Comparing the performance of a High Rate Algal Pond with a Waste Stabilisation Pond in rural South Australia

Alan Neil Buchanan B.V.Sc. (Hons)

School of the Environment Faculty of Science & Engineering

Flinders University

6/6/2014

Early Sanitation:- Latrines inside Housesteads Fort, Hadrians Wall. Northumberland, UK – circa 124 A.D.

ii

CONTENTS

Contents	(iii)
Abstract	(xiii)
Declaration	(xv)
Acknowledgements	(xvi)
Table of Figures	(xviii)
Table of Tables	. (xxxi)
Table of Plates	. (xxxviii)
Table of Equations	(xxxix)
Chapter 1 INTRODUCTION, HYPOTHESIS & LITERATURE REVIEW	15
1.1 PROJECT AIMS	15
1.2 BACKGROUND	
1.3 RESEARCH HYPOTHESIS	
1.4 Wastewater disposal and local government in South Australia	17
1.4.1 Funding & Structure of the project – initial plan, modified plan	18
1.5 LITERATURE REVIEW	20
1.5.1 OVERVIEW OF WASTEWATER MANAGEMENT	20
1.5.2 Primary Treatment	23
1.5.3 Secondary Treatment	23
1.5.4 Prevention of Eutrophication	24
1.5.5 Disinfection	24
1.5.7 WASTE STABILISATION PONDS	24
1.5.7.1 The structure of a WSP system	24
1.5.7.11 Dispersed flow hydraulic model for WSP design	40
1.5.7.12 Peclet Number	45
1.5.7.13 Simplified and unified WSP design	46
1.5.7.14 Secondary factors not included in design	47
1.5.7.15 Computational Fluid Dynamics	49
1.5.7.16 Summary of performance prediction and the design of WSPs	50

1.5.8 The role of facultative ponds in the WSP system
1.5.8.1 Zones in facultative ponds 50
1.5.8.2 BOD removal from facultative ponds 51
1.5.8.3 Thermal Stratification in Facultative Ponds
1.5.9 THE EFFECT OF WIND ON WSP PERFORMANCE 56
1.5.10 THE ROLE OF MATURATION PONDS IN THE WSP SYSTEM
1.5.11 HIGH RATE ALGAL PONDS (HRAPs) 61
1.5.11.1 Definition of HRAP61
1.5.11.2 The History and Underlying Biology of High Rate Algal Ponds 61
1.5.11.3 Mixing in the HRAP 66
1.5.11.4 Detention Period 67
1.5.11.5 HRAP Depth 68
1.5.11.6 Balancing oxygen production and consumption in HRAPs 71
1.5.12 ALGAL GROWTH 71
1.5.12.1 Reporting Conventions 71
1.5.12.2 Algal Productivity vs Biomass Productivity 72
1.5.12.3 Importance of Algal Growth in HRAPs 73
1.5.12.4 Control of Algal Growth Rate 73
1.5.12.5 Modelling Algal Growth Rates and Biomass productivity 74
1.5.13 Limitations to Algal Growth77
1.5.13.1 Photo-inhibition limitations to Algal Growth
1.5.13.2 Areal density limitations to Algal Growth
1.5.13.3 Possible sunlight limitation to algal biomass production
1.5.13.4 Possible Ammonia toxicity to algae
1.5.13.5 Possible Carbon limitation to algal growth 82
1.5.14 BACTERIAL AND VIRAL DIE-OFF/REMOVAL
1.5.14.1 INDICATOR ORGANISMS 85
1.5.15 DISINFECTION IN NATURAL WASTEWATER TREATMENT SYSTEMS 89
1.5.15.1 BACTERIAL MORTALITY IN WASTE STABILISATION PONDS
1.5.15.2 OTHER ENVIRONMENTAL CAUSES OF MICROBIAL MORTALITY IN POND
WATERS
1.5.16 High Rate Algal Pond Disinfection

1.5.16.1 Summary of HRAP disinfection
1.5.17 CHEMICAL DISINFECTION 105
1.5.17.1 Chlorine 105
1.5.17.2 Chlorine Dioxide 106
1.5.17.3 Ozone 106
1.5.17.4 Ultraviolet 106
1.5.18 NUTRIENT AND BOD5 REMOVAL FROM NATURAL WASTEWATER TREATMENT
SYSTEMS 107
1.5.18.1 Biochemical Oxygen Demand (BOD) Biology and BOD Removal
1.5.18.1.1 THE USE OF BOD IN POND DESIGN 109
1.5.18.2 Nitrogen Biology and N removal
1.5.18.3 PHOSPHOROUS BIOLOGY AND REMOVAL 120
1.5.19 COMPARISON OF PERFORMANCE OF HRAP AND WSPs 124

CHAPTER 2 MATERIALS & METHODS 133
2.1 The Ponds
2.1.1 Original Design of HRAP and rebuilt design – 135
2.1.2 Revised site design 136
2.1.3 HRAP study design (see also Table 2-1 & 2-2)
2.1.4 WSP study design 138
2.1.5 The WSP at Lyndoch – size and retention times,, 139
2.1.6 WSP Bathymetry 140
2.1.8 Measuring flow rates 142
2.2 Water sample collection and analysis 142
2.2.1 Water sampling techniques 142
2.2.2 WSP Sampling Schedule 144
2.2.3 HRAP Sampling Schedule 144
2.3 Water Measurements 146
2.3.2 Water Dissolved Oxygen 146
2.3.3 Water pH 146
2.3.4 Wastewater Ammonia (NH4-N) 146

2.3.5 Wastewater Nitrate (NO3-N) 146
2.3.6 Wastewater Nitrite (NO2-N) 147
2.3.7 Wastewater Orthophosphate (PO4-P) 147
2.3.8 Wastewater Suspended Solids 147
2.3.9 Wastewater Turbidity 147
2.3.9 Wastewater chlorophyll <i>a</i> 148
2.3.10 Wastewater BOD5 148
2.3.11 Wastewater E. Coli Enumeration149
2.4 <i>E. coli</i> and MS2 dark die-off151
2.5 Data Interpretation and Statistical Analysis
2.5.1 Comparing <i>E. coli</i> removal – Log10 Reduction Values, inlet to outlet ratio,
removal efficiency 152
2.5.2 Predictive Models of Algal and Biomass Productivity 153
2.5.3 Comparison of Algal Productivity model predictions with this data 153
2.5.4 Modelling E. coli removal 155
2.5.5 Seeking possible causal relationships - Linear Regression, Regression Tree
Analysis 156
2.5.6 Comparing nutrient removal performances – daily removal rates, removal
efficiency 159
2.5.7 The R statistical and graphics tool159
2.5.7.1 Comparing distributions between groups 160
a. violinplot 162
b. beanplot 162
2.5.7.2 Time series 163
2.5.7.3 Tree regression analysis163
2.5.8 Dark Die-Off 164
REFERENCES Chapter 2 165
CHAPTER 3 HRAP RESULTS & DISCUSSION

CHAPTER 3 HRAP RESULTS & DISCUSSION	
3.1 High Rate Algal Pond – Period 1, May 2010 to April 2011 -	– High Strength Influent
(HSI)	168

3.1.1 Environmental Factors – air temperature, wind speed & direction, total solar
radiation, UV radiation, rainfall168
3.1.1.1 Prevailing weather 168
3.1.1.2 Seasons used for comparative performance 169
3.1.1.3 Exceptional weather 169
3.1.2 HRAP Operational Conditions & Wastewater Physico-chemical Parameters
3.1.2.1 Air & Water Temperatures 170
3.1.2.2 Dissolved Oxygen (DO) 171
3.1.2.3 рН 172
3.1.3 Wind Speed & Direction 175
3.1.4 Inlet Wastewater 176
3.1.5 Areal and Volumetric Loading Rates
3.1.6 Algal Growth in the HRAP fed septic tank effluent 181
3.1.6.1 Biomass & Algal Productivities
3.1.6.2 Possible Photo-inhibition
3.1.6.3 Possible in-pond light climate inhibition to algal growth 188
3.1.6.4 Possible algal growth limitations by nutrients 189
3.2 Key Performance Indicators – nutrient removal, <i>E.coli</i> LRV, chlorophyll α .
3.2.1 HRAP1 fed treated septic tank effluent: Performance at three operational depths
3.2.1.2 BOD5 Removal 194
3.2.1.3 Inorganic-N Removal 196
3.2.1.4 PO4-P Removal 199
3.2.1.5 Suspended Solids areal density or standing crop 203
3.2.1.6 <i>E. coli</i> LRV 205
3.3 High Rate Algal Ponds – Phase 2, Inlet Water derived from adjacent facultative
pond pre-treating septic tank effluent. July 2011 to February 2012 209
3.3.1 Environmental Factors – air temperature, wind speed & direction, total solar
radiation, UV radiation, rainfall

