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Summary

Terrestrial ecosystems play a large role in the global carbon cycle as one of the two natural
carbon sinks on Earth, along with oceans. In comparison to the ocean sink, the terrestrial
carbon sink 1s much more variable, and often driven by temporal variations i hydro-
meteorological conditions. Thus, it i1s important to monitor, understand, and model the
hydrologically driven vegetation dynamics as a premise for improving our understanding of the
global carbon cycle. Terrestrial primary production from vegetation 1s driven by water and in
some parts of the globe 1s almost entirely dependent on water availability. Thus there 1s a clear

link between terrestrial water availability and vegetation dynamics.

Our ability to estimate water storage over the globe has increased over recent decades, with the
launch of remote sensing tools such as the Gravity Recovery and Climate Experiment
(GRACE). GRACE has proven to be an extremely useful satellite mission for hydrological
studies. The body of this research encompasses developments in our understanding of the way
vegetation responds to water availability, and expands the use of GRACE data for hydrological
estimations. GRACE data 1s analysed in an innovative way such that more information can be
extracted from it than ever before. The aim of this PhD 1s to improve our understanding of
relationships between terrestrial water and vegetation on a continental and global scale. This 1s
i conjunction with the aim of extending the potential application of GRACE by using it in
mnovative and previously unused ways. Specifically, this work mvestigates: (1) the use of wavelet
decomposition of GRACE data to comprehensively ‘splitt GRACE total water storage (T'WS)
mto shallow and deep subsurface components; (2) the use of wavelet decomposition of
GRACE data in conjunction with the Normalised Difference Vegetation Index (NDVI) to

examine the temporal variability and moisture dependence of vegetation cover across Australia;



and (3) the use of GRACE TWS amplitude to represent dynamic water storage and to examine

how it is a key driver of biomass production in terrestrial water limited ecosystems globally.

A potential Imitation of GRACE 1s that the TWS storage it estimates have no vertical
segregation. In the first component of this research, a new method was developed to create
estimations of deep and shallow subsurface water storage from GRACE TWS estimations. To
achieve this, a wavelet decomposition 1s used to ‘splitt GRACE into components of different
temporal frequencies, hypothesising that various vertical water storage components have
different temporal frequencies. For example, deep groundwater has a low frequency, slow
moving signal, while the storage of soil moisture near the surface 1s more dynamic. The
Australian Water Resources Assessment (AWRA) model 1s used as a reference for the
decompositions of total water storage across Australia. A stepwise regression compares the
ravelet decomposed components of GRACE TWS to the AWRA model. Results show a clear
improvement in using decomposed GRACE. data instead of raw GRACLE data when compared

against the outputs from the AWRA model.

GRACE TWS has recently been used to mvestigate moisture dependence of vegetation cover.
However, part of GRACE TWS is beyond the reach of the root zone and thus irrelevant to
vegetation function. In the second part of this research, this issue 1s addressed by using
shallower water storage signals to examine temporal variability of NDVI. Wavelet decomposed
components of GRACE TWS anomalies are analysed against NDVI anomalies in a stepwise
regression. The results show that combinations of different frequencies of decomposed
GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone.
Different types of vegetation show distinct differences in how they respond to the changes in

water storage which are generally consistent with our physical understanding.

Vi



GRACE TWS of each cell 1s referenced to (offset by) a prescribed mean of itself, leading to
difficulties to compare TWS across cells or use TWS to mvestigate spatial variability of
vegetation cover. In the third part of this research, the hypothesis is posed that terrestrial
ecosystem production 1s driven by effective water fluxes going through the system at a pace
relevant to vegetation functioning. Hence, the relationship between the annual amplitude of
GRACE TWS and gross primary productivity 1s examined. The GRACE amplitude represents
the dynamic water storage i a year. The results show that the dynamic water storage 1s a
significant driver of biomass production. Strong correlations between gross primary production
and annual amplitudes of total water storage exist in water limited ecosystems globally. The use
of total water storage amplitude provides a novel approach lnking the dependence of
vegetation production to water that 1s available and actually used by ecosystems, and extend the

applicability of GRACE data in explaining large-scale spatial variability of vegetation cover.

This PhD research presents advances m our understanding of largescale water-vegetation
relations which are of global significance. The mmnovative analysis of GRACE data as developed
and, tested and applied n this research helps to shape further scientific developments in the

application of such data.
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1. Introduction

1.1 Background

Vegetation plays an important role in in the carbon cycle as the largest natural carbon sink
and regulator of greenhouse gasses (Pan et al., 2011). Furthermore, vegetation houses
many ecological, social and economic services in providing food, medicine, timber,
hydrological cycle regulation, soil regeneration, recreational opportunities, and aesthetic
benefits (Bonan., 2008). Vegetation and water are intimately coupled and changes in one
often bring about changes i the other (Newman et al., 2006). The terrestrial water cycle
plays a vital role in the climate, biology and biogeochemistry of the planet (Vorosmarty &
Sahagian, 2000). Because of this, there 1s a need to understand dynamic interactions
between the terrestrial biosphere and the water cycle (Gerten et al., 2003). Global
anthropogenic induced changes such as chmate change, land use change, including
vegetation clearance have altered and continue to alter the amount of terrestrial vegetation.
Water 1s a key limiting factor in the productivity in terrestrial ecosystems, and drives
vegetation production (Hemmann & Reichstein, 2008). Increases in drought and heat stress
associated with climate change risk increased tree mortality, lowering global carbon
sequestration (Allen et al., 2010). This was seen during Australia’s millennium drought
from 2001 - 2009, when remotely sensed vegetation cover severely decreased throughout
the continent as water resources diminished (Van Diyk et al., 2013). Our ability to further
understand how different water sources affect vegetation dynamics, and how vegetation

responds to various changes i water availability 1s of paramount importance.

Opver recent decades, the implementation of satellite remote sensing tools has brought new

msights and information to environmental monitoring at a continental and global scale.



The Gravity Recovery and Climate Experiment (GRACE) provides monthly gridded total
water storage estimates globally. The GRACE mission consists of two satellites, “Tom” and
Jerry’ who orbit the planet and measure the gravitational pull from the Earth, which varies
according to changes in mass on the planet (Tapley et al., 2004). As large mass changes are
assumed to have a hydrological cause, GRACE data 1s produced as terrestrial water storage
(TWS) for cells sized roughly 100 km by 100 km (1 degree) globally. Terrestrial and aqua
versions are available. Originally planned as a 5 year mission (Tapley et al., 2004), the
success and proven usefulness it has brought to the scientific community means that it 1s
still in operation today. One most notable application 1s the ability to monitor groundwater
depletion over large spatial areas, e.g. large parts of India are shown to suffer from
overexploitation (Rodell et al., 2009). As useful as GRACE is, it comes with limitations
(Awange et al.,, 2009). GRACE TWS estimates are generally considered acceptably
accurate once the appropriate smoothing functions are applied (Whar et al., 2006).
However, its ability to only estimate total water storage with no vertical differentiation 1s a
potential limitation for some applications. One solution to this lmitation 1s presented in

this thesis.

Aside from GRACE other remote sensing tools such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) have provided an array of global data products. These
advances i data estimation allow for valuable comparisons to be made, particularly for

processes that are partially/primarily water driven, such as vegetation production.

The contents of this thesis encompasses developments in our understanding of the way

vegetation responds the water availability, and expanding the use of GRACE for



hydrological analysis. In a time of global climate change, the research presented 1s highly

beneficial to the studies of vegetation dynamics, ecohydrology and climate sciences.

1.2 Research Aims

The overall aim of this PhD 1s to mimprove our understanding of relationships between

terrestrial water and vegetation on a continental and global scale. The methodological aim

1s therefore to extend the potential use of GRACE by using it in innovative and previously

unused ways in studying relationships between terrestrial water and vegetation. These aims

are achieved through three individual studies with different but related focusses. In each

case, GRACE 1s used with other datasets to make scientific advancements in large scale

ecohydrology. Specific aims for each study are:

11.

11l

To partiton GRACE TWS data into different vertical components, expanding its
potential and creating new, useful water storage estimations. This 1s achieved by
decomposing the GRACE TWS time series data into different temporal
components which are analysed against different vertically defined storage

parameters from a hydrological model.

To reveal the moisture dependence of vegetation cover at different temporal
frequencies. This 1s achieved by decomposing the GRACE TWS time series data
mto different temporal components which are analysed against NDVI in areas of

different land use.

To expose dynamic water storage as a driver of biomass production in water
limited ecosystems globally. This 1s achieved by using the annual GRACE TWS
amplitude to represent dynamic water storage and Gross Primary Production

3



(GPP) to represent biomass production. The two are temporally and spatially

analysed for a correlation.

The studies that address these aims and knowledge gaps are presented respectively in chapters

2, 3 and 4 of this thesis.

1.3 Contribution of this Phd

This PhD research contributes towards an advanced understanding of hydrological processes at
a continental and global scale, particularly relating to interactions between terrestrial moisture
storage and vegetation. Furthermore, the potential use of GRACE 1s expanded by applying
mnovative and exciting new methods of using the data. Aside from the findings pertaining to
moisture-vegetation interactions, the developments in GRACE processing could be used by the
general scientific community in areas not studied in this PhD, significantly contributing to
future studies in this field of research. The three studies in this PhDd contribute to the wider
scientific community by (1) developing a method to partition GRACE into shallow and deep
subsurface storage. GRACE provides total water storage estimates that have no vertical
definition. By decomposing GRACE into different temporal frequencies and comparing to a
reference model, new shallow and deep estimations are created. This adds a new dimension of
practicality to GRACE, a useful contribution towards large scale moisture estimations at
different depths. (1) Developing a method to reveal the moisture dependence of vegetation
cover across different land use types. Previously, precipitation, soil moisture and GRACE have
been used as indicators of the vegetation mdex. In this study, decomposed components of
GRACE are used instead. This provides a comprehensive insight as to how vegetation
responds to changes i moisture availability over different temporal scales, contributing to an
understanding of how different events that lead to changes in moisture storage (i.e. drought)

might affect vegetation. (1) Demonstrating that biomass production 1s driven by dynamic water



storage 1n water limited environments. The annual amplitude of GRACE 1s used to represent
dynamic water storage, further contributing and extending methods in which GRACE can be
used. Overall the scientific results of this thesis contribute towards future predictions of carbon

fluxes and vegetation dynamics.



1.4 Review of Literature

Total water storage data from GRACE has become very popular in recent years and has been
used in many studies. One notable use 1s the ability to monitor groundwater depletion over
large spatial areas, e.g. large parts of India are shown to suffer from overexploitation (Rodell et
al., 2009). Another example 1s how GRACE data has been combined with field measurements
and models to assess hydrological conditions in Southeast Australia during the Millennium
drought in the 2000s (Leblanc et al., 2009). GRACE data 1s also sometimes used in
conjunction with other remote sensing products such as precipitation of the Tropical Rainfall
Measuring Mission (TRMM) and vapotranspiration (NDVI) of the Moderate Image Resolution
Spectroradiometer (MODIS) (Wang et al., 2014). It has been used to link terrestrial water to
surface greenness by comparison to NDVI (Yang et al., 2014) and 1s used frequently to analyse
precipitation (Chappell et al., 2013) (Pena-Arancibia et al., 2013). GRACE also presents a new
/ay to measure evapotranspiration, which is usually only measured or modelled on a very small
scale (Glenn et al., 2011). Finally, it has recently been used to gauge ice melt and sea level rise

(Chen et al., 2013).

