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Summary

Multi-stage time evolving models, so called stage-duration models, have been studied in
various biological contexts. We consider stage-duration models that describe single cohort
stage-frequency data with destructive samples. These models can give an understanding
of the maturation of biological systems, industrial processes or the progression of disease.
The main goal of this thesis is to estimate the stage-dependent maturation parameters
and hazard rate parameters of the models. The contributions of the thesis are as follows:

First, we obtain novel methods for estimating maturation parameters in models with
stage-wise constant hazard rates and with linear time-dependent hazard rates. We use
Laplace transform methods with the assumption of constant scale parameters or constant
shape parameters. The key result is the exploration of the relationships between the
stage-dependent maturation parameters in each stage.

Second, we obtain methods for estimating maturation parameters and hazard rate pa-
rameters without imposing unrealistic conditions as in previous studies. In particular,
by using a Bayesian approach, we derive estimators of the maturation parameters and
the hazard rate parameters in each stage simultaneously, without initial knowledge about
maturation parameters. The Metropolis-Hastings (MH) algorithm based on deterministic
transformations is applied in order to accelerate the convergence of the Markov process.
We embed the relationships of the stage-dependent maturation parameters within the
deterministic MH algorithms. The number of sampling times for the deterministic MH
methods is reduced compared to the Laplace transform methods.

Third, the application of the methodology in the models is evaluated using both simulated
data and case studies including cattle parasitic data and breast development data of New
Zealander schoolgirls. From the simulated data, results show that the proposed methods
are able to estimate parameters in situations where non-trivial hazard rates apply. The
methods also work well when the assumptions of maturation parameters are relaxed.
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From the case studies, the results show that parameter estimation is better using these
methods in comparison to Laplace transform methods in previous studies.
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1. Introduction

Chapter 1

Introduction

Multi-stage time-evolving models are fundamental for many biological systems in which
time-evolving progression moves through distinct stages ([47]; [51]; [39]; [12]; [31]). Gener-
ally, there are three classes of multi-stage models: matrix models, stage-duration models
and delay-differential equation models ([19]). This thesis focuses on stage-duration models
for single cohort stage-frequency data, which are usually applied to unmarked cohort data.
In these models, individuals are assumed to enter the study population at the same time.
In addition, individuals are not identified due to destructive sampling at different times.
The data are collected by assessing the stages reached by individuals as a stage-structured
time series. In particular, the numbers of alive and dead individuals in each stage are
counted at each sampling time. These stage-duration data are fundamental to biology
and have been studied in various biological contexts ([47]; [58]; [26]; [51]). Exploring
the development of the population in each stage gives an understanding of maturation of
individuals through their life cycle or industrial processes or the progression of a disease.
Thus these models are also important for developing strategies to treat diseases.

In stage-duration models, life cycles of individuals are divided into stages. The distri-
butions of stage duration and survival time in each stage are commonly modelled using
exponential, Weibull, Erlangian and gamma distributions. The main challenge of these
models is to develop methods for estimating stage-dependent maturation parameters and
hazard rates in each stage. Previous studies lacked flexibility in the assumptions needed
to estimate the stage-dependent maturation parameters and the hazard rate parameters
in each stage. When the stage durations were modelled using gamma distributions, the
shape or the rate parameters of the distributions were assumed to be known and the
same. This assumption is frequently unrealistic, but it simplifies estimations. They also
assumed that individuals could not die but rather would eventually move to the next
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stage, or that individuals could die but that the hazard rate was the same for each stage
([51]; [25]; [19]; [33]).

In this thesis, the assumptions on the hazard rate parameters are relaxed and no as-
sumptions are made on the maturation parameters. The objectives are to propose novel
methods for estimating parameters in the following situations:

• To estimate parameters for models with stage-wise constant hazard rates by constant
shape rate and constant scale cases. This means that shape parameters or rate parameters
are known and constant ([51]).

• To estimate parameters for models with linear time-dependent hazard rates by constant
shape rate and constant scale cases.

• To estimate parameters without initial knowledge of shape and rate parameters for
models with no hazard rates.

• To estimate parameters without initial knowledge of shape and rate parameters for
models with stage-wise constant hazard rates.

• To estimate parameters without initial knowledge of shape and rate parameters for
models with linear time-dependent hazard rates.

This thesis is organized into six chapters including the present introductory chapter.
Chapter 2 introduces stage-duration models, the Laplace transform method, Bayesian
analysis and previous studies of stage-duration models. In Chapter 3, we propose two
new stage-duration models where non-trivial hazard rates apply. The first model considers
hazard rates that are constant within each stage but vary between stages. The second
model considers linear time-dependent hazard rates within stages. We use the Laplace
transform method to estimate stage-dependent maturation parameters for these models.
In addition, we propose methods for estimating these non-trivial hazard rates. A key result
in this chapter is to explore the relationships among the stage-dependent maturation
parameters in each stage. Those relationships are then embedded within the Markov
chain Monte Carlo (MCMC) algorithm proposed in the subsequent chapter for better
convergence of Markov processes. Each model is applied to simulated datasets in order
to evaluate the accuracy. Chapter 4 uses a Bayesian approach to estimate parameters in
the models with no hazard rates, with stage-wise constant hazard rates and with linear
time-dependent hazard rates. Metropolis-Hastings (MH) algorithm based on deterministic
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transformations is used to improve the mixing of Markov chains. The main aim of this
chapter is to relax assumptions about maturation parameters in the proposed models.
By allowing uncertainties through prior distributions, parameters are estimated using a
Bayesian approach. These methods are implemented in simulated datasets. In Chapters
5 and 6, we apply the techniques from Chapter 4 to simulation studies and the case
studies of cattle parasite data and data related to breast development of New Zealander
schoolgirls. Finally, Chapter 7 draws conclusions from the major results in the thesis and
discusses remaining problems and future research directions.
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Chapter 2

Literature Review

2.1 Stage-duration data and models

2.1.1 Stage-duration data

Stage-duration data, sometimes called stage-frequency data ([39]; [37]), is the information
relating to the life cycle of individuals having distinct life stages and is obtained by count-
ing the number of individuals in different stages at different sampling times ([39]; [31];
[12]). In biological contexts, the starting point is controlled and destructive sampling is re-
quired to assess the stage reached by individuals ([47]; [51]; [25]; [19]; [33]). Stage-duration
models are often used for the analysis of populations of insects such as Callosobruchus
chinensis ([6]), cattle parasitic nematodes ([58]), copepod ([32]) and grasshopper Chor-
thippus ([46]). Moreover, some individuals’ progress can be categorised by size as in the
case of the study on breast development of New Zealander schoolgirls ([39], p. 98).

Such data have the following three specific properties:

• Initially, we consider single cohort stage-frequency data. This means that the starting
point is controlled. We suppose that at the first sampling time, all individuals commence
at stage 1;

• An individual’s stage cannot be observed without harvesting; thus destructive samples
are conducted. Different individuals are counted at each sampling time;

• Finally, we consider the effect of mortality on stage duration. The mortality rate varies
from stage to stage. At each sampling time, the number of dead organisms in each stage
can be counted. An individual spending a long time in a stage with high hazard rate is
less likely to survive than an individual only spending a short time in the stage.
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Stage-duration data are often used to model insect populations. For example, an insect
may pass through several stages: from the egg stage to many interim stages before finally
reaching the adult stage. The only information that can be collected is the number of
organisms in each stage. This is gathered from samples taken at different sampling times.

Suppose that the life cycle of an individual in a population consists of (I + 1) stages,
where stage (I + 1) is some final stage (for example, the adult stage or death stage). We
consider here the case where an individual must pass from one stage to the next without
missing a stage. However, death can occur in any stage, from stage 1 to stage I, before
progressing to the next stage.

1 → 2 → ... → I

↘ ↓ ↓ ↙

Death

(2.1.1)

Possible transitions of individuals at each stage.

An example of stage-duration data is an experiment for cattle parasitic nematode ([58]).
The data for this study (Table 2.1) comprises four stages of the parasite life cycle; including
stage 1 (eggs), stage 2 (first stage larvae), stage 3 (second stage larvae) and stage 4 (third
stage larvae). Samples were collected at roughly the same stage of development. Numbers
of cattle parasites in the four different stages of the life cycle were counted at 10 sampling
times. The samples were destroyed after determining the number of parasites in each of
the four stages. The data are proportions of individuals at each stage out of approximately
606 eggs at each sample time.

2.1.2 Models

The stage time and death time (if death occurs) of each individual are unknown. Rather,
there are sampling times at which a sample of organisms are drawn from the population
and the numbers of alive and dead organisms in each stage are observed. In each stage
j, the lifetime of an individual is influenced by the death density function µj(t) and the
stage time in stage j which has the density function gj(t) depending on the parameter
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Table 2.1: Data for cattle parasitic nematode example includes the proportions of obser-
vations at each stage of Ostertagia ostertagi, expressed as a percentage. Stage 1 = eggs
(unembryonated embryonated), stage 2 = 1st stage larvae, stage 3 = 2nd stage larvae,
stage 4 = 3rd stage larve. Time is in hours.

Sampling number Time Stage 1 Stage 2 Stage 3 Stage 4

1 20 87 0 3 0
2 45 12 81 0 0
3 65 11 13 74 2
4 90 6 7 65 14
5 115 14 2 54 21
6 140 10 2 24 61
7 160 0 0 17 67
8 185 0 0 33 51
9 210 0 0 10 70
10 260 0 0 8 70

θj. Define Nj(Tk) = Nkj, j = 1, ..., I, k = 1, ..., K to be the number of organisms alive in
stage j at time Tk and Dj(Tk) = Dkj to be the number of organisms that are observed to
be dead in stage j at time Tk. Let Nk be the number sampled at time Tk, which in the
case of zero hazard rate is given by

Nk =
I+1∑
j=1

Nj(Tk) .

In the case of stage-wise constant hazard rates, Nk is given by

Nk =
I+1∑
j=1

Nj(Tk) +
I+1∑
j=1

Dj(Tk) .

The probability of the life time of each particular independent organism is defined in [47]
as

pj(t) = P(an organism is alive in stage j at time t | the organism starts stage 1 at time 0)

= h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) , j = 1, ..., I,
(2.1.2)

where

hi(t) = gi(t)Si(t) = gi(t) exp

−
tˆ

0

µi(x)dx

 , i = 1, ..., j − 1 (2.1.3)
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is the density function of an organism being alive in stage i and the notation ∗ denotes
convolution. Furthermore, Si(t) is the probability of an organism being alive in stage i
for longer than time t and µi(t) is the hazard function of the survival time in stage i at
time t, and

Hj(t) = Sj(t)
∞̂

t

gj(x)dx = exp

−
tˆ

0

µj(x)dx



∞̂

t

gj(x)dx

 .
The maximum-likelihood (ML) method is difficult to implement in this context. Com-
pared to ML methods, methods based on Laplace transform matching are very efficient in
multi-stage models because of the ease of computation ([51]). This is illustrated in Section
3.2.1, where the stage time densities gj(t) take the forms of the exponential, Erlangian
and gamma distributions. Because we cannot observe the time of individuals transiting
from stage to stage, or their time of death, stage-duration data are totally censored. The
convolution in (2.1.2) shows that the maximum likelihood method is difficult to apply in
the stage-duration models, especially when the number of stages increase. In the next sec-
tions, we present approaches to estimate parameters for these models. These approaches
include a frequentist approach (Section 2.2) and a Bayesian approach (Section 2.3).

2.2 Frequentist inference

In this section, we introduce Laplace transform methods applied in the stage-duration
models in order to estimate parameters. These methods were first proposed in [51]. The
method of moments based on Laplace transform was exploited in order to derive robust
estimates and calculate the variance of these estimates ([25]).

In general, let the probability of an event occurring at time t be pθ(t) and let n(t) represent
the population proportion at time t. Let T be a random sampling time with exponential
density function α(t) = s exp(−st). The principle of Laplace transform matching may be
illustrated as follows.

By considering random sampling times, instead of estimating θ = (θ1, θ2, . . . , θI) by match-
ing pθ(t) to n(t), θ = (θ1, θ2, . . . , θI) is estimated by matching ψθ(s) = s

´∞
0 pθ(t) exp (−st) dt
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to the population proportion as

ψ̂θ(s) =
K∑
j=1

Ijn(Tj) , (2.2.1)

where Ij is defined in Equation (2.2.2) below.

In particular, stratified sampling is used to increase the efficiency of estimates, espe-
cially when fixed sampling times dominate most experiments ([51]). Let C = {c0 =
0, c1, ..., cK = ∞} be a set of cutpoints between K sampling times T1, T2, ..., TK . The
variables T1, T2, ..., TK are independent and identically distributed as

αj(t) =


α(t)
Ij

t ∈ [cj, cj+1]

0 t /∈ [cj, cj+1]
, (2.2.2)

where Ij :=
´ cj
cj−1

α(t)dt = exp(−scj−1)− exp(−scj).

The iterative method of Schuh and Tweedie ([51]):

The choice of the sampling rate s for the Laplace transform is not obvious. In some models,
an iterative method ([51]) is used to determine s. The mean sampling time s−1 is chosen
to equal the mean of each stage time density function gj(t), j = 1, ..., I. Details of the
iterative steps are as follows. In stage j, an arbitrary value s−1

1 is chosen and parameters
θj of stage j are estimated through Laplace transform matching with sampling time s−1

1 .
Then gj(t) is updated according to the new parameters θj. Taking s−1

2 = mean of gj(t),
the parameters are estimated through Laplace transform matching with sampling time
s−1

2 . This iteration is repeated until the value s−1 converges to the estimated mean of
gj(t).

Then the sampling time s multiplying the Laplace transform of pθ(t) and empirical data
can be matched as

ψj(s) = s

∞̂

0

pj(t) exp (−st) dt ≈
K∑
k=1

Ik
Nj(Tk)
Nk

, j = 1, ..., I . (2.2.3)

2.3 Bayesian inference

This section reviews basic theory underlying Markov chain Monte Carlo (MCMC) methods
based on [49], [48], [9], [24] and [16].
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2.3.1 Bayesian perspective

The conditional probability of observing event B given that event A has ocurred or must
occur has the mathematical form

P (B|A) = P (A|B)P (B)
P (A) ,

where P (A) > 0, (e.g., see ([48])).

The concept underlying the so-called Bayesian approach to parameter estimation is to
first treat the parameter θ as a random variable with a probability density function p(θ),
known as the prior distribution. Then, after carrying out an experiment where a data
vector y is observed, we revise the latter distribution in view of the obseved data and call
it the posterior distribution denoted by π(θ|y).

More precisely, we consider a general case where the data vector y = (y1, y2, ..., yn) is a
realization of n sampling points of independent, identically distributed, random variables
Y1, Y 2, ..., Y n. Thus y ∈ Y ⊂ Rn and yi ∈ Yi, i = 1, ..., n. Let θ = (θ1, θ2, ..., θd) be a vector
of parameters of the model having prior density p(θ), where θ ∈ Θ ⊂ Rd. Recall that
parameters θi, i = 1, ..., d are unknown and treated as random variables. Then Bayes’s
theorem extended to conditional density functions implies

π(θ|y) = f(y|θ)p(θ)
f(y) = f(y|θ)p(θ)´

Θ f(y|θ)p(θ)dθ , (2.3.1)

where π(θ|y) is the posterior probability density function of θ given the observations y,
f(y|θ) is the likelihood function and f(y) is the marginal probability density function
of the data. The methods of choosing a prior distribution and deriving the posterior
distribution are presented in the following section.

2.3.2 Links between posterior and prior distributions of the pa-

rameters

All aspects of the Bayesian inference are based on the posterior density (2.3.1). The
numerator of (2.3.1) is computable while the denominator, which is a marginal likelihood,
is usually difficult to compute. However, the marginal likelihood is merely a normalizing
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constant and does not include any information about the parameter vector θ. Hence,
ignoring the marginal likelihood, we note that posterior density is proportional to the
likelihood multiplied by the prior density ([9]; [24]), as follows:

π(θ|y) = f(y|θ)p(θ)
f(y) = f(y|θ)p(θ)´

Θ f(y|θ)p(θ)dθ

∝ f(y|θ)p(θ)

∝ Likelihood× Prior .

(2.3.2)

Our interest is in the simulated values of parameter θ from the posterior distribution. If
the value of the marginal likelihood is computable, inferences via the posterior distribution
can be based on the posterior density or the mass function directly. When the value of
the marginal likelihood is not analytically available, the inferences based on the posterior
can be approximated via simulation from the posterior as described in Section 2.3.3.

An important aspect of the Bayesian approach is the need to specify prior distributions for
the unknown parameters that would express one’s beliefs about the parameters of interest
before some evidence is taken into account. For complex models, the multiplication of the
joint likelihood and the joint prior distribution in (2.3.2) usually results in a non-standard
joint posterior distribution of the parameters of interest such that an MCMC algorithm
is needed for parameter estimation.

The common types of priors are non-informative priors, partially informative priors and
informative priors ([9]; [24]). Non-informative priors are chosen when we have very little
information about the parameters of interest. The uniform distribution is usually chosen
as a non-informative prior distribution. Partially informative priors are used when the
priors’ distribution is built on using history matching. We keep the priors having rea-
sonable summary statistics from generated data. Informative priors are used when we
have specific information about the parameters of interest which incorporated in the prior
density.

2.3.3 Markov chain Monte Carlo methods

When the posterior density π(θ|y) is complicated and θ is high dimensional, the traditional
Monte Carlo method cannot be implemented. Markov chain Monte Carlo (MCMC) algo-
rithms are commonly used to solve statistical computation problems related to Bayesian
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inference. Of greatest interest are the posterior means of a function g : Θ → R ([16]),
defined by

I(y) :=
ˆ

Θ

g(θ)π(θ|y)dθ =
´

Θ g(θ)f(y|θ)p(θ)dθ´
Θ f(y|θ)p(θ)dθ . (2.3.3)

MCMC methods are constructed by specifying a set of transition probabilities for an
associated Markov chain. MCMC methods generate a proposal θ(t+1) once we know a
current state of the chain θ(t). The basic idea of MCMC methods for a given probability
distribution π such that π : Θ→ [0, 1] is generating random elements of Θ with distribu-
tion π. The MCMC methods do this by constructing a Markov chain with a stationary
distribution π and simulating that chain.

The function π is called a stationary distribution of an irreducible Markov chain hav-
ing transition matrix P = [p(i, j)]mi,j=1 , where mis the number of states and p(i, j) :=
p
(
θ(t+1) = j|θ(t) = i

)
. Recall that ∑j∈Θ π(j) = 1 and

(πP )(j) = π(j), for every j . (2.3.4)

More specifically, let S be a finite state space and π be any probability distribution on
Θ such that π(j) > 0 (the target distribution or the posterior distribution). We can
define a new Markov chain {θ(t)} such that its stationary distribution is π. The MCMC
methods use the realizations

(
θ(1), ..., θ(M)

)
obtained from the Markov chain as the Monte

Carlo sample. Note that θ(t) are constructed with the help of the observed data vector y,
however, to simplify the already complex notation, the argument y is supressed. Using
(2.3.3), the estimator of the mean of function g is

ÎM(y) = 1
M −B

M∑
t=B+1

g(θ(t)) , (2.3.5)

where B is a fixed nonnegative integer that indicates the number of initial sample values
that will be discarded. The number of initial values B is chosen at the point when a Marlov
chain settles into equilibrium distribution in order to avoid biases toward arbitrary initial
values. It can be shown that ÎM(y)→ I(y) with probability 1 as M →∞ (Brooks et al.
[9]).
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2.3.4 Overview of the Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm ([49]; [24]) proposes a new state of the Markov
chain that is either accepted with probability α, or rejected with probability 1 − α. If
the state is accepted, the Markov chain moves to the new state. If the proposed state is
rejected, the Markov chain remains in the same state. By choosing the acceptance prob-
ability α correctly, we create a Markov chain which has π as its stationary distribution.
Given such a state space S, a stationary distribution π and a proposal transition matrix
Q = [q(i|j)]ij, the MH algorithm is constructed as follows

The MH algorithm

1: Initialise θ(0)

2: for t = 1 to T, do
3: Given the current state θ = θ(t), propose θ(∗) ∼ q

(
θ(∗)|θ(t)

)
4: Calculate the acceptance probability α = min

(
1, π(θ

(∗))q(θ(t)|θ(∗))
π(θ(t))q(θ(∗)|θ(t))

)
5: Set θ(t+1) = θ(∗) with probability α, otherwise set θ(t+1) = θ(t)

6: end for

2.3.5 Choice for the proposal distribution

For the MH algorithm, there are two popular choices for the proposal probability distri-
bution q(θ(∗)|θ(t)): (i) a random walk and (ii) an independent proposal ([24]).

(i) A random walk is used in situations for which we have little idea about the shape of the
target distribution. Therefore, we need to ensure the entire parameter space is explored.

In the MH algorithm, the chain of random variables satisfies

θ(t+1) = θ(t) + εt , (2.3.6)

where εt is generated independently of θ and y. The random walk generated is symmetric
or non-symmetric if the distribution of ε is symmetric or non-symmetric, respectively.
When the transition matrix P is symmetric, then we have the acceptance probability

α = min
(

1, π(θ(∗))
π(θt)

)
.
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For example, εt ∼ N(0,V ) ⇒ q(θ(∗)|θ(t)) ∼ N(θ(t),V ) is a symmetric random walk. We
usually choose the covariance matrix as V = σ2Id, where d is the dimension of θ ∈ Θ. In
this case, the covariance matrix V plays a crucial role in the performance of the sampling
algorithm. The value of the covariance matrix V should be chosen in order to lead to the
best performance of the MH algorithm.

If the elements on the diagonal of the covariance matrix V are very small, then the
proposal parameter θ(∗) is close to the current state θ(t). Thus, the proposals will usually
be accepted, but the chain will hardly move, which is clearly suboptimal.

If the elements on the diagonal of the covariance matrix V are very large, then by (2.3.6)
the proposal parameter θ(∗) will usually be very far from the current state θ(t). Thus, the
values π(θ(∗)) are likely to be very small. This implies that they will almost always be
rejected, which is again clearly suboptimal.

Therefore, the optimal value of the covariance matrix V should be chosen to be propor-
tional to the true covariance matrix of the target distribution π (we usually do not know
this covariance). It has been shown in [9] that the optimal covariance matrix has the form

V d = (2.38)2

d
V .

Tuning variances from the normal random walk can be tedious, but the desirable accep-
tance rate is between 20% and 50% ([9]).

(ii) An independent sampler is used in situations for which we have a pretty good idea
about the target distribution π. Choosing the proposed parameter θ(∗) as

q
(
θ(∗)|θ(t)

)
= f

(
θ(∗)

)
, (2.3.7)

where θ(∗) and the density function f do not depend on the current state of the chain θ(t),
the acceptance rate is denoted as

α = min
1,

π
(
θ(∗)

)
f
(
θ(t)

)
π (θ(t)) f (θ(∗))

 . (2.3.8)
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2.3.6 Reversibility and stationarity of Markov chain for the MH

algorithm

The convergence in various senses of the distribution of a Markov chain
{
θ(t)

}
to the

target distribution π(.) is discussed in [40], [50] and [57].

An irreducible Markov chain is one that has a positive probability of eventually reaching
any one location from any other (it is possible to reach any state from any state).

A stationary Markov chain is reversible if the transition matrix P =
[
p(θ(i), θ(j))

]
m
i,j=1,

where m is the number of states, and the stationary distribution π satisfy the balance
property

π(θ(i))p(θ(i), θ(j)) = π(θ(j))p(θ(j), θ(i)), for i, j = 1, ...,m . (2.3.9)

If, for an irreducible Markov chain with a transition matrix P , there exists a probability
solution π satisfying the balance property for all pairs of states (i, j), then the chain is
time-reversible and the solution π is the unique stationary distribution.

Using (2.3.8), the transition matrix P =
[
p(θ(i), θ(j))

]
m
i,j=1 of the Markov chain in the MH

algorithm has the form

p(θ(i), θ(j)) = q(θ(j)|θ(i))α = q(θ(j)|θ(i))min
(

1, π(θ(j))q(θ(i)|θ(j))
π(θ(i))q(θ(j)|θ(i))

)
, for i, j = 1, ...,m .

(2.3.10)
Because the transition matrix of the Markov chain P =

[
p(θ(i), θ(j))

]
m
i,j=1 from the MH

algorithm satisfies the balance property (2.3.9) , the new Markov chain {θ(t)} has a sta-
tionary distribution π(.).

2.3.7 Overview of Metropolis-Hastings algorithm based on de-

terministic transformations

In order to simplify the Metropolis-Hastings algorithm based on deterministic transfor-
mations ([20]; [4]; [53]; [35]), the parameter θ is seperated into two parts θ = (θ1, θ2). The
algorithm implies that one parameter is a deterministic proposal conditional on the other
parameter as
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θ2 = f(θ1) or θ1 = f−1(θ2) .

This relationship is embedded in MH algorithm. The acceptance probability is calculated
as

α = min
1,

π
(
θ

(∗)
1 , θ

(∗)
2 |y

)
q
(
θ

(t)
1 |θ

(∗)
1

)
π
(
θ

(t)
1 , θ

(t)
2 |y

)
q
(
θ

(∗)
1 |θ

(t)
1

)


= min
1,

f
(
y|θ(∗)

1 , θ
(∗)
2

)
p
(
θ

(∗)
1 , θ

(∗)
2

)
q
(
θ

(t)
1 |θ

(∗)
1

)
f
(
y|θ(t)

1 , θ
(t)
2

)
p
(
θ

(t)
1 , θ

(t)
2

)
q
(
θ

(∗)
1 |θ

(t)
1

)


= min

1,
f
(
y|θ(∗)

1 , θ
(∗)
2

)
p(θ(∗)

1 )2
∣∣∣∣(f−1

)′
θ

(∗)
2 |θ

(∗)
1

∣∣∣∣ q (θ(t)
1 |θ

(∗)
1

)
f
(
y|θ(t)

1 , θ
(t)
2

)
p(θ(t)

1 )2
∣∣∣∣(f−1

)′
θ

(t)
2 |θ

(t)
1

∣∣∣∣ q (θ(∗)
1 |θ

(t)
1

)
 .

(2.3.11)

The Metropolis-Hastings algorithm based on deterministic transformations is presented
as follows:

The MH algorithm

1: Initialise θ(0) =
(
θ

(0)
1 , θ

(0)
2

)
2: for t = 1 to T, do
3: Given the current state θ1 = θ

(t)
1 , propose θ(∗)

1 ∼ q
(
θ

(∗)
1 |θ

(t)
1

)
θ

(t+1)
2 = f

(
θ

(t+1)
1

)
and θ(∗)

2 = f
(
θ

(∗)
1

)
4: Calculate the acceptance probability α
5: Set

(
θ

(t+1)
1 , θ

(t+1)
2

)
=
(
θ

(∗)
1 , θ

(∗)
2

)
with probability α,

otherwise set
(
θ

(t+1)
1 , θ

(t+1)
2

)
=
(
θ

(t)
1 , θ

(t)
2

)
6: end for

2.3.8 Gelman and Rubin and Geweke convergence diagnostic

tests

Gelman and Rubin (1992) proposed a convergence diagnostic test to monitoring conver-
gence of MCMC output ([22]; [49]; [9]; [24]). The convergence diagnostic test is based
on calculating a potential scale reduction factor, R. If R values are substantially larger
than one, it indicates that the chains do not converge. In this case, we should run chains
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longer to improve the convergence of the chains. Functions for calculating and plotting
the potential scale reduction factor R (gelman.diag and gelman.plot) are provided in the
coda package in the language R ([45]).

Geweke (1991) proposed a convergence diagnostic test based on a test of equality of means
between the first 10% and last 50% of a Markov chain ([23]; [49]). The convergence
diagnostic test is based on a standard Z-score for the test. Functions for calculating and
plotting Z-scores (geweke.diag and geweke.plot) are provided in the coda package in the
language R ([45]).

2.4 Research on stage-duration models

There are models for repeated censuses of cohort stage structure data which we do not
consider ([7]; [17]; [34]; [52]). In these models, although individuals cannot be defined
and their life cycle divided into stages, there is only one sample. At each sampling time,
the number of individuals in each stage can be assessed repeatedly. The models that
we address in this thesis are distinguished from these other studies by single cohort data
collected through destructive samplings ([46]; [47]; [30]; [51]; [21]; [39]; [25]; [27]; [32]; [43];
[19]; [18]; [52]). A different sample is determined at each different sampling time.

There have been many methods for estimating parameters for stage-duration data in-
cluding maximum likelihood estimators, matching empirical data and theoretical Laplace
transforms and Bayesian approaches. These methods provide equations for estimating
the parameters of stage duration in each stage. These methods had been studied in many
biological contexts as indicated below.

