
Chapter 7

Fracture detection using gradient

analysis

In Section 2.5.1 on page 25, long-bone diaphyses were identified as the location in

which fractures should be detected. Chapter 6 demonstrated that the location of

the diametaphyses, and therefore the diaphysis, could be accurately identified using a

segmentation method that utilised the bone curvature. In this chosen segmentation

method, the diametaphyses were located by calculating the average points at which the

bone deviated away from the straight line approximations determined in Chapter 5.

This was equivalent to marking the diametaphyses as the points at which the centre-

lines ended. The result of the segmentation was a mask that could be placed over the

image to retain only those areas that corresponded to the diaphysis.

Once the diaphysis is identified, a fracture detection algorithm can be applied to

the unmasked region, to determine if there are any fractures present within the long-

bone shaft. The fracture detection process is split into two parts. The first involves

extraction of the required features from the image, and the second involves a decision

process to determine if the identified features constitute a fracture. The algorithm that

was created to detect these fractures is outlined in this chapter.
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(a) (b)

(c) (d)

Figure 7.1: (a) The cross section of a long cylindrical tube used to approximate a portion of
a human long-bone, and (b) the corresponding x-ray of the tube, showing the centre-line

(green dashed) and bone edges (red dashed). (c) The magnitude of the gradient shows that
the only significant gradients are present at the walls of the bone, and that the magnitude of

the gradient does not vary along the length of the bone. (d) The gradient direction is
constant at the bone edges at ±90◦, but contains some random changes within the bone.

7.1 Assumptions

In section 2.1.1 on page 6 it was explained that long-bone diaphyses consist almost

exclusively of uniform cortical bone. Figure 7.1a shows the cross section of a cylindrical

tube used to approximate the cortical bone present in the shaft of a human long-bone.

The corresponding x-ray of this segment of tube is shown in Figure 7.1b. Disregarding

the absence of the anatomical variations in the wall width and texture that are present

within a real long-bone, the approximation is very good, and can be used to explain

the assumptions used in detecting long-bone fractures.

X-rays of a typical diaphysis containing no major pathology should exhibit gradient

changes in the direction normal to the bone centre-line, due to the interface between

the bone and soft tissue (i. e. at the periosteum—the edge that is approximated in

Chapter 5), and the variation in cortical wall thickness through which the x-rays must

pass. This cortical thickness change produces the visible vertical intensity gradient
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across the image in Figure 7.1b. In contrast, the cortical wall thickness and density

change relatively slowly along the length of the long-bone, so the gradient parallel to

the centre-line is relatively small. Accordingly, at any point along the length of the

diaphysis, the direction of the gradient at the cortical walls is orthogonal to the centre-

line. In Figure 7.1c there is no gradient change along the length of the bone because

the image is artificial; but in a real long-bone x-ray image there would be some small

changes, but these should not be as large as those orthogonal to the centre-line. Figure

7.1d shows that within the bone, the relatively isotropic image intensity produces no

significant gradient magnitude changes, so the gradient direction appears to change

somewhat randomly.

This means that any edges that produce relatively large gradients that occur at

angles that are not orthogonal to the centre-line are indicative of some type of abnor-

mality. The fracture detection algorithm in this chapter was designed to detect and

then mark these abnormalities.

7.1.1 The basis for detecting fractures

In Chapter 5, the modified Hough Transform and peak detection methods were used

to calculate line parameters that approximated the long-bone shaft. Chapter 6 then

showed how the image could be segmented to retain only the diaphyseal segment of the

bone. From this information, the particular gradients (both magnitude and direction)

that should be present in the image could be calculated. Modifying the image to remove

all of these normal gradients left behind only the abnormal gradients, such as the ones

that belonged to any fractures or other pathologies. To remove all normal regions from

the image, a tool called the gradient composite measure (GCM) was developed.

7.2 The gradient composite measure

Previously, in Section 7.1, it was suggested that some edges within an image of a

fractured long-bone would be identified as being abnormal, and may correspond to

fractures. In addition, these edges could be identified on the basis of their gradient.

In order to remove the normal regions from the image, both the magnitude and the

160



direction of the gradient at each image pixel had to be taken into account. This was

achieved by utilising a combined measure of the magnitude |5I (x,y, t)| and direction

φ(x,y, t) of the gradient of the smoothed image I (x,y, t) at scale t, termed the gradient

composite measure. Here the scale was critical, and needed to be suitably fine for small

feature analysis, since too large a scale would result in subtle fractures disappearing.

As discussed in Section 4.6.1 on page 74, the scale chosen for this small feature analysis

was t1 = 5.

