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Summary 

Microbes are largely responsible for the turnover of energy and matter and are thus, 

integral players in ecosystem functioning. Despite the increasing awareness of the 

importance of microbial communities, there is still a critical lack of information on 

the complex relationship between microbial communities and the environment. 

Metagenomic analysis is thought to yield the most quantitative and accurate view of 

the microbial world, greatly increasing our ability to generate microbial profiles of 

the changing world. These methodologies have led to the growing interest in 

understanding and forecasting microbial responses to anthropogenic disturbances. 

This thesis investigates the microbial responses to two common forms of pollution, 

agricultural modification and hydrocarbon impact, to determine to what extent the 

resident microbial communities may be effected by introduced contaminants. The 

reoccurring theme of this thesis has been that major shifts in the structure and 

function of the resident microbial communities was observed following 

environmental change. Moreover, this thesis demonstrated that the microbial 

communities inhabiting impacted environments exhibited markedly different 

community responses based on contaminant type, allowing for the discrimination of 

their metagenomic signatures. This thesis provides detailed insight into how 

environmental change affects the inhabiting microbial consortia, and for the first 

time, demonstrates how the overall metagenomic signature can be used to detect and 

assess the extent to which anthropogenic disturbances have altered our planet. 
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1.1 Microbial communities run the world 

Microorganisms are the most abundant and diverse group on the planet, with 

estimates of 4-6 × 1030 prokaryotic cells on earth (Whitman et al., 1998; van der 

Heijden et al., 2008; DeLong, 2009). Although invisible to the naked eye, microbes 

are ubiquitous, diverse and essential components of all ecosystems (Whitman et al., 

1998; DeLong and Pace, 2001; Fraser et al., 2009). This is largely due to their 

fundamental role in the turnover of energy and matter, subsequently forming the 

basis of environmental food webs (Steele et al., 2011). For example, microbial 

communities are known to convert carbon, nitrogen, oxygen and sulfur into forms 

accessible to all other living things (Whitman et al., 1998; Karl, 2002; Rittman et al., 

2008). Microbes are also heavily relied upon for the degradation and clean-up of 

pollutants in the environment (Hemme et al., 2010; Kostka et al., 2011; Liang et al., 

2011). These processes are all achieved by complex microbial networks, which have 

the capacity to adapt to, and transform the world around them (Follows et al., 2007; 

Lawrence et al., 2012). Due to these capabilities, ecosystem functioning and 

microbial communities are intimately connected (Chapin III et al., 1997; Gianoulis et 

al., 2009).  

Despite their importance to ecosystem functioning, microbes remain largely 

unknown, with current estimates of the diversity of microbial life being at least 100 

times greater than previously thought (Sogin et al., 2006; Kunin et al., 2010). The 

breadth and newness of this diversity means that the complex relationships between 

microbial community composition and the environment are still being decoded 

(Zengler and Palsson, 2012). This gap in knowledge is largely due to methodological 

limitations as well as their overwhelming diversity and abundance (Woyke et al., 

2009; Maron et al., 2011; Martinez-Garcia et al., 2012). Advances in metagenomic 
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sequencing technologies, however, have allowed for the direct sequencing of 

representative segments of whole environmental microbial communities, greatly 

increasing our ability to generate microbial profiles of environmental systems 

(Wommack et al., 2008; Kennedy et al., 2010; Xing et al., 2012). Combining these 

high throughput sequencing methods with computational tools such as multivariate 

analysis, could then provide insight into the tracking, manipulation and 

discrimination of microbial communities (Gonzalez et al., 2012). Consequently, this 

has led to the growing interest in forecasting and understanding microbiological 

responses to anthropogenic disturbances on all scales (Barnosky et al., 2012), with a 

special focus on the microbial communities (Ager et al., 2010; Berga et al., 2012). 

 

1.2 Microbial communities as biological indicators 

Baas-Becking and Beijerink (Bass Becking, 1934; de Wit and Bouvier, 2006) 

hypothesized that microbial taxa have preferred environments: “Everything is 

everywhere, but the environment selects.” In other words, microorganisms are 

ubiquitously dispersed globally, however, unique environmental conditions, as well 

as the microbes functional capabilities, determine their dominance (Keller and 

Hettich, 2009). There is dispute about the idea that “everything is everywhere”, with 

recent evidence of the global occurrence and geographically localised occurrence of 

some microbial species (Ramette and Tiedje, 2007; Zinger et al., 2011). However, 

pollution events have been shown to leave lasting signatures on microbial 

assemblages that are evident at distances as small as 500 km, generating evidence to 

support the theory that different contemporary environments maintain distinctive 

microbial assemblages (Martiny et al., 2006; Jeffries et al., 2011a; Marchetti et al., 

2012).  
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It is therefore, not surprising that changes to the surrounding environment can lead to 

a major shift in the structure and function of the microbial consortia (Dinsdale et al., 

2008a; Hemme et al., 2010; Jeffries et al., 2011b). Once these shifts in structure and 

function are characterised, microbial community dynamics can be used to predict 

environmental conditions (Fuhrman et al., 2006; Dinsdale et al., 2008b; Fuhrman, 

2009; Gianoulis et al., 2009; Larsen et al., 2012). Therefore, understanding the 

intimate relationship between microbial communities and the factors that control 

them is particularly important given the increase in anthropogenic activities 

(Fuhrman et al., 2006; Ager et al., 2010; Stegen et al., 2012).  

1.3 Anthropogenic disturbances 

Current global environmental disturbances that effect diversity and composition of 

microbial communities are profoundly altering biosphere functioning (Chapin III et 

al., 1997; Balser et al., 2006; Sjöstedt et al., 2012). Among the disturbances 

threatening ecosystem health globally are agricultural modification and pollution 

events (Ager et al., 2010; Malone et al., 2010; Carpenter et al., 2011). For example, 

it has been estimated that approximately 40% of land surface has been converted for 

agricultural practises, becoming one of the largest terrestrial biomes on the planet 

(Asner et al., 2004; Foley et al., 2005; Lee et al., 2011). Furthermore, long term 

effects have been associated with agriculturally influenced land, whereby fields that 

have been abandoned for nine years still exhibited similar microbial community 

compositions when compared to actively cultivated land (Buckley and Schmidt, 

2003). Therefore, it is now widely accepted that agricultural practises can 

dramatically change microbial community dynamics and thus, ecosystem functioning 

(Mäder et al., 2002; Kaye et al., 2005; Ge et al., 2008; Sun et al., 2011).  
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The effects of hydrocarbon impact are also widely studied due to its long term 

toxicity and persistence worldwide (Vinas et al., 2005; Kostka et al., 2011; Liang et 

al., 2011). Due to its natural occurrence in the environment, numerous 

microorganisms have evolved the capability of utilizing hydrocarbons as energy 

sources (Atlas and Hazen, 2011). Their ability to effectively remediate hydrocarbons 

in the environment means that microbial communities are commonly used for 

bioremediation; however, the mechanisms by which this is achieved in the natural 

environment are still being elucidated (Chakraborty et al., 2012). Thus, knowledge 

about the shifts in microbial community structure and functionality following 

disturbances could improve our understanding of ecosystem processes, and thus 

improve management strategies (Mäder et al., 2002; Ge et al., 2008; Griffiths and 

Philippot, 2012).  

Previous metagenomic studies have shown that contamination can lead to rare taxa 

or metabolic processes becoming more prominent, thereby linking the community 

composition to environmental change (Dinsdale et al., 2008a; Jeffries et al., 2011b). 

However the majority of these studies have focused on discrete environments 

effected by a single contaminant. Furthermore, studies have shown that substrate 

type, for example sediment versus water, drives the overall structure and 

functionality of an environmental microbial community, over that of the chemical 

properties (Jeffries et al., 2011a). Thus, diverse substrate types, exhibiting different 

contamination events, provides a means by which metagenomic signatures can be 

generated to discriminate between impacted microbial communities.  
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1.4 Thesis Objective 

The primary objective of this thesis was to investigate two common forms of 

pollution, agricultural modification and hydrocarbon impact, from two different 

environments, groundwater and sediment, respectively. The metagenomic data 

produced will provide insight into the taxonomy and metabolic processes of the 

resident microbial communities, and to determine to what extent these may be 

affected by introduced contaminants. 

 

Specifically the aims were: 

 

1. To determine the impact of agricultural contamination on unconfined aquifer 

microbial community structure and function, with the goal to find signature 

community changes indicative of contamination 

 

2. To determine the impact of historical hydrocarbon contamination on the 

microbial community structure and function in a marine foreshore 

environment, to provide insight into the signature community changes 

indicative of contamination. 

 
3. To provide novel insight into the viral community profile in groundwater 

ecosystems, including the discrimination of any potential pathogens. 

 

4. To determine the extent to which metagenomic signatures can be used to 

discriminate between contaminant types in impacted environments. 
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1.5 Thesis Structure 

This thesis is formatted in manuscript form for journal submission, each chapter 

addressing a specific aim. The results from Chapters 2 to 6 are published in peer-

reviewed journals, have been submitted for publication, or will be submitted for 

publication in the near future, thus there is some redundancy in the introduction and 

methods for each chapter. Chapter 2 assessed the microbial communities residing in 

unconfined and confined aquifer ecosystems and was published in Environmental 

Microbiology (14: 240-253, 2011). Chapter 3 constructed a viral community profile 

in the unconfined and confined aquifers in comparison to investigate the survival and 

spread of viruses in groundwater, and has been submitted for publication in 

Environmental Microbiology Reports (23rd July 2012). Chapter 4 focuses on the 

indigenous microbial communities inhabiting a historically hydrocarbon impacted 

beach. Chapter 5 investigates the microbial metabolic footprints associated with 

hydrocarbon impact, and has been submitted for publication in PLoS One (26th July 

2012). Chapter 6 elucidates and metagenomic signatures, taxonomic and metabolic, 

of various introduced contaminants for the potential use as biological indicators. The 

discussion and implications of these results form Chapter 7. A single reference list 

has been included at the end of this thesis that includes all literature cited throughout 

to reduce redundancy. 
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2.0 Summary 

A metagenomic analysis of two aquifer systems located under a dairy farming region 

was performed to examine to what extent the composition and function of microbial 

communities varies between confined and surface-influenced unconfined 

groundwater ecosystems. A fundamental shift in taxa was seen with an 

overrepresentation of Rhodospirillales, Rhodocyclales, Chlorobia and Circovirus in 

the unconfined aquifer, while Deltaproteobacteria and Clostridiales were 

overrepresented in the confined aquifer. A relative overrepresentation of metabolic 

processes including antibiotic resistance (β-lactamase genes), lactose and glucose 

utilization and DNA replication were observed in the unconfined aquifer, while 

flagella production, phosphate metabolism and starch uptake pathways were all 

overrepresented in the confined aquifer. These differences were likely driven by 

differences in the nutrient status and extent of exposure to contaminants of the two 

groundwater systems. However, when compared to freshwater, ocean, sediment and 

animal gut metagenomes, the unconfined and confined aquifers were taxonomically 

and metabolically more similar to each other than to any other environment. This 

suggests that intrinsic features of groundwater ecosystems, including low oxygen 

levels and a lack of sunlight, have provided specific niches for evolution to create 

unique microbial communities. Obtaining a broader understanding of the structure 

and function of microbial communities inhabiting different groundwater systems is 

particularly important given the increased need for managing groundwater reserves 

of potable water.  
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2.1 Introduction 

Terrestrial subsurface environments, including groundwater, accommodate the 

largest reservoir of microbes in the biosphere, with estimates of bacterial abundances 

reaching 3.8-6.0 × 1030 cells (Whitman et al., 1998). Due to the lack of sunlight and 

input of nutrients and energy from external sources, these microbial communities are 

largely responsible for the turnover of energy and matter, forming the basis of 

subterranean food webs (Sherr and Sherr, 1991). These communities also influence 

the purity of groundwater and subsequent availability of potable drinking water 

(Danielopol et al., 2003).  

Holding more than 97% of the world’s freshwater reserves, aquifers are a largely 

untapped resource of potable drinking water, but also harbour a high diversity of 

microbes (Gibert and Deharveng, 2002). These reserves are becoming increasingly 

important (Bond et al., 2008) in countries such as Australia, which are susceptible to 

drought events (Mpelasoka et al., 2008). However, the nature of the microbial 

communities inhabiting aquifers remains largely unexplored. To effectively 

understand and maintain groundwater reserves it is important to investigate the 

identity and biogeochemical function of the microbes within aquifer systems. 

Aquifer systems, defined by a permeable zone below the earth’s surface through 

which groundwater moves (Hamblin and Christiansen, 2004), are generally classified 

into two major types; unconfined and confined aquifers. ‘Unconfined aquifers’ are 

connected to the surface via open pore space and thus, can receive external input 

from the surrounding area. They are sensitive to precipitation via seepage through the 

soil, and are directly affected by human impact (Al-Zabet, 2002). ‘Confined aquifers’ 

occur at greater depth and lie below an impermeable strata layer. The thick confining 
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strata layer ensures that there is no input from the overlaying surface environment. 

Input to confined aquifers occurs only from distant recharge sources and due to slow 

flow rates, can be isolated for hundreds to thousands of years (Gibert and Deharveng, 

2002). Microbes inhabiting these systems must be capable of surviving with limited 

resources, as external inputs of nutrients and oxygen are not readily available 

(Pedersen, 2000; Griebler and Lueders, 2009). Survival strategies to cope in this 

environment include increased affinity to limiting nutrients and reduced metabolic 

rates and growth (Teixeira de Mattos and Neijssel, 1997; Brune et al., 2000).  

Sporadic changes in limiting resources in these groundwater systems, driven by 

external input, can lead to major shifts in the taxonomy and the metabolism of 

microbial communities (Hemme et al., 2010). The sensitivity of microbes to 

environmental change allows them to be used as bioindicators (Avidano et al., 2005; 

Steube et al., 2009). A major goal in the study of groundwater microbiology is to 

determine what the effects of these shifts in microbial ecology have on water quality 

(Langworthy et al., 1998; Hemme et al., 2010).  

The concentration of chemical contaminants and pathogens in groundwater systems 

is influenced by the biogeochemical and ecological dynamics of subterranean 

microbial communities (Hemme et al., 2010).  Shifts in microbial taxonomy 

resulting from pollution in groundwater have been investigated (Männistö et al., 

1999; Chang et al., 2001) but the effects of introduced contaminants on the metabolic 

potential of groundwater microbes is only vaguely understood. Previous groundwater 

studies have shown that microbes respond to external contaminants at both the 

phenotypic and genotypic level, with changes in microbial community structure, as 

well as an increase in the number of genes responsible for the degradation of 
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introduced contaminants (Langworthy et al., 1998). Furthermore, Hemme et al. 

(2010) showed that introduced contaminants into groundwater systems can decrease 

species and allelic diversity and eliminate some metabolic pathways. Evolutionary 

analysis of a microbial community in groundwater contaminated with heavy metals 

has shown that lateral gene transfer could play a key role in the rapid response and 

adaptation to environmental contamination (Hemme et al., 2010). Hence, to obtain a 

complete description of the effect of external influences on groundwater systems, 

both the taxonomy and the metabolic potential of microbial communities need to be 

studied.  

The effect of agricultural modification on groundwater is less well characterised, 

however it has been shown that introduced manure from a live-stock farm caused the 

microbial composition of previously uncontaminated groundwater to taxonomically 

resemble livestock wastewater (Cho and Kim, 2000). This study used 16S rDNA 

technology which is limited to prokaryote taxonomy and discounts viruses and 

eukaryotes. Advances in metagenomic studies have allowed for the direct sequencing 

of whole environmental microbial genomes (Kennedy et al., 2010) and have greatly 

increased our knowledge of gene function, metabolic processes, community structure 

and ecosystems response to environmental change. Previous metagenomic studies 

have revealed clear shifts in the structure of microbial assemblages related to human 

impact (Dinsdale et al., 2008a).  

With this in mind, the aim of the present study is to compare an unconfined and a 

confined groundwater system using metagenomic approaches, and provide insight 

into the endemic taxonomy and metabolic processes of the resident microbial 

communities, and how these may be affected by introduced contaminants.  
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2.2 Results 

2.2.1 Overview of the biogeochemical environment and microbial enumeration 

The unconfined and confined aquifers were characterised by low oxygen levels of 

0.2 mg L-1 and 0.26 mg L-1 respectively. Iron, sulphur and total organic carbon were 

all significantly higher (P < 0.05) in the unconfined aquifer than the confined aquifer. 

All other nutrients were not statistically different between samples. Salinity and pH 

were higher in the unconfined aquifer, while temperature was lower. Microbial cell 

counts were similar in the unconfined and confined aquifers (Table 2.1). 

2.2.2 Taxonomic and metabolic profiling of groundwater metagenomes 

A total of 64,506 and 409,743 sequences with an average read length of 386 and 387 

bases were obtained from the unconfined and confined aquifer samples, respectively. 

Both metagenomic libraries were dominated by bacteria (82% of hits to SEED) 

(http://metagenomics.theseed.org/) (Overbeek et al., 2005) with sequences also 

matching viruses (9%), archaea (6%), and eukaryota (2%). Proteobacteria 

represented the highest percentage of matches to the SEED database for both the 

unconfined and confined aquifers with 18% and 13% of all sequences, respectively 

(Fig. 2.1A). Within this, the delta/epsilon subdivision contributed to 5% and 7% of 

the total sequences in the unconfined and confined aquifers, respectively. Viruses 

(ssDNA) were also major contributors with 3-4% of sequences matching the SEED 

database (Table S2.1). A total of 278 organisms and 3683 novel sequences could not 

be assigned to known sequences in the database. 

When aquifers were compared using the Statistical Analysis of Metagenomic 

Profiles (STAMP) software package (Parks and Beiko, 2010), there was an 

overrepresentation of crenarchaeota, proteobacteria, actinobacteria, chloroflexi, 

http://metagenomics.theseed.org/
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ssDNA viruses, bacteroidetes/chlorobi group and cyanobacteria in the unconfined 

aquifer (q-value < 1.06e-5). Conversely, there was an overrepresentation of 

firmicutes, the fungi/metazoa group and euryarchaeota in the confined aquifer (q-

value < 1e-15) (Fig. 2.1B). Similarity percentage (SIMPER) analysis (Clarke, 1993) 

revealed the main contributors to the dissimilarity between the unconfined and the 

confined aquifer at phyla level were crenarchaeota and firmicutes, which contributed 

to 13% and 11% of the dissimilarity respectively (Table S2.2). At finer levels of 

taxonomic resolution (order level), Deltaproteobacteria represented the highest 

percentage of matches to the SEED database for both unconfined and confined 

aquifers with 5% and 7% of all sequences, respectively (Fig. 2.2A). STAMP 

comparisons revealed an overrepresentation of Rhodospirillales, Rhodocyclales, 

Chlorobia and Circovirus occurred in the unconfined aquifer, whereas an 

overrepresentation of Deltaproteobacteria and Clostridiales occurred in the confined 

aquifer (Fig. 2.2B).  

In both aquifer samples the core metabolic functions comprising DNA and protein 

metabolism were most prevalent, while a high level of phosphorus metabolism 

occurred in the confined aquifer (Table S2.3). Comparisons of the metabolic profiles 

of the unconfined and confined aquifer using STAMP, revealed an 

overrepresentation of DNA metabolism in the unconfined aquifer and an 

overrepresentation of motility and chemotaxis in the confined aquifer (Fig. 2.3A). 

SIMPER analysis revealed that overall DNA metabolism contributed to 15% of the 

dissimilarity between the unconfined and confined aquifers, while stress response 

and motility and chemotaxis contributed approximately 7.5% of the dissimilarity 

(Table S2.4). Finer levels (subsystem level) of resolution indicated that the 

unconfined aquifer had an overrepresentation of lactose and galactose uptake and 
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utilisation, beta-lactamase resistance and DNA replication. The confined aquifer had 

an overrepresentation of sequences matching sigmaB stress response regulation, 

flagellum, cobalt-zinc-cadmium resistance, phosphate metabolism and cellulosome 

degradation (i.e. starch uptake) (Fig. 2.3B).   

2.2.3 Comparison of metabolic and taxonomic profiles from other habitats 

In order to determine the overall effect the groundwater environment has on the 

inhabitant microbial assemblages, we compared our groundwater metagenomes to 37 

publicly available metagenomes on the MetaGenomics Rapid Annotation using 

Subsystem Technology (MG-RAST) pipeline version 2.0 (Meyer et al., 2008), 

covering a wide variety of habitats including other freshwater and low oxygen 

environments (Table S2.5). The highest metabolism (subsystem) and taxonomy 

(organism) resolution available was used to create cluster profiles that revealed the 

unconfined and the confined aquifers were more similar to each other than to any 

other metagenome (85% and 90% similarity, respectively). When the microbial 

taxonomy of these samples was compared to metagenomes from other environments, 

the groundwater samples were most similar to termite gut and cow rumen 

metagenomes with a cluster node at 75% similarity (Fig. 2.4). When the metabolic 

potential of these samples was compared to metagenomes from other environments, 

groundwater samples were most similar to whale fall, phosphorus removing sludge, 

marine sediment samples and farm soil with a cluster node at 85% similarity (Fig. 

