Light Ignition of Carbon Nanotubes for the Initiation of Energetic Materials

Thesis submitted to the School of Chemical and Physical Sciences,
Faculty of Science and Engineering, Flinders University
in fulfilment of the requirements for the degree of
Doctor of Philosophy

December 2014

Steven Trewartha

Supervisors: Prof. Joe Shapter, Dr Rodney Appleby and Dr Jason Gascooke
Table of Contents

Table of Contents ... i
Summary ... iv
Declaration ... vi
Acknowledgements ... vii
List of Figures .. ix

Chapter 1: Introduction and Literature Review ... 1

1.1: Overview ... 1
1.2: History of Carbon Nanotubes ... 1
1.3: Synthesis of Carbon Nanotubes ... 7
1.4: Properties of Carbon Nanotubes .. 12
1.5: Explosives Classifications and Terminology ... 15
1.6: Current Explosives Initiation Devices ... 15
1.7: Literature Review of the Light Ignition of Nanomaterials 19
1.8: Energetic Materials with the Light Ignition of Nanotubes 28
1.9: Addition of Fuels to the Light Ignition of Nanotubes 33
1.10: Overview of Previous Work ... 35
1.11: Structure of the Thesis .. 36
1.12: References ... 37

Chapter 2: Materials and Experimental Methods 42

2.1: Materials ... 42
2.2: Powder Mixing of Nanotubes ... 43
2.3: Carbon Nanotube Purification ... 44
2.4: Chemical Vapour Deposition (CVD) CNT Synthesis 44
2.5: PETN Loading on Surface Bound MWCNTs .. 47
2.6: Camera Flash Unit .. 47
Chapter 2: Spectrometers and Laser Initiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Photodiode/UV-Vis Spectrometer</td>
</tr>
<tr>
<td>2.8</td>
<td>Initial Experimental Setup</td>
</tr>
<tr>
<td>2.9</td>
<td>Nd-YAG Laser and Experimental Setup</td>
</tr>
<tr>
<td>2.10</td>
<td>Pyrometer</td>
</tr>
<tr>
<td>2.11</td>
<td>High Speed Camera</td>
</tr>
<tr>
<td>2.12</td>
<td>Confocal Raman Spectroscopy</td>
</tr>
<tr>
<td>2.13</td>
<td>Thermogravimetric Analysis (TGA)</td>
</tr>
<tr>
<td>2.14</td>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 3: Photodiode, Camera Flash and Laser Initiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Camera Flash Unit Results</td>
</tr>
<tr>
<td>3.2</td>
<td>Flash Ignition of Metal Nanoparticles</td>
</tr>
<tr>
<td>3.3</td>
<td>Limitations and Solutions</td>
</tr>
<tr>
<td>3.4</td>
<td>Energy Comparison of the Flash Unit and the Laser</td>
</tr>
<tr>
<td>3.5</td>
<td>Chapter Conclusions</td>
</tr>
<tr>
<td>3.6</td>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 4: Pyrometer Method with Laser Initiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Laser Settings and Experiment Setup</td>
</tr>
<tr>
<td>4.2</td>
<td>Ferrocene and Ratios of Ferrocene</td>
</tr>
<tr>
<td>4.3</td>
<td>Altering the Wavelength and Energy of the Incident Laser Beam</td>
</tr>
<tr>
<td>4.4</td>
<td>Brands of Carbon Nanotubes</td>
</tr>
<tr>
<td>4.5</td>
<td>Single-Walled and Multi-Walled Carbon Nanotubes</td>
</tr>
<tr>
<td>4.6</td>
<td>Thermogravimetric Analysis of Samples</td>
</tr>
<tr>
<td>4.7</td>
<td>Chapter Conclusions</td>
</tr>
<tr>
<td>4.8</td>
<td>References</td>
</tr>
</tbody>
</table>

Chapter 5: Novel Techniques and Additives

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Metal Nanoparticles</td>
</tr>
<tr>
<td>5.2</td>
<td>Cut and Purified Nanotubes</td>
</tr>
</tbody>
</table>
5.3: Addition of Oxidizer to Carbon Nanotubes ... 121
5.4: Polymer Wrapping Around Carbon Nanotubes 123
5.5: Horizontally Aligned Carbon Nanotubes ... 126
5.6: Vertically Aligned Surface Bound CVD Grown Nanotubes 135
5.7: Chapter Conclusions ... 144
5.8: References .. 146

