
Chapter 8

AMSS and Hough Transform speed

evaluation

Some parts of the algorithms described in the previous chapters were impractically

slow. Although the creation of highly optimised and efficient algorithms that deliver

maximum speed was not the primary focus of this thesis, part of the second goal

outlined in Section 3.3.4 was that fractures should be detected in the shortest time

possible. To make the algorithms usable for rapid, semi-automatic detection of long-

bone fractures, it was necessary to decrease the computation time, while still utilising

the available resources. This chapter examines the ways in which a more rapid detection

can be achieved.

The first part of this chapter examines the execution speed of the AMSS algorithm

described in Chapter 4, and explains why the smoothing is slow to perform. Some

methods by which the calculation time can be decreased are suggested, and the im-

provements from these methods are quantified. The remainder of the chapter examines

the execution speed of the standard and modified Hough Transforms from Section 5.3,

and explains why they too are slow. A method of decreasing the Hough Transforma-

tion time is detailed, and the reduction in calculation time from this implementation

is quantified.

The remaining parts of the long-bone segmentation and fracture detection algorithm

were relatively fast to compute, so their calculation speed did not need to be reviewed.

185



8.1 Why smoothing is slow

As stated in Section 4.5 on page 69, the nonlinear partial differential equations for

the AMSS could not be solved analytically, so a discrete numerical method was imple-

mented. Depending on the final scale of smoothing t that was required, the smoothing

process could require a large number of iterations of Equation 4.20 on page 71, with

the number of iterations n determined by Equation 4.21. The relationship between t

and n was shown in Figure 4.12 on page 72. For example, smoothing an image to the

scale t= 20, with a scale step of 4t= 0.1 required n= 407 iterations. During a typical

smoothing iteration, every pixel in the x x y image had to be iteratively analysed. The

gradient at that point was calculated using the eight neighbouring pixels of the 3 x 3

stencil, which was then used to calculate Iξξ and therefore the smoothed image. As a

result, the smoothing required a set of calculations to be performed at x x y x n pixels,

so that a typical 3600 x 1200 pixel image smoothed to scale t= 20, required analysis of

close to 1.85 billion pixels. Testing1 revealed that smoothing any of the development

images (using a single processor) took around 27 minutes to complete.

8.2 Decreasing the smoothing time

A method of decreasing the smoothing time was required, since 27 minutes was an

unacceptably long time. Achieving the same level of smoothing in a shorter period of

time could be accomplished in a number of ways:

1. Increase the scale step 4t so that each iteration produced a greater amount of

smoothing, thereby requiring a smaller total number of iterations. The problem

with this method was that increasing 4t beyond the value 0.1 resulted in in-

stability, since 4t was already at its maximum (as discussed in Section 4.5 on

page 69). This was therefore not an adequate solution.

2. Reduce the size of the region to be smoothed. Unfortunately this was not practical

in many cases, since the bone often filled the entire image.
1Performed on a Sun Microsystems Dual 1.8GHz AMD Opteron system with 1MB level 2 cache,

8GB RAM, running RedHat ES 3 (64bit mode)

186



3. Reduce the image resolution, such that there were fewer pixels that had to be

analysed in each iteration. However this removal of image information could

compromise the fracture detection process, due to interpolation effects and more

importantly, insufficient image resolution.

All of these methods attempted to minimise the total number of pixels that had to be

analysed, although they also produced inferior results. Rather than reducing the total

number of pixels that had to be analysed, a better solution was to use a multi-processor

system in which the computation load was shared such that each processor analysed

a smaller number of pixels, thus completing more rapidly. This type of parallelisation

was implemented to reduce the smoothing time.

8.2.1 Smoothing parallelisation and boundary extension

In a computer cluster containing multiple machines, each containing multiple processors

(or alternatively, on newer computers containing multi-core CPUs), a large number

of calculations can be performed simultaneously. For example, if a large number of

tests needed to be performed on a single image, the tests could be split up so that

each processor (or core) simultaneously performed a separate test, thereby drastically

reducing calculation time. Unfortunately the AMSS algorithm could not be easily

adapted for multiple processors, because the input for each iteration was the output of

the previous one. A seemingly simple solution to this problem was to split the input

image into multiple smaller image stripes, smooth these smaller stripes on separate

processors and then recombine them to produce the output. An example of the type

of image that resulted from splitting the image into two stripes is shown in Figure

8.1. It compares the image obtained by smoothing the complete image with the image

obtained by smoothing two stripes, and shows that the two are not the same.

As this example demonstrates, the results produced by the two methods were not

identical. While a large proportion of the pixels in the images in Figure 8.1b and

8.1c appeared to be the same, there was a distinct vertical line through the centre

of image 8.1c that resulted from the edge effects that were introduced by splitting

the image. During the first iteration of the smoothing, the value of any chosen pixel

187



(a) (b)

(c) (d)

Figure 8.1: A comparison of AMSS smoothings. (a) The input image. (b) The standard
AMSS smoothing to a scale t= 5 (n= 64 iterations). (c) Dividing the image into two parts
and smoothing each separately before combining to produce the output image. The vertical
line down the centre of the image indicates that the resulting images are not the same. This
is due to the effects of diffusion across the image boundaries, and becomes more noticeable
as the scale increases. (d) The white pixels are those points at which these two methods

produce different values. The grey area is the region in which the two methods can
theoretically produce different values. In the black region, the two methods should

theoretically produce the same values.

