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Summary 
	
Mounting evidence suggests an involvement of neuroinflammation in major depressive 

disorder (MDD). Psychological stress activates pro-inflammatory signalling by means of 

Nod-like receptors family pyrin domain containing 3 (NLRP3) inflammasome assembly and 

processing of pro-inflammatory cytokines, which exacerbate depressive-like symptoms. 

To test the antidepressant efficacy of inhibiting pro-inflammatory signalling during stress 

exposure we used caspase 1 (Casp1) knockout (-/-) mice and mice simultaneously lacking 

Casp1, inducible nitric oxide synthase (Nos2) and interferon gamma receptor (Ifngr) genes 

in pre-clinical MDD paradigms. We assessed: a) baseline behaviour, b) the behavioural 

response to chronic stress, c) the levels of the circulating adrenocorticotropic hormone 

(ACTH) and corticosterone (CORT) following stress, in (Casp1, Ifngr, Nos2)-/- triple 

knockout mice, and d) gut microbiome composition in response to chronic stress and 

pharmacological CASP1 inhibition with minocycline. 

We found that Casp1-/- mice and (Casp1, Ifngr, Nos2)-/- mice display decreased anxiety- 

and depressive-like behaviour. These two mouse strains also have increased locomotor 

activity and Casp1-/- mice has increased locomotor skills. Similarly, CASP1 inhibition with 

minocycline ameliorated stress-induced depressive-like behaviour in wild-type (wt) mice 

and shifted gut microbiota composition compared to stress treatment alone. We observed 

shifts in gut microbiome composition following stress with increased representation of 

bacterial species conducive to a pro-inflammatory environment, which were decreased 

following pharmacological CASP1 inhibition. Moreover, we observed that CASP1 inhibition 

affects the response to chronic stress by preventing the exacerbation of depressive- and 

anxiety-like behaviours. Lastly, we found that (Casp1, Ifngr, Nos2)-/-mice display a 

decreased exacerbation of anhedonic-like behaviour after stress compared to wt mice. 

Interestingly, no differences were found in the level of circulating CORT and ACTH 

between (Casp1, Ifngr, Nos2)-/- and wt mice. 

Together, these results point towards antidepressant-like effects of pro-inflammatory 

signalling inhibition in MDD, and suggest that at least some of these effects are mediated 

by changes in gut microbiome composition. Based on our findings and corroborated by the 

increasing evidence connecting psychological stress, immune activation, gut dysbiosis and 

co-morbid illnesses, we formulate the “microbiome-inflammasome” hypothesis of major 

depression and co-morbid systemic illnesses. This hypothesis speculates that NLRP3-
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orchestrated processes represent a key node in a) stress-induced gut dysbiosis, b) 

dysbiosis-induced inflammatory dysregulation which lead to depressive symptoms, c) 

dysbiosis-induced dysregulation of neurotransmitter production, which exacerbates 

depressive symptoms, d) dysbiosis-induced immune activation, which leads to the 

development of co-morbid systemic conditions, and e) immune dysregulation resulting 

from systemic conditions leading to MDD and dysbiosis.  

Future studies should aim at streamlining diagnostic strategies to identify MDD patients 

with dysregulated immune profiles, who could benefit from anti-inflammatory therapies. 

Finally, the clinical safety and efficacy of direct inhibition of pro-inflammatory pathways as 

well as their indirect inhibition by means of psychobiotics administration, faecal microbiota 

transplantation and diet should be further investigated in MDD patients. This could lead to 

the identification of novel, more efficacious, personalized therapeutic strategies in MDD.	  
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Chapter 1 - Introduction and thesis overview 

Major depressive disorder (MDD) 
MDD is a mental illness that affects the way a person feels, thinks, and behaves by 

causing long-lasting feelings of sadness and loss of interest in activities that were 

previously enjoyed.1 According to the 5th edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5), patients diagnosed with MDD present an impaired ability to 

work, study or cope with daily activities accompanied by symptoms such as depressed 

mood, anhedonia, feelings of guilt or low self-worth, disturbed appetite, dysregulation of 

sleep patterns, fatigue, psychomotor alterations and poor concentration.1 Global estimates 

suggest that about 350 million individuals of all ages suffer from MDD, making this 

condition one of the leading causes of disability worldwide.2,3 In Australia, epidemiological 

estimates suggest that 1 in 5 women and 1 in 8 men will experience a depressive episode 

during their lives, with some three million people experiencing depression at any given 

time.4 Further, suicide associated with MDD represents the second leading cause of death 

in individuals aged 15-29 worldwide (with an estimated 800,000 individuals who take their 

lives every year) and represents the first leading cause of death in individuals aged 15-24 

in Australia.2-4  

Treatment modalities in MDD 
Several treatment approaches are available for MDD. Treatment selection for MDD 

patients is usually shaped around the symptom profile that a patient presents at treatment 

onset. The main modalities of MDD treatment are a) pharmacotherapy (such as treatment 

with monoamine reuptake inhibitors), b) psychological treatment (such as cognitive 

behavioural therapy), and c) physical treatment (such as transcranial magnetic stimulation 

and electroconvulsive therapy).5 In mild depression, psychotherapy is advocated, since the 

outcomes of pharmacological treatments are considered poor.6 In moderate to severe 

depression, often the first line of therapy revolves around pharmacotherapy, sometimes in 

combination with psychotherapy.7 In treatment-resistant depression (when a patient does 

not achieve remission following two or more trials of antidepressant drugs8), cognitive 

behavioural therapy as an adjunctive therapy to antidepressants has been confirmed to be 

effective in a multicentre clinical trial.9 Similarly, the efficacy of electroconvulsive therapy 

has been established in treatment-resistant depression,10,11 while the efficacy of 

transcranial magnetic stimulation is still being debated.12,13	
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Pharmacotherapy in MDD 
Antidepressant medications represent the core of MDD pharmacotherapy. Commercially 

available antidepressant drugs act via increasing the levels of available neurotransmitters 

at the synapses through disparate mechanisms. Several classes of antidepressants are 

available such as a) selective-serotonin-reuptake inhibitors (SSRIs) and b) serotonin-

norepinephrine-reuptake inhibitors (SNRIs), both of which inhibit the reuptake of 

neurotransmitters at the synaptic cleft and therefore increase the extracellular 

concentration of such neurotransmitters,14,15 c) monoamine oxidase inhibitors (MAOIs), 

which prevent the enzymatic degradation of monoamines16 and d) tricyclic antidepressants 

(TCAs), which inhibit the synaptic reuptake of serotonin (5HT) and norepinephrine (NE).17 

Meta analyses of randomized controlled trials report antidepressant medications to be 20-

30% more effective than placebo, presenting higher response rates in patients with greater 

symptom severity.18,19 If a patient only responds partially after the first treatment trial: a) 

higher doses of the same antidepressant might be prescribed, b) the treatment can be 

switched from one antidepressant to another, c) a non-antidepressant drug can be added 

to the regimen (augmentation), or d) a second antidepressant can be added to the 

regimen (combination).20 These approaches should ultimately increase the likelihood of full 

remission (the absence of depressive symptoms and the return to a one’s normal self). 

The serendipitous discovery of the “mood elevating” effects of the MAOI iproniazid (used 

in the treatment of tuberculosis) and those of the TCA Imipramine (used as an 

antihistaminic) led these drugs to represent the first class of antidepressants at the 

beginning of the 1950s.21,22 The mood enhancing effects of iproniazid and imipramine, 

together with their inferred monoamine-enhancing effects and the mood depressing effects 

of drugs that depleted catecholamines led to the formulation of the monoamine hypothesis 

of depression. This theory suggests that low levels of monoamines such as 5HT and NE 

are responsible for the symptoms observed in MDD.23-26 However, this theory, which has 

represented a pivotal point in shaping MDD pharmacotherapy, has since been considered 

controversial by some. This is because the monoamine hypothesis of depression fails to 

address some major issues, such as the delayed onset of action of antidepressant drugs, 

the fact that only a subset of depressed patients achieve remission following 

antidepressant treatment and the fact that reuptake inhibitors are only slightly better than 

placebo in double blind, placebo controlled studies.26-28 Further, given the heterogeneity of 

the disease and the inter-individual variability of MDD symptoms, pharmacological 

treatments present high rate of failure and patients might need to trial several 
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antidepressant drugs to determine which is effective. Given the poor understanding of the 

molecular underpinnings of MDD, the low success rate of existing therapies (only 1 in 3 

MDD patients achieves full remission after the first line of treatment) and the high 

incidence of side effects, the need emerges for a better understanding of the molecular 

causes of this disease. Such an understanding could lead to the development of more 

efficacious and personalised pharmacotherapies. 

Selective-serotonin-reuptake inhibitors  

The most common class of antidepressant drug prescribed to adults diagnosed with MDD 

is SSRIs. These medications (such as citalopram, escitalopram, fluoxetine, sertraline, 

paroxetine, viladozone and fluvoxamine) selectively act by interfering with the reuptake of 

5HT mediated by the 5HT transporter after 5HT is released from the axon terminals and 

bind to 5HT receptors in the synaptic cleft.14 Given this mechanism of action, the mood-

enhancing effects of SSRIs are attributed to an increase in extracellular 5HT available at 

the synaptic cleft. If a patient fails to respond (or responds partially) to the initial doses of 

SSRIs, they are usually prescribed higher doses of SSRIs or add-on therapies, given that 

the recommended goal in clinical MDD is remission, which is having minimal or no 

depressive symptoms at all.29 One major drawback of SSRIs therapy is the side effects 

profile which, although an improvement on older classes of antidepressant medications 

such as TCA and MAOIs, is still considered quite concerning given the current prevalence 

of prescription.30 The most common side effects are related to the serotonergic system 

and are dose-dependent. They include but are not limited to gastrointestinal disturbances, 

weight gain, sexual dysfunction, headaches, anxiety, agitation and insomnia.30 Patients 

who fail to respond to SSRIs are often prescribed SNRIs.  

Serotonin-norepinephrine-reuptake inhibitors 

SNRIs (such as duloxetine, venlafaxine, bupropion, desvenlafaxine, and levomilnacipran) 

were developed more recently than SSRIs and are often prescribed to patients who do not 

respond to SSRIs. The mechanism of action of SNRIs is the inhibition of the synaptic 

reuptake of 5HT and NE, which result in an increased extracellular availability of those 

neurotransmitters.15 Some studies suggested that SNRIs might be more effective than 

SSRI in achieving MDD remission. However, there seems to be a high inter-individual 

response variability to these medications, possibly because of pharmacogenomics 

differences amongst the population.31 The most common side effects experienced by 

patients prescribed SNRIs are nausea, drowsiness, headaches, appetite changes and 

diminished libido.32,33 Importantly, in-utero exposure to the SNRI venlafaxine has been 
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shown to increase cardiac anomalies in the offspring, suggesting that this drug should not 

be prescribed during pregnancy.34 Finally, discontinuation syndrome has been reported to 

be worse for SNRIs than SSRIs.32 

Tryciclic antidepressant and monoamine oxidase inhibitors 

TCAs (such as imipramine, desipramine, clomipramine, amoxapine, amitriptyline and 

nortriptyline) are one of the earliest classes of antidepressants discovered. Although TCAs 

are effective in ameliorating depressive symptoms, they also (unlike SSRIs and SNRIs) 

interact with histaminic, muscarinic and alpha 1 postsynaptic receptors, actions considered 

to underlie at least some of their most substantial side effects, such as constipation, dry 

mouth, drowsiness, liquid retention, weight gain, and sexual dysfunction.35,36 Therefore, 

they have largely been replaced by other classes of antidepressants with fewer side 

effects. Like SNRIs, TCAs act by inhibiting the reuptake of 5HT and NE and therefore 

increase the bioavailability of these neurotransmitters at the synapses.17 While the clinical 

efficacy of TCAs can be compared to that of SSRIs, the dropout rates are higher for TCAs, 

possibly because of the greater side effects that they present.17 Accordingly, TCAs are 

often only used in treatment resistant depression, when other lines of pharmacotherapy 

have proved ineffective.  

MAOIs (such as tranylcypromine, rasagiline, selegiline, and phenelzine) are compounds 

that hinder the degradation of monoamines by the endogenous MAO family of enzymes. 

Such compounds act by decreasing the degradation rate of neurotransmitters, which 

increases their bioavailability.16 MAOIs were the first class of antidepressants to be 

serendipitously discovered in the 1950’s when iproniazid (used for the treatment of 

tuberculosis) showed mood enhancing effects.37 Much like TCAs, MAOIs are now only 

prescribed for treatment-resistant patients if other lines of pharmacotherapy (such as 

SSRIs and SNRIs) have failed. 

Ketamine 

Over the past two decades the sedative drug ketamine, which acts as a glutamate 

receptor antagonist, has gained increasing attention for its rapid and sustained 

antidepressant effects.38 In fact intravenous administration of low-dose ketamine 

(0.5mg/kg) has been shown to promptly reduce depressive symptoms, hopelessness and 

suicidality in MDD patients.39 These fast-onset antidepressant effects represent a striking 

contrast when compared to other classes of approved antidepressant drugs which have a 

delayed onset of several days up to several weeks.40 Low doses of ketamine seem to be 
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well-tolerated although a minority of patients present short-term mild-to-moderate 

dissociative symptoms and increased heart rate and blood pressure, which resolve within 

4 hours of administration.39 It has been suggested that the acute antidepressant effects of 

ketamine might be mediated by its neuroplasticity-enhancing properties.38 However, no 

study has so far investigated the safety of long-term ketamine administration nor the 

physical, psychiatric or neurological side effects thereof. Therefore, particular care should 

be taken until more evidence is available. Future larger size double blind, placebo-

controlled studies should address these aspects to guide informed policy decisions. 

The potential of anti-inflammatory medications in the treatment of MDD 

Recently, the potential of non-steroidal anti-inflammatory drugs has come to the forefront 

of MDD pharmacotherapy. In fact, studies have reported increased activation of pro-

inflammatory pathways in at least a subset of patients diagnosed with MDD.41-43 This 

suggests that targeting pro-inflammatory mediators could prove useful as a stand-alone or 

adjunctive therapy for those MDD patients that present altered inflammatory profiles. 

Unsurprisingly, it has been reported that only MDD patients with increased levels of 

immune mediators benefit from anti-inflammatory therapies, while others patients do 

not.42,44  

While a body of work exists describing the dysregulation of immune processes in MDD, 

there is a paucity of translational studies investigating whether targeting pro-inflammatory 

mediators could represent a valid therapeutic approach. Therefore, in the first part of this 

investigation (study 1), we tested the effects of genetic ablation or pharmacological 

inhibition of the pro-inflammatory mediator CASP1. In the second part of this investigation 

(study 2), we investigated the antidepressant-like effects of simultaneously deleting the 

genes Casp1, Nos2 and Ifngr in a pre-clinical model of MDD. 

Disease hypotheses 
Based on the available pre-clinical, clinical, molecular and behavioural evidence 

accumulated over the past several decades, multiple hypotheses have been developed in 

order to address the pathophysiology of MDD. Five main hypotheses have been 

formulated: a) the monoamine-serotonin hypothesis,45,46 b) the glutamate hypothesis,47,48 

c) the corticosteroid receptor hypothesis,49,50 d) the brain derived neurotrophic factor 

(BDNF) hypothesis,51,52 and e) the macrophage (or cytokine) hypothesis.53-59 However, 

despite the attempts of researchers to shed light on the dysfunctions of specific biological 

systems that lead to MDD, this disorder seems to arise from a complex interplay of 
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genetics and environmental factors: these theories are therefore not necessarily mutually 

exclusive.60,61 In this work, we have focussed on the macrophage (or cytokine) hypothesis 

of MDD, and our results corroborate this hypothesis. Given the available evidence to date, 

corroborated by the findings of our study, we have formulated a novel hypothesis of 

depression, the “microbiome-inflammasome” hypothesis of major depression and co-

morbid systemic dysfunctions (see chapter 6). This hypothesis takes into account the 

multidirectional communication pathways linking the brain, the immune system and the gut 

microbiome in responding to psychological stress. When those pathways become 

dysregulated, they can increase the risk of developing MDD and co-morbid systemic 

illnesses. 

Innate and acquired immunity 

The work presented here has been shaped around the increasing pre-clinical and clinical 

evidence suggesting an involvement of neuroinflammatory pathways in the response to 

psychological stress62,63 and in the development of MDD58,64 and co-morbid systemic 

illnesses.46,65-70 Generally, the immune system is considered to have 2 “arms”, the innate 

(non-specific) and the adaptive (acquired) arms. Innate immunity indicates non-specific 

mechanisms, which represent the first line of defense against pathogens and come into 

play immediately or within a few hours of an antigen being recognized by the body. 

Macrophages and neutrophils are part of the innate arm of the immune system and are 

essential for the control of bacterial infections. Activated macrophages secrete cytokines 

(small proteins released by immune cells which affect the communication and interaction 

between cells71) such as interleukins and interferons, and chemokines (cytokines with 

chemotactic properties72) such as intercellular adhesion molecules and macrophage 

inflammatory proteins. These molecules create an inflammatory state with the final aim of 

fighting the invading pathogen and returning the system to homeostasis.73 

Stimulation of the innate immune response subsequently triggers the activation of the 

adaptive immune response, which has a delayed activation compared to the former (4-7 

days) and it is characterized by lymphocyte-mediated processes. Lymphocytes can be 

classified into B cells, which secrete antibodies, and T cells [either ‘helper’ (Th), which 

secrete cytokines, attract macrophages and activate B cells, or ‘cytotoxic’, which actively 

kill the invading pathogens]. The adaptive response begins with the ingestion of a 

pathogen by an immature dendritic cell within the inflamed tissue. Subsequently, the cell 

digests the pathogen and undergoes specific changes becoming a mature antigen-

presenting cell. Subsequently, antigen-presenting cells travel to a nearby lymph node to 
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present the antigens to T lymphocytes which in turn become activated and fight the 

invading pathogen.73 

Psychoneuroimmune interactions and the cytokine hypothesis of depression 
Psychoneuroimmunology is the study of the reciprocal interactions between behavioural 

traits and the immune system, which are mediated by the nervous and endocrine 

systems.273 In MDD, increasing evidence suggests that the communication networks 

existing between the nervous, immune and endocrine systems lie at the crossroads of 

psychosocial stress, onset of depressive symptomatology and antidepressant response.274 

Numerous studies suggest anti-inflammatory and endocrine-modulating effects of 

antidepressants, antidepressant effects of anti-inflammatory medications and differential 

responses to antidepressants driven by polymorphisms in inflammation-related 

genes.196,275-277 With regard to the immune players of such communication, cytokines have 

gained increasing attention over the past 20 years. Cytokines are pleiotropic signalling 

molecules with immunomodulatory function that are expressed constitutively and on-

demand in the periphery as well as in the CNS, and have been associated in at least a 

subset of patients with onset, course and severity of neuropsychiatric disorders, as well as 

with the response to therapeutic drugs.42,58,278-285  

Exposure to psychological stressors primes the immune system towards the creation of a 

pro-inflammatory environment in the brain, a phenomena called sterile inflammation which 

prepares the CNS and the body to trigger a potential full-blown immune response.286,287 

Two main pro-inflammatory gene expression programs delineate such response: 1) the 

first involves the expression of genes (such as IL1B, IL6 and TNF) that result in the 

activation of transcription factors entailing NFKB1 and activator protein-1; 2) the second is 

characterized by the induction of transcription factors such as IFN regulatory factors (IRFs) 

by type I and II IFNs.288 While on one hand these programs are essential for the response 

to the stressor and for the restoration of homeostasis, on the other hand they require high 

amounts of energy and have the potential for collateral damage. In fact, repeated or 

chronic exposure to stress results in a sustained inflammatory milieu in the brain which 

can be deleterious and lead to the development of MDD and co-morbid systemic 

illnesses.193,289  

These lines of evidence have led to the formulation of the “cytokine hypothesis” (or 

“macrophage hypothesis”) of depression, which suggests that cytokines and an out-of-

balance brain-immune communication represent key factors underpinning the 
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pathophysiology of MDD.53,74,206,290,291 The cytokine hypothesis is supported by mounting 

evidence, such as: a) illnesses characterized by chronic inflammatory responses (i.e. type-

1 diabetes and systemic lupus erythematous) are associated with increased depression 

rates,211,213 b) administration of pro-inflammatory cytokines as a therapeutic strategy (i.e. 

IFNA administration in cancer and hepatitis-C) induces a dose-response depressive 

symptomatology entailing depressed mood, malaise and anorexia, as well as some of the 

underlying molecular features of MDD, such as decreased monoamines levels,67,292-295 c) 

administration of pro-inflammatory cytokines in humans and animals induces sickness or 

depressive-like behaviour. The latter represents a physiological adjustment to the 

activation of the immune system, encompassing a behavioural repertoire adopted 

following a raise in the levels of pro-inflammatory cytokines. The symptoms include low 

motivation, fatigue, malaise, loss of interest in social activities, inability to seek and 

experience pleasure, exaggerated pain responses, lack of concentration and sleep pattern 

alterations, manifestations that closely resembles the clinical symptomatology of 

MDD.54,243,249 Lastly, polymorphisms in inflammation-related genes have been associated 

with increased susceptibility to MDD and with differences in antidepressant response.59 

These lines of evidence suggest that neuroinflammatory pathways are involved in the 

onset of depressive symptoms as well as in the response to antidepressant treatment, and 

they provide fertile ground in which to investigate novel diagnostic and therapeutic 

opportunities in the field of neuro-immuno-psychiatry.54,56-59,64,193,196,280,291,296,297 

Major depression and dysregulated inflammatory pathways 
Psychoneuroimmunology research has highlighted that at least a subgroup of MDD 

patients presents a systemic low-grade chronic inflammatory profile underlined by 

increased T-cell, monocytic, microglial and astrocytic activation.64,193,296,298,299 This is 

underlined by increased expression of Th1 pro-inflammatory cytokines such as IL1, IL2, 

IL6, TNF and IFNG, and in decreased expression of Th2-related anti-inflammatory 

cytokines, such as IL4 and IL10 as well as in decreased expression of regulatory T 

cells.41,80,82,83,290,300-303 Such skewed inflammatory balance triggers multiple dysfunctions in 

the body, such as changes in metabolic processes, neurotransmitter systems, gut 

microbiome composition and decreased neurogenesis leading to hippocampal atrophy, 

processes relevant to MDD.133,296,304 Accordingly, volumetric decreases are observed in 

the hippocampus and in other forebrain regions in MDD patients and can be reversed by 

antidepressant treatment; these findings support the neurotrophic hypothesis of 

depression. The latter suggests that MDD is underlined by decrements in neurotrophic 
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factors and neurogenesis, potentially as a result of increased systemic inflammation, which 

leads to atrophy of specific brain areas.167,305-307 In fact, pro-inflammatory cytokines and 

increased glucocorticoids production down-regulate neurotrophins (such as BDNF and 

nerve-growth factor) and neurogenesis of human hippocampal progenitor cells during and 

following stress, while antidepressants reverse such decreases in humans and in pre-

clinical models of depression.308,309 

Minocycline for the treatment of MDD 

Minocycline is a second-generation tetracycline which in an earlier case report was 

described to have antidepressant effects on a bipolar disorder patient.90 Subsequently, 

minocycline was shown to ameliorate disease progression in a mouse model of Huntington 

disease via decreasing pro-inflammatory signalling through inhibition of CASP1, CASP3 

and NOS2.91 Given its reported immunomodulatory properties it was hypothesized that 

minocycline might have antidepressant effects depending on its anti-inflammatory 

properties. Indeed, pre-clinical studies showed that minocycline has antidepressant-like 

effects in the forced swim test, while synergizing with sub-threshold doses of 

antidepressants and glutamate antagonists.92,93 Further studies in rodent models of 

chronic stress suggested that the antidepressant-like effects of minocycline might be 

mediated by its negative modulatory effects on microglial activation.94 Other studies have 

suggested that minocycline might interact with the glutamatergic and/or noradrenergic 

systems; therefore, it cannot be excluded that such mechanisms may also be involved in 

its antidepressant effects.95-97 A recent clinical study has investigated the effects of 

minocycline as an adjunctive treatment in MDD patients. Although no differences were 

found in the Montgomery-Asberg depression scores (the primary outcome measure in that 

study), minocycline-treated patients reported improved quality of life and improved social 

and occupational functioning (secondary outcome measures).98 These seemingly 

contradicting results suggest that larger sample sizes might have been needed to observe 

statistically significant changes in depression scores. Another clinical trial has investigated 

the effects of minocycline in the treatment of bipolar disorder. In that study, the authors 

observed a reduction in the severity of depressive symptoms as well as improvements in 

cognitive functions.99 Other clinical studies have investigated minocycline as a stand-alone 

or adjunctive treatment in psychotic depression and schizophrenia, yielding promising 

results.100-103  

In study 1, we treated wt mice with minocycline to assess if such treatment could prevent 

the exacerbation of anxiety- and depressive-like behaviour following exposure to a chronic 
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stress regimen. Moreover, we sought to investigate the effects of minocycline 

administration during stress exposure on gut microbiome composition, a mechanism that 

we hypothesized to be involved in its antidepressant-like effects. 

The hypothalamic-pituitary-adrenal (HPA) axis 

The three main response systems activated in response to stressful stimuli are the 

sympathetic nervous system (SNS), the hypothalamic-pituitary-adrenal (HPA) axis and the 

locus coeruleus-norepinephrine (LC-NE) system. After stress is perceived by the 

amygdala, the hypothalamus activates the SNS, which triggers the production of 

epinephrine and NE in the LC (in the brain) and the adrenal medulla (in the blood). Upon 

release, these neurotransmitters upregulate pro-inflammatory signalling in virtually every 

organ. Subsequently the HPA axis is activated and corticotropin releasing hormone (CRH) 

and arginine-vasopressin (AVP) are secreted in the hypothalamus. These hormones 

cause the release of ACTH from the pituitary gland, which in turn stimulates the release of 

glucocorticoids from the adrenal glands. Finally, glucocorticoids interact with the 

glucocorticoid receptor (NR3C1) and the mineralocorticoid receptor (NR3C2) in multiple 

tissues to activate intracellular signalling cascades which lead to anti-inflammatory gene 

regulation.104,105 

Interestingly, NR3C1 is highly expressed in the hippocampus, highlighting the role of this 

brain region in the stress response.106 Glucocorticoid receptors are also present within 

individual components of the HPA axis, where they sustain an inhibitory feedback loop on 

CRH and AVP in the hypothalamus and on ACTH secretion from the pituitary.104,106 HPA 

axis-produced glucocorticoids regulate many bodily functions such as stress-related 

responses, metabolism, immunity and brain function. Specifically, in the brain, 

glucocorticoids are involved in the regulation of neuronal survival, neurogenesis, memory 

formation and emotion regulation.104 

Given its role as a key player in the stress response and as a stress mediator, it is 

unsurprising that the HPA axis presents abnormalities in MDD. In fact, a subset of MDD 

patients have a) increased levels of circulating cortisol,107 b) decreased levels of 

glucocorticoid receptors,108 and c) possible increased activity and size of the pituitary and 

adrenal glands.109 These lines of evidence highlight an over-activity of the HPA axis 

accompanied by impaired inhibitory feedback and glucocorticoid resistance.110 Therefore, 

the HPA axis seems one of the key systems dysregulated in MDD, and therapeutic 

targeting of this stress-response system could represent a valid therapeutic strategy in 
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MDD.108,110,111 At the same time, it has been hypothesized that hyperactivity of the HPA 

axis mediated by genetics and early life experiences could be a causative factor rather 

than a consequence in MDD.112 In fact, while glucocorticoids are essential in homeostasis 

and stress responses, they can also lead to dysfunctions in many bodily systems.104 Of 

central importance to this work, it was recently shown that increased CASP1 activity is 

responsible for cleaving NR3C1, thus facilitating glucocorticoid resistance, which could at 

least partially contribute to the decreased level of glucocorticoid receptors and increased 

glucocorticoid resistance observed in MDD patients with heightened inflammatory 

profiles.111,113 Taken together, the available evidence suggests that regulating HPA axis 

activity could represent a valuable therapeutic tool in MDD. 

The microbiome-gut-brain (MGB) axis 
Recently, the role of the gut microbiome in behaviour, its interconnectedness with brain 

processes, and its potential involvement in the pathophysiology of MDD have come to the 

forefront in psychiatry.114-116 The term microbiome refers to all bacteria, bacterial genomes 

and bacterial metabolites and byproducts present in a specific habitat at any given 

point.117 Its phylogenetic composition is determined by both selective pressure form the 

host and microbial competition.118  

The microbiome-gut-brain (MGB) axis consists of a communication network that controls 

and integrates gut and brain function, and that seems to be a central modulator of health 

and disease.119 More specifically, there seems to exist a bidirectional communication 

between the gut and the brain, which occurs through multiple intertwined pathways, 

mediated by the vagus nerve,120 the immune system,121,122 and the bacterial metabolome 

(the ensemble of bacterial metabolic by-products and end products).123,124  

The contribution of the gut microbiome in affecting host behaviour is suggested by the high 

comorbidity rates between psychiatric illnesses and gastroinstestinal ailments.114,125 For 

example, irritable bowel syndrome (IBS) patients present high rates of mood disorders, 

and antidepressant drugs represent one of the most common pharmaceutical approaches 

in IBS.126,127 Moreover, at least some irritable bowel disease patients undergoing faecal 

microbiota transplantation (FMT) report improved mood following treatment, suggesting 

that such procedure might prove useful in MDD treatment.128 

Recently, there has been increasing research trying to determine whether the gut 

microbiome plays a causal role in MDD onset, course and remission. Several studies have 

investigated the phylogenetic composition of the gut microbiota of MDD patients compared 
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to healthy controls. Although the available studies to date present variability between 

cohorts, it seems that gut microbiome composition is altered in MDD patients compared to 

controls, and that those changes might be sex-dependent.129 

In a pioneer study, Naseribafrouei and colleagues found that microbiota composition can 

predict whether an individual is currently depressed, suggesting that microbiome screening 

could be helpful in the diagnostic process.130  In that study, the levels of Lachnospiracea 

and Bacteroidetes were decreased in MDD patients, while Alistipes and Oscillibacter were 

increased. Interestingly, low levels of Bacteroidetes have been associated with chronic 

low-grade inflammation and obesity, suggesting that the low levels observed in MDD 

patients might be involved in the high levels of MDD-obesity co-morbidity.43,131,132 

A study in a Chinese cohort found increased Proteobacteria and Bacteroidetes (driven by 

increased Parabacteroides and Alistipes abundance) levels in MDD patients, while the 

abundance of Firmicutes, Lachnospiraceae and Faecalibacterium, was reduced.133 Some 

Proteobacteria have been shown to trigger depressive symptoms secondary to NLRP3 

inflammasome activation. Therefore their increased abundance in MDD patients might be 

involved with the immune dysregulations observed in MDD.134,135 Bacteroidetes convert 

tryptophan to indole; therefore, their increased levels in MDD patients could be connected 

to the serotonergic deficiencies observed in MDD.136 Lachnospiraceae levels were also 

decreased in MDD cohort, and this genus is a key producer of the anti-inflammatory short-

chain fatty acids (SCFAs), which are involved in intestinal barrier integrity.137-140 

Another Chinese cohort displayed alterations in Bacteroidetes (which were decreased in 

MDD), Actinobacteria (which were increased in MDD) and Firmicutes (some increased, 

others decreased in MDD).123 In that study, the author performed FMT from MDD patients 

to germ-free mice, which was sufficient to instate depressive-like behaviour in the 

receiving mice.123 This result suggests that behaviours associated with specific 

enterotypes might be transmissible via the gut microbiota. Another study reported 

decreased bacterial diversity and increased inflammatory markers in MDD patients.141 

Following human-to-mouse FMT, increased kineurine levels and increased plasma 

kyneurine/tryptophan ratio (underlying features of MDD which contribute to serotonergic 

imbalance) were observed in the mice receiving faecal material from MDD patients.141 

Those studies suggest that MDD is associated with altered gut microbiome composition, 

and that the latter may play a causal role in MDD onset. However, some of these studies 

present contrasting findings, possibly because gut microbiome composition is affected by 
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ethnicity, diet, and medication status. Therefore, there is a need for studies on larger 

cohorts that take such variables into consideration.  

