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Abstract 

The aim of this project was to develop a program that would take as input three-

dimensional position trajectories filmed as part of a previous experiment. These positions 

were isolated from recordings of interactions involving Eristalis tenax hoverflies, and 

various other insects and inanimate objects. The program would allow the user to select 

which of the participants in the interaction was to be the observer, and a simulation of the 

original flight would be reconstructed from the perspective of that observer.  

In order to perform this simulation, additional information not present in the original data 

had to be estimated. To test the validity of the methods used to create this simulation, the 

program also determined which interactions were likely to be pursuits, and which were 

not. This was achieved by using the characteristics of the simulation and the trajectories. 

Although the methods were found to be consistent according to statistical tests, the 

determination of pursuit was inconclusive.  
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1. Introduction 

The aim of this project was to develop a piece of code that would integrate with FlyFly, the 

program currently used in the Motion Vision Lab (Henriksson 2010a). FlyFly was developed 

in 2010 as an alternative to the open-source visual stimuli program VisionEgg (Straw 2008), 

and was intended to better suit the specific requirements of the lab and its experiments. 

FlyFly is still used in the lab to display visual stimuli to Eristalis tenax hoverflies, referred to 

from here on simply as ‘hoverflies’, when conducting electrophysiological experiments. 

This project aimed to allow for the expansion of earlier work done by Thyselius et al. (2018), 

who recorded interactions that occurred when investigating hoverflies being approached 

by other insects while feeding in the field. The hoverflies featured in these recordings 

interacted with either other hoverflies, wasps, bees, or inanimate beads. Hence, not all 

recorded interactions are between two insects of the same species.  

From these interactions, the three-dimensional positions of both of the participants 

involved were tracked using a high-speed stereo videography setup. The process by which 

this was achieved will be further elaborated in 1.1. Background and 2.1. Tracking Insect 

Flight.  

The code developed as a result of this project would take datasets such as those obtained 

by Thyselius et al. (2018) as input. The code would then utilise the existing FlyFly assets to 

simulate flight from the perspective of one of the participants involved. The user would 

have the ability to select which participant would provide its perspective as the basis of 

the flight simulation. 

To validate the performance of this code, in light of challenges that will be elaborated in 

1.1. Background, 2.3. Characterising and Modelling Flight, 2.4, Trajectory Reconstruction 

and Flight Simulation, and 2.7. Heading Estimation and Machine Learning, the code aimed 

to further be able to determine which interactions are and are not pursuits.  

1.1. Background 

Hoverflies are prime candidates for study in the areas of both neuroscience and 

aeronautics, due to their relatively simple brain consisting of only one million neurons, as 

well as their ability to perform fast and agile flight manoeuvres both in constrained 

environments and in free flight (Geurten et al. 2010; Thyselius et al. 2018). Hoverflies have 

been studied in flight since the 1970s but this early work focussed on the aerodynamics 

and mechanics of their flight, rather than the behaviour (Golding, Ennos & Edmunds 2001).  

In this research, conventional stimuli presented to hoverflies is usually unnatural, often 

consisting of rotating stripes or expanding circles. Ideally, naturalistic conditions must be 

provided to an animal in order to observe truly naturalistic behaviour (Geurten, Kern & 

Egelhaaf 2012; van Hateren et al. 2005). When using algorithms based on un-naturalistic 

stimuli to predict responses to naturalistic stimuli, the algorithms may fail (Dyakova & 

Nordström 2017).  
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In addition to unnatural stimuli, experimentation is usually performed on hoverflies that 

are tethered – fixed in position using wax – in open-loop paradigms (Fry et al. 2008). Open-

loop paradigms experimentally decouple the sensory stimulus from the motor behaviour, 

presenting visual stimuli and recording motor responses without altering the stimuli 

despite the animal’s attempts to move (Fry et al. 2008; 2009). As a result, the feedback 

loop involving the visual system and the motor output normally present in free movement 

is broken (Fry et al. 2008).  

The transferability of results from experiments using these open-loop paradigms to natural 

free flight is therefore unknown due to the experimental constraints (Fry et al. 2008; 2009). 

Additionally, the possible stimuli that can be presented to insects in such open-loop 

paradigms is limited in intricacy (Bagheri et al. 2014b). 

This project aims to create a naturalistic stimulus for use in hoverfly research, by simulating 

flight from the perspective of a hoverfly using the three-dimensional position data taken 

from real interactions between two insects in the field.  

The recordings were taken using cameras with high temporal resolution – a capture 

frequency of 120 Hz, recording every 8.33 ms – but a relatively low spatial resolution of 

640 × 480 pixels (Thyselius et al. 2018). As a result of the low spatial resolution, the 

participants in the interactions are often difficult to distinguish. This is amplified by the 

high level of visual clutter, i.e. the background has similar colours and textures to the 

insects that are to be tracked (Acosta 2010). As a result, tracking the participants often 

necessitated manual input, as there was insufficient contrast between the participants and 

the background, even when measures were taken to improve contrast (Thyselius et al. 

2018).  

Figure 1.1 shows scenes from two separate recordings, illustrating the vast difference in 

visibility of insects across the recordings. 

 
Figure 1.1: Demonstrating the variation in visibility of insects in the recorded interactions 

(Thyselius et al. 2018). Left: one participant is clearly visible against a flower in the upper 

centre of the image. Right: neither participant is clearly visible. 

The participants in these interactions always involved at least one hoverfly of the species 

Eristalis tenax, found all over the world, often called drone flies due to their visual similarity 

to honeybee drones (Golding, Ennos & Edmunds 2001; Thyselius et al. 2018). The term 

hoverfly will be used in this thesis to refer to Eristalis tenax, despite their additional name.  
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In the literature, the term hoverfly is often used to refer to a wide range of dipteran insects, 

such as Syritta pipiens and Episyrphus balteatus. For this reason, care must be taken to 

differentiate between these different species of flies when referred to as hoverflies. Hence, 

the use of the term hoverfly in this thesis refers exclusively to Eristalis tenax, with other 

species referred to unambiguously.  

Figure 1.2 shows an Eristalis tenax hoverfly alongside an Apis mellifera honeybee, 

illustrating how the unarmed hoverfly and the honeybee with its stinger are almost visually 

identical. For illustration, other insects commonly called hoverflies are also shown. 

Figure 1.2: (a) Comparison of an Apis mellifera honeybee (left) and an Eristalis tenax 

hoverfly (right) (Warren Photographic). (b) A Syritta pipiens hoverfly (Storey 2012). (c) An 

Episyrphus balteatus hoverfly (Royal Society for the Protection of Birds). 

The outcome of this project will be a program that will take three-dimensional position 

data as input, representing flight sequences, and simulate this flight from the perspective 

of either insect participant as a stimulus for use in further electrophysiological research.  

However, due to the limitations of the original experimental setup, this position data does 

not include any information on the direction of flight of the insects involved. This is 

problematic as the accurate reconstruction of a flight from the perspective of the original 

pilot relies on the way it was facing throughout the flight, as this has a direct effect on the 

information seen by the flying animal over the course of the flight.  

The information seen by an animal as it moves through space is termed optic flow. Optic 

flow is rigorously defined as “the change of structured patterns of light on the retina that 

lend to an impression of movement of the visual imagery projected onto the retina,” and 

gives animals the ability to visually estimate their own motion (Raudies 2013). When an 

animal moves, its optic flow is composed of the perceived relative motion of the animal’s 

static surroundings generated by the animal’s own motion, in addition to the real motion 

of other moving objects (Boeddeker et al. 2005).  

(b) 

(c) (a) 

Images removed due to copyright restriction.
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Figure 1.3 illustrates this concept by recolouring different components of the field of vision 

according to how they would be perceived by an animal in motion. Each of the coloured 

components in Figure 1.3 would appear to be moving, due to the viewer’s self-motion. 

Figure 1.3: An illustration of optic flow (Gonzalez-Bellido, Fabian & Nordström 2016). 

In Figure 1.3, the viewer is moving straight forwards, hence the optic flow radiates from 

the centre of the image. The backboard and net are static figures, but would appear to 

move as a result of the viewer’s own motion. In this case, the viewer would perceive the 

backboard and net to be moving nearer to them and also vertically higher, as indicated by 

the lines in Figure 1.3. The other players – dynamic figures – would also be perceived by 

the viewer to move, according to how they are indeed moving in the real world.  

The optic flow illustrated in Figure 1.3 is conceptually simple, as the direction of motion is 

aligned with the direction in which the viewer is looking. However, the optic flow observed 

by an animal in motion depends not only on the direction it is moving, but also on the 

direction it is looking, from here on termed ‘heading’. Figure 1.4 illustrates the effect a 

change in heading has on optic flow. 

Figure 1.4: Different heading with same direction of motion produces different optic flow. 

Left: going forwards, and Right: going backwards along the same track (Ellis 2014). 

Image removed due to copyright restriction.

Image removed due to copyright restriction.
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In Figure 1.4, the rollercoaster traverses the same track in both instances, but facing in 

different directions. The arrows indicate the perceived motion of those elements of the 

visual field. As a result, although both images feature the same direction of motion, indeed 

along the same path, the difference in heading produces different optic flow.  

Similarly, a heading far from the true heading for the simulated hoverfly flight would 

produce totally different optic flow to that which would have been experienced by the 

hoverflies in the recordings. In order for the simulated flight to be realistic, the optic flow 

presented to the viewer must realistically represent that which would have been 

experienced by the original flying insect.  

This is one major challenge of this project, as the data supplied as the basis of this project 

lacks information on the orientation of the body and head of the insects. In order to 

correctly represent the optic flow, the heading of the insects at each frame must therefore 

be estimated. This estimation will form the bulk of the project, and the accuracy of the 

simulation will depend on the factors used in this process of estimation.  

As the orientation of the body is not considered in this project, the (unrealistic) assumption 

that the head and body are aligned (Land 1992; Olberg, Worthington & Venator 2000) does 

not need to be made.  

1.2. Relevant Technologies 

Similar technologies to FlyFly already exist, with different solutions being found to the 

problem of creating naturalistic stimuli. FlyFly itself was created in an effort to improve 

upon the VisionEgg software (Henriksson 2010a). However, using trajectories from 

recorded flights in the wild is a different question. As will be outlined in 2.4. Trajectory 

Reconstruction and Flight Simulation, other studies have attempted to display 

reconstructed flights to insects, however, these had other limitations.  

One technology of note is GapFlyt, an autonomous flying vehicle which makes use of 

optical flow and parallax to detect holes. By taking pictures around a hole, and analysing 

which features appear to have moved more or less than others between pictures, the 

edges of a hole can be approximated (Ackerman 2018). In this way, visual information from 

the cameras provides closed-loop feedback to the motors, altering flight in real time. 

However, GapFlyt relies on textured features, and would not perform as well on walls 

painted white (Ackerman 2018). 

1.3. Research Objective 

As laid out in 1.1. Background, this project aimed to create a program that would simulate 

hoverfly flights given 3D data tracked from interactions recorded in the field. This 

simulation would run using the FlyFly visual stimulus program currently used in the Motion 

Vision Lab. 

The performance and hence validity of the created program would be evaluated by using 

the simulations to determine which interactions were and were not pursuits, based on the 

characteristics of the simulation.  
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By reconstructing interactions which may have been pursuits, target detection can be 

evaluated alongside optic flow. Depending on the direction of motion, optic flow may help 

or hinder target detection (Nicholas et al. 2018), and so this project will have a direct future 

application in research, with its resultant visual stimuli being planned to be used in 

electrophysiology.   

As a whole, small target detection, particularly in visual clutter, has applications in fields 

such as automation and defence, particularly in bio-inspired robotics. 
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2. Literature Review

A literature review was conducted using the Google Scholar, ScienceDirect, PubMed, and 

IEEE Xplore databases to search for articles investigating tracking insect flight in three 

dimensions, modelling insect flight for the purposes of biomimicry, and otherwise 

characterising insect flight behaviours. The review also searched for articles regarding 

simulating flight, reconstructing trajectories from discrete points, estimation of heading, 

displaying optic flow, insects’ ability to detect targets in background clutter, and general 

hoverfly behaviour.  

As a result, this literature review has been divided into seven sections, according to the 

order in which the project considered these areas. First, the tracking of flight in three 

dimensions was investigated, in particular comparing different experimental setups. Next, 

hoverfly behaviour was explored, in an effort to find elements that could be used in 

determining a strategy for flight control. Third, this was expanded upon in flight 

characterisation and modelling. In the fourth section, reconstruction of trajectories was 

investigated, in order to consider alternative methods to flight simulation. Fifth, display of 

optic flow was investigated, considering different methods of doing so. The sixth section 

looks at insects detecting targets in cluttered backgrounds, again to look for elements to 

include in a flight control strategy. Finally, the main focus of this project, heading 

estimation, was considered. Machine learning was also investigated.  

2.1. Tracking Insect Flight 

To obtain the data to be used as input in this project, two cameras were set up orthogonally, 

allowing the centre of mass of each insect to be mapped in three dimensions (Thyselius et 

al. 2018). For each two-insect interaction, the positions of the insects were recorded as a 

set of XYZ-coordinates, isolated at each frame. This experimental setup was very similar to 

that used in other studies, and in particular followed previous work done by Wardill et al. 

(2017).  

However, unlike other studies, the experimental setup from whence the data was obtained 

could not enable the orientation of the insects’ bodies nor their heads to be determined 

(Geurten et al. 2010; Geurten, Kern & Egelhaaf 2012; Golding, Ennos & Edmunds 2001; van 

Hateren et al. 2005). This was due to the low resolution of the footage obtained and the 

highly textured surroundings, meaning at times the hoverflies were unable to be identified 

by the image processing software (Thyselius et al. 2018).  

Olberg, Venator, and Worthington (2000) simplified measuring body orientation by 

characterising interactions in a plane perpendicular to the axis of the camera lens, allowing 

angles to be used to describe the orientation of the insects’ bodies. However, this could 

only be done when the insects flew roughly at right angles to the camera. 

Other studies overcame this problem in different ways. In order to be able to identify body 

orientation during flight, Geurten et al. (2010) utilised an experimental setup in which one 

camera filmed hoverflies from above, in addition to another camera filming from the side. 

Similarly, Boeddeker, Kern & Egelhaaf (2002) used one camera recording from the side and 
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another from the bottom, orthogonally oriented, to capture body orientation. Although 

not in insects, Eckmeier et al. (2008) used a one camera above, one camera from the side 

setup to record the movements of finches in three dimensions. In each of these 

experiments, aligning the two cameras orthogonally, as opposed to a simple angular offset, 

was necessary to identify the orientation of the animals’ bodies in 3D space, not simply 

position.  

In those studies, however, this was made possible by the animals being observed within 

cages of various sizes, constraining the area in which they were able to fly, unlike the data 

provided which was recorded outdoors. Alternatively, some setups made use of a uniform 

background, in order to improve contrast. Additionally, the method used in the experiment 

done by Thyselius et al. (2018) was deliberately chosen to be easy to set up and calibrate, 

in order to be able to be used in a wide range of settings. As this data was gathered in the 

wild, as opposed to within a constrained area, the interactions should therefore more 

closely resemble truly naturalistic behaviour, and thus when used as stimuli should be 

more naturalistic, in turn evoking a more naturalistic response.  

As outlined in 1.1. Background, the orientation of an animal’s head is involved in 

controlling its gaze, and as a result affects its perceived optic flow (Boeddeker et al. 2005; 

Eckmeier et al. 2008; Geurten, Kern & Egelhaaf 2012; van Hateren et al. 2005; Lindemann 

et al. 2003; Tammero & Dickinson 2002). If the orientation of the head cannot be tracked 

in flight, the body orientation can be used to approximate the orientation of the head 

instead (Boeddeker et al. 2005; Tammero & Dickinson 2002). To overcome the limitation 

of having no information on head orientation, it was assumed that the insects faced 

straight ahead in the direction of flight, with the concession that this assumption would 

likely not hold outdoors, and that the reconstructed optic flow would not be completely 

true to life (Boeddeker et al. 2005; Tammero & Dickinson 2002). This assumption was 

based on the fact that both Calliphora vicina blowflies and Drosophila melanogaster fruit 

flies face in the direction of flight for the majority of cruising flight.  

In the other aforementioned experiments, the resolution of the images obtained from the 

orthogonally oriented cameras was high enough to determine the orientation of the head 

in addition to the body (Geurten et al. 2010; Geurten, Kern & Egelhaaf 2012; Golding, 

Ennos & Edmunds 2001). Instead of using a camera to track the head position of blowflies, 

van Hateren et al. (2005) used a slightly different approach, measuring voltages induced 

by magnetic coils embedded in the blowflies’ heads to track their positions relative to the 

cage in which they were filmed flying. As a result, trajectories could be established for not 

just the body but also the head, subsequently describing exactly the path taken by the 

animal, and its heading along that path. Goulard et al. (2015) also achieved this, using a 

high-resolution camera and a uniform background to track natural markers on the head of 

the insect and thereby determine its orientation. 

In order to demonstrate that naturalistic stimuli could be created from trajectories lacking 

information on head orientation, van Hateren et al. (2005) reconstructed a set of 

trajectories with head orientations and one without. The article referenced Collett and 

Land’s landmark 1978 paper on hoverflies, which did not record in three dimensions, 
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determining only body position and rotation in the pitch axis. Similarly, although Golding, 

Ennos, and Edmunds (2001) used a camera from above, body positions were recorded in 

only two dimensions, allowing for the construction of flight paths but with no information 

on altitude or body orientation. Van Hateren et al. (2005) noted that naturalistic stimuli 

could be created from trajectories like these, but that any flight that included sequences 

of sideward translation would lead to the generation of sideward optic flow. Hence, 

operating on the assumption that the direction of gaze does not differ from the direction 

of body orientation would lead to an unrealistic flight trajectory, and in turn an inaccurate 

flight simulation.  

Although it is fallacious to assume that the head position of an insect can be used to infer 

its body position (Olberg, Worthington & Venator 2000), with some smaller insects, head 

orientation is tightly coupled to body orientation (Land 1992). However, in this project the 

head position will be estimated independently of the body position, thus making no 

assumptions about the coupling of body orientation to head position. 

2.2. Hoverfly Behaviour 

Pursuing prey is not the only motivation for insect pursuit flights; both dragonflies and 

hoverflies pursue members of their own species, termed ‘conspecifics’ (Land 1992). Pursuit 

of conspecifics usually entails males chasing females in order to mate. When pursuing 

females, male hoverflies use an interception strategy, aiming ahead of the female (Olberg, 

Worthington & Venator 2000). In interception, the image of the prey on the pursuer’s 

retina is held at a constant angle offset from straight ahead, which has the effect of 

minimising the drift of the retinal image of the prey (Olberg, Worthington & Venator 2000). 

