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ABSTRACT 
Smart wheelchairs offer a solution to wheelchair users that have difficulties 

controlling a standard power wheelchair, which may be due to cognitive or severe 

mobility problems. At Flinders University, the development of the ABC wheelchair 

aims to meet this goal with the use of autonomous navigation and the ability to 

accept various inputs. Alternative control methods have been explored particularly 

for those who have limited movement of their upper limbs. Gestures have been 

identified as a promising option as they are natural to human communication and 

can be adapted for the capabilities of the user. Face and head gestures could be 

particularly useful for those who may have limited control over their upper limbs.   

This project explores the use of face and head gestures in the control of a smart 

wheelchair using computer vision for a non-contact alternative. The emphasis of this 

project is on the user and exploring the factors that affect their use of this system 

while exploring the factors that influence the effectiveness of this system. This 

system was implemented using the open-source software OpenFace and an Arduino 

Mega 2560 for control of the wheelchair. The main challenges that was faced were in 

user intention and software limitations. These were aimed to be solved by making 

assumptions surrounding the intention of the user. One assumption made was that 

they would hold a gesture for a longer time if it was intentional. Software limitations 

faced were inherent issues with face tracking and computer vision. Through the 

implementation of this system, further considerations were found and addressed.  

It was found that face and head gestures were a viable method of control but lacked 

in reliability. The performance of the system ranged from 65.23% to 88.28% in 

informedness, which indicates that while the system most likely can predict the 

correct gesture with the given information, there are several factors that limit the 

performance of this system. Individual differences in appearance as well as 

execution of gestures plays a large role in this. Therefore, more research would need 

to be conducted into the area of face and head tracking to create a reliable and 

versatile system. Implementing more varied training data or 3D data could potentially 

improve these issues. The challenge of deducing user intention can also be 

improved by integrating various user sensing capabilities such as a brain computer 

interface (BCI). More studies to formally evaluate this system from a user’s 

perspective could also be future work.  
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1. INTRODUCTION  

Mobility plays a significant role in our lives. It enables us to be independent and 

increases the opportunities to participate in life’s activities. Mobility impairments are 

quite predominant in Australia. Around 614 200 people reported using mobility aids 

in the ABS 2015 survey (Australian Bureau of Statistics, 2015a) (Australian Bureau 

of Statistics, 2015b) 

People with disabilities all have differing capabilities and can be limited in control 

options for mobility aids. In the context of powered wheelchairs, the use of a joystick 

is traditionally employed for use. For those that have limited movement of their upper 

limbs, head or chin switches and pneumatic pressure such as a sip-puff switch are 

also common choices (Fehr et al., 2000). However, this can be fatiguing, mentally 

taxing, it can compromise functions such as speech or it may not be very intuitive for 

the user.  

Control interfaces are one of the most crucial components in the usability of these 

devices. It governs whether a device is very simple to use or extremely difficult. As 

no disability is the same, it makes sense that no mobility solution would be the same. 

Therefore, it is crucial that wheelchair users have a variety of options to consider 

when it comes to controlling their personal mobility device, particularly if some 

methods are fatiguing or difficult for the user.  

Smart wheelchairs offer many alternatives for the control of movement and 

navigation based on this principle, particularly for those that may have difficulties 

with ordinary controls and navigation. In a survey conducted by Fehr et al. (2000), it 

was reported that ”85% of responding clinicians reported seeing some number of 

patients each year who cannot use a power wheelchair because they lack the 

requisite motor skills, strength, or visual acuity”. For these reasons, a user may not 

be able to operate a powered wheelchair reliably or safely with the standard 

technology currently on them. At Flinders University, the development of the Audio-

Visual Brain-muscle Computer-Controlled (ABC) wheelchair aims to address this 

issue. This device aims to provide the functionalities of a regular powered wheelchair 

with additional technological features to relieve the cognitive and physical burden on 

users often in the form of autonomous navigation, assisted control and advanced 

user interfaces. 
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The focus of this project is to explore alternative control methods for the ABC 

wheelchair. Face and head gestures has been identified as a potentially promising 

control method as gestures are a natural form of communication that people use 

daily. There are fewer studies on face and head gestures compared to hand 

gestures, but these are being increasingly explored as upper limb impairments are 

being considered more.  

Providing people with mobility impairments more avenues to control their mobility 

device would enable them to experience increased independence and could 

potentially improve their wellbeing and safety.  

This thesis will provide an overview of related technologies as well as explore an 

alternative face and head gesture control interface for the ABC wheelchair. Chapter 

1 will discuss the motivation behind this project and explore the relevant work done 

in this area. Chapter 2 describes the project goals as a whole and how it was 

implemented. Chapter 3 will lead on from this and presents the results and main 

findings. This will then be discussed in Chapter 5 and finally concluded.  

1.1 BACKGROUND 

1.1.1 PEOPLE WITH DISABILITIES AND THEIR CAPABILITIES  

There are many disabilities that can affect the motor capabilities of individuals using 

the wheelchairs. For this project, the focus is primarily on those that have severe 

disabilities and experience difficulties in controlling their upper limb movements. 

Quadriplegia is a prominent example of this and can occur through illness or injury. 

While spinal cord injury is the main cause of quadriplegia, infections, brain tumours 

and congenital defects are also conditions that can have an effect. (SpinalCord.com, 

N/A) 

Cerebral palsy can affect people in half their body or all limbs as well as the trunk, 

face and mouth to an extent (Cerebral Palsy Alliance, N/A)., whereas people with 

SCI are more likely to have more control over their face as the condition is more 

localised. For people with severe conditions such as spinal cord injury (SCI), 

quadriplegia, Parkinson’s disease (PD) and cerebral palsy (CP) who likely have 

limited control of their upper limbs, it may be more desirable to use their head and 

face for control inputs.  
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As each individual and disability is different, their needs and capabilities will vary. 

Therefore, it is important to develop a versatile control interface so that users can 

maximise their existing capabilities.  

1.1.2 THE ABC WHEELCHAIR 

As suggested by the name, the Audiovisual Brain-Muscle Computer-Controlled 

Wheelchair is a multi-faceted project that has undergone several stages of 

development (Robinson, n.d., Asayesh, 2013, Khazab, 2016, Kukreja, 2018). It aims 

to integrate several different technologies and types of inputs to achieve a safe and 

reliable wheelchair. In this way, it can help to lessen the physical or cognitive burden 

on the user.  

Depending on the features implemented, smart wheelchairs can range from semi-

autonomous and fully autonomous. In this case, the aim for the ABC wheelchair is to 

create a cost-effective system that can be integrated onto different powered 

wheelchairs which includes both semi-autonomous as well as fully autonomous 

functionalities. It should be able to accept user input to control the wheelchair directly 

as well as destination input, where it can travel to the destination without further 

input.   

Path planning, obstacle avoidance (Yanco, 1998) and wall-following (Kuno et al., 

2003) are all examples of the many functionalities a smart wheelchair can provide 

(Simpson, 2005), the first two of which are being implemented in the ABC 

wheelchair. Previous work on the wheelchair has involved implementing the control 

and sensing ability of the wheelchair (Robinson, n.d., Asayesh, 2013) as well as 

exploring a brain computer interface (BCI) (Khazab, 2016). Currently, the wheelchair 

can use a combination of inputs to obtain information about the environment around 

the user as well as obtain user input. A BCI, autonomous navigation and the ability to 

intake various inputs are being implemented at the time of writing (Kukreja, 2018). 

The wheelchair is shown in Figure 1.   
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FIGURE 1: CURRENT ABC WHEELCHAIR AT FLINDERS UNIVERSITY 

The ultimate goal for the wheelchair is to create a system that is integrated with the 

Internet of Things (IoT) to establish a connection and enable data exchange between 

the wheelchair and other relevant technologies. For example, the act of getting a 

coffee could become an automated process, in which the user communicates their 

desire for coffee and this can be made before their arrival.  

In terms of the control of the system, inputs from the user can be collected through 

several means including a brain-computer interface, voice input, eye movement as 

well as head and facial gestures. A problem that is often encountered with the 

control of the smart wheelchair using unconventional methods is that it can be 

difficult to deduce the intention of the user (Ju et al., 2009) (Kuno et al., 2003) (Fine 

and Tsotsos, 2009). While some systems base assumptions around the intentions of 

the user in order to decide upon actions, it is becoming more common to utilise a 

combination of these inputs to determine the intentions of the user with the most 
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certainty. Thus, multimodal inputs have been gaining popularity for both the control 

of the device and the function.  

The role of this project within the ABC wheelchair project is to explore the use of 

facial and head gestures for the control of the wheelchair.  

1.1.3 USER INTERFACE 

A major aspect of the control of a powered or smart wheelchair is the user interface, 

which is how the user controls the device. There are many aspects to consider when 

designing the control interface for a user as individual motor, sensory and cognitive 

skills vary vastly among people with disabilities as discussed previously.  

Usability is described by ISO 9241–11 as a three-pronged approach, which 

describes “ The extent to which a product can be used by specified users to achieve 

the specified goals with effectiveness, efficiency and satisfaction in a specified 

context of use” (Dix, 2009). Useability is important as this project can influence an 

individual’s mobility and independence. In this context, this means the user interface 

should enable the user to accurately control the wheelchair while minimising the 

resources involved. Therefore, it is important to aim to minimise the physical and 

cognitive effort on the user while ensuring that they feel comfortable and happy to 

use it. A simple and intuitive interface could potentially meet these requirements. 

The concept of a natural user interface (NUI) is one that is especially pertinent to this 

project. The purpose of making an interface as natural as possible is to make it feel 

more seamless and direct to the user, and in doing so could potentially improve the 

useability.  

There are a few measures that can be taken to ensure a NUI. In this situation, this 

involves considering gestures that are most intuitive to the user. This could be as 

simple as using an action involving left, for turning left. Using components of 

emotional expressions that the user can easily relate to a specific action could also 

feel more natural for the user. Culture and society can also influence which gestures 

would feel natural for a user. For example, in Filipino culture it is common for pouting 

to be used to point (SBS, N/A). This could mean that it would be more natural for a 

Filipino wheelchair user to use this pouting gesture to indicate where they’d like to 

go.   
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1.1.4 GESTURES 

Thus far, gestures have been identified as a promising hands-free control method 

and the idea of using gestures to convey information has been a prevalent topic of 

interest in many fields. Gestures are movements that can be used to communicate 

emotion, meaning or intent to other people or the environment. They can be 

expressed through the movement of various parts of one’s body, but is 

predominantly conveyed using the fingers, hands, arms, head and face (Mitra and 

Acharya, 2007). They have been analysed in several ways for a variety of reasons. 

In linguistics, there is an interest in the role of gestures as an essential part of 

language (Abner et al., 2015) as it is possible to ascertain what one is 

communicating through gestures. Facial gestures, which are defined as individual 

movements of the face can also play a role in this when considering expression. 

Naturally, the relationship between facial gestures and related emotions has also 

been studied extensively (Ekman et al., 1997) (Ekman, 1993).  

A common method for describing and tracking facial gestures is through the Facial 

Action Coding System (FACS) or a variant of this. It is a systematic method of 

describing facial actions and was introduced by Ekman and Friesen (1976). The 

FACS is made up of action units (AU) which describes different facial and head 

movements. While most of this system is based on the more complex anatomical 

structure and movement of facial muscles, it is a common method used to describe 

specific facial movements ranging from small, nearly imperceptible movements to 

larger obvious movements. Usually the recognition of AUs are performed by trained 

individuals but the automatic recognition of AUs are being explored further.  

Naturally, there are inherent challenges to using gestures as they can be used both 

intentionally or unintentionally. Therefore, the main challenge in using this in a 

control interface would be interpreting the user’s intention.  

1.2 RELEVANT TECHNOLOGIES  

1.2.1 USE OF FACE AND HEAD GESTURES IN CONTROL INTERFACES 

In general, gestures can be detected through wearable sensing devices (Ben Taher 

et al., 2016) (Zogg, 2017) (Matthies et al., 2017) or vision-based detection (Ju et al., 

2009) (Mitra and Acharya, 2007). Specific examples of methods used to obtain 
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information from the face and head include tracking biosignals to determine eyebrow 

movement (Wei et al., 2009), reading accelerometer’s to determine head placement 

(Fatma, 2016) or using computer vision to determine head inclination and facial 

gestures (Ju et al., 2009). Meaning can then be derived from the information 

obtained about positioning, angles and movements of the relevant features. 

These principles have been applied to a wheelchair previously. A prominent example 

of gesture detection in this context was demonstrated by the University of Essex’s 

RoboChair, which used a variety of inputs such as bio-signals from the forehead 

(Wei et al., 2009), EOG readings (Tsui et al., 2007) as well as computer vision to 

detect head gestures (Jia et al., 2007).  

In more recent years, Nasif and Khan (2017) and Wu et al. (2017) both use a similar 

concept to utilise wearable devices with the attachment of sensors such as 

accelerometers to measure movements of the head for the control of a wheelchair. 

These devices are shown in Figure 2. 

 

FIGURE 2: WEARABLE DEVICES TO DETECT HEAD GESTURES IN THE CONTROL OF A 

WHEELCHAIR. THE TWO LEFT IMAGES SHOW THE WEARABLE DEVICE CREATED BY NASIF 

AND KHAN (2017), WHILE THE TWO RIGHT IMAGES SHOW THE WEARABLE DEVICE CREATED 

BY WU ET AL. (2017). 

However, while Nasif and Khan (2017) uses the interface to control a wheelchair 

directly, Wu et al. (2017) used additional gyroscope and compass sensors to train 

and use a classifier that can detect six different head gestures. Both studies are 

examples of cost-effective methods of controlling a wheelchair using wearable 

sensors. However, these studies do not address the challenge of intention.  

Another interesting example of a wearable sensor was created by Matthies et al. 

(2017), who developed an interface that uses electrodes to sense a user’s facial 

gestures as shown in Figure 3.  
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FIGURE 3: WEARABLE ELECTRIC FIELD SENSING DEVICE THAT CAN SENSE FACE-RELATED 

GESTURES (MATTHIES ET AL., 2017) 

These electrodes are placed inside the ear and detects changes in the electric field 

due to movements of a user’s face, which is then transmitted to the appropriate 

application through Bluetooth. This particular interface is designed to be applied to 

mobile applications, in order to increase hands-free accessibility but could also be 

applied to this context. While this device is relatively unobtrusive, there is quite a lot 

of wiring and componentry involved which may be cumbersome. This interface offers 

a promising hands-free control method if further development can make it more 

compact with fewer associated components.  

A common issue across wearable devices such as these is that they may be 

cumbersome for the user. Wearable technology can be bulky and uncomfortable to 

wear and can often have cables that connect the user to a processor or will need to 

be set up before use. As mentioned, it is important that the user feels comfortable 

using the interface and resources such as time required is minimised. Therefore, 

vision-based technologies are a common direction that many control interfaces are 

taking  (Betke et al., 2002, Kuno et al., 2003, Jia et al., 2007, Ju et al., 2009, Bankar 

and Salankar, 2015), as it is less intrusive and allows the user to be more 

comfortable while decreasing the need for others to assist in configuring the device. 

However, while vision-based techniques are free from these disadvantages, they can 

be affected by occlusion along with other challenges that are inherent to computer 

vision. In saying that, computer vision techniques are a favourable alternative as 

they are non-contact, can be more cost effective and can be quite robust.  
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Therefore, the exploration of a non-contact control interface that can enable people 

with disabilities the adaptability they require for their individual capabilities is 

desirable. Existing literature and implementations will be analysed to select the most 

suitable implementation methods.  

1.2.2 COMPUTER VISION IN THE RECOGNITION OF FACE AND HEAD GESTURES 

Computer vision is currently integrated into the development of many smart 

wheelchairs and is a popular input method (Leaman and La, 2017). Various methods 

are used in order to acquire, process and analyse digital media with the goal of 

understanding and using the information. Image processing and machine learning 

techniques are heavily involved in the implementation of these methods. It is 

perceived to be a promising field due to the wide availability of cameras, their small 

size and the substantial amount of information they can obtain (Simpson, 2005) 

(Morikawa and Lyons, 2017). Additionally, it is able to receive information in real-time 

non-invasively at a low cost through being attached to the wheelchair itself. 

(Morikawa and Lyons, 2017).  

Computer vision is very versatile and as such, it can also be used for a variety of 

applications such as outward-facing vision to aid with navigation and obstacle 

detection as well as inward-facing vision to detect body gestures. Unsurprisingly, 

there are many control opportunities available with computer vision. From existing 

literature, a variety of existing human-computer interfaces that focus on facial or 

head gestures and use computer vision have been identified.   

Kuno et al. (2003) was one of the first research studies that used head gestures as a 

control input for a smart wheelchair. They used computer vision to detect face 

direction, in which the user could turn their head to steer the wheelchair and use 

hand gestures to control the wheelchair remotely. This use of the wheelchair is 

illustrated in Figure 4. 
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FIGURE 4: INTELLIGENT WHEELCHAIR SYSTEM THAT USES FACE DIRECTION TO STEER 

(KUNO ET AL., 2003) 

The main issue with this concept was that the intentions of the user were not always 

clear when they moved their head, i.e. they could be moving their head to look at an 

object or person. To address this issue, they had to make several assumptions to 

deduce intention. The first is that slow and steady head movements are made with 

the intent to steer the wheelchair, which meant quick head movements were ignored. 