Supporting a role for the microbiome in shaping behaviour, specific bacterial strains 

termed “psychobiotics” have been shown to elicit positive effects on mood, if ingested in 

the right amount.142 Patients dosed with psychobiotics have reported decreased 

depression and anxiety scores and increased overall quality of life.143 Moreover, 

biochemical studies have reported that psychobiotics decrease the levels of pro-

inflammatory markers,144 while affecting region-specific patterns of brain activity.145,146 

Together, the available evidence to date, suggests that the gut microbiome is dysregulated 

in MDD and might play a causal role in MDD onset. Therefore, a clearer understanding of 

the contribution of the gut microbiome in MDD seems crucial, and could lead to the 

development of novel therapeutic strategies aiming at modulating gut microbiome 

composition via dietary interventions, psychobiotic supplementation and FMT. 

Mouse strains used 

Casp1 knockout mouse model 

Given the increasing evidence of an involvement of neuroinflammatory pathways and 

more specifically of the NLRP3 inflammasome and IL1B in the response to psychological 

stressors and MDD onset, in the first study we used Casp1-/- mice to investigate the 

behavioural and biochemical effects of lacking Casp1 on innate behaviour and on the 

response to chronic restraint stress (CRS). Casp1-/- mice have been shown to be overtly 

normal despite having very low levels of IL1A and undetectable levels of IL1B.147 

Interestingly, they have similar pro-inflammatory and behavioural responses to systemic 

lipopolysaccharide (LPS) administration compared to wt mice but they are resistant to the 

exacerbation of depressive-like behaviour and to the spike of pro-inflammatory cytokines 

in response to intracerebroventricular LPS administration.148 Moreover, they display 

increased survival and decreased inflammation-induced brain transcription in response to 

the administration of lethal endotoxin doses compared to wt mice.147,149 Furthermore, mice 

with impaired IL1 signalling are resistant to the exacerbation of depressive-like behaviour 

and to the decrease in neurogenesis elicited by stress exposure.150,151  

Given their decreased inflammatory profiles and the fact that impairment of IL1B signalling 

decreases the deleterious effects of stress, we hypothesized that Casp1-/- mice might have 

decreased depressive-and anxiety-like behaviour and be resistant to the exacerbation of 
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anxiety-and depressive-like behaviour following chronic stress exposure. Of note, following 

the generation of this transgenic mouse model, further investigations unveiled that this is a 

double knockout mouse model. These mice in fact lack the Casp1 and Casp11 genes, 

because Casp1 and Casp11 are neighbouring on the genome and too close to segregate 

by recombination.147,152,153 The results obtained involving this model in study 1 should 

therefore be interpreted in light of this. 

(Casp1, Ifngr, Nos2)-/- triple knockout mouse model 

In the second study we aimed to determine if the simultaneous ablation of multiple pro-

inflammatory cytokines would affect baseline behaviour and the behavioural response to a 

chronic stressor, as well as affect the circulating levels of the stress hormones ACTH and 

CORT following stress exposure. To do so, we used mice lacking CASP1, NOS2 and 

INFGR [(Casp1, Ifngr, Nos2)-/-] and investigated their behavioural phenotype at baseline 

and following chronic stress exposure. Studies investigating mouse models with genetic 

deletion of each of these cytokines have been reported, but to the best of our knowledge 

this is the first study to investigate the effects of multiple pro-inflammatory gene deletion on 

behaviour and on the response to chronic stress. 

 

Ifng-/- mice have been previously reported not to display developmental defects but to 

present increased susceptibility to bacterial and viral infections.154,155 Moreover, Ifng-/- mice 

present decreased depressive- and anxiety-like behaviour and heightened emotionality. 

These behaviours are coupled with increased noradrenergic and serotonergic activity, 

increased baseline CORT levels, decreased hippocampal neurogenesis and decreased 

nerve growth factor in the prefrontal cortex.156,157 Furthermore, Ifng-/- mice have been 

shown not to be resistant to chronic stress but to present altered changes in monoamines, 

CORT and cytokine levels in response to stress compared to wt.157  

 

Similarly, genetic deficiency and pharmacological inhibition of NOS2 has been shown to 

decrease depressive-like behaviour, suggesting that NOS2-produced nitric oxide is 

involved in the modulation of depressive-like behaviour in mice.158 Therefore, given the 

observed antidepressant-like phenotypes of the single KO mouse models, we 

hypothesized that the simultaneous deletion of Casp1, Ifngr and Nos2 might have an 

additive effect and result in greater antidepressant-like effects compared to the individual 

KOs. 
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Pre-clinical paradigms of MDD used  
While it is accepted that certain features of MDD are purely human, such as suicidality, 

guilt and sadness, other aspects of the depressive symptomatology such as anhedonia, 

despair, and sleep and appetite alterations can be reproduced in laboratory animals, and 

some of these symptoms can be ameliorated with clinically used antidepressant drugs. 

Pre-clinical research on MDD relies on “animal models of depression”, research tools used 

to study MDD and antidepressant action by simulating MDD physiopathology and 

symptomatology. These paradigms usually involve chronic stress procedures (as opposed 

to acute stress paradigms) that exacerbate anxiety- and depressive-like behaviours.159 

Such procedures mimic at least some of the underlying pathophysiological changes of 

human MDD, such as a) neuroendocrine, b) immune, c) autonomic and cardiovascular 

and d) central neurotransmitter alterations.160 Usually, the changes triggered in chronically 

stressed animals include: a) behavioural despair, b) anxiety-like behaviour, c) anhedonic-

like behaviour, d) changes in appetite or metabolism, e) neuroanatomical changes and f) 

alterations of the sleep cycle.160,161 Generally, to be considered a valid pre-clinical MDD 

model, a paradigm should possess good face validity (have phenomenological and 

pathophysiological similarities to MDD), construct validity (have similar aetiology to MDD), 

and predictive validity (being responsive to common treatments used in MDD).162,163 

One of the challenges to meet in modelling MDD in animals is to produce long-lasting 

depressive-like states that resemble MDD symptomatology. Pre-clinical MDD research 

relies on procedures that involve presenting the animals with stressors known to simulate 

MDD risk factors, such as the exposure to repeated predictable, unpredictable and 

uncontrollable stressors. These procedures are coupled to tests to quantify depressive- 

and anxiety-like behaviours which assess the efficacy of the stress paradigm.159 Chronic 

stress models rely on physical, psychosocial or early life stressors. The most used 

paradigms in MDD research are a) CRS, involving placing the mice in restrainers which 

limit their ability to move freely, b) chronic unpredictable mild stress (CUMS), in which the 

mice are presented with a series of mild stressors in a randomized and unpredictable 

fashion, c) early maternal separation stress, involving separating the newborn mice from 

the dam for a set amount of time at a specific postnatal stage, and d) social defeat stress, 

involving introducing an intruder mouse in the cage of the resident mouse for a set amount 

of time over prolonged periods of time.164-166 While chronic stress models have good face 

validity, meaning that they closely resemble MDD phenomenology and pathophysiology, 

they have the drawback of being low-throughput. In fact, implementing chronic stress 
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paradigms requires greater sample size and more physical space than acute stress 

paradigms, resulting in higher costs. Moreover, the genetic and epigenetic inter-individual 

biological variability involved in stress susceptibility and resilience phenotypes needs to be 

taken into account when designing experiment. Therefore, often relatively large sample 

size is needed to detect statistically significant differences amongst the groups 

studied.161,167 

To induce depressive-like symptoms we used CRS in study 1, which involved Casp1-/- and 

minocycline-treated mice (chapter 4), and CUMS in the study 2, which involved (Casp1, 

Ifngr, Nos2)-/- mice (chapter 5). CRS is a paradigm in which rodents are immobilized in 

restrainers, devices which physically limit their ability to move. CRS is considered a 

paradigm to model MDD since it increases behavioural despair and anxiety-like behaviour, 

symptoms which resemble core features of clinical depression.168,169 This paradigm has 

good face validity since it increases anxiety- and depressive-like behaviours and results in 

morphological changes in brain areas involved in fear and anxiety responses in 

humans.169-171 Moreover, CRS: a) increases the level of circulating stress hormones, b) 

downregulates NR3C1expression, and c) attenuates the glutamate-induced release of 

brain-derived neurotrophic factor in the prefrontal cortex, one of the brain regions relevant 

to depression.168 Furthermore, CRS impairs hippocampal neurogenesis in mice,172 a 

phenomenon which is considered to mirror the clinical course of depression.173 

Nevertheless, CRS is considered to have good predictive validity, since antidepressant 

drugs prevent and reverse the exacerbation of CRS-induced depressive-like behaviour.174 

In study 1, we applied CRS for 4-6h day for 21 days. 

In study 1, when CRS was performed, we did not observe a decrease in sucrose 

preference in the sucrose preference test following stress, a test designed to assess the 

extent of anhedonic-like behaviour (the inability to seek or experience pleasure, see 

“behavioural experiments” section below). Anhedonia is considered one of the main 

dimensions of MDD, and it is considered fairly important to reproduce this symptom when 

modelling MDD in pre-clinical models.175 We therefore decided to use the CUMS paradigm 

for study 2, because this paradigm has been shown to decrease sucrose preference more 

reliably than CRS. The CUMS is a paradigm that has been used to model depressive-like 

states in rodents for over 20 years.176,177 The strength of the CUMS paradigm lies in its: a) 

face validity, since CUMS elicits depressive-like symptoms and the neuroplasticity losses 

associated with stress exposure in humans, b) predictive validity, since most 

antidepressant drugs reverse CUMS-induced behaviours, and c) construct validity, since 
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the behavioural and biological response to CUMS in animals resemble those responses in 

humans.163,164 This paradigm consists of chronically exposing the mice to multiple mild 

social and environmental stressors, which are randomly scheduled, and applied every day 

for a set period of time (between 4 to 10 weeks).164,176,178-180 Examples of such stressors 

include cage tilting, intruder stress, light cycle reversal, fasting, removal and/or soiling of 

bedding. Usually the stressors schedule is randomized (or semi-randomized) to maximise 

the unpredictability of the regimen and to prevent habituation, one of the drawbacks of the 

exposure to homotypic chronic stress paradigms.181  

Therefore, in study 2 we applied CUMS for 28 days, presenting mice to various randomly 

scheduled, low intensity social and environmental stressors, applied each day during the 

light phase of the light cycle (except for the light cycle reversal stress, applied during the 

weekend). Depending on the duration of the stressor, one (if it lasted more than two hours) 

or two (if it lasted two hours or less) stressors were applied each day. The schedule was 

randomized weekly to maximise the degree of unpredictability and to avoid habituation, 

which is one of the drawbacks in modelling depression in rodents.164 The stressors were: 

a) two hours restraint in polypropylene restrainers on an open bench, b) eight hours 

removal of bedding and nesting material, c) eight hours of soiled bedding, obtained by 

adding 200 mL of autoclaved water to 100 g of bedding, d) eight hours of 45º cage tilting 

obtained by introducing a Plexiglas “tilter” inside the cage to allow the cage to be returned 

to the individually ventilated cage rack, e) two hours of predator stress, obtained by 

introducing in the cage a 5 mL test tube modified with ten 2 mm holes containing two fresh 

rat faecal pellets, f) five minutes forced swim test, performed once at the beginning and 

once at the end of the stress period (representing both a stressor and a behavioural test), 

g) sixteen hours of overnight fasting in clean cages, h) two hours of social stress, 

consisting in pair housing two mice from different litters in a neutral cage, i) two hours of 

light cycle disruption during the light phase, and j) forty-eight hours of light cycle reversal 

over the weekends. Mice were tested weekly in the sucrose preference test to monitor 

changes in their preference for a sucrose solution, considered an index of anhedonic-like 

behaviour.179 This parameter, together with the floating time in the forced swim test, was 

used to assess the effectiveness of the CUMS procedure and to determine when 

anhedonic and depressive-like behaviour had been induced. 

Diagnostics and therapeutic implications 
The diagnostic process in MDD lacks biomarkers to assist with the identification of 

potentially affected individuals.182 Currently, MDD diagnosis relies on a combination of 
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interviews, self-reported questionnaires and checklists based on the DSM-5.183 However, 

the validity and objectivity of this routine assessment system is strongly debated, since it 

seems to hinder the development of personalized therapeutic plans.184-186 As highlighted 

by researchers and psychiatrists, this is a major shortcoming for the credibility of 

psychiatry. The search for reliable biomarkers, together with cognitive, imaging and 

genetic measures in the diagnosis of MDD is therefore extremely important.187-189 

Given the multilayered contribution of biological mediators and bodily systems in MDD 

pathophysiology, a panel aiming at profiling a number of diagnostic and predictive 

biomarkers from a biological sample (such as plasma or saliva) could be more viable than 

a single-biomarker approach in MDD diagnosis.182,190-194 Ideally, a panel of diagnostic and 

prognostic biomarkers should provide in-depth information about the inflammatory profile 

of the patient. This could help identify individuals that might benefit from anti-inflammatory 

approaches as a stand-alone therapy or in combination with standard antidepressant 

treatment. Further, clarifying the correlation between subtypes of MDD and inflammatory 

profiles could help in identifying MDD subtypes via biological testing. This could lead to 

enhanced diagnostic power and to the fine-tailoring of individualized treatments.187  

If some MDD patients could benefit from anti-inflammatory medications as an 

antidepressant therapy, it is vital to identify such patients via a sound diagnostic screening 

able to predict a positive therapeutic outcome. It has been previously suggested that 

cytokine profiles could be useful in diagnosing MDD and to predict response patterns to 

specific antidepressants. However, the fact that the levels of these cytokines are increased 

in other diseases makes them less-than-unequivocal candidate biomarkers in MDD. 

However, these molecules could still be quantified as part of the diagnostic process. 

Preliminary studies yielded contrasting results. In a small-scale study investigating 

cytokine profiles in young women diagnosed with different MDD subtypes, the authors 

found no differences in cytokine levels between healthy controls and MDD patients, and 

cytokine levels were increased following antidepressant treatment.195 However, meta-

analyses suggest that the levels of IL1, IL6 and C-reactive protein (CRP) decrease in 

response to antidepressant treatment.196,197 These inconsistent findings suggest that the 

understanding of cytokine trends in MDD course and remission is still far from complete, 

and that larger scale studies are needed to delineate such profiles and concretize their 

translational value. 



	

	 29	

Some researchers have suggested that IL6 could represent a valid marker for MDD, since 

its levels are relatively uniformly increased in MDD and are relatively stable over extended 

periods of time. Therefore, the one-off measurement of levels of this cytokine could 

represent a useful diagnostic marker in MDD, which could be added to the psychological 

assessment of depressive symptoms.198 Similarly, high levels of positive acute phase 

proteins, such as CRP and high-sensitivity CRP seem to be one of the most reproducible 

findings in MDD.76,199,200  

However, some researchers have emphasized that immune processes are dysregulated 

only in a subset of MDD patients, suggesting that only patients that present an immune 

activation could benefit from anti-inflammatory therapies.42,201 42,75,202-208 A recent clinical 

study proved this concept. The authors administered for 12 weeks either the TNF inhibitor 

infliximab or placebo to treatment-resistant depression patients.44 The authors 

hypothesized that high circulating level of high-sensitivity CRP and TNF before treatment 

might be predictive of effective treatment response to infliximab.44 The results showed that 

only patients with heightened inflammatory profiles before treatment benefitted from the 

anti-inflammatory therapy, while patients with low pre-treatment inflammatory biomarkers 

receiving infliximab seemed to do worse than placebo-treated controls.44 Therefore, it 

seems that a preliminary screening to identify patients that could benefit from anti-

inflammatory therapies might be needed. To the best of our knowledge, no studies to date 

have investigated the potential of screening the baseline levels of inflammatory mediators, 

either to predict treatment-response patterns or to predict MDD subtypes. Addressing this 

research question would involve the preliminary screening of inflammatory markers in 

patients that are diagnosed with depression to determine if any specific combination or 

patterns of immune dysregulation matches classically diagnosed depression subtypes. 

Following screening, depending on their inflammatory profile, these patients could be 

assigned different types of pharmacotherapy (i.e. antidepressant drugs as a primary 

treatment and anti-inflammatory add-on medications or only one of the two) to determine 

the efficacy of anti-inflammatory drugs in treating depressive symptoms. Finally, the levels 

of inflammatory mediators could be measured following intervention to assess the effects 

of treatment and to determine if the immune profile is “normalized”. 

When designing therapies that target immune processes, it is extremely important to 

consider safety and the inter-individual differences in genetic and epigenetic architecture 

of immune processes. Beyond the obvious importance of keeping therapeutic approaches 

safe, it is necessary to take into account the fact that each patient has a unique 
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immunological profile and that the latter could present one or several dysregulated 

inflammatory pathways before treatment. This raises the concept of personalized 

medicine; the latter entails pharmaco-genomics and pharmaco-epigenomics, the study of 

the intra-individual genetic and epigenetic variability that plays a role in shaping 

biochemical and clinical profiles, as well as in triggering different responses to therapeutic 

drugs. Such an approach could help developing tailored antidepressant treatments with 

immunomodulatory properties. 

Studies aiming at	 investigating the efficacy of the therapeutic approaches outlined above 

are needed. Ideally, randomized controlled trials should be designed, aimed at 

investigating: a) the clinical safety of targeting specific immune mediators as a stand-alone 

or adjunctive therapy in the treatment of MDD, b) the neurochemical and neurobehavioural 

changes resulting from such therapies, and c) the gut microbiome changes brought on by 

such therapies. This could lead to improved therapeutic and diagnostic potential and to 

individually tailored therapies for MDD treatment. 
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Chapter 2 – Neuroimmunomodulation in Major Depressive Disorder: 
Focus on CASP1, NOS2 and IFNGR 

Abstract 
MDD is one of the leading causes of disability worldwide, and its incidence is expected to 

increase. Despite tremendous efforts to understand its underlying biological mechanisms, 

MDD pathophysiology remains elusive and pharmacotherapy outcomes are still far from 

ideal. Low-grade chronic inflammation seems to play a key role in mediating the interface 

between psychological stress, depressive symptomatology and MDD onset. Here, we 

review the available pre-clinical and clinical evidence of an involvement of pro-

inflammatory pathways in the pathogenesis, treatment and remission of MDD. We focus 

on CASP1, NOS2 and IFNG, three inflammatory systems dysregulated in MDD. Treatment 

strategies aiming at targeting such pathways alone or in combination with classical 

therapies could prove valuable in MDD. Further studies are needed to assess the safety 

and efficacy of immune modulation in MDD and other psychiatric disorders with 

neuroinflammatory components. 
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Introduction	

MDD is a psychiatric disorder with significant morbidity, mortality, disability and economic 

burden worldwide.3,209 In addition to the psychosocial and psychophysical dysfunctions 

associated with MDD, several conditions are often co-morbid, including but not limited to 

obesity, type-2 diabetes, heart conditions, autoimmune diseases, neurodegenerative 

disorders and cancer.210-214 Multiple hypotheses have been formulated attempting to 

describe the elusive pathophysiology of MDD, including the monoamine hypothesis, the 

neurotrophic hypothesis, the glutamate hypothesis and the cytokine (or macrophage) 

hypothesis.48,68-70,215 However, no single hypothesis seems to fully explain the onset, 

course and remission of the disease. To complicate matters further, currently approved 

antidepressant drugs present numerous side effects and are effective only in a subset of 

patients.29,216,217 Therefore the quest for a better understanding of the molecular 

underpinnings of this disease represents an essential step in the identification of novel 

therapeutic strategies that could target the causal biological mechanisms of MDD. 

Emerging evidence suggests that dysregulated neuro-immune pathways could underlie 

depressive symptomatology in at least a subset of patients diagnosed with 

MDD.54,59,64,193,209,218,219 Three crucial inter-linked networks seem to influence the 

bidirectional communication between the brain and the immune system, namely a) 

increased oxidative stress, driven by NO overproduction, b) chronic inflammation, driven 

by CASP1 and NLRP3 inflammasome over activation and c) Central Nervous System 

(CNS) Th1 lymphocyte infiltration, driven by INFG. NO was recently shown to be 

necessary for IFNG-mediated suppression of IL1B processing, highlighting the 

interconnectedness of innate and adaptive immune responses, as well as the therapeutic 

potential of interfering with inflammatory processes in MDD.220 The possible involvement 

of these three networks in MDD is briefly summarized here and will be described in detail 

throughout this review. 

Reactive oxygen species (ROS) are normally produced during cell metabolism and in 

physiological processes, and are largely quenched and neutralized by endogenous 

antioxidant elements.221 However, stress-induced excess of oxidative products can 

overwhelm the antioxidant capacity, eliciting oxidative stress and causing protein, lipids 

and/or DNA damage.222 Preclinical and clinical studies suggest that chronic stress, which 

appears to be a risk factor in developing MDD, is associated with increased ROS 
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production.223-230 One of the free radicals often produced during psychological stress is 

NO, mainly by action of NOS2.231  

Inflammatory factors play key roles in tissue repair and in orchestrating the first line of 

defense to neutralize invading pathogens such as virus, bacteria and protozoa.232,233 

However, pathological activation of both the innate and the adaptive inflammatory 

cascades caused by stress, metabolic imbalances, autoimmune diseases, and other 

insults can alter brain function and increase the likelihood of developing MDD and co-

morbid systemic illnesses.65,85,234 One of the inflammatory elements that plays a prominent 

role in the activation of the innate inflammatory cascade is CASP1, a protein that in the 

NLRP3 inflammasome renders the mature forms of IL1B and IL18, chief pro-inflammatory 

factors that modulate brain-immune interactions.235,236 

It has been shown that reactive T cells are capable of infiltrating the brain in response to 

antigens derived from the CNS, where they produce pro-inflammatory cytokines.237 At the 

same time, there is evidence suggesting that a Th1 immunophenotype prevails in MDD, 

which leads to the instauration of a chronic, low-grade inflammatory profile.80,82 Moreover, 

the key Th1-pro-inflammatory cytokine INFG, involved in both innate and adaptive 

immunity is a powerful inducer of indoleamine 2,3-dioxygenase 1 (IDO1).238,239 IDO1-

induced tryptophan catabolism increases kyneurine and quinolinic acid, leading to 

hyposerotonergia and hyperglutamatergia, which are involved in MDD.68 In this review, we 

will summarize pre-clinical, clinical and genetic evidence supporting the involvement of 

innate and adaptive neuroimmune and oxidative pathways in the pathophysiological 

processes underlying depressive symptomatology. To this end, we will focus on CASP1 

(involved in chronic inflammation), NOS2 (involved in oxidative stress), and IFNG (involved 

in hyposerotonergia and hyperglutamatergia). 

Bidirectional communication between the brain and the immune system 
Although the CNS is considered to have its “own immune system”, independent from the 

peripheral immune system, it is accepted that the two constantly communicate and 

cooperate, that the CNS is involved in regulating immunity, and that immune responses in 

the periphery lead to changes in the CNS resulting in changes in behaviour.240,241 To date, 

pre-clinical and clinical studies have widely described a role for cytokine signalling in the 

CNS that results in neurochemical, neuroendocrine and behavioural changes.54,242-244  

Upregulation of macrophage-produced pro-inflammatory cytokines [such as IL1, IL6, TNF) 

and IFNG, by psychosocial, physical or bacterial stress, leads to a number of endocrine 
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and neurochemical responses, such as activation of the SNS and of the HPA axis (see 

chapter 1 for details). Activation of the SNS leads to an activation of the HPA axis which 

finally stimulates the release of glucocorticoids. This leads to the transcriptional 

upregulation of anti-inflammatory genes and suppression of HPA axis activity to avoid 

potential deleterious side effects.104,105,246-248  

The combination of these events causes an inflammation-mediated transcriptional 

upregulation in the brain, which results in microglial activation and in the adoption of 

sickness or depressive-like behaviour (discussed in details below).54,243,249 Depending on 

the temporal and qualitative cytokine profile (i.e. acute or chronic activation and cytokine 

milieu), microglial activation can lead to either neuroprotection or neurodegeneration, 

suggesting how delicate the equilibrium between restoring homeostasis and tipping into 

neurotoxicity can be.250 Altogether, these events produce alterations in several major 

neurotransmitter systems, such as decreases of available 5HT and DA, two of the most 

relevant neurotransmitters involved in MDD pathogenesis.251,252  

Glucocorticoids exert a number of functions in the host response to stressors, with the final 

goal of restoring homeostasis.253 However, when the system fails to return to a 

homeostatic state, the HPA axis can become hyperactive (one of the consistent findings in 

MDD): a phenomenon underlined by increased cortisol levels, blunted ACTH response to 

CRH, glucocorticoid resistance, impairment in gluco- and mineral-corticoid signalling, and 

enlargement of the pituitary and adrenal glands.254-258 Cytokines are considered to be 

involved in this impaired feedback mechanisms, through derangement of nuclear factor 

kappa B subunit 1 (NFKB1), and signal transducers and activators of transcription, all of 

which inhibit NR function.110 Aside from decreasing corticosteroids expression, cytokines 

also block corticosteroids translocation from the cytoplasm to the nucleus and disrupt 

corticosteroids-DNA binding via nuclear protein-protein interactions.258 Interestingly, 

greater extent of such effects has been described in men with high anger and hostility 

indexes.259,260 Antidepressant drugs seem to normalize the HPA axis abnormalities 

observed in MDD and to enhance the expression and function of corticosteroids.108,261 

Peripheral cytokines can cross the blood-brain barrier (BBB) in a number of ways: a) via 

CNS lymphatic vessels, b) via active transport and leaky or compromised BBB, c) via 

crossing at circumventricular organs and d) by binding to receptors found in the blood 

vessels that course through the brain.262-265 Moreover, cytokines can affect brain function 

indirectly, through vagal nerve activation or by binding to cell-surface proteins found in 
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brain endothelial cells, a process that results in the production of second messengers that 

in turn diffuse into the brain.262,264,266,267  

Nonetheless, cytokines are produced de-novo in the brain in response to stress 

exposure.268-270 Increased concentrations of brain cytokines trigger the activation of 

microglial cells, immune cells inhabiting the brain parenchyma, which represent the chief 

innate immune cells in the brain.241,271 Interestingly, the brain regions presenting the 

highest concentrations of pro-inflammatory cytokines are the prefrontal cortex, the 

hypothalamus and the hippocampus, areas involved in the regulation of cognitive 

functions, mood, and response to antidepressant treatments.87,272  

Studies investigating the involvement of pro-inflammatory cytokines in MDD have 
led to the formulation of the cytokine hypothesis of depression, suggesting that 
cytokine inmbalances lead to MDD pathogenesis (see chapter 1 for 
details).53,74,206,290,291 

Cytokine signalling and nitrosative stress 
Of central significance for this review, oxidative stress plays a role in the pathophysiology 

of MDD and of other serious medical conditions.310,311 In fact, cytokine-induced microglial 

activation following stressor exposure leads to the prompt up-regulation of ROS via the 

induction of NOS2, an event that leads to overall increased oxidative stress, which in turn 

activates a positive feedback loop (co-activation state) that results in the release of more 

pro-inflammatory cytokines.298 Oxidative stress is characterized by the increased 

generation and activity of free ROS, such as NO, which contributes to protein and DNA 

damage, and can lead to tissue damage and irreversible changes in brain function, events 

that can flow into neurodegeneration and cognitive impairments.312 Such stress-induced 

oxidative processes are gaining increasing attention in psychiatry, since an expanding 

body of evidence suggests oxidative and nitrosative stress involvement in MDD 

pathogenesis.64,230,298,313-315  

The involvement of oxidative and nitrosative stress in the etiology of depression is 

confirmed by increased circulating and urine oxidative stress markers (such as NO, 

arachidonic acid, malondialdehyde and 8-hydroxy-2-deoxyguanosine) and nitrosative 

stress markers (such as immunoglobulin M –IgM- antibodies directed against 

phosphatidylitol and nitro-bovine serum albumin) in MDD patients, together with decreased 

levels of antioxidant molecules (such as vitamins C and E).316-320 Interestingly, the 

concentration of oxidative stress markers seems to correlate with the severity and 
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chronicity of depression, as well as with the efficacy of antidepressant 

treatment.230,298,313,315,317,321,322 Accordingly, some antioxidant compounds seem to have 

antidepressant properties, and antidepressant drugs (such as paroxetine) partially reverse 

oxidative damage by enhancing the protective antioxidant status following stress.314,323-325  

Of crucial importance for this work, the NO system is being widely investigated in MDD 

research, because NO levels are increased in depressed patients and in pre-clinical 

models of chronic stress, and NO inhibition leads to antidepressant-like effects in clinical 

settings and in pre-clinical behavioural paradigms relevant to clinical depression (these 

topics are discussed in detail in the NOS2 section).227,320,326-328 The increased levels of 

oxidative and nitrosative stress molecules can easily damage neurons, since the latter use 

high amounts of oxygen due to their high energy needs, and are built with high levels of 

polyunsaturated fatty acids, molecules particularly vulnerable to attack by free radicals.329 

Nonetheless, the brain presents lower concentrations of antioxidant compounds compared 

to other organs, making it more susceptible to damage by free radicals.316 Unsurprisingly, 

some areas (i.e. the subfields Cornu Ammonis –CA- 1 and CA4) of the hippocampus (a 

brain region involved in mood regulation and adult neurogenesis) are some of the brain 

areas most sensitive to oxidative damage.64 

The role of CASP1 in MDD 
As mentioned above, exposure to psychological stress results in a physiological reaction 

called “sterile inflammation”, initiated by the recognition of endogenous danger signals, 

termed damage-associated molecular patterns (DAMPs), by glial cells, macrophages and 

olygodendrocytes.63,287,330 DAMPS are nuclear, cytosolic, mitochondrial or extracellular 

molecules which are normally hidden from the immune system but upon activation are 

exposed and released in the extracellular space where they become noticeable to and 

stimulate an activation of the immune system.287,331 In line with this understanding, 

increased levels of DAMPs have been found in rodent blood and hippocampus following 

stress exposure.268,332  

Once DAMPs are released in the extracellular space, they function as alarm signals which 

alert immune cells through pattern recognition receptors, such as toll-like receptors (TLR), 

nucleotide-binding oligomerization domain-like receptors, RIG-I-like receptors or absent In 

Melanoma 2-like receptor, in order to get ready for a potential full-blown immune 

response.63,333,334 It has been hypothesized that such processes could represent an 

adaptive characteristic of the acute stress response; for example, if an animal were 
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running away from a predator and were wounded during the chase, it might have better 

chances of surviving if its immune system were primed and ready to respond.335 Another 

theory, one that places this mechanism in a modern context, suggests that such stress 

responses are activated when an individual is exposed to social evaluation, rejection, 

isolation, exclusion or conflict, possibly due to the potentially physically harmful 

significance of such social situations throughout history.336 

Taken together, DAMP activation and release induce the activation of downstream 

signalling cascades such as the transcription factors NFKB1 and IRFs, events that lead to 

the transcriptional upregulation of a number of immune response genes, such as IL1B, 

IL6, TNF and many more. These changes result in the creation of a pro-inflammatory 

milieu in the brain and periphery and in the activation of the afferent nerves, which in turn 

leads to de-novo production of pro-inflammatory cytokines in the brain and culminates with 

the onset of depressive-like behaviour.54,243,249 

Moreover, DAMP activation results in the assembly of cytosolic multi-molecular signalling 

complexes called inflammasomes.79,334 A peculiar role in DAMPs signalling is played by 

the NLRP3 inflammasome, an entity that consists of the NLRP3 protein, the adaptor 

apoptosis-associated speck-like protein containing a CARD (ASC), and the cysteine-

protease CASP1.235 Upon TLR-mediated DAMPs signalling to immune cells, the 

inflammasome platform is assembled, and the inactive procaspase 1 zymogen is 

proteolitically cleaved into the enzymatically active heterodimer.337,338 In turn, activated 

CASP1 cleaves pro-IL1B and pro-IL18 into their mature, releasable, bioactive 

isoforms.235,339 Increased circulating levels of IL1B activate the HPA axis, which increases 

glucocorticoids production.247 Interestingly, glucocorticoids increase NLRP3 transcriptional 

and translational levels, thus priming the NLRP3 inflammasome to readily respond to 

subsequent stimuli such as alarmins or danger-associated molecules.340  

Significantly for this review, CASP1 has been reported to be involved in the development 

of depressive-like behaviour in pre-clinical models of stress and to be increased in MDD 

patients, leading to the formulation of the “inflammasome hypothesis” of 

depression.86,235,341-343 This hypothesis suggests that the inflammasome is a key mediator 

between the stress response, the exacerbation of depressive symptomatology, the 

response to antidepressant drugs and the onset of co-morbid illnesses.339,342 Accordingly, 

studies have found that CASP1 and NLRP3 transcripts and their protein products are 

increased in peripheral blood mononuclear cells from MDD patients compared to healthy 
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controls, suggesting that increased NLRP3 inflammasome activity is relevant to MDD, 

while antidepressant treatment can decrease such hyperactivity.78 In addition, IL1B and 

IL18 are increased in MDD patients, and their circulating levels seem to correlate with the 

severity of depression.78 Correspondingly, antidepressant treatment decreases IL1B 

levels.196  

Casp1 deficient mice have previously been shown to have the same behavioural and pro-

inflammatory response to systemic LPS administration to wt mice but to be resistant to the 

development of depressive-like behaviour and to the increase of pro-inflammatory 

cytokines following intracerebroventricular administration of LPS.148 Moreover, Casp1-/- 

mice were shown to be resistant to lethal doses of LPS, and have decreased levels of 

inflammation-induced brain and systemic transcription in a pre-clinical model of systemic 

inflammatory response syndrome.147,149,344 Furthermore, Casp1-/- mice are resilient to pre-

clinical models of intestinal colitis, a phenotype underlined by reduced clinical and 

histological scores, as well as decreased levels of circulating pro-inflammatory 

cytokines.345 

Interleukin 1B 

Upon inflammasome-mediated IL1B release, IL1B binds to the interleukin-1 receptor 

(IL1R1), resulting in the activation of many transcription factors [such as NFKB1, c-jun N-

terminal kinase, AP-1 and p38 mitogen-activated protein kinase (MAPK)], which results in 

the expression of many acute-phase inflammation genes, such as NOS2, IL6 and 

cyclooxygenase type 2.338,346 Recently, it was suggested that activation of the NLRP3 

inflammasome mediates IL1B orchestrated inflammation (that results in depressive-like 

behaviour) in the prefrontal cortex following chronic stress, and that fluoxetine is able to 

reverse such changes.62,86  

Accordingly, mice lacking the IL1 receptor are resistant to developing depressive-like 

behaviour following chronic stress exposure while being protected against the decrease in 

neurogenesis observed in wt mice following chronic stress.150,151 Il1b deficient mice have 

been shown to respond normally to the peripheral administration of LPS but to have 

impairments in developing a localized acute phase response at the site of tissue 

damage.347  

Interleukin 1A  

IL1A shares many features with IL1B and it is an equally potent pro-inflammatory cytokine. 