188



(x,y) in the image was modified based on the values of the 8 pixels in the immediate

3 x 3 neighbourhood surrounding that pixel. However as the smoothing proceeded,

the values of the surrounding pixels were also modified, thus influencing how the value

of that chosen pixel(x,y) changed in later iterations. The distance at which a pixel

would affect the value of that chosen pixel was directly proportional to the number

of iterations n performed. When the image was split, some of the pixels that would

normally influence the value of the chosen pixel (x,y) were removed, resulting in a

different smoothing. This was most noticeable as a mismatch in contours when the

images were recombined to produce the output.

Thus, in order to ensure that a pixel reached its correct value, the surrounding

pixels had to be retained using a process termed boundary extension. The number of

surrounding pixels to be retained was determined by the number of iterations n that

had to be performed, and therefore the scale of smoothing t (Figure 4.12 on page 72).

The white pixels in Figure 8.1d corresponded to the locations at which the pixel values

in b and c were not identical. The grey region extended n= 64 pixels on either side of

the red line along which the image was split—since 64 iterations were used—and was

the region in which different values could theoretically be produced. The white region

always lay within the grey region.

The correct smoothing could be produced by including all those pixels within the

grey region, when creating the stripes from the original image. For example, when

dividing the image in Figure 8.2a into two stripes, 8.2c and 8.2d along the vertical

white line, n= 64 extra pixels were added to the respective images at that split point.

The extra pixels added to the right side of 8.2c ensured that the entire region left

of the line smoothed correctly, and similarly the pixels added to the left side of 8.2d

ensured that the region to the right of the line smoothed correctly. Of course, the

smoothing results within these two extra areas were incorrect, although both of these

were discarded before the two stripes were combined to produce the output, since the

incorrect part of 8.2d was correctly represented in 8.2e and vice versa. When multiple

processors were used, and the two smoothings occured simultaneously, the calculation

time was almost halved.

189



(a) (b)

(c) (d)

(e) (f)

Figure 8.2: The black lines illustrate how an image (a) could be split into (c) left and (d)
right sub-images, by including n= 64 extra pixels at the split location, such that the correct
smoothing (b) at scale t= 5 can be obtained after combining the separately smoothed images

(e) and (f).

190



It was possible to perform this image splitting because the AMSS is non-linear

and the smoothing has a finite speed of propagation. This is distinct from a linear

smoothing equation, where the propagation speed is infinite.

8.2.2 How to split the image

The possibilities were not limited to splitting the image into only two stripes, indeed

a larger number of image stripes could result in a quicker smoothing in some cases. In

addition, tiles could be created instead of stripes, so that both dimensions of the image

were split. The number of tiles or stripes was limited by:

1. The number of processors P available to simultaneously smooth the images. For

example, it would not be sensible to split an image into 100 tiles if there were

only two processors available in the multi-processor system. This was because

the overheads involved in splitting the images (as described above), and the

additional calculations that would have to be performed on all the extra pixels

included at the split points (for each of the 100 images), would far outweigh

any benefit obtained from the parallelisation. Indeed, tests showed that the

maximum number of tiles/stripes that should be created was determined by the

number of available processors, so that each processor only smoothed a single

tile/stripe. The cluster that was used for developing and evaluating the parallel

smoothing algorithms consisted of 8 dual processor machines, containing a total

of P = 16 processors. As a result, when splitting an image, the maximum number

of tiles/stripes was limited to 16.

2. The scale of smoothing t. By way of illustration, if smoothing the small 456 x 444

example image in Figure 8.2a to a scale of t= 20—thus requiring n= 407 iterations—

it would not have been sensible to split the image into a large number of tiles/stripes.

This was because at each point at which the image was split, 407 pixels had to

be added to produce the correct output, and this was larger than the number of

pixels available, even if the image was only split into two stripes of width 228

pixels. The maximum number of tiles Lx and Ly (in the x and y directions,

respectively) into which an image could be split was dependent on the size of

191



(a) (b) (c)

Figure 8.3: Equation 8.1 shows that for a 456 x 444 example image smoothed to scale t= 5,
the maximum number of image tiles was Lx = 3, as shown here.

that image, and could be calculated using:

Lx =
⌊
x

2n

⌋
Ly =

⌊
y

2n

⌋
(8.1)

Thus for the example image with x = 456, y = 444 and t = 20 (n = 407), the

maximum number of sub-images to create was actually Lx = 0 and Ly = 0. That

is, the image should not be split before smoothing. However, if the image was

to be smoothed to the scale t= 5 (n= 64), the maximum number of sub-images

that could have been produced would be Lx = 3, as shown in Figure 8.3.

The image could also be split into tiles using a number of different patterns. The

demonstrations so far only involved creating vertical stripes, although it was also pos-

sible to make square rather than rectangular tiles, by dividing both dimensions. Of

course, the number of horizontal divisions Lx and vertical divisions Ly did not neces-

sarily have to be equal. An example of splitting the same image into nine tiles is shown

in Figure 8.4.

