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General Introduction

InTRoDUCTIon

WRIST TRAUMA - InCIDenCe
In the Netherlands, approximately 34,000 patients with distal radius fractures -18% of 
all fractures- are treated annually, which makes it one of the most common fractures.1 
About 20% of patients sustaining wrist trauma after a fall on outstretched hand have a 
fracture of the distal radius.2 The incidence of distal radius fractures is likely to increase 
due to an aging population together with more emphasis on sports-related activities 
among the elderly.3

Although the exact number is subject to debate, scaphoid fractures constitute 90% 
of carpal bone fractures and cumulate to 2-3% of all fractures.4-6 The preponderance of 
these fractures peak predominantly in young and active men.7 While non-union with 
avascular necrosis can lead to long term sequelae such as wrist arthritis and carpal col-
lapse, accurate and early diagnosis is paramount for optimal treatment.8

Currently, distal radius- and scaphoid fractures cumulatively contribute to 20% of all 
fractures, leading to major healthcare and societal costs.1,7,9

ARTIfICIAL InTeLLIGenCe
In 1959, Arthur Samuel coined AI as a field of study that enables a computer to learn 
without needing to be explicitly programmed.10 Increasing computational power and 
processing speed resulted in development of AI algorithms across various fields of 
healthcare, such as dermatology, radiology, ophthalmology, internal medicine, and 
surgery.11-16 According to McKinsey & Company, a value up to $100 billion annually could 
be generated based on efficient adoption of AI in clinical care.17 Moreover, as a result 
of widespread implementation of electronic medical records, rapid accumulation of 
routinely collected data is becoming available.

Utilization of AI applications could potentially mitigate surgeon bias, physician fatigue, 
and might help overcome current diagnostic and treatment inconsistencies. However, 
at this stage, it is yet to be elucidated how AI will be integrated into the clinical workflow. 
Along with traditional analytics, additional study is merited to evaluate AI’s potential 
utility for improving orthopaedic trauma care.

AIMS of THeSIS
This thesis is at a crossroads between the clinical subject of patients with wrist trauma 
and advanced diagnostic strategies that emerged in the field of artificial intelligence. In 
five parts, parallel to the clinical pathway of patients sustaining acute wrist trauma, we 
aim to evaluate clinical applications of artificial intelligence and 3D imaging strategies 
by encompassing six clinically relevant questions.
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RISK STRATIfICATIon In THe eMeRGenCY DePARTMenT
In the emergency department, optimal and efficient use of resources is necessary 
since it reduces waiting time and associated costs. Criteria have been developed and 
implemented that indicate which patients suspected of having a fracture of the distal 
radius should be referred for radiographic evaluation.18,19 Machine-learning (ML) derived 
algorithms may help to simplify these existing prediction tools as they are able to iden-
tify non-linear associations in data. As such, only the most relevant variables will be 
incorporated, while maintaining (or improving) diagnostic performance. The first study 
evaluates four machine learning algorithms to predict the probability of a fracture of 
the distal radius for patients presenting to the emergency department sustaining acute 
wrist trauma.

DeeP LeARnInG foR fRACTURe DeTeCTIon
Radiography remains the initial imaging modality for patients with a suspected scaph-
oid fracture.20 However, among suspected scaphoid fractures, 1 in every 6 true scaphoid 
fracture is missed at first presentation on initial radiography.20 Early and accurate diag-
nosis of scaphoid fractures is essential since it reduces the risk of long-term non-union 
and minimizes loss in productivity resulting from unnecessary cast immobilisation.21-23

AI algorithms could be developed to extract features from images to derive rules and 
patterns, thus enabling autonomous predictions with new sets of comparable data. For 
fracture care, AI might be a useful adjunct to aid certain diagnostic aspects, for example 
scenarios that are subtle and easily overlooked by humans or during secondary evalua-
tion after complex trauma. To date, AI has focused mainly on commonly displaced and 
easy detectable fractures, such as proximal humerus and ankle fractures.11,24 The clinical 
question to answer is whether application of AI will be beneficial for the detection of 
radiographically visible and occult scaphoid fractures on radiography?

CLInICAL PReDICToRS foR SURGICAL DeCISIon MAKInG
In patients with similar fracture patterns, substantial and unexplained variation among 
surgeons is observed in recommending operative or conservative treatment for distal 
radius fractures. For instance, about 75% of patients with a fracture of the distal radius 
in Australia are treated operatively, while only 20-30% in the Netherlands.25,26 It is a tru-
ism that surgeons are biased on the decision whether to operate or not. Decision aids 
may have the potential to reduce bias by neutralizing the physicians influence as they 
provide more accurate estimates of an expected treatment outcome. However, patient 
factors that lead to practice variation among surgeons might first need to be identified 
before data-driven predictive models can be developed to facilitate optimal treatment 
recommendation. Via the Science of Variation Group (SOVG), factors are studied that 
explain the variation in treatment of our patients with a fracture of the distal radius.
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3D PRInTInG foR PReoPeRATIVe PLAnnInG
There is great variation among surgeons in reliably interpreting fracture patterns. For 
instance, the AO-classification for distal radius fractures--assessed on radiographs and 
computed tomography images--showed only moderate reliability for type C distal radius 
fractures.27 Accurate perioperative fracture assessment will improve surgical reduction 
and fixation. To better visualize 3D aspects of fractured bones, 3D printing has been uti-
lized.28,29 For instance, addition of 3D hand-held models have shown to improve acetabu-
lar fracture classification (that is, the Judet and Letournel classification30) compared to 
using only radiographs and CT imaging.31 On the contrary, for radial head, coronoid, and 
distal humerus fractures, evidence demonstrated no or only slight improvement among 
surgeons when evaluating certain fracture characteristics with an additional 3D hand 
held model.32-34 With regards to distal radius fractures, the added preoperative value of 
3D printed handheld models has been unclear. Given that these high-volume fractures 
can be challenging to treat due to its articular involvement, research is merited. The 
aim is to evaluate whether 3D printed hand-held modelling is a useful adjunct in pre-
operative planning of distal radius fractures?

3D fLUoRoSCoPY foR InTRAoPeRATIVe ASSeSSMenT
The 3D shape of the distal radius, mainly due to Lister’s tubercle, complicates intraop-
erative detection of dorsal cortex penetrating screws after volar plating, especially when 
using conventional 2D fluoroscopy (that is, anteroposterior and elevated lateral projec-
tions). To overcome this iatrogenic pitfall, pre-clinical and clinical studies demonstrated 
the added value of the intraoperative 2D dorsal tangential imaging view (DTV), in which 
the forearm is placed in 75 degrees inclination with the wrist in flexion.35-38 In addition, 
3D fluoroscopy--used as an intraoperative diagnostic imaging strategy--demonstrated 
to reduce rates of postoperative revision procedures.39-41 At the same time, prior evi-
dence suggests that 3D fluoroscopy increased intraoperative screw exchange in patients 
who underwent operative treatment for distal radius fractures.42,43 However, to date, 
the optimal intraoperative imaging strategy for patients who undergo volar plating for 
a fracture of the distal radius remains subject of debate. This part addresses whether 
intraoperative 3D fluoroscopy outperforms DTV to decrease the number of dorsal cortex 
penetrating screws post-operatively?
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oUTLIne of THeSIS

PART I: RISK STRATIfICATIon In THe eMeRGenCY DePARTMenT
Chapter 2 aims to develop and validate a machine learning decision supportive tool 
to predict the probability for fracture of the distal radius in patients presenting to the 
emergency department after sustaining acute wrist trauma.

PART II: DeeP LeARnInG foR fRACTURe DeTeCTIon
Chapter 3 is a systematic review of aggregated published orthopaedic trauma imag-
ing studies examining the performance of machine-and deep learning algorithms. 
This review sheds light on the current anatomical locations that are being studied for 
automated fracture detection and classification. Chapter 4 assesses utilization of a 
deep learning algorithm for automated detection of radiographically visible and occult 
fractures of the scaphoid. In addition, this study also aims to compare the algorithm’s 
diagnostic performance with five human examiners.

PART III: CLInICAL PReDICToRS foR SURGICAL DeCISIon MAKInG
Chapter 5 is a case-vignette study surveying a large international group of surgeons 
specialized in fracture surgery to help understand factors that influence recommenda-
tion for operative treatment for fractures of the distal radius. This survey study aims 
to provide insights into predictive factors with relative consensus, disagreement, and 
areas where more evidence is needed.

PART IV: 3D PRInTInG foR PReoPeRATIVe PLAnnInG
In addition to 2D and 3D CT images, it is reasonable to wonder whether 3D handheld 
models might help to better assess fracture characterization. Chapter 6 evaluates the 
additional pre-operative clinical value of 3D handheld models for recognition of fracture 
characteristics and agreement on classification of intra-articular distal radius fractures.

PART V: 3D fLUoRoSCoPY foR InTRAoPeRATIVe ASSeSSMenT
Chapter 7 determines whether intraoperative 3D fluoroscopy is preferred over 2D dorsal 
tangential views to avoid dorsal screw penetration after volar plating of distal radius 
fractures. This study wishes to know whether 3D fluoroscopy adds value compared with 
dorsal tangential views.
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AbSTRACT

objectives
Only one third of patients presenting to the emergency department (ED) with wrist pain 
following trauma have a fracture of the distal radius. However, the majority are referred 
for radiographic evaluation. Artificial-intelligence derived algorithms may simplify 
existing prediction tools for risk stratification as only the most relevant variables are 
incorporated, thereby enhancing ease of utilization in clinical practice. The primary aim 
was to develop and externally validate four machine learning algorithms to predict the 
probability of a fracture of the distal radius for patients presenting to the ED.

Methods
We included 854 patients who were prospectively enrolled at five hospitals EDs; 488 
patients in the derivation cohort and 366 in the validation cohort. Missing data were 
imputed using the missForest method. Among nineteen clinical predictors, random for-
est algorithm identified four variables most influential: age, swelling of the wrist, visible 
deformation, and distal radius tender to palpation. Four ML-algorithms were developed 
on the derivation cohort: boosted decision tree, support vector machine, neural network 
and Bayes point machine. Each algorithm’s performance for selection of patients with a 
suspected distal radius fracture in the validation cohort was assessed according to the 
following metrics: (1) c-discrimation; (2) calibration; and (3) Brier-score.