2.5). 
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Table 2.1 Geophysical and microbial enumeration data  

 

Parameter Unconfined aquifer 
(Mean ± SD) a 

Confined aquifer 
(Mean ± SD) a 

P-
value 

 
Iron (mg L-1)  3.041 ± 0.184 1.232 ± 0.003 0.000 c 
Sulphur (mg L-1) 76.3 ± 4.747 57.5 ± 0.173 0.002 c 
Ammonia (mg L-1) 0.025 ± 0.001 0.023 ± 0.004 0.330 
Nitrate (mg L-1) 0.012 ± 0.001 0.012 ± 0.011 0.959 
Nitrite (mg L-1) 0 b 0 b - 
Phosphorus (mg L-1) 0.015 ± 0.001 0.02 ± 0.019 0.718 
Total Organic Carbon 
(mg L-1) 

2.033 ± 0.208 0.9 ± 0.173 0.002 c 

Sulphide (mg L-1) 0 b 0 b - 
pH 7.56 7.16 - 
Temperature (°C) 16.5 17.54 - 
Salinity (ppm) 1.65 1.27 - 
Oxygen (mg L-1) 0.2 0.26 - 
Total Bacterial and Viral 
Cell Count (cell mL-1) 

1.15E+05 ± 1.43E+04 1.12E+05 ± 1.08E+04 0.775 

 

a Variance is denoted by Standard Deviation. 
b A value of zero indicates the nutrient is below the detectable limit of the machine. In the case of                 
Nitrite and sulphide this is 0.003 and 0.1mg/L respectively. 
c Denotes statistically significant values. 
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2.3 Discussion 

2.3.1 Aquifer systems 

Aquifer systems are considered to be extreme environments due to a lack of easily 

accessible organic carbon and low levels of inorganic nutrient input, low oxygen 

levels and a lack of sunlight (Danielopol et al., 2000). Consequently, microbial 

communities inhabiting these environments consist of microbes adapted to surviving 

in nutrient poor groundwater environments (Pedersen, 2000). In addition, strong 

environmental changes driven by anthropogenic influences present a consistent 

challenge for these communities (Griebler and Lueders, 2009). To determine the 

effects of anthropogenic influences on groundwater microbes, the microbial ecology 

of pristine aquifer systems needs to be compared to unconfined aquifers to determine 

how external factors influence microbial taxonomy and metabolism.   

We assessed the chemical properties and the microbial communities within an 

unconfined aquifer, which has been exposed to external input from a dairy farm, and 

an adjacent confined aquifer, which has had no external input for approximately 

1500 years (Banks et al., 2006), to determine the effect of anthropogenic inputs on 

groundwater ecosystems. Nutrient analysis comparing these two systems showed that 

the confined aquifer had significantly lower sulphur, iron and total organic carbon 

(TOC) concentrations than the unconfined aquifer. In groundwater, the amount of 

suspended microbes is largely dependent on the availability of dissolved organic 

carbon (DOC) and nutrients (Griebler and Lueders, 2009). Typically phosphorus and 

iron are limiting factors in groundwater systems (Bennett et al., 2001). Those 

microbes able to increase the bioavailability of such critical nutrients can increase the 

viability of the native population (Rogers and Bennett, 2004). Flow cytometry counts 

showed that total bacterial and viral abundances were relatively similar between the 
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unconfined and confined aquifer with mean values of 1.15  105 ± 1.43  104 and 

1.12  105 ± 1.08  104 cells mL -1, respectively (Table 2.1). This is consistent with 

commonly reported microbial cell counts of 103 - 108 cells mL-1 in groundwater 

regardless of contamination (Pedersen, 1993; 2000; Griebler and Lueders, 2009).  

2.3.2 Taxonomic profiling of groundwater 

A shift in dominant taxa was observed between the unconfined and the confined 

aquifer, with fundamentally different communities inhabiting each environment. In 

the unconfined aquifer there was an overrepresentation of Rhodospirillales, 

Rhodocyclales, Chlorobia and Circovirus (Fig. 2.2). The dominance of these taxa in 

the unconfined aquifer differs from a recent metagenomic study in which uranium 

contaminated aquifers were dominated by Rhodanobacter-like gammaproteobacterial 

and Burkholderia-like betaproteobacterial species (Hemme et al., 2010). However, 

Rhodocyclales are commonly found in wastewater treatment systems (Hesselsoe et 

al., 2009) and are noted for their ability to degrade and transform pollutants such as 

nitrogen, phosphorus and aromatic compounds (Loy et al., 2005). This suggests that 

the microbial communities in the unconfined aquifer are responding to the influx of 

nutrients similar to those seen in wastewater. Furthermore, Chlorobia are green 

sulphur bacteria that are typically found in deep anoxic aquatic environments where 

low light intensity and sulphide concentrations favour their growth (Guerrero et al., 

2002; Madigan et al., 2003). This suggests the increased sulphur concentration in the 

unconfined aquifer could be responsible for the overrepresented Chlorobia. Taken 

together, these patterns indicate that different types of contamination can drive 

markedly different community profiles within aquifer system.
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Figure 2.1 Comparison of aquifer taxonomic profiles at phyla level (A) Frequency 

distribution (relative % of bacterial SEED matches) of bacterial phyla in the unconfined and the 

confined aquifer. (B) STAMP analysis of taxonomy enriched or depleted between the confined and 

unconfined aquifers, using approach describes in Parks & Beiko (2010). Groups overrepresented in 

the unconfined aquifer (black) correspond to positive differences between proportions and groups 

overrepresented in the confined aquifer (grey) correspond to negative differences between 

proportions. Corrected P-values (q-values) were calculated using Storey’s FDR approach.  

A 

B 
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The overrepresentation of circovirus in the unconfined aquifer is also notable, due to 

its known vertebrate pathogenicity (Rosario et al., 2009a). Circoviridae has been 

linked to a number to livestock related diseases including infections of dairy cattle 

(Nayar et al., 1999) and has previously been found in reclaimed water, suggesting it 

is resistant to wastewater treatment (Rosario et al., 2009b). The occurrence of 

circoviridae in the unconfined aquifer could indicate contamination from nearby 

farmland and is consistent with a study by Dinsdale et al. (2008a) who found 

increased numbers of pathogens in a human impacted versus non-human impacted 

marine environments.  

In the confined aquifer there was an overrepresentation of Deltaproteobacteria and 

Clostridiales (Fig. 2.2). Clostridiales are obligate anaerobes and have the ability to 

form endospores when growing cells are subjected to nutritional deficiencies 

(Paredes-Sabja et al., 2011). Clostridiales have not been widely reported in aquifer 

systems, however their survival strategies make them well adapted to survive in low 

nutrient conditions, such as subsurface environments like those observed in the 

confined aquifer (Leclerc and Moreau, 2002).  

2.3.3 Metabolic profiling of groundwater 

Generally, the rate of metabolism in subsurface communities is slower in comparison 

to other aquatic or sediment environments (Swindoll et al., 1988). Within 

groundwater systems, previous studies have shown metabolic rates were higher in a 

shallow sandy aquifer compared to a confined clayey aquifer (Chapelle and Lovley, 

1990). The authors suggested this lower metabolism could be due to the reduced 

interconnectivity, and thus, a reduction in microbial and nutrient mobility. The core 

metabolic function in each of our aquifer systems was DNA metabolism; however an 
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overrepresentation of DNA replication was seen in the unconfined aquifer compared 

to the confined (Fig. 2.3). This indicates that the reduced nutrient levels in the 

confined aquifer may have led to reduced reproduction.  

When nutrient levels are low, it is advantageous for microbes to attach themselves to 

sediment particles, detritus, rock surfaces and biofilms (Griebler and Lueders, 2009). 

This attachment mode is successful as nutrient availability is higher at surfaces (Hall-

Stoodley et al., 2004). Thus, microbes dominating groundwater systems are more 

commonly found attached to surfaces than in suspension (Griebler and Lueders, 

2009). Repulsive forces of the substratum require microbial cells to produce flagella 

for the early stages of attachment (Donlan, 2002). Overrepresentation of flagella in 

the confined aquifer community (Fig. 2.3) could be indicative of a greater need to 

attach to surfaces in the low nutrient confined aquifer. 

Our data also indicate that β-lactamase genes were overrepresented in the unconfined 

aquifer (Fig. 2.3). This antibiotic resistance gene is widely seen in Gram-negative 

bacteria and has been shown to be a product of the extensive use of β-lactams in 

dairy farms to prevent bacterial infections (Berghash et al., 1983; Gianneechini et al., 

2002; Sawant et al., 2005; Liebana et al., 2006). Within live-stock, the majority of 

antibiotics are excreted unchanged by the animal, where they subsequently enter 

water sources via leaching and run-off (Zhang et al., 2009). This has caused concern 

about the potential impacts that antibacterial resistance in waterways can have on 

humans and animal health (Kemper, 2008). The overrepresentation of β-lactamase in 

the unconfined aquifer suggests that external input, potentially in the form of farm 

affected input, may introduce new cellular processes that would not normally be 

required by endemic groundwater microbes. This is consistent with a study that 
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investigated the use of antibiotics in farm animals and illustrated that antibiotic 

resistance can be spread into the surrounding environment through the use of 

antimicrobial drugs (Ghosh and LaPara, 2007). Further, microbes able to utilize 

lactose have previously been linked to dairy farms (Klijn et al., 1995) and thus, the 

overrepresentation of lactose and glucose utilization found in the unconfined aquifer 

(Fig. 2.3) could be linked to external input from the overlaying dairy farms. 

2.3.4 Comparison to other microbial communities 

To determine how the unique features of the groundwater environment influence the 

structure of microbial communities, we compared the metagenomes from our aquifer 

systems to metagenomes from different environments (Table S2.5). The unconfined 

and confined aquifer metagenomes were more similar to each other than to any other 

community, both in terms of taxonomy and metabolism (Fig. 2.4 and 2.5). This 

suggests the features of subterranean aquatic environments, including low oxygen 

concentrations, coupled with a lack of sunlight and low external inputs of nutrients 

have led to a unique niche for microbial communities to evolve. In a recent study, 

four sediment metagenomes from a naturally occurring salinity gradient were 

compared and it was found that despite differences in salinity and nutrient levels, 

these four samples clustered more closely to each other and other sediment samples, 

than to other similar hypersaline environments (Jeffries et al., 2011a). It was found 

that the substrate type, i.e. sediment or water, rather than salinity drove the similarity. 

Willner et al. (2009) also found that microbiomes and viromes have distinct 

sequence-based signatures which are driven by environmental selection. This is 

further supported by Dinsdale et al. (2008b), who compared metagenomic sequences 

from 45 distinct microbiomes and 42 distinct viromes to show there was a strong 

discriminatory profile across different environments. Our data similarity suggest that 
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the unique features of the subterranean aquatic environment act to structure microbial 

assemblages that retain a high level of similarity between different aquifers. 

The taxonomy of the aquifer metagenomes were most similar to cow rumen and 

termite gut metagenomes (Fig. 2.4). A common feature among these environments is 

the incidence of anaerobic fungi which is overrepresented in the confined aquifer 

(Fry et al., 1997; Ramšak et al., 2000; Ekendahl et al., 2003; Warnecke et al., 2007). 

A primary role of anaerobic fungi in gut systems is the large scale break-down of 

plant material, including cellulose (Ramšak et al., 2000; Warnecke et al., 2007). The 

breakdown of cellulose in groundwater is also known to occur in shallow aquifers 

(Vreeland et al., 1998) which along with the overrepresentation in cellulosome genes 

in the confined aquifer (Fig. 2.3), suggests that cellulose is present and possibly an 

important food source for the overrepresented fungi/metazoa group (Fig. 2.1). 

Furthermore, the cellulosome gene is similarly represented in the groundwater, 

termite gut and cow rumen, suggesting cellulose is a major factor linking the three 

environmental metagenomes.  

The metabolism of the aquifer metagenomes were most similar to other sediment 

metagenomes (85% similar) rather than freshwater environments (80% similar) (Fig. 

2.5). Common features to groundwater and sediment environments are low oxygen 

concentrations, a lack of sunlight and large surfaces for biofilm formation (Griebler 

and Lueders, 2009). As previously discussed, due to low nutrient levels in 

groundwater environments, a common survival strategy is for the microbes to attach 

to sediment particles or form biofilms (Hall-Stoodley et al., 2004; Griebler and 

Lueders, 2009). This suggests, the attachment mode of life coupled with the low 
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oxygen concentrations and a lack of sunlight, are the main factors driving the 

similarity between these metagenomes.  

2.3.5 Caveats 

Due to the low microbial biomass in groundwater systems, we used multiple 

displacement amplification (MDA) prior to 454 pyrosequencing. This method has 

been used widely to amplify DNA prior to sequencing (Binga et al., 2008; Dinsdale 

et al., 2008a; Neufeld et al., 2008; Palenik et al., 2009), but its suitability for use in 

quantitative metagenomic analysis has been debated (Yilmaz et al., 2010) because of 

the GC bias introduced. However, in our study, as GenomiPhi was used on both 

aquifer samples compared here, any bias in the process is applied to both aquifers. 

Furthermore, we are concerned with differences between aquifer groups rather than 

absolute changes in particular genes. Edwards et al. (2006) used GenomiPhi to 

amplify microbial DNA from a Soudan Mine and found that the whole genome 

amplification bias was minimal and was found preferentially towards the ends of 

linear DNA. The authors concluded that as these biases were applied equally to both 

libraries, this bias would have been negated during the comparative study when 

assessing differences in the community structure (Edwards et al., 2006).  

There is a possibility that the clustering of our samples may be due to the way in 

which the samples were collected, sequenced and analysed, which may be different 

to the metagenomes from other environments. However, there is no evidence of 

clustering based on collection, DNA extraction, MDA or sequencing protocols (Fig. 

2.4 and 2.5), and thus a technical bias is not evident. 
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Figure 2.2 Comparison of aquifer taxonomic profiles at order level taxonomy 

(A) Frequency distribution (relative % of bacterial SEED matches) of taxonomy in the unconfined and 

the confined aquifer. (B) STAMP analysis of taxonomy enriched or depleted between the confined 

and unconfined aquifers. Groups overrepresented in the unconfined aquifer (black) correspond to 

positive differences between proportions and groups overrepresented in the confined aquifer (grey) 

correspond to negative differences between proportions. Corrected P-values (q-values) were 

calculated using Storey’s FDR approach.  

A 

B 
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2.4 Conclusion 

Our data indicates that aquifer ecosystems host unique microbial assemblages that 

have different phylogenetic and metabolic properties to other environments. We 

suggest this pattern is driven by the unique physio-chemical properties of 

subterranean aquatic environments, and that groundwater ecosystems represent a 

specific microbial niche. Our data also revealed that the unconfined aquifer 

examined in this study has significantly different features to the more pristine 

confined aquifer, which in some cases appear to have been influenced by external 

input from a surrounding dairy farm. Increased nutrient concentrations, the 

overrepresentation of DNA replication as well as lactose and galactose utilization 

and β-lactamase genes are all consistent with inputs of nutrients and contaminants 

from dairy farm practises. Preservation of groundwater is of increasing importance 

due to its use as potable water sources and as water sources for global industrial and 

agricultural production. This study provides important insights and suggests further 

investigation into the differences between unconfined and confined aquifers. Further 

to this, a study of the subterranean dispersal of agricultural contaminants is needed in 

order to fully determine the effects of anthropogenic processes on groundwater.  

2.5 Experimental Procedures 

2.5.1 Site selection 

Samples were collected from two depths in the Ashbourne aquifer system, situated 

within the Finniss River Catchment, South Australia (35°18'S 138°46'E) in June 

2010. The Ashbourne aquifer system is two aquifer ecosystems with separate 

recharge processes that have distinct water sources. The confined aquifer has been 

isolated from external input for approximately 1500 years (Banks et al., 2006), and 

thus provides a baseline for which the unconfined aquifer can be compared.  



Chapter 2 

27 

 

 

 

 

Figure 2.3 Comparison of aquifer metabolism profiles (A) STAMP analysis of 

hierarchy 1 enriched or depleted between the confined and unconfined aquifers. Groups 

overrepresented in the unconfined aquifer (black) correspond to positive differences between 

proportions and groups overrepresented in the confined aquifer (grey) correspond to negative 

differences between proportions. Corrected P-values (q-values) were calculated using Storey’s FDR 

approach. (B) STAMP analysis of subsystems enriched or depleted between the confined and 

unconfined aquifers. Groups overrepresented in the unconfined aquifer (black) correspond to positive 

differences between proportions and groups overrepresented in the confined aquifer (grey) correspond 

to negative differences between proportions. 

B 

A 
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2.5.2 Sampling Groundwater 

Unconfined and confined aquifer samples were collected from a nested set of 

piezometers. Each piezometer consisted of a 10 mm diameter PVC casing, with 

slotted PVC screens that provide discrete sampling points at specific depths. The 

unconfined aquifer was sampled from a piezometer at 13-19 m and the confined 

aquifer at 79-84 m. To ensure that only aquifer water was sampled, bores were 

purged by pumping out 3 bore volumes using a 12 V, 36 m monsoon pump 

(EnviroEquip, Inc.) prior to sampling.  Based on microbial abundances at each depth 

determined previously using flow cytometry, 20 L and 200 L of water was collected 

from the unconfined and confined aquifers respectively, to ensure sufficient biomass 

for microbial DNA recovery. 

From each sampling location, triplicate 600 mL water samples for inorganic and 

organic chemistry analysis were collected and stored on ice. Nutrient analysis for 

ammonia, nitrite, nitrate, and filterable reactive phosphorus were conducted using a 

flow injection analyser. TOC was analysed using OI analytical 1010 & 1030  low 

level TOC analysers, iron and sulphur were determined by the ICP-006 and ICP-004 

elemental analysis using an ICP-mass spectrometer, and sulphide (S2-) concentrations 

were determined using the colorimetric method (APHA 1995). All analysis was 

conducted at the Australian Water Quality Centre (Adelaide). For enumeration of 

microbes at each site, triplicate 1 mL samples were fixed with gluteraldehyde (2% 

final concentration), quick frozen in liquid nitrogen and stored at -80°C prior to flow 

cytometric analysis (Brussaard, 2004). Physical parameters, including temperature, 

salinity, pH, and oxygen concentration, were recorded at each sampling point with 

the use of a MS5 water quality sonde (Hach Hydrolab®).
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Figure 2.4 Comparison of aquifer taxonomic profiles along with publicly available profiles available on the MG-RAST database. Cluster 

plot is derived from a Bray-Curtis similarity matrix calculated from the square-root transformed abundance of DNA fragments matching genome level taxonomy in the SEED 

database (BLASTX E-value <0.001). Details of metagenomes are in Table S2.5. 



Chapter 2 

30 

2.5.3 Microbial enumeration 

Bacteria and viruses were enumerated using a FACSCanto flow cytometer (Becton-

Dickson). Prior to analysis, triplicate samples were quick thawed and diluted 1:10 

with 0.2 μm filtered TE buffer (10 mM Tris, 1 mM EDTA pH 7.5). Samples were 

then stained with SYBR-I Green solution (1:20000 dilution; Molecular Probes, 

Eugene, OR) and incubated in the dark for 10 min at 80°C (Brussaard, 2004). As an 

internal size standard fluorescent 1 μm diameter beads (Molecular Probes, Eugene, 

OR) were added to each sample at a final concentration of approximately 105 beads 

mL-1 (Gasol and Del Giorgio, 2000). Forward scatter (FSC), side scatter (SSC) and 

green (SYBR®Green-I) fluorescence were acquired for each sample. WinMDI 2.9 (© 

Joseph Trotter) software was used to identify and enumerate microbes according to 

variations in green fluorescence and side scatter (Marie et al., 1997; 1999; Brussaard, 

2004). 

2.5.4 Sample filtration, microbial community DNA extraction and sequencing 

Following collection, samples for metagenomic analysis were filtered through 5 μm 

membranes to remove sediment particles before being concentrated by 2000-fold 

using a 100 kDa tangential flow filtration (TFF) filter (MilliporeTM). Microbial 

community DNA was extracted using a bead beating and chemical lysis extraction 

protocol (PowerWater® DNA Isolation Kit; MoBio laboratories, Inc.). Due to the low 

microbial biomass in the aquifer samples, DNA was then amplified using the 

multiple strand displacement Phi29 DNA polymerase (GenomiPhi V2 Kit; GE 

Healthcare Life Sciences, Inc.) and cleaned up using a PCR clean-up kit 

(UltraClean® PCR Clean-Up Kit; MoBio laboratories, Inc.). DNA quality and 

concentration were determined by 1.5% TBE agarose gel electrophoresis (Bioline) 

and a Qubit fluorometer (Quant-iTTM dsDNA HS Assay Kit; Invitrogen Inc.). 
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Approximately 500 ng of high molecular weight DNA was then sequenced by the 

Ramaciotti Centre for Gene Function Analysis, Sydney, Australia. Sequencing was 

conducted on the GS-FLX pyrosequencing platform using Titanium series reagents 

(Roche).  

2.5.5 Data analysis 

To determine if the nutrient data was statistically different between the unconfined 

and the confined aquifer, P-values were determined by an Independent t-test. All 

analysis was performed using PASW version 18 statistical software. 

Unassembled DNA sequences were annotated with the MetaGenomics Rapid 

Annotation using Subsystem Technology (MG-RAST) pipeline version 2.0 (Meyer 

et al., 2008). BLASTX was used with a minimum alignment length of 50 bp and an 

E-value cut-off of E<1e-5 as described by Dinsdale et al. (2008b). Taxonomic profiles 

were generated using the normalized abundance of sequence matches to the SEED 

database (Overbeek et al., 2005), while the normalized abundance of sequence 

matches to a given subsystem were used to generate metabolic profiles. 

To determine statistically significant differences between the two aquifer samples, 

the Statistical Analysis of Metagenomic Profiles (STAMP) software package was 

used (Parks and Beiko, 2010). First, a table of the frequency of hits to each 

individual taxa or subsystem for each metagenome was generated, which had been 

normalised by dividing by the total number of hits to remove bias in difference in 

read lengths and sequencing effort. An E-value cut-off of E<1e-5 was used to identify 

hits. The highest level of resolution available on MG-RAST was used for metabolism 

(subsystem) and taxonomy (genome).  P-values were calculated in STAMP using the 

two sided Fisher’s Exact test (Fisher, 1958), while the confidence intervals were 
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calculated using the Newcombe-Wilson method (Newcombe, 1998). False discovery 

rate was corrected for using the Storey’s FDR method (Storey and Tibshirani, 2003). 