3.3.2 HRAP2 Operational Conditions & Wastewater Physico-chemical Parameters 3.3.4 Algal Growth in the HRAP2 fed effluent pre-treated in a facultative pond. 3.3.5 Key Performance Indicators – nutrient removal, *E.coli* LRV, chlorophyll α. 3.4 HRAP2 Fed facultative pond effluent: Performance at three operational depths 3.4.2 BOD5 Removal 218 3.4.3. Inorganic-N Removal (including NH4-N) 219 3.4.5 Algal & Albazod Standing Crop and Productivity 225 3.4.6 *E. coli* LRV...... 226 REFERENCES Chapter 3 228

CHAPTER 4 LYNDOCH WSP RESULTS & DISCUSSION	232
4.1 Environmental Factors – air temperature, wind speed & direction, tota	al solar
radiation, UV radiation, rainfall	234
4.1.1. Prevailing weather	234
4.1.2. Exceptional weather	235
4.1.3 WSP Operational Conditions & Wastewater Physico-chemical Param	eters
	235
4.1.3.1 Air & Water Temperatures	235
4.1.3.2 Dissolved Oxygen (DO)	237
4.1.3.3 pH	237
4.1.4 Wind Speed & Direction	237
4.1.5 Pond Temperature as measured by thermistor strings	239
Some sample recordings are shown in Fig 4-3a-d for four different times o	f year of the
pond temperature at 0.3m, 0.45m and 0.65m	239
4.2 Inlet Wastewater	241

4.2.1. Inlet flow volumes	241
4.2.2 Inlet wastewater composition	242
4.2.3 BOD5 Loading Rates	242
4.3 Pond Water Physico-chemical Parameters	243
4.3.1 Algal Growth in the Lyndoch WSP system fed septic tank effluent	243
4.4 Lyndoch WSPs: Key Performance Indicators – Nutrient Removal and E.	<i>coli</i> Log 10
Reduction Value (LRV)	251
4.4.1 <i>E. coli</i> removal	255
4.4.2 Inorganic N (including NH4-N) removal	257
4.4.3 BOD5 removal	259
4.4.4 PO4-P removal	261
REFERENCES Chapter 4	263

CHAPTER 5 PREDICTING HRAP PERFORMANCE 266	
5.1 The need to understand pond performance - for wastewater treatment	
management and for predicting biomass productivity	
5.1.1 Performance Prediction by regression tree analysis	
5.1.2 Performance indicators analysed 269	
5-2 Identification of predictors of <i>E. coli</i> Removal	
5.2.1 The rpart tool for predicting <i>E. coli</i> LRV 271	
5.2.2 The randomForest tool	
5.2.3 The cForest tool 274	
5.2.4 Comparison of the relative importance of predictors by the three regression tre	
5.2.4 companison of the relative importance of predictors by the timee regression the	ee
techniques	ee
	ee
techniques 275	e
techniques	e
techniques	2e
techniques	
techniques	

5.4.1 Comparison of the relative importance of predictors by the three regression tre	е
techniques 284	
5-5 Identification of predictors of Biomass Productivity	
5.5.1 Comparison of the relative importance of predictors by the three regression tre	е
techniques 286	
5.6 IDENTIFICATION OF PREDICTORS WHEN DATA IS COMBINED FROM BOTH HRAPS	
5.6.1 Identification of predictors of <i>E. coli</i> LRV – HRAP 1 & 2 combined 289	
5.6.2 Identification of predictors of BOD5 Removal – HRAP 1 & 2 combined	
5.6.3 Identification of predictors of NH4-N Removal – HRAP 1 & 2 combined	
5.7 Summary of factors that influence the performance of HRAPs	
REFERENCES Chapter 5 297	

CHAPTER 6 COMPARING HRAP & WSP PERFORMANCE.	. 299
6.1 CLIMATE	300
6.1.1 Temperature and Global Solar Energy	. 300
6.2 HRAP 1 AND WSP 1 (Facultative Pond) – both septic tank overflow fed	l:-
PERFORMANCE STATISTICAL SUMMARY	302
6.3 Comparison of inlet wastewater composition to the Lyndoch facultation	ve WSP and
the HRAP at Kingston on Murray.	. 304
6.4 TREATED WASTEWATER PARAMETERS FOR THE LYNDOCH FACULTATI	VE WSP AND
THE HRAP AT KINGSTON ON MURRAY EFFLUENT PRE-TREATED IN SEPTIC	TANKS.
	305
6.5 <i>E. coli</i> INACTIVATION	306
6.6 NUTRIENT REMOVAL	308
6.6.1 BOD5 Removal Efficiency	308
6.6.2 NH4-N Removal Efficiency	310
6.6.3 PO4-P Removal Efficiency	313
6.7 ALGAL CONCENTRATION & PRODUCTIVITY	315

6.8 STATISTICAL SUMMARY OF THE KINGSTON ON MURRAY HRAP:- FED FACUL	TATIVE
POND EFFLUENT AND LYNDOCH WSP 2 & 3 (MATURATION) 317	
6.9 INLET WATER	320
6.10 TREATED WASTEWATER PARAMETERS FOR THE LYNDOCH FACULTATIVE W	/SP AND
THE HRAP AT KINGSTON ON MURRAY FED EFFLUENT PRE-TREATED IN A FACUL	TATIVE
WASTE STABILISATION POND	322
6.11 <i>E. coli</i> INACTIVATION	24
6.12 NUTRIENT REMOVAL	25
6.12.1 BOD5 Removal Efficiency 3	26
6.12.2 NH4-N Removal Efficiency 3	27
6.12.3 PO4-P Removal Efficiency 3	28
6.13 ALGAL & SUSPENDED SOLIDS CONCENTRATION	29
6.14 COMPARISON OF CONSTRUCTION COSTS	32
6.15 RELATIVE ADVANTAGES AND DISADVANTAGES OF WSP AND HRAP WASTE	WATER
TREATMENT SYSTEMS 3	33
6.15.1 Advantages of the HRAP over the WSP	33
6.15.1.1 Land requirement	33
<i>6.15.1.2</i> Construction Costs	34
6.15.1.3 Performance consistency	34
6.15.1.4 Evaporative Losses	35
6.15.1.5 Desludging	35
6.15.2 Advantages of the WSP over the HRAP	35
6.15.2.1 Paddlewheel and power supply33	35
REFERENCES Chapter 6 3	36
CHAPTER 7 A MATHEMATICAL MODEL FOR E. coli REMOVAL IN THE HRAP 33	8
7.1 BACKGROUND	9
7.2 Development of a mathematical model for the prediction of <i>E. coli</i> inactivat	tion
within continuously fed HRAPs34	1
7.2.1 Model Structure	1
7.3 Sunlight mediated <i>E. coli</i> inactivation	2
7.4 Dark (light independent) die-off 34	3

7.4.1 Establishing a figure for <i>E. coli</i> Dark Die-Off Rate	343
7.4.2 Results obtained from <i>E. coli</i> dark inactivation rate determinations in v	itro
	344
7.5 Exclusion of other well-known die-off related factors (pH and DO) from t	he
model	347
7.5.1 Other model inputs	347
7.5.2 HRAPIN output and the ability to observe effects of changing input para	ameters
	348
7.6 Intensive Study Periods	350
7.6.1 Results of Intensive Study Periods	350
7.6.2 Comparing combined intensive study results to model predictions	355
7 7 LIDADIN Model Cumment	
7.7 HRAPIN Model Summary	358

CHAPTER 8 SUMMARY & CONCLUSIONS
PROJECT AIMS
RESEARCH HYPOTHESIS
8.1 WSP Performance Summary
8.1.1 The environment & pond environment 366
8.1.2 Understanding WSP Performance Indicators
8.1.3 Algal Concentration and Productivity
8.1.4 Overall Summary 369
8.2 HRAP Performance Summary
8.2.1 The environment & pond environment
8.2.2 Understanding HRAP Performance Indicators
8.2.3 Algal Concentration, Algal and Albazod Productivity
8.2.4 Predicting HRAP Performance
8.2.5 HRAPIN Model for E. coli removal from HRAPs 375
8.3 Comparing HRAP & WSP performance
8.4 Optimising HRAP Design and Operating Criteria for South Australian
conditions
8.5 Has the hypothesis been proven?