Similarly to IL1B, it is produced as a 31 kilodalton precursor which can be cleaved into 
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smaller isoforms and binds to the IL1R1, triggering identical intracellular signalling 

cascades to IL1B.348 However, IL1A also presents many differences to IL1B. For example, 

unlikely the IL1B precursor which is not active, both the pro-IL1A and the cleaved IL1A are 

active ligands of the IL1R1.349 Moreover, while IL1B is a released protein, IL1A can be 

secreted or act as a membrane-bound cytokine, although the factors that control such 

translocation have not been fully elucidated yet.348,350 During apoptosis, IL1A is 

sequestered in the nucleus to avoid its release, while during necrotic activity it is secreted 

and acts as an alarmin.348 Furthermore, while IL1B is cleaved by CASP1 in the NLRP3 

inflammasome, IL1A is cleaved via calcium-dependent cysteine proteases of the calpain 

family.351 Finally, while IL1B is produced on-demand only in immune cells in response to 

stressful stimuli, IL1A is constitutively expressed in a variety of cell types (such as 

endothelial cells) but can also be produced by immune cells in response to inflammatory 

insults.352 Such expression occurs rapidly in response to cytokine exposure, oxidative 

stress, and other stimuli such as lipid overload and hormonal stimuli.346,348,353-355 

Interestingly, it has been reported that IL1A-mediated activation of p38-MAPK inhibits 

NR3C1 function, suggesting that at least part of the mechanism conferring glucocorticoid 

resistance in MDD could be associated with an excessive production of IL1A.356 To the 

best of our knowledge, no studies have investigated the extent of anxiety- and depressive-

like behaviour in Il1a-/- mice compared to wt mice. However, transgenic Il1a-/- mice were 

shown to have similar ischemic brain damage to wt (and so did Il1b-/- mice), while mice 

lacking both IL1A and IL1B were shown to have drastically reduced infarct size, 

suggesting a compensatory mechanism within the IL1 system.357 Another important 

function of IL1A is its involvement in atherogenesis and its role in mediating fatty acid-

induced vascular inflammation.358 Finally, middle aged (12 months) Il1a-/- mice were 

shown to have increased litter size and pregnancy rates compared to wt mice, probably 

due to reduced gonadal apoptotic activity.359 

Interleukin 18 

IL18 is considered a prototypical Th1 cytokine for its ability to stimulate IFNG activity, and 

it is expressed in macrophages and dendritic cells.360 Unlike pro-IL1B, pro-IL18 is 

constitutively expressed and substantially pooled inside cells, and inflammatory 

stimulations don’t have a big impact on its transcription.360,361 However, circulating IL18 

levels increase during psychological stress and in response to HPA axis activation.362 

Circulating IL18 binds to the IL18 receptor (IL18R) in T-cells, B-cells and natural killer 

cells. This activates p38-MAPK, c-Jun N-terminal kinase and NFKB1 cascades which 
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potentiate antimicrobial and antiviral immunity.361,363 Although IL18 is known for its ability 

to promote both Th1- and Th2-related inflammatory responses, its predominant role in 

enhancing Th1 activity makes this cytokine a candidate therapeutic target in a number of 

Th1-related inflammatory and autoimmune diseases, including MDD.360 

In line with its role as a stress-related molecule, IL18 is increased in MDD patients and in 

patients diagnosed with panic disorder.364 Pre-clinical studies have shown that Il18-/- mice 

have decreased production of IFNG, impaired natural killer cell activity and abnormal Th1 

responses.365 Moreover, Il18-/- mice display decreased depressive- and anxiety-like 

behaviour, as well as gene expression changes across various brain regions and in 

particular decreased vasopressinergic and oxytocinergic neurotransmission within the 

amygdala.366,367 Other studies have shown that immobilization stress in mice induced pro-

IL18 via ACTH and a superoxide-activated CASP1 pathway.368 Given that IL6 is not 

induced in response to stress in Il18-/- mice, it seems that IL18 mediates stress-induced 

IL6 upregulation.368 Other studies found that IL18 is involved in stress-induced microglial 

activation in rodents while contributing to dopaminergic degeneration.369,370 Finally, Il18-/- 

mice have been shown to be hyperphagic and prone to both obesity and insulin 

resistance.371 

Interleukin 33  

IL33 is another member of the IL1 family, that performs alarmin and nuclear transcription 

factor roles, and is considered to trigger predominantly Th2-related immune responses, 

such as the production of IL4, IL5 and IL13 and anti-inflammatory gene expression.372 Like 

other members of the IL1 family, IL33 can be beneficial or detrimental, depending on its 

spatio-temporal expression. Constitutively, IL33 is expressed in quiescent endothelial and 

epithelial cells as well as in microglial cells, astrocytes, fibroblasts and keratinocytes.373,374 

In these cells, IL33 is localized in the nucleus, where it modulates gene expression via a) 

acting as a transcription factor, b) regulating chromatin structure, c) sequestering NFKB1 

and therefore curbing pro-inflammatory signalling.375-377 IL33 is constitutively expressed 

and localized in the cytoplasm. However, if a barrier is breached and IL33 is released from 

destroyed cells, it acts as an alarmin upon binding the IL33 receptor (ST2).378 The 

signalling cascade in response to ST2 activation results in the transcriptional modulation of 

hundreds of genes with a pattern that resembles that of IL1R1 activation.379 

Two single nucleotide polymorphisms in the IL33 gene (rs11792633 and rs7044343) have 

been found to moderate the correlation between history of childhood abuse and recurrent 
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depression in a women cohort.374 In the same study, the authors found that patients with a 

history of recurrent depression had greater peripheral levels of IL33 and IL1B.374 Finally, 

the authors reported increased IL33 expression in the paraventricular nucleus of the 

hypothalamus and in the prefrontal cortex of rats exposed to an acute stressor, suggesting 

that stress increases IL33 expression in those brain regions.374 Accordingly, circulating 

IL33 levels are increased in bipolar disorder patients.380 

 

The combination of the inflammatory events triggered by psychosocial stress has the final 

goal of dealing with the stressor and of restoring homeostasis in the system by activating 

neuroprotective mechanisms. However, if these events do not subside upon termination of 

the stimulus, or if the stimulus is repeated over time, they can transform into maladaptive 

events and lead to pathological states. Such states can flow into neurodegeneration and 

depressive symptomatology, while increasing the potential for neurodegeneration-related 

co-morbid illnesses.58 Finally, high levels of IL1B caused by stress exposure can 

upregulate the enzyme IDO1, which leads to decreased levels of available tryptophan, 

resulting in overall decreased brain 5HT.381 

The role of NOS2 in MDD 
NO is a small intercellular and intracellular signalling molecule with a very short half-life (3-

6 s) that freely diffuses across cell membranes and plays important physiological roles in 

the brain through modulating different pathways such as neurogenesis, 

neurotransmission, synaptic plasticity, learning, and pain perception.382 NO also plays a 

crucial role in the regulation of emotional and cognitive processes, suggesting that it could 

be involved in the aetiology of MDD and anxiety disorders through its participation in 

neurotransmission, neuromodulation and synaptic plasticity.383 Three isoforms of the NOS 

enzyme produce NO: NOS2, neuronal (NOS1) and endothelial (NOS3), all of which have 

specific spatio-temporal patterns of regulation. In this review, we will focus on the inducible 

isoform because it is considered to be the most relevant to MDD pathophysiology. 

Over the past two decades, several lines of evidence have brought NO and specifically the 

NOS2 isoform to the forefront in psychiatry: a) the levels of NO and its metabolites are 

increased in MDD patients and patients who attempt suicide compared to healthy 

controls,328,384,385 b) transcription of the NOS2 gene is increased in the peripheral blood of 

patients with recurrent depressive disorder,386 c) a polymorphism (-1026C/A) in the NOS2 

promoter is associated with the risk of recurrent depressive disorder,387 d) IgM levels 

against NO adducts are elevated in MDD patients, suggesting that the protein damage 
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created by NO results in the formation of immunogenic peptides, that in turn results in an 

autoimmune-like response,388,389 e) the SSRI paroxetine is a NOS2 inhibitor,390,391 f) 

adjuvant NOS2 inhibition enhances the efficacy of serotonergic antidepressants,326 g) 

NOS2 is increased in the hippocampus and cerebral cortex in mice following stress as a 

response of increased NFKB1 activity, and NOS2 inhibition results in antidepressant-like 

effects in rodents,158,228,392 h) NOS2 inhibition in rodents results in antidepressant-like 

effects,158 i) NO-mediated pathways are involved in the development of post-traumatic 

stress disorder in animal models.393 

Nitric oxide is synthesized from L-arginine and molecular oxygen, and this process 

requires a number of co-factors to take place.394 The architecture of the Nos2 promoter 

region suggests that this gene has a tight and complex pattern of transcriptional control 

since it is rich in positive and negative regulatory regions, and it is responsive to many 

transcription factors, pro- and anti-inflammatory cytokines as well as bacterial degradation 

by-products.395 NOS2 is calcium-independent, is expressed in macrophages and 

microglia, consists of both soluble and membrane bound-NOS and is synthesized on-

demand.396 In fact, whereas there is no detectable physiological NOS2 expression in the 

brain, a profound neuronal, glial and vascular transcriptional up-regulation of the NOS2 

gene can be observed in response to traumatic events such as ischemia and systemic 

inflammation, most likely through activation of the NOS2 promoter by inflammation-related 

molecules, such as cytokines, IRF1and NFKB1.229,344,395,397,398 Following induction, NOS2 

produces NO continuously until the proteasome degradation pathway inactivates the 

enzyme.399 Interestingly, in the brain, glial NOS1-generated NO negatively regulates 

NOS2 expression through suppression of NFKB1 gene transcription.400  

Several studies have targeted the NO system in pre-clinical MDD research, yielding 

promising results. For example, NO seems to decrease the production of NE, to decrease 

the levels of nitrate and nitrite in the hippocampus and cerebral cortex, and to decrease 

5HT turnover in the frontal cortex.394,401,402 Moreover NO has an inhibitory effect on 

dopamine transporters; therefore, it indirectly increases the availability of inter-synaptic 

dopamine.403 Finally, the relevance of the L-arginine-nitric oxide-cyclic guanosine 

monophosphate pathway to MDD has recently emerged. In fact, several molecules such 

as bupropion (a norepinephrine-dopamine reuptake inhibitor), venlafaxine (a SNRI), 

mementine (an NMDDA receptor antagonist) and berberine (a plant alkaloid), all of which 

produce antidepressant-like effects, modulate this signalling pathway.404 Taken together, 
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these findings suggest that NO modulation could represent a useful approach in the 

treatment of MDD. 

The role of interferon-gamma in MDD 
IFNG	is a pleiotropic soluble cytokine which orchestrates several distinct cellular programs 

via transcriptional and translational control over a large set of genes. It is also the sole 

member of the type II IFNs.405,406 IFNG is produced by a number of immune cells such as 

lymphocytes, cytotoxic lymphocytes, B cells and antigen-presenting cells.407,408 The 

IFNGR is expressed on almost all cell types and its activation triggers the janus kinase 1 

and 2 signal transducer and activator of transcription 1 pathway, as well as additional 

pathways, such as the extracellular-signal-regulated-kinase 1/2.409,410 Activation of the 

IFNGR results in the transcription of genes with IFNG-stimulated response elements 

(ISREs) within their promoter region until signal transducer and activator of transcription 1 

dissociates following complete dephosphorylation within 1-2 hours.411,412 The genes 

transcribed in response to IFNGR activation are at least 200, together with many micro 

RNAs and long non-coding RNAs413 (for a database of IFN-regulated genes see 414). At 

the same time, after IFNGR stimulation, the secondary transcription factors IRF1, IRF2 

and interferon consensus sequence binding protein are upregulated. This in turn results in 

the transcriptional induction of a subset of inflammatory-related genes such as NOS2 

(stimulated by IRF1) and guanylate-binding protein. Finally, IFNG can activate and be 

activated by CASP1, highlighting the interconnectedness of these 2 inflammatory 

pathways.415-418 The ensemble of these processes highlights the multilayered complexity 

of events that arise following IFNGR activation.412,419  

Studies have shown that ex-vivo peripheral blood mononuclear cells from MDD patients 

display increased IFNG and neopterin production upon stimulation, as well as decreased 

tryptophan bioavailability.205 Nevertheless, IFNG transcriptional levels (together with those 

of TNF) in patients with multiple sclerosis correlate with the severity of the depressive 

symptomatology during flare-ups.420 At the same time, most categories of antidepressants 

(tricyclic, SSRI, SNRI and reversible inhibitors of monoamine oxidase A) suppress the 

IFNG/IL10 ratio through suppressing IFNG and stimulating IL10 in-vivo and ex-vivo.421,422 

These findings suggest that MDD patients have increased systemic IFNG and neopterin 

production by activated T cells and macrophages. This could be responsible for an 

upregulation of the enzyme IDO1 (since the latter presents 2 ISREs at the promoter region 

that lead to maximum promoter activity) and consequent tryptophan depletion through 

upregulation of the kyneurine/ tryptophan pathway, events that result in a decrease of 
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available 5HT levels and in an increase of the toxic metabolite kyneurine.66,205,423,424 

Accordingly, a polymorphism (CA repeat, rs3138557) in the IFNG gene correlates with 

lower levels of serum tryptophan and 5-hydroxindolacetic acid (the main metabolite of 

5HT) and higher levels of kyneurine, suggesting that carriers of the CA allele have 

decreased 5HT levels and are therefore more susceptible to developing MDD.425 Similarly, 

the presence of the high producer T allele +874(T/A) polymorphism (rs2430561) has been 

associated with increased IDO1 activity.426 Interestingly, IFNG signalling promotes the 

creation of a pro-inflammatory milieu, and drives Th1 development;427,428 therefore, 

increased production and signalling of IFNG during early life and traumatic events could 

be one of the drivers of the Th1/Th2 shift towards Th1 in MDD and the onset of depressive 

symptomatology during childhood or later in life.83 

Animal studies have shown that Ifng-/- mice do not show developmental defects but 

present compromised immune responses and increased susceptibility to infections.155 With 

regard to their behavioural phenotypes, Ifng-/- mice display decreased anxiety- and 

depressive-like behaviour as well as heightened emotionality in several pre-clinical 

behavioural paradigms.156,157,429 These behaviours are underlined by a) increased 

serotonergic and noradrenergic activity (i.e. greater metabolite accumulation) in the central 

amygdaloid nucleus, together with b) increased baseline plasma corticosterone, c) 

decreased neurogenesis in the hippocampus, and d) decreased levels of nerve-growth 

factor in the prefrontal cortex, suggesting that IFNG modulates anxiety and depressive 

states and is involved in CNS plasticity.156,157 On the other hand, while IFNG deficiency 

was shown not to confer resistance to a chronic stress regimen in mice, it was shown to 

attenuate monoamine, corticoid and cytokine alterations in response to stressors.157 Given 

this evidence for an involvement of IFNG in pathways relevant to depressive symptoms 

and depressive-like behaviour, targeting IFNG and/or its receptor could hold potential in 

the quest for novel therapeutic strategies in MDD treatment. 
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Chapter 3 - Hypotheses and aims 

Rationale of the study 
Given the emerging role of inflammatory mediators and of the gut microbiome in the 

aetiology and treatment of MDD, we ought to investigate if inhibiting pro-inflammatory 

mediators would result in antidepressant-like effects in pre-clinical models of MDD and 

affect gut microbiome composition. In the first study (study 1, chapter 4) we investigated 

whether genetic deficiency and pharmacological inhibition of CASP1 affect behaviour, 

chronic stress response and gut microbiome composition. In the second study (study 2, 

chapter 5), we tested the effects of simultaneously deleting the genes a) Nos2, b) Casp1 

and c) Ifngr on innate anxiety- and depressive-like behaviours, on those behaviours 

following chronic stress and on the levels of the circulating stress-related hormones ACTH 

and CORT. 

CASP1 is a cysteine protease activated by a variety of physical and physiological 

stressors in the NLRP3 inflammasome.78,235,430 Its activation leads to the cleavage and 

release of the bioactive forms of IL1B, IL18 and IL33.343 CASP1 transcriptional and protein 

levels are increased in the blood of MDD patients, and decrease following antidepressant 

treatment.78,342,430 These findings suggest a role for CASP1 in MDD pathogenesis and 

remission, potentially through its involvement in neuroinflammation and 

neurodegeneration.78,342,430 Given that stress induces pro-inflammatory signalling and that 

Casp1-/- mice display decreased inflammation-induced brain transcription in response to 

endotoxic shock compared to wt mice, inhibiting CASP1 might result in a protective effect 

against psychological stress.149 Accordingly, CASP1 inhibition with minocycline (a second 

class tetracycline with anti-inflammatory effects) has been shown to have antidepressant 

and neuroprotective outcomes, highlighting the role of the NLRP3 inflammasome-IL1 

system in the psychological stress response and neuroinflammation.93,94,431 Similarly, IL1 

blockade has been shown to prevent the anhedonic and anti-neurogenic effects of stress 

in the mouse brain.151  

NOS2 is one of the four isoforms of the enzyme NOS, a family of enzymes that produce 

the molecular compound and free radical NO, which is involved in a number of processes, 

such as the response to psychological stress, neurogenesis, neurotransmission, learning, 

immune system modulation, blood vessel function and pain perception.396 Exposure to 

stressful stimuli has been shown to increase Nos2 expression in the rat brain via NFKB1 

activation,227,228 and the production of NO is increased in MDD patients, while 
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polymorphisms in the NOS2 genes associate with major depression.328,385,387 

Correspondingly, inhibition of NOS2 in rodents induces antidepressant-like effects.158,432 

Finally, NO modulates several neurotransmitter systems, making it an appealing candidate 

target in the treatment of MDD and other psychiatric disorders.382  

IFNG is a soluble cytokine and a fundamental mediator of innate and adaptive 

immunity.407 This cytokine plays a role in Th1-mediated cell responses, Th1 and T-reg cell 

differentiation, macrophage activation and immunoediting.416 Its circulating levels have 

been shown to correlate with stress perception and anxiety responses in students before 

an examination,83 while ex-vivo peripheral blood mononuclear cells from MDD patients 

produce more IFNG upon stimulation compared to healthy controls.205 Accordingly, many 

antidepressant drugs suppress IFNG production.81,433 To test our hypotheses we used 

mice with genetic deletion or pharmacological inhibition of CASP1, and mice with 

simultaneous genetic deletion of Casp1, Nos2 and Ifngr. 

Aims and hypotheses 

Overarching Hypothesis 
Our overarching hypothesis was that the genetic deletion or pharmacological inhibition of 

pro-inflammatory mediators in mice would decrease anxiety- and depressive-like 

behaviours. Moreover, that this would have a protective effect on the stress response 

resulting in a decreased exacerbation of anxiety-and depressive-like behaviours following 

exposure to chronic stress regimens. Furthermore, that such inhibition would result in 

decreased levels of circulating ACTH and CORT after chronic stress compared to wt mice. 

Finally, that chronic stress and CASP1 inhibition with minocycline treatment would affect 

gut microbiome composition. 

Aim 1 

Our first aim was to determine if genetic deficiency and pharmacological inhibition of 

CASP1 with minocycline affect behaviour in mice. Moreover, to determine if decreasing 

CASP1 activity via genetic deletion or minocycline treatment could prevent the 

exacerbation of depressive- and anxiety-like behaviours following exposure to a chronic 

stress regimen. Furthermore, to determine if stress and pharmacological inhibition of 

CASP1 and their combination during stress exposure affect gut microbiome composition in 

mice.  
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Hypothesis 1 

We hypothesized that genetic deficiency of Casp1 would affect baseline behaviour and 

prevent the exacerbation of anxiety- and depressive-like behaviours following chronic 

stress. Moreover, we hypothesized that CASP1 pharmacological inhibition would prevent 

the exacerbation of anxiety- and depressive-like behaviours following chronic stress while 

affecting gut microbiome composition. Furthermore, we hypothesized that chronic stress 

exposure alone would affect gut microbiome composition. 

Aim 2 

Our second aim was to determine if the simultaneous genetic ablation of Casp1, Nos2 and 

Ifngr affects anxiety- and depressive-like behaviours at baseline and anxiety- and 

depressive-like behaviours following chronic stress. Moreover, to determine if the 

contemporaneous deficiency of Casp1, Nos2 and Ifngr affects the levels of the stress-

related hormones ACTH and CORT following chronic stress exposure. 

Hypothesis 2 

Our second hypothesis was that the contemporaneous genetic ablation of Casp1, Nos2 

and Ifngr would affect anxiety- and depressive-like baseline behaviours, while preventing 

the exacerbation of anxiety- and depressive-like behaviours following chronic stress. 

Moreover, that the contemporaneous genetic deficiency of Casp1, Nos2 and Ifngr would 

decrease the circulating levels of the stress hormones ACTH and CORT following chronic 

stress exposure. 

Methods  
In order to test our hypotheses, we used wt C57BL/6J mice and mice with genetic deletion 

of either Casp1 or mice with simultaneous deletion of Casp1, Nos2 and Ifngr [(Casp1, 

Ifngr, Nos2)-/-]. We chose to use these mice given the available literature on the stress 

resilience phenotypes of Il1b-/-, Nos2-/- and Ifngr-/- mice (see chapter 2 for details). 

Statistical analyses  

In order to detect statistical differences between the groups here studied we used a 

general linear model for repeated measures (repeated measures ANOVA with mixed 

design) using the software Statistical Package for the Social Sciences version 23.0 for 

windows (SPSS, Chicago, Illinois, USA),434  given that the same behavioural tests were 

repeated before and after stress exposure. We investigated whether there was a main 

effect of genotype (between subjects factor), a main effect of stress (within subjects factor) 

and/or a stress*genotype interaction. The significance threshold was set at P<0.05. In 
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order to validate the assumption of sphericity of the variances (a condition in which the 

variances of the differences between all within-subject conditions are equal) we used 

Mauchly’s sphericity test. We reported estimates of effect size as partial eta squared (η2
p). 

If stress*genotype or stress*treatment interactions were statistically significant, they were 

unpacked to determine the major contributing factors (i.e. stress or genotype/treatment) for 

the differences observed.434 Enzyme-linked immunosorbent assays (ELISAs) results were 

compared by using 2-tailed unpaired t-test with a confidence level of 95%. Assistance with 

the statistical analysis was provided by a statistical consultant employed by Flinders 

University (Mr. Pawel Skuza). 

 

Comparison of gut microbiome composition between groups (beta-diversity) was carried 

out using Bray Curtis similarity matrices in PRIMER (v6, PRIMER-E Ltd, Plymouth, UK). 

Matrices were created from the abundance of sample-normalized, square-root 

transformed, relative OTUs (operational taxonomic units). Changes at the community level 

were assessed using one-way permutational multivariate analyses of variance 

(PERMANOVA) tests with 9,999 random permutations and the significance threshold was 

set at P<0.01. The contribution of individual taxa to between-group variation was assessed 

by similarity percentages (SIMPER) analysis, as previously reported.435 If specific bacterial 

taxa were identified as contributing to changes in microbiome composition, the variation in 

their relative abundance was further assessed through Mann-Whitney U tests between 

groups. Differences of median relative abundance between groups were assessed using 

Hodges-Lehmann estimator. Statistical analyses of gut microbiome experiments were 

carried out and results interpreted by Dr. Lex Leong, Dr. Jocelyn Choo, and A/Prof. 

Geraint B. Rogers, affiliated with the Infection and Immunity Theme, South Australian 

Health and Medical Research Institute, Adelaide, SA, Australia, and the Department of 

Infectious Disease, Flinders University School of Medicine and Flinders Medical Centre, 

Adelaide, SA, Australia. 

Power analyses 

The required sample size to detect statistically significant differences in our studies was 

determined with results obtained in preliminary pilot experiments.  

Study 1 

In the experimental design phase for study 1, power calculation was performed based on 

the effect size seen in a pilot study investigating the effects of CASP1 deficiency on 

floating time in the forced swim test (our primary outcome measure). Cohen’s d for that 



	

	 49	

study was 0.78, meaning that a sample size of n>45 (we used n=47) would result in 80% 

power to detect an antidepressant-like effect at P≤0.05. 

Study 2 

In the experimental design phase for study 2, power analysis was based on the effect size 

previously observed in a preliminary study investigating the effects of Casp1, Nos2 and 

Ifngr genetic deficiency on total floating time in the forced swim test. Cohen’s d for that 

study was 0.84, meaning that a sample size of n=34 (we used n=36) would result in 80% 

power to detect an antidepressant-like phenotype at P≤0.05.  

Behavioural experiments  
In order to assess behaviour at baseline and following chronic stress exposure, we 

performed widely adopted behavioural tests to assess anxiety- and depressive-like 

behaviours. Specifications for each behavioural test can be found in the material and 

methods section of chapter 4 and 5. 

Forced swim test  

The forced swim test (or Porsolt swim test) is a test used to assess behavioural despair 

(also called depressive-like or hopelessness behaviour) in rodents. This test is based on 

the notion that when rodents are forced to swim in a cylinder filled with water from which 

they cannot escape, they will rapidly realize that they are not able to exit the cylinder and 

will become immobile, only making minimal movement to float with their head above the 

surface of the water. In the forced swim test, the total amount of time spent immobile 

(inactive or floating behaviour) within a specific timeframe (usually 5 minutes) is 

considered an index of depressive-like or hopelessness behaviour; the higher the 

immobility time, the higher the behavioural despair or depressive-like phenotype. A range 

of antidepressant treatments has been shown to decrease floating in the forced swim test 

by increasing active behaviour. The latter is usually classified as either swimming (when 

the rodent swims in the cylinder moving both its hind and back legs) or climbing (when the 

rodent makes vigorous movements to attempt escaping, with its body almost parallel to the 

walls of the container in which the test is performed).436-439 

Sucrose preference test  

The sucrose preference test is considered a measure of anhedonic-like (the inability of 

seeking or pleasurable stimuli and reward) behaviour. In this test, mice are given the 

choice of drinking either plain water or a sugary solution (usually containing varying 

concentrations of sucrose). Under normal conditions, the mice display preference for the 
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sweet solution over standard water, while in times of increased stress the mice drink the 

same amount from either bottles or prefer to drink standard water. Usually mice are first 

habituated to the novel drink by being presented with two identical bottles containing the 

sweet solution. Then, one of the bottles is replaced with normal water and the preference 

for the sweet solution is calculated as the percentage of the sweet solution drunk over the 

total volume of liquid drunk over a set amount of time (usually 1, 12 or 24 hours). To avoid 

preference for one side, the position of the bottles can be switched at regular intervals 

during the test.176,177 

Marble Burying test 

The marble-burying test is used to assess novelty-induced anxiety and anxiolytic activity. 

In this test, rodents are individually placed in a novel arena with regular bedding in which 

colorful glass marbles have been introduced. Digging is one of the innate rodent 

behaviours, and in times of increased stress or in novel environments rodents display 

increased digging behaviour. As a result of this behaviour, the marbles are indirectly 

buried and the number of marble buried gives an index of digging considered predictive of 

anxiety-like behaviour. However, some scientists have argued that anxiety-like measures 

in the marble burying test do not correlate with anxiety measures in other tests. Some 

have argued that this test is more representative of repetitive behaviour (and hence more 

similar to a test for the quantification of obsessive-compulsive behaviour).440,441 This test 

was only performed in study 1 (chapter 4). 

Rotarod  

The rotarod is a test performed to assess locomotor coordination, balance and motor skill 

learning. This test is performed by placing the animal on a rotating (at constant or 

accelerating speed) drum. The average latency to fall from the apparatus over several 

trials (3 per day over 4 days in this study) is used for the analysis.442 This test was 

performed only in study 1 (chapter 4). 

