1
1

Iteration

0 2000 4000 6000 8000

6.
5

6.
7

6.
9

7.
1

µ1
2

Iteration

0 2000 4000 6000 8000

52
54

56
58

µ2
1

Iteration

0 2000 4000 6000 8000

10
.0

10
.5

11
.0

11
.5

12
.0

µ2
2

Iteration

(a)

0 2000 4000 6000 8000

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Σ1
1, 1

Iteration

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

Σ1
1, 2

Iteration

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

Σ1
2, 1

Iteration

0 2000 4000 6000 8000

2.
5

3.
0

3.
5

4.
0

Σ1
2, 2

Iteration

(b)

0 2000 4000 6000 8000

40
0

45
0

50
0

55
0

60
0

Σ2
1, 1

Iteration

0 2000 4000 6000 8000

20
30

40
50

60
70

Σ2
1, 2

Iteration

0 2000 4000 6000 8000

20
30

40
50

60
70

Σ2
2, 1

Iteration

0 2000 4000 6000 8000

45
50

55
60

Σ2
2, 2

Iteration

(c)

0 2000 6000 10000

−
6

−
5

−
4

−
3

−
2

α1, 2
1

Iteration

0 2000 6000 10000

−
0.

5
−

0.
3

−
0.

1
0.

0
0.

1

α1, 2
2

Iteration

0 2000 6000 10000

0.
5

1.
0

1.
5

2.
0

2.
5

α1, 2
3

Iteration

0 2000 6000 10000

−
4.

5
−

4.
0

−
3.

5
−

3.
0

−
2.

5
−

2.
0

α2, 1
1

Iteration

0 2000 6000 10000

−
0.

20
−

0.
10

0.
00

0.
05

0.
10

α2, 1
2

Iteration

0 2000 6000 10000

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2

α2, 1
3

Iteration

(d)

Figure 4.13: Trace plots of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d)

tory. The results of the transition probabilities are shown below.

By Figure 4.15, it is evident that periodic features are shown in the transition

probabilities. For instance, transitions from the lower flow rate state to the higher flow

rate state become more likely during the warm periods, roughly April through October

each year.

Due to this fact, the daily mean temperatures are a major factor in terms of the non-

homogeneity. This reduces to the logical conclusion where higher mean temperature

values are responsible for melting ice fields, and hence, more flow rates are induced in

those rivers. Most importantly, the 95% CrI in Figure 4.15 indicate the great accuracy.

4.7 Case Studies 149

µ1
1

D
en

si
ty

26.6 26.8 27.0 27.2 27.4

0
1

2
3

µ1
2

D
en

si
ty

6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1

0
1

2
3

4

µ2
1

D
en

si
ty

52 54 56 58

0.
0

0.
1

0.
2

0.
3

0.
4

µ2
2

D
en

si
ty

10.0 10.5 11.0 11.5 12.0

0.
0

0.
4

0.
8

1.
2

(a)

Σ1
1, 1

D
en

si
ty

3.5 4.0 4.5 5.0 5.5 6.0 6.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Σ1
1, 2

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

Σ1
2, 1

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

Σ1
2, 2

D
en

si
ty

2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

(b)

Σ2
1, 1

D
en

si
ty

400 450 500 550 600

0.
00

0
0.

00
4

0.
00

8
0.

01
2

Σ2
1, 2

D
en

si
ty

20 30 40 50 60 70

0.
00

0.
02

0.
04

0.
06

Σ2
2, 1

D
en

si
ty

20 30 40 50 60 70

0.
00

0.
02

0.
04

0.
06

Σ2
2, 2

D
en

si
ty

45 50 55 60

0.
00

0.
04

0.
08

0.
12

(c)

α1, 2
1

D
en

si
ty

−6 −5 −4 −3 −2

0.
0

0.
2

0.
4

0.
6

0.
8

α1, 2
2

D
en

si
ty

−0.6 −0.4 −0.2 0.0 0.2

0
1

2
3

4
5

α1, 2
3

D
en

si
ty

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

α2, 1
1

D
en

si
ty

−5.0 −4.0 −3.0 −2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

α2, 1
2

D
en

si
ty

−0.20 −0.10 0.00 0.10

0
5

10
15

α2, 1
3

D
en

si
ty

−0.8 −0.6 −0.4 −0.2

0
1

2
3

4
5

(d)

Figure 4.14: Histograms of µ (a), Σ1 (b), Σ2 (c), and α1,2 & α2,1 (d)

Finally, Figure 4.16 shows the estimated hidden state sequence where grey shaded

areas indicate the time periods belonging to the higher river flow rates.

According to Figure 4.16, an interesting finding was observed where the higher

river flow rates steadily took place, with several peaks, in the Jökulsá during the

warm periods. Conversely, higher river flow rates occurred in the Vatnsdalsá in the

early stage of the warm periods, although the relatively lower river flow rates were

observed roughly after July each year. This may suggest that the residue of ice fields

for the Vatnsdalsá was less than the Jökulsá whose source is the Vatnajökull glacier.1

1Jökulsá literally means glacial river in Icelandic. The Vatnajökull glacier is the largest ice cap in

150 4. Multivariate NHGHMM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q1, 1
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1972 Jul 1972 Jan 1973 Jul 1973 Jan 1974 Jul 1974

(a)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

q1, 2
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1972 Jul 1972 Jan 1973 Jul 1973 Jan 1974 Jul 1974

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q2, 1
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1972 Jul 1972 Jan 1973 Jul 1973 Jan 1974 Jul 1974

(c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q2, 2
t

Time

P
ro

ba
bi

lit
y

2.5th percentile Median 97.5th percentile

Jan 1972 Jul 1972 Jan 1973 Jul 1973 Jan 1974 Jul 1974

(d)

Figure 4.15: Trace plots of 95% CrI for qt1,1 (a), qt1,2 (b),qt2,1 (c), and qt2,2 (d) where
t ∈ {2, 3, . . . , 1096}

Therefore, the influence of the mean daily temperature values gets weaker after April.

The discussion about snow melting is consistent with that of Tsay (1998)’s.

Iceland.

4.7 Case Studies 151

20406080100120140

T
he

 J
ök

ul
sá

T
im

e

yt
1

Ja
n

19
72

A
pr

 1
97

2
Ju

l 1
97

2
O

ct
 1

97
2

Ja
n

19
73

A
pr

 1
97

3
Ju

l 1
97

3
O

ct
 1

97
3

Ja
n

19
74

A
pr

 1
97

4
Ju

l 1
97

4
O

ct
 1

97
4

20406080100120140 1020304050

T
he

 V
at

ns
da

ls
á

T
im

e

yt
2

Ja
n

19
72

A
pr

 1
97

2
Ju

l 1
97

2
O

ct
 1

97
2

Ja
n

19
73

A
pr

 1
97

3
Ju

l 1
97

3
O

ct
 1

97
3

Ja
n

19
74

A
pr

 1
97

4
Ju

l 1
97

4
O

ct
 1

97
4

1020304050

F
ig

u
re

4.
16

:
T

im
e

se
ri

es
p
lo

ts
of

th
e

J
ök

u
ls

á
(t

op
)

an
d

th
e

V
at

n
sd

al
sá

(b
ot

to
m

).
T

h
e

gr
ey

sh
ad

ed
ar

ea
s

re
p
re

se
n
t

th
e

ti
m

e
d
u
ra

ti
on

fo
r

w
h
ic

h
th

e
h
id

d
en

st
at

es
ar

e
in

S
ta

te
2,

n
am

el
y

th
e

st
at

e
w

it
h

h
ig

h
er

ri
ve

r
fl
ow

ra
te

s.

152 4. Multivariate NHGHMM

4.7.2 Rainfall in the UK

The relationship between rainfall and climate has drawn much attention from climatol-

ogists to investigate the potential effects of climate change in recent years (Heaps et al.,

2015). Conventional precipitation models are often referred to as circulation models.

They are mathematical models of the circulation of the atmosphere. Nonetheless, the

models often fail to capture local weather features due to the lack of fine resolutions

in terms of longitude and latitude. To obtain much finer resolution, statistical down-

scaling models have been studied in hydrology and meteorology (Ailliot et al., 2009;

Hughes et al., 1997, 1999).

Aggregated precipitation is in a mixed distribution, namely positively skewed den-

sity function on the positive real line R>0 with a point mass at zero. This attribute

exacerbates a statistical analysis of models for precipitation which can accommodate

spatiotemporal structure (Heaps et al., 2015). Hence, the development of statistical

downscaling models has been faced with such a difficulty. Prior to Heaps et al. (2015)’s

work, there had been no literature about a Bayesian approach to modelling precipita-

tion by using multivariate non-homogeneous Gaussian HMMs (Heaps et al., 2015).

Bellone et al. (2000) extended an existing multivariate non-homogeneous hidden

Markov model for precipitation occurrences to precipitation amounts. The observations

at 24 rain gauge stations were assumed to be conditional on synoptic atmospheric

patterns in Washington, the USA. For the parameter estimation, a frequentist approach

was carried out by applying the EM algorithm (Bellone et al., 2000).

Since Heaps et al. (2015) formulated a Bayesian framework to a precipitation model

using non-homogeneous HMMs, Holsclaw et al. (2016, 2017) also studied a Bayesian

analysis of daily precipitation amounts.

Therefore, I present Bayesian inference of a multivariate NHGHMM for a precipi-

tation model by using a set of the following exogenous variables:

(i) mean sea level pressure (MSLP),

(ii) 500 hPa geopotential height (GPH), and

(iii) geopotential thickness of 500–1000 hPa.

The data which are analysed in this case study are available from the Met Office

4.7 Case Studies 153

integrated archive system MIDAS (http://catalogue.ceda.ac.uk). A summary of

the data set is presented in Table 4.8. The period of precipitation amounts which were

recorded was selected to be winter calendar periods. The specific 12 rainfall gauge

stations were chosen to cover the UK, as observed in Figure 4.18. Before the analysis,

the observed values of rainfall amounts were transformed by Box-Cox transform to

generate Gaussian distributed random variables.

Table 4.8: Summary of data from the UK network of stations during calendar winter
periods (December–February) from 1961/62 to 1988/89

Station County
Proportion Mean daily Coefficient
wet days precipitation (mm) of variation

1 Starcross Devon 53.5% 5.405 1.172
2 Faversham Kent 50.9% 3.580 1.256
3 Wolterton Park Norfolk 53.8% 3.447 1.129
4 Cheltenham Gloucestershire 51.7% 3.877 1.320
5 Newtown Linford Leicestershire 52.4% 3.470 1.149
6 Pen-Y-Ffridd Gwynedd 62.4% 5.194 1.228
7 Bar Gap Farm Durham 64.5% 5.384 1.231
8 Castle Kennedy Wigtownshire 58.9% 6.083 1.049
9 Craibstone Aberdeenshire 59.3% 3.826 1.387

10 Fortrose Ross & Cromarty 52.5% 3.126 1.289
11 Toomebridge Antrim 64.9% 3.919 1.129
12 Ardtalnaig Perthshire 65.1% 6.527 1.215

A set of exogenous variables zt = (1, z1
t , z

2
t , . . . , z

21
t) ∈ R22 is defined as a 22-

dimensional vector, for any t ∈ {1, 2, . . . , 2527}. The exogenous variables are comprised

of comprehensive atmospheric data covering areas of North Atlantic Ocean, North Sea,

in addition to the British Isles. Table 4.9 shows the details of the exogenous variables

as follows.

Table 4.9: Atmospheric measures as exogenous variables for the precipitation model
at daily discrete-time, t, during winter periods (December-February) from 1961/62 to
1988/89

Variable Data type Variable Data type Variable Data type Latitude Longitude

z1
t MSLP z8

t 500 hPa GPH z15
t Thickness 55◦N 0◦

z2
t MSLP z9

t 500 hPa GPH z16
t Thickness 45◦N 30◦W

z3
t MSLP z10

t 500 hPa GPH z17
t Thickness 50◦N 20◦W

z4
t MSLP z11

t 500 hPa GPH z18
t Thickness 55◦N 10◦W

z5
t MSLP z12

t 500 hPa GPH z19
t Thickness 60◦N 0◦

z6
t MSLP z13

t 500 hPa GPH z20
t Thickness 60◦N 10◦E

z7
t MSLP z14

t 500 hPa GPH z21
t Thickness 55◦N 10◦E

Prior to running the MCMC algorithm, preliminary analyses were conducted as

http://catalogue.ceda.ac.uk

154 4. Multivariate NHGHMM

Heaps et al. (2015) attempted to reveal some statistical properties. Figure 4.17a shows

the log odds ratios such that

log(ν0,0(i, j)ν1,1(i, j))− log(ν0,1(i, j)ν1,0(i, j)),

where νdi,dj(i, j) denotes the indicator function of observed number of days in which

rainfall occurrence, di at station i and dj at station j. Moreover, dk = 1 whenever

station k records rainfall amount of greater than or equal to 0.2 mm. Otherwise,

dk = 0.

By Figure 4.17, it is evident that both log odds ratio and correlation of those

stations are negatively correlated to the distance between them. This is consistent

with that result of Heaps et al. (2015).

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

100 200 300 400 500 600 700 800

0.
5

1.
0

1.
5

2.
0

2.
5

Distance (km)

Lo
g

O
dd

s
R

at
io

(a)

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

100 200 300 400 500 600 700 800

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Distance (km)

C
or

re
la

tio
n

(b)

Figure 4.17: Plots of log odds ratio (a), and correlation (b) against distance between
the 12 stations

The main algorithm (Algorithm 12) using the MTAM algorithm (Algorithm 16) is

now performed with the number of MCMC iterations, N = 1, 500, 000, and burn-in

time of 1,000,000. Then, thinning of every 50th iteration is conducted so that the total

10,000 iterations are taken into account for the statistical analysis. As for the number of

hidden states, Heaps et al. (2015) discovered that m = 4 is the most adequate number,

which was supported by the continuous ranked probability score of their results. Hence,

4.7 Case Studies 155

the same number such thatm = 4 was chosen. The result of the convergence assessment

is shown below.

9 °W 6 °W 3 °W 0 ° 3 °E

49
 °N

51
 °N

53
 °N

55
 °N

57
 °N

59
 °N

61
 °N

1

2

3

4

5

6

7
8

9
10

11

12

Figure 4.18: Map of the United Kingdom and the Channel Islands. Each number on
the map corresponds to each station in Table 4.8.

The parameters listed in Table 4.10 are the ones which failed to pass Geweke’s

diagnostics. It is evident that the ESS of several parameters such as α4
3,1, α5

3,1, and

so on, are quite small. As observed, there are numerous parameters of interest failing

to pass the test, and hence, the convergence was unable to be met. The Bayesian

inference of this case study is concluded to be inapplicable. Therefore, the model for

this data set has reached its limitation.

One of the possible explanations to the model’s limitations is the dimension of

exogenous variables is too large and so is the length of the observations. The model

156 4. Multivariate NHGHMM

Table 4.10: Summary of Geweke’s diagnostics and ESS for the parameters of interest
which failed to pass the tests

Parameter Geweke’s diagnostics ESS Parameter Geweke’s diagnostics ESS

µ1
3 2.025 6 915 α19

1,2 −2.064 6 910
µ4

2 −2.471 10 000 α4
1,3 2.371 6 311

µ8
3 2.377 6 722 α5

1,4 2.344 7 041
µ8

4 −2.884 10 000 α18
1,4 −3.306 6 677

µ10
2 −3.225 10 000 α14

2,3 2.295 6 061
µ11

4 −2.570 9 125 α8
2,4 2.513 7 025

Σ7,2
1 −2.332 10 000 α18

2,4 −2.882 6 754

Σ2,7
1 −2.332 10 000 α21

2,4 2.508 6 122

Σ6,1
2 −2.021 9 657 α4

3,1 2.083 358

Σ11,1
2 −3.249 10 000 α5

3,1 −2.260 318

Σ8,2
2 2.227 10 000 α6

3,1 −3.383 252

Σ8,3
2 2.164 10 912 α11

3,1 −4.746 220

Σ12,3
2 2.076 10 000 α12

3,1 2.321 267

Σ4,4
2 2.225 10 000 α17

3,1 2.584 301

Σ11,5
2 2.545 10 000 α22

3,1 −4.538 260

Σ1,6
2 −2.021 9 657 α2

3,2 −4.155 293

Σ2,8
2 2.227 10 000 α11

3,2 −3.762 259

Σ3,8
2 2.164 10 912 α12

3,2 2.556 293

Σ11,9
2 2.567 10 000 α19

3,2 2.657 306

Σ12,9
2 2.425 10 030 α21

3,2 2.014 326

Σ10,10
2 −2.909 10 000 α22

3,2 −3.670 238

Σ1,11
2 −3.249 10 000 α1

3,4 3.629 321

Σ5,11
2 2.545 10 000 α4

3,4 −2.847 305

Σ9,11
2 2.567 10 000 α6

3,4 −2.677 267

Σ3,12
2 2.076 10 000 α19

3,4 2.928 269

Σ9,12
2 2.425 10 030 α20

3,4 3.893 283

Σ4,1
3 3.169 10 000 α22

3,4 −5.016 258

Σ1,4
3 3.169 10 000 α1

4,1 −2.025 240

Σ11,7
3 −2.584 10 000 α10

4,1 −1.973 255

Σ7,11
3 −2.584 10 000 α11

4,1 2.537 208

Σ12,12
3 −2.069 9 606 α16

4,1 −3.747 225

Σ11,1
4 2.688 10 000 α19

4,1 2.242 233

Σ7,3
4 −2.419 9 442 α22

4,1 2.209 253

Σ3,7
4 −2.419 9 442 α4

4,2 −3.443 215

Σ7,7
4 −2.135 8 994 α5

4,2 −2.220 212

Σ12,7
4 −2.713 9 446 α12

4,2 2.237 139

Σ1,11
4 2.688 10 000 α13

4,2 2.242 159

Σ7,12
4 −2.713 9 446 α2

4,3 −2.002 252
α19

4,3 3.008 438

4.7 Case Studies 157

simply is unable to estimate the parameters of interest well since floating point un-

derflow will be caused by such a large number of samples in Equation (4.10) during

MCMC sampling of the parameter, α. That is,

∏
{t≥2: st−1=i∧ st=j}

qti,j → 0 as #{t ≥ 2 : st−1 = i ∧ st = j} → n0,

where n0 ∈ N is sufficiently large, and qti,j < 1 for any {(i, j) ∈ Ω2 : i 6= j}.

158 4. Multivariate NHGHMM

159

Chapter 5
Conclusion

T
he main objective of this thesis was to develop and implement the proposed

MCMC algorithms for parameter estimation of both univariate and multivari-

ate NHGHMMs. The primary motivation of proposing advanced MCMC algorithms

was to improve the acceptance rate of Metropolis-Hastings type algorithms in the pro-

cess of estimating the parameters in the models.

After the literature review of this thesis, Chapters 3 and 4 were presented for uni-

variate and multivariate settings, respectively. Each chapter consisted of the prior

specification, derivation of joint and conditional posterior distributions of the parame-

ters, implementation of MCMC algorithms, and simulation & case studies.

In a Bayesian framework, it is necessary to specify prior distributions of parameters

of interest. As for a univariate NHGHMM, the prior specification of Spezia (2006) was

followed.

The theoretical component of the univariate NHGHMM differs from that of an

ordinary homogeneous GHMM in terms of transition probabilities. The NHGHMM re-

laxes the restriction of constant probabilities by introducing a set of exogenous variables

which are considered to affect the observed variable. Therefore, the resulting posterior

distribution of the parameter, α, was in a non-standard form, and the Metropolis-

Hastings type algorithms were necessary for parameter estimation.

Likewise, the parameter estimation of the multivariate NHGHMM was conducted

by extending the univariate case. Since the dimension of the hidden states is the same

as that of the univariate NHGHMM, the posterior distribution of the parameter α was

160 5. Conclusion

also in a non-standard form. Hence, the proposed MCMC algorithms implemented

earlier in Chapter 3 preserved the similar algorithmic scheme.

The proposed MCMC algorithms generally outperformed the Metropolis-Hastings

algorithm in the univariate NHGHMM as the convergence assessment confirms. Even

with the simulated data of length n = 300 in the simulation study, a set of MCMC

convergence tests such as Geweke’s diagnostics, ESS, and autocorrelation functions

proved that the advanced MCMC algorithms indeed improve mixing.

The advanced MCMC algorithms also proved to be useful when it comes to im-

proving mixing of the MCMC chains in the multivariate NHGHMM. In this setting,

the nature of the model especially exacerbated the mixing of the MCMC samples via

the standard random walk Metropolis-Hastings algorithm, even with thinning. On

the other hand, the proposed MCMC algorithms were able to obtain satisfactory con-

vergence assessment through the valid representative MCMC samples of the marginal

posterior distributions.

The performances of the proposed algorithms, for both univariate and multivariate

settings, were thoroughly investigated in terms of MCMC convergence and parameter

estimation. The MCMC convergence tests, namely Geweke’s diagnostics and autocor-

relation functions of the parameters, are used in the simulation studies. In addition,

model selection for the simulated models was also performed. As a Bayesian approach

was adopted in this thesis, point estimates, 95% CrI, and coverage of the parameters

were presented for the simulation studies. As for the case studies, the real-world data

sets were used for practical applications after the MCMC convergence was achieved.

Furthermore, the log marginal likelihoods for both univariate and multivariate

NHGHMMs confirm the number of hidden states in the model selection. Amongst all

the competing models with different MCMC algorithms, the MTAM algorithm proved

to be the most successful algorithm in estimating the number of hidden states in the

simulation studies under both univariate and multivariate settings.

Ultimately, I made some observations through running the algorithms for each of

the NHGHMMs as follows:

(i) The development of the more advanced MCMC algorithms on the models was

161

successful regarding ease of implementation.

(ii) Autocorrelation functions and ESS of the parameters can be improved jointly by

replacing an MCMC algorithm with more advanced ones.

(iii) The choice of exogenous variables was unsuitable for the models, and this suggests

that some practical applications are required to transform the exogenous variables

into feasible values before parameter estimation.

More detailed findings are listed as follows.