The tiles at the image boundary did not require extension, while those in the middle

required extension on all four sides, so different size tiles were produced. As a result,

the middle tiles took much longer to smooth than the boundary (especially corner) tiles.

However, the maximum speed increase occured when the tiles were all approximately

the same size, so the splitting method was modified to take this into account. The

following two equations were produced for Ly > 2, in which Bh was the height of the

192



(a)

(b)

Figure 8.4: The example image (a) could also be split into tiles (b) by dividing both the
horizontal and vertical dimensions into Lh and Lv split points respectively. Note how the
resulting images differed in size and therefore took different lengths of time to smooth, with

the centre tile being the longest and the corner tiles being the shortest.

193



boundary tiles, and Ch was the height of the centre tiles before boundary extension:

Bh+n= Ch+2n y = 2Bh+(Ly−2)Ch (8.2)

Which was simplified to give expressions for Bh and Ch:

Bh =
⌊
y+n(Ly−2)

Ly

⌋
Ch =

⌊
y−2n
Ly

⌋
(8.3)

Similarly in the horizontal direction for the width of the boundary and centre tiles, Bw

and Cw respectively:

Bw =
⌊
x+n(Lx−2)

Lx

⌋
Cw =

⌊
x−2n
Lx

⌋
(8.4)

An example of the same image split into equal size tiles using Equations 8.3 and 8.4

is shown in Figure 8.5, with Bh = 169, Ch = 105, Bw = 173 and Cw = 109 before

boundary extension. While the lines in 8.5a produced regions of greatly differing size,

the addition of n pixels to the boundaries at which the image was split created tiles

that were nearly identical in size. Since an integer number of pixels was required for

each tile, the equations round down to the nearest whole number of pixels. Then, if

necessary, the number of pixels in the last tile was increased so that all pixels in the

image were included. For example, tiles of width 173 pixels, 109 pixels and 174 pixels

(increased by one pixel to include the entire image) were used for the example image.

The amount of time required for smoothing was then almost identical for all nine tiles.

For comparison purposes each of these methods was tested on a single processor2

to determine the relative speed of smoothing per stripe/tile, with the results shown in

Table 8.1. All the methods of creating stripes or tiles resulted in much faster smoothing

(at least two times as fast) per stripe or tile than smoothing the complete image.

As expected, smoothing nine tiles was also significantly faster than smoothing three

stripes, but for the nine uneven tiles there was significant variation in smoothing time

due to the different tile sizes (shown in Figure 8.4). When all nine tiles were the
2Performed on a Sun Microsystems Dual 1.8GHz AMD Opteron system with 1MB level 2 cache,

8GB RAM, running RedHat ES 3 (64bit mode)

194



(a)

(b)

Figure 8.5: As an alternative to Figure 8.4, the image could be divided so that the resulting
tiles were all approximately the same size, so that the smoothing of each took approximately

the same amount of time.

195



Method Figure smoothing time (sec) % of standard
Original Image 8.1a 11.53* 100

Three vertical stripes 8.3a/c—outer stripes 5.5 47.7
8.3b—centre stripe 7.04* 61.1

Nine uneven tiles 8.4b—corner tiles 2.61 22.6
8.4b—centre tile 4.32* 37.5

Nine even tiles 8.5b—all tiles 3.14* 27.2

Table 8.1: Comparison of the amount of time required per stripe or tile for AMSS
smoothing to scale t= 5 using the various splitting methods identified. Since the total

smoothing time was determined by the largest time (*) for a particular method, using nine
even tiles produced the fastest smoothing of all the methods tested.

same size (shown in Figure 8.5), they all took almost identical amounts of time to

smooth, and this time was less than the maximum smoothing time for the unevenly

sized tiles. These results indicate that to produce the fastest smoothing (for an image

of approximately this size) the image should be split into Lx by Ly tiles, and Equations

8.3 and 8.4 should be used to determine the size of those tiles.

Regardless of the method chosen by which to split the images, the two limitations

identified at the start of this section on page 186 still applied. Unfortunately most x-

ray images are very large, in this case 3600 x 1200 pixels, so the biggest limitation was

generally the number of processors available for smoothing. As a result, the quickest

smoothing was produced when the image was split into P = 16 equal sized vertical

stripes.

8.2.3 Implementing the parallelised smoothing algorithm

To achieve the AMSS parallelisation described in the previous section, an algorithm

containing the following steps was implemented in C:

1. Read the input image (in either the TIFF or raw format described in Section 4.5

on page 69), and the file containing the scale information (also in raw format).

2. Determine the required overlap by calculating the number of iterations n of the

AMSS equation, based on the maximum scale required.

3. Determine the number of stripes Lx (or Ly) to split the image into using Equation

8.1. Modify this value if it is larger than P , the number of available processors.

196



4. Determine the width (or height) of the boundary and centre stripes using Equa-

tion 8.4 (or 8.3), and if needed increase the size of the last stripe so that the

entire image is covered.