First, the maximum likelihood method was applied to estimate the distribution of periods
spent in each stage of the stage-duration models ([47]; [30]). The method was applied to
study worm infections in mice ([30]; [26]). The researchers tried to resolve whether the
rejection of worms had a physiological or immunological basis. Sixteen groups of mice
were infected with worms on day zero. The mice in different groups were subsequently
killed at different sampling times to count the number of mice infected. A characteristic of
this type of survival data is right censoring which means that the times of infection of some
individual mice were not observed. The maximum likelihood method was also applied to
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estimation of the life cycle of the grasshopper ([6]). In this study, the assumption was that
the growth rate of the grasshopper had an exponential distribution and the distribution of
the periods spent in each stage had an Erlangian distribution. They divided the life cycle
of the grasshopper into six stages and then estimated the two parameters of Erlangian
distributions in each stage. Because the probability of an individual in each stage was
complicated, simplified forms for the densities of duration time in each stage were chosen
for computational convenience. They used exponentially distributed maturation times.
However, usually the exponential maturation times do not fit well the stage-duration
data. Instead of using the exponential distributions, gamma and Erlangian distributions
are typically used to model the stage-duration data.

The second method is the Laplace transform methods and methods of moments in or-
der to estimate maturation parameters and overall death rate for stage-frequency data
([51]; [21]; [25]). The Laplace transform methods were used under assumptions about
shape parameters or rate parameters. Laplace transform techniques were applied to the
hatching of eggs of larvae of the parasitic nematode Ostertagia circumcincta ([51]). Mo-
ment estimators were used in the above experiment to compare with Laplace transform
estimators and maximum likelihood estimators based on the sum of squares ([21]). They
also assumed that maturation distributions in each stage were Erlangian distributions.
These authors found that moment estimators gave better residual sum of squares com-
pared to Laplace transform estimators. In order to develop the methods in [21], empirical
transforms were constructed and two alternative ways of choosing sampling rates were
introduced to minimise mean square error ([36]). Another approach is moment methods
as introduced by [25]. The methods of moments are based on Laplace transform methods
from [51] and used to find the variances of estimates. These methods compared well with
the maximum likelihood methods on simulated data, studying multi-stage growth of the
parasitic nematode data and the grasshopper life cycle data ([25]).

Recently, many approaches have been taken in order to address the theoretical and sta-
tistical aspects of this problem. A major difficulty is the lack of general computational
methods to estimate the maturation parameters and stage specific mortality ([41]). Mod-
els of repeated censuses of cohort stage structure data without destruction were presented
in [19]. Bayesian approaches were used in this paper in order to estimate stage duration
parameters and mortality rates. Other approaches were used to estimate separate distri-
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butions by combining stages instead of separating stage duration distributions ([32]; [43]).
De Valpine and Knape ([18]; [33]) presented computational methods for smoothed maxi-
mum likelihood estimation of general multi-stage models from cohort data. The Markov
chain Monte Carlo (MCMC) method was mentioned as an extension to solve statistical
and computational issues in these papers.

This thesis is an extension of the work in [47], [51] and [25]. In Chapter 3, by consid-
ering the stage-duration models with stage-wise hazard rates or linear time-dependent
hazard rates, the Laplace transform methods are applied in order to estimate maturation
parameters. Because of the non-trivial form of hazard rates, computational methods in
the estimation become complex compared with models having no hazard rate ([51]; [25]).
Fortunately, the Laplace transform of the convolution form (2.1.2) of the probability of
the life time of an individual exposes an elegant recursive structure that facilitates itera-
tive estimation of parameters of interest at a given stage, from their estimates at previous
stages (e.g., see (3.2.14)). This insight makes the computational problem much more
tractable.

Furthermore, in Chapter 4, we relax assumptions in [25] and estimate parameters simul-
taneously using a Bayesian approach. The relationships between maturation parameters
in each stage, investigated in Chapter 3, are embedded into the MH algorithm based
on deterministic transformations. Hence, maturation parameters in each stage are es-
timated through Bayesian analysis without any initial information about shape or rate
parameters. In Chapter 5 we apply the Metropolis-Hastings type algorithms discussed
in Chapter 4 to demonstrate their effectiveness with the help of synthetic data. In the
process, we compare their relative performance in producing reliable estimates of parame-
ters. In Chapter 6 we extend this numerical testing and validation phase to data from two
independent case studies, the first concerning a cattle parasite and the second concerning
breast development of New Zealander school girls.
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Chapter 3

Parameter Estimation in Multi-stage
Models: A Classical Approach

Single cohort stage-frequency data (stage-duration data) are the result of using destruc-
tive sampling to identify the stage reached by individuals. For this type of data, when
all hazard rates are assumed constant and equal, Laplace transform methods have been
applied in the past to estimate the parameters of each stage-duration distribution and
the overall hazard rates. If hazard rates are not all equal, estimating stage-duration pa-
rameters using Laplace transform methods becomes complex. In this chapter, two new
models are proposed to estimate stage-dependent maturation parameters using Laplace
transform methods where non-trivial hazard rates apply. The first model considers haz-
ard rates that are constant within each stage but vary between stages. The second model
considers linear time-dependent hazard rates within stages. Moreover, this chapter intro-
duces a method for estimating the hazard rate in each stage for the stage-wise constant
hazard rates model. This chapter presents methods that could be used in specific types of
laboratory studies, but the main motivation is to explore the relationships between stage
maturation parameters that, in the next chapter, will be exploited in applying determin-
istic Bayesian approaches. The application of the methodology in each model is evaluated
using simulated data in order to illustrate the models’ structure.

3.1 Introduction

Parameter estimation in multi-stage time-evolving models (stage-duration models) has
been studied in [47], [5], Manly [39] and [27]. These models are applied in many biological
contexts in which a starting point is controlled and destructive samples are required in
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order to assess the stages as the system evolves. Such models have been considered in
[51] and [25].

In previous studies, in order to estimate stage-dependent maturation parameters, the
model either assumed that an individual could not die but rather would eventually move
to the next stage, or that individuals could die but that the hazard rate was the same for
each stage. In cases where dead individuals could not be counted, the stages were ignored
and an overall hazard rate was estimated ([51]). In fact, there are many situations in
which the number of dead individuals may be counted in distinct stages. Examples
include monitoring the effect of diseases which progress through well-defined stages and
the study of organisms in various stages of their life cycles. The hazard rates in the stages
may not be the same and may depend on time.

Suppose there are (I + 1) stages, where stage (I + 1) is the final stage and the vector
of stage-dependent maturation parameters that needs to be estimated has the form θ =
(θ1, θ2, . . . , θI). For each individual, let Sj, j = 1, 2, ..., I be the length of time spent
in stage j, where we interpret SI+1 = ∞. Note that Sj is a random variable. Let
gj(t), j = 1, ..., I be the probability density function of the time spent in stage j. In
stage j, gj(t) is called the stage time distribution and is parametrised by the maturation
parameters denoted by

θ(j) =
(
θ

(j)
1 , θ

(j)
2 , ..., θ(j)

nj

)
, j = 1, ..., I. (3.1.1)

The main goal of this chapter is to estimate the stage-dependent maturation parameters
θ(j), j = 1, ..., I in situations where non-trivial hazard rates apply. Specifically, two models
for the death process will be considered. The first is the case of stage-wise constant hazard
rates, and the second is the case of linear, time-dependent, hazard rates. This expands
on the work of [51] and [25]. In their models, either stage-specific mortality did not
occur or hazard rates were the same for each stage. This limitation is mentioned in [19].
Here, techniques based on Laplace transform matching ([3]; [36]; [51]) will be employed
to estimate maturation parameters in non-trivial hazard rate models. In addition, we
propose methods for estimating these non-trivial hazard rates.

Estimation techniques using Laplace transforms will also be discussed. In Section 3.2, the
estimators of maturation parameters will be investigated under the assumption that the
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death processes are known, both for stage-wise constant hazard rates and for linear time-
dependent hazard rates. Estimators of the hazard rates in stage-wise constant hazard
rates will be introduced in Section 3.3. In order to estimate the hazard rates separately
from the maturation rates, some further properties need to be added to the model. By
using estimators of the hazard rates in Section 3.3, we obtain estimators of the maturation
process parameters. In Section 3.4, simulations are conducted to evaluate the methodology
described in Sections 3.2 and 3.3.

The long-range goal is to use Markov chain Monte Carlo (MCMC) methods (Chapter 4)
to estimate stage-dependent maturation parameters and hazard rate parameters at each
stage. The convergence of MCMC in this context is poor unless reasonable estimators of
the relationship of the stage-dependent maturation parameters in each stage are used as
input. The main motivation for this chapter is to provide estimators for input into an
MCMC of sufficient quality to improve convergence. The implementation of MCMC is
deferred until later in this thesis.

There are several practical applications of estimating the stage-dependent maturation pa-
rameters. In the first model, exploring the development of the individual in each stage
can give an understanding of the progress of the individual through its life cycle. For
instance, multi-stage models have been used to study mice ([26]), parasites ([21]), An-
guillicola crassus ([56]) and loggerhead sea turtles ([12]). The second model will allow for
comparisons of treatments at various stages: for example, when monitoring the progres-
sion of disease stages. The effects of covariates could be investigated with the view of
improving development in the stage of interest according to context-specific criteria.

3.2 Estimating stage parameters when hazard rates

are known

3.2.1 Stage-wise constant hazard rates

In earlier research ([51]; [25]), it was assumed that the hazard rate in any given stage
was a constant: µj(t) ≡ µ for all t and j = 1, ..., I. In this section, we will assume that
the µj(t) = µj, j = 1, ..., I have been estimated, where µj need not be equal to µi when
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j 6= i. We will seek to estimate the maturation parameters in the constant shape case
and in the constant rate case. A method for estimating the hazard rates is proposed in
Section 3.3.1. The expression for pj(t), the probability of an individual being alive in stage
j at time t, in (2.1.2) leads to a difficult computation for estimating parameters if the
maximum-likelihood method is used. The probability pj(t) has complicated forms when
gj(t) has either exponential, Erlangian, or gamma distributions. On the other hand, the
Laplace transforms ψj(s)/s =

´∞
0 pj(t) exp (−st) dt have quite simple and explicit forms,

enabling the estimation of the parameters in gj(t).

Firstly, if each density functions gj(t) has an exponential distribution gj(t) = λjexp (−λjt),
pj(t) is calculated in [5] as

pj(t) =
j−1∏
r=1

λr

j∑
h=1

exp (−ρht)
j∏

m=1,m 6=h
(ρm − ρh)−1 , (3.2.1)

where it is assumed that ρj = µj + λj are all distinct, for j = 1, ..., I.

In addition to this, if the density functions gj(t), j = 1, ..., I have Erlangian distributions
with rate parameter λj and positive integer constant shape parameter aj ≡ a, j = 1, ..., I,
gj(t) = ta−1 exp (−λjt)λaj/(a− 1)! , then pj(t) is calculated in [51] as

pj(t) =
j−1∏
l=1

λal

a−1∑
i=0

λij
(−1)a−1

(a− 1)!

j−1∑
l=1

da−1

dρa−1

exp (−ρt)
j−1∏

m=1,m 6=l
(ρm − ρ)−a(ρi − ρ)−j−1


ρ=ρl


+

(−1)i
i!

di

dρi

exp (−ρt)
j−1∏
m=1

(ρm − ρ)−a

ρ=ρj


 . (3.2.2)

Finally, if the density functions gj(t), j = 1, ..., I have gamma distributions with constant,
positive rate parameter λj ≡ λ and shape parameter aj, gj(t) = taj−1 exp (−λt)λaj/Γ(aj)
then pj(t) is calculated by Schuh and Tweedie ([51]) as

pj(t) = Aj−1(t)− Aj(t) , (3.2.3)

where Aj(t) = exp (−µt)
´ t

0

[
λ(xλ)b(j)−1 exp (−λx)

]
dx/Γ(b(j)) and b(j) = ∑j

i=1 ai.

It is clear that even when the density functions gj(t) has Erlangian distribution, the prob-
ability pj(t) still has a complicated form. As a consequence, estimating the parameters in
gj(t) is non-trivial.
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By contrast, consider the case where the density functions gj(t), j = 1, ..., I have gamma
distributions with rate parameters λj and shape parameters aj. Define

βi(s) = L{hi} (s) = L{gi(t)Si(t)} (s) =
ˆ ∞

0
gi(t) exp(−s− µi)tdt

=
(

λi
λi + µi + s

)ai
, i = 1, ..., j − 1 ,

(3.2.4)

where Si(t) is the probability of an organism being alive in stage i longer than time t
([15]).

The Laplace transform of the function Hj(t), j = 1, ..., I is given by

L{Hj(t)} (s) = L

exp (−µjt)
∞̂

t

gj(x)dx

 (s) =
∞̂

0

exp(−µj − s)t

1−
tˆ

0

gj(x)dx

 dt
= 1− βj(s)

s+ µj
.

(3.2.5)
Then the Laplace transforms, ψj(s)/s, j = 1, ..., I have explicit forms

ψj(s) = s

∞̂

0

pj(t) exp (−st) dt

= s

∞̂

0

h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) exp (−st) dt

= sL{h1} (s)L{h2} (s)...L{hj−1} (s)L{Hj} (s)

= sβ1(s)β2(s)...βj−1(s)1− βj(s)
s+ µj

.

(3.2.6)

The estimation of the stage-dependent maturation parameters, θ = (θ1, θ2, . . . , θI) is
introduced in [51] in which the death rates are assumed constant and the same throughout
the stages. However, we will estimate the stage-dependent maturation parameters in the
case when the hazard rates in each stage are constant but not all equal.

Theorem 1. Consider single cohort stage-frequency data comprising the numbers of or-
ganisms in each stage Nj(Tk), j = 1, 2, .., I, k = 1, 2, ..., K at each random sampling time
Tk. Assume that the probability density functions gj(t) of the time spent in stages j =
1, 2, .., I are gamma distributions and that the hazard rates within stages, µj, j = 1, 2, ..., I
are known, constant and may vary across stages. Then estimators of the other parameters
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of the density functions gj(t) can be derived in the constant shape case and the constant
rate case respectively as

β1(s) = 1− (µ1 + s)
s

ψ1(s) ,

β̂j(s) = 1− (µj + s)
s

ψ̂j(s)
β̂1(s).β̂2(s)...β̂j−1(s)

, j = 2, ..., I ,
(3.2.7)

λ̂j(s) = µj + s[
β̂j(s)

]−1/a
− 1

, j = 1, ..., I , (3.2.8)

and
âj(s) = log β̂j(s)

log [λ/(λ+ s+ µj)]
, j = 1, ..., I . (3.2.9)

Proof. Using the expression in (3.2.6), the function β1(s+ µ1) can be written as

β1(s) = 1− (µ1 + s)
s

ψ1(s) . (3.2.10)

Recalling the estimator of ψj(s) in (2.2.3), we have

ψ̂j(s) =
K∑
k=1

Ik
Nj(Tk)
Nk

, j = 1, ..., I. (3.2.11)

Then the function β1(s) can be estimated as

β̂1(s) = 1− (µ1 + s)ψ̂1(s)/s

= 1− (µ1 + s)
s

K∑
k=1

Ik
N1(Tk)
Nk

.
(3.2.12)

Similarly, from (3.2.6) β2(s+ µ1) can be estimated as

β̂2(s) = 1− (µ2 + s)
s

ψ̂2(s)
β̂1(s)

. (3.2.13)

In general, the estimators of βj(s), j = 1, ..., I are given

β̂j(s) = 1− (µj + s)
s

ψ̂j(s)
β̂1(s).β̂2(s)...β̂j−1(s)

, j = 1, ..., I . (3.2.14)

Using (3.2.14) and (3.2.4), the other parameters of the density functions gj(t) can be
derived in constant shape case and constant rate case as follows
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i) The constant shape case aj ≡ a, j = 1, ..., I.

Rearrangement of (3.2.4), an expression for λj(s) in terms of the constant shape a is

βj(s) =
(

λj
λj + µj + s

)aj
, j = 1, ..., I

⇐⇒ λj = [βj(s)]−1/a (λj + µj + s)

⇐⇒ λj = µj + s

[βj(s)]−1/a − 1
.

(3.2.15)

A complete set of explicit estimators in (3.2.8) are derived as

λ̂j(s) = µj + s[
β̂j(s)

]−1/a
− 1

, j = 1, ..., I .

ii) Similarly in the constant rate case λj ≡ λ, j = 1, ..., I.

Rearrangement of (3.2.4) leads to an expression for aj(s) in terms of the constant rate λ
is as

aj = log βj(s)
log [λ/(λ+ s+ µj)]

. (3.2.16)

A complete set of explicit estimators in (3.2.9) are derived as

âj(s) = log β̂j(s)
log [λ/(λ+ s+ µj)]

, j = 1, ..., I.

Next, we introduce a method to estimate the stage-dependent maturation parameters
when the hazard rate in each stage has a linear relation with time t.

3.2.2 Linear time-dependent hazard rates

In the case of non-trivial hazard rates, [34] proposed a model in which hazard rates
were dependent on the stage. The number of individuals in each stage was assessed
repeatedly from a small cohort. This expanded upon an assumption of a previous model
([51]; [25]). However, our model requires destructive sampling in order to assess the stage
reached by each individual. The hazard rate in each stage is assumed to depend on the
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starting time as in [25]. In this model, the hazard rate in each stage is modelled as
µj(t) = γj0 + γj1t, γj1 6= 0, j = 1, ..., I. We assume that γj0 and γj1 are both positive since
µj(t) > 0, ∀t ≥ 0. The Laplace transform method is applied in order to estimate the stage
parameters. In some stages, the hazard rates may be constant, while in other stages the
hazard rates may depend on time. Such cases will be mentioned in Section 3.4.2.

The probability that an independent organism is alive in stage j at time t is given in
(2.1.2) by

pj(t) = h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) ,

where

hi(t) = gi(t)Si(t) = gi(t) exp

−
tˆ

0

µi(x)dx


= gi(t) exp

(
−γi0t− γi1

t2

2

)
, i = 1, ..., j − 1 ,

Hj(t) = Sj(t)
ˆ ∞
t

gj(x)dx

= exp
(
−γj0t− γj1

t2

2

)ˆ ∞
t

gj(x)dx .

(3.2.17)

In order to find the relation between the rate parameter and the shape parameter in each
stage, let us consider an approximation to the complementary error function.

An approximation to the complementary error function is given by Chiani et al ([13]) as
follows:

erfc(x) ≈ 1
6 exp

(
−x2

)
+ 1

2 exp
(
−4

3x
2
)
, x > 0.5 . (3.2.18)

The right side of (3.2.18) is still difficult to use in the present context. This expression
can be further approximated with respect to exp (−x2) as (3.2.19).

Away from x = 0, the complementary error function (erfc(x)) is well approximated by a
function of the form A exp (−x2)

erfc(x) ≈ 0.6 exp
(
−x2

)
, x > 0.5 . (3.2.19)

To find the best value of A on the interval of interest, namely [0.5, 6], the absolute differ-
ence (‖erfc(x)− A exp (−x2)‖1) was computed numerically. We used piece-wise constant
integration on 1000 points with the values of A ranging from 0.01 to 2. The result showed
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Figure 3.1: Comparison among exponential bounds on the erfc(x), x > 0.5

that A ≈ 0.6 gave the best fit. This approximation is illustrated graphically in Figure
3.1.

This leads us to estimate the Laplace transform (ψj(s)/s) of pj(t) as follows

Lemma 1. The Laplace transform ψj(s)/s of pj(t) is approximately given by

ψj(s) ≈ sβ1(s)β2(s)...βj−1(s)
{
exp

(
(s+ γj0)2

2γj1

)√
π

2γj1

[
1− erf

(√
γj1
2

(s+ γj0)
γj1

)]

−0.6
√

π

2γj1
βj(s)

}
, j = 1, ..., I .

(3.2.20)

Proof. From (3.2.6), the form of ψj(s)/s can be written as

ψj(s) = s

∞̂

0

pj(t) exp (−st) dt

= s

∞̂

0

h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) exp (−st) dt

= sL{h1} (s)L{h2} (s)...L{hj−1} (s)L{Hj(t)} (s)

= sβ1(s)β2(s)...βj−1(s)L{Hj(t)} (s) .

(3.2.21)
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Recalling definition (3.2.4), in this case the functions βj(s), j = 1, ..., I are

βj(s) = L{hj} (s) = L{gj(t)Sj(t)} (s)

=
ˆ ∞

0
gj(t) exp

(
−γj0t− γj1

t2

2

)
exp (−st) dt , j = 1, ..., I.

(3.2.22)

The Laplace transform L{Hj(t)} (s) in (3.2.21) is calculated as

L{Hj(t)} (s) =
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ ∞
t

gj(x)dx
)

exp (−st) dt

=
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(
1−
ˆ t

0
gj(x)dx

)
exp (−st) dt

=
∞̂

0

exp
(
−γj0t− γj1

t2

2

)
exp (−st) dt

−
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ t

0
gj(x)dx

)
exp (−st) dt .

(3.2.23)

Integrating of the first elements in the right hand side (3.2.23) reveals that
∞̂

0

exp
(
−γj0t− γj1

t2

2

)
exp (−st) dt

=
∞̂

0

exp
(
−(s+ γj0)t− γj1

t2

2

)
dt

=
∞̂

0

exp
−γj12

(
t+ (s+ γj0)

γj1

)2

+ (s+ γj0)2

2γj1

 dt
(3.2.24)

Changing the variable u = t+ uj0 = t+ (s+ γj0)/γj1 in (3.2.24), we have

∞̂

0

exp
(
−γj0t− γj1

t2

2

)
exp (−st) dt

=
∞̂

uj0

exp
[
−γj12 u2 + (s+ γj0)2

2γj1

]
du

= exp
(
γj1
2 u2

j0

) ∞̂

uj0

exp
(
−γj12 u2

)
du

(3.2.25)
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=
√

2
γj1

exp
(
γj1
2 u2

j0

) ∞̂

√
γj1/2uj0

exp
(
−v2

)
dv, v =

√
γj1
2 u

=
√

π

2γj1
exp

(
γj1
2 u2

j0

) [
1− erf

(√
γj1
2 uj0

)]
.

Integrating of the second elements in the right hand side (3.2.23), we obtain
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ t

0
gj(x)dx

)
exp (−st) dt

= L
(

exp
(
−γj0t− γj1

t2

2

)ˆ t

0
gj(x)dx

)

=
∞̂

0

∞̂

x

exp (−st) exp
(
−γj0t− γj1

t2

2

)
gj(x)dtdx .

(3.2.26)

Rewriting the double integrations (3.2.26), we obtain
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ t

0
gj(x)dx

)
exp (−st) dt

=
∞̂

0

gj(x)
∞̂

x

exp (−st) exp
(
−γj0t− γj1

t2

2

)
dtdx

=
∞̂

0

gj(x)


∞̂

x

exp
(
−st− γj0t− γj1

t2

2

)
dt

 dx
=
∞̂

0

gj(x)


∞̂

x

exp
(
−1

2

((
√
γj1t+ γj0 + s

√
γj1

)
2 − (γj0 + s)2

γj1

))
dt

 dx
=
∞̂

0

gj(x) exp
(

(γj0 + s)2

2γj1

)
∞̂

x

exp
(
−1

2(√γj1t+ γj0 + s
√
γj1

)2
)
dt

 dx .

(3.2.27)

Changing the variable u = √γj1t+ (γj0 + s) /√γj1 in (3.2.27), we have
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ t

0
gj(x)dx

)
exp (−st) dt

=
∞̂

0

gj(x) exp
(

(γj0 + s)2

2γj1

)
1
√
γj1


∞̂

√
γj1x+(γj0+s)/√γj1

exp
(
−1

2u
2
)
du

 dx
(3.2.28)
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= 1
√
γj1

exp
(

(γj0 + s)2

2γj1

) ∞̂

0

gj(x)


∞̂

√
γj1x+(γj0+s)/√γj1

exp
(
−1

2u
2
)
du

 dx

= exp
(

(γj0 + s)2

2γj1

)√
π

2γj1

∞̂

0

gj(x)
(

1− erf
(

1√
2

(
√
γj1x+ γj0 + s

√
γj1

)))
dx

= exp
(

(γj0 + s)2

2γj1

)√
π

2γj1

∞̂

0

gj(x)erfc
(

1√
2

(
√
γj1x+ γj0 + s

√
γj1

))
dx .

Following the approximation in (3.2.18) for the complementary error function

erfc
[

1√
2

(
√
γj1x+ γj0 + s

√
γj1

)]
,

for x ∈ [0,∞) and γj0 and γj1 assumed both positive, when(
√
γj1x+ (γj0 + s)

√
γj1

)
/
√

2 ≤ 0.5

has negligible effect on the approximation. Equation (3.2.28) gives
∞̂

0

exp
(
−γj0t− γj1

t2

2

)(ˆ t

0
gj(x)dx

)
exp (−st) dt

≈ exp
(

(γj0 + s)2

2γj1

)√
π

2γj1

∞̂

0

gj(x)
0.6 exp

−1
2

(
√
γj1x+ γj0 + s

√
γj1

)2
 dx

≈ exp
(

(γj0 + s)2

2γj1

)√
π

2γj1
×

∞̂

0

gj(x)
[
0.6 exp

(
−γj12 x2 − (γj0 + s)x− (γj0 + s)2

2γj1

)]
dx

≈ 0.6
√

π

2γj1

∞̂

0

gj(x) exp
(
−γj12 x2 − (γj0 + s)x

)
dx

≈ 0.6
√

π

2γj1
βj(s) .

(3.2.29)

Substituting (3.2.25) and (3.2.29) in (3.2.23), the assertion is proved.

Lemma 2. The estimators of the functions βj(s), j = 1, ..., I , in (3.2.22) are given by

β̂j(s) = 1
0.6s

√
2γj1
π

(
sb̂j(s)−

ψ̂j(s)
β̂1(s)β̂2(s)...β̂j−1(s)

)
, j = 1, ..., I, (3.2.30)
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where
b̂j(s) = exp

(
u2
jo

)√ π

2γj1
[1− erf (ujo)] , j = 1, ..., I ,

and ujo = (s+ γj0)/√2γj1 , j = 1, ..., I .

Proof. Recalling (2.2.3), the consistent estimators of ψj(s), j = 1, ..., I are given by

ψ̂j(s) =
K∑
k=1

Ik
Nj(Tk)
Nk

, j = 1, ..., I .

Using (3.2.20) and Lemma 1 in order to obtain the form of ψj(s) , j = 1, ..., I, we have

ψ1(s) = s

{
exp

(
u2

1o

)√ π

2γ11
[1− erf (u1o)]− 0.6

√
π

2γ11
β1(s)

}

= s

(
b1(s)− 0.6

√
π

2γ11
β1(s)

)
,

b1(s) = exp
(

(s+ γ10)2

2γ11

)√
π

2γ11

[
1− erf

(√
γ11

2
(s+ γ10)
γ11

)]

⇐⇒ β1(s) = 1
0.6s

√
2γj1
π

(sb1(s)− ψ1(s)) .

(3.2.31)

Then, the estimator of β1(s) is given as

β̂1(s) = 1
0.6s

√
2γj1
π

(
sb̂1(s)− ψ̂1(s)

)
= 1

0.6s

√
2γj1
π

(
sb̂1(s)−

K∑
k=1

Ij
Nj(Tk)
Nk

)
,

(3.2.32)

where
b̂1(s) = exp

(
u2

1o

)√ π

2γ11
[1− erf (u1o)] . (3.2.33)

Similarly,

ψ2(s) = sβ1(s)
{

exp
(
u2

2o

)√ π

2γ21
[1− erf (u2o)]− 0.6

√
π

2γ21
β2(s)

}

= sβ1(s)
{
b2(s)− 0.6

√
π

2γ21
β2(s)

}
, b2(s) = exp

(
u2

2o

)√ π

2γ21
[1− erf (u2o)] ,

(3.2.34)
and so β2(s) is estimated as

β̂2(s) = 1
0.6s

√
2γj1
π

(
sb̂2(s)− ψ̂2(s)

β̂1(s)

)
, (3.2.35)
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where
b̂2(s) = exp

(
u2

2o

)√ π

2γ21
[1− erf (u2o)] . (3.2.36)

Inductively, the general estimators of the βj(s) are given by

β̂j(s) = 1
0.6s

√
2γj1
π

(
sb̂j(s)−

ψ̂j(s)
β̂1(s)β̂2(s)...β̂j−1(s)

)
, j = 1, ..., I ,

where
b̂j(s) = exp

(
u2
jo

)√ π

2γj1
[1− erf (ujo)] , j = 1, ..., I .

