GENE THERAPY OF THE SHEEP CORNEA

FOR THE PROLONGATION OF

CORNEAL GRAFT SURVIVAL

Alison Jayne Clarke
BBTech (Hons)

Thesis submitted for the degree of
Doctor of Philosophy

April 2013

Faculty of Health Sciences
School of Medicine
Flinders University of South Australia
Contents

ABSTRACT .. V
DECLARATION ... VIII
ACKNOWLEDGEMENTS .. IX
ABBREVIATIONS .. XII

CHAPTER 1 INTRODUCTION ... 1

1.1 THE CORNEA .. 2
 1.1.1 Anatomy ... 2
 1.1.2 Physiology .. 4
 1.1.3 The Corneal Endothelium ... 4
 1.1.4 Conditions Affecting the Cornea .. 4

1.2 CORNEAL TRANSPLANTATION ... 5
 1.2.1 History ... 5
 1.2.2 Corneal Graft Procedures .. 6
 1.2.3 Corneal Graft Management ... 7
 1.2.4 Corneal Graft Survival ... 7

1.3 IMMUNOLOGY OF THE CORNEA ... 9
 1.3.1 Immune Privilege ... 9
 1.3.2 Immunology of Graft Rejection .. 12

1.4 ANIMAL MODELS OF CORNEAL TRANSPLANTATION ... 21

1.5 CURRENT INTERVENTIONS AND RESEARCH ... 22
 1.5.1 Modulation of Host T Cell Responses ... 22
 1.5.2 Anti-neovascularisation of the Cornea .. 29
 1.5.3 Improving the Survival of the Corneal Endothelium ... 33

1.6 GENE THERAPY ... 35
 1.6.1 Viral Vectors .. 35
 1.6.2 Current Status of Gene Therapy ... 40
 1.6.3 Gene Therapy and the Eye ... 42
 1.6.4 Gene Therapy for Long-term Corneal Graft Survival ... 43
 1.6.5 Enhancing the Success of Gene Therapy ... 43
 1.6.6 Multigenic Therapeutic Approach ... 47

1.7 PROJECT AIMS .. 49

CHAPTER 2 MATERIALS AND METHODS .. 50

2.1 MATERIALS .. 51
 2.1.1 Tissue Culture Reagents ... 51
 2.1.2 Media ... 52
 2.1.3 Molecular Reagents ... 53
 2.1.4 Enzymes ... 54
 2.1.5 End-point PCR Primers for Cloning and Sequencing .. 54
 2.1.6 Real-time PCR Primers .. 56
 2.1.7 Ophthalmic Materials, Reagents and Eye Drops ... 57
 2.1.8 Commercial Kits ... 58
 2.1.9 Instruments and Equipment .. 59

2.2 METHODS ... 60
 2.2.1 Molecular Cloning Methods ... 60
 2.2.2 Tissue Culture Methods .. 68
 2.2.3 Adenovirus Preparation .. 71
 2.2.4 Lentivirus Production ... 73
 2.2.5 Calculation of the Multiplicity of Infection .. 83
 2.2.6 Transduction of A549 Cells with Lentivirus and Adenovirus 83
 2.2.7 In Vitro Culture of Human Corneas ... 84
 2.2.8 In Vitro Culture of Sheep Corneas .. 84
 2.2.9 Transduction of Human and Sheep Corneas with Lentivirus and Adenovirus for Organ Culture ... 85
 2.2.10 In Vivo Sheep Orthotopic Penetrating Keratoplasty ... 86
 2.2.11 Histology ... 89
CHAPTER 3 CONSTRUCTION, CHARACTERISATION AND THERAPEUTIC TESTING OF A LENTIVIRAL VECTOR .. 110