A potential limitation of GRACE is it’s inability to directly estimate where water 1s stored n the
vertical profile. The ability to do this 1s potentially extremely useful when studying large scale
iteractions between water and vegetation production. GRACE TWS estimates are given as the
sum of all water in a given area. Numerous studies have used GRACE in conjunction with
other data sources or model outputs to create new water storage estimates for a single
component such as groundwater or soil moisture. Feng et al. (2013), Long et al. (2016) and
Rodell et al. (2006) all estimate groundwater storage by subtracting modelled soil moisture
and/or surface water estimates from GRACE TWS. A similar approach is conducted by

Famiglietti et al. (2011), Leblanc et al., (2009), Swenson et al. (2008) and Yeh et al. (2006) who



subtract in situ measurements of groundwater or soil moisture data from GRACE TWS to
estimate the residual soil moisture or groundwater component. The use of assimilation
techniques, where GRACE is combined within land surface models has also been used to
estimate outputs of water storage at different vertical levels. Syed et al. (2008), Reager et al.
(2015), Houborg et al. (2012) and Long et al. (2016) use such assimilation techniques, most
commonly combining GRACE TWS estimates with NOAH land surface models to create new
outputs of water storage at different vertical components. Due to the potential for in situ data to
be scarce and expensive, and models to be unreliable or largely assumption based, there 1s a
need for reliable estimates of various water storage components that have little or no
dependence on field data or model outputs. A solution to this gap in knowledge 1s presented in

chapter 2 of this thesis.

Changes in water storage in different storage reservoirs can lead to changes in vegetation mass
and greenness (Yang et al., 2014). As water resources change as a result of natural and
anthropogenic influences, it 1s increasingly important to understand how changes 1n terrestrial
moisture affect biomass production. Previous studies have used different hydrological
parameters to examine the effect of hydrological changes on ecosystem performance.
Precipitation and soil moisture have most commonly been used to represent vegetation health
and/production (Chen et al., 2014, Huxman, 2004, Méndez-Barroso et al, 2009, Wang et al.,
2007). Both have shown generally meaningful correlations with ecosystem performance (by
various measures such as Normalised Difference Vegetation Index (NDVI) and above-ground
net primary production), but both indicators have demonstrated hmitations. Not all
precipitation 1s necessarily used by vegetation in an ecosystem. Some precipitation is lost from
the ecosystem as runoff or soil evaporation (Liping et al., 1994). Only the part which is retained
as soil moisture in the root zone can be consumed by vegetation (Bos et al., 2009). Soil

moisture better represents the water that becomes available to vegetation. However, 1n situ soil



moisture data is generally limited, spatially (vertically and horizontally) sparse and expensive,
and estimations from land surface models are often highly uncertain (Chen et al., 2013). Yang
et al. (2014) used monthly total water storage anomalies from GRACE to examine hydrological
controls on variability in surface vegetation (NDVI), finding that GRACE a good indicator of
seasonal variability in surface greenness over mainland Australia. These previous large-scale
studies of interactions between terrestrial water storage and vegetation do not present how
regions of different vegetation types are influenced by water storage changing at different
temporal frequencies. This knowledge gap 1s addressed in chapter 3, using an extension of the

method presented in chapter two.

Studies of interactions between terrestrial water storage and vegetation dynamics flow nicely
mto those concerning gross terrestrial primary productivity (GPP). Beer et al. (2010) show how
GPP 1s well correlated to water fluxes, mediated by the vapour pressure deficit in forested
regions of Europe. Zhao et al. (2010) find a reduction in GPP during droughts in the southern
hemisphere from 2002-2009, and Ciais et al. (2003) report reductions in GPP during extreme
heat and drought in Europe. Based on modelling, Tian et al. (2010) report increases in GPP
which correlate with water use efficiency in the United States of America and models by
Churkina et al. (1999) demonstrate a strong relationship between water availability and GPP
that 1s altered when other environmental conditions are considered. GPP and annual
precipitation have a linear relationship, mostly accounted for by grasses according to Yahdjian
et al. (2006) in Argentina. These previous studies show different drivers of ecosystem
performance in the areas in which they are conducted. None of which explore the global driver
of ecosystem performance specifically in water imited ecosystems, or use data such as GRACE
to compare with local and or global GPP information. This knowledge gap 1s addressed in
chapter 4, by comparing dynamic water storage, represented by annual water storage amplitude,

to GPP estimations from a remote sensing database (MODIS).



The chapters mn this thesis address gaps in knowledge relating to large scale interactions
between terrestrial water stores and ecosystem production, as well as the development of
methods to expand the usefulness of GRACE. The chapters are linked as they progress, with a
method developed in chapter 2 being applied in chapter 3, and further advances in water and
ecosystem relations using GRACE being made in chapter 4. The gaps in knowledge which are
filled 1n this thesis contribute towards future predictions of carbon fluxes vegetation dynamics

and the extended potential of GRACE.



1.5 Recurring data and methodologies

The studies presented in chapters 2,3 and 4 of this thesis use data and methods that in some
cases overlap between chapters. A brief overview of those data and methods used in more than

one chapter 1s presented below, not including specific processing details for each chapter.

1.5.1 GRACE data (chapters 2, 3 and 4)
In each chapter of this thesis, GRACE total water storage data is used. It was freely downloaded
from the GRACE Tellus website (http://grace.csr.nasa.gov/data/get-data/). GRACE data 1s
available from different institutions, in this thesis it is from the University of Texas’s Centre for
Space Research (CSR) and NASA’s Jet Propulsion Laboratory (JPL). In all cases the
recommended scaling coefficients were applied to GRACE data (Swenson & Wahr, 2006),
which are designed to remove leakage errors and do so significantly (Landerer & Swenson,
2012). Although not the true resolution of GRACE, we use data presented spatially i 100 km
by 100 km cells. This resolution is obtained using the NOAH land surface model in
conjunction with de-striping and scaling filters, deeming the 100km x 100km accurate and

suitable for use.

Where a month of data 1s missing in the GRACE data set, estimations are created by averaging
the values for each cell from the months either side of the missing data. Because of the
monthly temporal resolution this was deemed appropriate and maintained the average seasonal

cycle well (Long et al., 2015).

1.5.2 Wavelet decomposition (chapters 2 and 3)
Wavelet decomposition 1s a method of extracting multiple time series of data from a single time
series. The method expresses decompositions as a multitude of smaller ‘waves’ at different
temporal frequencies (He et al., 2013). In this thesis, the Meyer wavelet 1s used to decompose
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GRACE TWS into components at different temporal. This 1s achieved by means of a
MATLAB code using the ‘wavdec’ function. Data are decomposed into different
‘approximation’ and ‘detall’ components, each having a different temporal scale.
Approximation series maintain trends in the data while detail series neglect trends (Nalley et al.,
2012). The resuling time series are labelled Al, A2, A3... and DI, D2, D3... for
approximations and details respectively, with the time scale increasing with the decomposition
number e.g. for monthly data A1/D1 (2-month scale), A2/D2 (4-month scale), A3/D3 (8-month
scale) and A4/D4 (16-month scale). In chapters 2 and 3 of this thesis, four decomposition
levels can be reasonably extracted given the data length and monthly frequency of the data.
Further decomposition would result in roughly 3- and 6-year time scales which are too coarse
for a time series of only 11 years of raw data. The wavelet decomposition results in eight new
time series, 4 details and 4 approximations. These decompositions are analysed against water

storage estimates and vegetation cover/greenness.

1.5.3 Stepwise regression (chapters 2 and 3)

A stepwise regression 1s a process where by predictor variables, such as decomposed GRACE
TWS frequencies that fit within a single dependant variable, such as model estimates of TWS
are automatically selected. This selection 1s made based on the p-value of the predictor variable
being less than 0.05. When the studies 1n this thesis use a stepwise regression it was performed
with the ‘stepwise’ fit function in Matlab. Data and time series selected by the stepwise
regression are used to create new estimates of TWS or vegetation dynamics, depending on the

study.
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2. Estimation of GRACE Water Storage
Components by Temporal Decomposition

2.1 Abstract

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 2002. It
provides total water storage estimates globally for cells sized roughly 100 km by 100 km.
Mapping total water storage has shown to be highly useful in detecting hydrological variations
and trends. However, a limitation 1s that GRACE does not provide information as to where the

rater 1s stored i the vertical profile. We aim to partition the total water storage from GRACE
mto water storage components. We use a wavelet filter to decompose the GRACE data and
partition it into various water storage components including soil water and groundwater. Storage
components from the Australian Water Resources Assessment (AWRA) model are used as a
reference for the decompositions of total storage data across Australia. Results show a clear
improvement in using decomposed GRACE. data instead of raw GRACLE data when compared
against total water storage outputs from the AWRA model. The method has potential to
improve GRACE applications including a means to test various large scale hydrological models

as well as helping to analyse floods, droughts and other hydrological conditions.

Key words: GRACE, wavelet analysis, soil moisture, groundwater storage, decomposition,

stepwise regression
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2.2 Introduction

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 2002.
Although 1t was originally planned to be a 5 year mission (Tapley et al., 2004), 1t still runs today
(2016) due to its success in hydrological and other applications. Obtained monthly observations
of the EKarth’s gravity field are spatially correlated with water on the Earth’s surface and in
subsurface layers, allowing estimations of total water storage (T'WS) expressed as equivalent
water thickness to be derived (Reager et al., 2015). TWS 1s the total of all water stored mn a
GRACE cell, regardless of its type, 1.e. surface water, soil water, groundwater and vegetation-
bound water are all together in one TWS value (Rodell & Famiglietti, 2001). GRACE TWS
data has become very popular in recent years and has been used m many studies. GRACE 1s
now a valued tool for scientists in a number of earth science fields (Wouters et al., 2014). It has
been well validated against in situ, modelled and remotely sensed data (Seoane et al., 2013;
Awange et al., 2011). A summary of relevant literature regarding the estimation of individual or

multiple water storage for varying applications using GRACE TWS 1s presented in Table 2.1.

While GRACE has proven to be a very useful tool for hydrology and other sciences, it has
limitations (Awange et al., 2009) and the ability to only estimate vertically integrated terrestrial
water storage 1s a particular one. Partitioning of these TWS values into individual or smaller
storage components would enhance the potential of GRACE applications. Although Yeh et al.
(2006) used GRACE to measure only a single component, groundwater, there 1is no
documented method to comprehensively ‘splitt GRACE data into multiple desired water

storage components.

Measuring the variability in water storage across Australia has long proven to be a challenge
(Cruetzfeldt et al., 2012). With limited water resources across the country (Chiew et al., 2011),

it 1s important to understand where water 1s stored so that the best strategic water management
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actions can be applied. Hydrological models play an important role in water storage estimation
across Australia. Physically based models are generally most relevant at the basin scale (Ragettl
& Pellicciotti, 2012), where an appropriate amount of in situ data are more easily collected.
There 1s a need for reliable estimates of various water storage components that can be easily

applied and which have little or no dependence on field data collection.

In this chapter, we aim to develop a partitoning method for estimating different vertical water
storage components of GRACE TWS data. These components include, but are not limited to
(1) shallow soil moisture and (2) deep soil moisture and unconfined aquifer water storage. We
propose to use wavelet analysis to decompose GRACE TWS data, based on the assumption
that soil moisture and groundwater at different depths have different temporal characteristics.
The 1dea 1s that a wavelet analysis can decompose a time series into various temporal
frequencies ranging from short (monthly) to long (seasonal - biannual), relative to the original
time series (Wang & Ding, 2003). Decomposed GRACE data are statistically compared to the
Australian Water Resources (AWRA) Model with the hypothesis that different combinations
of decomposed temporal components correlate well to different storage components i the

AWRA model and can be used to formulate storage estimations.
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Table 2.1: A summary of relevant literature in the field of estimating individual or multiple water storage components for varying

applications using GRACE TWS.