Theorem 2. Assume that the probability density function gj(t) of the time spent in stage
j , j = 1, 2, .., I is a gamma distribution with a positive integer shape parameter and the
hazard rate in each stage depends on time t and is modelled as

µj(t) = γj0 + γj1t , j = 1, ..., I, γj0 ≥ 0 and γj1 > 0 ,

where γj0, j = 1, ..., I and γj1, j = 1, ..., I are given. Then, the relation between the rate
parameter and the integer shape parameter in each stage is given by

βj(s) = exp
(

(γj0 + λj + s)2

2γj1

)
λ
aj
j

(aj − 1)!

aj−1∑
k=0

(−1)aj−1−k
(
aj−1
k

) 1
2

(
2
γj1

)(k+1)/2

[
(γj0 + λj + s)

γj1

]aj−1−k

Γ
γj1

2

[
(γj0 + λj + s)

γj1

]2

,
k + 1

2

 , j = 1, 2, ..., I ,

(3.2.37)

where Γ(x, a) is the upper incomplete gamma function

Γ(x, a) =
∞̂

x

exp (−t) ta−1dt .

Proof. Because shape parameter aj is a positive integer, (3.2.22) may be used to write

βj(s) =
ˆ ∞

0
gj(t) exp

(
−γj0t− γj1

t2

2

)
exp (−st) dt

= λ
aj
i

(aj − 1)!

ˆ ∞
0

exp
(
−(γj0 + λj + s)t− γj1

t2

2

)
taj−1dt

=
λ
aj
j

(aj − 1)!

ˆ ∞
0

exp
−γj12

(
t+ (γj0 + λj + s)

γi1

)2

+ (γj0 + λj + s)2

2γj1

 taj−1dt

(3.2.38)
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= exp
(

(γj0 + λj + s)2

2γj1

)
λ
aj
j

(aj − 1)!×ˆ ∞
0

exp
−γj12

(
t+ (γj0 + λj + s)

γj1

)2
 taj−1dt, j = 1, 2, ..., I .

By the change of variable u = t+ u0 = t+ (γj0 + λj + s)/γj1 in (3.2.38), we have

βj(s) = exp
(
γj1
2 u2

0

) λ
aj
j

(aj − 1)!

∞̂

u0

exp
(
−γj12 u2

)
(u− u0)aj−1du

= exp
(
γj1
2 u2

0

) λ
aj
j

(aj − 1)!

∞̂

u0

exp
(
−γj12 u2

) aj−1∑
k=0

(−1)aj−1−k
(
aj−1
k

)
uku

aj−1−k
0 du

= exp
(
γj1
2 u2

0

) λ
aj
j

(aj − 1)!×

aj−1∑
k=0

(−1)aj−1−k
(
aj−1
k

)
u
aj−1−k
0

∞̂

u0

exp
(
−γj12 u2

)
ukdu .

(3.2.39)
By the change of variable v = γj1u

2/2 in (3.2.39), we have

βj(s) = exp
(
γj1
2 u2

0

) λ
aj
j

(aj − 1)!×

aj−1∑
k=0

(−1)aj−1−k
(
aj−1
k

)
u
aj−1−k
0

1
2( 2
γj1

)(k+1)/2
∞̂

γj1u2
0/2

exp (−v) v(k−1)/2dt

= exp
(
γj1
2 u2

0

) λ
aj
j

(aj − 1)!

aj−1∑
k=0

(−1)aj−1−k
(
aj−1
k

)
u
aj−1−k
0

1
2×

Γ
(
γj1
2 u2

0,
k + 1

2

)(
2
γj1

)(k+1)/2

, j = 1, 2, ..., I ,

(3.2.40)

which give us (3.2.37).

By Lemma 2 and (3.2.40), the relationship between the rate parameters and the shape
parameters in stage j is shown to be

β̂j(s) = exp
(γj0 + λ̂j + s)2

2γj1

 λ̂
âj
j

(âj − 1)!

âj−1∑
k=0

(−1)âj−1−k
(
âj−1
k

) 1
2

(
2
γj1

)(k+1)/2

×

(γj0 + λ̂j + s)
γj1

âj−1−k

Γ

γj12

(γj0 + λ̂j + s)
γj1

2

,
k + 1

2

 .
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In the constant shape case in which aj ≡ a, j = 1, ..., I are a known positive integer,
the rate parameters λj, j = 1, ..., I can be estimated by solving (3.2.37) numerically.
Conversely, in the constant rate case in which λj ≡ λ, j = 1, ..., I are known, then the
shape parameters aj, j = 1, ..., I can be estimated by solving (3.2.37) numerically.

Lemma 3. The shape parameters aj, j = 1, ..., I of the maturation distributions gj(t), j =
1, ..., I in Theorem 2 are positive integers. If the shape parameters are positive numbers but
not necessarily integers, the relation between the rate parameter and the shape parameter
in each stage is given by

βj(s) ≈ exp
(

(γj0 + λj + s)2

2γi1

)
λ
aj
j

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

Γ
γj1

2

[
(γj0 + λj + s)

γj1

]2

,
aj
2


− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)(γj0 + λj + s)
γj1

Γ
γj1

2

[
(γj0 + λj + s)

γj1

]2

,
aj − 1

2

 .
(3.2.41)

Proof. When aj is a real number, we apply the approximation (u − u0)aj−1 ≈ uaj−1 −
uaj−2(aj − 1)u0, where u0 = (γj0 + λj + s)/γj1 for (3.2.39) to obtain

βj(s) = exp
(
γj1
2 u2

0

) λ
aj
j

Γ(aj)

∞̂

u0

exp
(
−γj12 u2

)
(u− u0)aj−1du

≈ exp
(
γj1
2 u2

0

) λ
aj
j

Γ(aj)

∞̂

u0

[
exp

(
−γj12 u2

)
uaj−1

− exp
(
−γj12 u2

)
uaj−2(aj − 1)u0

]
du.

(3.2.42)

By the change of variable v = γj1u
2/2 in (3.2.42), we have

βj(s) ≈ exp
(
γj1
2 u2

0

) λ
aj
j

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2 ∞̂

γj1
2 u2

0

exp (−v) v(aj−2)/2

− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)u0

∞̂

γj1
2 u2

0

exp(−v)v(aj−3)/2

 dt
(3.2.43)
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≈ exp
(
γj1
2 u2

0

) λ
aj
j

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

Γ
(
γj1
2 u2

0,
aj
2

)

− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)u0Γ
(
γj1
2 u2

0,
aj − 1

2

) ,
which give us (3.2.41).

By Lemma 2 and (3.2.41), the relationship between the rate parameters and the shape
parameters is shown to be

β̂j(s) ≈ exp
(γj0 + λ̂j + s)2

2γi1

 λ̂
âj
j

Γ(aj)

 1
γj1

(
2
γj1

)(âj−2)/2

Γ

γj12

(γj0 + λ̂j + s)
γj1

2

,
âj
2


− 1
γj1

(
2
γj1

)(âj−3)/2

(âj − 1)(γj0 + λ̂j + s)
γj1

Γ

γj12

(γj0 + λ̂j + s)
γj1

2

,
âj − 1

2


 .

When aj, j = 1, ..., I are considered as positive numbers , then the rate parameters
λj, j = 1, ..., I can be estimated by solving (3.2.41) numerically. Conversely, in the
constant rate case in which λj ≡ λ, j = 1, ..., I are known, then the shape parameters
aj, j = 1, ..., I can be estimated by solving (3.2.41) numerically.

3.3 Estimating hazard rates in each stage

As mentioned in Section 3.1, previous studies assumed either that an individual could
not die but rather would eventually move to the next stage, or that individuals could die
but that the hazard rate was the same for each stage. Hence, individual stages could be
ignored and an overall hazard rate estimated. However, in many common situations such
as disease progression and the life-cycle of organisms, the hazard rates in the stages are
not all the same. Because of the nature of the estimation method, the estimators of the
hazard rates and the estimators of the maturation rates are no longer independent. In
order to estimate the hazard rate separately from estimating stage parameters, the multi-
stage models in Section 2.1 need to have additional properties. Moreover, the estimation
of the hazard rate in each stage requires more frequent sampling times. This is illustrated
by simulations in Section 3.4.
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3.3.1 Stage-wise constant hazard rates case

In order to estimate the maturation parameters in Section 3.2.1, the hazard rates were
assumed to be known. This section proposes methods for estimating the hazard rate in
each stage separately from estimating maturation parameters. Although this step will not
be needed in a Bayesian approach, it will be used to obtain initial information regarding
prior distributions of hazard rate variables (Section 4.3).

In an experiment described in [56], it was remarked that dead larvae of nematode are
easily detected. The viability of motionless larvae was checked by touching with a fine
needle. Thus, dead organisms, as well as living organisms, were able to be detected, and
their stage identified.

Assume that T1, T2, ..., TK are independent and identically distributed random sampling
times having an exponential distribution with density s exp(−st), s > 0. Let Dj(Tk), j =
1, ..., I, denote the number of organisms that are observed to be dead in stage j at time
Tk. Since the sampling is destructive, each of the observations D := {Dj(Tk), j = 1, ..., I}
is obtained from a separate population, k = 1, ..., K. Hence

Nk =
I+1∑
j=1

(Nj(Tk) +Dj(Tk)) . (3.3.1)

Let τj = E(Sj), j = 1, ..., I denote the mean duration time in stage j. Let

Mj(Tk) = Nk −
j−1∑
i=1

Ni(Tk)−
j−1∑
i=1

Di(Tk) (3.3.2)

be the number of individuals at time Tk, alive or dead, who have achieved at least stage
j.

Because the hazard rate in each stage is assumed to be constant but varies from stage to
stage, the failure time in each stage has an exponential distribution. Hence, the method
of maximum likelihood (ML) can be applied to estimate the hazard rate. In order to
estimate the hazard rate in each stage, the death times of individuals in each stage need
to be known exactly. In a certain stage, the individuals either pass to the next stage or die
in this stage. The number of individuals observed to be dead at time Tk is the cumulative
number of individuals who died from the starting point to Tk. In a given stage, therefore,
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we shall deem the difference between the number of dead organisms at the sampling time
Tk and Tk−1 to be the number of organisms which died exactly at sampling time Tk.

In stage 1, as a consequence of not knowing the exact number of dead individuals in each
interval (Tk−1, Tk), we deem that (D1(Tk)−D1(Tk−1)) is the number of organisms that
died in stage 1 at time Tk and hence the number of organisms moving to stage 2 at time
Tk is defined as

M2(Tk) :=
(

I∑
i=2

Ni(Tk) +
I∑
i=2

Di(Tk)−
I∑
i=2

Ni(Tk−1)−
I∑
i=2

Di(Tk−1)
)
. (3.3.3)

The likelihood function in stage 1 for assuming that D1(Tk), k = 1, ..., K individuals are
observed to be dead is simply

L(D) =
K∏
k=1

(µ1 exp(−µ1Tk))(D1(Tk)−D1(Tk−1)) (exp(−µ1Tk))M2(Tk) ,

=
K∏
k=1

(µ1 exp(−µ1Tk))(D1(Tk)−D1(Tk−1))×

(exp(−µ1Tk))(
∑I

i=2 Ni(Tk)+
∑I

i=2 Di(Tk)−
∑I

i=2 Ni(Tk−1)−
∑I

i=2 Di(Tk−1)) ,

(3.3.4)

and, the log likelihood can be expressed by

l(D) =
[
D1(T1) +

K∑
k=2

(D1(Tk)−D1(Tk−1))
]

log(µ1)

− µ1

[
D1(T1).T1 +

K∑
k=2

(D1(Tk)−D1(Tk−1))Tk
]
− µ1

[(
I∑
i=2

Ni(Tk) +
I∑
i=2

Di(Tk)
)
T1

+
K∑
k=2

(
I∑
i=2

Ni(Tk) +
I∑
i=2

Di(Tk)−
I∑
i=2

Ni(Tk−1)−
I∑
i=2

Di(Tk−1)
)
Tk

]

=
[
D1(T1) +

K∑
k=2

(D1(Tk)−D1(Tk−1))
]

log(µ1)− µ1A1 − µ1B1 ,

(3.3.5)
where

A1 = D1(T1).T1 +
K∑
k=2

(D1(Tk)−D1(Tk−1))Tk ,

B1 =
(

I∑
i=2

Ni(T1) +
I∑
i=2

Di(T1)
)
T1

+
K∑
k=2

(
I∑
i=2

Ni(Tk) +
I∑
i=2

Di(Tk)−
I∑
i=2

Ni(Tk−1)−
I∑
i=2

Di(Tk−1)
)
Tk .

(3.3.6)
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The hazard rate in stage 1 is estimated by

µ̂1 = D1(T1) +∑K
k=2 (D1(Tk)−D1(Tk−1))
A1 +B1

= D1(TK)
A1 +B1

.

(3.3.7)

Similarly in stage 2, using the estimated hazard rate in stage 1, the shape and rate
parameters in stage 1 are estimated respectively via (3.2.8) or (3.2.9) as appropriate.
Furthermore, we obtain τ̂1 the estimated mean duration in stage 1.

Because we assume that an individual must past from one stage to the next without
missing a stage, an individual in stage 2 must pass from stage 1. Therefore, we shall deem
the difference between the number of dead organisms at the sampling time Tk and Tk−1

to be the number of dead organisms exactly at the sampling time (Tk − τ̂1). We assume
that (D2(Tk)−D2(Tk−1)M2(Tk)/M2(Tk−1)) is the number of stage 2 organisms that died
at time (Tk − τ̂1) and

M3(Tk−τ̂1) :=
[
I∑
i=3

Ni(Tk) +
I∑
i=3

Di(Tk)−
(

I∑
i=3

Ni(Tk−1) +
I∑
i=3

Di(Tk−1)
)
M2(Tk)/M2(Tk−1)

]
(3.3.8)

is the number of stage 2 organisms moving to stage 3 at time (Tk−τ̂1). Using the maximum
likelihood method in a similar way that used to derive µ̂1 , the hazard rate in stage 2 is
estimated as

µ̂2 = D2(T1) +∑K
k=2 (D2(Tk)−D2(Tk−1)M2(Tk)/M2(Tk−1))

A2 +B2
, (3.3.9)

where

A2 = D2(T1)(T1 − τ̂ 1) +
K∑
k=2

(D2(Tk)−D2(Tk−1).M2(Tk)/M2(Tk−1)) (Tk − τ̂1) ,

B2 =
(

I∑
i=3

Ni(T1) +
I∑
i=3

Di(T1)
)

(T1 − τ̂ 1) +
K∑
k=2

[
I∑
i=3

Ni(Tk) +
I∑
i=3

Di(Tk)

−
(

I∑
i=3

Ni(Tk−1) +
I∑
i=3

Di(Tk−1)
)
M2(Tk)/M2(Tk−1)

]
(Tk − τ̂1) .

(3.3.10)

By induction, estimators of the hazard rate in stage j, j = 3, 4..., I are given by

µ̂j = Dj(T1) +∑K
k=2 (Dj(Tk)−Dj(Tk−1).Mj(Tk)/Mj(Tk−1))

Aj +Bj

, j = 3, ..., I, (3.3.11)
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where

Aj = Dj(T1).(T1 −
j−1∑
i=1

τ̂i) +
K∑
k=2

(Dj(Tk)−Dj(Tk−1).Mj(Tk)/Mj(Tk−1)) (Tk −
j−1∑
i=1

τ̂i) ,

Bj =
 I∑
i=j+1

Ni(T1) +
I∑

i=j+1
Di(T1)

 (T1 − τ̂ 1) +
K∑
k=2

 I∑
i=j+1

Ni(Tk) +
I∑

i=j+1
Di(Tk)−

−

 I∑
i=j+1

Ni(Tk−1) +
I∑

i=j+1
Di(Tk−1)

Mj(Tk)/Mj(Tk−1)
 (Tk − τ̂1) ,

(3.3.12)
where τ̂i, i = 1, ..., I is the estimated mean stage time in stage i, obtained from estimated
stage maturation parameter in stage i.

In practice, the quantityDj(Tk)−Dj(Tk−1)Mj(Tk)/Mj(Tk−1) may be negative or undefined
since destructive sampling requires different individuals to be counted at every stage.
When this happens, the sampling time Tk may be simply ignored. This does not affect
the estimates too much when the frequency of the sampling times are increased. In
addition to this, some initial sampling times could be smaller than the sum of previous
mean stage times. This makes the sampling time subtraction in stage j negative. This
may be overcome by replacing the subtraction in stage j by the subtraction in the previous
stage (Tj −

∑j−1
i=1 τ̂i is replaced by Tj −

∑j−2
i=1 τ̂i) and repeating as necessary to arrive at a

positive difference.

3.3.2 Linear time-dependent hazard rates

In order to estimate the linear time-dependent hazard rate in each stage separately from
stage transition, the number of individuals dying in each stage and their death times are
supposed to be known. Therefore, we develop a multi-stage model for sampling designs in
which individuals are required to be identified. Hence, our model is extended as follows.

Single cohort stage-frequency data are collected in a group of identified individuals that
have a life history consisting of (I + 1) stages. An individual must pass from one stage
to the next without missing a stage and destructive sampling is required in order to
assess the stages reached as the system evolves. Because the individual’s death time is
known, covariates assessing the stages of each individual at their death time are recorded.
A competing risk model is used to estimate the hazard rate in each stage. From the
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estimated hazard rates in each stage, these estimated hazard rates are then approximated
by linear functions of time, µ̂j(t) = β̂j0 + β̂j1t, j = 1, ..., I. Estimating type-specific hazard
functions through a competing risk model ([55]; [29]; [38]; [1]) is introduced briefly as
follows.

Relative risk regression models are used for modelling type-specific hazard functions. Our
interest is in identifying the stage at which an individual is going to die. Therefore,
competing risks models may be applied to estimate hazard rate in each stage or the rela-
tionship between covariates and the hazard rates with some specific statistical methods.
In our model, several failure types are distinguished by the death occurring in each stage.
There are I stages and so there are I distinct failure types and I type-specific hazard
functions

µj[t,X(t)] = lim
h→0

h−1P [t ≤ T < t+ h, J = j|T ≥ t,X(t)] , j = 1, ..., I , (3.3.13)

where T is failure time, X(t) = {x(u), 0 ≤ u < t} where x(u) is a vector of possible
time-dependent covariates and J is the stage at which the event of interest occurs.

Because only one of the failure types can occur, the overall hazard function of the time
to failure equals to sum of type-specific hazard functions

µ(t,X) =
I+1∑
j=1

µj(t,X) . (3.3.14)

In Cox regression models ([1]), the type-specific hazard function at time t of stage j for a
subject with covariate Z(t) is modelled as

µj(t, Z(t)) = µ0j(t) exp[Z(t)′βj] , j = 1, ..., I . (3.3.15)

Let tj1 < ... < tjkj ,j = 1, ..., I denote the kj failure time of type j and Zji is the covariate
of the individual that fails at tji. The corresponding partial likelihood is

L(β1, β2, ..., βI) =
I∏
j=1

kj∏
i=1

exp[Zji(tji)′βj)]∑
j∈R(tji) exp[Zl(tji)′βj]

, (3.3.16)

where R(tji) is the risk set at time tji. The maximum partial likelihood estimator
(β̂1, β̂2, ..., β̂I) can be obtained by simultaneously solving the equations

∂logL(β1, β2, ..., βI)/∂βji = 0, j = 1, ..., I, i = 1, ..., K ,
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where K is the number of elements of a covariate vector. The covariance matrix for this
estimation is estimated as I(β̂)−1 where the observed information matrix is

I(β) =
[
− ∂2

∂βj∂βi
logL(β1, β2, ..., βI)

]I
i,j=1

. (3.3.17)

The Breslow estimator ([1]) is applied to obtain an estimator for the type-specific cumu-
lative baseline hazard H0j(t) =

´ t
0 λ0j(u)du

Ĥ0j(t) =
∑
tji<t

1∑
j∈R(tji) exp[Zl(tji)′β̂j]

, j = 1, ..., I. (3.3.18)

The type-specific hazard functions are estimated by smoothing the Breslow estimator,

µ̂0j(t) = 1
b

∑
tji

K
(
t− tji
b

)
4Ĥ0j(t) , j = 1, ..., I, (3.3.19)

where b is a bandwidth, tji are times of events that occurred in interval [t− b, t+ b] and
K(x) is a bounded function that vanishes outside [−1, 1] and has integral 1 (a weighted
average of the 4Ĥ0j(t)) and

4Ĥ0j(t) = 1∑
j∈R(tji) exp[Zl(tji)′β̂j]

. (3.3.20)

3.4 Simulation studies

The Laplace transform method for stage frequency data is efficient in the case of random
sampling times. In practice, fixed sampling times dominate most experiments and strati-
fied sampling may be used to increase the efficiency of the estimation as explained in [51].
Let C = {c0 = 0, c1, ..., cK = ∞} be a set of cutpoints between K fixed sampling times
T1, T2, ..., TK .

Recalling (2.2.2), T1, T2, ..., TK are independent variables having density functions as

αj(t) =


α(t)
Ij

t ∈ [cj, cj+1]

0 t /∈ [cj, cj+1],

where Ij =
´ cj+1
cj

α(t)dt =
´ cj+1
cj

s exp(−st)dt = exp (−scj) − exp (−scj+1) , j = 1, ..., K,
where the dependence of Ij on s is suppressed.
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An unbiased and strongly consistent estimator for
´∞

0 pθ(t)α(t)dt is ∑K
i=1 Ijn(Tj) (Section

2.2), where Ij, j = 1, ..., K, are called exponential weights.

In this section, datasets were simulated with known parameters. The method of Section
3.2 was used to estimate maturation parameters from the simulated data. In order to
estimate maturation parameters in the constant shape case (Section 3.2), the estimation
technique from Section 3.3 was applied to estimate hazard rate parameters. The estima-
tion techniques in Sections 3.2 and 3.3 are evaluated by the accuracy of the estimations
from simulated data.

3.4.1 Stage-wise constant hazard rates

The estimation of hazard rate in stage 1 is now obtained from empirical data. It should
be noted that the inductive estimations of stage-wise hazard rates in Section 3.3.1 do
not need the maturation parameters. Two simulations were conducted: one for the zero
hazard rate case and another for the stage-wise constant hazard rate case. The former
repeats the simulation of [25] [p. 19]. This was done to compare the structures of the
model with zero hazard rate ([25]) and the model with stage-wise constant hazard rates.
In particular, the model with stage-wise constant hazard rates required larger sample size
and more frequent sampling than the model with zero hazard rate in order to estimate
parameters.

Firstly, 10 stage times at each sampling time were generated from Erlangian distributions
with constant shape a = 2 and rates λ1 = 1.5, λ2 = 1.5 and λ3 = 1.5 for stage 1, stage 2
and stage 3, respectively. Fifteen sampling time points were taken between 0.1 and 6. In
this simulation, the cutpoints between the 15 fixed sampling times were

C = {c0 = 0, c1 = T1 + T2

2 , ..., c14 = T14 + T15

2 , c15 =∞} .

The numbers of observations in each stage appear in Table A.1, Appendix A. The unknown
parameter s was determined using the iterative method in Section 2.2. We chose the
initial random sampling rate s to be 0.5 for each of the three stages. The iterative scheme
converged quickly and so the values of s obtained after three iterations were adopted
as the final value in each stage. These were 0.74, 0.69 and 0.76 for the three stages
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respectively. The number of steps was chosen as in [51] by inspection of the convergence.
However, in practice there may not be an obvious method for choosing the number of
steps. Some authors have suggested using certain optimality criteria for these choices
([21]; [36]) including minimum variance methods ([25]).

Means and standard deviations of the estimates of the stage parameters were taken from
100 simulations (Table 3.1). In this case the number of individuals in each sampling time
was just 10, and we note that the standard deviations were not sufficiently similar to the
corresponding results in the stage-wise constant hazard rate case reported in Table 3.2
where there were 1000 individuals in each sampling time. This is because of the effect of
hazard rates in each stage of the model, the stage-wise constant hazard rate case requires
an even larger sample size and more frequent sampling. The probabilities across time of
a particular independent organism in each stage, conditional on the individuals starting
at stage 1, are shown in Figure 3.2. This figure shows the empirical observations, the
estimated probability curves and the true probability curves.

Table 3.1: Mean and standard deviation of estimated scale parameters λi, i = 1, 2, 3
in three stages in the constant shape rate case from 100 simulated data sets in which
stage-specific mortality does not occur.

Parameter λ1 λ2 λ3

True values 1.5 1.5 1.5
Mean estimated values 1.51 1.51 1.59
Standard deviation 0.24 0.32 0.60

Secondly, data in the case of stage-wise constant hazard rates case were simulated. Com-
pared with the simulation in [25], this simulation needs more sampling time points and
stage times. Here, 1000 stage times at each sampling time were generated from Erlangian
distributions with constant shape a = 2 and rates λ1 = 1.5, λ2 = 1.5 and λ3 = 1.5 for
stage 1, stage 2 and stage 3, respectively. Fifty sampling time points were taken between
0.1 and 6. This sampling time range extension was used to assess the hazard rate in each
stage. From the initial number in each stage, the number of deaths was generated from
exponential distributions with rates µ1 = 0.3, µ2 = 0.5 and µ3 = 0.7 in stage 1, stage 2
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Figure 3.2: The empirical proportion (dotted line), the true probability curve (solid line)
and the estimated probability curve (dashed line) of 10 sampled individuals at 15 sample
times in the case that the mortality does not occur. The top left figure shows the curves
in stage 1, the top right figure shows the curves in stage 2 and the bottom figure shows
the curves in stage 3. The true probability curves and the estimated probability curves
in the first stages are visually indistinguishable.

and stage 3 respectively. The number of individuals alive and the number of deaths in
each stage were counted (Table A.2, Appendix A).

The unknown parameter s was derived using the iterative method described in Section 2.2.
We chose an initial random sampling rate s to be 0.5 for each of the three stages. After two
iterations, 0.74, 0.73 and 0.72 were determined as s values for stage 1, stage 2 and stage
3, respectively. Mean and standard deviation of the estimates of the stage parameters
were taken from 100 simulations (Table 3.2). The true probability function and the
estimated probability function in each stage are shown in Figure 3.3. These are visually
indistinguishable between the true probability curves and the estimated probability curves
in three stages. We used 1000 sampled individuals at 50 sample times in order to estimate
hazard rates. With the large sample size, the approach produces good estimates of the
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empirical proportion.

The simulations indicate that our methods can produce small biases for the fixed shape
parameter in the stage-wise constant hazard rates case (Table 3.2). Because of a higher
sampling rate in the stage-wise constant hazard rates case, the standard deviations of
hazard rate parameters from 100 simulated data sets are small. Likewise, the standard
deviations of rate parameters (Table 3.2) are similar to the case in which stage-specific
mortality does not occur (Table 3.1). Overall, estimation errors from later stages were
bigger due to additive estimation errors from previous stages.

Table 3.2: Mean and standard deviation of estimated scale and hazard rate parameters
λi and µi, i = 1, 2, 3 in three stages in the constant shape rate case from 100 simulated
data sets in case of stage-wise constant hazard rates.

Parameter λ1 λ2 λ3 µ1 µ2 µ3

True values 1.5 1.5 1.5 0.3 0.5 0.7
Mean estimated values 1.47 1.46 1.34 0.32 0.44 0.70
Standard deviation 0.21 0.53 1.40 0.03 0.04 0.11

3.4.2 Linear time-dependent death rates

A particularly easy case is one in which we combine stage-wise constant hazard rates
in stage 1 and stage 2 and linear time-dependent hazard rate in stage 3. Data were
simulated for organisms with three stages having Erlangian distributions with constant
shape a = 2 and rates λ1 = 1.5, λ2 = 1.5 and λ3 = 1.5 for stage 1, stage 2 and stage
3, respectively. The hazard rates in stage 1, 2 and 3 were set to µ1 = 0, µ2 = 0.3 and
µ3 = t, respectively. We used the true values of the hazard rate in each stage as input
to techniques in Section 3.2 for estimating the maturation parameters. The method used
for estimating the maturation parameters for stages 1 and 2 was the same as in Section
3.4.1, but the method of Section 3.2.2 was used for stage 3.