8.6 Recommendations for further work	382
REFERENCES Literature Review	384

ABSTRACT

This study compares the performance of two natural wastewater treatment systems; waste stabilisation ponds (WSP) and High Rate Algal Ponds (HRAP) in rural South Australia. The systems were located in similar geographic and climatic zones, East North East of Adelaide.

The WSP treated the domestic wastewater from the township of Lyndoch, with an approximate population of 1,750 inhabitants, and daily treatment plant influent of 165 kL. The HRAP treated domestic wastewater from the smaller township of Kingston-on-Murray, with an approximate population of 140 producing daily treatment plant influent of 12 kL. All households in both townships had domestic septic tanks connected to a reticulation system to harvest their overflow to a central sump and pump station that pumped to the treatment plant. The WSP treatment plant was a three cell system with gravity feed between ponds, and a theoretical hydraulic retention time of 36 days in pond 1 and 15 days each in pond 2 and 3, for a total of 66 days. This system was observed over a period of two years. The HRAP was a single raceway 30 m x 5 m with adjustable depth settings. The HRAP was run at 0.32 m, (θ =4.7 d), 0.42 m (θ =6.6 d) and 0.55 m (θ =9.2 d). The depth setting was altered regularly to encompass observation periods in all seasons at all depths. This system was observed for a year. A second period of 9 months of HRAP observations was made in a similar manner, this time using wastewater that had already spent approximately 36 days in a facultative pond.

Parameters measured at both sites in all ponds were:-

- Continuously logged water temperature, dissolved oxygen and pH
- Continuously logged weather data temperature, wind speed & direction, total solar radiation, UV radiation, rainfall.

- Water samples collected at regular intervals from inlets and all ponds and returned to the laboratory for estimations of the following:-
 - E. coli enumeration
 - o Chlorophyll a
 - Suspended solids
 - \circ Turbidity
 - \circ BOD₅
 - Nutrients:- NH₄-N, NO₂-N, NO₃-N, PO₄-P

The results were analysed to compare both the disinfection performance of the two systems and the relative ability to remove nutrients. A comparison was also made of the albazod productivity of the two systems.

A mathematical model to predict the *E. coli* concentration in the HRAP effluent was constructed and the model outputs were compared with eight separate periods of intensive observation of *E. coli* numbers over periods of two to five days at a time. There was good correlation between model output and *E. coli* concentration observations.

The study answered in the affirmative the question of whether a High Rate Algal Pond system could replace a Waste Stabilisation Pond system in rural South Australia. It also offers clear advice on the design and operation of a High Rate Algal Pond system in rural South Australia.

DECLARATION

I, Alan Neil Buchanan certify that this work contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

ACKNOWLEDGEMENTS

This project is dedicated to my grandchildren and all of their generation. It is the only way I know to contribute to their future well-being in a world reluctant to acknowledge the fast approaching end of boundless resources – primary amongst those, water and energy. Only my family really understand the personal sacrifices needed to complete this task. Their unquestioning support remains critical to the mission.

Many people contribute over the extended journey that is the candidature involved in the creation of a thesis of this size. Primary amongst those are the two academic supervisors, Professors Howard Fallowfield and Nancy Cromar. Their enthusiasm for the task was palpable and infectious and advisory in good measure. They jointly and gently taught me the process of research, knowledge of which I have hankered after for many decades now. Remarkably, they eased me past the University bureaucracy. When I first arrived, I still carried the scars of too much 'other' bureaucracy, and they have helped the slow healing with their gentle good humour. Their years of 'hands-on' experience cannot be overrated as a resource when taking on a project of this complexity.

Dr Simon Williams provided all the mathematical grunt to distill complex biological activity into a series of formulas able to accurately predict outcomes.

The project arose from a collaboration between the Local Government Association (LGA) of South Australia and Flinders University. Within the LGA, Rick Gayler played an outstanding role as project champion and keeper of the funds. He almost single-handedly kept the project afloat as many initial capital intensive changes had to be made. He really believes in what we are trying to achieve and that makes all the difference.

Michael Clark, wastewater treatment manager for Barossa Council also deserves special mention for his 'freeing-up' of access to the Lyndoch waste stabilisation ponds for a number of years as we deployed various instruments in and around them. His long experience in the wastewater treatment industry meant he was always good for practical advice. We could always count on Michael's help when required, otherwise he

xvi

stayed in the background and left us to get on with the job. Loxton-Waikerie Council also contributed greatly with their willingness to let us get on with the job, and to offer practical assistance with pumping on the occasions that the site flooded. It is my fervent hope that good use will be made of the treated wastewater available to them.

Coming into a University laboratory as an older student with no particular lab skills creates interesting inter-generational dynamics. To their credit, the younger cohort taught me well and soon treated me as their colleague and peer. I value that greatly. Over the time, a number stood out for their willingness to engage, including (in no particular order), Guaxin Huang, Yu Lian, Lei Mai, Ryan Cheng, Jess Hall, Michael Taylor and in particular, Natalie Bolton, who was always available to discuss techniques, and interpretation of results. Great assistance was also received from the laboratory manager, Raj Indela.

TABLE OF FIGURES

Figure	Page
Fig. 1-1 Key milestones in sanitary waste disposal and reuse. Adapted from (Asano and Levine, 1996)	21
Fig. 1-2. Schematic Representation of General Types of Oxidation Ponds – as published by Oswald et. al (Oswald et al., 1955)	31
Fig. 1-3 A Wehner & Wilhem BOD design formula chart, adapted from (Polprasert and Bhattarai, 1985)	43
Fig. 1-4 Design formula chart for bacterial reduction in WSPs; adapted from (Polprasert and Bhattarai, 1985)	44
Fig. 1-5 Facultative Ponds Areal Organic Loading Crash Lines as proposed by various authors (Power_and_Water_Corporation, 2011)	52
Figure 1-6 The major process occurring within an algal – bacterial wastewater treatment system (Fallowfield and Garrett, 1985a, Oswald, 1963, Oswald et al., 1957)	65
Fig. 1-7 General relationship between algal growth rates (μ) and environmental parameters (a.) limiting nutrient (<i>S</i>), (b.) light intensity (<i>I</i>), (c.) temperature (<i>T</i>) and (d.) light intensity for varying temperatures. Adapted from (Goldman, 1979)	74
Fig. 1-8 stylised representation of a P-I (photosynthesis-irradiance) curve, demonstrating the calculation of parameters such as K_{max} (notated as P_{max} on the y axis), half-velocity constant (K_i on the x axis) and photoinhibition.	78
Fig. 1-9 Productivity against areal density as calculated by the Grobbelaar et al. (1990) model for temperatures ranging from 5 to 35°C and irradiances from 0 to 8 Einst. /m2/h.	80
Fig 1-10. Relative proportion of ammonia and ammonium ion as a function of	81

81

Figure 1-11 Reduction potentials for oxygen species. 1 M dioxygen is used as the ⁹³ standard state for the first step. Adapted from Imlay (2003)

Fig. 1-12 A proposed stepwise approach for the design of primary facultative ponds 113 (Silva et al., 2010)

Fig. 1-13 Free ammonia concentration variation with temperature and pH – assuming 114 combined NH4+ and NH3 level of 50 mg/L in Scendesmus obliquus. Arrows indicate photosynthetic inhibition levels of 10% (green), 50% (red) and 90% (blue). (Azov and Goldman, 1982)

Fig. 1-14 Diagrammatic representation of Nitrogen transformation and removal in116WSPs (Senzia et al., 2002)

Fig. 1-15 Where incoming nitrogen went in a facultative pond in Tanzania (Senzia et120al., 2002)

Fig. 1-16 Evolution of faecal coliforms in the influent (-,), in stabilization pond (- \Box -) 127 and HRAP (- Δ -) effluents. Picot et al. (1992)

Fig. 1-17 Removal efficiency of faecal coliforms (\log_{10}) in stabilization pond \blacksquare and 127 HRAP pilot plants (B35 \blacksquare , B30 \boxtimes , B45 \boxtimes and B60 \boxminus . Picot et al. (1992)