Results
All models showed nearly similar performance: c-statistics ranged between 0.86 and 
0.88, while the Brier scores was 0.16 for all models. Calibration slopes ranged between 
0.72 and 0.84, while calibration intercepts ranged between -0.05 and -0.21. Bayes point 
machine was the best-fit algorithm. At a threshold of 0.05, the sensitivity and specificity 
were 0.98 and 0.24 respectively. We incorporated Bayes point machine into an open 
access web-based application (accessible: https://traumaplatform.shinyapps.io/distal-
radius_ed).

Conclusion
We developed an online decision tool that can accurately predict the probability of a 
fracture of the distal radius after injury to the wrist. Clinicians could use the generated 
low and high probabilities to identify distal radius fractures, while using an intermediate 
probability to decide whether further radiographic evaluation is needed.
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Machine Learning for Distal Radius Fractures

InTRoDUCTIon

Only one third of patients presenting to the emergency department (ED) after sustaining 
wrist trauma have a fracture of the wrist; however, the majority of patients will undergo 
radiographic evaluation.1-3 This may lead to higher direct medical costs and prolonga-
tion of ED waiting time. For patients presenting to the ED with ankle trauma, reliable 
criteria have previously been developed to determine which patients need additional 
radiographic evaluation.4 In addition, a recently developed and implemented clinical 
decision rule for wrist trauma (Amsterdam Wrist Rules) showed a safe reduction of wrist 
radiographs in patients suspected of having a distal radius fracture.5

More recently, Horng et al. developed machine learning decision supportive tools to 
automatically detect patients suspected of having a sepsis.6 It is expected that com-
plex and rapid accumulation of datasets offer unprecedented opportunities to apply 
artificial-intelligence (AI) algorithms--probability estimators that can iteratively learn 
to derive rules and patterns from data--to develop individualized prediction tools to 
optimally enhance shared decision-making.

Although criteria have been developed and implemented that indicate which patients 
suspected of having a fracture of the wrist should be referred for radiographic evalua-
tion, there may be additional value in re-using the data for AI algorithms as they have 
the potential to identify potential non-linear associations.5,7,8 Also, AI-derived algorithms 
may ease the utilization in clinical practice by only incorporating the most relevant 
variables. As such, machine-learning (ML) algorithms may simplify already existing 
prediction tools by incorporating less variables, while simultaneously maintaining the 
diagnostic performance and improving stewardship of resources when these tools are 
shifted towards earlier use in the clinical workflow (i.e. from physician to triage nurse).

Therefore, we aimed 1) to develop and externally validate four ML-algorithms to 
predict the probability of a fracture of the distal radius for patients presenting to the ED 
after acute wrist trauma; 2) to evaluate the diagnostic accuracy of the best-fit machine 
learning algorithm; and 3) to deploy the best-fit algorithms as an open-access freely 
available application for clinical use.

PATIenTS AnD MeTHoDS

We secondarily used prospectively collected data of 854 patients that were included 
between November 11, 2010 and June 25, 2014 at five hospitals EDs (one academic and 
four regional hospitals).7 In the index study, all consecutive adult patients presenting 
to the ED with pain or tenderness after sustaining wrist trauma were included with the 
intent to develop criteria that indicate which patient should be referred for additional 
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radiographic evaluation. Upon presentation, attending physicians collected nineteen 
clinical predictors (including patient demographics, physical examination, and func-
tional testing) prior to potential radiographic evaluation (Table 1).

The derivation cohort consisted 488 patients enrolled in the academic hospital, while 
the validation cohort--having similar demographics (e.g. age and sex)--consisted 366 
patients enrolled in the four regional hospitals.7

For the purpose of this study, we used the presence or absence of a fracture of the 
distal radius as the outcome of interest. This was assessed on radiographic evaluation 
by the attending radiologist (i.e. reference standard for machine learning algorithms).

This study was conducted according to the Reporting Machine Learning Models in 
Biomedical Research and transparent reporting of a multivariable prediction model for 
individual prognosis or diagnosis statement.9,10

Statistical analysis
We present categorical variables as frequencies and percentages and continuous vari-
ables with median and interquartile range (IQR).

Table 1. Clinical predictors in both cohorts evaluated at the emergency department

Missing (n, %)

Age

Sex

Swelling wrist 2 (0.2%)

Swelling anatomical snuffbox 5 (0.6%)

Visible deformation 11 (1.3%)

Tenderness distal radius to palpation 3 (0.4%)

Tenderness ulna to palpation 9 (1.1%)

Tenderness anatomical snuffbox to palpation 4 (0.5%)

Tenderness scaphoid tubercle to palpation 41 (4.8%)

Active mobility painful

 Dorsiflexion 5 (0.6%)

 Palmar flexion 10 (1.2%)

 Supination 6 (0.7%)

 Ulnar deviation 8 (0.9%)

 Radial deviation 11 (1.3%)

Functional tests painful

 Radioulnar ballottement test 33 (3.9%)

 Axial compression forearm 28 (3.3%)

 Axial compression thumb 44 (5.2%)

 Pinch grip test 64 (7.5%)
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Missing data for all variables was low. We applied the missForest method to impute 
missing values, which can be used for both continuous and categorical data.11 Using 
data from the derivation cohort, random forest algorithms were utilized to determine 
clinical variable hierarchy and to eventually reduce the number of clinical predictors 
incorporated in the final algorithms.12 As such, we included the following four predic-
tors: age, swelling of the wrist, visible wrist deformation, and distal radius tender to 
palpation.

Based on prior work for binary classification tasks13-17, we selected the following four 
supervised machine learning algorithms: (1) boosted decision tree; (2) support vector 
machine; (3) neural network; and (4) Bayes point machine (Figure 1). We used the deri-
vation cohort as a dataset for training of each algorithm. Subsequently, we tested the 
performance on the validation cohort to predict the probability of a patient having any 
wrist fracture as well as having a fracture of the distal radius only.

Performance of each algorithm was assessed on the validation cohort according to 
the following metrics: (1) discrimination (C-statistic); (2) calibration; and (3) overall 
performance score (i.e. Brier-score).18 A C-statistic (also known as area under the curve) 
of 1.0 indicates perfect discrimination, whereas 0.5 indicates discrimination is no better 
than a flip-of-a-coin.19 Calibration of the models was evaluated by plotting calibration 
curves. The slope and intercept of these calibration plots are indicative of the agreement 
between the predicted probability of an outcome and the observed outcome. A calibra-
tion slope of 1 and a calibration intercept of 0 indicate perfect agreement, whereas 
smaller or larger slopes or intercepts indicate predictions are too extreme, too high, not 
extreme enough, or too low. The Brier score was calculated as the mean of the squared 
differences between the actual outcomes and predicted probabilities. A Brier score of 0 
indicates perfect prediction, whereas 0.25 indicates an uninformative algorithm.

According to the initial Amsterdam Wrist Rules, we set the diagnostic cut-off point of 
our best performing algorithm at a value that would maintain a sensitivity of 98%, how-
ever, at the cost of a limited specificity.7 Sensitivity reflects to the proportion of positives 
that are correctly determined as such, whereas specificity applies to the negatives that 
are correctly identified. Using bootstrapping (number of resamples: 10,000), we calcu-
lated 95% confidence intervals. The negative predictive value indicates the proportion 
of true negatives among all negatively tested patients.

For data analysis and algorithm creation, we used Stata 15.0 (StataCorp LP, College 
Station, TX), Microsoft Azure (Redmond, WA, USA), and RStudio (Version 1.1.463; Boston, 
MA, USA) with the packages CalibrationCurves and ggplot2.
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Patient Characteristics
Of 488 patients in the derivation cohort, median age at diagnosis was 48 years (inter-
quartile range [IQR] 29-61 years); and 211 patients were men (43%). A fracture of the 
distal radius was present in 204 patients (42%).

In the validation cohort, the median age of 366 patients was 52 years (IQR 34-69 years); 
and 124 patients were men (34%). In 172 patients (47%), a fracture of the distal radius 
was detected.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

Ideal

Flexible calibration (Loess)

Calibration
...intercept: −0.01 (−0.11 to 0.09)
...slope: 1.02 (0.94 to 1.10)
Discrimination
...c−statistic: 0.87 (0.86 to 0.89)

1

0

Bayes Point Machine

A

Boosted Decision Trees

B

Neural Network Support Vector Machine

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

Ideal

Flexible calibration (Loess)

Calibration
...intercept: −0.16 (−0.43 to 0.10)
...slope: 0.84 (0.66 to 1.02)
Discrimination
...c−statistic: 0.85 (0.81 to 0.89)

1

0

Bayes Point Machine

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

Ideal

Flexible calibration (Loess)

Calibration
...intercept: −0.20 (−0.48 to 0.09)
...slope: 0.72 (0.57 to 0.87)
Discrimination
...c−statistic: 0.85 (0.81 to 0.89)

1

0

Boosted Decision Trees

B

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

Ideal

Flexible calibration (Loess)

Calibration
...intercept: −0.28 (−0.56 to −0.01)
...slope: 0.80 (0.63 to 0.96)
Discrimination
...c−statistic: 0.85 (0.81 to 0.89)

1

0

A

Neural Network

C
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Predicted probability

O
bs

er
ve

d 
pr

op
or

tio
n

Ideal

Flexible calibration (Loess)

Calibration
...intercept: −0.11 (−0.37 to 0.16)
...slope: 0.81 (0.64 to 0.99)
Discrimination
...c−statistic: 0.85 (0.81 to 0.89)

1

0

Support Vector Machine

D

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability
0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability
0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 p
ro

po
rti

on

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 p
ro

po
rti

on

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 p
ro

po
rti

on

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 p
ro

po
rti

on

figure 1: This fi gure depicts the calibration plots including 95% CI (in grey) for algorithms developed to 
determine the probability for fracture of the distal radius.
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ReSULTS

Performance for Machine Learning Algorithms
All algorithms showed nearly similar performance (Table 2). C-statics ranged between 
0.85 and 0.86 (Figure 2). Calibration slopes ranged from 0.72 to 0.84 and calibration 
intercepts ranged from -0.05 to -0.21. The overall algorithm performance as assessed by 
the Brier scores was 0.16.

Diagnostic Performance Characteristics
The best performing algorithm was Bayes Point Machine (c-statistic: 0.86, calibration 
slope: 0.84, calibration intercept: -0.13, and Brier score: 0.16). At a threshold of 0.05, the 
sensitivity of the algorithm was 98% (95% CI, 95-100) and the specificity was 24% (95% 
CI 18-30). The number of true positive, false positive, true negative and false negative 
cases were 168, 147, 47 and 4 respectively.