As for the univariate NHGHMM, the simulation study was conducted. The per-

formance of each MCMC algorithm, namely the AM, symmetric DRAM, and MTAM

algorithms, was found to be reasonable even though the sample size of the simulated

data sets was relatively small. It was also observed that there was a successive im-

provement for the autocorrelation functions and ESS of the parameters.

The MTAM algorithm was implemented for parameter estimation of the differenced

monthly US 3-month treasury bill rates from January 1973 to December 1999 since

the algorithm is more efficient than any other proposed MCMC algorithm. Since the

dimension of the exogenous variables was much larger than that of the simulation study,

it was necessary for the MCMC algorithm to be run much longer. That being said,

it is certain that the convergence was met under the model. Hence, the two hidden

states, namely small and large fluctuation periods, were identified although lengths of

those periods differ from Meligkotsidou and Dellaportas (2011)’s work since the random

effect was not considered in this thesis.

In order to validate the proposed MCMC algorithms, an extensive simulation study

for the multivariate NHGHMM was also conducted prior to a case study. In spite of the

multivariate observation, the non-homogeneity preserves the mathematical structure of

the univariate NHGHMM. Hence, the AM, symmetric DRAM, and MTAM algorithms

were implemented without any modifications to them.

The data set of the Icelandic river flow was analysed in Section 4.7.1. The multivari-

ate NHGHMM was able to capture the periodic characteristics in terms of transition

probabilities. It was also found that the major factor for transitions between the hidden

states to occur was daily mean temperatures.

162 5. Conclusion

In another case study of the multivariate NHGHMM, the rainfall data set was anal-

ysed in Section 4.7.2 in a Bayesian framework. The convergence assessment, however,

showed that the MCMC chains of the parameters of interest failed to converge jointly.

This leads to the conclusion where the multivariate NHGHMM was unfitted for the

UK rainfall data set. As Heaps et al. (2015) pointed out, a combination of rainfall

occurrences (Bernoulli variables) and rainfall amounts (Gaussian variables) is able to

make the statistical analysis possible to conduct. Hence, more sophisticated models

such as Heaps et al. (2015)’s are to be part of my future work.

As observed the simulation study in Chapter 3, the proposed MCMC algorithms

with a Bayesian approach may outperform frequentist methods where sample size is

considerably small. One of the drawbacks, however, is considered to be the incapability

of handling huge sample size of data sets due to the possibility of inducing arithmetic

underflow which has been seen in the case study of rainfall in the UK.

A set of normal R c© code was faced with lengthy computational time during the

course for my research. Hence, it was necessary to construct a set of C++ code within

‘Rcpp’ package developed by Eddelbuettel et al. (2011) to accelerate the computational

time, as well as running MCMC iterations long enough to achieve convergence.

All the proposed MCMC algorithms showed that they were able to converge to the

true values. In addition, a successive improvement of the autocorrelation functions and

ESS of the parameters was observed.

Consequently, the aims of this thesis were mostly met. As a by-product, a set of

C++ code was the most useful tool in both simulation and case studies. It certainly

accelerated the required computational tasks. Without it, this research would have

been impossible to complete.

Some aspects in statistical inference were disregarded in this thesis. Thus, it follows

that the limitations of this research may be caused by the following perspectives such

as:

• Apart from Geweke’s diagnostics and autocorrelation functions, other possible

MCMC convergence tests such as Heidelberger-Welch’s diagnostics (Heidelberger

and Welch, 1983) could be used.

163

• Similarly, only the ESS was used for measuring the efficiencies of the algorithms.

Some other possible methods such as relative numerical efficiency (Geweke et al.,

1991) might be implemented.

• To measure performances of parameter estimation, point estimates and 95% CrI

were used. This may be extended to using the deviance information criterion,

root-mean-square error or some other measures.

• The proposed MCMC algorithms have worked well in the specific simulation

study of the multivariate NHGHMM where the values of Σ were relatively small.

A comprehensive simulation study may be taken into account to ensure that the

model works well with various values of Σ.

With that being said, possible future work from this thesis may consist of:

(a) Comprehensive prior sensitivity analyses for both univariate and multivariate

NHGHMMs.

(b) A fully Bayesian analysis in both univariate and multivariate settings where the

number of hidden states is unknown.

(c) Different distributions of observations (i.e. exponential or Dirichlet distributions)

for non-homogeneous hidden Markov models.

The theoretical component of the NHGHMM also has the potential to improve as

Heaps et al. (2015) founded the framework of the multivariate NHGHMM to be able

to model the rainfall data set which is usually quite difficult for this type of statistical

inference.

Given that the non-homogeneity of transition probabilities is far superior to con-

stant transition probabilities in terms of predictive ability, the NHGHMM has great

applicability for predictive modelling.

164 5. Conclusion

165

Appendix A

Unknown Number of Hidden

States: Univariate NHGHMM

Let θ∗ = (µ∗, λ∗, α∗) be maximum a posteriori estimates of the joint posterior distribu-

tion. To evaluate a Bayes factor for each competing model in regards to the number of

hidden states, m, it is practically required to compute the log marginal likelihood and

is given as follows:

log f̂(y) = log f(y | θ∗) + log p(θ∗)− log π̂(θ∗ | y), (A.1)

where π̂(θ∗ | y) represents a posterior estimate at θ∗ realised by the MCMC samples

from the simulation of conditional posterior distributions (i.e. either the Gibbs sampler

or Metropolis-Hastings algorithm). Equation (A.1) enables the MCMC samples to be

directly used for estimating the term, π̂(θ∗ | y), since a marginal likelihood is calculated

by integrating a likelihood with respect to a prior instead of a posterior distribution

(Chib and Jeliazkov, 2001).

The following shows how to decompose each term of the right hand side in Equa-

tion (A.1) so that the log marginal likelihood can be calculated.

166 A. Unknown Number of Hidden States: Univariate NHGHMM

The log likelihood

Since y = (y1, y2, . . . , yn) is a set of pairwise discrete-time observations, it follows that

log f(y | θ∗) = log f(y1, y2, . . . , yn | θ∗)

= log(f(yn | y1:n−1, θ
∗)f(yn−1 | y1:n−2, θ

∗) · · · f(y2 | y1, θ
∗)f(y1 | θ∗))

= log

(
n∏
t=1

f(yt | y1:t−1, θ
∗)

)

=
n∑
t=1

log f(yt | y1:t−1, θ
∗)

=
n∑
t=1

log

(
m∑
i=1

f(yt | y1:t−1, St = i, θ∗)f(St = i | y1:t−1, θ
∗)

)
(by the law of total probability)

=
n∑
t=1

log

 m∑
i=1

f(yt |St = i, µ∗, λ∗, α∗)︸ ︷︷ ︸
the Gaussian density

Pr(St = i | y1:t−1, µ
∗, λ∗, α∗)︸ ︷︷ ︸

filtered probability

 .

(A.2)

The observations, {yt}, are conditionally independent for all t ∈ {1, 2, . . . , n}. The

filtered probability for each state i ∈ Ω at time t ∈ {1, 2, . . . , n} is available from

by-products of the forward filtering backward sampling algorithm.

The log priors

Since each prior is independent of the others, it follows that

log p(θ∗) = log p(µ∗, λ∗, α∗)

= log(p(µ∗)p(λ∗)p(α∗))

= log p(µ∗) + log p(λ∗) + log p(α∗)

= log

(
m∏
i=1

p(µ∗i)

)
+ log

(
m∏
i=1

p(λ∗i)

)
+ log

 m∏
i=1

m∏
j=1
j 6=i

p(α∗i,j)


=

m∑
i=1

log p(µ∗i) +
m∑
i=1

log p(λ∗i) +
m∑
i=1

m∑
j=1
j 6=i

log p(α∗i,j). (A.3)

167

The log posteriors

Following (Chib, 1995), the maximum a posteriori estimate, (µ∗, λ∗, α∗), is selected

for more accurate density estimation from which the fact that a high density point is

attributed to the point, (µ∗, λ∗, α∗). As such, the log posterior distribution is given by

log π̂(θ∗ | y)

= log π̂(µ∗, λ∗, α∗ | y)

= log(π̂(µ∗ | y, λ∗, α∗)π̂(λ∗ | y, α∗)π̂(α∗ | y))

= log

(
N−1

N∑
τ=1

m∏
i=1

π(µ∗i | y, λ∗, α∗, s(τ))

)
+ log

(
N−1

N∑
τ=1

m∏
i=1

π(λ∗i | y, α∗, µ(τ), s(τ))

)

+ log π̂(α∗ | y).

(A.4)

For log π̂(α∗ | y), the MCMC samples from the full conditional posterior distribution

are Metropolis-Hastings updates, and thus, the log posterior distribution has a different

form than those of the full conditional posterior distributions of parameters of interest

(Chib and Jeliazkov, 2001).

Recall that the detailed balance condition between a new point, θ′, and a current

point, θ, is assumed. Then,

Q(θ′ | θ)π(θ) = Q(θ | θ′)π(θ′),

where Q(θ′ | θ) denotes the transition kernel from the current point, θ, to the proposed

point, θ′. Define Q(θ′ | θ) = a(θ′ | θ)q(θ′ | θ), where a(θ′ | θ) denotes the acceptance

probability from θ to θ′, and q(θ′ | θ) denotes the proposal density for the random walk

Metropolis-Hastings move from θ to θ′.

For the log posterior distribution of α∗ given the observed data, y, the following

expression is obtained such that

Q(α∗ |α)π(α | y) = Q(α |α∗)π(α∗ | y). (A.5)

168 A. Unknown Number of Hidden States: Univariate NHGHMM

Then, integrate Equation (A.5) with respect to α. It follows that

∫
Q(α∗ |α)π(α | y) dα =

∫
Q(α |α∗)π(α∗ | y) dα

⇔ π(α∗ | y)

∫
a(α |α∗)q(α |α∗) dα =

∫
a(α∗ |α)q(α∗ |α)π(α | y) dα

⇔ π(α∗ | y) =

∫
a(α∗ |α)q(α∗ |α)π(α | y) dα∫

a(α |α∗)q(α |α∗) dα
=

Eπ(α | y)[a(α∗ |α)q(α∗ |α)]

Eq(α |α∗)[a(α |α∗)]
. (A.6)

Using the Monte Carlo method, Equation (A.6) can be estimated as follows:

π(α∗ | y) ≈ π̂(α∗ | y) =
N−1

1

∑N1

τ=1 a(α∗ |α(τ))q(α∗ |α(τ))

N−1
2

∑N2

ν=1 a(α(ν) |α∗)
,

where {α(τ)} is a set of realisations from the full conditional posterior distribution,

π(α | y), and {α(ν)} is a set of realisations from the proposal distribution, q(α |α∗).

Normally, N1 ≥ N2 since the time required for convergence of samples from the proposal

distribution is less in comparison to the MCMC samples from the full conditional

posterior distribution (Chib and Jeliazkov, 2001). Nevertheless, the condition such

that N1 = N2 = N is considered in this thesis. Moreover, for αi where ∀i ∈ Ω, it

follows that

π̂(α∗i | y) =

N−1
∑N

τ=1

∏m
i=1

(
a(α∗i |α

(τ)
i)
∏m

j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)

)
N−1

∑N
τ=1

∏m
i=1 a(α

(τ)
i |α∗i)

,

and the log posterior distribution of α∗ is given by

log π̂(α∗ | y) = log

N−1

N∑
τ=1

m∏
i=1

a(α∗i |α
(τ)
i)

m∏
j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)




− log

(
N−1

N∑
τ=1

m∏
i=1

a(α
(τ)
i |α∗i)

)
. (A.7)

Therefore, given Equations (A.2), (A.3), (A.4) and (A.7), the log marginal likelihood

is estimated as follows:

log f̂(y) =
n∑
t=1

log

(
m∑
i=1

f(yt | st = i, µ∗, λ∗, α∗) Pr(st = i | y1:t−1, µ
∗, λ∗, α∗)

)

169

+
m∑
i=1

log p(µ∗i) +
m∑
i=1

log p(λ∗i) +
m∑
i=1

m∑
j=1
j 6=i

log p(α∗i,j)

− log

(
N−1

N∑
τ=1

m∏
i=1

π(µ∗i | y, λ∗, α∗, s(τ))

)

− log

(
N−1

N∑
τ=1

m∏
i=1

π(λ∗i | y, α∗, µ(τ), s(τ))

)

− log

N−1

N∑
τ=1

m∏
i=1

a(α∗i |α
(τ)
i)

m∏
j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)




+ log

(
N−1

N∑
τ=1

m∏
i=1

a(α
(τ)
i |α∗i)

)
. (A.8)

170 A. Unknown Number of Hidden States: Univariate NHGHMM

171

Appendix B
Unknown Number of Hidden

States: Multivariate NHGHMM

Let θ∗ = (µ∗,Σ∗, α∗) be maximum a posteriori estimates of the joint posterior distribu-

tion. To evaluate a Bayes factor for each competing model with regard to the number

of hidden states, m, it is practically required to compute the log marginal likelihood

and is given as follows:

log f̂(y) = log f(y |θ∗) + log p(θ∗)− log π̂(θ∗ |y), (B.1)

where π̂(θ∗ |y) denotes a posterior estimate at θ∗ realised by the MCMC samples

from the simulation of conditional posterior distributions. Equation (B.1) enables the

MCMC samples to be directly used for estimating the term, π̂(θ∗ |y), since a marginal

likelihood is calculated by integrating a likelihood with respect to a prior distribution

instead of a posterior one (Chib and Jeliazkov, 2001).

The following shows how to decompose each term of the right hand side in Equa-

tion (B.1) so that the log marginal likelihood can be calculated.

The log likelihood

Since y = (y1,y2, . . . ,yn) is a set of pairwise discrete-time observations, it follows that

log f(y |θ∗) = log f(y1,y2, . . . ,yn |θ∗)

172 B. Unknown Number of Hidden States: Multivariate NHGHMM

= log(f(yn |y1:n−1,θ
∗)f(yn−1 |y1:n−2,θ

∗) · · · f(y2 |y1,θ
∗)f(y1 |θ∗))

= log

(
n∏
t=1

f(yt |y1:t−1,θ
∗)

)

=
n∑
t=1

log f(yt |y1:t−1,θ
∗)

=
n∑
t=1

log

(
m∑
i=1

f(yt |y1:t−1, St = i,θ∗)f(St = i |y1:t−1,θ
∗)

)
(by the law of total probability)

=
n∑
t=1

log

 m∑
i=1

f(yt |St = i,µ∗,Σ∗, α∗)︸ ︷︷ ︸
the Gaussian density

Pr(St = i |y1:t−1,µ
∗,Σ∗, α∗)︸ ︷︷ ︸

filtered probability

 ,

(B.2)

where yt = (y1
t , y

2
t , . . . , y

d
t) ∈ Rd, for any t ∈ {1, 2, . . . , n}.

The observations, {yt}, are conditionally independent for all t ∈ {1, 2, . . . , n}. The

filtered probability for each state i ∈ Ω at time t ∈ {1, 2, . . . , n} is available from

by-products of the forward filtering backward sampling algorithm.

The log priors

Since each prior distribution is independent of the others, it follows that

log p(θ∗) = log p(µ∗,Σ∗, α∗)

= log(p(θ∗)p(Σ∗)p(α∗))

= log p(µ∗) + log p(Σ∗) + log p(α∗)

=
m∑
i=1

log p(µ∗i) +
m∑
i=1

log p(Σ∗i) +
m∑
i=1

m∑
j=1
j 6=i

log p(α∗i,j). (B.3)

The log posteriors

Following Chib (1995), the maximum a posteriori estimate, (µ∗,Σ∗, α∗), is selected

for more accurate density estimation from which the fact that a high density point is

attributed to the point, (µ∗,Σ∗, α∗). As such, the log posterior distribution is given by

log π̂(θ∗ |y)

173

= log π̂(µ∗,Σ∗, α∗ |y)

= log(π̂(Σ∗ |y,µ∗, α∗)π̂(µ∗ |y, α∗)π̂(α∗ |y))

= log

(
N−1

N∑
τ=1

m∏
i=1

π(Σ∗i |y,µ∗, α∗, s(τ))

)
+ log

(
N−1

N∑
τ=1

m∏
i=1

π(µ∗i |y, α∗,Σ(τ), s(τ))

)

+ log π̂(α∗ |y).

(B.4)

For log π̂(α∗ |y), the MCMC samples from the full conditional posterior distribution

are Metropolis-Hastings updates, and therefore, the log posterior distribution has a

different form than those of the full conditional posterior distributions of parameters

of interest (Chib and Jeliazkov, 2001).

Recall that the detailed balance condition between a new point, θ′, and a current

point, θ, is assumed. Then,

Q(θ′ |θ)π(θ) = Q(θ |θ′)π(θ′),

where Q(θ′ |θ) denotes the transition kernel from the current point, θ, to the proposed

point, θ′. Define Q(θ′ |θ) = a(θ′ |θ)q(θ′ |θ), where a(θ′ |θ) denotes the acceptance

probability from θ to θ′, and q(θ′ |θ) denotes the proposal distribution for the random

walk Metropolis-Hastings move from θ to θ′.

For the log posterior distribution of α∗ given the observations, y, the following

expression is obtained such that

Q(α∗ |α)π(α |y) = Q(α |α∗)π(α∗ |y). (B.5)

Then, integrate Equation (B.5) with respect to α. It follows that

∫
Q(α∗ |α)π(α |y) dα =

∫
Q(α |α∗)π(α∗ |y) dα

⇔ π(α∗ |y)

∫
a(α |α∗)q(α |α∗) dα =

∫
a(α∗ |α)q(α∗ |α)π(α |y) dα

⇔ π(α∗ |y) =

∫
a(α∗ |α)q(α∗ |α)π(α |y) dα∫

a(α |α∗)q(α |α∗) dα
=

Eπ(α |y)[a(α∗ |α)q(α∗ |α)]

Eq(α |α∗)[a(α |α∗)]
. (B.6)

174 B. Unknown Number of Hidden States: Multivariate NHGHMM

Using the Monte Carlo method, Equation (B.6) can be estimated as follows:

π(α∗ |y) ≈ π̂(α∗ |y) =
N−1

1

∑N1

τ=1 a(α∗ |α(τ))q(α∗ |α(τ))

N−1
2

∑N2

ν=1 a(α(ν) |α∗)
,

where {α(τ)} is a set of realisations from the full conditional posterior distribution,

π(α |y), and {α(ν)} is a set of realisations from the proposal distribution, q(α |α∗).

Normally, N1 ≥ N2 since the time required for convergence of samples from the proposal

distribution is less in comparison to the MCMC samples from the full conditional

posterior distribution (Chib and Jeliazkov, 2001).

For the sake of simplicity, the condition N1 = N2 = N is considered. Then, for αi

where ∀i ∈ Ω, it follows that

π̂(α∗i | y) =

N−1
∑N

τ=1

∏m
i=1

(
a(α∗i |α

(τ)
i)
∏m

j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)

)
N−1

∑N
τ=1

∏m
i=1 a(α

(τ)
i |α∗i)

,

and the log posterior distribution of α∗ is given by

log π̂(α∗ |y) = log

N−1

N∑
τ=1

m∏
i=1

a(α∗i |α
(τ)
i)
∏
j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)




− log

(
N−1

N∑
τ=1

m∏
i=1

a(α
(τ)
i |α∗i)

)
. (B.7)

Therefore, given Equations (B.2), (B.3), (B.4) and (B.7), the log marginal likelihood

is estimated as follows:

log f̂(y) =
n∑
t=1

log

(
m∑
i=1

f(yt | st = i,µ∗,Σ∗, α∗) Pr(st = i |y1:t−1,µ
∗,Σ∗, α∗)

)

+
m∑
i=1

log p(µ∗i) +
m∑
i=1

log p(Σ∗i) +
m∑
i=1

m∑
j=1
j 6=i

log p(α∗i,j)

− log

(
N−1

N∑
τ=1

m∏
i=1

π(Σ∗i |y,µ∗, α∗, s(τ))

)

− log

(
N−1

N∑
τ=1

m∏
i=1

π(µ∗i |y, α∗,Σ(τ), s(τ))

)

175

− log

N−1

N∑
τ=1

m∏
i=1

a(α∗i |α
(τ)
i)
∏
j=1
j 6=i

q(α∗i,j |α
(τ)
i,j)




+ log

(
N−1

N∑
τ=1

m∏
i=1

a(α
(τ)
i |α∗i)

)
. (B.8)

176 B. Unknown Number of Hidden States: Multivariate NHGHMM

177

Appendix C
Figures: Univariate NHGHMM

(Simulation Study)

178 C. Figures: Univariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
2.

5
−

1.
5

−
0.

5

True value: µ1 = −1

Iteration

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

3.
0

True value: µ2 = 1

Iteration

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

True value: σ1 = 2

Iteration

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

True value: σ2 = 2

Iteration

(a)

True value: µ1 = −1

D
en

si
ty

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0.
0

0.
4

0.
8

1.
2

True value: µ2 = 1

D
en

si
ty

0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

True value: σ1 = 2
D

en
si

ty

1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

True value: σ2 = 2

D
en

si
ty

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

(b)

0 2000 4000 6000 8000

−
4

0
2

4
6

8

True value: α1, 2
1 = 3.529

Iteration

0 2000 4000 6000 8000

−
10

−
6

−
2

0
2

True value: α1, 2
2 = −5.205

Iteration

0 2000 4000 6000 8000

−
10

−
8

−
6

−
4

−
2

0

True value: α2, 1
1 = −5.320

Iteration

0 2000 4000 6000 8000

−
2

0
2

4
6

8
10

True value: α2, 1
2 = 5.205

Iteration

(c)

True value: α1, 2
1 = 3.529

D
en

si
ty

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

True value: α1, 2
2 = −5.205

D
en

si
ty

−10 −5 0

0.
00

0.
05

0.
10

0.
15

0.
20

True value: α2, 1
1 = −5.320

D
en

si
ty

−10 −8 −6 −4 −2 0

0.
00

0.
10

0.
20

0.
30

True value: α2, 1
2 = 5.205

D
en

si
ty

−4 −2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

(d)

Figure C.1: Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and histograms
(d) of α1,2 & α2,1 for one of R = 100 replications using the AM algorithm. Each of the
true values for the parameters is represented by the red line.