Recalling (2.1.2), the probability of an organism being alive in stage j, for j = 1, 2, 3 at

50



3. A Classical Approach

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

Stage 1

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

Stage 2

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

Stage 3

times

P
ro

po
rt

io
n

Figure 3.3: The empirical proportion (dotted line), the true probability curve (solid line)
and the estimated probability curve (dashed line) of 1,000 sampled individuals at 50
sample times in stage-wise constant hazard rates case. The top left figure shows the
curves in stage 1, the top right figure shows the curves in stage 2 and the bottom figure
shows the curves in stage 3. The true probability curves and the estimated probability
curves in the first stages are visually indistinguishable.

time t is calculated as

p1(t) = H1(t) =
∞̂

t

g1(x)dx = 1−
tˆ

0

g1(x)dx = 1−
tˆ

0

λ2
1x exp (−λ1x) dx

p2(t) = h1(t) ∗H2(t) = g1(t) ∗ exp (−µ2t)
∞̂

t

g2(x)dx

p3(t) = h1(t) ∗ h2(t) ∗H3(t) = g1(t) ∗ exp−µ2t g2(t) ∗ exp
(
−t

2

2

) ∞̂

t

g3(x)dx .

(3.4.1)

The Laplace transforms ψj(s)/s, j = 1, 2, 3 in (3.2.21) become
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ψ1(s) = s
´∞

0 H1(t) exp (−st) dt = sL(H1(t)) = 1− β1(s) ,

ψ2(s) = s

∞̂

0

h1 ∗H2(t) exp (−st) dt

= sL{h1} (s)L{H2(t)} (s)

= sβ1(s)1− β2(s+ µ2)
s+ µ2

,

ψ3(s) = s

∞̂

0

h1 ∗ h2 ∗H3(t) exp (−st) dt

≈ sβ1(s)β2(s)
exp

(
s2

2

) √
π

2

1− erf
√1

2s
− 0.6

√
π

2βj1
β3(s)

 ,

(3.4.2)

where

β1(s) = L{h1} (s) =
∞̂

0

g1(x) exp (−st) dx =
(

λ1

λ1 + s

)a

β2(s) = L{h2})(s) =
∞̂

0

g2(x) exp(−s− µ2)tdx =
(

λ2

λ2 + µ2 + s

)a

β3(s) = L{h3} (s) =
∞̂

0

g3(x) exp
(
−st− t2

2

)
dx

= λa3 exp
(

(λ3 + s)2

2

)[
Γ
(1

2(λ3 + s)2, 1
)
− (λ3 + s)√

2
Γ
(1

2(λ3 + s)2,
1
2

)]

(3.4.3)

Using (3.2.14) and (3.2.30), the estimators of βj(s), j = 1, 2, 3 are given by

β̂1(s) = 1− ψ̂1(s)

β̂2(s) = 1− s+ µ2

s

ψ̂2(s)
β̂1(s)

β̂3(s) ≈ 1
0.6s

√
2
π

s exp
(
s2

2

) √
π

2

1− erf
√1

2s
− ψ̂3(s)

β̂1(s)β̂2(s)


= 1

0.6

exp
(
s2

2

)1− erf
√1

2s
−

√
2
π

ψ̂3(s)
sβ̂1(s)β̂2(s)

 .

(3.4.4)

52



3. A Classical Approach

Following (3.2.8) and (3.2.37), the estimators for rate in each stage are given as

λ̂1(s) = s

[β̂1(s)]−1/a − 1
,

λ̂2(s) = s+ µ2

[β̂2(s)]−1/a − 1
,

β̂3(s) = λ̂a3 exp
(

(λ3 + s)2

2

)[
Γ
(1

2(λ̂3 + s)2, 1
)
− (λ̂3 + s)√

2
Γ
(1

2(λ̂3 + s)2,
1
2

)]
.

(3.4.5)

One hundred stage times at each sampling time were generated from Erlangian distribu-
tions with constant shape a = 2 and rates λ1 = 1.5, λ2 = 1.5 and λ3 = 1.5 for stage 1,
stage 2 and stage 3 respectively. Fifteen sampling time points were taken between 0.1
and 6. The number of observations and the number of deaths in each stage was recorded
(Table A.3, Appendix A). The unknown variable s was determined by using the iterative
method from Section 2.2. For each of the three stages, the initial sampling rate was set at
0.5. After five steps, s values were determined as 0.68, 0.65 and 0.78 for stage 1, stage 2
and stage 3 respectively. Mean and standard deviation of the estimated stage parameters
were taken from 100 simulations (Table 3.3). The probabilities across time of a particu-
lar independent organism in each stage, conditional on starting at stage 1, are shown in
Figure 3.4.

The estimated rate parameters, calculated using the assumptions of the estimated hazard
rates and the fixed shape parameter, showed some bias (Table 3.3). The standard devia-
tions from 100 simulations in the linear time-dependent hazard rates case are comparable
to the standard deviations in the non-observed hazard rate case. However, there are 100
individuals at each sampling time, compared with only 10 individuals at each sampling
time in the non-observed hazard rate case.

Table 3.3: Mean and standard deviation of estimated scale parameters λi, i = 1, 2, 3 in
three stages in the constant shape rate case from 100 simulated data sets in the case of
linear time-dependent hazard rates.

Parameter λ1 λ2 λ3

True values 1.5 1.5 1.5
Mean estimated values 1.51 1.57 1.60
Standard deviation 0.09 0.32 0.56
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Figure 3.4: The empirical proportion (dotted line), the true probability curve (solid line)
and the estimated probability curve (dashed line) of 100 sampled individuals at 15 sample
times in the linear time-dependent hazard rates case. The top left figure shows the curves
in stage 1, the top right figure shows the curves in stage 2 and the bottom figure shows
the curves in stage 3. The true probability curves and the estimated probability curves
in the first stages are visually indistinguishable.

3.5 Discussion

If, in a particular stage, the mean survival time is small compared to the mean maturation
time (the sampling rate s−1) the models are not acceptable. In such a stage, most of the
individuals die before they move to the next stage. Therefore, the iterative method of [51]
for choosing the sampling rate in Section 2.1 does not converge to the mean maturation
time. In this case, the number of dead individuals in the stage is larger than the sum of
the number of organisms in the next stages.

The models apply when assessing the stage reached by each individual through destructive
sampling in situations where the hazard rates in each stage are non-trivial. The proposed
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methods for estimating the hazard rates and the stage-dependent maturation parameters
in each stage are extensions of previous stage-duration models of [51] and [25]. We believe
that these methods could be useful in laboratory studies in which single cohort stage-
frequency data are considered. The models (Section 3.2) apply when, at each sampling
time, it is possible to assess the stage of living individuals and count the number of dead
individuals.

The main contribution of this chapter is the exploration of the relationship between pa-
rameters in each stage that could be used in estimating parameters in the course of im-
plementing Markov chain Monte Carlo (MCMC) methods. In this chapter, we estimate
the maturation parameters and hazard rates at each stage under the assumption that the
stage time durations are gamma distributed with fixed shape or rate parameters. We
will use MCMC methods to overcome this limitation in the next chapters. There will be
no need for any assumptions about the specific form of the stage-dependent maturation
parameters. In particular, when the probability density functions of the time spent in
each stage have gamma distribution, rate and shape parameters will be estimated at the
same time. Thus, the rate parameters or shape parameters do not need to be assumed
constant and known. Moreover, the survival time in each stage will not be limited to any
parametric survival distribution and hence the hazard rate in each stage will not need to
be a linear function of time t.

The estimation techniques of this chapter will be used as input to an MCMC algorithm
in order to increase the convergence rate of MCMC methods. Running MCMC code to
estimate the stage-dependent maturation parameters is non-trivial work, especially when
the number of stages is large. Preliminary tests (reported in the next chapters) indicate
that using the parameters estimated by the methods of this chapter will improve the
convergence properties of the Markov process by applying the deterministic proposal of
the MH algorithm. Thus, this chapter may be seen, in part, as an intermediate step
toward applying MCMC methods. Once we are in a position to use MCMC methods,
the full method may be applied to the data in [25]. At the same time, we are working to
reduce the number of sampling times required in the data.
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Chapter 4

Parameter Estimation in Multi-stage
Models: A Bayesian Approach

Multi-stage time evolving models (stage-duration models) are common statistical models
for biological systems, especially insect populations. In stage-duration distribution mod-
els, most approaches use Laplace transform method to estimate parameters ([51]; [25]).
This method involves assumptions such as known constant shapes, known constant rates
or the same overall hazard rate for all stages. These assumptions are strong, and restric-
tive. The main aim of this chapter is to weaken these assumptions by using a Bayesian
approach. In particular, a Metropolis-Hastings (MH) algorithm based on deterministic
transformations ([20]; [4]; [53]; [35]) is used to estimate parameters. We will use three
models, one which has no hazard rates, the second has stage-wise constant hazard rates
and the third has linear time-dependent hazard rates. These methods are validated in
simulation studies followed by case studies of cattle parasites and breast development of
New Zealander schoolgirls in Chapter 5.

4.1 Introduction

Recalling the models in Section 2.1, multi-stage time-evolving models are considered to
be stage-duration models. The models are often used to model insect populations. An
example of stage-structured data (Table 2.1) was an experiment analysing cattle parasitic
nematode development ([58]). This parasite’s life cycle has four stages including stage 1
(egg), stage 2 (first larvae stage), stage 3 (second larvae stage) and stage 4 (third larvae
stage). The only information that can be collected is the number of organisms in each
stage. This is gathered from destructive samples taken at different sampling times. That
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is, an organism’s stage cannot be observed without harvesting and destroying the samples
and, thus, different samples are examined at each sampling time. The effect of mortality
in each stage is also considered in the models. Such models were studied in [51], [39], [25],
[17] and [34].

As discussed in Chapter 3, stage-dependent maturation parameters have often been es-
timated through Laplace transform (LT) methods ([51]; [25]). These estimations rely on
assumptions that reduce their generality. A common limitation of these methods is that
stage-dependent maturation parameters are estimated only in either the constant shape
or the constant rate cases. This means that the stage-dependent maturation distribution
is assumed, even though in general biological situations it is usually unknown. A sec-
ond limitation relates to the way of handling the hazard rate at each stage. Although
the estimated stage-specific mortalities were expanded to the situation where non-trivial
death rates apply, hazard rates were estimated separately from the maturation param-
eters. Thus, many more samples were required than in the simpler models. A third
limitation is that calculating variances of the estimates is complicated.

Many different approaches appear in the literature that address theoretical and statistical
aspects of this problem (e.g., see [33],[18], [19], [32], [41] and [43]). A major difficulty is a
lack of general computational methods to estimate the maturation parameters and stage
specific mortality ([41]). Methods for statistical comparison of phenology between pop-
ulations have been presented based on a t-test and simple linear regression. De Valpine
et al ([19]) presented models for repeated censuses of cohort stage structure data without
destruction. Bayesian approaches have been used in order to estimate stage duration
parameters and mortality rates. Other approaches have been used to estimate separate
distributions by combining stages instead of separating stage duration distributions ([32];
[43]). De Valpine and Knape ([18]) studied computational methods for smoothed maxi-
mum likelihood estimation applied to general multi-stage models from cohort data. The
Markov chain Monte Carlo (MCMC) method was proposed as an extension to solve the
statistical and computational issues mentioned above.

Knape and De valpine ([33]) recently proposed Monte Carlo estimation for models with no
hazard rate and models with stage-wise hazard rate. The differences between Knape and
De Valpine’s approach and our approach are the probabilities (pj(t) and d(t) (4.2.2, 4.3.2
and 4.3.3)) that an individual will be alive and will be found dead in stage j, j = 1, 2, ..., I
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at time t in the likelihood function. In Knape and De Valpine’s paper, the probability
pj(t) ([33], (2), p. 996) was defined as a summation over all possible life schedules that are
in stage j at time t weighted by the probability of being alive. The probability d(t) ([33],
(1), p. 996), that an individual is dead at time t, is one minus the probability of being
alive in any stage at time t. In our approach, these probabilities pj(t) and dj(t) ((4.2.2),
(4.3.2) and (4.3.3)) are defined as the convolutions of probability density functions of the
time spent from stage 1 to stage j . The summary of differences between Knape and De
Valpine’s approach and our approach are as follows:

First, Knape and De Valpine proposed the time spent by individuals in each stage obtained
by generating from a given parameter vector θ0. The model assumption, that stage times
and times of death of individuals are unknown, is not considered. In our model, the data
are censored severely. The time of transition from one stage to the next stage and the times
at which death occurs cannot be observed. Thus, the probabilities pj(t), j = 1, 2, ..., I do
not depend on the time spent in each stage of individuals.

Second, the probability pj(t) depended on the time individuals spent in each stage and
these times are assumed to be unknown in the model ([33], (2), p. 996). Therefore, the
likelihood function was approximated computationally. The estimates of p̂j(t) were not
based on the transitions between stages of an individual. The estimates were based on
the simulated values of the time spent in each stage by individuals which is generated
from the distribution hj(t) = gj(t)Sj(t), j = 1, 2, ..., I. They used the particle MCMC
method. In our approach, the calculation of the likelihood function is feasible in the
no hazard rate case and the stage-wise hazard rate case (4.2.5 and 4.3.6). We apply
the Metropolis-Hastings algorithm based on deterministic transformations to improve the
mixing of Markov chains.

Third, in Knape and De Valpine’s model, the stage at which death occurs was not consid-
ered. Hence, the probability, that an individual is dead at time t, did not include stages.
In our model, at each sampling time, the number of dead organisms in each stage can be
counted. The probability of an individual in stage j being found dead at sampling time t
is defined by (4.3.3). This leads to the estimates of hazard rate parameters at each stage
more precisely.

Parameter estimation within a Bayesian setting provides at least three advantages com-
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pared to the existing methods in this context. First, it relaxes common assumptions such
as known constant shapes or known constant rates or assuming the same overall death
rate. This is achieved by allowing uncertainties in shape and rate parameters through
their prior distributions. Second, a Bayesian approach allows the number of samples to
be reduced because the estimates of maturation and hazard rate parameters are imple-
mented simultaneously at each stage. Third, this approach provides information about
uncertainties within each parameter.

In this chapter, we further explore a Bayesian approach. Parameters are estimated using
some well-known MCMC algorithms such as the MH algorithm. The method does not
need any assumptions about the specific form of the stage-dependent maturation parame-
ters. When the probability density functions of the time spent in each stage has a gamma
distribution, the rate and shape parameters can be estimated simultaneously. Thus, the
rate or shape parameters do not need to be assumed as known constants. Furthermore,
hazard rates in each stage can also be estimated simultaneously with the maturation pa-
rameters. This makes the Bayesian approach an effective estimation method for general
multi-stage models from single cohort data. In addition, this approach allows the number
of sampling times to be reduced compared to the studies in Chapter 3.

It should be noted that Markov chains from the MH algorithm have bad mixing tendencies,
especially when the number of stages is large. Therefore, parameters estimated from the
Laplace transform methods are embedded in the MH algorithm to increase the speed of
the convergence of the chains. This method is described as the MH algorithm based on
deterministic transformations ([20]; [4]).

This chapter is divided into four sections. Section 4.2 presents Bayesian analysis for
estimating stage parameters in a model with no hazard rates. Section 4.3 deals with
Bayesian analysis for estimating stage parameters in a model with stage-wise constant
hazard rates. This is then followed by Section 4.4 which presents simulation studies in
order to evaluate the methods in Sections 4.2 and 4.3, respectively. The application of
the methodology in case studies is presented in Chapter 5.
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4.2 Bayesian analysis for the model with no hazard

rates

This section introduces the model with no hazard rates and the MH algorithm ([11]; [9]).
The MH algorithm based on deterministic transformations is included in order to improve
the convergence of the Markov process.

4.2.1 The likelihood function

Recall in Section 2.1 where stage-duration distribution models are considered as single
cohort stage-frequency models. In these models, the life cycle of an individual is divided
into (I + 1) stages, where stage (I + 1) is a final stage (for example, the death stage
or the adult stage). We assume that at the first sampling time, all individuals start at
stage 1. In the model with no hazard rates, an individual transforms through each stage
without missing a stage and death does not occur in any stage. Moreover, in our model
we examine destructive sampling, which assesses each individual’s stage in the sample
before destroying it. Thus, a different sample is taken at each sampling time.

In stage j, the stage duration density gj(t), j = 1, ..., I has a gamma distribution which
is parameterized by shape and rate parameters (aj, λj). The number of organisms alive
in stage j at time Tk is defined as Nj(Tk) = Nkj, j = 1, ..., I, k = 1, ..., K, where K is the
number of sampling times. The number of sampled individuals at time tk is defined as

Nk =
I+1∑
j=1

Nj(Tk) . (4.2.1)

Recall (2.1.2), the probability of the life time of each independent organism is calculated
by [47] as

pj(t) = P(organism X is alive in stage j at time t|X starts stage 1 at time 0)

= h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) , j = 1, ..., I ,
(4.2.2)

where hi(t) = gi(t) = taj−1e−λjtλ
aj
j /Γ(aj), i = 1, ..., j − 1 is the density function of an

organism being alive in stage i, the notation ∗ denotes convolution and

Hj(t) =
∞̂

t

gj(x)dx . (4.2.3)
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Define yk = (N1(Tk), N2(Tk), ..., NI+1(Tk)) to be the observed information from kth sam-
pling time, and y = {yk, k = 1, ..., K} to be the sequence of these observations. Let
θ = (a1, λ1, ..., aI , λI) = (θ1, θ2, ..., θ2I) , m = 1, ..., 2I ∈ R+ represents the maturation
parameters from I stages and θ(−m) = (θ1, ..., , θm−1, θm+1, ..., θ2I).

Following De Valpine and Knape 18, at each sampling time Tk, we assume that yk has a
multinomial distribution with parametersNk as defined in (4.2.1) and p1(Tk), p2(Tk), ..., pI(Tk)
as in (4.2.2), that is

(yk|Nk, θ) ∼ Multinomial (Nk, p1(Tk), p2(Tk), ..., pI+1(Tk)) , (4.2.4)

where pI+1(Tk) = 1−∑I
j=1 pj(Tk). Let p (Nk, p1(Tk), p2(Tk), ..., pI+1(Tk)) denote its prob-

ability mass function.

By (4.2.4), the joint likelihood function of observed information y from K sampling times
is shown to be

f(y|θ) =
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI+1(Tk)) . (4.2.5)

4.2.2 The posterior distribution

The 2I maturation parameters are set as θ = (θ1, θ2, ..., θ2I) = (a1, λ1, ..., aI , λI). Note
that odd indexed θj’s (where j = 2k − 1) coincide with the shape parameters ak and the
even indexed θj’s (where j = 2k) coincide with the rate parameters λk. We set the prior
distributions of each θj for j = 1, ..., 2I to be uniform on the interval Ωj = (0, xj). The
range of the uniform distributions is defined as

Ω = {(θ1, θ2, ..., θ2I) ∈ Ω1 × Ω2 × ...× Ωθ2I} . (4.2.6)

The values of xj, j = 1, ..., 2I, depend on the data but will not affect the algorithm
(Section 4.2.4.2). If more information about the parameters is known, this will reduce the
time to explore the entire sample space and keep a reasonable acceptance rate.

In our model, we assume that maturation parameters are independent for simplicity. This
is a reasonable assumption for this model. We could also explore this issue by examining
the relevant correlations in the MCMC output. When iterations are large enough, the
sample variance matrix of the Markov chain can be computed. The variance matrix can
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be used to propose new value for parameter vector. Using (4.2.4) and (4.2.5), the target
posterior distribution has the form of

π(θ|y) ∝ f(y|θ)p(θ)

∝ f(y1|θ)...f(yK |θ)p(θ1)...p(θ2I)

∝
K∏
k=1

f(yk|θ)
2I∏
m=1

p(θm)

∝
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI+1(Tk))
2I∏
m=1

p(θm)

∝


∏I+1
i=1

∏K
k=1 p

Nki
i (Tk) θ ∈ Ω

0 θ /∈ Ω ,

(4.2.7)

where y = {yi, i = 1, ..., K} and yi is observed information from the ith sampling time.
Note that

2I∏
m=1

p(θm) =
2I∏
m=1

1
xm

, θ ∈ Ω

is independent of data y and hence can be omitted in the above.

Using (4.2.7), the conditional posterior distributions of the rate and shape parameters in
stage j for j = 1, 2, ..., I are obtained as follows:

i) The conditional posterior distribution of the shape parameter aj which coincides with
θ2j−1 is

π
(
θ2j−1|y, θ(−(2j−1))

)
∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk) θ2j−1 ∈ Ω2j−1 ,

0 θ2j−1 /∈ Ω2j−1 .
(4.2.8)

ii) The conditional posterior distribution of the rate parameter λj which coincides with
θ2j is

π
(
θ2j|y, θ(−2j)

)
∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk) θ2j ∈ Ω2j ,

0 θ2j /∈ Ω2j .
(4.2.9)

4.2.3 The single MH algorithm for the no hazard rate model

We apply the single MH method ([11]; [9]) to the no hazard rate model. Although the
algorithm (Algorithm 1) produces bad mixing tendencies (Chapter 5), the output of the
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algorithm is used to estimate the initial sampling rates s = (s1, s2, ..., sI). The sampling
rate sj in stage j is selected as the mean of gamma density function gj(t) which is estimated
from the single MH algorithm. These sampling rates will be updated after applying MH
algorithm based on deterministic transformations. It is a reasonable choice of sampling
rate s for the Laplace transform in using the iterative method of Schuh and Tweedie
(Section 2.2).

We first introduce some notation. Let θ(t)
m , m = 1, ..., 2I be a current value of the param-

eter θm and θ(∗)
m , m = 1, ..., 2I be a proposed value at the tth iteration of the parameter

θm through a random walk of MH algorithm.

We choose the prior distributions as uniform distribution with range Ω (4.2.6) and initialise
value θ(0) =

(
a

(0)
1 , λ

(0)
1 , ..., a

(0)
I , λ

(0)
I

)
. The proposal distributions

(
q
(
θ

(t)
j |θ

(∗)
j

))
are normal

random walk
(
N
(
θ

(t)
j , σj

))
in which the means are the current values. Tuning variances

(σj) from the normal random walk distributions are optimized by using adaptive MH
method (Section 2.3.5). The single MH algorithm is applied to our models as follows.

Algorithm 1 The single MH algorithm at stage j for the model with no hazard rate

1: Initialise
(
a

(0)
j , λ

(0)
j , ..., a

(0)
I , λ

(0)
I

)
2: for t = 1 to T do
Update the shape parameter aj which coincides with θ2j−1:
3: Given the current state θ(t)

2j−1, propose θ
(∗)
2j−1 ∼ q

(
θ

(∗)
2j−1|θ

(t)
2j−1

)
4: Calculate the acceptance probability α1 = min

1,
π

(
θ

(∗)
2j−1|y,θ(−(2j−1))

)
q

(
θ

(t)
2j−1|θ

(∗)
2j−1

)
π

(
θ

(t)
2j−1|y,θ(−(2j−1))

)
q

(
θ

(∗)
2j−1|θ

(t)
2j−1

)
5: Set θ(t+1)

2j−1 = θ
(∗)
2j−1 with probability α1, otherwise set θ(t+1)

2j−1 = θ
(t)
2j−1

Update the rate parameter λj which coincides with θ2j:
6: Given the current state θ(t)

2j , propose θ
(∗)
2j ∼ q

(
θ

(∗)
2j |θ

(t)
2j

)
7: Calculate the acceptance probability α2 = min

1,
π

(
θ

(∗)
2j |y,θ(−2j)

)
q

(
θ

(t)
2j |θ

(∗)
2j

)
π

(
θ

(t)
2j |y,θ(−2j)

)
q

(
θ

(∗)
2j |θ

(t)
2j

)
8: Set θ(t+1)

2j = θ
(∗)
2j with probability α2, otherwise set θ(t+1)

2j = θ
(t)
2j

9: end for

In order to calculate the acceptance probability in Algorithm 1, we need to calculate the
probability pj(Tk), j = 1, ..., I, in stage j at each sampling time Tk. The Laplace transform
of the probability pj(t) has an explicit form which was proved in Chapter 3. From (4.2.2),
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the Laplace transform of the probability pj(t) is expressed as

L{pj(t)} (s) =
∞̂

0

pj(t) exp (−st) dt

=
∞̂

0

h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) exp (−st) dt

= L{h1} (s)L{h2} (s)...L{hj−1} (s)L{Hj(t)} (s)

= β1(s)β2(s)...βj−1(s)1− βj(s)
s

.

(4.2.10)

=
(

λ1

λ1 + s

)a1

....

(
λj−1

λj−1 + s

)aj−1 1− βj(s)
s

.

Taking the inverse Laplace transform of (4.2.10), we then obtain the value of the proba-
bility pj(t).

4.2.4 MH algorithm based on deterministic transformations for

the no hazard rate model

In this section, in order to improve mixing of the MH method ([11]; [9]), we apply a more
efficient algorithm, so-called MH based on deterministic transformations ([20]; [4]; [53];
[35]). The estimations of the maturation parameters in [51] and [25] are implemented in
this algorithm. This implies that the rate parameter proposal in each stage is a deter-
ministic proposal conditional on the proposed shape parameter in this stage and data.

4.2.4.1 Acceptance probability of shape and rate estimates in stage j

Recall that λ(∗)
j is a deterministic proposal of λj. Given a constant a(∗)

j , µj = 0 and the
data y, λ(∗)

j is estimated using (3.2.8) in the shape constant case as

λ̂
(∗)
j (s) = f(a(∗)

j ) = s[
β̂j(s)

]−1/a(∗)
j − 1

, (4.2.11)

where βj(s) = L(hj) =
´∞

0 gj(t) exp(−st)dt and the estimation of βj(s) was given in
(3.2.7).
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The proposed a
(∗)
j is a continuous random variable and the deterministic proposal λ̂(∗)

j

is an invertible function of a(∗)
j . Using the change of variable technique, the probability

density function of λ̂(∗)
j conditional on a(∗)

j is

p
(
λ̂

(∗)
j |a

(∗)
j

)
= p

(
a

(∗)
j

) ∣∣∣∣∣(f−1
)′
λ̂

(∗)
j |a

(∗)
j

∣∣∣∣∣ , (4.2.12)

where (f−1)
′
denotes the derivative of f−1, and

a
(∗)
j (s) = f−1

(
λ̂(∗)

)
= log β̂j(s)

log
[
λ̂

(∗)
j /(λ̂(∗)

j + s)
] . (4.2.13)

Using (4.2.12), the joint probability density of the proposal parameters in each stage is
calculated as

p
(
a

(∗)
j , λ̂

(∗)
j

)
= p(a(∗)

j )p
(
λ̂

(∗)
j |a

(∗)
j

)
= p

(
a

(∗)
j

)2
∣∣∣∣∣(f−1

)′
λ̂

(∗)
j |a

(∗)
j

∣∣∣∣∣ , j = 1, ..., I . (4.2.14)

Note that f is an isomorphism between aj and λj, hence the entire sample space of λj
is explored. Because the sampling distribution of aj has fatter tails than the target, the
sampling distribution of λj also covers the target. Using (4.2.5), (4.2.8) and (4.2.14) the
acceptance probability for the shape and rate estimates is calculated as

α = min
1,

π
(
a

(∗)
j , λ̂

(∗)
j |y

)
q
(
a

(t)
j |a

(∗)
j

)
π
(
a

(t)
j , λ̂

(t)
j |y

)
q
(
a

(∗)
j |a

(t)
j

)


= min
1,

f
(
y|a(∗)

j , λ̂
(∗)
j

)
p
(
a

(∗)
j , λ̂

(∗)
j

)
q
(
a

(t)
j |a

(∗)
j

)
f
(
y|a(t)

j , λ̂
(t)
j

)
p
(
a

(t)
j , λ̂

(t)
j

)
q
(
a

(∗)
j |a

(t)
j

)


= min

1,
f
(
y|a(∗)

j , λ̂
(∗)
j

)
p(a(∗)

j )2
∣∣∣∣∣(f−1

)′
λ̂

(∗)
j |a

(∗)
j

∣∣∣∣∣ q (a(t)
j |a

(∗)
j

)
f
(
y|a(t)

j , λ̂
(t)
j

)
p(a(t)

j )2

∣∣∣∣∣(f−1
)′
λ̂

(t)
j |a

(t)
j

∣∣∣∣∣ q (a(∗)
j |a

(t)
j

)
 ,

(4.2.15)

where the proposal distribution q
(
a

(t)
j |a

(∗)
j

)
is taken from the random walk MH.

4.2.4.2 The algorithm

In order to improve mixing from a single MH algorithm (Algorithm 1), we introduce
the MH algorithm based on deterministic transformations (Algorithm 2, below), adapted
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to suit our application. As maturation parameters in this model are independent and an
individual must pass from one stage to the next stage without missing a stage, parameters
at each stage are estimated separately. We start from stage 1 and move to the following
stages in sequential order. The estimated parameters in previous stages are used as
accepted values in later estimates.