Study

(Famuglietti et al., 2011)

(Feng et al., 2013)

(Houborg et al., 2012)

Relevant Aims

Estimate the
groundwater component
of GRACE TWS to

better monitor depletion

Estimate the
groundwater component
of GRACE TWS to
better monitor depletion

Improve drought
mdicators by
decomposing TWS into
different vertical
components.

Study duration and size

2003-2010, California,
154,000 km’

2003-2010, Northern
China, 370,000 km’

2002-2009, North

America.

Method/Approach

Measured snow and
surface water values
and modelled soil
moisture values are
subtracted from
GRACE TWS to
1solate groundwater
estimations.

Simulated soil
moisture changes are
removed from
GRACE TWS to
obtain groundwater
estimates.

GRACE observations
are assimilated into a
climate land surface
model.

Major outcomes related to this study

Groundwater depletion close to
previous model based estimates

Groundwater depletion in deep
aquifers is similar to what was
previously estimated.

The model shows a modest but
statistically significant improvement in
groundwater and soil moisture
estimations.
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(Leblanc et al., 2009)

(Long et al., 2016)

(Reager et al., 2015)

Observe a multi-year
drought and its impact

on multiple water stores.

Improve estimations of
groundwater depletion
by coupling GACE with
other techniques

State disaggregation of
the vertically-integrated
TWS.

2000-2008, Murray
Darling Basin ™ 1
million km’

2003-2013, Northwest

India Aquifer ~ 438,000

km’

2002-2014, Northern
Plains of the USA

GRACE TWS is
used alongside
hydrological
observations and land
surface models to
help infer drought
severity.

GRACE 1s used in
conjunction with
constrained forward
modelling and soil
moisture storage
from GLDAS-1
Noabh is subtracted.

GRACE observations
are assimilated into a
climate land surface
model.

GRACE TWS trends correlate highly
to a basin scale simulated water
depletion in groundwater, soil moisture
and surface water. GRACE. helps to
provide integrated drought
observations.

The method produces results more
consistent with in ground
measurements, and previous estimates
of groundwater depletion in the area
may have been overestimated in the
area.

Groundwater and root zone soil
moisture estimates of the model
assimilated with GRACE generally
agree with field observations.
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(Rodell et al., 2006)

(Swenson et al., 2008)

(Syed et al., 2008)

Estimate the

groundwater component

of GRACLE TWS

Estimate the

groundwater component

of GRACE. TWS

GRACE TWS 1s
partitioned into snow,
soil and canopy water
storage

2002-2005, Mississippi,
900,000 km’

2002-2006, Oklahoma
over 280,000 km®

2002-2004, Global

Estimations of soil
moisture and snow
are subtracted from
GRACE TWS to
estimate groundwater
storage changes

Soil moisture 1s
estimated over the
area using a network
of soil moisture
probes. This 1s
subtracted from
GRACE TWS to
give regional
groundwater
estimates

GRACE 1s
assimilated with
NOAH land surface
model

Groundwater estimates from GRACE
compare favourably to 58 monitored
wells around the study area.

Results align well with measurements
from local groundwater wells showing
relative inter-annual variability.

GRACE based storage estimates agree
with modelled estimates.
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(Yeh et al., 2006) Estimate the
groundwater component
of GRACE TWS to

better monitor storage.

This Study Decompose GRACE
TWS mto shallow soil
water and deep soil
water + groundwater

2002-2005, Illinots,
200,000 km®

2002-2013, Australia,
6,500,000 km®

Soil moisture 1s Groundwater estimations perform
subtracted from relatively well against well based
GRACE TWS to observations r’= .63.

estimate groundwater.

Uniquely (at the time)

only in situ

measurements soil

moisture

measurements are

used, not models.

Wavelet For each of the desired components
decomposition 1s (shallow soll water and deep soil water
used to provide new  + groundwater) the method provides
storage estimations estimates which perform significantly
based on stepwise better than raw GRCE TWS values
regression and a alone.

reference model as

opposed to

subtracting TWS

components
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2.3 Data

2.3.1 GRACE Data

We use GRACE total water storage (T'WS) data from The University of Texas Centre for
Space Research (CSR), which can be freely downloaded from the GRACE Tellus website
(http://grace.csr.nasa.gov/data/get-data/). Data was suitably post-processed including applying
the recommended scaling coefficients (Swenson & Wahr, 2006). The scaling coefficients are in
part designed to remove leakage errors and do so significantly (Landerer & Swenson, 2012).
We used the longest available monthly time series, from March 2003 to December 2014. The
data are presented spatially in 100 km by 100 km cells. We selected which cells should be
mcluded based on a shape file of Australia. If at least two thirds of the cell was part of the
continent they were included; this elminated some cells which covered only a small coastal

part.

There are a few occurrences of a month of data missing in the CSR data set. These months
were filled m by averaging the values for each cell from the months either side of the missing
data. Because of the monthly temporal resolution this was deemed appropriate and maintained

the average seasonal cycle well (Long et al., 2015).

2.3.2 AWRA model Data

The AWRA model i1s a comprehensive, Australia-wide model of various water storage
components (Vaze et al., 2013). Van Dyk et al. (2011) tested the performance of the AWRA
model compared to GRACE and found it to be reasonably well matched in most areas, with
the exception of a smaller seasonal amplitude in the AWRA model which also underestimated
some storage changes after unusual high rainfall. Forootan et al. (2012) also observed a high

correlation between GRACE TWS anomalies and the AWRA model. The AWRA model 1s
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calibrated on both remote sensing data and field observations. The model’s documentation
msists that every effort has been made to prioritise the use of field measurements where
possible. The AWRA model 1s deemed appropriate as a reference for the different sources of

water storage within GRACE TWS.

The output of the AWRA at daily resolution and a cell size of .05 degree, roughly 5 by 5 km,
was supplied by CSIRO (Vaze et al., 2013). Outputs include hydrological storages and fluxes in
groundwater, soll, vegetation and the atmosphere. We focus on the soil and groundwater
storage components and select to analyse four storage components: surface soil water (S0) (0-
0.1 m), shallow soil water (Ss) (0.1-1 m), deep soil water (Sd) (Im-unconfined aquifer) and the
unconfined aquifer (Sg). To make the data comparable to the GRACE data, those cells from
the AWRA model that lay within the area of a single GRACE cell were averaged to match the
GRACE resolution. Monthly averages of these cells were taken to match the temporal
resolution. This was again based on an Australia shape file and only those cells where at least
two thirds of the cell was part of the continent were included. The temporal extent of AWRA

data matched the GRACE data, 2003 - 2014.

2.3.3 In situ soil moisture data

In situ soil moisture data from Aldinga, South Australia was used to demonstrate the method.
The soil moisture measurements were taken with capacitance probes at seven depths: 0.1 m,
0.3 m, 0.5 m (shallow), 0.7 m and 1.1 m, 1.5 m and 2.5 m (deep). Roughly 31,000 data points
at 15-minute mtervals from November 2011 to September 2012 were condensed to 310 daily
values. Soil moisture data was split into two layers, ‘shallow’ and ‘deep’ according to their
response to rainfall events. The top three layers showed soil moisture peaks in response to
rainfall, and the bottom four did not. Given as a moisture percentage, the values were

converted to mm based on the depths of the measurement points.
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2.4. Methodology
2.4.1 Wavelet Decomposition

The first step was to decompose the GRACE TWS data into different temporal components
using a discrete wavelet transform. The method expresses decompositions as a multitude of
smaller ‘waves’ at different frequencies (He et al., 2013). The Meyer wavelet is applied here to
decompose GRACE TWS into components at different temporal scales and 1s suitable for this
temporal data (He & Guan, 2013). This 1s relatively easy to achieve by means of a simple
MATLAB code using the ‘wavdec’ function. Data are decomposed into four ‘approximation’
and ‘detail’ components, each having a different temporal scale. Approximation series maintain
trends in the data while detail series neglect trends (Nalley et al., 2012). The resulting time
series are labelled Al, A2, A3, A4 and DI, D2, D3 D4 for approximations and details
respectively, with the time scale increasing with the decomposition number e.g. A1/D1 (2-
month scale), A2/D2 (4-month scale), A3/D3 (8-month scale) and A4/D4 (16-month scale).
Four levels can be reasonably extracted given the data length and monthly frequency of the
data. Further decomposition would result in roughly 3- and 6-year time scales which are too
coarse for a time series of only 11 years of raw data. The wavelet decomposition results in eight
new time series, which can be compared to the AWRA model components, as well as with the

original GRACE data.
2.4.2 Stepwise regression

We mitially used a stepwise regression for every cell with one of the four AWRA model
components at a time as the dependant variable and the eight decomposed GRACE outputs as

predictor variables. In various early tests we found that the results from using SO and Ss were
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similar. The same was true for Sd and Sg. To simplify the experiment we decided to sum SO

and Ss, and Sd and Sg together, creating 2 new storage components from the AWRA model,

Saon (SO + Ss) and Seee (Sd+Sg).

2.4.3 Demonstration of the method using in situ soil moisture data

The method was tested using both in situ soil moisture measurements from a single site. For
this test an 8 level Meyer decomposition was used. The length of the time series was not long
enough to support the common way of splitting the data into a training and validation sets by
using the first half of the data for training and second half for validation. Hence, an alternating
approach was adopted instead in which even days were used in the mmitial stepwise regressions
as the traming set. Based on the ‘p-values’ of each regression, variables which should stay in the
final estimations were selected and others are excluded. The results of the stepwise regressions
were then tested using odd days/months as a validation set. This produced new estimations of

soil moisture for the various depths based on the decomposed sum of the soil moisture data.

2.4.4 Demonstration of the method on a large scale

To justify the idea of using the decomposed GRACE instead of raw GRACE data, S.u.. and
Sier were summed (Sa) and statistically analysed against both raw and decomposed GRACE
data with a similar stepwise regression method as above with even months used i the traimning
set and odd months used for validation. New TWS estimates were made based on the results
of the stepwise regression. R* values and root mean squared error (RMSE) were determined for
the raw data and decomposed TWS estimation compared to (Sa) from the AWRA model.
This was a proof of concept test, it does not benefit the overall aim as it does not estimate water
storage in different layers, but serves to show whether there 1s an 1improvement in the

estimation by using decomposed GRACE. data instead of raw GRACE data.
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2.4.5 Estimating TWS components on a large scale

Estimations of S.aw and Sa. for every cell across Australia were made using the stepwise
regression method above. The GRACE TWS decompositions were used as predictor variables
and the Ssae and Su., components of the AWRA model were used as dependant variables
relatively. Again, even months used i the training set and odd months used for validation.
Estimations of the water storage in the shallow and deep components were calculated equation

2.1 with the selected predictor variables.

Y=o+ biX;i... T ¢ @.1)

where Yis the estimates storage value, f1s the mtercept, Bis the slope of variable 1, Xis the

independent variable 7and ¢ 1s the error.

We primarily use a Nash Sutcliffe Efficiency (NSE) for every cell to test the newly estimated
water storage components against the AWRA modelled data for the same (odd) days/months.
A NSE above 0 suggests that the regression performs better than the mean of the original
dataset, with a value of 1 being the most outstanding fit (Legates & McCabe Jr., 1999). We also
calculate RMSE for the new estimations for comparison with the AWRA dataset. The NSE 1s

calculated as shown in equation 2.2,

YN 1 (0;=P)?

E=10- >N (0;—0;)2

(2.2)
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where Eis the NSE, O is the observed value at time 7, Pis the estimated value at time 7and O is

the mean of the observed values.

2.5. Results

2.5.1 Concept demonstration

Figure 2.1 shows an example of a 4-level wavelet decomposition. 144 months of raw GRACE

data are decomposed resulting in 4 different detail (Ds) and 4 different approximation (As)

coefficients.
W An example of a 4 level Meyer wavelet decomposition
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Figure 2.1: An example of a wavelet decomposition from the western-most cell in Australia (S
23.5°%, E113.5°). Notice the visible trends in the approximations, which are normalised in the
details.