5. For each stripe, determine the start and end coordinates based on the stripe

widths and the overlap required, before saving the stripe data in the same format

as the input image (either TIFF or raw).

For an image test.tif, the result was a series of Lx or Ly images of almost identical size,

with modified file names s001_test.tif onwards. Each of these images could individually

have the AMSS algorithm applied to it, before being combined in the reverse process.

The process of splitting an image into separate files, submitting each of these jobs for

processing, and combining the results was fully automated using a set of shell scripts.

To allow each job to run simultaneously on its own processor the Sun Microsystems Grid

Engine software was installed on the cluster to completely control the job allocation

and submission.

8.2.4 Analysis of the parallelised smoothing algorithm

Analysis of the parallelised smoothing algorithm was performed in two parts. The first

tests were used to determine if the smoothed images produced using the parallelised

method were indeed identical to those produced by the standard method. Scales t =

[1,5,20] were chosen for testing—since the scales t1 = 5 and t2 = 20 were used in the

long-bone segmentation and fracture detection algorithms—and a series of three test

images (including the image in Figure 8.1a) were used. The maximum value of the

absolute difference between the smoothed images created by the two methods was

examined. A non-zero result would indicate that some pixels attained different values

by the two methods, while a zero result would indicate identical smoothing results. All

nine images produced a zero result, indicating that the parallelised method did indeed

produce identical results to the standard AMSS implementation.

The second series of tests measured the length of time taken by the standard and

parallelised methods to smooth the images to a range of scales. The test image was

taken from the development set, and was a 3600 x 1200 pixel x-ray of a midshaft

197



femur fracture. While the choice of image did affect the smoothing time slightly, the

differences were only minor. The results are tabulated in Table C.1 on page C-2 and

are displayed in Figures 8.6 and 8.7. They indicated that for all the tested scales

the parallelised method was at least as quick as the standard non-parallelised AMSS

smoothing method. Figure 8.7 showed that the speed increase was dependent on the

scale, since this affected the number of tiles into which the image could be split, while

still retaining a sufficient overlap n to produce the correct output. The maximum

speed increase occurred at a scale of t= 6, for which the parallelised method was just

over five times faster than the non-parallelised method. As shown in Table C.1 on

page C-2, this was the largest scale at which all P = 16 processors in the cluster could

be simultaneously utilised.

8.2.5 Reducing the size of the overlap

Figure 8.1d on page 188 showed that splitting an image prior to smoothing produced

a region where the smoothed image was not correct, if boundary extension was not

performed. The gray area of width n pixels either side of the split point was noted

to be the region in which different values could theoretically occur. The magnitude of

this difference was not shown in Figure 8.1d, but is shown in Figure 8.8a, for the same

two images shown in Figures 8.1b and 8.1c. As the colour bar indicated, regions with

higher values (those that were redder) were those which contained greater differences

between the two images. Note that the colour bar values were scaled rather than

absolute values. The largest differences were close to the split line, while the values

further away were much smaller. In addition, the greatest differences occured at those

points along the split line where the gradient was largest, that is, the bone edges.

Figure 8.8b shows a vertical projection of the region between the white dotted

lines in 8.8a, obtained by summing all the pixels in each column. Again, the largest

differences occurred at the location where the images were split, with much smaller

differences away from the split point. The blue dashed lines in 8.8b are located n= 64

pixels either side of the split point, and indicate the region that would be retained to

ensure that the resulting images were identical, as described in Section 8.2.1. Indeed,

198



Figure 8.6: Results of the comparison between the three parallelised and one non-parallelised
smoothing methods. The calculation times showed that the three parallelised methods were

all faster than the non-parallelised method, for all tested scales.

199



Figure 8.7: Results of the comparison between the three parallelised and one non-parallelised
smoothing methods. The speed increase resulting from the various parallelisations was

measured relative to the non-parallelised method.

200



further than n= 64 pixels either side of the split point the difference was zero. However

for much of the region closer to the split point the difference was also very close to

zero, indicating the possibility of decreasing the overlap to be less than n.

Although it was possible to decrease the overlap to improve the calculation time, the

problem was choosing how much to decrease it by. Examination of Figure 8.8b showed

that if the overlap was reduced to
⌊
n
3

⌋
= 21 pixels, then although the resulting image

was not identical to the unsplit image, the maximum pixel difference was 3.14 x 10−4.

This was less than 0.1% of the maximum pixel difference that resulted from the AMSS

smoothing. Decreasing the overlap any further began to produce larger differences

between the two images, and was therefore not appropriate. Since the chosen value⌊
n
3

⌋
was dependent on n it also automatically varied with the chosen scale t. Regardless

of the image to be smoothed, or the final scale chosen, the point
⌊
n
3

⌋
was always on

the flat portion of the projection curve.