The gradient composite measure C (x,y, t,ρ,θ,p) was calculated using the magni-

tude of the gradient, and two scaling factors. The two scaling factors were used to

incorporate the direction of the gradient φ(x,y, t), along with the angle and distance

information from the long-bone shaft approximation parameters calculated in Chapter

5. The first scaling factor was called the importance rank R (x,y, t,θ,p), and was a

measure of how well the direction of the gradient matches the angle θ of the approxi-

mation lines, at any given pixel within the image. The second scaling factor was called

the distance rank D (x,y,ρ,θ,p), and was a measure of how close any given pixel within

the image was to all of the approximation lines. That is, it represented how well each

pixel in the image matched the ρ parameters of the approximation lines. The gradient

composite measure was the product of the magnitude of the gradient, and the two

scaling factors:

C (x,y, t,ρ,θ,p) = |5I (x,y, t)|R (x,y, t,θ,p)D (x,y,ρ,θ,p) (7.1)

Therefore to calculate the gradient composite measure of an image at a particular

transform angle, it was first necessary to determine the two scaling factors.

7.2.1 The importance rank

The magnitude data was already ranked in terms of importance and could be easily

normalised to the range [0,1], such that values close to 1 indicated the presence of a

large intensity change in that region. However, the direction data was in the range

[0,360◦] and had to be ranked in terms of which angle was most important, since

large angles did not necessarily correspond to more important regions. As a result,
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a transform was required to convert the gradient direction data from its raw form,

so that every pixel was given an importance rank R (x,y, t,α,p) that was also in the

range [0,1]. The importance rank was based on the direction of the gradient φ(x,y, t)

(calculated using Equation 5.5 on page 91) at that pixel (x,y), the scale t, the chosen

transform angle α, and an importance weighting coefficient p.

The importance rank was calculated using a sinusoid of period 180◦ that was trans-

lated and scaled so that the transform angles α and α± 180◦ were assigned the min-

imum value 0, while orthogonal angles α± 90◦ were assigned the maximum value 1 .

To achieve this, the sinusoid used was a standard cosine function, that had a period

of 180◦ rather than 360◦ and was translated horizontally by α. In addition, it had one

half the amplitude and was vertically offset by one half, so that all values were in the

range [0,1]. A power relationship was also applied so that higher powers p decreased

the width of the trough, thereby increasing the importance of angles close to the chosen

α, and decreasing the importance of angles further from the chosen α:

R (x,y, t,α,p) = 1−
[
1+cos(2(φ(x,y, t)−α))

2

]p
= 1−

[
cos2 (φ(x,y, t)−α)

]p
= 1− [cos(φ(x,y, t)−α)]2p (7.2)

As a result, pixels in I (x,y, t) where the direction of the gradient was close to α had a

small importance rank, while those angles orthogonal to α had a large importance rank.

Equation 7.2 produced better results than other methods such as a linear importance

rank, or a hard binary threshold where only the angles α± threshold were cleared.

Comparing these methods showed that it was better to use a smooth function that

decreased the importance of angles close to α but still allowed them to contribute

to the final output, rather than simply cancelling them so that they had no effect.

It was possible for a pixel having an angle just outside a chosen hard threshold to be

important, especially if it had a very large gradient, yet this pixel would be excluded by

the thresholding process. When utilising Equation 7.2 that pixel could still contribute

to the output, albeit at a reduced intensity due to its lower importance rank.
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The importance rank for the peak α = 94.5◦, with a range of powers p is shown

in Figure 7.2. This plot illustrated that any pixel in I (x,y, t) where the direction of

the gradient φ(x,y, t) was close to 90◦ would have a low importance rank, and a corre-

spondingly small composite measure, regardless of the gradient magnitude |5I (x,y, t)|

at that point. However, a pixel in I (x,y, t) where the direction of the gradient was

close to the (arbitrarily chosen) angle 124◦ would retain 75% of its intensity in the

composite measure, since it was further from α. The importance rank was also shown

for all integer powers in the range p= [1,10]. Higher powers reduced the trough width

and made the importance rank measure more specific for the chosen angle, while lower

powers increased the trough width and made the composite measure exclude a greater

range of angles.

Figure 7.2: The importance rank R (x,y, t,α,p) for the detected peak α= θ1 = 94.5◦ (from
Figure 5.7 on page 104) identified by the pink dashed line. A range of powers p= [1,10] are

displayed, with the chosen power p= 5 shown in red.