3.1 ABSTRACT ... 111

3.1.1 Aims .. 111

3.1.2 Methods ... 111

3.1.3 Results ... 112

3.1.4 Conclusions .. 112

3.2 INTRODUCTION .. 113

3.2.1 Corneal graft rejection ... 113

3.2.2 Gene Transfer to the Eye .. 113

3.2.3 The Lentiviral Vector .. 114

3.2.4 The Role of Interleukin-10 in Graft Acceptance ... 115

3.2.5 Polycations as Transduction Enhancers ... 115

3.2.6 The Effect of Viral Multiplicity of Infection on Transgene Expression 116

3.2.7 Sheep model ... 116

3.3 SPECIFIC AIMS .. 117

3.4 RESULTS ... 118

3.4.1 Construction of Lentiviral Shuttle Plasmid Containing Ovine Interleukin-10 118

3.4.2 Test of Transgene Expression by Transient Transfection 124

3.4.3 In vitro Testing of Transgene Expression from Two Lentivirus Preparations using Mammalian Cell Culture ... 125

3.4.4 In vitro Testing of Transgene Expression from Two Lentivirus Preparations using Ovine Corneas ... 131

3.4.5 Protamine Sulphate to Enhance Lentivirus Transduction in the Ovine Cornea 134

3.4.6 Increasing Multiplicity of Infection of the Lentivirus in the Ovine Cornea 138

3.4.7 Therapeutic Testing of the Lentivirus in vivo ... 140

3.5 SUMMARY AND DISCUSSION .. 149

3.5.1 Summary of Findings ... 149

3.5.2 Discussion ... 150

3.5.3 Conclusions .. 169

CHAPTER 4 MULTIGENIC, VECTOR COCKTAIL THERAPY OF THE SHEEP CORNEA .. 170

4.1 ABSTRACT ... 171

4.1.1 Aims ... 171

4.1.2 Methods .. 171

4.1.3 Results .. 172

4.1.4 Conclusions .. 172

4.2 INTRODUCTION .. 173

4.2.1 Multigenic and Vector Cocktail Treatment of Corneal Allografts 173

4.2.2 Inhibition of T cell responses to Improve Corneal Allograft Survival 173

4.2.3 Corneal Endothelial Cell Death During Graft Rejection 175

4.2.4 Neovascularisation a Risk Factor for Corneal Graft Rejection 176

4.3 SPECIFIC AIMS .. 177

4.4 SPECIFIC METHODS AND RESULTS .. 178

4.4.1 Construction of Lentivirus Containing Indoleamine 2,3-dioxygenase 178

4.4.2 Construction of Lentivirus Containing Ovine Bcl-xL 182

4.4.3 Construction of Lentivirus Containing Human Endostatin::Kringles Fusion Protein ... 186

4.4.4 Construction of Lentivirus Containing Human Soluble Fms-like Tyrosine Kinase 190

4.4.5 Testing of Transgene Expression in the Sheep Cornea 195

4.4.6 Adenoviral and Lentiviral Vector Cocktail Interference Test in Sheep Corneas ... 203

4.4.7 Adenoviral and Lentiviral Vector Cocktail Interference Test in Human Corneas 209

4.4.8 In Vivo Therapeutic Testing of Viral Cocktail to Prolong the Survival of Sheep Corneal Allografts 211

4.5 SUMMARY AND DISCUSSION .. 227
4.5.1 Summary of Findings ... 227
4.5.2 Discussion ... 228
4.5.3 Conclusions .. 246

CHAPTER 5 FINAL DISCUSSION .. 247

5.1 SUMMARY OF MAJOR THESIS FINDINGS .. 248
5.2 GENE THERAPY OF THE EYE .. 249
 5.2.1 Adeno-Associated Virus (AAV) Vectors ... 249
 5.2.2 Gene Therapy Clinical Trials for the Anterior Segment 252
5.3 GENE THERAPY OF THE CORNEA ... 255
 5.3.1 Enhancers of Lentivirus-mediated Gene Therapy 255
 5.3.2 Therapeutic Transgenes .. 257
 5.3.3 Gene Therapy of the Cornea in Pre-Clinical Animal Models 263
 5.3.4 Gene Therapy of the Cornea Versus the Current Regimen 264
5.4 MULTI-VECTOR COCKTAIL THERAPIES ... 265
5.5 CURRENT STATUS OF GENE THERAPY ... 267
 5.5.1 Gene Therapy Clinical Trials ... 267
5.6 THOUGHTS FOR THE FUTURE .. 268
5.7 CONCLUDING REMARKS ... 269

APPENDIX 1 GENERAL CHEMICALS AND SOLUTIONS 270
 A1.1 GENERAL CHEMICALS AND SOLUTIONS ... 271

APPENDIX 2 FORMULATIONS OF REAGENTS, BUFFERS, MEDIA AND SOLUTIONS ... 273
 A2.1 FORMULATION OF REAGENTS, BUFFERS, MEDIA AND SOLUTIONS ... 274