Application Development
To allow users to calculate the probability of having a distal radius fracture, the Bayes 
Point Machine was incorporated into an online application: https://traumaplatform.
shinyapps.io/distalradius_ed

DISCUSSIon

Data-driven predictive analytics--commonly referred to as AI or ML--can be used to de-
velop decision supportive tools that calculate patient-tailored probabilities of various 
outcomes of interest. In the clinical scenario of a patient presenting to the ED following 
wrist trauma, we found that machine learning algorithms can accurately determine 

Table 2. Performance for machine learning models for radiography use in distal radius fracture patients

Method
Performance

Measure
Bayes Point 

Machine
boosted 

Decision Trees
neural

Network
Support Vector 

Machine

Discrimination C-statistic 0.86 0.86 0.86 0.85

Calibration Slope 0.84 0.72 0.8 0.81

Intercept -0.13 -0.11 -0.21 -0.05

Overall Brier score 0.16 0.16 0.16 0.16

A C-statistic (also known as area under the curve [AUC]) of 1.0 indicates perfect discrimination, whereas 0.5 indicates dis-
crimination is no better than a flip-of-a-coin. The slope and intercept of  calibration plots are indicative of the agreement 
between the predicted probability of an outcome and the observed outcome. A calibration slope of 1 and a calibration 
intercept of 0 indicate perfect agreement. Smaller or larger slopes or intercepts indicate predictions are too extreme, too 
high, not extreme enough, or too low. A Brier score of 0 indicates perfect prediction, whereas 0.25 indicates an uninforma-
tive algorithm.
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which patients suspected of having a fracture of the distal radius should be referred for 
additional radiographic evaluation.

This study has several limitations. First, we accounted for missing data by applying 
the missForest method, an accurate and robust technique that can handle mixed-type 
data (i.e. categorical and continuous variables).11 This may have led to biased analyses. 
Given that missing data for all variables was low, we only regard this as a minor limita-
tion. Second, as already addressed in the initial study, clinical variables were only as-
sessed by one attending clinician at the ED. Consistency of the clinical variables was not 
determined, as it was regarded unethical to comprehensively examine patients twice. 
Third, given that the dataset of the initial study mainly consists distal radius fractures, 
we decided not to develop machine learning models for all wrist fractures (e.g. carpal or 
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Figure 2: Receiver operating curves for (A) Bayes point machine, (B) Boosted decision trees, (C) Neural net-
work, and (D) Support vector machine to determine the probability for having a fracture of the distal radius.
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distal ulna fractures). A dataset---encompassing more ulnar and carpal fractures--might 
be more suitable in the future for clinical purposes.

We found that Bayes Point machine showed best performance. It may go without 
saying that the marginally observed differences in performance are due to varying used 
algorithms. Based on the assumptions that some models work best for a specific data 
set, but may not hold in other, we decided to test four commonly used algorithms for bi-
nary classification tasks.20 As so, we intended to only focus on algorithms that are most 
likely useful a-priori.16 Our best performing algorithm showed similar discriminating 
capabilities as well as sensitivity and specificity compared to a previously developed, 
externally validated, and implemented clinical decision rule based on a logistic regres-
sion model.5,7 For ease of utilization in clinical practice, we carefully considered to only 
incorporate the most relevant variables while maintaining the diagnostic performance. 
Except for tenderness of the distal radius, we incorporated two variables that are visu-
ally assessable (swelling of the wrist and visible deformation), while age is already part 
of the interview. Although other variables are also potentially associated with a fracture 
of the distal radius, our data analysis demonstrated that they may not add incremental 
value to the four variables we incorporated in our model. Instead, the initially developed 
clinical decision rule for a suspected fracture of the distal radius incorporated eight vari-
ables, of which four are considered burdensome for the patient (e.g. pain on radioulnar 
ballottement test).7 We speculate our algorithm might potentially improve stewardship 
of resources when shifted towards earlier use in the clinical workflow from physician 
to triage nurse. However, our model has not been implemented in clinical practice yet, 
while the AWR has proven to safely reduce the number of requested radiographs at the 
ED.5

At a threshold of 0.05 for our model, true positive, false positive, true negative and 
false negative cases were 168, 147, 47, and 4, respectively. In line with prior studies, this 
indicates that 315 out of 366 patients would have been referred for additional radio-
graphic imaging instead of 100%, reducing the need for further radiographic evaluation 
with 14%.5,7 Today, our model can only estimate the probability of having a distal radius 
fracture following trauma, but cannot discern other wrist fractures. This may explain 
why 7 patients with an ipsilateral carpal fracture amongst 47 true negatives are missed.

Nevertheless, we decided to deploy Bayes point machine as an open-source web-
based prediction tool because it may still give clinicians a useful insight about the 
specific risk of a distal radius for their individual patients. This tool is a first step in the 
development of prediction tools with implemented feedback loops enabling continuous 
data collection to improve the probable outcome. It is important to note that the end-
user should always consider that the complex statistical back-end model is not intuitive 
and medicolegal regulation has yet to be established.21 We believe that the potential 
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clinical value may lie in using the prediction tool in conjunction with ML-algorithms 
trained in predicting carpal fractures.

In conclusion, we developed a decision supportive tool with only four clinical vari-
ables that can reliably predict the probability of having a distal radius fracture after 
sustaining wrist trauma. Clinicians could use the generated low and high probabilities 
to identify distal radius fractures, while using an intermediate probability to decide 
whether further radiographic evaluation is needed. However, our decision tool is not 
able to accurately detect concomitant ipsilateral fractures simultaneously (e.g. carpal or 
ulnar styloid process fractures). Further research should evaluate whether its predictive 
capability will hold in practice as well as developing an overarching all wrist fracture 
decision supportive tool.
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AbSTRACT

background
Artificial-intelligence algorithms derive rules and patterns from large amounts of data 
to calculate the probabilities of various outcomes using new sets of similar data. In 
medicine, artificial intelligence (AI) has been applied primarily to image-recognition 
diagnostic tasks and evaluating the probabilities of particular outcomes after treat-
ment. However, the performance and limitations of AI in the automated detection and 
classification of fractures has not been examined comprehensively.

Question/purposes
In this systematic review, we asked (1) What is the proportion of correctly detected 
or classified fractures and the area under the receiving operating characteristic (AUC) 
curve of AI fracture detection and classification models? (2) What is the performance of 
AI in this setting compared with the performance of human examiners?

Methods
The PubMed, Embase, and Cochrane databases were systematically searched from the 
start of each respective database until September 6, 2018, using terms related to “frac-
ture”, “artificial intelligence”, and “detection, prediction, or evaluation.” Of 1221 identi-
fied studies, we retained 10 studies: eight studies involved fracture detection (ankle, 
hand, hip, spine, wrist, and ulna), one addressed fracture classification (diaphyseal fe-
mur), and one addressed both fracture detection and classification (proximal humerus). 
We registered the review before data collection (PROSPERO: CRD42018110167) and used 
the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). We 
reported the range of the accuracy and AUC for the performance of the predicted fracture 
detection and/or classification task. An AUC of 1.0 would indicate perfect prediction, 
whereas 0.5 would indicate a prediction is no better than a flip-of-a-coin. We conducted 
quality assessment using a seven-item checklist based on a modified methodologic 
index for non-randomized studies instrument (MINORS).

Results
For fracture detection, the AUC in five studies reflected near perfect prediction (range, 
0.95-1.0), and the accuracy in seven studies ranged from 83% to 98%. For fracture classi-
fication, the AUC was 0.94 in one study, and the accuracy in two studies ranged from 77% 
to 90%. In two studies AI outperformed human examiners for detecting and classifying 
hip and proximal humerus fractures, and one study showed equivalent performance for 
detecting wrist, hand and ankle fractures.
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Conclusions
Preliminary experience with fracture detection and classification using AI shows promis-
ing performance. AI may enhance processing and communicating probabilistic tasks in 
medicine, including orthopaedic surgery. At present, inadequate reference standard as-
signments to train and test AI is the biggest hurdle before integration into clinical work-
flow. The next step will be to apply AI to more challenging diagnostic and therapeutic 
scenarios when there is absence of certitude. Future studies should also seek to address 
legal regulation and better determine feasibility of implementation in clinical practice.
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InTRoDUCTIon

In 1959, Arthur Samuel defined artificial intelligence (AI) as a field of study that gives a 
computer the ability to learn without needing to be reprogrammed.1 In layman’s terms, 
AI algorithms are developed to derive rules and patterns from large amounts of data to 
calculate the probabilities of various outcomes with new sets of similar data (Figure 1). 
For instance, Netflix uses AI algorithms to analyze the viewing preferences of millions of 
people and determine what a viewer is likely to enjoy based on prior viewing behavior. 
Computers are programmed to continuously update probabilities of a person liking a 
given television show based on a combination of new all-user data and individual view-
ing choices.

The initial applications of AI in medicine have focused largely on image-recognition 
diagnostic tasks such as detecting retinopathy in diabetic people via photographs of the 
retinal fundus, detecting mammographic lesions, and recognizing skin cancer.2-4 AI al-
gorithms that address treatment probabilities—such as decision-support tools to assist 
orthopaedic oncologists in predicting survival and mortality—have also been developed 
but are not yet widely used in clinical practice.5,6

AI might be useful to aid the diagnostic aspects of fracture care. For example, AI ap-
plications might improve the diagnosis of true fractures among suspected fractures of 
the scaphoid or hip, detect key fracture characteristics that might alter prognosis and 
treatment, or help detect less severe fractures that are often overlooked during a sec-
ondary evaluation after complex trauma.7,8 The key applications of AI will help address 
the shortcomings of human intelligence that make us susceptible to the magician’s 
sleight of hand and, likewise, to overlook important details in distracting circumstances. 
In clinical practice, both the routine and complex can be distractions.

We aggregated data from published studies using AI for fracture detection and clas-
sification to address the following questions: (1) What is the proportion of correctly 
detected or classified fractures and the area under the receiving operating characteristic 
(AUC) curve of AI fracture detection and classification models? (2) What is the perfor-
mance of AI in this setting compared with the performance of human examiners?