Chapter 6: Energetic Materials and Carbon Nanotubes 149
6.1: Introduction ... 149
6.2: Laser Ignition of PETN with APSWCNTs .. 154
6.3: Addition of Ferrocene to APSWCNTs with PETN 160
6.4: Reaction of PETN with Iron Nanoparticles 164
6.5: CVD Grown Vertically Aligned Carbon Nanotubes with PETN 166
6.6: Chapter Conclusions ... 184
6.7: References ... 185

Chapter 7: Conclusions and Future Direction .. 187
7.1: Introduction ... 187
7.2: Research Findings .. 188
7.3: Future Directions ... 191
7.4: References ... 197

Appendix ... 199
A.1: Labview Program Front Panel ... 199
A.2: Labview VI Block Diagram .. 200
Summary

Carbon nanotubes have been shown to ignite when exposed to an intense flash of light such as from a camera flash or laser. This phenomenon has been proposed as a novel initiation method for fuels or explosives. Light initiation of materials provides many advantages over traditional initiation methods for fuels and explosives such as reduced degradation of the initiator over time, reduced interference from electrical fields, improved safety and faster ignition by initiating many points of a material at once. The purpose of this work was to investigate the use of light initiated carbon nanotubes in mining explosive initiators to replace the sensitive primary explosives currently used.

In order to investigate this, experimental methods and instruments needed to first be developed to control and reproducibly measure the ignition of carbon nanotubes by light. Subsequently, those experimental methods were used to comparably optimise the ignition output of carbon nanotubes by exploring the variables and investigating various additives and novel techniques.

Results were successfully recorded with the combination of a high speed camera and a high speed pyrometer. A comparison of the reactions when subjected to a camera flash and a laser was performed. It was found that a camera flash unit produced a slow, surface propagated deflagration while a laser produced a much faster explosion-like result which was determined to be preferable for controllable initiation of energetic materials.

The addition of ferrocene to carbon nanotube powder was found to increase the temperature and reaction of light initiated nanotubes and these mixtures were used to successfully ignite pentaerythritol tetranitrate (PETN). Incomplete combustion was found as a result of particle scattering and limited thermal transfer.
Growth of vertically aligned carbon nanotubes on a silicon substrate was performed and investigated as an alternative to randomly aligned nanotube powders. Light initiation of these samples demonstrated higher temperatures and greater reactivity due to the aligned nature of the nanotubes and the strong thermal conductivity of carbon nanotubes along their length. Vertically aligned carbon nanotubes coated in PETN produced explosive results when initiated by a laser and demonstrated great promise for the ignition of energetic materials.
Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Steven Trewartha
Acknowledgements

Firstly, I would like to deeply express my thanks to everyone in my life, all of whom have contributed either directly or indirectly to my work and my ability to complete this thesis. I would like to make specific mention of some people without whom this project would not have been possible.

I specifically thank my primary supervisor, Joe Shapter, who is incredible to work with. Your patience and flexibility are matched by a willingness to support students by being available to discuss or answer questions at any time and provide excellent feedback to drafts in very short time. I also acknowledge and thank my secondary supervisor, Rodney Appleby from Orica, Australia who provided invaluable input particularly into the energetic materials portion of the experiments and the overall directions of the project along the way. Jason Gascooke, thank you for assisting with the laser operation in training me and expanding my knowledge.

I would like to acknowledge and thank the Flinders University Faculty of Science and Engineering for the scholarship which enabled me to continue study. I also acknowledge and thank Orica for proposing the project and providing financial assistance for the research. I also thank Marilyn Karaman from Orica for performing the TGA experiments presented.

I would like to acknowledge the excellent Technical Services Unit in the school, and in particular John Pesor who initially setup the photodiode system and LabView program, and Wayne Peacock who refined and helped troubleshoot the equipment right up to the last days where everything broke down.
I acknowledge DSTO who, through our Centre for Expertise in Energetic Materials (CEEM), provided me with safety training and access to PETN as well as the use of a high speed camera for a portion of the project.