A test of the method using soill moisture data from Aldinga Scrub demonstrates the
mmprovement to estimations that can made using the method (Figure 2.2). High frequency

variables are exclusively included i the top layer estimation (D1, A1) but D4 and D6 are also

included. Only low frequency data are included in the bottom layer estimate (D4, A6, D7).
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The inclusion of variables D4 and A6 i both ‘shallow’ and ‘deep’ shows that the method

allows for overlap of trends and frequencies between them.
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Figure 2.2: Results using the wavelet decomposition and stepwise regression method for
estimates of soil moisture at different depths. Plots a and b show the soil TWS vs the shallow
and deep layers. Plots ¢ and d show the estimations of the shallow and deep soil layers. The r*
value 1s increased using the estimation method and both display high Nash Sutchiffe
Efficiencies.

The result from the first large scale proof of concept test, which compared both raw and
decomposed GRACE data with the AWRA model shows a clear improvement in correlation
and RMSE when the selected decomposed data are used (Figure. 2.3). The R’ values increased
for all cells, while a few cells sit well above the 1:1 line. The decomposed GRACE data also
shows an overall decrease in the RMSE with a clear trend of values moving below the 1:1 line.
The student-t tests confirm that the results were statistically highly significant with a £statistics
and p values of respectively 10.86 and < 107 for the R” test and 4.422 and <10" for the RMSE

test.
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Figure 2.3: (a) results from the proof of concept test. R* values for estimations of all water
storage components using raw GRACE data vs R* values for estimations of all water storage
components using decomposed GRACE. data. (b) RMSE for estimations of all water storage

01 02 03 04 0.5 06
Raw GRACE Data

Decomposed GRACE Data

150

2
5

o
S

RMSE values for raw and decomposed GRACE data

(b)

8

0 50 100 150
Raw GRACE Data

components using raw GRACE data vs RMSE for estimations of all water storage components
using decomposed GRACE data. The decomposed GRACE data shows a clear improvement
in R*values and a decrease of the RMSE.

As the AWRA data used in the test 1s the sum of the four water storage components, there 1s

no intention that it should provide any new estimations, after all we are essentially comparing

two different version of TWS. The results are simply a demonstration of how the decomposed

GRACE data can serve as an improved version of raw GRACE data.

For the second large scale proof of concept test, new total water storage estimations were

produced for Suam + Sae using the odd months of data. These based on stepwise regressions

using the even months for training data. The results for the estimations of S + Saew show that

i general there 1s an improvement in using decomposed GRACE data for the estimation of

water storage compared to raw GRACE data (Figure 2.4). Again, at this stage the storage

components are not split and the result simply further demonstrates the concept and ability of

the method.
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Figure 2.4: (a) NSE values for raw GRACE data compared to the sum of all four AWRA
model water storage components. The results are generally poor with few values above 0 and
many negative NSEs (depicted by white cells within the boundary). (b) NSE values for the sum
of all decomposed GRACE values compared to the sum of all four AWRA model values. The
results are well improved with higher values across the continent and fewer negative NSEs.

2.5.2 Applying the method on a large scale

An important part of running a stepwise regression 1s finding out which of the decomposed
GRACE time series are used in the estimations. The decompositions that are included also
provide information about the behaviour of water spatially. For S.u, the mcluded predictor
variables for each cell were quite varied (Figure 2.5). There are a small number of cells which
mclude decompositions or variables in the estimations but that do not pertain to any pattern or
clustering. The variable with most cells in the estimations 1s D4. These cells show a strong
spatial coherence. As S.ue represents the soil moisture in the top metre of soil, it 1s highly
dynamic due to infiltration and evapotranspiration; the residence time for the soil water 1s
minimal. Hence, it 1s unexpected that we do not see in more cells with D1 mcluded, which
pertains to a smaller temporal frequency. A possible explanation i1s a root water uptake

occurring at a similar rate to that of infiltration.

Because detailed coefficients remove any trends it is reasonable that we see so many cells that

mclude D4, which roughly represents a bi-annual frequency reflecting yearly wet and dry
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periods. The second most significant variable 1s D3 which roughly corresponds to a seasonal
frequency, with a large cluster of included cells across the northern part of the continent.
Though not quite i the tropics, Northern Australia does receive more rainfall than other parts
of the country. It 1s reasonable to assume that D3 1s included i this part of the continent
simply as an extension of D4, 1.e. more rainfall results in a greater range of frequencies. With

more rain in this area it does not follow such a strict seasonal or annual cycle as other parts of

the continent.
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Figure 2.5: For each GRACE decomposition the cells (in red) are highlighted that are included
i the stepwise regressions for the estimation of Saue. Although spatially varying the most
important variables are D4, followed by D3 and D1.

The comparison between the estimated S..u.. storage component and the shallow storage of the
AWRA model shows a wide range of NSEs across the continent, from average, slightly above
0, to very good, above 0.9 (Figure 2.6). Areas with high NSEs are observed in the northern
most part of the continent, the south west corner of Western Australia and most of the coastal
fringe. NSEs are lowest in central Western Australia. They are also average or close to 0

throughout central Australia and along the coast of the Great Australian Bight in the southern

part of the continent.
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Figure 2.6: Nash Sutcliffe efficiencies for each cell for the S.ae estimation compared to the
AWRA model. Results show strong spatial structure with the highest NSEs located i the
north, south west and scattered throughout the east of the continent. NSEs equal to or less than
zero are depicted by white cells within the boundary.

The predictor variables which are included in the regression for S.. are not as varied as in
Sua, mainly A4 and D1 are selected (Figure 2.7). The dominance of A4 1s exactly what 1s
expected for deep soil and groundwater. A4 has roughly an annual resolution, but unlike D4 it
maintains any trends in the data and hence represents slow moving nature of deep soil water
and groundwater. There are however some spatially coherent areas in which A4 is not included
i the estimations. These areas include northeast Australia as well as southern and northern
parts of Western Australia. In most cells with A4 in the estimations, D1 1s also selected. D1 1s
mcluded in areas throughout Queensland and Western Australia that did not include A4. D1
represents a trendless time series with roughly a monthly temporal scale. This could suggest

that deep percolation in the AWRA model corresponds to the D1 scale.
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Figure 2.7: Cells for each variable that are selected for the estimations of S.. by stepwise regressions are
highlighted in red. For S.., there 1s a very strong, continent-wide inclusion of A4 and D1 as well as an

mteresting inclusion of D4 almost exclusively around the coast.

Sier also shows a range of spatially varying NSEs ranging from average to very good (Figure 2.
8). There 1s a very large cluster of high NSEs on the eastern half of the continent. These span
from Queensland, through New South Wales and Victoria and into South Australia. Another
very well performing area is through southwest Western Australia, as well as parts of central
Western Australia and the Northern Territory. Areas of poorer performance include the
northern-most area of the continent, parts of Western Australia and parts of Central Australia.
Even where the NSEs are lower, there are a mimmal number of cells with a negative NSE,

meaning the estimation’s performance 1s still good overall.
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Figure 2.8: Nash Sutchiffe Efficiencies for each cell for the comparison of the Sa., estimations
versus the AWRA model. Results are best through the Great Artesian Basin, South-Western
Australia and central parts of the continent. NSEs equal to or less than zero are depicted by
white cells within the boundary.

For both Suuew and Su., water storage estimations performed well mn many areas across the
continent. The relatively clear spatial clustering of good and average performing cells increases
the confidence in the estimations and demonstrate the opportunity to explain the spatial
patterns. Areas of weak performance tell us that the decomposed GRACE. data was unable to
estimate the various water storage components corresponding to the simulated storage

components of the AWRA model.

2.6. Discussion

Though the aim of this paper is not to evaluate the AWRA model, we must consider that a
possible reason for areas with lower NSEs could be a result of inaccuracies in the AWRA
model. For example, for S.u the areas of high NSE m part have a relationship to well

populated areas. It 1s expected that the AWRA model 1s less well constrained in
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rural/unpopulated areas where field measurements are scarce, leading to an apparent lower
performance of the decomposed GRACE estimations. A similar situation exists for Sa.. Some
of the best performance of the estimations occurs i the Great Artesian Basin and Murray
Darling Basin, areas that have been heavily monitored mn recent times and where data are

abundant.

The same method could be applied using other models as a reference whether it be for
Australia or anywhere else globally due to the coverage of GRACE. The range of results would
vary depending on the layers included in the reference model, e.g. it could mclude vegetation
or more specific vertical depths layers. It has the potential to be used for testing/calibrating
large scale models with similar vertical layering, which can be altered depending on the
reference model used. This would be particularly useful for areas where a model 1s largely
reliant on interpolation of data or models which rely on strong assumptions i their mitial

conditions or parameterisation.

The separation of GRACE water storage components extends its use in many applications such
as a more detailed spatiotemporal estimation of the quantitative status of the water resources.
Groundwater generally makes up that largest part of the water storage and has the largest
changes (Leblanc et al., 2009). As such quantifying this storage component is often of
paramount importance. Famighetti et al. (2011), Swenson et al. (2008), Rodell et al. (2006) and
Feng et al. (2018) all estimate the groundwater component of different areas using GRACE
TWS. Each subtracts various unwanted simulated (and measured) storage components from
TWS to derive groundwater storage estimations. Yeh et al. (2006) do not use simulated data in
their study, but solely rely on i situ measurements i an attempt to be less dependent on
assumptions or poor interpolations produced by models. While all of these studies show

promising results, the quality i1s limited by the quality of the model used and/or the data
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measured. This 1s a problem partially fixed by decomposing GRACE TWS and using
significant variables to create estimations. The need for interpolation 1s lmited due to the
reference models’ spatial equivalent to GRACE data. Of course a similar problem potentially
exists as the estimations can only be as good as the quality of the reference model, which may
have been constructed based on large interpolations, assumptions and estimates. On the other
hand the method can be expanded to as many different components as exist in a suitable

reference model, making it highly versatile.

GRACE has been previously used to study ecosystem performance which 1s largely contributed
by shallow water availability, as opposed to deep soil moisture and groundwater (Yang et al.,
2014). The ability to 1dentify the component of GRACE TWS that would contribute to shallow

rater availability potentially gives significant improvement in the applicability and confidence of

using GRACE as a tool for this purpose.

For the same reason, partitioning GRACE mto different vertical layers could also improve the
application of GRACE i studying floods. Infiltration lmitation and saturation excess are the
two main drivers of flooding (Reager et al., 2015). Knowing how close to saturation the near-
surface soll layers are can create a better understanding of how vulnerable an area is to flooding
(Fitzjohn et al., 1998). This has not previously been an option using data at large scales as

GRACE.

Studying droughts 1s another application of GRACE. (Thomas et al., 2014), which could benefit
from the separation of storage components. Similar to the application for flood studies,
knowing which water stores are depleted allows for a better understanding of the severity and
type of drought. Droughts are defined i many different ways throughout the world (Dracup et
al., 1980), so a large range of options to quantify them 1s desirable. Furthermore, different
regions have different water stores. In a groundwater dependent region, knowing that depleted
shallow soil moisture and surface water are the main contributors to a lowered TWS while
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deep groundwater remains relatively stable 1s highly valuable information that could not be
achieved using raw GRACE TWS alone. Droughts (and other aspects of hydrology) extend to
multiple disciplines such as agriculture, geography and meteorology (Dai., 2011). This means
that the method we present has potential to benefit a much broader range of disciplines than

GRACE 1s typically used for.