We next compared the metagenomes of our groundwater samples to 37 publicly 

available metagenomes from a variety of environments on MG-RAST (Table S2.5), 

to statistically investigate the similarities between the two groundwater samples as 

well as other environments. Heatmaps were generated and normalized, as described 

above; however, as groundwater samples were compared to datasets with a variety of 

different read lengths, a lower E-value cut-off of E<0.001 was used. Statistical 

analyses were conducted on square-root transformed data using the statistical 

package Primer 6 for Windows (Version 6.1.6, Primer-E Ltd. Plymouth) (Clarke and 

Gorley, 2006). Metagenomes were then analysed using hierarchial agglomerative 

clustering (CLUSTER) (Clarke, 1993) analyses of the Bray-Curtis similarities. The 

main taxa or subsystems contributing to the differences were identified using 

similarity percentage (SIMPER) analysis (Clarke, 1993). 
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Figure 2.5 Comparison of aquifer metabolic profiles along with publicly available profiles available on the MG-RAST database. Cluster 

plot is derived from a Bray-Curtis similarity matrix calculated from the square-root transformed abundance of DNA fragments matching subsystems in the SEED database 

(BLASTX E-value <0.001). Details of metagenomes are in Table S2.5.
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Table S2.1 Relative proportion of matches to the SEED database taxonomic 
hierarchy.  

Domain MG-RAST Level 
2 (Phyla) 

MG-RAST Level 3 Confined 
aquifer 

Unconfined 
aquifer 

Bacteria Proteobacteria Delta/epsilon 
subdivision 

0.2109 0.1182 

Bacteria Firmicutes Clostridia 0.1307 0.0784 
Bacteria Proteobacteria Gammaproteobacteria 0.0746 0.0786 
Bacteria Chloroflexi Chloroflexi (class) 0.0573 0.0675 
Viruses ssDNA viruses Circoviridae 0.057 0.0904 
Bacteria Firmicutes Bacilli 0.0475 0.0378 
Bacteria Proteobacteria Alphaproteobacteria 0.0434 0.1096 
Bacteria Proteobacteria Betaproteobacteria 0.0393 0.1086 
Archaea Euryarchaeota Methanomicrobia 0.0279 0.0188 
Viruses ssDNA viruses Microviridae 0.0269 0.0003 
Bacteria Actinobacteria Actinobacteria 0.022 0.0295 
Bacteria Fibrobacteres/ 

Acidobacteria 
group 

Acidobacteria 0.0191 0.0184 

Bacteria Bacteroidetes Bacteroidetes (class) 0.0184 0.0106 
Eukaryota Fungi/Metazoa 

group 
Fungi 0.016 0.0066 

Bacteria Synergistetes Syntrophomonadaceae 0.014 0.0092 
Bacteria Cyanobacteria Nostocales 0.0127 0.0171 
Eukaryota Fungi/Metazoa 

group 
Metazoa 0.0124 0.0077 

Bacteria Bacteroidetes/Chlo
robi group 

Chlorobi 0.0118 0.0498 

Bacteria Chloroflexi Dehaloccoidetes 0.011 0.0084 
Bacteria Planctomycetes Planctomycetacia 0.0091 0.0079 
Bacteria Cyanobacteria Chroococcales 0.0086 0.0124 
Bacteria Spirochaetes Spirochaetes (class) 0.0079 0.0046 
Bacteria Thermotogae Thermotogae (class) 0.0079 0.0073 
Archaea Crenarchaeota Thermoprotei 0.0075 0.0318 
Archaea Euryarchaeota Thermococci 0.0041 0.0039 
Bacteria Deinococcus-

Thermus 
Deinococci 0.004 0.0049 

Archaea Euryarchaeota Methanobacteria 0.0039 0.0027 
Viruses ssDNA viruses Geminiviridae 0.0034 0.0015 
Archaea Euryarchaeota Methanococci 0.0033 0.0021 
Archaea Euryarchaeota Archaeoglobi 0.0031 0.0018 
Viruses ssDNA viruses Nanoviridae 0.0031 0.0001 
Bacteria Cyanobacteria Gloeobacteria 0.003 0.0035 
Viruses Bacteriophage 

phBC6A51 
 0.003 0.0007 

Bacteria Cyanobacteria Oscillatoriales 0.0029 0.0027 
Bacteria Chlamydiae/ 

Verrucomicrobia 
group 

Chlamydiae 0.0027 0.0021 
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Bacteria Proteobacteria Unclassified 
Proteobacteria 

0.0027 0.0022 

Bacteria Aquificae Aquificae (class) 0.0024 0.0023 
Viruses ssRNA positive-

strand viruses, no 
DNA stage 

Sclerophthora 
macrospora virus A. 

0.0024 0 

Archaea Euryarchaeota Halobacteria 0.0023 0.0027 
Eukaryota Viridiplantae Streptophyta 0.0021 0.0012 
Archaea Korarchaeota Candidatus 

Korarcheaum 
0.0018 0.0014 

Bacteria Fusobacteria Fusobacteria (class) 0.0018 0.0013 
Archaea Euryarchaeota Thermoplasmata 0.0017 0.0014 
Bacteria Unclassified 

bacteria 
Candidate division 
TG1 

0.0017 0.0015 

Bacteria Chlamydiae/ 
Verrucomicrobia 
group 

Verrucomicrobia 0.0012 0.0013 

Viruses dsDNA viruses, no 
RNA stage 

Caudovirales 0.0011 0.0003 

Archaea Euryarchaeota Methanopyri 0.001 0.001 
Bacteria Cyanobacteria Prochlorales 0.001 0.0007 
Bacteria Firmicutes Mollicutes 0.0008 0.0006 
Viruses dsDNA viruses, no 

RNA stage 
Poxviridae 0.0007 0.0003 

 
Top 50 hits were generated by BLASTing sequences to the SEED database with a minimum 
alignment length of 50 bp and an E-value cut-off of 1e-5. 

Relative representation in the metagenome was calculated by dividing the number of hit to each 
category by the total number of hits to all categories.  
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Table S2.2 Contribution of phyla level taxonomy to the dissimilarity of confined 
and unconfined aquifer metagenomes.  

 
 Avg. Abundance   

Species Unconfined 
aquifer 

Confined 
aquifer 

Contribution 
% 

Cumulative 
% 

Crenarchaeota 0.18 0.09 12.94 12.94 
Firmicutes 0.34 0.42 11.01 23.94 
Bacteriodetes 0.19 0.25 9.53 33.47 
Fungi/Metazoa group 0.13 0.19 8.09 41.56 
ssRNA positive-strand 
viruses, no DNA stage 

0 0.05 7.02 48.58 

Proteobacteria 0.65 0.61 5.86 54.43 
Euryarchaeota 0.19 0.22 4.52 58.95 
 
Percentage differences calculated using SIMPER analysis.  
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Table S2.3 Relative proportion of matches to a given subsystem hierarchy 1.  

Subsystem Hierarchy 1 Confined 
aquifer 

Unconfined 
aquifer 

Phosphorus metabolism 0.0173 0.0123 
DNA metabolism 0.0164 0.0296 
Protein metabolism 0.0157 0.0173 
Motility and chemotaxis 0.0149 0.0113 
Regulation and cell signalling 0.0132 0.011 
Clustering-based subsystems 0.0129 0.0138 
Stress response 0.0119 0.0015 
Motility and chemotaxis 0.0017 0.0087 
Respiration 0.0114 0.0092 
Virulence 0.0113 0.0075 
Unclassified 0.0107 0.0087 
Motility and chemotaxis 0.0104 0.0105 
DNA metabolism 0.0102 0.0111 
Respiration 0.0098 0.006 
Cell wall and capsule 0.0097 0.0086 
Potassium metabolism 0.0094 0.0072 
Stress response 0.0084 0.012 
Membrane transport 0.0082 0.0048 
DNA metabolism 0.0079 0.0065 
Virulence 0.0078 0.0082 
Nucleosides and Nucleotides 0.0077 0.0093 
Unclassified 0.0075 0.0047 
Cofactors, vitamins, prosthetic groups, 
pigments 

0.0072 0.0064 

Carbohydrates 0.0071 0.0064 
Amino acids and derivatives 0.0071 0.0085 
Carbohydrates 0.007 0.0075 
Cell division0.0068 and cell cycle 0.0068 0.0075 
Miscellaneous 0.0065 0.0072 
Respiration 0.0064 0.0044 
Clustering-based subsystems 0.0063 0.0049 
Clustering-based subsystems 0.0062 0.0055 
Protein metabolism 0.0062 0.0092 
Cell division and cell cycle 0.0061 0.0064 
Carbohydrates 0.006 0.0051 
Cell division and cell cycle 0.0059 0.0033 
Clustering-based subsystems 0.0056 0.0078 
Clustering-based subsystems 0.0055 0.0045 
Respiration 0.0055 0.0048 
Protein metabolism 0.0054 0.0058 
Cofactors, vitamins, prosthetic groups, 
pigments 

0.0052 0.0045 

Clustering-based subsystems 0.0052 0.0068 
Clustering-based subsystems 0.005 0.0019 
Protein metabolism 0.005 0.0055 
Nucleosides and nucleotides 0.005 0.0057 



Chapter 2 

38 

Carbohydrates 0.0049 0.0029 
Stress response 0.0049 0.0033 
Amino acids and derivatives 0.0049 0.0036 
Virulence 0.0049 0.0044 
Clustering-based subsystems 0.0049 0.0061 
Virulence 0.0048 0.0047 
 

Top 50 hits were generated by BLASTing sequences to the MG-RAST subsystem database with a 
minimum alignment length of 50 bp and an E-value cut-off of 1e-5.  

Relative representation in the metagenome was calculated by dividing the number of hit to each 
category by the total number of hits to all categories.  
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Table S2.4 Contribution of metabolic hierarchical 1 system to the dissimilarity 
of confined and unconfined aquifer metagenomes.  

 
 Avg. Abundance   

Metabolic 
Processes 

Unconfined 
aquifer 

Confined 
aquifer 

Contribution 
% 

Cumulative 
% 

DNA metabolism 0.26 0.22 14.99 14.99 
Stress response 0.18 0.2 7.85 22.85 
Motility and 
chemotaxis 

0.18 0.2 7.67 30.51 

 
Percentage differences calculated using SIMPER analysis.  
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Table S2.5 Summary of publicly available metagenomes used in this study. 

 

MG-
RAST ID 

Description/Reference MG-
RAST ID 

Description/Reference 

4453064.3 Unconfined aquifer 4444843.3 Poultry Gut 
4453083.3 Confined aquifer 4441695.3 Fish healthy gut (Angly et 

al., 2009) 
4440984.3 Coorong sediment 1 4440283.3 Chicken cecum A (Qu et al., 

2008) 
4441020.3 Coorong sediment 2 4440284.3 Chicken cecum B (Qu et al., 

2008) 
4441021.3 Coorong sediment 3 4440452.7 TS1 (human gut) (Turnbaugh 

et al., 2009) 
4441022.3 Coorong sediment 4 4440610.3 TS19 (human gut) 

(Turnbaugh et al., 2009) 
4446406.3 Coorong water 1 4440939.3 Human FS-1 (human gut) 

(Kurokawa et al., 2007) 
4446412.3 Coorong water 2 4440463.3 Lean mouse (gut) 

(Turnbaugh et al., 2006) 
4446411.3 Coorong water 3 4444130.3 Stool 
4446457.3 East Australian Current 1 

(Seymour et al., 2012) 
4441656.4 Whalefall mat (Tringe et al., 

2005) 
4446409.3 East Australian Current 2 

(Seymour et al., 2012) 
4440281.3 Soudan mine (Edwards et al., 

2006) 
4446407.3 East Australian Current 3 

(Seymour et al., 2012) 
4441091.3 Farm soil (Edwards et al., 

2006) 
4446410.3 East Australian Current 4 

(Seymour et al., 2012)  
4443688.3 Botany Bay (marine) 

4446341.3 Marine sediment 1 4440041.3 Kiritimati (marine) (Dinsdale 
et al., 2008a) 

4446342.3 Marine sediment 2 4441584.3 GS012 (estuary) (Rusch et 
al., 2007) 

4453072.3 Oil contaminated soil 1 4441590.3 GS020 (freshwater) (Rusch 
et al., 2007) 

4453082.3 Oil contaminated soil 2 4440440.3 Aquaculture pond (Dinsdale 
et al., 2008b) 

4442701.3 Termite gut (Warnecke et 
al., 2007) 

4441092.3 Phosphorus removing sludge 

4441682.3 Cow Rumen (Brulc et al., 
2009) 
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3.0 Summary 

Potentially pathogenic viruses within freshwater reserves represent a global health 

risk. However, knowledge about their diversity and abundance in deep groundwater 

reserves is currently limited. We found that the viral community inhabiting a deep 

confined aquifer in South Australia was more similar to reclaimed water 

communities than to the viral communities in the overlying unconfined aquifer 

community. This similarity was driven by high relative occurrence of the ssDNA 

viral groups Circoviridae, Geminiviridae, Inoviridae and Microviridae, which 

include many known plant and animal pathogens. These groups were present in 1500 

year-old water situated 80 m below the surface, which suggests the potential for 

long-term survival and spread of potentially pathogenic viruses in deep, confined 

groundwater. Obtaining a broader understanding of potentially pathogenic viral 

communities within aquifers is particularly important given the ability of viruses to 

spread within groundwater ecosystems. 
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3.1 Introduction 

Confined aquifers typically lie deep below the surface and are permanently, or semi-

permanently, separated from other groundwater by low permeability geologic 

formations, which provide barriers to flow (Hamblin and Christiansen, 2004; 

Borchardt et al., 2007). These barriers are thought to protect the underlying 

groundwater from the overlying environment, and thus prevent the spread of 

contaminants into the freshwater reserves (Nolan et al., 1997). However, vertical 

fractures can lead to the formation of pathways for water movement, allowing for the 

introduction of surface contaminants, including microbial pathogens (Eaton et al., 

2007). Among microbial pathogens, enteric viruses have substantial potential for 

spread into deep aquifers due to their small, 27 – 75 nm, size (Borchardt et al., 2007). 

Human pathogens within freshwater reserves are a global health risk (Toze, 1999; 

Abbaszadegan et al., 2003). The persistence and viability of pathogenic viruses can 

vary widely based on the surrounding environment (Ouellette et al., 2010). Some 

reports indicate that viruses can remain in an infectious state within deep 

groundwater for years, but that they become unviable in surface waters after only a 

few days (Borchardt et al., 2007; Nazir et al., 2010). Enhanced virus viability and 

longevity within deep groundwater may be related to the lower temperatures and a 

lack of sunlight in this habitat (Yates et al., 1985; Diels, 2005), as well as the 

attachment of viruses to surfaces (Sim and Chrysikopoulos, 2000). This longevity, 

along with their 20 – 350 nm size, means that viruses have higher potential dispersal 

levels within groundwater systems than bacteria (Scheuerman et al., 1987; Diels, 

2005). The distance viruses can spread and the time they can remain in groundwater 

is poorly understood and will depend on the biological and physical conditions of 

specific groundwater systems. One of the first steps in understanding the potential for 
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dispersal is identifying the occurrence of deep water pathogenic viruses. Therefore, it 

is important to determine the identity of viruses within groundwater ecosystems. 

A recent metagenomic study of an aquifer system revealed a relatively high 

proportion of viral sequences, 9% (Smith et al., 2011), when compared to other 

aquatic environments, 0.1-1% (Edwards and Rohwer, 2005; Jeffries et al., 2011a). 

Therefore, we sought to construct a viral community profile from the viral sequences 

in the unconfined and confined aquifer metagenomes, including the discrimination of 

any potential human pathogens. This data was compared to metagenomes from a 

number of other marine and freshwater environments. 

3.2 Results and Discussion 

Groundwater samples were collected from the confined and unconfined Ashbourne 

aquifer systems, South Australia (35°18’S 138°46’E) in June 2010. The unconfined 

aquifer is exposed to overlying input, while the confined aquifer lies at 40 m, below a 

15 m thick confining layer, and has been isolated from external input for 

approximately 1500 years (Banks et al., 2006). Separate recharge processes have led 

to distinct water sources that differ between the confined and unconfined aquifers 

(Banks et al., 2006; Smith et al., 2011). Metagenomes were sequenced using the GS-

FLX pyrosequencing platform using Titanium reagents (Roche). The resulting 

409,743 and 64,506 sequences from the confined and unconfined aquifers, 

respectively, were compared to the Viral Proteins database in the Community 

Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis 

(CAMERA) pipeline (Seshadri et al., 2007). BLASTX and an E < 1 x 10-5 was used 

to identify hits. 
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Table 3.1 Summary of publicly available metagenomes used in this study. 

 

 

Database Description Reference 
MG-RAST Unconfined Aquifer (Smith et al., 2011) 
MG-RAST Confined Aquifer (Smith et al., 2011) 
MG-RAST Danish Wastewater Treatment Plant (Albertsen et al., 2012) 
MG-RAST Botany Bay (Burke et al., 2011) 
CAMERA Viral Metagenome from reclaimed water (Rosario et al., 2009b) 
CAMERA Chesapeake Bay Virioplankton Metagenome (Bench et al., 2007) 
CAMERA Viral Metagenome from the Freshwater Lake Limnopolar (López-Bueno et al., 2009) 
CAMERA Viral Metagenomes from Terrestrial Hot Springs (Schoenfeld et al., 2008) 
CAMERA Viral Stromatolite Metagenome (Desnues et al., 2008) 
CAMERA Wastewater (Sanapareddy et al., 2008) 
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The majority of viral sequences within our confined and unconfined aquifer 

metagenomes were unclassified in the Viral Proteins database, accounting for 45% 

and 53%, respectively.  Of the classified sequences, 42% and 43% were double-

stranded DNA (dsDNA) viruses and 13% and 4% were single-stranded DNA 

(ssDNA) viruses (Table S3.1), in the confined and unconfined aquifers, respectively. 

Similar findings have been reported in other viral metagenomes, whereby the 

majority of environmental viral sequences do not match any known sequences in 

databases (Angly et al., 2006; Bench et al., 2007; Desnues et al., 2008; Rosario et 

al., 2009b).  Further, the large number of viral DNA sequences in our dataset was 

surprising due to the use of a 0.22 µm collection filter, which viruses would be 

expected to pass through. However, previous metagenomic studies have similarly 

obtained substantial numbers of virus sequences from samples filtered through 0.22 

µm filters (DeLong et al., 2006) and their presence in this study likely occurred 

because filters became clogged by the high levels of fine sediment particles in the 

samples. 

To determine whether groundwater virus communities have intrinsic characteristics, 

the viral sequences from the confined and unconfined aquifer metagenomes were 

compared to metagenomes from a variety of other aquatic environments (Table 3.1), 

using a normalized Goodall’s similarity index (Goodall, 1964; 1966) in the 

MEtaGenome ANalyzer (MEGAN) (Huson et al., 2007). Despite geographical 

proximity, the confined aquifer viral consortia did not resemble those of the 

unconfined aquifer, and were instead most similar to the viral sequences in the 

metagenome from a reclaimed water sample, the reusable end-product of wastewater 

treatment, in Florida (Fig. 3.1) (Rosario et al., 2009b; Smith et al., 2011; Roudnew et 

al., 2012). This result contradicts the patterns in bacterial taxonomy recently 
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observed at the same site in South Australia, which showed that the confined aquifer 

total microbial metagenome, predominantly bacteria, was taxonomically more 

similar to that of the overlying unconfined aquifer than to any other environment 

(Smith et al., 2011). The lack of similarity between the confined and unconfined 

aquifer viral communities suggests the viruses were not introduced into the confined 

aquifer from the overlying unconfined aquifer, indicating the long-term survival of 

viruses in groundwater. 

To identify the taxa contributing to the similarity between the reclaimed water 

viruses and the confined aquifer viruses, community profiles were generated in 

MEGAN (Huson et al., 2007). The community profile indicated the main taxa 

contributing to the similarity between the two metagenomes were ssDNA viruses 

(Fig. 3.2), accounting for 13% and 7% of the viruses in the confined aquifer and 

reclaimed water, respectively (Fig. 3.2). Within the ssDNA viruses, members of the 

Microviridae dominated, accounting for 55% and 58% in the confined aquifer and 

reclaimed water source, respectively. In the confined aquifer, members of the 

Circoviridae, Geminiviridae and Inoviridae families accounted for 16%, 6% and 4%, 

respectively, while in the reclaimed water sample, these viral groups accounted for 

8%, 5% and 5%, respectively. Unclassified ssDNA viruses comprised 17% and 23% 

of the ssDNA viruses in the confined aquifer and reclaimed water, respectively. 

Nanoviridae were only found in the confined aquifer sample, accounting for 2% of 

ssDNA viruses overall (Fig. 3.2 and 3.3). Of the known virus representatives, 

Circoviridae, Geminiviridae, Inoviridae, Microviridae and Nanoviridae are all small 

viruses, with diameters of 7 - 30 nm (Storey et al., 1989; Gibbs and Weiller, 1999; 

Gutierrez et al., 2004). Thus, the dominance of these ssDNA viruses is consistent 
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with the observations that small viruses have the greatest potential for transport 

through aquifers (Yates, 2000).  

Alternatively, in the unconfined aquifer, unclassified ssDNA viruses and members of 

the Inoviridae family accounted for 50% each (Fig. 3.3). Inoviridae are filamentous 

bacteriophage and although they have a small diameter, approximately 7 nm, they 

have a greater length of approximately 880 nm (Storey et al., 1989). As viruses with 

sizes of 27 – 75 nm are expected to have the greatest potential for spread into deep 

aquifers (Borchardt et al., 2007), the increased abundance of the Inoviridae family in 

the unconfined aquifer suggests the length of these viruses hindered their transport 

through to deep aquifer systems, when compared to the smaller viruses of the 

circular Microviridae, Circoviridae, Geminiviridae and Nanoviridae families.  