Thanks go to Ashley Slattery for first providing me with samples of vertically aligned nanotubes and then training me to make them myself and always being available and helpful in answering questions about the process. Thanks also to Dan Tune who introduced me to the method of horizontally aligned nanotubes.

I thank the whole Smart Surface Structures labgroup who always listened intently and provided thought provoking questions and feedback whenever I presented portions of my results.

Lastly, but definitely not least, I thank my family for their unconditional support throughout my whole time studying, plus my girlfriend and all my friends for being there for me or just providing welcome distraction and relaxation when I needed it as well as the Flinders University Volleyball Club for much the same.
List of Figures

Figure 1.1: Left; Schematic model of a graphite whisker. Right; Electron microscope image of the scroll (2500X). *(Bacon, 1960)* .. 2
Figure 1.2: TEM images of carbon nanotubes approx. 50nm in diameter produced in 1952. *(Radushkevich et al., 1952)* .. 3
Figure 1.3: Stereoscopic examination of carbon growth in firebricks with an iron catalyst. *(Davis, 1953)* .. 4
Figure 1.4: TEM image displaying a single-walled carbon nanotube in a cross-linked carbon fibre. *(Oberlin, 1976)* .. 5
Figure 1.5: TEM image of SWCNTs attached to cobalt and soot clusters. *(Bethune, 1993)* ... 7
Figure 1.6: Schematic representation of an electric arc-discharge system to produce CNTs. *(Journet, 1998)* .. 8
Figure 1.7: Example of a catalytic CVD system for MWCNT growth. *(Andrews, 2002)* ... 10
Figure 1.8: SEM image displaying highly aligned multi-walled carbon nanotubes produced via CVD on iron. *(Andrews, 2002)* .. 10
Figure 1.9: Schematic showing the vectors responsible for different nanotube conformations. *(Odom, 2000)* .. 13
Figure 1.10: Molecular models of single-walled carbon nanotubes; a) armchair configuration, b) zigzag configuration, c) chiral conformation. *(Terrones, 2003)* 13
Figure 1.11: Schematic of a non-electric detonator. *(From Orica Australia general document in correspondence with Rodney Appleby)* 16
Figure 1.12: Schematic representation of a hot-wire initiator, also representative of an exploding bridgewire detonator .. 17
Figure 1.13: High Resolution Transmission Electron Microscopy images of SWCNTs pristine (left) and reconstructed carbonaceous material after photoflash (right). *(Ajayan, 2002)* .. 20
Figure 1.14: TEM image of single-walled carbon nanotubes post flash ignition showing large formations of iron oxide. *(Smits, 2003)* .. 21
Figure 1.15: TEM image of as-prepared single walled carbon nanotubes showing the distribution of iron nanoparticles (20nm scale) (left) and high-resolution TEM
of a bundle showing that most of the iron appears to be enca sed in carbon (2nm scale) (right). (Smits, 2003) ...22

Figure 1.16: SEM image of nanotube/polymer film after ignition of laser showing the large craters. (Singamaneni, 2006) ...23

Figure 1.17: Optical image of the two-terminal device used to measure photocurrent. A drop of silver paint is at either end with an aligned bundle of SWCNTs connecting the drops. Inset: SEM image of the aligned nanotubes. (Liu, 2007) ..25

Figure 1.18: SWCNT enwrapped in a polymer microcapsule before laser irradiation (left) and after laser irradiation (right). (Kang, 2008)27

Figure 1.19: A) TEM image of RDX coated MWCNTs with dashed line showing the boundary between the materials. B) Schematic of the mechanism of reaction to create the thermopower wave. (Choi, 2010) ...29

Figure 1.20: High-resolution TEM image of Zr/KClO₄/SWCNT after ignition from a photoflash displaying onion-like structures from significant reconstruction of nanotube structure. (Xiang, 2012) ...32

Figure 1.21: High frame rate photo (5ms after initiation) comparison of camera flash initiated ignition of SWCNTs in ethylene/air creating a distributed ignition across many points (left) and spark initiated comparison that created a combustion wave which expanded from the centre (right). (Berkowitz, 2011)34