MATeRIALS AnD MeTHoDS

Article Selection, Quality Assessment, and Data Extraction
We performed a systematic search according to the PRISMA statement9 using the 
PubMed, Embase, and Cochrane libraries for studies from the start of each respective 
database until September 6, 2018. Our review protocol was registered on PROSPERO 
(CRD42018110167) before data collection. A professional medical librarian helped us 
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build the search syntax using the following keywords in the title and abstract: (orthope-
dics OR orthopedic procedures OR traumatology OR fracture* OR skeletal fixation* OR 
(trauma* AND orthop*)) AND (artificial intelligence OR neural network* or deep learning 

figure 1: Two common AI techniques exist. Supervised learning applies to iteratively training of an algo-
rithm with a dataset consisting of input features with ground truth labels. For example, wrist radiographs 
are provided as input features consisting the following labels; fracture versus no fracture. By providing 
new wrist radiographs without a label, the algorithm learns to make a prediction between both classes on 
its own. Unsupervised learning applies to data exposure without ground truth labels. During the training 
phase, the algorithm tries to find labels that best organize the data (i.e. ‘clustering’). Generally, unsuper-
vised learning requires more computational power, larger datasets, and its performance is more challeng-
ing to evaluate. Therefore, supervised algorithms are most commonly used in medical applications. (A) 
Neural networks are based on interconnected neurons in the human brain. The blue dots represent the 
input features, whereas the red dots are the output of the algorithm. The green dots mathematically weigh 
the input features to predict an output. (b) Support vector machine defines an optimal separating ‘hyper-
plane’ to maximize the distance from the closest points of two classes. (C) Linear discriminant analysis is 
a linear classification technique to distinguish between three or more classes. (D) K-nearest neighbours 
classify an input feature by a majority vote of its K-closest neighbours. For instance, the unknown dot will 
be assigned blue if K = 1 (inner circle), whereas the unknown dot will be assigned red if K = 5 (outer circle). 
(e) K-means groups objects based on their characteristics by iteratively aggregating clusters to centroids by 
minimizing the distance to the middle point of the cluster. For example, three clusters are aggregated (i.e. 
K = 3); green-, red-, and blue dots.
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OR machine learning OR machine intelligence) AND (predict* OR predictive value of 
test OR score OR scores OR scoring system OR scoring systems OR observ* OR observer 
variation OR detect* or evaluat* OR analy* OR assess* OR measure*) (see Appendix; 
Supplemental Digital Content 1, http://links.lww. com/CORR/A194).

Two reviewers (DWGL, SJJ) independently screened the titles and abstracts, and if 
a study was considered eligible, they together screened the full-text article using pre-
defined criteria to reach agreement. A third reviewer was not deemed necessary as a high 
level of consistency during the screening and inclusion process was achieved. Articles 
met the inclusion criteria if they addressed one or more AI models (a mathematical com-
puting algorithm trained with “big data” to autonomously assign labels to unseen data) 
for detecting and/or classifying fractures on any radiologic imaging modality. We did not 
restrict the radiologic imaging modality to detect and/or classify fractures. We excluded 
studies in which patients were not in an orthopaedic trauma setting, studies evaluating 
robot-assisted surgery techniques, studies with mixed cohorts without clear subgroup 
reporting, review articles, letters to the editor, conference abstracts, technique papers, 
animal and cadaveric studies, and studies not published in English.

The database search yielded 1221 citations, and after removing duplicate articles, we 
screened 1044 potentially eligible records (Figure 2). Twenty-eight studies were selected 
for full-text screening, of which eight remained. However, two additional eligible studies 
were identified through verbal communication in our network and meeting proceedings, 

Figure 2: This flowchart depicts the study selection during screening and inclusion of articles for a search 
period from start of each initial database to September 6, 2018.
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but did not appear in our structured systematic searches.10,11 We did not identify new 
eligible studies through screening the reference lists of the included studies.

Two reviewers (DWGL, SJJ) independently appraised the quality of all included studies. 
The Newcastle-Ottawa Scale and methodologic index for nonrandomized studies (MI-
NORS) instruments are commonly used for cohort or case-control studies.12,13 However, 
there is no risk of bias assessment tool that is suitable for diagnostic studies. Therefore, 
we decided to conduct quality assessment using a modified seven-item checklist based 
on the MINORS criteria, including disclosure, study aim, input feature, determination 
of ground truth labels, dataset distribution, performance metric, and explanation of 
the used AI model. Standardized forms were used to extract and record data using an 
electronic database (Microsoft Excel Version 16.21; Microsoft Inc, Redmond, WA, USA). 
A consensus meeting between both observers (DWGL, SJJ) was held to overcome dis-
agreements regarding article selection, quality assessment, and data extraction.

outcome Measures
Our primary study outcome was the proportion of correctly detected or classified frac-
tures and nonfractures to the total number of patients and the area under the receiving 
operating characteristic (AUC) curve of AI models. A total of 10 studies met inclusion 
criteria and were used to answer this research question. Our secondary outcome was 
the performance of AI in this setting compared with the performance of human examin-
ers. Three studies met inclusion criteria and were used to answer this research question.

The following data were obtained from each study: year of publication, input fea-
ture (radiologic imaging modality), projection when plain radiography was used as a 
radiologic imaging modality (for example, AP, oblique, or lateral views),10,11,14-19 size of 
the dataset, anatomic location, output classes, AI models that were used, pretrained 
convolutional neural network (CNN), if applicable, size of the training set, size of the 
validation set or method, size of the test set, and performance measures (accuracy and 
AUC curve).

Output classes included fracture detection and/or classification. We considered 
fracture detection as a binary classifier with two inherent output classes (the presence 
of any fracture versus absence of a fracture). From what we could discern, these stud-
ies evaluated any type of fracture: both displaced fractures, which are easy to detect, 
and nondisplaced fractures, which can be subtler. Additionally, fracture classification 
addressed multiple output classes. For example, one study addressed a four-group clas-
sification system to distinguish among types of proximal humerus fractures (that is, the 
Neer classification20),16 whereas another study addressed a subtype of femur fractures 
(AO-Type 3221: a nine-group classification method for diaphyseal femur fractures rang-
ing from simple spiral fractures to complex, irregular, comminuted fractures15).
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Six studies described the use of a single AI model for detecting and/or classifying the 
fracture,10,11,16,17,19,22 and four compared the performance of more than one model.14,15,18,23

We analyzed studies describing pretrained CNNs (AI models that were developed 
using large, separate datasets such as the ImageNet Large Scale Visual Recognition 
Challenge24)10,11,16-19 that were subsequently transferred to new datasets and AI models 
trained from scratch and implemented for new and unseen data.

Generally, two validation techniques are used to evaluate an AI model after the train-
ing phase: a subset of the dataset is retained as a validation set (that is, the size of the 
validation set) or a validation method is applied. The goal of using a validation set or 
validation method—especially in situations with small datasets—is to increase model 
robustness (for example, developing strategies to cope with errors during performance 
of a specific task). For example, k-fold cross-validation is a validation method that is ap-
plied to an automated computer-generated resampling procedure, in which a dataset is 
divided into smaller sets of different combinations (multiple folds or partitions), which 
allows it to train throughout many iterations. Although not mutually exclusive, each fold 
is iteratively used as a test set and the rest is used for training. The size of the test set is 
a partition of the dataset used for the final evaluation and determines the performance 
measures of the AI model.  

The accuracy and AUC were assessed to provide information on each AI model in the 
test dataset because these were the most commonly addressed items (eight studies 
addressed accuracy10,14-19,23 and five studies addressed the AUC10,11,16,17,19.) In our study, 
accuracy applied to the proportion of correctly detected or classified fractures and non-
fractures to the total number of patients (such as the proportion of correct predictions 
over all cases). The AUC corresponds to the probability that a binary classifier will rank 
a randomly chosen positive instance higher than a randomly chosen negative one.25 An 
AUC of 1.0 would indicate perfect prediction, whereas 0.5 would indicate a prediction is 
no better than chance.

Distribution of Fracture Detection and Classification, Anatomical 
Location, Used AI Models, and Input Features
Nine studies addressed AI models for detecting fractures,10,11,14,16-19,22,23 whereas one 
study addressed fracture classification.15 Chung et al.16 were the only authors to report 
on both a fracture detection and fracture classification task (Table 1).

Anatomic fractures were located in the wrist,11,16-18 hip,10,19 spine,22,23 ankle,18 diaphy-
seal femur,15 hand,18 and proximal humerus.16

A pretrained CNN was the most frequently used AI model,10,11,16-19 followed by neural 
networks,14,15,23 k-nearest neighbors,14,15 support vector machines,15,22 K-means,23 and 
linear discriminant analysis.15 All AI models were supervised, except for the K-means, 
which is an unsupervised AI model.
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Input features used in the AI models were as follows: eight studies used radiography 
as an imaging modality,10,11,14-19 whereas two studies used CT.22,23 When radiography was 
the radiologic imaging modality, AP10,16,18,19 and lateral11,16-18 projections were most com-
monly used, followed by posteroanterior,11 oblique (two different types),18 and scaphoid 
(four specific scaphoid views: proximal, distal, ulnar, and radial).18

Quality Appraisal
Ten studies were included. Quality appraisal demonstrated that the study aim was 
clear in seven studies (70%), possibly resulting in outcome bias for the remaining three 
studies (Figure 3). In seven studies (70%), the inclusion and exclusion criteria for input 
features (all eligible radiographs and CT scans were included in the dataset) were clearly 
described, whereas selection bias could not be excluded for the remaining two studies 
(30%). Seven studies (70%) clearly described how they determined the ground truth 
(the reference standards in AI), subjecting the remainder to poorly trained AI models. 
All studies reported a clear distribution of the dataset (training, validation, and testing 
phases), described how the performance of an AI model was determined (accuracy and 
AUC), and clearly explained the AI model that was used (see Appendix 2; Supplemental 
Digital Content 2, http://links.lww.com/CORR/A195).

Statistical Analysis
Given the heterogeneity of the studies, we reported the range for accuracy and AUC for 
fracture detection and classification tasks. The sizes of the training, validation, and test 
sets are reported as percentages of the total number of the dataset.