Circoviridae, Geminiviridae and Nanoviridae all contain known plant or vertebrate 

pathogens (Gibbs and Weiller, 1999; Gutierrez et al., 2004). In particular, 

Circoviridae have been characterised from the tissues of birds, mammals, fish, 

insects, plants, algal cells, and in human and animal faeces (Victoria et al., 2009; 

Delwarta and Li, 2012). Although the origin of circoviruses in human faeces remains 

unclear (Victoria et al., 2009), the broad host range suggests this viral group could be 

of potential risk to humans. Furthermore, ssDNA viruses are known to have high 

nucleotide substitution rates, which are thought to contribute to their high 

pathogenicity and broad host range (Mathews, 2006; Lefeuvre et al., 2009). 

Therefore, the identification of such viruses in this study from a 1500 year-old 

confined aquifer (Banks et al., 2006) suggests the potential exists for long-term 

survival and spread of small, circular pathogenic viruses in groundwater. Obtaining a 

broader understanding of potentially pathogenic viral communities within 
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groundwater is particularly important given the ability of viruses to survive and 

spread within aquifer ecosystems. 
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Figure 3.1 Unweighted pairgroup method using arithmetic mean (UPGMA) 

clustering of viral metagenomes based on normalized Goodall’s similarity 

matrix. Non redundant metagenomic sequences were assembled and identified by using the 

BLASTX algorithm and E < 1 x 10-5 against the Viral Proteins database using CAMERA (Seshadri et 

al., 2007). Network analysis was then generated from the normalized Goodall’s similarity index 

(Goodall, 1964; 1966) in MEGAN (Huson et al., 2007). Goodall’s index is designed for determining 

similarities between multivariate datasets that gives more weight to differences between rare taxa, 

making it particularly suitable for comparison of microbial metagenomes (Sogin et al., 2006; Mitra et 

al., 2010).  To visualise relationships between samples, the UPGMA (Sokal and Michener, 1958) 

clustering was used within MEGAN.  
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Figure 3.2 Community profile of confined aquifer and reclaimed water metagenomes matching the viral proteins database in CAMERA. 

Phyla are expanded to family level where available. Non redundant metagenomic sequences were assembled and identified using the BLASTX algorithm and E < 1 x 10-5 

against the Viral Proteins database using CAMERA (Seshadri et al., 2007). Normalized abundances were then used to generate a community profile in MEGAN (Huson et 

al., 2007). 
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Figure 3.3 ssDNA viruses % relative abundance in the unconfined aquifer, confined aquifer and reclaimed water samples identified by 

BLASTX to the viral proteins database in CAMERA (Seshadri et al., 2007). 
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Table S3.1 Relative proportion of matches to the viral proteins database 
taxonomical hierarchy. 

 

Confined 
Aquifer 

Unconfined 
Aquifer 

dsDNA viruses, no RNA stage 15.05 15.54 
Caudovirales 13.61 14.68 
Myoviridae 8.38 7.77 
Podoviridae 0.78 0.00 
Siphoviridae 3.46 4.89 
unclassified Caudovirales 0.00 0.00 
Iridoviridae 0.00 0.00 
Mimiviridae 0.00 0.00 
Phycodnaviridae 0.10 0.00 
unclassified dsDNA phages 0.08 0.00 
unclassified dsDNA viruses 0.29 0.00 
environmental samples 0.00 0.00 
Satellites 0.08 0.00 
ssDNA viruses 6.77 2.30 
Circoviridae 1.04 0.00 
Geminiviridae 0.41 0.00 
Inoviridae 0.24 0.72 
Microviridae 3.55 0.00 
Nanoviridae 0.12 0.00 
unclassified ssDNA viruses 1.12 0.72 
ssRNA viruses 0.00 0.00 
ssRNA positive-strand viruses, no DNA stage 0.00 0.00 
Picornavirales 0.00 0.00 
Dicistroviridae 0.00 0.00 
environmental samples+ 0.00 0.00 
Tombusviridae 0.00 0.00 
Virgaviridae 0.00 0.00 
unclassified phages 39.89 48.92 
unclassified viruses 0.14 0.00 
Not assigned 4.89 4.46 
No hits 0.00 0.00 
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4.0 Abstract 

The effect of hydrocarbon contamination on microbial community structure and 

function was assessed in a historically, hydrocarbon impacted beach sample using 

metagenomic analysis. Hydrocarbon concentrations of up to 1764 mg kg-1 of C9-C36 

hydrocarbons were observed at 1.75 m. To assess the effect hydrocarbon impact had 

on the structure and functionality of foreshore microbial communities, the 

metagenome from 1.75 m was compared with non-impacted marine metagenomes. A 

fundamental shift in taxa was seen, with an overrepresentation of Pseudomonadales, 

Actinomycetales, Rhizobiales, Alteromonadales, Oceanospirillales and 

Burkholderiales in the hydrocarbon impacted sample. In addition, a relative 

overrepresentation of metabolic processes including aromatic compound metabolism, 

nitrogen metabolism and stress response were observed in the hydrocarbon impacted 

sample. These differences suggest that hydrocarbons in the foreshore environment 

exerted a selective pressure on microbial consortia, favouring organisms with the 

ability to catabolise hydrocarbon inputs. Furthermore, power law abundance curves 

showed the hydrocarbon impacted beach community had mid-range diversity both 

taxonomically and metabolically, indicative of a functionally redundant and stable 

community that has adapted to stress. Obtaining a broader understanding of the 

structure and function of microbial communities inhabiting a historically 

contaminated site is particularly important given the long term potential persistence 

and toxicity of hydrocarbon impact. 
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4.1 Introduction 

Hydrocarbons are a ubiquitous class of natural compounds which are found in low 

concentrations in most soils and sediments (Rosenberg et al., 1992; Johnsen and 

Karlson, 2005). Consequently, hydrocarbon-oxidising microbial communities are 

present in varying concentrations in the  natural environment (Rosenberg, 2006). The 

presence of hydrocarbon degrading microbial communities have thus, become the 

source of many studies, due to their potential to clean up contaminants such as 

hydrocarbons (Chikere et al., 2011). Due to their long term persistence and toxicity 

in the environment (Singleton, 1994), petroleum hydrocarbons have become a 

common target for bioremediation projects. 

Many studies have shown that hydrocarbon contamination can cause a major shift in 

the structure of microbial communities, with microorganisms capable of surviving 

and/or utilizing the hydrocarbons as carbon and energy sources becoming dominant 

(Macnaughton et al., 1999; Vinas et al., 2005; Wu et al., 2008; Kostka et al., 2011). 

These shifts in the microbial community have previously been linked to a reduction 

in species and allelic diversity within the population, as well as the elimination of 

some metabolic pathways (Hemme et al., 2010). It has been shown that structurally 

stable microbial communities were less likely to cope with environmental change, 

due to the inability to retain functionality of the less dominant species, which may 

contain the genes for bioremediation (Fernandez et al., 2000). Thus, flexibility is a 

major factor contributing to the success of a community to survive, and subsequently 

degrade contaminants (Marzorati et al., 2008).  

The rate at which the microbial consortium is able to degrade the contaminant also 

depends on a variety of environmental factors such as temperature, seasonality and 
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the availability of nutrients essential for microbial growth (Margesin and Schinner, 

2001; Venosa and Zhu, 2003). For example, the degradation of hydrocarbons on 

sandy beaches is thought to be limited by the availability of inorganic nutrients such 

as nitrogen and phosphorus (Atlas and Bartha, 1972; Gallego et al., 2001; Röling et 

al., 2002), with several studies showing the addition of mineral nutrients 

significantly enhanced bioremediation (Swannell et al., 1995; Venosa et al., 1996; 

Röling et al., 2004; Santos et al., 2011).  

The natural ability of an environmental microbial community to clean up 

hydrocarbon contamination, without the addition of nutrients, is comparatively less 

well characterised. Furthermore, information regarding which microorganisms and 

which functional genes are associated with the catabolism of hydrocarbons is still 

lacking (Yergeau et al., 2012). Advances in high throughput sequencing have 

allowed for the characterisation of whole environmental microbial communities from 

the metabolic and taxonomic perspective (Kennedy et al., 2010) greatly increasing 

our potential to understand how indigenous microbial communities respond to 

hydrocarbon pollution. For example 454 pyrosequencing of hydrocarbon 

contamination of arctic soils have shown an increase in the abundance of 

Alphaproteobacteria and Gammaproteobacteria groups, which are common 

hydrocarbon degrading groups in contaminated soils (Yergeau et al., 2012). Yergeau 

et al., (2012) also found that the abundance of hydrocarbon degrading genes has also 

been observed to increase due to selective pressure exerted by hydrocarbon 

pollutants. 

Other high throughput sequencing studies have also shown that microbial functional 

patterns are highly correlated to local environmental factors, with 59% of microbial 
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community variability explained by oil contamination, geographic location and soil 

geochemical parameters (Liang et al., 2011). Further to this, when oil contaminated 

beach samples from the Gulf of Mexico were compared to “clean” beach samples, 

multidimensional scaling plots indicated a uniform response to oil contamination 

with the oiled samples forming a discrete cluster which was distinct from the clean 

samples (Kostka et al., 2011). Consequently, it is important to build on previous 

studies by adding detailed metabolic dynamics to general taxonomic presence. 

Furthermore, the identification of specific degradation and remediation pathways are 

essential for the understanding of how bacteria remediate hydrocarbons in the natural 

environment.  

The aim of the current study was to utilise next generation metagenomic DNA 

sequencing to assess the effect of historical hydrocarbon impacts on the taxonomic 

and metabolic profile of marine ecosystem.  

4.2 Materials and Methods 

4.2.1 Site selection and sampling 

Hydrocarbon contaminated material was sampled from a former oil refinery site in 

Australia. Approximately 30kg of material was collected from 6 depths (0, 1, 1.25, 

1.5, 1.75 and 2 m) at the marine foreshore and subjected to hydrocarbons analysis 

and microbial community profiling. 

4.2.2 Extraction and quantification of hydrocarbon 

Hydrocarbons were extracted from samples using an accelerated solvent extractor 

(ASE200 Accelerated Solvent Extraction System, Dionex Pty Ltd, Lane Cove, NSW, 

Australia), as previously described by Dandie et al., (2010). Freeze-dried ssamples 

(2-10 g) were ground with diatomaceous earth (Dionex), weighed into extraction 
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cells and surrogate 100 µl phenanthrene (100 mg ml-1) added prior to sealing. 

Samples were extracted with hexane:acetone (1:1 v/v) using standard conditions (150 

°C, 10.34 MPa, static time 5 min). A steady flow of nitrogen gas was used to 

concentrate the soil extracts to dryness, and then resuspended in 2 ml of 

hexane:acetone (1:1 v/v). Prior to analysis, resuspended soil extracts were filtering 

through 0.45 µm Teflon syringe filters into 2 mL GC vials (Agilent Technologies 

Australia, Forest Hills, VIC, Australia). 

Agilent Technologies 7890A gas chromatograph flame ionisation detector (FID) was 

used to generate chromatographs of sample extracts. A 15 m x 0.32 mm x 0.1 µm 

Zebron ZB-5HT (5% phenyl, 95% dimethylpolysiloxane) Inferno column with a 5 m 

x 0.25 mm inert guard column (Phenomenex Australia, Lane Cove NSW, Australia) 

was used to separate the samples. Operating conditions were as follows: The oven 

temperature was programmed at 40 °C for 3 min followed by a linear increase in 

temperature to 375 °C at 25 °C min-1, and held at 375 °C for 5 min. Detector and 

injector temperatures were held at 380 °C and 300 °C, respectively. Defined 

hydrocarbon fractional ranges (C6-9, C10-14, C15-28, C29-36, C37-40) were used to 

quantify hydrocarbon concentration using Window defining standards (Accustandard 

Inc., New Haven, CT USA). Hydrocarbon concentrations were quantified according 

to Dandie et al., (2010) and reported per g freeze-dried sample. Surrogate recovery 

during hydrocarbon quantification ranged from 94-103%, while results of replicate 

analysis of the same sample showed a standard deviation of less than 8%. 
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4.2.3 Nutrient analysis, microbial community DNA extraction and sequencing 

for metagenomic analysis 

Based on hydrocarbon profiling results, samples from a depth of 1.75 m were 

subjected to metagenomic analysis. Triplicate samples (30 g) were collected and 

stored on ice following collection for physiochemical characterisation. Nutrient 

analysis for total nitrogen and total phosphorus were conducted using a segmented 

flow analyser and colorimetric techniques (APHA, 2005). All analysis was 

conducted at the Australian Water Quality Centre (Adelaide).  

Following collection, microbial community DNA was extracted using the 

PowerMax® Soil DNA Isolation Kit (MoBio laboratories, Inc., Carlsbad, CA, USA). 

DNA quality and concentration was then determined by 1.5% TBE agarose gel 

electrophoresis (Bioline) and a Qubit fluorometer (Quant-iTTM dsDNA HS Assay 

Kit; Invitrogen Inc.). Approximately 500 ng of high molecular weight DNA was then 

sequenced on the GS-FLX pyrosequencing platform using Titanium series reagents 

(Roche) at the Ramaciotti Center for Gene Function Analysis, Sydney, Australia. 

4.2.4 Data analysis 

Annotation of the unassembled DNA sequences was performed with the 

MetaGenomics Rapid Annotation using Subsystem Technology (MG-RAST) 

pipeline version 3.0 (Meyer et al., 2008). BLASTX was performed with an E-value 

cut-off of E<1e-5 and a minimum alignment length of 50 bp as described by Dinsdale 

et al. (2008b). Metabolic profiles were produced using the normalized abundance of 

sequence matches to a given subsystem, while the normalized abundance of 

sequence matches to the SEED database (http://metagenomics.theseed.org/) 

(Overbeek et al., 2005) were used to generate taxonomic profiles. 

http://metagenomics.theseed.org/
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The metagenome from the hydrocarbon impacted foreshore were compared to non-

impacted foreshore sediment from Jeffries et al. (2011a) (Table S4.1). These 

metagenomes were sampled from two different locations nearby the study site, 

providing a baseline for which the hydrocarbon impacted foreshore could be 

compared. Furthermore, the use of two sites allowed for any bias that may have been 

apparent due to difference in location to be reduced. The Statistical Analysis of 

Metagenomic Profiles (STAMP) software package was used to determine the 

statistically significant differences between the hydrocarbon impacted and non-

impacted sites (Parks and Beiko, 2010). Firstly, a frequency table of the number of 

hits to each individual taxa or subsystem for each metagenome was generated using 

an E-value cut-off of E<1e-5 to identify hits. To remove bias in difference in read 

lengths and sequencing effort, the frequency table was normalised by dividing by the 

total number of hits. P-values were calculated in STAMP using the two sided 

Fisher’s Exact test (Fisher, 1958), while confidence intervals were calculated using 

the Newcombe-Wilson method (Newcombe, 1998). False discovery rate was 

corrected for using the Benjamini-Hochberg FDR method (Benjamini and Hochberg, 

1995). To avoid bias based on location, only those that were found to be 

overrepresented when compared to both controls were included for discussion. The 

main subsystems contributing to the differences between community structure were 

identified using similarity percentage (SIMPER) analysis (Clarke, 1993). 

To determine the overall influence hydrocarbon impact had on the microbial 

communities both structurally and functionally, rank abundance plots were generated 

and compared to the metagenomes from 9 other marine environments (Table S4.1). 

Frequency tables were generated in MG-RAST as above. Taxa/metabolism rank was 

plotted on the x-axis and the relative abundance was plotted on the y-axis, where had 



Chapter 4 

62 

both been log10 transformed. The noise/rare biosphere was left out as per Mitchell 

(2004). The data that produced the best fit had a power law trend line assigned.  

4.3 Results 

4.3.1 Nutrient and hydrocarbon analysis 

Samples were collected during test pit activities at the marine foreshore with bulk 

samples collected at ground surface and from depths of 0, 1.0, 1.25, 1.5, 1.75 and 2.0 

m. Hydrocarbon concentrations were below the level of quantification in surface 

samples and samples collected at 0, 1.0, 1.25 and 1.5 m. However, C6-C9, C10-C14 

and C15-C28 hydrocarbon fractional ranges were detected at 1.75 and 2.0 m. In 

samples collected from 1.75 and 2.0 m, low level C6-C36 hydrocarbon concentrations 

(Sheppard et al., 2011) of 1764 and 1420 mg kg-1 respectively were observed, with 

the concentrations predominantly composed of the C15-C28 hydrocarbons (Table 4.1). 

Total soil nitrogen and phosphorus concentrations were low throughout the depth 

profile with maximum concentrations of 55 and 40 mg kg-1 at 1.75 m, respectively 

(Table 4.1).  

4.3.2 Taxonomic and metabolic profiling of beach metagenomes 

A total of 229,089 sequences with an average read length of 424 bases were obtained 

from the hydrocarbon impacted foreshore sample. The hydrocarbon impacted 

foreshore metagenomic library was 92.5% bacteria, by SEED database matches. 

Proteobacteria represented 69.5% bacterial matches, and within this, 

Gammaproteobacteria contributed to 31.8% of matches in the hydrocarbon impacted 

foreshore sample. A total of 6.3% reads could not be assigned to any known 

sequence in the database (Table S4.2). The remainder of the sequence matches were 

Archaea (0.9%), Eukaryota (0.4%) and Viruses (0.02%). 
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Table 4.1 Properties of samples used in this study 

 

 
Hydrocarbon (mg kg-1) 

Constituent 0 m 1.0 m 1.25 m 1.5 m 1.75 ma 2.0 m 
BTEX < LORb <LOR < LOR < LOR < LOR < LOR 

C6-C9 < LORc <LOR < LOR < LOR 34 20 

C10-C14 < LORd <LOR < LOR < LOR 500 360 

C15-C28 < LORe <LOR < LOR < LOR 1230 1040 

C29-C36 < LORf <LOR < LOR < LOR < LOR < LOR 
 
a Total Nitrogen and Total Phosphorus at a depth of 1.75m were 55.0 ± 0.0 and 40.3 ± 6.0, 
respectively. 
 bLevel of reporting for toluene, ethylbenzene and xylene was 0.5 mg kg-1 and 0.2 mg kg-1 for 
benzene. 
 cLevel of reporting for C6-C9 hydrocarbons was 10 mg kg-1.  
 dLevel of reporting for C10-C14 hydrocarbons was 50 mg kg-1. 
 eLevel of reporting for C15-C28 hydrocarbons was 100 mg kg-1. 
 fLevel of reporting for C29-C36 hydrocarbons was 100 mg kg-1. 
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Differences were observed between the hydrocarbon impacted foreshore sample 

when compared to two non-impacted foreshore samples using STAMP. An 

overrepresentation of Proteobacteria and Actinobacteria were seen in the 

hydrocarbon impacted foreshore sample. Conversely, there was an 

overrepresentation of Cyanobacteria, Bacteroidetes, Planctomycetes, Acidobacteria 

and Firmicutes in both non-impacted samples (q-value <1e-15) (Fig. 4.1). At the order 

level of taxonomic resolution, Pseudomonadales, Actinomycetales, Rhizobiales, 

Alteromonadales, Oceanospirillales and Burkholderiales were overrepresented in the 

hydrocarbon impacted sample while, Planctomycetales, Flavobactriales, 

Desulfobacterales, Nostocales, Rhodobacterales, Bacteroidales, and Cytophagales 

were overrepresented in the non-impacted samples (q-value <1e-15) (Fig. 4.2). 

The core metabolic function in the hydrocarbon impacted foreshore sample was 

carbohydrate metabolism, while a high level of biotin biosynthesis, metabolism of 

fatty acids and aromatic compound catabolism was also observed. Within this, the 

highest pathway contributing to aromatic compound metabolism was n-

Phenylalkanoic acid degradation and anaerobic benzoate degradation (Table S4.3). 

Comparisons of metabolic profiles for impacted and non-impacted samples using 

STAMP revealed an overrepresentation of genes corresponding to nitrogen 

metabolism, stress response and aromatic compound metabolism in the impacted 

foreshore sample. Alternatively, carbohydrate metabolism was overrepresented in the 

non-impacted samples (q-value <1e-5) (Fig. 4.3). Further to this, SIMPER analysis 

revealed that the metabolism of aromatic compounds genes (higher in the impacted 

sample) and motility and chemotaxis genes (higher in the non-impacted samples) 

accounted for the majority of the dissimilarity between the impacted and non-

impacted samples (Table S4.4 and S4.5). 
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Figure 4.1 Comparison of foreshore taxonomic profiles at phylum level: (A) 

STAMP analysis of taxonomy enriched or depleted between the hydrocarbon-impacted foreshore 

sample and non-impacted marine sample 1. Groups overrepresented in non-impacted sample 1 (grey) 

correspond to positive differences between proportions and groups overrepresented in the 

hydrocarbon-impacted foreshore sample (black) correspond to negative differences between 

proportions. Corrected P-values (q-values) were calculated using Benjamini-Hochberg FDR. A q-

value cut-off of <1e-15 was then implemented. (B) STAMP analysis of taxonomy enriched or depleted 

between the hydrocarbon-impacted foreshore samples and non-impacted marine sample 2. Groups 

overrepresented in non-impacted sample 2 (grey) correspond to positive differences between 

proportions and groups overrepresented in the hydrocarbon-impacted foreshore sample (black) 

correspond to negative differences between proportions. 