Figure 2.1: Schematic of CNT growth by chemical vapour deposition.46

Figure 2.2: The two growth models of carbon filaments from a supported catalyst. (Dupuis, 2005) ...47

Figure 2.3: Measured wavelength range and intensity of the light from the camera flash unit. ...48

Figure 2.4: Photograph of initial camera flash initiation experimental setup.50

Figure 2.5: Nd-YAG laser setup showing the path of the laser to the sample stage (red line). ...51

Figure 2.6: Laser calibration of the measured output energy as a function of the Q-switch time in the laser ...52

Figure 2.7: Energy level diagram showing the Raman Effect. Rayleigh scattering is inelastic while Stokes and anti-Stokes are elastic and the energy change can be measured by emitted photons ...54
Figure 2.8: Vibrational modes of carbon in carbon nanotubes. (a) Vibrations of G-band showing G^+ vibrations along the tube axis and G^- vibrations around the tube circumference, (b) cross-section of a nanotube showing the RBM of the tube and (c) vibrations of the D-band. (modified from Raravikar, 2002) 55
Figure 2.9: Schematic of the Confocal Raman microscope used. (WITec product catalogue) ... 57
Figure 2.10: Raman intensity image of the G-band (1580cm$^{-1}$) peak of carbon nanotubes horizontally on a surface with reference to the point spectra highlighted. X-axis is relative wavenumber (cm$^{-1}$), y-axis is CCD counts. 58
Figure 2.11: TGA profile of as-prepared unpurified SWCNTs (a) and purified SWCNTs (b). (Modified from Chiang, 2001) ... 59
Figure 3.1: Photograph of the initial experimental setup to record the flash initiated ignition of nanotubes. .. 63
Figure 3.2: Camera flash unit initiation results of APSWCNT and ferrocene (1:4, 5mg total) recorded with a photodiode. .. 64
Figure 3.3: Photograph of a post-camera flash ignition sample of APSWCNT/ferrocene (1:4, 10mg total) displaying evidence of oxidation of metal particles .. 65
Figure 3.4: Camera flash initiation results of multiple identically prepared samples of APSWCNT/ferrocene (1:4, 5mg total) to examine reproducibility.... 66
Figure 3.5: Comparison of camera flash initiation of APSWCNT/ferrocene (1:4) with two different total sample masses; 5mg and 12mg......................... 67
Figure 3.6: UV-Vis spectrum of the ignition of APSWCNT/ferrocene (1:4, 5mg total) in the first 100ms. .. 68
Figure 3.7: High speed camera showing the ignition of Carbon Solutions APSWCNT/ferrocene (1:4, 5mg) with the camera flash unit. Time shown refers to the amount of time passed since the flash unit was triggered.................. 69
Figure 3.8: Iron nanoparticle (26nm diameter) shown before exposure to camera flash (left) and after initiation from the camera flash unit (right) having undergone oxidation. .. 70
Figure 3.9: Light intensity loss from the camera flash as a function of distance from the flash unit. ... 72
Figure 3.10: Laser initiation results of multiple identically prepared samples of APSWCNT/ferrocene (1:4, 5mg total) to examine reproducibility............ 73
Figure 3.11: Camera flash initiation of APSWCNT/ferrocene (1:2, 10mg) recorded with the high speed pyrometer. A blank recording is also performed, and a second camera flash after the sample had completed flash ignition but was still physically blocking light on the sample stage. ..75
Figure 3.12: Laser ignition of a sample of APSWCNT/ferrocene (1:2, 10mg) using the pyrometer to record the data. ...77
Figure 3.13: High speed camera frames showing the ignition of APSWCNT/ferrocene (1:2, 10mg) with the laser (50mJ). Time shown refers to the amount of time passed since the laser was triggered.................................78