The second assumption made is that the user would likely observe nearby obstacles, 

without the intention of moving in that direction. Therefore, ultrasonic sensors were 

used to detect any obstacles that may be close by and used to adjust the sensitivity 

of the face-turning detection accordingly. While the intention problem is addressed 

well in this system, it could still pose some difficulties for the user and the people 

around them. In the trial run, some users felt uneasy with the slow responses of the 

wheelchair. Therefore, while the system was useable it was not quite user-friendly. 

Since it is also quite an old project, the hardware and software that was used would 

not perform as well as it would with modern technology. 
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Another prominent example is a head gesture-based interface developed for the 

wheelchair system RoboChair (Jia et al., 2007). This system used the angle of the 

users face to determine the direction that the wheelchair will be steered. For 

example, the users head can be detected to be left frontal or right frontal, which 

indicates to the wheelchair that the user desires to turn left or right, respectively. This 

is shown in Figure 5. 

 

FIGURE 5: ROBOCHAIR IN ACTION, USING HEAD DIRECTION TO STEER THE WHEELCHAIR (JIA 

ET AL., 2007) 

This system appears to have limited safety measures as the only method in which 

the wheelchair can stop is using a frontal face down gesture. This may not be an 

appropriate method of stopping in an emergency as it stops slowly and may obstruct 

the user’s vision. The intention problem was addressed in this system by assuming 

that the user’s position in the wheelchair will move when their focus is fixed 

elsewhere. Therefore, the wheelchair only considers the angle of the users face 

when it is inside the central field of vision (FOV) of the camera. The angle of the 

user’s face was also a factor, any angle above 45 degrees would not be considered. 

While this system appeared to have an effective approach, there were many issues 

encountered that are inherent to computer vision. This included processing speed, 

variations in lighting and cluttered backgrounds. The tools used in this system 

included the Viola-Jones face detection and CAMSHIFT face tracking which were 

tested and compared. Both algorithms are implemented through OpenCV. It was 
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found that while the CAMSHIFT face tracking algorithm performed better in terms of 

speed, the Adaboost face detection algorithm was much more robust.  

Bankar and Salankar (2015) implemented another system that uses head gestures 

for the control of a wheelchair. A camera with an embedded processing unit was 

used for powerful and fast processing. They used the Viola-Jones facial detector in 

order to detect the face in four directions. These four directions were used to turn 

left, right, go forward or reverse. While this system is an example of a relatively 

simple implementation of a head gesture recognition system, the proposal of using a 

camera with an embedded processing unit may be of further interest for a fast-

processing system.  

These are just a few examples of research studies that use head gestures for control 

and while not as prevalent, facial gestures have been demonstrated to be used in a 

similar way. Several input systems have begun using computer vision to be able to 

detect and track facial gestures, such as eye blinking, nostril flares, opening and 

closing of the mouth and facial expressions (Varona et al., 2008, Parmar et al., 2012, 

Saragih and McDonald, 2017, Rozado et al., 2017). The feasibility of using facial 

gestures as a user feedback route was explored by Fine and Tsotsos (2009), where 

they found that it could be a valuable source of input. Eye gaze is the primary focus 

of many research papers for human control interfaces (Betke et al., 2002, Bartolein 

et al., 2008, Santos et al., 2014, Bazrafkan et al., 2015). However, there are more 

control opportunities that can be utilised if the whole face is considered.  

FaceSwitch is one such example of an open-source facial gesture detection system 

created for human computer interaction (Rozado et al., 2017). The control of the 

interface is placed upon 4 different facial gestures that act as switches, which 

includes a smile, raised eyebrows, wrinkling the nose and an open mouth as 



20 
 

demonstrated in Figure 6. 

 

FIGURE 6: THE FOUR GESTURES AVAILABLE FROM FACESWITCH – A) SMILE, B) RAISING 

EYEBROWS, C) OPENING MOUTH AND D) TWITCHING NOSE (ROZADO ET AL., 2017) 

The aim is to enhance traditional control methods such as eye gaze. In this system, 

the user’s eye gaze acts only as a cursor and magnifying tool, while their facial 

gestures are used in place of regular mouse commands or keyboard controls. The 

graphical user interface (GUI) used to select gestures, their thresholds and their 

commands are shown in Figure 7. 
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FIGURE 7: GUI OF FACESWITCH WHERE YOU CAN SELECT GESTURES, THEIR PARAMETERS 

AND THEIR COMMANDS (ROZADO ET AL., 2017) 

This system relies on other tools and applications for the technical aspects, such as 

the Tobii X2-30 Eye tracker camera that is usually screen-based (Tobii, N/A) and a 

commercial face tracker, Beyond Reality Face Nxt Tracker (BRFT) in order to track 

several landmark features on the face. This tracker uses an OpenCV implementation 

of HaarCascades which is a component of Viola-Jones’ system (Tastenkunst, 2018). 

Other algorithms used were not specified on BRFT’s website. However, only a small 

number of features were able to be tracked with this method which decreased the 

robustness of the software. It was found that three facial gestures could be detected 

simultaneously while maintaining reasonable accuracy. Therefore, limitations may 

have to be placed on the number and type of gestures that the user can be provided 

with depending on the reliability of the tracker. The 4 gestures were not able to be 

detected simultaneously with reliability and accuracy. An open mouth and a wrinkled 

nose were the most recognised gestures. Future work on the system includes the 

implementation of sensitivity thresholds to enable users with limited motor control of 

their face to use this system.   

Facial gesture recognition has also been investigated in the context of a smart 

wheelchair (Vazquez-Valencia et al., 2017). A regular webcam with 500x500 pixel 

resolution was used to capture the user’s face from above. Their approach involved 

the use of several different algorithms to recognise these gestures. Face detection 

was performed using the Viola-Jones facial detector, and facial feature tracking was 
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performed with Active Shape Models (ASM) and Active Appearance Models (AAM). 

However, the number of landmarks were reduced to 12 to improve processing time 

and this enabled the system to run at 17 frames per second (FPS). A pre-trained 

Artificial Neural Network (ANN) was then used to classify the gestures. Five gestures 

were mapped to different actions and used to control their pseudo-wheelchair 

prototype directly. These are shown in Figure 8. The average accuracy of this 

system was 85.5% and was considerably affected by variations in lighting.  

 

FIGURE 8: FACIAL GESTURES USED IN THE CONTROL OF AN INTELLIGENT WHEELCHAIR 

(VAZQUEZ-VALENCIA ET AL., 2017) 

While systems to track facial gestures and head gestures exist separately, few have 

explored the use of both facial and head gestures for the control of a human 

computer interface or wheelchair. This leaves an avenue to be explored for 

increased control opportunities that are not limited to a few set gestures. Deshmukh 

et al. (2018) explored the use of face and head gesture recognition for monitoring 

student interest levels during online learning. However, a relatively small number of 

gestures were included, and unconventional face gestures were used. Facial 

gestures used included those associated with sleeping and yawning as well as 

smiling and head gestures. The face was detected using Haar classifiers and facial 

features are extracted using an ASM. Similar to the system of Vazquez-Valencia et 

al. (2017), the features with more significant roles in expressions were identified, and 

the less significant features were removed accordingly to improve processing speed. 

Face and head gestures were recognised using different methods. Support Vector 

Machines (SVM) are used to recognise three facial expressions, while motion 
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tracking is used to recognise head gestures. The accuracies of both systems were 

decent, at 97% and 98%. Therefore, a similar method could be investigated to 

realise a face and head gesture recognition system.  

From the review of current face and head gesture computer vision systems, it 

appears that the selection of gestures is important and can influence how well the 

system performs. Some gestures may be more difficult to perform or may be more 

difficult to detect with certainty. Therefore, it is more desirable to have a wide range 

of facial and head gestures that could be used to control a device.  

Deducing intention was also an issue that was shared across many of these studies. 

It appeared that this was mainly solved by creating assumptions around the use of 

these gestures. Assumptions made in these studies included slow movements to 

indicate intentional input and the position and orientation of an individual’s head.  

The studies implementing the use of facial gestures did not address the intention 

issue, which is also important to consider as the possibility of mistaking an emotional 

expression for a gesture is quite likely. However, it is probable that they are relying 

on the system to be able to differentiate the two.  

1.2.2.1 CHALLENGES 

In addition to the inherent challenge that gesture-based control presents, there are 

several challenges that computer vision has yet to overcome, such as efficient 

processing speed to provide real-time control as well as improved accuracy 

(Morikawa and Lyons, 2017). The processing speed will be affected by the number 

of gestures that the system will be able to recognise, the resolution of the data as 

well as the points tracked. The camera view point can potentially change the 

appearance of the gestures as well. It is also susceptible to a lot of noise and factors 

that can affect the input, such as changes in lighting and occlusion.  

While the latter challenges have been attempted to be overcome with improvements 

in software, additional data provided in the form of depth data has been suggested to 

overcome these limitations. In a study conducted by Chang et al. (2003), it was 

found that a combination of 2D and 3D data greatly improves the rate of face 

recognition.  
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A variety of hardware has been tested in the computer vision field. Regular webcams 

have been used to obtain information about a user’s face, such as blinking and the 

user’s relative head movement (Morikawa and Lyons, 2017). Specialised cameras 

have also been used such as eye tracking devices that sit upon a user’s head 

(Bartolein et al., 2008). Consumer 3D depth devices such as the Microsoft Kinect 

and Intel RealSense cameras have been popular choices for obtaining depth data at 

a low cost (Zhang, 2012, Khoshelham and Oude Elberink, 2012, Draelos et al., 

2015). However, it has been found that the Kinect depth technology can be quite 

noisy (Zhang, 2012), the latest Kinect for Windows v2 has a minimum depth of 0.5 

meters which would be unsuitable for face tracking applications at close range 

(Microsoft, 2017) and has been officially discontinued in 2017 due to its lack of 

success (Kipman and Lapsen, 2017). Intel’s RealSense devices are a promising 

choice for this application as demonstrated by Silva et al. (2017) and Patil and Bailke 

(2016) and their successful use of the Intel RealSense SR300 in emotion 

recognition. Intel’s SR300 and D435 cameras have minimum depth ranges of 0.2 

meters and the latter camera utilises stereovision models for more accurate depth 

information (Intel, 2017a, Intel, 2017b). A limitation to many depth devices is that 

they rely on infrared wavelengths to obtain depth data. As a result, they are unable 

to perform well under outdoor conditions due to interference by the Sun’s own 

infrared light.  The D435 camera potentially has better accuracy in both indoor and 

outdoor applications as it combines infrared with stereovision techniques to obtain 

depth information. However, software capabilities are also closely linked to the 

performance of a device, which will be reviewed in the next section.  

1.2.3 REALISING A FACE AND HEAD GESTURE RECOGNITION SYSTEM 

Realising a face and head gesture recognition system can range in complexity 

depending on which tools and techniques are used in such a system. In the 

succeeding sections, the theory and notable tools and techniques as well as existing 

implementations are explored.  

1.2.3.1 STAGES INVOLVED IN A FACE AND HEAD GESTURE RECOGNITION SYSTEM 

Automatic face and head gesture recognition can be a complex task. It shares many 

similarities with its more heavily researched kin - facial expression analysis, as they 

use many of the same techniques. For this purpose, facial expression analysis can 
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be used to illustrate the stages involved in the implementation of a face and head 

gesture system.  

Computer vision and machine learning algorithms and techniques encompass the 

field of facial expression analysis and tracking and are used with varying degrees of 

effectiveness. Many combinations of different algorithms and techniques for each 

stage of the facial expression analysis process have been explored. The specific 

algorithms and techniques that have been chosen depends on the assumptions that 

can be made, software and hardware limitations, the application and the 

requirements of the system.  

There are three main stages involved in facial expression analysis. These are 

detection of the face, feature extraction and classification. The first two stages can 

be applied directly to the implementation of a face and head gesture recognition 

system. Classification in this context would aim to recognise individual facial actions. 

The diagram in Figure 1 shows the basic structure of a facial expression analysis 

system as well as various methods of performing each step. In addition to these 

stages, multiple intermediate steps may be necessary such as pre-processing and 

face-normalisation to ensure the input media is appropriate for use. The need for 

these intermediate steps depends on the methods used for each stage.  

 

FIGURE 9: STRUCTURE OF FACIAL EXPRESSION ANALYSIS (FASEL AND LUETTIN, 2003) 
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The first stage involves detecting the face to secure the region of interest. The facial 

data can then be extracted through one of two methods shown for the second stage. 

The method used can vary depending on the focus of the study as well as the type of 

data that is used. The features can then be tracked, and differences or motion can 

be classified and interpreted to provide recognition of expression or of gestures. For 

facial gesture recognition, the features can be tracked and classified into the relevant 

facial action associated with the FACS. This facial information can then be 

interpreted to find head pose and hence head gestures as well.  

1.2.3.1.1 DETECTION 

Detection of a face involves the detection of the location and occasionally the size of 

the facial region, which can be used in later stages. There are multiple approaches 

to detecting faces in an unconstrained background, which would be the most 

common situation encountered with a smart wheelchair.  

The most prominent face detection algorithm is the Viola-Jones facial detector due to 

its robustness, real-time processing and efficiency (Viola and Jones, 2004). This 

algorithm does however have a few limitations; it detects only frontal faces and 

requires extensive training which means a large data set is needed. However, due to 

its effectiveness and wide-spread availability, this algorithm and its features are 

currently employed in many systems (Jia et al., 2007, Varona et al., 2008, Ju et al., 

2009, Villaroman, 2013) and is currently the only algorithm used for facial detection 

in OpenCV (OpenCV, 2018a). Viola-jones facial detector uses a feature invariant 

approach as it searches for a light nose bridge and a dark eye area and can reach 

face detection speeds of 15 FPS (Viola and Jones, 2004).  

Degtyarev and Seredin (2010) stated that “many researchers [consider] Face 

Detection tasks … to be almost solved”. This may be partly due to the significant role 

the Viola-Jones facial detector has played in many systems, as well as the absence 

of face detection surveys after 2001. Therefore, to conclude which algorithms were 

the most effective, they tested a variety of face detection algorithms that were 

currently available on different platforms. This included the Viola-Jones facial 

detector on OpenCV 1.0, FaceOnIt by the Idiap research institute, VeriLook 4.0 by 

Neurotechnology among others. Testing concluded that VeriLook 4.0 had the best 

performance and processing time, while the Viola-Jones facial detector was second. 
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(Degtyarev and Seredin, 2010) However, VeriLook 4.0 is a commercial product 

which means that Viola-Jones would be a good selection for face detection in terms 

of cost-effectiveness, availability and performance.  

However, there are many more recent approaches that are could be more effective 

as discussed by Chrysos et al. (2017). Template matching and appearance-based 

methods which matches the face with standard models or learned models, 

respectively could be a possibility (Yang et al., 2002). Other potential feature-

invariant approaches includes a colour-based approach, a prominent example of 

which was demonstrated by Hsu et al. (2002). However, colour-based methods 

commonly encounter issues in variations of lighting conditions and variations in facial 

colours. While this face detection algorithm performed well with varying lighting 

conditions, head poses and varying skin colours, the system was not very fast. For 

each second, around five 640x480 pixel images were processed on average. A 

reduction in image quality improved the speed, with an average of twenty-four 

150x220 pixel images able to be processed each second with the Champion image 

database. (Hsu et al., 2002) While the Viola-jones facial detector is promising, a 

similar approach to this is also a viable option for a facial detection system.  

ANNs have also been explored and investigated for facial detection, the most 

popular of which is the Convolutional Neural Network (CNN). It operates by reducing 

the number of possible locations for the face through a series of feature identifiers 

and requires training with several negative and positive samples. Li et al. (2015) 

proposed a system that can process 14 FPS VGA images on CPU and 100 FPS on 

GPU, where the run time could be adjusted according to the accuracy needed. This 

provided a very fast run time on GPU but provided a similar processing rate to Viola-

Jones facial detector on CPU. This particular implementation evaluated the images 

at low resolution to deliver higher processing speeds and analysed difficult areas at a 

higher resolution, which is a potential method of cutting down processing time.  

Kawato (2002) also proposed an alternative face detection method, which uses the 

area between the eyes to locate the face. “Between-the-Eyes” is a template 

matching technique that can run at real-time, processing 27 FPS. It uses skin-colour 

to extract a facial region which undergoes several intermediate processes until it is 

able to be accurately matched with the area between the eyes. However, this system 
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often fails when the user’s forehead is obstructed by hair or glasses and has not 

been tested with many non-frontal faces. The fast processing speed of this system 

would be desirable, particularly for this application. However, this system is not 

robust to occlusion. 

From the review of various facial detector implementations, it is clear a compromise 

must usually be made between the detection capabilities and the processing time. It 

appears that the processing speed of these detectors depends on the CPU and its 

computational power as well as the particular algorithm used.  

1.2.3.1.2 FACIAL FEATURE EXTRACTION  

This stage involves identifying and extracting facial landmarks and the associated 

data including changes in appearance due to movement. Similar to facial detection, 

there are many approaches for landmark localisation, extraction and the tracking of 

features, as shown in Figure 9. Landmark localisation involves the detection of 

significant regions and features on the face. More landmarks are necessary for facial 

expression analysis compared to tracking facial gestures as facial expression 

involves the entire face.  