The combined importance rank

In almost all cases, the importance rank would need to be calculated for more than

one transform angle. This was because in many cases the segments of a fractured
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long-bone had different θ values, as demonstrated in the Hough Transforms shown in

this thesis. The number of transform angles at which the importance rank had to be

calculated was equivalent to e, the number of peaks in the modified Hough accumulator

to be detected by the ranked sums method. Fractures and other abnormalities were

located by setting the transform angle α equal to the angle parameter θi of each of

the approximating lines. To calculate the combined importance rank for a particular

pixel, it was first necessary to calculate the individual importance ranks for each of the

e transform angles. The combined importance rank was then simply the product of

all the individual importance ranks. Equation 7.2 was modified to reflect this change,

and became:

R (x,y, t,θ,p) =
e∏
i=1

(
1− [cos(φ(x,y, t)− θi)]2p

)
(7.3)

An example of the combined importance rank for two arbitrary transform angles

θ1 = 67◦ and θ2 = 100◦with the power p = 5 is shown in Figure 7.3. In this plot there

were multiple troughs, corresponding to the two chosen transform angles.

Figure 7.3: The combined importance rank R (x,y, t,α,p) for the two arbitrary transform
angles α1 = 67◦ and α2 = 100◦, identified by the pink and blue dashed lines, respectively.
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Figure 7.4: The importance rank for the image shown in Figure 6.18d (with no
segmentation applied here), calculated using Equation 7.3. Red regions are the most

important, and blue regions are the least important.

Testing on the six development images showed that although the importance rank

R (x,y, t,α,p) was not overly sensitive to the value of p provided p≥ 4, a power of p= 5

produced the best measure of importance (R = 0.9 occured at ≈ θi±37◦ and R = 0.5

occured at ≈ θi± 21◦). Smaller values such as p = 2 allowed angles a long way from

the peak to make too large a contribution (R = 0.9 occured at ≈ θi±55◦ and R = 0.5

occured at ≈ θi± 33◦), and therefore many insignificant regions of the output image

were classified as being important. While not as dramatic, greatly increasing p (i. e.

p > 10) caused significant areas to be removed. The chosen value of p= 5 is shown in

red in Figure 7.2.

An example of the combined importance rank for the segmented development set

image shown in Figure 6.18d is shown in Figure 7.4. In this image, the fracture, joints

and epiphyseal plates were all marked as important. In contrast, the bone edges were

not marked as important, since they had been removed from the image by the ranking

process.

7.2.2 The distance rank

The combined importance rank calculated using Equation 7.3 utilised only one of the

long-bone shaft approximation parameters calculated in Chapter 5. Only the informa-

tion about the angle θ of the approximation lines was used, while the location ρ of

the lines was unused. A consequence of using only the angle parameter was that any

region a long distance from a line with the parameters (ρi, θi) could be ranked highly

if it matched the angle parameter θi, despite the distance parameter ρi not matching.
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To prevent this from happening, another measure called the distance rank was used.

The distance rank was a measure of how far a point in the image was from all of

the long-bone shaft approximation lines. For a single line with parameters (ρ,θ) the

distance rank for a point (x,y) was simply the length of the normal between that point

and the approximation line. A power relationship p was again applied, so that regions

close to the line were given a much higher importance than those further from the line.

The distance rank was calculated for each point in the image using:

D (x,y,ρ,θ,p) = |ρ− [(x−xorigin)cosθ+(yorigin−y)sinθ]|
1
p (7.4)

where the equation is calculating the distance between the line with parameters (ρ,θ)

and the line parallel to it passing through the point (x,y).

The combined distance rank

Like the importance rank, it was necessary to calculate the distance rank for more

than one value of ρ. Again, the number of lines for which the distance rank had to be

calculated was equivalent to e, the number of peaks in the modified Hough accumulator

to be detected by the ranked sums method. To calculate the combined distance rank

for a particular pixel, it was first necessary to calculate the individual distance ranks

for each of the e parameter pairs. The combined distance rank was then the product

of all the individual distance ranks. Equation 7.4 was modified to reflect this change,

and became:

D (x,y,ρ,θ,p) =
e∏
i=1

(
|ρi− [(x−xorigin)cosθi+(yorigin−y)sinθi]|

1
p

)
(7.5)

Altering the power p changed the rate at which the distance rank decreased further

away from the approximation lines. Testing on the six development images showed

that again p = 5 was the best choice. Lower powers tended to rank too much of the

image as being important, thereby reducing the effectiveness of the distance rank as a

scaling factor. On the other hand, higher powers tended to have the opposite effect,

and resulted in the regions within the bone—where fractures are to be detected—being
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ranked as unimportant. Figure 7.5a shows an example of the combined distance rank

for the image shown in Figure 6.18d. The red points had the highest rank, while the

blue regions had the lowest rank. Figure 7.5b contains the cross section along the black

line in 7.5a, and shows how the rank varied with the distance from the lines.

