&
W Flinders

ADELAIDE-SOUTH AUSTRALIA

ABC Wheelchair
by
Bryce Ozzie Beaumont

Project Supervisor: Dr. Nasser Asgari
May 2020

Submitted to the College of Science and Engineering in partial
fulfillment of the requirements for the degree of Bachelor of
Engineering (Robotics) / Master of Engineering (Electronics) at Flinders

University, Adelaide, Australia

1|Page

Declaration
| certify that this thesis does not incorporate without acknowledgment any material previously
submitted for a degree or diploma in any university; and that to the best of my knowledge and

belief it does not contain any material previously published or written by another person except

where due reference is made in the text.

Signed: Dated: 30" May 2020

2|Page

Acknowledgements

| would like to extend my appreciation and gratitude towards my supervisor Dr. Nasser Asgari

for his support and guidance throughout my project and time at Flinders University.

I would like to thank RajKunwar Kukreja for his previous work on the ABC Wheelchair and

his assistance when first starting the project.

Finally, I would like to thank my family and friends for the support, patience and confidence

they have provided me with on this journey.

3|Page

Abstract

Wheelchairs can provide a sense of freedom to people who are unable to walk as many others
can. Producing a smarter wheelchair is a necessary step for extending this freedom to
individuals who possess motor and/or visual impairments that cause operating a wheelchair
difficult or impossible. The ABC Wheelchair at flinders university is pursuing the
development of an addon technology for powered wheelchairs that can provide autonomous

navigation and allow for multiple input methods for users to utilise.

This project researches the installation of SLAM on the ABC wheelchair and the development
of a guided doorway navigator that can guide the chair through narrow doorways. The doorway
navigator used a LIDAR to return range information on the environment and recognise the
position of door frames by measuring the range differences between data. Assumptions were
made when ranking the potential doorways detected to allow for successful detection, such as
the navigator being triggered by an external process so doors would already be close to the

chair.

Using the LIDAR the system was capable of performing accurate SLAM using the
Cartographer system by Google, mapping and localising the position of the chair over time.
Furthermore the doorway navigator could successfully distinguish open doorways from

LiDAR range data and a velocity controller provided safe travel through the opening.

Additional research areas were focussed on the development of alternative input methods to
provide accessible technology to a diverse audience through the means of developing a pupil
detector for future gaze trackers and testing the capacity of the MyCroft voice assistant to

control the wheelchair.

Pupil detectors built need further development before they can be used for gaze trackers. The
first detector is highly accurate, finding pupil location within 1 pixel of error, however lacks

responsiveness. The second detector is highly responsive although has higher levels of error.

The MyCroft voice assistant could control chair behaviour and allowed for multiple keyword
or phrases to be used as triggers but required network access. A local speech recogniser may
be run on the machine to remove the need of network access however is limited by system
resources to run the deepnet speech recognition locally, slowing down the execution of real-

time systems required for safe autonomous navigation when approaching obstacles.

4|Page

Table of Contents

DIECIATALION ...t bbb 2
ACKNOWIBAGEMENTS ...ttt e st et e e e et e e teebeeneesreeneeenes 3
AADSTIACT ...ttt ns 4
1 INErOAUCTION ... bbb bbb 10
2 BACKGIOUNG ... 11
2.1 Direction for ABC WHhEEIChAITccccoeiiiiiiiieee e 15

3 TRBOIY bbb bbbt e e 16
3.1 ROS BNVIIONMENT ...ttt b bbbt 16
3.2 Localisation and MapPINgcoeiieeiieieieiese et 17
3.3 OUOMEBLIY ...ttt bbbttt bbbt 17
3.4 Virtual Assistants — MYCIOft..........cooiiiiiici e 18
T C - V.- I - Uod ([o PSSRSO 19
3.5.1 Open Source Computer Vision Library - OpenCV.........ccccocevveveiiieineieseennnn, 19

3.6 Electroencephalography (EEG) for Brain Control Interface (BCI)cccoveeveeeee. 20

4 Method and RESUILS.........couiiiiieiii e 21
4.1 Simulating the ABC WheelChair..............ccoueiiiiiiiiieeececeee e 21
4.2 SLAM using Cartographer and LIDAR ..o 21
4.2.1 Setting up Cartographer (SLAM) for ROS..........cooiiiiiiiiei e 22

4.2.2 Transition from Reliance on Wheel Odometry to Visual Odometry for

LOCAIISAIION ...ttt bbb 22
4.2.3 Effect of LIDAR resting angle on SLAM algorithmcccccoocviiiiiiiiiennn 23
4.3 Edge Based Doorway Detection and Navigation...........cccccovvvevieeiieiieenee e 26
4.3.1 Finding edges in LIDAR OULPUL.........cieiiiiiiciie e 27
4.3.2 Ranking Potential for a DOOIWAYccccoeiveiiiiiieiie e 29
4.3.3 Doorway Detector Performance and Adjustmentsccccevveeviieiieeviieciieecnnn 29
4.3.4 VeloCity CONIOIIETcveiiiicie e 31

4.3.5 Navigation Performance and AdjuStMeNntsScccveeverieeieeiieiieere e 32

4.4 Pupil detection for gaze traCKiNg.........c.coviieeiiiie i 34
4.4.1 Removing unnecessary features from images...........cccocvevviverivereeiesieese e 35
4.4.2 Pupil Isolation Method 1: Morphological Operations and Blob Detection........ 37

4.4.3 Pupil Isolation Method 2: Edge Detection and Circle Detection with Hough

THANSTOMM ...ttt ettt 39
4.4.4 Comparison Of pupil deteCtorsScuoviieiiiiiiie e 41
4.5 Voice Control using the MyCroft agent...........ccoeeerieieieniee e 42
LIMIEBEIONS ...ttt 44
IMIPIOVEIMENTS ...ttt et e e et e e e nbb e e s b e e e beeeanneeas 46
CONCIUSTON ...ttt bbbt b et b ettt nber b 47
RETEIEICES ...ttt 49
N o] 0T a0 D USSR 51
9.1 Code associated with doorway Navigationccccceeveiieieeiesiese e 51
T S o1 1 £ 1 = o)V OSSOSO 51
0.1.2 [i08IPIOCESSOI.PY . .eiuiiuteiiieite sttt bbbttt 54
0.1.3 OOINAV.PY ..ttt bbbttt bbbt 57
9.2 Code associated with Cartographer SLAM ..., 68
9.21 2d_lidar_0_deg_optimised_with_partial_odom.luacccccoevvriirrrnrriennnnn. 68
9.2.2 2d_lidar_25 deg_optimised with_partial_odom.lua.........c..ccceevrvverrnrriinnnenn. 71
9.3 Code associated With PUPIl DELECTIONooveiviiiiiiiiiiiieeeee e 73
0.3.1 DIODDEECIOr.PY ... 73
9.3.2 houghCirCleSDEtECIOr.PY ..ocvveieieciieciie et 77

6|Page

Table of Figures

Figure 1: Example of ROS nodes communicating Via tOPICS.........cccevvvevveiieiieeseere e sieeseenns 16
Figure 2: Flow of Mycroft SKill ACHVAION..........ccoiiiiiee e 19
Figure 3: Wheelchair Frames - virtual representation of wheelchair for simulations and SLAM
SOTEVAIE ...t b e bbbttt bbbt 21

Figure 4: SLAM with Cartographer using LIDAR and Wheel Odometry to map the laboratory

Figure 5: SLAM with Cartographer using LiDAR relying on generated Visual Odometry to

MAP the [AD0OTALIONYc.veieeeceee et e e anes 23
Figure 6: Tuned SLAM output for Lidar with 0 degree tilt.............cccooveviiiiiieiii e 24
Figure 7: Initial SLAM output for Lidar with 20 degree tiltc.covevviiiiieiieie e 25
Figure 8: Tuned SLAM output for Lidar with 20 degree tilt...........ccccooeiiiininiiniiceee, 25
Figure 9: Finding Doorway Boundary by searching for Changes in Range above a specified
Threshold OF 0.5 METIEScuiiieieiciee e bbb 28
Figure 10: Potential Doorways found using the detector (left) and Isolated Doorway after
FANKING (FIGNT) .ttt b bbbt e s 29
Figure 11: Doorway Detection results overlaid onto 2d map of the roomcc.ccoovvveenen. 30

Figure 12: doorway detection results using data from previous figure, preventing infinite
readings being triggered as riSiNg EUQEScovviieiieie et 31
Figure 13: Velocity Controller Logic for Doorway NavIgator............ccccccerererenenenieeieeieenne. 32
Figure 14: Results of Autonomous Wheelchair Navigation through Doorways with small
Misalignment from AOOIWAYcoveiiiieie et sre e 33
Figure 15: Results of Autonomous Wheelchair Navigation through Doorway Misaligned with
LAY LT [T U SRS 34
Figure 16: face and eye detection using cascade classifiers with OpenCVcc.ccocvvvenenne. 36

Figure 17: Histograms of the percentage of unnecessary space above and below the eye within

= eTo I = To T o] PSPPSR 37
Figure 18: Binary Conversion of RGB image of eye, preparing for detection of pupil 38
Figure 19: Reducing image of eye down to binary representation of the pupil....................... 38

Figure 20: Using OpenCV blob detector to find location of pupil and draw circle over returned

COOTAINALES ...ttt bbb bbb bbbt e e bt bbbt 39
Figure 21: Edge Detection using Canny Edge Detector within OpenCVcccoovvvviviennn. 40
Figure 22: Pupil Detection using Hough Transform to find circles in image.............ccccceoveuee. 41

file:///C:/Users/bryce/Google%20Drive/University/5th%20Year/Masters/ThesisBeaumont2020.docx%23_Toc41587127
file:///C:/Users/bryce/Google%20Drive/University/5th%20Year/Masters/ThesisBeaumont2020.docx%23_Toc41587127

Figure 23: Average Error (in pixels, average pupil radius was 6 pixels) of Returned Pupil
Coordinates and Average Detection Rate for Methods 1 and 2 when looking at specific sections

OF the COMPULET DISPIAYeieiiiieiii e e 41

8|Page

Table of Tables

Table 1: Summary of Smart Wheelchair Technologyccccoveveiieiiieie i, 12
Table 2: Results of measuring 30 images to determine percentages of unnecessary space
aboVve/DeloOW returNed BYE FEOIONcviiieieeie ettt 37
Table 3: Speech Recognition - Keywords/Phrases and Associated Triggerscccooevveveenen. 43

9|Page

1 Introduction

With over one billion people in this world having some form of disability [1], it is important
that researchers develop systems to assist the physically impaired to improve mobility and
reduce the strain of tasks that fully able-bodied people take for granted. The research topic for
this thesis is an autonomous wheelchair that will be controllable from multiple inputs to assist

people who are unable to use standard powered wheelchairs.

Wheelchairs play an important role in mobility for people who are unable to walk. Research
has shown that the supply of wheelchairs to people with disabilities promotes social
development alongside improved mobility and reduced dependency [2, 3], and provides better
quality of life to persons who previously did not possess this mobility aid [4]. The study by
[5] showed increased mobility, dependence, and increased mood state among 519 participants
over three different countries after 12 months of receiving a wheelchair. By adapting a powered
wheelchair to accept alternative inputs to a joystick such as brain control or voice prompts, it
will allow disabled populations who are unable to use joysticks to attain increased movability
and improve quality of life. It has been noted that there are many individuals of whom are
unable to easily use manual or powered wheelchairs and require alternate mobility aids such as
smart wheelchairs (SW), particularly for people with impaired vision, motor impairments or
cognitive deficits [6]. Powered wheelchairs can be difficult for people with motor and visual
impairments to operate in confined spaces [3, 7], which is where autonomous technology can
play a pivotal role in improving independence and reducing the strain of wheelchair operation

on individuals.

Research into autonomous wheelchairs can be translated into products for able-bodied
individuals also. Such technology can be used as a mobility aid to guide people in places they
are unfamiliar with such as airports or public malls that can be confusing to navigate and do
not always have signage that is easily discerned, especially if you are unfamiliar with the local

language or are illiterate.

The project aims to deliver a system that can be installed onto new or existing electric
wheelchairs to navigate its environment. The system is to be capable of mapping its
environment and navigating the generated map whilst avoiding obstacles to reach a destination,

and accept input from a user.

10|Page

2 Background

Initial SW were mobile robots with seats whereas modern chairs are now typically modified
power wheelchairs with computers and sensors incorporated [6, 8] to perceive their
environment. SW developed in the past thirty years are commonly characterised as seated

mobile robots, integrated prototypes or equipped wheelchairs [6, 9]

e Seated Mobile robots: these were the initial smart wheelchairs, composed of mobile
robots that were equipped with a seat to provide alternative mobility to users.

e Integrated prototypes: prototype chairs start from an experimental wheelchair frame
upon which a wheelchair is built around to construct a fully customised smart chair.

e Equipped wheelchairs: equipped chairs are modified powered wheelchairs with
computers and sensors attached to provide ‘smart’ features to the wheelchair. These
are a popular research topic and typically work by emulating the signals sent from the
joystick on the chair to the motor controller and using this to control the chair movement

via a computer.

Current research into modern SW have led to the development of systems with varied input
devices, improved navigation implementing obstacle avoidance, map generation and positional
localisation utilising an array of sensors and data fusion to produce accurate and reliable
systems for wheelchair users to utilise [10].

Current development of SW can be categorised into two main branches [9, 10]

e Human-machine navigation

e Predefined machine navigation

Human-machine navigation can be described as machine assisted human navigation. The
human will use an input device to control direction of the wheelchair and a machine will alter
the trajectory if it detects obstacles to avoid accidents. This method of navigation provides
more freedom to the user whilst easing the strain of maintained navigation and improving

safety through recognition and avoidance of possible hazards.

Predefined machine navigation is a setup that utilises a series of set destinations or tasks for
users to select for navigation. The machine will handle all navigation without any further input

from the user. Predefined navigation is ideal for users with high impact disabilities that make

11|Page

accurately maintained manual navigation difficult, such as people with conditions that cause

muscle spasms in arms/hands.

Research from the past 13 years into SW have produced results with varying input methods
paired with assisted or completely autonomous navigation. A number of these ventures have
avoided the standard joystick controller and opted for innovations such as speech recognition

or brain signal reading, summarised in Table 1.