Altering the amount of overlap needed also required modification of Equations 8.1,

8.3 and 8.4. The maximum number of horizontal and vertical tiles that the image could

be split into was modified to:

Lx =
⌊3x
2n

⌋
Ly =

⌊3y
2n

⌋
(8.5)

So the corresponding heights of the boundary (Bh) and centre (Ch) tiles then became:

Bh =
y+ n

3 (Ly−2)
Ly

Ch =
y− 2n

3
Ly

(8.6)

Finally, the corresponding widths of the boundary (Bw) and centre (Cw) tiles became:

Bw =
x+ n

3 (Lx−2)
Lx

Cw =
x− 2n

3
Lx

(8.7)

This meant that for the 456 x 444 test image smoothed to a scale t = 5 (n = 64) as

shown in Figure 8.2a, the maximum number of sub-images could be increased from

Lx = 3 and Ly = 3, to Lx = 10 and Ly = 10. Of course, as mentioned in Section 8.2.2,

the number of tiles or stripes was still limited by P , the number of available processors,

so producing 100 tiles from this image would not lead to a faster smoothing time than

201



(a)

(b)

Figure 8.8: (a) The same image as 8.1d on page 188, but colored to show where the largest
absolute differences occured. Note that the image was normalised to show the differences on
the scale [0,1]. A projection of the region between the white dotted lines is shown in (b).

Again this showed that the largest differences were located close to point at which the image
was split. The blue dashed lines show the points n= 64 pixels either side of the split point,
while the pink dashed lines show the points

⌊
n
3
⌋

= 21 pixels either side of the split point.

202



splitting it into P = 16 tiles. However, splitting the image into 16 tiles rather than

9 did produce a significantly faster smoothing. Additionally, decreasing the overlap

allowed higher scales to benefit from the use of all P processors.

8.2.6 Analysis of the reduced overlap smoothing algorithm

The tests described in Section 8.2.4 were run again, changing only the overlap from

n to
⌊
n
3

⌋
, to determine the effect of reducing the amount of overlap. The same test

image of a 3600 x 1200 pixel x-ray of a midshaft femur fracture from Section 8.2.4 was

used. The images at scales t = [1,5,20] were again compared to the images smoothed

by the non-parallelised AMSS method, to determine the effect of reducing the overlap.

In all cases there were certainly no perceptible differences between the images, but a

closer comparison revealed that, as expected, some pixels had slightly different values

in the two images. Again though, the largest pixel difference was less than 0.1% of

the maximum pixel difference that resulted from the AMSS smoothing. This meant

that the reduced overlap parallelisation was not completely accurate, because it was

not producing exactly the same output as the standard method described in Chapter

4.

The calculation times for the reduced overlap parallelisation are shown in Table C.2

on page C-3 and plotted in Figures 8.6 and 8.7. As expected, the calculation time was

much shorter than both the non-parallelised version and the standard parallelisation

tested in Section 8.2.4. This time the maximum speed increase occurred at a scale of

t = 11, for which the reduced overlap parallelised method was just over seven times

faster than the non-parallelised method. Tables C.1 on page C-2 and C.2 on page C-

3 showed that the number of stripes that could be utilised at higher scales was much

greater when using the reduced overlap method, since the last scale at which all P = 16

processors were utilised increased from t = 6 to t = 15. This reduction in the number

of processors that could be utilised at high scales was the cause of the oscillations

in the traces in Figure 8.7 for the parallelised and reduced-overlap methods. For

both of these methods, the number of stripes that could be utilised, and therefore the

calculation time, were determined by the final scale of smoothing. The calculation times

203



for the parallelised and reduced overlap methods tended toward the non-parallelised

calculation time as t increased, and were actually equivalent for scales above t = 54

and t= 122 respectively.

These values were also affected by the image size, with smaller images less able to

utilise the maximum number of processors. Fortunately, the reduced overlap method

coped with small images better than the standard parallelisation, because more stripes

could be utilised.

8.2.7 Incremental iteration parallelisation

The results presented so far in this section clearly show that parallelisation had the

potential to significantly increase the speed of the AMSS smoothing process. In Section

8.2.5 it was shown that it was possible to reduce the size of the overlap thereby trading

some accuracy for an increase in calculation speed. This method essentially allowed

higher scales to utilise all P processors, because Equation 8.5 permitted the image to

be split into a larger number of tiles than Equation 8.1. To obtain a speed increase

without trading accuracy, one final method of parallelisation was investigated.

The standard parallelisation and the reduced overlap parallelisation were based on

Equations 8.1 and 8.5 respectively. These were used to calculate the number of tiles into

which the image should be split, based on the final scale of smoothing t, and therefore

the number of iterations n of the smoothing equation that were required. Using this

method, choosing a final scale of t = 20 meant that an overlap of n = 407 pixels was

required, so a 3600 x 1200 image was initially split into only Lx = 3 stripes to maintain

the correct overlap at the final scale. Since the AMSS was an iterative process, all

the scales t = {1,2,3, ...,18,19} had to be calculated before t = 20. In fact, because

any given scale was derived from the previous scale, only a relatively small number of

incremental iterations were required to obtain the next scale from the previous one.

Capitalising on this fact allowed all P = 16 processors to be utilised more effectively.