7.2.3 The combined rank

The product of the two scaling factors calculated in the previous sections was referred

to as a combined rank. Figure 7.6a illustrates the resulting combined rank for the same

example development set image shown in Figure 6.18. This time the segmented image

was used, so that only the diaphysis was shown. The most important regions were

again red, while the least important regions were dark blue. The gradient composite

measure for this image, calculated using Equation 7.1, is shown in Figure 7.6b. It was

clear that in this image, the only remaining region of high intensity corresponded to

the fracture. Since the spatial resolution of the GCM was much higher than the Gabor

orientation maps utilised by Yap, et al. [110] for the detection of gross neck of femur

fractures (shown in Figure 3.2 on page 37), it was much more likely to be able to detect

the texture changes produced by subtle long-bone fractures.

The calculation speed of the gradient composite measure was not sufficiently slow

to be of concern. However, if required, both the importance rank and distance rank

could also be implemented using a look up table to decrease the calculation time that

was associated with both the cosine and power functions.

7.3 Fracture identification

Using the gradient composite measure, the magnitude of the gradient was artificially

lowered in the regions where the composite values were small, but remained high in all

other regions. Accordingly, by applying the GCM and ranking equations (7.1, 7.3 and

7.5) for each of the peaks detected by the ranked sums method, those regions a long

distance from the approximation lines and those regions where θ matched φ(x,y, t)

were removed. Since the areas containing straight sections deemed to be normal were

removed from the image, any remaining locations where the gradient was large were
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(a)

(b)

Figure 7.5: (a) The distance rank for the image shown in Figure 6.18d (with no
segmentation applied) calculated using Equation 7.5. (b) The cross section of both the

distance rank (red) and the original image (green) along the black line.
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(a)

(b)

Figure 7.6: (a) The combined rank is the product of the importance rank and the distance
rank shown in Figures 7.4 and 7.5, respectively. Here the mask from the diaphysis

segmentation was also applied. (b) The gradient composite measure, in which the high
intensity regions corresponded to the fracture.

classified as being abnormal. As shown in Figure 7.6b, the GCM did indeed indicate the

location of the fracture, but some further processing was required to make better use

of the information that the image contained. Two methods of presenting the location

of the fractures contained within the image were examined, and are outlined below.

7.3.1 Artificial colouring for fracture identification

The first presentation method examined, simply presented the information in the gra-

dient composite measure to the user by artificially colouring the long-bone x-ray image.

The image was adjusted so that all normal areas remained in greyscale, while all ab-

normal areas—those identified in the GCM—were coloured in a user adjustable colour

(red, in this case). The intensity of the colouring was used to show the magnitude of

the GCM at that point, and therefore the possibility of that point being abnormal. An

example of the artificial colouring is shown in Figure 7.7.

While this method highlighted any abnormalities—including fractures—in the test

images, it suffered from a number of drawbacks:
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Figure 7.7: To present the information to the user, the original image was artificially
coloured, so that the abnormal regions were highlighted red, while the normal regions

remained greyscale. The inset shows an enlargement of the fracture region, in which the
bone fragments were highlighted in a soft red colour.

1. Since artificial colouring was used to show the magnitude of the GCM, the high-

lighting was sometimes so subtle that it was not visible to the naked eye. As

a result, some fractures would still be easily missed during interpretation of the

x-ray by a physician or radiologist.

2. The highlighting was placed directly over the abnormality, and as a result it

could interfere with the radiologist’s interpretation of the image. This would be

compounded by the fact that at the highlighted points—where the radiologist

normally searches for subtle changes in intensity—the intensity was modified to

show the magnitude of the GCM.

3. Most importantly, the artificial colouring method neither clearly identified nor

classified regions containing fractures.

Of the three identified drawbacks, the first two were minimised by allowing the user

to manually alter the colour scaling, and to selectively apply the colour highlighting,

respectively. Thus, when the highlighting is very subtle, the user can interactively drag

a slider bar to increase the intensity of the highlight. Alternatively, when the highlight

masks an abnormality and complicates the image interpretation, the user can turn the

highlighting off. The third drawback outlined above still required resolution, and to

do this a second method of presenting the location of fractures was examined.
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7.3.2 Marking regions for fracture identification

A second method of fracture identification was designed to address the drawbacks of

the artificial colouring method. Firstly, instead of showing the magnitude of the GCM,

markers that could not be easily missed during the interpretation of the x-ray were used.

Secondly, the markers were not placed directly on the identified abnormalities, but were

instead placed at a distance to ensure that all the intensity variations corresponding

to the fracture were still visible, and could still be examined. Thirdly, only the points

in the GCM that met the criteria for representing a fracture were marked, rather than

all GCM features. This was achieved using a three step process:

1. The GCM image was filtered to remove noise.

2. The regions of the GCM where the intensity and surface area were likely to be

part of a fracture were retained.

3. Any matching regions were marked as abnormalities that required further exam-

ination by the radiologist.

Each of these steps is discussed below in greater detail.