Open field test 

The open field test is used to assess exploratory and locomotor activity in rodents. Animals 

are individually placed in the corner of a brightly lit arena from which escape is prevented 

by walls and their locomotor activity is recorded for a set amount of time (usually 5 to 60 

minutes). This test was initially designed to measure the emotionality elicited by the 

exposure to a novel, brightly lit arena by counting the number of defecations and 

urinations.443 This test can also assess anxiety-like behaviour as measured by the time 
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spent in a central subsection of the arena (to which rodents display an innate avoidance) 

or the ratio between the distance travelled in the centre of the arena over the total distance 

travelled.443,444 

Elevated plus maze test 

The elevated plus maze is a maze which comprise two open and two closed arms and it is 

used to quantify anxiety-like behaviour in rodents. This test relies on the innate avoidance 

that rodents have for open spaces, in which they feel more vulnerable due to the 

increased likelihood of being vulnerable to predators. Usually the total time spent in the 

open arms and/or the ratio between the time spent in the open arms over the time spent in 

the closed arms are used as indexes of anxiety-like behaviour, since anxiolytic treatments 

decrease these parameters.444,445 

Novelty suppressed feeding 

The novelty suppressed feeding is a test based on a phenomenon called hyponeophagia, 

which is the reduction in the amount of feeding in response to a novel environment. In this 

test, rodents are fasted for a period of time (usually overnight/16 hours) and then placed in 

a novel arena with a single pellet of food in the middle of the arena. The animals face the 

choice between hiding in one of the corners or approach and consume the food in the 

centre of the arena while experiencing avoidance deriving from the novel environment. 

Higher latency to eat is connected to higher avoidance and anxiety-like behaviour.446 This 

test was only performed in study 1. 

Gut microbiota assessment 
Following the experiment in which we investigated the behavioural effects of concomitant 

pharmacological inhibition of CASP1 with minocycline and exposure to CRS, we decided 

to investigate the gut microbiota composition of these mice to assess the effects of a) 

chronic stress, b) pharmacological CASP1 inhibition with minocycline and c) concomitant 

treatment with minocycline and CRS. In order to determine gut microbiota composition, we 

used paired-end 16S rRNA analysis, a sequencing technique used to distinguish bacterial 

families and species based on the unique signatures of bacterial 16S rRNA. This 

technique relies on the amplification and sequencing of a region (300 base pairs in our 

study) of bacterial genes coding for the 16S rRNA, which is a part of ribosomes and is 

involved in the translation process. This technique is widely used to identify bacterial 

populations, given that 16S rRNA is highly conserved amongst bacterial families and 

therefore allows for the use of universal primers for amplification. Moreover, since it is one 
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of the most characterized techniques to identify microorganisms, databases are available 

that allow for the identification of the sequencing results. Furthermore, this technique 

allows for the identification of both cultured and uncultured microbial families. Finally, this 

approach is cheaper than other sequencing approaches such as shotgun 

sequencing.447,448 This analysis was performed in study 1 (chapter ) as a core service by 

the David R. Gunn Genomics Facility, South Australian Health and Medical Research 

Institute. 

ELISAs 
To investigate if the levels of the stress hormones ACTH and CORT were different 

amongst groups in study 2 we used ELISAs. ELISA is a molecular technique used to 

determine the presence of a specific substance such as a peptide, a protein, a hormone or 

an antibody in a biological sample, such as blood, urine or cell culture supernatant.449 The 

“direct” version of this assay (like the CORT assay used in this study) relies on the 

specificity of monoclonal antibodies to exclusively bind to a specific antigen. After the 

antigen is immobilized, the detection antibody is added and it forms a complex with the 

antigen. Finally, adding a substrate produces a visible signal quantifiable with a 

spectrophotometer which indicates the quantity of antigen in the sample.450 The ELISA kit 

used to determine the levels of ACTH in this study is a variation of the standard ELISA 

procedure. In fact, this assay relies on the principle of competitive inhibition. In this type of 

assay, the concentration of the antigen of interest is measured by observing the 

interference of the expected signal output. The more antigen in the sample that needs to 

be analysed, the higher the reduction in intensity. We chose ELISA assays to determine 

the levels of the proteins of interest because this approach allows for the determination of 

the amount of a mature protein.  

Outcome measures 

Primary outcome measures 

Our primary outcome measure was to assess depressive-like behaviour in the forced swim 

test at baseline and following exposure to a chronic stress regimen.  

Secondary outcome measures 

Secondary outcome measures included anhedonic-like behaviour, anxiety-like behaviour, 

locomotor activity (study 1 and 2), respirometry and gut microbiome composition (study 1 

only), and circulating levels of the stress-related hormones ACTH and CORT (study 2 

only).
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Chapter 4 - Inflammasome signalling affects anxiety- and depressive-
like behaviour and gut microbiome composition 
Published paper, “Molecular Psychiatry”, (D.O.I. 10.1038/mp.2016.46.) 

In this paper, generation and genotyping of Casp1-/- transgenic mice was performed as a 

service from the Australian National University core facility. The behavioural experiments 

involving Casp1-/- mice were performed by the candidate when the candidate was working 

as a research assistant and volunteer in the Translational Psychiatry research group at the 

John Curtin School of Medical Research, Australian National University. The behavioural 

experiments involving CASP1 pharmacological inhibition with minocycline were performed 

by the candidate at the South Australian Health and Medical Research Institute. The 

statistical analyses performed on the data involving Casp1-/- and minocycline treated mice 

were performed by the candidate. Assistance in the statistical analysis was provided by a 

statistical consultant employed by Flinders University (Mr. Pawel Skuza). The gut 

microbiota composition study, using paired-end 16S RNA analysis, was performed as a 

core service by the David R. Gunn Genomics Facility, South Australian Health and Medical 

Research Institute and the statistical analysis for that experiment and interpretation were 

performed by Dr. Lex Leong, Dr. Jocelyn Choo, and A/Prof Geraint B. Rogers. 
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Abstract 
The inflammasome is hypothesized to be a key mediator of the response to physiological 

and psychological stressors, and its dysregulation may be implicated in MDD. 

Inflammasome activation causes the maturation of CASP1 and activation of IL1B and 

IL18, two pro-inflammatory cytokines involved in neuroimmunomodulation, 

neuroinflammation, and neurodegeneration. In this study, C57BL/6 mice with genetic 

deficiency or pharmacological inhibition of CASP1 were screened for anxiety- and 

depressive-like behaviours, and locomotion at baseline and after chronic stress. We found 

that genetic deficiency of Casp1 decreased depressive- and anxiety-like behaviours, and 

conversely increased locomotor activity and skills. We also showed that Casp1 deficiency 

prevented the exacerbation of depressive-like behaviour. Furthermore, pharmacological 

CASP1 antagonism prevented stress-induced increase in depressive-like behaviour. 

Chronic stress or pharmacological inhibition of CASP1 affected faecal microbiome 

composition and were both associated with a dysbiotic state. Analysis of individual 

bacterial taxon relative abundance provided evidence of both synergistic and antagonistic 

effects of chronic restraint and CASP1 inhibition. Our results suggest that CASP1 inhibition 

has a protective effect in modulating the relationship between stress and microbiome 

composition, which supports the notion of a microbiome-gut-inflammasome-brain (MGIB) 

axis, in which the gut microbiome, via inflammasome signalling, modulates inflammatory 

pathways that will alter brain function and affect depressive- and anxiety-like behaviours. 

Our data suggest a novel opportunity for translation into MDD treatment, if future studies 

demonstrate that the MGIB axis represents a feasible therapeutic target in the treatment of 

psychiatric disorders.  

Keywords: caspase 1/interleukin 1 converting enzyme, interleukin 1 beta (IL1B), 

interleukin 18 (IL18), inflammasome, chronic restraint stress, major depressive disorder, 

minocycline, gut microbiome. 
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Introduction 
Increasing evidence suggests an involvement of neuroinflammatory pathways in the etio-

pathophysiology of MDD, and antidepressant response.58,64 Depressive symptoms are 

underlined by increased levels of pro-inflammatory cytokines (i.e., IL1B, IL6), decreased 

levels of anti-inflammatory cytokines, (i.e. IL4 and IL10), and are associated with 

polymorphisms in inflammation-related genes.59,202,203 IL1 receptor type-I and its ligands 

are expressed in brain areas relevant to stress response451-453 and IL1B signalling is 

fundamental in mediating the deleterious neurobehavioural and neuroendocrine responses 

to stress and adaptation.150,454 Chronic stress or IL1B administration triggers depressive-

like behaviour.455 

A variety of stressors activate the inflammasome through the NLRP3 or P2X purinoceptor 

7 receptors, resulting in CASP1 maturation, which processes and releases bioactive IL1B 

and IL18.235,343 CASP1 and NLRP3 mRNA are increased in blood cells of depressed 

patients,78 suggesting that the inflammasome is a key mediator by which physical and 

psychological stressors contribute to the development of depression, leading to the 

“inflammasome hypothesis” of depression.342 If that proves to be correct, CASP1-inhibiting 

compounds may have antidepressant effects. Minocycline is a semisynthetic tetracycline 

antibiotic that inhibits CASP1 and CASP3 transcription and has anti-apoptotic, anti-

inflammatory, and neuroprotective properties as well as acute antidepressant-like 

effects.91,92,95,456-459 

Casp1-/- mice are overtly normal, despite having undetectable IL1B and low IL1A levels.147 

They have decreased systemic inflammatory response and increased survival to lethal 

endotoxin doses when compared to wt mice.147,149 This is underlined by reduced 

inflammation-induced brain transcription, decreased inflammasome assembly, and 

consequently decreased circulating IL1B and IL18.147,149 

The MGB axis is a complex multi-organ bidirectional signalling system between the 

microbiome and the brain that plays a fundamental role in host physiology, homeostasis, 

development and metabolism.460 Growing evidence shows reproducible and consistent 

effects of microbial states on mouse behaviour, supporting a role for the microbiome in 

modulating behaviour.145,461,462 Differences in anxiety-related behaviours are commonly 

reported in mice with altered gut microbiomes, implicating the role of gut microbiome in 

stress and depression.463,464 Casp1-/- mice display depressive-like behaviour and anorexia 

after peripheral but not central LPS administration and differ in gut microbiome 
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composition compared to wt mice.148,465,466 Therefore, our primary and secondary 

hypotheses were, respectively, a) that decreased CASP1 activity would result in 

decreased depressive-like behaviour and b) that CASP1 inhibition and CRS would result 

in changes in the gut microbiome. The null hypothesis was that there would be no 

difference in these parameters between Casp1-/-, wt and minocycline-treated mice. 

Materials and methods 
Procedures were approved by the Animal Ethics Committees of the Australian National 

University and the South Australian Health and Medical Research and are in accordance 

with the Australian Code for the Care and Use of Animals for Scientific Purposes (8th 

edition, 2013). Male mice (C57BL/6J background, wt n=81; Casp1-/- n=20) aged 60-90 

days were obtained from the Australian Phenomics (Canberra, Australia) or the 

Bioresources Facilities (Adelaide, Australia). Genetic Casp1 deficiency was confirmed by 

genotyping in experimental mice (Supplementary Fig. 4.6). Littermates were group housed 

(Green Line IVC Sealsafe PLUS mouse, Tecniplast, Varese, Italy) in a temperature (22°C 

±1°C) and light (12h cycles, lights on at 7:00 am) specific pathogen free room with water 

and food ad libitum. Animals were assigned and randomized as described in the 

supplementary materials and methods. The investigators were not blinded to group 

assignment. Behavioural phenotyping was performed between 9:00 am to 4:00 pm. 

Animals were given 30 min habituation to the behavioural testing room. Tests were 

performed from the least to the most invasive to minimize the influence of prior test history 

(in order: rotarod, elevated plus maze, marble burying test, open field test, sucrose 

preference test, novelty suppressed feeding, forced swim test. See supplementary 

methods for details).467 Following CRS this order was reversed for a bell-shaped stress 

exposure (Supplementary Fig. 4.7).  

CRS 

After baseline behavioural testing, animals were submitted to restraint stress for 21 days. 

Every day, mice were placed in a horizontal resting position inside a well-ventilated (12 

holes, 0.5mm diameter) 50mL falcon tube at 10:00 am and after 4-6 hours they were 

unrestrained.  

Pharmacological CASP1 inhibition with minocycline 

Wt mice were treated with either saline [0.2mL, intraperitoneally (i.p.), n=27] or 

minocycline (LKT laboratories, St. Paul, MN, USA) [5mg/kg/d in 10mL/kg saline, (i.p.), 

n=27]. Treatment lasted for the same duration of the restraint procedure (21 days). 
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Respirometry 

Minocycline- or saline-treated restrained animals were individually housed in the 

Promethion Metabolic Monitoring System (Sable Systems International, Las Vegas, NV) 

for 48 hours to assess the effects of minocycline on exploratory behaviour, food intake, 

energy expenditure, volume of oxygen inhaled and of carbon dioxide exhaled at baseline 

and after chronic restraint. 

16S rRNA analysis 

Please see supplementary materials and methods for a detailed explanation of the 

methods used for the 16S rRNA analysis. Briefly, faecal pellets were collected with 

autoclaved toothpicks, placed in 1.5mL tubes, snap-frozen on dry ice and stored at -80°C. 

Following DNA extraction, faecal microbiome profiling was performed by paired-end 16S 

rRNA gene amplicon sequencing, based on the Illumina MiSeq platform to a depth of 

approximately 40,000 reads per sample. Sequence data processing was performed as 

previously described.468 

Statistical analysis 

Power analysis was performed based on the effect size seen in a previous pilot study for 

the effects of Casp1 deficiency on total floating time in the forced swim test (our primary 

outcome measure). Cohen’s d for that study was 0.78, meaning that a sample size of n=47 

would result in over 80% power to detect an antidepressant-like effect at P≤ 0.05. 
Statistical analyses were performed using the Statistical Package for the Social Sciences 

version 23.0 for Windows (SPSS, Chicago, Illinois, USA) using a general linear model for 

repeated measures. The effects of genotype, stress, treatment and their interaction were 

explored and the significance set at P<0.05. Sphericity of the variances of the groups was 

assessed with the Mauchly’s sphericity test. If the assumption of sphericity was violated, 

the Greenhouse-Geisser correction was generated. Effect size was reported as partial eta-

squared (η2
p). Significant stress*genotype or stress*treatment interaction was unpacked as 

described previously.434 Comparison of microbiome composition between groups (beta-

diversity) was performed using Bray Curtis similarity matrices in PRIMER (v6, PRIMER-E 

Ltd, Plymouth, UK). Matrices were generated from sample-normalized, square-root 

transformed, relative OTU (Operational Taxonomic Units) abundance. Community level 

changes were assessed for significance using one-way permutational multivariate 

analyses of variance (PERMANOVA) tests with 9,999 random permutations and at a 

significance threshold of P<0.01. The contribution of individual taxa to between-group 

variation was assessed by similarity percentages (SIMPER) analysis, as previously 
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reported.435 Where specific bacterial taxa were identified as contributing to change in 

microbiome composition, variation in their relative abundance was further assessed 

through Mann-Whitney U tests between groups. Differences of median relative abundance 

between groups were assessed using Hodges-Lehmann estimator.  

Results 
Our primary outcome measure was the assessment of depressive-like behaviour in the 

forced swim test. Secondary outcome measures included anxiety-like behaviour, changes 

in the sucrose preference test, locomotor activity, gut microbiome and respirometry. 

Analyses and results of behavioural tests are available in supplementary tables 4.1, 4.2 

and 4.3. 

Casp1 deficiency decreases depressive and anxiety-like behaviours 
Our results showed that Casp1 deficiency decreased depressive- and anxiety-like 

behaviours. In the forced swim test, the total floating time was lower in Casp1-/- compared 

to wt mice (F1,45=117.04, P<0.0001) (Fig. 4.1a and supplementary table 4.1). Additionally, 

swimming and climbing behaviours were higher in Casp1-/- mice compared to wt 

(respectively F1,45=117.10, P<0.0001, and F1,45=38.69, P<0.0001). Anxiety-like behaviour 

had a significant main effect of genotype in 4 tests: (1) elevated plus maze, (2) novelty 

suppressed feeding, (3) marble burying, and (4) open field tests. We found a significant 

main effect of genotype in the elevated plus maze open to closed arms time ratio 

(F1,45=4.16, P=0.047) (Fig. 4.1b), suggesting an anxiolytic phenotype in Casp1-/- mice. 

Accordingly, in the novelty suppressed feeding, Casp1-/- mice showed decreased latency 

to eat in a novel environment following fasting (F1,43=32.17, P<0.0001) (Fig. 4.1c). In the 

marble burying test, which is considered predictive of anxiolytic compounds,469 we 

observed a decreased number of marbles buried by Casp1-/- mice (F1,45=11.55, P=0.001) 

(Fig. 4.1d). Moreover, Casp1-/- mice displayed a decreased number of faecal boli during 

the open field test (F1,45=4.72, P=0.035) (Fig. 4.1e), while no differences were observed for 

the time spent in the center area of the arena, another measure of anxiety-related 

behaviour (F1,45=0.05, P=0.826). In the sucrose preference test, Casp1-/- mice displayed 

an increased preference for a 1% sucrose solution (F1,33=5.52, P=0.025) (supplementary 

table 4.1), suggesting greater hedonic-like behaviour.  
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Figure 4.1. Casp1 deficiency decreases anxiety-like and depressive-like behaviour and affects CRS 
response. 

(a) Casp1-/- mice displayed decreased floating time in the forced swim test in comparison to wt) mice and (b) 

displayed decreased anxiety-like behaviour as measured by the open/closed arms time ratio in the elevated 

plus maze. (c) In the novelty suppressed feeding test, Casp1-/- mice showed significantly decreased latency 

to feed following 16 hours of fasting but not water deprivation. (d) Moreover, Casp1 deficiency resulted in 

less marbles buried in the marble-burying test. (e) In the open field test, we observed a decreased number of 

faecal boli as a result of Casp1 deficiency, as well as a different response to chronic restraint stress. Data 

are presented as means ± s.e.m. Genotype effect * =P<0.05; ** =P<0.01; *** =P<0.001; **** =P<0.0001; 

stress effect + =P<0.05; ++ =P<0.01; +++ =P<0.001; ++++ =P<0.0001; genotype*stress effect # =P<0.05; ## 

=P<0.01; ### =P<0.001; ####=P<0.0001. wt = wild-type; BL = baseline; STR= after CRS paradigm. (wt 

n=27; Casp1-/- n=20). 

wt B
L

Ca
sp
1-
/- BL

wt S
TR

Ca
sp
1-
/- STR

0.0

0.1

0.2

0.3

0.4

O
pe

n/
cl

os
ed

 a
rm

s 
tim

e 
ra

tio
*, +

wt B
L

Ca
sp
1-
/- BL

wt S
TR

Ca
sp
1-
/- STR

0

1

2

3

4

M
ar

bl
es

 b
ur

ie
d 

in
 3

0'
 (n

) **

wt B
L

Ca
sp
1-
/- BL

wt S
TR

Ca
sp
1-
/- STR

0

100

200

300

To
ta

l f
lo

at
in

g 
tim

e 
(s

)

****, ++++

wt B
L

Ca
sp
1-
/- BL

wt S
TR

Ca
sp
1-
/- STR

0

100

200

300

La
te

nc
y 

to
 e

at
 (s

)

****

wt B
L

Ca
sp
1-
/- BL

wt S
TR

Ca
sp
1-
/- STR

0

2

4

6

8

10
Fe

ca
l b

ol
i  

in
 3

0'
 (n

)
*, ++, ####

a b

c d

e



	

	 61	

Casp1 deficiency affects CRS response 

Our results suggest that Casp1-/- mice had an attenuated response to chronic stress. We 

found a significant (genotype*stress) interaction for swimming and climbing time in the 

forced swim test (respectively F1,45=7.02, P=0.011, and F1,45=8.60, P=0.005). Wt mice 

showed a greater decrease in swimming time (70%, F1,45=45.48, P<0.0001) than Casp1-/- 

mice (14%, F1,45=5.33, P=0.026) following stress. Accordingly, wt animals displayed a 

greater reduction in climbing time (91%, F1,45=33.33, P<0.0001) compared to Casp1-/- mice 

(64%, F1,45=78.13, P<0.0001) following restraint (Fig. 4.1a). We found a significant 

(genotype*stress) interaction for body weight changes (F1,45=6.06, P=0.018), which 

decreased in wt mice following restraint (F1,45=14.24, P<0.0001, average delta body 

weight= -1.3 g) but remained unchanged in Casp1-/- mice (F1,45=0, P=1, average delta 

body weight= 0 g). Furthermore, we found a significant (genotype*stress) interaction in the 

number of defecations in the open field test (F1,45=30.93, P<0.0001) (Fig 4.1d); Casp1-/- 

mice did not show an increase in this parameter following restraint (F1,45=1.73, P=0.196) 

while wt mice did (F1,45=48.98, P<0.0001).  

Casp1 deficiency increases locomotion and locomotor skills 

We found that Casp1 deficiency increases locomotor activity in the open field test 

(F1,45=10.54, P=0.002) (Fig. 4.2a). Moreover, Casp1-/- mice acquired skills more quickly 

than wt mice to perform in the accelerating rotarod test (F1,45=15.35, P<0.0001) (Fig. 4.2b 

and supplementary table 4.2).  

CRS increases anxiety-like and depressive-like behaviours  

CRS (4h/day for 21 days) increased the floating time in the forced swimming test 

(F1,45=66.92, P<0.0001) (Fig. 4.1a) while decreasing swimming (F1,45=37.80, P<0.0001) 

and climbing behaviour (F1,45=109.52, P<0.0001). It also increased anxiety-like behaviour 

in the elevated plus maze test, decreasing the time spent in the open arms (F1,45=5.65, 

P=0.022) and the open to closed arms time ratio (F1,45=4.55, P=0.038) (Fig. 4.1b), as well 

as in the open field test, increasing the number of defecations (F1,45=12.74, P=0.001) (Fig. 

4.1e). Furthermore, restraint decreased body weight gain (F1,45=6.06, P=0.018) and food 

intake (F1,43=5.75, P=0.021). Nevertheless, restrained mice showed an increase in ratio 

quotient (RQ, F1,28=4.79, P=0.037). Following restraint, no changes were observed in the 

sucrose preference test (F1,33=0.05, P=0.817) (supplementary table 4.1) or in locomotor 

activity in the open field test (F1,45=3.64, P=0.063) (Fig. 4.2a). 
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Figure 4.2. Casp1 deficiency increases spontaneous locomotion and locomotory skills. 

 (a) Casp1-/- mice had increased locomotor activity in the open field test when compared to wt mice and (b) 

acquired more quickly the skills required to perform the rotarod test. Data are means ± s.e.m. Genotype 

effect * =P<0.05; ** =P<0.01; *** =P<0.001; **** =P<0.0001; stress effect + =P<0.05; ++ =P<0.01; +++ 

=P<0.001; ++++ =P<0.0001; genotype*stress effect # =P<0.05; ## =P<0.01; ### =P<0.001; 

####=P<0.0001. wt = wild-type; BL = baseline; STR= after CRS paradigm. (wt n=27; Casp1-/- n=20). 

	

Minocycline treatment affects stress response and metabolic parameters  

We found a significant (treatment*stress) interaction in the floating time in the forced swim 

test (F1,28=6.67, P=0.015) (Fig. 4.3a and supplementary table 4.3). Saline- and 

minocycline-treated animals displayed similar floating times at baseline (F1,28=2.35, 

P=0.137); however, minocycline-treated mice were less immobile than saline-treated mice 

following restraint (F1,28=5.25, P=0.030). No differences were observed between restrained 

mice receiving saline or minocycline in terms of locomotion, food intake, energy 

expenditure, body mass and volume of oxygen inhaled (not shown). We found a significant 

effect of treatment and stress on the volume of carbon dioxide exhaled (respectively 

F1,28=5.64, P=0.025 and F1,28=8.13, P=0.008) (Fig. 4.3b).  
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Figure 4.3. CASP1 antagonism affects CRS response. 

(a) Minocycline treatment (mino) in wt animals during CRS (STR) prevented stress-induced increased 

floating time in the forced swim test. (b) Respirometry measurement for volume of CO2 exhaled revealed a 

significant effect of stress as well as treatment. Data are means ± s.e.m. Treatment effect: * =P<0.05; ** 

=P<0.01; *** =P<0.001; **** =P<0.0001; stress effect: + =P<0.05; ++ =P<0.01; +++ =P<0.001; ++++ 

=P<0.0001; treatment*stress effect: # =P<0.05; ## =P<0.01; ### =P<0.001; ####=P<0.0001. (sal n=15, 

mino n=15). 

CRS affects the gut microbiome  

CRS (4-6h per day for 21 days) affected the gut microbiome compared to non-stressed 

animals (PERMANOVA P=0.0027, t=2.3492). Dysbiosis (an alteration of the relative 

abundance of bacterial taxa) was associated with a non-significant trend towards an 

increased ratio of Firmicutes to Bacteroidetes (Fig. 4.4a). In particular, restrained animals 

had significantly lower relative abundances of the genera Allobaculum (difference in 

median relative abundance -7.8%, P<0.0001 Mann Whitney U test), Bifidobacterium (-

4.6%, P=0.0002), Turicibacter (-3.4%, P<0.0007), Clostridium (-0.7%, P<0.0001), and the 

family S24-7 (-5.8%, P=0.0021); and high relative abundances of the family 

Lachnospiraceae (+0.3%, P=0.0244). Variance in the relative abundance of these taxa 

accounted for >40% of intergroup variance. 
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Figure 4.4. Minocycline treatment and CRS affect the gut microbiome and CRS changes the gut 
Firmicutes-Bacteroidetes ratio. 

(a) Box and whiskers plot displayed the analysis of the differences of the main composition of the 

microbiome (Firmicutes to Bacteroidetes). Upper and lower quartiles defined the box with median midline, 

and the whiskers were assessed using Tukey’s method. (b) Microbiome distribution at species level of taxon 

contributing to 97.5% of sample variations. Heatmap shows square root-transformed read counts for the 20 

taxa determined by SIMPER analysis. The dendrogram shows the clustering of genera based on Ward’s 

hierarchical clustering method. Phyla are abbreviated as follows: Actinobacteria (A), Bacteroidetes (B), 

Firmicutes (F), Proteobacteria (P) and Verrocomicrobia (V). (control n=12; minocycline n=12; restraint n=15; 

restraint + minocycline n=15) 
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Minocycline affects the gut microbiome 

Minocycline treatment (5mg/kg/day/21 days) affected microbiome composition compared 

to saline-treated controls (PERMANOVA P=0.0001, t=3.0947) (Fig. 4.4b). In particular, 

minocycline-treated animals had lower relative abundances of the genera Allobaculum 

(difference in median relative abundance -7.8%, P<0.0001 Mann Whitney U test), 

Bifidobacterium (-5.8%, P<0.001), Turicibacter (-4.2%, P<0.0001), Clostridium (-0.7%, 

P<0.0001), and the family S24-7 (-7.4%, P=0.003); and significantly high relative 

abundances of the family Lachnospiraceae (+25.3%, P=0.005), and Ruminococcaceae 

incertae sedis (+2.4%, P=0.024). Variance in the relative abundance of these taxa 

accounted for >67% of intergroup variance.  

Effect of CRS on the gut microbiome when combined with minocycline  

Combining chronic restraint with minocycline treatment resulted in a microbiome 

composition that was different to that in non-restrained saline-treated controls 

(PERMANOVA P=0.0002, t=3.4593) (Fig. 4.4b). When assessed globally, the differences 

in composition between chronic restraint, minocycline-treated animals and animals that 

received each treatment alone, were not significant (given a PERMANOVA threshold of 

P<0.01). However, when assessed at the level of individual taxa, there was evidence of 

individual, synergistic, and antagonistic effects of restraint and minocycline. For example, 

significant reductions in the relative abundance of both Turicibacter and Bifidobacterium 

were observed in both restrained and minocycline-treated animals (Fig. 4.5a-b). In 

contrast, a positive additive effect of the two treatments was observed for other taxa, 

including Akkermansia, Blautia, and members of Lachnospiraceae (Fig. 4.5c-e). Evidence 

of an antagonistic effect between minocycline and restraint was observed for Lactobacillus 

and Anaerovorax, with increased abundance observed in restrained animals, but a 

reduction in relative abundance when minocycline was also administered (Fig. 4.5f-g). 
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Figure 4.5. The effect of minocycline treatment, CRS and their combination assessed at the level of 
individual taxa. 

Individual minocycline effect on the (a) Turicibacter and (b) Bifidobacterium populations; Synergistic effect of 

minocycline and CRS on the (c) Akkermansia, (d) Blautia, and (e) Lachnospiraceae populations; and 

antagonistic effect of minocycline and CRS on the (f) Lactobacillus and (g) Anaerovorax populations. 

Significant difference between treatment groups are represented with asterisks: * =P<0.05, **=P<0.01, 

***=P<0.001. (control n=12; minocycline n=12; restraint n=15; restraint + minocycline n=15). 

Discussion 
CASP1 is a cysteine protease that cleaves pro-IL1B and pro-IL18 into their mature 

isoforms in the NLRP3 inflammasome in response to stressful stimuli such as 

psychosocial and microbial stress, ATP, toxins and particulate matter.235,470 Since Casp1-/- 

mice lack CASP1 mRNA and its mature protein product, they have decreased 

inflammasome bioactivity and inflammasome-driven IL1B and IL18 production, and could 

be helpful in identifying the role of CASP1 in behaviour, either innate or following stress-

induced inflammasome activation.147 Our data highlights a role for CASP1 in both the 

modulation of innate behaviour and in the response to chronic stress, since CASP1 

modulation decreased baseline anxiety- and depressive-like behaviours and the 

exacerbation of depressive-like behaviours following chronic restraint stress. Our results 
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are in line with studies reporting that modulation of IL1B-mediated pathways could 

potentially attenuate the behavioural and molecular effects of stress-induced 

inflammation.151,471 Our findings strengthen the role for CASP1 as a potential target for 

therapies aiming at modulating inflammasome-mediated pathways in psychiatric disorders. 

Minocycline exerts anti-inflammatory and neuroprotective effects in animal models of 

neurodegenerative disorders, neurotoxicity and brain injury, in addition to presenting acute 

antidepressant-like effects in the forced swim test by increasing climbing, potentially 

through interaction with glutamatergic and/or noradrenergic systems.92,95-97 These 

antidepressant-like effects might also be related to the protection of serotonergic and 

dopaminergic circuitries.93,472 Consistent with this literature, we found that minocycline 

prevented the exacerbation of depressive-like behaviour in the forced swim test following 

chronic restraint stress. Given this finding, we suggest that minocycline may be valuable in 

the treatment of MDD and other psychiatric disorders. Indeed, a proof-of-concept trial 

investigating minocycline augmentation for MDD reported improved global impression, 

functioning and quality of life even though the primary outcome measure (Montgomery–

Asberg Depression Rating Scale) was not affected.98 Similarly, two clinical trials 

investigating minocycline as a stand-alone or adjuvant treatment in psychotic depression 

and schizophrenia yielded promising results.100-103  

CRS significantly altered gut microbiome composition. Changes included a substantial, 

although not statistically significant, increase in the ratio of Firmicutes to Bacteroidetes. 

Similar changes have been described in IBS patients and in animal models of 

hypertension,473,474 two conditions associated with chronic low-grade inflammation.475,476 

Further, significant changes were observed in microbiome composition at the genus level. 