In order to estimate the rate parameters in (4.2.11), we need to estimate the initial
sampling rates (s = (s1, s2, ..., sI)) across all stages. The initial sampling rate sj, for j =
1, 2, .., I is selected as the mean of the gamma density distribution gj(t) which is estimated
using Algorithm 1.

The main loop of a MH algorithm based on deterministic transformations consists of four
steps. The first step is generating a proposal sample a(∗)

j from a proposal distribution
q
(
θ

(t)
j |θ

(∗)
j

)
. The proposal distribution is a symmetric Gaussian distribution N

(
θ

(t)
j , σθj

)
,

where the tuning parameter σθj is generated independently of the parameter θ(t)
j . In the

second step, given a(∗)
j and sj, the rate λ(∗)

j is estimated using (4.2.11), recalling that the
parameters β̂j(s), j = 1, 2, .., I, were already estimated using (3.2.7). In the next step,
we calculate the acceptance probability α using (4.2.15). Finally, we accept the proposal
sample (a(∗)

j , λ
(∗)
j ) with the probability α. This extended algorithm is fully presented in

Algorithm 2.

Algorithm 2 MH algorithm based on deterministic transformations at stage j for
the model with no hazard rate

1: Estimate the initial sampling rates s using Algorithm 1
2: Initialise

(
a

(0)
j , λ

(0)
j , ..., a

(0)
I , λ

(0)
I

)
3: for t = 1 to T do
Update the parameters aj and λj which coincide with θ2j−1 and θ2j, respectively:
4: Given the current state θ(t)

2j−1, propose θ
(∗)
2j−1 ∼ q

(
θ

(∗)
2j−1|θ

(t)
2j−1

)
5: Given θ(∗)

2j−1 and θ(t)
2j−1, estimate θ(∗)

2j and θ(t)
2j using (4.2.11)

6: Calculate the acceptance probability α using (4.2.15)
7: Set

(
θ

(t+1)
2j−1 , θ

(t+1)
2j

)
=
(
θ

(∗)
2j−1, θ

(∗)
2j

)
with the probability α,

otherwise set
(
θ

(t+1)
2j−1 , θ

(t+1)
2j

)
=
(
θ

(t)
2j−1, θ

(t)
2j

)
8: end for
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4.2.4.3 Reversibility and stationarity of the Markov chain in stage i

The MH algorithm based on deterministic transformations creates an irreducible Markov
chain. The Markov chain with transition matrix P =

[
p
(
θ(i), θ(j)

)]m
ij=1

satisfies the bal-
ance property (Section 2.3.6)

π
(
θ(i)
)
p
(
θ(i), θ(j)

)
= π

(
θ(j)

)
p
(
θ(j), θ(i)

)
for all pairs of states

(
θ(i), θ(j)

)
. This is shown as follows:

π
(
θ(i)
)
p
(
θ(i), θ(j)

)
= π

(
θ(i)
)
q
(
θ(j)|θ(i)

)
min{1,

π
(
θ(j)

)
q
(
θ(i)|θ(j)

)
π (θ(i)) q (θ(j)|θ(i)) }

= f (y|ai, λi) p(ai)2
∣∣∣∣(f−1

)′
λi|ai

∣∣∣∣ q(aj, ai)×
min

1,
f (y|aj, λj) p(aj)2

∣∣∣∣(f−1
)′
λj |aj

∣∣∣∣ q(ai, aj)
f (y|ai, λi) p(ai)2

∣∣∣∣(f−1
)′
λi|ai

∣∣∣∣ q(aj, ai)


(4.2.16)

= min
{
f (y|aj, λj) p(aj)2

∣∣∣∣(f−1
)′
λj |aj

∣∣∣∣ q(ai, aj),
f (y|ai, λi) p(ai)2

∣∣∣∣(f−1
)′
λi|ai

∣∣∣∣ q(aj, ai)}
= π

(
θ(j)

)
p
(
θ(j), θ(i)

)
(symnetric in iand j).

Thus, the Markov chain is time-reversible and the solution π is the unique stationary
distribution.

4.3 Bayesian analysis for the model with stage-wise

constant hazard rates

4.3.1 The likelihood function

For the stage-wise constant hazard rates model, the lifetime in each stage j is influenced by
the hazard rate µj and the time in stage j which has the density function gj(t) depending
on the parameter θj. Recall the notationNj(Tk), j = 1, ..., I to be the number of organisms
alive in stage j at time Tk and let Dj(Tk), j = 1, ..., I, k = 1, ..., K, be the number of
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organisms that are observed to be dead in stage j at time Tk. Recall Nk, k = 1, ..., K, is
the number of sampled individuals at time Tk, which in the case of stage-wise constant
hazard rates is given by

Nk =
I+1∑
j=1

Nj(Tk) +
I+1∑
j=1

Dj(Tk) . (4.3.1)

By (2.1.2), the probability of the life time of each particular independent organism is
calculated as

pj(t) = P (organism X is alive in stage j at time t|X starts stage 1 at time 0)

= h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) ,
(4.3.2)

and

dj(t) = P (organism X is found dead in stage j at time t|X starts stage 1at time 0)

= h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hd
j (t) ,

(4.3.3)
where hi(t) = gi(t)Si(t) = gi(t) exp

(
−
´ t

0 µidx
)
, i = 1, ..., j − 1, is the density function of

an organism being alive in stage i and the notation ∗ denotes convolution. Furthermore,
Si(t) is the probability of an organism being alive in stage i longer than time t and µi is
the hazard function of the survival time in stage i. The Hj(t) and Hd

j (t) in (4.3.2) and
(4.3.3) respectively are expressed as

Hj(t) = Sj(t)
∞̂

t

gj(x)dx = exp

−
tˆ

0

µjdx


∞̂

t

gj(x)dx,

Hd
j (t) ≈ µj

tˆ

0

gj(x)dx .

(4.3.4)

If the average of survival time (E(T ) = 1/µj) is smaller than the mean of maturation
time in each stage, most of the individuals die before they move to the next stage. In
order to avoid this, we consider the cases in which the hazard rate in each stage is smaller
than one (0 < µj < 1, j = 1, ..., I).

In the stage-wise constant hazard rate models, the observed information from the kth

sampling time becomes

yk = (N1(Tk), N2(Tk), ..., NI(Tk), D1(Tk), D2(Tk), ..., DI(Tk), NI+1(Tk) +DI+1(Tk))
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and the parameters from I stages have the form

θ = (a1, λ1, µ1, ..., aI , λI , µI) = (θ1, θ2, ..., θ3I) .

The life-time in stage j is influenced by the survival time competing with the maturation
time in this stage. The survival time and the maturation time in stage j are independent.
In order to estimate these parameters, we assume that the numbers of alive and dead
individuals have multinomial distributions conditioned on the total number as follows.

At each sampling time, we assume that the yk, k = 1, ..., K, have multinomial distributions
with parameters Nk as defined in (4.3.1), as well as p1(Tk), ..., pI(Tk), d1(Tk), ..., dI(Tk)
defined in (4.3.2) and (4.3.3). This later, natural, assumption has been used in [25] and
[18],

(yk|Nk, θ) ∼ Multinomial (Nk, p1(Tk), p2(Tk), ..., pI(Tk), d1(Tk), d2(Tk), ..., dI(Tk), pI+1(Tk)) ,
(4.3.5)

where pI+1(Tk) = 1−∑I
i=1 (pi(Tk) + di(Tk)) .

By (4.3.5), the joint likelihood function from K sampling times is

f(y|θ) =
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI(Tk), d1(Tk), d2(Tk), ..., dI(Tk), pI+1) . (4.3.6)

In order to reduce the estimation error from hazard parameters when estimating the
maturation parameters, at each sampling time, we shall require the probability pd(Tk)
that an individual is dead at time Tk. Clearly

pd(Tk) = 1− (p1(Tk) + p2(Tk) + ...+ pI(Tk)) . (4.3.7)

The error incurred here is due to the fact that we do not know the exact death time of
an individual. The dead stages of individuals are ignored.

The random variables

N1(Tk), N2(Tk), ..., NI(Tk), D(Tk) := D1(Tk)+D(Tk)+ ...+DI(Tk)+NI+1(Tk)+DI+1(Tk)

are multinomially distributed with parameters Nk and p1(Tk), p2(Tk), ..., pI(Tk), pd(Tk) as
follows

(N1(Tk), N2(Tk), ..., NI(Tk), D(Tk) |Nk) ∼ Multinomial
(
Nk, p1(Tk), p2(Tk), ..., pI(Tk), pd(Tk)

)
.

(4.3.8)
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The likelihood function from K sampling times is

f(y|θ) =
K∏
k=1

p
(
Nk, p1(Tk), p2(Tk), ..., pI(Tk), pd(Tk)

)
. (4.3.9)

4.3.2 The posterior distribution

Similarly to Section 4.2.2, set the prior distributions of

θ = (θ1, θ2, ..., θ3I) = (a1, λ1, µ1, ..., aI , λI , µI)

to have a uniform distribution with range Ω = (Ω1,Ω2, ...,Ω3I).

Ω = {θ = (θ1, θ2, ..., θ3I) ∈ Ω1 × Ω2 × ...× Ω3I} ,

where Ωm = (0, xm), xm ∈ R+,m = 1, ..., 3I. Note that, for j = 1, 2, ..., I, the index j
identifies the triple (aj, λj, µj) and the corresponding triple (θ3j−2, θ3j−1, θ3j) in the 3I-
tuple θ.

In order to estimate the hazard parameters in each stage, using (4.3.6) the target posterior
distribution has the form

π(θ|y) ∝ f(y|θ)p(θ)

∝
K∏
k=1

f (yk|θ)
3I∏
m=1

p(θm)

∝
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI(Tk), d1(Tk), d2(Tk), ..., dI(Tk), pI+1(Tk))
3I∏
m=1

p(θm)

∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk)d

Dkj
j (Tk) (pI+1(Tk))Nk,I+1 θ ∈ Ω ,

0 θ /∈ Ω ,

(4.3.10)
where Nk,I+1 = Nk −

∑I
m=1Nm(Tk)−

∑I
n=1Dn(Tk). Note that

3I∏
m=1

p(θm) =
3I∏
m=1

1
xm

, θ ∈ Ω

is independent of data y and hence can be omitted in the above.
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In order to estimate the maturation parameters in each stage, using (4.3.9) and (4.3.7),
the target posterior distribution has the form

π(θ|y) ∝ f(y|θ)p(θ)

∝
K∏
k=1

f(yj|θ)
3I∏
m=1

p(θi)

∝
K∏
k=1

p
(
Nk, p1(Tk), p2(Tk), ..., pI(Tk), pd(Tk)

) 3I∏
m=1

p(θm)

∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk)

(
pd(Tk)

)
(Nk−

∑I

j=1 Nj(Tk)) θ ∈ Ω ,

0 θ /∈ Ω .

(4.3.11)

Using (4.3.10) and (4.3.11), the conditional posterior distributions of the rate, shape and
hazard rate parameters in stage j for j = 1, 2, ..., I are expressed as follows:

i) The conditional posterior distribution of the shape parameter aj, which coincides with
θ3j−2, is

π
(
θ3j−2|y, θ(−(3j−2))

)
∝

K∏
k=1

f(yj|θ3j−2).p(θ3j−2)

∝


∏I
j=i

∏K
k=1 p

Nkj
j (Tk)

(
pd(Tk)

) (Nk−∑I

l=1 Nl(Tk)) θ3j−2 ∈ Ω3j−2 ,

0 θ3j−2 /∈ Ω3j−2 .

(4.3.12)
ii) The conditional posterior distribution of the rate parameter λj, which coincides with
θ3j−1, is

π
(
θ3j−1|y, θ(−(3j−1))

)
∝

K∏
k=1

f(yj|θ3j−1).p(θ3j−1)

∝


∏I
j=i

∏K
k=1 p

Nkj
j (Tk)

(
pd(Tk)

) (Nk−∑I

l=1 Nl(Tk)) θ3j−1 ∈ Ω3j−1 ,

0 θ3j−1 /∈ Ω3j−1 .

(4.3.13)
iii) The conditional posterior distribution of the hazard rate parameter µj, which coincides
with θ3j, is
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π
(
θ3j|y, θ(−3j))

)
∝

K∏
k=1

f(yj|θ3j).p(θ3j)

∝


∏I
j=i

∏K
k=1 p

Nkj
j (Tk)d

Dkj
j (tk) (pI+1(Tk))Nk,I+1 θ3j ∈ Ω3j ,

0 θ3j /∈ Ω3j .

(4.3.14)

4.3.3 The single MH algorithm for the stage-wise constant haz-

ard rate model

Similarly to Section 4.2.3, we shall now introduce a single MH algorithm designed for the
model with stage-wise constant hazard rates. The only difference between this algorithm
and Algorithm 1 is that we need to update hazard rate parameters simultaneously with
maturation parameters in each stage.

Choosing the prior distributions to be uniform distributions with range Ω = (Ω1 × Ω2 × ...
×Ω3I) (4.2.6), initialise value θ(0) =

(
θ

(0)
1 , θ

(0)
2 , ..., θ

(0)
3I

)
=
(
a

(0)
1 , λ

(0)
1 , µ

(0)
1 , ..., a

(0)
I , λ

(0)
I , µ

(0)
I

)
.

The proposal distributions are normal random walks in which means are current values.
Tuning variances from the normal random walk distributions are optimized by using an
adaptive MH method (Section 2.3.5). The new single MH algorithm in the stage-wise
constant hazard model is presented in Algorithm 3 below.

In order to calculate the acceptance probabilities in Algorithm 3, we should calculate the
probabilities pj(t) and dj(t) in each stage at each sampling time. Using (3.2.4), the Laplace
transform of the probabilities pj(t) and dj(t) in (4.3.2) and (4.3.3), can be expressed as

L{pj(t)} (s) =
∞̂

0

pj(t)e−stdt

=
∞̂

0

h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t)exp (−st) dt

= L{h1} (s)L{h2} (s)...L{hj−1} (s)L{Hj(t)} (s)

= β1(s)β2(s)...βj−1(s)1− βj(s)
s+ µj

=
(

λ1

λ1 + µ1 + s

)a1

...

(
λj−1

λj−1 + µj−1 + s

)aj−1 1− βj(s)
s+ µj

(4.3.15)
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and

L{dj(t)} (s) = L
{
h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hd

j (t)
}

(s)

= L{h1} (s)L{h2} (s)...L{hj−1} (s)L
{
Hd
j (t)

}
(s)

≈ β1(s)β2(s)...βj−1(s)L

µj
tˆ

0

gj(x)dx

 (s)

= µj

(
λ1

λ1 + µ1 + s

)a1

....

(
λj−1

λj−1 + µj−1 + s

)aj−1
(

λj
λj+s

)aj
s

.

(4.3.16)

By taking the inverse Laplace transform of the (4.3.15) and (4.3.16), we obtain the prob-
abilities pj(t) and dj(t) respectively.

Algorithm 3 The single MH algorithm at stage j for the model with stage-wise constant
hazard rates

1: Initialise
(
a

(0)
j , λ

(0)
j , µ

(0)
j , ..., a

(0)
I , λ

(0)
I , µ

(0)
I

)
2: for t = 1 to T do
Update the shape parameter aj which coincides with θ3j−2:
3: Given the current state θ(t)

3j−2, propose θ
(∗)
3j−2 ∼ q

(
θ

(∗)
3j−2|θ

(t)
3j−2

)
4: Calculate the acceptance probability α1 = min

1,
π

(
θ

(∗)
3j−2|y,θ(−(3j−2))

)
q

(
θ

(t)
3j−2|θ

(∗)
3j−2

)
π

(
θ

(t)
3j−2|y,θ(−(3j−2))

)
q

(
θ

(∗)
3j−2|θ

(t)
3j−2

)
5: Set θ(t+1)

3j−2 = θ
(∗)
3j−2 with probability α1, otherwise set θ(t+1)

3j−2 = θ
(t)
3j−2

Update the rate parameter λj which coincides with θ3j−1:
6: Given the current state θ(t)

3j−1, propose θ
(∗)
3j−1 ∼ q

(
θ

(∗)
3j−1|θ

(t)
3j−1

)
7: Calculate the acceptance probability α2 = min

1,
π

(
θ

(∗)
3j−1|y,θ(−(3j−1))

)
q

(
θ

(t)
3j−1|θ

(∗)
3j−1

)
π

(
θ

(t)
3j−1|y,θ(−(3j−1))

)
q

(
θ

(∗)
3j−1|θ

(t)
3j−1

)
8: Set θ(t+1)

3j−1 = θ
(∗)
3j−1 with probability α2, otherwise set θ(t+1)

3j−1 = θ
(t)
3j−1

Update the hazard rate parameter µj which coincides with θ3j:
9: Given the current state θ(t)

3j , propose θ
(∗)
3j ∼ q

(
θ

(∗)
3j |θ

(t)
3j

)
10: Calculate the acceptance probability α3 = min

1,
π

(
θ

(∗)
3j |y,θ(−3j)

)
q

(
θ

(t)
3j |θ

(∗)
3j

)
π

(
θ

(t)
3j |y,θ(−3j)

)
q

(
θ

(∗)
3j |θ

(t)
3j

)
11: Set θ(t+1)

3j = θ
(∗)
3j with probability α3, otherwise set θ(t+1)

3j = θ
(t)
3j

12: end for
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4.3.4 MH algorithm based on deterministic transformations for

the stage-wise constant hazard rate model

In this section, in order to improve the mixing of the chains in the above MH method
(Algorithm 3), we introduce an MH algorithm based on deterministic transformations
as in Section 4.2.4. The estimations of the maturation parameters in Chapter 3 are
implemented for the algorithm. This implies that the rate parameter proposal in each
stage is a deterministic proposal conditioned on the proposed shape parameter in this
stage, given the observed data.

4.3.4.1 The acceptance probability

Recall that the λ(∗)
j and a(∗)

j are deterministic proposals for λj and aj, respectively. In the
constant shape case, λ(∗)

j is estimated as

λ̂
(∗)
j (s) = f

(
a

(∗)
j

)
= s+ µj[

β̂j(s)
]−1/a(∗)

j − 1
, (4.3.17)

where βj(s) = L(hj) =
´∞

0 gj(t)e−(s+µj)tdt. The estimation of βj(s) was presented in
Chapter 3.

Using the change of variable technique, a(∗)
i is a continuous random variable, λ̂(∗)

i is an
invertible function of a(∗)

i . The probability density function of λ̂(∗)
i conditional on a(∗)

i has
the form

p
(
λ̂

(∗)
i |a

(∗)
i

)
= p

(
a

(∗)
i

)
.
∣∣∣∣(f−1

)′
λ̂

(∗)
i |a

(∗)
i

∣∣∣∣ , (4.3.18)

where
a

(∗)
j (s) = f−1

(
λ̂

(∗)
j

)
= logβ̂j(s)
log

[
λ̂

(∗)
j /(λ̂(∗)

j + µj + s)
] . (4.3.19)

Using (4.3.18) and (4.3.19), the joint probability density of parameters in each stage is
calculated as

p
(
a

(∗)
j , λ̂

(∗)
j

)
= p

(
a

(∗)
j

)
p
(
λ̂

(∗)
j |a

(∗)
j

)
= p

(
a

(∗)
j

)2
∣∣∣∣∣(f−1

)′
λ̂

(∗)
j |a

(∗)
j

∣∣∣∣∣ . (4.3.20)

Using (4.3.11),(4.3.12) and (4.3.20), the acceptance probability of the shape and rate
estimates is calculated as
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α = min

1,
f
(
y|a(∗)

i , λ̂
(∗)
i

)
p(a(∗)

i )2
∣∣∣∣(f−1

)′
λ̂

(∗)
i |a

(∗)
i

∣∣∣∣ q (a(t)
i |a

(∗)
i

)
f
(
y|a(t)

i , λ̂
(t)
i

)
p(a(t)

i )2
∣∣∣∣(f−1

)′
λ̂

(t)
i |a

(t)
i

∣∣∣∣ q (a(∗)
i |a

(t)
i

)
 . (4.3.21)

4.3.4.2 The algorithm

As in Section 4.2.4.2, we now introduce a MH algorithm based on deterministic trans-
formations for the stage-wise constant hazard model in order to improve mixing from a
single MH algorithm (Algorithm 3). The latter is presented as, below, Algorithm 4.

We first estimate the initial sampling rate sj in each stage j, using Algorithm 3. These
sampling rates are updated using the iterative method of Schuh and Tweedie (Section
2.2). The main loop of the MH algorithm based on deterministic transformations in the
stage-wise constant hazard model is the same as in the no hazard rate model, with the
exception of updating the hazard rate parameters µj, j = 1, ..., I, from Step 4 to Step 6.

Algorithm 4 The MH algorithm based on deterministic transformations at stage j
for the model with stage-wise hazard rates

1: Estimate the initial sampling rates s using Algorithm 3
2: Initialise

(
a

(0)
j , λ

(0)
j , µ

(0)
j , ..., a

(0)
I , λ

(0)
I , µ

(0)
I

)
3: for t = 1 to T do
Update the hazard rate parameter µj which coincides with θ3j:
4: Given the current state θ(t)

3j , propose θ
(∗)
3j ∼ q

(
θ

(∗)
3j |θ

(t)
3j

)
5: Calculate the acceptance probability α1 = min

1,
π

(
θ

(∗)
3j |y,θ(−3j)

)
q

(
θ

(t)
3j |θ

(∗)
3j

)
π

(
θ

(t)
3j |y,θ(−3j)

)
q

(
θ

(∗)
3j |θ

(t)
3j

)
6: Set θ(t+1)

3j = θ
(∗)
3j with probability α1, otherwise set θ(t+1)

3j = θ
(t)
3j

Update the shape aj and the rate λj parameters which coincides with θ3j−2
and θ3j−1, respectively:
7: Given the current state θ(t)

3j−2, propose θ
(∗)
3j−2 ∼ q

(
θ

(∗)
3j−2|θ

(t)
3j−2

)
8: Given θ(∗)

3j−2 and θ(t)
3j−2 , estimate θ(∗)

3j−1 and θ(t)
3j−1 using (4.3.17)

9: Calculate the acceptance probability α2 using (4.3.21)
10: Set

(
θ

(t+1)
3j−2 , θ

(t+1)
3j−1

)
=
(
θ

(∗)
3j−2, θ

(∗)
3j−1

)
with probability α2,

otherwise set
(
θ

(t+1)
3j−2 , θ

(t+1)
3j−1

)
=
(
θ

(t)
3j−2, θ

(t)
3j−1

)
11: end for
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4.4 Bayesian analysis for the model with linear time-

dependent hazard rates

4.4.1 The likelihood function

The multi-stage model for this section is similar to that of Section 4.3.1 except that the
hazard rate in each stage is linear time-dependent and has the form µj(t) = γjt, γj ≥
0, j = 1, ..., I. The intercept in the hazards is set to zero because we assume that at time
zero, all individuals start at stage 1. Set Tj be the survival time of an individual at stage
j having density f(Tj).

Recall from (2.1.2), that the probability of the life time of each particular independent
organism is calculated as

pj(t) = P (an organism is alive in stage j at time t | the organism starts stage 1 at time 0)

= h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t) ,
(4.4.1)

and the probabilities of an individual in stage j being found dead at sampling time t are
calculated as

dj(t) = P (an organism is dead in stage j at time t | the organism starts stage 1at time 0)

≈ h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hd
j (t) ,

(4.4.2)

where hi(t) = gi(t)Si(t) = gi(t) exp
(
−
´ t

0 µi(x)dx
)

= gi(t) exp (−γi1t2/2) , i = 1, ..., j−1 is
the density function of an organism being alive in stage i. Furthermore, Si(t) is probability
of an organism being alive in stage i longer than time t and µi(t) is the hazard function
of the survival time in stage i at time t, and

Hj(t) = Sj(t)
∞̂

t

gj(x)dx = exp

−
tˆ

0

µj(x)dx


∞̂

t

gj(x)dx

= exp
(
−γj

t2

2

) ∞̂

t

gj(x)dx

Hd
j (t) ≈ f (E(Tj))

tˆ

0

gj(x)dx .

(4.4.3)
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4.4.2 The posterior distribution

Set the 3I maturation parameters θ = (θ1, θ2, ..., θ3I) = (a1, λ1, γ1, ..., aI , λI , γI). The
prior distributions of θ, as before, are chosen as uniformly distributed with range Ω =
(Ω1 × Ω2 × ...× Ω3I).

In order to estimate the hazard parameters in each stage, the target posterior distribution
has the form

π (θ|y) ∝ f (y|θ) p(θ)

∝
K∏
k=1

f (yj|θ)
3I∏
m=1

p(θi)

∝
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI(Tk), d1(Tk), d2(Tk), ..., dI(Tk), pI+1(Tk))
3I∏
m=1

p(θi)

∝


∏I
i=1

∏K
k=1 p

Nki
i (Tk)dDkii (Tk) (pI+1(Tk))

(
Nk−

∑I+1
j=1 Nj(Tk)−

∑I+1
j=1 Dj(Tk)

)
θ ∈ Ω

0 θ /∈ Ω.
(4.4.4)

Similar to the stage-wise constant hazard rate case, in order to estimate the maturation
parameters, the target posterior distribution in the linear time-dependent hazard rates
model has the form

π (θ|y) ∝ f (y|θ) p(θ)

∝
K∏
k=1

f (yk|θ)
3I∏
m=1

p(θi)

∝
K∏
k=1

p (Nk, p1(Tk), p2(Tk), ..., pI(Tk), d1(Tk), d2(Tk), ..., dI(Tk), pI+1(Tk))
3I∏
m=1

p(θi)

∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk)d

Dkj
j (Tk) (pI+1(Tk))Nk,I+1 θ ∈ Ω ,

0 θ /∈ Ω ,

(4.4.5)
where Nk,I+1 = Nk −

∑I
m=1Nm(Tk)−

∑I
n=1Dn(Tk).

Using (4.4.5), the conditional probability density functions of the rate, shape and slope
parameters in stage j for j = 1, 2, ..., I, are expressed as follows

i) The conditional probability density function of the shape parameter aj, which coincides
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with θ3j−2, is

π
(
θ3j−2|y, θ(−(3j−2))

)
∝

K∏
k=1

f (yj|θ3j−2) p(θ3j−2)

∝


∏I
j=i

∏K
k=1 p

Nkj
j (Tk)

(
pd(Tk)

) (Nk−∑I

l=1 Nl(Tk)) θ3j−2 ∈ Ω3j−2 ,

0 θ3j−2 /∈ Ω3j−2 .

(4.4.6)

ii) The conditional probability density function of the rate parameter λj, which coincides
with θ3j−1, is

π
(
θ3j−1|y, θ(−(3j−1))

)
∝

K∏
k=1

f (yj|θ3j−1) p(θ3j−1)

∝


∏I
j=i

∏K
k=1 p

Nkj
j (Tk)

(
pd(Tk)

) (Nk−∑I

l=1 Nl(Tk)) θ3j−1 ∈ Ω3j−1 ,

0 θ3j−1 /∈ Ω3j−1 .

(4.4.7)

iii) The conditional probability density function of the slope parameter γj in the hazard
rate stage j, which coincides with θ3j, is

π
(
θ3j|y, θ(−3j)

)
∝

K∏
k=1

f (yj|θ3j) p(θ3j)

∝


∏I
j=1

∏K
k=1 p

Nkj
j (Tk)d

Dkj
j (Tk) (pI+1(Tk))Nk,I+1 θ3j ∈ Ω3j ,

0 θ3j /∈ Ω3j ,

(4.4.8)

where pd(Tk) = 1 − (p1(Tk) + p2(Tk) + ...+ pI(Tk)) and Nk,I+1 = Nk −
∑I
m=1Nm(Tk) −∑I

n=1Dn(Tk).