Filtering the GCM

In the first stage of fracture identification, a 9 x 9 median filter was used to remove salt

and pepper type noise that was created by random matches between φ and θ in the

gradient composite measure calculation. The relatively large size of this filter also had

the effect of smoothing the image, so that points of high intensity that were clustered

very closely were joined together. The size of this filter was found to be optimum

because smaller filters did not provide a sufficient degree of smoothing, while larger

filters were prohibitively slow. In fact, this size was chosen as it was the largest median

filter that could be applied in a timely manner. The result of applying the median

filter to the GCM image shown in Figure 7.6b is shown in Figure 7.8a. This image

shows that the location of the fracture had become clearer due to both the smoothing

and removal of noise.
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A strip around the image boundary was also cleared as it was prone to edge effects

from the AMSS smoothing, and otherwise produced false detections. From the AMSS

implementation equation 4.20, it was known that these edge effects (discussed in detail

in Section 8.2.1) were limited to a distance less than or equal to the number of iterations

n of the AMSS smoothing equation. Finally, the segmented image was also normalised

so that the range of values was correct for the subsequent thresholding stages.

Retaining suitable clusters

To isolate the regions in the filtered gradient composite measure that were likely to

correspond to a fracture, an empirically chosen threshold T3 was applied to the image,

so that only those pixels that had a sufficiently large composite measure were retained.

The threshold T3 was chosen to be relatively low, so that a large number of candidate

points were retained at this stage. Figure 7.8b demonstrates that the resulting image

contained many points that did not belong to a fracture. A low threshold was chosen

because testing using the development images revealed that it was possible for fracture

regions to have a relatively low filtered GCM intensity, in comparison to other regions

of the image. That is, the individual pixels in the filtered GCM image with the highest

intensity did not necessarily correspond to the fracture. However, in the GCM, the

fracture regions were generally larger, and their greater surface area had to be taken

into account. This was done in the following stage.

In the second thresholding stage, each cluster in the binary image produced by the

first thresholding stage was examined. The location of every pixel in the cluster was

recorded, and then the sum of the pixels in the corresponding locations in the filtered

GCM image was calculated. As a result, this simultaneously measured both the area

of a filtered GCM cluster, as well as the magnitude of the points within that cluster.

This was different to measuring the sum of the pixels in a cluster in the binary image,

which measured only the cluster area. The result was a list of clusters, along with the

sum of the filtered GCM pixels corresponding to each cluster.

At this stage, a second empirically chosen threshold T4 was applied, so that only

the significant clusters were retained. It was mostly this threshold that was responsible
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(a)

(b)

(c)

(d)

Figure 7.8: (a) The gradient composite measure shown in Figure 7.6b was filtered using a
9 x 9 median filter to both remove salt and pepper type noise and join clustered high intensity
pixels. (b) A threshold was then applied to remove the smaller regions and create clusters.
(c) The clusters were analysed, and only those that were large enough, and had a high

enough intensity were retained. (d) The clusters were used to mark the identified regions.
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for determining the sensitivity of the fracture identification algorithm. An example of

the results produced by the second thresholding stage is shown in Figure 7.8c.

Marking the detected regions

At this point, the GCM points that corresponded to an abnormality had been identified,

and they were not modified any further. The final stage of fracture identification

only involved displaying them in an appropriate manner. As discussed in Section

7.3.1, highlighting placed directly on an abnormality could interfere with the viewer’s

interpretation of the image, so it was determined that the markers should not be placed

directly on any identified abnormalities. As a result, the GCM points were enlarged to

a user adjustable size using morphological dilation and their boundaries were marked

on the original image. Figure 7.8d demonstrates the results produced. In comparison

to the artificial colouring method, the fracture was identified much more clearly, and

was also not obscured by the marking.

7.3.3 Threshold sensitivity analysis

The accurate identification of fractures was much more highly dependent on the choice

of the thresholds T3 and T4 than any other parameters such as the power p and the

size of the median filter. In addition, the two thresholds T3 and T4 were dependent

on each other, since increasing one required that the other be decreased to provide a

satisfactory detection. This meant that the choice of T3 and T4 had to be made very

carefully. Not surprisingly, independently increasing either of these values resulted in

fewer fractures being detected, while independently decreasing either of them resulted

in normal regions being identified as fractures. Initially, the thresholds T3 = 0.008

and T4 = 60 were empirically chosen, after testing the six images in the development

set. These choices resulted in six of the seven fractures being correctly detected—that

is, four of the six images were completely correct—with two images containing false

positives. To help more accurately choose the thresholds, a sampling based sensitivity

analysis was performed.

Each of the six development set images was tested using a range of values for T3 and
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T4 centred around the thresholds initially chosen. The range [0.001,0.02] with a step

size of 0.001 was used for T3, and the range [10,150] with a step size of 5 was used for T4.