179

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t1 = 0.4

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t1 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t1 = 0.9

Iteration

(a)

True value: q1, 1
t1 = 0.4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True value: q1, 2
t1 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3

0
2

4
6

8

True value: q2, 2
t1 = 0.9

D
en

si
ty

0.7 0.8 0.9 1.0

0
2

4
6

8

(b)

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t2 = 0.9

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t2 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t2 = 0.4

Iteration

(c)

True value: q1, 1
t2 = 0.9

D
en

si
ty

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

True value: q1, 2
t2 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

True value: q2, 1
t2 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True value: q2, 2
t2 = 0.4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(d)

Figure C.2: Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms
(d) of Qt2 for one of R = 100 replications using the AM algorithm. Each of the true
values for the parameters is represented by the red line.

180 C. Figures: Univariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
2.

5
−

2.
0

−
1.

5
−

1.
0

True value: µ1 = −1

Iteration

0 2000 4000 6000 8000

0.
5

1.
0

1.
5

2.
0

2.
5

True value: µ2 = 1

Iteration

0 2000 4000 6000 8000

1.
0

1.
4

1.
8

2.
2

True value: σ1 = 2

Iteration

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

True value: σ2 = 2

Iteration

(a)

True value: µ1 = −1

D
en

si
ty

−2.5 −2.0 −1.5 −1.0

0.
0

0.
5

1.
0

1.
5

True value: µ2 = 1

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

True value: σ1 = 2
D

en
si

ty

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: σ2 = 2

D
en

si
ty

1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

(b)

0 2000 4000 6000 8000

−
2

0
2

4
6

8
10

True value: α1, 2
1 = 3.529

Iteration

0 2000 4000 6000 8000

−
10

−
5

0

True value: α1, 2
2 = −5.205

Iteration

0 2000 4000 6000 8000

−
10

−
6

−
4

−
2

0
2

True value: α2, 1
1 = −5.320

Iteration

0 2000 4000 6000 8000

−
5

0
5

10

True value: α2, 1
2 = 5.205

Iteration

(c)

True value: α1, 2
1 = 3.529

D
en

si
ty

−2 0 2 4 6 8 10

0.
00

0.
10

0.
20

True value: α1, 2
2 = −5.205

D
en

si
ty

−15 −10 −5 0

0.
00

0.
05

0.
10

0.
15

0.
20

True value: α2, 1
1 = −5.320

D
en

si
ty

−10 −8 −6 −4 −2 0 2

0.
00

0.
10

0.
20

True value: α2, 1
2 = 5.205

D
en

si
ty

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

(d)

Figure C.3: Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and histograms
(d) of α1,2 & α2,1 for one of R = 100 replications using the symmetric DRAM algorithm.
Each of the true values for the parameters is represented by the red line.

181

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t1 = 0.4

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t1 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t1 = 0.9

Iteration

(a)

True value: q1, 1
t1 = 0.4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: q1, 2
t1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
1

2
3

4
5

6
7

True value: q2, 2
t1 = 0.9

D
en

si
ty

0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6
7

(b)

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t2 = 0.9

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t2 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t2 = 0.4

Iteration

(c)

True value: q1, 1
t2 = 0.9

D
en

si
ty

0.65 0.75 0.85 0.95

0
2

4
6

8
10

True value: q1, 2
t2 = 0.1

D
en

si
ty

0.00 0.10 0.20 0.30

0
2

4
6

8
10

True value: q2, 1
t2 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True value: q2, 2
t2 = 0.4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(d)

Figure C.4: Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms
(d) of Qt2 for one of R = 100 replications using the symmetric DRAM algorithm. Each
of the true values for the parameters is represented by the red line.

182 C. Figures: Univariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
2.

5
−

1.
5

−
0.

5

True value: µ1 = −1

Iteration

0 2000 4000 6000 8000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: µ2 = 1

Iteration

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

True value: σ1 = 2

Iteration

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

True value: σ2 = 2

Iteration

(a)

True value: µ1 = −1

D
en

si
ty

−2.5 −2.0 −1.5 −1.0 −0.5

0.
0

0.
4

0.
8

1.
2

True value: µ2 = 1

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

True value: σ1 = 2
D

en
si

ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

True value: σ2 = 2

D
en

si
ty

1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

(b)

0 2000 4000 6000 8000

−
5

0
5

True value: α1, 2
1 = 3.529

Iteration

0 2000 4000 6000 8000

−
10

−
5

0
5

True value: α1, 2
2 = −5.205

Iteration

0 2000 4000 6000 8000

−
10

−
6

−
4

−
2

0
2

True value: α2, 1
1 = −5.320

Iteration

0 2000 4000 6000 8000

−
5

0
5

10

True value: α2, 1
2 = 5.205

Iteration

(c)

True value: α1, 2
1 = 3.529

D
en

si
ty

−5 0 5

0.
00

0.
10

0.
20

True value: α1, 2
2 = −5.205

D
en

si
ty

−10 −5 0 5

0.
00

0.
05

0.
10

0.
15

0.
20

True value: α2, 1
1 = −5.320

D
en

si
ty

−10 −8 −6 −4 −2 0 2 4

0.
00

0.
10

0.
20

0.
30

True value: α2, 1
2 = 5.205

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

(d)

Figure C.5: Trace plots (a) and histograms (b) of µ & σ; trace plots (c) and histograms
(d) of α1,2 & α2,1 for one of R = 100 replications using the MTAM algorithm. Each of
the true values for the parameters is represented by the red line.

183

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t1 = 0.4

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t1 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t1 = 0.9

Iteration

(a)

True value: q1, 1
t1 = 0.4

D
en

si
ty

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: q1, 2
t1 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

True value: q2, 2
t1 = 0.9

D
en

si
ty

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

(b)

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 1
t2 = 0.9

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q1, 2
t2 = 0.1

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 1
t2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: q2, 2
t2 = 0.4

Iteration

(c)

True value: q1, 1
t2 = 0.9

D
en

si
ty

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

True value: q1, 2
t2 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

True value: q2, 1
t2 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

True value: q2, 2
t2 = 0.4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(d)

Figure C.6: Trace plots (a) and histograms (b) of Qt1 ; trace plots (c) and histograms
(d) of Qt2 for one of R = 100 replications using the MTAM algorithm. Each of the
true values for the parameters is represented by the red line.

184 C. Figures: Univariate NHGHMM (Simulation Study)

185

Appendix D
Figures: Multivariate NHGHMM

(Simulation Study)

186 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.1: Autocorrelation functions of µ for the standard Metropolis-Hastings algo-
rithm without thinning

187

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.2: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the standard
Metropolis-Hastings algorithm without thinning

188 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.3: Autocorrelation functions of µ for the AM algorithm without thinning

189

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.4: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the AM
algorithm without thinning

190 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.5: Autocorrelation functions of µ for the symmetric DRAM algorithm with-
out thinning

191

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.6: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric
DRAM algorithm without thinning

192 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.7: Autocorrelation functions of µ for the MTAM algorithm without thinning

193

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.8: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM
algorithm without thinning

194 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.9: Autocorrelation functions of µ for the standard Metropolis-Hastings algo-
rithm with thinning

195

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.10: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the standard
Metropolis-Hastings algorithm with thinning

196 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.11: Autocorrelation functions of µ for the AM algorithm with thinning

197

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.12: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the AM
algorithm with thinning

198 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.13: Autocorrelation functions of µ for the symmetric DRAM algorithm with
thinning

199

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.14: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric
DRAM algorithm with thinning

200 D. Figures: Multivariate NHGHMM (Simulation Study)

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ1
1

0 10 20 30 40
0.

0
0.

4
0.

8

Lag

A
C

F

µ1
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ2
2

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
1

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

µ3
2

Figure D.15: Autocorrelation functions of µ for the MTAM algorithm with thinning

201

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ1
2, 2

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ2
2, 2

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
1, 2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Σ3
2, 2

(c)

Figure D.16: Autocorrelation functions of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM
algorithm with thinning

202 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000 10000

0.
6

1.
0

1.
4

True value: µ1
1 = 1

Iteration

0 2000 4000 6000 8000 10000
1.

6
1.

8
2.

0
2.

2

True value: µ1
2 = 2

Iteration

0 2000 4000 6000 8000 10000

2.
6

3.
0

3.
4

True value: µ2
1 = 3

Iteration

0 2000 4000 6000 8000 10000

−
0.

3
−

0.
1

0.
1

0.
3

True value: µ2
2 = 0

Iteration

0 2000 4000 6000 8000 10000

4.
6

5.
0

5.
4

5.
8

True value: µ3
1 = 5

Iteration

0 2000 4000 6000 8000 10000

3.
0

3.
5

4.
0

4.
5

True value: µ3
2 = 4

Iteration

Figure D.17: Trace plots of µ for the AM algorithm. Each of the true values for the
parameters is represented by the red line.

203

True value: µ1
1 = 1

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

1.
0

2.
0

True value: µ1
2 = 2

D
en

si
ty

1.6 1.8 2.0 2.2 2.4

0
1

2
3

True value: µ2
1 = 3

D
en

si
ty

2.6 2.8 3.0 3.2 3.4

0.
0

1.
0

2.
0

3.
0

True value: µ2
2 = 0

D
en

si
ty

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4

True value: µ3
1 = 5

D
en

si
ty

4.6 4.8 5.0 5.2 5.4 5.6 5.8

0.
0

1.
0

2.
0

True value: µ3
2 = 4

D
en

si
ty

3.0 3.5 4.0 4.5

0.
0

0.
5

1.
0

1.
5

2.
0

Figure D.18: Histograms of µ for the AM algorithm.Each of the true values for the
parameters is represented by the red line.

204 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

True value: Σ1
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
0.

2
0.

2
0.

6

True value: Σ1
1, 2 = 0.5

Iteration

0 2000 4000 6000 8000

−
0.

2
0.

2
0.

6

True value: Σ1
2, 1 = 0.5

Iteration

0 2000 4000 6000 8000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

True value: Σ1
2, 2 = 1.0

Iteration

(a)

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

3.
5

True value: Σ2
1, 1 = 2.0

Iteration

0 2000 4000 6000 8000

0.
2

0.
6

1.
0

True value: Σ2
1, 2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
2

0.
6

1.
0

True value: Σ2
2, 1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
6

0.
8

1.
0

1.
2

1.
4

True value: Σ2
2, 2 = 1.0

Iteration

(b)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

True value: Σ3
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0

True value: Σ3
1, 2 = −0.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0

True value: Σ3
2, 1 = −0.5

Iteration

0 2000 4000 6000 8000

1.
0

2.
0

3.
0

4.
0

True value: Σ3
2, 2 = 2.0

Iteration

(c)

Figure D.19: Trace plots of Σ1 (a), Σ2 (b), and Σ3 (a), for the AM algorithm. Each of
the true values for the parameters is represented by the red line.

205

True value: Σ1
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

True value: Σ1
1, 2 = 0.5

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

True value: Σ1
2, 1 = 0.5

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

True value: Σ1
2, 2 = 1.0

D
en

si
ty

0.4 0.6 0.8 1.0 1.2 1.4

0.
0

1.
0

2.
0

3.
0

(a)

True value: Σ2
1, 1 = 2.0

D
en

si
ty

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

True value: Σ2
1, 2 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

True value: Σ2
2, 1 = 0.6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

True value: Σ2
2, 2 = 1.0

D
en

si
ty

0.6 0.8 1.0 1.2 1.4

0.
0

1.
0

2.
0

3.
0

(b)

True value: Σ3
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
1, 2 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 1 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 2 = 2.0

D
en

si
ty

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Figure D.20: Histograms of Σ1 (a), Σ2 (b), and Σ3 (a), for the AM algorithm. Each of
the true values for the parameters is represented by the red line.

206 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
3

−
2

−
1

0
1

2

True value: α1, 2
1 = −1.109

Iteration

0 2000 4000 6000 8000

−
1.

5
−

0.
5

0.
5

1.
5

True value: α1, 2
2 = 0.555

Iteration

0 2000 4000 6000 8000

−
10

−
8

−
6

−
4

−
2

0

True value: α1, 3
1 = −3.039

Iteration

0 2000 4000 6000 8000

0
1

2
3

4
5

True value: α1, 3
2 = 1.664

Iteration

(a)

0 2000 4000 6000 8000

−
6

−
5

−
4

−
3

−
2

−
1

True value: α2, 1
1 = −3.193

Iteration

0 2000 4000 6000 8000

0.
0

1.
0

2.
0

3.
0

True value: α2, 1
2 = 1.485

Iteration

0 2000 4000 6000 8000

−
5

−
4

−
3

−
2

−
1

0

True value: α2, 3
1 = −2.361

Iteration

0 2000 4000 6000 8000

−
1

0
1

2

True value: α2, 3
2 = 0.376

Iteration

(b)

0 2000 4000 6000 8000

−
6

−
4

−
2

0

True value: α3, 1
1 = −2.867

Iteration

0 2000 4000 6000 8000

−
1

0
1

2
3

4
5

True value: α3, 1
2 = 1.433

Iteration

0 2000 4000 6000 8000

−
5

−
3

−
1

0
1

True value: α3, 2
1 = −1.282

Iteration

0 2000 4000 6000 8000

−
1

0
1

2
3

4
5

True value: α3, 2
2 = 0.785

Iteration

(c)

Figure D.21: Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the
AM algorithm. Each of the true values for the parameters is represented by the red
line.

207

True value: α1, 2
1 = −1.109

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

True value: α1, 2
2 = 0.555

D
en

si
ty

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

True value: α1, 3
1 = −3.039

D
en

si
ty

−10 −8 −6 −4 −2 0

0.
00

0.
10

0.
20

0.
30

True value: α1, 3
2 = 1.664

D
en

si
ty

−1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a)

True value: α2, 1
1 = −3.193

D
en

si
ty

−6 −5 −4 −3 −2 −1

0.
0

0.
2

0.
4

0.
6

True value: α2, 1
2 = 1.485

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True value: α2, 3
1 = −2.361

D
en

si
ty

−5 −4 −3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

True value: α2, 3
2 = 0.376

D
en

si
ty

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

(b)

True value: α3, 1
1 = −2.867

D
en

si
ty

−6 −4 −2 0

0.
0

0.
1

0.
2

0.
3

0.
4

True value: α3, 1
2 = 1.433

D
en

si
ty

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α3, 2
1 = −1.282

D
en

si
ty

−5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α3, 2
2 = 0.785

D
en

si
ty

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

(c)

Figure D.22: Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the
AM algorithm. Each of the true values for the parameters is represented by the red
line.

208 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t1 = 0.6

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t1 = 0.8

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t1 = 0.6

Iteration

Figure D.23: Trace plots of Qt1 for the AM algorithm. Each of the true values for the
parameters is represented by the red line.

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t2 = 0.5

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t2 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t2 = 0.3

Iteration

Figure D.24: Trace plots of Qt2 for the AM algorithm. Each of the true values for the
parameters is represented by the red line.

209

True value: q1, 1
t1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q1, 2
t1 = 0.3

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4

True value: q1, 3
t1 = 0.1

D
en

si
ty

0.00 0.10 0.20

0
4

8
12

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.00 0.10 0.20

0
2

4
6

8
12

True value: q2, 2
t1 = 0.8

D
en

si
ty

0.60 0.70 0.80 0.90

0
2

4
6

8

True value: q2, 3
t1 = 0.1

D
en

si
ty

0.05 0.15 0.25

0
2

4
6

8
12

True value: q3, 1
t1 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

True value: q3, 2
t1 = 0.3

D
en

si
ty

0.1 0.3 0.5

0
1

2
3

4
5

True value: q3, 3
t1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

Figure D.25: Histograms of Qt1 for the AM algorithm. Each of the true values for the
parameters is represented by the red line.

True value: q1, 1
t2 = 0.3

D
en

si
ty

0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

True value: q1, 2
t2 = 0.3

D
en

si
ty

0.1 0.3 0.5

0
1

2
3

4
5

True value: q1, 3
t2 = 0.4

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

True value: q2, 1
t2 = 0.4

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

True value: q2, 2
t2 = 0.5

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4
5

True value: q2, 3
t2 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

True value: q3, 1
t2 = 0.3

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4

True value: q3, 2
t2 = 0.4

D
en

si
ty

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

3.
0

True value: q3, 3
t2 = 0.3

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4

Figure D.26: Histograms of Qt2 for the AM algorithm. Each of the true values for the
parameters is represented by the red line.

210 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000 10000

0.
4

0.
8

1.
2

1.
6

True value: µ1
1 = 1

Iteration

0 2000 4000 6000 8000 10000
1.

6
2.

0
2.

4

True value: µ1
2 = 2

Iteration

0 2000 4000 6000 8000 10000

2.
4

2.
8

3.
2

True value: µ2
1 = 3

Iteration

0 2000 4000 6000 8000 10000

−
0.

5
−

0.
2

0.
0

True value: µ2
2 = 0

Iteration

0 2000 4000 6000 8000 10000

4.
4

4.
8

5.
2

5.
6

True value: µ3
1 = 5

Iteration

0 2000 4000 6000 8000 10000

3.
5

4.
0

4.
5

True value: µ3
2 = 4

Iteration

Figure D.27: Trace plots of µ for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

211

True value: µ1
1 = 1

D
en

si
ty

0.5 1.0 1.5

0.
0

1.
0

2.
0

True value: µ1
2 = 2

D
en

si
ty

1.6 1.8 2.0 2.2 2.4 2.6

0.
0

1.
0

2.
0

3.
0

True value: µ2
1 = 3

D
en

si
ty

2.4 2.6 2.8 3.0 3.2 3.4

0.
0

1.
0

2.
0

3.
0

True value: µ2
2 = 0

D
en

si
ty

−0.6 −0.4 −0.2 0.0

0
1

2
3

4

True value: µ3
1 = 5

D
en

si
ty

4.4 4.6 4.8 5.0 5.2 5.4 5.6

0.
0

1.
0

2.
0

True value: µ3
2 = 4

D
en

si
ty

3.0 3.5 4.0 4.5

0.
0

0.
5

1.
0

1.
5

2.
0

Figure D.28: Histograms of µ for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

212 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

3.
0

True value: Σ1
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
0.

5
0.

0
0.

5
1.

0

True value: Σ1
1, 2 = 0.5

Iteration

0 2000 4000 6000 8000

−
0.

5
0.

0
0.

5
1.

0

True value: Σ1
2, 1 = 0.5

Iteration

0 2000 4000 6000 8000

0.
4

0.
8

1.
2

1.
6

True value: Σ1
2, 2 = 1.0

Iteration

(a)

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

3.
5

True value: Σ2
1, 1 = 2.0

Iteration

0 2000 4000 6000 8000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

True value: Σ2
1, 2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

True value: Σ2
2, 1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

True value: Σ2
2, 2 = 1.0

Iteration

(b)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

True value: Σ3
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

True value: Σ3
1, 2 = −0.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

True value: Σ3
2, 1 = −0.5

Iteration

0 2000 4000 6000 8000

2
3

4
5

True value: Σ3
2, 2 = 2.0

Iteration

(c)

Figure D.29: Trace plots of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric DRAM
algorithm. Each of the true values for the parameters is represented by the red line.

213

True value: Σ1
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

True value: Σ1
1, 2 = 0.5

D
en

si
ty

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ1
2, 1 = 0.5

D
en

si
ty

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ1
2, 2 = 1.0

D
en

si
ty

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a)

True value: Σ2
1, 1 = 2.0

D
en

si
ty

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

True value: Σ2
1, 2 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

True value: Σ2
2, 1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

True value: Σ2
2, 2 = 1.0

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

1.
0

2.
0

3.
0

(b)

True value: Σ3
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
1, 2 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 1 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 2 = 2.0

D
en

si
ty

2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Figure D.30: Histograms of Σ1 (a), Σ2 (b), and Σ3 (c), for the symmetric DRAM
algorithm. Each of the true values for the parameters is represented by the red line.

214 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
3

−
2

−
1

0
1

2

True value: α1, 2
1 = −1.109

Iteration

0 2000 4000 6000 8000

−
1

0
1

2

True value: α1, 2
2 = 0.555

Iteration

0 2000 4000 6000 8000

−
6

−
4

−
2

0

True value: α1, 3
1 = −3.039

Iteration

0 2000 4000 6000 8000

0
1

2
3

4

True value: α1, 3
2 = 1.664

Iteration

(a)

0 2000 4000 6000 8000

−
7

−
6

−
5

−
4

−
3

−
2

True value: α2, 1
1 = −3.193

Iteration

0 2000 4000 6000 8000

1.
0

2.
0

3.
0

4.
0

True value: α2, 1
2 = 1.485

Iteration

0 2000 4000 6000 8000

−
5

−
4

−
3

−
2

−
1

0
1

True value: α2, 3
1 = −2.361

Iteration

0 2000 4000 6000 8000

−
2

−
1

0
1

2
3

True value: α2, 3
2 = 0.376

Iteration

(b)

0 2000 4000 6000 8000

−
5

−
4

−
3

−
2

−
1

0
1

True value: α3, 1
1 = −2.867

Iteration

0 2000 4000 6000 8000

−
1

0
1

2
3

True value: α3, 1
2 = 1.433

Iteration

0 2000 4000 6000 8000

−
4

−
3

−
2

−
1

0

True value: α3, 2
1 = −1.282

Iteration

0 2000 4000 6000 8000

0
1

2
3

True value: α3, 2
2 = 0.785

Iteration

(c)

Figure D.31: Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the
symmetric DRAM algorithm. Each of the true values for the parameters is represented
by the red line.

215

True value: α1, 2
1 = −1.109

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α1, 2
2 = 0.555

D
en

si
ty

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

True value: α1, 3
1 = −3.039

D
en

si
ty

−6 −4 −2 0

0.
0

0.
1

0.
2

0.
3

0.
4

True value: α1, 3
2 = 1.664

D
en

si
ty

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

(a)

True value: α2, 1
1 = −3.193

D
en

si
ty

−7 −6 −5 −4 −3 −2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α2, 1
2 = 1.485

D
en

si
ty

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

True value: α2, 3
1 = −2.361

D
en

si
ty

−6 −5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

True value: α2, 3
2 = 0.376

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

(b)

True value: α3, 1
1 = −2.867

D
en

si
ty

−5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α3, 1
2 = 1.433

D
en

si
ty

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

True value: α3, 2
1 = −1.282

D
en

si
ty

−5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α3, 2
2 = 0.785

D
en

si
ty

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Figure D.32: Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), and α3,1 & α3,2 (c), for the
symmetric DRAM algorithm. Each of the true values for the parameters is represented
by the red line.