2.7. Conclusion

We aimed to develop a new method for estimating various water storage components across
Australia using decomposed GRACE data, with the AWRA model as a reference. The
stepwise regression was successful in determining which variables should be used in the
estimation of different storage components for each cell across the continent. A simple analysis
of the decomposed GRACE data compared to raw GRACE data showed that decomposing the
data improved its correlation to the AWRA, increasing R* values and decreasing the RMSE.
The estimations for Suaw and S.. showed varying results with regard to the new estimations’
performance, ranging from average to very good. The spatial clustering of the results allowed
mterpretation and understanding of poor estimation performance, which could be linked to
areas where the AWRA model is likely less reliable. This opens the opportunity for this
methodology to be applied as a tool in various hydrological applications including testing of

other hydrological models.
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3. Large-scale vegetation responses to
terrestrial moisture storage changes

3.1 Abstract

The Normalised Difference Vegetation Index (NDVI) is a useful tool for studying vegetation
activity and ecosystem performance at a large spatial scale. In this study we use the Gravity
Recovery and Climate Experiment (GRACE) total water storage (T'WS) estimates to examine
temporal variability of NDVI across Australia. We aim to demonstrate a new method that
reveals the moisture dependence of vegetation cover at different temporal resolutions. Time
seriecs of monthly GRACE TWS anomalies are decomposed into different temporal
frequencies using a discrete wavelet transform and analysed against time series of NDVI
anomalies 1n a stepwise regression. Results show that combiations of different frequencies of
decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE
TWS alone. Generally, NDVI appears to be more sensitive to inter-annual changes i water
storage than shorter changes, though grassland-dominated areas are sensitive to higher
frequencies of water storage changes. Different types of vegetation, defined by areas of land use
type show distinct differences in how they respond to the changes i water storage which 1s
generally consistent with our physical understanding. This unique method provides useful
msight into how NDVI 1s affected by changes i water storage at different temporal scales

across land use types.

Key words: Vegetation index, NDVI, GRACE, ecosystem performance, water storage, wavelet

analysis, regression analysis, land use type
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3.2 Introduction

In many parts of the world, such as Australia, water storage 1s the dominant limiting factor in
vegetation growth (Donohue et al., 2008). As such, changes in water storage can lead to changes
In vegetation mass and greenness (Yang et al., 2014). As vegetation plays a vital role in gross
primary production and the carbon and hydrological cycles, studies of the temporal and spatial
variation of vegetation are vital for understanding ecosystem performance and its climatic
responses (Campos et al., 2013). As the climate and water resources change as a result of
natural and anthropogenic influences, understanding how fluctuations in water storage 1s

assoclated with biomass changes can have profound importance in the future.

Previous studies have used different hydrological parameters to examine the effect of
hydrological changes on ecosystem performance. Most commonly, precipitation and soil
moisture have been used as defining variables (Chen et al., 2014, Huxman, 2004, Méndez-
Barroso et al, 2009, Wang et al., 2007). Both of these have shown generally meaningful
correlations with ecosystem performance (by various measures such as Normalised Difference
Vegetation Index (NDVI) and above-ground net primary production). However, both
mdicators have shown hmitations. The total amount of precipitation is not necessarily used by
vegetation In an ecosystem. Part of precipitation is lost from the ecosystem as runoff or soil
evaporation (Liping et al., 1994). Only the part which 1s retained as soil moisture in the root
zone can be viably consumed by vegetation, categorised as ‘effective precipitation’ (Bos et al.,
2009). For a given amount of rainfall the fraction of effective precipitation varies spatially due to
differing geographical features, soil types, and vegetation cover conditions. Soil moisture gives a

better representation of the water that becomes available to plants. However, in situ soil
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moisture data 1s generally limited and spatially (vertically and horizontally) sparse. Estimations

from land surface models are often highly uncertain (Chen et al., 2013).

More recently Yang et al. (2014) used monthly total water storage anomalies (TWS?*) from the
Gravity Recovery and Climate Experiment (GRACE) to examine hydrological controls on
variability in surface vegetation. GRACE provides monthly global terrestrial water storage
derived from variations in the earth’s gravity field. The authors suggested that where large
surface water reservoirs do not exist, GRACE TWS changes are mostly from soil moisture and
groundwater, making it ideal for examining hydrological controls on vegetation activity.
GRACE 1s found to be a good indicator of seasonal variability in surface greenness over
mainland Australia (Yang et al., 2014). For the period 2003-2010, for which GRACE data 1s
available, changes m NDVI* are explamed more strongly by GRACE TWS* than by
precipitation, suggesting it poses a more direct influence on surface greenness and ecosystem

performance.

GRACE TWS gives the total relative water storage per 100 km by 100 km cell. This 1s the sum
of surface water, soil water, groundwater, ice and other reservoirs. We previously developed an
approach to ‘splitt GRACE TWS mto shallow and deep subsurface storage components using
discrete wavelet decomposition (Andrew et al., 2016). In this study, we aim to expand on the
general findings of Yang et al. (2014) by decomposing GRACE TWS* mto different temporal
components and analysing them against NDVI*. Given that root zone water storage 1s the
source of water to vegetation we hypothesize that decomposed TWS* data that reflects the
temporal patterns of the root zone will perform better than the total TWS™ in association with

NDVI*.
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The questions we seek to address are (1) does the decomposed TWS* data show a better
relationship to NDVI* than the ‘raw’ TWS* data; (2) how does the sensitivity of NDVI* in
response to changes in TWS* vary spatially; and (8) which temporal components of TWS* are

most significant in influencing NDVI™ for different land use types across Australia.

3.3 Data

3.3.1 GRACE data

GRACE total water storage (T'WS) data from The University of Texas Centre for Space
Research (CSR), and NASA’s Jet Propulsion Laboratory (JPL) are used. The gridded data
were freely downloaded from the GRACE Tellus website (http://grace pl.nasa.gov/data/get-
data/). We use the provided scaling coefficients to process the data as recommended by
Swenson and Wabhr, (2006). The scaling coefficients are m part designed to remove leakage
errors (Landerer and Swenson, 2012). Monthly data from March 2003 to December 2014 1s
used. The average of the two data sets 1s calculated for each cell at each month to reduce the
uncertainty. The data 1s presented spatially in 100 km by 100 km grid cells. Cells which are
used in the study are selected based on their comparison to a shapefile of Australia. For a
coastal cell to be mcluded 1t had to have been covered at least two thirds by land mass such that

noise from the ocean did not alter the analysis.

In some instances, a month of GRACE data 1s missing. Where this occurs, the missing data are
filled with a simple temporal interpolation using the months either side. Because of the
monthly temporal resolution this 1s deemed appropriate and maintains the average seasonal

cycle well (Long et al., 201)5).
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3.3.2 NDVI data

We use GIMMS 3g NDVI data for the same time period as the GRACE data. The data 1s
downloaded from the NASA database. The NDVI data 1s produced at a smaller spatial scale
(.25 by .25 degrees) than GRACE. They are rescaled to match the GRACE cell size using the
resampling tool in ArcGIS. Like the GRACE data, only cells which contain at least two thirds

land are used, and missing data are filled by a temporal interpolation.
3.8.3 Land Use Type data

The moderate-resolution 1maging spectroradiometer (MODIS) land use data from 2012 1s
used to 1dentify different land use types across Australia. It is freely available online from
http://glcf.umd.edu/data/lc/. In regards to rescaling and cell selection, the same procedures are
applied as in the case of NDVI data. In Australia, MODIS land use type data defines 12
different classes of land use. This is reduced to five (or six including barren land) classes by
grouping similar classes such as different types of forests. The resulting land use types are:

forest, shrubland, savanna, grassland, and agricultural land (Table 3.1).
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Table 3.1: Subcategories of land use types as defined by MODIS

MODIS Land Use Type Classification in this study

Evergreen needle leaf forest
Evergreen broad leaf forest
Deciduous needle leaf forest Forest

Deciduous broad leaf forest

Closed shrublands

Open shrublands Shrubland

Woody savanas

Savanas Savana
Grassland Grassland
Cropland
Cropland/Natural vegetation mosaic Agricultural land
Barren Barren

Figure 3.1 shows the spatial distribution of different land use types across Australia, grouped as
previously stated (Table 3.1). Note no analysis 1s performed for areas considered barren, due

to a lack of vegetation.
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Figure 3.1: (a) The spatial distribution of various land use types across Australia and (b) the
area covered by each land use type.

3.4 Methodology
3.4.1 Calculating anomalies

For variables with strong seasonality, a statistical relationship between them does not necessarily
mean a physical relationship exists. Chmatological anomalies of both GRACE TWS and
NDVI are used in order to remove seasonality in the data which would otherwise result in

large, but irrelevant and misleading correlations between variables examined in this study.

The anomalies are calculated following the method of Yang et al. (2014), as shown in Equation.

(3.1).
X(@@f) = X(j) - Ty X(0,/) (3.1)

where X* represents the climatological anomaly of X (1.e. raw GRACE TWS), 71s the month, ;

1s the year and n1s the total number of years.
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New lagged GRACE TWS* anomaly data sets are produced by offsetting the GRACE data
from the NDVI data by one to six months. This 1s to allow any delays in NDVI response to

water storage to be revealed (Farrar et al., 1994).

3.4.2 Wavelet decomposition

GRACE TWS* 1s decomposed mto different signals using a discrete wavelet transform.
Introduced 1n the early 1980s, a wavelet 1s a mathematical function used to divide data series
mto different-frequency components (Goupillaud et al., 1984). The method expresses
decompositions as a multitude of smaller ‘waves’ at different frequencies (He et al., 2013). In
this study we use the Meyer wavelet to decompose GRACE TWS* mto different temporal
components which is suitable for this temporal data (He & Guan, 2013). This is achieved using
the ‘wavdec’ function in Matlab. Data 1s decomposed into ‘approximation’ and ‘detail’
components that each represent the data at its different temporal scales. Detail series neglect
trends while approximation series maintain trends in the data (Nalley et al., 2012). The
resulting time series are labelled Al, A2, A3, A4 and D1, D2, D3 D4 for approximations and
details respectively. The temporal scale increases with the decomposition level e.g. A1/D1 (2-
month scale), A2/D2 (4-month scale), A3/D3 (8-month scale) and A4/D4 (16-month scale)

(Figure 3.2).
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Figure 3.2: An example of a wavelet decomposition from a cell in central South Australia (29°S
136°E). Notice the visible trends in the approximations, which are normalised in the details.

Four levels can be reasonably extracted given the data length and monthly frequency of the
data. Further decomposition would result in roughly 3 and 6 year time scales which 1s too
coarse for a time series of only 11 years of raw data. Because all but the lowest approximation
levels contribute partly to details, we only use the lowest frequency approximation, along with
all of the details. The sum of these (D1, D2, D3, D4, A4) equals the raw signal (Figure 3.3). So,
five wavelet decomposition series are produced for GRACE data as well as each of the six

lagged series’ for each decomposition level giving a total of 35 water storage time series.
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Figure 3.3: The structure of a wavelet decomposition; decomposition levels used in this study
are highlighted n red.

3.4.3 Stepwise regression

We used a stepwise regression for every cell with NDVI* as the dependant variable and the
GRACE TWS* decompositions as predictor variables. Given the time series of the data, 35
predictor variables 1s too many for a stepwise regression to function properly. The stepwise
regression 1s run multiple times and the best predictor variables are chosen narrowing them
down to nine. The choice 1s made based on the amount of cells selected for each variable from
the stepwise regression and how relevant they are given their spatial coherence. In general, the
predictor variables excluded from the stepwise regression are not included in any cells across
the country. The remaining variables are (subscript denotes lag in months) D1, D2, D3,, D3,

D32, D4<0, D4<1, A41>, and A4<(;.