There was no funding received to perform this work.

figure 3: We conducted a quality assessment of included studies using a seven-item checklist based on a 
modified methodologic index for nonrandomized studies (MINORS) instrument.
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ReSULTS

AI Model Performance
Among the five studies using AUC for fracture detection AI had near perfect prediction 
(range, 0.95-1.0).10,11,16,17,19 The accuracy of fracture detection reported in seven studies 
ranged from 83% to 98%.10,14,16-19,23  

Seven studies addressed fracture detection on radiographs,10,11,14,16-19 and two studies 
addressed fracture detection on CT.22,23

In studies addressing fracture classification on radiographs, Chung et al.16 found an 
AUC of 0.94 and an accuracy of 77% for classifying proximal humerus fractures into four 
groups (according to the Neer classification20). Bayram and Çakiroglu15 applied four AI 
models for classification of diaphyseal femur fractures into nine groups (AO-type 3221) 
and found an accuracy ranging from 83% to 90%.

AI Models Compared with Humans
Three studies compared the performance of AI models with the performance of hu-
mans.16,18,19 Urakawa et al.19 used an AI model (that is, a pretrained CNN: VGG_16) for 
detecting hip fractures on an AP radiograph, which had a better AUC than five ortho-
paedic surgeons did (pretrained CNN: 0.98 [95% CI, 0.97-1.0] versus the five orthopaedic 
surgeons: 0.97 [95% CI, 0.95-0.97]; p < 0.001). Additionally, the difference in accuracy 
also favored the AI model (pretrained CNN: 96% [95% CI, 93-98] versus the five orthopae-
dic surgeons: 92% [95% CI, 89-95]; p < 0.001).

In a study by Olczak et al.,18 the accuracy of the best- performing AI model (a pretrained 
CNN: VGG_16) in detecting wrist, hand, and ankle fractures on several radiographic 
projections was equivalent to that of two senior orthopaedic surgeons (pretrained CNN: 
83 [95% CI, 80-87 versus 82 [95% CI, 78-86] and 82 [95% CI, 78-85] for the two senior 
orthopaedic surgeons).

For detecting fracture, Chung et al.16 used a pretrained CNN (Microsoft ResNet-152; 
Redmond, WA, USA) to detect proximal humerus fractures on an AP radiograph and 
compared the accuracy of the CNN with that of three human groups: general physi-
cians (n = 28), general orthopaedists (n = 11), and an orthopaedist who specialized in 
the shoulder (n = 19). The accuracy of the AI model was superior to that of the human 
groups, although there was no statistical difference between the AI model and the 
general orthopaedist and shoulder orthopaedist groups (pretrained CNN: 96% [95% CI, 
94-97] versus 85% [95% CI, 80-90] for the general physicians, 93% [95% CI, 90-96] for the 
general orthopaedists, and 93% [95% CI, 87-99] for the orthopaedists who specialized 
in the shoulder; p < 0.001). Additionally, except for one subset (greater tuberosity frac-
tures), the pretrained CNN also demonstrated better accuracy for classifying proximal 
humerus fractures into four groups (according to the Neer classification20).



51

Artificial Intelligence for Fracture Detection and Classification

DISCUSSIon

AI can be used to develop predictive models based on large data sets. We analyzed the 
results of studies using AI for fracture detection and classification to determine the 
potential utility in fracture care. In a research setting, we found AI models are nearly as 
good as humans for detecting certain common fractures and—in two studies—outper-
formed humans for hip and proximal humerus fracture classification.

This study has several limitations. First, the studies addressed the performance of AI 
models based on only one projection when radiography was used as the input feature; 
this is in contrast to daily clinical practice, in which a surgeon bases his or her interpreta-
tion on multiple projections combined with taking the patient’s history and performing 
a physical examination. AI models can be built to account for features of the interview, 
examination, and laboratory values (if applicable) along with image analysis. Second, 
the studies used a variety of approaches for assigning ground truth labels (the reference 
standard in AI) for each dataset with which the model was trained. For example, ground 
truth labels might be determined by a fellowship-trained musculoskeletal radiologist 
or through a thorough screening of reports in the medical record, consensus meeting 
among physicians with the additional use of more advanced imaging (such as CT im-
ages instead of radiographs) to resolve discrepancies, and radiologist reports. All these 
reference standards are subject to human error. AI models trained with more objective 
labeling assignments (for example, operative exposure) should result in more accurate 
and generalizable probabilities. Third, an appropriate risk of bias assessment tool does 
not exist for diagnostic studies. We therefore modified the methodologic index for 
nonrandomized studies (MINORS). Fourth, at present there are only a few preliminary 
studies used in simple diagnostic scenarios that may overestimate of the potential ben-
efit of AI. Additional studies with clinically relevant settings will help evaluate the utility 
of AI. Fifth, although a broad search strategy encompassing three large databases was 
used, potentially relevant publications might have been missed. However, we deem this 
risk to be low, because we did not identify new eligible studies through screening the 
reference lists of included studies. In addition, we identified nine conference abstracts 
that have not been published yet, suggesting that AI is a developing research interest.

Our review found that AI was remarkably good at detecting common fractures. It is 
reasonable to assume that the fracture locations were selected in these studies because 
they are common and yield large datasets. Most fractures in these areas are displaced 
and therefore relatively easy to detect by either a human or a computer. More subtle 
fractures (such as nondisplaced femoral neck or scaphoid fractures) need additional 
study as AI models might be less accurate. AI algorithms for diagnosing relatively obvi-
ous fractures might be useful for clinical scenarios where fractures might be overlooked 
(for example, multiple trauma) or in primary care or urgent care where a radiologist is 
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not immediately available,7,8 potentially replacing radiologists in this setting. AI could 
also be useful in difficult scenarios, such as suspected scaphoid or hip fractures, if 
proven to be accurate. A dispassionate examination of the probability of fracture could 
help surgeons and patients with decision-making. Further research should seek to 
identify situations in which AI could act in synergy with clinicians in fracture detection 
tasks, which are generally prone to misinterpretation or uncertainty. However, there are 
hurdles to overcome before implementation in clinical practice. First, a clinician might 
be reluctant to use a suggestion by an AI model since there is no human interface, it is 
not intuitive (complex statistical models), and it cannot be interrogated (the inscrutabil-
ity of the magic “black box of AI”). The European Union has addressed liability concerns 
by incorporating a dictum in the General Data Protection Regulations that AI algorithmic 
decisions about humans must be interpretable and explainable.26 Second, it remains 
debatable who would be held responsible if an algorithm errs and causes harm. Thus, 
appropriate legal regulations should be addressed before implementing AI into the clini-
cal arena outside of research and quality improvement efforts. Lastly, most studies used 
datasets with ground truth labels that were based on formal reports from radiologists 
taken from the medical record to train the respective AI algorithms. For many reasons, 
these datasets have some inherent errors and misinterpretations. We may benefit from 
better ground truth labels (for example, operative findings or more sophisticated imag-
ing) to develop more accurate AI algorithms.

AI had reasonable accuracy for classifying proximal humerus and diaphyseal femur 
fractures. Again, there is an issue with the lack of reference standards for the correct or 
most likely classification in these studies. For example, Chung et al.16 determined the 
reference standard for the Neer Classification20 by consensus of two shoulder surgeons 
and one radiologist using CT-images on occasion to reach agreement—an arguably 
inadequate reference standard for a classification that is known to be unreliable, even 
using CT scans.27,28 They also introduced selection bias by removing fractures for which 
consensus could not be reached. Alternatively, AI might use latent class analysis, a sta-
tistical technique that calculates the characteristics of diagnostic performance without 
a reference standard.29 Bayesian inferences, another field of interest proposed by Kim 
and MacKinnon17 could be used to produce more meaningful predictions that accurately 
reflects the probable outcome, by accounting for the influence of fracture incidence 
when analysing accuracy.17

Two studies found that AI was better than humans at detecting and classifying hip and 
proximal humerus fractures, and one found equivalent performance for detecting wrist, 
hand, and ankle fractures.16,18,19 This suggests that—at least for relatively straightforward 
diagnostic scenarios—AI can be useful. There are important gaps to consider. These 
studies based their ground truth on human assessment (for example, radiology reports 
or a single radiologist’s interpretation).16,18,19 As clinicians are susceptible to error, the 
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AI models were trained and tested with images that had some level of inaccuracy.30 As 
such, AI models might erroneously report good performance, while this would not be 
detected as a diagnostic error by the model. Additionally, these AI models can diagnose 
the fracture, but cannot discern which fractures may involve a bone tumor, for example. 
In contrast, an orthopaedic surgeon or radiologist is more likely to detect additional rel-
evant findings when evaluating radiographs of fractures. Moreover, physicians are able 
to combine patients’ preferences and objective parameters (such as laboratory values) 
into careful clinical decision-making.

The current thinking about AI application in medicine seems to be that narrow tasks 
with predefined context are most suitable, such as recognizing the border of an organ 
to suggest where to stop scanning or detecting suspicious areas in an image.31 Risk 
prediction and therapeutics are more challenging for AI. A lack of reliable and accurate 
standards on which to train and test an algorithm for certain disease entities (such as 
delirium), makes the probabilities generated by AI less suitable and applicable for the 
end-user. Furthermore, an algorithm’s output is only an association, not a causative 
relationship.32 Therefore, physicians should always balance the probable outcome of 
this output and decide whether it applies to a specific patient. According to Verghese 
et al.,33 AI applications and clinicians should always cooperate: AI helps predict and the 
clinician compassionately explains and decides.

We speculate that AI might outperform humans for many probabilistic tasks that 
are based on data. However, the largest challenges will be to find ways to collect and 
analyze large amounts of data efficiently and to overcome legal issues. Despite the cur-
rent shortcomings, such as inadequate ground truth label assignment, we believe that 
physicians will benefit by embracing AI rather than ignoring or dismissing it. For fracture 
care, these models might aid surgeons by drawing their attention to fractures or fracture 
characteristics that could cause harm if overlooked. Future studies in this area might 
focus on AI as a tool to assist with complex and uncertain clinical tasks (for example, 
determining the response of bone tumors to chemotherapy, or detecting nondisplaced 
or occult fractures) and in decision support.
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APPenDIx 1: SeARCH SYnTAxeS foR THe PUbMeD, eMbASe, AnD 
CoCHRAne DATAbASeS

Pubmed – September 6th 2018
(“Orthopedic Procedures”[Mesh] OR “Orthopedics”[Mesh] OR “Traumatology”[Mesh] 
OR fracture*[tiab] OR skeletal fixation*[tiab] OR (trauma*[tiab] AND orthop*[tiab])) AND 
(“Artificial Intelligence”[Mesh] OR artificial intelligence[tiab] OR neural network*[tiab] 
OR deep learning[tiab] OR machine learning[tiab] OR machine intelligence[tiab]) AND 
(predict*[tiab] OR predictive value of tests[mh] OR score[tiab] OR scores[tiab] OR scor-
ing system[tiab] OR scoring systems[tiab] OR observ*[tiab] OR observer variation[mh] 
OR detect*[tiab] OR evaluat*[tiab] OR analy*[tiab] OR assess*[tiab] OR measure*[tiab])

Embase – September 6th 2018
(exp orthopedic surgery/ or exp orthopedics/ or exp traumatology/ or (fracture* or 
skeletal fixation*).ti,ab,kw. or (trauma* and orthop*).ti,ab,kw.) AND (exp artificial intel-
ligence/ or exp machine learning/ or (artificial intelligence or neural network* or deep 
learning or machine learning or machine intelligence).ti,ab,kw.) AND (exp “prediction 
and forecasting”/ or observer variation/ or (predict* or score or scores or scoring system 
or scoring systems or observ* or detect* or evaluat* or analy* or assess* or measure*).
ti,ab,kw.)