There are two main types of features that can be extracted: geometric-features or 

appearance-based features. Geometric-based features include permanent facial 

components such as the eyes, mouth, nose as well as any permanent wrinkles. 

Appearance-based features include those that are transient, such as wrinkles and 

furrows (Fasel and Luettin, 2003). While the computational effort may be higher, a 

hybrid approach where both geometric and appearance features are used could 

yield better results (Tian et al., 2005). The face can also be analysed through a 

holistic or local approach, which examines either the face as a whole entity or 

individual features of the face.  

These features can be extracted and tracked with either focussing on the 

deformation or motion of the relevant features. Deformation extraction focusses on 

changes in the shape of geometric-based features as well as the appearance of 

appearance-based features. This is typically compared with a neutral or standard 

model to discern changes. Gabor filters are a prominent example of this, in which 

they are able to represent changes in the face using descriptive coefficients that vary 

in scale and orientation (Tian et al., 2005). In contrast, motion extraction focusses on 
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the perceived differences in facial features due to movements. This commonly 

involves using sequences of frames in order to track changes. A prominent example 

of the motion extraction technique is optical flow which tracks movement as 

observed in image sequences (Fasel and Luettin, 2003). The data extracted from 

this process would then need to be converted to a useful form in order to be applied 

to the next stage of analysis.  

1.2.2.1.3 RECOGNITION/CLASSIFICATION  

The last stage of facial expression analysis involves using the extracted features in 

order to classify expression or in this case, facial gestures based on the 

aforementioned FACS. This can be performed with machine learning techniques and 

algorithms such as ANNs, which can be trained to classify these AU.  

Another challenge that is faced in this situation is that the classification stage 

generally requires training with an appropriate dataset that matches what the user 

would like to classify, which in this case is different facial and head gestures. 

Datasets that are large enough to supply this sort of data are generally databases 

that are labelled with emotional expression and not AU. Datasets that are labelled 

with these facial and head gestures is another possibility that can be explored. 

However, the process of obtaining and labelling a dataset can be a large on.  

In order to obtain a dataset that can be used for training the classification of AU, the 

dataset will have to be coded manually by a trained FACs expert. There have been 

few studies relating to creating an automatic AU recognition system and there are 

few datasets available that have these labels. The few that do include datasets such 

as SEMAINE, BP4D and DISFA, which have currently been implemented to detect 

AU in the open-source software OpenFace (Baltrušaitis et al., 2015).   

1.2.3.1.4 CHALLENGES 

There are a few crucial factors that need to be considered in the development of an 

effective face and head gesture recognition system. The pose of the person and 

angle that the camera is placed would affect the data that is interpreted. In addition, 

facial expressions are often spontaneous while intentional facial movements are not. 

Differentiating the two types of movements may pose an issue and may contribute to 

challenges in deducing the user’s intention. This may be recognised in part by the 

intensity of a particular movement or where it occurs. The detection threshold for 
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intensity of movement could be used in order to separate intentional gestures from 

unintentional gestures. This would need to be adapted to suit a user’s individual 

facial movement capabilities. Other input modalities could be used as an additional 

factor to support the recognition of intentional and unintentional movement, such as 

EEG signals.  

There are also limitations in the databases of faces available to train these 

algorithms as many do not have provide enough variation, particularly those using 

3D information. This may compromise the robustness of the facial expression 

analysis system. Interpersonal facial differences and degree of expressiveness are 

also a factor that may affect the facial expression analysis system. The dynamics of 

expression are important to consider as well, as expressions may change from 

individual to individual and could affect the expression that is analysed at that point. 

Occlusion of the user’s face may also play a role in the operation of the system. 

(Tian et al., 2005)  

1.2.3.2 EXISTING IMPLEMENTATIONS 

Many suitable algorithms and techniques for use in face and head gesture 

recognition have been implemented as open-source software, which is software that 

is free and accessible for public use. It is constantly being improved, which reduces 

the need for the user to continually improve it. Using these could provide an efficient 

way of implementing the first stages of facial and head gesture recognition.  

Table 1 shows prominent implementations and tools that could be used to create a 

face and head gesture recognition system. These are all open-source and 

compatible with C++ or Python which are the desired programming languages to use 

in this project. There are a few existing commercial products which analyse facial 

expression and AU such as Affectiva (Affectiva, N/A) and FaceReader (Noldus, N/A) 
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The following tools and libraries were concluded as suitable software as they fit the criteria of being open-source and compatible 

with C++ or python in visual studio. Table 1 shows a summary of open-source tools and libraries that can be used to implement a 

face and head gesture recognition system. These were identified to have varying capabilities as well as compatibilities.  

TABLE 1: OPEN-SOURCE TOOLS AND LIBRARIES THAT ARE COMPATIBLE WITH C++ OR PYTHON IN VISUAL STUDIO 

SDK/Libraries Description Relevant Tools Algorithms Used Hardware 
Compatibility 

Intel RealSense SDK for 
windows (2016 R3) (Intel, 
N/A) 
Accessible from: 
https://software.intel.com/e
n-us/realsense-sdk-
windows-eol  
 
 
 
 
 

• Discontinued 
version of the intel 
RealSense SDK 

• Has computer 
vision functionalities  

• Face Tracking and 
Recognition (78 
landmark points) 

• Pose Detection (Face 
orientation in degrees) 

• User background 
Segmentation 

• Hand Tracking and 
Gesture Recognition 

• Unknown 3D cameras - Intel’s 
F200, SR300 and R200 
Cameras 

Intel® RealSense™ Cross 
Platform API 
(IntelRealSense, N/A) 
Accessible from:  
https://github.com/IntelRea
lSense/librealsense/tree/v1
.12.1  
 
 
 
 

• Mainly 
encompasses 
camera capture 
functionalities 

• No computer vision 
algorithms 

• Not an official Intel 
product 

• Depth, colour, infrared 
and fisheye streaming 
(depending on camera) 

• Multi-camera capture 

• Synthetic streaming i.e. 
depth aligned to colour 

• N/A 3D cameras - Intel’s 
F200, SR300, R200, 
LR200 and ZR300 
Cameras 
 
C++, Python, Java 

https://software.intel.com/en-us/realsense-sdk-windows-eol
https://software.intel.com/en-us/realsense-sdk-windows-eol
https://software.intel.com/en-us/realsense-sdk-windows-eol
https://github.com/IntelRealSense/librealsense/tree/v1.12.1
https://github.com/IntelRealSense/librealsense/tree/v1.12.1
https://github.com/IntelRealSense/librealsense/tree/v1.12.1
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Intel RealSense SDK 2.0 
(Intel RealSense, 2018) 
Accessible from: 
https://github.com/IntelRea
lSense/librealsense/releas
es  
 
 
 
 

• Development stage 

• Extended camera 
capture 
functionalities  

• Can generate and 
visualise a textured 3D 
point cloud 

• Can render and save 
video streams 

• Can remove 
background from video 
(segmentation) 

• RealSense-Viewer: 
quick access to camera 
to explore data or 
record 

• Depth and colour 
streaming  

• Unknown 3D cameras - Intel’s 
D400 series and the 
SR300 Cameras 

OpenCV  (OpenCV, 
2018b) 
Accessible from: 
https://github.com/opencv/
opencv/releases/tag/3.4.0  

• Computer vision 
and machine 
learning library 

• Face detection 

• Face landmark 
detection 

• Viola-Jones Facial 
Detector (Viola and 
Jones, 2004) 

• CAMSHIFT 
(Bradski, 1998) 

2D camera 

Dlib (Dlib, 2018) 
Accessible from: 
http://dlib.net/  

• Toolkit for making 
real world machine 
learning and data 
analysis 
applications in C++ 

• Facial landmark 
detector 

• Segmentation (regions) 

• One Millisecond 
Face Alignment with 
an Ensemble of 
Regression Trees 
(Kazemi and 
Sullivan, 2014) 

• Efficient Graph-
Based Image 
Segmentation 
(Felzenszwalb and 
Huttenlocher, 2004) 

2D camera 

https://github.com/IntelRealSense/librealsense/releases
https://github.com/IntelRealSense/librealsense/releases
https://github.com/IntelRealSense/librealsense/releases
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/opencv/opencv/releases/tag/3.4.0
http://dlib.net/
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OpenFace (Baltrušaitis et 
al., 2016) 
Accessible from: 
https://github.com/TadasB
altrusaitis/OpenFace   

• Open-source facial 
behaviour analysis 
toolkit  

• Facial landmark 
detector 

• Facial landmark and 
head pose tracking 

• Gaze tracking 

• Facial AU Recognition 

• Facial Feature 
extraction 

• Constrained Local 
Neural Fields 
(Baltrusaitis et al. 
2013) 

• Cross-dataset 
learning and person-
specific 
normalisation 
(Baltrusaitis et. Al, 
2015) 

2D camera 

Kinect for Windows SDK 
2.0 (Microsoft, N/A-b) 
Accessible from: 
https://www.microsoft.com/
en-
au/download/details.aspx?i
d=44561  
 

• Discontinued 

• A variety of 
development tools 
encompassing 
audio and visual 
functionalities 

• 25 point skeleton for a total 
of six people (each person 
has 25 skeletal joints) 

• Thumb tracking, end of 
hand tracking, open and 
closed hand gestures 

• Gesture detection and 
tracking 

• Face API – detection, face 
tracking, modelling 

• Unknown Kinect v2 Sensor  

Microsoft Face Tracking 
SDK for Kinect for 
Windows (Microsoft, N/A-
a) 
Accessible from: 
https://msdn.microsoft.com
/en-
us/library/jj130970.aspx  

• Discontinued 

• Used in conjunction 
with Kinect for 
windows SDK 

• Deduces head pose 
and facial expressions 

• Provides info on: 
o Tracking status 
o 2D points 
o 3D head pose 
o AUs 

• Unknown Kinect Sensor – retail 
edition  

Point Cloud Library (PCL) 
(PointCloudLibrary, 2018) 

• For 2D/3D image 
and point cloud 
processing  

• Supports OpenNI 

• Segmentation 

• Keypoint detection 

• Unknown 2D/3D camera 

https://github.com/TadasBaltrusaitis/OpenFace
https://github.com/TadasBaltrusaitis/OpenFace
https://www.microsoft.com/en-au/download/details.aspx?id=44561
https://www.microsoft.com/en-au/download/details.aspx?id=44561
https://www.microsoft.com/en-au/download/details.aspx?id=44561
https://www.microsoft.com/en-au/download/details.aspx?id=44561
https://msdn.microsoft.com/en-us/library/jj130970.aspx
https://msdn.microsoft.com/en-us/library/jj130970.aspx
https://msdn.microsoft.com/en-us/library/jj130970.aspx
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Accessible from: 
https://github.com/PointClo
udLibrary/pcl  

FaceTracker (Saragih and 
McDonald, 2017) 
Accessible from: 
https://github.com/kylemcd
onald/FaceTracker  
 
 

• Library for 
deformable face 
tracking 

• Deformable face 
tracking 

• Face Alignment 
through Subspace 
Constrained Mean-
Shifts (Saragih et 
al., 2009) 

2D camera  

 

 

https://github.com/PointCloudLibrary/pcl
https://github.com/PointCloudLibrary/pcl
https://github.com/kylemcdonald/FaceTracker
https://github.com/kylemcdonald/FaceTracker
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1.2.4 MOST SUITABLE TOOLS   

From the literature, there are several stages involved in the implementation of a face 

and head gesture recognition system. Different techniques would have to be used 

depending on the hardware and software used to implement the system due to 

compatibility with specific cameras and data types.  

As discussed, there are inherent challenges in computer vision that could potentially 

be improved through additional inputs such as 3D depth. As discussed previously, 

the Intel RealSense cameras SR300 and D435 could potentially provide a more 

accurate system with the use of the Intel RealSense SDK’s. However, this is a less 

cost-effective option.  

Otherwise, there are a few possible implementations using a regular webcam. 

OpenCV provides a robust face detector through the Viola-Jones detector, while Dlib 

provides a landmark detector with 68 landmarks. 

Face detection is generally performed well with Viola-Jones and its OpenCV 

implementation, but the latter two stages of face landmark extraction and 

classification could be improved. Many of these stages have been implemented into 

freely available open-source software.  

OpenFace provides an open-source implementation of various facial behaviour 

analysis tools. Research and implementation of various algorithms and techniques 

have been conducted through a joint effort from research groups at the Carnegie 

Mellon University and the University of Cambridge. Several different datasets were 

used to train and evaluate landmark detection as well as the AUs. 

These are all able to be used with any 2D camera, including a standard webcam. 

This makes it most suitable for this application.   

These particular cameras and the software discussed have their own advantages 

and disadvantages which will be explored further in Chapter 3.  
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2. APPLICATION AND IMPLEMENTATION 

This chapter defines the intended application and project aims. It also describes the 

implementation of the system in various stages of the project.  

2.1 PROJECT AIMS, REQUIREMENTS AND CONSIDERATIONS 

From reviewing the literature, it was clear that there were few explorations of both 

face and head gestures in the use of a control interface. A combination of both face 

and head gestures should enable versatility for the user to choose which gestures 

they’d feel most comfortable using.  

Therefore, the primary aim of this project was to explore and investigate the use of 

face and head gestures in a control interface for the ABC wheelchair. This involves 

the following: 

• Investigating the best gestures  

• Implementing an interface that can recognise face and head gestures  

• Interpreting the intentional gestures into commands  

• Interfacing this system with the ABC wheelchair 

• Investigating how well these gestures perform  

• Observing improvements that could be made and implementing them if 

possible 

• Determining feasibility of this system  

There a several stages that this project can be divided into, as shown in the following 

flow chart in Figure 10. The requirements and considerations for each of these 

stages will be detailed in the rest of this section.  
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FIGURE 10: FLOW CHART OF STAGES INVOLVED IN THE IMPLEMENTATION OF A FACE AND 

HEAD GESTURE RECOGNITION SYSTEM 

As the focus is on exploring an adaptable and user-friendly interface for a mobility 

device, the desirable characteristics of this system include: 

• Versatility 

• Intuitiveness 

• Useability (Effective, efficient, satisfactory) 

• Reliable 

• Safe 

These characteristics can be applied to most stages of this project.  

In terms of user input, suitable face and head gestures should be selected based on 

how intuitive they are, and how distinct they are from regular emotional expression in 

order to be reliable.  

The chosen system for the face and head tracker should meet the following criteria: 

• Must function in real-time 

• Should be consistent 

• Should track only one face at a time 

The performance of the system can be dependent on a few factors such as the 

likelihood of intentional gestures being detected and the ease of performance and 

User Input
Face and head 

tracking
Interpretation 

of gestures
Control 

interface
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how it feels for the user. These will be explored in section 2.3 and 2.4 which focus on 

the interpretation of gestures and control interface respectively.  

The control interface itself aims to integrate the desirable characteristics mentioned. 

In this case, there are several requirements. It must produce feedback so that the 

user is aware of gestures they are sending or not sending as well as the current 

state of the wheelchair. Safety features must be implemented where possible as it is 

a mobility device and the wrong input can be dangerous for the user as well as the 

people around them.  

There are a few limitations that have been identified, that will need to be addressed 

where possible in the following stages of development. A major issue that was 

identified in gesture recognition was one surrounding difficulty deciphering the user’s 

intention. Ways that this has been addressed in the past have been with the 

implementation of assumptions or multi-modal inputs. Therefore, several 

assumptions will likely need to be made in the implementation of the system to 

increase the likelihood of an intentional gesture being detected.  

Other factors that could affect the system include the inherent challenges presented 

with computer vision, limitations with the chosen software as well as user integration. 

While computer vision has many advantages, it also comes with inherent 

disadvantages which includes differences in lighting conditions and obstruction.  

The software may be affected by individual differences in appearance as well as the 

position of the face. The performance of detection and tracking could also vary 

person to person.  

With any user-centred product, it is important that the end users are involved in the 

design process to ensure that it designed in a way that will benefit the user. 

However, in this case, the ABC wheelchair is still in its initial prototyping stages and 

the resources required to bring in suitable participants would be far too great as 

people with severe disabilities would need to be identified and recruited to test this 

prototype. This would cost money for compensation and considerable time to 

organise and would require the prototype to be very reliable and safe to use, which 

may not be guaranteed at the conclusion of the project. Furthermore, the aim of this 

project is to explore and investigate the use of face and head gestures in the control 

interface of the ABC wheelchair so involving the end users in this way was 
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considered outside of the project scope. Since this is the case, it is important to 

consider the users perspective throughout the development wherever possible.  

However, this is a limitation that will affect the useability of the device.  

2.2 USER INPUT AND SELECTION OF SUITABLE GESTURES 

The method in which user input is given is important, as discussed in section 1.1.3. 

Choosing gestures that aligns with the project aims and requirements can influence 

the effectiveness of this type of mobility aid. This project also provides an opportunity 

to investigate which gestures would be better suited to this application.  

Initially, a wide range of gestures were identified for potential use in this system as it 

is important that it is versatile as the abilities of people with disabilities vary greatly. 

The array of suitable face and head gestures shown in Table 2 and Table 3 were 

selected for several reasons. Namely, the gesture was easy to perform, and it can be 

easily distinguished from an emotional expression. A factor that was considered was 

that some may not be as culturally or societally appropriate as others, and some 

people may feel varying levels of comfort performing different gestures. However, 

this becomes less of an issue with a larger array of options.  

