Defining, Assessing and Measuring Generic Competences

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in the School of Education Faculty of Education, Humanities, Law and Theology Flinders University of South Australia

David D Curtis

February 2010
Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

David O'Carroll
Abstract

This thesis reports an investigation into generic skills, a class of skills that appear to be broadly applicable to many work, social and civic contexts. Two major generic skills schemes were proposed in Australia, namely the key competencies (Australian Education Council. Mayer Committee, 1992) and the employability skills initiative (Australian Chamber of Commerce and Industry & Business Council of Australia, 2002). The implementation of these schemes is reviewed and several difficulties in their implementation are identified. The most significant issues are thought to be the definition and assessment of these skills.

The issue of definition occurs for generic skills as a class of constructs and arises in relation to each skill proposed as generic. Generic skills could be perceived as representations of either general intelligence or as particular kinds of intelligence. They could also be seen as components of competence. The representation of generic skills as aspects of competence, involving the deployment of cognitive and metacognitive processes, appears to be a fruitful approach to the investigation of generic skills.

In addition to defining generic skills as a class of constructs, each generic skill requires definition. For the research reported in this thesis, one commonly recognised generic skill, problem solving, is selected for investigation. Problem solving is defined as a set of processes that are deployed in identifying, defining, planning, executing, monitoring and evaluating problems and their solutions.

The second major issue identified in the implementation of generic skills schemes is assessment. A body of literature on assessment is reviewed. Assessment is found to serve two major sets of purposes, namely summative and formative. A variety of methods has been used in the assessment of generic skills, most of these methods having been designed for the summative assessment of generic skills achievement. There would appear to be a role for assessment methods that seek to enhance generic skills performance, and this is a focus of the research reported here.

Two studies are undertaken into the assessment of problem solving. In the first, the definition of problem solving, based upon notions of competence, is used to develop and validate a problem solving assessment instrument. The instrument is used as one element of a particular assessment process. In this process, students assess their own problem solving performance on routine assessment tasks that they undertake within their courses. They submit their work, including both the
substantive course-related tasks and their assessment of their problem solving performance on that task. Their self-assessment is validated by their lecturer and they receive feedback on that assessment. The results of the first study indicate that the problem-solving assessment instrument, based on a cognitive theory of problem solving, does provide a valid basis for the assessment and measurement of problem solving performance, although some improvements to the instrument are foreshadowed.

In the second study, a revised version of the problem solving assessment instrument developed in the first study is used. In this study, students use the problem solving assessment tool on a series of course-related assessment tasks over an academic year, receiving feedback on each assessment. The purpose of this study is to test the proposition that repeated assessment and feedback cycles might lead to improved problem solving performance. Evidence for such improvement is reported.

It is concluded that existing course-related activities can be used as vehicles for the development of students’ problem solving skills. The development of generic skills (problem solving in this instance) would appear to depend upon two elements of an assessment regime. First, the assessment target needs to be defined in terms of an underlying construct that is operationalised through an assessment tool that focuses student attention on its key elements. Second, the development of problem solving proficiency is related to repeated assessment and feedback cycles, that is, to the implementation of a formative assessment approach.
Acknowledgments

I am indebted to many people who have supported and encouraged the investigation reported in this thesis.

Professor John Keeves, my principal supervisor, has been a mentor and an inspiration for more than a decade. He has given generously of his time and expertise and I join a large group of students from around the globe who are in John’s debt.

Professor Mike Lawson, co-supervisor in this research, has influenced my learning and thinking for more than two decades. He alerted me to the importance of psychology as a foundation discipline in the study of numerous education issues and his influence has continued through this research.

I would also like to acknowledge the support of a generous scholarship, the Premier’s Award for Post-graduate Research into Lifelong Learning. This scholarship was administered through the Centre for Lifelong Learning and Development under the leadership of Professor Denis Ralph. The encouragement provided by Denis, staff and other post-graduate candidates of the Centre has been especially valued.

I am pleased to acknowledge the support from teaching staff and students who participated in the studies. Mr Rob Denton of Torrens Valley Institute of Technical and Further Education was enthusiastic in facilitating the first of the two studies reported in this thesis. He and his colleagues and students were important contributors to this study. Ms Sharmil Randhawa of Flinders University and Ms Lyn Villis of the South East Institute of Technical and Further Education facilitated the second of the studies reported in this thesis. To those teaching staff and their students I am very grateful.
Contents

Declaration iii
Abstract v
Acknowledgments vii
Contents ix
Tables xiii
Figures xv
Acronyms xvi

Chapter 1: Introduction 1
A lifelong learning perspective 1
The focus of the thesis 4
Structure of the thesis 8

Chapter 2: The Evolution of Generic Skills in Australia 15
The impetus for generic skills 16
The changing requirements of work 16
Definition of terms used to describe generic skills 21
Labels for generic skills 21
The qualifiers 22
The descriptors 24
An interim position on terminology 29
Review of major generic skills schemes 29
The emergence of generic skills in Australia 30
Quality of Education Review Committee 31
The Finn Review Committee 32
The Mayer Committee 33
Implementation of key competencies 38
Summary of the evolution of generic skills in Australian education 67
Critical issues in implementing generic skills 69
Definition and selection 70
Assessment, reporting and certification 74
Summary of generic skills developments 79