A 

B 
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Figure 4.2 Comparison of foreshore taxonomic profiles at order level taxonomy: 

(A) STAMP analysis of taxonomy enriched or depleted between the hydrocarbon-impacted foreshore 

sample and non-impacted marine sample 1. Groups overrepresented in non-impacted sample 1 (grey) 

correspond to positive differences between proportions and groups overrepresented in the 

hydrocarbon-impacted foreshore sample (black) correspond to negative differences between 

proportions. Corrected P-values (q-values) were calculated using Benjamini-Hochberg FDR. A q-

value cut-off of <1e-15 was then implemented. (B) STAMP analysis of taxonomy enriched or depleted 

between the hydrocarbon-impacted foreshore sample and non-impacted sample 2. Groups 

overrepresented in non-impacted sample 2 (grey) correspond to positive differences between 

proportions and groups overrepresented in the hydrocarbon-impacted foreshore sample (black) 

correspond to negative differences between proportions.  

A 

B 
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To determine the overall effect hydrocarbon impact had on the diversity of the 

microbial community, both in terms of structure and function, we compared the 

hydrocarbon impacted foreshore sample with 9 publicly available metagenomes on 

MG-RAST from a variety of marine environments (Table S4.1). The highest 

metabolic (subsystem) and taxonomic (organism) resolution available was used to 

create rank abundance curves. Analysis of the slope of the power law fits to rank 

abundance plots revealed a community with mid-range distribution (λ= -0.411 and -

540 for taxonomy and metabolism, respectively), which was similar to those from 

other oligotrophic marine environments (Table 4.2).  

4.4 Discussion 

Effective bioremediation in marine environments is known to be limited by factors 

such as nutrient availability, temperature and oxygen concentration (Röling et al., 

2002; Kostka et al., 2011). Many studies have focused on the taxonomic shifts 

hydrocarbons exert on coastal marine microbial communities (Chikere et al., 2011; 

Liang et al., 2011; Yergeau et al., 2012), however, the pathways by which 

bioremediation of hydrocarbons is achieved in these environments, as well as the 

long term persistence of such pathways, is still relatively unknown. To determine the 

long term effect hydrocarbon impacts have on microbes in marine foreshore 

environments, the microbial ecology of a historically impacted site was assessed to 

determine the influence on microbial taxonomy and metabolism. 

Vertical profiling of hydrocarbon impacted foreshore samples over 0 – 2.0 m showed 

elevated hydrocarbon concentrations of up to 1764 mg kg-1 of C9-C36 hydrocarbons 

at 1.75 m (Table 4.1). This is consistent with other reports that have shown 

hydrocarbon concentrations may be elevated in the sub-surface marine environments 
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(Ke et al., 2005) as a result of vertical transport by tidal action (Röling et al., 2004). 

This may result in recalcitrant hydrocarbon fractions of crude oil persisting in sub-

surface environments (Short et al., 2007).  

To determine how hydrocarbon impacts influence indigenous microbial communities 

within a marine environment, we compared our metagenome to two other 

metagenomes obtained from  non-hydrocarbon impacted marine foreshore sediment 

(Jeffries et al., 2011a). Differences were observed between the hydrocarbon 

impacted sample compared to the non-impacted samples, with a shift in dominant 

taxa between the impacted and non-impacted samples, suggesting markedly different 

community compositions. In the hydrocarbon impacted foreshore sample, there was 

an overrepresentation of Pseudomonadales, Actinomycetales, Rhizobiales, 

Alteromonadales, Oceanospirillales and Burkholderiales (Fig. 4.2). These findings 

are similar to those reported by Marcial Gomes et al., (2008) who used 16S rRNA 

sequencing to show that there was an enrichment in ribotypes related to 

Alteromonadales, Burkholderiales, Pseudomonadales, Rhodobacterales and 

Rhodocyclales in urban mangrove forest sediments polluted with hydrocarbons. 

Thus, the overrepresentation of such groups within the hydrocarbon impacted 

foreshore metagenome, suggests that the innate potential exists within the microbial 

consortium inhabiting this environment, for the degradation of hydrocarbons.  
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Figure 4.3 Comparison of foreshore metabolic profiles, hierarchy level 1: (A) 

STAMP analysis of metabolisms enriched or depleted between the hydrocarbon-impacted foreshore 

sample and non-impacted marine sample 1. Groups overrepresented in non-impacted sample 1 (grey) 

correspond to positive differences between proportions and groups overrepresented in the 

hydrocarbon-impacted foreshore sample (black) correspond to negative differences between 

proportions. Corrected P-values (q-values) were calculated using Benjamini-Hochberg FDR. (B) 

STAMP analysis of metabolism enriched or depleted between the hydrocarbon-impacted foreshore 

sample and non-impacted sample 2. Groups overrepresented in non-impacted sample 2 (grey) 

correspond to positive differences between proportions and groups overrepresented in the 

hydrocarbon-impacted foreshore sample (black) correspond to negative differences between 

proportions.  

A 

B 



Chapter 4 

70 

The overrepresentation of Oceanospirillales in the hydrocarbon impacted foreshore 

sample is notable due to this species’ ability to dominate in hydrocarbon impacted 

marine environments (Hazen et al., 2010; Atlas and Hazen, 2011). This success has 

previously been linked to their ability to degrade branched chain alkanes, like those 

found in this study (Table 4.1), thus outcompeting other associated microorganisms 

(Hara et al., 2003). Oceanospirillales spp. are known to produce biosurfactants 

which aids in the emulsification of alkanes, by increasing their bioavailability and 

thus, increasing the rate of degradation (Schneiker et al., 2006). In addition, 

Oceanospirillales spp. have also been shown to proliferate in an oligotrophic marine 

environment due to their innate ability to effectively scavenge key elements such as 

nitrogen and phosphorus (Martins dos Santos et al., 2010). This enables them to 

quickly and effectively adapt to sudden increases in carbon and the corresponding 

decreases of other nutrients such as nitrogen and phosphorus following hydrocarbon 

utilisation (Schneiker et al., 2006). Furthermore, as Oceanospirillales are generally 

associated with marine environments, their overrepresentation in the hydrocarbon 

contaminated beach sample suggests the microbial potential to degrade hydrocarbons 

is being enhanced by selective pressure favouring these species, as well as 

coastal/seawater interactions, which are consequently introducing microbes 

possessing the capacity to catabolise hydrocarbons. 

The rate at which microbial communities are able to biodegrade hydrocarbons in the 

environment is dependent on nitrogen, phosphorus and hydrocarbon bioavailability 

(Nikolopoulou and Kalogerakis, 2008), in addition to the presence and expression of 

genes responsible for their catabolism. In marine foreshore environments, nutrients 

concentrations are generally thought to be too low for successful bioremediation 

(Röling et al., 2002). In this study, nutrient analysis of hydrocarbon impacted 
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samples also showed low nitrogen and phosphorus concentrations (55 mg kg-1 and 40 

mg kg-1 respectively) (Table 4.1). Further evidence of this is the detection of 

microbes such as the Oceanospirillales spp., which are known for their ability to 

successfully scavenge nutrients in low concentrations. The overrepresentation of 

nitrogen metabolism genes in the hydrocarbon impacted foreshore sample suggests 

scavenging mechanisms may be in place where nitrogen concentrations are 

paramount for hydrocarbon catabolism compared to low carbon, non-impacted 

environments (Fig. 4.3).  

Our data also indicated that aromatic hydrocarbon metabolism genes were 

overrepresented in the hydrocarbon impacted foreshore sample (Fig. 4.3), with n-

Phenylalkanoic acid degradation genes being the most abundant (Table S4.3). 

Previous studies have demonstrated the ability for Pseudomonas spp. to metabolise 

phenylalkanoic acids, a component of polyhydroxyalkanoate (PHA) found in crude 

oil (Sabirova, 2010). These compounds are used as an intracellular carbon storage 

material in response to excess carbon and nutrient deficiencies (Madison and 

Huisman, 1999). Hydrocarbon degradation genes are widely distributed in marine 

environments (Head et al., 2006). In pristine sites, microbes capable of degrading 

hydrocarbons are thought to utilize natural sources such as those produced by algae, 

plants and other organisms (Atlas, 1995; Yergeau et al., 2012). Following 

hydrocarbon contamination, there is an increase in the proportion of microbial 

populations with plasmids containing genes for hydrocarbon degradation (Leahy and 

Colwell, 1990; Atlas, 1995). The abundance of n-Phenylalkanoic acid degradation 

genes in the oligotrophic hydrocarbon impacted foreshore sample is, therefore 

consistent with the ability to catabolise petroleum hydrocarbons under low nutrient 

conditions. 
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Anaerobic benzoate degradation genes were also present in the hydrocarbon 

impacted foreshore sample (Table S4.3). Although the concentration of BTEX were 

below the level of quantification at the time of this study, aromatic hydrocarbons 

may have been present during the initial impact and were probably degraded over 

time nearer ground surface due to reduced oxygen tension. Benzene degradation is 

known to be impaired by anaerobic conditions (Holmes et al., 2011) although reports 

by van der Zaan et al., (2012) have shown that degradation of aromatic compounds 

can occur, albeit a slower rate compared to aerobic conditions. Previous exposure of 

samples at these depths to aromatic hydrocarbons could, therefore, have played a role 

in the abundance of these genes. The presence of anaerobic benzoate degradation 

genes along with the n-Phenylalkanoic acid degradation genes indicates that the 

adaptation of microbial communities to hydrocarbon impacts can remain for long 

periods of time, whereby years later, the community is still typical of communities 

responding to a recent contaminated event.  
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Table 4.2 Comparison of microbial community evenness and functional stability 
in marine environments. Power distribution with exponents (λ) 

 
 Taxonomy Metabolism  
Metagenome λ R2 λ R2 
Coastal Galapagos Island -0.288 0.968 -0.743 0.958 
East Australian Current 1 -0.296 0.979 -0.738 0.958 
Botany Bay -0.300 0.987 -0.843 0.936 
East Australian Current 2 -0.306 0.932 -0.642 0.941 
Lagoon Reef - Indian Ocean -0.319 0.972 -0.838 0.953 
Marine Sediment 1 (non-
impacted) -0.385 0.939 -0.500 0.980 
Marine Sediment 2 (non-
impacted) -0.386 0.978 -0.497 0.961 
HOT 10m -0.409 0.952 -0.576 0.952 
Hydrocarbon impacted beach -0.411 0.991 -0.540 0.986 
HOT 200m -0.420 0.977 -0.533 0.935 
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To determine how the historical contamination event influenced the overall structural 

and functional dynamics of the microbial community, we compared the metagenome 

from the hydrocarbon impacted foreshore with metagenomes from 9 other marine 

habitats (Table S4.1). Taxonomically and metabolically, the hydrocarbon impacted 

foreshore exhibited mid-range diversity (λ= -0.411 and -540, respectively) indicative 

of a bacterial community, which is likely to have adapted to stress (Table 4.2). Such 

communities possess sufficient functional redundancy allowing for community 

evenness and functional organization to remain stable, and largely unaffected by 

environmental stress (Marzorati et al., 2008). The initial hydrocarbon impact at the 

study site occurred at ground surface with hydrocarbons subsequently transported 

through the foreshore profile resulting in the accumulation at the sand-bedrock 

interface. In addition, these beach samples were subjected to constant input of 

nutrients and water from tidal and wave action, as well as low level contact with 

contaminants in sea water. This influx is likely to keep the relevant degradation 

genes selected for and induced, thus resulting in a functionally redundant 

community. 

In conclusion, our data revealed the taxa and functional genes responsible for the 

catabolism of hydrocarbon in a historically impacted foreshore. The 

overrepresentation of Pseudomonadales, Burkholderiales and Oceanospirillales as 

well as nitrogen metabolism genes and aromatic hydrocarbon metabolism genes such 

as n-Phenylalkanoic acid degradation and anaerobic benzoate degradation in the 

hydrocarbon impacted foreshore metagenome are all consistent with the 

bioremediation of hydrocarbons. We suggest this pattern is driven by the 

coastal/seawater interactions which have created a nutrient flux as well as 

hydrocarbon degrading marine bacteria. Our data also revealed a functionally 
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redundant community suggesting that the indigenous microbial communities have 

adapted and flourished following the initial impact. With the use of next generation 

sequencing protocols, this study provides important insights into a microbial 

community’s innate ability to degrade hydrocarbons in a naturally low nutrient 

environment.  
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Table S4.1 Summary of metagenomes used in this study 

 

MG-RAST ID Description/Reference 
4453082.3 Hydrocarbon impacted foreshore 
4446341.3 Non-impacted foreshore sediment 1 (Jeffries et al., 2011a) 
4446342.3 Non-impacted foreshore sediment 2 (Jeffries et al., 2011a) 
4443688.3 Botany Bay 1 (Burke et al., 2011) 
4446457.3 East Australian Current 1 (Seymour et al., 2012) 
4446409.3 East Australian Current 2 (Seymour et al., 2012) 
4441595.3 Coastal Galapagos Island (Rusch et al., 2007) 
4441139.3 Lagoon Reef - Indian Ocean (Rusch et al., 2007) 
4441051.3 HOT station 10m (DeLong et al., 2006) 
4441041.3 HOT station 200m (DeLong et al., 2006) 
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Table S4.2 Relative proportion of matches to the SEED database taxonomic 
hierarchy 

Domain MG-RAST Level 2 
(Phyla) 

MG-RAST Level 3 
(Class) 

Contaminated 
Beach 

Bacteria Proteobacteria Gammaproteobacteria 31.758 
Bacteria Proteobacteria Alphaproteobacteria 22.169 
Bacteria Actinobacteria Actinobacteria (class) 10.285 
Bacteria Proteobacteria Betaproteobacteria 9.811 
Bacteria Proteobacteria Deltaproteobacteria 5.028 
unassigne
d 

unassigned unassigned 4.144 

Bacteria Bacteroidetes Flavobacteria 2.202 
Bacteria Firmicutes Clostridia 1.744 
Bacteria Cyanobacteria unclassified (derived 

from Cyanobacteria) 
1.459 

Bacteria Firmicutes Bacilli 1.404 
Bacteria Chlorobi Chlorobia 1.053 
Bacteria Planctomycetes Planctomycetacia 0.995 
Bacteria Deinococcus-

Thermus 
Deinococci 0.986 

Bacteria Bacteroidetes Sphingobacteria 0.777 
Bacteria Chloroflexi Chloroflexi (class) 0.759 
Bacteria Bacteroidetes Cytophagia 0.527 
Bacteria Proteobacteria Epsilonproteobacteria 0.420 
Bacteria Bacteroidetes Bacteroidia 0.410 
Bacteria Acidobacteria Solibacteres 0.391 
Archaea Euryarchaeota Methanomicrobia 0.374 
Bacteria Proteobacteria unclassified (derived 

from Proteobacteria) 
0.297 

Bacteria Chloroflexi Thermomicrobia (class) 0.279 
Bacteria Verrucomicrobia Opitutae 0.199 
Bacteria Acidobacteria unclassified (derived 

from Acidobacteria) 
0.191 

Archaea Euryarchaeota Halobacteria 0.186 
Bacteria Thermotogae Thermotogae (class) 0.174 
Bacteria Cyanobacteria Gloeobacteria 0.140 
Bacteria Spirochaetes Spirochaetes (class) 0.132 
Bacteria unclassified 

(derived from 
Bacteria) 

unclassified (derived 
from Bacteria) 

0.120 

Bacteria Synergistetes Synergistia 0.118 
Bacteria Aquificae Aquificae (class) 0.107 
Archaea Crenarchaeota Thermoprotei 0.104 
Eukaryota Arthropoda Insecta 0.095 
Bacteria Chlamydiae Chlamydiae (class) 0.088 
Bacteria Dictyoglomi Dictyoglomia 0.083 
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Bacteria Chloroflexi Dehalococcoidetes 0.079 
Bacteria Deferribacteres Deferribacteres (class) 0.074 
Eukaryota Streptophyta unclassified (derived 

from Streptophyta) 
0.074 

Bacteria Verrucomicrobia unclassified (derived 
from Verrucomicrobia) 

0.071 

Bacteria Fusobacteria Fusobacteria (class) 0.065 
Archaea Euryarchaeota Thermococci 0.064 
Eukaryota Chordata Mammalia 0.057 
Eukaryota Ascomycota Sordariomycetes 0.056 
Bacteria Verrucomicrobia Verrucomicrobiae 0.042 
Eukaryota Chordata Actinopterygii 0.040 
Archaea Euryarchaeota Methanococci 0.034 
Archaea Euryarchaeota Archaeoglobi 0.031 
Bacteria Tenericutes Mollicutes 0.030 
Viruses unclassified 

(derived from 
Viruses) 

unclassified (derived 
from Viruses) 

0.026 

Bacteria Elusimicrobia Elusimicrobia (class) 0.023 
 

Top 50 hits were generated by BLASTing sequences to the MG-RAST subsystem database with a 
minimum alignment length of 50 bp and an E-value cut-off of 1e-5.  

Relative representation in the metagenome was calculated by dividing the number of hits to each 
category by the total number of hits to all categories.  
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Table S4.3 Relative proportion of matches to the subsystem database metabolic 
hierarchy 

Subsystem 
Hierarchy 1 

Subsystem Hierarchy 2 Subsystem Hierarchy 3 % 
hits 

Carbohydrates One-carbon Metabolism Serine-glyoxylate cycle 0.3543 
Cofactors, 
Vitamins, 
Prosthetic Groups, 
Pigments 

Biotin Biotin biosynthesis 0.2975 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty acid degradation 
regulons 

0.2975 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty acid metabolism 
cluster 

0.2975 

Metabolism of 
Aromatic 
Compounds 

Peripheral pathways for 
catabolism of aromatic 
compounds 

n-Phenylalkanoic acid 
degradation 

0.2975 

Iron acquisition 
and metabolism 

Iron acquisition in Vibrio - 0.2207 

Membrane 
Transport 

Ton and Tol transport 
systems 

- 0.2207 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium 
resistance 

0.2095 

Clustering-based 
subsystems 

CBSS-235.1.peg.567 - 0.2087 

Clustering-based 
subsystems 

Biosynthesis of 
galactoglycans and 
related 
lipopolysacharides 

CBSS-258594.1.peg.3339 0.2023 

Miscellaneous Plant-Prokaryote DOE 
project 

COG0451 0.2023 

Amino Acids and 
Derivatives 

Branched-chain amino 
acids 

Isoleucine degradation 0.1792 

Amino Acids and 
Derivatives 

Branched-chain amino 
acids 

Valine degradation 0.1792 

Carbohydrates Fermentation Acetyl-CoA fermentation 
to Butyrate 

0.1792 

Carbohydrates Fermentation Butanol Biosynthesis 0.1792 
Clustering-based 
subsystems 

Butyrate metabolism 
cluster 

- 0.1792 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty acid degradation 
regulons 

0.1792 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty acid metabolism 
cluster 

0.1792 

Fatty Acids, 
Lipids, and 

Polyhydroxybutyrate 
metabolism 

- 0.1792 
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Isoprenoids 
Metabolism of 
Aromatic 
Compounds 

Peripheral pathways for 
catabolism of aromatic 
compounds 

n-Phenylalkanoic acid 
degradation 

0.1792 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

Multidrug Resistance 
Efflux Pumps 

0.1720 

Cell Wall and 
Capsule 

Cell wall of 
Mycobacteria 

mycolic acid synthesis 0.1688 

Clustering-based 
subsystems 

Fatty acid metabolic 
cluster 

CBSS-246196.1.peg.364 0.1688 

Clustering-based 
subsystems 

Fatty acid metabolic 
cluster 

COG1399 0.1688 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty Acid Biosynthesis 
FASII 

0.1688 

Clustering-based 
subsystems 

CBSS-
196620.1.peg.2477 

- 0.1600 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

BlaR1 Family Regulatory 
Sensor-transducer 
Disambiguation 

0.1600 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

Copper homeostasis 0.1600 

Amino Acids and 
Derivatives 

Branched-chain amino 
acids 

Isoleucine degradation 0.1568 

Amino Acids and 
Derivatives 

Branched-chain amino 
acids 

Valine degradation 0.1568 

Amino Acids and 
Derivatives 

Lysine, threonine, 
methionine, and cysteine 

Lysine fermentation 0.1568 

Carbohydrates Fermentation Acetone Butanol Ethanol 
Synthesis 

0.1568 

Carbohydrates Fermentation Acetyl-CoA fermentation 
to Butyrate 

0.1568 

Carbohydrates Fermentation Butanol Biosynthesis 0.1568 
Carbohydrates Organic acids Isobutyryl-CoA to 

Propionyl-CoA Module 
0.1568 

Cofactors, 
Vitamins, 
Prosthetic Groups, 
Pigments 

Folate and pterines 5-FCL-like protein 0.1568 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Fatty acids Fatty acid degradation 
regulons 

0.1568 

Respiration Electron accepting 
reactions 

Anaerobic respiratory 
reductases 

0.1568 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium 
resistance 

0.1480 

Cofactors, 
Vitamins, 
Prosthetic Groups, 
Pigments 

Folate and pterines YgfZ 0.1448 
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Respiration Soluble cytochromes and 
functionally related 
electron carriers 

- 0.1448 

Sulfur Metabolism Inorganic sulfur 
assimilation 

Inorganic Sulfur 
Assimilation 

0.1448 

Virulence, Disease 
and Defense 

Resistance to antibiotics 
and toxic compounds 

Cobalt-zinc-cadmium 
resistance 

0.1408 

Clustering-based 
subsystems 

CBSS-
350688.3.peg.1509 

- 0.1360 

DNA Metabolism DNA replication DNA-replication 0.1360 
Phages, Prophages, 
Transposable 
elements, Plasmids 