TABLE 2: SELECTED FACIAL GESTURES TO EXPLORE 

Gesture (AU) Example Gesture (AU) Example 

Raise Eyebrows 
AU01 – Inner Brow 

Raiser 
AU02 – Outer Brow 

Raiser 
 

Press lips together 
AU23 – Lip Tightener 

 

Wink (L and R) 
AU46 – Wink  

 

 

Lip Suck 
AU28 – Lip Suck 
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Flare Nostrils 
N/A 

 

 

Pout 
AU18 – Lip Puckerer 

 

Wrinkle Nose 
AU09 – Wrinkle Nose 

 

Tongue out 
N/A 

 

Puff cheeks 
N/A 

 

Open mouth 
AU25 – Lips Part 
AU26 – Jaw Drop 

AU27 – Mouth 
Stretch 

 

Smirk (L and R) 
N/A 

 

 

 

Move mouth (L and 
R) 

N/A 

 

 

TABLE 3: SELECTED HEAD GESTURES TO EXPLORE 

Gesture (AU) Example Gesture (AU) Example 

Rotate Head to the 
Left 

AU51 – Head Turn 
Left 

 
 

Tilt Head Down 
AU54 – Head Down 
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Rotate Head to the 
Right 

AU52 – Head Turn 
Right 

 

Nod 
AU53 – Head Up 

AU54 – Head Down 

 

Shake Head 
AU51 – Head Turn 

Left 
AU52 – Head Turn 

Right 

 

Tilt head to the left 
AU55 – Head Tilt Left 

 

Tilt Head Up 
AU53 – Head Up 

 

Tilt head to the right 
AU56 – Head Tilt 

Right 

 
As seen in the tables, not all the gestures can be classified through AUs. Therefore, 

alternative ways of detecting these gestures would need to be explored. However, 

this is limited by the tools and software available to implement the detection of these 

gestures as shown in the next section.  

2.3. FACE AND HEAD TRACKING   

2.3.1 3D CAMERA 

In the literature review, it was evaluated that computer vision would be the best 

technique to use as it requires less equipment and is more robust in the information 

that can be detected. However, there are various methods that can be used to 

implement a face and head gesture recognition system using computer vision. 

Several avenues were explored; one of which involved the use of 3D data with the 

Intel RealSense D435 and another which involved the use of a standard webcam.  
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Originally, the Intel RealSense 3D short-range cameras were identified as the most 

suitable choice for this application as 3D depth could potentially improve the 

accuracy of the system and it has been shown to yield decent results, as 

demonstrated with the Intel RealSense SR300 in the past (Silva et al., 2017) (Patil 

and Bailke, 2016).  

 

FIGURE 11: INTEL REALSENSE SR300 (INTEL, 2016) 

This has likely been chosen for its depth sensing technology, short-range capabilities 

(0.2-1.5m) as well as for the various capabilities of the Intel RealSense SDK 2016 

(Intel, 2016). However, a similar system had already been achieved with the SR300 

and its associated SDK. Face gestures for use in an Augmentative and Alternative 

Communication (AAC) device was implemented by Rich-Perrett (2018) at Flinders 

University who used the SR300 and the related SDK 2016. However, it was 

concluded that the newer Intel RealSense D435 camera could potentially be used to 

improve the accuracy of their work. A limitation with the SR300 was that it was not as 

reliable outdoors as the infrared light from the sun would disrupt the infrared light 

from the camera (Rich-Perrett, 2018).  

 

FIGURE 12: INTEL REALSENSE D435 (INTEL, 2018A) 

Therefore, the D435 camera was mainly explored for this purpose. The Intel 

RealSense Depth Camera D435 retails for $179 USD and contained improved depth 

sensing technology which can be used outdoors more reliably. The range for this 

camera is 0.2-10m (Intel, 2018a). There were issues in obtaining the camera as it 

was in high demand and placed on backorder in early 2018 (Intel RealSense 
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Support, 2018). As the camera was explored further, it was found that while the 

physical specifications appeared to be excellent for this application, there were 

limitations in terms of its available software and compatibility. The SR300 and its 

official SDK were discontinued in late 2017 (Intel, 2018b) and was not compatible 

with the D435. The D435 was only compatible with the new Intel RealSense SDK 

2.0, which includes only basic functionalities and no middle-ware unlike the previous 

SDK 2016. Intel released the associated SDK 2.0 onto GitHub to enable developers 

to build functionalities. However, this SDK only provided basic functionalities that 

enabled it to obtain data and measurements (Intel RealSense, 2018). Both SDK’s 

were implemented but were deemed not useful for this application. The use of 

machine learning and other available tool was considered as shown in Figure 13. 

 

FIGURE 13: ALTERNATIVE FLOW CHART FOR THE IMPLEMENTATION OF D435 USING THE 

INTEL REALSENSE SDK 2.0 AND MACHINE LEARNING TECHNIQUES 

However, the process behind collecting and labelling a 3D dataset is a sizeable effort 

and labelling them with accurate AU descriptors would require a trained FACS 

expert. The transitions between 2D data and 3D data would need to be integrated as 

well. Using other tools and techniques in some stages would only utilise the 2D data 

and not the 3D data, which would defeat the purpose of using a 3D camera. While 

this could be an excellent avenue to explore, this was beyond the scope of this 

project.  

2.3.2 OPENFACE 

After evaluating the advantages and disadvantages of using machine learning with 

the D435, it was decided that a standard webcam would be best for this project and 

scope. According to the Australian Bureau of Statistics (2016), affordability was 

identified as one of the main factors that impact the use of aids and equipment for 

people with disabilities. Therefore, this project should be as inexpensive where it can 

afford to be. As a result, the hardware that was chosen for use was the standard 

Input
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Pre-
processing

• Obtain 3D 
recordings  using 
the SDK 2.0

• Create 3D 
dataset and 
convert it to a 
suitable format

Face detection
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detection 

• (2D) Dlib 
landmark 
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with 3D dataset 
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Control 
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• Arduino
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webcam. One of the overall goals for the ABC wheelchair was also to create a cost-

effective device, which this choice supports. It also allows the system to be more 

easily accessible as well and removes a potential source of incompatibility in the 

future.  

There were a few possible implementations that could be used with a standard 

webcam. The implementation of the OpenCV face detector and Dlib face tracker 

appeared to be a promising choice. Therefore, an example of the OpenCV face 

detection and Dlib face tracking was implemented and compared to the output of 

OpenFace as shown in Figure 14 and Figure 15 respectively.  

 

FIGURE 14: DLIB IMPLEMENTATION OF ITS FACE TRACKING SOFTWARE (DLIB, 2018) 

However, it was clear that OpenFace was much more robust in terms of the features 

extracted. It also allowed the user to choose which algorithms they would like to use 

for face detection and landmark detection. While both implementations could track in 

real-time and appeared to track the face and detect the landmarks well, OpenFace 

was chosen because of its versatility.  
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FIGURE 15: OPENFACE APPLICATION (BALTRUSAITIS ET AL., 2018) 

OpenFace includes several different modules within the source-code; Figure 15 

shows the graphical user interface with every feature that it can obtain. There are 

also executables within the OpenFace source-code that can be run separately for 

the extraction of various features with different sources of input. This can be modified 

from Visual Studio 2015 in its native language C++. 

The features that can be extracted from OpenFace include orientation/pose, gaze, 

landmark positions as well as AUs. The AUs have been trained with Support Vector 

Machine classification as well as Support Vector Regression on three different 

datasets. The number of AUs that can be identified in this system are limited due to 

the training data that was used. As explained previously, it is difficult to obtain a 

dataset that has AU labels. Measures have been taken to decrease the effect of 

lighting, occlusion and pose. However, these challenges are not be solved easily and 

the system is still under constant improvement.  

In this application, the various features mentioned can be used to explore the 

recognition of the gestures that have been selected.  

Pose/Orientation 

The orientation describes the yaw, pitch and roll of the head, given by turn, up/down 

and tilt respectively as shown in Figure 16.  
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FIGURE 16: DIAGRAM OF YAW (TURN), PITCH (UP/DOWN) AND ROLL (TILT) (JANTUNEN ET 

AL., 2016) 

The values obtained from the yaw, pitch and roll values could be used in the 

detection of a gesture. The gestures that could be obtained include: 

1. Rotate Head to the Left 

i. AU51 – Head Turn Left 

2. Rotate Head to the Right 

i. AU52 – Head Turn Right 

3. Tilt Head Up 

i. AU53 – Head Up 

4. Tilt Head Down 

i. AU54 – Head Down  

5. Tilt Head Left 

i. AU55 – Head Tilt Left 

6. Tilt Head Right  

i. AU56 – Head Tilt Right 

AUs 

There are two main outputs for the AUs; based on different classification methods. 

One classifies the AU as present or not, or on an intensity scale of 0-5. The latter will 

be the predominant focus of this system as these are measurable. However, it is 

noted that the gesture lip suck is solely based on the former classification.  
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The 18 AUs that can be detected are shown in Table 4. As seen, only a few AUs 

relate to the selected gestures that were identified earlier, such as AU01 and AU02 

for raising eyebrows. Additional gestures could also be tested to investigate whether 

these can be used in the face and head gesture system.  

TABLE 4: AUS THAT OPENFACE CAN DETECT 

AU Action 

AU01 Inner Brow Raiser 

AU02 Outer Brow Raiser 

AU04 Brow Lowerer 

AU05 Upper Lid Raiser 

AU06 Cheek Raiser 

AU07 Lid Tightener 

AU09 Nose Wrinkler 

AU10 Upper Lip Raiser 

AU12 Lip Corner Puller 

AU14 Dimpler 

AU15 Lip Corner Depressor 

AU17 Chin Raiser 

AU20 Lip Stretcher 

AU23 Lip Tightener 

AU25 Lips Part 

AU26 Jaw Drop 

AU28 Lip Suck (Classification 
Only) 

AU45 Blink 

 

5 of the selected gestures could be identified through the AUs that OpenFace can 

detect, with the exception of AU27. 

1. Raise Eyebrows 

i. AU01 – Inner Brow Raiser 
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ii. AU02 – Outer Brow Raiser 

2. Wrinkle Nose 

i. AU09 – Wrinkle Nose 

3. Lip Suck 

i. AU28 – Lip Suck 

4. Open mouth 

i. AU25 – Lips Part 

ii. AU26 – Jaw Drop 

iii. AU27 – Mouth Stretch 

5. Press lips together 

i. AU23 – Lip Tightener 

Other gestures associated with the other AUs were also identified to assess the 

feasibility of using them in this system. These included the following:  

1. Brow Lowerer (AU04)  

2. Widening Eyes (AU05) 

3. Squint (AU07) 

4. Widen Mouth (AU14) 

5. Frown (AU15, AU17) 

 

This means that AUs 6, 10, 12, 45 which are cheek raiser, upper lip raiser, lip corner 

puller and blink respectively were not used.  

2.3.2.1 TESTING 

The reliability and role of the AUs and pose in this system can be explored through 

several tests. Testing was performed on the author and an additional 6 participants 

in order to quantify the effects of gesture execution on the AUs and how this 

compares to a neutral expression. Using this information, the interpretation of 

gestures can be performed and ranges of appropriate thresholds for the detection of 

gestures can be found.  

There were a few stages of testing involved to assess the feasibility of these 

gestures in the use of this system. Preliminary testing was performed on the author 

and involved recording a neutral expression for 1.5 minutes in order to get a range of 

values. The 10 different gestures were then executed individually for 1.5 minutes at a 
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time for short and long durations, every few seconds. This was done to see if there 

are any differences between the detection of AUs when gestures are performed 

quickly or while holding the gesture. The result of this could influence the type of 

control implemented into the system.   

The values obtained from this test can be used to determine which gestures 

OpenFace can detect best. This can be used verify which gestures should be used 

in this system and how further tests should be conducted as only these gestures 

would be explored. It is important to note that an assumption made with this test is 

that other users would have similar relationships between their gestures and neutral 

baseline.  

This was explored through further testing of other people. 6 participants were 

included in the testing who differed in age, gender and ethnic backgrounds. It was 

required that each participant was over 18 years old, so that they can give consent to 

participate. They were informed of what the study would involve and that they were 

participating as volunteers and could stop at any time without consequence. The 

participants ranged from 22 to 70 years of age, and multiple ethnicities and different 

genders were included to ensure the data obtained is inclusive of variations within 

these demographics. Out of the sample size, 4 participants were female and 2 were 

male. All participants were relatively familiar with technology and were recruited 

through a direct approach. Ethics were not sought as the data was predominantly 

used to discern what would work best for the system and did not involve any 

personal data.  

They were asked to perform different gestures and a neutral expression, much like 

the previous testing procedure. However, only the chosen gestures were 

investigated to observe how the gestures and their parameters differ person-to-

person. The standard protocol used is shown in Appendix E. 

The video files for these tests were recorded, and the AUs as well as landmarks 

were input into a csv file. This was then processed through MATLAB in order to 

obtain graphs of the intensity of the relevant AUs sorted by the gesture performed. 

The results of these tests and observations made will be discussed further in the 

results section.  
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2.4 INTERPRETATION OF GESTURES  

This stage of development determines the framework in which the gestures will be 

interpreted and how intentional movements can be distinguished from unintentional 

movements.  Using the results gained from the previous tests, the parameters can 

be implemented.  

Several assumptions have been made about intentional gestures which forms the 

basis for this system. The implementation of these should increase the likelihood of 

an intentional gesture being detected. These include: 

• An intentional gesture will generate a similar range of intensities for the AUs 

each time 

• An intentional gesture will occur for longer than an unintentional movement of 

the face  

In terms of code, this would mean a gesture would be detected if the AUs lie within a 

certain range and held for longer than 2 seconds. Therefore, checks will be 

implemented to ensure that a gesture is only detected under the aforementioned 

conditions. An underlying assumption made in this however, is that OpenFace 

produces similar results under the same conditions with the same individual. 

2.4.1 ROLE OF EMOTION IN GESTURES 

The role of AUs in emotion was also considered as it is important not to confuse 

gestures with emotional expression. The relevant AUs are highlighted in bold. It can 

be seen in Table 5 that several of these AUs are involved in emotion. This can affect 

the reliability of the system as an emotional expression could be confused for a 

gesture.  

While it can be assumed that emotional expressions generally wouldn’t involve the 

same intensities involved in intentional gestures, this could be a source of error. 

Therefore, a measure that can be taken to reduce the likelihood of a gesture being 

sent as a command if they are actually displaying emotion or other expressions, is to 

ensure that it is only sent if one gesture is detected at a time. This is particularly 

applicable to the emotional expressions fear and surprise as they involve AUs that 

are used to detect the raised eyebrows or an open mouth. For disgust, further 

measures could also be taken.  
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TABLE 5: THE AU INVOLVED IN EMOTION  (IMOTIONS, N/A) 

Happiness / 
Joy 

6 + 12 Cheek Raiser, Lip Corner Puller 

Sadness 1 + 4 + 15 Inner Brow Raiser, Brow Lowerer, Lip Corner 
Depressor 

Surprise 1 + 2 + 5 + 26 Inner Brow Raiser, Outer Brow Raiser, Upper Lid 
Raiser, Jaw Drop 

Fear 1 + 2 + 4 + 5 + 7 
+ 20 + 26 

Inner Brow Raiser, Outer Brow Raiser, Brow 
Lowerer, Upper Lid Raiser, Lid Tightener, Lip 
Stretcher, Jaw Drop 

Anger 4 + 5 + 7 + 23 Brow Lowerer, Upper Lid Raiser, Lid Tightener, 
Lip Tightener 

Disgust 9 + 15 + 16 Nose Wrinkler, Lip Corner Depressor, Lower Lip 
Depressor 

Contempt 12 + 14 (on one 
side of the face) 

Lip Corner Puller, Dimpler 

 

Therefore, a summary of the features that will be implemented are: 

• Detect gestures to occur within a certain range  

• Count the number of occurrences (10+ times) 

• Only allow one gesture to be detected at a time  

The way in which the user interacts with the wheelchair will now be explored in the 

following section.  

2.5 CONTROL INTERFACE 

Using the considerations from the previous section, the control interface was 

implemented to acquire information from OpenFace and detect gestures.  

This was implemented on Visual Studio 2015 in C++, through modifying the open-

source code OpenFace. There were several executables that had various 

capabilities which could have been used as the basis for development. However, the 

Feature Extraction executable suited the requirements of the project the best as it 

was able to extract a variety of features from sequences of images. It also tracks one 

face at a time and can extract features in real-time which was two of the main criteria 

identified. This was modified and renamed Open Face Interpreter to suit this project.  
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The interface was initially written to provide the following: 

• Option to choose gestures for various abilities  

• Gesture detection 

• Safeguards in place to ensure that movements are intentional  

• Safeguards in place to ensure that only one command is sent at a time or 

none if more than one gesture is occurring simultaneously 

The initial implementation is shown in the block diagram in Figure 17.  
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FIGURE 17: INITIAL IMPLEMENTATION OF OPEN FACE INTERPRETER 

The initial gestures and the associated values that were implemented are shown in 

Table 6. 