This resulted in a total of 3480 images that needed to be manually examined. When

this examination was performed, the combination of the two thresholds T3 and T4 was

marked as producing either a correct or incorrect detection result. A correct detection

result was defined as one in which there were no false negatives or false positives, while

an incorrect detection result was defined as one in which there was one or more false

positives or false negatives. The results for each of the development images were then

combined to produce the results shown in Table 7.1. This plot showed that there was

a small range of values for which five images (83%) could be correctly detected, but

that no threshold choices resulted in all six images being correct. Choosing any pair of

thresholds within the dark blue region (i. e. a value of 5) resulted in all seven fractures

(across five of the images) being detected correctly, with the trade-off being that one

image (that did not contain a fracture) displayed some false positive regions.

Table 7.1: The results of the sampling based sensitivity analysis, performed on the six
images in the development set. The numbers represented the number of images for which

those particular thresholds produced the desired output. The initial (4) and final (5)
thresholds are shown in white text.
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The sensitivity analysis showed that there was a range of thresholds that could

produce the correct output. As such, a new pair of thresholds T3 = 0.008 and T4 = 50,

inside the dark blue region were chosen. It was decided that the first threshold T3

should not be adjusted, since it was already appropriate for retaining a large number

of candidate points, so only the second threshold T4 was changed from its original

empirically chosen value. These thresholds were then fixed for testing on the complete

image test set to determine how suitable they were for identifying fractures.

7.4 Fracture detection evaluation

The fracture detection algorithms described in this chapter were evaluated by testing

them on the 44 diaphyses in the test set that were previously segmented using the

algorithm described in Chapter 6. After the algorithms were applied, the results were

manually compared to the film images interpreted by a trained radiologist.

Gradient composite measure calculation

Although the importance rank, distance rank and gradient composite measure were

calculated for each image, they were not individually analysed. It is interesting to note

that—disregarding any further analysis—in almost all cases, subjectively the unfiltered

GCM produced a very good representation of the location of the fracture. This also

meant that although the artificial colouring method described in Section 7.3.1 had a

number of limitations, it too almost always showed the correct fracture location, despite

doing so with a consistently poor clarity. This indicated that the GCM was a good

tool for detecting fractures within long-bone diaphyses. The following section examines

how well features within the GCM were classified, using the fracture identification

algorithm.

Fracture identification

The fracture identification algorithm used to analyse the gradient composite measure

was then examined. When the manual comparison to the radiologist’s results was

performed, the number of true and false positive and negative results were recorded,
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along with the reasons for any false positives that occurred. A summary of the results

is shown in the confusion matrix in Table 7.2. The test image set contained a total

of 47 fractures, 39 of which were correctly detected by the algorithm, corresponding

to a detection rate of 83% of all fractures. The algorithm correctly identified all the

fractures present in 37 of the 44 images (84% of all the images), while in the remaining

7 images at least one fracture was not detected correctly (in one image two fractures

were not detected correctly). In 13 of the 44 images (30% of all the images), all

fractures were correctly identified and no non-fractures were identified—that is, there

were no false positives or false negatives. The remaining 31 images contained at least

one false positive region. Unfortunately, of the 9 normal images, only one was correctly

identified as containing no abnormalities. By modifying the two thresholds T3 and T4,

it was possible to drastically reduce the number of false positives, although this also

simultaneously reduced the number of true positives. Therefore the two thresholds

were retained at the values determined in the sensitivity analysis.

Predicted Non-fracture Predicted Fracture
Non-fracture 1 (11%) 68
Fracture 8 (17%) 39 (83%)

Table 7.2: A confusion matrix showing the results produced by the algorithm on a sample of
47 fractures present in the 44 image test set.

The causes of all the false positives were recorded, and were split into two categories:

those that were caused by algorithm errors, and those that were caused by misinter-

preted biological phenomena. Details are shown in Table 7.3. A second examination

by a radiologist revealed that 49 of the 68 false positives (72%) were due to biological

phenomena such as Harris growth arrest lines, soft tissue shadows or anatomical fea-

tures unrelated to the fracture. Harris growth arrest lines (Figures 7.10c and 7.10d)

represent episodes of growth arrest followed by recovery, and are often a marker of

systemic illness that causes transient slowing of growth throughout the body during

childhood. The soft tissue shadows (Figure 7.10d) were caused by the density variation

of the soft tissues surrounding the bone, including fat under the skin which can mimic

a fracture but extends beyond the bone. Other anatomical features such as nutrient

foramen and some textures (Figure 7.10b) also caused false positives. As they were
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regions that should still be examined carefully during x-ray interpretation, highlighting

of these regions was deemed acceptable, reducing the number of false positives to 19.