Chapter 3: Conceptions of Generic Skills and Models of Problem Solving 81
Generic skills as psychological constructs 81
The problem of definition 82
Generic skills as manifestations of intelligence 88
Generic skills as competences 99
Generic skills, intelligence and competence 104
Conceptions of problem solving 106
Models of problem solving 107
Problem solving processes 117
Summary statements 119
<table>
<thead>
<tr>
<th>Administration of the Problem Solving Assessment instrument</th>
<th>214</th>
</tr>
</thead>
<tbody>
<tr>
<td>The assessment of problem solving</td>
<td>216</td>
</tr>
<tr>
<td>Data collection and analysis</td>
<td>217</td>
</tr>
<tr>
<td>Results</td>
<td>218</td>
</tr>
<tr>
<td>The Problem-Solving Inventory</td>
<td>219</td>
</tr>
<tr>
<td>The Problem Solving Assessment</td>
<td>221</td>
</tr>
<tr>
<td>Validation study</td>
<td>236</td>
</tr>
<tr>
<td>Student evaluation of the Problem Solving Assessment</td>
<td>238</td>
</tr>
<tr>
<td>Results</td>
<td>241</td>
</tr>
<tr>
<td>The Problem-Solving Inventory</td>
<td>243</td>
</tr>
<tr>
<td>The Problem Solving Assessment Tool</td>
<td>243</td>
</tr>
<tr>
<td>Summary</td>
<td>245</td>
</tr>
</tbody>
</table>

Chapter 8: The Growth in Students’ Problem Solving Performance over Time

Selection of research sites and students	249
Information for participants	251
Analytical methods	256
Tertiary Skills Assessment	256
Analysis of the Tertiary Skills Assessment	257
PSSAT calibration and scaling	261
Changes in problem solving performance over time	265
Approaches to assessing growth	266
Exploratory analyses of problem solving development	266
Multilevel models for problem solving development	272
Summary and discussion of key findings	292

Chapter 9: Summary, Discussion, Implications and Conclusions

Summary	295
What is known about generic skills?	295
Towards a definition of generic skills and of problem solving	298
Understanding the possibilities and limitations of alternative assessment methods	300
Developing a problem solving assessment tool	301
Discussion	305
Limitations	305
Implications for practice and further investigation	308
Conclusions	312

References

Appendices

Appendix 1: Ethics Approvals	343
Approval from Flinders University	344
Approval from the Department of Education Training and Employment	345
Appendix 2: Overseas Generic Skills Schemes	347
The United States	347
Developments in the United Kingdom	354
Developments in Canada 357
The DeSeCo Project 358
Developments in Europe 360
Implications for Generic Skills in Australian Education 365
Appendix 3: Examples of Generic Skills Assessments 369
 Standardised assessment 369
 Common assessment tasks 377
 Performance assessment 379
 Teacher judgment 384
 Portfolio construction 386
Appendix 4: The Problem Solving Inventory 389
Appendix 5: The Problem Solving Assessment 393
Appendix 6: Student Evaluation of the Problem Solving Assessment 401
Appendix 7: Recommended E&IT Assessment Tasks 403
Appendix 8: The Problem Solving Skills Assessment Tool (PSSAT) 407
Appendix 9: Teacher Information Package 409
Appendix 10: Student Information Package 423
Appendix 11: Results of Analyses of Multiple Imputation Data Files for Self-Assessed Problem Solving 443
Appendix 12: Results of Analyses of Multiple Imputation Data Files for Teacher Assessed Problem Solving 447
Tables