Fig 1-18 Removal efficiency of carbon, nitrogen and phosphorus pollution forms and127suspendedsolidsinstabilizationpond■andHRAPpilotplants(B35 □, B30 □, B45 □ and B60 □. Picot et al. (1992)

Fig. 1-19 Ammonia removal efficiency in Stabilization Pond (SP) and in High Rate Algal128Pond (HRAP). Picot et al. (1992)

Fig. 1-20Plan view (not to scale) of the WSP:HRAP comparison ponds at Meze,128France (Picot et al., 1992)

Fig. 1-21 HRAP operation configurations used at Grahamstown (Wells, 2005)129Figure 1-22. Ammonium levels at discharge from the treatment elements in Flow C130

Page

(Wells, 2005)

Figure 1-23. Nitrate levels at discharge from the treatment elements in Flow C (Wells, 131 2005)

Figure 1-24. Phosphate levels at discharge from the treatment elements in Flow C 131 (Wells, 2005)

Figure 1-25. Log₁₀ *E. coli* levels at discharge from the treatment elements in Flow C 131 (Wells, 2005)

Fig.2-1Section taken from the site plan of the Kingston on Murray Community Waste136Management Scheme incorporating a 5 cell waste stabilisation pond system and a high ratealgal pond and a storage pond.

Fig.2-2 HRAP site plan with modified design overlain 138

Fig. 3-1 HRAP1 Daily maximum & minimum and 5 day average for:- a. air temperature 168 and rainfall b. Water Temperature c. dissolved oxygen and d. pH recorded on-site at Kingston-on-Murray during the study period.

Fig. 3-2 Scatterplots with linear regressions and 95% confidence intervals in grey 171 shade of (a.) PO4-P concentration against minimum pH and (b.) chlorophyll a concentration against maximum pH.

Fig. 3-3 Daily average wind speed and direction recorded on-site at Kingston-on-172Murray for the period April 2010 to May 2012.

Fig 3-4 Violinplots for HRAP1 fed septic tank effluent showing areal BOD₅ loading rate 176 (kg BOD₅ /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <17.6 °C (Cold) or >17.6 °C (Hot) the median wastewater temperature throughout this study period.

Fig 3-5 Violinplots for HRAP1 fed septic tank effluent showing areal *E. coli* loading 177 rate (\log_{10} /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <17.6°C (Cold) or >17.6 °C (Hot) the median wastewater temperature throughout this study period.

Fig 3-6 Violinplots for HRAP1 fed septic tank effluent showing areal Inorganic-N 178 loading rate (kg Inorg-N /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <17.6°C (Cold) or >17.6°C (Hot) the median wastewater temperature throughout this study period.

Fig. 3-7 Time series for the HRAP1 fed septic tank effluent showing the relationship 179 between pond chlorophyll a concentration and (a) the daily total solar insolation, and (b) 5 day average pond temperatures with median temperature as blue line.

Fig. 3-8 Scatterplots and linear regression lines with 95% confidence interval shading 183 of - (a.) measured Algal Productivity 2 against Algal Productivity as predicted by the Oswald equation in the cold period, and (b.) measured Algal Productivity 2 against Algal Productivity as predicted by the Oswald equation in the hot period

Fig. 3-9 Algal Productivities (g/m²/d) and 95% CI bars as calculated by (a.) Oswald 183 equation predictions, black line (b.) Measured albazod & assuming algae as 60% of albazod, red dashed line (c.) Measured chlorophyll a & assuming algae containing 2% chlorophyll a, green dashed line

Fig. 3-10 Typical 4 day periods of daily solar irradiance in (a) summer and (b) winter at 185 the HRAP site compared to the irradiance known to initiate photoinhibition (65.7 W/m^2) drawn in as the horizontal dark blue line.

Fig 3-11 Beanplot showing proportion of BOD₅ removed from the HRAP1 fed septic 192 tank treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C, hot or cold respectively)

Fig 3-12 Beanplot showing proportion of NH₄.N removed from the HRAP1

fed septic tank treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig. 3-13 HRAP 1 loess fit and 95% confidence intervals for Inorganic-N incoming (red) 193 and outgoing (blue), outgoing as algal-N (green) and outgoing as ammonia (purple) over time

Fig 3-14 Beanplot showing Inorganic-N removal by the HRAP1 fed septic tank treated 195

192

effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig 3-15 Beanplot showing proportion of PO₄-P removed from the HRAP1 195

fed septic tank treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig. 3-16 HRAP 1 − loess fit and 95% confidence intervals for Chlorophyll a (green) & 198 PO₄-P (brown) over time

Fig. 3-17 HRAP 1 – loess fit and 95% confidence intervals for PO_4 -P incoming (red) and 198 outgoing (blue) and outgoing as algal-P (green) over time

Fig 3-18 Beanplot showing the concentration of Suspended Solids (volumetric) exiting 199 the HRAP1 fed septic tank treated effluent - displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig 3-19 Beanplot showing the areal density or standing crop (g/m²) of suspended 200 solids in the HRAP1 (excluding Feb. data) fed septic tank treated effluent - displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig 3-20 Beanplot showing *E.coli* LRV by the HRAP1 fed septic tank treated effluent- 201 displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>17.6°C or <17.6°C hot or cold respectively)

Fig 3-21 HRAP195% family-wise confidence level of comparison of means of *E. coli*204LRV by Pond Depth & Pond Temperature

Fig. 3-22 HRAP 1 – loess fit and 95% confidence intervals for E. coli concentration 205 incoming (red) and outgoing (blue) over time

Fig. 3-23 HRAP2 receiving facultative pond effluent: Daily maximum & minimum and2065 day average for:- a. air temperature and rainfall b. Water Temperature c. DO and d.

xxii

pH recorded on-site at Kingston-on-Murray during the study period.

Fig 3-24 Violinplots for HRAP2 fed facultative pond effluent showing areal BOD₅ 209 loading rate (kg BOD₅ /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <18.3 °C (Cold) or >18.3 °C (Hot) the median wastewater temperature throughout this study period.

Fig 3-25 Violinplots for HRAP2 fed facultative pond effluent showing areal Inorganic-N 209 loading rate (kg Inorg-N /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <18.3°C (Cold) or >18.3 °C (Hot) the median wastewater temperature throughout this study period.

Fig 3-26 Violinplots for HRAP2 fed facultative pond effluent showing areal *E. coli* 210 loading rate (log₁₀ *E. coli* /ha/d) by pond depth; 0.32m (Shlw); 0.43m (Med) and 0.55m (Deep) at wastewater temperatures <18.3[°]C (Cold) or >18.3 [°]C (Hot) the median wastewater temperature throughout this study period.

Fig. 3-27 Time series for the HRAP2 fed facultative pond effluent showing a) 211 chlorophyll a concentration and total solar irradiance and b) the chlorophyll a and HRAP2 wastewater temperatures (with blue 18.3°C median line) over the period 1 May 2010 to 1 Apr 2011.

fed facultative pond treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)

Fig 3-29 Beanplot showing proportion of NH₄-N removed from the HRAP2 - 216

fed facultative pond treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)

Fig. 3-30 HRAP 2 loess fit and 95% confidence intervals for Inorganic-N incoming (red)217and outgoing (green), outgoing as algal-N (blue) and outgoing as ammonia (purple)over time

Fig 3-31 Beanplot showing Inorganic-N removal by the HRAP2 - fed facultative pond219treated effluent-displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m)and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)</td>

Fig 3-32 Beanplot showing proportion of PO₄-P removed from the HRAP2 - fed 219 facultative pond treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)

Fig. 3-33 HRAP 2 – loess fit and 95% confidence intervals for PO_4 -P incoming (red) and 220 outgoing (green) and outgoing as algal-P (blue) over time

Fig 3-34 Beanplot showing the volumetric amounts of Suspended Solids exiting the221HRAP2 - fed facultative pond treated effluent- displayed by pond depth (Shlw, 0.32m,221Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or</td>221cold respectively)221

Fig 3-35 Beanplot showing the Areal amounts of Suspended Solids exiting the HRAP2 - 221 fed facultative pond treated effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)

Fig 3-36 Beanplot showing *E.coli* LRV by the HRAP - fed facultative pond treated 223 effluent- displayed by pond depth (Shlw, 0.32m, Med, 0.42 m & deep, 0.55m) and wastewater temperature (>18.3°C or <18.3°C, hot or cold respectively)

Fig. 3-37 HRAP 2:- Mean and standard deviation of *E. coli* LRV by pond depth and 224 temperature

Fig. 3-38 HRAP 2 – loess fit and 95% confidence intervals for E. coli concentration 224 incoming (red) and outgoing (blue) over time

Figure. 4-1 Environmental & Operating average, maxima and minima conditions for 232 Lyndoch WSP1. (a). daily air temperature and rainfall (vertical bars), (b). pond water temperature, (c) dissolved oxygen and (d) Ph

Page

Figure 4-2 Daily average wind speed and direction recorded on-site at Lyndoch during235the study period. Wind strength indicated by colour coding and lower bar scale.Approximate orientation of WSPs indicated by green rectangle.