Table 1: Summary of Smart Wheelchair Technology

Wheelchair Input Method(s) Description of System

Robotic Wheelchair ~ Speech A dialog managed wheelchair used for
with Dialog Manager Recognition navigation to recognised keywords. The dialog
[11] manager setup on the chair uses a learning model

(Partially Observable Decision Process) to
improve recognition and provide a more natural

human interaction with the chair.

ARTS Self Docking ~ Touch-screen Autonomously docking wheelchair using an

Wheelchair [12] Interface attached LIDAR to recognise a designated lift
and navigate onto it. The LIDAR recognition
system uses filtering and two reflector panels
permanently affixed to limit the points of
detection so the chair can recognise the lift and
control the motor to navigate onto it.

EEG-based Brain Brain Prototype hardware for controlling wheelchair
Controlled Robotic ~ Controlled motors using a wireless Electroencephalograph
Wheelchair [13] Interface (EEG) device fitted to the scalp. Brain waves are

captured by the EEG device are processed
through a neural network on an external PC to
remove signal noise and translate signals into
movement commands that are sent to the motor
via an ARM 7 based CPU.

Fuzzy EKF Computer Intelligent wheelchair utilising fuzzy logic to

Controlled Controlled execute flexible and non-linear obstacle

12|Page

Intelligent Execution of avoidance. The wheelchair uses an Extended-
Wheelchair [14] Autonomous Kalman Filter (EKF) approach to fuse data from
Navigation wheelchair sensors to enhance localisation

capabilities and allow for autonomous navigation

to pre-defined navigation goals.

Gaze Driven Power Gaze Tracking An addon gaze-tracking system for power
Wheelchair Addon Interface wheelchairs providing alternative input control to
[15] traditional joystick. The addon system controls
the wheelchair motor using an interface with
directional arrows superimposed on a real-time
camera feed of the environment in front of the
wheelchair. The gaze-tracker determines desired
movement based on what arrows the user is
looking at. The wheelchair avoids obstacles by
staying within a real-world boundary constructed
of reflective tape on the ground. The tape is
detected using an optical sensor and provides a
safety mechanism for users with motor

impairments that may affect gaze control.

Smart Wheelchair Computer Powered wheelchair with equipped 3D Lidar for
for Autonomous Controlled localisation and mapping. The chair is designed
Navigation in Urban Execution of for autonomous navigation in urban settings.
Environments [16] Autonomous Localisation is generated using Extended
Navigation Kalman Filtering to determine location based on

recognition of recorded landmarks (trees) after

first taking a single GPS reading before

navigation is executed. The wheelchair using a

cloud-based mapping service to generate

landmark-based maps for the chair to use for path

planning and localisation.

Research into smart wheelchairs are branching away from the standard joystick approach and

turning towards alternative input utilising human speech, movements, or brain waves to assist

13|Page

individuals with severe motor impairments, though this is not necessarily enough to provide
safe mobility. Aiding wheelchair users with autonomous path planning and environmental
recognition can provide safety measures to assure the chair can alter the user input to avoid
obstacles and provide totally autonomous navigation to desired locations, easing the strain on
wheelchair users with high level motor impairments. The research into the gaze driven power
wheelchair addon [15] reflects the ideas discussed here to enhance safety, supplying alternative
gaze tracking input for wheelchair control paired with obstacle avoidance for altering the
trajectory of the chair controlled by the user to avoid collisions. This addon system is a shared
control system between human and machine to provide safer and more efficient mobility to the
user. This is different to the chairs described in [14, 16] where a computer controls all
navigation to a pre-determined goal. For complete autonomous navigation the user will only
interact with the chair to supply a destination, upon which the chair will plan the path towards
the goal based on a generated map of the environment and control all components of the trip to

safely navigate to the goal.

For systems that use autonomous navigation, it is essential that they maintain an accurate
bearing of their location on a generated map. This is difficult as the chairs are primarily used
indoors and common tracking methods such as GPS are not always accurate enough to capture
the chair coordinates within buildings [16, 17]. To overcome these issues time is spent
incorporating a suite of sensors to detect chair movement (Odometry, IMU) and recognise
features and landmarks (Camera, Image Recognition, LIDAR). Each sensor on its own is
subject to noise and does not always provide an accurate feed for predicting location, as the
sensing equipment is often based on calculations for estimating position and not a direct
reading. Recognised landmarks may trigger false positives and identify the wrong location or
wheels may experience slippage which will affect odometry readings. To increase accuracy of
estimated position using sensors, the readings are commonly combined using data fusion
techniques to reduce the impact of noise on the system and account for the build up of errors
to a degree. One data fusion technique is with Extended Kalman Filtering (EKF) as is used in
[14] to combine multiple sensor readings for joining however particle filters (PF) are also This

common for use in data fusion for localisation tasks [17].

1l4|Page

2.1 DIRECTION FOR ABC WHEELCHAIR

Literature studied incorporates numerous input systems and sensing technologies to achieve a
common goal of assisting individuals with motor impairments. The goal for the ABC
wheelchair is to deliver an installable system for powered chairs that assists navigation. To
deliver a system that is accessible to a large range of users with differing levels of motor
impairments, it is important that there exist differing user input methods to control the chair.
One method will be the brain control interface allowing users to control the chair via thoughts.
Not all individuals will find such a system comfortable to control though and could be deterred
from using the system based on the input method. To prevent this from occurring it is important
to focus on providing alternative methods of input for controlling the chair as well as

developing the mapping and navigation capacities of the wheelchair.

Particular points of interest for mapping and navigation at this point were to use a budget
LiDAR to replace the Kinect Camera Sensor to map the environment and provide informed
navigation through doorways that the Kinect Sensor was not capable of handling. To

summarise components of this project:

e Mapping and Localisation with LiDAR technology
e Doorway Navigation
e Alternative User Input Methods

o Gaze Tracking

o Voice Control

Expanding on alternative user input methods, gaze tracking and voice control were the chosen
methods as they can be utilised with the current technology available on the wheelchair and to
provide a spectrum of input control. By providing visual, vocal and thought input methods
later on, users with high level impairments will have a suite of options to choose from for

controlling chair operations.

15|Page

3 Theory

3.1 ROS ENVIRONMENT

The platform used for the development of the ABC wheelchair is the Robotic Operating System
(ROS). ROS is an asynchronous framework composed where all processing is completed
within nodes that can subscribe and publish to topics for controlling aspects of a system such
as navigation, localisation and recognition [18]. Topics contain information like the system
pose, state, control variables, navigation plans, landmarks, etc. Any ROS based system
requires a roscore to be executed which is the collection of nodes and programs necessary for

communication via topics [19].

ROS utilises a graph like framework where nodes subscribe and publish to any number of
topics to transmit the necessary data to control and monitor the system they are built for. An
example of this can be seen below in Figure 1 below, illustrating the communication between
three nodes (contained by ellipse border) using three topics (contained by square border). In
this example the node handling odometry of the system (/odom_node) publishes to a topic
/distance. The /motor_controller node is subscribed to the distance topic and obstacle topics

that is used to control the motor by publishing velocity information to a /cmd_vel topic.

Jodom_node /distance

/motor_controller /cmd_vel

/obstacle_detector /obstacle

Figure 1: Example of ROS nodes communicating via topics

ROS itself is not a real-time framework however can be setup to work like one. Real-time
hardware can be setup to work with nodes processing code in real-time, subscribing and
publishing to topics with little delay to control and monitor hardware [18, 19]. This setup
allows ROS to work as middleware for real-time robotic systems and is a popular choice for

modern robotics.

16|Page

3.2 LOCALISATION AND MAPPING

For robotics research looking into autonomous navigation for indoor use, it is important that
the robotic system be able to recognise the environment as well as where it is in the
environment. A common method for accomplishing this is to use simultaneous localisation
and mapping (SLAM) algorithms to create maps of the environment and match sensor readings
to locations on the map for determining location[17, 20]. There are many types of SLAM
algorithms with their own benefits and trade-offs. The common trade with SLAM algorithms

IS between accuracy and speed.

Common algorithms for SLAM are based on variations of the EKF and particle filter (PF).
EKEF is typically not used on its own for SLAM due to the inaccuracy of the filter that occurs
during the linearization process. Due to this particle filtering is often utilised as it is non-linear
in nature and is an effective tool for localisation purposes. The particle filter works by
comparing a sample of particles to the expected result and refactoring samples down to the

most likely occurrence [20].

SLAM algorithms are typically focused on map generation and localising a robot on within a
map, but a variant of SLAM exists called Pose SLAM which calculates only the trajectory of
the robot to navigate environments. The map being generated does not contain information on
obstacles but instead the trajectory is used to record the pose of the robot. The trajectory of the
robot used when building the map is free of obstacles and hence does not require obstacle data
be recorded as the poses stored in the map have already been used and deemed safe and free of
collisions [21].

Common SLAM software for the ROS environment are GMapping and Cartographer. Both
software generate maps of unknown environments by taking in sensor readings from optical or
directional sensors to estimate location and obstacle positions. Generated maps can be used by
path planners for autonomous navigation and support is available for exploration and mapping

of unknown environments.

3.3 ODOMETRY

Odometry is a technique that uses sensor data from a machine to estimate a change in position
over time. The most basic form of odometry is wheel odometry using encoders attached to
wheels of a machine to estimate change in position based on the number of revolutions the

wheels have performed. The issue with wheel odometry is that errors build up over time due to

17|Page

wheel slippage that may occur on slippery or uneven surfaces. Wheel odometry is dependent
on the previous odometry calculation to estimate position so when errors occur they stack and

result in declining accuracy of pose estimations [17].

A more reliable form of odometry is visual odometry that uses a system of one to several
cameras to estimate trajectory using feature extraction. This is similar to SLAM however
focuses on estimating the local trajectory as opposed to estimating the global map and
trajectory that are consistent with one another. Visual odometry still has issues with error
stacking contributing to drift in trajectory however is seen to perform more reliably than wheel
odometry [17, 22].

3.4 VIRTUAL ASSISTANTS - MYCROFT

Virtual assistants have become a common piece of technology for modern day life, with major
companies such as Amazon and Google developing their assistants to assist with virtual tasks
and control devices connected to an Internet of Things (1oT). Virtual assistants are commonly
controlled through speech input, where typically a trained neural network will process recorded
speech and decipher to text for determining actions to perform.

An open source voice based virtual assistant is called ‘Mycroft” which offers developers the
ability to create custom ‘skills’ [23]. Skills in this context are python programs executed by
the assistant when key words or phrases are recognised. The process works by supplying an
intent, an action, and a dialog. The intent is a set of phrases or keywords to be associated with
the skill, which when detected will perform the action associated with the intent. Skills can
have multiple intents and actions associated to them. The dialog is a collection of phrases for
the assistant to speak back for each intent. The assistant will cycle through dialog responses to

provide more human like speech flow.

18|Page

Neural Network

Text output
Speech to text

Figure 2: Flow of Mycroft Skill Activation

Mycroft handles speech to text through the cloud-based Google Speech To Text (STT) engine.
Due to this one limitation with the assistant is that it requires internet access by default to
recognise speech [24]. The assistant can be used without an internet connection by feeding
text directly to the assistant or by installing a local speech to text converter however these

converters can be very large and require additional processing power.

3.5 GAZE TRACKING

Eye-gaze tracking is a method of discerning ocular movements to determine where an
individual is looking, offering an alternative Human to Computer Interface (HCI) that does not
rely on the use of limbs from the neck down [25]. Modern applications of eye-gaze tracking
involve analysis of video streams to identify eye movement between frames, offering a non-
invasive method of measuring movement unlike earlier systems that made use of the placement
of solids onto the eye or the attachment of electrodes around the eyes [26, 27]. Most video
based trackers rely on infra-red sensors and multiple camera setups that are very accurate and
provide fast response rates but the systems are complex and have high costs associated [26].
Modern research exists on the extraction of ocular movement from video streams using single
cameras and image processing techniques, based largely on the extraction of features within
the eye to discern pupil position and track movements. Such research employs binarisation of
video stream frames through edge or threshold filtering before employing feature detectors to
find elements such as circles or corners within the eye as a base of reference when determining

ocular position and movement [25, 26, 28].

3.5.1 Open Source Computer Vision Library - OpenCV
OpenCV is an open source library for computer vision and machine learning, intended for the

provision of common infrastructure for computer vision and machine perception [29]. The

19|Page

library contains applications for image processing, providing edge detection, morphological
operations, binarization of images and more to provide an ideal suite of tools as well as feature

extraction and identification of faces and eyes within images [29-31].

3.6 ELECTROENCEPHALOGRAPHY (EEG) FOR BRAIN CONTROL INTERFACE
(BCI)

An electroencephalogram is a recording of brain activity, often taken using a series of metal

pads equipped to an individual’s scalp to measure the electromagnetic radiation produced by

the brain. The use of EEG as in interface for controlling devices is now possible as seen by

research into the control of artificial limbs and wheelchair systems using headsets to record

and process brain activity to execute commands to such technology [32, 33].

In order to control a device the brain activity must be isolated for a particular thought. This is
achieved by recording the signals produced by the brain when thinking of a specific image,
action, or word to be associated with a command, which is then used as a reference for
recognising the thought. The signals measured are susceptible to noise and are filtered to isolate
the brain waves from external noise for use in BCI technology. Using the filtered brain wave
for a particular thought, the measured brain activity of an individual can be analysed and

matched against the particular thought as an input for a BCI [32, 34].

20|Page

4 Method and Results

4.1 SIMULATING THE ABC WHEELCHAIR

To simulate the wheelchair for testing outside of the lab and provide a virtual framework for
SLAM software track wheelchair location, a Universal Robot Description File (URDF) was
created. The URDF represents the layout of the wheelchair components, specifying how pieces
of the chair join and the dimensions and positions of components on the chair. An URDF file
is used to detail the robot kinematics to ROS, detailing the relationships between joint and link

connections that is required for representing a robot in a virtual environment or real-world

environment.

00
0.000 (1
b 0,000

00 Hz 00 Hz
00823 secold) Most rec 000 (100,823 sec old)
sec 0.000 sec

Figure 3: Wheelchair Frames - virtual representation of wheelchair for simulations and SLAM software

4.2 SLAM USING CARTOGRAPHER AND LIDAR

Previously the SLAM mapping produced by the chair was generated with a SLAM based
mapping algorithm (Gmapping) utilising wheel odometry, IMU feedback and depth scan data
produced by a Kinect 3D camera. Due to noise present in wheel odometry and IMU the
localisation capabilities of the chair were hindered. To overcome these limitations visual
odometry was generated using the Kinect sensor data which improved the localisation, though
maps were reported as being choppy and position was not always accurately recorded due to
the small frame and depth ranges that the Kinect is capable of detecting. To improve the

capacity for the ABC Wheelchair to sense and record the environment and location within

21|Page

recordings, a LIDAR was integrated onto the chair to provide depth sensing of up to twelve

metres in three-hundred and sixty degrees of view.