Phages, Prophages Phage regulation of gene 
expression 

0.1352 

Stress Response Oxidative stress Regulation of Oxidative 
Stress Response 

0.1352 

Carbohydrates Central carbohydrate 
metabolism 

Methylglyoxal 
Metabolism 

0.1176 

Carbohydrates Central carbohydrate 
metabolism 

Pyruvate metabolism II: 
acetyl-CoA, acetogenesis 
from pyruvate 

0.1176 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Phospholipids Glycerolipid and 
Glycerophospholipid 
Metabolism in Bacteria 

0.1176 

Miscellaneous Plant-Prokaryote DOE 
project 

DOE COG2016 0.1152 

Protein 
Metabolism 

Selenoproteins Glycine reductase, 
sarcosine reductase and 
betaine reductase 

0.1152 

Amino Acids and 
Derivatives 

Glutamine, glutamate, 
aspartate, asparagine; 
ammonia assimilation 

Aspartate 
aminotransferase 

0.1080 

Amino Acids and 
Derivatives 

Glutamine, glutamate, 
aspartate, asparagine; 
ammonia assimilation 

Glutamine, Glutamate, 
Aspartate and Asparagine 
Biosynthesis 

0.1080 

Amino Acids and 
Derivatives 

Lysine, threonine, 
methionine, and cysteine 

Threonine and 
Homoserine Biosynthesis 

0.1080 

Miscellaneous Plant-Prokaryote DOE 
project 

PROSC 0.1080 

DNA Metabolism DNA repair DNA repair, UvrABC 
system 

0.1072 

Amino Acids and 
Derivatives 

Alanine, serine, and 
glycine 

Alanine biosynthesis 0.1072 

Clustering-based 
subsystems 

Cell Division CBSS-393130.3.peg.794 0.1072 

Clustering-based 
subsystems 

Lysine, threonine, 
methionine, and cysteine 

CBSS-84588.1.peg.1247 0.1072 

Cofactors, 
Vitamins, 
Prosthetic Groups, 
Pigments 

Folate and pterines YgfZ 0.1072 
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Miscellaneous Plant-Prokaryote DOE 
project 

At5g37530 0.1072 

Miscellaneous Plant-Prokaryote DOE 
project 

COG2363 0.1072 

Miscellaneous Plant-Prokaryote DOE 
project 

Iron-sulfur cluster 
assembly 

0.1072 

RNA Metabolism RNA processing and 
modification 

mcm5s2U biosynthesis in 
tRNA 

0.1072 

RNA Metabolism RNA processing and 
modification 

mnm5U34 biosynthesis 
bacteria 

0.1072 

RNA Metabolism RNA processing and 
modification 

tRNA modification 
Archaea 

0.1072 

RNA Metabolism RNA processing and 
modification 

tRNA modification 
Bacteria 

0.1072 

RNA Metabolism RNA processing and 
modification 

tRNA modification yeast 
cytoplasmic 

0.1072 

Phages, Prophages, 
Transposable 
elements, Plasmids 

Phages, Prophages Phage integration and 
excision 

0.1064 

Miscellaneous ZZ gjo need homes - 0.1064 
Amino Acids and 
Derivatives 

Lysine, threonine, 
methionine, and cysteine 

Lysine fermentation 0.1056 

Carbohydrates Fermentation Acetone Butanol Ethanol 
Synthesis 

0.1056 

Carbohydrates Fermentation Acetyl-CoA fermentation 
to Butyrate 

0.1056 

Carbohydrates Fermentation Butanol Biosynthesis 0.1056 
Carbohydrates One-carbon Metabolism Serine-glyoxylate cycle 0.1056 
Clustering-based 
subsystems 

Butyrate metabolism 
cluster 

- 0.1056 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Isoprenoids Archaeal lipids 0.1056 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Isoprenoids Isoprenoid Biosynthesis 0.1056 

Fatty Acids, 
Lipids, and 
Isoprenoids 

Polyhydroxybutyrate 
metabolism 

- 0.1056 

Metabolism of 
Aromatic 
Compounds 

Anaerobic degradation of 
aromatic compounds 

Anaerobic benzoate 
metabolism 

0.1056 

 

Top 50 hits were generated by BLASTing sequences to the MG-RAST subsystem database with a 
minimum alignment length of 50 bp and an E-value cut-off of 1e-5.  

Relative representation in the metagenome was calculated by dividing the number of hits to each 
category by the total number of hits to all categories. 
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Table S4.4 Contribution of metabolic hierarchial system 1 to the dissimilarity of the hydrocarbon impacted and non-impacted marine 
sediment 1 metagenomes. 

 

 
Avg. Abundance 

 
Metabolic Processes 

Non-Impacted sample  
1 

Hydrocarbon-
Impacted 

Contribution 
 % 

Motility and chemotaxis 0.18 0.14 11.49 
Metabolism of aromatic compounds 0.1 0.15 11.48 
Photosynthesis 0.05 0.02 8.08 
Nitrogen metabolism 0.08 0.11 7.8 
Membrane transport 0.17 0.14 5.44 
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Table S4.5 Contribution of metabolic hierarchial system 1 to the dissimilarity of the hydrocarbon impacted and non-impacted marine 
sediment 2 metagenomes. 

 

 Avg. Abundance  
Metabolic Processes Non-Impacted sample  

2 
Hydrocarbon-

Impacted 
Contribution 

% 
Metabolism of aromatic compounds 0.11 0.15 9.62 
Motility and chemotaxis 0.18 0.14 9.43 
Nitrogen metabolism 0.08 0.11 7.82 
DNA metabolism 0.18 0.21 7.68 
Sulfur metabolism 0.14 0.12 6.95 
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5.0 Abstract 

The functional dynamics of microbial communities are largely responsible for the 

clean-up of hydrocarbons in the environment. However, knowledge of the 

distinguishing functional genes, known as the metabolic footprint, present in 

hydrocarbon-impacted sites is still scarcely understood.  Here, we conducted a 

multivariate analysis to characterise the metabolic footprints present in hydrocarbon-

impacted and non-impacted sediments. Multi-dimensional scaling (MDS) and 

canonical analysis of principle coordinates (CAP) showed a clear distinction between 

the two groups. A high relative abundance of genes associated with cofactors, 

virulence, phages and fatty acids were present in the non-impacted sediments, 

accounting for 45.7% of the overall dissimilarity. In the hydrocarbon impacted sites, 

a high relative abundance of genes associated with iron acquisition and metabolism, 

dormancy and sporulation, motility, metabolism of aromatic compounds and cell 

signalling were observed, accounting for 22.3% of the overall dissimilarity. These 

results suggest a major shift in functionality has occurred with pathways more 

paramount to the degradation of hydrocarbons becoming overrepresented at the 

expense of other, less essential metabolisms.  
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5.1 Introduction 

Ecosystem functioning is highly dependent on microbial communities (Chapin III et 

al., 1997; Gianoulis et al., 2009). These communities are largely defined by 

biological metabolisms, and are generally thought to be habitat specific (Dinsdale et 

al., 2008b), providing a link between the biology of a given community and the 

surrounding environment (Gillooly et al., 2004). Environmental change can lead to a 

major shift in the structure and function of the inhabiting microbial consortia 

(Hemme et al., 2010; Kostka et al., 2011; Smith et al., 2011). Physiological 

adaptations of microbes have been shown to be highly specific, allowing for the 

discrimination between chemical stressors (Henriques et al., 2007). The 

identification of defining metabolic pathways of a given ecosystem, known as 

metabolic footprints, allows for a greater understanding on how the microbial 

consortia are adapting and responding to environmental change (Gianoulis et al., 

2009; Röling et al., 2010).  

Microorganisms are highly responsive to environmental stress, due to a variety of 

evolutionary adaptions and physiological mechanisms (Schimel et al., 2007). The 

innate ability for microbes to respond and adapt to the world around them means 

they are often used as biological indicators (Steube et al., 2009), and subsequently 

for bioremediation (Head et al., 2006). Many studies have investigated the use of 

specific microbial taxa as biological indicators (Anderson, 2003; Bonjoch et al., 

2004; Avidano et al., 2005; Mailaa and Cloeteb, 2005), however, previous reports 

have suggested ecosystems cannot be distinguished by their taxa due to the low 

variance between habitats (Lozupone and Knight, 2007; Dinsdale et al., 2008b; 

Burke et al., 2011). Therefore to gain a comprehensive insight into an ecosystem’s 
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functional response to environmental change, the underlying metabolic footprints 

need to be elucidated. 

Metabolic footprints is a term used to describe an ensemble of biological pathways 

that typically occur with a combination of environmental variables (Gianoulis et al., 

2009; Wooley and Ye, 2010). A recent study by Gianoulis et al. (2009) used 

multivariate canonical correlation analysis to describe the metabolic footprints 

associated with different aquatic environments. These metabolic footprints were 

thought to arise from differences in evolutionary strategies required to cope with 

unique environmental variables (Gianoulis et al., 2009). Similarly, Dinsdale et al. 

(2008b) used functional differences to discriminate between 9 discrete ecosystems. 

Here, we employ modern techniques of multivariate analysis with few assumptions 

to determine the metabolic footprints of hydrocarbon-impacted environments. 

The long-lasting toxicity of xenobiotics makes their metabolism by microbial 

communities  widely studied (Singleton, 1994). Petroleum hydrocarbons are a 

common target for bioremediation because they are widespread and persistent 

(Röling et al., 2002; Vinas et al., 2005; Chikere et al., 2011; Kostka et al., 2011; 

Liang et al., 2011). While the optimal taxa and environmental conditions for optimal 

degradation of hydrocarbons are well established (Xu et al., 2003; Walworth et al., 

2007; Yakimov et al., 2007; Singh et al., 2011), the effectiveness of a natural 

community to bioremediate is less well understood (Chakraborty et al., 2012).   

Advances in metagenomic technologies have allowed for the direct sequencing of 

environmental microbial communities (Kennedy et al., 2010), greatly increasing our 

potential to understand the metabolic processes being undertaken by the indigenous 

microbial communities. A recent study by Yergeau et al. (2012) used metagenomic 
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sequencing technologies to characterise the structure and function of an active soil 

microbial community in a hydrocarbon contaminated Arctic region. However, this 

study primarily focused on the taxa present, and not the defining metabolic activities 

associated with hydrocarbon contamination. Thus, knowledge on the distinguishing 

functional genes present in hydrocarbon contaminated environments is still lacking. 

The aim of the present study was to compare hydrocarbon-impacted sites to non-

impacted sites, and provide insight into the key metabolic functions present 

following hydrocarbon impact, thus elucidating the metabolic footprints for 

hydrocarbon contamination.  

5.2 Materials and Methods 

5.2.1 Data Collection 

To determine the functionality of microbial communities inhabiting hydrocarbon-

impacted and non-impacted environments, publicly available datasets were chosen 

from the MetaGenomics Rapid Annotation using Subsystem Technology (MG-

RAST) pipeline version 3.0 (Meyer et al., 2008). Due to constraints in the database, a 

total of 4 datasets were used to represent hydrocarbon-impacted environments, while 

5 datasets were used for non-impacted environments (Table S5.1). BLASTX was 

performed on all datasets, with a minimum alignments length of 50 bp and an E-

value cut-off of E<1e-5 (Dinsdale et al., 2008b), to identify hits to the subsystems 

database.  

5.2.2 Data Analysis 

To statistically investigate the differences between metagenomes from hydrocarbon-

impacted sites to metagenomes from un-impacted sites, heatmaps were generated 

containing the relative proportion of hits to the subsystem database in MG-RAST. 
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Heatmaps had been standardized and scaled to account for differences in sequencing 

effort and read lengths. Statistical analysis was conducted on square-root transformed 

data to reduce the impact of dominant metabolisms using the software package 

Primer 6 for Windows (Version 6.1.13, Primer-E, Plymouth) (Clarke and Gorley, 

2006). Level 1 hierarchial classification was used to determine the overall 

differences in metabolic potential (Dinsdale et al., 2008b; Gianoulis et al., 2009). 

Differences in metabolic potential between hydrocarbon impacted and non-impacted 

sediments were analysed using the PERMANOVA+ version 1.0.3 3 add-on to 

PRIMER (Anderson and Robinson, 2001; Anderson et al., 2008). Non-metric Multi-

Dimensional scaling (MDS) of Bray-Curtis similarities was performed as an 

unconstrained ordination method to graphically visualise multivariate patterns in the 

metabolic processes associated hydrocarbon-impacted and non-impacted sediment 

metagenomes. Metagenomes were further analysed using canonical analysis of 

principle coordinates (CAP) on the sum of squared canonical correlations as a 

constrained method, to determine if there was any significant trend between 

metabolic processes according to hydrocarbon impact. The a priori hypothesis that 

the metabolisms between the two groups were different was tested in CAP 

(Anderson et al., 2008) by obtaining a P-value using 9999 permutations.  

Where significant differences were found using CAP, the percent contribution of 

each metabolism to the separation between the hydrocarbon-impacted and non-

impacted sediments were assessed using similarity percentage (SIMPER) analysis 

(Clarke, 1993). The resulting top 90 percent of all metabolisms were used to 

determine the shifts in metabolic potential between the groups. To determine those 

metabolisms that were consistently contributing to the overall dissimilarity between 
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the hydrocarbon-impacted and non-impacted groups, the ratio of the average 

dissimilarity to standard deviation (Diss/SD) was used. A Diss/SD ratio of greater 

than 1.4 was used to indicate key discriminating metabolisms (Clarke and Warwick, 

2001).  

5.3 Results 

MDS analysis revealed a clear separation of data between the hydrocarbon-impacted 

and non-impacted sediment metagenomes (Fig. 5.1). CAP analysis confirmed this 

separation showing significant differences between the two groups (P = 0.008). A 

strong association between the multivariate data and the hypothesis of metabolic 

difference was indicated by the large size of their canonical correlations (δ2 = 0.83). 

The first canonical axis (m = 1) was used to separate the samples (Fig. 5.2). Cross 

validation of the CAP model showed all samples were correctly classified to 

hydrocarbon-impacted and non-impacted sediments, hence with a zero mis-

classification rate (Table 5.1).  

SIMPER analysis revealed the main metabolic processes contributing to the 

dissimilarity in the non-impacted sediments when compared to the hydrocarbon-

impacted sediments, were genes associated with cofactors, virulence, phages and 

fatty acids, together accounting for 45.71% of the overall dissimilarity. Genes 

associated with protein metabolism, carbohydrates, amino acids, clustering-based 

subsystems, potassium metabolism, respiration, RNA metabolism, nucleosides and 

cell wall were also higher in the non-impacted site compared to the impacted sites, 

collectively contributing to 9.88% of the overall dissimilarity (Table 5.2 and S5.2).  

Conversely, the main metabolic processes associated with the hydrocarbon impacted 

sediments were iron acquisition and metabolism, dormancy and sporulation, motility, 
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metabolism of aromatic compounds and cell signalling accounting for 22.3% of the 

overall dissimilarity between the two groups (Table 5.2). Genes associated with 

nitrogen, phosphorus and sulfur metabolisms were also higher in the hydrocarbon 

impacted site, collectively accounting for 2.5% of the dissimilarity to the non-

impacted sites. Regardless of percent contribution, however, all metabolic processes, 

with the exception of secondary metabolism and photosynthesis, are likely good 

discriminators for hydrocarbon-impacted or non-impacted sediments, indicated by a 

dissimilarity/standard deviation ratio (Diss/SD) of greater than 1.4 (Clarke and 

Warwick, 2001) (Table 5.2 and S5.2). 

5.4 Discussion 

Microbial communities are known to respond to hydrocarbon contamination at the 

genotypic level (Langworthy et al., 1998; Siciliano et al., 2003; Head et al., 2006). 

Thus, a major goal in the study of bioremediation is to identify the key metabolic 

processes being undertaken by the inhabiting microbial communities (Watanabe, 

2001; Chakraborty et al., 2012).  Here, we report the first metagenomic study to 

identify the overall metabolic footprints associated with discriminating hydrocarbon-

impacted versus non-impacted sediment samples.  

Unconstrained (MDS) and constrained (CAP) multivariate analyses showed a 

significant difference (P = 0.008; Table 5.1) between the relative abundances of 

metabolisms for hydrocarbon-impacted and non-impacted sediment (Fig. 5.1 and 

5.2). The similarities between constrained and unconstrained ordinations likely 

reflect the single hydrocarbon impact pressure. This is supported by the CAP 

analysis, which shows that the majority of the variance is expressed on just the first 

canonical axis, with a squared canonical correlation (δ2) of 0.83 (Table 5.1).  A 
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recent hydrocarbon-based study used high throughput functional gene array 

technology to show that all microbial samples with hydrocarbon contamination 

grouped together indicative of similar functional patterns (Liang et al., 2011). 

Furthermore, it has been shown that differences in metabolic processes could be used 

to predict the biogeochemical status of the environment (Dinsdale et al., 2008b). 

Thus, the clear separation between data points in the MDS and CAP plots indicates 

the hydrocarbon-impacted sediment samples can be readily distinguished based on 

metabolic processes.  

The majority of the separation between the two groups was explained by a higher 

relative abundance of genes associated with cofactors, virulence, phages and fatty 

acids, collectively accounting for 45.71% of the dissimilarity in the non-impacted 

sediment samples when compared to the impacted sites (Table 5.2). Those microbes 

capable of surviving following hydrocarbon impact become dominant, leading to a 

major shift in the structure of the community (Vinas et al., 2005; Wu et al., 2008). 

This shift in structure is generally coupled with the reduction of non-essential 

metabolic pathways (Liang et al., 2009; Hemme et al., 2010). Thus, the high degree 

of dissimilarity driven by the non-impacted sediments, suggests the major factor 

causing the differences between the two groups can be explained by a shift in 

functionality, which has led to the reduction in non-essential metabolisms following 

hydrocarbon impact.  

The reduction in non-essential metabolic pathways was coupled with a subsequent 

increase in pathways associated iron acquisition and metabolism, dormancy and 

sporulation, motility, metabolism of aromatic compounds and cell signalling (Table 

5.2). These pathways have all previously been linked to stressed environments (Ford, 
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2000; Schneiker et al., 2006; Suenaga et al., 2007; Hemme et al., 2010), suggesting 

the microbial communities inhabiting the hydrocarbon-impacted environments are 

exerting more energy on pathways essential to the utilization of carbon and survival.  

The degradation of hydrocarbons is often hindered by the requirement to come into 

direct contact with hydrocarbon substrates (Ron and Rosenberg, 2002). Therefore, 

many microorganisms capable of catabolising hydrocarbons have shown chemotaxis 

abilities allowing them to move towards, and subsequently degrade the contaminant 

at a higher rate (Ortega-Calvo et al., 2003; Peng et al., 2008; Fernández-Luqueño et 

al., 2011). This degradation ability is then often further enhanced by the secretion of 

biosurfactants, which increase the availability of hydrocarbons in the soil (Venkata 

Mohan et al., 2006). Thus, the increase in motility and chemotaxis genes suggest the 

microbial communities are increasing metabolisms that will allow for direct contact 

with hydrocarbon compounds (Table 5.2). 

Following direct contact, the microbial communities must have genes that allow for 

the catabolism of hydrocarbons. Petroleum hydrocarbons are comprised of a complex 

mixture of compounds including cycloalkanes, alkanes, polycyclic aromatic 

hydrocarbons, aromatics and phenolics (Hamamura et al., 2006). Previous studies 

have shown an increase in genes associated with the breakdown of these compounds 

in hydrocarbon contaminated environments (Yergeau et al., 2009; Liang et al., 

2011). Thus, a higher relative abundance of metabolism of aromatic compound genes 

in the hydrocarbon-impacted sediments when compared to the non-impacted 

sediments is consistent with a community optimising its ability to utilise hydrocarbon 

as an energy source (Table 5.2).  
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Table 5.1 Results of CAP analysis for metabolisms associated with hydrocarbon 
impacted and non-impacted sediment metagenomes 

 

Group Allocation success 
(%) 

δ2 P-value 

Hydrocarbon-impacted 
sediments 

100 0.829 0.008 

Non-impacted sediments 100 0.829 0.008 
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Following hydrocarbon contamination, microbial communities must adapt to tackle 

the sudden increase in carbon availability and subsequent loss of limiting nutrients 

such as nitrogen and phosphorus and in some cases iron (Beller et al., 1992; Head et 

al., 2006; Schneiker et al., 2006). As a result, an increase in genes associated with 

nitrogen, phosphorus and iron metabolism have been shown, allowing for effective 

scavenging mechanisms (Smith et al., unpublished data). Hydrocarbon impact has 

also been shown to stimulate the sulfur cycle significantly, indicating its importance 

when dealing with crude oil contamination (Kleikemper et al., 2002). Our results 

indicate there has been an increase in nitrogen, phosphorus, sulfur and iron 

metabolites in the hydrocarbon-impacted sediments when compared to non-impacted 

sediments. Furthermore, genes associated with cofactors, amino acid pathways, 

carbohydrates and protein metabolisms were all reduced in the hydrocarbon-

impacted sites (Table 5.2 and S5.2). Taken together, these results suggest the 

microbial communities are expending most of their energy scavenging key nutrients 

needed for bioremediation of hydrocarbons, leading to the subsequent decrease in 

pathways associated with more complex carbohydrate and protein metabolisms and 

growth.  

Although some pathways contributed to the dissimilarity between the two groups 

more than others, all metabolisms with the exception of secondary metabolism and 

photosynthesis were identified as being consistent distinguishing metabolisms (Table 

5.2 and S5.2). This suggests all are metabolic footprints of their given environment, 

indicating the overall metabolic signature is different between groups. In nature, 

microbial communities are typically composed of mixed communities characterised 

by an intricate network of metabolic processes (Pelz et al., 1999). Consequently, our 
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results indicate a complete overview of the metabolites present within the inhabiting 

microbial consortia is needed to effectively characterise an environment.  