Fig. 4-3 WSP 1 Pond Temperatures (°C) at 0.3m (red), 0.45m (blue) & 0.65m (green) 236/7 for time periods in (a) April (b) June (c) October and (d) January

Fig. 4-4 Lyndoch WSP1, 2 & 3 (2010-2012) Scatterplot and loess-fit time line curves with 95% CI241of chlorophyll a concentration for the three WSPs sequentially from top to bottom WSP1,WSP2 & WSP3.

Fig. 4-5Lyndoch WSP1, 2 & 3 (2010-2012) Scatterplot and loess-fit time line curves with 95%241CI of algal concentration levels for the three WSPs sequentially from top to bottom WSP1,WSP2 & WSP3.

Fig. 4-6 Lyndoch WSP1, 2 & 3 (2010-2012) Scatterplot and loess-fit time line curves with 95% 242
Cl of algal productivity (g/m²/d) for the three WSPs sequentially from top to bottom WSP1, WSP2 & WSP3.

Fig. 4-7Lyndoch WSP1, 2 & 3 (2010-2012) Scatterplot and loess-fit time line curves with 95%243Cl of albazod productivity (g/m²/d) for the three WSPs sequentially from top to bottom WSP1,WSP2 & WSP3.

Fig. 4-8 Time series for the Lyndoch WSP1 showing the relationship between pond 245 chlorophyll *a* (green bar)and a) daily average pond temperatures (°C; red line), and b) the daily total solar radiation (MJ/m²; red line).

Fig. 4-9 Time series for the Lyndoch WSP2 showing the relationship between pond 245 chlorophyll a (green bar)measurements and a) daily average pond temperatures (°C; red line), and b) the daily total solar radiation (MJ/m²; red line).

Fig. 4-10 Time series for the Lyndoch WSP3 showing the relationship between pond 246 chlorophyll a (green bar)measurements and a) daily average pond temperatures (°C; red line), and b) the daily total solar radiation (MJ/m²; red line).

Fig. 4-11 WSP 1. Time series for Algal Mass compared to two main nutrients, NH₄-N 246 and PO₄-P

Page

Fig. 4-12 WSP 2. Time series for Algal Mass compared to two main nutrients, NH₄-N 247 and PO₄-P

Fig. 4-13 WSP 3. Time series for Algal Mass compared to two main nutrients, NH₄-N 247 and PO₄-P

Fig 4-14 Lyndoch WSP1, 2 & 3 (2010-2012) Scatterplot and loess-fit curve with 95% CI252of log10 E. coli / 100mL as it passes through each of the three ponds sequentially from252top to bottom Inlet(red), WSP1 (blue), WSP2 (green) & WSP3 (purple)252

Fig 4-15 Lyndoch WSP1, 2 & 3 2010/12 Scatterplot and loess-fit curve with 95% Cl of 254 NH₄-N as it passes through each treatment phase for the three ponds sequentially from top to bottom Inlet(red), WSP1 (blue), WSP2 (green) & WSP3 (purple)

Fig. 4-16 WSP 1 − loess fit and 95% confidence intervals for Inorganic-N incoming 255 (red), outgoing (blue), outgoing as algal-N (green) and removed by NH₃ volatilisation (purple) over time

Fig. 4-17 WSP1 - loess fit and 95% confidence intervals for the percentage of255inorganic-N removed via ammonia volatilisation over time

Fig 4-18 Lyndoch WSP1, 2 & 3 2010/12 Scatterplot and loess-fit curve with 95% Cl of 256BOD₅ as it passes through each treatment phase for the three ponds sequentially from top to bottom Inlet(red), WSP1 (blue), WSP2 (green) & WSP3 (purple)

Fig. 4-19 WSP 1 – loess fit and 95% confidence intervals for PO4-P incoming (red), 258 outgoing (purple), outgoing as algal-P (green) and removed by internal precipitation (blue) over time

Fig 4-20 Lyndoch WSP1, 2 & 3 2010/12 Scatterplot and loess-fit curve with 95% Cl of 259 PO₄-P concentration as it passes through each treatment phase for the three ponds sequentially from top to bottom Inlet(red), WSP1 (blue), WSP2 (green) & WSP3 (purple)

Fig 5-1HRAP 1 fed septic tank effluent: Time series showing, from the top the266relationship between *E.coli* LRV (purple bars at top) and Global Solar Energy (orangeline) , chlorophyll a (green bars) concentrations and the operational pond depth

xxvi

(pink columns)

Fig. 5-2 HRAP1 fed septic tank effluent operated at 0.32, 0.42 and 0.55m, rpart 269 Decision Tree for *E. coli* LRV, where the variables selected for analysis by rpart were, Node1 - theoretical hydraulic retention time (THRT, d), Node 2 - maximum daily dissolved oxygen (DOMax, mg/L), Node 3 - 5 day average water temperature (WatTemp5DAvg, °C); Node 4 - minimum water pH (pHMin); Node 5 - 5 day average Solar Energy (SolEn5Da, W/m²); Node 6 - 5 day average water pH (pH5DAvg); and Node 7 - average water pH (pHAvg) The mean *E. coli* LRV for that group and the number of observations (n) analysed is presented inside the red rectangle for each node; and for each green rectangle at each leaf.

Fig. 5-3 Chart showing relative importance of predictors used in a cForest bootstrap273enhanced HRAP1 Decision Tree for *E. coli* LRV

Fig. 5-4 HRAP1 rpart Decision Tree for predicting BOD₅ Removal Efficiency; inflow 277 (kL/d), BOD Areal Load Rate (kg/ha/d); NO₂ (mg NO₂-N /L); MaxAirT (maximum air temperature, $^{\circ}$ C), NOx (oxidised nitrogen, mg N/ L) and pHVar (diurnal variation in pH)

Fig. 5-5 Chart showing relative importance of predictors used in a bootstrap 279 enhanced HRAP1 Decision Tree for BOD₅ Removal

Fig. 6-1 Time series comparison of daily air temperatures – maximum, minimum, and 299 average of the WSP site at Lyndoch and the HRAP site at Kingston – recorded on site at the respective location over the study period.

Fig. 6-2Bureau of Meteorology (2012) Global Solar Energy at Moorook (5 km from299the HRAP at Kingston on Murray)) and Lyndoch proximate to and including the studyperiod.

Fig. 6-3 Violinplots of comparative inlet water for the Kingston on Murray HRAP 1 and 302 the facultative pond at Lyndoch with internal boxplot showing the mean (open circle) and median (black line) of all respective data sets; A). log₁₀ *E. coli*/100ml, b.) BOD₅ (mg/L) c.) NH₄-N (mg/L) and d.) PO₄-P (mg/L)

Fig. 6-4 Loess smooth lines with shaded 95% CI comparing the wastewater treatment 305 performance of Kingston on Murray HRAP 1 (purple) with the Lyndoch WSP 1 (green) both fed wastewater pre-treated in on-site septic tanks; a.) *E. coli* log reduction value (LRV log₁₀) b.) BOD₅ removal efficiency c.) NH₄-N removal efficiency and d.) PO₄-P removal efficiency

Fig. 6-5 Loess smooth lines with shaded 95% CI comparing the wastewater treatment 307 performance of Kingston on Murray HRAP 2 (purple) with Lyndoch WSP 2 & 3 (greens). (a.) BOD₅ concentration (mg/L) (b.) NH_4 -N concentration (mg/L) and (c.) PO_4 -P concentration (mg/L)

Fig. 6-6 Loess smooth lines with shaded 95% CI comparing the proportion of 309 incoming wastewater N removed as algal N by treatment at the Kingston on Murray HRAP 1 (purple) or the Lyndoch WSP 1 (green) - both fed wastewater pre-treated in on-site septic tanks.