4.2.1 Setting up Cartographer (SLAM) for ROS

The Cartographer platform is available for installation within the ROS environment. The
resources required to install the SLAM platform are made available to the public by Google
[35].

The Cartographer SLAM algorithm needs access to data on the environment from a range
finder or similar measurement device to report depth information, specified within the
configuration files of the ROS workspace cartographer was installed in.

The LiDAR range output was setup to provide data on a ROS topic named ‘scan_lidar’, which
cartographer was pointed at for range data. The wheel odometry topic generated by the chair,
‘wheel _odom’, was also supplied to cartographer for additional odometry information to assist

with estimating odometry metrics.

To provide tracking frames for the SLAM platform to establish pose and estimate odometry,
cartographer was setup to use the chassis of the wheelchair as the tracking frame. This was
performed by using the URDF that provided a reference to all components of the chair,

supplying cartographer with details on the location that range data was being generated from.

Running Cartographer alongside the wheelchair generated the SLAM output, providing
mapping and localisation as the wheelchair moved around the room. The SLAM algorithm
was tuned within the configuration file, systematically adjusting settings affecting the

behaviour of localisation and mapping to enhance performance.

4.2.2 Transition from Reliance on Wheel Odometry to Visual Odometry for Localisation

The wheel odometry provided by the physical chair was not ideal for tracking position. The
system could not accurately determine a resting position, wheel readings did not detect turns
in most cases, and translations within a global map were not reflected accurately as error built
up over time. Identified errors that contributed to the unreliable odometry include wheel
slippage on the vinyl lab floors, worn tires that have led to unevenly shaped wheels, and IMU

sensor data containing high noise data for acceleration forwards and sideways. The odometry

22|Page

data generated through the encoders and IMU were seen to hinder SLAM algorithms due to
the high level of inaccuracy present in data generated. The impact can be noticed visually when
comparing the generated outputs in Figure 4 and Figure 5, both recorded in the same room
following similar paths though the algorithm is heavily disrupted by the wheel odometry and
IMU readings that lead to wheelchair pose estimates being heavily off target and surroundings

not being recognised as a result.

Figure 4: SLAM with Cartographer using LiDAR and Figure 5: SLAM with Cartographer using LiDAR relying on
Wheel Odometry to map the laboratory generated Visual Odometry to map the laboratory

The map and estimated poses in Figure 4 integrated the odometry produced using the wheel
encoders and IMU readings. The Cartographer SLAM algorithm could not map the room
accurately. This was due to the conflicting data present between the odometry generated
through the encoders and IMU, and the odometry generated visually by the Cartographer
SLAM algorithm using the LIDAR readings. When the same room is mapped again without
the IMU or wheel odometry, the output in Figure 5 was produced. The output generated was a
far more realistic representation of the path followed by the wheelchair and the boundaries of

the room.

4.2.3 Effect of LIDAR resting angle on SLAM algorithm

The LiDAR used (RPLIDAR Al) detects obstacles within a 12m radius on a single plane of
vision. Unfortunately the world does not operate in a single plane of view and as a result
obstacles are often missed due to an obstacle resting above or below the search range of the

23|Page

LiDAR. The LIiDAR was tested in several positions between 0 and 45 degrees to test the
operation of the SLAM system with a tilted range finder.

4.2.3.1 LiDAR with O degree tilt
Tuning the Cartographer SLAM algorithm, the output in Figure 6 was produced. The tuned
algorithm can maintain an accurate representation of the wheelchair pose utilising the lidar

input to create visual odometry. The boundaries of the room are well defined and crisp although

details are missing on desks and tables that were too low for the lidar to detect.

Figure 6: Tuned SLAM output for Lidar with 0 degree tilt

To achieve an accurate representation of pose, the algorithm was tuned to allow for a larger
maximum rotation when matching range data received by the lidar. The lidar used had a slow
refresh rate which contributed to greater changes of rotation and translations between lidar
scans. By increasing the maximum rotation allowed for matching range data, turns were more
accurately recorded and sharp turns could be recognised by the SLAM algorithm. This was
also performed for translation by increasing the maximum translation allowed when matching
ranges and heavily reducing the cost of performing such rotations and translations as the range
recognition in the SLAM algorithm was now the sole means of determining pose changes,

allowing the algorithm to compensate for the slow refresh rate of range data.

24|Page

Additional changes were made to improve performance of mapping capabilities and range
matching to provide smoother transitions between poses and more accurately detail boundaries
of the room and obstacles. This included reducing the cost of mapping features, allowing points
that were nor consistently caught by the lidar to appear on the map output such as the tops of
desks and chairs, as well as increasing the number of local maps utilised to build the global
map and adjusting constraints on how well points needed to be matched. Allowing inconsistent
ranges to be mapped resulted in areas containing glass to be mapped with less certainty such
as the right hand side of the room in Figure 6, allowing glass to be represented in some detail
unlike the default algorithm which reported glass as empty space between the window frames

detailed on the right hand side of the room in Figure 5.

4.2.3.2 Increasing LiDAR tilt up to 30 degrees
Increasing the tilt of the LIDAR to position the detection region closer to the ground in front
of the wheelchair yielded promising results. As the tilt increased from 0 up to 30 degrees, local
maps generated included more details of obstacles in front of the chair, though as the tilt
increased the default settings for the SLAM algorithm were not able to estimate pose or provide

an accurate representation of the global map, unlike that for LIDAR readings no tilt.

Figure 7: Initial SLAM output for Lidar with 20 Figure 8: Tuned SLAM output for Lidar with 20 degree tilt
degree tilt

Tuning the algorithm to be more forgiving when matching range data from the LiDAR, and
increasing the maximum rotation and translation allowed when estimating pose, the output
began to produce results similar to Figure 8 with a level LIDAR. The global map produced by
the Cartographer SLAM algorithm contained less details on obstacles around the room as the

tilt of the lidar increased. A trade was made in detail present on the global and local maps,

25|Page

where the presence of obstacles detailed on the global map was inversely proportional to the

increased tilt and was directly proportional to the obstacles detailed within local maps.

Using a tilt of 20 degrees with a tuned algorithm produced the most promising outputs. Maps
generated held the shape of the rooms being mapped, local maps contained more information
on obstacles in front of the chair than that of a level LIDAR, and the pose of the wheelchair
was still estimated within a high degree of accuracy. The algorithm could estimate the pose of
the chair as it circled through the room and returned to the starting position. This functionality

was lost as the tilt on the LIDAR was increased beyond 20 degrees.

4.2.3.3 Increasing LiDAR tilt beyond 30 degrees

Beyond a tilt of 30 degrees the quality of range data from the LiDAR began being reduced.
The maximum useable range captured in front of the chair was heavily impacted as the LIDAR
scans began to coincide with the ground closer to the chair as the tilt was increased. To prevent
the ground from being detected as an obstacle, the maximum useable range for the
Cartographer SLAM algorithm had to be reduced from the 12-metre distance that the LIDAR
is capable of detecting. A tilt beyond 30 degrees reduced the number of matchable points in
the range data for the algorithm to detect, impacting visual odometry and the quality of the
global map. At this point only the local maps were useful for detecting obstacles in front of the
wheelchair.

4.3 EDGE BASED DOORWAY DETECTION AND NAVIGATION
Taking the concept of tracked navigation utilised in research by ARTS Self Docking
Wheelchair [12]

Using range data from the LiDAR, the layout of the environment around the wheelchair can be
visualised and processed to distinguish features in the environment. By identifying significant
changes in range data between points, openings within obstacles can be isolated to estimate the
location of a doorway and provide a reference point for the wheelchair to navigate towards and

pass through narrow spaces.

For the purposes of section 4.3 of this thesis, an edge is referring to a distinct change in range

between two adjacent points. Using edges to recognise a doorway requires understanding

26|Page

where an ‘opening’ exists between two edges and checking whether it fits the conditions for a

doorway. The conditions for a doorway were defined as follows:

1) A doorway would have two edges, where one edge is ‘rising’ and the other ‘falling’:
a. A-rising edge is defined as a positive difference between the current range and
the next.
b. A falling edge is defined as a negative difference between the current range and
the previous.

2) No other obstacle would be present in the triangular area formed by the two doorway
edges and the wheelchair.

3) The doorway being detected would be of a nominated width and would only be 1.5x
larger than the nominated width as standard path planning algorithms would be capable
of traversing a space that wide. The nominated width would be larger than the width
of the wheelchair.

4) A standard doorway is more likely to be a similar width to the wheelchair.

5) The algorithm to detect a doorway using LiDAR output would be called upon by image
recognition of camera feed, so it is safe to assume that the doorway would be close to

the wheelchair.

4.3.1 Finding edges in LiDAR output
Doorways in the LIDAR output are distinguishable by looking for a sudden changes in range
that leaves a gap between two regions of consistent range readings, noticeable when plotted

against the angle of the LIDAR measurement as in Figure 9.

27|Page

range (metres)

Incoming LiDAR Ranges Mapped Against Angle of LiDAR

© range
e ‘ N change in range |—

| | | Doorway, distinguis‘hed by gap between consistent range readings

1 2 3 4 5
angle (radians)

6

© range

S H\|H| \

[N marked edge

 —

angle (radians)

Figure 9: Finding Doorway Boundary by searching for Changes in Range above a specified Threshold of 0.5 metres

To find all potential doorways in the LIDAR range data, the difference in range between one
point and the next were taken and used to determine changes in range that were greater than a
given threshold. The data was iterated through to find and store the locations of all data points
that started with a falling edge, then storing this point with all rising edges beyond that met the

threshold and had no obstacles located between the two edges.

Obstacles were found by taking the range with the largest distance, then comparing all ranges
between the stored points to see if obstacles were present in the LIDAR output. The result was

a list containing pairs of edges representing possible doorways in the LIiDAR output.

To filter down the number of potential doorways, each point was converted into x,y coordinates
and the width of the potential doorway calculated. If the width was less than the width of the
wheelchair then it was discarded, as were doorways with widths greater than 150% of the
wheelchair width. Using the same LiDAR output from Figure 9 produced the set of potential

doorways in Figure 10 on the left side.

28|Page

LiDAR ranges as x,y coordinates

LiDAR ranges as x,y coordinates 8r
Ir LIDAR Readings
LiDAR Readings 7r ... O Lidar Position

7 ", O Lidar Position Isolated Doorway
: Potential Doorways 6

y (metres)
w
y (metres)
w

x (metres) x (metres)

Figure 10: Potential Doorways found using the detector (left) and Isolated Doorway after ranking (right)

4.3.2 Ranking Potential for a Doorway

Doorway likelihood was ranked based on assumptions 4 and 5 that the door is most likely to
be near the wheelchair and of a similar width to the wheelchair. The ranking system was
designed as follows, where the potential doorway with the largest ranking is chosen as the

navigation goal:

let wq be width of doorway let distance rank be Ly, width rank be L,
let w, be width of the wheelchair L, = (wg —w,) x kg4

let ry be distance of doorway centre from the wheelchair ky

let kq be gain for distance ranking Ly = E

let k,, be gain for width ranking rank = (L,, + Ld)_l

This ranking system punishes doorways for being wider than the wheelchair width and for
being far away from the chair. The gains in place are used to balance the weighting of width
and distance ranks, allowing control over the process of selecting the doorway. The result was

the isolated doorway seen on the graph on the right in Figure 10.

4.3.3 Doorway Detector Performance and Adjustments

Testing the doorway detection functionality in more diverse locations showed promise for use
in larger rooms containing more details. The wheelchair was taken through a lab environment
containing many features that were partially undetectable by the LIDAR and could provide

false positive detections for the doorway detector.

The detector was able to distinguish where doorways were majority of the time, one case

example shown in Figure 11 where three doorways were detected and a fourth false positive

29|Page

detected at the corner of a small room. Due to noise present in LIDAR measurements, data did
not always represent the true details in the room. Sometimes points were detected where no
data existed or weak laser reflections returning as an infinite result, leaving regions with edges
for the detector to trigger on though no edge existed in the real world. This allowed corners of
rooms to be recognised as doorways and occasionally doorways were detected with offsets due

to false readings on obstacles that do not exist.

- LiDAR ranges as x,y coordinates A _ False doorway

detection due to two ‘inf’
detections where returning
L laser signal was too weak
to be detected by LiDAR.
Resulted in a falling and
rising edge at just the right

conditions to be detected

y (metres)

as a doorway.
oF : t o B — Doorway with offset
| &%
[& . ' g piL SR due to detection of obstacle
L T
-1 oy S5 , that did not exist (noise).
| J | v
20 : LIDAR Readings C & D - Doorways
ﬂ _—_ ‘ O Lidar Position detected accurately by the
37 - Potential Doorways
2 | Isolated Doorway detector. C was selected as
-4 ' = : - : ' most likely doorway by
-6 -4 -2 0 2 4 6
ranker.
x (metres)

Figure 11: Doorway Detection results overlaid onto 2d map of the room

To remove false doorways being detected between two readings with ‘infinite’ values, the
detector was changed to use the previous detection which held a decimal range when searching
for the initial rising edge of a doorway. Passing the same range data as in Figure 11 resulted
in detection ‘A’ being removed from the data due to removing one of the false edges caused

by the presence of two infinite edges near one another.

30|Page

LiDAR ranges as x,y coordinates

6 -
5 -
4r a.._..,“._“‘“'.‘-
31 $ o
—2F Baiatadh 24 it
w
2
@ 1+
E
> nlL ?
0 ” A ’9‘_ . d
L]
']
af !
27 * LiDAR Readings
O Lidar Position
-3r i Potential Doorways
. Isolated Doorway
_4 L . L L L L |
-6 -4 -2 0 2 4 6
x (metres)

Figure 12: doorway detection results using data from previous figure, preventing infinite readings being triggered as rising
edges

Preventing infinite readings being read as rising edges is beneficial for navigating between
rooms where the LiDAR is no more than 12 metres from a wall visible beyond the doorway to
provide a dataset where edges can be extracted from. For cases where the doorway has only
infinite detections between the edges of the doorway, such as a doorway leading into a large
open room, the doorway will now longer be detectable.