Figure 3.14: Side view diagram of the diverged laser beam path to the sample. Image not to scale. ..80
Figure 3.15: Flash paper measuring the spot size of the diverged laser beam. The laser spot without lens defocusing is indicated by the arrow for comparison......81
Figure 3.16: Schematic of light reflections and refractions through a concave lens showing the reflected focal point of light...82
Figure 4.1: Photograph of the Surelite SLIII Nd-YAG laser. The arrow shows the mirror which reflects the beam down to the sample stage.85
Figure 4.2: Laser initiation results of 5 separate samples of APSWCNT (10mg) ignited at 152mJ to examine consistency between samples.86
Figure 4.3: High speed camera frames showing the ignition of unconfined APSWCNT/ferrocene (1:2, 10mg total) with the laser. Time shown refers to the amount of time passed since the laser was triggered.................................87
Figure 4.4: High speed camera frame series of APSWCNT/ferrocene (1:2, 10mg) taped to double sided carbon tape and initiated by the laser. Time shown is time after laser initiation...89
Figure 4.5: High speed camera photos of the laser initiation of APSWCNT/ferrocene (1:2, 10mg total) displaying the initial ignition (a-d) followed by a secondary ignition (e-f) when the ferrocene is initiated and oxidizes...91
Figure 4.6: Laser initiation of two samples of APSWCNT/ferrocene (1:2, 10mg total) when initiated from within a glass sample tube demonstrating the consistency of results...92
Figure 4.7: Pyrometer recorded ignition results of varying laser energy levels on samples of APSWCNT/ferrocene (1:2, 10mg total) using IR laser wavelength 1064nm. Complete initiation to 110ms not displayed. ... 93
Figure 4.8: Comparison of the ignition of APSWCNT to APSWCNT/ferrocene (1:2, 10mg) displaying a higher temperature and longer burn time in the presence of ferrocene. The results are displayed at two different scales to show the full reaction of the APSWCNT/ferrocene (1:2, 10mg) (top) and then zoomed in on the first 2ms (bottom). .. 95
Figure 4.9: High speed camera photos of the laser initiation of APSWCNT (10mg) displaying the initial ignition (a-b) followed by some scattering of the nanotubes but no secondary ignition... 96
Figure 4.10: Laser initiation results for various ratios of APSWCNT/ferrocene (3.5mg total) at 152mJ. ... 98
Figure 4.11: Optical absorption spectrum of SWCNTs spun-coated onto quartz. (Hartschuh, 2005) ... 101
Figure 4.12: Pyrometer recorded ignition results of varying laser energy levels on samples of APSWCNT/ferrocene (1:2, 10mg total) using visible laser wavelength of 532nm. ... 103
Figure 4.13: Pyrometer recorded ignition results of varying laser energy levels on samples of APSWCNT/ferrocene (1:2, 10mg total) using UV laser wavelength of 355nm. ... 104
Figure 4.14: Comparison of the initiation of three different brands of SWCNTs. Carbon Solutions (~35wt% Ni/Y), Unidym (~35wt% Fe) and NTP (<3wt% Fe). ... 106
Figure 4.15: Laser initiation of APSWCNT/ferrocene (1:2, 10mg total) compared to Unidym and NTP SWCNT/ferrocene (1:2, 10mg total) displaying a 2ms scale (top) to see the initial reaction and a 100ms scale (bottom) to show the complete reaction... 107
Figure 4.16: Laser initiation of a sample of NTP MWCNTs (10mg) compared to APSWCNTs (10mg) .. 109
Figure 4.17: Laser initiation of NTP MWCNT/ferrocene (1:2, 10mg total) compared to APSWCNT/ferrocene (1:2, 10mg total) displaying a 2ms scale (top) to see the initial reaction and a 100ms scale (bottom) to show the complete reaction... 110
Figure 4.18: TGA results of Carbon Solutions APSWCNTs and ferrocene in various ratios and neat. Ferrocene sublimes at ~170°C while other mass loss is carbon combustion.