Fig. 6-7 Loess smooth lines with shaded 95% CI comparing the proportion of 309 incoming wastewater N removed as NH₃-N by treatment at the Kingston on Murray HRAP 1 (purple) or the Lyndoch WSP 1 (green) - both fed wastewater pre-treated in on-site septic tanks.

Fig. 6-8 Loess smooth lines with shaded 95% CI comparing the proportion of 311 incoming wastewater PO₄-P removed as algal P by treatment at the Kingston on Murray HRAP 1 (purple) or the Lyndoch WSP 1 (green) - both fed wastewater pretreated in on-site septic tanks.

Fig. 6-9 Loess smooth lines with shaded 95% CI comparing the wastewater treatment312performance of Kingston on Murray HRAP 1 (purple) with Lyndoch WSP 1 (green).a.Algal concentration (mg/L)b. Algal productivity (g/m²/d)

Fig. 6-10 Kingston on Murray HRAP and the Lyndoch WSP 2 & 3 fed facultative pond 316 treated effluent. Violinplots of comparing inlet wastewater composition, f including internal boxplot showing the mean (open circle) and median (black line) of all data sets. a.) *E. coli* (\log_{10} /100ml), b.) BOD₅ (mg/L) c.) NH₄-N (mg/L) and d.) PO₄-P (mg/L)

Fig. 6-11 Time series for dissolved oxygen and pH in Lyndoch WSP 2 (a. and b.) and 318 WSP 3 (c. and d.)

Fig. 6-12 Loess smooth lines with shaded 95% CI comparing the wastewater treatment 320 performance of Kingston on Murray HRAP 2 (purple) with Lyndoch WSP 2 & 3 (green).
a.) *E. coli* LRV (log₁₀/100ml) b.) BOD₅ removal efficiency c.) NH₄-N removal efficiency and d.) PO₄-P removal efficiency

Fig. 6-13 Loess smooth lines with shaded 95% CI comparing the wastewater treatment 322 performance of Kingston on Murray HRAP 2 (purple) with Lyndoch WSP 2 & 3 (greens). (a.) BOD_5 concentration (mg/L) (b.) NH_4 -N concentration (mg/L) and (c.) PO_4 -P concentration (mg/L)

Fig. 6-14 Loess smooth lines with shaded 95% CI comparing the Lyndoch WSP 1, 2 & 3 326 a. suspended solids concentration (mg/L) and b. algal concentration (mg/L)

Fig. 6-15 Loess smooth lines with shaded 95% CI comparing the Kingston-on-Murray326HRAP inlet and outlet a. suspended solids concentration (mg/L) and b. algalconcentration (mg/L)

Fig. 6-16 Loess smooth lines with shaded 95% CI comparing the performance of the328WSP 2&3 (greens) with HRAP 2 (purple) (both fed facultative pond outlet) a. algalconcentration (mg/L) and b. algal productivity (g/m²/d)

Fig. 7-1 *In-vitro* determination of *E. coli* die-off rates in wastewater stored in the dark 340 in the laboratory at either 23°C (a. & b.) or 2.5°C (c). A 'shoulder' showing there was a lag period before *E. coli* die-off commenced is visible in (a; 30h) and (c; 83h). Note the time scales are not the same for each graph.

Fig. 7-2 HRAPIN model of the output of *E. coli* inactivation in HRAPs, comparing dark 344 die-off set at (a) 0.00685 h⁻¹ and (b) 0.065 h⁻¹. All other HRAP conditions were set at the same values: – depth = 0.32 m, θ = 4.6 days, 4h interval between influent loadings.

Fig. 7-3 Measured *E. coli* (log₁₀ MPN/100mL; in red) and hourly UV Radiation (in 348 purple) recorded in the HRAP over three periods of intensive observation in the months of (a) May 2010 (2 hourly observations.) (b) June 2010 (6 hourly

Page

observations.) and (c). July 2010 (6 hourly observations.)

Fig. 7-4 Actual *E. coli* numbers (log₁₀ MPN/100mL; in red) and hourly UV radiation (in 349 purple) recorded in the HRAP over three periods of intensive observation in the months of a. August 2010 (8 hourly obs.) b. September 2010 (8 hourly obs.) and c. October 2010 (8 hourly obs.). UV radiation on y-axis set to maximum of 20 W/m²

Fig. 7-5 Comparing the HRAPIN model predicted *E. coli* concentration and an 351 amalgam of *E. coli* concentrations measured during eight separate periods of intensive observation over six months from May to October 2010

Fig.7-6 Correlograms for the HRAPIN predicted and measured dark die-off intensive 352 study

TABLE OF TABLES

TABLE	PAGE
TABLE 1-1. Comparison of Removal Rates in Different Wastewater Treatment Processes. Adapted from (James, 1987)	33
Table 1-2 Oxidation states of nitrogen	112
Table 1-3Mean ± Std Dev of physico-chemical and bacteriological characteristics ofinfluent and effluent WSP & HRAP wastewater over the years 1988 – 1990 asreported by Picot et al. (1992)	125
Table 2-1: Sampling dates for HRAP system fed septic tank effluent (n, number of samples analysed)	144
Table 2-2: Sampling dates for HRAP system fed facultative pond effluent (n, number of samples analysed)	145
Table 2-3 Sample volume (mL) for BOD range required using the OxiTop system	148
Table 3-1. Historical ground weather station and satellite data, Moorook (5 km from study site) – 30 year climate data averages (Bureau-of-Meteorology, 2012)	167
Table 3-2 HRAP 1 Inlet Wastewater septic tank effluent, volume & composition,where n = number of samples analysed.	173
Table 3-3 HRAP fed septic tank influent; - Areal BOD_5 Loading Rates (kg BOD_5 /ha/d); n = number of observations	175
Table 3-4 HRAP fed septic tank influent; - Volumetric BOD_5 Loading Rates (g BOD_5 /m ³ /d); n = number of observations	175
Table 3-5 HRAP1 fed septic tank effluent; Areal <i>E. coli</i> Loading Rates (log_{10} <i>E. coli</i> /ha/d); n = number of observations	176

Table 3-6 HRAP 1; Areal Inorganic-N Loading Rates (kg Inorganic-N /ha/d); n =177number of observations

Table 3-7. Albazod & Algal Productivity (g/m²/d) mean±standard deviations &181ranges, as calculated by assuming – (1) Albazod including Feb.data (2) Albazodexcluding Feb.data (3) Algae as 60% of albazod, (4) Algae containing 2% chlorophyll a,and (5) As predicted by the Oswald equation (Eq. 2-6) split by pond operatingtemperature and depth

Table 3-8 Standing crop (areal density) (g(dm)/m²) of albazod in HRAP 1 by pond186depth and temperature

Table 3-9 Half-velocity constants for algal nutrients determined empirically after186fitting to the Hill & Lincoln algal growth model. After Hill and Lincoln (1981),compared with the range of measured concentrations in HRAP 1.