4.3.4 Velocity Controller
The motor on the wheelchair is controllable by sending velocity commands through ROS.
Velocity commands are read by an Arduino micro-controller and converted into a signal the

motor can understand.

The navigation goal for the wheelchair is defined by the location of isolated doorway. The x
and y coordinates are found for the centre of the doorway and this used to determine the forward
and angular velocity to be sent to the chair. An initial velocity controller was constructed using
the distance from the doorway in the y axis as forward velocity and the distance in the x axis
as the angular velocity. The maximum forward velocity of the chair was found to occur when

a value of +2 was sent using the velocity command for linear movement along the x axis,

31|Page

where positive values responded to forward movement and negative values responded to
movement backwards. Maximum angular velocity occurred when a value of +2.8 was sent

using velocity command for angular movement on the z axis.

The velocity controller was setup with conditions to modify performance under different
conditions after testing and adjusting the controller output over a series of runs, with
simulations initially and then with the real-world wheelchair. The logic flow of the final

velocity controller is presented in Figure 13.

Distance From Linear X: 0.25
Centre of Doorway Angular Z: 0.25
to Wheelchair

Linear X: Yy
Angular Z: 0 - X,

Motor Controller
Linear X: 0.25

Angular Z: 0 - X,

Linear X: Y,/ 2.5

Angular Z: 0 - X -0.65

Velocity Controller

Figure 13: Velocity Controller Logic for Doorway Navigator

4.3.5 Navigation Performance and Adjustments

Tests using the initial version of the velocity controller to navigate the chair through doorways
were not compatible with real-world conditions. It was discovered that the simulated LiDAR
was producing range data up to ten times faster than the physical LIDAR. Additionally, there
was notable lag between velocity commands being produced and the motor controller on the
wheelchair moving the wheels. The lag was in the range of 1-2 seconds which provided issues
alongside the slower feed of range data from the LiDAR. The result was a system that would
overcompensate itself by turning heavily and the path of the chair up to the doorway was near

constantly sinusoidal in nature with no evidence of the system settling.

The system needed to be slowed down to allow the velocity controller enough time to dampen
oscillation and allow the wheelchair to cross through the centre of the doorway without
colliding with the doorway frame. This was achieved by reducing the maximum velocity of
the wheelchair when moving forward, slowing the overall time taken for the chair to reach the
doorway. This version of the velocity controller allowed for navigation through doorways, so

32|Page

long as the wheelchair was not on too great an angle to the doorway opening as with the case
in Figure 14. The velocity controller in Figure 14 is underdamped, evident by the mild
oscillation occurring on the x axis distance from the wheelchair which begins to be
compensated for by increasing the turn velocity of the wheelchair as the wheelchair moves
forward and never stops turning inwards until the system has compensated too much at roughly

the 90 second mark.

Distanpe from doorway in rpetres Path of Wheelchair Through Doorway

@ Approximate Wheelchair Size
Path of the Wheelchair
® Doorway Opening

Distance on x axis
Distance on y axis

wn
o

/7
y axis (metres)

distance from doorway {metres)
o
3
/
/

o
T
|
|
|
N
7/
Y
(]
N
|
o

0.5 : : -0.5 ’ '
0 50 100 150 -1 0.5 0 0.5 1

runtime (seconds) X axis (metres)

Figure 14: Results of Autonomous Wheelchair Navigation through Doorways with small misalignment from doorway

To allow the wheelchair navigation through doorways under conditions where the chair was
more heavily misaligned with the doorway than in Figure 14, the x axis compensation was
increased by allowing the controller to send faster angular velocity commands. The result was
a controller that autonomously guided the wheelchair through doorways even when misaligned
from the door so long as the wheelchair was within 1 metre of the centre of the doorway along
the x axis and at least 0.8m away from the door on the y axis. A set of results are shown in
Figure 15 depicting the path of the wheelchair through a doorway when more heavily

misaligned.

33|Page

distance from doorway (metres)

o

ot
3}

o

-0.5

Distance from doorway in metres

Distance on x axis
Distance on y axis

y axis (metres)

Path of Wheelchair Through Doorway

@® Over-estimate of Wheelchair Size
Path of the Wheelchair
® Doorway Opening

50 100
runtime (seconds)

150

-05

1 05 0 0.5
X axis (metres)

Figure 15: Results of Autonomous Wheelchair Navigation through Doorway Misaligned with Wheelchair

Sharp turns and sudden stops were seen to occur when navigating. This occurred due to the
motor suddenly stopping when too great a change in wheel rotation commands were sent to the
motor, or when the front swivel wheels on the chair are not aligned appropriately. Under these
conditions it would take 1-3 seconds for the motor to resume movement or for the front wheels
to be pushed back into alignment from the force of the motor. These occurrences were seen to
recur randomly when the chair was navigated both autonomously and manually and was the

cause of sharp changes in the wheelchair direction present in results.

The produced navigator does suit the requirements of navigating narrow doorways without
collision through the aid of the doorway detector that provides input to the velocity controller
which guides the chair towards the doorway and corrects the system to allow the chair to pass

through the centre of the opening without touching the door frame.

4.4 PUPIL DETECTION FOR GAZE TRACKING

Gaze tracking can provide an alternative form of input for individuals whom are incapable of
controlling the chair via the joystick controller. Setting up gaze tracking alongside virtual
controllers laid out on a video display can be used to control wheelchair movements as well as
offer further functionality to control the environment should the chair be capable of connecting

with devices outside the internal environment, such as automated homes or mobile phones.

Testing the application of web cameras installed on most laptops for the use as a gaze tracker,
the OpenCV library was utilised to generate python scripts that could detect the location of

pupils from webcam feeds.

34|Page

4.4.1 Removing unnecessary features from images

Processing an image to determine the location of pupils required the process of first discovering
the face, then eyes before being able to apply blob or circle detectors to find pupils. Lighting
changes and unique facial attributes can confuse detectors by presenting as pupil-like features
after transformations are applied to the image, confusing detectors and reducing success rates
of finding pupils within images.

To reduce an input image down to the region containing face and then eyes, cascade classifiers
are employed. The cascade classifiers are pretrained machine learning algorithms available
open source for use with OpenCV. Using the face cascade classifier, faces are found in the
image and returned as locations. For the purpose of finding the pupil of a user seated in front
of awebcam it is assumed that the largest face region would be where the pupils are positioned,
so only the largest detected face was kept when searching the image. Then within the face
region an eye cascade classifier was used to locate the positions of the eyes. Occasionally the
chin or nose was detected as an eye so an assumption was made regarding where eyes would

be located within the face:

e |f the face is separated into two halves, bottom and top, then eyes will only ever be
present on the top half of the face.

Using this assumption, all eyes detected with pixels on the lower half of the face were ignored,

allowing accurate detection of eyes from an input image as in Figure 16 below.

35|Page

Figure 16: face and eye detection using cascade classifiers with OpenCV

The regions found by the eye cascade classifier contained quite a bit of space above and below
the eyes. To remove features such as eyebrows and freckles present in the upper and lower
regions, a set of 30 images of random individuals from a google photos search of ‘person face’
were passed through the cascade classifiers and used to define the portions of unnecessary
space within the returned regions. Each image was measured individually to determine the
how many pixels in height the unnecessary portions above and below the eye were, then was
divided by the total height of the region to find percentages that can be used to remove features

regardless of region size.

36|Page

Histogram of empty space above Histogram of empty space

detected eyes below detected eyes
7 9
6 8
s 7
6
4 5
3 4
2 3
I I ;
1 I
1
. I [l . N
SR RN SRR R
00 ,\fo ‘)Q ’\<‘° QQ ’ljo ")Q ’\O) QQ ’1:9 %0 ’1«6') %'0 ’\<'° Q'Q ’lj? ")‘Q ’\<‘° 0'0
A L LA o7 9 Y 1 O A > >) »
Height of space above eye / total height of Height of space below eye / total height of
returned region returned region

Figure 17: Histograms of the percentage of unnecessary space above and below the eye within returned eye regions

Table 2: Results of measuring 30 images to determine percentages of unnecessary space above/below returned eye region

Unnecessary Space Std Dev Smallest Bin (Smallest Bin - Std Dev)
Above eye \ 4.47% 30.00% 25.53%
Below eye ‘ 3.25% 22.50% 19.25%

The data in Table 2 was calculated based on the percentage of images containing unnecessary
space. The smallest bin minus the standard deviation of the data was used as a guide for the
largest amount of trimmable space within the returned regions of the eye. To remove as much
unnecessary space as possible, the regions were manipulated to crop the top 25% and the
bottom 20%. These levels left eyes intact whilst removing the eyebrows and most facial
features below the eye.

4.4.2 Pupil Isolation Method 1: Morphological Operations and Blob Detection

The OpenCV library has an inbuilt function for detecting dots or ‘blobs’ within images called
the ‘blob detector’. Using thresholding to produce a binary representation of an image
combined with morphological operations, it is possible to convert an image of an eye to a black
circle where the pupil is located surrounded by a series of lines and blocks where features such

as eyelids, hair are present.

37|Page

e

Figure 18: Binary Conversion of RGB image of eye, preparing for detection of pupil

4.4.2.1 Removing unnecessary features
Preparing the eye for blob detection, the eye was converted from colour to greyscale. The
OpenCV library has functions for converting colour formats of images as well as reducing to
binary representation of pixels using thresholds. The greyscale eye was passed through a
histogram equaliser to enhance the contrast of the image for better visual analysis, as lighting

can often be poor using a standard webcam.

The greyscale image is converted to binary representation (white and black pixels) using
thresholding, and then filtered using morphological operations to assist with removing

horizontal lines from the image to purge features like eyelid lines and hairs.

Histogram Equalisation Binary Conversion

Morphological Dilation Rectangular Kernel (1x2) ~ A_

r & N =%
\ Iterations =1 \ Iterations =2 \ Iterations =3
e - N)
- o .
\ Iterations =4 \ Iterations =5 / \ Iterations = 10

Figure 19: Reducing image of eye down to binary representation of the pupil

38|Page

Performing dilation on the image with a rectangular, one by two kernel removes features with
horizontal lines. Repeating the operation further reduces the presence of features with
horizontal lines. This process leaves a shape representing the area where the pupil is located,
as depicted in Figure 19, showing the effect repeated dilation operations with a rectangular

kernel on a binary representation of an eye.

4.4.2.2 Blob detector to find pupil coordinates
Passing the processed binary image of the eye through the blob detector, the coordinates of any
detected blobs are returned. Circles are drawn around the coordinates of the detected blobs on
the image, as seen in Figure 20 demonstrating the output of the python application written to
utilise the OpenCV library for detecting pupils using morphological operations and the blob

detector.

=+t $EBPPPLPH

=5 Tt 3@ P PLHY

Passing binary
image through
blob detector,
circle drawn
around returned
coordinates

«=% ¢+ @B P LH

threshold (017/255) @I

-" - :
L:jﬁﬂ_[g}ﬂi] =~Ri172 G169 B:170

Figure 20: Using OpenCV blob detector to find location of pupil and draw circle over returned coordinates

4.4.3 Pupil Isolation Method 2: Edge Detection and Circle Detection with Hough Transform
To better detect the coordinates of pupils from the webcam feed, the Hough Transform was
utilised within OpenCV. OpenCV contains functions employing the Hough Transform for
feature detection, such as detecting circles in greyscale images. Although the OpenCV
applications for circle detection with the Hough Transform is compatible with greyscale
images, to remove the presence of circular features other than the pupil the Canny edge detector
is utilised to convert the eye to a binary representation of edges within the image.

39|Page

4.4.3.1 Preparing Image by Finding Edges
To prepare the image for detecting circles through the Hough Transform, a Canny edge detector
was employed to find the edges of identified eyes. The OpenCV library contains a Canny edge
detector built in that accepts a greyscale image and returns a binary image based on an upper
and lower threshold portraying the edges detected within the greyscale image. Refer to Figure
21 for example of the edge detector output.

Figure 21: Edge Detection using Canny Edge Detector within OpenCV

The upper and lower threshold values are highly dependent on the lighting conditions within
the image. If the thresholds are setup for a webcam capturing images of a well-lit environment,
the system will not produce the same results for an environment with poor lighting. Edges may
be poorly translated and result in pupils being undetectable as the contrast between the pupil,
iris and/or eyelid may be too poor for the detector to distinguish edges between. To ease this
issue the colouring in the greyscale image is more evenly dispersed through histogram
equalisation, reducing the difference in threshold values between poor and well-lit

environments.

4.4.3.2 Detecting circles from edges
Parsing the edge representation of the eye through the ‘HoughCircles()’ OpenCV function,
circular features within the image are identified and their coordinates returned. The function
uses the Hough Transform to search for circular features, allowing specification of minimum
distance between features as well as a range for the radius of circles. Other options allow for
further tuning by changing the upper threshold used for the greyscale image and adjusting how
exact features need to match.

Once coordinates are returned, circles are drawn onto the image to indicate where pupils have
been detected. Figure 22 demonstrates the output of the python application written to utilise

the OpenCV library for detecting pupils using edge detection and circular feature detection.

40|Page

camera feed

=% ¢+ @0 PLPLPHY

TG EVe 2 Converted to
: Histogram Equalised

Greyscale Image
bx=3.v=22) = L.175

e aayoaeaemey Eye 2 Binary Image of
: 2 Edges found Using
Canny Detector

TS Eve 1 Binary Image of
Edges found Using
Canny Detector

=T N=1) = L5

NN NS Eve 1 Binary Image of
threshold_upper (170/255) | ke

. ; Edges found Using

threshold_lower (150/255) CEEEEEEEEE—— | ' Canny Detector
2) ~ R 164 B:168 Gi=22.v=2) ~ L:0

Figure 22: Pupil Detection using Hough Transform to find circles in image

4.4.4 Comparison of pupil detectors
The detectors from Method 1 and Method 2 were both able to detect pupils from a webcam
feed. The detection rate and average error in pixels were analysed to understand the

performance of the two detectors. These results are shown in Figure 23.