Figure 4.19: TGA results of NTP SWCNTs and ferrocene at (1:2) and neat. Ferrocene sublimes at ~170°C while other mass loss is carbon combustion.

Figure 5.1: Laser ignition characteristic of iron (26nm) and nickel (20nm) nanoparticles compared to APSWCNTs.

Figure 5.2: Photograph of iron nanoparticles (26nm) after camera flash unit initiation displaying an orange colour due to oxidation. (Reproduced from Chapter 3.2)

Figure 5.3: Laser initiation of filtered and purified SWCNT compared to APSWCNTs.

Figure 5.4: Ignition of APSWCNT mixed with potassium nitrite and sodium perchlorate respectively at a ratio of (1:2).

Figure 5.5: Laser initiation of a sample of APSWCNT/ferrocene/sodium perchlorate (1:2:6, 18mg total) displaying two ignition peaks. Firstly for ferrocene igniting, and secondly for the sodium perchlorate igniting. APSWCNT/ferrocene (1:2, 10mg total) is displayed as a comparison.

Figure 5.6: Chemical structure of polystyrene sulfonate.

Figure 5.7: Laser ignition results of APSWCNT wrapped in polystyrene sulfonate and the monomer dry mixed with APSWCNT compared to the raw chemicals.

Figure 5.8: Comparison of the ignition of APSWCNT/ferrocene (1:2, 10mg total) and APSWCNT/PSS (1:2, 10mg total).

Figure 5.9: Horizontally aligned rows of carbon nanotubes on glass produced by the 'coffee cup effect' during evaporation.

Figure 5.10: Raman spectrum of horizontally aligned SWCNTs on glass displaying a high purity as a result of the very low D-band (1345cm⁻¹).

Figure 5.11: Optical microscopy image of horizontally aligned SWCNTs on glass.

Figure 5.12: Optical microscopy image of horizontally aligned SWCNTs on glass. Inset: Raman intensity image of the 1598cm⁻¹ carbon peak showing alignment of the array. Scale bar in the Raman image is 7µm.

Figure 5.13: Laser ignition of horizontally aligned SWCNTs on glass at two concentrations and compared to 'fluffy' APSWCNT.
Figure 5.14: Photo of a horizontally aligned sample of SWCNTs after ignition by the laser showing an ablation spot where the laser hit the sample.......................... 132
Figure 5.15: Horizontally aligned SWCNTs with double concentration of the original sample showing the spot where ignition and partial ablation occurred from the laser. ... 133
Figure 5.16: Laser initiation of horizontally aligned SWCNTs with ferrocene added compared to no ferrocene and APSWCNTs.. 134
Figure 5.17: Schematic of CVD grown MWCNTs showing the vertically arrayed nature and the location of the catalyst nanoparticles. 136
Figure 5.18: Comparison of the ignition of three samples of CVD grown vertically aligned MWCNTs with APSWCNT as a reference...................... 137
Figure 5.19: High speed video frames of laser initiation of MWCNT surface. Top: 1 frame after the laser initiation showing a small fireball above the sample. Bottom: 25ms after laser initiation with airborne material circled in red......... 138
Figure 5.20: Photo of vertical MWCNT arrays after initiation by the laser showing the burnt spot where the laser beam hit the sample....................... 139
Figure 5.21: Laser initiation at 150mJ of the same MWCNT surface four times in succession displaying the lowering reaction as more of the sample is oxidized and ablated. .. 139
Figure 5.22: Comparison of the ignition of MWCNT arrays with and without the supporting sputter coated layer of aluminium. .. 141
Figure 5.23: Laser ignition of vertically aligned MWCNT surface with ferrocene sprinkled on top compared to ferrocene evaporated into the nanotubes via acetone. .. 143
Figure 5.24: Data as presented in Figure 5.23 with a broader x-axis scale to display the full reaction.. 144
Figure 6.1: Schematic of the expanding detonation shockwave when propagating through a charge (a) in a cylindrical charge with a radial shockwave and (b) in a film charge with a 1-dimensional shockwave. (Petel, 2007) 152
Figure 6.2: Absorption spectra of PETN. (1) Overview spectrum left and bottom axis, (2) maximum sensitivity spectrum right and top axis. (Aluker, 2008)...... 153
Figure 6.3: Laser ignition response of PETN, APSWCNTs and a mixture of both displaying that there is no reaction for PETN in the absence of nanotubes. 154
Figure 6.4: High speed camera photos of the laser initiation of APSWCNT/PETN (1:1, 20mg total). Times shown is the time since the first frame where a reaction can be seen (a), i.e. the first frame captured upon laser impact.

Figure 6.5: High speed camera photos of the laser initiation of APSWCNT (10mg) displaying the comparatively smaller reaction with no PETN present. (Reused from Chapter 4.2)

Figure 6.6: Ignition response of APSWCNT and PETN mixed by dissolving in acetone and evaporating.