Table 3-10HRAP1 inlet, outlet values and removal efficiencies at all depths for a range188of performance related parameters

Table 3-11 HRAP 1 receiving septic tank treated influent operated at a depth of 0.32190m. HRAP treated effluent composition (n=58)

Table 3-12 HRAP 1 receiving septic tank treated influent operated at a depth of 0.42190m. Composition of the HRAP treated effluent (n=35)

Table 3-13 HRAP 1 receiving septic tank treated influent operated at a depth of 0.55190m. HRAP treated effluent composition (n=31)

Table 3-14 HRAP1 removal efficiency performance parameters by pond depth190shallow (0.32m), medium (0.42m) and deep (0.55m)

Table 3-15 Summary of HRAP1 Anova Model of *E. coli* LRV by Pond Depth & Pond203Temperature

Table 3-16HRAP1Numerical Summary of E. coli LRV by Pond Depth & Pond203Temperature

Table 3-17 HRAP1 Multiple Comparisons of pairs of Means of <i>E. coli</i> LRV by Pond Depth & Pond Temperature: Tukey Contrasts	203
Table 3-18 HRAP1 95% family-wise confidence level of comparison of means of <i>E.</i> coli LRV by Pond Depth & Pond Temperature	204
Table 3-19 HRAP 2 Inlet Wastewater - facultative pond effluent – Volume & Composition, where n = number of samples analysed.	208
Table 3-20 HRAP 2 fed facultative pond effluent: Areal BOD $_{5}$ Loading Rates (kg BOD $_{5}$ /ha)	208
Table 3-21 HRAP 2 fed facultative pond effluent: Volumetric BOD_5 Loading Rates (g BOD_5 / m^3)	209
Table 3-22 HRAP2 inlet & outlet values and removal efficiencies at all depths for a range of performance related parameters	212
Table 3-23 HRAP2 receiving facultative pond treated influent operated at a depth of0.32 m. HRAP treated effluent composition (n=32).	213
Table 3-24 HRAP2 receiving facultative pond treated influent operated at a depth of0.42 m. HRAP treated effluent composition (n=24)	213
Table 3-25 HRAP2 receiving facultative pond treated influent operated at a depth of0.55 m. HRAP treated effluent composition (n=19)	214
Table 3-26 HRAP2 removal efficiency performance parameters by pond depth; shallow (0.32m), medium (0.42m) and deep (0.55m)	214
Table 3-27 HRAP 2 Mean \pm Standard Deviation and Median for Albazod Standing Crop (g/m2), Algal Productivity (g/m2/d) and Albazod Productivity (g/m2/d) for 0.32, 0.42 and 0.55 m depths and overall.	222
Table 3-28 Numerical summary of HRAP 2 <i>E. coli</i> LRV at each pond configuration	224
Table 4-1. Historical Bureau of Meteorology data for Lyndoch – ground weather station & satellite climate data - Sixty year averages (Bureau-of-Meteorology, 2012)	231

Table 4-2. On-site recorded data for the 2010/2011 portion of the study period;231temperature and rainfall at Lyndoch

Table 4-3 Lyndoch WSP1 Inlet Wastewater Composition -Septic tank effluent, where238n = number of samples analysed.

Table 4-4 Lyndoch Facultative Pond (WSP1) areal BOD5 loading rate (kg BOD /ha/d)239& volumetric BOD5 loading rate (kg BOD5 /m³/d)

Table 4-5 Lyndoch Maturation Pond 1 (WSP2) areal BOD_5 loading rate (kg BOD_5 239/ha/d) & volumetric BOD_5 loading rate (kg $BOD_5 / m^3/d$)

Table 4-6Lyndoch Maturation Pond 2 (WSP3) areal BOD5 loading rate (kg BOD5239/ha/d) & volumetric BOD5 loading rate (kg BOD5 /m³/d)

Table 4-7 Half-velocity constants for algal nutrients determined empirically by Hill &243Lincoln after fitting to their algal growth model (1st column) compared with the rangeof measured concentrations in WSP 1, 2 & 3; after Hill and Lincoln (1981)

Table 4-8WSP 1 inlet, outlet values and removal efficiencies for a range of248performance related parameters, where n= number of samples analysed.

Table 4-9WSP 2 inlet, outlet values and removal efficiencies for a range of249performance related parameters, where n= number of samples analysed.

Table 4-10WSP 3 inlet, outlet values and removal efficiencies for a range of250performance related parameters, where n= number of samples analysed.

Table 5-1 HRAP1:- table of the ranking and relative importance of each predictor for273*E. coli* LRV arranged in descending order of importance as ranked by the increase ofnode purity in randomForest (Column 2). Importance in cForest ranking is listed inColumn 3 and importance in rpart is listed in Column 4. The top ten ranked variablesin randomForest are highlighted in yellow for cForest and rpart.

Table 5-2 HRAP1:- table of the ranking and relative importance of each predictor for279BOD₅ removal efficiency arranged in descending order of importance as ranked bythe increase of node purity in randomForest (Column 2).Importance in cForest

ranking is listed in Column 3 and importance in rpart is listed in Column 4. The top ten ranked variables in randomForest are highlighted in yellow for cForest and rpart.

Table 5-3 HRAP1:- table of the ranking and relative importance of each predictor for281NH₄-N removal efficiency arranged in descending order of importance as ranked by
the increase of node purity in randomForest (Column 2). Importance in cForest
ranking is listed in Column 3 and importance in rpart is listed in Column 4. The top
ten ranked variables in randomForest are highlighted in yellow for cForest and rpart.

Table 5-4 HRAP1:- table of the ranking and relative importance of each predictor for284biomass productivity arranged in descending order of importance as ranked by theincrease of node purity in randomForest (Column 2). Importance in cForest rankingis listed in Column 3 and importance in rpart is listed in Column 4. The top tenranked variables in randomForest are highlighted in yellow for cForest and rpart.

Table 5-5 HRAP 1&2 combined:- ranking and relative importance of each predictor287for *E. coli* LRV arranged in descending order of importance as ranked by the increaseof node purity in randomForest (Column 3). Importance in rpart is listed in Column4.

Table 5-6 HRAP 1 & 2: - ranking and relative importance of each predictor for BOD5289removal efficiency arranged in descending order of importance as ranked by theincrease of node purity in randomForest (Column 3). Importance in rpart ranking islisted in Column 4.

Table 5-7 HRAP 1 & 2: - ranking and relative importance of each predictor for NH4-N291removal efficiency arranged in descending order of importance as ranked by theincrease of node purity in randomForest (Column 3). Importance in rpart is listed inColumn 4.

Table 6-1 Summary of the physical and of performance related parameters (mean ±299standard deviation) comparing the facultative WSP at Lyndoch with the HRAP atKingston on Murray , both receiving wastewater pre-treated in on-site septic tanks,over the period May 2010 to March 2011.

Table 6-2 Standard statistical comparisons of the nutrient removal efficiency of the305Kingston on Murray HRAP 1 and the Lyndoch facultative WSP 1 both fed septic tanktreated effluent.

Table 6-3Standard statistical comparisons of the proportions of incoming N & P309removed as algal N & P and NH₃-N from the Kingston on Murray HRAP 1 and theLyndoch facultative WSP 1 both fed septic tank treated effluent.

Table 6-4 Standard statistical comparisons of the algal concentration and productivity312of the Kingston on Murray HRAP 1 and Lyndoch WSP 1

Table 6-5Summary of the physical and mean ± standard deviation of performance313related parameters comparing the physico-chemical and performance parameters oftwo maturation WSPs combined, with the HRAP 2 over the period Jul 2011 to Feb2012.

Table 6-6 Standard statistical comparisons of the nutrient removal performance of320the Kingston on Murray HRAP 2 and Lyndoch WSP 2&3

Table 6-7 Standard statistical comparisons of the algal concentration and productivity326of the Kingston on Murray HRAP 2 and Lyndoch WSP 2&3

Table 7-1 E. coli dark inactivation at 23°C: Results of the statistical comparison340between measured and fitted data (Fig 7-1(a)) using the method of Geeraerd et al.(2005).

Table 7-2 E. coli dark inactivation at 23°C: Results of the statistical comparison340between measured and fitted data (Fig 7-1(b)) using the method of Geeraerd et al.(2005).

Table 7-3 E. coli dark inactivation at 2.5°C: Results of the statistical comparison341between measured and fitted data (Fig 7-1(c)) using the method of Geeraerd et al.(2005).

Table 7-4. The eight periods of intensive observation of the average UV radiation345(Wm⁻²), pond temperature (°C), hydraulic retention time (d) and pond depth (m)

recorded on those days.