Key

T
>4

Eye Looking At:

Top Left of Screen Top of Screen Top Right of Screen
Left of Screen Centre of Screen Right of Screen
Bottom Left of Screen Bottom of Screen Bottom Right of Screen

Method 1 Average Error (rounded to nearest pixel) Method 1 Detection Rate

Left Eye

Right Eye

Left Eye

Right Eye

Method 2 Average Error (ruunded to nearest pixel) Method 2 Detection Rate

Left Eye

H

Right Eye Left Eye w Right Eye

[Z}
--

Figure 23: Average Error (in pixels, average pupil radius was 6 pixels) of Returned Pupil Coordinates and Average
Detection Rate for Methods 1 and 2 when looking at specific sections of the computer display

w
L

8
m
i

41|Page

Comparing the two pupil detectors, method 1 is considerably more accurate than method 2 in
terms of average error. Method 1 consistently had an error of 1 or less pixels when looking at
majority of the computer display, suggesting that pupil distance from the centre of the camera
does not have a noticeable effect on average error. Method 2 results suggest that as pupils drift
further from the camera the average error increases, where the left pupil is closer to the camera
centre when looking at the top right of the screen and the right pupil is closer to the camera

centre when looking at the top left of the screen.

When comparing detection rates, Method 2 was most reliable as it always returned coordinates
unlike Method 1 with eyes being undetectable when looking at two regions of the display.
While Method 1 is the most accurate, near always locating the pupils within a 1-pixel error

under ideal lighting conditions, method 2 provides better feedback.

If applied to gaze tracking now, method 1 would likely pinpoint pupil location but
responsiveness would be slow and not capable of using both pupils at every portion of the
display to determine where a user is looking. Method 2 would be more jittery but have faster

response rate, the trade-off being responsiveness for accuracy.

4.5 VOICE CONTROL USING THE MYCROFT AGENT

Voice control was tested for controlling wheelchair movement. This was executed by writing
a simple script that would be triggered by the MyCroft agent when keywords in Table 3 were
detected and send velocity commands to the motor controller over ROS. To reduce the
occurrence of unwanted commands being sent, the MyCroft agent was chosen as it allowed
setting of a custom hot word that would need to be spoken and detected before the agent began
listening for new commands. The hot word was kept as ‘Hey MyCroft’ for tests.

Scripts for controlling the chair movements in a simulated environment were successfully
activated by the MyCroft agent when spoken commands were recognised, given that the room
was quiet. Testing the agent in a room with music playing, as the surrounding noise increased
in volume the agent had trouble recognising spoken commands using the microphone built into
the wheelchair computer. Switching over to a standard microphone in a headset, the agent
could recognise commands better in noisy environments, but commands were still often missed

or incorrectly translated.

42 |Page

Table 3: Speech Recognition - Keywords/Phrases and Associated Triggers

Keyword or Phrase Spoken Response Triggered Action
“Forward” or “Moving forward” Run script to send velocity
“Move” command to move chair
forwards
“How are you” “I'm doing well” or No triggered action
“Pretty well” or
“I'm doing very well”

The MyCroft agent can be programmed to recognise multiple keywords or phrases for a single

action and/or response, as well as cycle through multiple responses to provide more natural

conversation flow. When asked “How are you” the agent would respond with one of three

responses. This can be utilised to provide instructions to the user on how to use the agent.

43|Page

5 Limitations

Technology restraints and environmental conditions have resulted in limited success for aspects
of the ABC wheelchair. Due to the quarantine restrictions in the presence of COVID-19 it
became difficult to obtain users to test the operation of the pupil detector and speech

recognition.

The LIDAR utilised has a view of 360 degrees, however this complete vision of the
environment was blocked by the user sitting in the chair and partially by the chair itself. The
LiDAR hat to be positioned in a location where it would be able to detect obstacles around the
room to generate maps of rooms. If the LIDAR had been positioned above the head of the user
then full range of measurements would be available however many features such as tables and

chairs would be lost.

Processing power was limited on the wheelchair computer and real-time processes had to be
executed relatively quickly to keep the system responses up to date. This posed issues when
developing the edge based doorway navigator. Ideally the edges would be detected by
converting the LiDAR readings into a 600 by 600 grid of cells representing an area of 3cm?
each to process for doorway detection. The grid could be treated as a picture and an edge
detector used to find and pair edges in two dimensions to find potential doorways, which would
provide a more thorough search. This process exponentially increases the calculations however
based on the number of cells and required lengthy execution times that were not suitable to
control the system. As a result, the one-dimensional solution was applied to reduce the

execution time.

Real-time control of navigational control was hindered by the delay between velocity
commands being sent to the motor before being executed. The delay was often larger than one
second which could allow the chair to collide with obstacles before it was able to correct itself.
This posed an issue implementing the real-time doorway navigator as extra caution had to be
used to keep the chair from travelling too fast towards walls and doorways to prevent collisions

before correction could be employed.

As the wheels on the front of the chair were connected on freely rotating hinges, the intended
movement of the chair was not always executed when the front wheels were not aligned and
had to be forced into place by the force of the motor on the rear wheels. This resulted in sharp

turns or generally unwanted movements which caused issues when navigating through narrow

44|Page

spaces such as doorways and halls. The resulted in the wheelchair needing to be slowed down
when nearing narrow spaces to allow the system more time to correct itself and prevent

collisions.

Testing of pupil isolators for the future development of a gaze tracking system showed that
both isolators were highly dependent on lighting conditions. The system was highly dependent
on external lighting to operate properly and required retuning when lighting conditions
changed. The system is not useable in dark environments and if being used as a method for
gaze tracking would require either a light built into the chair to illuminate the face of the user

or utilise an IR camera that could operate in both poor and well lit environments.

The MyCroft agent was only capable of interpreting spoken commands when connected to the
internet. To allow for offline speech recognition a local interpreter would have to be installed.
The deepnet neural network the agent uses is available to be run locally on a machine however
the processing power required slowed system resources down and hindered the execution times
of real-time systems on the machine when ran simultaneously. As a result the agent was kept

to do processing through the online server and required internet access to operate.

45|Page

6 Improvements

The processing power on the chair computer provided limitations for the demand that
navigational resources could utilise. By providing more processing power the edge based
navigator could be processed within a 2 dimensional context and allow for thorough search
algorithms to determine the locations of doorways. The range data could be treated as an image
processing problem to extract points where edges end and fill in details of small gaps more
accurately as well as utilising median filtering or similar techniques that preserve edges in
images whilst removing salt and pepper noise present from false detections of the LiDAR.

The SLAM software can be improved by providing additional sensor data that could interpret
range data in a 3d context, whether that be the integration of sonar or 3d laser finding from the
Kinect Camera. Combining this with the LIDAR would allow for detection of obstacles outside
the LiDAR range and may remove the need for angling the LiDAR, allowing for maps to be
produced with level of detail output by the level LIDAR and providing the necessary obstacle
detection for objects outside the LiDAR range. The Kinect Camera would be a good choice
for this as it can provide 3d range data in 120 degrees of view in front of the chair to provide
higher resolution data on obstacles in the environment as opposed to the single beam sonar

ranges.

The gaze tracking requires further research to first provide accurate pupil detection of both
pupils when looking at the entire range of the computer display. This could be achieved by
combining the data from method 1 and 2 using a particle filter or similar. Coordinates from
method 1 of pupils would supply a near guaranteed location that could set all particles to a
single location and then use coordinates from method 2 better estimate the most likely position
by carrying over the likelihood from each stage. This method may allow for estimations that
find a happy medium between the accuracy of method 1 and the responsiveness of method 2.
From this point machine learning may be employed to train a model that can correlate pupil
locations with points on the display to achieve a first draft of the gaze tracker.

46|Page

7 Conclusion

The work done for the wheelchair has provided a basis for future research into an addon system
for powered wheelchairs that can tailor for a range of users with disabilities that prevent
standard powered chairs from being useable or comfortable to use on their own.

SLAM utilising the cartographer system and LIDAR can produce viable maps of rooms and
track the location of the chair as it moves around environments without the need for wheel
odometry to support it. The LiDAR can handle being angled downwards towards the front of
the wheelchair up to roughly 25 degrees for greater vision of obstacles closer to the ground
before behaviour of the SLAM system begins to poorly track location and map rooms. The
system has room for improvement by incorporating additional sensors to feed information on

the environment outside the LIDAR sensing range and improve system visibility.

The doorway navigator can successfully navigate narrow doorways without collision with the
door frames thanks to the velocity controller. The controller successfully corrects the
wheelchair movement taking input from the edge based doorway detector based on range data
received by the LIDAR to search for doorways in an environment. The navigator can operate
in real-time and is capable of correcting the path of the wheelchair towards the door when not
aligned with the doorway. There is space here for triggering the navigator when doorways are
detected using image recognition based on the Kinect Camera feed, as well as the potential to
produce a more robust detector using a two dimensional approach as mention in the

improvements section.

The pupil detectors still require further work before a gaze tracking system can be finished.
The detectors on their own cannot accurately detect the position of pupils as the user looks
around every extremity of the computer display. Further work needs to be done to either
combine the two systems as discussed previously or find an alternative method that is more
ideal whilst still operating on ‘budget’ technology to reduce the cost of addon system for

powered wheelchairs.

The MyCroft agent proved to be a useful tool as an input alternative to the joystick. More work
will be required to develop full control of the wheelchair using the voice assistant as only basic
testing was performed to prove that the technology could be used. Moving forward it may be

necessary to move the speech recognition to be performed locally. This will benefit the user if

47|Page

they are attempting to operate the wheelchair in environments where network connectivity is
not available.

The system is progressing towards an accessible power wheelchair addon that can benefit
individuals with disabilities and impairments. With research into brain control interfaces being
developed by other researchers and the branches opened here on gaze tracking and speech
control for the ABC Wheelchair, it has the potential to become a system that can suit a diverse
range of users. When selecting technology to aid individuals it is important to consider what
is comfortable, suitable and viable for the individual. By offering a powered chair with manual,
assistive and autonomous systems in place that can be controlled via multiple input methods,
it provides a greater audience of users the ability to attain an unknown level of freedom that

was otherwise inaccessible to them and offer greater quality of life for the future.

48 |Page

8 References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

L. Sminkey, "New world report shows more than 1 billion people with disabilities face
substantial barriers in their daily lives," ed: World Health Organization, 2011.

K. Rousseau-Harrison and A. Rochette, "Impacts of wheelchair acquisition on children from a
person-occupation-environment interactional perspective," Disability and Rehabilitation:
Assistive Technology, vol. 8, no. 1, pp. 1-10, 2013, doi: 10.3109/17483107.2012.670867.

F. Pasteau, V. K. Narayanan, M. Babel, and F. Chaumette, "A visual servoing approach for
autonomous corridor following and doorway passing in a wheelchair," Robotics and
Autonomous Systems, vol. 75, no. PA, pp. 28-40, 2016, doi: 10.1016/j.robot.2014.10.017.

M. L. Toro, C. Eke, and J. Pearlman, "The impact of the World Health Organization 8-steps in
wheelchair service provision in wheelchair users in a less resourced setting: A cohort study in
Indonesia Health systems and services in low and middle income settings," BMC Health
Services Research, vol. 16, no. 1, p. <xocs:firstpage xmlns:xocs=""/>, 2016, doi:
10.1186/s12913-016-1268-y.

S. Shore and S. Juillerat, "The impact of a low cost wheelchair on the quality of life of the
disabled in the developing world," Medical Science Monitor : International Medical Journal of
Experimental and Clinical Research, vol. 18, no. 9, pp. CR533-CR542, 2012, doi:
10.12659/MSM.883348.

R. C. Simpson, "Smart wheelchairs: A literature review," Journal of rehabilitation research and
development, vol. 42, no. 4, pp. 423-436, 2005, doi: 10.1682/JRRD.2004.08.0101.

A. Murarka, S. Gulati, P. Beeson, and B. Kuipers, "Towards a safe, low-cost, intelligent
wheelchair," in Workshop on Planning, Perception and Navigation for Intelligent Vehicles
(PPNIV), 2009, pp. 42-50.

R. Simpson, E. LoPresti, S. Hayashi, . Nourbakhsh, D. J. J. o. R. R. Miller, and Development,
"The smart wheelchair component system," vol. 41, 2004.

J. Leaman and L. Hung Manh, "A Comprehensive Review of Smart Wheelchairs: Past, Present,
and Future," IEEE Transactions on Human-Machine Systems, vol. 47, no. 4, pp. 486-499, 2017,
doi: 10.1109/THMS.2017.2706727.

0. Horn, "Smart Wheelchairs: past and current trends," in 2012 1st International Conference
on Systems and Computer Science (ICSCS), 2012: IEEE, pp. 1-6.

F. Doshi and N. Roy, "Efficient model learning for dialog management," ed, 2007, pp. 65-72.
C. Gao, T. Miller, J. R. Spletzer, |. Hoffman, and T. Panzarella, "Autonomous docking of a smart
wheelchair for the automated transport and retrieval system (ATRS)," Journal of Field
Robotics, vol. 25, no. 4-5, pp. 203-222, 2008.

B. Jenita Amali Rani and A. Umamakeswari, "Electroencephalogram-based Brain Controlled
Robotic Wheelchair," Indian Journal of Science and Technology, vol. 8, no. S9, p. 188, 2015,
doi: 10.17485/ijst/2015/v8iS9/65580.

M. Njah and M. Jallouli, "Fuzzy-EKF Controller for Intelligent Wheelchair Navigation," Journal
of Intelligent Systems, vol. 25, no. 2, pp. 107-121, 2016, doi: 10.1515/jisys-2014-0139.

E. Wastlund, K. Sponseller, O. Pettersson, and A. Bared, "Evaluating gaze-driven power
wheelchair with navigation support for persons with disabilities," Journal of rehabilitation
research and development, vol. 52, no. 7, pp. 815-826, 2015, doi: 10.1682/JRRD.2014.10.0228.
D. Schwesinger, A. Shariati, C. Montella, and J. Spletzer, "A smart wheelchair ecosystem for
autonomous navigation in urban environments," Autonomous Robots, vol. 41, no. 3, pp. 519-
538, 2017, doi: 10.1007/s10514-016-9549-1.

K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, "An Overview to Visual Odometry and
Visual SLAM: Applications to Mobile Robotics," Intelligent Industrial Systems, vol. 1, no. 4, pp.
289-311, 2015, doi: 10.1007/s40903-015-0032-7.

49|Page

(18]

(19]
(20]

(21]

(22]
(23]
[24]
[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

G. K. Kalyani, Z. Yang, V. Gandhi, and T. Geng, "Using Robot Operating System (ROS) and Single
Board Computer to Control Bioloid Robot Motion," in Towards Autonomous Robotic Systems,
Cham, Y. Gao, S. Fallah, Y. Jin, and C. Lekakou, Eds., 2017// 2017: Springer International
Publishing, pp. 41-50.