216 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t1 = 0.6

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t1 = 0.8

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t1 = 0.6

Iteration

Figure D.33: Trace plots of Qt1 for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t2 = 0.5

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t2 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t2 = 0.3

Iteration

Figure D.34: Trace plots of Qt2 for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

217

True value: q1, 1
t1 = 0.6

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4

True value: q1, 2
t1 = 0.3

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q1, 3
t1 = 0.1

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4
5

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.05 0.15 0.25

0
4

8
12

True value: q2, 2
t1 = 0.8

D
en

si
ty

0.6 0.7 0.8 0.9

0
2

4
6

8

True value: q2, 3
t1 = 0.1

D
en

si
ty

0.00 0.10 0.20 0.30

0
2

4
6

8

True value: q3, 1
t1 = 0.1

D
en

si
ty

0.1 0.2 0.3 0.4

0
1

2
3

4
5

6

True value: q3, 2
t1 = 0.3

D
en

si
ty

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6
True value: q3, 3

t1 = 0.6

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8

0
1

2
3

4
5

Figure D.35: Histograms of Qt1 for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

True value: q1, 1
t2 = 0.3

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6

True value: q1, 2
t2 = 0.3

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4

True value: q1, 3
t2 = 0.4

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q2, 1
t2 = 0.4

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q2, 2
t2 = 0.5

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4
5

True value: q2, 3
t2 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8

True value: q3, 1
t2 = 0.3

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4

True value: q3, 2
t2 = 0.4

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4

True value: q3, 3
t2 = 0.3

D
en

si
ty

0.1 0.3 0.5

0
1

2
3

4
5

Figure D.36: Histograms of Qt2 for the symmetric DRAM algorithm. Each of the true
values for the parameters is represented by the red line.

218 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000 10000

0.
6

1.
0

1.
4

True value: µ1
1 = 1

Iteration

0 2000 4000 6000 8000 10000
1.

8
2.

2
2.

6

True value: µ1
2 = 2

Iteration

0 2000 4000 6000 8000 10000

2.
6

3.
0

3.
4

True value: µ2
1 = 3

Iteration

0 2000 4000 6000 8000 10000

−
0.

4
0.

0
0.

2

True value: µ2
2 = 0

Iteration

0 2000 4000 6000 8000 10000

4.
4

4.
8

5.
2

5.
6

True value: µ3
1 = 5

Iteration

0 2000 4000 6000 8000 10000

3.
5

4.
0

4.
5

True value: µ3
2 = 4

Iteration

Figure D.37: Trace plots of µ for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

219

True value: µ1
1 = 1

D
en

si
ty

0.6 0.8 1.0 1.2 1.4 1.6

0.
0

1.
0

2.
0

3.
0

True value: µ1
2 = 2

D
en

si
ty

1.8 2.0 2.2 2.4 2.6

0.
0

1.
0

2.
0

3.
0

True value: µ2
1 = 3

D
en

si
ty

2.6 2.8 3.0 3.2 3.4

0.
0

1.
0

2.
0

3.
0

True value: µ2
2 = 0

D
en

si
ty

−0.4 −0.2 0.0 0.2

0
1

2
3

4

True value: µ3
1 = 5

D
en

si
ty

4.4 4.6 4.8 5.0 5.2 5.4 5.6

0.
0

1.
0

2.
0

True value: µ3
2 = 4

D
en

si
ty

3.5 4.0 4.5

0.
0

0.
5

1.
0

1.
5

2.
0

Figure D.38: Histograms of µ for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

220 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

True value: Σ1
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
0.

2
0.

2
0.

6
1.

0

True value: Σ1
1, 2 = 0.5

Iteration

0 2000 4000 6000 8000

−
0.

2
0.

2
0.

6
1.

0

True value: Σ1
2, 1 = 0.5

Iteration

0 2000 4000 6000 8000

0.
6

1.
0

1.
4

1.
8

True value: Σ1
2, 2 = 1.0

Iteration

(a)

0 2000 4000 6000 8000

1.
5

2.
0

2.
5

3.
0

3.
5

True value: Σ2
1, 1 = 2.0

Iteration

0 2000 4000 6000 8000

0.
2

0.
6

1.
0

1.
4

True value: Σ2
1, 2 = 0.6

Iteration

0 2000 4000 6000 8000

0.
2

0.
6

1.
0

1.
4

True value: Σ2
2, 1 = 0.6

Iteration

0 2000 4000 6000 8000

0.
8

1.
2

1.
6

2.
0

True value: Σ2
2, 2 = 1.0

Iteration

(b)

0 2000 4000 6000 8000

1.
0

1.
5

2.
0

2.
5

True value: Σ3
1, 1 = 1.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0

True value: Σ3
1, 2 = −0.5

Iteration

0 2000 4000 6000 8000

−
1.

5
−

1.
0

−
0.

5
0.

0

True value: Σ3
2, 1 = −0.5

Iteration

0 2000 4000 6000 8000

2
3

4
5

True value: Σ3
2, 2 = 2.0

Iteration

(c)

Figure D.39: Trace plots of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM algorithm. Each
of the true values for the parameters is represented by the red line.

221

True value: Σ1
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

True value: Σ1
1, 2 = 0.5

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ1
2, 1 = 0.5

D
en

si
ty

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ1
2, 2 = 1.0

D
en

si
ty

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a)

True value: Σ2
1, 1 = 2.0

D
en

si
ty

1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

True value: Σ2
1, 2 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ2
2, 1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

True value: Σ2
2, 2 = 1.0

D
en

si
ty

0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b)

True value: Σ3
1, 1 = 1.5

D
en

si
ty

1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
1, 2 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 1 = −0.5

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

True value: Σ3
2, 2 = 2.0

D
en

si
ty

2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Figure D.40: Histograms of Σ1 (a), Σ2 (b), and Σ3 (c), for the MTAM algorithm. Each
of the true values for the parameters is represented by the red line.

222 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 4000 6000 8000

−
4

−
2

0
2

4

True value: α1, 2
1 = −1.109

Iteration

0 2000 4000 6000 8000

−
6

−
4

−
2

0
2

True value: α1, 2
2 = 0.555

Iteration

0 2000 4000 6000 8000

−
5

−
3

−
1

0
1

True value: α1, 3
1 = −3.039

Iteration

0 2000 4000 6000 8000

−
1

0
1

2

True value: α1, 3
2 = 1.664

Iteration

(a)

0 2000 4000 6000 8000

−
7

−
6

−
5

−
4

−
3

−
2

−
1

True value: α2, 1
1 = −3.193

Iteration

0 2000 4000 6000 8000

0
1

2
3

True value: α2, 1
2 = 1.485

Iteration

0 2000 4000 6000 8000

−
6

−
5

−
4

−
3

−
2

−
1

True value: α2, 3
1 = −2.361

Iteration

0 2000 4000 6000 8000

0
1

2
3

True value: α2, 3
2 = 0.376

Iteration

(b)

0 2000 4000 6000 8000

−
6

−
4

−
2

0

True value: α3, 1
1 = −2.867

Iteration

0 2000 4000 6000 8000

−
2

−
1

0
1

2
3

True value: α3, 1
2 = 1.433

Iteration

0 2000 4000 6000 8000

−
4

−
3

−
2

−
1

0
1

True value: α3, 2
1 = −1.282

Iteration

0 2000 4000 6000 8000

0
1

2
3

True value: α3, 2
2 = 0.785

Iteration

(c)

Figure D.41: Trace plots of α1,2 & α1,3 (a), α2,1 & α2,3 (b), α3,1 & α3,2 (c), for the
MTAM algorithm. Each of the true values for the parameters is represented by the red
line.

223

True value: α1, 2
1 = −1.109

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

True value: α1, 2
2 = 0.555

D
en

si
ty

−6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

True value: α1, 3
1 = −3.039

D
en

si
ty

−4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α1, 3
2 = 1.664

D
en

si
ty

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

(a)

True value: α2, 1
1 = −3.193

D
en

si
ty

−7 −6 −5 −4 −3 −2 −1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α2, 1
2 = 1.485

D
en

si
ty

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

True value: α2, 3
1 = −2.361

D
en

si
ty

−6 −5 −4 −3 −2 −1

0.
0

0.
2

0.
4

0.
6

True value: α2, 3
2 = 0.376

D
en

si
ty

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

(b)

True value: α3, 1
1 = −2.867

D
en

si
ty

−6 −4 −2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

True value: α3, 1
2 = 1.433

D
en

si
ty

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

True value: α3, 2
1 = −1.282

D
en

si
ty

−5 −4 −3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

True value: α3, 2
2 = 0.785

D
en

si
ty

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

(c)

Figure D.42: Histograms of α1,2 & α1,3 (a), α2,1 & α2,3 (b), α3,1 & α3,2 (c), for the
MTAM algorithm. Each of the true values for the parameters is represented by the red
line.

224 D. Figures: Multivariate NHGHMM (Simulation Study)

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t1 = 0.6

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t1 = 0.8

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t1 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t1 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t1 = 0.6

Iteration

Figure D.43: Trace plots of Qt1 for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 2
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q1, 3
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 1
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 2
t2 = 0.5

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q2, 3
t2 = 0.1

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 1
t2 = 0.3

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 2
t2 = 0.4

Iteration

0 2000 6000 10000

0.
0

0.
4

0.
8

True value: q3, 3
t2 = 0.3

Iteration

Figure D.44: Trace plots of Qt2 for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

225

True value: q1, 1
t1 = 0.6

D
en

si
ty

0.3 0.5 0.7 0.9

0
1

2
3

4

True value: q1, 2
t1 = 0.3

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6

True value: q1, 3
t1 = 0.1

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4
5

True value: q2, 1
t1 = 0.1

D
en

si
ty

0.05 0.15

0
4

8
12

True value: q2, 2
t1 = 0.8

D
en

si
ty

0.65 0.75 0.85 0.95

0
2

4
6

8
10

True value: q2, 3
t1 = 0.1

D
en

si
ty

0.05 0.10 0.15 0.20

0
4

8
12

True value: q3, 1
t1 = 0.1

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

6

True value: q3, 2
t1 = 0.3

D
en

si
ty

0.1 0.3 0.5

0
1

2
3

4
True value: q3, 3

t1 = 0.6

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

Figure D.45: Histograms of Qt1 for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

True value: q1, 1
t2 = 0.3

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q1, 2
t2 = 0.3

D
en

si
ty

0.00 0.10 0.20 0.30

0
2

4
6

8
12

True value: q1, 3
t2 = 0.4

D
en

si
ty

0.1 0.3 0.5 0.7

0
1

2
3

4

True value: q2, 1
t2 = 0.4

D
en

si
ty

0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

True value: q2, 2
t2 = 0.5

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q2, 3
t2 = 0.1

D
en

si
ty

0.1 0.2 0.3 0.4 0.5

0
1

2
3

4
5

True value: q3, 1
t2 = 0.3

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4
5

True value: q3, 2
t2 = 0.4

D
en

si
ty

0.2 0.4 0.6 0.8

0
1

2
3

4

True value: q3, 3
t2 = 0.3

D
en

si
ty

0.0 0.2 0.4 0.6

0
1

2
3

4
5

Figure D.46: Histograms of Qt2 for the MTAM algorithm. Each of the true values for
the parameters is represented by the red line.

226 D. Figures: Multivariate NHGHMM (Simulation Study)

227

Appendix E
Source Code: Univariate

NHGHMM

E.1 R c©

1 simulate_NHHMM <- function(n,mu,sigma ,Q){

2 #--

3 # This function simulates a non -homogeneous Gaussian hidden

Markov model and returns a sequence of the hidden

states and observations.

4 #--

5 # Inputs

6 #--

7 # - n: the number of observations

8 # - mu: a vector of mu

9 # - sigma: a vector of sigma

10 # - Q: the transition matrix/matrices

11 #--

12 # Outputs

13 #--

14 # - state: a sequence of the hidden states

15 # - obs: a sequence of the observations

228 E. Source Code: Univariate NHGHMM

16 #--

17 if(dim(Q)[1] != dim(Q)[2]){

18 stop("The transition matrix is not square.")

19 }

20 m <- dim(Q)[1]

21 state <- numeric(n)

22 obs <- numeric(n)

23 state [1] <- sample (1:m,size=1,prob=rep(1/m,m))

24 obs [1] <- rnorm(1,mean=mu[state [1]],sd=sigma[state [1]])

25 # Homogeneous transition probabilities

26 if(is.matrix(Q)){

27 for(t in 2:n){

28 state[t] <- sample (1:m,size=1,prob=Q[state[t-1],])

29 obs[t] <- rnorm(1,mean=mu[state[t]],sd=sigma[state[t

]])

30 }

31 }

32 # Non -homogeneous transition probabilities

33 else{

34 for(t in 2:n){

35 state[t] <- sample (1:m,size=1,prob=Q[state[t-1],,t])

36 obs[t] <- rnorm(1,mean=mu[state[t]],sd=sigma[state[t

]])

37 }

38 }

39 result <- cbind(state ,obs)

40 return(result)

41 }

1 sampleAlpha <- function(j,state ,Q,z,A,mu_A,Sigma_A,E){

2 #--

E.1 R c© 229

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogenous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

updates

15 #--

16 # Outputs

17 #--

18 # - alpha: the new proposed parameter , alpha

19 # - prob: the acceptance probability of the proposed alpha

20 #--

21 # Define the posterior density function

22 f <- function(A){

23 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

24 }

25 m <- dim(Q)[1]

26 n <- length(state)

230 E. Source Code: Univariate NHGHMM

27 ind <- which(state[-n]==j)

28 mat_ind <- (1:m)[-j]

29 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

30 # Metropolis -Hastings update

31 A_curr <- A

32 if(length(mat_ind) < 2){

33 A[,mat_ind] <- mvrnormArma (1,A_curr[,mat_ind],E)

34 }

35 else{

36 A[,mat_ind] <- apply(A_curr[,mat_ind],2,function(x)

mvrnormArma (1,x,E))

37 }

38 # Calculate the acceptance ratio

39 P <- f(A)/f(A_curr)

40 acc_prob <- min(1,P)

41 if(is.nan(acc_prob)){

42 A_prop <- A

43 acc_prob <- 1

44 }

45 else{

46 if(runif (1) <= acc_prob){

47 A_prop <- A

48 }

49 else{

50 A_prop <- A_curr

51 }

52 }

53 result <- list(alpha=A_prop ,prob=acc_prob)

54 return(result)

55 }

E.1 R c© 231

1 sampleAlphaDR <- function(j,state ,Q,z,A,mu_A,Sigma_A,E,STG)

{

2 #--

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogenous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

updates

15 # - STG: the number of delayed rejection stages

16 #--

17 # Outputs

18 #--

19 # - alpha: the new proposed parameter , alpha

20 # - prob: the acceptance probability of the proposed alpha

21 #--

22 # Define the posterior density function

23 f <- function(A){

24 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

232 E. Source Code: Univariate NHGHMM

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

25 }

26 m <- dim(Q)[1]

27 n <- length(state)

28 K <- dim(A)[1]

29 ind <- which(state[-n]==j)

30 mat_ind <- (1:m)[-j]

31 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

32 X <- A

33 Y <- array(0,dim=c(K,m,STG))

34 # Metropolis -Hastings update (a single column)

35 if(length(mat_ind) < 2){

36 Y[,mat_ind ,1] <- mvrnormArma (1,X[,mat_ind],E)

37 Y_star <- Y[,,1]

38 P <- f(Y[,,1])/f(X)

39 acc_prob <- min(1,P)

40 if(is.nan(acc_prob)){

41 A_prop <- Y[,,1]

42 acc_prob <- 1

43 }

44 else{

45 if(f(Y[,,1]) >= f(X) || runif (1) <= acc_prob){

46 A_prop <- Y[,,1]

47 }

48 else{

49 for(stg in 2:STG){

50 Y[,mat_ind ,stg] <- mvrnormArma (1,Y[,mat_ind ,stg

-1],E)

51 P <- (f(Y[,,stg]) - f(Y_star))/(f(X) - f(Y_star))

52 if(f(Y[,,stg]) > f(Y_star)){

E.1 R c© 233

53 Y_star <- Y[,,stg]

54 }

55 acc_prob <- min(1,P)

56 if(is.nan(acc_prob)){

57 A_prop <- Y[,,stg]

58 acc_prob <- 1

59 break

60 }

61 else{

62 if(f(Y[,,stg]) >= f(X) || runif (1) <= acc_prob)

{

63 A_prop <- Y[,,stg]

64 break

65 }

66 if(stg == STG){

67 A_prop <- X

68 break

69 }

70 next

71 }

72 }

73 }

74 }

75 }

76 # Metropolis -Hastings update (mulptile columns)

77 else{

78 Y[,mat_ind ,1] <- apply(X[,mat_ind],2,function(x)

mvrnormArma (1,x,E))

79 Y_star <- Y[,,1]

80 P <- f(Y[,,1])/f(X)

234 E. Source Code: Univariate NHGHMM

81 acc_prob <- min(1,P)

82 if(is.nan(acc_prob)){

83 A_prop <- Y[,,1]

84 acc_prob <- 1

85 }

86 else{

87 if(f(Y[,,1]) >= f(X) || runif (1) <= acc_prob){

88 A_prop <- Y[,,1]

89 }

90 else{

91 for(stg in 2:STG){

92 Y[,mat_ind ,stg] <- apply(Y[,mat_ind ,stg -1],2,

function(x) mvrnormArma (1,x,E))

93 P <- (f(Y[,,stg]) - f(Y_star))/(f(X) - f(Y_star))

94 if(f(Y[,,stg]) > f(Y_star)){

95 Y_star <- Y[,,stg]

96 }

97 acc_prob <- min(1,P)

98 if(is.nan(acc_prob)){

99 A_prop <- Y[,,stg]

100 acc_prob <- 1

101 }

102 else{

103 if(f(Y[,,stg]) >= f(X) || runif (1) <= acc_prob)

{

104 A_prop <- Y[,,stg]

105 break

106 }

107 if(stg == STG){

108 A_prop <- X

E.1 R c© 235

109 break

110 }

111 next

112 }

113 }

114 }

115 }

116 }

117 result <- list(alpha=A_prop ,prob=acc_prob)

118 return(result)

119 }

1 sampleAlphaMTM <- function(j,state ,Q,z,A,mu_A,Sigma_A,E,d){

2 #--

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogeneous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

updates

236 E. Source Code: Univariate NHGHMM

15 # - d: the number of multiple tries for Metropolis updates

16 #--

17 # Outputs

18 #--

19 # - alpha: the new proposed parameter , alpha

20 # - prob: the acceptance probability of the proposed alpha

21 #--

22 # Define the posterior density function

23 f <- function(A){

24 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

25 }

26 m <- dim(Q)[1]

27 n <- length(state)

28 K <- ncol(z)

29 ind <- which(state[-n]==j)

30 mat_ind <- (1:m)[-j]

31 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

32 # Propose the multiple tries

33 Y <- array(0,dim=c(K,m,d))

34 X <- array(0,dim=c(K,m,d-1))

35 if(length(mat_ind) < 2){

36 Y[,mat_ind ,] <- t(mvrnormArma(d,A[,mat_ind],E))

37 }

38 else{

39 Y[,mat_ind ,] <- replicate(d,apply(A[,mat_ind],2,

function(x) mvrnormArma (1,x,E)))

40 }

41 yprob <- apply(Y,3,f)

42 if(sum(yprob) <= 0 || sum(is.na(yprob)) > 0){

E.1 R c© 237

43 print("A sampling failure")

44 result <- list(alpha=A,prob=NA)

45 return(result)

46 break

47 }

48 k <- sample (1:d,size=1,prob=yprob)

49 y <- Y[,,k]

50 # Update the previous parameters based upon the proposed

parameters

51 if(length(mat_ind) < 2){

52 X[,mat_ind ,] <- t(mvrnormArma(d-1,y[,mat_ind],E))

53 }

54 else{

55 X[,mat_ind ,] <- replicate(d-1,apply(y[,mat_ind],2,

function(x) mvrnormArma (1,x,E)))

56 }

57 x <- A

58 # Calculate the acceptance ratio

59 P <- sum(apply(Y,3,f))/(sum(apply(X,3,f))+f(x))

60 acc_prob <- min(1,P)

61 if(is.nan(acc_prob)){

62 A_prop <- y

63 acc_prob <- 1

64 }

65 else{

66 if(runif (1) <= acc_prob){

67 A_prop <- y

68 }

69 else{

70 A_prop <- x

238 E. Source Code: Univariate NHGHMM

71 }

72 }

73 result <- list(alpha=A_prop ,prob=acc_prob)

74 return(result)

75 }

1 paramRcpp <- function(N,m,obs ,z,burnin=0,thinning=1,iter0=N

,iter0Alpha =0, thinningAlpha=N,adaptive=FALSE ,tau0=50,L

=100,M=3/40,numDR=10, numMTM =10, alternative=c("metropolis

","delayed","multiple","HMC"),TRUNC=TRUE){

2 #--

3 # This function calculates and returns the parameters of

interest by executing several other sub -algorithms.