TABLE OF PLATES

PLATE	PAGE
Plate 2-1 Original HRAP configuration	137
Plate 2-2 modified HRAP configuration and weather station	137
Plate 2-3 Lyndoch Wastewater inlet to Pond 1, with running inlet water visible during a pumping period	139
Plate 2-4 Lyndoch Wastewater - all 3 ponds WSP 1 on left hand side, WSP 2 & 3 on right hand side	139
Plate 2-5 WeatherMaster 2000™ photograph	140
Plate 2-6 WeatherMaster 2000™ diagram of parts	140
Plate 2-7 Installed solar powered DO, pH and temperature monitoring box in mid- pond position.	141
Plate 2-8 Thermistor chain before installation mid-pond	141
Plate 2-9 HRAP - Sampling directly from the inlet splitter box as the wastewater is flowing	142
Plate 2-10 HRAP - from the stand-pipe in the outlet control pipe.	142
Plate 2-11 ISCO Avalanche refrigerated multi sampler in-situ at the KoM HRAP site	143
Plate 2-12 overflow weir sample collection site at the exit point of WSP 1	143
Plate 2-13 Incubated Quanti-Tray showing blue fluorescence in positive cells under a UV light source.	150

TABLE OF EQUATIONS

EQUATION	EQUATION	PAGE
NUMBER		
1-1	$\frac{C}{C_0} = \frac{1}{1 + k_T \theta}$	36
1-2	$\frac{C}{C_0} = e^{-k_T\theta}$	36
1-3	$\theta = \frac{V}{Q}$	37
1-4	$e.v.r = \frac{V_{eff}}{V_{total}} = \frac{MHRT}{\theta}$	38
1-5	$e.v.r = 0.84 \left\{ 1 - e^{\left(-0.59(L/W)\right)} \right\}$	38
1-6	$N = \frac{N_0}{1 + \theta K_b}$	38
1-7	$K_b = 3.6(1.19)^{T-20}$	39
1-8	$\frac{C}{C_0} = \frac{1}{(1+k_T\theta)^n}$	39
1-9	$C_e = \frac{C_i 4a e^{0.5d}}{(1+a) e^{\frac{a}{2d}} - (1+a)^2 e^{-\frac{a}{2d}}}$	40
1-10	$\frac{C_e}{C_i} = \frac{4ae^{1-a/2d}}{(1+a)^2}$	41
1-11	$\frac{C_e}{C_i} = e^{-K\theta}$	41
1-12	$d = \frac{(L/B)}{-0.261 + 0.254(L/B) + 1.014(L/B)^2}$	44
1-13	$d = 1/(L/B) = (L/B)^{-1}$	45

EQUATION

EQUATION

PAGE

NUMBER

1-14
$$Pe = \frac{Q \times L}{W \times Z \times D}$$
 46

1-15
$$Pe = 0.31 \times \frac{L}{W} + 0.055 \times \frac{L}{Z}$$
 46

1-16
$$Pe = 0.35 \times \frac{L}{W} + 0.012 \times \frac{L}{Z}$$
 46

$$1-17 N = N_0 e^{-kt} 50$$

$$W_{O2} = KFS$$
 67

1-19
$$W_{O2} = \frac{K_2 \ d \ L}{t}$$
 68

$$t = \frac{d L}{F S}$$
68

$$d = \frac{(lnI_0 - lnI_d)}{C_a \alpha}$$
68

1-22
$$O_2 = 1.67C_a (approx)$$
 69

1-23
$$C_a = 0.1 \times \frac{FS}{h} \times \frac{\theta}{d}$$
 69

1-24
$$C_a = \alpha_w x$$
 70

1-25
$$C_a = a \left(\frac{\theta}{d}\right)^{\alpha} S^{\beta} T^{\gamma}$$
 70

1-26
$$3.6 CO_2 + 0.543 NH_4^+ + 0.034 HPO_4^{2-} + 2.19 H_2 O$$
 74
 $\rightarrow 0.034 C_{106} H_{180} O_{45} N_{16} P + 0.4755 H^+ + 4O_2$

1-27
$$SUB^{\mu} = \frac{SUB^{\hat{\mu}} \times [SUB]}{SUB^{KS} + [SUB]}$$
 75

1-28
$$RAD^{\mu} = \frac{RAD^{\widehat{\mu}} \times [RAD]}{RAD^{KS} + [RAD]}$$
75

EQUATION NUMBER	EQUATION	PAGE
1-30	$PRD=(A_{1}X_{1}(A_{2}^{T}))((I_{z}I_{s}(A_{3}^{T}))/(I_{z}+I_{s}(A_{3}^{T})))$	76
1-31	T= (T _t -10)/10	76
1-32	$RES = X_1((1.5^T-0.54)/100)$	77
1-33	$INB = PRD((2.5^{T}/75) I_{z})$	79
1-34	$NH_4^+ + OH^- \leftrightarrow NH_3 + H_2O$	81
1-35	$HCO_3^- \leftrightarrow CO_2 + OH^-$	82
1-36	$\mu = \hat{\mu} \left[\frac{S}{K_s + S} \right]$	83
1-37	$I_z = I_0 e^{-kz}$	90
1-38	$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$	95
1-39	$k = k_{d,20} \theta^{(T-20)} + \frac{\alpha . I_{0,avg}}{\eta . z_e} \left[1 - e^{(-\eta z_e)} \right] + \frac{v}{z_e}$	100
1-40	$\frac{\alpha I_{0,avg}}{\eta . z_e} \left[1 - e^{(-\eta z_e)} \right] = k_{i}$	100
1-41	$C_n H_a O_b N_c + \left(n + \frac{a}{4} - \frac{b}{2} - \frac{3}{4}c\right) O_2$ $\rightarrow nCO_2 + \left(\frac{a}{2} - \frac{3}{2}c\right) H_2 O + cNH_3$	107

$$k'C = -\frac{dC}{dt}$$
 107

1-43
$$k.t = ln\left(\frac{C_i}{C_e}\right)$$
 109

1-44
$$C_e = \frac{C_i}{(1+k.HRT)}$$
109

1-45
$$C_e = C_i \cdot e^{-k.HRT}$$
 109

1-46
$$k = 0.3(1.05)^{T-20}$$
 109

EQUATION	EQUATION	PAGE
NUMBER		
1-47	$k = 0.71(1.09)^{T-20}$	109
1-48	$k = 2.622 \times 10^{-3} \lambda s - 0.194$	110
1-49	$\lambda s = 350(1.107 - 0.002T)^{T-25}$	111
1-50	$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$	112
1-51	$N_2O_3 + H_2O \leftrightarrow 2H^+ + 2NO_2^-$	112
1-52	$N_2O_5 + H_2O \leftrightarrow 2H^+ + 2NO_3^-$	112
1-53	$2NH_3 + 3O_2 \rightarrow 2NO_2^- + 2H^+ + 2H_2O$	115
1-54	$2NO_2^- + O_2 \rightarrow 2NO_3^-$	116
1-55	$r_n = \frac{\mu_n}{Y_n} \left(\frac{NH_4}{k_1 + NH_4} \right) \left(\frac{DO}{k_2 + DO} \right) C_T C_{pH}$	116
1-56	$k_1 = 1^{(0.051(T-1.58))}$	116
1-57	$C_T = e^{\alpha(T-T_0)}$	116
1-58	$C_{pH} = 1 - 0.833(7.2 - pH)$	117

1-59
$$r_d = R 2_{20} \theta^{(T-20)} N O_3 - N$$
 117

$$1-60 r_{\nu} = \frac{NH_3 \times K_L}{d} 117$$

1-61
$$r_s = R1(Org - N)$$
 117

1-62
$$r_1 = \mu_{max20} \theta^{T-20} \left[\frac{NH_3 - N}{K_3 + NH_3 - N} \right] (Org - N) \times P1$$
 118

1-63
$$r_2 = \mu_{max20} \theta^{T-20} \left[\frac{NO_3 - N}{K_4 + NO_3 - N} \right] (Org - N) \times P2$$
 118

$$1-64 Na_4P_2O_7 + H_2O \leftrightarrow 2Na_2HPO_4 121$$

EQUATION

EQUATION

NUMBER

1-65

$pH = pK_2 + \log$	$\left(\frac{CO_3^{2-}}{HCO_3} \right)$	122

1-66
$$3HPO_4^{2-} + 5Ca^{2+} + 4OH^- \leftrightarrow Ca_5(OH)(PO_4)_3 + 3H_2O$$
 122

2-1
$$C_a = 11.85(0D664) - 1.54(0D647) - 0.08(0D630)$$
 147

2-3 RES =
$$X_1((1.5^{T}-0.54)/100)$$
 153

2-4
$$INB = PRD((2.5^{T}/75) I_z)$$
 153

$$Pr_{alg} = 10 \times \frac{E_t \times I}{J}$$
154

2-6
$$Y = \beta_0 + \beta_1 X + \varepsilon$$
 155

2-7
$$Y = \beta_0 + \beta^T X + \varepsilon$$
 155

2-8
$$Y = \beta_0 + \beta^T X + \gamma X X^T + \varepsilon$$
 155

3-1
$$Algal Productivity 1$$
 181
= $3.617 \times Algal Productivity 2 - 2.562$