APPENDIX 3 SHEEP ORTHOTOPIC KERATOPLASTY SURGICAL RECORD AND GRAFT SCORING SHEETS ... 281
 A3.1 SHEEP CORNEAL GRAFT OPERATION RECORD 282
 A3.2 SHEEP CORNEAL GRAFT ASSESSMENT SHEET 283

REFERENCES .. 284
Abstract

Although corneal transplants enjoy good short-term survival, their long-term survival is poor. The eye has long been heralded as an immune-privileged site, however this privilege is in a constant state of balance and, if tipped too far by inflammatory forces, corneal transplants will undergo irreversible rejection. This is the major cause of graft failure. Gene therapy has shown potential in experimental transplantation, to reduce the rejection response. Previous studies in our laboratory have shown prolongation of sheep corneal graft survival, one such using an adenoviral vector expressing the interleukin-10 (IL-10) therapeutic transgene under the control of a cytomegalovirus promoter (CMV), and another using the lentiviral vector expressing the same transgene but under the control of the Simian virus type 40 early promoter (SV40).

The aim of this study was to investigate gene therapy with a cocktail of vectors designed to induce long-term transplant survival in a sheep model of corneal transplantation.

In a direct comparison of internal promoters in a lentiviral vector, gene expression induced by a CMV promoter and the SV40 promoter and was measured from transduced sheep corneas in vitro. The CMV promoter induced significantly higher transgene expression than the SV40 promoter at both the mRNA and protein level (p= 0.006, p≤ 0.001, respectively).

Thus the lentivirus vector with the CMV promoter and transgene interleukin-10 was then tested in vivo in an outbred sheep model of orthotopic, penetrating corneal transplantation with high risk of rejection. This single gene therapy applied to the
donor cornea significantly prolonged corneal graft survival, with treated grafts surviving a median of 26 days compared with 21 days for the control allografts (p= 0.043).

The polycation protamine sulphate was investigated as a possible non-toxic virus transduction enhancer to improve gene expression from the lentiviral vector. It was found to increase transgene expression 14-fold in vitro (p≤ 0.001), however was deemed not to be successful enough to warrant pursuing in vivo.

Therapeutic transgenes IL-10, indoleamine 2,3-dioxygenase, endostatin::kringle5 fusion gene (EK5), soluble fms-like tyrosine kinase 1 (sFlt-1), and Bcl-2 family protein, Bcl-xL, had previously been shown to prolong corneal graft survival in animal models, or to reduce corneal neovascularisation. Individual lentiviral vectors expressing these transgenes, each with CMV promoters, were constructed, viruses prepared and tested in vitro for gene expression by qRT-PCR analysis of mRNA and protein expression from sheep corneal endothelial cells. Individual activity assays were performed in cell culture to confirm biologic function of the transgenes. One individual adenoviral vector expressing IL-10 was previously prepared and tested in the laboratory.

A cocktail of lentiviral and adenoviral vectors was investigated, initially in vitro to test for vector interference, and finally in vivo for prolongation of corneal graft survival. In vitro cocktail results of transgene expression showed no vector interference occurred when the viruses were used together in a transduction combination. In vivo cocktail therapy with an adenoviral vector expressing IL-10 and two lentiviral vectors expressing EK5 and Bcl-xL did not significantly prolong
corneal graft survival, with cocktail therapy-treated and mock-vector treated allografts both having a median survival of 22 days ($p = 0.68$).

The cocktail approach was chosen to utilise the best features of both viral vectors; the adenovirus to give early and strong gene expression, and the lentivirus to give long-term gene expression. However, with a good pre-clinical model, proven therapeutic genes and a combination of useful vectors, prolongation of graft survival could not be achieved. Gene therapy of the cornea for allograft prolongation has some obstacles to overcome before it can reach its full potential.
Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Alison Clarke

Date
Acknowledgements

I would like to acknowledge and thank my principle supervisor Keryn Williams for offering me the wonderful opportunity to work in her laboratory and become part of the Flinders Ophthalmology family. Thank you for the guidance you have given me throughout this project, helping me to shape my skills as a scientist and always making me try harder. Thank you for helping me to produce the best thesis I could and especially for your support in the last few months.