5.5 Conclusion 

Our data indicates the hydrocarbon-impacted sediment samples can be distinguished 

from non-impacted sediments based on their metabolic signatures. These signatures 

include metabolisms associated with iron acquisition and metabolism, dormancy and 

sporulation, motility, metabolism of aromatic compounds, cell signalling and 

nitrogen, phosphorus and sulfur metabolism. Our data also indicated that the majority 

of the dissimilarity, however, was due to a reduction of functional genes associated 

with cofactors, virulence, phages and fatty acids. This study elucidated the intricate 

network of functional genes associated with hydrocarbon impact, allowing for the 

characterisation of metabolic footprints.  
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Figure 5.1 Comparison of hydrocarbon-impacted sediments (green) and non-impacted sediments (blue). MDS profile is derived from a Bray-

Curtis similarity matrix calculated from the square-root transformed abundance of DNA fragments matching the subsystems database, level hierarchial system 1 (BLASTX 

E-value <1e-5). The light green polygons depict significantly different groupings (P < 0.05) as calculated by similarity profile (SIMPROF) analysis. 
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Figure 5.2 Comparison of hydrocarbon-impacted sediments (green) and non-impacted sediments (blue). CAP analysis is derived from the sum of 

squared correlations of DNA fragments matching the subsystems database, level hierarchial system 1 (BLASTX E-value <1e-5). 
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Table 5.2 Contribution of metabolic hierarchial system 1 to the dissimilarity of 
the hydrocarbon-impacted and non-impacted sediment metagenomes. Average 
dissimilarity between the two groups is 1.78%. Only metabolisms that were consistent (i.e. Diss/SD > 
1.4) are shown here. The larger value in each case (i.e. the potential indicator of that condition) is 
shown in bold. 

 
 Avg. Abundance                 
Metabolic Processes Hydrocarbon-

Impacted 
Non-

Impacted 
Diss/ 
SD 

Cum 
% 

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

0.1 0.19 2.24 11.43 

Virulence, Disease and Defence 0.1 0.19 2.24 22.86 
Phages, Prophages, Transposable 
elements, Plasmids 

0.1 0.19 2.24 34.29 

Fatty Acids, Lipids, and 
Isoprenoids 

0.1 0.19 2.24 45.71 

Iron acquisition and metabolism 0.84 0.79 1.63 52.68 
Dormancy and Sporulation 0.71 0.68 1.49 57.48 
Motility and Chemotaxis 0.83 0.81 1.58 61.17 
Metabolism of Aromatic 
Compounds 

0.87 0.85 1.73 64.81 

Secondary Metabolism 0.76 0.75 1.16 68.32 
Regulation and Cell signalling 0.86 0.83 1.86 71.55 
Protein Metabolism 0.94 0.96 3.42 74.53 
Carbohydrates 0.97 1 3.5 77.49 
Nitrogen Metabolism 0.84 0.82 1.74 80.17 
Photosynthesis 0.69 0.69 1.3 82.75 
Amino Acids and Derivatives 0.96 0.98 2.89 85.24 
Clustering-based subsystems 0.98 0.99 1.96 87.06 
Miscellaneous 0.94 0.96 3.14 88.7 
 

Cut-off percentage = 90%, Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative 
percentage of contribution to overall dissimilarity, Avg. Abundance values are reported for square-
root transformed data 
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Table S5.1 Summary of publicly available metagenomes used in this study. 

 

MG-RAST ID Description/Reference 
4453082.3 Hydrocarbon contaminated foreshore  
4453072.3 Hydrocarbon contaminated biopile  
4449126.3 Biopiles 2006 (Yergeau et al., 2012) 
4450729.3 Biopile 2005 (Yergeau et al., 2012) 
4446341.3 Marine sediment 1 (Jeffries et al., 2011a) 
4446342.3 Marine sediment 2 (Jeffries et al., 2011a) 
4440984.3 Coorong sediment 1 (Jeffries et al., 2011a) 
4441020.3 Coorong sediment 2 (Jeffries et al., 2011a) 
4441021.3 Coorong sediment 3 (Jeffries et al., 2011a) 
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Table S5.2 Contribution of metabolic hierarchial system 1 to the dissimilarity of 
the hydrocarbon-impacted and non-impacted sediment metagenomes. Shows all 
metabolisms, including inconsistent ones (i.e. Diss/SD < 1.4).  Average dissimilarity between the two 
groups is 1.78 %.  Bold values show either the condition with the higher average abundance (i.e. a 
potential indicator of that condition) or Diss/SD ratios that are consistent (i.e. > 1.4). 

 Avg. Abundance   
Metabolic Processes Hydrocarbon-

Impacted 
Non-

Impacted 
Diss/S

D 
Cum 

% 
Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

0.1 0.19 2.24 11.43 

Virulence, Disease and Defence 0.1 0.19 2.24 22.86 
Phages, Prophages, Transposable 
elements, Plasmids 

0.1 0.19 2.24 34.29 

Fatty Acids, Lipids, and 
Isoprenoids 

0.1 0.19 2.24 45.71 

Iron acquisition and metabolism 0.84 0.79 1.63 52.68 
Dormancy and Sporulation 0.71 0.68 1.49 57.48 
Motility and Chemotaxis 0.83 0.81 1.58 61.17 
Metabolism of Aromatic 
Compounds 

0.87 0.85 1.73 64.81 

Secondary Metabolism 0.76 0.75 1.16 68.32 
Regulation and Cell signalling 0.86 0.83 1.86 71.55 
Protein Metabolism 0.94 0.96 3.42 74.53 
Carbohydrates 0.97 1 3.5 77.49 
Nitrogen Metabolism 0.84 0.82 1.74 80.17 
Photosynthesis 0.69 0.69 1.3 82.75 
Amino Acids and Derivatives 0.96 0.98 2.89 85.24 
Clustering-based subsystems 0.98 0.99 1.96 87.06 
Miscellaneous 0.94 0.96 3.14 88.7 
Potassium metabolism 0.79 0.8 1.45 90.27 
Respiration 0.89 0.9 1.51 91.79 
Phosphorus Metabolism 0.84 0.83 1.41 93.3 
RNA Metabolism 0.92 0.93 1.83 94.62 
Sulfur Metabolism 0.84 0.83 1.6 95.89 
Nucleosides and Nucleotides 0.88 0.89 1.58 97.03 
Cell Wall and Capsule 0.91 0.92 1.62 97.74 
Stress Response 0.89 0.89 1.43 98.38 
Cell Division and Cell Cycle 0.84 0.84 1.39 98.99 
DNA Metabolism 0.91 0.91 1.24 99.54 
Membrane Transport 0.9 0.9 1.28 100 
 
Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative percentage of contribution to overall 
dissimilarity, Avg. Abundance values are reported for square-root transformed data 
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6.0 Abstract 
 
Anthropogenic modification has led to the accumulation of toxic xenobiotics 

worldwide. Due to their resilience to environmental change, microbial communities 

are increasingly used as indicator organisms to monitor polluted sites. The enormous 

abundance and diversity of microbial communities, however, has often hindered our 

ability to characterise polluted sites based on their microbial communities. Here, we 

employed a constrained multivariate analysis, canonical analysis of principal 

coordinates (CAP), to generate metagenomic signatures for three common forms of 

environmental impacts; agricultural effluent, hydrocarbon and wastewater. 

Significant differences between impacted environments were shown, with a 75% and 

100% allocation success for hydrocarbon and agriculturally impacted sites, 

respectively, however, wastewater could not be consistently distinguished. The main 

distinguishing metabolic processes associated with agricultural-impacted 

environments were genes associated with cofactors, virulence, phages and fatty 

acids. Conversely, the main distinguishing genes associated with hydrocarbon-

impacted sites were iron acquisition and metabolism, photosynthesis, aromatic 

compound degradation, dormancy and motility. Taken together, these results indicate 

that a markedly different response by the microbial communities to contaminant 

type.  
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6.1 Introduction 
 
Microbial communities typically consist of mixed consortia, which are characterised 

by intricate networks of metabolic and phylogenetic diversity (Pelz et al., 1999). 

These complex networks allow for innate flexibility, whereby the microbial 

communities are able to adapt swiftly to environmental change, including the 

introduction of xenobiotic contamination (Marzorati et al., 2008). Furthermore, the 

biodiversity within a microbial community generally leads to a high degree of 

resilience and biological functionality (Griffiths et al., 2001; Loreau et al., 2001). 

This rapid response to the changing world, as well as their inherent survival 

mechanisms, means that microbial communities are often used as biological 

indicators, or signatures, for a given environment (Dinsdale et al., 2008b; Gianoulis 

et al., 2009; Steube et al., 2009). 

Shifts in microbial community composition whereby rare taxa or metabolic processes 

become more prominent are often linked to environmental change (Sogin et al., 

2006; Dinsdale et al., 2008b; Jeffries et al., 2011a; Jeffries et al., 2011b; Smith et al., 

2011). Furthermore, previous studies have shown that microbial communities often 

respond at a genotypic level before any disturbance is seen at the taxonomic level 

(Parnell et al., 2009). Due to this genotypic response, it is suggested that ecosystems 

are better described by their metabolic potential rather than by their taxa (Lozupone 

and Knight, 2007; Burke et al., 2011). However, whether there is a loss of 

information between the different levels of taxonomic and metabolic resolution is yet 

to be determined.  

Advances in high-throughput sequencing technologies have allowed for a greater 

sensitivity when generating microbial profiles of environmental systems (Kennedy et 



Chapter 6 

106 

al., 2010; Xing et al., 2012). The result is a greater understanding of the abundance 

and distribution of taxa and genes that establish as a result of environmental change.  

The distinguishing taxa and metabolic potential of an environment responding to 

environmental impact can then be used to generate metagenomic signatures.  

Many studies have used multivariate analysis to identify distinguishing 

characteristics in the microbial communities inhabiting different environmental 

systems (Buyer and Drinkwater, 1997; Hernesmaa et al., 2005; Dinsdale et al., 

2008a; Gianoulis et al., 2009; Liang et al., 2011). The majority of these studies used 

constrained ordinations such as canonical discriminant analysis (CDA) and principal 

component analysis (PCA) (Buyer and Drinkwater, 1997; Hernesmaa et al., 2005; 

Dinsdale et al., 2008b; Liang et al., 2011). However, these methods are restricted in 

that PCA cannot be performed on a dataset containing more observations (samples) 

than variables (taxa/metabolic processes), and CDA should be performed on a 

dataset where there are at least three times as many observations than variables 

(Williams and Titus, 1988; Buyer and Drinkwater, 1997). This results in the need to 

reduce the number of variables prior to analysis (Buyer and Drinkwater, 1997). 

Microbial communities, however, comprise intricate networks whereby a large 

number of individuals/metabolic processes are important in the overall ecosystems 

functioning (Pelz et al., 1999). Thus, the community as a whole should be considered 

when categorising a given environment (Smith et al., unpublished data). 

Canonical analysis of principal coordinates (CAP) is also a constrained multivariate 

analysis, however, unlike CDA and PCA it allows for the characterisation of whole 

communities as it is not limited by observation size (Anderson and Willis, 2003). 

This multivariate analysis has been used in many studies to determine how microbial 
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communities respond to various environmental conditions (Bastias et al., 2006; 

Cookson et al., 2007; Baker et al., 2009; Lear and Lewis, 2009); however, to date, it 

has not been employed to generate metagenomic signatures for various impacted 

environments. Thus, we sought to construct a taxonomic and metabolic profile of 

microbial communities responding to various forms of environmental impacts, in 

order to generate metagenomic signatures using CAP. The information generated 

from this study can then be used to determine the biological indicators for xenobiotic 

pollution as well as to better understand the role microbes play in the catabolism of 

toxic compounds. 

6.2 Materials and Methods 
 
6.2.1 Data Collection 

To statistically investigate the metagenomic signatures for three common forms of 

environmental impacts; agriculture, hydrocarbon and wastewater (Table S6.1), 

heatmaps were generated in MetaGenomics Rapid Annotation using Subsystem 

Technology (MG-RAST) pipeline version 3.0 (Meyer et al., 2008), which had been 

standardized and scaled to account for differences in sequencing effort and read 

lengths. Taxonomic profiles were generated using the normalized abundances of 

sequences matches to the SEED database (Overbeek et al., 2005), while metabolic 

profiles were generated successively using the normalized abundances of sequences 

matches to the subsystems database. An E-value cut-off of E<1e-5 and a minimum 

alignment length of 50 bp was used to identify hits. Heatmaps were generated using 

the phylum, class, order, family and genus levels of resolution available in MG-

RAST for taxonomy and hierarchial level 1 and 2 for metabolism. Statistical analyses 

were conducted on square-root transformed data using the statistical software 
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package Primer 6 for Windows (Version 6.1.13, Primer-E, Plymouth) (Clarke and 

Gorley, 2006).  

6.2.2 Data Analysis 

To determine whether there was any loss of information between the level of 

resolution for taxonomy and metabolism, the program RELATE in the Primer 

package was used to calculate the rank correlation between each pair of 

classifications (Clarke, 1993). Differences in the overall taxonomy and metabolic 

potential between the impacted environments were analysed using PERMANOVA+ 

version 1.0.3 3 (Anderson et al., 2008). The CAP on the sum of squared canonical 

correlations (Anderson and Robinson, 2001) was performed to graphically illustrate 

the multivariate patterns associated with the impacted environments for taxonomy 

and metabolism. Significant trends between the overall taxonomy and metabolic 

processes at each site were determined using the sum of squared canonical 

correlations. The a priori hypothesis that either the taxonomy or metabolisms 

between the two groups were different was tested using 9999 permutations. Based on 

RELATE results, CAP ordinations were generated using phylum and hierarchy level 

1 for taxonomy and metabolism, respectively.  

Where statistically significant differences were shown using CAP analysis, similarity 

percentage (SIMPER) analysis (Clarke, 1993) was conducted to determine the main 

taxa and metabolisms driving the dissimilarity between contamination types. The 

average dissimilarity to standard deviation (Diss/SD) ratio was used to determine the 

taxa and metabolisms that were consistently contributing to the overall dissimilarity 

between types, whereby key discriminating taxa and metabolisms were indicated by 

a Diss/SD ratio of at least 1.4 (Clarke and Warwick, 2001).  
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Table 6.1 Spearman rank correlation coefficients for comparisons of similarity 
matrices for each pair of taxonomic and metabolic level of resolution. All 
correlations were significant at P < 0.001. 

 

Taxonomy 
 

Genus Family Order Class 

 
Phylum 0.713 0.785 0.847 0.908 

 
Class 0.736 0.823 0.939 - 

 
Order 0.816 0.89 - - 

 
Family 0.944 - - - 

Metabolism 
 

Level 2 
   

 
Level 1 0.773 

    

 

 

 

 

 

 

 

 

 



Chapter 6 

110 

6.3 Results 

A reduction in the rank coefficients between the different levels of resolution for 

taxonomy and metabolism was seen, with a higher rank coefficient of 0.9 for 

comparisons between phylum and class level compared to 0.7 for comparisons 

between phylum and genus level and hierarchial level 1 and 2 (Table 6.1). Closer 

ranks, family/genus or phylum/class, had higher correlations than more distant pairs, 

family/phylum or genus/class. However, all combinations of taxonomic and 

metabolic resolution were significantly correlated (P < 0.001) indicating similar 

results were seen irrespective of hierarchial classification (Table 6.1). Thus, to create 

a robust set of metagenomic signatures, all further analyses were conducted on 

phylum level and hierarchial level 1 for taxonomy and metabolism, respectively. 

When comparing metabolism to taxonomy, there was no significant correlation 

between phylum level and hierarchial level 1 (P = 0.09) indicating the information 

gained from taxonomy and metabolic potential differs. 

CAP ordination revealed a clear separation of data between the impacted 

environments impacted environments based on either taxonomy or metabolic 

potential (Fig. 6.1 and 6.2); however only the metabolic potential showed significant 

differences between the environmental contaminants (P = 0.008) (Table 6.2), thus 

the remainder of this manuscript will focus on the differences in metabolic potential. 

A strong association was seen between the multivariate data and the hypothesis of 

metabolic differences, indicated by the large size of their canonical correlations 

(hierarchial level 1: δ2 = 0.86). Cross validation of the CAP model showed 75% of 

samples overall were correctly classified to their impacted environments. More 

specifically, 75% and 100% of hydrocarbon and agricultural impacted sites, 
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respectively, were correctly allocated, while only 50% and 0% of wastewater and 

pristine sites were correctly classified (Table 6.2).  

Based on CAP ordinations as well as allocation success percentages, SIMPER 

analysis was used to determine distinguishing metabolic processes for the oil and 

agricultural impacted sites only. SIMPER analysis revealed the main metabolic 

processes contributing to the dissimilarity in the agricultural impacted environments 

when compared to the hydrocarbon impacted environments were genes associated 

with cofactors, virulence, phages and fatty acids, collectively accounting for 48% of 

the overall dissimilarity between these two types. Genes associated with protein 

metabolism, carbohydrates, amino acids and clustering based subsystems were also 

higher in the agricultural impacted sites when compared to hydrocarbon impacted 

sites, collectively contributing to another 18.4% of the overall dissimilarity (Table 

6.3 and S6.2). 

Alternatively, the main metabolic processes associated with hydrocarbon impact 

were genes related to iron acquisition and metabolism, photosynthesis, aromatic 

compound degradation, dormancy and motility, collectively contributing to 20.1% of 

the overall dissimilarity (Table 6.3 and S6.2). Genes associated with regulation and 

nitrogen metabolism were also higher in the hydrocarbon impacted sites when 

compared to agricultural impacted sites, collectively accounting for 5.2% (Table 6.3 

and S6.2). Furthermore, all metabolic processes, with the exception of potassium 

metabolism, secondary metabolism and cell division were consistently 

distinguishable between agricultural and oil impacted environments, indicated by a 

dissimilarity/standard deviation ration (Diss/SD) of greater than 1.4 (Clarke and 

Warwick, 2001). 
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Figure 6.1 Taxonomic comparison of impacted environments. CAP analysis is derived from the sum of squared correlations of DNA fragments matching the 
SEED database, phylum level (BLASTX E-value <1e-5). 

 



 

 

Chapter 6 

113 

 

 

Figure 6.2 Metabolic comparison impacted environments. CAP analysis is derived from the sum of squared correlations of DNA fragments matching the 
subsystems database, level hierarchial system 1 (BLASTX E-value <1e-5). 
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6.4 Discussion 

Anthropogenic pollution has led to the accumulation of a wide variety of toxic 

xenobiotics causing detrimental effects to pristine ecosystems worldwide (Naeem 

and Li, 1997). Understanding the intimate relationship between environmental 

anthropogenic disturbances and shifts in microbial communities is now recognised as 

an imperative ecological parameter in monitoring polluted sites (Gelsomino et al., 

2006). Here, we sought to distinguish between various contaminant types by the 

inhabiting microbial communities, in order to generate metagenomic signatures for 

polluted environments.  

RELATE analysis showed a significant correlation (P < 0.001) between all levels of 

taxonomic and metabolic hierarchy (Table 6.1), indicating there is no significant loss 

of information between the different levels of resolution. This result is consistent 

with previous studies that have shown changes to environmental conditions caused 

by anthropogenic disturbances have led to major shifts in microbial community 

structure and functionality that become evident across multiple levels of resolution 

(Hemme et al., 2010; Jeffries et al., 2011a; Smith et al., 2011). 

Alternatively, there was a low level of correlation when comparing structure to 

function suggesting that extra information can be gained from one over the other. It 

is generally thought that species diversity determines community stability, whereby a 

higher diversity correlates to a higher inherent stability (Naeem and Li, 1997). 

However, more recently, studies have shown that even those communities with low 

species diversity are still able to maintain a degree of plasticity through a high 

genotypic diversity within key species (Bailey et al., 2006; Crutsinger et al., 2006). 

Moreover, when stable/species-rich environments are disturbed, a reduction in 
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genotypic diversity has been shown to occur regardless of species diversity 

maintenance (Parnell et al., 2009). Therefore, the low level of correlation between 

structure and function is likely driven by an incomplete story generated from 

taxonomy alone.  

CAP analysis showed a significant difference (P = 0.008; Table 6.2) between the 

relative abundances of metabolisms for impacted environments (Fig. 6.2). In 

particular, hydrocarbon and agricultural impacted environments were found to have 

the highest allocation success, 75% and 100% respectively, when compared to 

wastewater and pristine sites, 50% and 0%, respectively (Table 6.2). The higher 

misclassification rate for wastewater and pristine sites, when compared to 

hydrocarbon and agricultural impacted sites was likely driven by the larger sample 

size for hydrocarbon and agricultural environments than for the wastewater and 

pristine environments. Previous studies have shown the ability to measure the impact 

of pollution through molecular fingerprinting and signature biomarkers (White et al., 

1998). Furthermore, measures of functional stability, in particular resistance genes, 

have proven to be useful in distinguishing between various environmental impacts in 

soil (Griffiths et al., 2001). Thus, CAP analysis suggests the impacted environments 

have acquired microbial communities with differing metabolic functions, which have 

allowed for our ability to distinguish between contaminant types. 

SIMPER analysis revealed the main distinguishing metabolic processes associated 

with agricultural impacted environments were genes associated with cofactors, 

virulence, phages, fatty acids, protein metabolism, carbohydrates, amino acids and 

clustering based subsystems (Table 6.3 and S6.2), collectively accounting for 66.4% 

of the overall dissimilarity to the hydrocarbon-impacted environments. A recent 



Chapter 6 

116 

metagenomic study showed a relatively high proportion of viral sequences, 9%, in 

groundwater affected by agricultural impact (Smith et al., 2011). Furthermore, a 

study by Dinsdale et al. (2008a) showed a higher proportion of pathogens in human-

impacted when compared to non-impacted marine environments. Therefore, the 

higher proportion of virulence and phage genes in the agricultural impacted 

environments when compared to the hydrocarbon-impacted environments is 

consistent with reports that human-impact, or more specifically agricultural impact, 

can lead to an increase in overall viral numbers.  