For example, levels of Bifidobacterium, a genus associated with the suppression of 

inflammation through inhibition of the NFKB1 pathway,477 were significantly reduced in 

animals undergoing restraint. This supports the notion that NFKB1 is increased in 

response to stress and is a critical mediator of stress-induced depressive-like behaviour 

and stress-impaired neurogenesis.478 The genus Allobaculum was absent in restrained 

animals, despite representing a substantial component of the microbiome in control 

animals. Allobaculum consists of mucin-degrading bacteria, whose relative abundance is 

inversely correlated with dietary-induced inflammation markers, including leptin and 

IL22.479,480 Conversely, chronic restraint led to an increase in the relative abundance of 

Lactobacillus. Bacteria from this genus are implicated in inflammasome activation through 

stimulation of CASP1-dependent IL1B production by macrophages,481 and the abundance 
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shift of this genus in response to stress could be responsible for the increased IL1B levels 

observed in depression and in animal models of stress.64,300,482  

Minocycline treatment also significantly altered microbiome composition. Dysbioses 

induced by minocycline and restraint separately were not significantly different when 

assessed on a microbiome-wide level: a finding that may stem from the dual role of 

minocycline as antibiotic and inhibitor of CASP1. However, when restrained mice were 

treated with minocycline, evidence of both synergistic and antagonistic effects on 

microbiome composition was observed. For example, Akkermansia, Blautia, and an 

uncultured member of the Lachnospiraceae family, were significantly increased in mice 

undergoing concomitant restraint and minocycline treatment, despite non-significant 

increases with either treatment in isolation. This effect is notable given that Akkermansia 

attenuates inflammation in adipose tissue through induction of Foxp3 T-reg cells, and 

suppression of IL6 and IL1B.483-485 Moreover, a similar increase in Akkermansia was 

reported in a study in which minocycline rebalanced the gut microbiome in a rat model of 

hypertension.473 Lachnospiraceae is one of the most abundant families of Firmicutes and 

is associated with beneficial production of SCFAs from complex polysaccharides.486 An 

increase in Lachnospiraceae relative abundance in minocycline-restraint animals is 

consistent with changes in the gut microbiome of Casp1-/- mice.466 

A significant effect of restraint and minocycline was also observed for Lactobacillus, which 

was reduced in animals receiving both treatments, but not in animals receiving either 

treatment in isolation. Previous inflammasome studies have reported a significant 

reduction in Lactobacillus in Casp1 and Nlrp6 deficient mice compared to wt.466,487 

Consistent with this, relative abundance of Lactobacillus in minocycline-treated mice 

trended downwards, while in restrained mice not receiving minocycline it trended upwards. 

The genus Anaerovorax was also significantly increased in chronic-restraint mice, but was 

absent in mice receiving minocycline, whether undergoing chronic restraint or not. 

Relatively little is known about the role of this genus in host physiology, and given its low 

abundance in the microbiome, this finding should be interpreted with caution. 

This study has several limitations. In this study, we chose minocycline as a CASP1 

inhibiting compound to further explore the relationship between the microbiome and host 

behaviour.461,462 Minocycline is an antibiotic, and would therefore probably affect the gut 

microbiome regardless of CASP1 inhibition.488 Since minocycline has antidepressant 

effects, its influence on the gut microbiome could be at least partially responsible for such 
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effects.93,458,472 Further work is required to elucidate the exact mechanisms of gut 

microbiome-host interactions, including the analysis of SCFAs production. The dysbioses 

we observed are likely to translate into complex metabolomic shifts; a metabolomic 

profiling approach to investigate this is beyond the scope of the work presented here. It 

could be argued that the withdrawal of food and water during the restraint period might 

impact the microbiome.489 However, where food is withheld for a short period, substrates 

for microbial fermentation will continue to transit the gastrointestinal tract for some time, 

and a resultant substantial microbiome shift is unlikely. Mice were submitted twice to a 

battery of behavioural tests; exposure to one test could impact subsequent test 

performance.467,490 However, we tried to minimize bias by performing the tests from the 

least to the most invasive and by giving the animals recovery time in between tests to 

minimize the influence of previous tests.467,490 Our CRS paradigm did not decrease 

sucrose preference, which replicates published findings.491 While this test is considered a 

model of clinical anhedonia, it has highly variable outcomes, even within the same 

facility.177 Finally, it was reported that Casp1-/- mice generated using strain 129 embryonic 

stem cells are Casp1, Casp11 double knockouts, since Casp1 and Casp11 are 

neighbouring on the genome and are too close to segregate by recombination.147,152,153 

The findings in this study should therefore be interpreted as the result of lacking both 

Casp1 and Casp11 rather than Casp1 alone.  

In summary, our findings suggest that CASP1 inhibition has a protective effect on the 

stress response by modulating the interface between stress and microbiome composition. 

This supports the concept of a microbiome-gut-inflammasome-brain (MGIB) axis, in which 

the gut microbiome modulates inflammatory pathways, via the inflammasome signalling 

platform, that will alter brain function and affect depressive- and anxiety-like behaviours. 

Reduction of inflammasome bioactivity may represent a feasible therapeutic strategy in the 

treatment of MDD and other neuropsychiatric disorders with inflammatory components, 

through modulation of the gut microbiome. Future studies should address the tolerability, 

safety and long-term effects of inflammasome modulation as a therapeutic strategy, and 

the effects of its discontinuation. 
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Supplementary figures 

Supplementary figure 4.6. Confirmation of Casp1 genetic deficiency. 

Casp1 genetic deficiency was confirmed by endpoint PCR with primers designed to amplify either the Casp1 

gene (for wt and heterozygous Casp1-/+ mice) or the neo cassette (for homozygous Casp1-/- and 

heterozygous Casp1-/+ mice) used to inactivate the Casp1 gene. Wt mice display one band at 405 bp 

(second lane), Casp1-/- mice displays one band at 760 bp (third lane) and Casp-/+ mice display two bands, 

one at 405 bp and one at 760 bp (fourth lane). 

	
	

  

Supplementary figure 4.7. Timeline of behavioural experiments. 

RR= rotarod test; EPM= elevated plus maze test; MBT= marble burying test; OFT= open field test; SPT= 

sucrose preference test; NSF= novelty suppressed feeding test; FST= forced swim test; CRS= chronic 

restraint stress.	
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Supplementary methods 
Experiment 1: Baseline and post chronic restraint-stress behaviour of Casp1 knockout vs. 

wt mice. Wt (n=27) and Casp1-/- (n=20) mice were tested in the rotarod, elevated plus 

maze, marble burying test, open field test, sucrose preference test, novelty suppressed 

feeding and forced swim test. Subsequently, they were subject to CRS for 21 days (4-6 

hours/day), and the behavioural tests were performed in the reverse order, to obtain a bell-

shaped stress exposure (see supplementary Fig. 4.7 for a timeline of the tests). The 

number of experimental animals was decided based on prior pilot studies carried out to 

determine the adequate size effect. 

Experiment 2: Baseline and post chronic restraint-stress behaviour and metabolic 

parameters of wt mice with concomitant minocycline treatment and resulting changes in 

the gut microbiome. Fifty-four wt mice were randomly (by drawing cage numbers from a 

hat) assigned to one of four groups: 1) Restraint + Minocycline n=15, 2) Restraint + Saline 

n=15, 3) Minocycline n=12, 4) Saline n=12. Fifteen minocycline-treated wt mice and 15 

saline-treated wt mice as control were tested in the forced swim test to assess depressive-

like behaviour and subject to respirometry assessment in metabolic cages (Sable Systems 

International, Las Vegas, NV) at baseline. Subsequently, they underwent CRS (21 days, 

4-6 hours/day) and concomitant daily treatment with minocycline [5mg/kg/d in 10mL/kg 

saline, (i.p.)], or saline [0.2mL, intraperitoneally (i.p.)]. After the restraint procedure 

concluded, the pharmacological treatment was interrupted and the mice were tested in the 

forced swim test to assess the effects of chronic minocycline treatment on the 

exacerbation of depressive-like symptoms. Moreover, the mice were subject to 

respirometry assessment to quantify metabolic changes in response to concomitant 

restraint and minocycline treatment. An additional 12 minocycline- and 12 saline-treated 

mice were used as controls. These mice were tested at baseline in the forced swim test 

and subject to respirometry, then treated for 21 days with either minocycline or saline and 

left undisturbed in their home cage (without undergoing restraint). Subsequently, they 

underwent forced swim test and metabolic monitoring to assess the behavioural and 

metabolic effects of each treatment alone. Faecal pellets were collected from all mice at 

the end of the experimental procedures and used to assess the composition of faecal 

microbial communities in response to CRS and pharmacological minocycline treatment. 

Rotarod test 

Mice were tested for four days on the rotarod apparatus (Harvard Bioscience, Holliston, 

MA, USA) to assess locomotor coordination, balance and motor skill learning.442 Animals 
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were given 3 trials per day with 5 minutes rest in their home cage between trials. The test 

was performed by placing one mouse at the time on a rotating drum and measuring the 

latency to fall from the apparatus. The apparatus was set on the accelerating mode (4 to 

40 rpm in 120 seconds). The average latency to fall from the apparatus for each mouse 

over three trials was used for the statistical analysis. 

Elevated plus-maze test  

Animals were placed in the central square (10cm x 10cm) of a plus-shaped maze with two 

open and two closed arms (30cm long, 10cm wide, 20cm walls, 1m above the ground). 

The time spent in each of the arms was detected by a camera coupled to the Biobserve 

viewer II software (Biobserve, St. Augustin, Germany). An entry in an arm required the 

animal to enter that arm with all four paws. The total time spent in the open arms and the 

ratio open/closed arms time were used as anxiety measures, because anxiolytic drugs 

decrease such parameters.444,445 

Marble burying test  

Sixteen marbles were placed 4cm apart in a cage containing 5cm of regular bedding to 

quantify digging and burrowing behaviours. Animals were placed in a corner facing the 

center. After 30 minutes the number of marbles completely buried was recorded and used 

as a measure of anxiety, because anxiolytic drugs decrease this measure.440 

Open field test  

Animals were placed in the center of a novel, brightly lit arena (50cm x 50cm x 50cm) and 

their locomotor activity was recorded for 30 minutes by a camera coupled to the Biobserve 

Viewer II software (Biobserve, St. Augustin, Germany). Total distance (locomotor activity) 

and the time spent in the center of the arena (center time) were used to quantify locomotor 

activity and anxiety-like behaviour. The number of defecations was recorded and used as 

an index of emotionality.443,444 

Sucrose preference test  

Mice were individually housed and given 2 identical drinking bottles containing a 1% 

sucrose solution in standard drinking water for 24h in order to familiarize them to the novel 

drink. In the following day, one of the bottles was replaced with a bottle containing 

standard drinking water and mice were given a free choice to drink from either bottle for 48 

hours (training). On the fourth day (test day), the amount of liquid drunk from each bottle 

was recorded and sucrose preference was calculated as the percentage of the volume of 

sucrose drunk over the total volume of fluid drunk.176,177 



	

	 74	

Novelty suppressed feeding 

Animals were fasted for 16 hours in clean cages prior to this test. Subsequently they were 

individually placed in a corner of a brightly lit arena (60cm x 40cm x 40cm) containing 5cm 

of regular bedding and one single pellet of regular chow in the center. The latency to eat 

(the time it took the animal to stand next to the food on its rear paws, hold the pellet with 

its front paws and bite it) was recorded with a stopwatch. Animals that didn’t eat within 

fifteen minutes were excluded from the analysis.446 

Forced swim test 

In order to quantify depressive-like behaviour, mice were individually placed in an open, 

clear Plexiglas cylindrical container (40cm tall, 20cm diameter) containing 20cm of water at 

23°C ± 1°C. A camera coupled with the FST High-throughput Forced Swim Test Analysis 

software (Biobserve, St. Augustin, Germany) was used for the detection of active (climbing 

and swimming) and inactive (floating) behaviour twice a second for 5 minutes.438,439 

16S rRNA analysis 

Faecal pellets were collected with autoclaved toothpicks, placed in 1.5mL tubes, snap-

frozen on dry ice and stored at -80°C. DNA extraction was performed using PowerSoil 

DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) optimized for the 

Biomek 4000 Automation Workstation (Beckman Coulter Inc., Lane Cove, NSW, 

Australia). Faecal microbiome profiling was performed by paired-end 16S rRNA gene 

amplicon sequencing, based on the Illumina MiSeq platform. The V4 hypervariable region 

of the bacterial 16S rRNA gene was amplified from faecal DNA extracts using modified 

universal bacterial primer pairs 515F (5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3') 

and 806R (5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-3'), 

with Illumina adapter overhang sequences. Barcoded Amplicons were generated, cleaned, 

indexed and sequenced according to the Illumina MiSeq 16S Metagenomic Sequencing 

Library Preparation protocol 

(http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation

.html) with modifications. Briefly, an initial PCR reaction contained at least 12.5 ng DNA, 5 

µL of forward primer (1 µM), 5 µL of reverse primer (1 µM) and 12.5 µL of 2x KAPA HiFi 

Hotstart ReadyMix (KAPA Biosystems, Wilmington, MA, USA) in a total volume of 25 µL. 

The PCR reaction was performed on a Veriti 96-well Thermal Cycler (Life Technologies, 

Scoresby, Australia) using the following program: 95°C for 3 min, followed by 25 cycles of 



	

	 75	

95°C for 30 sec, 55°C for 30 sec and 72°C for 30 sec and a final extension step at 72°C 

for 5 min. Amplicons were indexed for multiplexing using the dual-index approach of the 

Nextera XT Index Kit (Illumina, San Diego, CA, USA) and cleaned using Agencourt 

AMPure XP (Beckman Coulter). Library preparation QC involved Qubit dsDNA High 

Sensitivity assay for quantitation and Bioanalyzer using Agilent High Sensitivity DNA Kit 

(Agilent Technologies, Santa Clara, CA, USA) for amplicon assessment. The final library 

was paired-end sequenced at 2 x 300 bp using a MiSeq Reagent Kit v3 on the Illumina 

MiSeq platform. Sequencing was performed at the David R Gunn Genomics Facility, South 

Australian Health and Medical Research Institute. Sequencing was performed to a depth 

of approximately 40,000 reads per sample using the Illumina MiSeq platform. Sequence 

data processing was performed as described previously.468 
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Supplementary tables  

Supplementary table 4.1. Statistical report of Casp1-/- vs. wt mice behavioural results. 

Values in columns 3-6 are means ± s.e.m. BL=baseline; STR=stress; df=degrees of freedom; G=genotype 

effect; S=stress effect; GxS=genotype x stress interaction; η2
p=partial eta squared; *=P<0.05; **=P<0.01; 

***=P<0.001; ****=P<0.0001. 
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Supplementary table 4.2. Statistical report of Casp1-/- vs. wt mice rotarod tests results. 

Values in columns 4-5 are means ± s.e.m. (in seconds). df=degrees of freedom; G=genotype effect; 

η2
p=partial eta squared; *=P<0.05; **=P<0.01; ***=P<0.001; ****=P<0.0001. 
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Supplementary table 4.3. Statistical report of minocycline- (mino) vs. saline-treated (sal) wt mice 
tests results. 

Values in columns 3-6 are means ± s.e.m.. BL=baseline; STR=stress; df=degrees of freedom; T=treatment 

effect; S=stress effect; TxS=treatment x stress interaction; η2
p=partial eta squared; *=P<0.05; **=P<0.01; 

***=P<0.001; ****=P<0.0001. 
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Chapter 5 - Mice lacking Casp1, Ifngr  and Nos2 genes exhibit 
decreased depressive- and anxiety-like behaviour and altered stress 
responsiveness 
	

Abstract 
Converging evidence suggests an involvement of pro-inflammatory pathways in a subset 

of MDD patients. Pre-clinical and clinical studies suggest that decreasing pro-inflammatory 

signalling might prove useful in the treatment of MDD. In this investigation, we used mice 

with simultaneous genetic deficiency of Casp1, Ifngr and Nos2 (Casp1, Ifngr, Nos2)-/- to 

assess depressive- and anxiety-like phenotypes at baseline and following 4 weeks of 

CUMS exposure. Moreover, we assessed the levels of ACTH and CORT following stress. 

We found that (Casp1, Ifngr, Nos2)-/- mice display decreased depressive- and anxiety-like 

behaviour and increased hedonic-like behaviour while displaying increased locomotor 

activity. Moreover, we found that Casp1, Ifngr, Nos2 deficiency prevented the exacerbation 

of anhedonic-like behaviour mice following stress exposure. Furthermore, (Casp1, Ifngr, 

Nos2)-/- mice showed a heightened emotional state following chronic stress. Finally, the 

plasma levels of ACTH and CORT were not different in (Casp1, Ifngr, Nos2)-/- mice 

compared to wt mice following stress. Together, our results suggest that simultaneously 

targeting multiple pro-inflammatory pathways could represent a valuable approach in MDD 

therapies. Randomized controlled trials should investigate the safety of such approach in 

clinical settings and its effectiveness as an antidepressant strategy. If these studies prove 

successful, inhibiting pro-inflammatory signalling in MDD patients with dysregulated 

inflammatory pathways could represent a novel stand-alone or adjuvant therapy in MDD.  

Keywords:  

Major depressive disorder, MDD, inflammation, NLRP3, CASP1, nitric oxide synthase, 

interferon gamma, interferon gamma-receptor, chronic unpredictable mild stress, 

antidepressant. 
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Introduction 
Increasing evidence suggests an involvement of neuroinflammatory pathways in the 

development, treatment and remission of MDD.58,64 Clinical depressive symptoms are 

underlined by a serotonergic deficiency and a glutamatergic overproduction, potentially 

due to a chronic and systemic low-grade cell-mediated inflammatory response.64,68 This 

long-lasting immune activation seems to be characterized, in at least a subset of patients, 

by increased levels of Th1-related cytokines [mostly pro-inflammatory, such as IL1, IL2, 

IL12 and IFNG] and TNF and decreased levels of Th2-related cytokines (mostly anti-

inflammatory, such as IL4, IL10, and IL13).68 Dysregulation of three major inflammatory 

systems seem to exist in MDD patients: a) increased oxidative stress by means of NO 

overproduction driven by NOS2, b) low-grade chronic pro-inflammatory status driven by 

CASP1 overproduction and NLRP3 inflammasome over activation and c) Th1 lymphocyte 

infiltration in the CNS driven by INFG (please see chapter 2 for further details). 

In order to assess the effects of simultaneously decreasing the levels of these three pro-

inflammatory mediators, we generated a triple knockout mouse model lacking Casp1, Ifngr 

and Nos2, to assess the effects of lowered Th1 activity on: a) baseline behaviour, b) the 

response to CUMS, and c) HPA axis response to stress as measured by the levels of 

circulating ACTH and CORT. 

Materials and methods 
All procedures were approved by the South Australian Health and Medical Research 

Institute Ethics committee and are in accordance with the Australian Code for the Care 

and Use of Animals for Scientific Purposes (8th edition, 2013). All efforts were made to 

minimize animal suffering. Male C57BL/6J mice (wt, n=16) aged 60 days were obtained 

from the South Australian Health and Medical Research Institute Bioresources Facility 

(Adelaide, Australia). Age-matched (Casp1, Ifngr, Nos2)-/- mice (n=20) with C57/BL6J 

background were generated by backcrossing mice with single gene deletion and selecting 

mice that were homozygous for each of the required genes (see supplementary Fig. 5.6 

for an example of endpoint PCR genotyping). After seven days acclimatization, mice were 

single housed in transparent Plexiglas cages (Green Line IVC Sealsafe PLUS mouse, 

Tecniplast, Varese, Italy) in a temperature (21°C ±1°C), humidity (50%) and light (12 hour 

cycles, lights on at 7:00 am) controlled room with water and food ad libitum. Behavioural 

testing was performed in the light phase of the light cycle between 9:00 am to 4:00 pm. At 

the endpoint of the experiment, mice were euthanized by cervical dislocation and blood 
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was collected by cardiac puncture in ethylenediaminetetraacetic acid coated tubes. For a 

timeline of the experimental procedures, see Fig. 5.1. 

 

Figure 5.1. Timeline of behavioural experiments performed in study 2. 

SPT= sucrose preference test; OFT= open field test; EPM= elevated plus maze test; FST= forced swim test; 

CUMS= chronic unpredictable mild stress. 

CUMS 

The CUMS procedure used in this study is a variation of the procedure previously 

described as a naturalistic model of depression in rodents (please see chapter 1 for 

details).176  

  

	 	 		 	 	 	 	

DAY 

HABITUATION SPT EPM OFT CUMS FST OFT EPM	 SACRIFICE SPT 

	

FST 

	 	

-7 1-4 6 7 9 9-36 38 39 40 41 42 
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Day	#	 Stress	Day	#	 Stress	1/Procedure	 Stress	2	
1	 		 Sucrose	preference	test		 		
2	 		 Sucrose	preference	test		 		
3	 		 Sucrose	preference	test		 		

4	 		 Sucrose	preference	test	(test)		 		
5	 		 Move	to	individual		cages		 		
6	 		 Open	field	test	 		
7	 		 Elevated	plus	maze	 		
8	 		 START	CUMS	 		
9	 1	 Forced	swim	test	 2h	Restraint	
10	 2	 Cage	Tilting	 		
11	 3	 Social	stress	 Overnight	Fast	
12	 4	 Wet	Bedding	 		
13	 5	 Predator	stress	 2h	Restraint	
14	 6	 Light	cycle	reversal	 		
15	 7	 Light	cycle	reversal	 		
16	 8	 Sucrose	preference	test	 		
17	 9	 2h	Restraint	 Predator	stress	
18	 10	 No	Bedding	 		
19	 11	 2h	Restraint	 Overnight	fast		
20	 12	 Cage	Tilting	 		
21	 13	 Light	cycle	reversal	 		
22	 14	 Light	cycle	reversal	 		
23	 15	 Wet	Bedding	 		
24	 16	 Sucrose	preference	test	 Sucrose	preference	test	
25	 17	 2h	light	cycle	disruption	 		
26	 18	 Social	stress	 Overnight	(16h)	fast	
27	 19	 Cage	Tilting	 		
28	 20	 Light	cycle	reversal	 		
29	 21	 Light	cycle	reversal	 		
30	 22	 No	bedding	 		
31	 23	 Social	stress	 2h	Restraint	
32	 24	 Sucrose	preference	test	 Sucrose	preference	test	
33	 25	 2h	light	cycle	disruption	 Overnight	Fast	
34	 26	 Wet	bedding	 		
35	 27	 Light	cycle	reversal	 		
36	 28	 Light	cycle	reversal	 		
37	 		 END	CUMS		 		
38	 		 Sucrose	preference	test	 		
39	 		 Forced	swim	test	 		
40	 		 Open	field	test	 		
41	 		 Elevated	plus	maze	 		
42	 		 SACRIFICE	 		
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Table 5.1. Calendar of the CUMS protocol used in study 2. 

Behavioural testing  

Mice were submitted to the open field test, elevated plus maze, forced swim test and 

sucrose preference test. Mice were given at least half an hour habituation to the test room 

prior to each test. All tests were videorecorded by a camera coupled to Ethovision XT 10 

computer software (Noldus, Wageningen, Holland) for behaviour recognition and scoring 

(please see chapter 4 for details). 

ACTH and CORT measurement 

ACTH was measured in plasma by using a competitive inhibition ELISA kit following 

manufacturer’s instruction (Cloud-Clone Corp., Wuhan, Hubei, China). Circulating CORT 

was measured by using a competitive immunoassay ELISA kit following manufacturer’s 

directions (Enzo Life Sciences, Farmingdale, New York, USA). 

Statistical analysis 

Power analysis was performed based on the effect size seen in a previous pilot study 

investigating the effects of simultaneous Casp1, Nos2 and Ifngr deficiency on total floating 

time in the forced swim test (our primary outcome measure). Cohen’s d for that study was 

0.84, meaning that a sample size of n=36 would result in over 80% power to detect an 

antidepressant-like effect at P≤ 0.05. Statistical analyses of the behavioural tests were 

performed using the Statistical Package for the Social Sciences version 23.0 for windows 

(SPSS, Chicago, Illinois) using a general linear model for repeated measures (repeated 

measures ANOVA). The effects of genotype, stress, treatment and their interaction were 

explored and the significance set at P≤0.05. Sphericity of the variances of the groups was 

assessed with Mauchly’s sphericity test. Effect size was reported as partial eta-squared 

(η2
p). If the stress*genotype interaction was significant, it was unpacked as described 

previously.434 Statistical analyses of the ELISA results were performed by two-tailed 

unpaired t-test. 

Results 
Our primary outcome measure was depressive-like behaviour in the forced swim test. 

Secondary outcome measures included anhedonic- and anxiety-like behaviours, 

locomotor activity and the levels of circulating ACTH and CORT following stress exposure. 

Results and analyses of the behavioural tests are available in supplementary table 5.2. 

Mice that didn’t display >65% sucrose preference (an accepted criterion to characterize 
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anhedonic-like behaviour) at baseline were considered anhedonic at baseline and 

therefore excluded from all subsequent tests and analyses. 

Casp1, Nos2 and Ifngr deficiency decreases depressive-like and anxiety-like behaviour  

Our results suggest that simultaneous Casp1, Nos2 and Ifngr genetic deficiency decrease 

depressive- and anxiety-like behaviour. In fact, the total floating time in the forced swim 

test was lower in (Casp1, Ifngr, Nos2)-/- mice compared to wt mice (F1,34=14.618, P=0.001) 

(Fig. 5.2a and supplementary table 5.2). At the same time, swimming and climbing 

behaviours were more prevalent in (Casp1, Ifngr, Nos2)-/- mice compared to wt mice 

(respectively F1,34=25.256, P=0.001 Fig. 5.2b and F1,34=5.929, P=0.020, Fig. 5.2c). 

Similarly, preference for a 1% sucrose solution in the sucrose preference test was 

increased in the (Casp1, Ifngr, Nos2)-/- genotype compared to wt mice (F1,34=23.331, 

P<0.001) (Fig. 5.2d) suggesting greater reward seeking and hedonic behaviours in 

(Casp1, Ifngr, Nos2)-/- mice compared to wt mice. Furthermore, (Casp1, Ifngr, Nos2)-/- mice 

spent more time in the open arms of the elevated plus maze compared to wt mice (F1, 

34=15.480, P<0.001) (Fig. 5.3a) suggesting an anxiolytic phenotype. Contrastingly, no 

differences were observed in the total time spent in the centre of the open field arena 

compared to wt mice (F1, 34=0.200, P=0.658) (Fig. 5.3b) or in the ratio centre/total distance 

in the open field test (F1,34=3.330, P=0.077), another measure of anxiety-like behaviour. 

Unexpectedly, we observed an increased number of faecal boli (F1, 34=4.128, P=0.050) 

(Fig. 5.3c) in the open field test as a result of Casp1, Ifngr and Nos2 deficiency. 
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Figure 5.2. Casp1, Nos2 and Ifngr deficiency (Casp1, Ifngr, Nos2)-/- decreases depressive-like 
behaviour. 

(a) (Casp1, Ifngr, Nos2)-/- mice displayed decreased floating time in the forced swim test in comparison to wt 

mice while displaying (b) increased swimming and (c) climbing behaviours. Moreover, (d) (Casp1, Ifngr, 

Nos2)-/- mice displayed increased preference for a 1% sucrose solution. Data are presented as means ± 

s.e.m. Genotype effect * =P<0.05; ** =P<0.01; *** =P<0.001; stress effect + =P<0.05; ++ =P<0.01; +++ 

=P<0.001; genotype*stress effect # =P<0.05; ## =P<0.01; ### =P<0.001. wt = wild-type; BL = baseline; 

CUMS= after chronic unpredictable mild stress paradigm. (wt n=16; (Casp1, Ifngr, Nos2)-/- n=20). 
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Figure 5.3. Casp1, Nos2 and Ifngr deficiency (Casp1, Ifngr, Nos2)-/- decreases anxiety-like behaviour. 

(a) (Casp1, Ifngr, Nos2)-/- mice displayed increased time spent in the open arms of the elevated plus maze 

but (b) similar time in the centre area of the open field test. The (Casp1, Ifngr, Nos2)-/- genotype had a main 

effect on (c) the number of defecations during the open field test, which was driven by the increased number 

of faecal boli in (Casp1, Ifngr, Nos2)-/- mice following CUMS, while this parameter remained unchanged in wt 

mice. Data are presented as means ± s.e.m. Genotype effect * =P<0.05; ** =P<0.01; *** =P<0.001; stress 

effect + =P<0.05; ++ =P<0.01; +++ =P<0.001; genotype*stress effect # =P<0.05; ## =P<0.01; ### 

=P<0.001; wt = wild-type; BL = baseline; CUMS= after chronic unpredictable mild stress paradigm. (wt n=16; 

(Casp1, Ifngr, Nos2)-/- n=20). 
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Casp1, Nos2 and Ifngr deficiency affects the response to chronic stress in a mouse model 

of CUMS. 

Our results suggest that (Casp1, Ifngr, Nos2)-/- mice had an attenuated response to 

chronic stress. Following 28 days of CUMS, the preference for a 1% sucrose solution in 

the sucrose preference test varied as a function of genotype (F1,34=17.485, P<0.001) (Fig. 

5.2d). Wt mice showed a ~74% decrease in sucrose preference compared to baseline 

(F1,34=57.25 P<0.001), reaching an average after-stress sucrose preference of 30.3%; this 

is below the anhedonic threshold which is usually set at 65% of preference.177,493 

Conversely, (Casp1, Ifngr, Nos2)-/- mice did not meet the anhedonic threshold, even 

though they showed a decrease of ~16% (F1,34=4.78, P=0.036) compared to baseline, 

reaching an after-stress sucrose preference of 74.2%. This result suggests that (Casp1, 

Ifngr, Nos2)-/- mice are resistant to chronic stress-induced anhedonia, an endophenotype 

considered a predictor of resilience to stress-induced decrease in neurogenesis. 

In the open field test, we found a significant stress*genotype interaction for the measure of 

total distance travelled (F1,34=11.091, P=0.002) (Fig. 5.5a). This result was driven by the 

17.5% decrease in locomotor activity in (Casp1, Ifngr, Nos2)-/- mice following stress 

(F1,34=24.68, P<0.001), while the distance travelled by wt mice was unchanged (F1,34=0, 

P=0.981) compared to baseline. Similarly, we found a significant stress*genotype 

interaction for the average moving velocity in the open field test (F1,34=11.154, P=0.002) 

(Fig. 5.5b). In fact, while the average velocity recorded for wt mice was unchanged 

(F1,34=0, P=0.979) following CUMS, (Casp1, Ifngr, Nos2)-/- mice displayed a statistically 

significant 17.6% reduction (F1,34=24.80, P<0.001). 

Interestingly, we found a significant stress*genotype interaction for the number of faecal 

boli in the open field test (F1,34=14.285, P<0.001) (Fig. 5.3c). In fact, while this measure 

was not different between genotypes at baseline (F1,34=2.11, P=0.155), and it was 

unchanged in wt mice following chronic stress (F1,34=0.58, P=0.453), (Casp1, Ifngr, Nos2)-

/- mice showed a 68.4% increase (F1,34=23.23, P<0.001). 

Casp1, Nos2 and Ifngr deficiency does not affect ACTH and CORT plasma levels following 

stress  

Following 28 days of CUMS, we found that Casp1, Nos2 and Ifngr deficiency does not 

affect the plasma levels of ACTH (t2, 25=0.1465, P=0.8847) (Fig. 5.4a) or CORT (t2, 

28=0.3851, P=0.7031) (Fig. 5.4b). 
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Figure 5.4. Casp1, Nos2 and Ifngr deficiency (Casp1, Ifngr, Nos2)-/- does not affect the levels of ACTH 
and CORT following CUMS. 

(a) (Casp1, Ifngr, Nos2)-/- mice displayed similar levels of ACTH and (b) CORT compared to wt mice 

following 28 days of CUMS. Data are presented as means ± s.e.m. n.s.= not significant. [ACTH wt n=14, 

(Casp1, Ifngr, Nos2)-/- n=13; CORT wt n=12, (Casp1, Ifngr, Nos2)-/- n=18]. 

CUMS affects anxiety- and depressive-like behaviour. 