Cause of false detection Number Individual % Group %

Algorithm Bone overlap 7 10.3% 27.9%
Image artifact 12 17.6%

Biological
Harris growth arrest line 5 7.3%

72.1%Feature not related to fracture 38 55.9%
Soft tissue injury 6 8.8%

Table 7.3: The causes of false detection, split into those from the algorithm and those from
biological variation. False detections due to biological variation were deemed by the

radiologist to still be acceptable regions of interest.

Of the remaining false positives, 7 (37%) resulted from the algorithm confusing

overlapping bones as being a fracture, and 12 (63%) were caused by image artifacts.

The overlapping bones (such as the overlapping radius and ulna in Figure 7.9d) gener-

ally caused a false detection because the magnitude of the gradient tended to be large

at that point, and the curvature of the meeting point ensured that the direction of the

gradient was parallel to the bone centre-line. According to the assumptions in Section

7.1, the point at which the bones overlap therefore met the same criteria as a fracture.

Fortunately in many cases, the overlap points on the distal long-bones were removed

during the diaphysis segmentation. Image artifacts (such as those in Figure 7.10a and

7.10b) on the other hand, were not necessarily even located over the bone. The exam-

ple images show that these artifacts could be detected some distance from the bone,

despite the distance rank greatly reducing their importance. This was possible because

the algorithm described in Chapter 6 only determined the location of the long-bone

diametaphyses (thus retaining the diaphysis), rather than masking out the non-bone

areas. In some cases the artifacts corresponded to important features—so they were

retained—although the majority were caused by scratches on the x-ray film, medical

equipment such as casts or intravenous lines, pillows and creased clothing or sheets.

Despite the high false positive rate, the fracture detection algorithm algorithm was

capable of detecting many fractures, some of which were very hard to identify visually.

Two examples of these are shown in Figure 7.9a and 7.9b. Most importantly, the

fracture shown in Figure 7.9a was not detected during the radiologist’s initial visual
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(a)

(b)

(c)

(d)

Figure 7.9: Examples of the results produced by the fracture detection algorithm. (a) Two
extremely subtle midshaft forearm fractures were detected correctly. (b) One subtle radius
fracture was detected correctly, but the corresponding subtle ulna fracture (arrow) was

missed. (c) Subtle radius and ulna fractures (arrows) were missed. (d) A false detection due
to overlapping bones.
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(a)

(b)

(c)

(d)

Figure 7.10: Examples of the results produced by the fracture detection algorithm. (a) Two
midshaft forearm fractures were detected correctly, but an image artifact also caused a false

detection. (b) An upper humerus fracture was detected correctly, but artifacts and
non-fracture related features were also detected. (c) A midshaft tibia fracture was correctly
detected, but a Harris growth arrest line was also detected. (d) A midshaft femur fracture
was detected correctly, but soft tissue artifacts and a possible Harris growth arrest line were

also detected.

180



interpretation, but was only detected during the second reading using the results from

the fracture detection algorithm. During the first interpretation, the more distal radius

fracture outside the segmented area was identified, indicating that the miss was possibly

an example of the SOS effect. In this case, the missed fracture diagnosis would have had

little effect on the clinical outcome because a cast would have been required anyway.

It has been suggested [41] that a CAD system is still useful even when its sensitivity is

less than perfect, especially when the lesions detected by the algorithm do not overlap

with those detected by the radiologist. In addition, a high sensitivity at the cost of

an acceptable number of false positives is preferred, because false negatives generally

produce a significantly poorer clinical outcome. The algorithm certainly showed that

despite the high false positive rate, it was capable of reducing the number of false

negatives.

It was unfortunate that the image test set contained many obvious fractures that

were unlikely to be missed by an untrained observer, let alone an expert radiologist.

It was these obvious fractures that caused most of the segmentation and detection

difficulties throughout this thesis. Had the image data set consisted primarily of subtle

fractures that are more difficult for an expert to detect, it is possible that the results

would have been improved significantly. Therefore, although the complete fracture

detection system was only partially successful, its ability to identify fractures that

experts could either not see, or had difficulty seeing, was successful.

One identified problem was that the detection sensitivity of the fracture detection

algorithm was a function of the angle at which the fracture occurred. Fractures parallel

to the bone centre-line were not always as well detected as those perpendicular to

it. This was because the gradient composite measure assumes that large gradients

normally occur only in the same directions θi as the bone edges, and that all other

gradients belong to some type of abnormality. Typically, most fractures are of this

type. However, if a fracture was parallel to the bone edge, then it was classified as

being normal, and was not highlighted. In the test image set, 3 fractures were either

not detected, or only partially detected because portions of them were parallel to the

bone edge.
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The biggest problem with the long-bone fracture detection algorithm was that the

two thresholds T3 and T4 were not always appropriate. The results demonstrated that

using the current method, it was not possible to choose a set of global thresholds

that were suitable for all images. When the sensitivity was adjusted by the user on

a per image basis, it was possible to simultaneously lower both the false positive and

false negative rates, so that close to 100% of the fractures were detected correctly.