Figure 6.7: Ignition response at 800mJ of laser energy of APSWCNT and PETN mixed by dissolving in acetone and evaporating.

Figure 6.8: Laser initiation of APSWCNT/PETN (1:33, 34mg total) at 800mJ laser energy highlighting only a minor increase in reaction with PETN compared to APSWCNT only.

Figure 6.9: Laser initiation of APSWCNT/ferrocene/PETN (1:2:5, 16mg total) compared to without PETN. Bottom trace (green) shows a sample of APSWCNT/ferrocene/PETN after being dissolved in acetone and air dried.

Figure 6.10: Laser initiation of APSWCNT/ferrocene/PETN (1:2:5) compared to without PETN, x-axis changed to show full reaction time of the PETN containing sample.

Figure 6.11: High speed camera photos of the laser initiation of APSWCNT/ferrocene/PETN (1:2:5, 16mg total) showing a rapid and intense ignition (a-c) as a result of the PETN which causes ferrocene to ignite quickly (d-e).

Figure 6.12: High speed camera photos of the laser initiation of APSWCNT/ferrocene (1:2, 6mg total) displaying the initial ignition (a-d) followed by a secondary ignition (e-f) when the ferrocene is initiated.

Figure 6.13: Initiation of iron nanoparticles with and without PETN (1:1) at 850mJ.

Figure 6.14: Optical microscopy image of a PETN layer on vertically aligned MWCNTs. PETN crystals have formed in an aligned fashion due to the movement of the expanding then evaporating acetone droplet.

Figure 6.15: Optical microscopy image of a PETN layer on vertically aligned MWCNTs illustrating a different sample with different PETN crystal morphology.
Figure 6.16: Optical microscopy image of a MWCNT surface loaded with PETN. The right white area out of focus is the silicon surface, the dark material is MWCNTs, and the reflective parts on it is PETN. The green circle shows where Raman spectra was collected from.

Figure 6.17: Raman spectra of the side of a MWCNT surface with PETN loading (green) in comparison to reference spectra of MWCNT and PETN (blue and red respectively).

Figure 6.18: Laser initiation of a vertically aligned MWCNT surface with and without a PETN layer on the surface.

Figure 6.19: High speed camera frames of the laser initiation of a MWCNT surface (a-c) and the same sample with a layer of PETN (d-f).

Figure 6.20: High speed camera photos of the MWCNT surface with PETN layer displaying the silicon wafer flipping through the air.

Figure 6.21: Optical microscope image of the PETN layer (10-12µm) on a silicon wafer.

Figure 6.22: Laser initiation of a silicon wafer sputtered with aluminium and iron. The wafer was then charged with a PETN layer and initiated.

Figure 6.23: Laser initiation of a vertically aligned MWCNT surface with and without a PETN layer on the surface.

Figure 6.24: Laser initiation of a vertical MWCNT array of length ~2mm displaying first the ignition of the nanotubes, then the sample loaded with PETN. Finally the laser energy was increased to 850mJ to initiate another region of the sample.

Figure 6.25: High speed camera frames of MWCNT (~2mm) array initiated by laser. Only one frame of flame is observed and very little ablation of particles can be seen.

Figure 6.26: High speed camera frames of MWCNT (~2mm) array with PETN loaded initiated by laser (150mJ). Particle matter is seen firing to the left of the sample (c-d) after the initial ignition.

Figure 6.27: High speed camera frames of MWCNT (~2mm) array with PETN loaded initiated by laser (850mJ). A large ignition is first seen (a) and lots of particles scatter (b) before the whole silicon wafer flips over (c-f).
Figure 6.28: High speed camera frames of the laser initiation of a MWCNT surface loaded with PETN displaying a rapid explosion and shattering of the silicon wafer. ... 182

Figure 6.29: Laser initiation of a vertically aligned MWCNT surface with and without a PETN layer on the surface... 183

Figure 7.1: TEM image of the metal nanoparticles with ‘sea urchin-like’ structure of carbon nanotubes grown out of the surface. (Moon, 2009) 194