To my two supervisors, Helen Brereton and Sonja Klebe, thank you for your support and care. Helen, I am very grateful to you for patiently teaching me a wealth of molecular biology techniques, having an encyclopaedic knowledge on biology related matters, and for painstakingly reviewing my thesis. Sonja, thank you for your constant enthusiasm for the project, for teaching me how to handle the sheep eyes and corneas, for your expertise in reviewing many histology slides for me and for helping me to score the IHC slides. I really appreciate the time you spent with me and all your explanations.

I would like to thank the two ophthalmologists who performed all of the penetrating keratoplasties in the sheep presented in this thesis, Professor Doug Coster and A/Professor Richard Mills. Thank you for making yourselves so readily available for this research amongst all your other commitments and lending your expertise to the project.

Thanks must go to A/Professor Donald Anson and his team in the Department of Genetic Medicine at the Women’s and Children’s Hospital for teaching us how to
produce lentivirus preparations, providing us with the appropriate packaging cell line, allowing us to use your laboratory to produce lentivirus, and always being there with advice and answers to our questions.

I would like to acknowledge and thank Dr Claudine Bonder and her team at the Centre for Cancer Biology, SA Pathology, for your kind donations of human umbilical vascular endothelial primary cells and advice on their culture conditions.

My thanks go to Sheree Bailey at the Flow Cytometry Facility, Flinders Medical Centre for her assistance and advice in setting up the gating for the Annexin V-FITC flow cytometry assay for the functional activity assessment of the Bcl-xL transgenic protein.

Lauren Mortimer is a fantastic research assistant for Keryn Williams. Lauren set up the lentivirus production procedure at Flinders, helped me to prepare many, many lentivirus preparations, performed the EK5 and sFlt-1 molecular cloning, the sFlt-1 transgenic protein functional activity assay, performed all of the endotoxin LAL tests, conducted several ELISAs for me and helped me with cell cultures. Lauren is an extremely thorough scientist, a comrade and a good friend. It was wonderful sharing this time with you, Lauren, thank you for all your support.

My thanks go to Kirsty Kirk, Gemma Lowe and Madison Helm for their assistance with the sheep handling, surgeries, graft examinations and scoring. Thank you to Gemma for preparing the H&E sections for the IL-10 sheep and to Madi for preparing the H&E and the IHC sections for the cocktail sheep, a huge effort. Thank you to Melinda Tea, who helped with some DNase-treatment of RNA samples, and Yazad Irani, who performed some of the molecular cloning.
I would like to thank the Flinders School of Medicine Animal Facility and staff for the hard work housing the sheep, assisting with surgeries and performing anaesthetics and euthanasia on the animals. I would like to thank Stuart Lisk and Craig Dawe in particular for the expert help and care provided.

I must thank Margaret Philpott and the Eye Bank of SA for her information and support. The generous gift of corneas from the donors and from their families for research was always gratefully and respectfully accepted.

I am very grateful to both Normanville Meatworks and Lobethal Australia. These two abattoirs have kindly donated many sheep eyes to us over the years, and without their ongoing support, this project would have been extremely difficult, if not impossible to achieve.

I would like to acknowledge the support of everyone involved with Flinders Ophthalmology. To Joel Johnston and Angela Chappell the ophthalmic photographers, thank you for donning the wellies and taking many hundreds of photos of my sheep grafts. To the wonderful people in the laboratory: Melinda, Lauren, Sarah, Kirsty, Madi, Dave, Paul, Yazad- thanks for making the lab a great place to come to work every day. Thanks to everyone in the office for the friendly smiles and the people in the eye clinic for kindly helping when I came down for supplies.

To my Mum, Dad and Zoltan, thank you for your constant love and support. I couldn’t have done it without it you all. Love you.