Cochrane – September 6th 2018
((Orthopedic Procedures OR Orthopedics OR Traumatology):MeSH OR (fracture* OR 
skeletal fixation OR (trauma AND orthop*):ti,ab,kw) AND ((Artificial Intelligence):MeSH 
OR (artificial intelligence OR neural network* OR deep learning OR machine learn-
ing OR machine intelligence):ti,ab,kw) AND ((Predictive Value of Tests OR Observer 
Variation):MeSH OR (predict* OR score OR scores OR scoring system OR scoring systems 
OR observ* or detect* or evaluat* OR analy* or assess* OR measure*):ti,ab,kw)
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Appendix 2: Critical appraisal of included studies

Study type Author, year Disclosure Study
aim

Input
feature

Ground
truth

Dataset
distribution

Performance
metric

AI
model

detection Al-helo et al. 1 0 0 0 1 1 1

detection Basha et al. 0 0 0 0 1 1 1

detection Chung et al. 1 1 1 1 1 1 1

detection Gale et al. 0 1 1 1 1 1 1

detection Kim et al. 1 1 1 1 1 1 1

detection Lindsey et al. 1 1 1 1 1 1 1

detection Olczak et al. 1 1 1 1 1 1 1

detection Urakawa et al. 1 1 1 1 1 1 1

detection Yao et al. 0 1 1 1 1 1 1

classification Bayram et al. 0 0 0 0 1 1 1

Disclosure
1, Disclosure is reported.
0, Disclosure is not reported.
Study aim
1, Precise and clear study aim.
0, Study aim not specified or unclear.
Input feature
1, Clear eligibility criteria and all eligble ‘samples’ (i.e. radiographs/CT-scans) have been included.
0, Potential selection bias or eligibility criteria unclear.
Ground truth
1, Clearly stated description how to determine ground truth.
0, Ground truth not specified or unclear.
Dataset distribution
1, Clearly stated distribution of dataset.
0, Unclear dataset distribution (training-, validation, and test phase).
Performance metric
1, Clear definition of performance of AI model.
0, Performance of AI model not specified or unclear.
AI model
1, Clear explanation of used AI model.
0, Unclear how and which AI model is used.
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AbSTRACT

background
Preliminary experience suggests that deep learning algorithms are nearly as good as hu-
mans in detecting common, displaced, and relatively obvious fractures (such as, distal 
radius or hip fractures). However, it is not known whether this also is true for subtle or 
relatively nondisplaced fractures that are often difficult to see on radiographs, such as 
scaphoid fractures.

Questions/purposes
(1) What is the diagnostic accuracy, sensitivity, and specificity of a deep learning al-
gorithm in detecting radiographically visible and occult scaphoid fractures using four 
radiographic imaging views? (2) Does adding patient demographic (age and sex) infor-
mation improve the diagnostic performance of the deep learning algorithm? (3) Are or-
thopaedic surgeons better at diagnostic accuracy, sensitivity, and specificity compared 
with deep learning? (4) What is the interobserver reliability among five human observers 
and between human consensus and deep learning algorithm?

Methods
We retrospectively searched the picture archiving and communication system (PACS) 
to identify 300 patients with a radiographic scaphoid series, until we had 150 fractures 
(127 visible on radiographs and 23 only visible on MRI) and 150 non-fractures with a cor-
responding CT or MRI as the reference standard for fracture diagnosis. At our institution, 
MRIs are usually ordered for patients with scaphoid tenderness and normal radiographs, 
and a CT with radiographically visible scaphoid fracture. We used a deep learning algo-
rithm (a convolutional neural network [CNN]) for automated fracture detection on radio-
graphs. Deep learning, an advanced subset of artificial intelligence, combines artificial 
neuronal layers to resemble a neuron cell. CNNs—essentially deep learning algorithms 
resembling interconnected neurons in the human brain—are most commonly used for 
image analysis. Area under the receiver operating characteristic curve (AUC) was used to 
evaluate the algorithm’s diagnostic performance. An AUC of 1.0 would indicate perfect 
prediction, whereas 0.5 would indicate that a prediction is no better than a flip of a coin. 
The probability of a scaphoid fracture generated by the CNN, sex, and age were included 
in a multivariable logistic regression to determine whether this would improve the 
algorithm’s diagnostic performance. Diagnostic performance characteristics (accuracy, 
sensitivity, and specificity) and reliability (kappa statistic) were calculated for the CNN 
and for the five orthopaedic surgeon observers in our study.
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Results
The algorithm had an AUC of 0.77 (95% CI 0.66 to 0.85), 72% accuracy (95% CI 60% to 
84%), 84% sensitivity (95% CI 0.74 to 0.94), and 60% specificity (95% CI 0.46 to 0.74). 
Adding age and sex did not improve diagnostic performance (AUC 0.81 [95% CI 0.73 to 
0.89]). Orthopaedic surgeons had better specificity (0.93 [95% CI 0.93 to 0.99]; p < 0.01), 
while accuracy (84% [95% CI 81% to 88%]) and sensitivity (0.76 [95% CI 0.70 to 0.82]; p 
= 0.29) did not differ between the algorithm and human observers. Although the CNN 
was less specific in diagnosing relatively obvious fractures, it detected five of six occult 
scaphoid fractures that were missed by all human observers. The interobserver reliabil-
ity among the five surgeons was substantial (Fleiss’ kappa = 0.74 [95% CI 0.66 to 0.83]), 
but the reliability between the algorithm and human observers was only fair (Cohen’s 
kappa = 0.34 [95% CI 0.17 to 0.50]).

Conclusions
Initial experience with our deep learning algorithm suggests that it has trouble identi-
fying scaphoid fractures that are obvious to human observers. Thirteen false positive 
suggestions were made by the CNN, which were correctly detected by the five surgeons. 
Research with larger datasets—preferably also including information from physical 
examination—or further algorithm refinement is merited.
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InTRoDUCTIon

Deep learning gained great appeal when Google’s DeepMind computer defeated the 
world’s number one Go player.1 Deep learning, an advanced subset of artificial intel-
ligence, combines artificial neuronal layers to resemble a neuron cell. Essentially, these 
algorithms— highly complex mathematical models—derive rules and patterns from 
data to estimate the probability of a diagnosis or outcome without human intervention. 
These algorithms can be applied to imaging tasks such as skin cancer detection on 
photographs or detection of critical findings in head CT scans.2,3

Using different data set sizes, initial experience with fracture detection on radiographs 
suggests that deep learning algorithms are (nearly) as good as humans at detecting 
certain common fractures such as distal radius, proximal humerus, and hip fractures.4 
However, many of those fractures are displaced and relatively obvious on radiographs.

It is known that scaphoid fractures can have long-term consequences if not properly 
diagnosed. A previous study applied five deep learning algorithms to detect wrist, hand 
(including scaphoid), and ankle fractures; however, they did not report their algorithm’s 
performance for scaphoid fractures specifically.5 As such, it is not yet clear whether 
deep learning algorithms will be useful for the detection of relatively subtle and often 
radiographically invisible nondisplaced femoral neck or scaphoid fractures that are 
often overlooked by humans, particularly non-specialists.6

Therefore, we asked: (1) What is the diagnostic accuracy, sensitivity, and specificity 
of a deep learning algorithm in detecting radiographically visible and occult scaphoid 
fractures using four radiographic imaging views? (2) Does adding patient demographic 
(age and sex) information improve the diagnostic performance of the deep learning 
algorithm? (3) Are orthopaedic surgeons better at diagnostic accuracy, sensitivity, and 
specificity compared with deep learning? (4) What is the interobserver reliability among 
five human observers and between human consensus and deep learning algorithm?

PATIenTS AnD MeTHoDS

Data Set and Pre-processing
Our institutional review board approved this retrospective study. Our institution still 
uses a paper medical record, which makes it difficult to search for patients with spe-
cific diagnoses and tests. The picture archiving and communication system (PACS) is 
electronic and easier to search. We used two strategies to identify at least 300 scaphoid 
series of radiographs.

The first strategy was based on the fact that clinicians in our institution usually order 
an MRI in patients with suspected scaphoid fractures and normal radiographs and a CT 
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with radiographically visible scaphoid fracture. This strategy identified MRI and CT of 
the scaphoid and then sought corresponding radiographs of scaphoid fractures. We 
searched the PACS database using the terms “MR scaph”, “CT hand”, “CT wrist”, and “CT 
extr” and identified 326 patients: 150 that were excluded because the radiographs were 
incomplete or distorted by cast or splint materials and 176 with adequate radiographic 
scaphoid series including 13 MRI-confirmed fractures, 59 CT-confirmed fractures, and 
104 MRI-confirmed nonfractures.

In the second strategy, we searched PACS for “Xr scaph” and searched them one by one 
for a corresponding MRI or CT image and an adequate series of radiographs not distorted 
by plaster. We found 124 additional patients including 10 with MRI-confirmed fractures, 
68 with CT-confirmed fractures, 46 MRI-confirmed nonfractures, and 17 CT-confirmed 
nonfractures. Two observers (DWGL, AEJB) used this strategy to identify patients until 
we had 150 radiographs of scaphoids with a fracture (127 visible on radiographs and 
23 only visible on MRI) and 150 without a fracture, numbers chosen before starting the 
search and based on typical training strategies. Age and sex demographics were pro-
vided by PACS. The mean age at diagnosis was 36 years (SD 16), and 62% (185 of 300) of 
patients were male. We randomly divided the dataset into a train, a validation, and a test 
group (180:20:100), each divided 50:50 by presence of a fracture. The radiographically 
invisible fractures were randomly and evenly distributed between the three groups. To 
match the predefined image size of the deep learning framework (Figure 1), we manually 
cropped and resized all Digital Imaging and Communications in Medicine (DICOM) files 
into a 350 x 300 pixels rectangle capturing the scaphoid (see Appendix 1; Supplemental 
Digital Content 1, http://links.lww.com/CORR/A353). By automatically rotating, zoom-
ing, changing height/width, and horizontal/vertical flipping, all preformatted images 
were 10-fold augmented with the intent to increase robustness of the algorithm.