4.4.3 The single MH algorithm for the linear time-dependent

hazard rates model

Similar to Section 4.4.3, the single MH algorithm is applied to our model with additional
updates for slope parameters. The single MH algorithm for the linear time-dependent
hazard rates model is presented as Algorithm 5, below.
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Algorithm 5 The single MH algorithm at stage j for the model with time-dependent
hazard rates

1: Initialise
(
a

(0)
j , λ

(0)
j , µ

(0)
j , ..., a

(0)
I , λ

(0)
I , µ

(0)
I

)
2: for t = 1 to T do
Update the shape parameter aj which coincides with θ3j−2:
3: Given the current state θ(t)

3j−2, propose θ
(∗)
3j−2 ∼ q

(
θ

(∗)
3j−2|θ

(t)
3j−2

)
4: Calculate the acceptance probability α1 = min

1,
π

(
θ

(∗)
3j−2|y,θ(−(3j−2))

)
q

(
θ

(t)
3j−2|θ

(∗)
3j−2

)
π

(
θ

(t)
3j−2|y,θ(−(3j−2))

)
q

(
θ

(∗)
3j−2|θ

(t)
3j−2

)
5: Set θ(t+1)

3j−2 = θ
(∗)
3j−2 with probability α1, otherwise set θ(t+1)

3j−2 = θ
(t)
3j−2

Update the rate parameter λj which coincides with θ3j−1:
6: Given the current state θ(t)

3j−1, propose θ
(∗)
3j−1 ∼ q

(
θ

(∗)
3j−1|θ

(t)
3j−1

)
7: Calculate the acceptance probability α2 = min

1,
π

(
θ

(∗)
3j−1|y,θ(−(3j−1))

)
q

(
θ

(t)
3j−1|θ

(∗)
3j−1

)
π

(
θ

(t)
3j−1|y,θ(−(3j−1))

)
q

(
θ

(∗)
3j−1|θ

(t)
3j−1

)
8: Set θ(t+1)

3j−1 = θ
(∗)
3j−1 with probability α2, otherwise set θ(t+1)

3j−1 = θ
(t)
3j−1

Update the slope parameter γj which coincides with θ3j:
9: Given the current state θ(t)

3j , propose θ
(∗)
3j ∼ q

(
θ

(∗)
3j |θ

(t)
3j

)
10: Calculate the acceptance probability α3 = min

1,
π

(
θ

(∗)
3j |y,θ(−3j)

)
q

(
θ

(t)
3j |θ

(∗)
3j

)
π

(
θ

(t)
3j |y,θ(−3j)

)
q

(
θ

(∗)
3j |θ

(t)
3j

)
11: Set θ(t+1)

3j = θ
(∗)
3j with probability α3, otherwise set θ(t+1)

3j = θ
(t)
3j

12: end for

In order to calculate the acceptance probabilities in Algorithm 5, we should calculate the
probability pj(t) and dj(t) in each stage, at each sampling time. The Laplace transform
of the probabilities pj(t) and dj(t) in (4.4.1) and (4.4.2) can be expressed as

L{pj(t)} (s) =
∞̂

0

pj(t)exp (−st) dt

=
∞̂

0

h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hj(t)exp (−st) dt

= L{h1} (s)L{h2} (s)...L{hj−1} (s)L{Hj} (s)

= β1(s)β2(s)...βj−1(s)L{Hj(t)} (s)

(4.4.9)

and
L{dj(t)} (s) = L(h1 ∗ h2 ∗ ... ∗ hj−1 ∗Hd

j (t))

= L{h1} (s)L{h2} (s)...L{hj−1} (s)L
{
Hd
j

}
(s)

(4.4.10)
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≈ β1(s)β2(s)...βj−1(s)L

f(E(Tj))
tˆ

0

gj(x)dx

 (s) .

Recall from (3.2.41) in Chapter 3, we have

βj(s) ≈ exp
(

(λj + s)2

2γj1

)
λ
aj
j

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

Γ
γj1

2

[
(λj + s)
γj1

]2

,
aj
2


− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)(λj + s)
γj1

Γ
γj1

2

[
(λj + s)
γj1

]2

,
aj − 1

2

 .
(4.4.11)

Substituting u0 = (λj + s) 2/ (2γj1) in (4.4.11), we obtain

βj(s) ≈
λ
aj
j exp (u0)

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

Γ
(
u0,

aj
2

)

− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)(λj + s)
γj1

Γ
(
u0,

aj − 1
2

) .
(4.4.12)

In order to simplify the result in (4.4.12), we apply the following approximation of the
incomplete gamma function ([2], p. 2)

Γ (u, a) ≈ ua−1e−u
(

1 + a− 1
u

)
. (4.4.13)

Now, combinig (4.4.13) with (4.4.12) leads to:

βj(s) ≈
λ
aj
j exp (u0)

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

exp (−u0) (u0)(aj−2)/2
(

1 + aj − 2
2u0

)

− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1)(λj + s)
γj1

exp (−u0) (u0)(aj−3)/2
(

1 + aj − 3
2u0

)
=

λ
aj
j

Γ(aj)

 1
γj1

(
2
γj1

)(aj−2)/2

(u0)(aj−2)/2
(

1 + aj − 2
2u0

)

− 1
γj1

(
2
γj1

)(aj−3)/2

(aj − 1) (u0)(aj−3)/2 (λj + s)
γj1

(
1 + aj − 3

2u0

)
=

λ
aj
j

Γ(aj)
(λj + s)
γ
aj−1
j1

aj−2 (
2− aj +

−a2
j + 4aj − 5

2u0

)
.

(4.4.14)

By (3.2.23), (4.4.3) and (4.4.14), we now have
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L{Hj(t)} (s) = L

exp
(
−γj1

t2

2

) ∞̂

t

gj(x)dx

 (s)

≈
{

exp
(
s2

2γj1

)√
π

2γj1

[
1− erf

(√
γj1
2

s

γj1

)]
− 0.6

√
π

2γj1
βj(s)

}

≈ 0.6
√

π

2γj1
(1− βj(s)) .

(4.4.15)

By (3.2.4), in which µi = 0, and (4.4.3), we obtain

L
{
Hd
j (t)

}
(s) ≈ L

f (E(Tj))
tˆ

0

gj(x)dx

 (s)

≈ f (E(Tj))L


tˆ

0

gj(x)dx

 (s)

≈ f (E(Tj))
s

L{gj(t)} (s)

≈ f (E(Tj))
s

(
λj

s+ λj

)aj
.

(4.4.16)

Taking the inverse Laplace transform of (4.4.9) and (4.4.10), we obtain the value of the
probabilities pj(t) and dj(t).

Because of the complex form of (4.4.14), the inverse functions (f−1)
′

λ
(∗)
j |a

(∗)
j
, j = 1, 2, ..., I

in the acceptance probabilities are difficult to calculate. We cannot apply the MH algo-
rithm based on deterministic transformations in the linear time-dependent hazard rate
case as in Section 4.3.4. Moreover, the approximations in (4.4.15) and (4.4.16) produce
biases as the number of stages having linear time-dependent hazard rates increases. We
also note that estimates will have bias when the average survival times are larger than the
average maturation time at each stage. Thus, in order to reduce biases, number of stages
having time-dependent hazard rate should be small. A combination of no hazard rate,
stage-wise hazard rate and time-dependent hazard rate on simulated data is implemented
in Section 5.3.
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Chapter 5

Simulation Studies

We applied the MH algorithm based on deterministic transformations as explained in
Sections 4.2, 4.3 and 4.4 in order to estimate the θ parameters. We updated each stage
separately, starting from stage 1 and moving consecutively to the following stages. The
initial values for the parameters were selected randomly. Tuning variances from the normal
random walk distributions were optimized using an adaptive MH method (Section 2.3.5).

When we applied MH Algorithms 1 and 3, we ran 100, 000 iterations. The chains from
MCMC output showed slow mixing and auto-correlation. By appling the MH Algorithms
2, 4 and 5 based on deterministic transformations, we ran 10, 000 iterations. The chains
from MCMC output converged well demonstrated in Gelman and Rubin and Geweke di-
agnostics. The sampling rates sj were chosen as the estimated mean of the time spent
in each stage j. The estimated mean duration of a stage was taken from the summary
output from a single MH algorithm with T = 100, 000 iterations in which the first 95, 000
iterations were discarded as burn-in. Next, the MH algorithms based on the deterministic
transformations were applied. In order to assess the convergence of the MCMC chains, we
used the Gelman and Rubin multiple sequence and the Geweke diagnostic tests, respec-
tively ([45]). We ran five MCMC chains at different starting points, of length T = 10, 000
with the first 5, 000 iterations discarded as burn-in.

5.1 Simulation data in the no hazard rate model

We applied the MCMC methods as explained in Section 4.2 to simulated data. Data were
simulated using methods analogous to those used in [25]. At each sampling time, ten
individuals were generated from Erlangian distributions with shapes aj = 2, j = 1, 2, 3
and rates λj = 1.5, j = 1, 2, 3 for stage 1, stage 2 and stage 3, respectively. Fifteen
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sampling time points were taken between 0.1 and 6. In this simulation, the cut-points
between the 15 fixed sampling times were

S = {c0 = 0, c1 = T1 + T2

2 , ..., c14 = T14 + T15

2 , c15 =∞} .

5.1.1 The probabilities at each stage

This section presents the acceptance probability calculations at each stage as described in
Section 4.2.4.1. From (4.2.2), the probabilities of an individual being alive in each stage
at each sampling time were calculated as follows for given maturation parameters over
three stages (a1, λ1, µ1, a2, λ2, µ2, a3, λ3, µ3).

• The probability p1(Tk) of being alive in stage 1 at sampling time Tk was obtained as

p1(Tk) = H1(Tk)

=
∞̂

tk

g1(x)dx =
∞̂

Tk

xa1−1 exp (−λ1x)λa1
1

(a1 − 1)! dx

= λa1
1

(a1 − 1)!

∞̂

Tk

xa1−1 exp (−λ1x) dx ,

(5.1.1)

and the Laplace transform L{p1(t)} (s) was obtained as

L{p1(t)} (s)= L{H1(t)} (s)

= 1− L{h1} (s)
s

= 1
s

(
1−

(
λ1

λ1 + s

)a1)
.

(5.1.2)

• The probability p2(Tk) of being alive in stage 2 at sampling time Tk and the Laplace
transform L(p2(t)) were obtained as

p2(Tk) = h1 ∗H2(Tk) ,

L{p2(t)} (s) = L{h1} (s)L{H2(t)} (s)

= 1
s

(
λ1

λ1 + s

)a1 (
1−

(
λ1

λ2 + s

)a2)
.

(5.1.3)

• The probability p3(Tk) of being alive in stage 3 at sampling time Tk and the Laplace
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transform L(p3(t)) were obtained as

p3(Tk) = h1 ∗ h2 ∗H3(Tk) ,

L{p3(t)} (s) = L{h1} (s)L{h2} (s)L{H3(t)} (s)

= 1
s

(
λ1

λ1 + s

)a1 ( λ2

λ2 + s

)a2 (
1−

(
λ3

λ3 + s

)a3)
.

(5.1.4)

Taking the inverse Laplace transform of (5.1.2),(5.1.3) and (5.1.4) numerically, we obtain
the values of the probabilities p1(tk), p2(tk) and p3(tk), respectively. These probabilities
were substituted in (4.2.7) in order to calculate the posterior distributions needed to
evaluate acceptance probabilities α1 and α2 in Algorithm 1.

5.1.2 The single MH algorithm

We applied Algorithm 1 in Section 4.2.3 to estimate the maturation parameters and
hazard rate in each stage. For each of three stages, the starting values were set at 0.1 and
the initial tuning parameters for proposal values of maturation parameters were set at 0.1.
The optimal tuning parameters for proposal values were determined with the adaptive
MH method (Section 2.3). A summary of the maturation parameters from 100,000 MH
iterations with 95,000 samples discarded as burn-in is shown in Table 5.1. The means
of the maturation parameters in the three stages converged slowly to the true values of
these parameters. The autocorrelation plots for our MH samples in Figure 5.1 show very
slow mixing as indicated by slowly decaying dependence as lag increases. Figures 5.2
and 5.3 show the trace plots confirming the mixing and distributions of the maturation
parameter samples in three stages. In practice, our MH Algorithm 1 was run several times
from different starting points. The results from these runs were compared and all agreed
with each other.

The results indicate that the chains have failed to converge. Therefore, we applied Algo-
rithm 2 based on deterministic transformations, as described in Section 4.2.4, in the next
section in order to improve the convergence rates of the chains. The output from Table
5.1 is used to calculate the sampling rate s in the next section.

84



5. Simulation Studies

Table 5.1: Summary results of parameter estimation resulting from applying Algorithm
1 based on the last 5,000 iterations for the no hazard rate model.

Parameter True value Acceptance rate % Mean SD 2.5% 50% 97.5%

a1 2 53.48 2.043 0.208 1.637 2.043 2.418
a2 2 59.39 2.539 0.504 1.604 2.552 3.632
a3 2 66.42 1.658 0.381 1.008 1.627 2.490
λ1 1.5 44.67 1.551 0.152 1.268 1.549 1.869
λ2 1.5 49.97 1.979 0.391 1.264 1.974 2.821
λ3 1.5 59.56 1.229 0.304 0.713 1.197 1.902

Figure 5.1: Autocorrelation plots of the maturation parameters (aj, λj, j = 1, 2, 3) esti-
mates for the no hazard rates model.
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Figure 5.2: MCMC traces and density plots of the shape parameter (aj, j = 1, 2, 3)
estimates for the no hazard rates model.

5.1.3 The MH algorithm based on deterministic transformation

We applied the Metropolis-Hastings algorithm based on deterministic transformations
(Section 4.2.4.2) to estimate the maturation parameters in order to increase the mixing
from Section 5.1.2. The initial values

(
a

(0)
1 , λ

(0)
1 , a

(0)
2 , λ

(0)
2 , a

(0)
3 , λ

(0)
3

)
were chosen either

randomly or from the single MH algorithm output (Table 5.1).

The sampling rates s = (s1, s2, s3) were estimated as (0.75, 0.77, 0.70) for stage 1, stage 2
and stage 3, respectively. The optimal tuning parameters (σaj , j = 1, 2, 3) for proposal
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Figure 5.3: MCMC traces and density plots of the rate parameter (λj, j = 1, 2, 3) esti-
mates for the no hazard rates model.

values of shape parameters (aj, j = 1, 2, 3) were set at 0.238, 0.476 and 0.932 for the
three stages (Section 2.3.5). The trace, density and autocorrelation plots of the shape
and rate estimates are shown in Figures 5.4, 5.5 and 5.6. The trajectories of the chains
are visually consistent over time and the marginal distributions of the parameters are
generally unimodal. These figures indicate that the chains converge to the target station-
ary distribution of interest. Moreover, the autocorrelation plots of the shape and the rate
samples show that the chains are mixing well, with less dependence as lag increases. The
acceptance rates of the shape variables fell in a reasonable range at 33.48%, 32.84% and
42.38% in the three stages.
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A summary of the Gelman and Rubin and the Geweke diagnostic tests is presented in
Table 5.2 and the potential scale reduction factors changing through the iterations are
shown in Figures 5.7 and 5.8. Because the potential scale reduction factors approach
1, the MCMC chains are diagnosed as converging to the stationary distribution of the
parameters (Cowles and Carlin 14). In the Geweke diagnostic tests, the standard Z-
scores all have absolute values less than two (|Z| ≤ 2), which also indicates convergence
of the MCMC chains.
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Figure 5.4: MCMC trace, density and autocorrelation plots of shape (a1) and rate (λ1)
estimates at stage 1 for the no hazard rate model.
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Figure 5.5: MCMC trace, density and autocorrelation plots of shape (a2) and rate (λ2)
estimates at stage 2 for the no hazard rate model.
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Figure 5.6: MCMC trace, density and autocorrelation plots of shape (a3) and rate (λ3)
estimates at stage 3 for the no hazard rate model. 91
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Figure 5.7: The potential rate reduction factor plots from the Gelman and Rubin diag-
nostic test of shape (aj, j = 1, 2) and rate (λj, j = 1, 2) estimates at stage 1 and stage 2
for the no hazard rate model for five Markov chains of length 10,000 iterations.
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Figure 5.8: The potential rate reduction factor plots from the Gelman and Rubin diag-
nostic test of shape (a3) and rate (λ3) estimates at stage 3 for the no hazard rate model
for five Markov chains of length 10,000 iterations.

For the sake of brevity, similar supporting figures in Sections 5.2 and 5.3 have been placed
in Appendices C and D.

In order to evaluate the accuracy of the estimates, we generated 50 simulated datasets.
The means of the estimates are close to the true values and the true values are also within
their 95% credible intervals (Table 5.3). Interval estimations were described by credible
intervals (CrI) estimating the probability that true values lie in the interval. The credible
performance is measured by the percentage of estimated values that lie in the CrI.

The fitted curves for the three stages are shown in Figure 5.9. The fitted solid curve
represents estimated proportions of live individuals obtained by first estimating the pa-
rameters from the simulated data and then plotting the probabilities that depend on
these estimates. The dotted curve represents the observed proportions of live individuals
calculated directly from the simulated data. Finally, the two dashed line curves represent
the 95% confidence bands around the estimated proportions. It can be seen that the
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Table 5.2: Summary of MCMC convergence diagnostic tests of shape aj and rate λj, j =
1, 2, 3, estimates for the no hazard rate model.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

a1 1.00 1.00 a1 -1.179
λ1 1.00 1.00 λ1 -1.178

Multivariable psrf 1.00
a2 1.00 1.00 a2 0.957
λ2 1.00 1.00 λ2 0.958

Multivariable psrf 1.00
a3 1.01 1.03 a3 1.259
λ3 1.01 1.03 λ3 1.250

Multivariable psrf 1.01

estimated proportions are close to the observed proportions calculated directly. However,
the estimations in the third stage show some biases, especially at the peak of the distri-
bution. A poor performance of the credible intervals in stage 3 also displays these biases,
in comparison to the previous stages. Estimation errors from the later stages are bigger
due to the accumulation of estimation errors from the previous stages.

Table 5.3: Summary of results for parameter estimations from 50 simulated data for the
no hazard rate model.

Parameter True value Mean 95% credible interval CrI performance

a1 2 2.109 [1.800;2.340] 98%
λ1 1.5 1.547 [1.314;1.796] 100%
a2 2 1.963 [1.545;2.443] 96%
λ2 1.5 1.474 [1.127;1.915] 100%
a3 2 2.232 [1.455;3.220] 98%
λ3 1.5 1.675 [1.027;2.707] 94%
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Figure 5.9: Proportions of alive individuals and estimated proportions of alive individuals
and the 95% CrI of the estimations in three stages for the no hazard rate model.

5.2 Simulation data in stage-wise constant hazard

rate model

The data in this case were simulated following Section 3.4.1. Unlike the study in Chapter
3, which used 50 sampling time points, this simulation only used 15 sampling time points
taken between 0.1 and 6. One thousand individuals at each sampling time were generated
from Erlangian distributions with constant shape a = 2 and with rates λ1 = 1.5, λ2 = 1.5
and λ3 = 1.5 for stage 1, stage 2 and stage 3, respectively. The number of dead individuals
was generated from an exponential distribution with the rates of µ1 = 0.3, µ2 = 0.5 and
µ3 = 0.7 in stage 1, stage 2 and stage 3 respectively.
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5.2.1 The probabilities at each stage

This section presents the calculation of probability at each stage in order to calculate the
acceptance probabilities (Section 4.3.3). For given maturation parameters

θ = (θ1, θ2, ..., θ9) = (a1, λ1, µ1, a2, λ2, µ2, a3, λ3, µ3)

in each stage, using (4.3.2) and (4.3.3) the probability of the number of alive and dead
individuals in each stage at each sampling time were calculated as shown below.

The probability of an individual being alive in stage 1 at sampling time Tk is

p1(Tk) = H1(Tk)

= S1(tk)
∞̂

tk

g1(x)dx = exp

−
Tkˆ

0

µ1dx


∞̂

Tk

xa1−1 exp (−λ1x)λa1
1

(a1 − 1)! dx

= exp (−µ1Tk)λa1
1

(a1 − 1)!

∞̂

Tk

xa1−1 exp (−λ1x) dx ,

(5.2.1)

and the Laplace transform is

L{p1(t)} (s)= L{H1(t)} (s)

= 1− L(h1)
s+ µ1

= 1
s+ µ1

(
1−

(
λ1

λ1 + µ1 + s

)a1)
.

(5.2.2)

Similarly, the probability of an individual being alive in stage 2 at sampling time Tk and
its Laplace transform are given by

p2(Tk) = h1 ∗H2(Tk)

⇒ L{p2(t)} (s) = L{h1} (s)L{H2(t)} (s)

= 1
s+ µ2

(
λ1

λ1 + µ1 + s

)a1 (
1−

(
λ2

λ2 + µ2 + s

)a2)
.

(5.2.3)

The probability of an individual being alive in stage 3 at sampling time Tk and its Laplace
transform are given by
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p3(Tk) = h1 ∗ h2 ∗H3(Tk)

⇒ L{p3(t)} (s) = L{h1} (s)L{h2} (s)L{H3(t)} (s)

= 1
s+ µ3

(
λ1

λ1 + µ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2

×(
1−

(
λ3

λ3 + µ3 + s

)a3)
.

(5.2.4)

The Laplace transform of the probability of an individual being found dead in stage 1 at
sampling time t is

L{d1(t)} (s) = L
{
Hd

1 (t)
}

(s)≈ L

µ1

tˆ

0

g1(x)dx

 (s)

= µ1

s

(
λ1

λ1 + s

)a1

.

(5.2.5)

The Laplace transform of the probability of an individual being found dead in stage 2 at
sampling time t is

L{d2(t)} (s)= L
{
h1 ∗Hd

2 (t)
}

(s)

≈ µ2

s

(
λ1

λ1 + µ1 + s

)a1 ( λ2

λ2 + s

)a2

.
(5.2.6)

The Laplace transform of the probability of an individual being found dead in stage 3 at
sampling time t is

L{d3(t)} (s)= L
{
h1 ∗ h2 ∗Hd

3 (t)
}

(s)

≈ µ3

s

(
λ1

λ1 + µ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2 ( λ3

λ3 + s

)a3

.
(5.2.7)

Practically, we need to adjust sampling times if there are no deaths occurring at the
beginning of stage 3 for some of the sampling times. We assume that dead individuals in
stage 3 are still alive at these sampling times. The adjustment is presented in Lemma 4
as follows.

Lemma 4. In stage 3 at the initial sampling time τ , where no deaths occur, we need to
subtract τ from our estimation, namely

L
{
Hd

3 (t− τ)uτ (t)
}

(s) = exp (−τ(s+ µ3))L
{
Hd

3 (t)
}

(s) , (5.2.8)
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where the step function uτ (t) is defined by

uτ (t) =


0 t < τ ,

e−τµ3 t > τ .
(5.2.9)

Proof. We have

exp (−τ(s+ µ3))L
{
Hd

3 (t)
}

(s) = exp (−τ(s+ µ3))
∞̂

0

exp(−st)Hd
3 (t)dt

=
∞̂

0

exp (−s(t+ τ)) exp(−τµ3)Hd
3 (t)dt .

(5.2.10)

Setting x = t+ τ in (5.2.10) and observing that x ≥ τ , we obtain

exp (−τ(s+ µ3))L
{
Hd

3 (t)
}

(s) =
∞̂

τ

exp(−sx) exp(−τµ3)Hd
3 (x− τ)dx

=
∞̂

0

exp(−sx)Hd
3 (x− τ)uτ (x)dx

= L
{
Hd

3 (t− τ)uτ (t)
}

(s) .

(5.2.11)

Taking the inverse Laplace transforms of (5.2.2), (5.2.3), (5.2.4), (5.2.5), (5.2.6) and
(5.2.7), we obtain the probabilities p1(Tk), p2(Tk), p3(Tk), d1(Tk), d2(Tk) and d3(Tk), re-
spectively. These probabilities were used in (4.3.10) in order to calculate the posterior
distributions needed to evaluate the acceptance probabilities in Algorithm 3.

5.2.2 The single MH algorithm

Similar to Section 5.1.2, the MH algorithm in Section 4.3.3 was applied in order to estimate
the maturation parameters and hazard rates in each stage. For each of three stages,
the starting values and the initial tuning parameters for proposal values of maturation
parameters and hazard rate parameters were set at different values. The results from
the Markov chains were compared and all agreed with each other. The optimal tuning
parameter for proposal values were chosen by the adaptive MH method (Section 2.3.5). A
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summary of the maturation parameters from 100,000 MH iterations with 95,000 samples
discarded as burn-in is shown in Table 5.4. The means of the maturation parameters in the
three stages converge slowly to true values of these parameters. The acceptance rates were
too high for some parameters. The autocorrelation plots for our MH samples in Figure
B1.3 (Appendix B) show very slow mixing and strong dependence as lags increase. The
trajectories of the chains (Figures B1.1 and B1.2, Appendix B) are visually inconsistent
over time and indicate that some of the marginal distributions of the parameters are
bimodal. The figures show that the chains do not converge to the target stationary
distribution. Therefore, the MH Algorithm 4 based on deterministic transformations in
Section 4.3.4 was applied in order to improve mixing of the chains.

Table 5.4: Summary of the maturation parameters and hazard rates estimates resulting
from appling single Metropolis-Hastings algorithm from the last 5,000 iterations for stage-
wise constant hazard rates model.

Parameter True value Acceptance rate % Mean SD 2.5% 50% 97.5%

a1 2 30.56 1.924 0.079 1.773 1.926 2.088
a2 2 26.16 2.296 0.249 1.826 2.278 2.764
a3 2 49.94 3.040 1.025 1.570 2.767 4.864
λ1 1.5 50.92 1.473 0.061 1.362 1.475 1.596
λ2 1.5 45.58 1.741 0.214 1.324 1.729 2.153
λ3 1.5 68.68 2.287 0.856 1.040 2.069 3.856
µ1 0.3 76.24 0.279 0.010 0.261 0.279 0.300
µ2 0.5 73.40 0.510 0.020 0.471 0.510 0.548
µ3 0.7 82.39 0.762 0.037 0.687 0.765 0.836

5.2.3 The MH algorithm based on deterministic transforma-

tions

We applied the Metropolis-Hastings Algorithm 4 based on deterministic transformations
(Section 4.3.4) to estimate the maturation parameters. The initial values

(
a

(0)
1 , λ

(0)
1 , a

(0)
2 , λ

(0)
2 ,

a
(0)
3 , λ

(0)
3

)
were taken either randomly or from the single MCMC output (Table 5.4).

The sampling rate s = (s1, s2, s3) was estimated as (0.77, 0.70, 0.85) for stage 1, stage
2 and stage 3, respectively. As in the previous section, T = 10, 000 iterations were
generated with the first 5,000 iterations discarded as burn-in. The trace, density and
autocorrelation plots of the shape and rate estimates are shown in Figures D1.1, D1.2
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and D1.3 (Appendix D). The trace plots show that the Markov chains appear to have
reached their stationary distributions. Moreover, the density plots show smooth and
unimodal posterior marginal distributions for each parameter. The autocorrelation plots
of the shape, rate and hazard rate samples indicate that the chains are mixing well and
are independent as lag increases. These figures confirm that the MCMC chains converge
to the target stationary distributions. Acceptance rates of 48.80%, 34.74% and 51.55%
for the shape variables (aj, j = 1, 2, 3) and 45.37%, 47.85% and 38.08% for the hazard
rate variables (λj, j = 1, 2, 3) were obtained at the three stages.

A summary of the Gelman and Rubin and the Geweke diagnostic test results is provided
in Table 5.5 and the potential scale reduction factors changing through the iterations are
shown in Figures C1.1, C1.2 and C1.3 (Appendix C). Because the potential scale reduction
factors all approach one, the MCMC chains are diagnosed as converging to the stationary
distribution of the parameters (Cowles and Carlin 14). In the Geweke diagnostic tests,
the absolute values of the standard Z-scores were less than two (|Z| ≤ 2), also indicating
that the MCMC chains converged.

We applied the method to 50 simulated datasets. As presented in Table 5.6, the means
of estimates are sufficiently close to the true values, with reasonably small standard devi-
ations. Furthermore, the true values are within their 95% credible intervals. The credible
interval performances are more accurate at earlier stages than later stages, because the
biases in the later stages tend to have accumulated from the previous ones.

The fitted curves for the three stages are shown in Figure 5.10. The estimated proportions
of alive individuals seem to be acceptably close to the simulated probabilities of an alive
individual across the three stages. However, the estimated proportions of dead individuals
(Figure 5.10) seem to be biased in the simulated probabilities, especially at the highest
observed proportions. The explanation for this bias is that the exact death times of
individuals were unknown.
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Table 5.5: Summary of MCMC convergence diagnostic tests of shape, rate and hazard
rate (aj, λj and µj, j = 1, 2, 3) estimates for the stage-wise constant hazard rate model.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

a1 1.00 1.00 a1 -1.534
λ1 1.00 1.00 λ1 -1.328
µ1 1.00 1.00 µ1 -1.653

Multivariable psrf 1.00
a2 1.00 1.00 a2 -0.217
λ2 1.00 1.00 λ2 -0.055
µ2 1.00 1.00 µ2 -1.201

Multivariable psrf 1.00
a3 1.02 1.02 a3 1.451
λ3 1.02 1.02 λ3 1.306
µ3 1.00 1.01 µ3 2.025

Multivariable psrf 1.00

Table 5.6: Summary of results for parameter estimations from 50 simulated datasets for
the stage-wise constant hazard rate model.