4 #--

5 # Inputs

6 #--

7 # - N: the number of MCMC iterations

8 # - m: the number of hidden states

9 # - obs: the sequence of observations

10 # - z: the exogenous variables

11 # - alternative: the string which defines the type of an MH

algorithm

12 # - TRUNC: the logical indicator that determines the method

of updating the parameter , mu

13 #--

14 # Outputs

15 #--

16 # - mu: the MCMC samples of mu

17 # - sigma: the MCMC samples of sigma

18 # - alpha: the MCMC samples of alpha

19 # - prob: the estimated probabilities of the hidden states

E.1 R c© 239

20 # - accept: the acceptance rate of the Metropolis

algorithms

21 # - CM: the adaptive covariance matrices

22 #--

23 # Set the indices and initialise the parameters

24 n <- length(obs)

25 Tau <- (N - burnin)/thinning

26 mu <- sigma <- matrix(0,nrow=Tau ,ncol=m)

27 St <- vector("list",Tau)

28 R <- diff(range(obs))

29 rho <- rep(1/m,m)

30 ind <- rep(1:m,each=m)

31 indices <- matrix(c(rep(1:m,each=m),rep (1:m,m)),ncol =2)

32 # Hyperparameters for the univariate normal distribution of

mu

33 Kap <- 1/R^(2)

34 xi <- (max(obs)+min(obs))/2

35 # Hyperparameters for the gamma distribution of sigma

36 A_sigma <- 1/2

37 B_sigma <- 1/2

38 # Initialise the transition matrix/matrices and

hyperparameters for the multivariate Gaussian

distribution of alpha

39 alternative <- match.arg(alternative)

40 MHalg <- switch(alternative ,metropolis =1,delayed=2,

multiple=3,HMC=4)

41 if(missing(z)){

42 Q <- array(0,dim=c(m,m,Tau))

43 }

44 else{

240 E. Source Code: Univariate NHGHMM

45 K <- ncol(z)

46 Q <- Q0 <- array(0,dim=c(m,m,n))

47 A <- array(0,dim=c(K,m*m,Tau))

48 if(adaptive == TRUE){

49 Ainit <- array(0,dim=c(K,m*m,tau0))

50 }

51 acc_prob <- numNA <- numeric(m)

52 mu_A <- numeric(K)

53 Sigma_A <- solve(diag(10,K))

54 E <- sapply (1:m,function(x) list(diag(13,K)))

55 sK <- 2.4^(2)/K

56 eps <- 1e-6

57 }

58 # Other parameters

59 N0 <- N - iter0

60 MAV <- SAV <- matrix(0,nrow=(iter0 -iter0Alpha)/

thinningAlpha ,ncol=m)

61 if(missing(z)){

62 QAV <- array(0,dim=c(m,m,(iter0 -iter0Alpha)/

thinningAlpha))

63 }

64 else{

65 AAV <- array(0,dim=c(K,m*m,(iter0 -iter0Alpha)/

thinningAlpha))

66 }

67 # Execute the MCMC iteration (Metropolis -within -Gibbs)

68 for(iter in 1:N){

69 message(paste(iter ,"iteration(s)"))

70 if(iter < 2){

71 # Initialise the parameter , mu

E.1 R c© 241

72 mu_init <- mu_curr <- min(obs)+R/(2*m)+(1:m-1)*R/m

73 # Initialise a sequence of the hidden states

74 state <- sapply (1:n,function(x) which.min((obs[x]-mu_

curr)^(2)))

75 tbl <- table(state[-n],state [-1])

76 # Initialise the parameter , sigma

77 sigma_init <- sigma_curr <- sapply (1:m,function(x)

sqrt(sum((obs[which(state == x)] - mu_curr[x])^(2)

)/length(which(state == x))))

78 # Initialise the parameters , alpha and Q

79 if(missing(z)){

80 Q_curr <- tbl/rowSums(tbl)

81 state_prob <- ffbsCmat(obs ,rho ,Q_curr ,mu_curr ,sigma

_curr)$prob

82 }

83 else{

84 tbl <- tbl/diag(tbl)

85 A_curr <- rbind(log(as.vector(t(tbl))),t(

mvrnormArma(m*m,mu_A[-1],solve(Sigma_A[-1,-1])))

)

86 A_curr[,which(indices [,1]== indices [,2])] <- 0

87 Mat <- z[-1,]%*%A_curr

88 Q[,,-1] <- aperm(array(t(Mat),dim=c(m,m,n-1)),c

(2,1,3))

89 Q[,,-1] <- exp(Q[,,-1])/aperm(array(rep(apply(exp(Q

[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n-1)),c

(2,1,3))

90 state_prob <- ffbsCarr(obs ,rho ,Q,mu_curr ,sigma_curr

)$prob

91 }

242 E. Source Code: Univariate NHGHMM

92 mu_prev <- mu_curr

93 sigma_prev <- sigma_curr

94 if(missing(z)){

95 Q_prev <- Q_curr

96 }

97 else{

98 if(adaptive == TRUE){

99 Ainit[,,1] <- A_prev <- A_curr

100 }

101 else{

102 A_prev <- A_curr

103 }

104 }

105 }

106 # Update a sequence of the hidden states

107 else{

108 if(iter <= iter0){

109 if(missing(z)){

110 FB <- ffbsCmat(obs ,rho ,Q_prev ,mu_prev ,sigma_prev)

111 FB$state <- FB$state + 1

112 }

113 else{

114 FB <- ffbsCarr(obs ,rho ,Q,mu_prev ,sigma_prev)

115 FB$state <- FB$state + 1

116 }

117 }

118 else{

119 if(missing(z)){

120 FB <- ffbsCmat(obs ,rho ,(Q_prev*(N0 -(iter -iter0))+

QAV*(iter -iter0))/N0 ,(mu_prev*(N0 -(iter -iter0)

E.1 R c© 243

)+MAV*(iter -iter0))/N0 ,(sigma_prev*(N0 -(iter -

iter0))+SAV*(iter -iter0))/N0)

121 FB$state <- FB$state + 1

122 }

123 else{

124 FB <- ffbsCarr(obs ,rho ,(Q*(N0 -(iter -iter0))+QAV*(

iter -iter0))/N0 ,(mu_prev*(N0 -(iter -iter0))+MAV

(iter -iter0))/N0 ,(sigma_prev(N0 -(iter -iter0)

)+SAV*(iter -iter0))/N0)

125 FB$state <- FB$state + 1

126 }

127 }

128 state_prob <- state_prob + (FB$prob - state_prob)/

iter

129 state <- FB$state

130 tbl <- table(state[-n],state [-1])

131 while((nrow(tbl) != m) || (ncol(tbl) != m)){

132 state <- sapply (1:n,function(x) sample (1:m,size=1,

prob=state_prob[x,]))

133 tbl <- table(state[-n],state [-1])

134 }

135 nu <- sapply (1:m,function(x) sum(state == x))

136 # Update the parameters , alpha

137 if(missing(z)){

138 Q_curr <- t(sapply (1:m,function(x) rdirichlet (1,tbl

[x,]+1)))

139 }

140 else{

141 if(iter == tau0 && adaptive == TRUE){

142 Xbarr <- apply(Ainit[,,1:(iter -2)],1:2,mean)

244 E. Source Code: Univariate NHGHMM

143 Xbar <- apply(Ainit [,,1:(iter -1)],1:2,mean)

144 }

145 if(iter > tau0 && adaptive == TRUE){

146 Xbarr <- Xbarr + (A_prevv -Xbarr)/(iter -2)

147 Xbar <- Xbar + (A_prev -Xbar)/(iter -1)

148 XX <- lapply (1:m,function(j) Xbar[,which(ind==j)]

%*%t(A_prev[,which(ind==j)]))

149 E <- lapply (1:m,function(j) (iter -3)/(iter -2)*E[[

j]]+sK/(iter -2)*(1/(iter -1)*((iter -2)*Xbarr[,

which(ind==j)]%*%t(Xbarr[,which(ind==j)]) -(

iter -1)*(XX[[j]]+t(XX[[j]]))+iter*A_prev[,

which(ind==j)]%*%t(A_prev[,which(ind==j)]))+

diag(eps ,K)))

150 }

151 rem <- (iter - numNA)/L - floor((iter - numNA)/L)

== 0

152 if(sum(rem) > 0){

153 for(j in which(rem)){

154 if(acc_prob[j] < .25){

155 E[[j]] <- E[[j]]*0.95^(2)

156 }

157 if(acc_prob[j] > .5){

158 E[[j]] <- E[[j]]*1.05^(2)

159 }

160 }

161 }

162 if(MHalg == 1){

163 MH <- lapply (1:m,function(j) sampleAlpha(j,state ,

Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,E[[j

]]))

E.1 R c© 245

164 }

165 if(MHalg == 2){

166 MH <- lapply (1:m,function(j) sampleAlphaDR(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

E[[j]],numDR))

167 }

168 if(MHalg == 3){

169 MH <- lapply (1:m,function(j) sampleAlphaMTM(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

E[[j]],numMTM))

170 }

171 A_curr <- matrix(sapply (1:m,function(j) MH[[j]]$

alpha),K,m*m)

172 # Update the transition matrices , Q

173 Mat <- z[-1,]%*%A_curr

174 Q[,,-1] <- aperm(array(t(Mat),dim=c(m,m,n-1)),c

(2,1,3))

175 Q[,,-1] <- exp(Q[,,-1])/aperm(array(rep(apply(exp(Q

[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n-1)),c

(2,1,3))

176 numNA <- numNA + sapply (1:m,function(j) as.numeric(

is.na(MH[[j]]$prob)))

177 acc_prob <- sapply (1:m,function(j) if(is.na(MH[[j]]

$prob)){acc_prob[j]} else{acc_prob[j] + (MH[[j]]

$prob - acc_prob[j])/(iter -(numNA[j] + 1))})

178 }

179 # Update the parameter , sigma

180 U <- sapply (1:m,function(x) sum((obs[which(state==x)]

- mu_prev[x])^(2)))

181 V <- sapply (1:m,function(x) sum(obs[which(state==x)])

246 E. Source Code: Univariate NHGHMM

)

182 sigma_curr <- rgamma(m,nu/2+A_sigma ,rate=U/2+B_sigma)

183 sigma_curr <- sqrt(1/sigma_curr)

184 # Update the parameter , mu

185 if(TRUNC == TRUE){

186 mu_curr [1] <- rnorm(1,mean=(sigma_init [1]^(2)*V[1]+

sigma_curr [1]^(2)*mu_init [1])/(sigma_init [1]^(2)

*nu[1]+ sigma_curr [1]^(2)),sd=sqrt(sigma_curr

[1]^(2)*sigma_init [1]^(2)/(sigma_init [1]^(2)*nu

[1]+ sigma_curr [1]^(2))))

187 for(j in 2:m){

188 har <- (sigma_curr[j]^(2)+sigma_curr[j -1]^(2))/(2

*M^(2)*sigma_curr[j -1]^(2)*sigma_curr[j]^(2))

189 mu_curr[j] <- rtruncnorm (1,mu_curr[j-1],Inf ,(har*

V[j]+ sigma_curr[j]^(2)*mu_curr[j-1])/(har*nu[j

]+sigma_curr[j]^(2)),sqrt((sigma_curr[j]^(2)*

har)/(har*nu[j]+sigma_curr[j]^(2))))

190 }

191 }

192 else{

193 mu_curr <- rnorm(m,mean=(V+Kap*xi*sigma_curr ^(2))/(

nu+Kap*sigma_curr ^(2)),sd=sqrt(sigma_curr ^(2)/(

nu+Kap*sigma_curr ^(2))))

194 }

195 # Update the parameters of interest at the previous

iteration

196 mu_prev <- mu_curr

197 sigma_prev <- sigma_curr

198 if(missing(z)){

199 Q_prev <- Q_curr

E.1 R c© 247

200 }

201 else{

202 if(iter <= tau0 && adaptive == TRUE){

203 Ainit[,,iter] <- A_curr

204 }

205 A_prevv <- A_prev

206 A_prev <- A_curr

207 }

208 # Imputation of the means of the parameters

209 if(iter < iter0 && iter >= iter0Alpha && (iter -

iter0Alpha)/thinningAlpha - floor((iter -iter0Alpha

)/thinningAlpha) == 0){

210 MAV[(iter -iter0Alpha)/thinningAlpha ,] <- mu_curr

211 SAV[(iter -iter0Alpha)/thinningAlpha ,] <- sigma_curr

212 if(missing(z)){

213 QAV[,,(iter -iter0Alpha)/thinningAlpha] <- Q_curr

214 }

215 else{

216 AAV[,,(iter -iter0Alpha)/thinningAlpha] <- A_curr

217 }

218 }

219 # Initialise the means of the parameters

220 if(iter == iter0){

221 if(missing(z)){

222 QAV <- apply(QAV ,1:2, median)

223 }

224 else{

225 AAV <- z[-1,]%*%apply(AAV ,1:2, mean)

226 Q0[,,-1] <- aperm(array(t(AAV),dim=c(m,m,n-1)),c

(2,1,3))

248 E. Source Code: Univariate NHGHMM

227 Q0[,,-1] <- exp(Q0[,,-1])/aperm(array(rep(apply(

exp(Q0[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n

-1)),c(2,1,3))

228 QAV <- Q0

229 }

230 MAV <- apply(MAV ,2,mean)

231 SAV <- apply(SAV ,2,mean)

232 }

233 # Update the medians by taking arithmetic means

234 if(iter > iter0){

235 if(missing(z)){

236 QAV <- QAV + (Q_curr - QAV)/iter

237 }

238 else{

239 QAV <- QAV + (Q - QAV)/iter

240 }

241 MAV <- MAV + (mu_curr - MAV)/iter

242 SAV <- SAV + (sigma_curr - SAV)/iter

243 }

244 }

245 if(iter >= burnin + thinning && (iter -burnin)/thinning

- floor((iter -burnin)/thinning) == 0){

246 mu[(iter - burnin)/thinning ,] <- mu_curr

247 sigma[(iter - burnin)/thinning ,] <- sigma_curr

248 if(missing(z)){

249 Q[,,(iter - burnin)/thinning] <- Q_curr

250 }

251 else{

252 A[,,(iter - burnin)/thinning] <- A_curr

253 }

E.1 R c© 249

254 St[[(iter -burnin)/thinning]] <- state

255 message(paste(iter ,"th iteration is stored.",sep=""))

256 }

257 }

258 if(missing(z)){

259 result <- list(mu=mu ,sigma=sigma ,Q=Q,state=St,prob=

state_prob)

260 }

261 else{

262 result <- list(mu=mu ,sigma=sigma ,alpha=A,state=St ,prob=

state_prob ,accept=acc_prob ,CM=E)

263 }

264 return(result)

265 }

1 label_switch <- function(mu,sigma ,St,A,Q){

2 #--

3 # This function relabels the hidden states after the MCMC

algorithm.

4 #--

5 # Inputs

6 #--

7 # - mu: the MCMC samples of mu

8 # - sigma: the MCMC samples of sigma

9 # - A: the MCMC samples of alpha

10 # - St: a sequence of the hidden states

11 # - Q: the MCMC samples of a transition matrix

12 #--

13 # Outputs

14 #--

15 # - mu: the relabelled MCMC samples of mu

250 E. Source Code: Univariate NHGHMM

16 # - sigma: the relabelled MCMC samples of sigma

17 # - alpha: the relabelled MCMC samples of alpha

18 # - state: the relabelled MCMC samples of state

19 # - Q: the relabelled MCMC samples of Q

20 #--

21 # Set the indices and initialise the parameters

22 N <- dim(mu)[1]

23 m <- dim(mu)[2]

24 perm <- permn (1:m)

25 M <- gamma(m+1)

26 P <- matrix (1:(m*m),nrow=m,ncol=m)

27 # Relabel the MCMC samples of interest

28 for(iter in 1:N){

29 L <- sapply (1:M,function(i) mu[iter ,perm[[i]]]== sort(mu

[iter ,]))

30 perm_curr <- perm[[which.max(colSums(L))]]

31 mu[iter ,] <- mu[iter ,perm_curr]

32 sigma[iter ,] <- sigma[iter ,perm_curr]

33 St[[iter]] <- mapvalues(St[[iter]],1:m,perm_curr)

34 if(missing(Q)){

35 A[,,iter] <- A[,as.vector(P[perm_curr ,perm_curr]),

iter]

36 }

37 else{

38 Q[,,iter] <- Q[perm_curr ,perm_curr ,iter]

39 }

40 }

41 if(missing(Q)){

42 result <- list(mu=mu ,sigma=sigma ,alpha=A,state=St)

43 }

E.1 R c© 251

44 else{

45 result <- list(mu=mu ,sigma=sigma ,Q=Q,state=St)

46 }

47 return(result)

48 }

1 marLik <- function(mu,sigma ,state ,obs ,z,alpha=NULL ,Q=NULL){

2 #--

3 # This function calculates and returns a log marginal

likelihood for the MCMC samples of interest.

4 #--

5 # Inputs

6 #--

7 # - mu: the MCMC samples of mu

8 # - sigma: the MCMC samples of sigma

9 # - state: the MCMC samples of hidden states

10 # - obs: the observations

11 # - z: the exogenous variables

12 # - alpha: the MCMC samples of alpha

13 # - Q: the MCMC samples of the transition matrix/matrices

14 #--

15 # Outputs

16 #--

17 # - fhat: the log likelihoods

18 # - phat: the log priors

19 # - Phat: the log posteriors

20 #--

21 m <- ncol(mu)

22 n <- length(obs)

23 N <- length(state)

24 M <- 3/40

252 E. Source Code: Univariate NHGHMM

25 rho <- rep(1/m,m)

26 if(!missing(z)){

27 K <- ncol(z)

28 mu_A <- numeric(K)

29 Sigma_A <- solve(diag(10,K))

30 CM <- diag(13,K)

31 }

32 R <- diff(range(obs))

33 mu_init <- min(obs)+R/(2*m)+(1:m-1)*R/m

34 St <- sapply (1:n,function(x) which.min((obs[x]-mu_init)

^(2)))

35 sigma_init <- sapply (1:m,function(x) sqrt(sum((obs[which(

St==x)] - mu_init[x])^(2))/length(which(St==x))))

36 A_sigma <- 1/2

37 B_sigma <- 1/2

38 muStar <- apply(mu ,2,mean)

39 sigmaStar <- apply(sigma ,2,mean)

40 lambdaStar <- apply(sigma ^(-2) ,2,median)

41 if(missing(z)){

42 QStar <- apply(Q,1:2, mean)

43 }

44 else{

45 alphaStar <- apply(alpha ,1:2, mean)

46 }

47 # Define the posterior density function

48 f <- function(A){

49 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

50 }

51 # Compute the log marginal likelihood

E.1 R c© 253

52 fhat <- sapply (1:m,function(x) dnorm(obs ,muStar[x],

sigmaStar[x]))

53 fhat[1,] <- fhat[1,]*rho

54 for(i in 2:n){

55 if(missing(z)){

56 fhat[i,] <- (fhat[i-1,]/sum(fhat[i-1,]))%*%QStar*fhat

[i,]

57 }

58 else{

59 P <- lapply (1: dim(alpha)[3], function(x) matrix(exp(z[

i,]%*%alpha[,,x]),m,m,TRUE))

60 P <- lapply (1: length(P),function(x) P[[x]]/rowSums(P

[[x]]))

61 P <- array(unlist(P),dim=c(m,m,length(P)))

62 fhat[i,] <- (fhat[i-1,]/sum(fhat[i-1,]))%*%apply(P

,1:2, median)*fhat[i,]

63 }

64 }

65 fhat <- sum(log(apply(fhat ,1,sum)))

66 # Compute the log priors

67 phat <- sum(log(dnorm(muStar ,0,sqrt (0.3^(-1))))) + sum(

log(dgamma(lambdaStar ,A_sigma ,B_sigma)))

68 if(missing(z)){

69 phat <- phat + sum(sapply (1:m,function(x) log(

ddirichlet(QStar[x,],rep(1,m)))))

70 }

71 else{

72 phat <- phat + sum(sapply(which(diag(m)==0),function(x)

log(dmvnorm(alphaStar[,x],mu_A,solve(Sigma_A)))))

73 }

254 E. Source Code: Univariate NHGHMM

74 # Compute the log posteriors

75 muPool <- alphaPool1 <- alphaPool2 <- numeric(m)

76 estMu <- estLambda <- estQ <- estAlpha1 <- estAlpha2 <-

numeric(N)

77 for(iter in 1:N){

78 nu <- sapply (1:m,function(x) sum(state[[iter]]==x))

79 U <- sapply (1:m,function(x) sum((obs[which(state[[iter

]]==x)] - mu[iter ,x])^(2)))

80 V <- sapply (1:m,function(x) sum(obs[which(state[[iter

]]==x)]))

81 estLambda[iter] <- prod(dgamma(lambdaStar ,nu/2+A_sigma ,

U/2+B_sigma))

82 muPool [1] <- dnorm(muStar [1],mean=(sigma_init [1]^(2)*V

[1]+ sigmaStar [1]^(2)*mu_init [1])/(sigma_init [1]^(2)*

nu[1]+ sigmaStar [1]^(2)),sd=sqrt(sigmaStar [1]^(2)*

sigma_init [1]^(2)/(sigma_init [1]^(2)*nu[1]+ sigmaStar

[1]^(2))))

83 for(j in 2:m){

84 har <- (sigmaStar[j]^(2)+sigmaStar[j -1]^(2))/(2*M^(2)

*sigmaStar[j -1]^(2)*sigmaStar[j]^(2))

85 muPool[j] <- dtruncnorm(muStar[j],mu[iter ,j-1],Inf ,(

har*V[j]+ sigmaStar[j]^(2)*mu[iter ,j-1])/(har*nu[j

]+ sigmaStar[j]^(2)),sqrt((sigmaStar[j]^(2)*har)/(

har*nu[j]+ sigmaStar[j]^(2))))

86 }

87 estMu[iter] <- prod(muPool)

88 if(missing(z)){

89 tbl <- table(state[[iter]][-n],state[[iter]][-1])

90 estQ[iter] <- prod(sapply (1:m,function(x) ddirichlet(

QStar[x,],tbl[x ,]+1)))

E.1 R c© 255

91 }

92 else{

93 for(k in 1:m){

94 idx <- rep(1:m,each=m)

95 ind <- which(state[[iter]][-n]==k)

96 mat_ind <- (1:m)[-k]

97 mat_dims <- matrix(c(ind+1,state [[iter]][ind +1]),

ncol =2)

98 alphaPool1[k] <- min(1,f(alphaStar[,which(idx==k)])

/f(alpha[,which(idx==k),iter]))*prod(sapply(

which(idx==k),function(x) dmvnorm(alphaStar[,x],

alpha[,x,iter],CM))[mat_ind])

99 alphaPool2[k] <- min(1,f(alpha[,which(idx==k),iter

])/f(alphaStar[,which(idx==k)]))

100 }

101 estAlpha1[iter] <- prod(alphaPool1)