TABLE 6: INITIAL GESTURES AND VALUES IMPLEMENTED INTO OPEN FACE INTERPRETER 

Gesture Relevant feature Range of detection 

Raise Eyebrows 
AU01  3.5+ 

AU02 3.5+ 

Asks user which 

gestures they would like 

to use 

Sets gestures 

accordingly 

Detects the state of the 

selected gestures and 

occurrence  

Compares the state of 

all the gestures. 

Send the command to 

the serial port. 

 Do nothing. Keep 

checking. 

1 2+ 

Start 

OpenFace 

Interpreter 

Is the gesture detected 

between the specified 

parameters? 

How many gestures 

are being detected? 

  

 Do nothing. Keep 

checking. 

Yes 

No 



54 
 

Wrinkle Nose AU09 3.5+ 

Open Mouth 
AU25  3.5+ 

AU26 3.5+ 

Lip Suck AU28  1 

Tilt Left Tz  20 to 100 

Tilt Right Tz -100 to 20 

 

As the interface is heavily reliant on OpenFace and its performance, it is important 

that the way it works was understood so issues can be accounted for. There were a 

few limitations identified, one of which is that facial pose and orientation can have 

quite a big effect on the accuracy of detecting AUs. Ways to decrease these effects 

were considered and implemented. 

This was then implemented with the wheelchair, using the existing Arduino Mega 

2560 controller that had been integrated into the control of the wheelchair. This 

involved implementing serial communication between OpenFace and the Arduino. 

User evaluation of the operation of the wheelchair was also obtained to determine 

the ease of use and feasibility of the system.  

  



55 
 

3. RESULTS 

This chapter will present results of how well the face and head tracking fared with 

different people and under different situations and conditions. The resulting 

implementation of the control interface and wheelchair interface will also be 

illustrated and evaluated.   

3.1 FACE AND HEAD TRACKING 

The face and head tracking system was explored by the author in order to gain 

insight to what parameters need to be put in place depending on different individuals 

and situations.  

Preliminary testing of the author showed that there were 5 distinct gestures that 

would have higher chances of being detected in this application. These were raising 

eyebrows, wrinkling nose, frowning, opening mouth and lip sucking. The minimum 

and maximum values of the AU involved in the 10 gestures were compared under 

neutral conditions and with execution of the gestures. The data obtained was 

processed through Matlab and tabulated as shown in Table 7. The differences 

between the highest value of the neutral baseline and the gestures were calculated. 

This gives an indication of which AUs differ most from the neutral baseline when a 

gesture is performed. The AUs that had a significant difference of 1 and more have 

been highlighted in bold. 

TABLE 7: MINIMUM AND MAXIMUM INTENSITIES OF AU IN NEUTRAL CIRCUMSTANCES AND IN 

GESTURES (N=1) 

Neutral  
Gestures 

Short action 𝛥𝑚𝑎𝑥𝑠ℎ𝑜𝑟𝑡−𝑛𝑒𝑢𝑡𝑟𝑎𝑙 Long action 𝛥𝑚𝑎𝑥𝑙𝑜𝑛𝑔−𝑛𝑒𝑢𝑡𝑟𝑎𝑙 

     AU      Min    Max  
  
    'AU01'    0      1.32 
    'AU02'    0      1.82 
    'AU04'    0      1.45 
    'AU05'    0      2.18 
    'AU07'    0      2.04 
    'AU09'    0      0.88 
    'AU14'    0       1.3 
    'AU15'    0      1.36 

   Min    Max  
  
    0       3.2 
    0      3.87 
    0      1.71 
    0      2.27 
    0      2.65  
    0      2.02 
    0      3.69 
    0       3.2  

  
  

1.88 
2.05 
0.26 
0.09 
0.61 
1.14 
2.39 
1.84 

    Min    Max                                       
  
     0       3.9 
     0      4.36 
     0      1.87 
     0      2.97 
     0      2.72 
     0      2.26 
     0      3.32 
     0      3.59 

 
 

2.58 
2.54 
0.42 
0.79 
0.68 
1.38 
2.02 
2.23 
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    'AU17'    0      1.32 
    'AU23'    0      0.86 
    'AU25'    0      1.17 
    'AU26'    0      1.42 
    'AU28'    0         0  

    0      2.06 
    0      1.82 
    0      2.85 
    0       4.3  
    0         1 
  

0.74 
0.96 
1.68 
2.88 

1 

     0      2.09 
     0      1.37  
     0      3.67 
     0      4.59 
     0         1 

0.77 
0.51 
2.5 

3.17 
1  

 

In this case, it appears that the AUs AU01, AU02, AU09, AU14, AU15, AU25 and 

AU26 differed the most from the neutral baseline. This means that the corresponding 

gestures were most likely to be detected: 

• Raise eyebrows 

• Wrinkle nose 

• Frown  

• Widen mouth 

• Open mouth 

• Lip suck  

The following gestures were unlikely to be detected: 

• Widening eyes  

• Pursing lips  

• Lowering eyebrows 

• Squinting 

Therefore, it can be concluded that these four gestures should not be used in the 

implementation of the gesture recognition system. However, the other 6 gestures 

can be investigated further to observe how intensities of each AU vary between 

different gestures.  

The gesture Raise Eyebrows was investigated first. The data from the previous short 

and long tests could be graphed as shown in Figure 18 and Figure 19. It was found 

that the intensity was generally around 3-4 for the short actions and 2-4 for the 

longer actions. This indicates the range in which raise eyebrows was likely to occur. 

The gesture of wrinkling the nose appeared to be activate the AUs that are related to 

raising eyebrows, but at a smaller intensity as shown in Figure 20 . However, it is 

important to ensure that the range implemented to detect an intentional eyebrow 
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raise is outside of the intensity when wrinkling nose occurs. This means that the 

range where an intentional eyebrow raise would occur is between 2 and 4.   

 

FIGURE 18: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 19: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 20: DETECTION OF AU01 AND AU02 DURING THE WRINKLE NOSE GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME. 

Wrinkle nose was investigated next in a similar fashion. This gesture exhibited a 

lower intensity compared to Raise Eyebrows but was consistent as shown in Figure 

21.  

 

FIGURE 21: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME. 

Open mouth was then investigated and illustrated in Figure 22 and Figure 23. The 

intensities involved in this gesture were quite high and consistent which suggests 

that this gesture would be easy to detect. It also shows that AU25 is more strongly 

detected compared to AU26. There were a few other gestures that appeared to be 
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activate these AUs, but the intensities were not significant. These are shown in 

Appendix A to allow for a direct comparison.  

 

 

FIGURE 22: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT DURATIONS OF TIME. 

 

FIGURE 23: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG DURATIONS OF TIME. 

The gesture widen mouth was then investigated. However, it was found that the AU 

in widen mouth was being detected in other actions such as lip suck at similar 

intensities. Figure 24 and Figure 25 show that the intensities generally range around 

3 when widen mouth is performed for both short and long durations of time. When 
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the gesture lip suck is performed, it can be observed that AU14 is also detected 

slightly lower but also around the same range. These graphs can be observed in 

Appendix A. This is too similar and means that either widening mouth or lip suck 

should be used and not both as it is likely they will be detected at the same time. 

Widen mouth is a gesture that could potentially be mistaken in a smile, which means 

lip suck would probably be the more appropriate gesture to use.  

 

 

FIGURE 24: DETECTION OF AU INVOLVED IN WIDENING MOUTH WHEN WIDEN MOUTH 

GESTURE IS PERFORMED FOR SHORT DURATIONS OF TIME  

 

FIGURE 25: DETECTION OF AU14 WHEN WIDEN MOUTH GESTURE IS PERFORMED FOR LONG 

DURATIONS OF TIME 
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Frowning was also investigated, where it was found that AU15 occurs periodically in 

frowning, while AU17 did not appear to be related. During the gesture lip suck, it 

appeared that AU17 was detected frequently while AU15 occurred at a lower 

intensity. The gestures wrinkling nose and widening mouth also appear to activate 

these AUs. From this, it can be concluded that AU15 would be the more reliable 

choice for detecting frowning. However, due to the similarities of intensities it shares 

with other gestures such as lip suck, it would probably not be ideal for use as a 

gesture. These comparisons can be seen in Appendix A.  

Lip suck was investigated as well, where it was found that it was quite reliable as 

long as it is performed in short periods of time as shown in Figure 27. It appeared to 

decrease in intensity when held for longer periods of time as shown in Figure 27. 

This AU was not activated in any other gesture, which is promising in this context as 

this gesture would hopefully not attract any false positives.  

 

 

FIGURE 26: DETECTION OF AU28 WHEN LIP SUCK GESTURE IS PERFORMED FOR SHORT 

DURATIONS OF TIME 
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FIGURE 27: DETECTION OF AU28 WHEN LIP SUCK GESTURE IS PERFORMED FOR LONG 

DURATIONS OF TIME 

From these tests, it was clear that individual parameters needed to be set for each 

gesture and that different AU’s are affected by each gesture. Because of this, 

frowning and widening mouth were not included in the final set of gestures that were 

implemented. Initial parameters were also found for these particular set of gestures 

using the graphs, which is shown in Table 8. The absolute lower limit was obtained 

from the highest value found in the neutral tests. The ranges for the short actions 

and long actions were estimated directly from the graphs. These parameters can be 

used in the implementation of the gesture recognition system.  

TABLE 8: PARAMETERS FOR EACH GESTURE, USING THE MAX VALUE FOR NEUTRAL FOR THE 

ABSOLUTE LOWER LIMIT AND ESTIMATING THE RANGES OF THE SHORT AND LONG ACTIONS 

AUs 
Absolute lower 

limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.32 2.6 3.4 1.6 4.1 
AU02 1.82 2.6 4 1.6 4.5 
AU09 0.88 1.2 2.2 1 2.6 
AU25 1.17 1.4 3 1.4 3.8 
AU26 1.42 3.2 4.4 2.3 4.7 
AU28 0 0 1 0 1 

 

A common theme between the long activations of gestures was also observed. Lip 

suck was a prominent example, but it appeared that all the AUs decreased in 

intensity over time. This could be due to difficulties in holding the same gesture for a 
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prolonged period of time or more likely, a decrease in sensitivity. This would need to 

be accounted for.  

3.1.2 TESTING PARTICIPANTS 

Similar tests were performed on 6 different able-bodied participants in order to 

observe how they would perform the selected gestures relating to the AUs. It was 

found that each subject performed the gestures differently, each utilising different 

AUs. Some participants were also unable to perform certain gestures due to 

difficulties in coordination and physical movement. This underlines the need for a 

versatile system. The range of detection found for some gestures appeared to be 

relatively similar, which means a general parameter could possibly be implemented 

into the system. These are shown in Appendix A.8. Otherwise, an individualised 

range for the detection of gestures may be better suited for each subject.   

TABLE 9: SUMMARY OF RANGE OF DETECTIONS ACROSS PARTICIPANTS 1-6 

AUs Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

Min Max Min Max Min Max Min Max Min Max Min Max 

AU01 2 3.8 2.2 4.4 2 4.5 2 4.9 2 3.6 1.8 5 

AU02 2 3.8 2.2 4.2 2 4.5 1.8 4.2 1.8 4.1 1.5 4.5 

AU09 0.8 2.2 2.4 3.3 2 3.4 0.8 1.7 1.9 3.4 0.8 2.7 

AU25 2 4.6 2.4 4.95 1.6 4.8 1 3.9 2.8 5 1.4 3.9 

AU26 1.6 3.85 3.4 4.8 2 4.7 2 5 3 5 3 5 

AU28 - 1 - 1 - 1 - 1 - 0 - 1 

 

The average range across all participants as found from Table 9 is: 

• AU01: 2 – 4.36 

• AU02: 1.88 – 4.36 

• AU09: 1.45 – 2.78 

• AU25: 1.86 – 4.53 

• AU26: 2.5 – 4.73 

• AU28: Not applicable, can only be 0 or 1 

This demonstrates the range that the system would have to be calibrated to. It was 

also found that there is variation in intensities for the AU activated for each gesture. 

Lip suck was also not reliably detected after the first few detections. It was also 

noted that lip suck was not registered in the system when subject 5 performed the 
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gesture. This could be due to difficulties in tracking the landmarks of the face due to 

facial variations.  

An initial prototype was made of the control interface that involved the gestures that 

could be performed easily and were distinct from expression and emotions. This 

included raise eyebrows, wrinkle nose, open mouth and lip suck. Preliminary 

measures that were taken included the detection of occurrence (how many times the 

gesture was detected consecutively) and the threshold (any AU intensity above 3.5 

would be considered detected). However, this was not very reliable and useful and 

so was investigated further through the following procedure.  

3.1.2 SCENARIOS 

Several different scenarios were tested, one in which conversation was occurring 

and another where general movements of the face were recorded. During 

conversation it was clear that a high number of false positives were being detected. 

This was compared with the video and it was found that it occurred mainly when the 

head moved to a non-forward-facing position. This is a limitation that is common in 

facial tracking systems. When this occurred, the AU was shown to reach intensity 

level 5. Therefore, it was concluded that an upper limit would need to be found for 

each intentional gesture and a safeguard put into place to accept only inputs when 

the user is forward facing.  

3.1.3 CONDITIONS 

There has been no noticeable decrease in performance under different lighting 

conditions. This program has been used in a variety of lighting conditions including 

low light, artificial light and natural lighting.  

3.2 CONTROL INTERFACE  

Using the information gained from exploring the face and head tracking, the control 

interface was implemented to have the conditions mentioned in section 2.4.  

Initial testing of the program showed that lip suck was being mistaken for the gesture 

open mouth most of the time. This was partly due to the fact that the program was 

originally written to accept one AU which was chosen based on the preliminary tests. 

However, it was clear that after testing this was not the case for everyone and that 

AU for jaw drop, was also occurring with lip suck, albeit at a smaller intensity.  



65 
 

Therefore, after testing it was concluded that there were several adjustments that 

needed to be made to make the system more user friendly, increase the likelihood of 

the detection of an intentional gesture and to reduce the detection of false positives. 

These included: 

• Inclusion of default gestures chosen for commands with natural interface 

considerations, i.e. tilt head left for going left and vice versa. 

• Implementing all the parameters for each gesture – additional AU involved  

• Reducing the occurrence of false positives by ensuring gestures are only 

detected when directly facing forward.  

• Lip suck was not being picked up over time, so the number of occurrences 

was decreased to 5 as opposed to 10 for this gesture.  

The modified system is shown in the block diagram in Figure 28. 

The range of detection used was determined previously in section 3.1. The following 

gestures are detected using the following AUs and extracted features as shown in 

Table 10. The up/down and side/side values are used to check whether the user is 

facing forward. Gestures are only detected when Tx and Ty are within these bounds.  

 

TABLE 10: FINAL GESTURES AND PARAMETERS IMPLEMENTED 

Gesture Relevant feature Range of detection 

Raise Eyebrows 
AU01  2.6 to 4.1 

AU02 2.6 to 4.5 

Wrinkle Nose AU09 1.2 to 2.6 

Open Mouth 
AU25  1.4 to 3.8 

AU26 3.2 to 4.7 

Lip Suck AU28  1 

Tilt Left Tz  20 to 100 

Tilt Right Tz -100 to 20 

Up/down Tx -15 to 15 

Side/side Ty -15 to 15 

 

The final block diagram of the interface is shown in Figure 28.  
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FIGURE 28: MODIFIED IMPLEMENTATION OF OPEN FACE INTERPRETER APPLICATION 

Asks user if they are 

happy to use the default 

gestures 

Sets gestures and 

parameters accordingly 

Increment occurrence counter 

and keep checking. (Ensure 

consecutive occurrences)  

Compares the state of all 

the gestures. 

Send the command to the 

serial port. 
 Do nothing. 

1 2 or more 

Let user choose which 

gestures they want to use 

Yes 

No 

Start 

OpenFace 

Interpreter 

Is the gesture detected and: 

• Within the thresholds 

• Frontal facing  
  

Yes 
Clear occurrence 

counter and keep 

checking 

No 

How many gestures are being 

detected above 10 occurrences? 

(Lip suck, above 5?) 
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Once the command is sent to the serial port, the corresponding action is activated in 

the wheelchair. The user has the option of choosing the default gestures for the 

commands or choosing their own as illustrated in Figure 29 and Figure 30 

respectively. The code inside Open Face Interpreter is shown in Appendix B.   

 

FIGURE 29: CONTROL INTERFACE FOR OPENFACEINTERPRETER IN THE DEFAULT GESTURE 

CASE 

 

FIGURE 30: CONTROL INTERFACE FOR OPENFACEINTERPRETER WHERE USER CHOOSES 

GESTURES 
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3.2.1 PERFORMANCE 

The performance of this recognition system was then tested on the author with the 

parameters found from the previous gestures tests and placed into a contingency 

table to compare the number of predicted gestures versus the actual gesture. This 

was tested while facing forward to minimise the effects of orientation on the gesture 

recognition and for consistency. Each test was performed 10 times each. The result 

of this is shown in Table 11. It was found that raise eyebrows was detected while 

head tilt to the left occurred. It is noted that multiple gestures were detected when 

one gesture was being performed at times, which resulted in more than 10 actual 

identified gestures. 