In a clinical setting, a computer aided long-bone fracture detection system could be

configured to allow the radiologist to control the sensitivity of the computer output

based on their own personal preference, or the nature of the case being examined. This

sensitivity adjustment would be performed in a similar manner to setting a window

level and width, or the use of edge enhancement when available on a workstation. As a

result, the detection rate could be significantly better than the results presented here.

The radiologist’s comments

During testing the radiologist commented that the image development and test sets

contained a good range of images. In addition, according to the radiologist, some of

the false negatives were also very difficult to manually classify as either fractured or

unfractured. For four images the radiologist would have requested a different view

of the bone to better determine if a fracture was present. To make their decision,

they would also have used visual and verbal cues, including a description about how

the injury occurred, as well as the location and severity of any pain. This system

does not currently utilise any of these cues. After examining the results produced by

the detection algorithm, the radiologist stated that the system outlined in this thesis

is very useful, and while the false positive rate is higher than desired, the highlighted

areas could be more closely examined to determine whether there was indeed a fracture

present.

7.5 Summary

Once the diaphysis was correctly segmented, a fracture detection algorithm could be

applied to the segmented region. This chapter described a method by which fracture
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detection could be performed. Fracture detection was based on the assumption that

an x-ray of a typical diaphysis containing no major pathology should exhibit gradient

changes in the direction normal to the bone centre-line, but not in the direction parallel

to the centre-line. Therefore, any large edges occurring at angles not normal to the

centre-line were deemed to be part of an abnormality. These regions could be detected

by utilising the long-bone shaft approximation parameters and a tool called the gradient

composite measure.

The GCM was a combined measure of both the magnitude and direction of the

gradient. It was calculated using the magnitude of the gradient and two scaling factors,

which were used to incorporate the direction of the gradient with the angle and distance

information from the long-bone shaft approximation parameters. These two scaling

factors were referred to as the importance rank and distance rank, respectively. The

importance rank was a measure of how well the direction of the gradient at any point

within the image matched the θ parameter of the approximation lines. It was calculated

using a scaled and translated sinusoid that had the effect of increasing the importance

of all the angles close to θ, while decreasing the importance of those further away. When

applied to an image, the importance rank removed the regions corresponding to the

bone edges, and retained features such as fractures, joints and epiphyseal plates. The

distance rank was a measure of how close any pixel within the image was simultaneously

located to all the approximation lines. When applied to an image, the distance rank

reduced the intensity of regions a long way from the approximation lines, while retaining

the bones at close to their original intensity. Finally, the GCM was the product of the

magnitude of the gradient, the importance rank, and the distance rank.

Fractures could then be identified by using the GCM to artificially colour the origi-

nal x-ray image. Normal areas remained greyscale, while abnormal areas were coloured

in a user selectable colour. Although this method did highlight abnormalities such as

fractures, it suffered from drawbacks that made it unsuitable. Therefore a method of

marking the regions containing an abnormality was examined. This was a three step

process consisting of filtering the GCM image to remove noise, performing dual stage

thresholding to retain the appropriate regions, and marking any matching regions as
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abnormalities. The dual stage thresholding ensured that only regions of both sufficient

size and intensity were retained, and allowed the sensitivity of the algorithm to be

changed. Initially, the two thresholds were empirically chosen using the six images in

the development set. However, the algorithm was very sensitive to these two thresh-

olds, and so to ensure that the best values were chosen a sampling based sensitivity

analysis was performed to find their optimum values.

Testing the fracture detection algorithm on the entire image test set showed that

83% of fractures were detected correctly, despite the presence of a high false positive

rate. The causes of false detection were also analysed, and a large percentage of them

were found to be from biological causes. One extremely positive feature was that the

algorithm detected one additional fracture that was not detected by the radiologist

during the first interpretation, thereby proving the value of this type of system. This

was further reinforced by the radiologist stating that the system is very useful, after ex-

amining the results produced by the detection algorithm. Therefore, although the false

positive rate is not ideal, the algorithm is well suited to long-bone fracture detection.

Most of the algorithms described so far in this thesis were very fast to compute,

resulting in a relatively rapid diagnosis—one of the aims outlined in Section 3.3.4.

The exceptions to this were the AMSS smoothing algorithm and the modified Hough

Transform, which were time consuming due to the large number of iterations that were

required for their calculation. As a result, an evaluation of the speed of these two

algorithms was performed, and methods of decreasing the calculation time were also

examined. These results are presented in the following chapter.
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