When in pursuit, male hoverflies and dragonflies pursue targets from below and behind, 

fixating their targets in the dorso-frontal visual field (Nordström & O’Carroll 2009). By 

doing so, the target can generally be visualised against the open sky, improving contrast. 

This behaviour correlates with the fact that male hoverflies have a region in their field of 

view wherein light capture is increased, termed the “acute zone” or the “bright zone” 

(Nordström & O’Carroll 2009; Straw, Warrant & O’Carroll 2006). This adaption possibly 

improves contrast of targets in this region, and male hoverflies keep females fixated in this 

zone when in pursuit (Straw, Warrant & O’Carroll 2006).  

Hence, trajectories that result from male hoverflies chasing females would be expected to 

show the target being kept in the upper-frontal part of the display.  

2.3. Characterising and Modelling Flight 

In order to characterise and model the complex flight behaviour of hoverflies, numerous 

studies have attempted to break it down into simpler pieces. The same approach has been 

taken in describing other types of complex motion, such as defining the movements of 

mice in terms of simple sequences that occur often, recognising movements that make up 

sign language, as well as in building locomotion from small movements (Braun, Geurten & 

Egelhaaf 2010; Geurten et al. 2010).  
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The flight of many species of flies, as well as that of birds and bees, has been shown to 

consist of short fast turns, called saccades, and segments of non-turning flight in between 

(Boeddeker et al. 2005; Eckmeier et al. 2008; Geurten et al. 2010; Geurten, Kern & Egelhaaf 

2012; van Hateren et al. 2005; Tammero & Dickinson 2002). Geurten et al. (2010) further 

classified the flight of hoverflies into nine ‘prototypical movements,’ which form basic 

building blocks to describe flight sequences. Braun, Geurten, and Egelhaaf (2010) also were 

able to classify blowfly flight into nine prototypical movements.  

As outlined previously, the heading of the insects will have to be estimated in order to 

provide an accurate simulation of the original flight. With the paths of motion provided in 

the three-dimensional position data, the prototypical movements and the transition 

probabilities between these prototypical movements can be used to better inform the 

estimated heading throughout the flights. Figure 2.1 shows the prototypical movements 

determined for hoverflies.  

Figure 2.1: Prototypical movements determined for a hoverfly (Geurten et al. 2010). Left: 

a diagrammatic representation of the colour-coded prototypical movements. Right: a 

schematic explanation of the terms of reference for the colour coding. 

Geurten et al. (2010) found their hoverfly prototypical movements applied largely 

equivalently in two different sizes of flight arenas. Boeddeker et al. (2005) also found that 

blowflies exhibited the same flight styles whether confined in a cage or observed in the 

wild. Geurten, Kern, and Egelhaaf (2012) compared the data from Geurten et al. (2010) 

and Braun, Geurten, and Egelhaaf (2010), concluding that hoverflies and blowflies both 

separated flight into saccades and straight flight, and that the optic flow during saccades 

was similar for both species. Despite this, the optic flow in straight flight was very different 

between the two species. As a result, blowfly movement sequences cannot be used to 

characterise the flight of hoverflies, but those of hoverflies can.  

Although these prototypical movements were initially promising for this project, they rely 

on knowledge of the heading of the insect. Instead of assigning a prototypical movement 

Images removed due to copyright restriction.
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to a section of flight based on its heading, it is perhaps possible to instead use a distribution 

of prototypical movements over the entire flight. The heading could then be determined 

to match that section of flight to the prototypical movement, but this will have to be 

explored in further work.  

2.4.  Trajectory Reconstruction and Flight Simulation 

The stimuli displayed to insects under study classically has consisted of either moving 

stripes or moving dots. Prior to the advent of these stimuli being generated electronically, 

these stimuli were the only stimuli able to be generated mechanically. The aim of this 

project is to produce a stimulus that will be more naturalistic than these simple illusions of 

motion.  

Displaying a reconstruction of flight to hoverflies as a stimulus has been attempted before 

(Boeddeker et al. 2005; Geurten, Kern & Egelhaaf 2012; van Hateren et al. 2005; 

Lindemann et al. 2003; 2008; Tammero & Dickinson 2002). However, with the exception 

of Boeddeker et al. (2005), the insects from which these simulations were reconstructed 

were filmed flying in cages. As a result, the reconstructed flights could only show the 

interiors of the cages in which they were filmed. Boeddeker et al. (2005) were able to film 

blowflies outside, but due to the physical limitations of the camera setup, the video could 

only be replayed at 1 frame per second. This is well under the temporal resolution of fly 

vision, and had the effect of over-exaggerating the motion of the background surroundings. 

Thyselius et al. (2018) recorded hoverflies outside at 120 frames per second, and so this 

problem would not be present in the data provided. However, it must be noted that for 

different experimental setups, different display frequencies may be used for stimuli, and 

so the final product must be able to be resampled to match the display.  

As has been outlined previously, in order to simulate flight, the original trajectory and 

heading must be established from the data provided, which consists in this case only of 

points in three-dimensional space. This is certainly possible, as shown by O’Neill (2000), 

who used only the position and acceleration data from a flight recorder to accurately drive 

a helicopter flight simulator.  

In order to create a realistic simulation, a realistic path must be constructed between the 

positional points. Al-Jarrah and Hasan (2009) investigated a method for an unmanned 

aerial vehicle to plan a flight path between 3D waypoints in real time, making reference to 

Dijkstra’s algorithm. This algorithm is used to find the shortest path between points, and 

may be useful in establishing a baseline path that can be adjusted according to the 

movements realistically available to the hoverflies to create a path through the points.  

For direct applicability to hoverfly flight, the prototypical movements mentioned in 2.3. 

Characterising and Modelling Flight, found by Geurten et al. (2010), would be the main 

basis for adjusting the path flown by the hoverflies. Geurten et al. (2010) established a 

Markov model for the hoverfly movement sequences, which is a set of discrete states and 

the probabilities of transition between those states (Wallisch et al. 2014). By creating a 

Markov model, it is then possible to apply the Viterbi algorithm, used to determine the 
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most probable path through the Markov states taken to generate a set of observed outputs 

(Wallisch et al. 2014).  

Both Markov models and the Viterbi algorithm are straightforward to implement in 

MATLAB, but simple Markov models may not describe the system fully. Hidden Markov 

models are extensions of simple Markov models that describe the probability of each state 

not only transitioning between states, but also of outputting multiple possible outputs, 

and are able to model systems more comprehensively (Wallisch et al. 2014). These hidden 

Markov models can then be refined using the Baum-Welch algorithm to determine each 

state’s probability of output. In this way, the Markov model provides a method to not only 

describe the reconstructed flight sequences but also measure their accuracy.  

For this project, the observed outputs would be the three-dimensional positions recorded 

by Thyselius et al. (2018). A Markov model could be constructed using the states and the 

transition probabilities from Geurten et al. (2010). The Viterbi algorithm and the Baum-

Welch algorithm would then be applied to estimate the most probable path taken by the 

hoverfly to pass through those points, also giving an estimation of the heading between 

the points. This information could then be used to construct a simulation.  

Geurten et al. (2010) made a comparison between the prototypical movements and 

transition probabilities to words and the grammar connecting those words in natural 

language. In this project, the data provided gives only the words, and the grammar from 

established literature will have to be applied in order to make meaningful sense of the 

story. 

2.5. Display of Optic Flow 

If the simulations are to be displayed in real-time, as captured by Thyselius et al. (2018), 

they will appear very fast to the human eye. For comparison, dragonfly pursuit flights were 

found to have an average duration of 184 ms, calculated from the point where pursuit was 

commenced to capture (Bagheri et al. 2015). The simulations from this project can be 

expected to last only a few seconds, and display motion at a very fast rate. 

Reproducing naturalistic visual stimuli in an experimental setting is complicated, as existing 

visual displays are limited in terms of the naturalness of the stimuli they can be used to 

display (Dyakova & Nordström 2017). In order to evaluate insect vision in the natural world, 

the natural world must first be able to be displayed. LED arenas, commonly used to display 

optic flow, have sufficient temporal resolution, however, their spatial resolution is 

generally too low for the optical resolution of hoverflies (Dyakova & Nordström 2017). The 

spatial resolution of LED arenas depends on the size of the LEDs used in construction, which 

generally ranges between 2 and 4 degrees in diameter (Henriksson 2010a). Hoverfly eyes 

have a spatial resolution of 1 to 2 degrees, which can be approximated as the width of a 

thumb at arm’s length (Henriksson 2010a; Nordström, Bolzon & O’Carroll 2011).  

The temporal resolution of hoverfly vision is more than double that of a human’s, at about 

125 Hz compared to around 50 (Henriksson 2010a). Temporal resolution can become an 

issue when the motion between two successive images in an animation is too large, 
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thereby appearing jerky (Henriksson 2010a). One way to combat this is to use motion blur 

between the two positions, effectively smoothing the motion by reducing the change 

between frames (Henriksson 2010a). This feature is not implemented in FlyFly at present. 

Bagheri et al. (2014b) used a cylindrical arena to display simulated motion of a target 

against a static background. The insect was able to pursue the target within the arena, with 

the target being manipulated to not collide with the walls of the arena. The target was also 

manipulated such that it would not be lost from view each time it turned (Bagheri et al. 

2015). This would artificially force the target to remain in the field of view at all times. Not 

only was the target’s position maintained within the viewport of the camera, rotations 

were also performed in order to keep the target fixated no more than 5 degrees from the 

centre of the frontal field of view (Bagheri et al. 2015). As a result, the target was always 

near the centre of vision. 

2.6. Target Detection in Visual Clutter 

Dipteran target-selective descending neurons (dTSDNs) are unresponsive to targets 

moving in visual clutter, unless the background meets certain requirements (Nicholas et al. 

2018). Diptera is the order to which hoverflies, blowflies, and fruit flies – among other flies 

– belong. Naturalistic backgrounds suppress the responses of dTSDNs, and hence dTSDNs

are responsive to backgrounds with un-naturalistic spatial characteristics (Nicholas et al.

2018). Additionally, if the background is perceived to be moving slowly or in the opposite

direction relative to the target motion, dTSDNs will respond.

It is suggested that the unresponsiveness of dTSDNs to target motion in the same direction 

as that perceived to be of the background is due to the rarity of this occurring in actual 

target pursuits (Nicholas et al. 2018). For target motion and perceived background motion 

to be in the same direction, the observer must be turning away from the target, causing 

the background to appear to move in the opposite direction.  

By hovering, the perceived background motion due to self-motion is minimised, 

maximising the dTSDN response, and so hoverflies often detect their targets whilst in a 

hovering flight pattern (Nicholas et al. 2018; Nordström & O’Carroll 2009).  

In addition to TSDNs, small target motion detector (STMD) neurons have been described 

in hoverflies, which exhibit strong responses to the motion of small targets against 

backgrounds with visual clutter (Nordström, Bolzon & O’Carroll 2011). These STMDs 

exhibit an ability to track targets moving in non-continuous paths until the interruption is 

higher than a threshold of approximately 7 degrees (Nordström, Bolzon & O’Carroll 2011). 

Additionally, neuronal response was found to build up as targets moved along continuous 

trajectories (Bagheri et al. 2015). In contrast to TSDNs, some STMDs respond to targets 

even when they move without a velocity relative to the background (Nordström & 

O’Carroll 2009). Pursuits that failed to end in capture were found to be generally due to 

inadequate target detection rather than unsuccessful pursuit (Bagheri et al. 2014a). 

If a hoverfly were able to perfectly follow the motion of its target, keeping the image of 

the target perfectly in the centre of view, the target would not be perceived to move at all 
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(Nicholas et al. 2018). Instead, the background would continue to be perceived to move. 

In order to investigate this hypothesis, reconstructed target pursuits can be replayed. 

2.7. Heading Estimation and Machine Learning 

In order to determine the heading of the hoverflies, their 3D orientation (in addition to 

their position) can be estimated. This combination of 3D orientation and position is 

referred to as pose, and pose estimation is a widespread challenge for computer vision. 

Pose estimation is used in automated industrial picking, human feature detection, and 

autonomous vehicle egomotion estimation, visually informing the vehicle of its own 

motion.   

For ground vehicles, egomotion estimation techniques make use of the limited degrees of 

freedom to specify three-dimensional movement as a combination of forward translation 

and side-to-side yaw (Angelopoulou & Bouganis 2014). This is insufficient for aerial motion, 

where translations and rotations alike can be performed in three dimensions, with six 

degrees of freedom. When using optic flow to determine self-motion, avoiding rotational 

motion can simplify the estimation of linear velocity from translational motion (Raudies 

2013). Hence, heading becomes the direction of linear velocity, disregarding rotational 

motion (Raudies 2013).  

Estimating 3D pose from a single image is inherently an under-constrained problem, as 

many 3D poses can project to the same image (Arnab, Doersch & Zisserman 2019). 

Similarly, the same object projects different silhouettes according to its pose (Liu et al. 

2012). With the data provided, the ground truth of the pose of the insects was not available, 

even given the video footage. Liu et al. (2012) circumvented the absence of ground truth 

by comparing the pose estimated from all eight cameras used with poses estimated from 

differing numbers of cameras, hence estimating the ground truth itself.  

With a 3D model of a textured object, feature points can be matched between the model 

and images to estimate the pose of the object in the image (Mitash, Boularias & Bekris 

2019). However, this requires good lighting conditions and a 3D model of the object. When 

pose estimation is performed for industrial parts, 3D CAD models are usually readily 

available, and when not already existing, the number of identical parts processed lends to 

easy and accurate model acquisition (Liu et al. 2012). In this case, 3D models are neither 

already existing nor readily available for Eristalis tenax hoverflies, let alone the other 

species of insects that were participants in the filmed interactions.  

In the field of human pose estimation, most existing datasets were collected in constrained 

lab environments, with uniform lighting, background, and viewpoints (Yang et al. 2018). In 

the context of this project, none of these characteristics are exhibited by the data. The 

data is instead typical of “in the wild” footage, with features such as occlusion, poor 

lighting, and motion blur (Arnab, Doersch & Zisserman 2019). Most pose estimation 

algorithms, particularly those trained on uniform datasets, fail to estimate pose in the wild 

(Arnab, Doersch & Zisserman 2019). 
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An alternative method to quantitative 3D pose estimation is ordinal depth assignment. By 

specifying which of two key points on an object is in front of the other, the relative depth 

ordering of each of the key points selected for an object can be assigned (Arnab, Doersch 

& Zisserman 2019). In this way, a 3D pose for the object can be estimated. 

Access to a large training dataset helps to both speed up an algorithm’s learning, as well 

as improve its applicability to testing data (Liu et al. 2012; Ukita & Uematsu 2019). When 

a large dataset is used, however, this data must be labelled, which requires a significant 

amount of manual effort (Kawana et al. 2018; Mitash, Boularias & Bekris 2019). An 

alternative is to use synthetic data, however, there is an inherent difference between the 

theoretical examples synthesised as training examples and real-world testing data (Mitash, 

Boularias & Bekris 2019).  
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3. Application and Implementation

3.1. Project Management 

Originally, this project was planned for completion in May 2019. However, due to the 

limitations of the project, in particular those of the data, there were many challenges. 

Initially, all of the elements described in the literature review were to be included, such as 

using prototypical movements and transition probabilities to validate heading estimations 

by measuring distributions of prototypical movements. However, the prototypical 

movements could not be determined without assigning a local coordinate axis to the fly, 

which in turn required an estimate of the heading. 

Machine learning was also considered, in particular the use of computer vision. This was 

in fact attempted, with considerable time spent trying to label at least the orientation of 

visible hoverflies in the video footage. Ultimately this did not produce fruitful results.  

Path planning, using flight dynamics in combination with behavioural studies, was also 

originally desired. Ideally, a flight strategy was to be developed, determining the heading 

most likely used to traverse between two successive data points.  

These additional requirements led to scope bloat, pushing the endpoint of the project out 

to October 2019. Determination of pursuit was added at this point in order to simplify the 

project, removing these additional complicating features. 

When reviewing the literature, there were even further methods that were found that 

could prove useful, but these must be explored in future work.   

3.2. Aims and Specifications 

The specifications for the end product of this project were quite straightforward. First, the 

program must accept the datasets provided by Thyselius et al. (2018) as input. The user 

must be able to select which of the two participants they wished to be the observer, and 

the other would thus be the target.  

The output of the program would be a simulation of the recorded flight as would have 

been experienced by the insect itself. It was also specified that the program should be as 

straightforward to use as the existing software, and provide similar functionality, such as 

allowing for experimental variation.  

One key specification was that the program must allow the user to adjust the output of the 

program, as they may have additional information or knowledge.  

3.3. Deliverables and Requirements 

The main deliverable of the project is the program itself, with the specified input, output 

and functionality as described above. It was established as a further requirement that data 

produced by the program should be saved for future use, and that the program should 

integrate with the FlyFly environment. 
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4. Methods

Initially, computer vision was investigated as an option for estimating the heading of the 

hoverflies. As the data consisted not only of the 3D trajectories but also the video 

recordings of the interactions, it was proposed that the videos could be used as a ground 

truth to be used to evaluate the accuracy of the heading estimation from the trajectories. 

However, as illustrated in Figure 1.1, and outlined in 2.1. Tracking Flight and 2.7. Heading 

Estimation and Machine Learning, the resolution of the videos did not allow for the 

tracking of multiple points on the bodies of the insects. Indeed, even tracking the centre 

of mass of the insect was not a straightforward task, for both the computer and the user. 

Johnson and Everingham (2010) were able to crop and scale labelled body parts in their 

experiments so that they were all roughly 180 pixels in length. In some parts of the videos 

for this project, however, the insects are indistinguishable from the background, and are 

only a few pixels in size. As a result, there was no way a point cloud could be registered to 

represent a model of the insect’s body and thus determine its orientation. 

The use of a visually uniform background facilitates object detection and tracking. The 

more different the colour of the background to the objects that are to be tracked, the less 

difficulty there will be differentiating between object and background (Acosta 2010). 

However, it is considered too restrictive for a general system to use a plain background, 

and algorithms trained on plain backgrounds will not be able to perform in natural 

situations (Acosta 2010). As the data used in this project was collected in the wild, the 

background present is naturally visually cluttered.  

4.1. Data Validation and Pre-Processing 

Firstly, the data had to be pre-processed to ensure it was valid. The original 16 datasets 

provided were uniformly in .mat format, with the 3D positions through the duration of 

the interaction given as a two-matrix cell. These matrices were of the same length, each 

having three rows. These rows specify the X-, Y-, and Z-coordinates, respectively, at each 

frame for each participant. Figure 4.1 shows part of a typical dataset. 