3.5 Results

As a proof of concept, the relationships between raw GRACE TWS* and NDVI*, and
decomposed GRACE TWS* and NDVI* are compared (Figure 3.4). The results for the

decomposed TWS* data are based on a selection of decomposed time series selected by the
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stepwise regression. A time series example of the results from an individual cell demonstrated
m figure 3.5. For each cell the correlation coefficient between NDVI* and the regression
estimates (1) 1s calculated. In order for the tests to be comparable, lagged data is not included in
the decomposed TWS dataset for this demonstration, it shows purely how decomposed data
mproves the relationship. A scatter of the r values shows a clear improvement i the
relationship when decomposed GRACE TWS* data 1s used as opposed to raw, with all points
above the 1:1 line. Student-t tests confirmed that the stepwise regression results are statistically

highly significant with a t-statistic p value of respectively 2.3 and .00014.

Raw TWS vs NDVI maximum r values D p i TWS vs NDVI maximum r value q MaximuT r values for raw and decomposed GRACE data vs NDVI
(b s @
13°S 13°8 08 = 08
o o I ’ w
18°S 18°8| ]
[ @ <
3 23°s Ses 06 &08
= = I o
5 28°8 528°8 |7 | o
g 8 i A . 04 804
33°8 33%°s| T ) g
0.2 802
38°s 38°8 g 0
0 0 - : : : ‘
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Figure 3.4: (a) The rvalues using raw TWS* and NDVI*. (b)The r values using decomposed
I'WS* and NDVTI*. (¢) a scatter of the results shows a clear improvement in the relationship
when decomposed data 1s used.

Lagged data ensures the relationship between NDVI* and TWS™ 1s well represented, but the
decomposed frequency of the TWS* data 1s the focus m this study. Though the stepwise
regression 1s performed using nine variables including lags where suitable, the results herein are
presented as only five variables, D1, D2, D3:, D4. and A4. For each detail or approximation
level using different lags, one variable 1s created by combining the results of different lagged

data sets together to present the results 1.e. D31 = D3+ D31+D3..
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Figure 3.5. An example of the time series from a single cell. The new estimate uses the
coefticients from A40, A46 and D4 as chosen by the stepwise regression. Pearsons coefficient
(r) between the decomposed GRACE estimate and NDVI* 1s 0.872, compared with 0.665
when using raw GRACE TWS*.

It 1s important to recognise how the variables that are included in the stepwise regression vary
spatially to understand how vegetation responds to different temporal patterns water storage
across the continent. For a variable to be included in the stepwise regression it does not have to
show a positive correlation. Figure 3.6 shows which variables are included in the regression for
each cell across Australia. Where no lagged data is used (D1 and D2) the colour denotes
whether the coefficient 1s positive or negative. Where lagged data 1s used (D3., D4, and A4.)
the colour denotes whether all coefficients for a cell had the same -/+ sign or not. Figure 3.6
shows that while A4. 1s included across most of the country, one of the lagged data sets, A4shas
a large amount of negative coefhicients included in the regression (see appendix 3A). A possible
explanation for this 1s that NDVI 1s susceptible to the ‘memory effect’, where past imputs and

outputs affect responses in the system (Shook & Pomeroy, 2011).
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Figure 3.6: Coethicients for each decomposition level. For D1 and D2 no lags are used, red
represents for these a positive coefficient and blue represents a negative coefficient. For D3,
D4. and A4 (which include lags), red represents cells where all coefficients are positive. Blue
represents cells where at least one lag had a negative coefhicient.

Overall, the number of cells covered by each different decomposition level increases as the
decomposition time scale increases. This shows that in general, NDVI changes pertain to
longer time-scale water storage changes and 1s not affected as much by changes on monthly

time scale.

While understanding which variables are used in each cell 1s important, it 1s more important to
know their relative impact on NDVI*. The relative weight of each variable 1s calculated to show
the importance of each on vegetation in different land use types. Of the included variables in

each cell, the relative weight of each variable 1s calculated using Equation (3.2).

W =90 (3.9)

ONDVI
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Where W is the relative weight, C is the coefficient, gy 1s the standard deviation of the
decomposed data anomaly (X), gy 1s the standard deviation of the NDVI anomaly. Figure 3.7
shows which variable has the highest relative weight in each cell. A4. 1s the dominant variable,
covering the majority of the country, and 1s a low frequency trended signal. D2, a higher
frequency signal 1s the second most dominant variable and shows generally clear spatial

coherence.

Highest weighted predictor variable for each cell
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Figure 3.7: The variable with the highest relative weight in the regression for each cell across
Australia. A4 1s most dominant, however D2 1s prominent in distinct areas throughout central
Australia. D1, D3t and D4 all occur but with little spatial coherence.

The relative weights for all cells of each land use type are combined and presented as a relative

weight percentage per land use type (Figure 3.8).
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Figure 3.8: The relative weight of each decomposed TWS™ for each land use type. Forests are
A4 dominated, shrublands, savannas and grasslands are very similar with relative equal weights
of D1, D2 and A4+, while agricultural land 1s dominated by D2 and A4..

Forested areas have only low frequency decompositions included, with A4« being the most
dominant. This is expected as forests have deep root systems which tap into water stores which
change slower than shallower water (Backer et al., 2003). Therefore, their water availability 1s
less likely to be affected by short-term rainfall or evaporation, relying more on long term
hydrological trends. Shrubland, savanna and grassland show nearly identical distributions of
weights. Grassland shows a marginally higher percentage of the D1 and D2 variables, which 1s
consistent with our physical understanding as they are fed by shallow soil moisture which varies

at a short ime frequencies. While all are defined differently, the three land use types have
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overlapping characteristics, most commonly the widespread presence of short grasses (Friedl et
al., 2002) and shallow root systems. These short grasses respond to changes in the shallow top
layer of the soil which 1s mfluenced at high temporal frequencies by rainfall events and
evaporation. The similarity in the result of these three land use types suggests that they are
hardly distinguishable by GRACE, likely due to the spatial extend of GRACE cells. For
example, where sparse trees exist in a savanna, their influence on the shallow soil moisture may
be negligible compared to the large coverage of grasses, thus showing a very similar pattern to

grassland.

3.6 Discussion

Using wavelet decomposed GRACE TWS* data proved to improve the correlation between
water storage and NDVI™. A previous study by Yang et al. (2014) showed that GRACE 1s a
superior indicator of surface greenness than soil moisture or precipitation, which were earlier
used as indicators (Chen et al., 2014, Huxman, 2004). Temporal decomposition of GRACE
TWS* produces a new temporal dimension that allows the data to be analysed to its full
potential. As demonstrated in Figure 3.4, the decomposed TWS™ data 1s better associated with
the surface greenness than the raw TWS*. Furthermore a better understanding of how surface
greenness changes with water storage spatially and temporally 1s achieved, with different levels
of decomposition existing in spatial clusters across the country. The dominance of A4. as the
most highly weighted predictor variable indicates that generally vegetation responds to low

frequency (inter-annual) changes in water storage across Australia.

An nteresting result 1s the large amount of negative coefficients produced from the stepwise
regression for A4s Two possible explanations exist. A 6-month lag may correspond to the
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opposite seasons e.g. wet 6 months ago, dry now, potentially serving as an indicator of water
storage potential. Alternatively, vegetative systems may be susceptible to the ‘memory effect.’
Specifically, this would suggest that for most of the continent, trends at the A4 scale (roughly
annual) influences vegetation responses to water storage changes six months later in these areas.
Such a memory effect can serve as an indicator of an ecosystem’s capacity to store water, as well

as carbon and nitrogen (Schwinning et al., 2004).

The weight distribution of different decompositions across land use types generally matches
our physical understanding. Note firstly that all five land use types have A4. as a large
component of their total weight. This 1s a further idication of the general response of
vegetation to low frequency changes in water storage. Forested areas are only composed of A4,
D4. and D3, wrrelevant to high frequency changes in water storage. This matches our physical
understanding as forests have deeper root systems which rely on seasonal changes or long term
hydrological trends. Interestingly, shrublands, grasslands and savannas show a near identical
composition of relatively weighted decompositions, with grasslands showing a slightly higher
weight percentage of D1 and D2. The three land use types are all grass dominated, with the
addition of sparse trees and shrubs in savannas and shrublands. As the resolution of GRACE
cannot pick up these additions, it 1s possible that they all appear as grassland, or at least skewed
that way, as that 1s the domiant vegetation cover. The dominance of D1 and D2 across these

land use types 1s typical of relatively dynamic, grass dominated regions.

The combimation of weights that make up the total for agricultural land 1s less straightforward.
D2 and A4 contribute to large portions of the total. One major difference between agricultural

land and the other land use types 1s the anthropogenic contributions to the land, including the

56



additions of livestock grazing (Yates et al., 2000). The other land use types are generally self-
sufficient/limiting at the cell scale, so the interruption of the natural cycle of the vegetation in
agricultural areas i1s a potential anomaly, disturbing any predictable composition of relative

weights.

Our method of using decomposed terrestrial water storage as an improved indicator of surface
greenness has potential environmental benefits. It allows for an mmproved understanding of
how vegetation responds to changes in water storage at a spatiotemporal level. This i turn
serves as a better indicator of ecosystem performance and carbon fluxes. With predictions of
terrestrial water storages to decline in the future (Gleick, 1989), the method could be highly
useful for predicting carbon fluxes and ecosystem performance based on future water storage
estimates. Furthermore, the global mapping of GRACE and NDVI (as well as other vegetation

mdexes) means that it could be applied globally.

3.7 Conclusion

In this study we aimed to increase the understanding of the links between GRACE TWS™ and
NDVI* by using a decomposed TWS™ data. Combinations of decomposed GRACE TWS*
data show an improved relationship with NDVI* than raw GRACE TWS* data alone. Varying
decomposed frequencies show spatial coherence in parts of the country, sometimes
mdependently and sometimes overlapping other decomposed frequencies. Generally, NDVI 1s
mfluenced by low frequency changes in water storage; however there are some areas which are
also sensitive to high frequency changes. NDVI 1s susceptible to a memory effect which
depends on previous TWS conditions, 6 months generally. The total influence of NDVI
changes 1s made up of storage changes over different time periods. These vary depending on
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the land use type and the results are aligned with our physical understanding. This analysis
could be used further to continue to improve our understanding of vegetative responses to

storage change i Australia and globally and benefit predictions of ecosystem performance and

carbon fluxes.
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Figure 3A1: Coefficients for all 9 decomposition levels including lags. Red represents a positive
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4. Dynamic water storage fuels large-scale
ecosystem production in water-limited
environments

4.1 Abstract

Vegetation dynamics are a core issue of the carbon cycle. When water transpires from a
vegetative system, plant growth occurs as a result of photosynthesis, creating a ink between the
outgoing water flux and productivity. Gross primary productivity 1s the product of many factors,
primarily water availability, along with temperature and solar radiation. The implementation of
remote sensing tools such as the Gravity Recovery and Chmate experiment (GRACE) and the
Moderate-Resolution Imaging Spectroradiometer (MODIS) has made examining global
relationships between water dependent processes possible m recent decades. We analyse gross
primary productivity as a function of the annual dynamic water storage from GRACE, which
represents water moving through a system. Here we show that the dynamic water storage
amplitude 1s a strong driver of biomass production. Globally, highest correlations between gross
primary production and annual amplitudes of total water storage are found for water lmited
ecosystems. The use of total water storage amplitude provides a novel approach for global
mapping of the link between vegetation and water dynamics. With predictions of decreased
water availability in systems which are already water hmited, this relationship could be of great

use for future predictions of carbon fluxes and vegetation dynamics.