"ROS/Introduction." http://wiki.ros.org/ROS/Introduction (accessed 10 December, 2019).
J.-c. Ma, Q. Zhang, and L.-y. Ma, "A novel robust approach for SLAM of mobile robot.(Report),"
Journal of Central South University: Science & Technology of Mining and Metallurgy, vol. 21,
no. 6, p. 2208, 2014, doi: 10.1007/s11771-014-2172-4.

R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, "Planning Reliable Paths With Pose
SLAM," IEEE Transactions on Robotics, vol. 29, no. 4, pp. 1050-1059, 2013, doi:
10.1109/TR0O.2013.2257577.

J. Cobos, L. Pacheco, X. Cufi, and D. Caballero, "Integrating visual odometry and dead-
reckoning for robot localization and obstacle detection," vol. 1, ed, 2010, pp. 1-6.

mycroft. "https://mycroft-ai.gitbook.io/docs/skill-development/introduction/your-first-skill."
(accessed 3 January, 2020).

mycroft. "https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/customizations/stt-engine."
(accessed 3 January, 2020).

S. Cristina and K. P. Camilleri, "Unobtrusive and pervasive video-based eye-gaze tracking,"
Image and Vision Computing, vol. 74, pp. 21-40, 2018, doi: 10.1016/j.imavis.2018.04.002.

L. Xia, B. Sheng, W. Wu, L. Ma, and P. Li, "Accurate gaze tracking from single camera using
gabor corner detector," An International Journal, vol. 75, no. 1, pp. 221-239, 2016, doi:
10.1007/s11042-014-2288-4.

R. S. Remmel, "An Inexpensive Eye Movement Monitor Using the Scleral Search Coil
Technique," IEEE Transactions on Biomedical Engineering, vol. BME-31, no. 4, pp. 388-390,
1984, doi: 10.1109/TBME.1984.325352.

D. lacoviello, M. Lucchetti, G. Calcagnini, and F. Censi, "Pupil edge detection and
morphological identification from blurred noisy images," vol. 1, ed, 2003, pp. 922-925 Vol.1.
OpenCV. "About." https://opencv.org/about/ (accessed 23 March, 2020).

Z.Zhu and Y. Cheng, "Application of attitude tracking algorithm for face recognition based on
OpenCV in the intelligent door lock," Computer Communications, vol. 154, pp. 390-397, 2020,
doi: 10.1016/j.comcom.2020.02.003.

K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, "Real-time computer vision with
OpenCV," Communications of the ACM, vol. 55, no. 6, pp. 61-69, 2012, doi:
10.1145/2184319.2184337.

D. Choi, Y. Ryu, Y. Lee, and M. Lee, "Performance evaluation of a motor-imagery-based EEG-
Brain computer interface using a combined cue with heterogeneous training data in BCI-Naive
subjects," Biomedical engineering online, vol. 10, no. 1, p. 91, 2011, doi: 10.1186/1475-925X-
10-91.

H. A. Lamti, M. M. Ben Khelifa, P. Gorce, and A. M. Alimi, "A brain and gaze-controlled
wheelchair," Computer Methods in Biomechanics and Biomedical Engineering, vol. 16, no.
supl, pp. 128-129, 2013, doi: 10.1080/10255842.2013.815940.

B. Rebsamen et al., "A Brain Controlled Wheelchair to Navigate in Familiar Environments,"
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, no. 6, pp. 590-
598, 2010, doi: 10.1109/TNSRE.2010.2049862.

T. C. Authors. "Compiling Cartographer Ros. https://google-cartographer-
ros.readthedocs.io/en/latest/compilation.html (accessed 13 November, 2019).

S. Filanov. "Tracking your eyes with Python." https://medium.com/@stepanfilonov/tracking-
your-eyes-with-python-3952e66194a6 (accessed 18 February, 2020).

M. Wirth. "An example of the hough transform - pupil segmentation."
https://craftofcoding.wordpress.com/2017/12/06/an-example-of-the-hough-transform-
pupil-segmentation/ (accessed 14 March, 2020).

50|Page

http://wiki.ros.org/ROS/Introduction
https://mycroft-ai.gitbook.io/docs/skill-development/introduction/your-first-skill
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/customizations/stt-engine
https://opencv.org/about/
https://google-cartographer-ros.readthedocs.io/en/latest/compilation.html
https://google-cartographer-ros.readthedocs.io/en/latest/compilation.html
https://medium.com/@stepanfilonov/tracking-your-eyes-with-python-3952e66194a6
https://medium.com/@stepanfilonov/tracking-your-eyes-with-python-3952e66194a6
https://craftofcoding.wordpress.com/2017/12/06/an-example-of-the-hough-transform-pupil-segmentation/
https://craftofcoding.wordpress.com/2017/12/06/an-example-of-the-hough-transform-pupil-segmentation/

9 Appendix A

9.1 CODE ASSOCIATED WITH DOORWAY NAVIGATION

Code associated with edge based doorway navigation from range data.

9.1.1 controller.py

#! /usr/bin/env python2

import rospy

import datetime

import doorNav

import numpy as np

import time

from sensor_msgs.msg import LaserScan
from geometry msgs.msg import Twist
import matplotlib.pyplot as plt
import lidarProcessor as lpr

redundant variables

front = ©
side = ©
bufferFront = 0
bufferFront = 0

pub=rospy.Publisher("cmd_vel",Twist,queue_size=1)
speed=Twist()

forward=0

side=0

[theta_range 1,theta_range 2, front, side] = doorNav.setup()
global reading

global count

count = ©

global accX
global accY
global yOrient
accX=[]
accY=[]
yOrient = []

plt.ion()
#plot readings for visual of room and doorway from LiDAR
def plotReadings(point_x,point_y,x,y,edge x,edge y):

plt.figure(2)
plt.plot(x,y, 'go',markersize="1.5")

51|Page

plt.plot(edge_x,edge_y, 'bo',markersize="6")
plt.plot(point_x,point_y, 'ro',markersize="6")
plt.axis([-12,12,-12,12])

plt.pause(0.0001)

plt.clf()

def callback(msg):
global accX
global accY
global count
count = count + 1

measurements = doorNav.segment_measurements(msg)

reading = doorNav.assign_angle(msg)
result = lpr.edges(reading,0.1,0.9)

if (len(result) > 0):

door = result[0]

edges = result[1]

if (count > 40):
accX.append((door[@][@] + door[@][1])/2)#middle of door in x plane
accY.append((door[1][@] + door[1][1])/2)#middle of door in y plane
yOrient.append(door[1][@] - door[1][1])#@ is perpendicular to door
np.savetxt('accX.csv',accX,delimiter=",")
np.savetxt('accY.csv',accY,delimiter=",")
np.savetxt('yOrient.csv',yOrient,delimiter=",")

else:
door = [[0,0],[0,0]]
edges = [0,0]

goalx
goaly

(door[@][@] + door[0][1])/2
(door[1][@] + door[1][1])/2

#condition 1

if (goaly < 0.1 and goalx < 0.1):
forward = 0
turn = 0

#condition 2

elif (goaly < 0.4 and goalx < 0.1):
forward = goaly
turn = 0 - goalx

t#tcondition 3

elif (goaly < 0.4 and goalx > 0.1):
forward = 0.25

52|Page

turn = 0 - goalx

#condition 4

else:
forward = (goaly)/2.5
turn = 0 - goalx*0.65

if (count > 40):

count = 0
x =[]
y =[]

for meas in reading:
x.append(doorNav.find_x(meas[1],meas[0]))
y.append(doorNav.find_y(meas[1],meas[0]))

plotReadings([door[©]],[door[1]],x,y,edges[0],edges[1])

print (forward, turn)
speed.linear.x=forward/2
speed.angular.z=turn/2
pub.publish(speed)

def callback2(msg):
global prev_speed
prev_speed = msg.linear.x
prev_turn = msg.angular.z

rospy.init_node('scan_values"')
pub.publish(speed)
sub = rospy.Subscriber('/laser', LaserScan, callback)

rospy.spin()

53|Page

9.1.2 lidarProcessor.py

import math

import numpy as np

import matplotlib.pyplot as plt
import doorNav

find edges in the captured data using change in distances
def edges(data, threshold, width):

index = []

degFilterStart = math.pi/2

degFilterEnd = math.pi*1.5

for i in range(len(data)-1):
angle = data[i][1]
isolate to 90 -> 270 deg to prevent computer from being detected
if (angle > degFilterStart and angle < degFilterEnd):
ray = data[i][@] # the current ray distance
rayNext = data[i+1][@] # the next ray distance
changeInRay = rayNext - ray #change in dist btwn current and next

#if there an increase ray distance, assume possible door opening
if (changeInRay > threshold):
opening = i #store possible edge of door opening
iterator = 1 + 1
while(iterator < len(data)-1 and angle < degFilterEnd):
iterator = iterator + 1 #increment position in data
angle = data[iterator][1] #update angle for end condition
ray = data[iterator-1][0]
rayNext = data[iterator][9]
changeInRay = rayNext - ray #for search of decreasing dist

if(changeInRay < (@ - threshold)):
distance = calcDistance(data[opening],data[iterator])
print(distance)

if (distance < 1.5*width and distance > 0.5* width):
openingDistance = data[opening][@]
iteratorDistance = data[iterator][Q]
radius = max(openingDistance, iteratorDistance)
safe = True
#if any point between edges has detection < radius
for point in range(opening+l,iterator):
ray = data[point][9]
if (ray < radius):
safe = False #don't apend points

add if no detection between two edges
if (safe):

54|Page

index.append([opening,iterator])
#if edges found, rank them and return all valid edges for plotting
if (len(index) > ©0):
positions = rankEdges(data, index, width)
opening = data[positions[@]]
closing = data[positions[1]]
x = [doorNav.find_x(opening[1],opening[@]), doorNav.find_x(closing[1],
closing[0])]
y = [doorNav.find_y(opening[1],opening[0]), doorNav.find_y(closing[1],
closing[@])]

xCollated = []

yCollated = []

for point in index:
hypOpening = data[point[@]][@]
hypClosing = data[point[1]][9@]
angleOpening = data[point[0]][1]
angleClosing = data[point[1]][1]
xCollated.append(doorNav.find_x(angleOpening, hypOpening))
xCollated.append(doorNav.find_x(angleClosing,hypClosing))
yCollated.append(doorNav.find y(angleOpening,hypOpening))
yCollated.append(doorNav.find_y(angleClosing,hypClosing))

return [[X,y],[xCollated,yCollated]]

else:
return []

#rank possible doorways
def rankEdges(data, index, expWidth):
kw = 1 #higher = greater punishment on door width
kd = 2 #lower = greater punishment on distance
likelyEdges = None
mostLikely = None
for i in index:
foundWidth = calcDistance(data[i[@]],data[i[1]])
widthDev = abs(foundWidth-expWidth)
avgDistance = (data[i[@]][@] + data[i[1]][@])/2
likelihood = (widthDev * kw) + (avgDistance / kd)
if(likelihood < mostLikely or mostLikely is None):
mostLikely = likelihood
likelyEdges = i
return likelyEdges

#use pythag to determine distance between two points
def calcDistance(a,b):

aHyp = a[9]

bHyp = b[0]

aTheta = (a[1])

bTheta (b[1])

55|Page

ax = doorNav.find x(aTheta,
bx = doorNav.find x(bTheta,
ay = doorNav.find _y(aTheta,
by = doorNav.find_y(bTheta,

distance = math.sqrt(math.pow(ax-bx,2) + math.pow(ay-by,2))

return distance

aHyp)
bHyp)
aHyp)
bHyp)

56|Page

9.1.3 doorNav.py

import
import
import
import
import
import

math

datetime

numpy as np

json

time

matplotlib.pyplot as plt

with open('config.json') as json_file:
config = json.load(json_file)

#setup

the chair dimensions and lidar range

def setup():
with open('config.json') as json_file:

config = json.load(json_file)

Calculate dimensions of boundary
front = config["front"] + config["bufferFront"]
side = config["side"] + config["bufferSide"]

Calculate range for detecting objects in front
theta_range_1 = (math.atan(front/side)) + math.pi/2
theta_range 2 = math.pi*1.5 - math.atan(front/side)
return [theta_range 1,theta range 2, front, side]

#Assigns an angle to the range and returns as array
def assign_angle(msg):

measure = msg.ranges

data = [None]*len(measure)

angle = float(9)

inc

= msg.angle_increment

Collate lidar measure and angle into array data
for i in range(len(measure)):

data[i] = [measure[i],angle]
angle = angle + inc

return data

#segment lidar ranges into 5 segments

def segment_measurements(msg):
lidarLeft = [None]*40
lidarFrontLeft = [None]*40
lidarFront = [None]*40
lidarFrontRight = [None]*40
lidarRight = [None]*40

for i in range(40):

57|Page

lidarLeft[i]=msg.ranges[i+80]
lidarFrontLeft[i]=msg.ranges[i+120]
lidarFront[i]=msg.ranges[i+160]
lidarFrontRight[i]=msg.ranges[i+200]
lidarRight[i]=msg.ranges[i+240]

left = round(min(lidarLeft), 3)

frontLeft = round(min(lidarFrontLeft),3)

front = round(min(lidarFront), 3)

frontRight = round(min(lidarFrontRight),3)

right = round(min(lidarRight), 3)

measurements = [left, frontLeft, front, frontRight, right] #segment 1,2,3,

return measurements

def compare_change(bookmark,data,window):

search = []

for i in range(window):
search.append(data[bookmark+i][0])#-data[bookmark+(i + 1)][0])

median = np.median(search)

if (search[@] < 2*median):
return True

else:
return False

def compare_change_ 2(first_edge,data,window):
index = []
bookmark = first_edge + 1
while (data[bookmark][1] < math.pi*1.5):
search = []
for i in range(window):
search.append(data[bookmark-i][@])#-data[bookmark-(i + 1)][@])
median = np.median(search)
if (search[@] < 2*median):
radius = max(data[first_edge][0],data[bookmark][0])
safe = True
for point in range(first_edge+1,bookmark):
if (data[point][@] < radius):
safe = False
if (safe):
index.append([first_edge,bookmark])
bookmark = bookmark + 1
return index

def find edges v2(msg, threshold, width):
data = assign_angle(msg)
index = []
edges = []