TABLE 11: CONFUSION MATRIX FOR CORRECTLY AND INCORRECTLY IDENTIFIED GESTURES 

  Actual 

 Gestures Nothing Raise 
Eyebrows 

Wrinkle 
Nose 

Open 
Mouth 

Lip 
Suck 

Tilt 
Left 

Tilt 
Right 

P
re

d
ic

te
d

 

Nothing 10 0 1 1 0 0 0 

Raise 
Eyebrows 

0 10 0 0 0 0 0 

Wrinkle 
Nose  

0 0 10 0 0 0 0 

Open 
Mouth 

1 1 0 8 0 0 0 

Lip Suck 0 0 0 0 10 0 0 

Tilt Left 0 5 0 0 0 10 0 

Tilt Right 0 1 0 0 0 0 10 

 

This was analysed further with Matlab to give the following scores of informedness, 

which is the “probability of an informed decision” and markedness, which is defined 

by “how marked a condition is for the specified predictor” (Powers, 2011). These are 

measures of how well the system predicts the gestures. RandAccuracy provides the 

ratio between the number of classes that were predicted accurately against the total 

number of cases. The values shown are all around 87% which indicates that in this 

test, the classifier showed quite promising results.  

• Informedness: 0.8828 = 88.28% 

• Markedness: 0.8707 = 87.07% 

• RandAccuracy: 0.8718 = 87.18% 
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This was also tested on subject 5 to observe differences in the classification. Ethics 

were not sought as the information acquired was for system quality testing purposes. 

The confusion matrix of their gestures was obtained from this test. It was shown that 

it was not as reliable, particularly for the open mouth gesture which was not detected 

in all 10 tests.  

TABLE 12: CONFUSION MATRIX FOR CORRECTLY AND INCORRECTLY IDENTIFIED GESTURES 

– SUBJECT 3 

  Actual 

 Gestures Nothing Raise 
Eyebrows 

Wrinkle 
Nose 

Open 
Mouth 

Lip 
Suck 

Tilt 
Left 

Tilt 
Right 

P
re

d
ic

te
d

 

Nothing 5 3 1 1 0 0 0 

Raise 
Eyebrows 

0 10 0 0 0 0 0 

Wrinkle 
Nose  

0 0 10 0 0 0 0 

Open 
Mouth 

10 0 0 0 0 0 0 

Lip Suck 0 5 0 0 10 0 0 

Tilt Left 0 0 0 0 0 10 0 

Tilt Right 2 0 0 0 0 0 8 

 

In this case, the three performance measures taken were significantly lower. This 

means that for this subject, the gesture classification performed significantly worse. 

This could be due to various factors, including a mismatched range of detection, 

issues tracking the face or inconsistent gesture performance by the individual.    

• Informedness: 0.6523 = 65.23% 

• Markedness: 0.7337 = 73.37% 

• RandAccuracy: 0.7067 = 70.67% 

However, in the graphs obtained of the gestures it appeared that open mouth for this 

subject was detected to occur within quite a wide range which suggests that the 

tracking capability of OpenFace could be the source of error as opposed to the 

classification framework or the subject. The AU intensities for short and long actions 

for this subject are shown in Figure 31 and Figure 32. It is observable that AU25 and 

AU26 differ vastly in intensity with the performance of the same gesture.   
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FIGURE 31: DETECTION OF AU25 AND AU26 DURING THE GESTURE OPEN MOUTH 

PERFORMED PERIODICALLY FOR A SHORT PERIOD OF TIME ON SUBJECT 3 

 

FIGURE 32: DETECTION OF AU25 AND AU26 DURING THE GESTURE OPEN MOUTH 

PERFORMED PERIODICALLY FOR A LONG PERIOD OF TIME ON SUBJECT 3 

It appears that the ideal gestures to use in this application vary from person to 

person. Some gestures are unlikely to be detected for some compared to others 

based on how consistently OpenFace can track their features. In this case, subject 3 

was not able to use open mouth as it was very unreliable while this was not the case 

for others.  

FaceSwitch (Rozado et al., 2017) found that the most easily recognised gestures 

were open mouth and wrinkling nose, based on their system using Beyond Reality 

Face Tracker. However, it appears that for this program at least, it is quite variable.  
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3.3 WHEELCHAIR INTERFACE 

The wheelchair uses a joystick control that can be controlled through the Arduino. 

The joystick is controlled by sending different values to forward/backward and 

left/right that represent the extent of power it should be given. Changing these values 

can be used to control the wheelchair through gestures. Information is sent to the 

serial port and received by the Arduino to follow through with the appropriate action. 

The serial communication (Mandal, 2016)  and Arduino control (Kukreja, 2018) was 

integrated into this project as shown in Appendix C and D respectively.  

This system can take inputs from face and head gestures and use these for a stop, 

forward, backward, left and right command. Once a gesture is executed, it is sent to 

the wheelchair through the serial port if the correct conditions are in place.  

This was tested with the wheelchair and confirmed to be working. A secondary 

control had been implemented as a safety feature (Kukreja, 2018), where the joystick 

can override any input sent through the gesture recognition system. For an additional 

safety feature, a physical switch could also be implemented and connected to the 

Arduino. Therefore, the user would be able to control whether the wheelchair 

accepts inputs from the face and head gesture control system. In this way, the face 

and head gesture control system could be switched on or off and could also be used 

as an emergency stop switch.  

On the wheelchair, there were a few errors with the detection of the gestures. Some 

gestures did not appear to be detected well but were detected reliably on another run 

under the same conditions. The program also lagged and froze occasionally when 

continuous input was given. Without altering the tools used behind the facial 

behaviour analysis, a method in which the system could be improved is to adjust the 

range of detection for the different gestures.  

This interface was tested on a fellow colleague to obtain a subjective evaluation of 

the system. The results are as follows: 

How safe did you feel? 

Very unsafe Somewhat 
unsafe 

Neutral Safe Very safe 

1 2 3 4 5 
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How intuitive did the input method feel? 
 

Very 
unintuitive 

Somewhat 
unintuitive 

Neutral Intuitive Very intuitive 

1 2 3 4 5 

 
How accurate were the controls? 
  

Very 
inaccurate 

Somewhat 
inaccurate 

Neutral Accurate Very accurate 

1 2 3 4 5 

 
How responsive were the controls? 
 

Very 
unresponsive 

Somewhat 
unresponsive 

Neutral Responsive Very 
responsive 

1 2 3 4 5 

 
Which controls did you find easiest to use? 
Forward (eyebrows), Tilting 
  
How comfortable was the input method to use? 
 

Very 
uncomfortable 

Somewhat 
uncomfortable 

Neutral Comfortable Very 
uncomfortable 

1 2 3 4 5 

 
How tired do you feel?  
 

Very tired Somewhat 
tired 

Neutral Not really tired Not tired at all 

1 2 3 4 5 

 
  
Did the input method give you any muscle fatigue?  
 

Yes Somewhat Neutral Not really No 

1 2 3 4 5 

 

Any other comments? 

It’s very good but holding the gestures felt too long and the left and right controls 

could be changed to turn slower. With more training it could potentially be very good.  

Based on this feedback, it appears there are quite a few improvements that could be 

made to increase the reliability and ease of control. This could involve lowering the 

number of occurrences necessary so that the delay in gesture to action is 

decreased. Adjusting the parameters as mentioned could also increase the reliability. 
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However, for both these methods, there would be a trade-off between the certainty 

that a gesture is intentional and the system being more responsive. However, they 

felt relatively safe using the device, which is important in a device like this.  

It is also common in NUIs to undergo training in order to feel more comfortable with 

the controls. In this case, it is probable that with repeated use of these gestures and 

commands the interface would feel more intuitive for the user.  
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4. DISCUSSION  

4.1 SIGNIFICANCE OF RESULTS 

In this thesis, it has been demonstrated that it is possible to use both face and head 

gestures in the control of a smart wheelchair with a simple implementation of open-

source software OpenFace and a standard webcam. 6 different gestures were 

implemented and examined from the user’s perspective as well as through a 

technical perspective. These were Raise Eyebrows, Wrinkle Nose, Open Mouth, Lip 

Suck, Tilt Left and Tilt Right. It was found that some gestures were more reliable and 

easier to perform while others weren’t. This varied depending on the person, but 

generally tilting the head to the left or right appeared to be detected well. These two 

gestures are the only head gestures of the implemented set and rely on head pose 

to obtain the values necessary. The differences in reliability could be due to 

individual differences in facial features, which can affect the tracking and other 

processes behind the detection of AUs.  

The assortment of gestures was particularly useful when it was found that some 

gestures function better or were more easily detected depending on the individual.  

This enables the user to pick and choose which gestures work with their own 

capabilities and suit them best. This is particularly important in this application as this 

device is aimed towards those who have limited movement. This aspect of the 

design worked well as it made the system versatile, which was one of the main 

criteria that was identified in the project requirements.  

Default gestures were implemented as a way to lessen the load on the user if they 

did not want to go through the trouble of picking and remembering certain gestures 

for the command of the wheelchair. These were chosen based on what would seem 

natural to the user. This included tilting left to go left, tilting right to go right, raising 

eyebrows as forward, wrinkling nose as reverse and open mouth as stop.   

User feedback stated that it did not feel unintuitive or intuitive. However, it’s common 

for NUIs like this one to require user training to become more familiar with the 

controls as demonstrated by Rozado et al. (2017). While this reduces the useability, 

as it would be ideal for the interface to be natural enough not to warrant training, this 
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is a common occurrence with NUIs. After an initial learning curve, the input method 

should feel very natural for the user. 

The informedness of the gesture recognition system was found to range between 

65.23% and 88.28%. This range is satisfactory, but this means that the prediction of 

the gesture classification system is making informed decisions.  

OpenFace has its limitations like any other piece of software. However, in this 

implementation it proved to be an effective toolkit for obtaining facial behaviour in a 

low-cost and accessible way. While proper evaluation of different facial behaviour 

analysis toolkits was outside of the scope of this paper, this implementation proves 

that expensive hardware is not necessary to implement a face and head gesture 

classifier. However, this project demonstrates the successful application of 

OpenFace to a challenging mobility problem. This can be used as a basis to 

encourage others to explore similar ideas.  

4.2 LIMITATIONS 

There are a few limitations that have been identified with this system, regarding the 

software as well as the practical usage.  

Facial expression and movements are inherently difficult to quantify and measure. 

While a lot of progress has been made in this field, it is still relatively far from being 

accurate. However, OpenFace performs relatively well in this area as it was able to 

be used in this application effectively with a few adjustments. While this software is 

continuously being improved and developed by Tadas Baltrusaitis (Baltrusaitis et al., 

2018) and other researchers, there are several improvements that can be made to 

improve reliability and accuracy - particularly in the case of where the person is not 

frontal facing. Methods that could potentially be used to improve the software is the 

use of more training data, particularly those that include more diverse poses and AU 

labelling. A 3D model database could be particularly useful to improve landmark 

tracking of a non-frontal facing person. More specialised datasets could also be 

created for this purpose, which could be obtained through the Intel RealSense 

cameras. In this way, the software could potentially classify gestures directly rather 

than through the indirect pathways of determining AU and the gestures they relate 

to.  
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Other limitations of software include the inherent challenges in computer vision, 

namely relating to occlusion and lighting. If a camera is unable to pick up certain 

features because they are hidden or by objects or unclear due to lighting, it can be 

difficult to ascertain the relevant features.  

While it has been proven that this system can be used, this particular system is 

limited to be a proof of concept as it is not reliable enough for an individual to use for 

their mobility needs. More improvements to the system and further testing would 

need to be performed for it to be reliable and safe enough for use. It is also important 

for the end users to be involve in the development process. However, this would be 

costly in terms of time and resources and would be better suited to a larger funded 

project.  

Intention was a major challenge faced in this study, and other studies on gesture 

recognition. This thesis addressed the intention challenge through the 

implementation of assumptions but further measures to deduce intention could 

include the use of multi-modal inputs. However other assumptions could be 

introduced, but this would limit the ways that a user can express a command. Extra 

information could be provided from the other aspects of the wheelchair such as the 

BCI in order to differentiate an intentional action from an unintentional action. Further 

studies could also be done to explore the ways people exhibit intentional gestures as 

opposed to unintentional movements.  

In practical use, it may be difficult for the user to remember the gestures chosen for 

each command. This can be considered a limitation as it may be difficult for those 

with cognitive impairments or bad memory. However, this could be improved by 

making the system more intuitive and training control of the wheelchair with the user. 

This could also be helped through the addition of a legend that displays which 

gestures are for which command. In terms of intuitiveness, this may not be the best 

option. However, the aim of this project was to provide alternative options in terms of 

control which has been implemented.  

In this project, there are several stages that could be improved. Formal experiments 

to explore user satisfaction could have been performed as well as further 

comparisons between different tests to obtain a bigger picture of the performance of 

the system. This could also influence the way the system operates, as it is likely that 
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further factors would need to be considered for people with disabilities in practical 

use.  
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5. CONCLUSION AND FUTURE WORK 

The continued exploration of smart wheelchairs and alternative methods of control 

provides many benefits, not only to the subsets of their technological fields but also 

for people with mobility impairments. The technology could make regular powered 

wheelchairs easier and safer to use as well as provide alternative methods of 

control. However, this technology could particularly benefit those that cannot operate 

standard powered wheelchairs due to their cognitive or physical impairments.  

In this thesis, one alternative method of control was explored – the use of face and 

head gestures in the control of a smart wheelchair. This was chosen due to the 

relatively underexplored combination of face and head gestures in the use of control 

interfaces as well as its versatility and intuitiveness for the user. It was concluded to 

be a viable interface and while there are quite a few improvements that could be 

made, the opportunities that this technology opens up are countless.  

The main challenges faced in this implementation included the difficulties in 

deducing user intention as well as limitations faced in terms of the software. 

Exploring methods to deduce the intention of the user can be explored further 

through practical research as it is likely that regular movement can be mistaken for a 

gesture. It could also be improved further through the use of additional inputs to 

increase the amount of information obtained from the user. The current 

implementation of BCI could potentially be used in this way. With these 

improvements, the likelihood of predicting the user’s intention correctly could be 

increased. Challenges faced in software included those that relate to computer vision 

as well as difficulties faced in face tracking. Lighting, occlusion and individual 

variances in facial appearance and movements influence the performance. This 

could potentially be improved through the integration of 3D data, such as those from 

the Intel RealSense cameras or through the creation of more specialised datasets 

that can address some of these issues.  

In terms of future work, there are a few parallels between control interfaces for smart 

wheelchairs as well as for computer access. While the control interfaces of a smart 

wheelchair may not always be designed to connect the user with a computer, the 

applications are still highly applicable. This could also potentially be applied to any 

HCI and could be used to control a computer. This is one of the next stages that will 
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be explored as it would provide an alternative method for control for a wide variety of 

applications. 

For the proper development of a functional interface for a smart wheelchair, it is 

important that the end users are involved. This way, the wheelchair and its interface 

can be evaluated at every stage of development to ensure the most natural and 

intuitive interface. In addition to involvement of the end users, more test participants 

could also have been involved in the evaluation of performance and the function of 

the wheelchair.  

The results of developing a system that can recognise facial and head gestures 

could also potentially be used in the context of interpreting emotions. In terms of the 

wheelchair, this could lead to more intuitive control options and safety measures. 

Emotional responses could be considered from the AUs that are present at one time. 

This could be used in the wheelchair interface to predict and provide suggestions for 

immediate action. For example, if the user is looking fearful, it could provide options 

to call 000, a friend or family member. In other applications, this could lead to 

developments into measuring human responses to stimuli, such as during online 

learning.  