Key Words

Biomass production, Gross primary productivity, dynamic water storage, GRACE, Water

limited ecosystems
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4.2 Introduction

Terrestrial primary production 1s the largest global carbon sink, and drives important
ecosystem functions (Beer et al., 2010). Water limited environments cover approximately 50%
of global land mass and are typically considered as water imited because the annual potential
evapotranspiration exceeds annual precipitation (Parsons & Abrahams., 1994). In these
environments, primary production is susceptible to change because of the dynamic nature of
water availability in the critical zone (Newman et al., 2006). Changes in productivity are
triggered by climatological, ecological, and anthropogenic influences on the biosphere (Nemani
et al., 2003). Our understanding of the controlling environmental variables, driving factors, and
ability to measure and predict biomass production 1s of paramount importance considering the

occurring global climate change (Frankenberg et al., 2011).

In recent decades, the implementation of remote sensing products such as the Gravity
Recovery and Climate Experiment (GRACE) has made it much easier to examine global water
fluxes. Such tools have been widely used for studying hydrological processes and the iteraction
of water with the biosphere (Wouters et al., 2014). Water availability for terrestrial ecosystems
mostly depends on precipitation. Precipitation to the land surface partitions into quick flow
component (e.g., runoff or macropore flow quickly recharging groundwater) and slow
movement component (e.g., soil moisture). The quick flow components tend to bypass the
root zone without contribution to biomass production. It 1s recently reported that in water
limited environments, GRACE Total Water Storage (I'WS) appears to be a better predictor of
the temporal variability of terrestrial vegetation cover than precipitation (Yang et al., 2014).
This finding demonstrates that some precipitation bypasses the biomass-production via runofft

and evaporation quicker than can be represented in monthly GRACE. data.

64



Shallow soil moisture has high connectivity with the surface (Good et al. 2015) and may be lost
to the atmosphere through evaporation, used by vegetation and lost to the atmosphere as
transpiration. In climate zones with distinguished wet and dry seasons, the catchment water
storage change m a year, provides an approximation of how much water 1s used by the

ecosystem 1n the year.

We hypothesize that large scale ecosystem production is controlled by annual dynamic water
storage. This concept 1s shown in Figure 4.1, where hydrological processes bypass biomass
production, and other contribute to it. In arid, semi-arid and other water limited environments,
soil water availability strongly affects vegetation growth, photosynthesis and survival (Chaves et
al., 2002). Depending on the rainfall intensity, precipitation partitions into runoff and
mhltration (Dunne et al. 1991) as in Figure 4.1. Runoff and evaporation cannot be used for
biomass production but infiltrated water supports transpiration and productivity (Denmead &
Shaw., 1962). Depending on the rainfall intensity, precipitation partitions in ‘blue’ and ‘green’
water, represented respectively by runoff and infiltration (Dunne et al., 1991). Deep percolating

water escapes from the root zone and likely recharges groundwater, which changes at a rate

transpiration

precipitation

runoff

evaporation J water yield ﬂ

beyond an annual cycle.

65



Figure 4.1: The conceptualisation of dynamic water moving through a system. ‘Green’ water
contributes to biomass production. Some components do not affect the water storage
amplitude at all such as surface evaporation and runoff.

To test the hypothesis, we examine the relationship between biomass production and annual
dynamic water storage as represented by respectively ecosystem annual gross primary
production (GPP) and GRACE TWS amplitude (A:ws). GPP 1s a measure of the amount of
CO: assimilated by photosynthesis and our ability to estimate 1t has improved in recent decades
(Waring, Landsberg, & Williams, 1998) through the use of remote sensing tools such as the
moderate-resolution imaging spectroradiometer (MODIS). We use GRACE Axws as opposed
to simply TWS as this better represents dynamic water storage; water passing through a system.
The monthly temporal resolution of GRACE. is a rational fit to the residence time of soil

moisture, and changes in GPP.

4.3 Data

4.3.1 GRACE data
We use GRACE total water storage (I'WS) data from The University of Texas Centre for
Space Research (CSR), and NASA’s Jet Propulsion Laboratory (JPL) which can be freely
downloaded from the GRACE Tellus website (http://grace.csr.nasa.gov/data/get-data/). The
suitable post-processing techniques mcluding applying the recommended scaling coefficients
were applied (Swenson & Wahr, 2006). The scaling coefficients are in part designed to remove
leakage errors and do so significantly (Landerer & Swenson, 2012). Data ranges from March
2003 to December 2014. The gridded data 1s presented spatially in 100 km by 100 km cells.
We selected which cells should be included based on a global shape file. If at least two thirds of
the cell was part of a continent they were included, this eliminated some cells which covered

only a small coastal area and were mostly ocean.
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For the occurrences where a month of data missing in either GRACE data set, the average
value from the months either side were calculated and used. This method maintained the

seasonal cycle well and was deemed appropriate because of the monthly resolution (Long et al.,

2015).

4.3.2 MODIS GPP Data

Monthly GPP data comes from the MODIS product “MOD17A2 gross primary production”.
The product was freely downloaded from the MODIS website
(ftp://ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD17/Monthly MODI17A2. The GPP data 1s
produced at a smaller spatial scale (.25 by .25 degrees) than GRACE. They are rescaled to
match the GRACE cell size using the resampling tool in ArcGIS. Like the GRACE data, only
cells which contain at least two thirds land are used, and missing data are filled by a temporal

mterpolation of months either side.
4.3.3 Precipitation data

Monthly precipitation data was sourced from the European Centre for Medium-Range
Weather Forecasts’ (ECMWF) public data set. It was downloaded at the same resolution as
GRACE data. The reanalysis data 1s extracted from the EFCMWF model which 1s partially
based on observations. This 1s a global dataset but only terrestrial precipitation data 1s used n

this study.
4.3.4 Climatic constraint data

Nemani et al., (2003) kindly provided their data of potential climatic constraints to plant growth
derived from long-term climate statistics. This data shows the contribution of water, radiation

and temperature as a hmiting factor of global vegetation growth, where the sum of the 3
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contributing factors 1s 100%. The data are produced at a smaller spatial scale (.5 by .5 degrees)
than GRACE and are rescaled to match the GRACE cell size using the resampling tool n
ArcGIS. We use only the water constraint component of this data and use 1t to determine water
limited environments. Figure 4.2 shows the distribution of water limitation in increments of
10%. The percentages are relative to the temperature and radiation data, so the higher the
value, the more water 1s a limiting factor in that cell (and the less temperature and radiation are

limiting factors).

-
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No Data 0-10% 10-20%  20-30%  30-40%  40-50%  50-60% 60-70% 70-80%  80-90% 90-100%
Figure 4.2: The contributing percentage of water constraint on vegetation globally, adapted
from Nemani et al., (2003). For this study, areas where the contribution of water constraint to
vegetation growth 1s over 50% are considered water limited.

4.4 Methodology

4.4.1 TWS amphtude calculation

Anws 1s calculated 1n two ways. For an unlagged amplitude, the absolute value of the maximum
minus the minmimum TWS value in a calendar year is used. For a lagged amplitude, the
absolute value of the maximum minus the minimum TWS value in the first six months of a

year, and the last six months of the year preceding is used. Where the lagged amplitude 1s used,



Arvs precedes the GPP/precipitation data 1e. Awns of 2003/2004 1s analysed against

GPP/precipitation of 2004 (Figure 4.3).
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Figure 4.3: An example of how the different amplitudes are calculated. For the time
series above, the amplitudes shown would be analysed against GPP data from 2008.
The annual amplitude (red) 1s comprised of the 12 months mn 2008. The lagged
amplitude (blue) 1s comprised of the last six months of 2007 and the first six months of
2008 allows for lags between the TWS amplitude and changes in GPP.

4.4.2 Spatial analysis
For a spatial analysis, Arws ranges with increments of 5 mm are used where the mid-point value
of the range e.g. 20mm indicates Awws data spanning from 17.5 - 22.5mm. The mean of all
GPP values within this range is calculated. As a comparison to GPP, precipitation 1s used
mstead of GPP, in which case ranges increase in increments of 100mm mstead of 5mm. For
this analysis Awws are calculated only using data from the same calendar year, not part of the
preceding year. For both precipitation and GPP, five tests are done for regions of different
water limitation ranges. These include areas where water stress contributes to limiting
vegetation growth by 50-609%, 60-70%, 70-809%, 80-90% and 90-1009%. R’values are calculated

for each water limitation range.
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4.4.3 Temporal Analysis

For a temporal analysis all data from each cell considered to be water limited 1s analysed
separately using the span of available data (2003-2014). Pearson’s coefhicient (1) 1s used to
evaluate the strength of the relationship between Axws and GPP. The same analysis 1s carried
out using precipitation istead of GPP. For this analysis, both the lagged and unlagged Axwsdata

are used and the highest rvalue from the two approaches 1s shown i the results.

4.5 Results

Figure 4.4 shows the results of the spatial analysis between precipitation and GPP in areas of

increasing water limitation (Figure 4.4 (a)-(e), 50-60% to 90-1009% respectively).
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Figure 4.4: The mean GPP value for different precipitation ranges across different increments
of vegetation water dependence. Red markers show the relationship, with their size being
relative to the number of cells in each range. Blue markers denote +/- one standard deviation.

The relationships i figure 4.4 for the different increments of water as a limiting factor show
very poor correlations. The highest r’ value (0.23) is in the 51-609% range though even that
result 1s not significant. These results are as expected and likely due to the fact that not all
precipitation 1s used by vegetation (Chen et al., 2014) and some 1s lost through runoff,
evaporation etc. Figure 4.5 shows the results of the spatial analysis between A+ws and GPP in

water areas of increasing water limitation (Figure 4.5 (a)-(e), 50-60% to 90-1009% respectively)
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Not only does this show that the relationship between Axws and GPP 1s not simply an artefact of

precipitation, it also further supports that in water hmited environments biomass production 1s
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Figure 4.5: The mean GPP value for different Awws ranges across different increments of
vegetation water dependence. Red markers show the relationship, with their size being relative
to the number of cells in each range. Blue markers denote +/- one standard deviation.

For the given data, GPP is highly correlated to Arws in water limited environments. R* values
range from 0.73 - 0.94, however there 1s no clear increasing or decreasing pattern through the
different increments of water limitation. As the water limitation becomes stronger, the Amws
range decreases, as does the overall mean GPP value. A higher proportion of cells fall into the
lower Arws ranges as the increment of water limitation increases, with a more even distribution
i the lower increments. Furthermore, the three lower increments of water Iimitation show
small negative correlations between GPP and Awws for the first two points. While still strong,
areas that are 71% - 80% limited by water show the worst relative correlation which 1s poor
compared to the others. The last two points show a negative correlation though the overall

trend 1s positive.

The temporal relationship between precipitation and GPP for each water limited cell globally 1s
shown i figure 4.6. The strength of the relationship is measured by Pearsons Coefficient (7).
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Figure 4.6: The relationship between GPP and precipitation for water limited environments
globally, shown by Pearson’s coefficient (z). In water limited environments the relationship 1s
poor.

Only 54.6% of cells show a positive relationship between precipitation and GPP. Where
positive rvalues exist, few exceed .50. There does not appear to be any spatial coherence
among similar rvalues, and negative values are scattered somewhat randomly throughout. The
relationship between GPP and precipitation does not seem to be similar to different spatial
patterns of aridity, climate, land use etc. The temporal relationship between Arws and GPP for

each water limited cell globally 1s stronger overall (figure 4.7).
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Figure 4.7: The relationship between GPP and Axws for water limited environments globally,
shown by Pearson’s coeflicient (). In water limited environments the relationship is generally
strong and performs better than GPP vs precipitation.