Table 8.2 shows that obtaining the image at scale t = 20 required only ∆n = 27

iterations of Equation 4.20 applied to the image at scale t = 19, compared to n = 407

iterations applied to the original image. In Section 8.2.1 it was established that the

204



Scale Iterations Maximum number of stripes Lx

t
n ∆n Parallelised Reduced

overlap
Incremental
iterationTotal Incremental

1 8 8 16 16 16
2 19 11 16 16 16
3 32 14 16 16 16
4 48 15 16 16 16
5 64 17 16 16 16
6 82 18 16 16 16
7 100 19 16 16 16
8 120 20 15 16 16
9 140 20 12 16 16
10 162 21 11 16 16
11 183 22 9 16 16
12 206 23 8 16 16
13 229 23 7 16 16
14 253 24 7 16 16
15 277 24 6 16 16
16 302 25 5 16 16
17 328 25 5 16 16
18 354 26 5 15 16
19 380 26 4 14 16
20 407 27 4 13 16
25 548 29 3 9 16
30 699 31 2 7 16

Table 8.2: The number of stripes that could be utilised by the standard parallelisation,
reduced overlap parallelisation and the incremental iteration parallelisation. These Figures
were calculated assuming that P = 16 processors were available, and that the input image

was of size 3600 x 1200 pixels.

205



required overlap was determined by the number of iterations. Therefore reducing the

overlap from n = 407 pixels to ∆n = 27 pixels produced a substantial increase in the

number of stripes that could be used at scale t = 20. Table 8.2 also shows that when

using this method, even at scale t = 30, the maximum number of stripes that could

be utilised was still P = 16. Indeed if it were possible to increase the number of

available processors, this method could use up to P = 58 processors at scale t = 30,

while the standard and reduced overlap methods could only utilise 2 and 7 processors

respectively. When using P = 16 processors, it was not until scale t = 1425 that the

number that could be utilised dropped from 16 to 15.

The downside of this method was that the complete image had to be recreated at

each scale, so that the subsequent scale could be created by applying the appropriate

number of incremental iterations (∆n). By contrast, the previous two methods only

required the complete image to be produced at the final scale. This implied that in the

incremental iteration method, after a particular scale was calculated, the stripes had

to be combined and then immediately split for the next scale. That is, to produce the

image at scale t, it was necessary to perform a total of t split and t combine operations,

rather than single split and combine operations with the previous two methods. Since

the split/combine operations were disk intensive (and on average took a total of 6

seconds to perform for Lx = 16 stripes) they contributed significantly to the overall

calculation time.

8.2.8 Analysis of the incremental iteration smoothing algo-

rithm

The tests described in Section 8.2.4 were run again, this time utilising the incremen-

tal iteration parallelisation. Again the images at scales t = [1,5,20] were compared to

the images smoothed by the non-parallelised AMSS method, to determine if the in-

cremental iteration method produced the same results. When the intermediate images

were written as TIFF files (Section 8.2.3, step 5) there was a perceptible difference at

higher scales, as rounding errors at each scale began to accumulate. If the images were

written as raw files, thereby retaining full accuracy, the results were identical to the

206



non-parallelised method. Using the raw format did increase calculation time slightly

since the raw files were approximately ten times as large as the TIFF files, and took

longer to both read and write.

The calculation times for the incremental iteration parallelisation are shown in Ta-

ble C.3 on page C-4 and are plotted in Figures 8.6 and 8.7. As expected, the calculation

time was much shorter than the non-parallelised version, but was not always shorter

than the standard parallelisation and reduced overlap parallelisation implementations

tested in Sections 8.2.4 and 8.2.6. In fact, the incremental iteration method was slower

than the reduced overlap parallelisation at all tested scales, and slower than the stan-

dard parallelisation at scales less than t= 15. Interestingly, because all p= 16 proces-

sors could be utilised at all scales, the resulting trace was much smoother than for the

other two methods. In addition, the speed increase was almost independent of scale,

remaining relatively constant at just under three times as fast as the non-parallelised

method. Unlike the previous two methods of parallelisation, the calculation time did

not tend toward the non-parallelised calculation time within any useful range of t. By

comparison, the calculation times for this method would only become equivalent at

scales above t= 3.375 x 106, which is four to five magnitudes greater than the largest

usable scale. Thus for high scales (approximately t > 30) the incremental iteration

parallelisation was clearly the best choice.

8.3 Smoothing algorithm parallelisation conclusions

Other possibilities for parallelisation involved combining the strengths of the standard

and incremental iteration parallelisations, and minimising their weaknesses. The stan-

dard method of parallelisation was not overly disk intensive (apart from single split

and combine operations), but due to the large overlaps for each stripe it was very

processor intensive and could not always utilise all P = 16 processors. On the other

hand, the incremental iteration parallelisation was disk intensive because the stripes

had to be combined and then re-split at every scale. However, due to the small overlaps

required it was not as processor intensive and all P = 16 processors could be utilised.

In the future, a suitable trade-off could be to combine the images at every two, three

207



or four scales so that the disk use is decreased and all processors can still be utilised

at all scales. There are many possible combinations of ways in which this could be

performed, but these were not tested here.