Algorithm: Convolutional Neural Network
Convolutional neural networks (CNNs) are complex algorithms resembling intercon-
nected neurons in the human brain. CNNs are a form of deep learning commonly used 
to analyze images. In deep learning, the computer analyzes both features that are 
recognizable to humans (for example, the eyes or the nose) and features that are not 
recognizable to humans (such as edges or transitions). A CNN learns by developing and 
testing algorithms again and again (in iterations) until it has optimized its ability to 
identify the feature assigned: in this case, fracture of the scaphoid. When approaching a 
new image recognition task, it can be helpful to start with a CNN that is already trained 
to identify features in images. We used an open-source pretrained CNN (Visual Geometry 
Group, Oxford, United Kingdom7) trained on more than 1 million non-medical images 
with 1000 object categories8 (see Appendix 2; Supplemental Digital Content 2, http://
links. lww.com/CORR/A354).
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A test group of 100 images was randomly selected for use in the tests to determine the 
algorithm performance. We evaluated the model using the following performance met-
rics: area under the receiving operating characteristic (AUC) curve, accuracy, sensitivity, 
and specificity. We set the diagnostic cutoff point at a value that maximized sensitivity, 
at the cost of a slightly decreased specificity.6,9,10

Codes were written in Python Version 3.6.8 (Python Software Foundation, Wilmington, 
DE, USA) with the packages scikit-learn (0.20.3) and TensorFlow (1.13.1).

figure 1: A radiographic scaphoid fracture series for patients with a clinical suspicion for scaphoid fracture 
at our hospital. The following four projections were fed into the deep learning framework: (A) posterior-
anterior ulnar deviation; (b) uptilt (that is, an elongated view with tube angle adjusted over 30°); (C) lateral; 
and (D) 45° oblique projections. The white boxes illustrate the cropped and resized radiographs (350 x 300 
pixels) which are fed into the deep learning framework (VGG 16).
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Human observers
We compared the performance metrics of the model with five surgeons (RLJ, JND, MMAJ, 
NK, JWW). Three orthopaedic trauma surgeons (16, 3, and 2 years after completion of 
residency training) and two upper limb surgeons (25 and 2 years after completion of 
residency training) each reviewed the same 100 patients as the model. In our hospital, 
upper limb surgeons deliver care for the entire upper extremity. The surgeons were not 
aware of the total number of fracture and nonfracture patients in the test set. All fractures 
were presented as uncropped Digital Imaging and Communications in Medicine (DICOM) 
files, which we loaded into Horos (version 3.3.4, Annapolis, MD, USA). Surgeons were 
asked to identify the presence or absence of a scaphoid fracture on four radiographic 
views. Again, we calculated the accuracy, sensitivity, and specificity for each surgeon as 
well as the mean among surgeons for each measure to compare with the CNN.

Statistical Analysis
Continuous variables were presented with mean and SD and categorical variables 
with frequencies and percentages. Accuracy is defined as the proportion of correctly 
detected cases among all cases. The AUC reflects the probability that a binary classifier 
will rank a randomly chosen positive instance higher than a randomly chosen negative 
one.11 An AUC of 1.0 corresponds to perfect classification, whereas 0.5 indicates a predic-
tion equal to chance. Sensitivity corresponds to the proportion of correctly identified 
fractures among all actual fractures, while specificity refers to the proportion of cor-
rectly identified nonfractures among all nonfractures. We calculated 95% confidence 
intervals using a Z-score of 1.96. Overlapping 95% CIs indicate no significant difference. 
A McNemar’s test was used to compare sensitivity and specificity between the algorithm 
and human observers. The probability of a scaphoid fracture generated by the CNN, sex, 
and age were included in a multivariable logistic regression to determine whether this 
would improve the algorithm’s diagnostic performance.

Kappa, which is a chance-corrected measure, corresponds to the agreement among 
observers. We used Fleiss’ kappa to determine interobserver reliability among surgeons 
for evaluating the presence or absence of scaphoid fractures. We used Cohen’s kappa to 
calculate reliability between the CNN and majority vote of human observers. According 
to Landis and Koch12, a kappa between 0.21 and 0.40 reflects fair agreement, a kappa 
between 0.41 and 0.60 indicates moderate agreement, a kappa between 0.61 and 0.80 
reflects substantial agreement, while a kappa above 0.80 indicates almost perfect agree-
ment.

We performed statistical analyses using Stata 15.0 (StataCorp LP, College Station, TX, 
USA) and RStudio (Boston, MA, USA) with the packages CalibrationCurves, ggplot2, grid, 
and precrec.

There were no missing data.
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ReSULTS

Performance of Cnn
For detection of scaphoid fractures among suspected scaphoid fractures, the CNN 
reported an AUC of 0.77 (95% CI 0.66 to 0.85) (Figure 2). The CNN correctly detected 72 
of 100 patients (accuracy 72% [95% CI 60% to 84%]). Eight of 50 confirmed scaphoid 
fractures were not identified (sensitivity 0.84 [95% CI 0.74 to 0.94]), while 20 of 50 pa-
tients without a fracture were incorrectly diagnosed as having a fracture of the scaphoid 
(specificity 0.60 [95% CI 0.46 to 0.74]).

Performance of CNN Combined with Patient Demographics
Combining age and sex with the generated probabilities of the CNN did not improve the 
AUC (0.81; 95% CI 0.73 to 0.89). The output of this model was converted into a formula 
for calculating the probability of a fracture (see Appendix 3; Supplemental Digital Con-
tent 3, http://links. lww.com/CORR/A355).

Figure 2: This figure depicts the receiver operating curve for the CNN at the optimal diagnostic cut-off point 
(0.37).
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Performance of CNN Compared with Human Observers
Specificity favored the human observers (five orthopaedic surgeons 0.93 [95% CI 0.87 
to 0.99] versus CNN 0.60 [95% CI 0.46 to 0.74]; p < 0.01). Accuracy for distinguishing be-
tween scaphoid fractures and nonfractures was comparable between human observers 
and the CNN (five orthopaedic surgeons 84% [95% CI 81% to 88%] versus CNN 72% [95% 
CI 60 to 84]) (Table 1). Sensitivity was also comparable between the CNN and human 
observers (five orthopaedic surgeons: 0.76 [95% CI 0.70 to 0.82]) versus CNN: 0.84 [95% 
CI 0.74 to 0.94]; p = 0.29).

Six scaphoid fractures were missed by all surgeons and therefore considered occult 
fractures. The CNN detected five of six occult scaphoid fractures. In addition, five hu-
man observers detected three fractures that were missed by the CNN. Two fractures, 
diagnosed by four of five human observers, were also missed by the CNN. In contrast, 
thirteen false positive suggestion of the CNN, were correctly detected by the surgeons.

The Interobserver Reliability of Human Observers
Interobserver agreement between five surgeons was higher than between human con-
sensus and the algorithm (0.74 [95% CI 0.66 to 0.83] versus 0.34 [95% CI 0.17 to 0.50]) 
(Table 2).

Table 1. A comparison of performance metrics between the CNN and the mean of five orthopaedic sur-
geons

Diagnostic performance
characteristic

Orthopaedic surgeons Cnnª p value

Accuracy (95% CI) 84% (81% to 88%) 72% (60% to 84%) ᵇ

Sensitivity (95% CI) 0.76 (0.70 to 0.82) 0.84 (0.74 to 0.94) 0.29

Specificity (95% CI) 0.93 (0.87 to 0.99) 0.60 (0.46 to 0.74) < 0.01

ªCNN = convolutional neural network at cutoff point 0.37.
ᵇWe did not calculate a p value, since McNemar’s test is sensitive to the proportion of fractures as well as nonfractures.
Bold indicates statistical significance (p < 0.05).

Table 2. Contingency table comparing prediction of convolutional neural network to human consensus 
(agreement ≥ three surgeons)

fracture (n = 50) non-fracture (n = 50)

Fracture (predicted) CNN 42 20

Human consensus 38 1

Non-fracture (predicted) CNN 8 30

Human consensus 12 49

CNN = convolutional neural network
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DISCUSSIon

In medicine, deep learning has primarily been applied to image analysis. In a research 
setting, use of deep transfer learning showed promising performance for fracture detec-
tion and classification for relatively straightforward clinical scenarios.4 It is not yet clear 
that deep learning will be useful for radiographic fracture detection in scenarios where 
fractures are often overlooked by human observers. Using a relatively small data set of 
300 patients, our deep learning algorithm demonstrated a moderate better overall per-
formance for detection of radiographically visible and occult fractures (AUC 0.77 [95% CI 
0.66 to 0.85]) and human observers had notably better specificity. The algorithm might 
have performed better if provided with more data.