102 estAlpha2[iter] <- prod(alphaPool2)

103 }

104 }

105 if(missing(z)){

106 Phat <- log(mean(estQ)) + log(mean(estLambda)) + log(

mean(estMu))

107 }

108 else{

109 Phat <- log(mean(estAlpha1)) - log(mean(estAlpha2)) +

log(mean(estLambda)) + log(mean(estMu))

110 }

111 return(c(fhat ,phat ,-Phat))

112 }

256 E. Source Code: Univariate NHGHMM

E.2 C++

1 #include <RcppArmadillo.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

3 using namespace Rcpp;

4 // [[Rcpp:: export]]

5 arma::mat mvrnormArma(int n, arma::vec mu , arma::mat Sigma)

{

6 int ncols = Sigma.n_cols;

7 arma::mat Y = arma::randn(n,ncols);

8 return arma:: repmat(mu ,1,n).t() + Y * arma::chol(Sigma);

9 }

1 #include <RcppArmadilloExtensions/sample.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

3 using namespace Rcpp;

4 // [[Rcpp:: export]]

5 arma:: rowvec dnormvec(double x, NumericVector means ,

NumericVector sds){

6 int n = means.size();

7 arma:: rowvec res(n);

8 for(int i = 0; i < n; i++){

9 res[i] = R:: dnorm(x,means[i],sds[i],false);

10 }

11 return res;

12 }

13 // [[Rcpp:: export]]

14 List ffbsCmat(NumericVector obs , arma:: rowvec rho , arma::

mat Q, NumericVector mu, NumericVector sigma){

15 int m = rho.n_elem;

16 int n = obs.size();

E.2 C++ 257

17 IntegerVector state(n);

18 IntegerVector space = seq_len(m) - 1;

19 arma::mat fwd(n,m);

20 arma::mat bwd(n,m);

21 // Initialisation of the forward variable

22 fwd.row(0) = rho%dnormvec(obs(0),mu,sigma);

23 fwd.row(0) = fwd.row(0)/sum(fwd.row(0));

24 // Execute the forward filtering recursion

25 for(int t = 1; t < n; t++){

26 fwd.row(t) = (fwd.row(t-1)*Q)%dnormvec(obs(t),mu,

sigma);

27 fwd.row(t) = fwd.row(t)/sum(fwd.row(t));

28 }

29 // Initialisation of the backward variable

30 bwd.row(n-1) = fwd.row(n-1);

31 state(n-1) = bwd.row(n-1).index_max();

32 // Execute the backward sampling recursion

33 for(int t = n-1; t > 0; t--){

34 bwd.row(t-1) = fwd.row(t-1)%arma::conv_to <arma::

rowvec >:: from(Q.col(state(t)));

35 bwd.row(t-1) = bwd.row(t-1)/sum(bwd.row(t-1));

36 state(t-1) = RcppArmadillo :: sample(space ,1,false ,as

<NumericVector >(wrap(arma::conv_to <arma::rowvec

>:: from(bwd.row(t-1)))))(0);

37 }

38 return List:: create(Named("state",state),Named("prob",

bwd));

39 }

1 #include <RcppArmadilloExtensions/sample.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

258 E. Source Code: Univariate NHGHMM

3 using namespace Rcpp;

4 // [[Rcpp:: export]]

5 arma:: rowvec dnormvec(double x, NumericVector means ,

NumericVector sds){

6 int n = means.size();

7 arma:: rowvec res(n);

8 for(int i = 0; i < n; i++){

9 res[i] = R:: dnorm(x,means[i],sds[i],false);

10 }

11 return res;

12 }

13 // [[Rcpp:: export]]

14 List ffbsCarr(NumericVector obs , arma:: rowvec rho , arma::

cube Q, NumericVector mu , NumericVector sigma){

15 int m = rho.n_elem;

16 int n = obs.size();

17 IntegerVector state(n);

18 IntegerVector space = seq_len(m) - 1;

19 arma::mat fwd(n,m);

20 arma::mat bwd(n,m);

21 // Initialisation of the forward variable

22 fwd.row(0) = rho%dnormvec(obs(0),mu,sigma);

23 fwd.row(0) = fwd.row(0)/sum(fwd.row(0));

24 // Execute the forward filtering recursion

25 for(int t = 1; t < n; t++){

26 fwd.row(t) = (fwd.row(t-1)*Q.slice(t))%dnormvec(obs

(t),mu,sigma);

27 fwd.row(t) = fwd.row(t)/sum(fwd.row(t));

28 }

29 // Initialisation of the backward variable

E.2 C++ 259

30 bwd.row(n-1) = fwd.row(n-1);

31 state(n-1) = bwd.row(n-1).index_max();

32 // Execute the backward sampling recursion

33 for(int t = n-1; t > 0; t--){

34 bwd.row(t-1) = fwd.row(t-1)%arma::conv_to <arma::

rowvec >:: from(Q.slice(t).col(state(t)));

35 bwd.row(t-1) = bwd.row(t-1)/sum(bwd.row(t-1));

36 state(t-1) = RcppArmadillo :: sample(space ,1,false ,as

<NumericVector >(wrap(arma::conv_to <arma::rowvec

>:: from(bwd.row(t-1)))))(0);

37 }

38 return List:: create(Named("state",state),Named("prob",

bwd));

39 }

260 E. Source Code: Univariate NHGHMM

261

Appendix F
Source Code: Multivariate

NHGHMM

F.1 R c©

1 simHMM <- function(n,mu,Sigma ,Q){

2 #--

3 # This function simulates a non -homogeneous Gaussian hidden

Markov model and returns a sequence of the hidden

states and the observations.

4 #--

5 # Inputs

6 #--

7 # - n: the number of observations

8 # - mu: a matrix of m row vectors of mu

9 # - Sigma: matrices of m positive -definite matrices of

Sigma

10 # - Q: the transition matrix/matrices

11 #--

12 # Outputs

13 #--

14 # - state: a sequence of the hidden states

262 F. Source Code: Multivariate NHGHMM

15 # - obs: a sequence of the observations

16 #--

17 if(dim(Q)[1] != dim(Q)[2]){

18 stop("The transition matrix is not square.")

19 }

20 d <- ncol(mu)

21 m <- dim(Q)[1]

22 state <- numeric(n)

23 obs <- matrix(0,nrow=n,ncol=d)

24 # Initialise the first elements of states and observations

25 state [1] <- sample (1:m,size=1,prob=rep(1/m,m))

26 obs[1,] <- mvrnorm(1,mu[state [1],],Sigma[,,state [1]])

27 # Homogeneous transition probabilities

28 if(is.matrix(Q)){

29 for(t in 2:n){

30 state[t] <- sample (1:m,size=1,prob=Q[state[t-1],])

31 obs[t,] <- mvrnorm(1,mu[state[t],],Sigma[,,state[t]])

32 }

33 }

34 # Non -homogeneous transition probabilities

35 else{

36 for(t in 2:n){

37 state[t] <- sample (1:m,size=1,prob=Q[state[t-1],,t])

38 obs[t,] <- mvrnorm(1,mu[state[t],],Sigma[,,state[t]])

39 }

40 }

41 result <- list(state=state ,obs=obs)

42 return(result)

43 }

1 sampleAlpha <- function(j,state ,Q,z,A,mu_A,Sigma_A,E){

F.1 R c© 263

2 #--

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogenous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

updates

15 #--

16 # Outputs

17 #--

18 # - alpha: the new proposed parameter , alpha

19 # - prob: the acceptance probability of the proposed alpha

20 #--

21 # Define the posterior density function

22 f <- function(A){

23 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

24 }

25 m <- dim(Q)[1]

264 F. Source Code: Multivariate NHGHMM

26 n <- length(state)

27 ind <- which(state[-n]==j)

28 mat_ind <- (1:m)[-j]

29 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

30 # Metropolis -Hastings update

31 A_curr <- A

32 if(length(mat_ind) < 2){

33 A[,mat_ind] <- mvrnormArma (1,A_curr[,mat_ind],E)

34 }

35 else{

36 A[,mat_ind] <- apply(A_curr[,mat_ind],2,function(x)

mvrnormArma (1,x,E))

37 }

38 # Calculate the acceptance ratio

39 P <- f(A)/f(A_curr)

40 acc_prob <- min(1,P)

41 if(is.nan(acc_prob)){

42 A_prop <- A

43 acc_prob <- 1

44 }

45 else{

46 if(runif (1) <= acc_prob){

47 A_prop <- A

48 }

49 else{

50 A_prop <- A_curr

51 }

52 }

53 result <- list(alpha=A_prop ,prob=acc_prob)

54 return(result)

F.1 R c© 265

55 }

1 sampleAlphaDR <- function(j,state ,Q,z,A,mu_A,Sigma_A,E,STG)

{

2 #--

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogenous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

updates

15 # - STG: the number of delayed rejection stages

16 #--

17 # Outputs

18 #--

19 # - alpha: the new proposed parameter , alpha

20 # - prob: the acceptance probability of the proposed alpha

21 #--

22 # Define the posterior density function

23 f <- function(A){

266 F. Source Code: Multivariate NHGHMM

24 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

25 }

26 m <- dim(Q)[1]

27 n <- length(state)

28 K <- dim(A)[1]

29 ind <- which(state[-n]==j)

30 mat_ind <- (1:m)[-j]

31 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

32 X <- A

33 Y <- array(0,dim=c(K,m,STG))

34 # Metropolis -Hastings update (a single column)

35 if(length(mat_ind) < 2){

36 Y[,mat_ind ,1] <- mvrnormArma (1,X[,mat_ind],E)

37 Y_star <- Y[,,1]

38 P <- f(Y[,,1])/f(X)

39 acc_prob <- min(1,P)

40 if(is.nan(acc_prob)){

41 A_prop <- Y[,,1]

42 acc_prob <- 1

43 }

44 else{

45 if(f(Y[,,1]) >= f(X) || runif (1) <= acc_prob){

46 A_prop <- Y[,,1]

47 }

48 else{

49 for(stg in 2:STG){

50 Y[,mat_ind ,stg] <- mvrnormArma (1,Y[,mat_ind ,stg

-1],E)

51 P <- (f(Y[,,stg]) - f(Y_star))/(f(X) - f(Y_star))

F.1 R c© 267

52 if(f(Y[,,stg]) > f(Y_star)){

53 Y_star <- Y[,,stg]

54 }

55 acc_prob <- min(1,P)

56 if(is.nan(acc_prob)){

57 A_prop <- Y[,,stg]

58 acc_prob <- 1

59 break

60 }

61 else{

62 if(f(Y[,,stg]) >= f(X) || runif (1) <= acc_prob)

{

63 A_prop <- Y[,,stg]

64 break

65 }

66 if(stg == STG){

67 A_prop <- X

68 break

69 }

70 next

71 }

72 }

73 }

74 }

75 }

76 # Metropolis -Hastings update (mulptile columns)

77 else{

78 Y[,mat_ind ,1] <- apply(X[,mat_ind],2,function(x)

mvrnormArma (1,x,E))

79 Y_star <- Y[,,1]

268 F. Source Code: Multivariate NHGHMM

80 P <- f(Y[,,1])/f(X)

81 acc_prob <- min(1,P)

82 if(is.nan(acc_prob)){

83 A_prop <- Y[,,1]

84 acc_prob <- 1

85 }

86 else{

87 if(f(Y[,,1]) >= f(X) || runif (1) <= acc_prob){

88 A_prop <- Y[,,1]

89 }

90 else{

91 for(stg in 2:STG){

92 Y[,mat_ind ,stg] <- apply(Y[,mat_ind ,stg -1],2,

function(x) mvrnormArma (1,x,E))

93 P <- (f(Y[,,stg]) - f(Y_star))/(f(X) - f(Y_star))

94 if(f(Y[,,stg]) > f(Y_star)){

95 Y_star <- Y[,,stg]

96 }

97 acc_prob <- min(1,P)

98 if(is.nan(acc_prob)){

99 A_prop <- Y[,,stg]

100 acc_prob <- 1

101 }

102 else{

103 if(f(Y[,,stg]) >= f(X) || runif (1) <= acc_prob)

{

104 A_prop <- Y[,,stg]

105 break

106 }

107 if(stg == STG){

F.1 R c© 269

108 A_prop <- X

109 break

110 }

111 next

112 }

113 }

114 }

115 }

116 }

117 result <- list(alpha=A_prop ,prob=acc_prob)

118 return(result)

119 }

1 sampleAlphaMTM <- function(j,state ,Q,z,A,mu_A,Sigma_A,E,d){

2 #--

3 # This function samples the parameter , alpha , from the

posterior distribution of interest , f.

4 #--

5 # Inputs

6 #--

7 # - j: the index from 1 to m

8 # - state: the estimated sequence of the hidden states at

the current MCMC iteration

9 # - Q: the current estimate of the transition probabilities

10 # - z: the exogeneous variables

11 # - A: the parameter , alpha , at the current MCMC iteration

12 # - mu_A: the vector of means , mu, for the multivariate

Gaussian distribution

13 # - Sigma_A: the covariance matrix , Sigma , for the

multivariate Gaussian distribution

14 # - E: the covariance matrix for random walk Metropolis

270 F. Source Code: Multivariate NHGHMM

updates

15 # - d: the number of multiple tries for Metropolis updates

16 #--

17 # Outputs

18 #--

19 # - alpha: the new proposed parameter , alpha

20 # - prob: the acceptance probability of the proposed alpha

21 #--

22 # Define the posterior density function

23 f <- function(A){

24 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

25 }

26 m <- dim(Q)[1]

27 n <- length(state)

28 K <- ncol(z)

29 ind <- which(state[-n]==j)

30 mat_ind <- (1:m)[-j]

31 mat_dims <- matrix(c(ind+1,state[ind +1]),ncol =2)

32 # Propose the multiple tries

33 Y <- array(0,dim=c(K,m,d))

34 X <- array(0,dim=c(K,m,d-1))

35 if(length(mat_ind) < 2){

36 Y[,mat_ind ,] <- t(mvrnormArma(d,A[,mat_ind],E))

37 }

38 else{

39 Y[,mat_ind ,] <- replicate(d,apply(A[,mat_ind],2,

function(x) mvrnormArma (1,x,E)))

40 }

41 yprob <- apply(Y,3,f)

F.1 R c© 271

42 if(sum(yprob) <= 0 || sum(is.na(yprob)) > 0){

43 print("A sampling failure")

44 result <- list(alpha=A,prob=NA)

45 return(result)

46 break

47 }

48 k <- sample (1:d,size=1,prob=yprob)

49 y <- Y[,,k]

50 # Update the previous parameters based upon the proposed

parameters

51 if(length(mat_ind) < 2){

52 X[,mat_ind ,] <- t(mvrnormArma(d-1,y[,mat_ind],E))

53 }

54 else{

55 X[,mat_ind ,] <- replicate(d-1,apply(y[,mat_ind],2,

function(x) mvrnormArma (1,x,E)))

56 }

57 x <- A

58 # Calculate the acceptance ratio

59 P <- sum(apply(Y,3,f))/(sum(apply(X,3,f))+f(x))

60 acc_prob <- min(1,P)

61 if(is.nan(acc_prob)){

62 A_prop <- y

63 acc_prob <- 1

64 }

65 else{

66 if(runif (1) <= acc_prob){

67 A_prop <- y

68 }

69 else{

272 F. Source Code: Multivariate NHGHMM

70 A_prop <- x

71 }

72 }

73 result <- list(alpha=A_prop ,prob=acc_prob)

74 return(result)

75 }

1 paramRcppMvn <- function(N,m,obs ,z,burnin=0,thinning=1,

iter0=N,iter0Alpha =0, thinningAlpha=N,adaptive=FALSE ,tau0

=50,L=100, epsHMC =1e-1,numDR=10, numMTM =10, numHMC =25,

sliceWD=6, alternative=c("metropolis","delayed","multiple

","HMC","slice")){

2 #--

3 # This function calculates and returns the parameters of

interest.

4 #--

5 # Inputs

6 #--

7 # - N: the number of MCMC iterations

8 # - m: the number of hidden states

9 # - obs: the sequence of observations

10 # - z: the exogenous variables

11 #--

12 # Outputs

13 #--

14 # - mu: the MCMC samples of mu

15 # - Sigma: the MCMC samples of Sigma

16 # - alpha: the MCMC samples of alpha

17 # - prob: the estimated probabilities of the hidden states

18 # - accept: the acceptance rate of the Metropolis

algorithms

F.1 R c© 273

19 # - CM: the adaptive covariance matrices

20 #--

21 # Set the indices and initialise the parameters

22 n <- dim(obs)[1]

23 d <- dim(obs)[2]

24 Tau <- (N - burnin)/thinning

25 mu <- array(0,dim=c(m,d,Tau))

26 Sigma <- array(0,dim=c(d,d,m,Tau))

27 St <- vector("list",Tau)

28 rho <- rep(1/m,m)

29 ind <- rep(1:m,each=m)

30 indices <- matrix(c(rep(1:m,each=m),rep (1:m,m)),ncol =2)

31 signMat <- sign(cov(obs))

32 # Hyperparameters for the multivariate normal distribution

of mu

33 mu_M <- apply(obs ,2,function(x) mean(range(x)))

34 Sigma_M <- diag(apply(obs ,2,function(x) diff(range(x))))

35 idx_M <- which(Sigma_M == 0,arr.ind=TRUE)

36 Sigma_M[idx_M] <- signMat[idx_M]*sapply (1: nrow(idx_M),

function(x) sqrt(Sigma_M[idx_M[x,1],idx_M[x,1]]*Sigma_

M[idx_M[x,2],idx_M[x,2]])/2)

37 # Hyperparameters for the inverse -Wishart distribution of

Sigma

38 gamma_S <- trunc((d+1)/2) + 1

39 Lambda_S <- diag(gamma_S,d)

40 idx_S <- which(Lambda_S == 0,arr.ind=TRUE)

41 Lambda_S[idx_S] <- signMat[idx_S]*gamma_S/2

42 # Initialise the transition matrix/matrices and

hyperparameters for the multivariate normal distribution

of alpha

274 F. Source Code: Multivariate NHGHMM

43 alternative <- match.arg(alternative)

44 MHalg <- switch(alternative ,metropolis =1,delayed=2,

multiple=3,HMC=4,slice =5)

45 if(missing(z)){

46 Q <- array(0,dim=c(m,m,Tau))

47 }

48 else{

49 K <- ncol(z)

50 Q <- Q0 <- array(0,dim=c(m,m,n))

51 A <- array(0,dim=c(K,m*m,Tau))

52 if(adaptive == TRUE){

53 Ainit <- array(0,dim=c(K,m*m,tau0))

54 }

55 acc_prob <- numNA <- numeric(m)

56 mu_A <- numeric(K)

57 Sigma_A <- solve(diag(10,K))

58 E <- sapply (1:m,function(x) list(diag(13,K)))

59 sK <- 2.4^(2)/K

60 eps <- 1e-6

61 }

62 # Other parameters

63 N0 <- N - iter0

64 MAV <- array(0,dim=c(m,d,(iter0 -iter0Alpha)/thinningAlpha

))

65 SAV <- array(0,dim=c(d,d,m,(iter0 -iter0Alpha)/

thinningAlpha))

66 if(missing(z)){

67 QAV <- array(0,dim=c(m,m,(iter0 -iter0Alpha)/

thinningAlpha))

68 }

F.1 R c© 275

69 else{

70 AAV <- array(0,dim=c(K,m*m,(iter0 -iter0Alpha)/

thinningAlpha))

71 }

72 # Execute the MCMC iteration (FB-MH -GS)

73 for(iter in 1:N){

74 message(paste(iter ,"iteration(s)"))

75 if(iter < 2){

76 # Initialise the parameter , mu

77 mu_curr <- kmeans(na.omit(obs),m)$centers

78 mu_curr <- mu_curr[order(mu_curr [,1]) ,]

79 # Initialise a sequence of the hidden states

80 state <- sapply (1:n,function(x) as.numeric(which.min(

apply((matrix(obs[x,],m,d,TRUE) - mu_curr)^(2) ,1,

sum))))

81 tbl <- table(state[-n],state [-1])

82 # Initialise the parameter , Sigma

83 Sigma_curr <- array(unlist(sapply (1:m,function(x) cov

(obs[which(state == x) ,] - matrix(mu_curr[x,],sum(

state == x),d,TRUE)))),dim=c(d,d,m))

84 # Initialise the parameters , alpha and Q

85 if(missing(z)){

86 Q_curr <- tbl/rowSums(tbl)

87 state_prob <- ffbsCmatMvn(obs ,rho ,Q_curr ,mu_curr ,

Sigma_curr)$prob

88 }

89 else{

90 tbl <- tbl/diag(tbl)

91 A_curr <- rbind(log(as.vector(t(tbl))),t(

mvrnormArma(m*m,mu_A[-1],solve(Sigma_A[-1,-1])))

276 F. Source Code: Multivariate NHGHMM

)

92 A_curr[,which(indices [,1]== indices [,2])] <- 0

93 Mat <- z[-1,]%*%A_curr

94 Q[,,-1] <- aperm(array(t(Mat),dim=c(m,m,n-1)),c

(2,1,3))

95 Q[,,-1] <- exp(Q[,,-1])/aperm(array(rep(apply(exp(Q

[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n-1)),c

(2,1,3))

96 state_prob <- ffbsCarrMvn(obs ,rho ,Q,mu_curr ,Sigma_

curr)$prob

97 }

98 mu_prev <- mu_curr

99 Sigma_prev <- Sigma_curr

100 if(missing(z)){

101 Q_prev <- Q_curr

102 }

103 else{

104 if(adaptive == TRUE){

105 Ainit[,,1] <- A_prev <- A_curr

106 }

107 else{

108 A_prev <- A_curr

109 }

110 }

111 }

112 # Update a sequence of the hidden states

113 else{

114 if(iter <= iter0){

115 if(missing(z)){

116 FB <- ffbsCmatMvn(obs ,rho ,Q_prev ,mu_prev ,Sigma_

F.1 R c© 277

prev)