Figure 4.1: The first few elements of a typical, valid, dataset. Above: matrix 1 of the two-

matrix cell. Below: matrix 2 of the two-matrix cell. 
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At this stage, the dataset must be valid: it must be a two-matrix cell, with each matrix being 

the same size and having three rows. This is to ensure that there is XYZ data for both of the 

two participants over the entire interaction. For the purposes of this project, data that was 

deemed to be invalid was discarded. However, in future, the user should have the ability 

to edit invalid datasets. This could entail the program extrapolating from the present data 

in order to fill the gaps. As in 3.2. Aims and Specifications, the user must always retain 

control over how the data is adjusted. 

A further 90 datasets were provided for analysis over the course of the project. When 

preparing the 106 datasets, 16 were found to be invalid. Datasets were given an ID 

according to the order in which they were taken from each individual folder of recordings. 

Each dataset is from a separate instance, however, some datasets come from different 

points in the same recording. Table 4.1 lists which datasets were invalid. 

Table 4.1: Datasets found to be invalid during pre-processing. These invalid datasets are 

invalid as they do not consist of two matrices. 

ID of invalid dataset 

001 

002 

003 

007 

037 

038 

039 

040 

041 

046 

074 

075 

076 

077 

078 

079 

These datasets were unable to be used for the purposes of this experiment. Again, 

however, in future these datasets should be able to be edited and used in simulation. The 

validation code additionally relies on the imported dataset being of a specific format.  For 

future use, this will have to be rectified in case datasets of different origin are used. If the 

datasets are deemed invalid, the program does not proceed.  

4.2. Trajectory Reconstruction and Heading Estimation 

After choosing the dataset to be processed, the user is able to specify which participant is 

to be used as the basis of the reconstruction. There are competing systems for how to term 
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the two participants – e.g. target and pursuer (Olberg, Worthington & Venator 2000; 

Wardill et al. 2017), occupant and challenger (Thyselius et al. 2018), fly A and fly B. In the 

context of this program, observer and target are used. In this sense, the observer is the fly 

to whom the stimulus will be displayed. The target is the fly whose motion will be displayed 

relative to the observer’s own position. The user selects this by specifying which matrix (1 

or 2) represents the observer, with the other matrix representing the target. 

It is also important to highlight the difference between motion and position. The datasets 

provide information on only the positions of the observer and target at discrete points in 

time. The direction of motion between those positions can only be inferred from the data 

points given. For this project, direction of motion was taken to be the straight line between 

position data points. 

In a similar vein, the heading through the flight must also be inferred. The frequency at 

which the data points were captured is important to determining the direction of motion 

and heading, as well as to the accuracy of the simulation. The user is given the ability to 

specify this frequency, although Thyselius et al. (2018) claim the sampling frequency of the 

3D position data to be 120 s-1. However, it should be noted that 120 Hz is below the upper 

temporal resolution limit of flies (Fry et al. 2008; Henriksson 2010a), and so ideally a higher 

capture frequency would be preferable.  

The intention of this code is to provide an informed estimate of the heading of the observer, 

in order to accurately reconstruct the optic flow and the target motion. From there, the 

flight from the perspective of the observer can be simulated. 

FlyFly uses gluPerspective in its 3D projection algorithm, which makes the assumption that 

the user is positioned directly in front of the screen, facing perpendicular to it, and looking 

directly at the centre of the screen (Kooima 2008). In more general terms, perspective 

projection requires the viewing point to lie on a coordinate axis intersecting with the view 

plane (Power 1996). 

In its current state, the code aligns the observer’s heading with either the observer’s 

direction of motion (‘DOM’) between position coordinates, or the straight line (line of sight, 

‘LOS’) between the observer and target at each position coordinate. In future, an algorithm 

will be added to the program that will use the trajectory to estimate the heading. 

An ID was assigned to the resultant trajectory, depending on the method used to generate 

it. If matrix 1 was selected as the observer, obs0, representing a value of 0 for the 

observerFlag variable, used throughout the code, was appended to the ID. Similarly, 

if matrix 2 was selected as the observer, obs1 was appended to the ID. Then, if the 

direction of motion method was used to rotate the heading, dom was further appended to 

the ID. Otherwise, los for line of sight was appended. Hence, as an example, if matrix 1 

in dataset number 043 were selected as the observer, and the line of sight method was 

used to rotate the heading, the resultant ID would be 043obs0los. 

By rotating the observer’s estimated heading to the Z-axis, the coordinate axes for the 

simulation are also rotated such that the aforementioned perspective projection 
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requirements are met. 3D motion is then displayed as if a camera were attached to the 

observer through its flight, with forward motion displayed along the (negative) Z-axis. 

Figure 4.2 illustrates the process of rotating the coordinate axes in order to display flight 

from the perspective of the observer. 

Figure 4.2: Rotating the observer’s heading to look directly at the screen. 

As illustrated in Figure 4.2, the same rotation applied to the observer’s heading is also 

applied to the target’s relative positions. For the code used in 4.1. Data Validation and Pre-

Processing and 4.2. Trajectory Reconstruction and Heading Estimation, see Appendix A. 

Code. 

4.3. Simulation 

As of present, the code prints the relevant data to CSV to be imported into the 3D Target 

and Starfield FlyFly stimuli. For illustration, Figure 4.3 shows how the data is ready from 

the code, but has to be input into the 3D Target stimulus. 

Figure 4.3: Data from the code ready to be input into the 3D Target stimulus, which has to 

first be initialised (Henriksson 2010b).  

Image removed due to copyright restriction.
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However, this involves changing the working directory if the stimulus code is located in a 

different folder to the FlyFly directory, opening up the layer manager, and inputting the 

appropriate number of trials. The user must then copy the data from each of the 

spreadsheets into FlyFly. 

A far more convenient solution would be to have a stimulus accessible from the FlyFly main 

menu, that imports the data from the CSVs directly without needing extra setup. This must 

also retain the option of including background optic flow, which can presently be done by 

using the 3D Target stimulus alone sans Starfield. Including the code as a FlyFly stimulus 

would also then allow the capture frequency to be set as a stimulus setting, without 

requiring prompting every time the code is run.  

It is also important to note that in display of the background optic flow, simultaneous 

rotations are prohibited. This is due to the mathematical implementation of rotation 

within the code, and changing this method would allow for simultaneous rotations. 

It was noted that any rotation can be decomposed into a sequence of rotations about the 

three orthogonal axes (Liu et al. 2012), however, for the purposes of display, rotation was 

cut to only about one axis. It was decided that yaw would be used for changes in X, 

alongside lift and thrust for changes in Y and Z respectively. This is in line with hoverfly 

flight exhibiting yaw saccades (Geurten & Egelhaaf 2010; Land 1992). As a result, the 

reconstructions feature mainly translational optic flow, with some rotational components. 

Another point to note is that the rotations used to align the heading with the z-axis are not 

physical rotations, and so do not produce rotational optic flow. These are mathematical 

rotations. 

As the drawing uses the 3D Target and Starfield stimuli, the culling and clipping criteria 

apply. Off-screen targets are not drawn, nor are targets too close to the screen. This is a 

result of the glFrustum algorithm used in 3D projection. Objects that are too far away are 

clipped as they would otherwise be indistinguishable (Power 1996). This limit is set in the 

code, at 200 cm. Additionally, objects behind or too near to the eye are clipped (Power 

1996). Again, this limit is set in the code, but also depends on the resultant dot size. This is 

in turn a factor of the graphics card used, and the limit set in the code is 6 cm. This also 

takes into account the standard experimental distance of the fly from the screen at 7 cm, 

although this too can be adjusted in the code. 

For the purposes of this experiment, a variable was recorded to keep track of when the 

target would have been visible to the observer, ignoring the culling and clipping algorithms. 

This does not take into account the actual visual capabilities of the insect, considering 

hoverfly eyes can only resolve between 1 to 2 degrees (Henriksson 2010a). A dot of radius 

1 cm, the default minimum dot size, at 200 cm, the default far clipping plane, would 

subtend an angular size of approximately 0.6 degrees, and so would be indistinguishable. 

Hence this method is only an approximation for foveation. 
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4.4. Determination of Pursuit 

Pursuit is not clearly defined. Gibson (1957) defines pursuit as being the process of 

maximising the optical size of a target in the observer’s field of view. On this basis, the 

target visibility variable recorded in 4.3. Simulation was used as a factor in determining 

whether or not an interaction was a pursuit. When chasing a target moving at speed, 

animals can either follow at a higher speed in order to catch up, or attempt to intercept 

the target’s path (Fabian et al. 2018).  

Male hoverflies use a deviated pursuit strategy when chasing females, maintaining the 

perceived target position at a constant non-zero angle from straight ahead (Fabian et al. 

2018). Hence, simulations based on data taken from male hoverflies pursuing females 

should show the observer attempting to keep the target at a constant non-zero angle from 

straight ahead.  

Pursuit was determined according to the footage of the interactions, giving a simple 1 or 0 

for likely to be a pursuit or not. The MATLAB Regression Learner toolbox was then used, 

with input as the proportion of the interaction that the target was visible, along with the 

number of frames between the target being visible. The target speed was also used as a 

factor, as this was calculated from the relative distance between the observer and target.  

The average change in target speed was used to represent the change in distance between 

observer and target from frame to frame, and so a more negative number would suggest 

an overall closing of distance. 44 of 344 datasets were chosen at random as test sets, with 

the remaining 300 datasets left as training sets, giving a ratio of test sets to training sets of 

0.147. 
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5. Results

As outlined in 4. Methods, 16 of the 106 datasets were invalid and so could not be further 

processed for testing. Similarly, after processing datasets to prepare input for the 

simulation, 52 of the 360 processed trajectories contained not-a-number (‘NaN’) values. 

These NaN values cause the simulation to crash as they are unsupported in cells in MATLAB, 

and so they were edited out of the trajectories, skipping frames with NaN values. 

The simulations were still run with these trajectories, and the data recorded as if the 

trajectories were unedited. Table 5.1 lists the trajectories that had NaN values edited. 

Table 5.1: Trajectories from which NaN values were removed in order to allow the 

simulation to not crash. 

ID of trajectory containing NaN value 

008obs0dom 

009obs0dom 

010obs1dom 

013obs0dom 

014obs0dom 

014obs1dom 

017obs1dom 

019obs0dom 

020obs1dom 

021obs1dom 

022obs1dom 

023obs0dom 

024obs1dom 

025obs0dom 

026obs0dom 

028obs0dom 

030obs0dom 

031obs0dom 

036obs1dom 

045obs0dom 

049obs1dom 

051obs0dom 

053obs0dom 

054obs0dom 

057obs0dom 

058obs0dom 

061obs0dom 
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ID of trajectory containing NaN value 

062obs0dom 

064obs1dom 

067obs0dom 

068obs0dom 

085obs1dom 

088obs0dom 

090obs0dom 

091obs0dom 

092obs0dom 

093obs0dom 

094obs1dom 

095obs0dom 

096obs0dom 

097obs0dom 

099obs0dom 

100obs0dom 

102obs0dom 

102obs0los 

102obs1dom 

103obs0dom 

103obs1dom 

104obs1dom 

105obs0dom 

105obs1dom 

106obs0dom 

In addition to these 52 trajectories that could be edited, there were 12 more trajectories 

that consisted entirely of NaN values. The simulation could not be run at all using these 

trajectories, hence they were deemed invalid. These, too, were discarded. It is unclear 

what caused these trajectories to contain NaN values, and even more unclear what caused 

the 12 trajectories to be entirely invalid. Table 5.2 lists the trajectories that consisted 

entirely of NaN values. 
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Table 5.2: Trajectories that were deemed invalid as they consisted entirely of NaN values. 

ID of completely invalid trajectory 

044obs0dom 

044obs0los 

044obs1dom 

044obs1los 

084obs0dom 

084obs0los 

084obs1dom 

084obs1los 

087obs0dom 

087obs0los 

087obs1dom 

087obs1los 

As a result, only 348 trajectories could be used in simulations. Of these, 296 were unedited. 

However, although the datasets were valid for simulation, 70 of 348 trajectories resulted 

in the simulation encountering an error. These errors occurred at the end of the simulation, 

and seemed to be only an error in counting the number of frames dropped in simulation, 

although the cause is again unclear. Hence, these trajectories were also used in analysis, 

but tagged as having failed. Table 5.3 lists the trajectories which led to a failed simulation. 

Table 5.3: Trajectories resulting in an error in simulation. 

ID of trajectory resulting in failed simulation 

004obs1dom 

005obs0los 

006obs0dom 

006obs0los 

010obs1los 

012obs1dom 

012obs1los 

014obs0dom 

015obs0los 

016obs0los 

019obs0los 

020obs0los 

020obs1los 

023obs0dom 

024obs0dom 

025obs1los 
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ID of trajectory resulting in failed simulation 

027obs1los 

029obs1los 

031obs0los 

032obs0los 

033obs0los 

035obs1dom 

035obs1los 

036obs0dom 

036obs0los 

042obs0los 

042obs1dom 

042obs1los 

043obs0los 

045obs1los 

047obs0dom 

050obs0dom 

050obs1dom 

053obs1dom 

054obs1dom 

055obs1los 

056obs1dom 

066obs1los 

069obs0dom 

070obs0dom 

070obs0los 

071obs1los 

072obs0dom 

081obs1los 

083obs0los 

083obs1dom 

092obs0dom 

092obs0los 

093obs0los 

093obs1dom 

094obs1dom 

094obs1los 

096obs1dom 

096obs1los 
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ID of trajectory resulting in failed simulation 

098obs1dom 

099obs0dom 

099obs1dom 

100obs0dom 

101obs0dom 

101obs0los 

102obs0dom 

102obs1dom 

102obs1los 

105obs0dom 

105obs0los 

105obs1dom 

106obs0dom 

106obs0los 

106obs1dom 

106obs1los 

At this point, all data had been collected from simulation. See Appendix B. Summary of 

Results for a full table of results.  

Kruskal-Wallis one-way ANOVA tests were then conducted on the datasets, to determine 

the homogeneity of the population. The first test considered the 348 datasets as a whole, 

and found it significantly unlikely that the datasets came from the same population (p < 

0.001). All subsequent Kruskal-Wallis tests found each of the considered datasets to be 

unlikely to come from the same population. These findings were all at p < 0.001 except for 

those testing datasets using the line of sight method for the observer being matrix 1 

(obs0los; vide 4.2. Trajectory Reconstruction and Heading Estimation). This finding was 

at p < 0.05. See Appendix C.1. Kruskal-Wallis for a fuller description of the results of the 

Kruskal-Wallis tests. 

However, Kruskal-Wallis tests for equality of medians, with the assumption made that the 

distributions were the same. With the null hypothesis being rejected, the medians were 

found to be unequal, hence the conclusion that at least one if not several of the many 

datasets considered did not come from the same population. 

For a more powerful analysis, Conover-Iman pairwise tests with Bonferroni correction 

were then used. When the entire dataset was considered as a whole, 627 of 58996 

comparisons were found to be significant, i.e. approximately 1.1% of datasets were found 

to significantly be unlikely to come from the same population.  

Comparisons within methods gave differing results. The direction of motion method found 

489 of 14706 (approximately 3.3%) comparisons to be significant, whereas the line of sight 

method found only 51 of 14706 (0.3%) comparisons to be significant.  
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In line with the finding from the Kruskal-Wallis tests that obs0los had the least 

significant rejection value of all comparisons, the Conover-Iman test found all of the data 

from this group to support the null hypothesis. Hence, this dataset can be said to be 

homogeneous. Because of this homogeneity in results from inputs that should be part of 

the same set, the method can be suggested to be consistent.  

In contrast, the direction of motion method applied to the same set of trajectories 

returned 98 of 3655 (2.7%) of comparisons as significant. For comparison, the same two 

methods applied to the observer as matrix 2 found 40 of 3655 (1.1%) and 185 of 3655 

(5.1%) respectively to be significant. When considering the group of trajectories where the 

observer was set as matrix 1 as a whole, 114 of 14706 (0.8%) were found to be significant, 

compared to the obs1 population, finding 324 of 14706 (2.2%) of comparisons to be 

significant. See Appendix C.2. Conover-Iman for the full results of the Conover-Iman tests. 

Overall, setting the observer as matrix 1 gave more consistent results regardless of method 

of heading estimation. That being said, all datasets are fairly homogeneous, with all except 

the obs1dom population having at least 95% supporting the null hypothesis.  

As outlined in 4.4. Determination of Pursuit, the MATLAB Regression Learner toolbox was 

used to model an algorithm for determining pursuit, based on the factors listed previously. 

See Appendix D. Determining Pursuit for a full table of the data supplied to the algorithm. 

The algorithm did not perform well, potentially due to the binary value of the output it was 

trying to predict. This will be discussed further in 6.1. Analysis. Of the four learning 

methods selected by the toolbox, linear regression had the lowest RMS error, of 0.49827. 

However, this is still very high. Figure 5.1 shows the response plot from the regression 

learner, with the supplied binary values of pursuit in blue, and the predicted values in 

yellow. 

Figure 5.1: Response plot from the regression learner. 
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As can be seen in the response plot in Figure 5.1, the regression learner was fairly 

conservative, with most of its responses sitting around the median of 0.56. In fact, when 

the algorithm was applied to the 44-member test set, none of the values were below 0.5, 

as shown in Table 5.4. This meant that rounding could not be used to differentiate between 

what it had decided was a pursuit and what was not.  

Table 5.4: The results of applying the linear regression to the test set. 