58|Page

recordx []

recordy = []

probability = None
edgel = None

edge2 = None

likelyEdge = [None,None]

for i in range(len(data)-1):
meas = data[i][@]
meas_next = data[i+1][0]
angle = data[i][1]
if (angle > math.pi/2 and angle < math.pi*1.5):
if(compare_change(i,data,4)):
index = compare_change_2(i,data,4)

for i in index:
edgel = data[i[@]]
edge2 = data[i[1]]
edges.append(calc_distance(edgel,edge2))
recordx.append(find_x(edgel[1],edgel[0]))
recordy.append(find_y(edge2[1],edge2[0]))

#print("found edges:",edges)

for i in range(len(edges)):
stat = abs(edges[i]-width)
#tprint(stat,math.degrees(data[index[i][©]][1]),math.degrees(data[index
[i1[11101]))
if(stat < probability or probability is None):
probability = stat
pointl = index[i][9]
point2 = index[i][1]
likelyEdge = [data[pointl],data[point2]]
#tprint("-------------- ")
return (likelyEdge,recordx,recordy)

def find_edges v3(msg, threshold, width):
data = assign_angle(msg)
index = []
edges []
recordx = []
recordy = []
probability = None
edgel = None
edge2 = None
likelyEdge = [None,None]

59|Page

for i in range(len(data)-1):
meas = data[i][@]
meas_next = data[i+1][0]
angle = data[i][1]
if (angle > math.pi/2 and angle < math.pi*1.5 and meas < 4):
if (meas_next - meas > threshold):

edgel = 1

=i

while(j < len(data)-1 and data[j][1] < math.pi*1.5):
j = j+1

if(data[j][@] - data[j-1][@] < @ - threshold):
radius = max(data[i][@],data[j][@])
safe = True
for point in range(i+1,j):
if (data[point][@] < radius):
safe = False
distance = calc_distance(data[i],data[j])
if (safe and distance < 1.6*width and distance > 0.4 *
width):
index.append([i,j])

for i in index:

edgel = data[i[@]]

edge2 = data[i[1]]
edges.append(calc_distance(edgel,edge2))
recordx.append(find_x(edgel[1],edgel[0]))
recordx.append(find_x(edge2[1],edge2[0]))
recordy.append(find_y(edgel[1],edgel[0]))
recordy.append(find_y(edge2[1],edge2[0]))

#print("found edges:",edges)

for i in range(len(edges)):
stat = abs(edges[i]-width)
#tprint(stat,math.degrees(data[index[i][0©]][1]),math.degrees(data[index
[i1[11101]))
if(stat < probability or probability is None):
probability = stat
pointl = index[i][9]
point2 = index[i][1]
likelyEdge = [data[pointl],data[point2]]
#tprint("-------------- ")
return [likelyEdge,recordx,recordy]

def find edges(msg, threshold, width):
data = assign_angle(msg)
index = []
edges = []

60|Page

recordx []

recordy = []

probability = None
edgel = None

edge2 = None

likelyEdge = [None,None]

for i in range(len(data)-1):
meas = data[i][@]
meas_next = data[i+1][0]
angle = data[i][1]
if (angle > math.pi/2 and angle < math.pi*1.5 and meas < 4):
if (meas_next - meas > threshold):

edgel = 1

j=i

while(j < len(data)-1 and data[j][1] < math.pi*1.5):
j = j+1

if(data[j][@] - data[j-1][9] < @ - threshold):
radius = max(data[i][@],data[j]l[@])
safe = True
for point in range(i+1,j):
if (data[point][@] < radius):
safe = False

if (safe):
index.append([i,j])
for i in index:
edgel = data[i[0]]
edge2 = data[i[1]]

edges.append(calc_distance(edgel,edge2))

recordx.append(find_x(edgel[1],edgel[0]))
recordx.append(find_x(edge2[1],edge2[0]))
recordy.append(find_y(edgel[1],edgel[0]))
recordy.append(find_y(edge2[1],edge2[0]))

#print("found edges:",edges)

for i in range(len(edges)):
stat = abs(edges[i]-width)
#print(stat,math.degrees(data[index[i][©]][1]),math.degrees(data[index
[11[1]1101]))
if(stat < probability or probability is None):
probability = stat
pointl = index[i][@]
point2 = index[i][1]
likelyEdge = [data[pointl],data[point2]]
#tprint("-------------- ")

61|Page

def

def

def

#prints the segment min measurements from LiDAR

def

return [likelyEdge,recordx,recordy]

calc_distance(a,b):

aHyp = a[@]

bHyp = b[9]

aTheta = (a[1])

bTheta = (b[1])

ax = find_x(aTheta, aHyp)

bx = find_x(bTheta, bHyp)
ay = find_y(aTheta, aHyp)
by = find_y(bTheta, bHyp)

distance = math.sqrt(math.pow(ax-bx,2) + math.pow(ay-by,2))

return distance

find_x(theta,hyp):
if (theta < math.pi/2):
theta = (math.pi/2) - theta
result = math.cos(theta)*hyp
elif (theta < math.pi):
theta = theta - math.pi/2
result = math.cos(theta)*hyp
elif (theta < 3*math.pi/2):
theta = (3*math.pi/2) - theta
result = -math.cos(theta)*hyp
else:
theta = theta - (3*math.pi/2)
result = -math.cos(theta)*hyp
return result

find_y(theta,hyp):
if (theta < math.pi/2):
theta = (math.pi/2) - theta
result = -math.sin(theta)*hyp
elif (theta < math.pi):
theta = theta - math.pi/2
result = math.sin(theta)*hyp
elif (theta < 3*math.pi/2):
theta = (3*math.pi/2) - theta
result = math.sin(theta)*hyp
else:
theta = theta - (3*math.pi/2)
result = -math.sin(theta)*hyp
return result

show_lidar_measurements(data):

print datetime.datetime.now().time()

62|Page

def

print data[3],"|",data[2],"|",data[1]

print data[4],"| o |",data[@]
print " x | x | x"
print "----cc-meemcnecmeeeaa "

check if safe(data):

w_safe = config["w"]

r_safe = w_safe/math.cos(config["a"]) - 0.1
#print "r_safe:",r _safe

f safe = 0.25

ok = True
if data[@] < w_safe or data[4] < w_safe:
ok = False

elif data[l] < r_safe or data[3] < r_safe:
ok = False

elif data[2] < f_safe:
ok = False

return ok

#Return hypotenuse given adjacent side and angle

def

calc_ray(adj, angle):
result = adj / math.cos(angle)
return result

#Placeholder for calculating the safety range for each measurement

def

calc_boundaries(data):

print "initialising boundaries..."

with open('config.json') as json_file:
config = json.load(json file)
front = config["front"] + config["bufferFront"]/2
side = config["side"] + config["bufferSide"]
anglel = (math.atan(front/side)) + math.pi/2
angle2 = math.pi*1.5 - math.atan(front/side)
result [1]

for i in range(len(data)):
theta = data[i][1]
if (theta > anglel and theta < angle2):
if (theta < math.pi):

result.append(calc_ray(front, math.pi - theta))

else:

result.append(calc_ray(front, theta - math.pi))

else:
if (theta > math.pi/2 and theta <= anglel):

result.append(calc_ray(side, theta - math.pi/2))

elif (theta < math.pi*1.5 and theta >= angle2):

result.append(calc_ray(side, theta - math.pi*1.5))

else:

63|Page

result.append(9)
return result

def calc chair dimensions(data):
print "initialising boundaries..."
with open('config.json') as json_file:
config = json.load(json_file)
front = config["front"] + (config["bufferFront"]/3)
side = config["side"] + (config["bufferSide"]/3)

anglel = (math.atan(front/side)) + math.pi/2
angle2 = math.pi*1.5 - math.atan(front/side)
result = []

for i in range(len(data)):
theta = data[i][1]
if (theta > anglel and theta < angle2):
if (theta < math.pi):
result.append(calc_ray(front, math.pi - theta))
else:
result.append(calc_ray(front, theta - math.pi))
else:
if (theta > math.pi/2 and theta <= anglel):
result.append(calc_ray(side, theta - math.pi/2))
elif (theta < math.pi*1.5 and theta >= angle2):
result.append(calc_ray(side, theta - math.pi*1.5))
else:
result.append(9)
return result

def determine_movement(data):
heightLeft = math.sin(config["a"]*1.5)*data[3]
heightRight = math.sin(config["a"]*1.5)*data[1]
widthLeft = math.cos(config["a"]*1.5)*data[3]
widthRight = math.cos(config["a"]*1.5)*data[1]
forward = 0
turn = 0

with open('config.json') as json_file:
config = json.load(json_file)

Calculate dimensions of boundary
front = config["front"] + config["bufferFront"]

side = config["side"] + config["bufferSide"]

forward = min(data[2],heightLeft,heightRight)
left = data[@] - 0.4 + widthLeft - 0.4

return [forward, turn]

64|Page

def

def

proceed_forward(reading, boundary):
result = True
for i in range(len(boundary)):
if (reading[i][@] < boundary[i]):
result = False

return result

navigate(reading, boundary, safety, anglel, angle2):
frontInBounds = True
leftInBounds = True
rightInBounds = True

leftMeasure = anglel
rightMeasure = angle2
frontMeasure = 12

left = 0
right = 0
forward = 0

for i in range(len(boundary)):
theta = reading[i][1]
distance = reading[i][©]
#print reading[i]

if (theta > math.pi/2 and theta < math.pi*1.5):
if (distance < 0.85):

#print(theta, "<", math.pi, theta<math.pi)

if (theta < math.pi):
leftMeasure = max(leftMeasure,theta)
#print(leftMeasure)

else:
#print(theta, ">", math.pi, theta>math.pi)
#print theta
rightMeasure = min(rightMeasure, theta)
#print(rightMeasure)

if (theta < anglel):

left = min(distance, left)
if left:
left = 1/1eft
if (distance < safety[i]):
leftInBounds = False

elif (theta > anglel and theta < angle2):

65|Page

if (distance < safety[i]):
frontInBounds = False
else:
frontMeasure = min(frontMeasure,distance)

else:
if (distance < boundary[i] and theta < math.pi*1.5):
right = min(distance, right)
if right:
right = 1/right
if (distance < safety[i]):
rightInBounds = False

#if (frontInBounds & leftInBounds & rightInBounds):

max_speed = 0.6

max_distance_speed = 2

if (frontMeasure > max_distance_speed):
frontMeasure = 2

forward = (frontMeasure*0.4) - 0.2

if (forward > max_speed):
forward = max_speed

if (not frontInBounds):
forward = 0

if (not leftInBounds and rightInBounds):
right = 0.5

if (not rightInBounds and leftInBounds):
left = 0.5

if (not rightInBounds and not leftInBounds):

forward = 0

right = 0

left = 0
print("measurements",leftMeasure,"” "
print("turns",left,"” ", right)

, rightMeasure)

turn = left - right
return[forward, turn]

def navigate2(readings, boundary, safety, anglel, angle2):
leftMeasure = 12

rightMeasure = 12
forward = 0@

66|Page

frontMeasure = 12

for i in range(len(boundary)):
theta = readings[i][1]
distance = readings[i][©@]

if (theta > math.pi/2 and theta < math.pi*1.5):
if (theta < math.pi and distance < 1.5):
leftMeasure = min(distance, leftMeasure)
leftAngle = max
if (theta > math.pi and distance < 1.5):
rightMeasure = min(distance, rightMeasure)

if(theta > anglel and theta < angle2):
if (distance < safety[i]):
frontInBounds = False
else:
frontMeasure = min(frontMeasure,distance)

if (rightMeasure > 1):
right = 0

else:
right = 1/rightMeasure

if (leftMeasure > 1):
left = 0

else:
left = 1/leftMeasure

if (frontMeasure > 3):
frontMeasure = 0.6
else:
frontMeasure = (frontMeasure/3) - 0.2

turn = left - right
forward = frontMeasure

return[forward, turn]

67|Page

9.2 CODE ASSOCIATED WITH CARTOGRAPHER SLAM

This section contains the configuration files used to tune the Cartographer SLAM system

9.2.1 2d_lidar 0 deg optimised with partial odom.lua

-- Copyright 2016 The Cartographer Authors

-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at

-- http://www.apache.org/licenses/LICENSE-2.0

-- Unless required by applicable law or agreed to in writing, software

-- distributed under the License is distributed on an "AS IS" BASIS,

-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and

-- limitations under the License.

include "map_builder.lua"
include "trajectory_builder.lua"

options = {
map_builder = MAP_BUILDER,
trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map",
tracking_frame = "chassis",
published_frame = "chassis",
odom_frame = "wheel_odom",
provide_odom_frame = true,
publish frame_projected to_2d = true,
use_odometry = true,
use_nav_sat = false,
use_landmarks = false,
num_laser_scans = 1,
num _multi echo_laser_scans = 0,
num_subdivisions_per_laser_scan = 1,
num_point_clouds = 0,
lookup_transform_timeout sec = 0.2,
submap_publish_period_sec = 0.5,
pose publish period sec = 5e-3,
trajectory_publish_period_sec = 30e-3,
rangefinder_sampling ratio = 1.,
odometry_sampling ratio = 1.,
fixed_frame_pose_sampling ratio = 1.,
imu_sampling ratio = 1.,
landmarks_sampling ratio = 1.,

68|Page

MAP_BUILDER.use_trajectory_builder_2d = true

-- input stream settings

TRAJECTORY_BUILDER_2D.min_range = 0.3
TRAJECTORY_BUILDER_2D.max_range = 11.5
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 11.5
TRAJECTORY_BUILDER 2D.use_imu_data= false
TRAJECTORY_BUILDER_2D.adaptive_voxel filter.max_range = 11.5
TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel filter.max_range =
TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1

11.5

-- local slam

TRAJECTORY_BUILDER_2D.submaps.num_range_data = 300
-- ceres scan matcher
TRAJECTORY_BUILDER_2D.
TRAJECTORY_BUILDER_2D.
TRAJECTORY_BUILDER_2D.