In line with the literature, CUMS exposure for 28 days exacerbated depressive-like 

behaviour, as measured by increased floating (F1,34=4.299, P=0.046) (Fig. 5.2a) and 

decreased climbing behaviours (F1,34=6.545, P=0.015) (Fig. 5.2c) in the forced swim test. 

Moreover, CUMS induced anhedonia, as measured by the decreased preference for a 1% 

sucrose solution in the sucrose preference test (F1,34=50.384, P<0.001) (Fig. 5.2d). 

Furthermore, CUMS increased anxiety-like behaviour, as measured by the decreased time 

spent in the open arms of the elevated plus maze (F1,34=10.423, P=0.003) (Fig. 5.3a) and 

the decreased time spent in the centre section of the open field test arena (F1,34=12.583, 

P<0.001) (Fig. 5.3b). No differences were observed in the central distance/ total distance 

ratio in the open field test, another measure of anxiety-like behaviour (F1,34=2.442, 

P=0.127). 

Casp1, Nos2 and Ifngr deficiency increases locomotor activity  

We found that Casp1, Nos2 and Ifngr deficiency increases locomotor activity in the open 

field test (F1,34=58.883, P<0.001) (Fig. 5.5a). Accordingly, the average moving velocity was 

increased in (Casp1, Ifngr, Nos2)-/- mice (F1,34=58.777, P<0.001) (Fig. 5.5b). Similarly, in 

the open field test, the number of centre visits but not the total time spent in the centre was 

increased in (Casp1, Ifngr, Nos2)-/- mice (respectively F1, 34=35.424, P<0.001 and 

F1,34=0.200, P=0.658) (Fig. 5.3b). Furthermore, in the elevated plus maze, (Casp1, Ifngr, 
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Nos2)-/- mice displayed increased number of entries in any of the arms (F1,34=20.348, 

P<0.001) (Fig. 5.5c), irrespective of whether they were open or closed. These results 

suggest a hyperlocomotive state as a result of Casp1, Nos2 and Ifngr deficiency. 
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Figure 5.5. Casp1, Nos2 and Ifngr deficiency (Casp1, Ifngr, Nos2)-/- increases locomotor activity. 

(a) (Casp1, Ifngr, Nos2)-/- mice displayed increased locomotor activity and (b) average moving velocity in the 

open field test. Moreover, (c) (Casp1, Ifngr, Nos2)-/- genotype had a main effect on the total number of 

entries in any of the arms of the elevated plus maze, irrespective of them being open or closed. All those 

parameters showed a stress*genotype interaction, with a common trend of being decreased as a result of 

Casp1, Ifngr and Nos2 deficiency following CUMS. Data are presented as means ± s.e.m. Genotype effect * 

=P<0.05; ** =P<0.01; *** =P<0.001; stress effect + =P<0.05; ++ =P<0.01; +++ =P<0.001; genotype*stress 

effect # =P<0.05; ## =P<0.01; ### =P<0.001. wt = wild-type mice; BL = baseline. (wt n=16; (Casp1, Ifngr, 

Nos2)-/- n=20). 
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Discussion 

Increasing evidence suggests a dysregulation of inflammatory pathways underpinning 

MDD pathophysiology. In this study we aimed at determining if lacking CASP1, NOS2 and 

IFNGR affects depression- and anxiety-like behaviours in mice both at baseline and 

following exposure to chronic stress. Moreover, we aimed at investigating if the 

simultaneous genetic deletion of Casp1, Nos2 and Ifngr affects the HPA response to 

stress, as measured by the levels of ACTH and CORT following stress exposure. To test 

our hypotheses, we used (Casp1, Ifngr, Nos2)-/- mice, which were generated by cross 

breeding single knockout mice lacking each of those proteins. We tested these mice in 

paradigms to assess depressive- and anxiety-like behaviours (forced swim test, sucrose 

preference test and elevated plus maze test) and locomotor activity (open field test). 

Subsequently, we exposed these mice to CUMS and repeated the behavioural tests to 

determine whether the genetically modified mice displayed a different response to stress 

exposure. Finally, we investigated the post-stress levels of circulating ACTH and CORT to 

understand if (Casp1, Ifngr, Nos2)-/- mice display different levels of such mediators. 

We found that (Casp1, Ifngr, Nos2)-/- mice display decreased depressive-like behaviour at 

baseline, as measured by decreased floating time in the forced swim test, and increased 

hedonic-like behaviour, as measured by increased preference for a 1% sucrose solution in 

the sucrose preference test. Moreover, (Casp1, Ifngr, Nos2)-/- mice display decreased 

levels of anxiety-like behaviour in the elevated plus maze, as measured by the higher 

amount of time spent in the open arms of the maze compared to wt mice. At the same 

time, we observed that (Casp1, Ifngr, Nos2)-/- mice display increased locomotor activity 

and greater moving velocity compared to wt mice in the open field test and a higher 

number of visits in any of the arms of the elevated plus maze, irrespective of whether they 

were open or closed. These results suggest a heightened locomotor state. Although 

decreased floating time is considered an index of antidepressant activity, it has also been 

suggested that higher locomotor activity could be a confounding factor in this test. In fact, 

increased locomotor activity can lead to a decrease in total floating time which is not 

connected with antidepressant activity but which is a side effect of the higher locomotor 

activity. Similar increases in locomotor activity have been observed in genetically modified 

mice with impaired DA transporter function, which results in increased extracellular DA 

levels, and in mice dosed with psychostimulants such as amphetamines, which increase 

the levels of DA at the synapses.494-496 This suggests that (Casp1, Ifngr, Nos2)-/- mice 



	

	 92	

might have increased levels of available DA. Moreover, given that the glutamatergic 

system is involved in the regulation of locomotor activity, it cannot be excluded that 

(Casp1, Ifngr, Nos2)-/- mice might present differences in this neurotransmitter system.497,498 

Accordingly, mice lacking the glial glutamate and aspartate transporter, which have 

increased forebrain glutamatergic signalling, display hyperactivity during novel exposure to 

the open field test.499 Similarly, increased locomotor activity has been found in mice 

treated with oestrogen, a phenomenon mediated by the oestrogen receptor alpha.500 

After 28 days of CUMS exposure, we observed a different response to stress in (Casp1, 

Ifngr, Nos2)-/- mice. In line with the existing literature, CUMS increased floating and 

decreased swimming and struggling time.180,491 However, while CUMS decreased sucrose 

preference in both wt and (Casp1, Ifngr, Nos2)-/- genotypes, the decrease observed in wt 

mice was greater and fell below the anhedonic threshold of 65% preference, while the 

decrease in (Casp1, Ifngr, Nos2)-/- mice did not, suggesting that (Casp1, Ifngr, Nos2)-/- 

mice might be protected from developing anhedonic-like behaviour following stress. 

Accordingly, the hippocampal inhibition of NOS2 by means of aminoguanidine was 

previously shown to prevent the decrease in sucrose preference following CUMS in rats.501 

Moreover, it was previously shown that Ifng deficiency affects basal emotionality while 

blunting some of the neurochemical, HPA axis and cytokine alterations associated with 

exposure to chronic stressors.157 Similarly, it was shown that NOS2 inhibition in mice 

induces acute antidepressant-like effects while preventing the exacerbation of depressive-

like behaviour following unpredictable chronic stress.158 Nevertheless, we previously 

showed that Casp1-/- mice have decreased anxiety and depressive-like behaviour at 

baseline and decreased exacerbation of those behaviours following chronic stress.122 It 

could be that simultaneously deleting Casp1, Ifngr and Nos2 results in a complex neuro-

behavioural phenotype which decreases anxiety-and depressive-like behaviours at 

baseline while preventing the exacerbation of anhedonic- but not depressive- or anxiety-

like behaviours following chronic stress exposure. 

Interestingly, we found that (Casp1, Ifngr, Nos2)-/- but not wt mice display a greater 

number of faecal pellets excreted during the open field test following exposure to 

unpredictable chronic mild stress. Similar effects have been reported in germ-free mice 

exposed to maternal separation stress and in rats exposed to water avoidance 

stress.502,503 This increase has been hypothesized to associate with stress-induced colonic 

hypermotility and hyperalgesia.502,503 The fact that (Casp1, Ifngr, Nos2)-/- mice only 

displayed increased defecation following chronic stress but not as a basal behaviour, and 
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the fact that these mice do not present differences in markers of HPA axis activity following 

chronic stress, might suggest that such effects are related to stress response systems 

other than the HPA axis, such as the LC-NE system or the SNS. Accordingly, the changes 

in faecal pellet output mediated by stress are an accepted measure of modulation of distal 

colonic motility by the autonomic nervous system, and this measure is increased in rodent 

models of stress susceptibility (Lewis and Fisher rats).504 However, it cannot be excluded 

that the changes in faecal output might be mediated by changes in gut bacteria 

composition, which might differ in (Casp1, Ifngr, Nos2)-/- compared to wt mice as a result 

of their gene deletions. Further studies should investigate gut microbiome composition of 

these mice, which could also be a causative factor of the behavioural differences observed 

here. Interestingly, in another study we found that wt but not Casp1-/- mice display 

increased number of defecations in the open field test following chronic restraint stress, 

and we hypothesized that this might be a result of the resilience to stress displayed by 

Casp1-/- mice given that highly emotional states increase defecation.122 This apparently 

contrasting result might be due to the different stress paradigm used in the present study 

or to the different gut bacteria composition of these two strains. Moreover, given that 

(Casp1, Ifngr, Nos2)-/- mice display an increased number of defecations following stress as 

compared to baseline while this parameter is unchanged for wt mice, it could be 

hypothesized that chronic stress exacerbates such anxiety-like behaviour in a greater 

fashion in (Casp1, Ifngr, Nos2)-/- compared to wt mice. 

Future directions 
The transgenic mouse model used in this study displays increased locomotor activity 

compared to wt mice. Pre-clinical studies have identified several systems to modulate 

spontaneous locomotor activity such as the dopaminergic system, the glutamatergic 

system and the Casp1 system.122,494-500 Therefore, it could be that (Casp1, Ifngr, Nos2)-/- 

mice have increased levels of movement-related neurotransmitters, such as DA or 

glutamate. In order to test this hypothesis, further studies should investigate the levels of 

monoamines in brain regions relevant to MDD (such as the prefrontal cortex and the 

hippocampus) in (Casp1, Ifngr, Nos2)-/- compared to wt mice. This could be achieved via 

high-pressure liquid chromatography (HPLC) analyses of post-mortem brain homogenates 

or via microdialisis in living rodents. Indirect assessments could include post-mortem 

immunohistochemical analysis of brain areas relevant to MDD to determine the levels of 

markers of neurotransmission activity, such as tyrosine hydroxylase for DA or of N-

acetylaspartate and N-acetylaspartylglutamate for glutamate.505,506 If (Casp1, Ifngr, Nos2)-/- 
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mice indeed have increased levels of such neurotransmitters they might prove useful as a 

model of resilience to dopaminergic or glutamatergic neurodegeneration in diseases such 

as Parkinson’s and Alzheimer’s disease (respectively PD and AD). In fact, in those 

diseases, the main neurodegenerative features include inflammation-mediated loss of 

dopaminergic neurons in areas involved with movement and locomotor activity, such as 

the substantia nigra and the striatum.507 Accordingly, it was previously shown the CASP1 

and CASP3 inhibitor minocycline prevents nigrostriatal dopaminergic neurodegeneration in 

a mouse model of PD.457 Moreover, oxidative stress seems to correlate with 

neurodegeneration, although the causal effects have not been fully elucidated yet.508 If 

(Casp1, Ifngr, Nos2)-/- mice have altered DA levels, they could also be useful as a pre-

clinical model of attention-deficit hyperactivity disorder (ADHD). Abnormal functioning of 

the DA transporter and receptor related to genetic variability have been described in 

ADHD patients, suggesting that abnormal DA system physiology is involved in the 

pathogenesis of this disorder.509,510 

This study should be considered in light of some limitations. The mouse model used in this 

study is a transgenic model that simultaneously lacks three proteins. Therefore, it is 

difficult to ascertain which differences in behaviour are amenable to which protein. This 

model was generated given the evidence that each of the Casp1, Nos2 and Ifngr single 

KOs display altered response to stress exposure or antidepressant-like phenotypes; 

therefore, we hypothesized that by combining these models, the effects might be additive 

and result in a greater antidepressant-like phenotype. In order to bypass this limitation, it 

might prove valuable to generate a combination of double KOs to ascertain if any two of 

these KOs in combination have greater antidepressant-like behaviour than the respective 

individual KOs.  

In conclusion, in this study we have investigated the effects of simultaneous Casp1, Nos2 

and Ifngr gene deletion in a CUMS model of MDD. We found that (Casp1, Ifngr, Nos2)-/- 

mice show decreased levels of depressive- and anxiety-like behaviour while displaying 

increased locomotor activity and moving velocity. At the same time, following chronic 

stress exposure, these mice present an attenuated exacerbation of anhedonic-like 

behaviour compared to wt mice. Interestingly, following stress exposure, plasma levels of 

ACTH and CORT were not different between (Casp1, Ifngr, Nos2)-/- and wt mice. 

Moreover, (Casp1, Ifngr, Nos2)-/- mice displayed increased defecation following chronic 

stress, suggesting that they might present differences in gut motility and/or gut microbiome 

composition.502,503 Future studies could investigate the behaviour and stress responses of 
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mice lacking a combination of 2 of the 3 proteins investigated here (i.e. (Casp1, Nos2)-/-), 

in order to shed light on the potential mechanisms of their resilience to developing 

anhedonic-like behaviour following stress. Further investigations should elucidate the 

molecular mechanisms underlining the increased locomotor activity of (Casp1, Ifngr, 

Nos2)-/- mice, which could prove valuable in the study of motor-related neurodegenerative 

conditions, such as PD and AD, and in the study of conditions in which the DA system is 

altered, such as ADHD. The gut microbiome composition of (Casp1, Ifngr, Nos2)-/- mice 

could be investigated, which could explain at least some of the stress-induced behavioural 

differences observed in this study. Finally, pre-clinical and clinical investigations aiming at 

determining the safety and efficacy of inhibiting pro-inflammatory signalling in MDD should 

be designed to determine the translational value of such approach. 
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Supplementary figures 
	

		 	
	

Supplementary figure 5.6. Confirmation of Casp1, Nos2 and Ifngr genetic deficiency. 

Casp1, Nos2 and Ifngr genetic deficiency was confirmed by endpoint PCR. (a) Electrophoresis gel to confirm 

Casp1 deficiency. Wt mice display one band at 405 bp (lane 2), Casp1-/- mice display one band at 760 bp 

(lane 3) and Casp1-/+ display two bands, one at 405 bp and one at 760 bp (lane 4). (b) Electrophoresis gel to 

confirm Nos2 deficiency. Wt mice display one band at 220 bp (lane 2), Nos2-/- mice display one band at 330 

bp (lane 3) and Nos2-/+ mice display two bands, one at 220 bp and one at 330 bp. (c) Electrophoresis gel to 

confirm Ifngr deficiency. Wt mice display one band at 189 bp (lane 3), Ifngr-/- mice display one band at 280 

bp (lane 4) and Ifngr-/+ mice display two bands, one at 189 bp and one at 280 bp (lane 2). 
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Supplementary tables  

Supplementary table 5.2. Statistical report of (Casp1, Ifngr, Nos2)-/- vs. wt mice behavioural results.  

Values in columns 3-6 are means ± s.e.m.. BL=baseline; CUMS=stress; df=degrees of freedom; 

G=genotype effect; S=stress effect; GxS=genotype x stress interaction; η2
p=partial eta squared; *=P<0.05; 

**= P <0.01; ***= P <0.001. 

 
TEST	 MEAUSRE	

wt	BL	
(n=16)	

KO	BL	
(n=20)	

wt	CUMS	
(n=16)	

KO		CUMS	
(n=20)	

MAUCHLY'S	
W	 df	 F-TEST	 P-VALUE	 	Partial	Eta	Squared	

		 		 		 		 		 		 		 		 G	F=14.618	 G	P=0.001	**	 G	η2p=0.301	
Forced	swim	

test		 Floating	(s)	
207.623	±	
6.097	

186.102	±	
5.453	

227.147	±	
7.895	

187.790	±	
7.061	 1.000	 1,34	 S	F=4.299	 S	P=0.046	*	 S	η2p=0.112	

		 		 		 		 		 		 		 		 GxS	F=3.040	 GxS	P=0.090	 GxS	η2p=0.082	

		 		 		 		 		 		 		 		 G	F=25.256	 G	P<0.001	***	 G	η2p=0.426	

Forced	swim	
test		 Swimming	(s)		

53.533	±	
3.199	

71.720	±	
2.862	

45.748	±	
4.510	

71.976	±	
4.034	 1.000	 1,34	 S	F=1.774	 S	P=0.192	 S	η2p=0.050	

		 		 		 		 		 		 		 		 GxS	F=2.023	 GxS	P=0.164	 GxS	η2p=0.056	

		 		 		 		 		 		 		 		 G	F=5.929	 G	P=0.020	*	 G	η2p=0.148	
Forced	swim	

test		 Climbing	(s)	
36.618	±	
3.325		

41.590	±	
2.974	

25.458	±	
3.685	

39.572	±	
3.272	 1.000	 1,34	 S	F=6.545	 S	P=0.015	*	 S	η2p=0.161	

		 		 		 		 		 		 		 		 GxS	F=3.150	 GxS	P=0.085	 GxS	η2p=0.085	

		 		 		 		 		 		 		 		 G	F=23.331	 G	P<0.001	***	 G	η2p=0.960	
Sucrose	

preference	
test		

Sucrose	
preference	(%)	

85.243	±	
1.540	

88.390	±	
1.377	

30.457	±	
7.074	

74.224	±	
6.327	 1.000	 1,34	 S	F=50.384	 S	P<0.001	***	 S	η2p=0.597	

		 		 		 		 		 		 		 		
GxS	

F=17.485	
GxS	P<0.001	

***	 GxS	η2p=0.340	

		 		 		 		 		 		 		 		 G	F=58.883	 G	P<0.001	***	 G	η2p=0.634	
Open	field	

test		
Locomotor	
activity	(cm)	

7744.286	
±	473.444	

12649.357	±	
423.461	

7756.406	±	
414.117	

10430.527	±	
370.397	 1.000	 1,34	 S	F=10.852	 S	P<0.002	***	 S	η2p=0.242	

		 		 		 		 		 		 		 		
GxS	

F=11.091	
GxS	P=0.002	

**	 GxS	η2p=0.246	

		 		 		 		 		 		 		 		 G	F=58.777	 G	P<0.001	***	 G	η2p=0.634	
Open	field	

test		
Average	

velocity	(cm/s)	
4.306	±	
0.264	

7.034	±	
0.236	

4.313	±	
0.230	

5.798	±	
0.206	 1.000	 1,34	 S	F=10.892	 S	P<0.002	**	 S	η2p=0.243	

		 		 		 		 		 		 		 		
GxS	F=	
11.154	

GxS	P=0.001	
**	 GxS	η2p=0.247	

		 		 		 		 		 		 		 		 G	F=4.128	 G	P=	0.050	*	 G	η2p=0.108	
Open	field	

test		 Defecations	(n)	
6.688	±	
0.507	

5.700	±	
0.453	

6.000	±	
0.782	

9.600	±	
0.700	 1.000	 1,34	 S	F=7.005	 S	P=	0.012	**	 S	η2p=0.171	

		 		 		 		 		 		 		 		
GxS	

F=14.285	
GxS	P=	0.001	

**	 GxS	η2p=0.296	

		 		 		 		 		 		 		 		 G	F=35.424	 G	P<0.001	***	 G	η2p=0.946	
Open	field	

test		
Centre	visits	

(n)	
79.500	±	
6.883	

139.650	±	
6.157	

70.313	±	
7.989	

106.650	±	
7.146	 1.000	 1,34	 S	F=12.942	 S	P=0.001	**	 S	η2p=0.108	

		 		 		 		 		 		 		 		 GxS	F=4.123	 GxS	P=0.050	*	 GxS	η2p=0.108	

		 		 		 		 		 		 		 		 G	F=0.200	 G	P=0.658	 G	η2p=0.006	
Open	field	

test		 Centre	time	(s)	
176.995	±	
21.473	

187.032	±	
19.206	

129.172	±	
17.253	

139.128	±	
15.431	 1.000	 1,34	 S	F=12.583	 S	P<0.001	***	 S	η2p=0.270	

		 		 		 		 		 		 		 		 GxS	F=0.00	 GxS	P=0.998	 GxS	η2p=0.000	

		 		 		 		 		 		 		 		 G	F=3.330	 G	P=0.077	 G	η2p=0.930	
Open	field	

test		
Centre/total	
distance	

0.153	±	
0.013	

0.179	±	
0.012	

0.137	±	
0.013	

0.166	±	
0.012	 1.000	 1,34	 S	F=2.442	 S	P=0.127	 S	η2p=0.067	

		 		 		 		 		 		 		 		 GxS	F=0.030	 GxS	P=0.864	 GxS	η2p=0.067	

		 		 		 		 		 		 		 		 G	F=15.480	 G	P<0.001	***	 G	η2p=0.969	

Elevated	
plus	maze	

Open	arms	
time	(s)	

19.505	±	
4.144	

28.492	±	
3.706	

13.675	±	
3.045	

23.576	±	
2.724	 1.000	 1,34	 S	F=10.423	 S	P=0.003	**	 S	η2p=0.235	

		 		 		 		 		 		 		 		 GxS	F=1.999	 GxS	P=0.166	 GxS	η2p=0.056	

		 		 		 		 		 		 		 		 G	F=20.348	 G	P<0.001	***	 G	η2p=0.374	
Elevated	
plus	maze	

Entries	in	any	
arm	(n)	

21.375	±	
1.527	

31.700	±	
1.366	

16.250	±	
1.637	

21.500	±	
1.464	 1.000	 1,34	 S	F=38.389	 S	P<0.001	***	 S	η2p=0.530	

		 		 		 		 		 		 		 		 GxS	F=4.210	 GxS	P=0.048	*	 GxS	η2p=0.110	

		 		 		 		 		 		 		 		 G	F=1.464	 G	P=0.235	 GxS	η2p=0.217	
Elevated	
plus	maze	

Open	arms	
latency	(s)	

20.940		±		
7.309	

5.208	±	
6.537	

53.140	±	
18.663	

36.240	±	
16.692	 1.000	 1,34	 S	F=5.564	 S	P=0.024	*	 GxS	η2p=0.141	

		 		 		 		 		 		 		 		 GxS	F=0.002	 GxS	P=0.966	 GxS	η2p=0.000	

		 		 		 		 		 		 		 		 G	F=17.820	 G	P<0.001	***	 G	η2p=0.778	
Elevated	
plus	maze	

Open/closed	
arms	time	ratio	

0.091	±	
0.030	

0.233	±	
0.027	

0.058	±	
0.015	

0.105	±	
0.013	 1.000	 1,34	 S	F=13.019	 S	P=0.001	**	 S	η2p=0.117	

		 		 		 		 		 		 		 		 GxS	F=4.511	 GxS	P=0.041	*	 GxS	η2p=0.117	

		 		 		 		 		 		 		 		 G	F=5.135	 G	P<0.030	*	 G	η2p=0.131	

Elevated	
plus	maze	

Head	directed	
to	open	arms	

(s)	
30.255	±	
2.984	

41.452	±	
2.669	

21.230	±	
1.754	

21.164	±	
1.569	 1.000	 1,34	 S	F=45.423	 S	P<0.001	***	 S	η2p=0.571	

		 		 		 		 		 		 		 		 GxS	F=6.679	 GxS	P=0.014	*	 GxS	η2p=0.164	
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Abstract 
We propose the “microbiota-inflammasome” hypothesis of depression and co-morbid 

systemic dysfunctions. Our model is corroborated by an emergent body of literature that 

supports a role for the multidirectional communication between the gut microbiota, the 

NLRP3 inflammasome, and the brain, in psychological stress response, leading to the 

development of MDD and co-morbid systemic illnesses. The microbiota-inflammasome 

theory of depression is supported by the following lines of evidence: a) increased NLRP3 

signalling activates the HPA axis and increases pro-inflammatory signalling affecting 

depression- and anxiety-related behaviours and gut microbiota composition, b) changes in 

intestinal structural integrity resulting from stress and/or gut dysbiosis (the alteration of 

normal gut microbiota composition and expansion of pathogenic bacteria) increase 

bacterial translocation in physiologically sterile compartments, fuelling enteric, systemic 

and central pro-inflammatory signalling mediated at least partially by NLRP3 

inflammasome signalling, c) stress-induced changes in gut microbiome composition alter 

the availability of neurotransmitters and neuroactive compounds, at least partially through 

activation of inflammatory cascades affecting behaviour, d) increased NLRP3 signalling 

sustained by stress, gut dysbiosis, and leaky gut, increases the likelihood of developing 

co-morbid NLRP3-mediated systemic conditions, e) NLRP3-driven systemic dysregulation 

increases the likelihood of developing MDD and gut dysbiosis. If this hypothesis proves to 

be true, further safety and efficacy translational studies of NLRP3 inflammasome inhibition 

by means of pharmacological antagonism, faecal microbiota transplantation, psychobiotics 

supplementation, or dietary change, could give rise to novel therapeutic strategies in the 

treatment of MDD and co-morbid systemic illnesses. 

Keywords: NLRP3, inflammasome, caspase 1, gut microbiota, dysbiosis, stress 

response, co-morbid conditions, danger associated molecular patterns, Toll-like receptors, 

probiotics, psychobiotics. 
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Introduction 
The NLRP3 inflammasome is an innate intracellular immune sensor, capable of detecting 

stress, danger, or damage. Once activated, it triggers intracellular cascades that return the 

system to homeostasis.79 One of the main avenues through which NLRP3 exerts its 

effects is via activating IL1B-mediated cascades.77 Since IL1B signalling is a crucial node 

in gut-immune-brain communication, understanding NLRP3 function and dysfunction has 

become an essential milestone in understanding health and disease across a range of 

contexts.79,511-513 Moreover, given the presence of NLRP3 inflammasomes in many 

immune cell types (including microglial cells, monocytes, granulocytes, epithelial cells and 

T and B cells), inflammasome-mediated processes are highly relevant to the fields of 

immunology, psychiatry, and nutrition.79,511 Inflammasome-mediated loss of homeostasis 

has been implicated in the pathogenesis, progression and treatment response of MDD, 

IBD, cancer, diabetes, obesity, as well as neurodegenerative and autoimmune 

diseases.511,514-519  

Based on the concept of a MGB axis (please see chapter 1), we have introduced the 

concept of a microbiota-inflammasome-gut-brain axis (MGIB) The MGIB axis is a 

bidirectional communication system, interfacing psychological stress, immune system 

function and gut microbiome composition.122 Exposure to psychological stress increases 

NLRP3 inflammasome signalling, resulting in the activation of IL1- and TNF-mediated 

pathways.84,451-453 The extent to which NLRP3 is activated in response to external triggers 

appears to be determined, to a large extent, by the composition and function of the gut 

microbiome, an entity that is independently linked to the risk of MDD and co-

morbidities.62,114,122,123,134,135,519-521 

In this paper we focus on the MGIB axis, specifically on the NLRP3-mediated pathways 

that link psychosocial stress, the gut microbiota, and exacerbation of depressive 

symptomatology.78,122,270,342,430,514,516,521 We hypothesise a mechanism by which stress 

exposure, via influencing the gut microbiome, affects NLRP3- and IL1-driven pathways to 

influence brain function. These processes lead to depressive- and anxiety-like behaviour 

that increase the risk of MDD and associated co-morbidities (Fig. 6.1). We further 

hypothesise that, through NLRP3-mediated pathways, stress results in alteration of the 

composition of the gut microbiota, further compounding pathogenic processes that lead to 

MDD. 
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Figure 6.1. The microbiome-inflammasome theory of depression and co-morbid systemic illnesses. 

Psychological stress exposure increases NLRP3 signalling, which triggers anxiety and depressive 

behaviours. At the same time, stress-evoked gut microbiome changes mediated by the NLRP3 

inflammasome and IL1-activated pathways alter the bioavailability of monoamine precursors and neuroactive 

compounds produced by the gut microbiome, which results in the exacerbation of depressive 

symptomatology. On the other hand, changes in intestinal structural integrity (i.e. leaky gut) result in the 

translocation of bacteria and their by-products in physiologically sterile bodily compartments, fuelling pro-

inflammatory signalling which increase anxiety and depressive behaviours. At the same time, gut dysbiosis 

alters the levels of microbiome-produced monoamine, neuroactive compounds and other metabolites, which 

affect anxiety and depressive behaviours. Finally, increased NLRP3 activity fuelled by stress, dysbiotic 

states and leaky gut increases the likelihood of co-morbid NLRP3-mediated systemic illnesses such as 

neurodegenerative and autoimmune diseases, IBD, obesity, diabetes and cancer. 
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The microbiota-inflammasome theory of depression and co-morbid systemic 
illnesses 
Converging evidence linking NLRP3 inflammasome-mediated processes in stress 

response, MDD development, and systemic illnesses, has led to the formulation of the 

“inflammasome hypothesis of depression”.342 In this hypothesis, psychological stress 

activates the NLRP3 inflammasome and therefore IL1B release. If protracted, increased 

systemic inflammation puts patients at an increased risk of depressive symptomatology 

and co-morbid illnesses, and an increased likelihood of developing MDD.342  

Although supported by clinical and pre-clinical evidence, the inflammasome theory of 

depression does not take into account the involvement of the gut microbiota in the 

dysregulation of NLRP3-mediated enteric, central, and systemic inflammatory 

processes.114,122,123,130,133,134,137,141,466,522-524 We suggest that stress exposure increases 

NLRP3 signalling, which in turn increases anxiety and depressive behaviours and alters 

gut microbiota composition. At the same time, stress-induced changes in the gut 

microbiota alter the bioavailability of monoamine precursors and neuroactive compounds, 

resulting in exacerbation of depressive symptomatology. We suggest that gut dysbiosis, by 

increasing systemic and central NLRP3-mediated pro-inflammatory signalling, contribute 

both to depressive symptoms and to the risk of NLRP3-related co-morbid illnesses (Fig. 