Trajectory 
ID 

Pursuit 
Value determined by 

linear regression 

027obs1los 0 0.579231739349939 

048obs0dom 1 0.572569172039877 

058obs1los 1 0.598728969640561 

101obs1los 1 0.539723543989143 

047obs1dom 1 0.514440608570384 

105obs0los 0 0.544088691732749 

030obs1dom 0 0.535310967203228 

072obs0dom 1 0.561817484175091 

068obs1los 1 0.584341461152492 

058obs0dom 0 0.538635604803950 

071obs1los 0 0.564804292741779 

069obs0dom 1 0.550261569351687 

020obs0dom 0 0.532805342145664 

015obs1los 0 0.602190350089980 

106obs1dom 1 0.528816311728632 

019obs0los 0 0.593647887513588 

006obs1dom 1 0.920370687481880 

060obs0dom 1 0.567273211416535 

096obs1dom 0 0.538414408627345 
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Trajectory 
ID 

Pursuit 
Value determined by 

linear regression 

069obs0los 1 0.554058202006299 

021obs0los 1 0.615332900748642 

036obs0los 1 0.606149257074336 

051obs0los 1 0.613869311325594 

105obs0dom 0 0.562771136236102 

018obs0dom 1 0.541648630431018 

094obs0los 1 0.548770230957606 

067obs0dom 1 0.576443526629890 

042obs0dom 0 0.527491857267609 

021obs0dom 1 0.528802373887515 

048obs1dom 0 0.579622773521143 

053obs0dom 0 0.670535474267514 

015obs0dom 0 0.524725338994316 

062obs0los 1 0.609717888124430 

024obs0dom 1 0.578022847449142 

042obs1los 1 0.577494326787606 

061obs1los 0 0.546471654006704 

026obs0los 1 0.584060632790005 

029obs1dom 1 0.586047987171685 

064obs1los 1 0.595610767921597 

027obs1dom 0 0.603542056288610 

091obs1dom 1 0.597314733300175 

105obs1dom 0 0.556265434946909 
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Trajectory 
ID 

Pursuit 
Value determined by 

linear regression 

080obs1dom 1 0.540426708263338 

034obs0los 0 0.564925293786210 

If the value given by the regression learner is to be interpreted as a probability of whether 

or not a pursuit, the regression learner can be said to mainly determine pursuits as having 

an essentially equal possibility of being or not being a pursuit. The conservativeness of the 

regression learner can be seen more clearly in Figure 5.2, where the data clearly bunches 

near 0.5, particularly for data that was tagged as not being a pursuit.  

Figure 5.2: Predicted response vs. true response, as determined by the regression learner. 

The equation of the line of best fit, shown in Figure 5.2, suggests that only the pursuit 

variable has an effect on whether or not the interaction is a pursuit. With such a small 

intercept, and a slope of 1, the line of best fit will predict a 1 when the pursuit variable is 

1, or 0 if not.  
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When the algorithm was applied to the test set, similar results were produced. Figure 5.3 

shows these results. 

Figure 5.3: Using the linear regression algorithm on the test set. 

Again, the data bunches around the median, indicating an equal probability of pursuit. 
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6. Discussion

6.1. Analysis 

As outlined in 5. Results, the homogeneity of all but one of the datasets is remarkable. This 

suggests that the methods used are at least somewhat robust. The fact that the 

consistency was markedly higher for setting the observer as matrix 1 suggests that this 

data itself was more consistent. As the films always involved hoverflies interacting with 

other insects, be they other hoverflies or insects of other species, it could be reasonable 

to assume that the hoverfly was always tagged as matrix 1. As a result, data from matrix 1 

across the interactions would exhibit a great degree of self-similarity, especially compared 

to that of matrix 2, where the species of insect may differ between interactions. Indeed, in 

some interactions the other participant was not an insect at all, but a bead on a string. 

However, although the results from the statistical tests were impressive, the results from 

the linear regression were not. Whether this was a function of the data itself, or of the 

methods used to manipulate the data, is unknown. However, although some of the 

interactions were tagged as likely to be pursuits according to the footage, Thyselius et al. 

(2018) found it unlikely that any of the interactions were deliberate pursuits, according to 

the characteristics of the flights. It would be interesting to investigate the effect of 

changing the pursuit variable from being a binary yes or no to a probability or likelihood. 

That being said, despite the intended use of the determination of pursuit as a metric for 

validation of the methods, the inconclusive results of the regression make it hard to 

discount the comparatively stronger results of the statistical tests.  

In particular, the finding that the group of trajectories arising from matrix 2 data treated 

with the line of sight method were all significantly likely to come from the same population 

lends support to the validity of applying this method to this group of data.  

From a deliverables point of view, the end product meets the original specifications. The 

program takes input in the form of 3D position datasets – although at this point they must 

be of a specific format – and estimates the heading along the trajectory in order to create 

a simulation of the flight as would have been experienced by the original fly. The user can 

select which insect will be at the centre of motion, and by using the FlyFly assets, 

experimental variation can be implemented.  

6.2. Limitations and Improvements 

The data used in this project had its limitations, as has been outlined in 1.1 Background, 

2.1. Tracking Insect Flight, 2.4. Trajectory Reconstruction and Flight Simulation, and 2.5. 

Display of Optic Flow. In textured surroundings such as those filmed by Thyselius et al. 

(2018), increasing the resolution of the image generally increases the amount of 

information available, in contrast to images of “urban” scenes, with more visually uniform 

objects (Brinkworth 2009). In this sense, increased image resolution for caged flights would 

have little effect on the information provided, whereas higher resolution for the 

interactions filmed would give more information.  
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The data collection built upon the experimental setup used by Wardill et al. (2017), 

although in those experiments, cameras were placed at right angles to the anterior-

posterior body axis of the fly, allowing for the pitch and yaw angles of the body to be 

measured. Additionally, a piece of white fabric was used as a backdrop in all experiments 

to improve contrast, even in the wild. Despite the similarities between the experimental 

setups, these differences that are also present have a great impact on the information 

contained in the data collected. If new data were to be collected for use with this program, 

ideally it should also contain information on the heading of the insects involved in the 

interactions, without needing to make an estimate.  

There were further limitations in the way that the simulation was performed as part of this 

experiment. As outlined in 4.3. Simulation, rotational movements were vastly simplified. 

However, this does not necessarily accurately reflect free insect flight, as flight control 

depends on control of roll and pitch in addition to yaw (Goulard, Vercher & Viollet 2016). 

These two components of rotation were removed for simplification, but in future should 

be implemented if the rotation algorithm can be adjusted to make this possible.  

An additional limitation was also found in the simulation. The default dot size used to draw 

targets on the screen is a 1 cm radius, being the lowest that this size could be set to. This 

size is used as the true size of the object, and is projected onto the screen accordingly. 

However, this is very likely to not be representative of the true size of the targets involved 

in the actual pursuits. That being said, this size was chosen as sizes any larger were not 

supported by the graphics card. As a result, simulations would crash irretrievably.  

6.3. Future Work 

Originally, a control strategy was to be developed to determine the heading based on the 

characteristics of the flight. Much research has been done to attempt to find algorithms to 

adequately describe the flight behaviour of insects. Fry et al. (2009) mentioned a PID 

control scheme underlying the control of flight altitude in honeybees. Franceschini, Ruffier, 

and Serres (2007) described an extremely simple method by which insects control their 

flight speed and altitude. It was proposed that insects use a simple ratio between ground 

height and ground speed during cruising flight, in order to maintain a constant optic flow 

experienced (Lawson & Srinivasan 2017). This also has the effect of controlling their air 

speed, effected by changing the pitch of their bodies. 

Fabian et al. (2017) found proportional navigation sufficient to explain both timing and 

magnitude of steering responses exhibited by Holcocephala robber flies and Coenosia killer 

flies in pursuit. The gain constants and delays describing the proportional navigation 

controllers differed between species. It was suggested that other insects may also use 

proportional navigation with species-specific parameters. Future work on this project 

could investigate tuning a proportional controller to hoverflies, based on their trajectories, 

as well as ground height and ground speed, in order to determine their heading and thus 

optic flow. 

Physical constraints about the actions animals take can also be used as information to 

constrain possible poses (Arnab, Doersch & Zisserman 2019). 
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7. Summary

There is further work still to be done on this project, with improvements that can be made 

in order to meet the original goals. In particular, investigating a control strategy may ease 

the process of estimating the heading of the hoverflies. This could be used to improve the 

performance of the algorithm developed with regression learning.  

If new data at higher resolutions could be sourced, computer vision could be investigated. 

A ground truth could then be provided for the heading, or alternatively, a ground truth 

could be estimated, as mentioned in 2.7. Heading Estimation and Machine Learning.  

Altogether, however, despite the challenges faced throughout this project, in particular 

the limitations placed upon the project due to the data provided and the tools to be used, 

a program was developed that meets the original specifications.  
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Appendix A. Code 

This appendix contains the code used in 4.1. Data Validation and Pre-Processing and 4.2. 

Trajectory Reconstruction and Heading Estimation. This code is the main deliverable of the 

project, and takes the datasets provided by Thyselius et al. (2018) as input. At present, the 

validation step relies on the datasets being in the same, uniform, format. 

%% 0. Clear all 

clear all 

%% 1. Navigate to desired dataset 

% Opens user interface to select the dataset to be worked on 

[trajectory, filepath] = uigetfile('*.mat'); 

% Loads the selected dataset into the MATLAB Workspace 

load([filepath,trajectory]) 

%% 2. Check dataset is valid 

% First, check that the cell has two matrices 

if size(all_3Dcordinates,2) == 2 

% Next, check that the matrices are the same size 

if size(all_3Dcordinates{1}) == 

size(all_3Dcordinates{2}) 

% Finally, check both matrices have 3 rows 

if size(all_3Dcordinates{1},1) == 3 

% Continue if all the above are satisfied 

else 

msgbox('Selected dataset is invalid: matrices do 

not have three rows.', 'Invalid Value', 'error') 

return 

end 

else 

msgbox('Selected dataset is invalid: matrices are 

not of the same size.', 'Invalid Value', 'error') 

return 

end 

else  

msgbox('Selected dataset is invalid: cell does not 

contain two matrices.', 'Invalid Value', 'error') 

return 

end 

% Here is where you could also include an interactive option 

for the user 

% to adjust the datasets so that they are valid, as well as 

a way to check 

% if the selected dataset has already been processed 

%% 3. Select leader and pursuer 

% Prompt user to choose which matrix is which 
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warning('off','MATLAB:questdlg:StringMismatch') % Suppress 

warning about default button 

% Format: questdlg(quest,dlgtitle,btn1,btn2,(btn3),defbtn) 

prompt = questdlg(['Which matrix represents the pursuing 

fly? The perspective ' ...  

'of this fly will be used as the basis of the 

reconstruction and simulation.'], ... 

'Select leader and pursuer','1','2','defbtn'); % 

Pressing Enter will not close dialog box 

observerFlag = str2num(prompt)-1; 

%% 4. Convert positions from absolute to relative 

% Both observer and target's original motion will be saved 

for later use 

observerPositions = all_3Dcordinates{observerFlag+1}; 

targetPositions = all_3Dcordinates{2-observerFlag}; 

% Reverse direction of z-axis to match FlyFly's definition 

observerPositions(3,:) = -observerPositions(3,:); 

targetPositions(3,:) = -targetPositions(3,:); 

% This line of code will create a matrix with relative 

positions depending  

% on which matrix was selected as the observer. The vectors 

also represent 

% the direct line of sight between the observer and the 

target at each frame 

targetRelativePositions = targetPositions - 

observerPositions;

%% 5. Get direction of motion between frames 

% Vector at each frame representing the direction of motion 

to next position 

for m=1:length(targetPositions)-1  

for n=1:3 

% Change in position between trials 

targetMotion(n,m) = targetPositions(n,m+1) - 

targetPositions(n,m);

observerMotion(n,m) = observerPositions(n,m+1) - 

observerPositions(n,m);

end 

end 

%% 6. Choose how to rotate positions 

% Heading of fly must be aligned with the z-axis in order to 

display with 

% FlyFly -> the heading must first be chosen 

alignmentMethod = questdlg(['What would you like to align 

the pursuer''s heading ' ...  

'with?'],'Select heading alignment','Direction of 

Motion','Line of Sight', ... 

'Choose for me','defbtn'); 
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% Once user has selected how they want to align the 

pursuer's heading, 

% set this so that the motion can be rotated accordingly 

switch alignmentMethod 

case 'Direction of Motion' 

% The pursuer will face along the direction of its 

own motion 

observerHeading = observerMotion; 

alignmentMethod = 'dom'; 

case 'Line of Sight' 

% The pursuer will face along the direct line of 

sight between it 

% and the leader 

observerHeading = targetRelativePositions; 

alignmentMethod = 'los'; 

case 'Choose for me' 

observerHeading = []; 

alignmentMethod = 'alg'; 

otherwise 

msgbox('Alignment will be chosen for you.') 

observerHeading = []; 

end 

%% 7. Algorithm for estimating most suitable heading 

if isempty(observerHeading) 

% algorithm goes here 

end 

%% 8. Rotate heading to align with z-axis 

% This code uses the angle-axis method to create a rotation 

matrix, aligning  

% the selected heading with the z-axis. This rotation is 

then applied to the  

% relative positions of the target. 

zAxis = [0 0 1]; 

% Does not process entire matrix so matrix dimensions do not 

exceed the loop index 

for n = 1:length(observerHeading)-1 

% Use cross-product to get axis of rotation

xprod{n} = cross(zAxis,observerHeading(:,n)); 

% Use dot-product to get angle of rotation 

dprod(n) = dot(zAxis,observerHeading(:,n)); 

theta(n) = acos(dprod(n)/norm(observerHeading(:,n))); 

% MATLAB uses Rodrigues' formula here 

rotationVector{n} = theta(n)*xprod{n}; 

rotationMatrix{n} = 

rotationVectorToMatrix(rotationVector{n}); 

% Apply rotation to observer's motion for display of 

optic flow 

rotatedObserverMotion{n} = 

rotationMatrix{n}*observerMotion(:,n); 
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    % And to target's relative positions 

    rotatedTargetPos{n} = 

rotationMatrix{n}*targetRelativePositions(:,n); 

end 

% Convert positions into a usable format 

rotatedTargetPos = cell2mat(rotatedTargetPos); 

rotatedObserverMotion = cell2mat(rotatedObserverMotion); 

  

%% 9. Calculate velocity 

% Target moves in straight line therefore velocity is 

calculated from Euclidean  

% distance moved between each position coordinate and the 

time between capture  

% of each position coordinate 

for k = 1:length(rotatedTargetPos)-1  

    targetDistance(k) = sqrt(rotatedTargetPos(1,k)^2 + 

rotatedTargetPos(2,k)^2 + rotatedTargetPos(3,k)^2);     

    observerDistance(k) = sqrt(rotatedObserverMotion(1,k)^2 

+ rotatedObserverMotion(2,k)^2 + 

rotatedObserverMotion(3,k)^2); 

end 

% % Check with user what the coordinate capture frequency is 

% trialRate = inputdlg({'At what frequency were the position 

coordinates captured (times per second)?'}, ... 

%     'Confirm position coordinate capture 

frequency',1,{'30'}); 

% trialRate = str2num(trialRate{1}); 

trialRate = 30; 

% Time between each coordinate capture is reciprocal of 

capture frequency 

interTrialTime = 1/trialRate; 

% Calculate target velocity based on this information 

targetVelocity = targetDistance/interTrialTime; 

observerVelocity = observerDistance/interTrialTime; 

  

%% 10. Save values for 3D Target to CSV 

% 3D Target takes positions in the form of azimuth, 

elevation, and distance. 

% The coordinate system in the FlyFly guide was used in this 

conversion method, 

% converting the XYZ positions to az/el/r. Angles are 

specified in degrees. 

for n=1:length(rotatedTargetPos) 

    sphericalRelativePos(1,n)=90-

atan2d(rotatedTargetPos(3,n),rotatedTargetPos(1,n)); 

    

sphericalRelativePos(2,n)=atan2d(rotatedTargetPos(2,n),sqrt(

rotatedTargetPos(1,n).^2 + rotatedTargetPos(3,n).^2)); 

    sphericalRelativePos(3,n)=rotatedTargetPos(3,n); 

    % Also get observer yaw 
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observerYaw(1,n) = 90-

atan2d(rotatedObserverMotion(3,n),rotatedObserverMotion(1,n)

); 

end 

% Prepare values to be imported directly into 3D Target 

threeDTargetData = [ones(1,length(sphericalRelativePos)-

1); ...   % target size 

sphericalRelativePos(1,1:end-

1); ... % start azimuth 

   sphericalRelativePos(2,1:end-

1); ... % start elevation 

sphericalRelativePos(3,1:end-

1); ... % start distance 

sphericalRelativePos(1,2:end); ...

% end azimuth 

sphericalRelativePos(2,2:end); ...

% end elevation 

sphericalRelativePos(3,2:end); ...

% end distance 

targetVelocity];

% velocity 

% Write to CSV 

csvwrite(['3DTargetData_',trajectory(1,1:3),'_obs',num2str(o

bserverFlag),'_',alignmentMethod,'.csv'],threeDTargetData) 

%% 11. Save values for Starfield to CSV 

% Prepare values to be imported directly into Starfield 

starfieldData = [ones(1,length(rotatedObserverMotion)-

1); ...     % dot size 

ones(1,length(rotatedObserverMotion)-

1); ... % dot density 

zeros(1,length(rotatedObserverMotion)-

1); ... % sideslip 

rotatedObserverMotion(2,1:end-

1)./interTrialTime; ... % lift 

rotatedObserverMotion(3,1:end-

1)./interTrialTime; ... % thrust 

zeros(1,length(rotatedObserverMotion)-

1); ...                 % pitch 

observerYaw(1:end-

1)./interTrialTime; ... % yaw 

zeros(1,length(rotatedObserverMotion)-

1); ... % roll 

zeros(1,length(rotatedObserverMotion)-

1); ... % background noise 

ones(1,length(rotatedObserverMotion)-

1); ... % retain into next trial 
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60.*observerDistance./observerVelocity];

% time 

% Write to CSV 

csvwrite('StarfieldData.csv',starfieldData) 

%% To be included later: 

% 12. Set up FlyFly session with appropriate number of 

layers and trials 

% 13. Import values directly into FlyFly 
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Appendix B. Summary of Results 

This appendix contains a summary of the results of 4.3. Simulation, noting which datasets 

and trajectories were invalid or otherwise of note. As can be seen in the table, some 

datasets had NaN values that were edited and resulted in a reconstruction that failed, 

whereas others did not lead to an error. Likewise, some failed reconstructions resulted 

from trajectories that did not previously have NaN values.  

Table B.1: A summary of the results of 4.3. Simulation. 

Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

001obs0dom - - - - 
Dataset invalid: 

one matrix 

001obs0los - - - - 
Dataset invalid: 

one matrix 

001obs1dom - - - - 
Dataset invalid: 

one matrix 

001obs1los - - - - 
Dataset invalid: 

one matrix 

002obs0dom - - - - 
Dataset invalid: 

one matrix 

002obs0los - - - - 
Dataset invalid: 

one matrix 

002obs1dom - - - - 
Dataset invalid: 

one matrix 

002obs1los - - - - 
Dataset invalid: 

one matrix 

003obs0dom - - - - 
Dataset invalid: 

one matrix 

003obs0los - - - - 
Dataset invalid: 

one matrix 

003obs1dom - - - - 
Dataset invalid: 

one matrix 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

003obs1los - - - - 
Dataset invalid: 

one matrix 

004obs0dom 19 61 31.1% 3.1  

004obs0los 17 71 23.9% 4  

004obs1dom 16 67 23.9% 4 
Reconstruction 

failed 

004obs1los 18 59 30.5% 3.157894737  

005obs0dom 3 20 15.0% 5.25  

005obs0los 10 39 25.6% 3.636363636 
Reconstruction 

failed 

005obs1dom 12 51 23.5% 4  

005obs1los 372 414 89.9% 1.112600536  

006obs0dom 373 421 88.6% 1.128342246 
Reconstruction 

failed 

006obs0los 27 84 32.1% 3.035714286 
Reconstruction 

failed 

006obs1dom 370 400 92.5% 1.080862534  

006obs1los 31 91 34.1% 2.875  

007obs0dom - - - - 
Dataset invalid: 

one matrix 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

007obs0los - - - - 
Dataset invalid: 

one matrix 

007obs1dom - - - - 
Dataset invalid: 

one matrix 

007obs1los - - - - 
Dataset invalid: 

one matrix 

008obs0dom 11 44 25.0% 3.75 NaN edited 

008obs0los 27 90 30.0% 3.25 

008obs1dom 367 393 93.4% 1.070652174 

008obs1los 18 96 18.8% 5.105263158 

009obs0dom 19 74 25.7% 3.75 NaN edited 

009obs0los 18 85 21.2% 4.526315789 

009obs1dom 380 423 89.8% 1.112860892 

009obs1los 28 69 40.6% 2.413793103 

010obs0dom 376 435 86.4% 1.156498674 

010obs0los 19 79 24.1% 4 

010obs1dom 7 44 15.9% 5.625 NaN edited 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

010obs1los 29 68 42.6% 2.3 
Reconstruction 

failed 

011obs0dom 35 176 19.9% 4.916666667 

011obs0los 47 181 26.0% 3.791666667 

011obs1dom 23 158 14.6% 6.625 

011obs1los 41 190 21.6% 4.547619048 

012obs0dom 0 7 0.0% 8 

012obs0los 5 9 55.6% 1.666666667 

012obs1dom 5 9 55.6% 1.666666667 
Reconstruction 

failed 

012obs1los 2 9 22.2% 3.333333333 
Reconstruction 

failed 

013obs0dom 29 124 23.4% 4.166666667 NaN edited 

013obs0los 46 159 28.9% 3.404255319 

013obs1dom 38 155 24.5% 4 

013obs1los 53 169 31.4% 3.148148148 

014obs0dom 10 98 10.2% 9 

NaN; 

Reconstruction 

failed 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

014obs0los 24 83 28.9% 3.36  

014obs1dom 20 65 30.8% 3.142857143 NaN edited 

014obs1los 20 90 22.2% 4.333333333  

015obs0dom 6 53 11.3% 7.714285714  

015obs0los 28 96 29.2% 3.344827586 
Reconstruction 

failed 

015obs1dom 16 74 21.6% 4.411764706  

015obs1los 33 93 35.5% 2.764705882  

016obs0dom 3 56 5.4% 14.25  

016obs0los 14 57 24.6% 3.866666667 
Reconstruction 

failed 

016obs1dom 11 53 20.8% 4.5  

016obs1los 24 97 24.7% 3.92  

017obs0dom 57 368 15.5% 6.362068966  

017obs0los 76 427 17.8% 5.558441558  

017obs1dom 21 113 18.6% 5.181818182 NaN edited 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

017obs1los 86 428 20.1% 4.931034483 

018obs0dom 17 74 23.0% 4.166666667 

018obs0los 24 102 23.5% 4.12 

018obs1dom 29 83 34.9% 2.8 

018obs1los 32 95 33.7% 2.909090909 

019obs0dom 29 162 17.9% 5.433333333 NaN edited 

019obs0los 58 208 27.9% 3.542372881 
Reconstruction 

failed 

019obs1dom 34 191 17.8% 5.485714286 

019obs1los 46 182 25.3% 3.893617021 

020obs0dom 17 89 19.1% 5 

020obs0los 31 138 22.5% 4.34375 
Reconstruction 

failed 

020obs1dom 13 93 14.0% 6.714285714 NaN edited 

020obs1los 38 156 24.4% 4.025641026 
Reconstruction 

failed 

021obs0dom 16 83 19.3% 4.941176471 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

021obs0los 32 81 39.5% 2.484848485 

021obs1dom 9 63 14.3% 6.4 NaN edited 

021obs1los 30 77 39.0% 2.516129032 

022obs0dom 12 52 23.1% 4.076923077 

022obs0los 20 65 30.8% 3.142857143 

022obs1dom 14 54 25.9% 3.666666667 NaN edited 

022obs1los 18 67 26.9% 3.578947368 

023obs0dom 17 145 11.7% 8.111111111 

NaN; 

Reconstruction 

failed 

023obs0los 62 233 26.6% 3.714285714 

023obs1dom 45 195 23.1% 4.260869565 

023obs1los 54 191 28.3% 3.490909091 

024obs0dom 24 75 32.0% 3.04 
Reconstruction 

failed 

024obs0los 27 93 29.0% 3.357142857 

024obs1dom 7 56 12.5% 7.125 NaN edited 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

024obs1los 23 89 25.8% 3.75 

025obs0dom 17 64 26.6% 3.611111111 NaN edited 

025obs0los 21 80 26.3% 3.681818182 

025obs1dom 7 64 10.9% 8.125 

025obs1los 26 77 33.8% 2.888888889 
Reconstruction 

failed 

026obs0dom 5 76 6.6% 12.83333333 NaN edited 

026obs0los 70 277 25.3% 3.915492958 

026obs1dom 48 252 19.0% 5.163265306 

026obs1los 54 277 19.5% 5.054545455 

027obs0dom 29 172 16.9% 5.766666667 

027obs0los 44 188 23.4% 4.2 

027obs1dom 50 173 28.9% 3.411764706 

027obs1los 49 184 26.6% 3.7 
Reconstruction 

failed 

028obs0dom 40 196 20.4% 4.804878049 NaN edited 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

028obs0los 64 268 23.9% 4.138461538 

028obs1dom 33 241 13.7% 7.117647059 

028obs1los 66 284 23.2% 4.253731343 

029obs0dom 14 51 27.5% 3.466666667 

029obs0los 22 69 31.9% 3.043478261 

029obs1dom 8 43 18.6% 4.888888889 

029obs1los 19 62 30.6% 3.15 
Reconstruction 

failed 

030obs0dom 17 95 17.9% 5.333333333 NaN edited 

030obs0los 53 195 27.2% 3.62962963 

030obs1dom 18 141 12.8% 7.473684211 

030obs1los 38 172 22.1% 4.435897436 

031obs0dom 23 245 9.4% 10.25 NaN edited 

031obs0los 104 357 29.1% 3.40952381 
Reconstruction 

failed 

031obs1dom 62 289 21.5% 4.603174603 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

031obs1los 73 275 26.5% 3.72972973 

032obs0dom 16 76 21.1% 4.529411765 

032obs0los 39 140 27.9% 3.525 
Reconstruction 

failed 

032obs1dom 19 93 20.4% 4.7 

032obs1los 42 152 27.6% 3.558139535 

033obs0dom 25 130 19.2% 5.038461538 

033obs0los 63 224 28.1% 3.515625 
Reconstruction 

failed 

033obs1dom 53 181 29.3% 3.37037037 

033obs1los 69 217 31.8% 3.114285714 

034obs0dom 14 52 26.9% 3.533333333 

034obs0los 20 77 26.0% 3.714285714 

034obs1dom 8 37 21.6% 4.222222222 

034obs1los 12 72 16.7% 5.615384615 

035obs0dom 25 70 35.7% 2.730769231 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

035obs0los 25 90 27.8% 3.5  

035obs1dom 15 58 25.9% 3.6875 
Reconstruction 

failed 

035obs1los 22 84 26.2% 3.695652174 
Reconstruction 

failed 

036obs0dom 14 55 25.5% 3.733333333 
Reconstruction 

failed 

036obs0los 31 84 36.9% 2.65625 
Reconstruction 

failed 

036obs1dom 4 45 8.9% 9.2 NaN edited 

036obs1los 19 59 32.2% 3  

037obs0dom - - - - 
Dataset invalid: 

one matrix 

037obs0los - - - - 
Dataset invalid: 

one matrix 

037obs1dom - - - - 
Dataset invalid: 

one matrix 

037obs1los - - - - 
Dataset invalid: 

one matrix 

038obs0dom - - - - 
Dataset invalid: 

one matrix 

038obs0los - - - - 
Dataset invalid: 

one matrix 

038obs1dom - - - - 
Dataset invalid: 

one matrix 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

038obs1los - - - - 
Dataset invalid: 

one matrix 

039obs0dom - - - - 
Dataset invalid: 

one matrix 

039obs0los - - - - 
Dataset invalid: 

one matrix 

039obs1dom - - - - 
Dataset invalid: 

one matrix 

039obs1los - - - - 
Dataset invalid: 

one matrix 

040obs0dom - - - - 
Dataset invalid: 

one matrix 

040obs0los - - - - 
Dataset invalid: 

one matrix 

040obs1dom - - - - 
Dataset invalid: 

one matrix 

040obs1los - - - - 
Dataset invalid: 

one matrix 

041obs0dom - - - - 
Dataset invalid: 

one matrix 

041obs0los - - - - 
Dataset invalid: 

one matrix 

041obs1dom - - - - 
Dataset invalid: 

one matrix 

041obs1los - - - - 
Dataset invalid: 

one matrix 

042obs0dom 14 74 18.9% 5 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

042obs0los 29 90 32.2% 3.033333333 
Reconstruction 

failed 

042obs1dom 9 73 12.3% 7.4 
Reconstruction 

failed 

042obs1los 19 60 31.7% 3.05 
Reconstruction 

failed 

043obs0dom 11 73 15.1% 6.166666667 

043obs0los 23 84 27.4% 3.541666667 
Reconstruction 

failed 

043obs1dom 15 85 17.6% 5.375 

043obs1los 17 77 22.1% 4.333333333 

044obs0dom - - - - 
Entire 

trajectory NaN 

044obs0los - - - - 
Entire 

trajectory NaN 

044obs1dom - - - - 
Entire 

trajectory NaN 

044obs1los - - - - 
Entire 

trajectory NaN 

045obs0dom 7 63 11.1% 8 NaN edited 

045obs0los 25 98 25.5% 3.807692308 

045obs1dom 10 80 12.5% 7.363636364 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

045obs1los 23 91 25.3% 3.833333333 
Reconstruction 

failed 

046obs0dom - - - - 
Dataset invalid: 

one matrix 

046obs0los - - - - 
Dataset invalid: 

one matrix 

046obs1dom - - - - 
Dataset invalid: 

one matrix 

046obs1los - - - - 
Dataset invalid: 

one matrix 

047obs0dom 1 13 7.7% 7 
Reconstruction 

failed 

047obs0los 13 64 20.3% 4.642857143  

047obs1dom 4 26 15.4% 5.4  

047obs1los 11 46 23.9% 3.916666667  

048obs0dom 4 26 15.4% 5.4  

048obs0los 13 70 18.6% 5.071428571  

048obs1dom 7 42 16.7% 5.375  

048obs1los 9 59 15.3% 6  

049obs0dom 1 39 2.6% 20  
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

049obs0los 24 83 28.9% 3.36 

049obs1dom 4 38 10.5% 7.8 NaN edited 

049obs1los 25 76 32.9% 2.961538462 

050obs0dom 1 17 5.9% 9 
Reconstruction 

failed 

050obs0los 7 45 15.6% 5.75 

050obs1dom 0 30 0.0% 31 
Reconstruction 

failed 

050obs1los 16 42 38.1% 2.529411765 

051obs0dom 4 49 8.2% 10 NaN edited 

051obs0los 35 94 37.2% 2.638888889 

051obs1dom 21 78 26.9% 3.590909091 

051obs1los 28 90 31.1% 3.137931034 

052obs0dom 3 31 9.7% 8 

052obs0los 17 37 45.9% 2.111111111 

052obs1dom 1 11 9.1% 6 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

052obs1los 19 60 31.7% 3.05 

053obs0dom 0 23 0.0% 24 NaN edited 

053obs0los 19 74 25.7% 3.75 

053obs1dom 14 50 28.0% 3.4 
Reconstruction 

failed 

053obs1los 13 51 25.5% 3.714285714 

054obs0dom 10 72 13.9% 6.636363636 NaN edited 

054obs0los 20 77 26.0% 3.714285714 

054obs1dom 30 90 33.3% 2.935483871 
Reconstruction 

failed 

054obs1los 23 104 22.1% 4.375 

055obs0dom 26 76 34.2% 2.851851852 

055obs0los 29 102 28.4% 3.433333333 

055obs1dom 9 85 10.6% 8.6 

055obs1los 25 83 30.1% 3.230769231 
Reconstruction 

failed 

056obs0dom 4 29 13.8% 6 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

056obs0los 10 47 21.3% 4.363636364 

056obs1dom 13 37 35.1% 2.714285714 
Reconstruction 

failed 

056obs1los 22 58 37.9% 2.565217391 

057obs0dom 12 46 26.1% 3.615384615 NaN edited 

057obs0los 31 112 27.7% 3.53125 

057obs1dom 35 88 39.8% 2.472222222 

057obs1los 26 96 27.1% 3.592592593 

058obs0dom 12 75 16.0% 5.846153846 NaN edited 

058obs0los 22 99 22.2% 4.347826087 

058obs1dom 13 58 22.4% 4.214285714 

058obs1los 30 98 30.6% 3.193548387 

059obs0dom 1 34 2.9% 17.5 

059obs0los 17 50 34.0% 2.833333333 

059obs1dom 14 35 40.0% 2.4 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

059obs1los 5 49 10.2% 8.333333333  

060obs0dom 24 82 29.3% 3.32  

060obs0los 12 61 19.7% 4.769230769  

060obs1dom 17 79 21.5% 4.444444444  

060obs1los 22 76 28.9% 3.347826087  

061obs0dom 11 46 23.9% 3.916666667 NaN edited 

061obs0los 21 89 23.6% 4.090909091  

061obs1dom 17 84 20.2% 4.722222222  

061obs1los 23 93 24.7% 3.916666667  

062obs0dom 12 61 19.7% 4.769230769 NaN edited 

062obs0los 32 88 36.4% 2.696969697  

062obs1dom 12 59 20.3% 4.615384615  

062obs1los 25 87 28.7% 3.384615385  

063obs0dom 5 34 14.7% 5.833333333  
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

063obs0los 38 104 36.5% 2.692307692 

063obs1dom 26 78 33.3% 2.925925926 

063obs1los 30 88 34.1% 2.870967742 

064obs0dom 12 77 15.6% 6 

064obs0los 25 87 28.7% 3.384615385 

064obs1dom 17 70 24.3% 3.944444444 NaN edited 

064obs1los 21 91 23.1% 4.181818182 

065obs0dom 12 66 18.2% 5.153846154 

065obs0los 19 80 23.8% 4.05 

065obs1dom 14 85 16.5% 5.733333333 

065obs1los 20 100 20.0% 4.80952381 

066obs0dom 14 72 19.4% 4.866666667 

066obs0los 27 99 27.3% 3.571428571 

066obs1dom 16 79 20.3% 4.705882353 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

066obs1los 32 87 36.8% 2.666666667 
Reconstruction 

failed 

067obs0dom 14 67 20.9% 4.533333333 NaN edited 

067obs0los 31 90 34.4% 2.84375 

067obs1dom 10 75 13.3% 6.909090909 

067obs1los 36 97 37.1% 2.648648649 

068obs0dom 11 64 17.2% 5.416666667 NaN edited 

068obs0los 22 80 27.5% 3.52173913 

068obs1dom 17 65 26.2% 3.666666667 

068obs1los 23 84 27.4% 3.541666667 

069obs0dom 19 86 22.1% 4.35 
Reconstruction 

failed 

069obs0los 24 105 22.9% 4.24 

069obs1dom 14 67 20.9% 4.533333333 

069obs1los 28 84 33.3% 2.931034483 

070obs0dom 19 78 24.4% 3.95 
Reconstruction 

failed 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

070obs0los 27 78 34.6% 2.821428571 
Reconstruction 

failed 

070obs1dom 20 70 28.6% 3.380952381 

070obs1los 22 81 27.2% 3.565217391 

071obs0dom 17 86 19.8% 4.833333333 

071obs0los 36 93 38.7% 2.540540541 

071obs1dom 17 67 25.4% 3.777777778 

071obs1los 21 82 25.6% 3.772727273 
Reconstruction 

failed 

072obs0dom 17 67 25.4% 3.777777778 
Reconstruction 

failed 

072obs0los 29 95 30.5% 3.2 

072obs1dom 27 97 27.8% 3.5 

072obs1los 34 93 36.6% 2.685714286 

073obs0dom 22 89 24.7% 3.913043478 

073obs0los 25 85 29.4% 3.307692308 

073obs1dom 22 91 24.2% 4 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

073obs1los 27 77 35.1% 2.785714286  

074obs0dom - - - - 
Dataset invalid: 

one matrix 

074obs0los - - - - 
Dataset invalid: 

one matrix 

074obs1dom - - - - 
Dataset invalid: 

one matrix 

074obs1los - - - - 
Dataset invalid: 

one matrix 

075obs0dom - - - - 
Dataset invalid: 

one matrix 

075obs0los - - - - 
Dataset invalid: 

one matrix 

075obs1dom - - - - 
Dataset invalid: 

one matrix 

075obs1los - - - - 
Dataset invalid: 

one matrix 

076obs0dom - - - - 
Dataset invalid: 

one matrix 

076obs0los - - - - 
Dataset invalid: 

one matrix 

076obs1dom - - - - 
Dataset invalid: 

one matrix 

076obs1los - - - - 
Dataset invalid: 

one matrix 

077obs0dom - - - - 
Dataset invalid: 

one matrix 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

077obs0los - - - - 
Dataset invalid: 

one matrix 

077obs1dom - - - - 
Dataset invalid: 

one matrix 

077obs1los - - - - 
Dataset invalid: 

one matrix 

078obs0dom - - - - 
Dataset invalid: 

one matrix 

078obs0los - - - - 
Dataset invalid: 

one matrix 

078obs1dom - - - - 
Dataset invalid: 

one matrix 

078obs1los - - - - 
Dataset invalid: 

one matrix 

079obs0dom - - - - 
Dataset invalid: 

one matrix 

079obs0los - - - - 
Dataset invalid: 

one matrix 

079obs1dom - - - - 
Dataset invalid: 

one matrix 

079obs1los - - - - 
Dataset invalid: 

one matrix 

080obs0dom 26 71 36.6% 2.666666667 

080obs0los 22 92 23.9% 4.043478261 

080obs1dom 15 70 21.4% 4.4375 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