In conclusion, while this technology is still in its early stages, there are many 

opportunities that this technology can bring. Improving existing technology in the field 

of facial analysis and learning more about the people that can use this technology 

and exploring how this information might be used are just a few of the next steps that 

can be taken.  
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APPENDIX  

APPENDIX A – NEUTRAL TESTS AND EXECUTION OF GESTURES 

A.1 PRELIMINARY TESTS DONE ON THE AUTHOR  

Neutral  

 

FIGURE 33: DETECTION OF AU09 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 34: DETECTION OF AU14 WHILE HOLDING A NEUTRAL POSITION 
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FIGURE 35: DETECTION OF AU05 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 36: DETECTION OF AU07 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 37: DETECTION OF AU01 AND AU02 WHILE HOLDING A NEUTRAL POSITION 
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FIGURE 38: DETECTION OF AU23 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 39: DETECTION OF AU25 AND AU26 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 40: DETECTION OF AU04 WHILE HOLDING A NEUTRAL POSITION 
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FIGURE 41: DETECTION OF AU28 WHILE HOLDING A NEUTRAL POSITION 

 

FIGURE 42: DETECTION OF AU15 AND AU17 WHILE HOLDING A NEUTRAL POSITION 
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FIGURE 43: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 

FIGURE 44: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 45: DETECTION OF AU01 AND AU02 DURING THE WIDEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

 
FIGURE 46: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 47: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

 
FIGURE 48: DETECTION OF AU09 DURING THE OPEN MOUTH GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 49: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 
FIGURE 50: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 51: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 
FIGURE 52: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 



94 
 

 

 
FIGURE 53: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 
FIGURE 54: DETECTION OF AU15 AND AU17 DURING THE FROWN GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 55: DETECTION OF AU15 AND AU17 DURING THE FROWN GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

  

 
FIGURE 56: DETECTION OF AU15 AND AU17 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 57: DETECTION OF AU14 DURING THE WIDEN MOUTH GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

  

 

FIGURE 58: DETECTION OF AU14 DURING THE WIDEN MOUTH GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 59: DETECTION OF AU14 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 

FIGURE 60: DETECTION OF AU14 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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A.2 SUBJECT 1

 

FIGURE 61: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME

 

FIGURE 62: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME
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FIGURE 63: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 64: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 65: DETECTION OF AU09 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 66: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 
FIGURE 67: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

 
FIGURE 68: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 69: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 
FIGURE 70: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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A.3 SUBJECT 2  

 

FIGURE 71: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 72: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 73: DETECTION OF AU01 AND AU02 DURING THE WRINKLE NOSE GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 74: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 75: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 76: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 77: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 78: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 79: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 80: DETECTION OF AU28 DURING THE OPEN MOUTH GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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A.4 SUBJECT 3  

 

FIGURE 81: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 82: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 83: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 84: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 85: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 86: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 87: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 88: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 



111 
 

FIGURE 89: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 

FIGURE 90: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

A.5 SUBJECT 4 

 

FIGURE 91: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 92: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 93: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 94: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

 

FIGURE 95: DETECTION OF AU09 DURING THE RAISE EYEBROWS GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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:

 

FIGURE 96: DETECTION OF AU09 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 97: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 98: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 99: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 100: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 101: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 102: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

A.6 SUBJECT 5 

 

FIGURE 103: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 104: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 105: DETECTION OF AU01 AND AU02 DURING THE WRINKLE NOSE GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 106: DETECTION OF AU01 AND AU02 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 107: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 108: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 109: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 110: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

:

 

FIGURE 111: DETECTION OF AU25 AND AU26 DURING THE LIP SUCK GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 112: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 

 

 

FIGURE 113: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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A.7 SUBJECT 6  

 

FIGURE 114: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 115: DETECTION OF AU01 AND AU02 DURING THE RAISE EYEBROW GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 116: DETECTION OF AU01 AND AU02 DURING THE WRINKLE NOSE GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 117: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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FIGURE 118: DETECTION OF AU09 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 

FIGURE 119: DETECTION OF AU09 DURING THE RAISE EYEBROWS GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 120: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 121: DETECTION OF AU25 AND AU26 DURING THE OPEN MOUTH GESTURE 

PERFORMED PERIODICALLY FOR LONG PERIODS OF TIME 
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FIGURE 122: DETECTION OF AU25 AND AU26 DURING THE WRINKLE NOSE GESTURE 

PERFORMED PERIODICALLY FOR SHORT PERIODS OF TIME 

 

FIGURE 123: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 



128 
 

 

FIGURE 124: DETECTION OF AU28 DURING THE LIP SUCK GESTURE PERFORMED 

PERIODICALLY FOR LONG PERIODS OF TIME 

 
FIGURE 125: DETECTION OF AU28 DURING THE WRINKLE NOSE GESTURE PERFORMED 

PERIODICALLY FOR SHORT PERIODS OF TIME 
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A.8 – INDIVIDUAL PARAMETER SETS 

The absolute lower limits were taken from the neutral position and the limits for the 

short and long actions were estimated from the relevant graphs.  

Subject 1 

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 0.65 2 3 1.6 3.8 
AU02 1.1 2 3.2 1.6 3.8 
AU09 0.57 0.8 2.2 0.4 1.4 
AU25 0.86 1.8 3.1 2 4.6 
AU26 0.88 1.6 3.2 1.4 3.85 
AU28  0 0 1 0 1 

 

Subject 2  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.02 2.2 3 1.6 4.4 
AU02 1.58 2.2 3.8 1.6 4.2 
AU09 0.97 2.4 3.3 1.4 3.2 
AU25 1.11 2.4 4.6 2.4 4.95 
AU26 1.2 3.4 4.8 1.6 4.8 
AU28 0 0 1 0 1 

 

Subject 3  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.22 2 3.7 1.6 4.5 
AU02 1.51 2 4.1 1.4 4.5 
AU09 0.87 2 3.3 1.8 3.4 
AU25 1.58  1.6 3.6 1.5 4.8 
AU26 2.65 (~1.8) 1.6 3.2 2 4.7 
AU28 0 0 1 0 1 

 

Subject 4  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 0.83 2 4 1.5 4.9 
AU02 1.46 1.8 4 1.5 4.2 
AU09 0.75 0.8 1.4 0.8 1.7 
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AU25 1.4 1 3.9 1 3.4 
AU26 1.6 2 5 2 5 
AU28 0 0 1 0 0 

 

Subject 5  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.63 2 3.6 1.5 3.5 
AU02 2.27 1.8 3.4 1.5 4.1 
AU09 1.2 1.9 3.1 1.2 3.4 
AU25 2.04 2.6 5 2.8 5 
AU26 2.04 2.9 5 3 5 
AU28 1 0 0 0 0 

*This subject moved around during the neutral test, which contributes to the high 

neutral intensities 

Subject 6  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.5 1.8 5 1.6 4.3 
AU02 1.81 1.5 4.5 1.3 4.4 
AU09 1.31 0.8 2.7 0.6 2.1 
AU25 2.47 1.2 3.3 1.4 3.9 
AU26 1.85 3 5 2.6 5 
AU28 0 0 1 0 1 

*This subject had difficulties wrinkling their nose 

Subject 7  

Action 
units 

Absolute lower 
limit 

Limits for short 
actions 

Limits for long actions 

Min  Max Min Max 
AU01 1.32 2.6 3.4 1.6 4.1 
AU02 1.82 2.6 4 1.6 4.5 
AU09 0.88 1.2 2.2 1 2.6 
AU25 1.17 1.4 3 1.4 3.8 
AU26 1.42 3.2 4.4 2.3 4.7 
AU28 0 0 1 0 1 
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APPENDIX B– OPENFACE CONTROL INTERFACE 

B.1 OPENFACEINTERPRETER.H 

#ifndef _OPENFACEINTERPRETER_h_ 
#define _OPENFACEINTERPRETER_h_ 
 
#include <string> 
#include <vector> 
 
//Gesture class that stores different gestures and information about them 
struct Command { 
 //Available gestures 
 const std::vector<std::string> gestures = { { "raise eyebrows"},{ "wrinkle nose"},{ "open mouth"},{ 
"lip suck"},{ "tilt head left"},{ "tilt head right"} }; 
 //Range of detection for each gesture 
 std::vector<std::pair<double, double>> limits{ {1.4,4.5},{1.4,2.5},{2.1,4},{0,1},{20,100},{-100,-20}}; // 
lower and upper limits for AU01, AU09, AU25, AU28, tiltL and tiltR 
 std::vector<std::pair<double, double>> limits2{ {2,4.5},{0,0},{2,4.7}}; // lower and upper limits for 
AU02, nothing, AU26 
 std::string name; 
 std::string command; 
 std::string commandName; 
 int selection; 
 int occurrence; 
 double lowlim; 
 double highlim; 
 double lowlim2; 
 double highlim2; 
 bool send = false; 
 
public: 
 void setGesture(std::string, int); 
 void detectGesture(const std::vector<std::pair<std::string, double> >&, const 
std::vector<std::pair<std::string, double> >&, cv::Vec6d); 
 std::string Command::checkCommand(); 
 void sendCommand(std::string c); 
 
}; 
 
#endif 
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B.2 OPENFACEINTERPRETER.CPP – MODIFIED FEATUREEXTRACTION.CPP 

/////////////////////////////////////////////////////////////////////////////// 
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge, 
// all rights reserved. 
// 
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY 
// 
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS 
LICENSE AGREEMENT.   
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE. 
// 
/////////////////////////////////////////////////////////////////////////////// 
 
// OpenFaceInterpreter.cpp : Defines the entry point for the feature extraction console application. 
 
// Local includes 
#include "LandmarkCoreIncludes.h" 
 
#include <Face_utils.h> 
#include <FaceAnalyser.h> 
#include <GazeEstimation.h> 
#include <RecorderOpenFace.h> 
#include <RecorderOpenFaceParameters.h> 
#include <SequenceCapture.h> 
#include <Visualizer.h> 
#include <VisualizationUtils.h> 
#include "OpenFaceInterpreter.h" 
#include "SerialPort.h" 
 
//Added for arduino code  
#include <iostream> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <string> 
 
#ifndef CONFIG_DIR 
#define CONFIG_DIR "~" 
#endif 
 
#define INFO_STREAM( stream ) \ 
std::cout << stream << std::endl 
 
#define WARN_STREAM( stream ) \ 
std::cout << "Warning: " << stream << std::endl 
 
#define ERROR_STREAM( stream ) \ 
std::cout << "Error: " << stream << std::endl 
 
static void printErrorAndAbort(const std::string & error) 
{ 
 std::cout << error << std::endl; 
} 
 
#define FATAL_STREAM( stream ) \ 
printErrorAndAbort( std::string( "Fatal error: " ) + stream ) 
 
using namespace std; 
 
vector<string> get_arguments(int argc, char **argv) 
{ 
 
 vector<string> arguments; 
 
 // First argument is reserved for the name of the executable 
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 for (int i = 0; i < argc; ++i) 
 { 
  arguments.push_back(string(argv[i])); 
 } 
 return arguments; 
} 
 
//Code for arduino 
//String for getting the output from arduino 
char output[MAX_DATA_LENGTH]; 
 
/*Set portname (must contain these backslashes)*/ 
char *port_name = "\\\\.\\COM4"; 
 
//String for incoming data 
char incomingData[MAX_DATA_LENGTH]; 
 
//Initialise arduino  
SerialPort arduino(port_name); 
 
 
//Code for the command of wheelchair 
void Command::setGesture(std::string c, int g) //takes the value for gesture and assigns it to the appropriate 
command.  
{ 
 selection = g; 
 name = gestures[g]; 
 lowlim = limits[g].first; 
 highlim = limits[g].second; 
 lowlim2 = limits2[g].first; 
 highlim2 = limits2[g].second; 
 occurrence = 0; 
 commandName = c; 
 if(c == "forward") command = "w"; 
 if (c == "backward") command = "s"; 
 if (c == "left") command = "a"; 
 if (c == "right") command = "d"; 
 if (c == "halt")  command = "q"; 
} 
//Detects gesture and keeps track of consecutive occurrences   
void Command::detectGesture(const std::vector<std::pair<std::string, double> >& au_r, const 
std::vector<std::pair<std::string, double> >& au_c, cv::Vec6d pose) 
{ 
 //Keeps track of which features are detected within range 
 boolean occurred1 = false; 
 boolean occurred2 = false; 
 
 
 double Tx = pose[3] / 3.14 * 180; //Tx - up/down  
 double Ty = pose[4] / 3.14 * 180 ; //Ty - rotation 
 
 if (selection == 0) // raise eyebrows (AU01 and AU02) 
 { 
  for (size_t idx = 0; idx < au_r.size(); idx++) 
  { 
   if (au_r[idx].first == "AU01") 
   { 
    if (au_r[idx].second < highlim && au_r[idx].second > lowlim) 
    { 
     occurred1 = true; 
    } 
   } 
   if (au_r[idx].first == "AU02") 
   { 
    if (au_r[idx].second < highlim2 && au_r[idx].second > lowlim2) 
    { 
     occurred2 = true; 
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    } 
   } 
  } 
 } 
 else if (selection == 1) // Wrinkle nose (AU09) 
 {  
  for (size_t idx = 0; idx < au_r.size(); idx++) 
  { 
   if (au_r[idx].first == "AU09") 
   { 
    if (au_r[idx].second < highlim && au_r[idx].second > lowlim) 
    { 
     occurred1 = true; 
     occurred2 = true; 
    } 
   } 
  } 
 } 
 else if ( selection == 2) // Open Mouth (AU25 and AU26) 
 { 
  for (size_t idx = 0; idx < au_r.size(); idx++) 
  { 
   if (au_r[idx].first == "AU25") 
   { 
    if (au_r[idx].second < highlim && au_r[idx].second > lowlim) 
    { 
     occurred1 = true; 
    } 
   } 
   if (au_r[idx].first == "AU26") 
   { 
    if (au_r[idx].second < highlim2 && au_r[idx].second > lowlim2) 
    { 
     occurred2 = true; 
    } 
   } 
  } 
 } 
 else if (selection == 3) 
 { 
  for (size_t idx = 0; idx < au_c.size(); idx++) 
  { 
   if (au_c[idx].first == "AU28") 
   { 
    if (au_c[idx].second == highlim) 
    { 
     occurred1 = true; 
     occurred2 = true; 
     std::cout << name << ": " << occurrence << " \n"; 
    } 
   } 
  } 
 } 
 else if (selection == 4 || selection == 5) 
 { 
  double tilt = pose[5]/3.14*180; //to degrees 
  if (tilt < highlim && tilt > lowlim) 
  { 
   occurred1 = true; 
   occurred2 = true; 
  } 
 } 
  
  //Gesture occurrence check 
  if (occurred1 && occurred2 && Ty > -15 && Ty < 15 && Tx > -15 && Tx < 15) 
  { 
   occurrence++; 
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  } 
  else { 
   occurrence = 0; 
  } 
} 
 
 
//Check if more than one command is occurring - if not then return its command 
std::string Command::checkCommand() 
{ 
 //Checks if lip suck is above 5, all other gestures are checked above 10 
 if ((occurrence > 5) && (selection == 3)) 
 { 
  send = true; 
  return command; 
 } 
 else if (occurrence > 10) 
 { 
  send = true; 
  return command; 
 } 
 else { 
  send = false; 
  return " "; 
 } 
} 
 
//Send command to arduino  
void Command::sendCommand(std::string c) 
{ 
 
 std::string input_string = c; 
 
 std::cout << "Sending " << name << "\n"; 
  ////Getting input 
  //std::getline(std::cin, input_string); 
 
  //Creating a c string 
  char *c_string = new char[input_string.size() + 1]; 
  //copying the std::string to c string 
  std::copy(input_string.begin(), input_string.end(), c_string); 
  //Adding the delimiter 
  c_string[input_string.size()] = '\n'; 
  //Writing string to arduino 
  arduino.writeSerialPort(c_string, MAX_DATA_LENGTH); 
  //Getting reply from arduino 
  arduino.readSerialPort(output, MAX_DATA_LENGTH); 
  //printing the output 
  puts(output); 
  //freeing c_string memory 
  delete[] c_string; 
} 
 
 
int main(int argc, char **argv) 
{ 
 //Creates constructors for each command (with exception of test - used for testing) 
 Command forward; 
 Command backward; 
 Command left; 
 Command right; 
 Command halt; 
 Command test; 
  
 vector<string> arguments = get_arguments(argc, argv); 
 
 // no arguments: output usage 
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 if (arguments.size() == 1) 
 { 
  cout << "For command line arguments see:" << endl; 
  cout << " https://github.com/TadasBaltrusaitis/OpenFace/wiki/Command-line-arguments"; 
  return 0; 
 } 
 
 //check if arduino is connected 
 if (arduino.isConnected()) std::cout << "Connection Established" << endl; 
 else std::cout << "ERROR, check port name\n"; 
 
 //User selection of gestures to use 
 char choice; 
 std::cout << "\nHello, are you happy to use the following gestures for these commands (Y/N)? \n\n" 
  << "STOP: Open Mouth \n" 
  << "FORWARD: Raise Eyebrows \n" 
  << "BACKWARD: Wrinkle nose \n" 
  << "LEFT: Tilt head left \n" 
  << "RIGHT: Tilt head right" 
  //<< "TEST: Lip suck" 
  << endl; 
 
 while (!(std::cin >> choice) || !((choice == 'y') || (choice == 'Y') || (choice == 'n') || (choice == 'N'))) 
 { 
  std::cin.clear(); 
  std::cin.ignore(256, '\n'); 
  std::cout << "ERROR: please input a Y or N \n"; 
 } 
 
 if ((choice == 'y') || (choice == 'Y')) 
 { 
  halt.Command::setGesture("halt", 2); 
  forward.Command::setGesture("forward", 0); 
  backward.Command::setGesture("backward", 1); 
  left.Command::setGesture("left", 4); 
  right.Command::setGesture("right", 5); 
  test.Command::setGesture("test", 3); 
 } 
 else if ((choice == 'n') || (choice == 'N')) //Enables user to choose gestures 
 { 
  int userInput[5] = { 15,15,15,15,15 }; 
  std::string commands[] = { "STOP","FORWARD", "BACKWARD","LEFT","RIGHT" }; 
  int i = 0; 
  std::cout << "These are your available gestures: \n" 
   << "0. Raise Eyebrows\n" 
   << "1. Wrinkle nose\n" 
   << "2. Open mouth\n" 
   << "3. Lip suck\n" 
   << "4. Tilt head left\n" 
   << "5. Tilt head right\n" << endl; 
 
  while (i < 5) //Error checking for unacceptable inputs 
  { 
   boolean duplicate = false; 
   std::cout << "What would you like to use for " << commands[i] << " ? \n"; 
   while (!(std::cin >> userInput[i]) || (userInput[i] < 0 || userInput[i] > 5)) 
   { 
    std::cin.clear(); 
    std::cin.ignore(256, '\n'); 
    std::cout << "ERROR: you must enter a number between 0-4, please try 
again. " << endl; 
   } 
   for (int k = 0; k < i; k++) 
   { 
    if (userInput[k] == userInput[i]) 
    { 
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     std::cout << "That gesture has been chosen, please try again. " << 
endl; 
     duplicate = true; 
     break; 
    } 
   } 
   if (!duplicate) 
   { 
    i++; 
   } 
  } 
  //Set gestures for commands according to user input 
  halt.Command::setGesture("halt", userInput[0]); 
  forward.Command::setGesture("forward", userInput[1]); 
  backward.Command::setGesture("backward", userInput[2]); 
  left.Command::setGesture("left", userInput[3]); 
  right.Command::setGesture("right", userInput[4]); 
 } 
 std::cout << "\nThese are the gestures chosen: \n"  
  << "STOP: " << halt.name << "\n"  
  << "FORWARD: " << forward.name << "\n"  
  << "BACKWARD: " << backward.name << "\n"  
  << "LEFT: " << left.name << " \n"  
  << "RIGHT: " << right.name << endl; 
 