Thank you to my sheep. I’ll miss you all. Except maybe Horace.
Abbreviations

≥ greater than or equal to

≤ less than or equal to

°C degrees Celsius

A549 human lung adenocarcinoma epithelial cell line

AAV adeno-associated virus

AC anterior chamber

AdV adenovirus

AE amplification efficiency

APC antigen presenting cell

ARBP acidic ribosomal phosphoprotein

Bcl-xL anti-apoptosis factor of Bcl2 family

bECGF bovine endothelial cell growth factor

bp base pairs

BSS balanced salt solution

CAM chloramphenicol

CD cluster of differentiation

cDNA complementary deoxyribonucleic acid

CMV cytomegalovirus immediate early promoter

CO₂ carbon dioxide

CPPT central polypurine tract

Ct threshold cycle

CTL cytotoxic lymphocyte

CTLA-4 cytotoxic lymphocyte antigen-4

Da Dalton

DEPC diethylyrocarbonate
dH₂O distilled water
DMEM Dulbecco's modified essential medium
DMSO dimethyl sulphoxide
DNA deoxyribonucleic acid
dNTP deoxynucleotide phosphate
DTH delayed-type hypersensitivity
DTT dithiothreitol
E. coli Escherichia coli
EDTA ethylene-diamine-tetraacetic-acid
EK5 human endostatin::kringle5 fusion protein
ELISA enzyme-linked immunosorbent assay
EU endotoxin unit
eYFP enhanced yellow fluorescent protein
FBS foetal bovine serum
g gram
GAPDH glyceraldehyde 3-phosphate dehydrogenase
gDNA genomic deoxyribonucleic acid
GFP green fluorescent protein
HEK-293A human embryonic kidney cell line with E1-region of adenovirus 5
HEK-293T human embryonic kidney cell line that constitutively expresses the SV40 large T cell antigen
Hepes N-(2-hydroxyethyl)piperazine-N’-(2-ethanesulphonic acid)
HIV human immunodeficiency virus
HLA human leukocyte antigen
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IDO</td>
<td>indoleamine 2,3-dioxygenase</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon gamma</td>
</tr>
<tr>
<td>IL-10</td>
<td>interleukin-10</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton (10³ Da)</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani medium</td>
</tr>
<tr>
<td>LC</td>
<td>Langerhans cell</td>
</tr>
<tr>
<td>log</td>
<td>logarithm</td>
</tr>
<tr>
<td>LTR</td>
<td>long terminal repeats</td>
</tr>
<tr>
<td>LV</td>
<td>lentivirus</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>µg</td>
<td>microgram (10⁶)</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MLV</td>
<td>Molony murine leukaemia virus</td>
</tr>
<tr>
<td>µL</td>
<td>microlitre (10⁻³)</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar (10⁻⁶)</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre (10⁻³)</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar (10⁻³)</td>
</tr>
<tr>
<td>MOI</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>n</td>
<td>sample size</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram (10⁻⁹)</td>
</tr>
<tr>
<td>NEB</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>NTC</td>
<td>no template controls</td>
</tr>
<tr>
<td>OCT compound</td>
<td>optimal cutting temperature compound</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>oBcl-xL</td>
<td>ovine anti-apoptosis factor of Bcl2 family</td>
</tr>
<tr>
<td>oIDO</td>
<td>ovine indoleamine 2,3-dioxygenase</td>
</tr>
<tr>
<td>oIL-10</td>
<td>ovine interleukin-10</td>
</tr>
<tr>
<td>p...ABC</td>
<td>plasmid...ABC</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pfu</td>
<td>plaque forming units</td>
</tr>
<tr>
<td>pg</td>
<td>picogram (10^{-12})</td>
</tr>
<tr>
<td>PLP</td>
<td>paraformaldehyde lysine periodate fixative</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative reverse transcription real time PCR</td>
</tr>
<tr>
<td>RLT</td>
<td>lysis buffer in Qiagen RNeasy mini-kit for RNA extraction</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RRExt</td>
<td>rev response element</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>SAP</td>
<td>shrimp alkaline phosphatase</td>
</tr>
<tr>
<td>sFlt-1</td>
<td>soluble fms-like tyrosine kinase 1 (soluble VEGF receptor 1)</td>
</tr>
<tr>
<td>SIN</td>
<td>self inactivating</td>
</tr>
<tr>
<td>SV40</td>
<td>simian virus type 40 early promoter</td>
</tr>
<tr>
<td>TU</td>
<td>transducing units</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>VEGF-R</td>
<td>vascular endothelial growth factor receptor</td>
</tr>
<tr>
<td>VSV-G</td>
<td>vesicular stomatitis virus glycoprotein G</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>