TRAJECTORY_BUILDER_2D.

math.rad(3.5)
le-3

motion_filter.max_angle_radians =
ceres_scan_matcher.translation_weight =
ceres_scan_matcher.rotation_weight = 1e3
ceres_scan_matcher.occupied_space_weight = le-2

-- realtime scan match
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window
= le-1
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cos
t_weight = 1e-3
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.rotation_delta_cost_w
eight = 1e-3

--global slam
65

POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.

ow = 20.0

POSE_GRAPH.
dow = math.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.

constraint_builder.min_score = 0.
constraint_builder.log matches = true
constraint_builder.fast correlative_scan_matcher.linear_search_wind

constraint_builder.fast_correlative_scan_matcher.angular_search_win
rad(19)
optimization_problem.ceres_solver_options.max_num_iterations =
constraint_builder.sampling ratio = 1

optimization problem.log solver_ summary = true
optimization_problem.huber_scale = 1le2

optimize every n _nodes = 25

100

-- localise weighting

POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.

optimization_problem.local_slam_pose_translation_weight = 1le2
optimization_problem.local_slam_pose_rotation_weight = 1le2

optimization_problem.odometry_translation_weight = 1

69|Page

POSE_GRAPH.optimization_problem.odometry_rotation_weight = ©

return options

70|Page

9.2.2 2d_lidar_25 deg optimised_with partial odom.lua

-- Copyright 2016 The Cartographer Authors

-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at

-- http://www.apache.org/licenses/LICENSE-2.0

-- Unless required by applicable law or agreed to in writing, software

-- distributed under the License is distributed on an "AS IS" BASIS,

-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and

-- limitations under the License.

include "map_builder.lua"
include "trajectory_builder.lua"

options = {
map_builder = MAP_BUILDER,
trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map",
tracking frame = "chassis",
published_frame = "chassis",
odom_frame = "wheel_odom",
provide_odom_frame = true,
publish_frame_projected_to_2d = true,
use_odometry = true,
use_nav_sat = false,
use_landmarks = false,
num_laser scans = 1,
num _multi echo_laser_scans = 0,
num_subdivisions_per_laser_scan = 1,
num_point_clouds = 0,
lookup_transform_timeout_sec = 0.2,
submap_publish_period_sec = 0.5,
pose publish period sec = 5e-3,
trajectory_publish_period_sec = 30e-3,
rangefinder_sampling_ratio = 1.,
odometry_sampling ratio = 1.,
fixed_frame_pose_sampling ratio = 1.,
imu_sampling_ratio = 1.,
landmarks_sampling ratio = 1.,

MAP_BUILDER.use_trajectory_builder_2d = true
-- input stream settings

71|Page

TRAJECTORY_BUILDER_2D.min_range
TRAJECTORY_BUILDER_2D.max_range

0.3
11.5

TRAJECTORY_BUILDER_2D.missing_data_ray_length = 11.5

TRAJECTORY_BUILDER 2D.use_imu_data= false
TRAJECTORY_BUILDER_2D.adaptive_voxel filter.max_range = 11.5
TRAJECTORY_BUILDER_2D.loop_closure_adaptive_voxel filter.max_range = 11.5
TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1

-- local slam
TRAJECTORY_BUILDER_2D.submaps.num_range_data = 100

-- ceres scan matcher
TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(3.5)
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 1le-3
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 1e3
TRAJECTORY_BUILDER_2D.ceres_scan_matcher.occupied space_weight = le-1

-- realtime scan match
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window

= le-1

TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cos

t_weight =

le-3

TRAJECTORY_BUILDER_2D.real time_correlative_scan_matcher.rotation_delta cost w

eight = le-

3

--global slam

POSE_GRAPH.
.constraint_builder.log matches = true
POSE_GRAPH.

POSE_GRAPH

ow = 20.0

POSE_GRAPH.
dow = math.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.

constraint_builder.min_score = 0.65
constraint_builder.fast_correlative_scan_matcher.linear_search_wind

constraint_builder.fast correlative_scan_matcher.angular_search_win
rad(10)
optimization_problem.ceres_solver_options.max_num_iterations = 100
constraint_builder.sampling ratio =1
optimization_problem.log_solver_summary = true

optimization problem.huber_scale = 1le2

optimize_every n_nodes = 25

-- localise weighting

POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.
POSE_GRAPH.

optimization_problem.local_slam_pose_translation_weight = 3
optimization_problem.local_slam_pose_rotation_weight = 1
optimization_problem.odometry translation weight = 1
optimization_problem.odometry_rotation_weight = ©

return options

72|Page

9.3 CODE ASSOCIATED WITH PUPIL DETECTION

This section contains the code for detecting pupils using the OpenCV library.

9.3.1 blobDetector.py
The program is adapted from work performed by Stepan Filanov [36].

import cv2

import numpy as np

import array

import datetime

img = cv2.imread("me.png")

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml")
detector_params = cv2.SimpleBlobDetector Params()
detector_params.filterByArea = True
detector_params.maxArea = 1600

detector = cv2.SimpleBlobDetector_create(detector_params)

#For holding previous points of pupil values
left_pupil = [None] * 10
right_pupil = [None] * 10

threshold = 20

def cut_empty(img):
h, w = img.shape[:2]
upper_h = int(h / 4)
lower_h = int(h*4 / 5)
img = img[upper_h:lower_h, 0:w] #remove empty space above/below eye
return img

def detect _eyes(img, classifier):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eyes = classifier.detectMultiScale(grey, 1.3, 5) # detect eyes
width = np.size(img, 1) # get face frame width
height = np.size(img, ©) # get face frame height
left_eye = None
right_eye = None
for (X, y, W, h) in eyes:
if y > height / 2:
pass
eyecenter = x + w / 2 # get the eye center
if eyecenter < width / 2:
left_eye = img[y:(y + h), x:(x + w)]
else:
right_eye = img[y:(y + h), x:(x + w)]
return left_eye, right_eye

73|Page

def detect_faces(img

, Classifier):

grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
coords = classifier.detectMultiScale(grey, 1.3, 5)

if len(coords) >
max = (0, 0,

1:
9, 0)

for i in coords:

if i[3]
max

> max[3]:
=1

max = np.array([i], np.int32)

elif len(coords)
max = coords
else:
return None
for (X, y, w, h)

in max:

frame = img[y:(y + h), x:(x + w)]

return frame

def blob_process(img, threshold, detector):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

hist = cv2.equal

izeHist(grey)

_, img = cv2.threshold(hist, threshold, 255, cv2.THRESH_BINARY)
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 2))

img = cv2.dilate(img, horizontal_kernel, iterations=2)

keypoints = detector.detect(img)
return [keypoints, img]

def testing():

vid = cv2.VideoCapture(9)

while True:

_, frame = vid.read()

face_frame =

detect faces(frame, face_ cascade)

if face_frame is not None:
eyes = detect_eyes(face_frame, eye_cascade)

for eye

in eyes:

if eye is not None:

NARY)
CT, (1,2))

E, (3,3))

eye = cut_empty(eyes[9])

grey = cv2.cvtColor(eye, cv2.COLOR_BGR2GRAY)

hist = cv2.equalizeHist(grey)

_, img = cv2.threshold(hist, threshold, 255, cv2.THRESH_BI
horizontal _kernel = cv2.getStructuringElement(cv2.MORPH_RE

circle_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPS

74|Page

E, (3,3))

1)

square_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPS

preImg = img

img = cv2.dilate(img, horizontal_kernel, iterations=3)
#img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, circle_kerne

#img = cv2.morphologyEx(img, cv2.MORPH_OPEN, horizontal_ke

rnel, iterations=3)

> (2,4))

repair_kernel, iterations=1)

repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT

img = 255 - cv2.morphologyEx(255 - img, cv2.MORPH_CLOSE,

thresh = cv2.threshold(grey, ©, 255, cv2.THRESH_BINARY_I
NV + cv2.THRESH_OTSU)[1]

detected _lines

, horizontal_kernel, iterations=4)
cnts =
L, cv2.CHAIN_APPROX_SIMPLE)

cnts =
for c in cnts:
cv2.drawContours(img, [c], -1, (255,255,255), 2)

def

def

cv2.
cv2.
cv2.
cv2.
cv2.
cv2.
cv2.
cv2.
cv2.

#

#img
#img

cv2.morphologyEx(thresh, cv2.MORPH_OPEN

cv2.findContours(detected lines, cv2.RETR_EXTERNA

cnts[@] if len(cnts) == 2 else cnts[1]

cv2.dilate(img, square_kernel, iterations = 1) #1
cv2.erode(img, square_kernel, iterations=1) #2

keypoints = detector.detect(img)

imshow("my
imshow('my
imshow('my
imshow("my
imshow('my
imshow("my

image
image
image
image
image
image

1,
2..’
3..’
4',
5..’
6",

imshow('grey',grey)
imshow("hist',hist)

imshow('binary pre',prelmg)

imgl)
img2)
img3)
img4)
img5)
img6)

if cv2.waitKey(1) & OxFF == ord('q"):

break

vid.release()
cv2.destroyAllWindows ()

nothing(x):

pass

main():

frame_place = 1

vid = cv2.VideoCapture(0)

75|Page

cv2.namedWindow('image")
cv2.createTrackbar('threshold', 'image', ©, 255, nothing)
while True:
_, frame = vid.read()
face_frame = detect_faces(frame, face_cascade)
if face_frame is not None:
eyes = detect_eyes(face_frame, eye_cascade)

i=20
for eye in eyes:
i=1i+l

if eye is not None:
threshold = 11 #cv2.getTrackbarPos('threshold’', 'image')
eye = cut_empty(eye)
[keypoints,binary] = blob_process(eye, threshold, detector

eye = cv2.drawKeypoints(eye, keypoints, eye, (9, 0, 255),
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow(str(i) + ' binary eye',binary)
cv2.imshow('my image', frame)
cv2.imwrite('./blob/br'+str(frame_place)+'.jpg",frame)
frame_place = frame_place + 1
if cv2.waitKey(1) & OxFF == ord('q"):
break
vid.release()
cv2.destroyAllWindows ()

main()

76|Page

9.3.2 houghCirclesDetector.py
The program is adapted from work performed by Michael Wirth [37] and work performed by
Stepan Filanov [36].

import cv2

import numpy as np

import array

img = cv2.imread("test_1.jpg")

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml")

threshold = 20
threshold_upper
threshold_lower
min_rad = 3
max_rad = 8
min_dist = 200
global acclLeftEye
global accRightEye
acclLeftEye = []
accRightEye = []

100
90

def cut_empty(img):
h, w = img.shape[:2]
upper_h = int(h / 4)
lower_h = int(h*4 / 5)
img = img[upper_h:lower_h, 0:w] #remove empty space above/below eye
return img

def find_eyes(img, classifier):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
eyes = classifier.detectMultiScale(grey, 1.3, 5) #find eye frames
face w = np.size(img, 1) #face frame width
face_h = np.size(img, ©) #face frame height
left _eye = None
right_eye = None
for (X,y,w,h) in eyes:
ify > (face_h / 2):
pass #don't use anything on bottom of face (false detections)

else:
center = x+w/2 #center (between the eyes)
if center < face w / 2:
left_eye = img[y:(y + h), x:(x + w)]
else:
right_eye = img[y:(y + h), x:(x + w)]
return left_eye, right_eye

77|Page

def find_face(img, classifier):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
coords = classifier.detectMultiScale(grey, 1.3, 5)
if len(coords) > 1:
max = (@, 0, 0, Q)
for i in coords:
if i[3] > max[3]:
max = i
max = np.array([i], np.int32)
elif len(coords) ==
max = coords
else:
return None
for (X, y, w, h) in biggest:
frame = img[y:(y + h), x:(x + w)]
return frame

def to_binary(img, threshold):
hist_frame = cv2.equalizeHist(gray_frame)
__, img = cv2.threshold(hist_frame, threshold, 255, cv2.THRESH_BINARY)
return img

def grayscale(img):
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#img = grey
img = cv2.equalizeHist(grey)
return img

def get_edges(img, threshold_lower, threshold_upper):
img = cv2.Canny(img, threshold_lower, threshold_upper, apertureSize=3)
return img

def find_pupils(eye, img, min_dist, min_rad, max_rad, threshold_uppper):
circles = cv2.HoughCircles(eye, cv2.HOUGH_GRADIENT, 1,min_dist,
paraml=threshold_upper, param2=5, minRadius=min_rad, maxRadius=max_rad)
circles = np.uintl6(np.around(circles))
for i in circles[0,:]:
Planning: append to array the position of detected pupil
if array len > 10, delete position [0]
draw circle around average of positions in array

draw the outer circle

cv2.circle(img,(i[@],i[1]),1i[2],(@,255,0),1)

draw the center of the circle

cv2.circle(img,(i[@],i[1]),1,(@,0,255),1)
return img

78|Page

def noth
pass

def main
vid

plac

whil

ing(x):

0:
= cv2.VideoCapture(0)
e =1

e True:
_, camImg = vid.read()

cv2.namedWindow(' camera feed')
cv2.createTrackbar('threshold_upper', ‘'camera feed', 170, 255, nothing

cv2.createTrackbar('threshold lower', 'camera feed', 150, 255, nothing

#cv2.createTrackbar('min_rad', 'camera feed', 3, 5, nothing)
#cv2.createTrackbar('max_rad', 'camera feed', 10, 15, nothing)
#cv2.createTrackbar('min_dist', ‘camera feed', 30, 50, nothing)

face = find_face(camImg, face_cascade)
eye_1 = None
if face is not None:
eyes = find_eyes(face, eye_cascade)
for eye in eyes:
if eye is not None:
threshold_upper

255#cv2.getTrackbarPos('threshold upper', 'c

amera feed')

threshold_lower = 82#cv2.getTrackbarPos('threshold lower', 'ca

mera feed')

hreshold

#min_rad = cv2.getTrackbarPos('min_rad', 'camera feed')
#max_rad = cv2.getTrackbarPos('max_rad', 'camera feed')
#min_dist = cv2.getTrackbarPos('min_dist', 'camera feed')
eye = cut_empty(eye)
grey = grayscale(eye)
edges = get edges(grey, threshold lower, threshold upper)
pupils = find_pupils(edges, eye, min_dist, min_rad, max_rad, t
_upper)
if eye_1 is not None:
cv2.imshow('binary eye 2', edges)
cv2.imshow('greyscale eye 2',grey)
else:
eye 1 = eye
cv2.imshow('binary eye 1',edges)
cv2.imshow('greyscale eye 1',grey)
cv2.imshow('camera feed', camImg)
cv2.imwrite('./hough/br'+str(place)+'.jpg",camImg)
place = place + 1

79|Page

if cv2.waitKey(1) & OxFF == ord('q"):
break

vid.release()
cv2.destroyAllWindows ()

main()

80|Page