Table 1: Terms commonly used to describe the generic skills learners are expected to acquire ... 22
Table 2: Generic skills schemes by country ... 31
Table 3: The final seven key competencies .. 36
Table 4: The Australian Industry Group skills taxonomy ... 49
Table 5: Employability skills framework .. 53
Table 6: Relationship between key competencies and key skills from the employability skills framework ... 54
Table 7: Summary of key competencies developments in Australia, 1985 to 2001 .. 68
Table 8: Summary of employability skills developments in Australia, 2002 to 2008 ... 69
Table 9: SCANS proficiency levels .. 75
Table 10: Sternberg’s model of successful intelligence 97
Table 11: Process-based models of problem solving 118
Table 12: Bloom’s taxonomy of educational objectives – cognitive domain 137
Table 13: Comparison of problem solving processes with Bloom’s taxonomic levels .. 138
Table 14: Performance levels of indicators using the SOLO taxonomy 140
Table 15: Calfee’s comparison of externally and internally mandated assessment .. 150
Table 16: Summary of the application of evaluation criteria to prospective assessment methods ... 160
Table 17: Performance levels of indicators using the SOLO taxonomy 212
Table 18: Course modules and recommended problem solving assessment tasks .. 215
Table 19: Results of principal components analysis of PSI responses 221
Table 20: Correlations among PSI components following Promax rotation 221
Table 21: Assessors who participated and tasks used in problem solving assessment .. 223
Table 22: PSA Major Processes, indicators and abbreviations 223
Table 23: Frequencies of Problem Solving Assessment indicator performance levels .. 224
Table 24: Rotated factor solution for the Problem Solving Assessment 225
Table 25: Results of reliabilities analysis for the complete PSA scale 226
Table 26: Estimates of PSA indicator locations and performance level thresholds .. 231
Table 27: Questions and summary of responses to an online student evaluation survey .. 241
Table 28: Indicator numbers, labels and text in the PSSAT
Table 29: Item parameters for the TSA interpersonal understanding scale
Table 30: Item parameters for the TSA critical thinking scale
Table 31: Item parameters for the TSA problem solving scale
Table 32: Summary statistics for the three TSA scales
Table 33: PSSAT indicator thresholds (Deltas) and indicator fit statistics
Table 34: Comparison of TSA sub-scale scores of those who continued in the study with those who dropped out
Table 35: Descriptive statistics for problem solving assessment by occasion
Table 36: Correlations between TSA sub-scales
Table 37: Equations for the models of problem solving performance
Table 38: Results of models of self-assessed problem solving performance
Table 39: Deviance values for models of self-assessed problem solving performance
Table 40: Results of models of teacher-assessed problem solving performance
Table 41: Possible arrangements for the delivery and assessment of employability skills
Table 42: Electronics and Information Technology recommended assessment tasks
Figures

Figure 1: Structure of the thesis ... 8
Figure 2: The structure of Carroll’s proposed model of intelligence 89
Figure 3: Category probability curves for MSAI Item 2 189
Figure 4: Category probability curves for MSAI Item 9 190
Figure 5: Relationship between raw scores, Rasch scaled scores and the standard error of person estimates for the MSAI Anger Intensity scale 193
Figure 6: The process of developing a measurement scale for problem solving performance ... 210
Figure 7: Frequency distributions of individual competences (above the horizontal axis) and performance level thresholds (below the axis) along the problem solving performance scale ... 229
Figure 8: Fit parameters (Infit MS) of the Problem Solving Assessment 230
Figure 9: Delta thresholds for PSA indicator performance levels 232
Figure 10: Thurstone thresholds for PSA indicator performance levels 233
Figure 11: Distribution of problem solving performance measured on the PS500 scale ... 234
Figure 12: Individual’s problem solving scores in rank order, showing standard errors of estimates ... 235
Figure 13: Standardised indicator location differences between E&IT and AWT students ... 237
Figure 14: Using the PSA to record and judge evidence of the student’s selected performance level ... 253
Figure 15: PSSAT indicator thresholds (Deltas) and standard errors 263
Figure 16: Differences in indicator difficulty estimates between self assessments and lecturer validation ... 264
Figure 17: Trellis plots for students’ self assessed problem solving scores over three occasions (N=42) ... 270
Figure 18: Composite plot of students’ problem solving self assessments by occasion showing an interpolated ‘best fit’ curve (N=42) 270
Figure 19: Trellis plots for teacher assessed problem solving scores over three occasions (N=42) ... 271
Figure 20: Composite plot of problem solving teacher assessments by occasion showing an interpolated ‘best fit’ curve (N=42) 271
Figure 21: Representation of relationships between models in the sequence of models developed to explore growth in problem solving performance 276
Acronyms

Names and titles are used in full at their first reference. Subsequently, the following acronyms are used.

ABS The Australian Bureau of Statistics
ACCI The Australian Chamber of Commerce and Industry
ACER The Australian Council for Educational Research
AiG The Australian Industry Group
ANTA Australian National Training Authority
AVCC Australian Vice-Chancellors Committee (now Universities Australia)
BCA The Business Council of Australia
BHERT Business Higher Education Round-Table
CBI The Confederation of British Industry
CRESST Center for Research in Evaluation, Standards, and Student Testing (USA)
CTT Classical Test Theory
DEET Department of Employment, Education, Training
DEETYA Department of Employment, Education, Training and Youth Affairs
DEEWR Department of Education, Employment and Workplace Relations
DeSeCo Definition and Selection of Competencies (OECD project)
DEST Department of Education, Science and Training
DETE The (South Australian) Department of Education, Training and Employment
DETYA (Australian) Department of Education, Training and Youth Affairs
GSA Graduate Skills Assessment
IRT Item Response Theory
MCEETYA Ministerial Council on Education, Employment, Training and Youth Affairs
NCVER The National Centre for Vocational Education Research
NQC National Quality Council
NTB National Training Board
NTQC National Training Quality Council
OECD Organisation for Economic Cooperation and Development
PISA Programme for International Student Assessment (OECD program)
SACE The South Australian Certificate of Education
SCANS Secretary’s Commission on Achieving Necessary Skills (USA)
TAFE Technical and Further Education (often, College of...)
TST True Score Theory
UNESCO United Nations Educational, Scientific and Cultural Organisation
USA United States of America