Globally, 79.5% of water limited areas show a positive relationship between GPP and Axws.
This 1s significantly higher than the GPP-precipitation relationships shown in figure 4.6.
Generally, there 1s spatial coherence of areas with relationships of similar strength, whether it 1s
a positive or negative relationship. However, some areas show random positives amongst
negatives or vice versa. The strongest and most spatially coherent relationships are seen in
Australia, South Africa, western U.S.A and parts of Europe. There 1s a pattern of higher
correlations existing further inland and lower correlations tending towards the coast. Australia 1s
a very good example of this. Data from a large part of Northern Africa 1s missing from the
MODIS data set, though being a highly water limited, arid region similar to central Australia
(Yang et al., 2016), presumably this area would show a very strong correlation, likely further

improving the overall relationship.
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Based on Pearson’s coefficient, the strongest relationship between Awws and GPP was found
using the lagged amplitude method m 52.9% of cells, while 47.1% of cells had a higher
correlation using an amplitude calculated from values in the same calendar year (Figure 4.8).

Distribution of highest r values

| |

No data Not Water Limited No Lag Lag

Figure 4.8: The distribution of the highest performing r value based on the method of
calculating amplitude. There 1s clear spatial coherence between the two methods, with a shightly
larger area showing a lag between changes in Arws and GPP.

Although the almost equal amount of cells that favour each amplitude method 1n figure 4.8 1s
what would be expected from chance alone, the clear spatial distribution of two methods
suggests that this 1s not the case. The lagged method shows a better relationship m areas which
have an overall higher rvalue in Figure 4.7. These include Australia, South Africa, Europe and
parts of North and South America. This suggests that there 1s a lag of up to six months between
water moving through these systems and significant biomass production. Without a lag in the
amplitude, parts of India, Africa, Australia and North and South America show a higher
relationship. In particular, the most northerly sections of land, comprised of Russia and North
America show almost exclusively the highest correlation coming from the un-lagged amplitude.
However, these areas are often snow-covered and have little vegetation, potentially skewing the
results. In contrast to areas favoured by the lagged amplitude, these areas are generally humid

or subhumid (Yang et al., 2016). Again, as the region of missing in Africa that closely matches
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that of central Australia in terms of aridity, chmate and vegetation cover, presumably this area

would also show a better relationship using the lagged amplitude data.

4.6 Discussion

4.6.1 Sigmficance of relationship

The results from the spatial analysis in this study demonstrate that there is a strong relationship
between Arws and GPP, suggesting that biomass production as represented by GPP is driven
strongly by dynamic water storage at a pace captured by GRACE. Importantly, a large
discrepancy appears between results using precipitation and results using Awws which
demonstrates that the time series of Arwsare not simply precipitation driven. In figure 4.5, the
strength of the relationship does not necessarily improve as water becomes more of a limiting
factor of vegetation production; on average the relationship slightly decreases. This could be
attributed to the sample size and spread of data. The higher the water limitation, the fewer cells
are included n the analysis. Furthermore, the distribution of these cells becomes less even as
the water limitation increases, skewing the slope to the lower amplitude ranges. There is
nothing conclusively showing that dynamic water storage drives biomass production differently
depending on how water limited an area 1s, just that this 1s the case in general in water limited
environments. The results from 51-609%, 61-70% and 71-80% water limited areas show a
negative correlation m the first two points. This suggests that in areas of less dynamic water

storage, biomass production 1s not as sensitive due to precipitation having less seasonality.

The results from the temporal analysis in this study demonstrate that there 1s a strong
relationship between Aswws and GPP that varies spatially. Similar results show clear spatial
coherence, validating the strength of the relationships and study. The results from the temporal

analysis further demonstrate a far superior relationship between GPP and A+rws than GPP and
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precipitation, demonstrating that neither biomass production nor Axwsare simply precipitation

driven.

Generally, areas which show a stronger relationship between lagged Arws and GPP are those
with the highest percentage of water as a limiting factor, roughly above 809. This pattern 1s
relatively consistent globally and such areas are prone to drought or prolonged periods of

aridity.

The distribution of areas in which lagged or un-lagged data shows the strongest relationship 1s
loosely correlated with different climate zones. This in turn relates to other clarifications such
as land cover type and aridity index which have very similar spatial distributions globally. Zones
of land cover type, climate etc. are generally classified based on long term averages. Because we
only use 12 years of data, it 1s likely that some patterns within these 12 years are different to
long term averages, causing the spatial distribution of the best correlating amplitude to show
deviations from different climate zones. An example i1s Australia’s millennium drought, which
spanned for over half of the study period, in which time, hydrological and vegetative behaviours

were much different to long term averages.
4.6.2 The advantage of using amphtude

Gridded GRACE TWS data 1s presented as an equivalent water thickness in cm with respect to
each cells own long term mean (Wahr et al. 1998). As each cell is referenced to itself, the data
1s generally directly comparable spatially. However, using the amplitude of each cell allows for
the cells to be compared directly spatially as the long term mean 1s neglected and only the total

flux 1 and out of a cell 1s considered.

4.6.3 Potential for use as an indicator of GPP
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This study further demonstrates the potential use of GRACE. In a time of globally changing
hydroclimatic conditions, predictions of GPP are important for understanding potential future
changes in the carbon cycle and vegetation dynamics (Huxman., 2004). This further highlights
mmplications of land use change which can highly influence hydrological conditions (Li et al.,
2009). Numerous models have been created to estimate GPP i different parts of the world,
over different periods of time (Ruimy et al., 1996) (Willlams et al., 1997) (Sims et al., 2008).
One independent study compared estimates from 26 GPP models to estimates from 39 eddy
covariance flux tower sites and found that none of the models matched estimated GPP within
the range of uncertainty of observed fluxes (Schaefer et al., 2012). Aside from seemingly poor
performance, many models require considerable mput from ground based meteorological
measurements (Sims et al., 2008) which can be hard to access or temporally and spatially
sparse (Chen et al., 2013). An alternative to models 1s using the strong relationship we have
found, as abundant relative total water storage data exists. Because water highly influences GPP
and water storage forecasting tools are becoming increasingly available (Todini., 1988), the

usage of total water storage amplitude fits well as a potential indicator of GPP.

4.7 Conclusion

Our findings show that overall there 1s a very strong correlation between Axws and GPP. This
demonstrates that biomass production 1s dependent on dynamic water storage in water limited
environments. The strength of this relationship varies spatially, however stronger correlations
are generally spatially coherent, making it easy to identify where dynamic water storage 1s a
strong driver of biomass production. Spatial differences in how GPP correlates to lagged or un-
lagged Axws does not demonstrate how GPP responds to water storage dynamics in different

climate zones, likely due to the temporal resolution of the study. The relationship is clearly not
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an artefact of precipitation. Furthermore 1t outperforms the relationship between precipitation
and GPP across water limited environments globally. Coupled with hydrological forecasts and
models, this understanding of dynamic water storage as a driver of biomass production could
help generate significant improvements i future predictions of the carbon cycle as well as
vegetation dynamics. This 1s especially useful for highly water limited areas which are at risk of

extreme hydrological events such as drought and or changes in ecosystem behaviour and GPP.
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4. Conclusions

5.1 Summary of findings

The aim of the studies in this thesis was to improve our understanding of relationships between
terrestrial water and vegetation on a continental and global scale while extending the potential
application of GRACE by using it in innovative and previously unused ways. The three
chapters i this PhD thesis examined terrestrial water-vegetation iteractions and make
scientific advances towards our understanding of such processes. Each study used GRACE as
the primary data source. Overall findings show that more than just total water storage data can
be extracted from GRACE when filters such as a wavelet are applied. This 1s useful for
partitoning GRACE into different vertical moisture storage components and revealing the
moisture dependence of vegetation in different land use types. It 1s also shown that biomass
production is driven by dynamic water storage in water himited ecosystems, and the annual

amplitude of GRACE represents this dynamic water storage well.

The key findings from each of the 3 individual studies are as follows:

(1) A new method for estimating various water storage components across Australia
using decomposed GRACE data, with the AWRA model as a reference was
developed. A stepwise regression was successful in determining which decomposed
TWS frequencies should be used in the estimation of different storage components
for each cell. An analysis of the decomposed GRACE data compared to raw
GRACE data showed that decomposing the data improved its correlation to the

AWRA model, increasing R’ values and decreasing the RMSE. The estimations for
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(111)

shallow and deep water stores showed a clear improvement on raw GRACE data

when compared to the AWRA model.

Combinations of decomposed GRACE TWS* data show an improved relationship
with NDVI* over raw GRACE TWS* alone. Varying decomposed frequencies
show spatial coherence for parts of Australia, sometimes independently and
sometimes overlapping other decomposed frequencies. Generally, NDVI 1s
mfluenced by low frequency changes in water storage, however there are some areas
which are also sensitive to high frequency changes. NDVI is susceptible to a
memory effect which depends on previous TWS conditions with a 6 months delay
generally. The total influence of NDVI changes i1s made up of storage changes over
different time periods. These vary depending on the land use type and the results

are aligned with our physical understanding.

On average globally there 1s a very strong relationship between the annual GRACE
TWS amplitude and gross primary production. This demonstrates that biomass
production 1s dependent on dynamic water storage. The strength of this relationship
varies spatially, however stronger results are generally spatially coherent, making it
easy to identify where dynamic water storage 1s a strong driver of biomass
production. Spatial differences in how gross primary production results to
lagged/un-lagged GRACE TWS amplitude demonstrates how gross primary
production responds to water storage dynamics in different climatic zones. The
relationship 1s clearly not an artefact of precipitation. Furthermore it outperforms
the relationship between precipitation and gross primary production across water

limited environments globally.
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The conclusions from the research presented m this thesis demonstrate significant

contributions to studies of ecohydrology, as well as the potential use of GRACE, and

mmplications to the carbon budget.

5.2 Future work

In a time of global climate and land use change, it has never been so important to understand

how water resources and vegetation mteract. Luckily, the implementation of remote sensing

tools such as those used throughout this thesis mean that our ability to study such changes over

continental or global scales has never been so strong. Several suggestions for future work that

expands on the research i this thesis are given below.

()

(i1)

(111)

Wavelet decomposition to extract signals from GRACL has proven to be a relevant
methodology. This method could be further extended to make it even more useful,
depending on the application. For the study in this thesis, the AWRA model 1s used
as a reference. Only subsurface moisture stores are considered. There 1s potential
for other models or observations to be used such that GRACE 1s partitioned into
further components such as vegetation water stores and different surface and

subsurface moisture stores.

As the GRACE mission continues, longer data sets will become available and 1t will
become more feasible to decompose the data beyond 4 levels, resulting in more
precise outcomes. Alternative wavelet functions of methods of decomposition could
also be explored which may suit different data types or geographical environments

better.

Superconducting gravimeters can create estimations of subsurface water storage
similar to GRACE, but at a point scale (Cruetzfeldt et al., 2012). Further research
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could be conducted to see how the wavelet decomposition method could
potentially be applied to such measurements. If succesful this could be an extremely
useful tool and more practical than GRACE at field scales. Based on the test
conducted with soil moisture in chapter 2, this should give promising results at such

a scale.

(iv) Chapter three of this thesis used the wavelet decomposition method to reveal the
moisture dependence of vegetation at different temporal frequencies. Similar
studies could be carried out with other variables which are water dependent instead
of NDVI. Examples include variables such as land surface temperature, soil carbon

content and respiration, etc.

W) Even without decomposition, GRACE can be used to represent more than just total
ater storage, such as dynamic water storage - water passing through a system.

There 1s potential for further uses of GRACE to represent different hydrological
processes. Finding and understanding such uses of GRACE. could further assist our

understanding of hydrological processes on a continental/global scale.

It 1s an important (and exciting) time to work with products such as GRACE, which clearly hold
more information than meets the eye. Future development of innovative ways to use GRACE
to its full potential open up numerous opportunities to develop our understanding of
mteractions between hydrology and the biosphere, working towards a healthier and more

sustainable planet.
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