080obs1los 24 97 24.7% 3.92  

081obs0dom 7 42 16.7% 5.375  

081obs0los 23 76 30.3% 3.208333333  

081obs1dom 17 59 28.8% 3.333333333  

081obs1los 15 68 22.1% 4.3125 
Reconstruction 

failed 

082obs0dom 8 47 17.0% 5.333333333  

082obs0los 21 61 34.4% 2.818181818  

082obs1dom 11 42 26.2% 3.583333333  

082obs1los 9 48 18.8% 4.9  

083obs0dom 14 86 16.3% 5.8  

083obs0los 23 78 29.5% 3.291666667 
Reconstruction 

failed 

083obs1dom 13 65 20.0% 4.714285714 
Reconstruction 

failed 

083obs1los 24 80 30.0% 3.24  

084obs0dom - - - - 
Entire 

trajectory NaN 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

084obs0los - - - - 
Entire 

trajectory NaN 

084obs1dom - - - - 
Entire 

trajectory NaN 

084obs1los - - - - 
Entire 

trajectory NaN 

085obs0dom 0 0 0.0% 0  

085obs0los 0 0 0.0% 0  

085obs1dom 0 0 0.0% 0 NaN edited 

085obs1los 0 0 0.0% 0  

086obs0dom 5 44 11.4% 7.5  

086obs0los 10 43 23.3% 4  

086obs1dom 6 40 15.0% 5.857142857  

086obs1los 12 47 25.5% 3.692307692  

087obs0dom - - - - 
Entire 

trajectory NaN 

087obs0los - - - - 
Entire 

trajectory NaN 

087obs1dom - - - - 
Entire 

trajectory NaN 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

087obs1los - - - - 
Entire 

trajectory NaN 

088obs0dom 16 66 24.2% 3.941176471 NaN edited 

088obs0los 28 93 30.1% 3.24137931 

088obs1dom 14 86 16.3% 5.8 

088obs1los 27 95 28.4% 3.428571429 

089obs0dom 9 42 21.4% 4.3 

089obs0los 30 104 28.8% 3.387096774 

089obs1dom 10 71 14.1% 6.545454545 

089obs1los 40 101 39.6% 2.487804878 

090obs0dom 23 91 25.3% 3.833333333 NaN edited 

090obs0los 20 85 23.5% 4.095238095 

090obs1dom 20 93 21.5% 4.476190476 

090obs1los 22 89 24.7% 3.913043478 

091obs0dom 14 63 22.2% 4.266666667 NaN edited 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

091obs0los 19 89 21.3% 4.5 

091obs1dom 17 81 21.0% 4.555555556 

091obs1los 34 110 30.9% 3.171428571 

092obs0dom 8 34 23.5% 3.888888889 

NaN; 

Reconstruction 

failed 

092obs0los 25 92 27.2% 3.576923077 
Reconstruction 

failed 

092obs1dom 20 69 29.0% 3.333333333 

092obs1los 31 104 29.8% 3.28125 

093obs0dom 4 59 6.8% 12 NaN edited 

093obs0los 13 94 13.8% 6.785714286 
Reconstruction 

failed 

093obs1dom 11 69 15.9% 5.833333333 
Reconstruction 

failed 

093obs1los 19 98 19.4% 4.95 

094obs0dom 12 59 20.3% 4.615384615 

094obs0los 26 110 23.6% 4.111111111 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

094obs1dom 11 51 21.6% 4.333333333 

NaN; 

Reconstruction 

failed 

094obs1los 21 81 25.9% 3.727272727 
Reconstruction 

failed 

095obs0dom 10 56 17.9% 5.181818182 NaN edited 

095obs0los 24 106 22.6% 4.28  

095obs1dom 22 93 23.7% 4.086956522  

095obs1los 34 98 34.7% 2.828571429  

096obs0dom 3 27 11.1% 7 NaN edited 

096obs0los 23 66 34.8% 2.791666667  

096obs1dom 6 46 13.0% 6.714285714 
Reconstruction 

failed 

096obs1los 17 78 21.8% 4.388888889 
Reconstruction 

failed 

097obs0dom 10 71 14.1% 6.545454545 NaN edited 

097obs0los 9 69 13.0% 7  

097obs1dom 20 74 27.0% 3.571428571  

097obs1los 24 82 29.3% 3.32  
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

098obs0dom 11 72 15.3% 6.083333333 

098obs0los 24 97 24.7% 3.92 

098obs1dom 21 78 26.9% 3.590909091 
Reconstruction 

failed 

098obs1los 24 99 24.2% 4 

099obs0dom 9 55 16.4% 5.6 

NaN; 

Reconstruction 

failed 

099obs0los 33 97 34.0% 2.882352941 

099obs1dom 12 58 20.7% 4.538461538 
Reconstruction 

failed 

099obs1los 28 100 28.0% 3.482758621 

100obs0dom 17 79 21.5% 4.444444444 

NaN; 

Reconstruction 

failed 

100obs0los 25 83 30.1% 3.230769231 

100obs1dom 16 98 16.3% 5.823529412 

100obs1los 29 104 27.9% 3.5 

101obs0dom 12 56 21.4% 4.384615385 
Reconstruction 

failed 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

101obs0los 34 92 37.0% 2.657142857 
Reconstruction 

failed 

101obs1dom 10 69 14.5% 6.363636364 

101obs1los 25 98 25.5% 3.807692308 

102obs0dom 155 993 15.6% 6.371794872 

NaN; 

Reconstruction 

failed 

102obs0los 397 2977 13.3% 7.48241206 NaN edited 

102obs1dom 180 1815 9.9% 10.03314917 

NaN; 

Reconstruction 

failed 

102obs1los 232 1348 17.2% 5.789699571 
Reconstruction 

failed 

103obs0dom 76 654 11.6% 8.506493506 NaN edited 

103obs0los 211 1041 20.3% 4.91509434 

103obs1dom 98 763 12.8% 7.717171717 NaN edited 

103obs1los 201 1001 20.1% 4.96039604 

104obs0dom 37 272 13.6% 7.184210526 

104obs0los 74 362 20.4% 4.84 
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Trajectory ID 

Number 

of 

frames 

visible 

Number 

of 

frames 

total 

Percentage 

visible 

Average 

frames to 

visible 

Notes 

104obs1dom 38 242 15.7% 6.230769231 

104obs1los 68 367 18.5% 5.333333333 

105obs0dom 37 439 8.4% 11.57894737 

NaN; 

Reconstruction 

failed 

105obs0los 115 737 15.6% 6.362068966 
Reconstruction 

failed 

105obs1dom 51 549 9.3% 10.57692308 

NaN; 

Reconstruction 

failed 

105obs1los 98 758 12.9% 7.666666667 

106obs0dom 40 577 6.9% 14.09756098 

NaN; 

Reconstruction 

failed 

106obs0los 133 781 17.0% 5.835820896 
Reconstruction 

failed 

106obs1dom 98 680 14.4% 6.878787879 
Reconstruction 

failed 

106obs1los 112 787 14.2% 6.973451327 
Reconstruction 

failed 
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Appendix C. Results of Statistical Tests 

This appendix contains the results of the statistical tests applied to the results to determine 

the consistency of the methods described in the main body. 

Appendix C.1. Kruskal-Wallis 

This section contains the results of the Kruskal-Wallis tests. First, the entire dataset was 

compared as a whole, then the datasets within the two methods (direction of motion, line 

of sight), were compared. Next, datasets according to different selection of observer were 

tested, and finally, data within the four individual groups was compared.  

Table C.1.1: Results from the Kruskal-Wallis test applied to the dataset as a whole. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 2.10933e+10 343 6.14966e+07 2180.69 2.96135e-264 

Error 9.54058e+10 11701 8.15365e+06 

Total 1.16499e+11 12044 

Table C.1.2: Results from the Kruskal-Wallis test applied to the DOM dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 2.90836e+09 171 1.70079e+07 1655.64 4.08333e-241 

Error 6.4194e+09 5139 1.24915e+06 

Total 9.32776e+09 5310 

Table C.1.3: Results from the Kruskal-Wallis test applied to the LOS dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 1.60167e+09 171 9.36647e+06 507.01 5.39091e-35 

Error 1.96682e+10 6562 2.99729e+06 

Total 2.12699e+10 6733 

Table C.1.4: Results from the Kruskal-Wallis test applied to the obs0 dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 1.77221e+09 171 1.03638e+07 821.75 1.07718e-85 

Error 1.03006e+10 5427 1.89802e+06 

Total 1.20728e+10 5598 

Table C.1.5: Results from the Kruskal-Wallis test applied to the obs1 dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 3.6222e+09 171 2.11824e+07 1347.9 7.94924e-182 

Error 1.36974e+10 6274 2.1832e+06 

Total 1.73196e+10 6445 
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Table C.1.6: Results from the Kruskal-Wallis test applied to the obs0dom dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 2.33105e+08 85 2742416.6 696.85 7.92246e-97 

Error 5.29586e+08 2195 241269.1 

Total 7.62691e+08 2280 

Table C.1.7: Results from the Kruskal-Wallis test applied to the obs0los dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 8.54953e+07 85 1005826.5 108.71 0.0425 

Error 2.52315e+09 3232 780676.4 

Total 2.60864e+09 3317 

Table C.1.8: Results from the Kruskal-Wallis test applied to the obs1dom dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 5.31452e+08 85 6252376.4 953.81 5.53352e-147 

Error 1.15628e+09 2944 392757.3 

Total 1.68773e+09 3029 

Table C.1.9: Results from the Kruskal-Wallis test applied to the obs1los dataset. 

Source SS df MS Chi-sq Prob>Chi-sq 

Groups 3.09345e+08 85 3639352.3 391.01 8.80675e-41 

Error 2.39243e+09 3330 718446 

Total 2.70177e+09 3415 
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Appendix C.2. Conover-Iman 

The Conover-Iman results were far too large to attach, with one table having almost 60000 

rows, and so are available online here instead: 

https://drive.google.com/drive/folders/1oVZnaqdoAOR2U3DOMD18mzhW6yPe3U_6 

In order, the files contain the results of the Conover-Iman tests applied to the following 

populations: 

1. collatedTest: All 344 valid trajectories collated as a whole (58996 comparisons)

2. domTest: All trajectories treated with the DOM method (14706 comparisons)

3. losTest: All trajectories treated with the LOS method (14706 comparisons)

4. obs0domTest: All trajectories from the obs0dom population (3655 comparisons)

5. obs0losTest: All trajectories from the obs0los population (3655 comparisons)

6. obs0Test: All trajectories with observer set as matrix 1 (14706 comparisons)

7. obs1domTest: All trajectories from the obs1dom population (3655 comparisons)

8. obs1losTest: All trajectories from the obs1los population (3655 comparisons)

9. obs1Test: All trajectories with observer set as matrix 2 (14706 comparisons)

https://drive.google.com/drive/folders/1oVZnaqdoAOR2U3DOMD18mzhW6yPe3U_6
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Appendix D. Determining Pursuit 

This appendix contains the data used to supply the regression learner. Trajectories were 

tagged as pursuit or not, according to the footage. 300 of the 344 datasets were selected 

at random as training data, and the remaining 44 were left as test sets. The training data 

was then input to the regression learner to build an algorithm.  

Table D.1: Data supplied to the regression learner. 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

004obs0dom 31.1% 3.1 -16.97421053 0 

004obs0los 23.9% 4 -17.43297297 0 

004obs1dom 23.9% 4 -16.97421053 0 

004obs1los 30.5% 3.157894737 -17.43297297 0 

005obs0dom 15.0% 5.25 -149.784 1 

005obs0los 25.6% 3.636363636 -144.0230769 1 

005obs1dom 23.5% 4 -149.784 1 

005obs1los 89.9% 1.112600536 -106.9885714 1 

006obs0dom 88.6% 1.128342246 -70.67021277 1 

006obs0los 32.1% 3.035714286 -72.20652174 1 

006obs1dom 92.5% 1.080862534 -70.67021277 1 

006obs1los 34.1% 2.875 -83.0375 1 

008obs0dom 25.0% 3.75 -72.64255319 0 

008obs0los 30.0% 3.25 -74.22173913 0 

008obs1dom 93.4% 1.070652174 -72.64255319 1 

008obs1los 18.8% 5.105263158 -83.27317073 1 

009obs0dom 25.7% 3.75 -76.40851064 0 

009obs0los 21.2% 4.526315789 -78.06956522 0 
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Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

009obs1dom 89.8% 1.112860892 -76.40851064 1 

009obs1los 40.6% 2.413793103 -78.06956522 1 

010obs0dom 86.4% 1.156498674 -114.6 1 

010obs0los 24.1% 4 -128.2428571 1 

010obs1dom 15.9% 5.625 -114.6 0 

010obs1los 42.6% 2.3 -57.3 0 

011obs0dom 19.9% 4.916666667 -111.5473684 0 

011obs0los 26.0% 3.791666667 -112.7340426 0 

011obs1dom 14.6% 6.625 -111.5473684 0 

011obs1los 21.6% 4.547619048 -286.4054054 0 

012obs0dom 0.0% 8 -234.9 1 

012obs0los 55.6% 1.666666667 -195.75 1 

012obs1dom 55.6% 1.666666667 -234.9 1 

012obs1los 22.2% 3.333333333 -24.9893617 1 

013obs0dom 23.4% 4.166666667 -56.70777778 1 

013obs0los 28.9% 3.404255319 -57.34494382 1 

013obs1dom 24.5% 4 -56.70777778 1 

013obs1los 31.4% 3.148148148 -65.43205128 1 

014obs0dom 10.2% 9 -2.263333333 1 

014obs0los 28.9% 3.36 -2.645454545 1 

014obs1dom 30.8% 3.142857143 -2.263333333 0 

014obs1los 22.2% 4.333333333 -4.968292683 0 

015obs0dom 11.3% 7.714285714 -43.32857143 0 
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Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

015obs0los 29.2% 3.344827586 -44.38536585 0 

015obs1dom 21.6% 4.411764706 -43.32857143 0 

015obs1los 35.5% 2.764705882 -39.56086957 0 

016obs0dom 5.4% 14.25 -14.10404255 1 

016obs0los 24.6% 3.866666667 -14.41065217 1 

016obs1dom 20.8% 4.5 -14.10404255 1 

016obs1los 24.7% 3.92 -2.857284483 1 

017obs0dom 15.5% 6.362068966 -57.11587983 1 

017obs0los 17.8% 5.558441558 -172.8311688 1 

017obs1dom 18.6% 5.181818182 -57.11587983 1 

017obs1los 20.1% 4.931034483 -266.16 1 

018obs0dom 23.0% 4.166666667 -27.34117647 1 

018obs0los 23.5% 4.12 -27.888 1 

018obs1dom 34.9% 2.8 -27.34117647 1 

018obs1los 33.7% 2.909090909 -17.87692308 1 

019obs0dom 17.9% 5.433333333 -88.93398058 0 

019obs0los 27.9% 3.542372881 -89.80588235 0 

019obs1dom 17.8% 5.485714286 -88.93398058 0 

019obs1los 25.3% 3.893617021 -110.3638554 0 

020obs0dom 19.1% 5 -34.33809524 0 

020obs0los 22.5% 4.34375 -35.60987654 0 

020obs1dom 14.0% 6.714285714 -34.33809524 0 

020obs1los 24.4% 4.025641026 -62.70434783 0 



Appendices 
 

 
Alexander Mesecke Flinders University rr 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

021obs0dom 19.3% 4.941176471 -25.52553191 1 

021obs0los 39.5% 2.484848485 -27.26590909 1 

021obs1dom 14.3% 6.4 -23.21276596 1 

021obs1los 39.0% 2.516129032 -29.26097561 1 

022obs0dom 23.1% 4.076923077 -19.36785714 0 

022obs0los 30.8% 3.142857143 -20.85769231 0 

022obs1dom 25.9% 3.666666667 -18.07785714 1 

022obs1los 26.9% 3.578947368 -7.395 1 

023obs0dom 11.7% 8.111111111 -65.86725664 0 

023obs0los 26.6% 3.714285714 -66.45535714 0 

023obs1dom 23.1% 4.260869565 -65.86725664 1 

023obs1los 28.3% 3.490909091 -161.8043478 1 

024obs0dom 32.0% 3.04 -24.54255319 1 

024obs0los 29.0% 3.357142857 -26.21590909 1 

024obs1dom 12.5% 7.125 -24.54255319 1 

024obs1los 25.8% 3.75 -26.21590909 1 

025obs0dom 26.6% 3.611111111 -22.07234043 1 

025obs0los 26.3% 3.681818182 -22.55217391 1 

025obs1dom 10.9% 8.125 -22.07234043 0 

025obs1los 33.8% 2.888888889 -15.03478261 0 

026obs0dom 6.6% 12.83333333 -90.70629371 1 

026obs0los 25.3% 3.915492958 -91.34507042 1 

026obs1dom 19.0% 5.163265306 -90.70629371 0 



Appendices 

Alexander Mesecke Flinders University ss 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

026obs1los 19.5% 5.054545455 -128.4257426 0 

027obs0dom 16.9% 5.766666667 -101.2058824 1 

027obs0los 23.4% 4.2 -102.2079208 1 

027obs1dom 28.9% 3.411764706 -101.2058824 0 

027obs1los 26.6% 3.7 -72.18881119 0 

028obs0dom 20.4% 4.804878049 -45.24189189 0 

028obs0los 23.9% 4.138461538 -45.54965986 0 

028obs1dom 13.7% 7.117647059 -45.24189189 0 

028obs1los 23.2% 4.253731343 -180.9675676 0 

029obs0dom 27.5% 3.466666667 -147.883871 1 

029obs0los 31.9% 3.043478261 -143.2625 1 

029obs1dom 18.6% 4.888888889 -147.883871 1 

029obs1los 30.6% 3.15 -55.90731707 1 

030obs0dom 17.9% 5.333333333 -53.02826087 0 

030obs0los 27.2% 3.62962963 -53.61098901 0 

030obs1dom 12.8% 7.473684211 -53.02826087 0 

030obs1los 22.1% 4.435897436 -25.81269841 0 

031obs0dom 9.4% 10.25 -21.11510417 1 

031obs0los 29.1% 3.40952381 -21.22565445 1 

031obs1dom 21.5% 4.603174603 -21.11510417 1 

031obs1los 26.5% 3.72972973 -63.3453125 1 

032obs0dom 21.1% 4.529411765 -40.70307692 0 

032obs0los 27.9% 3.525 -41.3390625 0 



Appendices 
 

 
Alexander Mesecke Flinders University tt 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