Parameter True value Mean 95% credible interval CrI performance

a1 2 1.945 [1.939;2.321] 100%
λ1 1.5 1.470 [1.353;1.621] 100%
µ1 0.3 0.297 [0.290;0.319] 100%
a2 2 2.178 [1.935;2.494] 96%
λ2 1.5 1.612 [1.284;1.932] 100%
µ2 0.5 0.503 [0.469;0.545] 98%
a3 2 2.373 [1.609;2.847] 92%
λ3 1.5 1.722 [1.177;2.635] 98%
µ3 0.7 0.755 [0.685;0.809] 94%

101



5. Simulation Studies

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

Stage 1

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
00

0.
10

0.
20

Stage 2

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
00

0.
04

0.
08

Stage 3

times

P
ro

po
rt

io
n

Simulated proportion 
Estimated proportion 
95% CI

----------------------------------------------------------------------------------------------------------------------------------------------

0 1 2 3 4 5 6

0.
05

0.
20

0.
35

Stage 1

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
00

0.
15

0.
30

Stage 2

times

P
ro

po
rt

io
n

0 1 2 3 4 5 6

0.
00

0.
10

0.
20

Stage 3

times

P
ro

po
rt

io
n

Simulated proportion 
Estimated proportion 
95% CI

Figure 5.10: The figures in the top half are the observed proportions of alive individuals
and the estimated proportion of alive individuals and the 95% CrI of the estimations for
the three stages. The figures in the bottom half are the observed proportions of dead
individuals and the estimated proportion of dead individuals and the 95% CrI of the
estimations for three stages.
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5.3 Simulation data in the linear time-dependent haz-

ard rates model

5.3.1 The probabilities at each stage

We applied the single MH Algorithm 5 (Section 4.4) to simulated data that were cohort
stage frequency data with 3 stages having Erlangian distributions. The hazard rates were
set at 0, 0.3 and 2t for stage 1, stage 2 and stage 3, respectively. One thousand stage
times at each sampling time were generated from Erlangian distributions with constant
shape aj = 2 and rates λj = 1.5, j = 1, 2, 3 for stage 1, stage 2 and stage 3, respectively.
Fifteen sampling time points were taken between 0.1 and 6.

Because the hazard rate in stage 1 was zero, from (5.1.1) and (5.1.2), the Laplace transform
of the probability of an individual being alive in stage 1 at sampling time Tk is presented
as follows:

The probability of an individual being alive in stage 1 at sampling time Tk is

p1(Tk) = H1(Tk)

=
∞̂

Tk

g1(x)dx =
∞̂

Tk

xa1−1 exp (−λ1x)λa1
1

(a1 − 1)! dx

= λa1
1

(a1 − 1)!

∞̂

Tk

xa1−1 exp (−λ1x) dx ,

(5.3.1)

and the Laplace transform is

L{p1(t)} (s)= L{H1(t)} (s)

= 1− L{h1} (s)
s

= 1
s

(
1−

(
λ1

λ1 + s

)a1)
.

(5.3.2)

The probability of an individual being alive in stage 2 at sampling time Tk and its Laplace
transform are given by

p2(Tk) = h1 ∗H2(Tk)

⇒ L{p2(t)} (s) = L{h1} (s)L{H2(t)} (s)

= 1
s+ µ2

(
λ1

λ1 + s

)a1 (
1−

(
λ1

λ2 + µ2 + s

)a2)
.

(5.3.3)
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From (4.4.14), β3(s) = L{h3(t)} (s) = L{gj(t) exp (−γj1t2/2)} (s) is calculated as

β3(s) ≈
λ
aj
j

Γ(aj)
(λj + s)
γ
aj−1
j1

aj−2 (
2− aj +

−a2
j + 4aj − 5

2u0

)
, (5.3.4)

where u0 = (λ3 + s)2/(2γ3).

From (4.4.15), the probability of an individual being alive in stage 3 at sampling time Tk
and its Laplace transform are given by

p3(Tk) = h1 ∗ h2 ∗H3(Tk)

⇒ L{p3(t)} (s) = L{h1} (s)L{h2} (s)L{H3(t)} (s)

≈
(

λ1

λ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2

{
exp

(
s2

2γ3

)√
π

2γ3

[
1− erf

(√
γ3

2
s

γ3

)]
− 0.6

√
π

2γ3
β3(s)

}

≈
(

λ1

λ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2

{
exp

(
s2

2γ3

)√
π

2γ3
erfc

(√
γ3

2
s

γ3

)
− 0.6

√
π

2γ3
β3(s)

}

(5.3.5)

≈
(

λ1

λ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2

{
exp

(
s2

2γ3

)√
π

2γ3
0.6 exp

(
− s2

2γ3

)
− 0.6

√
π

2γ3
β3(s)

}

≈
(

λ1

λ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2

0.6
√

π

2γ3
(1− β3(s)) .

The Laplace transform of the probability of an individual being found dead in stage 2 at
sampling time t is

L{d2(t)} (s)= L
{
h1 ∗Hd

2 (t)
}

(s) = L{h1} (s)L
{
Hd

2 (t)
}

(s)

≈ µ2

s

(
λ1

λ1 + s

)a1 (
1−

(
λ1

λ2 + s

)a2)
.

(5.3.6)

From (4.4.16), the Laplace transform of the probability of an individual being found dead
in stage 3 at sampling time t is

L{d3(t)} (s)= L
{
h1 ∗ h2 ∗Hd

3 (t)
}

(s) = L{h1} (s)L{h2} (s)L
{
Hd

3 (t)
}

(s)

≈
(

λ1

λ1 + s

)a1 ( λ2

λ2 + µ2 + s

)a2 f (E(T3))
s

(
λ3

s+ λ3

)a3

.
(5.3.7)
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Similar to Section 5.2.1, we need to adjust the sampling times in the case that no deaths
occur in stage 3 at the beginning of some sampling times. The adjustment is presented
in Lemma 5 as follows.

Lemma 5. In stage 3 at initial sampling time τ , where no deaths occur, we need to
subtract this time τ from our estimation.

L
{
Hd

3 (t− τ)uτ (t)
}

(s) = exp
(
−γ3

2 τ
2 − sτ

)
L
{
Hd

3 (t)
}

(s) , (5.3.8)

where step function uτ (t) is defined by

uτ (t) =


0 t < τ ,

exp
(
−γ3

2 τ
2
)

t > τ .
(5.3.9)

Proof. By an argument analogous to that used to prove Lemma 4.

By taking the inverse Laplace transform of (5.3.2),(5.3.3), 5.3.5, 5.3.6 and (5.3.7), we ob-
tain the probabilities p1(Tk), p2(Tk), p3(Tk), d2(Tk) and d3(Tk), respectively. These proba-
bilities are used in (4.4.5) in order to calculate the acceptance probabilities in Algorithm
5.

5.3.2 The single MH algorithm

Similar to the previous model, we applied the MH Algorithm 5 (Section 4.4.3) to estimate
the maturation parameters and the hazard rate in each stage. The purpose of doing this
was to investigate prior distributions and choose appropriate initial values. For each of
the three stages, the starting values were set at 0.1 and the initial tuning parameters
for proposal values of maturation parameters and hazard rate parameters were set at 0.1
and 0.01 respectively. The optimal tuning parameter for proposal values were chosen by
applying the adaptive MH method (Section 2.3). A summary of the maturation param-
eters from 100,000 MH iterations with 95,000 samples discarded as burn-in is shown in
Table 5.7. The means of the maturation parameters in the three stages converge slowly
to true values of these parameters. The autocorrelation plots of samples in Figure B2.3
(Appendix B) show the chains are not mixing well and exhibit too much dependence
as lag increases. The trace plots (Figures B2.1 and B2.2) show that the Markov chains
appear not to have approached their stationary distributions sufficiently closely.
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Table 5.7: Summary of the matuation parameters and hazard rates estimates result from
appling single MH algorithm from the last 5,000 iterations for linear time-dependent
hazard rates model.

Parameter True value Acceptance rate % Mean SD 2.5% 50% 97.5%

a1 2 22.55 1.905 0.064 1.788 1.900 2.027
a2 2 17.25 2.861 0.118 4.580 4.893 4.997
a3 2 45.84 2.899 0.115 2.575 2.944 2.998
λ1 1.5 37.98 1.442 0.044 1.363 1.440 1.536
λ2 1.5 78.71 2.018 0.090 1.849 2.011 2.219
λ3 1.5 43.21 1.703 0.169 1.377 1.700 2.014
µ2 0.3 23.52 0.415 0.069 0.282 0.418 0.539
γ3 2 47.69 1.398 0.334 0.861 1.357 2.081

5.3.3 The MH algorithm based on deterministic transforma-

tions

We applied the MH Algorithms 2 and 4 based on deterministic transformations (Sections
4.2.4.2 and 4.3.4.2) to the problems in stage 1 and stage 2, respectively. After we ob-
tained parameter estimates from stage 1 and stage 2, we applied the MH Algorithm 5 in
Section 4.4.3 for stage 3. The initial values

(
a

(0)
1 , λ

(0)
1 , a

(0)
2 , λ

(0)
2 , a

(0)
3 , λ

(0)
3

)
were taken either

randomly or from the single MCMC output (Table 5.7).

The sampling rates (s1, s2) were estimated as 0.77 and 0.7 for stage 1 and stage 2 re-
spectively. From 10,000 iterations with 5,000 samples discarded as burn-in, the traces of
the shape and rate estimates in the three stages are shown in Figures D2.1, D2.2 and
D2.3 (Appendix D). We see that the trajectories of the Markov chains are consistent over
time and that the distributions of the parameters look appropriately normal. The figure
shows that the Markov chains converged to the target stationary distribution of interest.
Moreover, the autocorrelation plots of the shape and the rate estimates in stage 1 show
that the chains are mixing well and that there is not too much dependence as lag increases
(Figure D2.1).

Means and standard deviations of the Markov chains are close to the true values of the pa-
rameters (Table 5.9). The acceptance rates for the MH algorithm are at 44.13% and 37.04%
for the shape parameters (a1 and a2) in stage 1 and stage 2, respectively and 59.59%, 41.75%,
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42.10%, 34.50% for µ2, a3, λ3 and γ3 parameters respectively. In order to evaluate the ac-
curacy of the estimates, we generated 50 data sets. Means and standard deviations of the
parameters were computed from the 50 datasets. The means of estimates are close to the
true values, with a reasonably small standard deviations (Table 5.9). Furthermore, the
true values are within their 95% credible intervals. The credible interval performances are
better in early stages than later stages, because the bias in later stages tend to accumulate
from the previous ones.

However, there is bias in the estimate of the slope parameter γ3. The credible interval
of slope parameter γ3 is the worst in term of CrI performance compared to the other
parameters (Table 5.9). This is due to bias in the approximations in (5.3.4), (5.3.5) and
(5.3.7). Note that in the simulated data, only Stage 3 has a time-dependent hazard rate.
The method is reliable in a model which has only one time-dependent hazard rate in
Stage 1 or Stage 2. If the number of stages having a time-dependent hazard rate increases
or the time-dependent hazard rate occurs in a later stage, biases from the estimates will
increase. In such cases, we should consider an approach that does not depend on the
probabilities pj(t) and dj(t), j = 1, ..., I. This can reduce the bias in the approximations
in (5.3.4), (5.3.5) and (5.3.7).

Table 5.8: Summary of MCMC convergence diagnostic tests of shape, rate and hazard
rate estimates for the linear time-dependent hazard rate model.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

a1 1.00 1.01 a1 -0.260
λ1 1.00 1.01 λ1 -0.260

Multivariable psrf 1.00
a2 1.03 1.10 a2 0.473
λ2 1.08 1.32 λ2 0.472
µ2 1.10 1.37 µ2 1.453

Multivariable psrf 1.08
a3 1.02 1.02 a3 -0.217
λ3 1.26 1.90 λ3 -0.055
γ3 1.01 1.03 µ3 -1.201

Multivariable psrf 1.65
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Table 5.9: Summary of results for parameter estimations from 50 simulated datasets for
the linear time-dependent hazard rate model.

Parameter True value Mean 95% credible interval CrI performance

a1 2 1.997 [1.904;2.060] 100%
λ1 1.5 1.497 [1.409;1.552] 100%
a2 2 2.014 [1.839;2.309] 96%
λ2 1.5 1.515 [1.432;1.903] 98%
µ2 0.3 0.390 [0.281;0.409] 96%
a3 2 2.012 [1.877;2.326] 96%
λ3 1.5 1.614 [1.424;1.734] 92%
γ3 1 1.1945 [0.946;1.303] 90%

In order to assess convergence of the Markov chain, we used Gelman and Rubin multiple
sequence diagnostic and Geweke diagnostic. We ran 5 MCMC chains of length 10,000 with
5,000 samples discarded as burn-in. A summary of Gelman and Rubin diagnostics and
Geweke diagnostics are presented in Table 5.8 and the potential scale reduction factors
changing through the iterations are shown in Figures C2.1, C2.2 and C2.3 (Appendix
C). Because the potential scale reduction factors are close to 1, the MCMC chains are
diagnosed as converging to the stationary distribution of the parameters. The standard
Z-scores in Geweke diagnostic tests, all have |Z| ≤ 2, and so indicate that the MCMC
chains converged.

The fitted curves for the three stages are shown in Figures 5.11. The estimated propor-
tions of alive individuals seem acceptably close to the simulated probabilities. Moreover,
the estimated values follow the simulated data set very closely at each sampling time.
However, in the case of dead individuals in stages 2 and 3, Figure 5.11 indicates lack
of agreement between the estimated and the simulated proportions, except in the range
where these proportions and sampling times have low values. The explanation for this
bias probably stems from the fact that the exact death times of individuals are unknown.
This leads to some bias in the estimated dataset.
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Figure 5.11: The figures in the top half are proportions of living individuals and estimated
proportion of alive individuals and the 95% CrI of the estimations for three stages. The
figures in bottom half are proportion of dead individuals and estimated proportion of
dead individuals and the 95% CrI of the estimations for Stage 2 and Stage 3 in the linear
time-dependent hazard rates model.

109



6. Case Studies

Chapter 6

Case Studies

In this chapter, we apply the techniques in Chapter 4 to cattle parasitic data ([58]) and
breast development of New Zealander schoolgirls data ([39], p. 98). The no hazard
rate model was applied to these data. We used the Bayesian approach of Section 4.2 to
estimate parameters for the model. The results show that the proposed methods are able
to estimate the parameters well, as compared to using the Laplace transform methods
([25] and [39]).

6.1 Parasitic nematode Data

The data for cattle parasite was taken from [58]. Data are presented in Table 2.1 (Section
2.1). The data consist of four stages of the parasite life cycle including stage 1 (eggs),
stage 2 (first stage larvae), stage 3 (second stage larvae) and stage 4 (third stage larvae).
The authors of Hoeting et al. [25] introduced the Laplace transform methods in order to
estimate the parameters for the first three stages of the parasite life cycle. In this section,
the techniques from Section 4.2 will be used in order to estimate maturation parameters
from the first three stages of the parasitic nematode life cycle. This technique improves on
the technique used in [25] by estimating the unknown shape parameters simultaneously
with the rate parameters. In [25], the values of shape parameters are assumed to be the
same and equal two. However, in most real situation, the values of the shape parameters
are not known. Assumed values may not be correct and lead to inaccurate estimates of
rate parameters. Although there are not many differences between the fitted curves for
the three stages shown in Figure 6.1, the methods presented in this work will have more
pronounced impact if the number of stages is large.
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6.1.1 The single MH algorithm

Similar to Section 5.1, we applied the MH Algorithm 1, from Section 4.2.3, to estimate
the maturation parameters in each stage. For each of three stages, the starting values
were set at 0.1 and the initial tuning parameters for proposal values of shape parameters
were set at 0.2 and 0.01 for rate parameters. A summary of the maturation parameters
from 100,000 MH iterations with 95,000 samples discarded as burn-in is shown in Table
6.1. The means of the maturation parameters in three stages converge slowly to true
values of these parameters. The autocorrelation plots for our MH samples in Figure B3.3
(Appendix B) show bad mixing and substantial dependence as lag increases. The trace
plots and the distributions of the chains are presented in Figures B3.1 and B3.2 (Appendix
B). The plots indicate that the chains failed to converge. Therefore, we apply the joint
MH Algorithm 2 based on deterministic transformations in the next section in order to
improve the convergence rates of the chains.

Table 6.1: Summary results of parameter estimation applied single MH Algorithm 1 based
on the last 5,000 iterations for parasitic nematode data.

Parameter Acceptance rate % Mean SD 2.5% 50% 97.5%

a1 37.30 1.700 0.223 1.301 1.704 2.186
a2 64.75 2.482 0.537 1.539 2.457 3.610
a3 28.96 1.077 0.171 0.807 1.063 1.455
λ1 19.64 0.040 0.005 0.032 0.040 0.050
λ2 58.78 0.104 0.024 0.065 0.103 0.157
λ3 9.89 0.015 0.003 0.010 0.014 0.020

6.1.2 The MH algorithm based on deterministic transforma-

tions

As in Section 4.2, the initial values for parameters were set randomly. The sampling rate
s was chosen as the estimated mean duration, which was taken from the output of a
single MH algorithm (Algorithm 1). The sampling rate s = (s1, s2, s3) was estimated as
(0.02, 0.04, 0.01) for stage 1, stage 2 and stage 3, respectively. Tuning variances from the
normal random walk distributions were optimized using an adaptive MH method (Section
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2.3.5).

The trace, density and autocorrelation plots of the shape and rate samples are shown
in Figures D3.1, D3.2 and D3.3 (Appendix D). The autocorrelation plots of the shape
samples and the rate samples show that the chains are mixing well and that they are
reasonably independent as the lag increases. The trace plots show that the means of the
Markov chains are constant and stabilized. The density plots show the desired stabiliza-
tions and indicate the convergence of the chains.

To further assess the MCMC convergence, we used the Gelman and Rubin multiple se-
quence diagnostic and the Geweke diagnostic tests. We ran five MCMC chains of length
T = 10, 000 iterations with the first 5,000 iterations discarded as burn-in. A summary
of the Gelman and Rubin and the Geweke diagnostic tests is expressed in Table 6.2 and
the potential scale reduction factor plots from Gelman and Rubin diagnostic are shown
in Figures C3.1 and C3.2 (Appendix C). These tests indicate that the MCMC chains
have converged. Because the potential scale reduction factors approach 1, the MCMC
chains are diagnosed as converging to the stationary distribution of the parameters. The
standard Z-scores, which all have absolute values less than two (|Z| ≤ 2) in the Geweke
diagnostic tests, also indicate that the MCMC chains converged. Means of the estimates
presented in Table 6.3 have reasonably small standard deviations. The acceptance rate
for the MH algorithm is at 32.25%, 54.36% and 63.86% for the three stages.
The fitted curves for the three stages are shown in Figure 6.1. The empirical proportions
and the Laplace transform estimated proportions ([25]) are very close to the estimated
probabilities of an individual being alive across each stage. Although the proportions are
not very different between the Laplace transform method and the MH method based on
deterministic transformations, note that in a Bayesian approach, parameters in each stage
are estimated without any information regarding shape and rate parameters, in contrast
to the Laplace transform methods. The Bayesian approach produces good estimates for
multi-stage models.

6.2 Breast development of New Zealander schoolgirls

We chose the dataset of breast development of New Zealander schoolgirls ([39], p. 98)
as an example of a stage-duration model with no hazard rate. A survey of New Zealan-
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Table 6.2: Summary of MCMC convergence diagnostic tests of shape and rate estimates
for the parasitic nematode data.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

a1 1.00 1.00 a1 -0.341
λ1 1.00 1.00 λ1 -0.340

Multivariable psrf 1.00
a2 1.00 1.01 a2 -0.760
λ2 1.00 1.01 λ2 -0.762

Multivariable psrf 1.00
a3 1.00 1.01 a3 0.782
λ3 1.00 1.01 λ3 0.778

Multivariable psrf 1.01

Table 6.3: Summary for shape and rate estimates applied Algorithm 2 based on MCMC
runs of length 10,000 of three stages of parasitic nematode data.

Parameter Mean SD 2.5% 50% 97.5%

a1 1.922 0.149 1.635 1.918 2.224
λ1 0.043 0.004 0.035 0.043 0.052
a2 1.745 0.369 1.241 1.683 2.533
λ2 0.077 0.020 0.050 0.074 0.120
a3 1.277 0.159 0.986 1.272 1.608
λ3 0.016 0.003 0.011 0.016 0.021

der schoolgirls at different ages was conducted to assess the stages of breast development.
The breast development was divided into five stages. At different ages, a different random
number of New Zealander schoolgirls were taken to assess their breast development. Fur-
ther analysis of each sample was not possible. Thus, this dataset is considered to consist
of destructive samples. We could not access actual numbers of girls at each stage since the
data available only recorded percentages at each stage, perhaps, after some processing or
cleansing. The data are given in Table 6.4, including the 5 stages of breast development.
Percentages of New Zealander schoolgirls were recorded from 20 sampling times from 6.5
years old to 25.5 years old. In this section, the techniques from Section 4.3 are used in
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Figure 6.1: Plots of the proportions from sampling data (dotted line), the estimated
proportion from MCMC method with the 95% CrI (solid line and dash lines) and the
estimated proportion from Hoeting et al. [25] (bold solid line) from the 4 stages of the
parasite life cycle.

order to estimate maturation parameters from the five stages of breast development. The
improvements of these techniques in estimations of maturation durations at each stage are
compared to methods in [39] that just estimated the percentages with different stages of
the breast development and the mean ages of entry in stages 1-5. Our methods estimate
not only the percentages with different stages of the breast development and the mean
ages of entry in stages 1-5, but also the distributions of breast development in each stage.
Therefore, our results give more information about breast development of New Zealander
schoolgirls.

114



6. Case Studies

6.2.1 The single MH algorithm

Similar to the previous section, we applied the MH Algorithm 1 (Section 4.2.3) to es-
timate the maturation parameters in each stage. The dataset, comprising percentages
of New Zealander schoolgirls in different stages at different ages, is considered to have a
multinomial distribution. This natural assumption was used in [25] and [18].

For each of the four stages, the starting values were set at 0.1 and the initial tuning
parameters for proposal values of parameters were set at 0.1. Table 6.5 shows the summary
of the maturation parameters from 100,000 MH iterations with 95,000 samples discarded
as burn-in. The autocorrelation plots for our MH samples in Figure B4.3 (Appendix B)
shows bad mixing and substantial dependence as lag increase. The trace plots and the
distributions of the chains are presented in Figures B4.1 and B4.2 (Appendix B). The plots
show that the means of the Markov chains are not stable. These results indicated that
the chains failed to converge. Therefore, we will apply the joint MH Algorithm 2 based
on deterministic transformations in the next section in order to improve the convergence
rates of the chains.

6.2.2 The MH algorithm based on deterministic transforma-

tions

We applied the MH Algorithm 2 based on deterministic transformations, described in
Section 4.2.4, to estimate the maturation parameters in order to increase the mixing from
Section 5.1.2. We updated each stage separately, starting from stage 1 and moving to
the next stages sequentially. The initial values for parameters were randomly taken from
95% CrI of the above MCMC chain (Table 6.5). The sampling rate s was chosen as the
estimated mean duration which is the output from 10,000 MCMC iterations in Table 6.5.
Tuning variances from the normal random walk distributions were optimized using an
adaptive MH method (Section 2.3.4).

The trace, density and autocorrelation plots of the shape and rate estimates are shown in
Figures D4.1, D4.2, D4.3 and D4.4 (Appendix D). The autocorrelation plots of the shape
and the rate estimates showed that the chains mixed well and that there was not too
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Table 6.4: Percentages of New Zealander schoolgirls over five stages of development from
20 sampling times from 6.5 to 25.5 years old.

Time Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

6.5 100 0 0 0 0
7.5 100 0 0 0 0
8.5 100 0 0 0 0
9.5 95.1 4.8 0.1 0 0
10.5 66.4 27.6 5.3 0.7 0.1
11.5 32.6 37.7 22.8 6.2 0.7
12.5 13.3 27.5 35.8 19.4 3.9
13.5 5 15.2 34.4 33.3 12
14.5 1.9 7.5 25.7 40.2 24.8
15.5 0.7 3.5 16.8 39.1 40
16.5 0.2 1.6 10.2 33.2 54.8
17.5 0.1 0.7 5.9 26 67.3
18.5 0 0.3 3.4 19.2 77.1
19.5 0 0.1 1.9 13.7 84.3
20.5 0 0.1 1.1 9.5 89.4
21.5 0 0 0.6 6.5 92.9
22.5 0 0 0.3 4.4 95.3
23.5 0 0 0.2 3 96.9
24.5 0 0 0.1 2 97.9
25.5 0 0 0.1 1.3 98.6

Table 6.5: Summary results of parameter estimation applied the single MH Algorithm
1 based on the last 5,000 iterations for breast development of New Zealander schoolgirls
data.

Parameter Acceptance rate % Mean SD 2.5% 50% 97.5%

a1 53.95 1.507 0.163 1.208 1.499 1.856
a2 74.32 2.444 0.645 1.211 2.417 3.740
a3 61.62 1.407 0.328 0.912 1.359 2.206
a4 38.49 1.596 0.270 1.134 1.562 2.185
λ1 69.22 0.928 0.092 0.766 0.925 1.131
λ2 43.71 1.901 0.515 0.956 1.861 2.983
λ3 31.57 0.843 0.188 0.564 0.817 1.300
λ4 45.56 0.617 0.101 0.451 0.604 0.843
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much dependence as lag increases. The trace plots show that the means of the Markov
chains are stable. The density plots also indicate stabilization and convergence.

Means of the estimates presented in Table 6.3 have reasonably small standard deviations.
The acceptance rates for the MH algorithm were 20.35%, 43.51%, 41.90% and 54.17%
respectively for the four stages.

Table 6.6: Summary of MCMC convergence diagnostic tests of shape and rate estimates
for the breast development data of New Zealander schoolgirls.

Gelman and Rubin diagnostic Geweke diagnostic

Potential scale reduction factors Fraction in 1st window 0.1
Point est. Upper C.I. Fraction in 2nd window 0.5

a1 1.01 1.02 a1 1.072
λ1 1.01 1.08 λ1 1.067

Multivariable psrf 1.30
a2 1.01 1.01 a2 0.837
λ2 1.01 1.01 λ2 0.864

Multivariable psrf 1.01
a3 1.00 1.01 a3 0.606
λ3 1.00 1.01 λ3 0.607

Multivariable psrf 1.00
a4 1.00 1.00 a3 -0.159
λ4 1.00 1.00 λ3 -0.061

Multivariable psrf 1.00

In order to assess convergence of the Markov chains, we used Gelman and Rubin multiple
sequence diagnostic and Geweke diagnostic. We ran five MCMC chains of length 10,000
with 5,000 iterations discarded as burn-in. A summary of the Gelman and Rubin and
Geweke diagnostic tests are presented in Table 6.6 and the potential scale reduction
factor plots from the Gelman and Rubin diagnostic are shown in Figures C4.1, C4.2, C4.3
and C4.4 (Appendix C). The diagnostic tests all indicated that the MCMC chains have
converged. Because the potential scale reduction factors are 1, the MCMC chains are
diagnosed as converging to the stationary distribution of the parameters.

The fitted curves for the five stages are shown in Figure 6.2. The empirical proportions
and the Laplace transform estimated proportions ([25]) are acceptably close to the esti-
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Table 6.7: A summary results of parameter estimation using the MCMC Algorithm 2
based on deterministic transformations based on the last 5,000 iterations for the breast
development of New Zealander schoolgirls.

Parameter Mean SD 2.5% 50% 97.5%

a1 1.151 0.071 1.021 1.149 1.295
a2 0.605 0.050 0.514 0.603 0.706
a3 0.634 0.048 0.548 0.631 0.736
a4 0.514 0.060 0.408 0.510 0.642
λ1 1.076 0.097 0.917 1.066 1.295
λ2 0.584 0.072 0.465 0.576 0.748
λ3 2.042 0.301 1.586 1.999 2.744
λ4 0.861 0.163 0.616 0.838 1.241

mated probabilities of an individual being alive across time in each stage (Figure 6.2).
Note that in the Bayesian approach, parameters in each stage are estimated without any
information about the shape and rate parameters in each stage compared to Laplace
transform methods in Chapter 3. The Bayesian approach produces good estimates for
multi-stage models.
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Figure 6.2: Plots of the proportions from sampling data, the estimated proportion from
MCMC method with the 95% CrI from 5 stages of the breast development of New Zealan-
der schoolgirls data.
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Chapter 7

Summary, Conclusions and Discussion

Summary

Estimating how much time an average individual spends in each stage and the probability
that an individual transits to a specific stage at a given time are central issues of stage-
duration models. The models proposed in this thesis are distinguished by multi-stage
models in which the stage of sampled individuals is assessed and the individuals are
removed from further consideration. Stage duration and hazard rate in each stage provide
a basic understanding of population biology and ecology. Exploring the development in
each stage can yield basic understanding of progress of an individual. Treatments can be
compared by estimating growth rates of focused stages. By affecting the covariates, new
treatments could be developed through the improvement of the growth rates in stages of
interest.