6.1).511,514-519 

In summary, the proposed microbiota-inflammasome hypothesis of depression is based on 

the following notions: a) psychosocial stress increases NLRP3 inflammasome signalling, 

resulting in increased HPA axis activation and increased systemic and central pro-

inflammatory signalling, b) stress- and/or dysbiosis-mediated changes in gut barrier 

function (i.e. the development of “leaky gut”) result in increased bacterial and bacterial by-

products translocation to otherwise sterile enteric compartments, fuelling pro-inflammatory 

signalling, c) inflammation-mediated shifts in gut microbiota composition resulting from 

stress alter levels of microbiota-produced neurotransmitter precursors and neuroactive 

compounds, and d) increased NLRP3 activity fuelled by chronic stress, dysbiosis, and 

leaky gut, increases the likelihood of increased anxiety and depressive behaviour, and 

comorbid NLRP3-mediated systemic conditions.511,514-519  
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The NLRP3 inflammasome mediates the psychological stress response 
Psychosocial stress triggers sterile inflammation, an inflammatory process that is initiated 

by the extracellular release of DAMPs.84 DAMPs activate a number of immune cell types 

throughout the body, priming the body and the brain for a potential full immune response 

following damage resulting from confrontation with peers or predators.63 When DAMPS 

are released, they activate the immune system through pattern recognition receptors 

(PRRs).79 The cytokines released in response activate the HPA axis, which by increasing 

glucocorticoid release, down-regulates immune responses to return to homeostasis.525  

However, when exposure to a stressor is repeated or prolonged, NLRP3 activity does not 

reach resolution.62 This failure to resolve can lead to a state of systemic low-grade chronic 

inflammation that results in the exacerbation of depressive symptoms (depressive-like 

behaviour in rodents).78,430 Interestingly, it was shown recently that increased CASP1 

activity is responsible for cleaving glucocorticoid receptors and increasing glucocorticoid 

resistance, a process which could contribute to the decreased level of glucocorticoid 

receptors and resistance to glucocorticoids observed in MDD patients.111,113,525 Ultimately, 

depressive symptoms are compounded by HPA axis dysfunction, functional and structural 

brain changes (such as monoaminergic deficiency and hippocampal atrophy) and gut 

dysbiosis. In turn, these changes further fuel systemic inflammation exacerbating anxiety 

and depressive symptoms and increase the likelihood of co-morbid systemic 

illnesses.85,114,342 	

The NLRP3 inflammasome is gaining increasing attention in MDD research for its 

involvement in stress responses, gut dysbiosis, and pro-inflammatory pathways, which 

incite depressive symptoms and precipitate co-morbid conditions.62,516,526 NLRP3 mRNA 

and protein are increased in peripheral blood mononuclear cells	in MDD patients, together 

with CASP1 and IL1B levels, and normalized by antidepressant treatment.78 Moreover, 

NLRP3 signalling is involved in the development of stress-induced depressive-like 

behaviour in pre-clinical models of depression.62,122  

The NLRP3 inflammasome regulates intestinal homeostasis 
The NLRP3 inflammasome plays a key role in maintaining intestinal homeostasis and in 

mediating the communication between the gut microbiome, the immune system, and the 

brain.523 NLRP3-produced IL1 and IL18 play dichotomous roles in gut function and 

dysfunction. In fact, while IL1 is a pro-inflammatory cytokine, which at high levels can 

become detrimental to gut function, IL18 plays a protective role in maintaining intestinal 
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integrity and promoting epithelium repair.338,527,528 Accordingly, mice lacking NLRP3, 

CASP1 or the adaptor protein apoptosis-associated speck-like protein containing a CARD 

(ASC), display increased mortality to experimental colitis. This is characterized by a loss of 

epithelial integrity, bacterial dispersion, increased leukocyte infiltration, and upregulated 

colonic chemokine production.520,524,528 Together, these observations suggest that NLRP3 

activity is necessary to combat intestinal stress and maintain gut homeostasis.520,524,528 

Other groups have, however, suggested entero-protective effects of NLRP3 

inflammasome inhibition in experimental colitis.529 These apparently contrasting findings 

suggest that the fine-tuning of NLRP3 activity is essential for gut homeostasis, and that 

NLRP3 modulation (but not total inhibition) might prove valuable in treating conditions 

connected to altered inflammatory profiles and dysbiotic states, including MDD.114  

Genetic evidence further supports the role of NLRP3 inflammasome in chronic 

inflammatory conditions. On one hand, NLRP3 hyperfunctional mutations increase IL1B 

processing, leading to cryopyrin-associated periodic syndromes.530 On the other, 

hypofunctional NLRP3 phenotypes correlate with Crohn’s disease in a sex-dependent 

manner.531 Given the importance of NLRP3 activity regulation, it represents a potential 

therapeutic target for modulating gut homeostasis and could have clinical benefits in 

treating the dysbiotic features that may accompany a subset MDD cases and co-morbid 

systemic dysfunctions.114,123,130 

The NLRP3 inflammasome mediates the cross-talk between the gut microbiota and 
the immune system 
While the gut microbiota has a substantial influence on the development and regulation of 

the immune system, host immunity also helps to shape the composition of the gut 

microbiota.532,533 The majority of immune pathways that are involved in regulation of 

microbiota are activated through NLRs, cytoplasmic sensors of cellular and tissue stress. 

Mice lacking Nlrp3, Nlrp6, or other inflammasome components, exhibit an “inflammasome-

mediated dysbiosis”, characterized by Prevotellacea and TM7 over-representation and 

increased expression of pro-inflammatory cytokines, increased experimental colitis 

severity and an autoimmune-like response.487,534 Nlrp6-/- mice susceptibility to dysbiosis 

seems to relate to a defect in goblet cell-mediated intestinal mucus production, suggesting 

that a similar mechanism might be driving the Nlrp3-/--mediated dysbiosis.535 Similarly, 

Nod1-/- and Nod2-/- mice exhibit altered gut microbiota profiles, characterized by under-

representation of Bacteroidetes vulgatus, increased enteric interferon-gamma production 

and altered MYD88 signalling.536-538 Other innate immunity-driven mechanisms seem to be 
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involved in fuelling gut dysbiosis, such as the dysregulated production of antimicrobial 

peptides by Paneth cells in intestinal crypts, which can lead to shifts in microbiota 

composition and colonization of physiologically sterile inner mucus layers.539-541 Taken 

together, these findings suggest that NLRP3 inflammasome bioactivity is crucial to 

maintenance of gut homeostasis. 

The NLRP3 inflammasome mediates metabolites-brain interactions 

Interactions between commensal microbiota and the host have developed over millennia 

and have a beneficial influence on many aspects of physiology.542 Disruption of these 

interactions can precipitate enteric, autoimmune, metabolic and psychiatric 

disorders.114,122,130,145 The principal pathways of microbiota-gut-brain interaction are the 

host-microbe metabolic axes, multidirectional cross-talk networks linking bacterial 

metabolites, and host cellular pathways.124 63 Such cross-talk acts principally through two 

distinct pathways: 1) vagus nerve activation by microbiota-produced gene expression by-

products and metabolites, which directly affect brain function and indirectly regulate 

immune system balances,543 and 2) direct interaction of the microbiota and their 

metabolites with components of the immune system, such as the NLRP3 inflammasome, 

which influence pro-inflammatory pathways and affect brain function and host 

behaviour.122,544 Through such pathways, commensal bacteria can make a substantial 

beneficial contribution to the regulation of host immunity. For example, many gut 

commensals, such as spore-forming Clostridia, influence intestinal T-reg cell induction 

through the production of SCFAs. In turn, T-regs mediate anti-inflammatory and 

immunoregulatory processes.522,545-547 This is of particular relevance in MDD, where a shift 

towards Th1 response has been described in at least a subset of patients.80,82,83,548 Some 

commensals (such as Helicobater hepaticus) have also been shown to stimulate pro-

inflammatory Th1 and Th17 responses in immunocompromised but not in wt mice, 

suggesting that extra attention is needed in shaping therapies in immunocompromised 

patients.549 

The “depression gut microbiota” 
The gut microbiome is essential to human health and its disruption is implicated in diverse 

pathologies. Indeed, the emerging literature on gut-brain interactions and the association 

of gastrointestinal diseases (such as IBD) with psychiatric conditions, highlight the 

contribution of the gut microbiota in psychopathology.125,550 It has been suggested that 

clinical MDD is associated with altered gut microbiology, and the majority of the studies 

that have investigated the “depression microbiota” have reported compositional 
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differences between depressed patients and healthy controls. Typically, alterations in 

overall microbiota structure, rather than in the abundance of individual species, have been 

described (for a summary of studies reporting bacterial changes in MDD patients, see 

table 6.1). 

Increased	in	MDD	 Decreased	in	MDD	 Reference	
Actinomycineae	
Coriobacterineae	
Coriobacterineae	
Lactobacillaceae	
Streptococcaceae	

Clostridiales	
Eubacteriaceae	
Lachnospiraceae	
Ruminococcaceae	
Erysipelotrichacea	

Bacteroidaceae	
Lachnospiraceae	

Acidaminococcaceae	
Veillonellaceae	
Sutterellaceae	

	
	
	

Zheng	et	al.,	
2016	

	
	
	

Thermoanaerobacteriaceae		 Prevotellaceae	
Kelly	et	al.,	

2016	

		
Bifidobacterium	
Lactobacillus	

Aizawa	et	al.,	
2016	

Enterobacteriaceae	
Alistipes	

Acidaminococcaceae	
Fusobacteriaceae	

Porphyromonadaceae	
Rikenellacea	

Bacteroidaceae	
Erysipelotrichaceae	
Lachnospiraceae	
Prevotellaceae	
Ruminococcacea	
Veillonellaceae	

	
Jiang	et	al.,	

2015	

 

Table 6.1. Summary of studies reporting increased and decreased levels of bacterial families in MDD 
patients. 

For example, Jiang and colleagues compared the gut microbiota composition in a Chinese 

population amongst active depressed patients (n=29), depressed patients responding to 

treatment (n=17) and healthy controls (n=30), reporting greater bacterial diversity in the 

active MDD patients.133  

The authors also reported increases in the relative abundance of discrete phylogenetic 

groups. For example, Proteobacteria were increased in patients with active MDD, while the 

relative abundance of Firmicutes was reduced. Proteus mirabilis (a member of the 

Proteobacteria phylum) has been shown to trigger monocyte-induced NLRP3 activation 

and IL1B production through the release of the virulence molecule hemolysin.134 Bacterial 

components from other Proteobacteria, such as the structural LPS produced by 
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Pseudomonas species, have been shown to trigger depressive symptoms via TLR4-

mediated NLRP3 inflammasome activation and production of LPS-reactive 

immunoglobulins.135 Notably, levels of these pro-inflammatory markers are increased in 

MDD patients.54 The authors also reported the relative abundance of Bacteroidetes to be 

significantly higher in the active depression group (mostly the result of increased 

Parabacteroides and Alistipes abundance). Since these bacteria are able to convert 

tryptophan to indole, they might influence tryptophan availability and potentially disrupt the 

enteric serotonergic balance and be involved in the serotonergic unbalances observed in 

MDD.136 Interestingly, the abundance of the genus Alistipes is increased in MDD, chronic 

fatigue syndrome, pediatric IBS and in rodent stress models, and appears to correlate with 

inflammation.551,552 Moreover, a diabetogenic effect of this genus has been hypothesized, 

which could contribute to the MDD-diabetes comorbidity. Similarly, Lachnospiraceae, a 

key producer of the SCFA butyrate, which helps to maintain intestinal barrier integrity, was 

decreased in this cohort. Such changes might contribute, in part, to the increased 

susceptibility of MDD patients to leaky gut and gastrointestinal pathology.137-140 The genus 

Faecalibacterium, is a well-recognised bacterial contributor to the suppression of 

inflammation, and its lower abundance in MDD patients is consistent with the heightened 

inflammatory state in MDD.553 Oscillibacter was also increased in active MDD patients.130 

This genus produces the SCFA valeric acid, which resembles gamma-aminobutyric acid 

(GABA) and binds GABAA receptor, involved in gastrointestinal functions.554 

Zheng and colleagues investigated faecal microbiota composition in a second Chinese 

population of MDD patients (n=58) and demographically matched healthy controls (n=63). 

The authors reported alterations of taxa belonging to the phyla Bacteroidetes (decreased 

in MDD), Actinobacteria (increased in MDD) and Firmicutes (some members increased in 

MDD, others decreased).123 The authors went on to transfer faecal microbiota from MDD 

patients and healthy controls to germ free mice, and reported that mice receiving the 

“depression microbiota” displayed increased anxiety-like and depressive-like behaviour. 

These findings suggest that the depressive phenotype is transmissible via the gut 

microbiome.123  

Kelly and colleagues also investigated the relationship between the gut microbiome and 

MDD using an Irish cohort of MDD patients (n=34) and gender, age and ethnicity matched 

healthy controls (n=33). In contrast to the findings of Jiang and colleagues, the authors 

reported decreased bacterial diversity in the MDD group compared to healthy controls, 

which were associated with an increase in inflammatory markers (IL6, IL8, TNF, and 
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CRP). Using a similar approach to Zheng and colleagues, the authors demonstrated that 

the transfer of gut microbiota from MDD patients to antibiotic-treated rats resulted in a 

recapitulation phenotype. Specifically, rats that received depression-associated microbiota 

displayed anhedonic-like and anxiety-like behavior, and MDD-like biological traits, 

including increased plasma kineurine levels and an increased plasma 

kyneurine/tryptophan ratio.141 

Naseribafrouei and colleagues reported a correlative study of faecal microbiota 

composition in Norwegian MDD patients (n=37) and healthy controls (n=18) and found that 

the complete microbiota correlated with depression with high predictive accuracy 

independent of medication status.130 Lachnospiracea and Bacteroidetes were under-

represented in the gut microbiome of MDD patients. Again, levels of Alistipes and 

Oscillibacter were increased in MDD. Low levels of Bacteroidetes are associated with 

chronic low-grade inflammation and obesity, suggesting that such a decrease could bridge 

chronic low-grade inflammation, depression and obesity.43,131,132  

By demonstrating that altered gut microbiology is not only associated with depression, but 

that it has a causal contribution to the development of depressive-like behaviour, these 

studies provide exciting insight into pathological mechanisms, and opportunities for the 

improvement of therapies. However, it is important to note the variability in the findings 

reported. Larger studies that take into consideration factors such as diet and 

pharmacological treatment are now required to corroborate these early investigations, and 

define MDD-associated microbiome characteristics more clearly.	

MDD is associated with altered metabolic pathways 
The shifts in gut microbiota composition observed in MDD patients result in peripheral and 

central disturbances of metabolic pathways. These include a) altered amino acid profiles, 

which could be responsible for altered neurotransmitter signatures in MDD and altered 

low- and very low- density lipoproteins, b) lipid metabolism-related molecules, which could 

be responsible for dysregulated lipid balances and high co-morbidity between MDD, 

metabolic syndrome and obesity and c) altered levels of energy metabolism-related 

molecules, which could be responsible for the energy deficiencies observed in MDD.555-560  

Interestingly, following the instillation of gut microbiota from MDD patients into rodent 

models, altered behaviour can be observed resembling that of the human donors, 

suggesting that behaviours associated with specific gut microbiota may be 

transmissible.123 This intriguing observation raises the question of whether transferring the 



	

	 109	

microbiota from healthy, non-depressed individuals could provide clinical benefit in MDD. 

Strikingly, peripheral microbiota-driven metabolic changes are also transmissible and are 

reflected centrally in the recipient’s hippocampus.123 Further studies should investigate 

whether profiling the peripheral metabolome might have diagnostic value in humans. 

Inflammasome signalling modulation affects host behaviour and gut microbiota 
composition 
The involvement of the MGB axis in the pathophysiology of MDD is increasingly 

recognized.116,123,130,133,141 However, the molecular mechanisms underpinning such 

communication remain poorly understood. Recently, we reported that genetic deletion or 

CASP1 pharmacological inhibition, and therefore decreased NLRP3 inflammasome 

signalling, attenuates anxiety- and depressive-like behaviours, while preventing the 

exacerbation of stress-induced depressive-like behaviour in mice.122 In that study, we 

characterized gut microbiota changes stemming from chronic stress and pharmacological 

inhibition of NLRP3 inflammasome bioactivity with minocycline. Minocycline administration 

was found to result in gut microbiota shifts similar to those observed in Casp1-/- mice.122,466 

Stressed mice showed subtle shifts in the Firmicutes/Bacteroidetes ratio, which are 

thought to correlate to chronic low-grade inflammation in other diseases.65 

Bifidobacterium, a genus associated with inflammatory pathways suppression via nuclear 

factor NF-kB inhibition, was decreased in stressed mice,477 while Lactobacillus, a genus 

involved in activation of the inflammasome through CASP1-mediated IL1B production by 

macrophages, was increased.122 Interestingly, the levels of Akkermansia were increased in 

mice undergoing chronic stress concomitantly receiving the CASP1 inhibitor minocycline. 

This effect is relevant since Akkermansia decreases inflammatory signalling in adipocytes 

through T-reg cells induction, which in turn results in the suppression of IL1B and IL6, and 

might be involved in minocycline’s immunosuppressive effects.483,484 Similarly, 

Lachnospiraceae, a family associated to the production of the anti-inflammatory SCFA, 

was increased in stressed mice receiving minocycline.122 These findings highlight the far-

reaching effects of stress exposure on the gut, and support the microbiome-inflammasome 

theory of depression proposed here. 

The microbiome-gut-inflammasome-brain axis 
Our findings, and those of other researchers, suggest that by modulating NLRP3 

inflammasome signalling, it is possible to attenuate stress-induced neuroinflammation and 

prevent stress-induced gut dysbiosis.122,149,341,342,430,526 We introduced the notion of a 

microbiome-gut-inflammasome-brain axis, where the gut microbiome affects anxiety and 
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depression-related behaviours at least in part via activating inflammasome-mediated 

pathways.122 While these changes in brain function are connected to shifts in microbiome 

profiles, they are actually driven by the host’s metabolic pathways.123 Such alterations of 

metabolic profiles are reflected in the host’s hippocampus, a brain region relevant to 

MDD.123 Given these findings, we suggest that the MGIB axis is crucial for MDD onset and 

progression.  

Translational implications of the microbiome-inflammasome hypothesis of 
depression and co-morbid systemic illnesses and future directions 
The MGIB axis could represent a valuable therapeutic target for MDD treatment via 

modulation of NLRP3 inflammasome bioactivity to potentially decrease inflammation and 

depressive symptoms. For example, it has been reported that fluoxetine, a common 

antidepressant, inhibits NLRP3 inflammasome activation.526 An alternative approach to 

such a pharmaceutical approach might be to manipulate the gut microbiome, to reduce 

NLRP3 inflammasome bioactivity and increase the availability of monoamine precursors 

and neuroactive compounds (for example, through faecal microbiome transfer, 

psychobiotic supplementation, or dietary measures).128,142,561 These approaches are 

supported by pre-clinical evidence that NLRP3 inhibition and gut microbiome modulation 

decreases neuroinflammation via preventing microglial activation while attenuating the loss 

of hippocampal neurogenesis, important hallmarks of MDD progression.62,562  

Modulation of NLRP3 inflammasome activity via adjunct anti-inflammatory therapies 

seems to hold potential in MDD and co-morbid systemic illnesses, although clinical 

investigations remain limited.276,563,564 107 The indirect modulation of inflammasome 

signalling through manipulation of the gut microbiome also has therapeutic 

potential.128,142,561 Demonstration of the efficacy of these strategies under clinical trial 

conditions could lead to a paradigm shift in the 60 year-old MDD pharmacotherapy.23,565  

NLRP3 modulation in MDD 

Pre-clinical and clinical evidence points to a role for the NLRP3 inflammasome in MDD 

onset, antidepressant response and remission.78,526 A proof-of-concept placebo-controlled 

trial investigating the effects of minocycline augmentation for MDD reported improvements 

in several outcome measures, including global impression, functioning, and quality of life.98 

However, the study’s primary outcome measure, the Montgomery–Asberg Depression 

Rating Scale, was unaffected.98 Other clinical trials have investigated the efficacy of anti-

inflammatory augmentation in MDD, finding that such approach increases the efficacy and 
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decrease the latency of antidepressant effects onset.276,563,564 Similarly, genetic deletion or 

pharmacological inhibition of inflammasome assembly abrogates LPS- and stress-induced 

depressive-like behaviour.62,122,341 These changes are mediated by decreased 

inflammasome and pro-inflammatory cytokine activity.62,122,341 Such a reduction in 

neuroinflammation suggests that humans might benefit from similar therapies. A clinical 

trial investigating the effects of TNF inhibition in depression treatment found that only 

patients with dysregulated inflammatory profiles benefit from such therapy,42 raising the 

possibility that only depressed patients with increased NLRP3 baseline activity might 

benefit from NLRP3-directed therapies. However, when designing therapies targeting 

NLRP3, it is important to take into consideration the effects that such will have on 

physiological immune responses, whose functionality needs to be preserved. 

Faecal microbiota transplantation in MDD 

Although, to date, no clinical trials have investigated the efficacy of FMT with depressive 

symptomatology as a primary outcome measure, anecdotal and indirect evidence of mood 

enhancing and anti-inflammatory effects of such treatment are available from patients 

undergoing such transplantation procedures for the treatment for IBD, Clostridium difficile 

infection and Crohn’s disease.128 Accordingly, pre-clinical studies have shown the 

transmissibility of gut microbiota-driven behaviours.123,141 Though no study has 

investigated the reverse approach (i.e. FMT from healthy donors to depressed recipients), 

the transmissibility of microbiota-associated behaviours suggests that FMT might prove 

valuable in treating MDD.123,141 When designing FMT-related therapies, it is fundamental 

to maximize the safety of the procedure (i.e. screening for pathogens) while taking into 

account potential short-term adverse effects (i.e. abdominal discomfort and fever) and 

long-term adverse effects (i.e. onset of latent infections and increased risk for other 

microbiota-related conditions).566 Double-blind, placebo controlled clinical trials are needed 

to assess the safety and efficacy of FMT in MDD and the resulting changes in gut 

microbiota composition and biochemical parameters in the recipients. 

Psychobiotics supplementation in MDD 

Probiotics are bacteria that yield beneficial health outcomes, while prebiotics are 

compounds that ferment in the gut producing changes in gut bacteria composition and/or 

function.567 Psychobiotics are probiotics and prebiotics that positively affect mental health 

and can ameliorate psychiatric symptoms by: a) competitive exclusion of pathogens, b) 

modulation of pro- and anti-inflammatory pathways, c) communication with the CNS via 

the vagus nerve, d) changes in neurotransmitters levels.142,568-572 Clinical trials involving 
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psychobiotics administration are sparse but on the rise, and are yielding promising results 

(table 6.2).  

Bacterial Strain Condition Probiotic 
 Treatment Mood effects Biological effects Reference 

Bifidobacterium longum NCC3001 Irritable bowel 
syndrome 42 days 

Decreased depression scores 
Increased quality of life 

Amelioration in general physical health 
Amelioration in problems with work or 

other daily activities 

No difference in serum inflammatory 
markers 

No changes in gut microbiome 
composition 

Bifidobacterium longum detected in 80% 
of treated patients at end of treatment 

Reduced amygdala and frontal and 
temporal cortices engagement in 

response to fearful stimuli (correlated to 
IBS symptoms relief) 

Heightened occipital regions engagement 
in response to fearful stimuli 

Pinto-Sanchez, 2017 

Lactobacillus helveticus  
Bifidobacterium longum Low mood 56 days None found High levels of baseline vitamin D  

predicted better treatment response Romijn et al, 2017 

Lactobacillus acidophilus 
Bifidobacterium bifidum 

Streptoccocus thermophiles 

SSRI treatment 
resistant  

depression 
56 days Decreased depression scores 

Improved quality of life 

None tested 
Hypothesized intestinal anti-

inflammatory effects 
Bambling et al, 2017 

Lactobacillus gasseri CP2305 (inactivated) Stressed students 84 days Improved sleep quality  
Decreased stress levels 

Improved sleep electroencephalogram 
Prevented increases in basal cortisol 

levels 
Prevented increases in expression of 

stress-responsive microRNA miR-144 
(females only) 

Normalized bowel habits 

Nishida et al, 2017 

Lactobacillus acidophilus 
Lactobacillus casei 

Bifidobacterium bifidum 

Major Depression 
Disorder 56 days Decreased depression scores 

Decreased insulin levels 
Decreased hsCRP levels 

Increased glutathione levels  
Akkasheh et al, 2016 

Bifidobacterium longum 1714 Healthy subjects 28 days Decreased daily stress levels 
Decreased anxiety response to a stressor 

Improved visuospatial memory  
Decreased cortisol response to a stressor 

Enhanced prefrontal cortex activity 
Allen et al, 2016 

Bifidobacterium bifidum W23 
Bifidobacterium lactis W52 

 Lactobacillus acidophilus W37 
 Lactobacillus brevis W63 
Lactobacillus casei W56 

 Lactobacillus salivarius W24 
Lactococcus lactis (W19 and W58) 

Healthy subjects 28 days Reduced rumination  
Reduced aggressive thoughts  None investigated Steenbergen et al, 2015 

 Lactobacillus acidophilus LA5 and  
 Bifidobacterium lactis BB12 (GROUP 1) 

Lactobacillus casei, Lactobacillus 
acidophilus, Lactobacillus rhamnosus, 

Lactobacillus bulgaricus, Bifidobacterium 
breve, Bifidobacterium longum, Streptoccocus 

thermophilus (GROUP 2) 

Healthy subjects 42 days Decreased anxiety scores 
Decreased depression scores Improved general health Mohammadi et al, 2015 

Bifidobacterium animalis subsp lactis I-2494  
Lactobacillus bulgaricus I-1632 and I-1519 

 Lactococcus lactis subsp lactis I-1631 
Healthy subjects 28 days None investigated 

Altered activity of interoceptive and 
somatosensory regions 

 Decreased activity of mid insula cortex 
and primary somatosensory cortex  

Decreased activity of frontal, prefrontal, 
and temporal cortices,  

parahippocampal gyrus, and the 
periaqueductal gray 

Tillisch et al, 2013 

Lactobacillus helveticus R0052 
 Bifidobacterium longum R0175 Healthy subjects 30 days Decreased scores of somatisation,  

depression and anger–hostility None investigated Messaoudi et al, 2011 

Lactobacillus casei Shirota Healthy subjects 20 days Patients more depressed  
at baseline reported improved mood None investigated Benton et al, 2007 

 

Table 6.2. Summary of clinical studies reporting biological and/or mood outcomes following 
psychobiotics supplementation. 

Spore-forming bacteria: an example of mood-enhancing bacteria  

Interestingly, spore-forming bacteria present in the gut are involved in regulating host’s 

5HT biosynthesis.573 Although it is accepted that peripherally produced 5HT cannot cross 

the BBB, spore-forming bacteria might improve mood by increasing faecal α-tocopherol (a 
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form of vitamin E) and tyramine (a catecholamine-releasing trace amine) levels.573 Alpha-

tocopherol, which is decreased in MDD, is beneficial in several diseases and ameliorates 

depressive-like behaviour in pre-clinical models, while tyramine is a neurotransmitter-like 

molecule with antidepressant and anxiolytic effects.574-576 Spore-forming bacteria might, 

therefore, have monoamine-independent mood-enhancing effects elicited by increased 

production of beneficial metabolites and neuroactive compounds.  

	
In a pilot study with SSRIs resistant patients, 8 week supplementation with Lactobacillus 

acidophilus, Bifidobacterium bifidum, Streptoccocus thermophiles and magnesium ororate 

resulted in a reduction in depression scores and improved overall quality of life.143 

Similarly, in a randomized controlled trial (RCT), the administration of Lactobacillus 

acidophilus, Lactobacillus casei, and Bifidobacterium bifidum led to a decrease in 

depression scores, and levels of insulin and high sensitivity CRP, while glutathione levels 

increased.144 Accordingly, another RCT investigating the effects of 6 weeks of 

supplementation with Bifidobacterium longum in IBS patients reported decreased 

depression scores and increased quality of life.577 Imaging analysis identified attenuated 

amygdala and temporal activation in response to fearful stimuli, which correlated with IBS 

symptoms amelioration.577 Moreover, a cocktail of Bifidobacterium animalis subsp. lactis, 

Streptococcus thermophiles, Lactobacillus bulgaricus, and Lactococcus lactis subsp. lactis 

decreased neural activity in negative emotion- and sensation-processing brain areas in 

healthy women.145 These results suggest that the introduction of commensal bacteria to 

the gut can have a profound influence on region-specific brain activity. The identification of 

such effects represents an important step in the application of psychobiotic 

supplementation for conditions that alter brain activity, such as MDD and other psychiatric 

and neurodegenerative disorders.577,578 Accordingly, Bifidobacterium longum 

administration in healthy volunteers increased prefrontal cortex activity and decreased 

daily stress levels, while attenuating cortisol and anxiety responses to a stressor.146 

An important challenge in psychobiotics research is the identification of bacterial strains 

that provide consistent efficacy. For example, in one study, healthy volunteers dosed for 

30 days with Lactobacillus helveticus and Bifidobacterium longum displayed decreased 

anxiety and cortisol levels while in another study, 21 days of treatment did not affect 

psychological symptoms.570,579 Another study investigating the efficacy of a combination of 

Lactobacillus helveticus and Bifidobacterium longum in patients presenting low mood 

found no significant differences in mood scores across treatment groups.580 Two other 

studies reported that Lactobacillus casei Shirota improved mood in healthy subjects with 
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low baseline mood score, and decreased anxiety scores in CFS patients.581,582 

Interestingly, gut Lactobacillus and Bifidobacteria representation was increased in the CFS 

cohort following supplementation, suggesting that effective psychobiotic treatment might 

have a “ripple effect” (the effects on overall gut balances) on gut microbiota 

composition.582  

Most recently, the use of a “parapsychobiotic” (an inactivated psychobiotic) containing 

Lactobacillus gasseri, was shown to prevent the rise in stress-responsive micro RNAs and 

cortisol, while improving sleep quality and bowel habits in a RCT with chronically stressed 

students.583 These findings suggest that the administration of live bacteria might not be 

essential to achieving beneficial effects. 

Psychobiotics supplementation in pre-clinical models of MDD 

Accordingly to the promising results obtained in clinical trials, pre-clinical studies have 

shown beneficial effects of psychobiotics in modulating the stress response, 

neurotransmitter systems and inflammatory and metabolic pathways (table 6.3).  
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Bacterial Strain Host Condition Probiotic  
Treatment Mood effects Biological effects Reference 

Bifidobacterium bifidum W23 
Bifidobacterium lactis W52 

Lactobacillus acidophilus W37 
Lactobacillus brevis W63 
Lactobacillus casei W56 

Lactobacillus salivarius W24 
Lactococcus lactis W19 
Lactococcus lactis W58 

Rat  
(Sprague-
Dawley) 

Healthy 
High-fat diet 35 days Reduced depressive-like behaviour 

independent of diet 

Skewed cytokine production towards 
IFNG, IL2 and IL4 and decreased TNF 

and IL6 
 Lowered hippocampal transcript levels 

of factors involved in HPA axis 
regulation  

Increased level of indole-3-propionic 
acid 

Abildgaard et al, 
2017 

Bifidobacterium breve 1205 Mouse 
(BALB/c) Acute stress  180 days Reduced anxiety-like behaviour Increased spleen weight Savignac et al, 2014 

Bifidobacterium longum 1714  Mouse 
(BALB/c) Acute stress  180 days 

Reduced depressive-like behaviour 
Reduced obsessive/compulsive-like 

behaviour 
None found Savignac et al, 2014 

Lactobacillus rhamnosus JB-1 Mouse 
(BALB/c) Chronic Stress 28 days 

Reduced depressive-like behaviour 
Reduced anxiety-like behaviour 

Reduced fear conditioning 

Attenuated stress-induced increase of 
corticosterone  

Higher levels of GABAB1b receptor in 
prelimbic and cortical areas 

Higher levels of GABAB1b receptor in 
amygdala and dentate gyrus 

Bravo et al, 2011 

Lactobacillus helveticus R0052 
 Bifidobacterium longum R0175 Rat (Wistar) Healthy 14 days Decreased anxiety-like behaviour None investigated Messaoudi et al, 

2011 

Bifidobacterium breve 6330 
Rat  

(Sprague-
Dawley)  42 days None investigated 

Increased hippocampal BDNF 
expression  

Decreased BDNF exon IV expression 
(responsive to stress)  

O'Sullivan et al, 
2011 

Bifidobacterium infantis 35642 
Rat  

(Sprague-
Dawley) 

Maternal 
separation 

stress 
45 days Decreased depressive-like behaviour 

Decreased IL10 
Decreased noradrenaline in the 

amygdaloic cortex 
Decreased 5HIAA in the amygdaloic 

cortex 
Increased amygdalar CRF 

Desbonnet et al, 
2010 

Bifidobacterium infantis 35642 Rat  
(Sprague-
Dawley) 

Baseline 14 days None found 

Decreased 5HIAA in the frontal cortex 
Decreased DOPAC in the amygdaloic 

cortex 
Increased plasma tryptophan level 
Increased plasma kyneurenic acid 

Decreased body weight gain 
Ex-vivo (peripheral whole blood) 

attenuation of IFNG, TNFA and IL6 

Desbonnet et al, 
2009 

Lactobacillus rhamnosus GR-1  

Primary 
bovine 

mammary 
epithelial cells 

E. Coli-
induced 
mastitis 

Pre-
treatment for 

24h 
N/A 

Attenuated NLRP3 activation 
Attenuated IL1B, IL6, IL8, IL18 and 

TNFA mRNA 
 Upregulated IL10 mRNA 

Wu et al, 2016 

 
Table 6.3. Summary of pre-clinical studies reporting biological and/or behavioural outcomes 
following psychobiotics supplementation. 