032obs1dom 20.4% 4.7 -40.70307692 1 

032obs1los 27.6% 3.558139535 -20.35153846 1 

033obs0dom 19.2% 5.038461538 -27.98320611 0 

033obs0los 28.1% 3.515625 -28.19846154 0 

033obs1dom 29.3% 3.37037037 -27.98320611 0 

033obs1los 31.8% 3.114285714 -79.69130435 0 

034obs0dom 26.9% 3.533333333 -49.1787234 0 

034obs0los 26.0% 3.714285714 -50.24782609 0 

034obs1dom 21.6% 4.222222222 -49.1787234 1 

034obs1los 16.7% 5.615384615 -50.24782609 1 

035obs0dom 35.7% 2.730769231 -19.04851064 1 

035obs0los 27.8% 3.5 -19.4626087 1 

035obs1dom 25.9% 3.6875 -19.04851064 0 

035obs1los 26.2% 3.695652174 -19.4626087 0 

036obs0dom 25.5% 3.733333333 -32.04468085 1 

036obs0los 36.9% 2.65625 -34.22954545 1 

036obs1dom 8.9% 9.2 -32.04468085 1 

036obs1los 32.2% 3 -32.74130435 1 

042obs0dom 18.9% 5 -26.05531915 0 

042obs0los 32.2% 3.033333333 -26.62173913 0 

042obs1dom 12.3% 7.4 -26.05531915 1 

042obs1los 31.7% 3.05 -26.62173913 1 

043obs0dom 15.1% 6.166666667 -65.72340426 1 



Appendices 

Alexander Mesecke Flinders University uu 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

043obs0los 27.4% 3.541666667 -67.15217391 1 

043obs1dom 17.6% 5.375 -65.72340426 1 

043obs1los 22.1% 4.333333333 -70.20454545 1 

045obs0dom 11.1% 8 -77.8787234 1 

045obs0los 25.5% 3.807692308 -79.57173913 1 

045obs1dom 12.5% 7.363636364 -77.8787234 0 

045obs1los 25.3% 3.833333333 -98.92702703 0 

047obs0dom 7.7% 7 -30.1848 1 

047obs0los 20.3% 4.642857143 -29.02384615 1 

047obs1dom 15.4% 5.4 -30.1848 1 

047obs1los 23.9% 3.916666667 -29.02384615 1 

048obs0dom 15.4% 5.4 -145.2642857 1 

048obs0los 18.6% 5.071428571 -140.2551724 1 

048obs1dom 16.7% 5.375 -145.2642857 0 

048obs1los 15.3% 6 -107.0368421 0 

049obs0dom 2.6% 20 -14.35680851 1 

049obs0los 28.9% 3.36 -15.33568182 1 

049obs1dom 10.5% 7.8 -14.35680851 1 

049obs1los 32.9% 2.961538462 -18.23702703 1 

050obs0dom 5.9% 9 -94.0125 1 

050obs0los 15.6% 5.75 -90.252 1 

050obs1dom 0.0% 31 -94.0125 0 

050obs1los 38.1% 2.529411765 -70.509375 0 



Appendices 

Alexander Mesecke Flinders University vv 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

051obs0dom 8.2% 10 -45.56595745 1 

051obs0los 37.2% 2.638888889 -46.55652174 1 

051obs1dom 26.9% 3.590909091 -45.56595745 1 

051obs1los 31.1% 3.137931034 -57.88108108 1 

052obs0dom 9.7% 8 -104.1821429 1 

052obs0los 45.9% 2.111111111 -100.5896552 1 

052obs1dom 9.1% 6 -104.1821429 1 

052obs1los 31.7% 3.05 -100.5896552 1 

053obs0dom 0.0% 24 -84.92857143 0 

053obs0los 25.7% 3.75 -76.70967742 0 

053obs1dom 28.0% 3.4 -79.26666667 1 

053obs1los 25.5% 3.714285714 -69.94117647 1 

054obs0dom 13.9% 6.636363636 -28.04893617 0 

054obs0los 26.0% 3.714285714 -31.9173913 0 

054obs1dom 33.3% 2.935483871 -31.23829787 1 

054obs1los 22.1% 4.375 -31.9173913 1 

055obs0dom 34.2% 2.851851852 -7.354680851 1 

055obs0los 28.4% 3.433333333 -7.514565217 1 

055obs1dom 10.6% 8.6 -7.354680851 0 

055obs1los 30.1% 3.230769231 -9.342432432 0 

056obs0dom 13.8% 6 -100.1333333 1 

056obs0los 21.3% 4.363636364 -96.128 1 

056obs1dom 35.1% 2.714285714 -100.1333333 1 



Appendices 

Alexander Mesecke Flinders University ww 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

056obs1los 37.9% 2.565217391 -75.1 1 

057obs0dom 26.1% 3.615384615 -51.54680851 1 

057obs0los 27.7% 3.53125 -52.6673913 1 

057obs1dom 39.8% 2.472222222 -51.54680851 1 

057obs1los 27.1% 3.592592593 -57.68333333 1 

058obs0dom 16.0% 5.846153846 -61.14468085 0 

058obs0los 22.2% 4.347826087 -62.47391304 0 

058obs1dom 22.4% 4.214285714 -61.14468085 1 

058obs1los 30.6% 3.193548387 -77.67027027 1 

059obs0dom 2.9% 17.5 -88.55517241 0 

059obs0los 34.0% 2.833333333 -85.60333333 0 

059obs1dom 40.0% 2.4 -88.55517241 1 

059obs1los 10.2% 8.333333333 -65.84871795 1 

060obs0dom 29.3% 3.32 -27.03404255 1 

060obs0los 19.7% 4.769230769 -27.62173913 1 

060obs1dom 21.5% 4.444444444 -27.03404255 0 

060obs1los 28.9% 3.347826087 -30.9902439 0 

061obs0dom 23.9% 3.916666667 -22.10425532 0 

061obs0los 23.6% 4.090909091 -22.58478261 0 

061obs1dom 20.2% 4.722222222 -22.10425532 0 

061obs1los 24.7% 3.916666667 -23.61136364 0 

062obs0dom 19.7% 4.769230769 -44.97446809 1 

062obs0los 36.4% 2.696969697 -45.95217391 1 



Appendices 

Alexander Mesecke Flinders University xx 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

062obs1dom 20.3% 4.615384615 -44.97446809 0 

062obs1los 28.7% 3.384615385 -45.95217391 0 

063obs0dom 14.7% 5.833333333 -68.44255319 0 

063obs0los 36.5% 2.692307692 -69.93043478 0 

063obs1dom 33.3% 2.925925926 -68.44255319 1 

063obs1los 34.1% 2.870967742 -69.93043478 1 

064obs0dom 15.6% 6 -129.8829787 1 

064obs0los 28.7% 3.384615385 -138.7386364 1 

064obs1dom 24.3% 3.944444444 -129.8829787 1 

064obs1los 23.1% 4.181818182 -132.7065217 1 

065obs0dom 18.2% 5.153846154 -20.30957447 1 

065obs0los 23.8% 4.05 -20.75108696 1 

065obs1dom 16.5% 5.733333333 -20.30957447 0 

065obs1los 20.0% 4.80952381 -20.75108696 0 

066obs0dom 19.4% 4.866666667 -73.56595745 1 

066obs0los 27.3% 3.571428571 -75.16521739 1 

066obs1dom 20.3% 4.705882353 -73.56595745 1 

066obs1los 36.8% 2.666666667 -78.58181818 1 

067obs0dom 20.9% 4.533333333 -111.3021277 1 

067obs0los 34.4% 2.84375 -116.7521739 1 

067obs1dom 13.3% 6.909090909 -114.2680851 1 

067obs1los 37.1% 2.648648649 -134.265 1 

068obs0dom 17.2% 5.416666667 -75.35106383 0 



Appendices 
 

 
Alexander Mesecke Flinders University yy 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

068obs0los 27.5% 3.52173913 -76.98913043 0 

068obs1dom 26.2% 3.666666667 -75.35106383 1 

068obs1los 27.4% 3.541666667 -76.98913043 1 

069obs0dom 22.1% 4.35 -50.25319149 1 

069obs0los 22.9% 4.24 -51.34565217 1 

069obs1dom 20.9% 4.533333333 -50.25319149 1 

069obs1los 33.3% 2.931034483 -51.34565217 1 

070obs0dom 24.4% 3.95 -30.95957447 0 

070obs0los 34.6% 2.821428571 -31.6326087 0 

070obs1dom 28.6% 3.380952381 -30.95957447 1 

070obs1los 27.2% 3.565217391 -31.6326087 1 

071obs0dom 19.8% 4.833333333 -52.0106383 1 

071obs0los 38.7% 2.540540541 -53.14130435 1 

071obs1dom 25.4% 3.777777778 -52.0106383 0 

071obs1los 25.6% 3.772727273 -53.14130435 0 

072obs0dom 25.4% 3.777777778 -49.34893617 1 

072obs0los 30.5% 3.2 -50.42173913 1 

072obs1dom 27.8% 3.5 -49.34893617 0 

072obs1los 36.6% 2.685714286 -50.42173913 0 

073obs0dom 24.7% 3.913043478 -49.68085106 0 

073obs0los 29.4% 3.307692308 -50.76086957 0 

073obs1dom 24.2% 4 -49.68085106 1 

073obs1los 35.1% 2.785714286 -50.76086957 1 



Appendices 

Alexander Mesecke Flinders University zz 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

080obs0dom 36.6% 2.666666667 -36.60425532 0 

080obs0los 23.9% 4.043478261 -37.4 0 

080obs1dom 21.4% 4.4375 -36.60425532 1 

080obs1los 24.7% 3.92 -46.4972973 1 

081obs0dom 16.7% 5.375 -195.0473684 0 

081obs0los 30.3% 3.208333333 -200.3189189 0 

081obs1dom 28.8% 3.333333333 -195.0473684 1 

081obs1los 22.1% 4.3125 -200.3189189 1 

082obs0dom 17.0% 5.333333333 -199.0677419 0 

082obs0los 34.4% 2.818181818 -192.846875 0 

082obs1dom 26.2% 3.583333333 -199.0677419 0 

082obs1los 18.8% 4.9 -150.5146341 0 

083obs0dom 16.3% 5.8 -151.3170213 0 

083obs0los 29.5% 3.291666667 -154.6065217 0 

083obs1dom 20.0% 4.714285714 -151.3170213 1 

083obs1los 30.0% 3.24 -192.2135135 1 

086obs0dom 11.4% 7.5 -44.24814815 1 

086obs0los 23.3% 4 -42.66785714 1 

086obs1dom 15.0% 5.857142857 -44.24814815 0 

086obs1los 25.5% 3.692307692 -34.13428571 0 

088obs0dom 24.2% 3.941176471 -90.21568627 0 

088obs0los 30.1% 3.24137931 -92.02 0 

088obs1dom 16.3% 5.8 -90.21568627 1 



Appendices 

Alexander Mesecke Flinders University aaa 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

088obs1los 28.4% 3.428571429 -92.02 1 

089obs0dom 21.4% 4.3 -66.75098039 1 

089obs0los 28.8% 3.387096774 -68.086 1 

089obs1dom 14.1% 6.545454545 -66.75098039 0 

089obs1los 39.6% 2.487804878 -70.92291667 0 

090obs0dom 25.3% 3.833333333 -176.4333333 0 

090obs0los 23.5% 4.095238095 -179.962 0 

090obs1dom 21.5% 4.476190476 -176.4333333 1 

090obs1los 24.7% 3.913043478 -199.9577778 1 

091obs0dom 22.2% 4.266666667 -150.9938776 1 

091obs0los 21.3% 4.5 -154.1395833 1 

091obs1dom 21.0% 4.555555556 -150.9938776 1 

091obs1los 30.9% 3.171428571 -176.1595238 1 

092obs0dom 23.5% 3.888888889 -88.56326531 1 

092obs0los 27.2% 3.576923077 -90.40833333 1 

092obs1dom 29.0% 3.333333333 -88.56326531 0 

092obs1los 29.8% 3.28125 -103.3238095 0 

093obs0dom 6.8% 12 -104.0795918 1 

093obs0los 13.8% 6.785714286 -106.2479167 1 

093obs1dom 15.9% 5.833333333 -104.0795918 1 

093obs1los 19.4% 4.95 -106.2479167 1 

094obs0dom 20.3% 4.615384615 -33.8 1 

094obs0los 23.6% 4.111111111 -36.00434783 1 



Appendices 

Alexander Mesecke Flinders University bbb 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

094obs1dom 21.6% 4.333333333 -33.8 0 

094obs1los 25.9% 3.727272727 -37.64090909 0 

095obs0dom 17.9% 5.181818182 -123.5918367 0 

095obs0los 22.6% 4.28 -126.1666667 0 

095obs1dom 23.7% 4.086956522 -123.5918367 1 

095obs1los 34.7% 2.828571429 -163.6756757 1 

096obs0dom 11.1% 7 -76.30526316 1 

096obs0los 34.8% 2.791666667 -76.30526316 1 

096obs1dom 13.0% 6.714285714 -74.34871795 0 

096obs1los 21.8% 4.388888889 -78.36756757 0 

097obs0dom 14.1% 6.545454545 -68.61842105 1 

097obs0los 13.0% 7 -68.61842105 1 

097obs1dom 27.0% 3.571428571 -66.85897436 1 

097obs1los 29.3% 3.32 -54.32291667 1 

098obs0dom 15.3% 6.083333333 -34.79795918 0 

098obs0los 24.7% 3.92 -35.52291667 0 

098obs1dom 26.9% 3.590909091 -34.79795918 0 

098obs1los 24.2% 4 -43.72051282 0 

099obs0dom 16.4% 5.6 -108.7510638 0 

099obs0los 34.0% 2.882352941 -111.1152174 0 

099obs1dom 20.7% 4.538461538 -108.7510638 1 

099obs1los 28.0% 3.482758621 -138.1432432 1 

100obs0dom 21.5% 4.444444444 -135.1265306 0 



Appendices 

Alexander Mesecke Flinders University ccc 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

100obs0los 30.1% 3.230769231 -137.9416667 0 

100obs1dom 16.3% 5.823529412 -135.1265306 0 

100obs1los 27.9% 3.5 -137.9416667 0 

101obs0dom 21.4% 4.384615385 -99.45918367 1 

101obs0los 37.0% 2.657142857 -101.53125 1 

101obs1dom 14.5% 6.363636364 -99.45918367 1 

101obs1los 25.5% 3.807692308 -3.804449649 1 

102obs0dom 15.6% 6.371794872 -6.072531646 0 

102obs0los 13.3% 7.48241206 -7.51339076 0 

102obs1dom 9.9% 10.03314917 -6.068690702 0 

102obs1los 17.2% 5.789699571 -21.75646259 0 

103obs0dom 11.6% 8.506493506 -42.43678161 1 

103obs0los 20.3% 4.91509434 -44.84210526 1 

103obs1dom 12.8% 7.717171717 -44.35440613 0 

103obs1los 20.1% 4.96039604 -127.3103448 0 

104obs0dom 13.6% 7.184210526 -72.93203883 0 

104obs0los 20.4% 4.84 -76.48469388 0 

104obs1dom 15.7% 6.230769231 -72.77184466 1 

104obs1los 18.5% 5.333333333 -51.3390411 1 

105obs0dom 8.4% 11.57894737 -62.46268657 0 

105obs0los 15.6% 6.362068966 -64.58354756 0 

105obs1dom 9.3% 10.57692308 -62.49502488 0 

105obs1los 12.9% 7.666666667 -71.98567335 0 



Appendices 
 

 
Alexander Mesecke Flinders University ddd 

Trajectory 
ID 

Percentage 
visible 

Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

106obs0dom 6.9% 14.09756098 -35.91911765 1 

106obs0los 17.0% 5.835820896 -36.00737101 1 

106obs1dom 14.4% 6.878787879 -35.91911765 1 

106obs1los 14.2% 6.973451327 -396.0810811 1 
 

Table D.2: The training data supplied to the regression learner. 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

082obs0dom 17 5.333333 -199.068 0 

022obs1los 26.9 3.578947 -7.395 1 

021obs1los 39 2.516129 -29.261 1 

091obs1los 30.9 3.171429 -176.16 1 

060obs0los 19.7 4.769231 -27.6217 1 

005obs1los 89.9 1.112601 -106.989 1 

093obs1los 19.4 4.95 -106.248 1 

010obs0dom 86.4 1.156499 -114.6 1 

025obs0dom 26.6 3.611111 -22.0723 1 

096obs1los 21.8 4.388889 -78.3676 0 

056obs1los 37.9 2.565217 -75.1 1 

094obs1los 25.9 3.727273 -37.6409 0 

103obs0los 20.3 4.915094 -44.8421 1 

073obs1dom 24.2 4 -49.6809 1 

104obs0los 20.4 4.84 -76.4847 0 

050obs0dom 5.9 9 -94.0125 1 



Appendices 

Alexander Mesecke Flinders University eee 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

018obs1los 33.7 2.909091 -17.8769 1 

010obs0los 24.1 4 -128.243 1 

101obs1dom 14.5 6.363636 -99.4592 1 

089obs0dom 21.4 4.3 -66.751 1 

071obs0dom 19.8 4.833333 -52.0106 1 

013obs1los 31.4 3.148148 -65.4321 1 

029obs1los 30.6 3.15 -55.9073 1 

053obs1dom 28 3.4 -79.2667 1 

008obs1dom 93.4 1.070652 -72.6426 1 

012obs1los 22.2 3.333333 -24.9894 1 

102obs0dom 15.6 6.371795 -6.07253 0 

049obs1dom 10.5 7.8 -14.3568 1 

004obs0los 23.9 4 -17.433 0 

049obs1los 32.9 2.961538 -18.237 1 

071obs0los 38.7 2.540541 -53.1413 1 

043obs1los 22.1 4.333333 -70.2045 1 

033obs0los 28.1 3.515625 -28.1985 0 

092obs0dom 23.5 3.888889 -88.5633 1 

095obs1dom 23.7 4.086957 -123.592 1 

098obs1los 24.2 4 -43.7205 0 

071obs1dom 25.4 3.777778 -52.0106 0 

052obs1los 31.7 3.05 -100.59 1 

102obs0los 13.3 7.482412 -7.51339 0 



Appendices 

Alexander Mesecke Flinders University fff 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