117 FB$state <- FB$state + 1

118 }

119 else{

120 FB <- ffbsCarrMvn(obs ,rho ,Q,mu_prev ,Sigma_prev)

121 FB$state <- FB$state + 1

122 }

123 }

124 else{

125 if(missing(z)){

126 FB <- ffbsCmatMvn(obs ,rho ,(Q_prev*(N0 -(iter -iter0

))+QAV*(iter -iter0))/N0 ,(mu_prev*(N0 -(iter -

iter0))+MAV*(iter -iter0))/N0 ,(Sigma_prev*(N0 -(

iter -iter0))+SAV*(iter -iter0))/N0)

127 FB$state <- FB$state + 1

128 }

129 else{

130 FB <- ffbsCarrMvn(obs ,rho ,(Q*(N0 -(iter -iter0))+

QAV*(iter -iter0))/N0 ,(mu_prev*(N0 -(iter -iter0)

)+MAV*(iter -iter0))/N0 ,(Sigma_prev*(N0 -(iter -

iter0))+SAV*(iter -iter0))/N0)

131 FB$state <- FB$state + 1

132 }

133 }

134 state_prob <- state_prob + (FB$prob - state_prob)/

iter

135 state <- FB$state

136 tbl <- table(state[-n],state [-1])

137 nu <- sapply (1:m,function(x) sum(state == x))

138 while((nrow(tbl) != m) || (ncol(tbl) != m) || sum(nu

278 F. Source Code: Multivariate NHGHMM

+ gamma_S < d) > 0){

139 state <- sapply (1:n,function(x) sample (1:m,size=1,

prob=state_prob[x,]))

140 tbl <- table(state[-n],state [-1])

141 nu <- sapply (1:m,function(x) sum(state == x))

142 }

143 # Update the parameters , alpha

144 if(missing(z)){

145 Q_curr <- t(sapply (1:m,function(x) rdirichlet (1,tbl

[x,]+1)))

146 }

147 else{

148 if(iter == tau0 && adaptive == TRUE){

149 Xbarr <- apply(Ainit[,,1:(iter -2)],1:2,mean)

150 Xbar <- apply(Ainit [,,1:(iter -1)],1:2,mean)

151 }

152 if(iter > tau0 && adaptive == TRUE){

153 Xbarr <- Xbarr + (A_prevv -Xbarr)/(iter -2)

154 Xbar <- Xbar + (A_prev -Xbar)/(iter -1)

155 XX <- lapply (1:m,function(j) Xbar[,which(ind==j)]

%*%t(A_prev[,which(ind==j)]))

156 E <- lapply (1:m,function(j) (iter -3)/(iter -2)*E[[

j]]+sK/(iter -2)*(1/(iter -1)*((iter -2)*Xbarr[,

which(ind==j)]%*%t(Xbarr[,which(ind==j)]) -(

iter -1)*(XX[[j]]+t(XX[[j]]))+iter*A_prev[,

which(ind==j)]%*%t(A_prev[,which(ind==j)]))+

diag(eps ,K)))

157 }

158 rem <- (iter - numNA)/L - floor((iter - numNA)/L)

== 0

F.1 R c© 279

159 if(sum(rem) > 0){

160 for(j in which(rem)){

161 if(acc_prob[j] < .25){

162 E[[j]] <- E[[j]]*0.95^(2)

163 }

164 if(acc_prob[j] > .5){

165 E[[j]] <- E[[j]]*1.05^(2)

166 }

167 }

168 }

169 if(MHalg == 1){

170 MH <- lapply (1:m,function(j) sampleAlpha(j,state ,

Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,E[[j

]]))

171 }

172 if(MHalg == 2){

173 MH <- lapply (1:m,function(j) sampleAlphaDR(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

E[[j]],numDR))

174 }

175 if(MHalg == 3){

176 MH <- lapply (1:m,function(j) sampleAlphaMTM(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

E[[j]],numMTM))

177 }

178 if(MHalg == 4){

179 MH <- lapply (1:m,function(j) sampleAlphaHMC(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

epsHMC ,numHMC))

180 }

280 F. Source Code: Multivariate NHGHMM

181 if(MHalg == 5){

182 MH <- lapply (1:m,function(j) sampleAlphaSS(j,

state ,Q,z,A_prev[,which(ind==j)],mu_A,Sigma_A,

sliceWD))

183 }

184 A_curr <- matrix(sapply (1:m,function(j) MH[[j]]$

alpha),K,m*m)

185 # Update the transition matrices , Q

186 Mat <- z[-1,]%*%A_curr

187 Q[,,-1] <- aperm(array(t(Mat),dim=c(m,m,n-1)),c

(2,1,3))

188 Q[,,-1] <- exp(Q[,,-1])/aperm(array(rep(apply(exp(Q

[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n-1)),c

(2,1,3))

189 numNA <- numNA + sapply (1:m,function(j) as.numeric(

is.na(MH[[j]]$prob)))

190 acc_prob <- sapply (1:m,function(j) if(is.na(MH[[j]]

$prob)){acc_prob[j]} else{acc_prob[j] + (MH[[j]]

$prob - acc_prob[j])/(iter -(numNA[j]+1))})

191 }

192 # Update the parameter , mu

193 mu_curr <- t(sapply (1:m,function(x) mvrnormArma (1,

solve(nu[x]*solve(Sigma_prev[,,x])+solve(Sigma_M))

%*%(solve(Sigma_prev[,,x])%*%matrix(apply(matrix(

obs[which(state == x),],ncol=d),2,sum))+solve(

Sigma_M)%*%matrix(mu_M)),solve(nu[x]*solve(Sigma_

prev[,,x])+solve(Sigma_M)))))

194 # Update the parameter , Sigma

195 Sigma_curr <- array(unlist(lapply (1:m,function(x)

riwish(nu[x]+gamma_S,t(obs[which(state == x) ,] -

F.1 R c© 281

matrix(mu_curr[x,],sum(state == x),d,TRUE))%*%(obs

[which(state == x),] - matrix(mu_curr[x,],sum(

state == x),d,TRUE))+Lambda_S))),dim=c(d,d,m))

196 # Imputation of the means of the parameters

197 if(iter < iter0 && iter >= iter0Alpha && (iter -

iter0Alpha)/thinningAlpha - floor((iter -iter0Alpha

)/thinningAlpha) == 0){

198 MAV[,,(iter -iter0Alpha)/thinningAlpha] <- mu_curr

199 SAV[,,,(iter -iter0Alpha)/thinningAlpha] <- Sigma_

curr

200 if(missing(z)){

201 QAV[,,(iter -iter0Alpha)/thinningAlpha] <- Q_curr

202 }

203 else{

204 AAV[,,(iter -iter0Alpha)/thinningAlpha] <- A_curr

205 }

206 }

207 # Initialise the means of the parameters

208 if(iter == iter0){

209 if(missing(z)){

210 QAV <- apply(QAV ,1:2, median)

211 }

212 else{

213 AAV <- z[-1,]%*%apply(AAV ,1:2, mean)

214 Q0[,,-1] <- aperm(array(t(AAV),dim=c(m,m,n-1)),c

(2,1,3))

215 Q0[,,-1] <- exp(Q0[,,-1])/aperm(array(rep(apply(

exp(Q0[,,-1]),c(1,3),sum),each=m),dim=c(m,m,n

-1)),c(2,1,3))

216 QAV <- Q0

282 F. Source Code: Multivariate NHGHMM

217 }

218 MAV <- apply(MAV ,1:2, mean)

219 SAV <- apply(SAV ,1:3, mean)

220 }

221 # Update the medians by taking arithmetic means

222 if(iter > iter0){

223 if(missing(z)){

224 QAV <- QAV + (Q_curr - QAV)/iter

225 }

226 else{

227 QAV <- QAV + (Q - QAV)/iter

228 }

229 MAV <- MAV + (mu_curr - MAV)/iter

230 SAV <- SAV + (Sigma_curr - SAV)/iter

231 }

232 # Update the parameters of interest at the previous

iteration

233 mu_prev <- mu_curr

234 Sigma_prev <- Sigma_curr

235 if(missing(z)){

236 Q_prev <- Q_curr

237 }

238 else{

239 if(iter <= tau0 && adaptive == TRUE){

240 Ainit[,,iter] <- A_curr

241 }

242 A_prevv <- A_prev

243 A_prev <- A_curr

244 }

245 }

F.1 R c© 283

246 if(iter >= burnin + thinning && (iter -burnin)/thinning

- floor((iter -burnin)/thinning) == 0){

247 mu[,,(iter - burnin)/thinning] <- mu_curr

248 Sigma[,,,(iter - burnin)/thinning] <- Sigma_curr

249 if(missing(z)){

250 Q[,,(iter - burnin)/thinning] <- Q_curr

251 }

252 else{

253 A[,,(iter - burnin)/thinning] <- A_curr

254 }

255 St[[(iter -burnin)/thinning]] <- state

256 message(paste(iter ,"th iteration is stored.",sep=""))

257 }

258 }

259 if(missing(z)){

260 result <- list(mu=mu ,Sigma=Sigma ,Q=Q,state=St,prob=

state_prob)

261 }

262 else{

263 result <- list(mu=mu ,Sigma=Sigma ,alpha=A,state=St ,prob=

state_prob ,accept=acc_prob ,CM=E)

264 }

265 return(result)

266 }

1 labelSwitchMvn <- function(mu ,Sigma ,St,A,Q){

2 #--

3 # This function relabels the hidden states after the MCMC

algorithm.

4 #--

5 # Inputs

284 F. Source Code: Multivariate NHGHMM

6 #--

7 # - mu: the MCMC samples of mu

8 # - Sigma: the MCMC samples of sigma

9 # - St: a sequence of the estimated hidden states

10 # - A: the MCMC samples of alpha

11 # - Q: the MCMC samples of transition matrix

12 #--

13 # Outputs

14 #--

15 # - mu: the relabelled MCMC samples of mu

16 # - Sigma: the relabelled MCMC samples of sigma

17 # - state: the relabelled MCMC samples of state

18 # - alpha: the relabelled MCMC samples of alpha

19 # - Q: the relabelled MCMC samples of Q

20 #--

21 # Set the indices and initialise the parameters

22 m <- dim(mu)[1]

23 d <- dim(mu)[2]

24 N <- dim(mu)[3]

25 perm <- permn (1:m)

26 M <- gamma(m+1)

27 L <- numeric ()

28 P <- matrix (1:(m*m),nrow=m,ncol=m)

29 # Relabel the MCMC samples of interest

30 for(iter in 1:N){

31 L <- sapply (1:M,function(i) sum(mu[perm[[i]],,iter]==mu

[order(mu[,1,iter]),,iter]))

32 perm_curr <- perm[[which.max(L)]]

33 mu[,,iter] <- mu[perm_curr ,,iter]

34 Sigma[,,,iter] <- Sigma[,,perm_curr ,iter]

F.1 R c© 285

35 St[[iter]] <- mapvalues(St[[iter]],1:m,perm_curr)

36 if(missing(Q)){

37 A[,,iter] <- A[,as.vector(P[perm_curr ,perm_curr]),

iter]

38 }

39 else{

40 Q[,,iter] <- Q[perm_curr ,perm_curr ,iter]

41 }

42 }

43 if(missing(Q)){

44 result <- list(mu=mu ,Sigma=Sigma ,alpha=A,state=St)

45 }

46 else{

47 result <- list(mu=mu ,Sigma=Sigma ,Q=Q,state=St)

48 }

49 return(result)

50 }

1 marLikMvn <- function(mu ,Sigma ,state ,obs ,z,alpha=NULL ,Q=

NULL){

2 #--

3 # This function calculates and returns a log marginal

likelihood for the MCMC samples of interest.

4 #--

5 # Inputs

6 #--

7 # - mu: the MCMC samples of mu

8 # - Sigma: the MCMC samples of Sigma

9 # - state: the MCMC samples of hidden states

10 # - obs: the observations

11 # - z: the exogenous variables

286 F. Source Code: Multivariate NHGHMM

12 # - alpha: the MCMC samples of alpha

13 # - Q: the MCMC samples of the transition matrix/matrices

14 #--

15 # Outputs

16 #--

17 # - fhat: the log likelihoods

18 # - phat: the log priors

19 # - Phat: the log posteriors

20 #--

21 m <- dim(mu)[1]

22 n <- dim(obs)[1]

23 d <- dim(obs)[2]

24 N <- length(state)

25 rho <- rep(1/m,m)

26 if(!missing(z)){

27 K <- ncol(z)

28 mu_A <- numeric(K)

29 Sigma_A <- solve(diag(10,K))

30 CM <- diag(13,K)

31 }

32 signMat <- sign(cov(obs))

33 mu_M <- apply(obs ,2,function(x) mean(range(x)))

34 Sigma_M <- diag(apply(obs ,2,function(x) diff(range(x))))

35 idx_M <- which(Sigma_M == 0,arr.ind=TRUE)

36 Sigma_M[idx_M] <- signMat[idx_M]*sapply (1: nrow(idx_M),

function(x) sqrt(Sigma_M[idx_M[x,1],idx_M[x,1]]*Sigma_

M[idx_M[x,2],idx_M[x,2]])/2)

37 gamma_S <- trunc ((d+1)/2) + 1

38 Lambda_S <- diag(gamma_S,d)

39 idx_S <- which(Lambda_S == 0,arr.ind=TRUE)

F.1 R c© 287

40 Lambda_S[idx_S] <- signMat[idx_S]*gamma_S/2

41 muStar <- apply(mu ,1:2, mean)

42 SigmaStar <- apply(Sigma ,1:3, mean)

43 if(missing(z)){

44 QStar <- apply(Q,1:2, mean)

45 }

46 else{

47 alphaStar <- apply(alpha ,1:2, mean)

48 }

49 # Define the posterior density function

50 f <- function(A){

51 prod((exp(z%*%A)/rowSums(exp(z%*%A)))[mat_dims])*exp(-1

/2*sum(diag((A-mu_A)%*%t(A-mu_A)%*%Sigma_A)))

52 }

53 # Compute the log likelihood

54 fhat <- t(sapply (1:n,function(x) dmvnrm_arma(obs[x,],

muStar ,SigmaStar)))

55 fhat[1,] <- fhat[1,]*rho

56 for(i in 2:n){

57 if(missing(z)){

58 fhat[i,] <- (fhat[i-1,]/sum(fhat[i-1,]))%*%QStar*fhat

[i,]

59 }

60 else{

61 P <- lapply (1: dim(alpha)[3], function(x) matrix(exp(z[

i,]%*%alpha[,,x]),m,m,TRUE))

62 P <- lapply (1: length(P),function(x) P[[x]]/rowSums(P

[[x]]))

63 P <- array(unlist(P),dim=c(m,m,length(P)))

64 fhat[i,] <- (fhat[i-1,]/sum(fhat[i-1,]))%*%apply(P

288 F. Source Code: Multivariate NHGHMM

,1:2, median)*fhat[i,]

65 }

66 }

67 fhat <- sum(log(apply(fhat ,1,sum)))

68 # Compute the log priors

69 phat <- sum(sapply (1:m,function(x) log(dmvnorm(muStar[x

,],mu_M,Sigma_M)))) + sum(sapply (1:m,function(x) log(

diwish(SigmaStar[,,x],gamma_S,Lambda_S))))

70 if(missing(z)){

71 phat <- phat + sum(sapply (1:m,function(x) log(

ddirichlet(QStar[x,],rep(1,m)))))

72 }

73 else{

74 phat <- phat + sum(sapply(which(diag(m)==0),function(x)

log(dmvnorm(alphaStar[,x],mu_A,solve(Sigma_A)))))

75 }

76 # Compute the log posteriors

77 alphaPool1 <- alphaPool2 <- numeric(m)

78 estMu <- estSigma <- estQ <- estAlpha1 <- estAlpha2 <-

numeric(N)

79 for(iter in 1:N){

80 nu <- sapply (1:m,function(x) sum(state[[iter]]==x))

81 estMu[iter] <- prod(sapply (1:m,function(x) dmvnorm(

muStar[x,],solve(nu[x]*solve(Sigma[,,x,iter])+solve(

Sigma_M))%*%(solve(Sigma[,,x,iter])%*%matrix(apply(

matrix(obs[which(state[[iter]]==x) ,],ncol=d) ,2,sum))

+solve(Sigma_M)%*%matrix(mu_M)),solve(nu[x]*solve(

Sigma[,,x,iter])+solve(Sigma_M)))))

82 estSigma[iter] <- prod(sapply (1:m,function(x) diwish(

SigmaStar[,,x],nu[x]+gamma_S,t(obs[which(state [[iter

F.1 R c© 289

]] == x) ,] - matrix(muStar[x,],sum(state [[iter]] ==

x),d,TRUE))%*%(obs[which(state[[iter]] == x),] -

matrix(muStar[x,],sum(state [[iter]] == x),d,TRUE))+

Lambda_S)))

83 if(missing(z)){

84 tbl <- table(state[[iter]][-n],state[[iter]][-1])

85 estQ[iter] <- prod(sapply (1:m,function(x) ddirichlet(

QStar[x,],tbl[x ,]+1)))

86 }

87 else{

88 for(k in 1:m){

89 idx <- rep(1:m,each=m)

90 ind <- which(state[[iter]][-n]==k)

91 mat_ind <- (1:m)[-k]

92 mat_dims <- matrix(c(ind+1,state [[iter]][ind +1]),

ncol =2)

93 alphaPool1[k] <- min(1,f(alphaStar[,which(idx==k)])

/f(alpha[,which(idx==k),iter]))*prod(sapply(

which(idx==k),function(x) dmvnorm(alphaStar[,x],

alpha[,x,iter],CM))[mat_ind])

94 alphaPool2[k] <- min(1,f(alpha[,which(idx==k),iter

])/f(alphaStar[,which(idx==k)]))

95 }

96 estAlpha1[iter] <- prod(alphaPool1)

97 estAlpha2[iter] <- prod(alphaPool2)

98 }

99 }

100 if(missing(z)){

101 Phat <- log(mean(estQ)) + log(mean(estSigma)) + log(

mean(estMu))

290 F. Source Code: Multivariate NHGHMM

102 }

103 else{

104 Phat <- log(mean(estAlpha1)) - log(mean(estAlpha2)) +

log(mean(estSigma)) + log(mean(estMu))

105 }

106 return(c(fhat ,phat ,-Phat))

107 }

F.2 C++

1 #include <RcppArmadillo.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

3 using namespace Rcpp;

4 // [[Rcpp:: export]]

5 arma::mat mvrnormArma(int n, arma::vec mu , arma::mat Sigma)

{

6 int ncols = Sigma.n_cols;

7 arma::mat Y = arma::randn(n,ncols);

8 return arma:: repmat(mu ,1,n).t() + Y * arma::chol(Sigma);

9 }

1 #include <RcppArmadilloExtensions/sample.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

3 using namespace Rcpp;

4 const double log2pi = std::log (2.0 * M_PI);

5 // [[Rcpp:: export]]

6 arma:: rowvec dmvnrm_arma(arma:: rowvec x, arma::mat mean ,

arma::cube sigma , bool logd = false) {

7 int m = mean.n_rows;

8 int xdim = mean.n_cols;

F.2 C++ 291

9 arma:: rowvec out(m);

10 double constants = -(static_cast <double >(xdim)/2.0) *

log2pi;

11 for (int i=0; i < m; i++) {

12 arma::mat rooti = arma::trans(arma::inv(trimatu(arma::

chol(sigma.slice(i)))));

13 double rootisum = arma::sum(log(rooti.diag()));

14 arma::vec z = rooti * arma:: trans(x - mean.row(i))

;

15 out(i) = constants - 0.5 * arma::sum(z%z) +

rootisum;

16 }

17 if (logd == false) {

18 out = exp(out);

19 }

20 return(out);

21 }

22 // [[Rcpp:: export]]

23 List ffbsCmatMvn(arma::mat obs , arma:: rowvec rho , arma::mat

Q, arma::mat mu, arma::cube Sigma){

24 int m = rho.n_elem;

25 int n = obs.n_rows;

26 IntegerVector state(n);

27 IntegerVector space = seq_len(m) - 1;

28 arma::mat fwd(n,m);

29 arma::mat bwd(n,m);

30 // Initialisation of the forward variable

31 fwd.row(0) = rho%dmvnrm_arma(obs.row (0),mu,Sigma);

32 fwd.row(0) = fwd.row(0)/sum(fwd.row(0));

33 // Execute the forward filtering recursion

292 F. Source Code: Multivariate NHGHMM

34 for(int t = 1; t < n; t++){

35 fwd.row(t) = (fwd.row(t-1)*Q)%dmvnrm_arma(obs.row(t

),mu ,Sigma);

36 fwd.row(t) = fwd.row(t)/sum(fwd.row(t));

37 }

38 // Initialisation of the backward variable

39 bwd.row(n-1) = fwd.row(n-1);

40 state(n-1) = bwd.row(n-1).index_max();

41 // Execute the backward sampling recursion

42 for(int t = n-1; t > 0; t--){

43 bwd.row(t-1) = fwd.row(t-1)%arma::conv_to <arma::

rowvec >:: from(Q.col(state(t)));

44 bwd.row(t-1) = bwd.row(t-1)/sum(bwd.row(t-1));

45 state(t-1) = RcppArmadillo :: sample(space ,1,false ,as

<NumericVector >(wrap(arma::conv_to <arma::rowvec

>:: from(bwd.row(t-1)))))(0);

46 }

47 return List:: create(Named("state",state),Named("prob",

bwd));

48 }

1 #include <RcppArmadilloExtensions/sample.h>

2 // [[Rcpp:: depends(RcppArmadillo)]]

3 using namespace Rcpp;

4 const double log2pi = std::log (2.0 * M_PI);

5 // [[Rcpp:: export]]

6 arma:: rowvec dmvnrm_arma(arma:: rowvec x, arma::mat mean ,

arma::cube sigma , bool logd = false) {

7 int m = mean.n_rows;

8 int xdim = mean.n_cols;

9 arma:: rowvec out(m);

F.2 C++ 293

10 double constants = -(static_cast <double >(xdim)/2.0) *

log2pi;

11 for (int i=0; i < m; i++) {

12 arma::mat rooti = arma::trans(arma::inv(trimatu(arma::

chol(sigma.slice(i)))));

13 double rootisum = arma::sum(log(rooti.diag()));

14 arma::vec z = rooti * arma:: trans(x - mean.row(i))

;

15 out(i) = constants - 0.5 * arma::sum(z%z) +

rootisum;

16 }

17 if (logd == false) {

18 out = exp(out);

19 }

20 return(out);

21 }

22 // [[Rcpp:: export]]

23 List ffbsCmatMvn(arma::mat obs , arma:: rowvec rho , arma::mat

Q, arma::mat mu, arma::cube Sigma){

24 int m = rho.n_elem;

25 int n = obs.n_rows;

26 IntegerVector state(n);

27 IntegerVector space = seq_len(m) - 1;

28 arma::mat fwd(n,m);

29 arma::mat bwd(n,m);

30 // Initialisation of the forward variable

31 fwd.row(0) = rho%dmvnrm_arma(obs.row (0),mu,Sigma);

32 fwd.row(0) = fwd.row(0)/sum(fwd.row(0));

33 // Execute the forward filtering recursion

34 for(int t = 1; t < n; t++){

294 F. Source Code: Multivariate NHGHMM

35 fwd.row(t) = (fwd.row(t-1)*Q)%dmvnrm_arma(obs.row(t

),mu ,Sigma);

36 fwd.row(t) = fwd.row(t)/sum(fwd.row(t));

37 }

38 // Initialisation of the backward variable

39 bwd.row(n-1) = fwd.row(n-1);

40 state(n-1) = bwd.row(n-1).index_max();

41 // Execute the backward sampling recursion

42 for(int t = n-1; t > 0; t--){

43 bwd.row(t-1) = fwd.row(t-1)%arma::conv_to <arma::

rowvec >:: from(Q.col(state(t)));

44 bwd.row(t-1) = bwd.row(t-1)/sum(bwd.row(t-1));

45 state(t-1) = RcppArmadillo :: sample(space ,1,false ,as

<NumericVector >(wrap(arma::conv_to <arma::rowvec

>:: from(bwd.row(t-1)))))(0);

46 }

47 return List:: create(Named("state",state),Named("prob",

bwd));

48 }

295

References

Ailliot, P., Thompson, C. and Thomson, P. (2009), ‘Space–time modelling of precipita-

tion by using a hidden Markov model and censored Gaussian distributions’, Journal

of the Royal Statistical Society: Series C (Applied Statistics) 58(3), 405–426.