 
Bifidobacterium infantis for 14 days in mice: a) suppressed the production of pro-

inflammatory cytokines, b) increased the levels of available tryptophan, c) decreased 5HT 

degradation by-products, and d) decreased dopamine degradation by-products.584 

Correspondingly, Bifidobacterium infantis normalized depressive-like behaviour and 

noradrenalin levels in a pre-clinical paradigm of depression.585 Although these studies did 

not assess NLRP3 or IL1B levels, the immuno- and neuro-regulatory effects achieved 

might be mediated, at least partially, by reduced inflammasome signalling.454,586 

Bifidobacterium longum showed anxiolytic and antidepressant effects in an innately 

anxious mouse strain, while Bifidobacterium breve had anxiolytic effects and decreased 

body weight gain, suggesting an effect of the former in mood and anxiety and of the latter 

in anxiety and metabolism.587 Some studies suggest that psychobiotics might upregulate 
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neurotrophic pathways. In fact, Bifidobacterium breve upregulated BDNF expression in the 

rat hippocampus, and BDNF is known to modulate neurogenesis.588,589 

Similarly, Lactobacillus rhamnosus for 28 days attenuated stress-induced rise of CORT 

levels as well as depressive- and anxiety-like behaviours in mice.590 Interestingly, L. 

rhamnosus triggered vagus nerve-mediated GABAergic upregulation.590 Since animal 

models of depression have decreased GABA levels, L. rhamnosus could be useful in MDD 

treatment.591 Lastly, a recent study reported that a psychobiotic cocktail decreased 

depressive-like behavior in rats, while skewing cytokine balance and affecting 

hippocampal gene expression and plasma metabolomics.592 

The need for biochemical outcome measures in clinical trials 

While clinical trials investigating psychobiotic supplementation often have self-reported 

questionnaires as their primary outcome measure, there is a lack of biochemical outcome 

measures. No clinical study has so far investigated the effects of psychobiotics on NLRP3 

inflammasome expression or bioactivity. Promisingly, one study on rheumatoid arthritis 

patients found that Lactobacillus casei supplementation led to a decrease in IL1, IL6, IL12 

and TNF, while increasing IL10 production.593 Accordingly, pre-clinical studies report 

decreased levels of inflammatory cytokines and neurotransmitter degradation in 

psychobiotics-treated rodents, suggesting promising immunomodulatory and 

monoaminergic outcomes that might be achieved in MDD patients with altered 

inflammatory profiles.584,585 The only report of psychobiotics effects on the NLRP3 

inflammasome involves a bovine model of mastitis in which L. rhamnosus attenuated 

NLRP3 inflammasome activation as well as CASP1, IL1B, IL18, TNF and IL6 expression, 

while increasing IL10 due to decreased TLR4 signaling.594 These effects might be due to 

the L. rhamnosus production of lactate, which attenuate TLR4-mediated NLRP3 

signaling.595 Clinical studies investigating psychobiotics on NLRP3 inflammasome 

activation and cytokine production as well as neurotransmitter and gut microbiota changes 

are warranted to assess if similar outcomes can be achieved in humans. 

Diet in MDD 

One of the most potent influences on gut microbiome composition and function is diet.596 

Depressive symptoms prompt the consumption of foods high in sugar and saturated fats, 

driving gut dysbiosis and compounding depressive symptoms. However, by stimulating the 

production of immunomodulatory compounds, such as SCFAs, a diet rich in fibre, for 

example, should be considered as an adjunct therapy for MDD.561 Indeed, a study has 
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shown, for example, that MDD patients who consume fermented milk products have 

increased levels of Bifidobacterium, a genus that is reduced in MDD patients.597 

Conclusions 
The evidence for an involvement of NLRP3-mediated pathways in the cross-talk networks 

linking the gut microbiota, the immune system and the brain, is compelling. The 

microbiota-inflammasome theory of depression presented here suggests that NLRP3 

signalling triggered by psychological stress and/or gut dysbiosis affects anxiety and 

depressive-like behaviours resulting in decreased levels of available monoamine 

precursors and neuroactive compounds while fuelling gut dysbiosis and increasing the risk 

for NLRP3-driven co-morbid illnesses. Conversely, chronic stress exposure results in 

immune balances disruption that can trigger dysbiotic states which fuel systemic low-grade 

inflammation, increasing the susceptibility to co-morbid systemic illnesses. New 

therapeutic strategies might target the microbiota-gut-inflammasome-brain axis, either 

through the direct inhibition of NLRP3, or through the modulation of gut microbiota. The 

latter could involve using psychobiotics, faecal microbiota transplantation, or dietary 

measures to decrease NLRP3 inflammasome signalling during chronic stress to reduce 

pro-inflammatory pathways, and decrease risks of neuroinflammation and 

neurodegeneration. While these approaches offer exciting opportunities for novel 

therapies, further pre-clinical and clinical research is required if they are to be translated 

into clinical practice. 
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Chapter 7 - Discussion and future directions 
Increasing evidence suggests an involvement of inflammatory pathways in the response to 

stress.63,287,330,331,333,334 Stressors prolonged or repeated over time can lead to changes in 

the host ranging from alterations in neurotransmitter systems to gut microbiome shifts to 

dysregulation of metabolic pathways, which can increase the risk of developing MDD and 

co-morbid conditions.133,296,304 Given the evidence of dysregulated inflammatory pathways 

in MDD, it seems plausible that modulating inflammatory signalling could be valuable in 

MDD treatment. This thesis therefore investigated whether decreasing stress-responsive 

pro-inflammatory pathways is beneficial in pre-clinical models of MDD.	

We hypothesized that Casp1 deficiency and pharmacological CASP1 inhibition with 

minocycline would decrease anxiety- and depressive-like behaviour in mice at baseline 

and following stress. Moreover, that chronic stress and CASP1 inhibition would affect gut 

microbiome composition. Nevertheless, that simultaneously deleting the genes coding for 

CASP1, NOS2 and IFNGR would affect baseline behaviour while preventing the 

exacerbation of anxiety- and depressive-like behaviour following stress. Finally, we 

hypothesized that genetic deletion of Casp1, Ifngr and Nos2 would decrease the levels of 

circulating CORT and ACTH following stress. 

To test our hypothesis, we used knockout mice lacking Casp1 or Casp1, Ifngr and Nos2, 

and wt mice with and without minocycline treatment. We assessed the baseline levels of a) 

depressive-like behaviour in the forced swim test, b) anxiety-like behaviour in the elevated 

plus maze, c) anhedonia in the sucrose preference test and d) locomotor activity and 

anxiety-like behaviour in the open field test. Subsequently, we exposed these mice to 

chronic stress paradigms used to trigger depressive-like behaviour and we investigated 

the effects of genetic deficiency or pharmacological inhibition of such proteins on: a) the 

stress-induced exacerbation of anxiety- and depressive-like behaviour, b) gut microbiome 

composition, c) the circulating levels of the stress hormones CORT and ACTH, and d) 

metabolic parameters.  

The results obtained partially support our hypothesis. In fact, Casp1 and Casp1, Ifngr and 

Nos2 genetic deficiency affect depressive-like behaviour. Both Casp1-/- and (Casp1, Ifngr, 

Nos2)-/- mice displayed decreased floating time in the forced swim test, suggesting an 

antidepressant-like phenotype.439,493,598 Contrastingly, mice lacking IL1R1 were previously 
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shown to have no differences in depressive-like behaviour at baseline compared to wt 

mice.471 The mouse models used in this study display decreased anxiety-like behaviour at 

baseline, suggesting that their genotype could be driving such behavioural difference. 

Accordingly, mice lacking Ilr1 display decreased anxiety-like behaviour.471 This is 

consistent with the notion that pro-inflammatory signalling increases anxiety-like behaviour 

and suggests that Casp1-/- and (Casp1, Ifngr, Nos2)-/- mice display an anxiolytic 

phenotype.444 The fact that the mouse models used display decreased anxiety- and 

depressive-like behaviour at baseline suggest that CASP1, IFNGR and NOS2 might be 

involved in the regulation of behaviour. Such effects could be mediated by the influence of 

CASP1 on HPA axis, which in addition to stress responses also modulates physiological 

homeostatic processes involved in shaping basal behaviour.599 Moreover, (Casp1, Ifngr, 

Nos2)-/- had increased preference for a sugary solution as compared to wt mice, 

suggesting increased reward-seeking and hedonic-like behaviour compared to wt mice. 

Following stress exposure, Casp1-/- mice had an attenuated response to stress compared 

wt mice, as measured by the decreased exacerbation of stress-induced anxiety- and 

depressive-like behaviour. While Casp1-/- mice display decreased climbing time in the 

forced swim test, their swimming time was not affected. Those two behaviours have been 

respectively correlated with the serotonergic and noradrenergic neurotransmitter 

systems.600 Given that swimming time did not decrease in Casp1-/- mice following stress, 

this could suggest that Casp1 deficiency affects serotonergic pathways and that it might 

have a protective effect against stress-induced serotonergic neurodegeneration. On the 

other side, following 28 days of CUMS, (Casp1, Ifngr, Nos2)-/- mice displayed an 

attenuated exacerbation of anhedonic-like behaviour. In fact, wt mice displayed a 

substantial decrease in sucrose preference (dropping below the “anhedonic” threshold of 

65%), while (Casp1, Ifngr, Nos2)-/- mice did not. These mice did not have altered CORT 

and ACTH levels compared to wt mice at the experimental endpoint. This suggests that 

(Casp1, Ifngr, Nos2)-/- mice might have a similar HPA axis response to that of wt mice and 

produce the same amount of stress hormones in response to stress. However, it is unclear 

whether there could have been HPA axis differences at earlier timepoints. Given that 

(Casp1, Ifngr, Nos2)-/- mice display an increased locomotor state and their HPA axis 

responses are not improved compared to wt following CUMS, it cannot be excluded that 

the observed decreases in floating and increased swimming and struggling times in the 

forced swim test might be related to their hyperlocomotive state rather than an 
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antidepressant-like phenotype. Therefore, those results should be interpreted in light of 

this limitation. 

Nevertheless, this does not exclude the possibility that (Casp1, Ifngr, Nos2)-/- mice might 

have differences in stress-related pathways downstream of the HPA axis, or in other stress 

response systems, such as the LC-NS. This hypothesis could be tested via transcriptional 

profiling of brain regions relevant to MDD (such as the hippocampus and the prefrontal 

cortex) via RNA microarray analyses or RNA sequencing (a deeper, more informative and 

sensitive high-throughput approach).601 Another approach to further elucidate downstream 

signalling pathways could involve the investigation of other stress-related proteins 

downstream of the glucocorticoid production, such as the expression or sensitivity of 

NR3C1 or specific intracellular signalling pathways activated by NR3C1 receptor 

activation, such as the NFKB1 and signal transducer and activator of transcription 5A. This 

kind of investigation could help shed light on the underpinnings of the resilience to 

developing anhedonic-like behaviour in (Casp1, Ifngr, Nos2)-/- mice and determine if 

indeed this genotype results in an antidepressant-like phenotype or simply to a heightened 

locomotor state which has a confounding effect on the forced swim test.  

It was previously shown that IL1B administration and chronic stress modulate the 

antineurogenic effects of stress (namely the decreased neuronal proliferation observed in 

the hippocampus following exposure to chronic stress).151 Accordingly, IL1 blockade or 

Il1r1 deficiency prevents the decrease in neurogenesis and exacerbation of anhedonic 

behaviour following chronic stress.151 Therefore, since CASP1 activates IL1B in response 

to stress, and Casp1-/- mice have very low levels of IL1, it cannot be excluded that the 

stress-resilience phenotypes observed here might be mediated by the protective effects of 

impaired IL1 signalling on stress-induced decrease in neurogenesis.151  

Similar hyperlocomotive states have been reported in transgenic mice with increased 

levels of extracellular DA and in mice treated with psychostimulants such as 

methamphetamines, which are known to increase the levels of synaptic DA.494-500 For 

example, it was previously shown that mice with genetic deletion of the DA transporter 

(which causes hyperdopaminergia) display increased locomotion, especially when 

exposed to a novel environment.495 This hypermobility state can be reversed by 

modulating the AMPA glutamate receptor, suggesting that the glutamate system might be 

affected as a result of combined Casp1, Ifngr and Nos2 deficiency.495 This indicates that 

(Casp1)-/- and (Casp1, Ifngr, Nos2)-/- mice might have increased DA or glutamate levels 
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and/or altered architecture of the dopaminergic or glutamatergic neurotransmitter systems, 

which could explain the stress resilience of these mice. Accordingly, antidepressant drugs 

can indirectly increase DA levels, and some MDD patients present altered functioning of 

the dopaminergic system, such as decreased dopamine release, impaired downstream 

dopamine signalling and changes in receptor number and/or function. (Reviewed by 

Dunlop and Nemeroff 602) Further investigations into the mechanisms that underpin these 

phenotypes could be valuable in AD and PD research and in other diseases accompanied 

by dopaminergic and glutamatergic neurodegeneration. Indeed, one recently published 

study suggests that Casp1-/- mice might have decreased dopaminergic neuronal death in 

an experimental model of PD.603  

The hypothesis that the models used in this study might have altered levels of 

neurotransmitters could be tested by investigating the levels of central monoamines in 

brain regions relevant to MDD in (Casp1, Ifngr, Nos2)-/- mice at baseline and following 

stress to determine if they differ from wt mice. HPLC analyses of brain homogenates or 

microdialisates could be performed, in order to quantify the levels of available 

monoamines. Indirect approaches include immunohistochemistry analysis of MDD-related 

brain areas to investigate the levels of markers of neurotransmission, such as tyrosine 

hydroxylase and DA receptors for DA and N-acetylaspartate and N-

acetylaspartylglutamate for glutamate.505,506 If this hypothesis proves true, (Casp1)-/- and 

(Casp1, Ifngr, Nos2)-/- mice might be useful in PD and AD research, given that both these 

diseases present increased dopaminergic and glutamatergic degeneration, and in ADHD 

research, a condition in which the DA system is altered.457,494-496,507,509,510  

While several studies have investigated the acute antidepressant effects of minocycline in 

rodents, to the best of our knowledge no other study has investigated the antidepressant 

effects of minocycline in a rodent model of chronic restraint stress.92,456,459 Our finding that 

minocycline prevented the exacerbation of depressive-like behaviour following exposure to 

CRS corroborates the notion that minocycline has antidepressant-like effects and that it 

might hold potential in MDD treatment. Our results are in line with studies investigating the 

effects of minocycline as a suppressant of microglia activation in stress models.94,604 This 

suggests that the antidepressant-like effects of minocycline might be connected to its 

inhibitory effects on microglial activation, a crucial mechanism in the exacerbation of 

depressive symptomatology. Indeed, minocycline was recently reported to improve global 

impression, functioning and quality of life in a MDD cohort although depression scores 

were unaffected.98 Another clinical trial has investigated minocycline in the treatment of 



	

	 122	

bipolar disorder. The authors observed reduced severity of depressive symptoms and 

improvements in cognitive functions in minocycline-treated patients.99 Similarly, clinical 

trials of minocycline as a stand-alone or augmentation therapy in psychotic depression 

and schizophrenia have yielded promising results.100-103  

Our findings, and those of other studies, suggest that the mechanisms of CASP1 inhibition 

with minocycline might present two levels of antidepressant activity: the first achieved by 

directly decreasing pro-inflammatory signalling and microglial activation and the second 

achieved by modulating gut microbiota composition, which indirectly modulates immune 

processes.122,605  

Turcibacter was absent in minocycline-treated mice, and in mice concomitantly receiving 

stress and minocycline. The presence of this genus might be dependent on TNF.606 This is 

supported by our finding, given that Turcibacter was increased following stress, and stress 

increases the production of TNF.41 This genus was absent in minocycline-treated mice, in 

line with the notion that minocycline attenuates TNF expression.607 We observed 

decreased levels of Allobaculum in mice receiving minocycline, and similar changes were 

reported in high fat diet studies. Lachnospiraceae was increased in mice receiving 

minocycline, and this family produces anti-inflammatory SCFAs, which have anti-

inflammatory properties.486 Therefore, Lachnospiraceae might be involved in the anti-

inflammatory effects of minocycline. 

Stressed mice receiving minocycline showed a decreased exacerbation of depressive-like 

behaviour following stress. This is in line with the reported antidepressant-like effects of 

minocycline.92,456 These findings also support the notion that minocycline treatment during 

stress decreases microglia-induced neuroinflammation, given that neuroinflammation is 

involved in MDD.94  

The microbiome of mice undergoing stress and receiving minocycline showed shifts in the 

representation of bacterial families known to affect immune processes. For example, 

Akkermansia was increased, and this genus has immunosuppressive effects via inducing 

Foxp3 T-reg cells.483-485 Conversely, the levels of Lactobacillus were decreased in 

restrained mice receiving minocycline, a finding consistent with the decrease observed in 

inflammasome-deficient mouse models, such as Casp1 and Nlrp6 deficient mice.466,487 

Lactobacillus levels were decreased in restrained mice receiving minocycline, while they 

were increased in mice receiving restraint alone.  
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Minocycline treatment resulted in antidepressant-like effects while modulating gut 

microbiota composition. However, it seems unlikely that microbiota changes are 

responsible for its acute antidepressant-like effects.92,456 Instead, it seems plausible that 

the acute inhibition of CASP1, CASP3 and NOS2 by minocycline might affect feedback 

loops that modulate NLRP3 inflammasome activity. Future studies should investigate the 

possibility that microbiota changes might be involved in the antidepressant effects of 

minocycline. To ascertain the clinical safety of minocycline, it will prove relevant to assess 

the microbiome shifts brought up by minocycline administration in humans, since other 

antibiotics have the potential to instate dysbiotic states and to increase the likelihood of 

systemic illnesses.  

The gut microbiome composition of mice exposed to stress trended towards an increased 

F/B ratio. Similar changes were observed in IBS patients and were associated with 

heightened anxiety and depression symptoms.474 Similarly, increased F/B ratio was 

reported in rat models of hypertension.473 Since both these conditions are underlined by 

low-grade chronic inflammation,475,476 it cannot be excluded that the F/B shift observed in 

the gut microbiota of stressed mice might be involved in the establishment of a systemic 

low-grade pro-inflammatory profile during stress.85 The latter is thought to be a driving 

factor in increasing the likelihood of developing MDD and co-morbid systemic 

illnesses.65,67,85,290,476 

The levels of Bifidobacterium were reduced in restrained mice. This genus inhibits NFKB1 

(which triggers depressive-like behavior) and other pro-inflammatory cytokines in response 

to LPS.477 Allobaculum was not detected in restrained animals and its abundance 

correlates with inflammatory markers, such as IL22 and leptin.479,480 Lactobacillus was 

increased in stressed animals. These bacteria are involved in inflammasome activation via 

stimulating CASP1-mediated IL1B production in macrophages.481 Therefore, their increase 

in response to stress could contribute to the exacerbation of depressive-like 

behaviour.64,300,482 Together, the changes observed in gut microbiota composition following 

chronic stress exposure seem to point towards the establishment of a pro-inflammatory 

environment. Such an environment could represent a bridging mechanism underlying the 

increased likelihood of developing MDD and inflammation-related co-morbidities following 

exposure to prolonged psychosocial stressors.270,342 

The results obtained in this study corroborate the increasing body of knowledge 

suggesting that MDD is underlined by dysregulated inflammatory pathways and that 
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targeting such pathways could prove valuable in MDD therapy. Moreover, our results 

suggest that the gut microbiome plays important roles in behaviour, in stress responses 

and in the exacerbation of inflammatory processes. The latter can increase the risk for co-

morbid systemic illnesses, such as metabolic syndrome, obesity, cardiovascular disease, 

diabetes and IBD. Although our results clarify some of the links connecting inflammation, 

stress response and gut microbiota composition, a complete understanding of the 

translational power of the stress-immune-microbiome axis has yet to fully develop. 

Limitations of the study and how they might affect the validity of the findings  
It is important to consider this study in light of some limitations. In the first study we used 

Casp1-/- mice to assess their innate depressive- and anxiety-like behaviour and the 

exacerbation of these behaviours in response to stress. However, it was previously 

reported that all Casp1-/- mice generated using strain 129 embryonic stem cells are in fact 

Casp1, Casp11 double knockouts, because Casp1 and Casp11 are neighbouring on the 

genome and too close to segregate by recombination.147,152,153 Therefore the findings of 

the first study should be interpreted as a result of the simultaneous deletion of Casp1 and 

Casp11 rather than Casp1 alone.  

In the first study, we used minocycline as a pharmacological inhibitory compound of 

CASP1 activity. However, minocycline also presents some degree of inhibitory activity 

towards CASP3 and NOS2, and therefore it cannot be excluded that at least some of the 

effects observed following minocycline treatment (both in behaviour and in gut microbiome 

composition) could be amenable to the simultaneous inhibition of CASP1, CASP3 and 

NOS2 rather than to a specific CASP1 inhibition.488 Moreover, since minocycline is an 

antibiotic, it is expected that it would affect gut microbiome composition regardless of its 

anti-inflammatory properties.488 Yet, since minocycline exerts antidepressant effects as 

well as affecting the gut microbiome, and since gut microbiome composition is relevant to 

mood and behaviour, its impact on the gut microbiome could be involved in the 

mechanism of action underlying its antidepressant-like effects.93,458,472  

In both studies here presented, mice were submitted to a battery of behavioural tests 

twice, one at the beginning and one at the end of each study. It is known that exposure to 

behavioural tests can affect the performance in other behavioural tests, and that exposure 

to a specific test can affect the outcomes of the same test if repeated.467,490 We tried to 

reduce this bias by performing the behavioural tests from the least to the most stressful 

and by allowing the mice to recover in between tests.467,490  
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Another limitation is that the CRS paradigm used in the first study did not decrease 

sucrose preference, while the CUMS paradigm used in the second study did. The sucrose 

preference test is a paradigm able to model clinical anhedonia, one of the core symptoms 

of MDD. Although our results are in line with other findings, which highlight the difficulty in 

reproducing the outcome of this test even within the same research facility, this represents 

a limiting factor in interpreting the effectiveness of the stress paradigm used in the study 

involving Casp1-/- mice.164,177,180,491 

The results of the behavioural phenotyping of (Casp1, Ifngr, Nos2)-/- mice suggest a 

phenotype characterized by decreased anxiety- and depressive-like behaviour and 

increased locomotion. Moreover, that these differences are not mediated by altered HPA 

axis activity, since the levels of CORT and ACTH are similar to those of wt mice. It is true 

that these mice were generated to determine the pre-clinical therapeutic potential of 

inhibiting multiple Th1- pathways in response to chronic stress. However, this design has 

the intrinsic limitation of impeding the attribution of the differences observed to one single 

protein or pathway. Yet, the effects of singularly inhibiting these mediators have been 

previously reported, and therefore our findings can be interpreted in light of and compared 

to such studies. Future studies could investigate the behavioural phenotype of double KO 

mice lacking 2 of the proteins investigated here at one time [i.e. (Casp1, Ifngr)-/-]. 

Finally, (Casp1, Ifngr, Nos2)-/- mice lack Ifngr and therefore their IFNGR-activated 

intracellular signalling cascade is impaired. However, it could be that the stress-induced 

rise of IFNG levels might alter feedback or feedforward loops or compensative 

mechanisms to counterbalance the high circulating levels of this cytokine. Further studies 

should investigate these possibilities. 

Future directions  
Our findings corroborate an increasing wealth of knowledge, which points towards a 

central and systemic dysregulation of inflammatory mediators in MDD. These changes 

result in neurological and systemic dysfunctions, as well as shifts in gut microbiome 

composition, events that increase the likelihood of co-morbid systemic illnesses. Although 

further studies are required, it seems that pharmacological modulation of dysregulated 

inflammatory pathways could represent a valid therapeutic strategy in MDD and other 

psychiatric disorders with inflammatory components. 

Casp1-/- mice displayed antidepressant-like behaviour at baseline and following CRS 

compared to wt mice. These differences could be attributable to a protective effect of 
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Casp1 deficiency on the decrease in neurogenesis brought up by inflammasome-mediated 

neuronal apoptosis in response to stress exposure. In order to test this hypothesis, 

neurogenesis studies aiming at quantifying the rate of newly formed neurons in the 

hippocampus of Casp1-/- mice undergoing chronic stress regimen could be performed. 

Such studies could involve the immunohistochemical staining of newly formed neurons in 

the dentate gyrus of the hippocampus, one of the brain areas relevant for both 

neurogenesis and MDD. 

Minocycline treatment caused shifts in gut microbiome composition. Further studies could 

investigate the effects of minocycline on the gut metabolome, which is likely to present 

substantial changes in light of the shifts of gut microbiota composition. Such changes 

could represent an intermediate effector in the antidepressant effects of minocycline.608 In 

fact, the metabolome is considered to be a pivotal interface between the gut microbiota 

and the host via affecting immune processes.609 Accordingly, recent findings suggest that 

the gut metabolome reflects the metabolome composition in brain areas relevant to MDD. 

Moreover, that the gut metabolome plays fundamental roles in shaping immune 

processes, which are likely to mediate the behavioural outcome of gut microbiota 

composition.123  

Both Casp1-/- and (Casp1, Ifngr, Nos2)-/- mice displayed increased locomotor activity, a 

phenotype that suggests an effect of their genetic deletions on movement-related brain 

circuitries. In order to investigate if these models have altered neurotransmitters level, 

studies could be performed either in-vivo, by microdialisis, or on brain tissues collected 

after euthanasia by HPLC-MS analyses. At the same time, an indirect interrogation of the 

proportion of dopaminergic and glutamatergic neurons could be performed by 

immunohistochemical staining of the enzyme TH2, the rate-limiting enzyme for the 

production of the DA and of the glutamate transporter solute carrier family 17 member 8. If 

Casp1-/- and (Casp1, Ifngr, Nos2)-/- mice have increased levels of DA, they could be useful 

in experimental models of AD and PD, in which dopaminergic neurodegeneration is 

usually induced by chemical compounds. If these mice show resilience to paradigms of AD 

or PD progression, that might suggest that inhibition of CASP1, or the simultaneous 

inhibition of CASP1, NOS2 and IFNGR might prove valuable in the treatment of AD or PD.  

(Casp1, Ifngr, Nos2)-/- mice displayed resilience to the exacerbation of anhedonic-like 

behaviour following stress. To better understand this result it might prove valuable to 

interrogate the molecular mechanisms that underpin the resilience to anhedonia in the 
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(Casp1, Ifngr, Nos2)-/- genotype. This could help understand the potential effects of 

inhibiting those pathways in humans.  

Beyond understanding the mechanisms underlying stress resilience and behavioural 

changes, it is important to assess if the inhibition of any immune mediator represents a 

safe therapeutic approach. In fact, such manipulation might impair immune functioning. In 

other words, it is important to understand if such inhibition would still allow the mounting of 

an appropriate inflammatory response to immunological challenges to fight the triggering 

stimulus (i.e. a bacterial, viral or fungal infection). For example, it was previously shown 

that mice lacking Ifng or Ifngr have delayed encephalomyelitis virus clearance from the 

brain and spinal cord and more intense inflammation even though they have decreased 

levels of IL6 and TNF.610 Accordingly, mice lacking Ifngr have increased mortality following 

Bacillus Calmette-Guérin infection.154 Similarly, it was reported that CASP1 is necessary 

for (immune) cellular recruitment following influenza infection and therefore to induce 

protective antiviral immunity.611 These results suggest that extra care is required in 

designing and trialing novel antidepressant strategies that inhibit immune mediators. 

Studies could be performed in pre-clinical models of immune challenges to investigate the 

safety of inhibiting pro-inflammatory signalling in the search for novel antidepressant 

approaches. If these studies prove to be safe and successful, individual or combined 

inhibition of CASP1-, NOS2-, and IFNG-mediated pathways could be trialled in clinical 

settings. Preliminary studies are essential before such therapies can reach mainstream 

clinical practice, given that an immunological failure in pre-clinical models would represent 

a limiting factor (and potentially a dead end) to this kind of approach. In order to test these 

research questions, pre-clinical studies could investigate the immunological outcomes of 

inhibiting inflammasome and other pro-inflammatory mediators in the response to 

infections; moreover, studies in which the exposure to infectious agents is coupled to 

acute and chronic stress paradigm could be designed to determine the molecular and 

behavioural outcomes of such treatments in combination. If these studies prove safe and 

efficacious, the next step could involve randomized controlled trials to assess 

translatability. Finally, if clinical trials replicate the safety and efficacy of modulating pro-

inflammatory mediators directly (i.e. via pharmacological inhibition) or indirectly (i.e. with 

diet, probiotics supplementation or faecal microbiome transplantation), alone or in 

combination, such approaches could become part of routine treatments for MDD as a 

stand-alone or as adjunctive therapies.  



	

	 128	

Concluding remarks  
This study investigated the efficacy of decreasing pro-inflammatory signalling (CASP1, 

NOS2 and IFNGR) as an antidepressant strategy in pre-clinical models of MDD. We found 

that such approach decreased depressive- and anxiety-like behaviours at baseline 

compared, while decreasing the exacerbation of depressive symptoms following chronic 

stress. Moreover, we found that minocycline treatment affected gut microbiome 

composition; we hypothesize that such effects might be involved in the antidepressant-like 

effects of minocycline. Furthermore, we found that stress affected gut microbiome 

composition, shifting the balance between	bacterial species that are connected to immune 

activation. This suggests that the gut microbiome, together with the NLRP3 

inflammasome, is a major bridging axis in mediating the deleterious effects of stress on 

behaviour and on gut microbiome composition, and that targeting of this axis could hold 

therapeutic potential in MDD treatment. Finally, plasma ACTH and CORT levels in (Casp1, 

Ifngr, Nos2)-/- mice resembled those of wt mice following stress, suggesting that the 

observed stress resilience of this mouse strain might be mediated by systems other than 

the HPA axis. 

Our results suggest that a) CASP1 is a regulator of innate behaviour and of locomotor 

activity, b) CASP1 modulates the development of stress-induced depressive-like 

behaviour, c) minocycline has antidepressant-like effects in a chronic stress regimen in 

mice, d) minocycline treatment may exert its antidepressant-like effects at least partially 

through its influence on gut microbiome composition, e) genetic deletion of Casp1, Nos2 

and Ifngr decreases anxiety- and depressive-like behaviour and increases locomotor 

activity at baseline while preventing the stress-induced exacerbation of anhedonic 

behaviour, f) CASP1, NOS2 and IFNG inhibition could be valuable in the treatment of 

MDD. 

Further clinical trials are warranted and strongly encouraged to determine the safety and 

efficacy of inhibiting inflammasome bioactivity as well as NOS2- and IFNG-mediated 

pathways in the treatment of MDD while investigating the effects of such strategies on gut 

microbiome composition and immune competency. Finally, we suggest that therapeutic 

strategies aiming at regulating the microbiome-inflammasome-gut-brain axis via 

inflammasome inhibition or gut microbiome modulation (through diet, psychobiotics 

supplementation and faecal microbiome transplantation) could prove valuable in the 

treatment of MDD and other psychiatric conditions with neuroinflammatory components.	  
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