The results shown in Figure 8.6 on page 199 indicated that parallelisation of the

AMSS algorithm had the potential to significantly decrease the smoothing time. Of

the three methods discussed in Section 8.2, the reduced overlap parallelisation (Section

8.2.5) had the greatest potential to decrease the calculation time, but also had the

drawback that it did not retain the full accuracy of the standard method. Therefore

the standard and incremental iteration parallelisations were more appropriate methods

of decreasing the calculation time. There were, however, drawbacks to both methods.

The standard parallelisation was highly dependent on scale and only produced good

speed increases at low scales, while the incremental iteration method was very disk

intensive so overall did not produce as much of a speed improvement with the test

hardware.

It was estimated that with better coding—including the use of compression during

the data transfers between machines within the cluster to minimise the effect of network

latency, as well as better memory management to minimise the number of disk intensive

steps—that the incremental iteration method could have been almost as fast as the

reduced overlap parallelisation at all scales. This would definitely have been the case

when run on a multi-core (i. e. quad-core or 8-core) machine, where the system memory

would shared between all the cores, the data transfers would happen at the clock speed

of the board rather than at the speed of the local area network, and almost no file IO

would be required. In any case, because it retained full accuracy and could smooth an

image to the chosen scale t2 = 20 faster than the standard parallelisation, it was the

smoothing method of choice.

8.4 Why the Hough Transform is slow

As mentioned in Section 5.2.2 on page 88, the Hough Transform was very memory and

computation intensive, since Equation 5.1 on page 87 had to be calculated at every

pixel (x,y) for every θ in the range [0,π]. Various groups have attempted to decrease

208



the calculation time in a variety of ways.

One method of increasing performance is the fast Hough Transform (FHT), first

described by Li et al. [58]. The limitation with the standard method described in

Chapter 5 was that to find the parameters (ρ,θ) accurately, the parameter space had

to be finely divided and an accumulator assigned to each block. When calculating

the transform, these accumulator blocks were time consuming to fill. Rather than

evenly dividing the parameter space into blocks, the FHT ignores those areas of the

parameter space that are relatively devoid of votes by homing in on the solution.

This results in a considerable speed increase and reduction in memory requirements.

For higher-dimensional parameter spaces, the relative speed advantages of the FHT

increase. Unfortunately a disadvantage of the FHT is that it can only supply one

best-fit solution. In this case, the parameters for multiple local maxima (Section 5.4

on page 96) in the accumulator are required, rather than the parameters of a single

global maxima. Thus unfortunately, the FHT was unsuitable for long-bone parameter

approximation.

Other groups have attempted to create efficient Hough Transform algorithms such as

the adaptive Hough Transform (AHT) described by Illingworth and Kittler [49], and the

multi-resolution Hough Transform (MHT) described by Atiquzzaman [12]. In addition,

Atiquzzaman [13] describes a pipelined implementation of the Hough Transform in a

pyramid multi-processor, which produces a coarse to fine search for a single set of

parameters. Again the detection of multiple peaks is not supported, so like the FHT

this method was unsuitable. Other researchers have identified that since the Hough

Transform involves many similar operations, parallel implementations could be used to

improve performance, although no algorithms for performing this were located.

8.5 Increasing the speed of the Hough Transform

Rather than rewrite the Hough Transform algorithm or utilise a different scheme to

calculate it, the aim was to simply to increase execution speed of the current algorithm,

again through parallelisation. The calculation speed of the Hough Transform could be

increased more easily than the AMSS algorithm, since it was not an iterative process

209



that relied on the output of the previous iteration to perform the next. As described in

Section 5.3 on page 92, both the standard and modified Hough Transforms calculated

Equation 5.1 on page 87 at every (x,y) in the image, for every value of θ. The two

methods varied in the range of θ at which the equation had to be calculated. Unlike

the AMSS algorithm, it was not suitable to split the image into tiles or stripes and

determine the Hough Transform of each of these, because the resulting accumulators

were of different dimensions, and the results could not be easily combined to produce

the required output. Instead it was possible to split θ so that each processor only

calculated Equation 5.1 at a smaller range of θ. For example, the un-parallelised

method calculated Equation 5.1 at every θ in the range 0 ≤ θ < 180◦ at intervals of

0.25◦, requiring 720 calculations. This range was able to be split into P = 16 smaller

ranges such that each spanned 11.5◦, still at an interval of 0.25◦, thus reducing the

number of calculations of Equation 5.1 to 45 per processor.

8.5.1 Parallel Hough algorithm implementation

Unlike the AMSS algorithm which required boundary extension at the locations where

the image was split, parallelisation of the Hough algorithm was much simpler, and con-

sisted of splitting the file containing the θ information into P approximately equally

sized smaller θ files. The same set of input images (gradient magnitude and direc-

tion) were used in each parallel process, while the θ files varied. As in the AMSS

parallelisation, the Sun Grid Engine software was used to schedule and submit each

job for processing. Once all processors had completed their transforms, the resulting

images were simply assembled vertically edge to edge to create the complete Hough

accumulator. Regardless of the input image, the Hough accumulator produced using

the parallelised method was always identical to that created by the non-parallelised

method. All the standard and modified Hough Transform images shown in this the-

sis were created using the parallelised method. An example demonstrating how the

horizontal stripes were assembled is shown in Figure 8.9b.