Baum, L. E. and Eagon, J. A. (1967), ‘An inequality with applications to statistical

estimation for probabilistic functions of Markov processes and to a model for ecology’,

Bulletin of the American Mathematical Society 73(3), 360–363.

Baum, L. E. and Petrie, T. (1966), ‘Statistical inference for probabilistic functions of

finite state Markov chains’, The Annals of Mathematical Statistics 37(6), 1554–1563.

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970), ‘A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains’, The

Annals of Mathematical Statistics 41(1), 164–171.

Bayes, T., Price, R. and Canton, J. (1763), An essay towards solving a problem in the

doctrine of chances, C. Davis, Printer to the Royal Society of London.

Bédard, M., Douc, R. and Moulines, E. (2012), ‘Scaling analysis of multiple-try MCMC

methods’, Stochastic Processes and their Applications 122(3), 758–786.

Bellman, R. E. (2015), Adaptive control processes: a guided tour, Princeton University

Press.

Bellone, E., Hughes, J. P. and Guttorp, P. (2000), ‘A hidden Markov model for down-

scaling synoptic atmospheric patterns to precipitation amounts’, Climate Research

15(1), 1–12.

296 REFERENCES

Birkhoff, G. D. (1931), ‘Proof of the ergodic theorem’, Proceedings of the National

Academy of Sciences 17(12), 656–660.

Bishop, C. M. (2006), ‘Pattern recognition’, Machine Learning 128, 1–58.

Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015), Time series

analysis: forecasting and control, John Wiley & Sons.

Boys, R. J. and Henderson, D. A. (2004), ‘A Bayesian approach to DNA sequence

segmentation’, Biometrics 60(3), 573–581.

Boys, R. J., Henderson, D. A. and Wilkinson, D. J. (2000), ‘Detecting homogeneous

segments in DNA sequences by using hidden Markov models’, Applied Statistics

pp. 269–285.

Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (2011), Handbook of Markov chain

Monte Carlo, CRC Press.

Casella, G. and George, E. I. (1992), ‘Explaining the Gibbs sampler’, The American

Statistician 46(3), 167–174.

Celeux, G., Hurn, M. and Robert, C. P. (2000), ‘Computational and inferential dif-

ficulties with mixture posterior distributions’, Journal of the American Statistical

Association 95(451), 957–970.

Chib, S. (1995), ‘Marginal likelihood from the Gibbs output’, Journal of the American

Statistical Association 90(432), 1313–1321.

Chib, S. (1996), ‘Calculating posterior distributions and modal estimates in Markov

mixture models’, Journal of Econometrics 75(1), 79–97.

Chib, S. and Jeliazkov, I. (2001), ‘Marginal likelihood from the Metropolis–Hastings

output’, Journal of the American Statistical Association 96(453), 270–281.

Churchill, G. A. (1989), ‘Stochastic models for heterogeneous DNA sequences’, Bulletin

of Mathematical Biology 51(1), 79–94.

REFERENCES 297

Coast, D. A., Stern, R. M., Cano, G. G. and Briller, S. A. (1990), ‘An approach to

cardiac arrhythmia analysis using hidden Markov models’, IEEE Transactions on

Biomedical Engineering 37(9), 826–836.

Cowles, M. K. and Carlin, B. P. (1996), ‘Markov chain Monte Carlo convergence di-

agnostics: a comparative review’, Journal of the American Statistical Association

91(434), 883–904.

Craiu, R. V. and Lemieux, C. (2007), ‘Acceleration of the multiple-try Metropolis algo-

rithm using antithetic and stratified sampling’, Statistics and Computing 17(2), 109–

120.

Crouse, M. S., Nowak, R. D. and Baraniuk, R. G. (1998), ‘Wavelet-based statisti-

cal signal processing using hidden Markov models’, IEEE Transactions on Signal

Processing 46(4), 886–902.

de Laplace, P. S. (1820), Théorie analytique des probabilités, Vol. 7, Courcier.

Del Moral, P., Doucet, A. and Jasra, A. (2012), ‘An adaptive sequential Monte

Carlo method for approximate Bayesian computation’, Statistics and Computing

22(5), 1009–1020.

Dellaportas, P., Denison, D. G. and Holmes, C. (2007), ‘Flexible threshold models for

modelling interest rate volatility’, Econometric Reviews 26(2-4), 419–437.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977), ‘Maximum likelihood from

incomplete data via the EM algorithm’, Journal of the Royal Statistical Society:

Series B (Methodological) pp. 1–38.

Diebold, F. X., Lee, J.-H. and Weinbach, G. C. (1994), ‘Regime switching with time-

varying transition probabilities’, Business Cycles: Durations, Dynamics, and Fore-

casting pp. 144–165.

Donoho, D. L. et al. (2000), ‘High-dimensional data analysis: The curses and blessings

of dimensionality’, AMS Math Challenges Lecture 1(2000).

298 REFERENCES

Eddelbuettel, D., François, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., Chambers, J.

and Bates, D. (2011), ‘Rcpp: Seamless R and C++ integration’, Journal of Statistical

Software 40(8), 1–18.

Edwards, W., Lindman, H. and Savage, L. J. (1963), ‘Bayesian statistical inference for

psychological research.’, Psychological Review 70(3), 193–242.

Filardo, A. J. and Gordon, S. F. (1998), ‘Business cycle durations’, Journal of Econo-

metrics 85(1), 99–123.

Fridlyand, J., Snijders, A. M., Pinkel, D., Albertson, D. G. and Jain, A. N. (2004),

‘Hidden Markov models approach to the analysis of array CGH data’, Journal of

Multivariate Analysis 90(1), 132–153.

Gamerman, D. and Lopes, H. F. (2006), Markov chain Monte Carlo: stochastic simu-

lation for Bayesian inference, CRC Press.

Gelfand, A. E. and Smith, A. F. (1990), ‘Sampling-based approaches to calculating

marginal densities’, Journal of the American Statistical Association 85(410), 398–

409.

Geman, S. and Geman, D. (1984), ‘Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images’, IEEE Transactions on Pattern Analysis and

Machine Intelligence (6), 721–741.

Geweke, J. et al. (1991), Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments, Vol. 196, Federal Reserve Bank of Minneapolis,

Research Department Minneapolis, MN, USA.

Gilks, W. R., Roberts, G. O. and George, E. I. (1994), ‘Adaptive direction sampling’,

The Statistician pp. 179–189.

Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998), ‘Adaptive Markov chain

Monte Carlo through regeneration’, Journal of the American Statistical Association

93(443), 1045–1054.

REFERENCES 299

Haario, H., Laine, M., Mira, A. and Saksman, E. (2006), ‘DRAM: efficient adaptive

MCMC’, Statistics and Computing 16(4), 339–354.

Haario, H., Saksman, E. and Tamminen, J. (2001), ‘An adaptive Metropolis algorithm’,

Bernoulli pp. 223–242.

Hamilton, J. D. (1988), ‘Rational-expectations econometric analysis of changes in

regime: An investigation of the term structure of interest rates’, Journal of Eco-

nomic Dynamics and Control 12(2-3), 385–423.

Hamilton, J. D. (1994), Time series analysis, Vol. 2, Princeton, NJ: Princeton Univer-

sity Press.

Hastings, W. K. (1970), ‘Monte Carlo sampling methods using Markov chains and their

applications’, Biometrika 57(1), 97–109.

Heaps, S. E., Boys, R. J. and Farrow, M. (2015), ‘Bayesian modelling of rainfall data

by using non-homogeneous hidden Markov models and latent Gaussian variables’,

Journal of the Royal Statistical Society: Series C (Applied Statistics) 64(3), 543–568.

Heidelberger, P. and Welch, P. D. (1983), ‘Simulation run length control in the presence

of an initial transient’, Operations Research 31(6), 1109–1144.

Holsclaw, T., Greene, A. M., Robertson, A. W. and Smyth, P. (2016), ‘A Bayesian

hidden Markov model of daily precipitation over South and East Asia’, Journal of

Hydrometeorology 17(1), 3–25.

Holsclaw, T., Greene, A. M., Robertson, A. W., Smyth, P. et al. (2017), ‘Bayesian

nonhomogeneous Markov models via Pólya-Gamma data augmentation with appli-

cations to rainfall modeling’, The Annals of Applied Statistics 11(1), 393–426.

Hughes, J. P., Guttorp, P. and Charles, S. P. (1997), ‘A nonhomogeneous hidden

Markov model for precipitation’.

Hughes, J. P., Guttorp, P. and Charles, S. P. (1999), ‘A non-homogeneous hidden

Markov model for precipitation occurrence’, Journal of the Royal Statistical Society:

Series C (Applied Statistics) 48(1), 15–30.

300 REFERENCES

Jenkins, J. M., Wu, D. and Arzbaecher, R. C. (1979), ‘Computer diagnosis of supraven-

tricular and ventricular arrhythmias. A new esophageal technique.’, Circulation

60(5), 977–987.

Koki, C., Meligkotsidou, L. and Vrontos, I. (2018), ‘Bayesian analysis of predictive

Non-Homogeneous hidden Markov models using Polya-Gamma data augmentation’,

arXiv preprint arXiv:1802.02825 .

Laplace, P. S. (1986), ‘Memoir on the probability of the causes of events’, Statistical

Science 1(3), 364–378.

Link, W. A. and Eaton, M. J. (2012), ‘On thinning of chains in MCMC’, Methods in

Ecology and Evolution 3(1), 112–115.

Liu, J. S. and Chen, R. (1995), ‘Blind deconvolution via sequential imputations’, Jour-

nal of the American Statistical Association 90(430), 567–576.

Liu, J. S., Liang, F. and Wong, W. H. (2000), ‘The multiple-try method and local op-

timization in Metropolis sampling’, Journal of the American Statistical Association

95(449), 121–134.

MacEachern, S. N. and Berliner, L. M. (1994), ‘Subsampling the Gibbs sampler’, The

American Statistician 48(3), 188–190.

McNeish, D. (2016), ‘On using Bayesian methods to address small sample problems’,

Structural Equation Modeling: A Multidisciplinary Journal 23(5), 750–773.

Meligkotsidou, L. and Dellaportas, P. (2011), ‘Forecasting with non-homogeneous hid-

den Markov models’, Statistics and Computing 21(3), 439–449.

Mengersen, K. L., Tweedie, R. L. et al. (1996), ‘Rates of convergence of the Hastings

and Metropolis algorithms’, The Annals of Statistics 24(1), 101–121.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.

(1953), ‘Equation of state calculations by fast computing machines’, The Journal of

Chemical Physics 21(6), 1087–1092.

REFERENCES 301

Metropolis, N. and Ulam, S. (1949), ‘The Monte Carlo method’, Journal of the Amer-

ican Statistical Association 44(247), 335–341.

Meyn, S. P. and Tweedie, R. L. (2012), Markov chains and stochastic stability, Springer

Science & Business Media.

Mira, A. and Tierney, L. (2002), ‘Efficiency and convergence properties of slice sam-

plers’, Scandinavian Journal of Statistics 29(1), 1–12.

Mira, A. et al. (2001), ‘On Metropolis-Hastings algorithms with delayed rejection’,

Metron 59(3-4), 231–241.

Murphy, K. P. (2012), Machine learning: a probabilistic perspective, MIT Press.

Myung, I. J. and Pitt, M. A. (1997), ‘Applying Occams razor in modeling cognition:

A Bayesian approach’, Psychonomic Bulletin & Review 4(1), 79–95.

Owen, A. B. (2017), ‘Statistically efficient thinning of a Markov chain sampler’, Journal

of Computational and Graphical Statistics 26(3), 738–744.

Peskun, P. H. (1973), ‘Optimum Monte-Carlo sampling using Markov chains’,

Biometrika 60(3), 607–612.

Putnam, B. H. and Quintana, J. M. (1994), New Bayesian statistical approaches to

estimating and evaluating models of exchange rates determination, in ‘Proceedings

of the ASA Section on Bayesian Statistical Science’, Vol. 1994, American Statistical

Association, pp. 232–237.

Quintana, J. (1992), ‘Optimal portfolios of forward currency contracts’, Bayesian

Statistics 4, 753–762.

R Core Team (2016), R: A Language and Environment for Statistical Computing, R

Foundation for Statistical Computing, Vienna, Austria.

URL: https://www.r-project.org/

Rabiner, L. R. (1989), ‘A tutorial on hidden Markov models and selected applications

in speech recognition’, Proceedings of the IEEE 77(2), 257–286.

302 REFERENCES

Rabiner, L. R. and Juang, B.-H. (1986), ‘An introduction to hidden Markov models’,

ASSP Magazine, IEEE 3(1), 4–16.

Raymond, J. E. and Rich, R. W. (1997), ‘Oil and the macroeconomy: A Markov

state-switching approach’, Journal of Money, Credit, and Banking pp. 193–213.

Richardson, S. and Green, P. J. (1997), ‘On Bayesian analysis of mixtures with an

unknown number of components (with discussion)’, Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 59(4), 731–792.

Robert, C. P. and Casella, G. (1999), The Metropolis-Hastings Algorithm, in ‘Monte

Carlo Statistical Methods’, Springer New York, pp. 231–283.

Roberts, G. O., Gelman, A., Gilks, W. R. et al. (1997), ‘Weak convergence and optimal

scaling of random walk Metropolis algorithms’, The Annals of Applied Probability

7(1), 110–120.

Roberts, G. O. and Rosenthal, J. S. (2009), ‘Examples of adaptive MCMC’, Journal

of Computational and Graphical Statistics 18(2), 349–367.

Robertson, A. W., Kirshner, S. and Smyth, P. (2004), ‘Downscaling of daily rainfall

occurrence over northeast Brazil using a hidden Markov model’, Journal of Climate

17(22), 4407–4424.

Rosenthal, J. S. (1995), ‘Minorization conditions and convergence rates for Markov

chain Monte Carlo’, Journal of the American Statistical Association 90(430), 558–

566.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. and Iverson, G. (2009), ‘Bayesian

t tests for accepting and rejecting the null hypothesis’, Psychonomic Bulletin &

Review 16(2), 225–237.

Rueda, O. M., Rueda, C. and Diaz-Uriarte, R. (2013), ‘A Bayesian HMM with random

effects and an unknown number of states for DNA copy number analysis’, Journal

of Statistical Computation and Simulation 83(1), 82–96.

REFERENCES 303

Russell, S., Norvig, P. and Intelligence, A. (1995), ‘A modern approach’, Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs 25(27), 79–80.

Rydén, T. et al. (2008), ‘EM versus Markov chain Monte Carlo for estimation of hidden

Markov models: A computational perspective’, Bayesian Analysis 3(4), 659–688.

Scott, S. L. (2002), ‘Bayesian methods for hidden Markov models: Recursive computing

in the 21st century’, Journal of the American Statistical Association 97(457), 337–

351.

Scott, S. L. (2011), ‘Bayesian methods for hidden Markov models’, Journal of the

American Statistical Association .

Smith, A. F. and Roberts, G. O. (1993), ‘Bayesian computation via the Gibbs sampler

and related Markov chain Monte Carlo methods’, Journal of the Royal Statistical

Society: Series B (Methodological) pp. 3–23.

Sperrin, M., Jaki, T. and Wit, E. (2010), ‘Probabilistic relabelling strategies for the

label switching problem in Bayesian mixture models’, Statistics and Computing

20(3), 357–366.

Spezia, L. (2006), ‘Bayesian analysis of non-homogeneous hidden Markov models’,

Journal of Statistical Computation and Simulation 76(8), 713–725.

Spezia, L. (2010), ‘Bayesian analysis of multivariate Gaussian hidden Markov models

with an unknown number of regimes’, Journal of Time Series Analysis 31(1), 1–11.

Spezia, L., Brewer, M. J. and Birkel, C. (2017), ‘An anisotropic and inhomogeneous

hidden Markov model for the classification of water quality spatio-temporal series

on a national scale: The case of Scotland’, Environmetrics 28(1).

Spezia, L., Cooksley, S. L., Brewer, M. J., Donnelly, D. and Tree, A. (2014), ‘Mapping

species distributions in one dimension by non-homogeneous hidden Markov models:

the case of freshwater pearl mussels in the River Dee’, Environmental and Ecological

Statistics 21(3), 487–505.

304 REFERENCES

Spezia, L., Friel, N. and Gimona, A. (2018), ‘Spatial hidden Markov models and species

distributions’, Journal of Applied Statistics 45(9), 1595–1615.

Spezia, L., Futter, M. N. and Brewer, M. J. (2011), ‘Periodic multivariate Normal

hidden Markov models for the analysis of water quality time series’, Environmetrics

22(3), 304–317.

Stephens, M. (2000), ‘Dealing with label switching in mixture models’, Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 62(4), 795–809.

Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. M. and Rief, M. (2011), ‘The

complex folding network of single calmodulin molecules’, Science 334(6055), 512–

516.

Stigler, S. M. (1982), ‘Thomas Bayes’s Bayesian inference’, Journal of the Royal Sta-

tistical Society: Series A (General) pp. 250–258.

Tanner, M. A. and Wong, W. H. (1987), ‘The calculation of posterior distributions by

data augmentation’, Journal of the American Statistical Association 82(398), 528–

540.

Thrun, S., Burgard, W. and Fox, D. (2005), Probabilistic robotics, MIT Press.

Tierney, L. (1994), ‘Markov chains for exploring posterior distributions’, The Annals

of Statistics pp. 1701–1728.

Tierney, L. and Mira, A. (1999), ‘Some adaptive Monte Carlo methods for Bayesian

inference’, Statistics in Medicine 18(1718), 2507–2515.

Tong, H., Thanoon, B. and Gudmundsson, G. (1985), ‘Threshold time series mod-

eling of two Icelandic riverflow systems’, JAWRA Journal of the American Water

Resources Association 21(4), 651–662.

Tsay, R. S. (1998), ‘Testing and modeling multivariate threshold models’, Journal of

the American Statistical Association 93(443), 1188–1202.

REFERENCES 305

Tweedie, R. L. (1975), ‘Sufficient conditions for ergodicity and recurrence of Markov

chains on a general state space’, Stochastic Processes and their Applications

3(4), 385–403.

Zucchini, W. and MacDonald, I. L. (2009), Hidden Markov models for time series: an

introduction using R, CRC Press.

	List of Figures
	List of Tables
	List of Symbols
	Abstract
	Certification
	Acknowledgements
	Introduction
	Literature Review
	Hidden Markov Model
	Gaussian Hidden Markov Model
	Non-homogeneous Gaussian Hidden Markov Model

	Bayesian Inference
	Bayes' Theorem

	Markov Chain Monte Carlo Algorithms
	Metropolis-Hastings Algorithm
	Gibbs Sampler
	Data Augmentation

	Advanced MCMC Algorithms
	Adaptive Metropolis Algorithm
	Multiple-try Metropolis-Hastings Algorithm
	Delayed Rejection Metropolis-Hastings Algorithm
	Symmetric Delayed Rejection Metropolis-Hastings Algorithm

	Label Switching
	MCMC Convergence
	MCMC Algorithm Efficiency

	Univariate NHGHMM
	The Model
	Prior Distributions
	Likelihood Function
	Posterior Distributions
	The MCMC Algorithms
	Simulation Study
	MCMC Convergence
	Performance of Parameter Estimation

	Case Study
	The US Treasury Bill Rates

	Multivariate NHGHMM
	The Model
	Prior Distributions
	Likelihood Function
	Posterior Distributions
	The MCMC Algorithms
	Simulation Study
	MCMC Convergence
	Performance of Parameter Estimation

	Case Studies
	Icelandic river flow data
	Rainfall in the UK

	Conclusion
	Unknown Number of Hidden States: Univariate NHGHMM
	Unknown Number of Hidden States: Multivariate NHGHMM
	Figures: Univariate NHGHMM (Simulation Study)
	Figures: Multivariate NHGHMM (Simulation Study)
	Source Code: Univariate NHGHMM
	R©
	C++

	Source Code: Multivariate NHGHMM
	R©
	C++

	References

		2019-04-27T16:04:41+0900
	Shin Sato