Agricultural practices are known to increase the deposition of nutrients into the 

surrounding environment (Haberl et al., 2007; Barnosky et al., 2012). Previous 

studies have shown that an increase of nutrients via agricultural impact can lead to an 

increase in microbial productivity (Smith et al., 2011). Alternatively, hydrocarbon 

impact has been shown to lead to a reduction in genotypic diversity, whereby only 

the essential metabolisms remain (Hemme et al., 2010; Liang et al., 2011). This is 

thought to be due to the toxic effect of hydrocarbon pollution which in turn can lead 

to a community exerting more energy on survival than on growth and productivity 

(Delille and Delille, 2000; Smith et al., unpublished data). Thus, an increase in genes 

associated with protein metabolism in the agricultural impacted environments (Table 

6.3) is consistent with a more active community when compared to the hydrocarbon 

impacted environments (Urich et al., 2008).  

In the hydrocarbon-impacted environments, there was a higher relative abundance of 

genes associated with iron acquisition and metabolism, photosynthesis, aromatic 

compound degradation, dormancy, motility, regulation and nitrogen metabolism, 

collectively contributing to 25.3% of the overall dissimilarity (Table 6.3). Previous 
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studies have shown that hydrocarbon-impacted environments were typified by an 

overall increase in genes related to iron acquisition and metabolism, dormancy and 

sporulation, motility, metabolism of aromatic compounds and cell signalling (Smith 

et al., unpublished data). Thus, results from this study further support the 

characterisation of hydrocarbon impacted sites by these functional genes. 

6.5 Conclusion 

Our data indicates that metagenomic signatures can be used to distinguish between 

contaminant types, with agricultural impact and hydrocarbon impact samples 

producing discrete functional signatures. In the agriculturally impacted 

environments, these signatures included metabolisms associated with cofactors, 

virulence, phages, fatty acids, protein metabolism, carbohydrates, amino acids and 

clustering based subsystems. In the hydrocarbon-impacted environment, the 

distinguishing metabolic signatures were genes associated with iron acquisition and 

metabolism, photosynthesis, aromatic compound degradation, dormancy, motility, 

regulation and nitrogen metabolism. Our data also indicated that the agricultural 

impact led to a more active community overall when compared to hydrocarbon 

impact. This study provides important insights into the different responses microbial 

communities have based on contaminant type, and suggest further investigation is 

needed given the wide range of chemicals that are currently affecting ecosystem 

health.  
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Table 6.2 Results of CAP analysis for phylum-level taxonomy associated with impacted metagenomes. 

 

 

 Factor m Allocation Success % (ratio 
correct:misclassified) 

 δ2 P-value 

   Oil Agricultural Pristine Wastewater Total   

Taxonomy Phylum 7 100 (4:4) 80 (4:5) 0 (0:1) 0 (0:2) 66.67 0.99 0.07 

Metabolism Level 1 2 75 (3:4) 100 (5:5) 0 (0:1) 50 (1:2) 75 0.86 0.008 
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Table 6.3 Contribution of metabolic hierarchial system 1 to the dissimilarity of 
the hydrocarbon and agricultural impacted environments. Average dissimilarity 
between the two groups is 2.07%. Only metabolisms that were consistent (i.e. 
Diss/SD > 1.4) are shown here. The larger value in each case (i.e. the potential 
indicator of that condition) is shown in bold. 

 

 

 
Avg. Abundance                 

Metabolic processes 
Hydrocarbon- 

Impacted 
Agricultural- 

Impacted 
Diss/ 
SD 

Cum 
% 

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 0.08 0.18 1.55 11.99 
Virulence, Disease and Defence 0.08 0.18 1.55 23.97 
Phages, Prophages, Transposable 
elements, Plasmids 0.08 0.18 1.55 35.96 
Fatty Acids, Lipids, and 
Isoprenoids 0.08 0.18 1.55 47.94 
Iron acquisition and metabolism 0.84 0.78 1.85 54.47 
Photosynthesis 0.69 0.68 1.57 58.19 
Metabolism of Aromatic 
Compounds 0.87 0.84 1.79 61.64 
Dormancy and Sporulation 0.71 0.68 1.45 64.98 
Motility and Chemotaxis 0.83 0.8 1.96 68.02 
Protein Metabolism 0.93 0.96 3.5 70.94 
Regulation and Cell Signalling 0.85 0.83 2.18 76.72 
Carbohydrates 0.97 0.99 3.66 79.49 
Nitrogen Metabolism 0.84 0.82 1.58 84.28 
Amino Acids and Derivatives 0.96 0.98 2.22 86.22 
Clustering-based subsystems 0.97 0.99 1.51 87.77 

 

Cut-off percentage = 90%, Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative 
percentage of contribution to overall dissimilarity, Avg. Abundance values are reported for square-
root transformed data 
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Table S6.1 Summary of publicly available metagenomes used in this study. 

 

 

MG-RAST ID Description/Reference 
4453064.3 Unconfined aquifer (Smith et al., 2011) 
4453083.3 Confined aquifer (Smith et al., 2011) 
4440984.3 Coorong sediment 1 (Jeffries et al., 2011a) 
4441020.3 Coorong sediment 2 (Jeffries et al., 2011a) 
4441021.3 Coorong sediment 3 (Jeffries et al., 2011a) 
4441022.3 Coorong sediment 4 (Jeffries et al., 2011a) 
4453082.3 Hydrocarbon contaminated foreshore (Smith et al., unpublished data) 
4453072.3 Hydrocarbon contaminated biopile (Smith et al., unpublished data) 
4449126.3 Biopiles 2006 (Yergeau et al., 2012) 
4450729.3 Biopile 2005 (Yergeau et al., 2012) 
4455295.3 Wastewater 1 (Albertsen et al., 2012) 
4463936.3 Wastewater 2 (Albertsen et al., 2012) 

 

 

 

 

 

 

 

 

 



Chapter 6 

122 

Table S6.2 Contribution of metabolic hierarchial system 1 to the dissimilarity of 
the hydrocarbon and agricultural impacted environments. Shows all 
metabolisms, including inconsistent ones (i.e. Diss/SD < 1.4).  Average dissimilarity 
between the two groups is 2.07%.  Bold values show either the condition with the 
higher average abundance (i.e. a potential indicator of that condition) or Diss/SD 
ratios that are consistent (i.e. > 1.4). 

 

 Avg. Abundance   
Metabolic processes Hydrocarbon-

Impacted 
Agricultural-

Impacted 
Diss/ 
SD 

Cum 
% 

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

0.08 0.18 1.55 11.99 

Virulence, Disease and Defence 0.08 0.18 1.55 23.97 
Phages, Prophages, Transposable 
elements, Plasmids 

0.08 0.18 1.55 35.96 

Fatty Acids, Lipids and 
Isoprenoids 

0.08 0.18 1.55 47.94 

Iron acquisition and metabolism 0.84 0.78 1.85 54.47 
Photosynthesis 0.69 0.68 1.57 58.19 
Metabolism of Aromatic 
Compounds 

0.87 0.84 1.79 61.64 

Dormancy and Sporulation 0.71 0.68 1.45 64.98 
Motility and Chemotaxis 0.83 0.8 1.96 68.02 
Protein Metabolism 0.93 0.96 3.5 70.94 
Potassium Metabolism 0.79 0.77 0.79 73.85 
Regulation and Cell signalling 0.85 0.83 2.18 76.72 
Carbohydrates 0.97 0.99 3.66 79.49 
Secondary Metabolism 0.75 0.75 1.39 81.98 
Nitrogen metabolism 0.84 0.82 1.58 84.28 
Amino Acids and Derivatives 0.96 0.98 2.22 86.22 
Clustering-based subsystems 0.97 0.99 1.51 87.77 
Cell Division 0.84 0.84 0.73 89.27 
Miscellaneous 0.94 0.95 2.11 90.65 
 

Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative percentage of contribution to overall 
dissimilarity, Avg. Abundance values are reported for square-root transformed data 
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Microbial response to anthropogenic 

disturbances: A general discussion 

 

 



Chapter 7 

124 

7.1 Overview 

Environmental microbial communities are integral players in ecosystem functioning 

(Larsen et al., 2012; Lawrence et al., 2012). Following the introduction of 

xenobiotics, microbial communities are able to swiftly react to change, meaning they 

are highly resilient and excellent biological indicators (Steube et al., 2009). Despite 

their importance, microbial communities are often overlooked and consequently, 

remain poorly understood (Treseder et al., 2012). For that reason, the research 

presented in this thesis was stimulated by the need to gain an increased 

understanding of how environmental microbial communities respond to 

contaminants, to produce particular metagenomic signatures. The reoccurring theme 

throughout this thesis has been that major shifts in structure and functionality of the 

resident microbial communities were observed in metagenomic profiles following 

environmental change. This final chapter will discuss the major findings of the thesis 

and address the results from each of the experimental chapters within the context of 

the specific thesis aims outlined in Chapter 1. 

7.1.1 Metagenomic comparison of microbial communities inhabiting confined 

and unconfined aquifer ecosystems 

The data presented in Chapter 2 addressed the first aim of the thesis by examining to 

what extent the composition and functionality of the resident microbial communities 

varied between a confined and surface-influenced unconfined aquifer ecosystem. 

This research was conducted in Ashbourne aquifer system which is characterised by 

two aquifer ecosystems with separate recharge processes that arise from distinct 

water sources (Banks et al., 2006; Smith et al., 2011; Roudnew et al., 2012). The 

unconfined aquifer lies below a dairy farming region and, therefore, receives 

agricultural input from the overlying environment. The confined aquifer however, 
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has been isolated from the surface for approximately 1500 years, providing a 

baseline for which to compare the unconfined aquifer to (Banks et al., 2006). A 

fundamental shift in taxa was observed with an overrepresentation of 

Rhodospirillales, Rhodocyclales, Chlorobia and Circovirus in the unconfined 

aquifer, while Deltaproteobacteria and Clostridiales were overrepresented in the 

confined aquifer (Fig. 2.2). A shift in metabolic processes was also observed, with a 

relative overrepresentation of genes associated with antibiotic resistance (β-

lactamase genes), lactose and glucose utilization and DNA replication were observed 

in the unconfined aquifer, while genes associated with flagella production, phosphate 

metabolism and starch uptake pathways were all overrepresented in the confined 

aquifer (Fig. 2.3). These differences were likely driven by the extent of exposure to 

contaminants and nutrient input between the two groundwater systems. However, 

when the groundwater metagenomes, predominantly bacterial, were compared to 

metagenomes from a variety of environments, including ocean, freshwater, animal 

gut and sediment, the unconfined and confined aquifer were taxonomically and 

metabolically more similar to each other than to any other environment (Fig. 2.4 and 

2.5). This suggests that the groundwater ecosystems had provided specific niches for 

the evolution of unique microbial communities. 

7.1.2 Confined aquifers as viral reservoirs 

In Chapter 3, we addressed the third aim by constructing a viral community profile of 

the viral sequences obtained in the unconfined and confined aquifer ecosystems, to 

further investigate the signature seen in the previous chapter. We found that despite 

geographical proximity, the viral community inhabiting the confined aquifer did not 

resemble that of the unconfined aquifer, and was instead most similar to the viral 

sequences in the metagenomes from a reclaimed water sample in Florida (Fig. 3.1) 
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(Rosario et al., 2009b; Smith et al., 2011; Roudnew et al., 2012). This result 

contradicted the previous chapter, whereby the patterns in bacterial taxonomy 

observed in the confined and unconfined aquifer were more similar to each other 

than to any other environment (Fig. 2.4 and 2.5). The similarity between the confined 

aquifer and reclaimed water source could suggest similar selective pressures, such a 

similar pore size, are driving community composition, leading to a similarity in the 

overall viral metagenomic signatures.  

The taxa contributing to the similarity between the confined and reclaimed water 

viruses was further investigated, and it was found that the similarity was driven by a 

high relative occurrence of the ssDNA viral groups Circoviridae, Geminiviridae, 

Inoviridae and Microviridae (Fig. 3.2 and 3.3). Circoviridae, Geminiviridae, 

Inoviridae, Microviridae and Nanoviridae are all small viruses, with diameters of 7-

30 nm (Storey et al., 1989; Gibbs and Weiller, 1999; Gutierrez et al., 2004). 

Therefore the dominance of these viruses is consistent with reports that small viruses 

have the greatest potential for transport through aquifers (Yates, 2000). Furthermore, 

Circoviridae, Geminiviridae and Nanoviridae all contain plant or vertebrate 

pathogens (Gibbs and Weiller, 1999; Gutierrez et al., 2004), with Circoviridae 

known to have a broad host range (Victoria et al., 2009; Delwarta and Li, 2012) 

indicating this viral group could be a potential health risk to humans. The 

identification of small ssDNA viruses in 1500 year-old groundwater suggests once 

viruses have been introduced, they can remain stable for long periods of time and 

thus, influence the viral metagenomic signature of groundwater ecosystems 
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7.1.3 Effect of hydrocarbon impacts on the structure and functionality of 

marine foreshore microbial communities: A metagenomic analysis 

From the deep to the shallow, interstitial pore water communities experience similar 

matrices, but different types and concentrations of environmental impacts. Thus, 

Chapter 4 addressed the second aim of the thesis by assessing another common 

environmental pollutant, hydrocarbon contamination, and the effect it had on the 

structure and function of the microbial communities residing in historically impacted 

marine beach pore water. This research was conducted on hydrocarbon contaminated 

material from a former oil refinery site in Australia. When we compared our 

hydrocarbon impacted sample to two non-impacted samples, a shift in taxa was seen, 

with an overrepresentation of Pseudomonadales, Actinomycetales, Rhizobiales, 

Alteromonadales, Oceanospirillales and Burkholderiales in the hydrocarbon 

impacted sample (Fig. 4.2), all of which have previously been associated with 

impacted sites (Marcial Gomes et al., 2008). In addition to taxonomy, an 

overrepresentation of metabolic processes including aromatic compound metabolism, 

nitrogen metabolism and stress response were observed in the hydrocarbon impacted 

sample (Fig. 4.3). More specifically however, the increased relative abundance of 

Oceanospirillales, as well as a relative increase in nutrient metabolism and 

hydrocarbon degrading genes, suggests that the microbial potential to degrade 

hydrocarbon is being enhanced by coastal/seawater interactions.  

To determine how the historical contamination event affected the overall structure 

and function of the inhabiting microbial communities, our hydrocarbon impacted 

foreshore metagenome was compared to metagenomes from 9 other marine habitats. 

Rank abundance plots showed the hydrocarbon impacted foreshore community had 

mid-range diversity indicative of a stable and functionally redundant community that 



Chapter 7 

128 

has adapted to stress (Table 4.2). We suggest this pattern is driven by the constant 

input of nutrients and water from tidal and wave action, as well as the low level 

contact with contaminants in the seawater, which have kept the relevant degradation 

genes selected for and induced. 

7.1.4 Determining the metabolic footprints of hydrocarbon degradation using 

multivariate analysis 

In Chapter 5 we conducted a multivariate analysis to characterise the metabolic 

footprints associated with hydrocarbon-impacted and non-impacted sediments. The 

hydrocarbon impacted foreshore metagenome discussed in Chapter 4 was used in 

conjunction with 3 other hydrocarbon impacted datasets to represent hydrocarbon 

impacted-environments, while 5 datasets were used for non-impacted environments. 

Unconstrained Multi-dimensional scaling (MDS) and constrained canonical analysis 

of principle coordinates (CAP) showed a clear distinction between the two groups 

(Fig. 5.1 and 5.2), with a high relative abundance of genes associated with cofactors, 

virulence, phages and fatty acids were present in the non-impacted sediments, 

collectively accounting for 45.7% of the overall dissimilarity (Table 5.2). 

Conversely, a high relative abundance of genes associated with iron acquisition and 

metabolism, dormancy and sporulation, motility, metabolism of aromatic compounds 

and cell signalling were observed in the hydrocarbon-impacted sites, together 

accounting for 22.3% of the overall dissimilarity (Table 5.2). Taken together, these 

results suggest the majority of the separation between the two groups was explained 

by a reduction in non-essential metabolisms in the hydrocarbon-impacted sediments. 

Furthermore, this reduction in non-essential metabolisms was coupled with a 

subsequent increase in pathways essential to the utilization of carbon and to survival.  
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7.1.5 Towards elucidating the metagenomic signature for impacted 

environments 

Following on from the data obtained in Chapter 5, we sought to generate an overall 

metagenomic signature for impacted environments using CAP and similarity 

percentage analysis (SIMPER) in Chapter 6. Three common forms of environmental 

pollution were used, hydrocarbon impacted, including samples from chapter 4, 

agricultural impacted, including the groundwater samples from chapter 2, and 

wastewater. These groups were used to generate metagenomic signatures for the 

potential use as biological indicators. Significant differences between the relative 

abundance of metabolic processes in the impacted environments were shown, 

however, only the hydrocarbon and agricultural impacted environments could be 

correctly and consistently distinguished suggesting the sample size for wastewater 

was too low for comparison (Table 6.2). The main distinguishing metabolic 

processes associated with agricultural impacted environments were genes associated 

with cofactors, virulence, phages and fatty acids, while the main distinguishing genes 

associated with hydrocarbon impacted sites were iron acquisition and metabolism, 

photosynthesis, aromatic compound degradation, dormancy and motility (Table 6.3). 

As seen in Chapter 2, these results suggest markedly different community responses 

can be observed, making it possible to generate signatures based on contaminant 

type.  

Combined, Chapters 5 and 6 addressed the fourth aim of this thesis by assessing our 

a priori hypothesis that community structure shifts in response to introduced 

contaminants. We were able to identify distinct metabolic processes based on 
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contaminant type, thus providing novel insight into the relative influence of 

anthropogenic modification on ecosystem functioning.  

 

7.2 Thesis Synthesis: Demonstration of microbial indicators for 

impacted environments 

It has been proposed that metagenomic analysis yields the most quantitative and 

accurate view of the microbial world (von Mering et al., 2007; Biddle et al., 2008), 

allowing for the assessment and exploitation of microbial communities on an 

ecosystem level (Simon and Daniel, 2009). Although this technology has vastly 

increased our knowledge of microbes in environmental systems, the complex 

relationship between community composition and ecosystem functioning is still 

being elucidated (Zengler and Palsson, 2012). Recent studies have demonstrated that 

metagenomes derived from similar environments have similar metagenomic 

signatures (Dinsdale et al., 2008b; Gianoulis et al., 2009; Willner et al., 2009; 

Jeffries et al., 2011a), however the characterisation of community composition based 

on contaminant type is scarcely understood. This thesis aimed to generate 

metagenomic signatures for two common forms of pollution worldwide, agricultural 

and hydrocarbon, thereby increasing our understanding of microbial community 

responses to contaminant type. 

Previous anthropogenic modification studies have shown that microbial communities 

respond positively to nutrient and chemical pollutants by increasing productivity; 

however the specifics involved in the alteration of community functionality had not 

been explored in depth (Nogales et al., 2011). Results from this thesis demonstrated 

that agricultural modification led to an increase in genes associated with cofactors, 

virulence, phages, fatty acids, protein metabolism, carbohydrates, amino acids and 
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clustering based subsystems. Thus, the overall metagenomic signature associated 

with agricultural impact was defined by a more active community, likely driven by 

an increase in nutrient availability. Alternatively, hydrocarbon impacted microbial 

communities were shown to be expending the majority of their energy scavenging 

key nutrients needed for the bioremediation on hydrocarbons, at the expense of other, 

more complex pathways and growth, indicative of a less active community. Overall, 

this thesis demonstrated that microbial communities inhabiting impacted 

environments exhibited markedly different community responses based on 

contaminant type.  

Additionally, this thesis showed that the microbial community response to 

anthropogenic modification was evident across multiple levels of taxonomic and 

metabolic resolution. Previous studies have supported this trend in that 

anthropogenic disturbances have led to major shifts in microbial dynamics that 

become evident across multiple levels (Hemme et al., 2010; Jeffries et al., 2011a). 

However, the majority of screening studies tend to focus on finer scale resolution 

(Joergensen and Emmerling, 2006). This thesis, however, has demonstrated the 

ability to screen at both coarse and finer levels of taxonomic and metabolic 

resolution, leading to a more robust set of metagenomic signatures. Furthermore, 

while taxonomic shifts are important in the assessment of discrete contamination 

events, the metabolic processes form the overall metagenomic signature for the 

comparison of impacted environments.  

This thesis provides a novel insight into how environmental change, in the form of 

introduced contaminants, affects the microbial consortia. This study highlights the 

complexity and flexibility of microbial communities inhabiting stressed 
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environments, by showing how pollution shift the taxonomy and metabolism of 

microbial communities. This increases our understanding of the role these organisms 

play in ecosystem functioning.  

Although high-throughput sequencing platforms have revolutionized the field of 

microbial ecology, the major limiting factor for information density and accuracy are 

computational power and error profiles associated with the different platforms. For 

example, the error rate associated with the 454 GS FLX Titanium sequencer is in the 

range of 10-3 – 10-4, which is lower than the other new, high-throughput sequencing 

platforms such as Illumina and SOLiD (Kircher and Kelso, 2010). As sequencing 

platforms and computational power increase however, our ability to characterize 

complete communities, beyond that of the most dominant species, will continue to 

improve. Increased sensitivity within sequencing technologies will also reduce the 

yield of DNA required, thus reducing and eliminating the need for biased 

amplification steps. Advances in molecular technologies and computational power 

coupled with cell enumeration protocols and environmental metadata, would produce 

a thorough understanding of how current changes in environmental conditions are 

effecting our planet. 
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