The contributions of the thesis consist of novel methods to estimate maturation parame-
ters and hazard rate parameters for stage-duration distribution models. These methods
are evaluated on both simulated data and experimental data. These methods contribute
to the current literature of parameter estimation for stage-duration models. More specif-
ically, the contributions include (but are not limited to) the following.

First, we used Laplace transform methods in order to estimate parameters for stage fre-
quency data in stage-wise constant and linear time-dependent hazard rate cases (Chapter
3). The parameters are estimated with assumptions that constant shape parameters or
constant rate parameters are known. Moreover, we explored relationships of maturation
parameters in each stage. These fundamental relationships are subsequently embedded
in MCMC methods based on deterministic transformations in Chapter 4.

Second, we applied MCMC method based on deterministic transformations in order to re-
lax the assumptions above (Chapter 4). New methods were developed in order to estimate
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maturation and hazard rate parameters for stage frequency data. The first contribution
of these methods is that we have relaxed the assumptions of the known constant mat-
uration parameters by introducing priors for these parameters. The parameters in each
stage are estimated through a Bayesian analysis approach without the need for the ini-
tial information for shape or rate parameters required by earlier approaches ([51]; [25]).
The other improvement is that the number of sampling times is reduced compared to the
Laplace transform methods (Chapter 3). The third achievement is that hazard rate pa-
rameters in each stage are estimated simultaneously with the maturation parameters using
a Bayesian approach. Thus the approach provides more information about uncertainties
of the parameters for stage frequency data.

Third, the above methods were applied to the parasitic nematode data as well as data
from the breast development of New Zealander schoolgirls (Chapter 6). The results show
that the proposed methods are able to estimate the parameters well compared to previous
studies ([39]; [25]). The contribution of this study is that the assumptions about shape
and rate parameters are reduced compared to the Laplace transform methods. Param-
eters in each stage are estimated without any information regarding the shape and rate
parameters.

Conclusions and discussion

Naturally, many problems still remain and are worth considering in the future. These
include (but are not limited to) the following, interesting, areas for investigation.

• From Chapter 3: We explored the relationships between maturation parameters and
estimated the maturation parameters. These relationships were used for the MH algorithm
based on deterministic transformations in the following chapter. However, we did not focus
on estimating hazard rate at each stage. Thus, the technique for estimating linear time-
dependent hazard rate was not evaluated. Simulated data based on complex distributions
of survival times with covariates in each stage will need to be investigated in the future.

• From Chapter 4: Maturation parameters and hazard rate parameters were estimated
using the MH algorithm based on deterministic transformations. This Bayesian approach
provides great advantages compared to other methods in the literature. The assumption
about maturation parameters was relaxed and hazard rate parameters were estimated
simultaneously with maturation parameters at each stage.
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However, biases in later stages as well as the restriction to the hazard rates are limitations
of the presented methodology. The biases in the later stages tend to accumulate from
the previous stages. This affects the accuracy of the estimates when the number of
stages increases. Moreover, maturation parameters and hazard rate parameters were only
estimated when the mean of maturation time was larger than the mean of survival time
in each stage. Furthermore, the proposed methods could not be applied in the situations
where there are very high hazard rates. In particular, hazard rates must be less than one.
An approximate Bayesian computation (ABC) approach will be considered in order to
reduce biases when number of stages increases. This approach also allows determination
of the largest hazards rates that can fit the model.

Large bias in the linear time-dependent hazard rate case needs to be overcome by applying
other advanced MCMC methods. Future computational extensions of this work may
include using advanced MCMC methods in order to reduce biases and speed up the
convergence of Markov chains. In particular, in a model with linear time-dependent
hazard rates, computing the likelihood functions is computationally intractable. The
approximation in estimates creates biases. An ABC method will be used in this context.

• From Chapter 6: The methods in the previous chapters were implemented to evaluate
parasitic nematode data and the breast development of New Zealander schoolgirl data.
The no hazard rate model was applied to these data. We concluded that the proposed
methods yielded results that fit well with the data. However, the data collected long time
ago. The impact of the chapter’s results on understanding the life cycle of the cattle
parasite and the development of breasts of New Zealand girls might be not important.
Further field work is necessary to confirm potential insight of our methods. We also did
not have empirical data for models with stage-wise constant hazard rates and linear time-
dependent hazard rates. In the future, we intend to identify and analyze data sets with
these characteristics.

• The methods developed are of a mathematical nature. As they stand, they apply only
in the context described in the thesis. Further extensions are likely to be possible but
will require a level of development at least equivalent to that in the current thesis. Any
discussion on the shape or extent of such extensions would be speculative.
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Appendices

A. Typical simulated data for the models (Section 3.4).

A.1 Simulated data for the no hazard rate model

Table A.1: The distribution of 10 sampled individuals over four stages at 15 sampling
time points, in which stage-specific mortality does not occur. The sample of 10 individuals
were not the same at different time points and were referred to as stage times in previous
literature. Stage 4 is the final stage (for example, the adult stage).

t stage1 stage2 stage3 stage4

0.1 10 0 0 0
0.5 8 2 0 0
0.9 5 3 2 0
1.4 3 4 3 0
1.8 2 4 3 1
2.2 3 4 3 0
2.6 1 5 3 1
3.0 1 0 2 7
3.5 1 0 4 5
3.9 0 2 2 6
4.3 0 0 7 3
4.7 0 1 2 7
5.2 0 0 2 8
5.6 0 0 1 9
6 0 0 1 9
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A.2 Simulated data for the stage-wise hazard rate model

Table A.2: The distribution of 1,000 sampled individuals over the four stages at 50 sam-
pling time points in the stage-wise constant hazard rates case. The sample of 1,000
individuals were not the same at different time points. Stage 4 is the final stage. The
table is continued on the next page.

t stage1 stage2 stage3 stage4 death stage1 death stage2 death stage3

0.1 961 13 0 0 25 1 0
0.2 879 57 0 0 63 1 0
0.3 841 73 0 0 84 2 0
0.5 736 118 9 0 125 12 0
0.6 648 179 12 0 138 23 0
0.7 564 231 12 0 159 31 3
0.8 486 227 34 1 193 53 6
0.9 445 247 36 2 209 53 8
1.1 374 272 45 3 225 70 11
1.2 322 264 49 3 258 94 10
1.3 271 288 60 10 238 117 16
1.4 223 269 75 16 280 112 25
1.5 190 266 88 22 270 141 23
1.7 177 245 85 23 283 150 37
1.8 135 237 102 27 272 173 54
1.9 101 231 96 31 294 193 54
2.0 91 192 126 46 282 203 60
2.1 97 178 109 35 311 198 72
2.3 62 178 125 56 310 194 75
2.4 74 165 86 65 290 226 94
2.5 46 135 111 73 303 242 90
2.6 37 120 103 75 321 250 94
2.7 29 121 95 100 292 252 111
2.9 31 94 93 87 312 244 139
3.0 27 91 85 118 295 260 124
3.1 21 84 73 91 305 292 134
3.2 10 73 79 112 314 259 153
3.4 15 61 73 120 305 271 155
3.5 13 48 67 127 315 274 156
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Table A.2 is continued from the previous page.
t stage1 stage2 stage3 stage4 death stage1 death stage2 death stage3

3.6 13 45 67 118 291 277 189
3.7 5 47 59 134 327 268 160
3.8 10 35 59 123 295 288 190
4.0 7 29 37 141 309 301 176
4.1 2 33 29 156 300 293 187
4.2 4 27 40 143 296 301 189
4.3 1 16 33 150 313 287 200
4.4 1 18 21 155 320 304 181
4.6 3 16 19 157 307 310 188
4.7 1 14 21 152 304 319 189
4.8 1 13 20 155 307 294 210
4.9 0 12 13 166 300 304 205
5.0 1 9 16 186 297 305 186
5.2 0 9 15 162 321 293 200
5.3 2 7 7 160 272 333 219
5.4 1 3 8 199 302 298 189
5.5 1 4 8 171 308 308 200
5.6 0 4 5 160 303 312 216
5.8 0 2 7 168 299 320 204
5.9 0 2 10 158 288 308 234
6.0 0 0 3 155 323 306 213
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A.3 Simulated data for the linear time-dependent hazard rate

model

Table A.3: The distribution of 100 sampled individuals over the four stages at 15 sampling
time points in linear time-dependent hazard rates case. The sample of 100 individuals are
not the same at different time points. Stage 4 is the final stage.

t stage1 stage2 stage3 stage4 death stage2 death stage3

0.1 99 1 0 0 0 0
0.5 79 18 1 0 2 0
0.9 59 29 5 4 3 0
1.4 48 36 8 5 3 0
1.8 32 38 8 6 15 1
2.2 13 39 13 14 18 3
2.6 8 28 14 19 28 3
3.0 5 19 9 34 24 9
3.5 4 9 6 44 30 7
3.9 5 10 3 46 27 9
4.3 3 9 5 47 26 10
4.7 1 4 1 55 28 11
5.2 0 2 1 49 35 13
5.6 1 1 1 52 30 15
6 0 1 2 55 28 14
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B. Traces, density and autocorrelation plots for parameter esti-

mates with single MH algorithm.

B.1 Model with stage-wise constant hazard rates (Section 5.2).

Figure B1.1: MCMC traces and density plots of the parameter estimates for stage-wise
hazard rate model.
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Figure B1.2: MCMC trace and density plots of the parameter estimates for stage-wise
hazard rate model.
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Figure B1.3: Autocorrelation plots of the parameter (aj, λj, µj j = 1, 2, 3) estimates for
stage-wise hazard rate model.
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B.2 Model with time-dependent hazard rates (Section 5.3).

Figure B2.1: MCMC traces and density plots of the parameter estimates for the linear
time-dependent hazard rate model.
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Figure B2.2: MCMC traces and density plots of the parameter estimates for the linear
time-dependent hazard rate model.
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Figure B2.3: Autocorrelation plots of the parameter (aj, λj, j = 1, 2, 3, µ2 and γ3) esti-
mates for the linear time-dependent hazard rate model.
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B.3 Data for cattle parasitic nematode (Section 6.1).

Figure B3.1: MCMC trace and density plots of the shape parameter (aj, j = 1, 2, 3)
estimates for parasitic nematode data.
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Figure B3.2: MCMC trace and density plots of the rate parameter (λj, j = 1, 2, 3) esti-
mates for parasitic nematode data.
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Figure B3.3: Autocorrelation plots of the maturation parameter (aj, λj, j = 1, 2, 3) esti-
mates for parasitic nematode data.
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B.4 Data for breast development of New Zealander schoolgirls

(Section 6.2).

Figure B4.1: MCMC trace and density plots of the shape parameter (aj, j = 1, 2, 3, 4)
estimates for breast development of New Zealander schoolgirls data.
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Figure B4.2: MCMC trace and density plots of the rate parameter (λj, j = 1, 2, 3, 4)
estimates for breast development of New Zealander schoolgirls data.
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Figure B4.3: Autocorrelation plots of the maturation parameter (aj, λj, j = 1, 2, 3, 4)
estimates for breast development of New Zealander schoolgirls data.
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C. Plots from Gelman and Rubin diagnostic tests.

C.1 Model with stage-wise constant hazard rates (Section 5.2).

Figure C1.1: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of parameter (a1, λ1, µ1) estimates at stage 1 for stage-wise constant hazard rate model
for five Markov chains of length 10,000 iterations.
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Figure C1.2: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of parameter (a2, λ2, µ2) estimates at stage 2 for stage-wise constant hazard rate model
for five Markov chains of length 10,000 iterations.
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Figure C1.3: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of parameter (a3, λ3, µ3) estimates at stage 3 for stage-wise constant hazard rate model
for five Markov chains of length 10,000 iterations.
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C.2 Model with linear time-dependent hazard rates (Section 5.3).

Figure C2.1: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a1, λ1) estimates at stage 1 for the linear time-dependent hazard rate
model for five Markov chains of length 10,000 iterations.
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Figure C2.2: The potential rate reduction factor plots from Gelman and Rubin diagnos-
tic of shape, rate and hazard rate (a2, λ2, µ2) estimates at stage 2 for the linear time-
dependent hazard rate model for five Markov chains of length 10,000 iterations.
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Figure C2.3: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape, rate and slope (a3, λ3, γ3) estimates at stage 3 for the linear time-dependent
hazard rate model for five Markov chains of length 10,000 iterations.
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C.3 Data for cattle parasitic nematode (Section 6.1).

Figure C3.1: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (aj, λj, j = 1, 2) estimates at stage 1 and stage 2 for parasitic nematode
data for five Markov chains of length 10,000 iterations.
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Figure C3.2: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a3, λ3) estimates at stage 3 for parasitic nematode data for five Markov
chains of length 10,000 iterations.
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C.4 Data for breast development of New Zealander schoolgirls

(Section 6.2).

Figure C4.1: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a1, λ1) estimates at stage 1 for breast development of New Zealander
schoolgirls data for five Markov chains of length 10,000 iterations.

Figure C4.2: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a2, λ2) estimates at stage 2 for breast development of New Zealander
schoolgirls data for five Markov chains of length 10,000 iterations.
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Figure C4.3: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a3, λ3) estimates at stage 3 for breast development of New Zealander
schoolgirls data for five Markov chains of length 10,000 iterations.

Figure C4.4: The potential rate reduction factor plots from Gelman and Rubin diagnostic
of shape and rate (a4, λ4) estimates at stage 4 for breast development of New Zealander
schoolgirls data for five Markov chains of length 10,000 iterations.
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D. Trace plots, the distributions and autocorrelation plots with

the MH algorithm based on deterministic transformations.

D.1 Model with stage-wise constant hazard rates (Section 5.2).

Figure D1.1: MCMC trace plots, density and autocorrelation plots of shape, rate and
hazard rate (a1, λ1, µ1) estimates at stage 1 for stage-wise constant hazard rate model.
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Figure D1.2: MCMC trace plots, density and autocorrelation plots of shape, rate and
hazard rate (a2, λ2, µ2) estimates at stage 2 for stage-wise constant hazard rate model.
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Figure D1.3: MCMC trace plots, density and autocorrelation plots of shape, rate and
hazard rate (a3, λ3, µ3) estimates at stage 3 for stage-wise constant hazard rate model.
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D.2 Model with linear time-dependent hazard rates (Section 5.3).

Figure D2.1: MCMC trace and density plots of shape and rate (a1, λ1) estimates at stage
1 for the linear time-dependent hazard rates model.
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Figure D2.2: MCMC trace and density plots of shape, rate and hazard rate (a2, λ2, µ2)
estimates at stage 2 for the linear time-dependent hazard rates model.
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Figure D2.3: MCMC trace and density plots of shape, rate and slope (a3, λ3, γ3) estimates
at stage 3 for the linear time-dependent hazard rates model. 154
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D.3 Data for cattle parasitic nematode (Section 6.1).

Figure D3.1: MCMC trace plots, density and autocorrelation plots of shape and rate
(a1, λ1) estimates at stage 1for parasitic nematode data.
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Figure D3.2: MCMC trace plots, density and autocorrelation plots of shape and rate
(a2, λ2) estimates at stage 2 for parasitic nematode data.
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Figure D3.3: MCMC trace plots, density and autocorrelation plots of shape and rate
(a3, λ3) estimates at stage 3 for parasitic nematode data.
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D.4 Data for breast development of New Zealander schoolgirls

(Section 6.2).

Figure D4.1: The trace, density and autocorrelation plots of shape and rate (a1, λ1)
estimates at stage 1for breast development of New Zealander schoolgirls.
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Figure D4.2: The trace, density and autocorrelation plots of shape and rate (a2, λ2)
estimates at stage 2 for breast development of New Zealander schoolgirls.
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Figure D4.3: The trace, density and autocorrelation plots of shape and rate (a3, λ3)
estimates at stage 3 for breast development of New Zealander schoolgirls.
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Figure D4.4: The trace, density and autocorrelation plots of shape and rate (a4, λ4)
estimates at stage 4 for breast development of New Zealander schoolgirls.

161



Bibliography

Bibliography

[1] O. Aalen, O. Borgan, and H.K. Gjessing. Survival and Event History Analysis.
Springer, New York, 2008.

[2] P. Amore. Asymptotic and exact series representations for the incomplete gamma
function. EPL (Europhysics Letters), 71(1), 2005. ISSN 0295-5075.

[3] F. Ball and R.K. Milne. On choosing values of the transform variables in empirical
transform based infrence. Technical report, Department of Mathematics, University
of Western Australia, 1996.

[4] I. Barra, L. Hoogerheide, S.J. Koopman, and A. Lucas. Joint independent Metropolis-
Hastings methods for nonlinear non-Gaussian state space models. Technical report,
Tinbergen Institute, Amsterdam, 2012.

[5] D. J. Bartholomew. Stochastic Models for Social Processes. John Wiley & Sons, New
York, 2nd edition, 1973.

[6] J.T. Bellows and M.H. Birley. Estimating developmental and mortality rates and
stage recruitment from insect stage-frequency data. Researches on Population Ecol-
ogy, 23(2):232–244, 1981.

[7] T.G. Benton, T.C. Cameron, and A. Grand. Population responses to perturbations:
predictions and responses from laboratory mite population. Journal of Animal Ecol-
ogy, 73(5):983–995, 2004.

[8] J.M. Borwein and O. Chan. Uniform bounds for the complementary incomplete
gamma function. Mathematical Inequalities and Applications, 12:115–121, 2009.

[9] S. Brooks, A. Gelman, G. Jones, and X.L. Meng. Handbook of Markov Chain Monte
Carlo. Chapman and Hall/CRC Press, New York, 2011.

[10] G. Casella and R.L. Berger. Statistical Inference. Duxbury Press, Belmont, Califor-
nia, 1st edition, 1990.

162



Bibliography

[11] G. Casella and R.L. Berger. Statistical Inference. Duxbury Press, Pacific Grove,
California, 2nd edition, 2002.

[12] H. Caswell. Matrix Population Models. Wiley Online Library, 2001.

[13] M. Chiani, D. Dardari, and M.K. Simon. New exponential bounds and approxima-
tions for the computation of error probability in fading channels. IEEE, 2(4):840–845,
2003.

[14] M.K. Cowles and B.P. Carlin. Markov chain Monte Carlo convergence diagnostics:
a comparative review. Journal of the American Statistical Association, 91:883–904,
1996. ISSN 0162-1459.

[15] D.R. Cox and D. Oakes. Analysis of Survival Data. Chapman and Hall/CRC Press,
New York, 1984.

[16] R.V. Craiu and J.S. Rosenthal. Bayesian computation via Markov chain Monte Carlo.
Annual Review of Statistics and Its Application, 1:179–201, 2014. ISSN 2326-8298.

[17] P. De Valpine. Stochastic development in biologically structured population models.
Ecology, 90(10):2889–2901, 2009. ISSN 0012-9658.

[18] P. De Valpine and J. Knape. Estimation of general multistage models from cohort
data. Journal of Agricultural, Biological, and Environmental Statistics, 20(1):140–
155, 2015. ISSN 1085-7117.

[19] P. De Valpine, K. Scranton, J. Knape, K. Ram, and N. J. Mills. The importance of
individual developmental variation in stage structured population models. Ecology
Letters, 17(8):1026–1038, 2014. ISSN 1461-0248.

[20] S. Dutta and S. Bhattacharya. Markov chain Monte Carlo based on deterministic
transformations. Statistical Methodology, 16:100–116, 2014. ISSN 1572-3127.

[21] P.D. Feigin, R.L. Tweedie, and C. Belyea. Weighted area techniques for explicit
parameter estimation in multi-stage models. Australian Journal of Statistics, 25(1):
1–16, 1983.

163



Bibliography

[22] Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using
multiple sequences. Statistical science, pages 457–472, 1992. ISSN 0883-4237.

[23] John Geweke. Evaluating the accuracy of sampling-based approaches to the calculation
of posterior moments, volume 196. Federal Reserve Bank of Minneapolis, Research
Department Minneapolis, MN, USA, 1991.

[24] G.H. Givens and J.A. Hoeting. Computational Statistics. John Wiley & Sons, New
York, 2012.

[25] J.A. Hoeting, R.L. Tweedie, and C.S. Olver. Transform estimation of parameters for
stage-frequency data. Journal of American Statistical Association, 98:503–514, 2003.

[26] C.A. Hopkins, G. Subramanian, and H. Stallard. The development of Hymenolepis
diminuata in primary and secondary infections in mice. Parasitology, 64(3):401–412,
1972.

[27] P. Hougaard. Analysis of Multivariate Survival Data. Springer, New York, 2000.

[28] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data.
John Wiley & Sons, New York, 1980.

[29] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data.
John Wiley & Sons, New York, 2002.

[30] R.A. Kempton. Statistical analysis of frequency data obtained from sampling an
insect population grouped by stages. Statistical Distributions in Scientific Work.,
pages 401–418, 1979.

[31] N. Keyfitz and H. Caswell. Applied Mathematical Demography. Springer, New York,
2005.

[32] W. Kimmerer and A. Gould. A Bayesian approach to estimating copepod develop-
ment times from stage frequency data. Limnology and Oceanography: Methods, 8(4):
118–126, 2010. ISSN 1541-5856.

[33] J. Knape and P. De Valpine. Monte carlo estimation of stage structured development
from cohort data. Ecology, 97(4):992–1002, 2016. ISSN 1939-9170.

164



Bibliography

[34] J. Knape, K.M. Daane, and P. De Valpine. Estimation of stage duration distributions
and mortality under repeated cohort censuses. Biometrics, 70(2):346–355, 2014. ISSN
1541-0420.

[35] S.J. Koopman, A. Lucas, and M. Scharth. Numerically accelerated importance sam-
pling for nonlinear non-Gaussian state-space models. Journal of Business & Eco-
nomic Statistics, 33(1):114–127, 2015. ISSN 0735-0015.

[36] A.F. Laurence and B.J.T. Morgan. Selection of the transformation variable in the
Laplace transform methods of estimation. Australian Journal of Statistics, 29(2):
113–127, 1987.

[37] J.F. Lawless. Statistical Models and Methods for Lifetime Data. Springer, New York,
2011.

[38] E.T. Lee and J.W. Wang. Statistical Methods for Survival Data Analysis. John Wiley
& Sons, New York, 2003.

[39] B.F.J. Manly. Stage-structured Populations: Sampling, Analysis and Simulation.
Chapman and Hall, New York, 1990.

[40] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. Springer, New
York, 2012.

[41] P.A. Murtaugh, S.C. Emerson, P.B. McEvoy, and K.M. Higgs. The statistical analysis
of insect phenology. Environmental entomology, 41(2):355–361, 2012. ISSN 0046-
225X.

[42] E. Neuman. Inequalities and bounds for the incomplete gamma function. Results in
Mathematics, 63(3):1209–1214, 2013. ISSN 1422-6383.

[43] M.D. Ohman. Estimation of mortality for stage-structured Zooplankton populations:
What is to be done? Journal of Marine Systems, 93:4–10, 2012. ISSN 0924-7963.

[44] H. Pham and A. Branford. Exploring parameter relations for multi-stage models in
stage-wise constant and time dependent hazard rates. Australian & New Zealand
Journal of Statistics, 58(3):357–376, 2016.

165



Bibliography

[45] M. Plummer, N. Best, K. Cowles, and K. Vines. Package coda. URL http://cran.
r-project. org/web/packages/coda/coda. pdf, accessed January, 25, 2015.

[46] H. Qasrawi. A study of the energy flow in a natural population of the grasshop-
per Chorthippus parallelus zett (Acrididae). PhD Thesis, Department of Biological
Sciences, University of Exeter, 1966.

[47] K.L.Q. Read and J.R. Ashford. A system of models for the life cycle of a biological
organism. Biometrika, 55(1):211–221, 1968. ISSN 0006-3444.

[48] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, New York,
2nd edition, 2004.

[49] C. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, New
York, 2009.

[50] J.S. Rosenthal. A review of asymptotic convergence for general state space Markov
chains. Far East Journal of Theoretical Statistics, 5(1):37–50, 2001.

[51] H.J. Schuh and R.L. Tweedie. Parameter estimation using transform estimation in
time-evolving models. Mathematical Biosciences, 45(1):37–67, 1979. ISSN 0025-5564.

[52] K. Scranton, J. Knape, and P. De Valpine. An approximate Bayesian computation
approach to parameter estimation in a stochastic stage-structured population model.
Ecology, 95(5):1418–1428, 2014. ISSN 0012-9658.

[53] A.Y. Shestopaloff and R.M. Neal. Efficient Bayesian inference for stochastic volatility
models with ensemble MCMC methods. Technical report, Department of Statistical
Sciences, University of Toronto, 2014.

[54] B. Sroysang. Inequalities for the incomplete gamma function. Mathematica Aeterna,
3(4):245–248, 2013.

[55] T.M. Therneau and P.M. Grambsch. Modeling Survival Data Extending The Cox
Model. Springer, New York, 2000.

[56] K. Thomas and F. Ollevier. Hatching, survival, activity and penetration efficiency
of second-stage larvae of Anguillicola crassus (Nematoda). Parasitology, 107(02):
211–217, 1993. ISSN 1469-8161.

166



Bibliography

[57] L. Tinerney. Markov chains for exploring posterior distribution. The Annuals of
Statistics, 22(4):1701–1728, 1994.

[58] R.R. Young, N. Anderson, D. Overend, R.L. Tweedie, K.W.J. Malafant, and G.A.N.
Preston. The effect of temperature on times to hatching of eggs of the nematode
Ostertagia circumcincta. Parasitology, 81(03):477–491, 1980. ISSN 1469-8161.

167


	List of Figures
	List of Tables
	Introduction 
	Literature Review
	Stage-duration data and models
	Stage-duration data
	Models

	Frequentist inference
	Bayesian inference
	Bayesian perspective
	Links between posterior and prior distributions of the parameters
	Markov chain Monte Carlo methods
	Overview of the Metropolis-Hastings algorithm
	Choice for the proposal distribution 
	Reversibility and stationarity of Markov chain for the MH algorithm
	Overview of Metropolis-Hastings algorithm based on deterministic transformations
	Gelman and Rubin and Geweke convergence diagnostic tests

	Research on stage-duration models

	Parameter Estimation in Multi-stage Models: A Classical Approach
	Introduction
	Estimating stage parameters when hazard rates are known
	Stage-wise constant hazard rates
	Linear time-dependent hazard rates

	Estimating hazard rates in each stage
	Stage-wise constant hazard rates case
	Linear time-dependent hazard rates

	Simulation studies
	Stage-wise constant hazard rates
	Linear time-dependent death rates

	Discussion

	Parameter Estimation in Multi-stage Models: A Bayesian Approach
	Introduction
	Bayesian analysis for the model with no hazard rates
	The likelihood function
	The posterior distribution
	The single MH algorithm for the no hazard rate model
	MH algorithm based on deterministic transformations for the no hazard rate model
	Acceptance probability of shape and rate estimates in stage j
	The algorithm
	Reversibility and stationarity of the Markov chain in stage i


	Bayesian analysis for the model with stage-wise constant hazard rates
	The likelihood function
	The posterior distribution
	The single MH algorithm for the stage-wise constant hazard rate model
	MH algorithm based on deterministic transformations for the stage-wise constant hazard rate model
	The acceptance probability
	The algorithm


	Bayesian analysis for the model with linear time-dependent hazard rates 
	The likelihood function
	The posterior distribution
	The single MH algorithm for the linear time-dependent hazard rates model 


	Simulation Studies
	Simulation data in the no hazard rate model
	The probabilities at each stage
	The single MH algorithm
	The MH algorithm based on deterministic transformation  

	Simulation data in stage-wise constant hazard rate model
	The probabilities at each stage 
	The single MH algorithm 
	The MH algorithm based on deterministic transformations 

	Simulation data in the linear time-dependent hazard rates model
	The probabilities at each stage 
	The single MH algorithm
	The MH algorithm based on deterministic transformations


	Case Studies
	Parasitic nematode Data
	The single MH algorithm
	The MH algorithm based on deterministic transformations

	Breast development of New Zealander schoolgirls
	The single MH algorithm
	The MH algorithm based on deterministic transformations


	Summary, Conclusions and Discussion
	Bibliography