096obs0dom 11.1 7 -76.3053 1 

073obs0los 29.4 3.307692 -50.7609 0 

056obs0dom 13.8 6 -100.133 1 

026obs0dom 6.6 12.83333 -90.7063 1 

014obs0los 28.9 3.36 -2.64545 1 

068obs0los 27.5 3.521739 -76.9891 0 

006obs1los 34.1 2.875 -83.0375 1 

102obs1dom 9.9 10.03315 -6.06869 0 

066obs1dom 20.3 4.705882 -73.566 1 

025obs0los 26.3 3.681818 -22.5522 1 

008obs0dom 25 3.75 -72.6426 0 

029obs0dom 27.5 3.466667 -147.884 1 

096obs0los 34.8 2.791667 -76.3053 1 

072obs1los 36.6 2.685714 -50.4217 0 

027obs0dom 16.9 5.766667 -101.206 1 

052obs1dom 9.1 6 -104.182 1 

095obs0los 22.6 4.28 -126.167 0 

061obs0los 23.6 4.090909 -22.5848 0 

068obs1dom 26.2 3.666667 -75.3511 1 

095obs1los 34.7 2.828571 -163.676 1 

101obs0dom 21.4 4.384615 -99.4592 1 

100obs0dom 21.5 4.444444 -135.127 0 

032obs1dom 20.4 4.7 -40.7031 1 



Appendices 
 

 
Alexander Mesecke Flinders University ggg 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

093obs0dom 6.8 12 -104.08 1 

064obs0los 28.7 3.384615 -138.739 1 

049obs0los 28.9 3.36 -15.3357 1 

019obs1dom 17.8 5.485714 -88.934 0 

083obs1los 30 3.24 -192.214 1 

033obs0dom 19.2 5.038462 -27.9832 0 

017obs0los 17.8 5.558442 -172.831 1 

057obs0los 27.7 3.53125 -52.6674 1 

028obs0dom 20.4 4.804878 -45.2419 0 

088obs1dom 16.3 5.8 -90.2157 1 

019obs0dom 17.9 5.433333 -88.934 0 

036obs1dom 8.9 9.2 -32.0447 1 

005obs0los 25.6 3.636364 -144.023 1 

056obs1dom 35.1 2.714286 -100.133 1 

043obs0los 27.4 3.541667 -67.1522 1 

014obs0dom 10.2 9 -2.26333 1 

028obs1dom 13.7 7.117647 -45.2419 0 

061obs0dom 23.9 3.916667 -22.1043 0 

099obs1los 28 3.482759 -138.143 1 

014obs1dom 30.8 3.142857 -2.26333 0 

097obs0los 13 7 -68.6184 1 

029obs0los 31.9 3.043478 -143.263 1 

017obs1los 20.1 4.931034 -266.16 1 



Appendices 

Alexander Mesecke Flinders University hhh 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

006obs0los 32.1 3.035714 -72.2065 1 

043obs1dom 17.6 5.375 -65.7234 1 

070obs1dom 28.6 3.380952 -30.9596 1 

010obs1dom 15.9 5.625 -114.6 0 

024obs0los 29 3.357143 -26.2159 1 

012obs1dom 55.6 1.666667 -234.9 1 

065obs0los 23.8 4.05 -20.7511 1 

060obs1dom 21.5 4.444444 -27.034 0 

026obs1dom 19 5.163265 -90.7063 0 

020obs1dom 14 6.714286 -34.3381 0 

055obs1los 30.1 3.230769 -9.34243 0 

035obs0dom 35.7 2.730769 -19.0485 1 

058obs0los 22.2 4.347826 -62.4739 0 

094obs1dom 21.6 4.333333 -33.8 0 

050obs1los 38.1 2.529412 -70.5094 0 

064obs0dom 15.6 6 -129.883 1 

022obs0los 30.8 3.142857 -20.8577 0 

062obs1los 28.7 3.384615 -45.9522 0 

054obs1los 22.1 4.375 -31.9174 1 

059obs0dom 2.9 17.5 -88.5552 0 

063obs0los 36.5 2.692308 -69.9304 0 

050obs0los 15.6 5.75 -90.252 1 

069obs1dom 20.9 4.533333 -50.2532 1 



Appendices 

Alexander Mesecke Flinders University iii 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

011obs0los 26 3.791667 -112.734 0 

035obs1dom 25.9 3.6875 -19.0485 0 

100obs1los 27.9 3.5 -137.942 0 

008obs0los 30 3.25 -74.2217 0 

013obs1dom 24.5 4 -56.7078 1 

060obs1los 28.9 3.347826 -30.9902 0 

023obs0los 26.6 3.714286 -66.4554 0 

006obs0dom 88.6 1.128342 -70.6702 1 

031obs0dom 9.4 10.25 -21.1151 1 

062obs0dom 19.7 4.769231 -44.9745 1 

065obs1los 20 4.809524 -20.7511 0 

014obs1los 22.2 4.333333 -4.96829 0 

059obs1los 10.2 8.333333 -65.8487 1 

057obs1dom 39.8 2.472222 -51.5468 1 

098obs1dom 26.9 3.590909 -34.798 0 

050obs1dom 0 31 -94.0125 0 

033obs1los 31.8 3.114286 -79.6913 0 

015obs1dom 21.6 4.411765 -43.3286 0 

034obs0dom 26.9 3.533333 -49.1787 0 

023obs1dom 23.1 4.26087 -65.8673 1 

023obs0dom 11.7 8.111111 -65.8673 0 

009obs0dom 25.7 3.75 -76.4085 0 

024obs1los 25.8 3.75 -26.2159 1 



Appendices 
 

 
Alexander Mesecke Flinders University jjj 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

025obs1los 33.8 2.888889 -15.0348 0 

045obs1dom 12.5 7.363636 -77.8787 0 

083obs0los 29.5 3.291667 -154.607 0 

092obs1dom 29 3.333333 -88.5633 0 

054obs1dom 33.3 2.935484 -31.2383 1 

095obs0dom 17.9 5.181818 -123.592 0 

099obs0dom 16.4 5.6 -108.751 0 

073obs0dom 24.7 3.913043 -49.6809 0 

072obs1dom 27.8 3.5 -49.3489 0 

086obs0dom 11.4 7.5 -44.2481 1 

098obs0dom 15.3 6.083333 -34.798 0 

106obs1los 14.2 6.973451 -396.081 1 

067obs1dom 13.3 6.909091 -114.268 1 

016obs0los 24.6 3.866667 -14.4107 1 

055obs1dom 10.6 8.6 -7.35468 0 

048obs1los 15.3 6 -107.037 0 

053obs1los 25.5 3.714286 -69.9412 1 

015obs0los 29.2 3.344828 -44.3854 0 

083obs0dom 16.3 5.8 -151.317 0 

054obs0dom 13.9 6.636364 -28.0489 0 

010obs1los 42.6 2.3 -57.3 0 

012obs0los 55.6 1.666667 -195.75 1 

070obs1los 27.2 3.565217 -31.6326 1 



Appendices 
 

 
Alexander Mesecke Flinders University kkk 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

098obs0los 24.7 3.92 -35.5229 0 

097obs1dom 27 3.571429 -66.859 1 

042obs1dom 12.3 7.4 -26.0553 1 

047obs1los 23.9 3.916667 -29.0238 1 

047obs0dom 7.7 7 -30.1848 1 

030obs1los 22.1 4.435897 -25.8127 0 

093obs0los 13.8 6.785714 -106.248 1 

080obs0dom 36.6 2.666667 -36.6043 0 

100obs0los 30.1 3.230769 -137.942 0 

103obs0dom 11.6 8.506494 -42.4368 1 

086obs1dom 15 5.857143 -44.2481 0 

030obs0dom 17.9 5.333333 -53.0283 0 

091obs0los 21.3 4.5 -154.14 1 

090obs1los 24.7 3.913043 -199.958 1 

042obs0los 32.2 3.033333 -26.6217 0 

081obs0dom 16.7 5.375 -195.047 0 

004obs0dom 31.1 3.1 -16.9742 0 

088obs0los 30.1 3.241379 -92.02 0 

056obs0los 21.3 4.363636 -96.128 1 

068obs0dom 17.2 5.416667 -75.3511 0 

005obs1dom 23.5 4 -149.784 1 

008obs1los 18.8 5.105263 -83.2732 1 

022obs0dom 23.1 4.076923 -19.3679 0 



Appendices 

Alexander Mesecke Flinders University lll 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

033obs1dom 29.3 3.37037 -27.9832 0 

026obs1los 19.5 5.054545 -128.426 0 

013obs0dom 23.4 4.166667 -56.7078 1 

082obs1dom 26.2 3.583333 -199.068 0 

036obs1los 32.2 3 -32.7413 1 

094obs0dom 20.3 4.615385 -33.8 1 

102obs1los 17.2 5.7897 -21.7565 0 

089obs0los 28.8 3.387097 -68.086 1 

051obs1dom 26.9 3.590909 -45.566 1 

093obs1dom 15.9 5.833333 -104.08 1 

097obs0dom 14.1 6.545455 -68.6184 1 

032obs0dom 21.1 4.529412 -40.7031 0 

016obs1los 24.7 3.92 -2.85728 1 

009obs1los 40.6 2.413793 -78.0696 1 

045obs1los 25.3 3.833333 -98.927 0 

100obs1dom 16.3 5.823529 -135.127 0 

031obs0los 29.1 3.409524 -21.2257 1 

045obs0los 25.5 3.807692 -79.5717 1 

047obs0los 20.3 4.642857 -29.0238 1 

031obs1dom 21.5 4.603175 -21.1151 1 

011obs0dom 19.9 4.916667 -111.547 0 

089obs1dom 14.1 6.545455 -66.751 0 

034obs1dom 21.6 4.222222 -49.1787 1 



Appendices 
 

 
Alexander Mesecke Flinders University mmm 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

035obs0los 27.8 3.5 -19.4626 1 

088obs1los 28.4 3.428571 -92.02 1 

019obs1los 25.3 3.893617 -110.364 0 

065obs1dom 16.5 5.733333 -20.3096 0 

055obs0dom 34.2 2.851852 -7.35468 1 

018obs0los 23.5 4.12 -27.888 1 

021obs1dom 14.3 6.4 -23.2128 1 

017obs1dom 18.6 5.181818 -57.1159 1 

072obs0los 30.5 3.2 -50.4217 1 

031obs1los 26.5 3.72973 -63.3453 1 

030obs0los 27.2 3.62963 -53.611 0 

059obs0los 34 2.833333 -85.6033 0 

057obs1los 27.1 3.592593 -57.6833 1 

018obs1dom 34.9 2.8 -27.3412 1 

097obs1los 29.3 3.32 -54.3229 1 

009obs0los 21.2 4.526316 -78.0696 0 

053obs0los 25.7 3.75 -76.7097 0 

080obs1los 24.7 3.92 -46.4973 1 

009obs1dom 89.8 1.112861 -76.4085 1 

059obs1dom 40 2.4 -88.5552 1 

032obs1los 27.6 3.55814 -20.3515 1 

011obs1los 21.6 4.547619 -286.405 0 

048obs0los 18.6 5.071429 -140.255 1 



Appendices 

Alexander Mesecke Flinders University nnn 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

025obs1dom 10.9 8.125 -22.0723 0 

103obs1los 20.1 4.960396 -127.31 0 

089obs1los 39.6 2.487805 -70.9229 0 

058obs1dom 22.4 4.214286 -61.1447 1 

104obs0dom 13.6 7.184211 -72.932 0 

027obs0los 23.4 4.2 -102.208 1 

088obs0dom 24.2 3.941176 -90.2157 0 

055obs0los 28.4 3.433333 -7.51457 1 

069obs1los 33.3 2.931034 -51.3457 1 

057obs0dom 26.1 3.615385 -51.5468 1 

063obs1los 34.1 2.870968 -69.9304 1 

051obs0dom 8.2 10 -45.566 1 

028obs1los 23.2 4.253731 -180.968 0 

066obs0los 27.3 3.571429 -75.1652 1 

090obs1dom 21.5 4.47619 -176.433 1 

063obs0dom 14.7 5.833333 -68.4426 0 

023obs1los 28.3 3.490909 -161.804 1 

034obs1los 16.7 5.615385 -50.2478 1 

051obs1los 31.1 3.137931 -57.8811 1 

013obs0los 28.9 3.404255 -57.3449 1 

020obs1los 24.4 4.025641 -62.7043 0 

024obs1dom 12.5 7.125 -24.5426 1 

106obs0los 17 5.835821 -36.0074 1 



Appendices 
 

 
Alexander Mesecke Flinders University ooo 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

070obs0los 34.6 2.821429 -31.6326 0 

064obs1dom 24.3 3.944444 -129.883 1 

083obs1dom 20 4.714286 -151.317 1 

063obs1dom 33.3 2.925926 -68.4426 1 

081obs0los 30.3 3.208333 -200.319 0 

005obs0dom 15 5.25 -149.784 1 

011obs1dom 14.6 6.625 -111.547 0 

061obs1dom 20.2 4.722222 -22.1043 0 

070obs0dom 24.4 3.95 -30.9596 0 

036obs0dom 25.5 3.733333 -32.0447 1 

066obs0dom 19.4 4.866667 -73.566 1 

035obs1los 26.2 3.695652 -19.4626 0 

020obs0los 22.5 4.34375 -35.6099 0 

092obs1los 29.8 3.28125 -103.324 0 

086obs1los 25.5 3.692308 -34.1343 0 

073obs1los 35.1 2.785714 -50.7609 1 

099obs0los 34 2.882353 -111.115 0 

106obs0dom 6.9 14.09756 -35.9191 1 

104obs1dom 15.7 6.230769 -72.7718 1 

054obs0los 26 3.714286 -31.9174 0 

066obs1los 36.8 2.666667 -78.5818 1 

092obs0los 27.2 3.576923 -90.4083 1 

082obs0los 34.4 2.818182 -192.847 0 



Appendices 

Alexander Mesecke Flinders University ppp 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

043obs0dom 15.1 6.166667 -65.7234 1 

099obs1dom 20.7 4.538462 -108.751 1 

016obs0dom 5.4 14.25 -14.104 1 

081obs1dom 28.8 3.333333 -195.047 1 

004obs1los 30.5 3.157895 -17.433 0 

067obs1los 37.1 2.648649 -134.265 1 

062obs1dom 20.3 4.615385 -44.9745 0 

090obs0dom 25.3 3.833333 -176.433 0 

086obs0los 23.3 4 -42.6679 1 

004obs1dom 23.9 4 -16.9742 0 

022obs1dom 25.9 3.666667 -18.0779 1 

028obs0los 23.9 4.138462 -45.5497 0 

091obs0dom 22.2 4.266667 -150.994 1 

080obs0los 23.9 4.043478 -37.4 0 

103obs1dom 12.8 7.717172 -44.3544 0 

052obs0dom 9.7 8 -104.182 1 

104obs1los 18.5 5.333333 -51.339 1 

045obs0dom 11.1 8 -77.8787 1 

016obs1dom 20.8 4.5 -14.104 1 

032obs0los 27.9 3.525 -41.3391 0 

101obs0los 37 2.657143 -101.531 1 

065obs0dom 18.2 5.153846 -20.3096 1 

017obs0dom 15.5 6.362069 -57.1159 1 



Appendices 

Alexander Mesecke Flinders University qqq 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

012obs0dom 0 8 -234.9 1 

052obs0los 45.9 2.111111 -100.59 1 

090obs0los 23.5 4.095238 -179.962 0 

105obs1los 12.9 7.666667 -71.9857 0 

081obs1los 22.1 4.3125 -200.319 1 

067obs0los 34.4 2.84375 -116.752 1 

082obs1los 18.8 4.9 -150.515 0 

049obs0dom 2.6 20 -14.3568 1 

Table D.3: The data used as test sets for the regression learner. 

Trajectory ID 
Percentage 

visible 
Average # frames 
between visibility 

Average change in 
speed 

Pursuit 

027obs1los 26.6 3.7 -72.1888 0 

048obs0dom 15.4 5.4 -145.264 1 

058obs1los 30.6 3.193548 -77.6703 1 

101obs1los 25.5 3.807692 -3.80445 1 

047obs1dom 15.4 5.4 -30.1848 1 

105obs0los 15.6 6.362069 -64.5835 0 

030obs1dom 12.8 7.473684 -53.0283 0 

072obs0dom 25.4 3.777778 -49.3489 1 

068obs1los 27.4 3.541667 -76.9891 1 

058obs0dom 16 5.846154 -61.1447 0 

071obs1los 25.6 3.772727 -53.1413 0 

069obs0dom 22.1 4.35 -50.2532 1 



Appendices 

Alexander Mesecke Flinders University rrr 

020obs0dom 19.1 5 -34.3381 0 

015obs1los 35.5 2.764706 -39.5609 0 

106obs1dom 14.4 6.878788 -35.9191 1 

019obs0los 27.9 3.542373 -89.8059 0 

006obs1dom 92.5 1.080863 -70.6702 1 

060obs0dom 29.3 3.32 -27.034 1 

096obs1dom 13 6.714286 -74.3487 0 

069obs0los 22.9 4.24 -51.3457 1 

021obs0los 39.5 2.484848 -27.2659 1 

036obs0los 36.9 2.65625 -34.2295 1 

051obs0los 37.2 2.638889 -46.5565 1 

105obs0dom 8.4 11.57895 -62.4627 0 

018obs0dom 23 4.166667 -27.3412 1 

094obs0los 23.6 4.111111 -36.0043 1 

067obs0dom 20.9 4.533333 -111.302 1 

042obs0dom 18.9 5 -26.0553 0 

021obs0dom 19.3 4.941176 -25.5255 1 

048obs1dom 16.7 5.375 -145.264 0 

053obs0dom 0 24 -84.9286 0 

015obs0dom 11.3 7.714286 -43.3286 0 

062obs0los 36.4 2.69697 -45.9522 1 

024obs0dom 32 3.04 -24.5426 1 

042obs1los 31.7 3.05 -26.6217 1 

061obs1los 24.7 3.916667 -23.6114 0 



Appendices 

Alexander Mesecke Flinders University sss 

026obs0los 25.3 3.915493 -91.3451 1 

029obs1dom 18.6 4.888889 -147.884 1 

064obs1los 23.1 4.181818 -132.707 1 

027obs1dom 28.9 3.411765 -101.206 0 

091obs1dom 21 4.555556 -150.994 1 

105obs1dom 9.3 10.57692 -62.495 0 

080obs1dom 21.4 4.4375 -36.6043 1 

034obs0los 26 3.714286 -50.2478 0 