 // Load the modules that are being used for tracking and face analysis 
 // Load face landmark detector 
 LandmarkDetector::FaceModelParameters det_parameters(arguments); 
 // Always track gaze in feature extraction 
 LandmarkDetector::CLNF face_model(det_parameters.model_location); 
 
 if (!face_model.loaded_successfully) 
 { 
  cout << "ERROR: Could not load the landmark detector" << endl; 
  return 1; 
 } 
 
 // Load facial feature extractor and AU analyser 
 FaceAnalysis::FaceAnalyserParameters face_analysis_params(arguments); 
 FaceAnalysis::FaceAnalyser face_analyser(face_analysis_params); 
 
 if (!face_model.eye_model) 
 { 
  cout << "WARNING: no eye model found" << endl; 
 } 
 
 if (face_analyser.GetAUClassNames().size() == 0 && face_analyser.GetAUClassNames().size() == 0) 
 { 
  cout << "WARNING: no Action Unit models found" << endl; 
 } 
 
 Utilities::SequenceCapture sequence_reader; 
 
 // A utility for visualizing the results 
 Utilities::Visualizer visualizer(arguments); 
 
 // Tracking FPS for visualization 
 Utilities::FpsTracker fps_tracker; 
 fps_tracker.AddFrame(); 

 
 while (true) // this is not a for loop as it might also be reading from a webcam 
 { 
 
  // The sequence reader chooses what to open based on command line arguments provided 
  if (!sequence_reader.Open(arguments)) 
   break; 
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  INFO_STREAM("Device or file opened"); 
 
  if (sequence_reader.IsWebcam()) 
  { 
   INFO_STREAM("WARNING: using a webcam in feature extraction, Action Unit 
predictions will not be as accurate in real-time webcam mode"); 
   INFO_STREAM("WARNING: using a webcam in feature extraction, forcing 
visualization of tracking to allow quitting the application (press q)"); 
   visualizer.vis_track = true; 
  } 
 
  cv::Mat captured_image; 
 
  Utilities::RecorderOpenFaceParameters recording_params(arguments, true, 
sequence_reader.IsWebcam(), 
   sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy, 
sequence_reader.fps); 
  if (!face_model.eye_model) 
  { 
   recording_params.setOutputGaze(false); 
  } 
  Utilities::RecorderOpenFace open_face_rec(sequence_reader.name, recording_params, 
arguments); 
 
  if (recording_params.outputGaze() && !face_model.eye_model) 
   cout << "WARNING: no eye model defined, but outputting gaze" << endl; 
 
  captured_image = sequence_reader.GetNextFrame(); 
 
  // For reporting progress 
  double reported_completion = 0; 
 
  INFO_STREAM("Starting tracking"); 
  while (!captured_image.empty()) 
  { 
   // Converting to grayscale 
   cv::Mat_<uchar> grayscale_image = sequence_reader.GetGrayFrame(); 
 
   // The actual facial landmark detection / tracking 
   bool detection_success = 
LandmarkDetector::DetectLandmarksInVideo(captured_image, face_model, det_parameters, grayscale_image); 
 
 
   // Do face alignment 
   cv::Mat sim_warped_img; 
   cv::Mat_<double> hog_descriptor; int num_hog_rows = 0, num_hog_cols = 0; 
 
   // Perform AU detection and HOG feature extraction, as this can be expensive only 
compute it if needed by output or visualization 
   if (recording_params.outputAlignedFaces() || recording_params.outputHOG() || 
recording_params.outputAUs() || visualizer.vis_align || visualizer.vis_hog || visualizer.vis_aus) 
   { 
    face_analyser.AddNextFrame(captured_image, 
face_model.detected_landmarks, face_model.detection_success, sequence_reader.time_stamp, 
sequence_reader.IsWebcam()); 
    face_analyser.GetLatestAlignedFace(sim_warped_img); 
    face_analyser.GetLatestHOG(hog_descriptor, num_hog_rows, 
num_hog_cols); 
   } 
 
   // Work out the pose of the head from the tracked model 
   cv::Vec6d pose_estimate = LandmarkDetector::GetPose(face_model, 
sequence_reader.fx, sequence_reader.fy, sequence_reader.cx, sequence_reader.cy); 
    
   //Detect gesture according to set parameters 
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   forward.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
   backward.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
   left.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
   right.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
   halt.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
   test.Command::detectGesture(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass(), pose_estimate); 
 
   //check if any commands have occurred 10+ times 
   forward.Command::checkCommand(); 
   backward.Command::checkCommand(); 
   left.Command::checkCommand(); 
   right.Command::checkCommand(); 
   halt.Command::checkCommand(); 
 
   //converts bool to int to count number of gestures occurring 
   int gesturesOccurring = (int)forward.send + (int)backward.send + (int)left.send + 
(int)right.send + (int)halt.send; 
   //std::cout << " gestures: "  << gesturesOccurring;  
 
   //if only one command is on at a time, then send command 
   if (gesturesOccurring == 1 ) 
   { 
    //send command based on input  
    if (forward.send == true) 
    { 
     forward.Command::sendCommand("w"); 
    } 
    else if (backward.send == true) 
    { 
     backward.Command::sendCommand("s"); 
    } 
    else if (left.send == true) 
    { 
     left.Command::sendCommand("a"); 
    } 
    else if (right.send == true) 
    { 
     right.Command::sendCommand("d"); 
    } 
    else if (halt.send == true) 
    { 
     halt.Command::sendCommand("q"); 
    } 
   } 
 
 
   // Keeping track of FPS 
   fps_tracker.AddFrame(); 
 
   // Displaying the tracking visualizations 
   visualizer.SetImage(captured_image, sequence_reader.fx, sequence_reader.fy, 
sequence_reader.cx, sequence_reader.cy); 
   visualizer.SetObservationFaceAlign(sim_warped_img); 
   visualizer.SetObservationHOG(hog_descriptor, num_hog_rows, num_hog_cols); 
   visualizer.SetObservationLandmarks(face_model.detected_landmarks, 
face_model.detection_certainty, face_model.GetVisibilities()); 
   visualizer.SetObservationPose(pose_estimate, face_model.detection_certainty); 
   visualizer.SetObservationActionUnits(face_analyser.GetCurrentAUsReg(), 
face_analyser.GetCurrentAUsClass()); 
   visualizer.SetFps(fps_tracker.GetFPS()); 
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   // detect key presses 
   char character_press = visualizer.ShowObservation(); 
 
   // quit processing the current sequence (useful when in Webcam mode) 
   if (character_press == 'q') 
   { 
    break; 
   } 
 
   
   // Reporting progress 
   if (sequence_reader.GetProgress() >= reported_completion / 10.0) 
   { 
    cout << reported_completion * 10 << "% "; 
    if (reported_completion == 10) 
    { 
     cout << endl; 
    } 
    reported_completion = reported_completion + 1; 
   } 
 
   // Grabbing the next frame in the sequence 
   captured_image = sequence_reader.GetNextFrame(); 
 
  } 
 
  INFO_STREAM("Closing output recorder"); 
  open_face_rec.Close(); 
  INFO_STREAM("Closing input reader"); 
  sequence_reader.Close(); 
  INFO_STREAM("Closed successfully"); 
 
  // Reset the models for the next video 
  face_analyser.Reset(); 
  face_model.Reset(); 
 
 } 
 
 return 0; 
} 
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APPENDIX C – SERIAL CONNECTION FOR THE ARDUINO (MANDAL, 
2016) 

C.1 SERIAL.H 

#pragma once 
 
#ifndef SERIALPORT_H 
#define SERIALPORT_H 
 
#define ARDUINO_WAIT_TIME 2000 
#define MAX_DATA_LENGTH 255 
 
#include <windows.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
class SerialPort 
{ 
private: 
 HANDLE handler; 
 bool connected; 
 COMSTAT status; 
 DWORD errors; 
public: 
 SerialPort(char *portName); 
 ~SerialPort(); 
 
 int readSerialPort(char *buffer, unsigned int buf_size); 
 bool writeSerialPort(char *buffer, unsigned int buf_size); 
 //bool writeSerialPort(char c, unsigned int buf_size); 
 bool isConnected(); 
}; 
 
#endif // SERIALPORT_H 

C.2 SERIAL.CPP 

#include "SerialPort.h" 
 
SerialPort::SerialPort(char *portName) 
{ 
 this->connected = false; 
 
 this->handler = CreateFileA(static_cast<LPCSTR>(portName), 
  GENERIC_READ | GENERIC_WRITE, 
  0, 
  NULL, 
  OPEN_EXISTING, 
  FILE_ATTRIBUTE_NORMAL, 
  NULL); 
 if (this->handler == INVALID_HANDLE_VALUE) { 
  if (GetLastError() == ERROR_FILE_NOT_FOUND) { 
   printf("ERROR: Handle was not attached. Reason: %s not available\n", 
portName); 
  } 
  else 
  { 
   printf("ERROR!!!"); 
  } 
 } 
 else { 
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  DCB dcbSerialParameters = { 0 }; 
 
  if (!GetCommState(this->handler, &dcbSerialParameters)) { 
   printf("failed to get current serial parameters"); 
  } 
  else { 
   dcbSerialParameters.BaudRate = CBR_9600; //set baud rate 
   dcbSerialParameters.ByteSize = 8;  //8 data bits 
   dcbSerialParameters.StopBits = ONESTOPBIT; //1 stop 
   dcbSerialParameters.Parity = NOPARITY; //no parity 
   dcbSerialParameters.fDtrControl = DTR_CONTROL_ENABLE; 
 
   if (!SetCommState(handler, &dcbSerialParameters)) 
   { 
    printf("ALERT: could not set Serial port parameters\n"); 
   } 
   else { 
    this->connected = true; 
    PurgeComm(this->handler, PURGE_RXCLEAR | PURGE_TXCLEAR); 
    Sleep(ARDUINO_WAIT_TIME); 
   } 
  } 
 } 
} 
 
SerialPort::~SerialPort() 
{ 
 if (this->connected) { 
  this->connected = false; 
  CloseHandle(this->handler); 
 } 
} 
 
int SerialPort::readSerialPort(char *buffer, unsigned int buf_size) 
{ 
 DWORD bytesRead; 
 unsigned int toRead; 
 
 ClearCommError(this->handler, &this->errors, &this->status); 
 
 if (this->status.cbInQue > 0) { 
  if (this->status.cbInQue > buf_size) { 
   toRead = buf_size; 
  } 
  else toRead = this->status.cbInQue; 
 } 
 
 if (ReadFile(this->handler, buffer, toRead, &bytesRead, NULL)) return bytesRead; 
 
 return 0; 
} 
 
bool SerialPort::writeSerialPort(char *buffer, unsigned int buf_size) //obtains a char string and returns true 
when sent 
{ 
 DWORD bytesSend; //number of bytes to send 
 
 if (!WriteFile(this->handler, (void*)buffer, buf_size, &bytesSend, 0)) { //has to send string 
  ClearCommError(this->handler, &this->errors, &this->status); 
  return false; 
 } 
 else return true; 
} 
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bool SerialPort::isConnected() 
{ 
 return this->connected; 
} 
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APPENDIX D – ARDUINO CODE TO CONTROL THE WHEELCHAIR 
(KUKREJA, 2018) 
//Include libraries 
#include<SPI.h> 
//Default baud speed for communication 
#define BAUD 9600 
//Pins 
#define CS_ADC 10  
#define CS_POT 8 
#define led 13 
//macro for on/off 
#define on (digitalWrite(led, HIGH)) 
#define off (digitalWrite(led, LOW)) 
 
byte channel0 = 0xE0; 
byte channel1 = 0xE8; 
byte POT_FB = 0x12; //00010001 
byte POT_LR = 0x11;//00010010 
byte POT_ALL = 0x13;//00010011 
int jstickval; 
 
 
void setup() { 
 pinMode(CS_POT, OUTPUT); 
 pinMode(CS_ADC, OUTPUT); 
 pinMode(led, OUTPUT); 
 
 digitalWrite(CS_ADC, LOW); 
 digitalWrite(CS_ADC, HIGH); 
 digitalWrite(CS_POT, HIGH); 
 
 Serial.begin(BAUD); 
 SPI.begin(); 
 
 SPI.setBitOrder(MSBFIRST); 
 SPI.setDataMode(SPI_MODE3); 
 SPI.setClockDivider(SPI_CLOCK_DIV64); 
 
 POTcontrol(POT_ALL, 0x80); 
 delay(2000); 
} 
 
void loop() { 
 if (!check_joystick()) 
  face_keyboard_control(); 
 
 else 
  joystick(); 
} 
 
void POTcontrol(byte address, byte value) //send  
{ 
 digitalWrite(CS_POT, LOW); 
 SPI.transfer(address); 
 SPI.transfer(value); 
 digitalWrite(CS_POT, HIGH); 
} 
 
void face_keyboard_control() 
{ 
 
 String input; 
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 //If any input is detected in arduino 
 if (Serial.available() > 0) { 
  //read the whole string until '\n' delimiter is read 
  input = Serial.readStringUntil('\n'); 
 
  //If input == "ON" then turn on the led  
  //and send a reply 
  if (input.equals("ON")) { 
   digitalWrite(led, HIGH); 
   Serial.println("Led is on"); 
  } 
  //If input == "OFF" then turn off the led  
  //and send a reply 
  else if (input.equals("OFF")) { 
   digitalWrite(led, LOW); 
   Serial.println("Led is off"); 
  } 
 
  if (input == "w") //w Forward 
  { 
   POTcontrol(POT_FB, 0xFB); 
   POTcontrol(POT_LR, 0x80); 
   Serial.println("Forward"); 
    
 
  } 
  else if (input == "a") //a  Left 
  { 
   POTcontrol(POT_FB, 0x80); 
   POTcontrol(POT_LR, 0x0A); 
   Serial.println("Left"); 
    
  } 
  else  if (input == "s") //s   Reverse 
  { 
   POTcontrol(POT_FB, 0x08); 
   POTcontrol(POT_LR, 0x80); 
   Serial.println("Reverse"); 
    
  } 
  else  if (input == "d") //d   Right 
  { 
   POTcontrol(POT_FB, 0x08); 
   POTcontrol(POT_LR, 0xFB); 
   Serial.println("Right"); 
  
  } 
  else  if (input == "q") //stop q 
  { 
   POTcontrol(POT_FB, 0x80); 
   POTcontrol(POT_LR, 0x80); 
   Serial.println("Stop"); 
  } 
 } 
} 
 
int ADC_read(byte channel) 
{ 
 int com; 
 int volt; 
 byte sbit; 
 byte fbit; 
 com = channel << 8 | 0x00; 
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 digitalWrite(CS_ADC, LOW); 
 volt = SPI.transfer16(com) & 0x3FF; 
 digitalWrite(CS_ADC, HIGH); 
 return volt; 
} 
 
void joystick() 
{ 
 int turnjval; 
 int fbjval; 
 int turn; 
 int drive; 
 float mult = 0.85; 
 
 turnjval = ADC_read(channel0); 
 fbjval = ADC_read(channel1); 
 turn = (turnjval - 100)*mult; 
 drive = (fbjval - 100)*mult; 
 POTcontrol(POT_FB, drive); 
 POTcontrol(POT_LR, turn); 
} 
 
 
byte check_joystick() 
{ 
 int jval; 
 
 jval = ADC_read(channel1); 
 
 if (jval > 266 || jval < 240) 
  return 1; 
 else 
  return 0; 
} 
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APPENDIX E – STANDARD TESTING PROTOCOL 
 

A total of 9 tests will be conducted for a minute each. Gestures 2-5 will be performed twice 

to observe both short and continuous actions. You will be played a metronome at a certain 

tempo which will help to signify when you will perform the gestures. The first round will 

involve performing the action every 4 beats and the second will involve holding the action 

for 4 beats, relax for 4 beats and holding the action for 4 beats. These are the tests: 

1. Neutral i.e. relaxed face 

2. Raise Eyebrows every 4 beats 

3. Wrinkle Nose every 4 beats 

4. Open Mouth every 4 beats 

5. Lip Suck every 4 beats 

6. Repeat 2-5 and instead of performing the action every 4 beats - hold the action for 4 

beats, relax for 4 beats and hold again for 4 beats, etc. 

If you have any questions or require a demonstration of this procedure, feel free to ask the 

researcher.  