210



(a)

(b)

Figure 8.9: Demonstration of parallelised Hough Transform. (a) The input gradient image,
and (b) the resulting Hough Transform in which each horizontal stripe (shown between the

dashed lines) was calculated on a separate processor.

211



8.5.2 Analysis of the parallelised Hough Transform

Calculating this image using the non-parallelised method took 58.0 seconds whereas the

parallelised method took 21.6 seconds, about a 63% reduction in the total transform

time. Interestingly the 2.7 times speed increase was not as dramatic as would be

expected when utilising 16 processors, and was certainly not even close to 16 times

faster. This was due to the design of the modified Hough Transform algorithm, and

specifically the need to determine if the angle of the gradient φ at the pixel (x,y) lay

within the specified θ range (as described in Sections 5.2.3 and 5.3). As a result, for any

pixel this match could only occur on one of the P processors. The overhead required for

checking the match range was significant, and contributed to the smaller than expected

increase in performance. When parallelising the standard Hough Transform, in which

each angle in θ was iterated and during every iteration Equation 5.1 was calculated at

every (x,y), the speed increase was indeed much closer to 16 times. Calculating the

standard Hough Transform of the same image in Figure 8.9a using the non-parallelised

method took 37 minutes and 49 seconds, while the parallelised method with P = 16

took 2 minutes and 29 seconds, corresponding to a speed increase of just over 15 times.

While the speed increase from parallelisation of the modified Hough Transform was not

as great as expected, the calculation time of 21.6 seconds is still significantly faster than

any of the other methods, being 105 times faster than the non-parallelised standard

Hough Transform.

8.6 Hough Transform parallelisation conclusions

The results showed that, by utilising multiple processors in parallel, it was possible to

significantly decrease the amount of time required to calculate the Hough Transform

of an image, without sacrificing any accuracy. Unlike the standard Hough Transform,

the speed increase from parallelising the modified Hough Transform did not change

linearly with the number of processors P used. However, there was still an improvement

in calculation time of close to three times. As mentioned, by using the parallelised

modified Hough Transform over a standard non-parallelised transform, a speed increase

212



of greater than two orders of magnitude was possible.

8.7 Summary

Both the AMSS and the modified Hough Transform were very CPU intensive, and

required large calculation times for standard image sizes. The AMSS smoothing was

slow because a large number of iterations of equation 4.20 had to be performed to reach

the desired scale t. Even on a fast computer this process took close to 30 minutes

to complete. Three methods of reducing the overall smoothing time were identified,

although they all traded accuracy for calculation time. The chosen solution was to

perform parts of the calculation in parallel, so that the same accuracy could be retained

while the calculation time was reduced.

Unfortunately parallelisation of the AMSS algorithm could not be achieved by sim-

ply splitting the image into stripes or tiles, due to the smoothing effects that occured

across the boundaries. To ensure that the output was correct, boundary extension had

to be performed wherever the image was split. The method by which the image should

be split was examined, and it was shown that the smoothing times were the shortest

when all tiles were the same size. The number and size of the tiles or stripes was de-

termined by both the number of available processors, and the final scale of smoothing.

The equations to determine the tile sizes were also derived, and their use demonstrated.

The parallelised AMSS algorithm was implemented in C, and tested to determine

how effective it was. This implementation involved splitting the image into the required

number of stripes, including the appropriate boundary extension, before each stripe was

written as an individual file. Each file was smoothed on an individual processor in the

cluster, and when all smoothings were complete the stripes were recombined to produce

the output image. Firstly, the smoothed images obtained using the parallelised method

were identical to the non-parallelised method in all cases. Secondly, the speed increase

was measured to be a maximum of five times at the scale t= 6.

The effect of reducing the size of the boundary overlap was investigated, to deter-

mine how much more the speed could be increased. Although the smoothed images

from the parallelised and non-parallelised methods were no longer identical, the speed

213



increased to a maximum of seven times at a scale t= 11, due to the greater utilisation

of processors at higher scales. Increasing the calculation speed without sacrificing ac-

curacy was achieved in the incremental iteration method, where the required overlap

was modified and adapted for each scale, rather than just the maximum scale. This

allowed much better utilisation of all processors and retained full accuracy, despite be-

ing much more disk intensive. Since the incremental iteration method was the fastest

method to smooth an image to the scale t2 = 20, and still retain full accuracy, it was

the smoothing method of choice.

The Hough Transform was also parallelised. This was a much simpler task than

parallelising the AMSS, since the output of one iteration was not used as the input

to the next. Rather, the θ values at which the transform was to be calculated could

be split into P smaller equal size groups, each of which could then be calculated on

separate processors. When parallelised, the standard method was over 15 times faster

for P = 16 processors, so the speed increase was very close to P times. Due to the

design of the algorithm, the modified Hough Transform was approximately three times

faster when P = 16 processors were utilised.

Although not the primary focus of this thesis, these parallelisation methods proved

to be very useful when testing required that results be produced in a timely manner.

They also allowed the total fracture detection time to be greatly reduced, helping to

meet the second goal outlined in Section 3.3.4 on page 51.

214