This study has several limitations. First, we selected our patients from readily avail-
able and searchable radiology reports and intentionally introduced a spectrum bias by 
collecting 150 MRI- or CT-confirmed fractures and 150 confirmed nonfractures. Although 
this was needed to sufficiently train the algorithm, readers should keep in mind that 
our data set does not represent the true prevalence of radiographic scaphoid fracture 
appearance. Second, we were only able to include 300 patients because we could only 
search a 9-year period starting in January 2010. Three hundred radiographs is a rela-
tively small sample size for deep learning, but more than adequate for logistic regres-
sion. A larger data set might improve the diagnostic performance of the CNN. We cannot 
be certain because, to this point, there is no consensus on a priori sample size in deep 
learning. It depends on the specific image-analysis task, the quality of the data set, the 
programming techniques used, and type of deep learning algorithm applied.13 Third, 
the ground truth labels (that is, the reference standard diagnosis of scaphoid fracture 
or not) are based on radiologist interpretations of CT or MRI images, which have limited 
reliability and untestable accuracy. Given the small number of MRIs with diagnosed 
fracture and CT with diagnosed nonfractures, we believe any misdiagnoses would 
have little influence on the model. Fourth, radiographs were manually cropped and 
resized by one investigator (DWGL), which might introduce bias. However, given that 
cropping was assisted by an easy-to-use program scripted in Python, we feel it is very 
likely that another investigator would resize the images similarly. But, one should keep 
in mind that cropped radiographs may not reflect a clinical scenario, as other potentially 
relevant findings in a real-size radiograph were not assessable (such as, concomitant 
fractures or scapholunate dissociation). Furthermore, irrelevant regions in a radiograph 
were removed and therefore not evaluated by the model. A more in-depth deep learning 
framework, accounting for the entire wrist radiograph, merits further study. For now, the 
memory capacity of graphics processing units limits the usable image size. Fifth, among 
the five human observers, two surgeon raters treated some of the patients in the study, 
which might have influenced their diagnoses. We feel this would have negligible influ-
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ence on our findings. Sixth, although incorporating injury details, signs, and symptoms 
would have been of interest to incorporate in a logistic regression model as is typical 
for a clinical prediction rule, they were not commonly reported in a patient’s medical 
record. CNNs only evaluate images, but the probabilities generated can be included in 
clinical prediction rules.

The AUC of the CNN for detection of scaphoid fractures is not good enough to replace 
human observers or more sophisticated imaging, but it does suggest the potential to be 
used as a pre-screen or clinical prediction rule for triage of suspected scaphoid fractures 
that might benefit additional imaging. Displaced proximal humerus, distal radius, and 
intertrochanteric hip fractures are relatively easy to detect and not a good test of the 
potential utility of artificial intelligence.9,10,14 Subtle and invisible fractures may be more 
of a challenge. Prior studies using deep learning algorithms to detect radiographically 
subtle hip and distal radius fractures had better performance than our model.6,14-16 Larger 
data sets, use of other pre-trained CNNs, varying degrees of algorithm refinement and 
hyper-parameter tuning, as well as other anatomical fracture locations may explain why 
these studies differ with our findings. Also, we might not have had sufficient images to 
train the upper layers of the pretrained CNN.

Adding sex and age did not improve diagnostic performance. Future research might 
investigate whether incorporating computer analysis of images improves performance 
of clinical prediction rules that include demographics, injury details, symptoms, and 
signs to better triage the use of MRI as well as increase its diagnostic performance by 
increasing the pretest odds of a fracture.17,18 The pretest odds could be increased with 
CNNs, clinical prediction rules, or a combination of both.

Our deep learning algorithm was less specific than human observers but detected 
five of six occult fractures in the test dataset. On the other hand, caution is warranted 
because the CNN missed some radiographically visible fractures.

The finding that reliability of fracture diagnosis was substantial (0.74) for the five 
orthopaedic surgeons and only fair (0.34) between the surgeons and the CNN we in-
terpret as a reflection of the difficulty the deep learning algorithm has with detecting 
radiographically visible fractures. At the diagnostic cutoff point—chosen to maximize 
sensitivity—the algorithm’s specificity was considerably lower compared with human 
observers. A different cutoff point may have resulted in more or less the same reliability 
for detecting scaphoid fractures. It may go without saying that CNNs are known for be-
ing highly complex and, to date, not intuitive for the end-user. It is therefore not possible 
to understand how a CNN reaches its suggestion.

In conclusion, using a relatively small dataset, a deep learning algorithm was inferior 
to human observers at identifying scaphoid fractures on radiographs. Further study 
may help evaluate whether a larger dataset and algorithm refinement can increase the 
performance of deep learning for the diagnosis of scaphoid fractures, some of which are 
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radiographically invisible. In addition, incorporating predictions from a deep-learning 
algorithm into clinical prediction rules that also account for demographics, injury de-
tails, symptoms, and signs merits further study.
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APPenDIx 1. CoDe foR CAPTURInG RADIoGRAPHS InTo 350 x 300 
PIxeLS ReCTAnGLe

#load libraries and packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pydicom
import os
import sys
import pickle
from scipy import ndimage

savefile = directory

#load file
df = pd.read_pickle(savefile)  #load savefile
df

# create dictionary to lookup images
ext=directory
pt_list=os.listdir(ext)
#enter second nested file
print(ext)
print(pt_list)

d={}
for f in pt_list:
if f==’.DS_Store’:
continue
pt_list2 = ext + ‘/’ + f
dir2 = os.listdir(pt_list2)
extlist = []
for dcmfile in dir2:
if dcmfile==’.DS_Store’:
continue
dcm_ext = pt_list2 + ‘/’ + dcmfile
extlist.append(dcm_ext)
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d[f] = extlist

#find radiograph to crop and resize
pydicom.dcmread(d[‘xx’][x])

#ptn
p=’xx’
#projection
x=#
ext=d[p][x]
print(ext)
#print(‘study exists of:’, len(d[list(d.keys())[p]]), ‘images’)
dcm=pydicom.dcmread(ext)
date=dcm.StudyDate
time=dcm.StudyTime[:6]
image = dcm.pixel_array
print(‘date_time_stamp:’,date, time)
print(dcm.pixel_array.shape)
plt.imshow(image, cmap=plt.cm.bone)

print(df.iloc[-5:,:])

def rotate_img(img, angl):
rotated_img = ndimage.rotate(img, angle = angl, reshape=False)
return rotated_img

#dcm=pydicom.dcmread(ext).pixel_array
angl = x
image = rotate_img(image, angl)
plt.imshow(image, cmap=plt.cm.bone)
plt.show()

def crop_dicom(img, y_start, x_start, len_y, len_x):
#pix_array=pydicom.dcmread(extension).pixel_array
pix_array = img
print(pix_array.shape)

pix_crop=pix_array[y_start:y_start+len_y,x_start:x_start+len_x]
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return pix_crop

imt=’pa’

if imt==’pa’:
ly=350
lx=300
elif imt==’lat’:
ly= 350
lx = 300
elif imt==’obl’:
ly=350
lx=300
elif imt==’up’:
ly=350
lx=250

crop_img=crop_dicom(image, y_start= 50, x_start=0, len_y=ly,len_x=lx)
plt.imshow(crop_img, cmap=plt.cm.bone)
shape=crop_img.shape
print(‘date_time_stamp:’,date, time)
print(shape)

#save cropped radiographs
def append_data(img_array, ptno, shape, df, type_):
newrow=[ptno, shape, img_array, type_]
df.loc[len(df)]=newrow
return df
df=append_data(crop_img, p, shape, df, imt)
df.iloc[-5:,:]

#write to disk
df.to_pickle(savefile)



75

Deep Learning to Detect Scaphoid Fractures

APPENDIx 2

Pre-processing of Data
The algorithm was optimized according to the following train, validation, and test split: 
180-20-100. All radiographs were manually cropped and resized to match the predefined 
image size of the deep learning framework (that is, a 200 x 300 pixels rectangle). We 
downscaled the pixel intensity by averaging each pixel based on minimum and maxi-
mum intensity of the radiograph. To increase robustness of the algorithm, we 10-fold 
augmented the training and validation set by using rotation (-15° and +15°), shifting of 
height and width (10%), zooming (between 0.8 and 1.1), and horizon flipping. The test 
set only composed of original radiographs.

Training of Deep Learning Framework
We used keras API (https://keras.io) to run on top of the open-source Imagenet pre-
trained Visual Geometry Group (VGG) 16-layer convolutional neural network (CNN) 7. 
We ran Intel(R) Xeon(R) W-2175 (clock speed 2.50GHz, 64 GB RAM) with NVIDIA TITAN 
V (boostclock 1455 MHz, 12 GB HBM2). The outputs of the last CNN-layer were fine-
tuned to our scaphoid fracture dataset with a concatenation operation followed by the 
fully connected top network. End-to-end fine-tuning of the last convolutional layers was 
performed, while earlier layers—containing more generic features—were kept fixed. 
We decided not to further fine-tune the convolution layers because it resulted in more 
overfitting.

To train the algorithms for 30 epochs, we applied a grid search to find the optimal 
parameters (including fully connected top architecture). The best three top models—
evaluated with accuracy—were trained with an early stopping criterion of 0.001 over the 
last five epochs. The optimal hyper parameters were used to fine tune the last convolu-
tional layers of the four parallel VGG16 CNN architectures.
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Table 2. Optimal settings for algorithms

Model description and optimization Optimal settings

Algorithm 1

Model architecture (nodes) 256

Activation/weight regularization term per layer 1e-4/1e-3

Use of drop-out layer TRUE

Drop-out in drop-out layer 0.5

Learning rate 1.00E-04

Algorithm 2

Model architecture (nodes) 512-1024

Activation/weight regularization term per layer 1e-5/1e-4

Use of drop-out layer TRUE

Drop-out in drop-out layer 0.5

Learning rate 1.00E-04

Algorithm 3

Model architecture (nodes) 512-1024-512

Activation/weight regularization term per layer 1e-6/1e-4

Use of drop-out layer TRUE

Drop-out in drop-out layer 0.5

Learning rate 1.00E-04

Final specifications of best algorithms with the corresponding optimized hyperparameters

Table 1. Hyperparameter optimization

Hyperparameter Values applied in grid search

Fully connected top layers and the nodes used 
in the top layers

256, 512, 1024, 4096, 256-512, 256-1024, 512-512, 512-1024, 
1024-512, 1024-1024, 4096-1024, 512-512-512, 512-1024-512, 
512-4096-512, 4096-1024-512

Activation / weight regularization term per 
layer

1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1

Use of dropout layer True / False

Drop-out in the drop-out layer 0.3, 0.4, 0.5,0.6,0.7

Learning rate 1e-3, 1e-4, 1e-5

Batch size 32

Optimizer
Stochastic gradient decent without Nesterov momentum of 
0.9

Epochs trained 30, 50

To train the algorithms for 30 epochs, we applied a grid search to find the optimal parameters (including fully connected 
top architecture). The best three top models--evaluated with accuracy--were trained with an early stopping criterion of 
0.001 over the last 5 epochs. The optimal hyper parameters were used to fine tune the last convolutional layers of the 4 
parallel VGG16 CNN architectures.
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APPenDIx 3: oDDS RATIoS foR AGe AnD Sex AnD eqUATIon 
foRMULA of THe PReDICTIon MoDeL

odds ratios
Age: 0.97 (95% CI: 0.94 – 1.01)
Sex: 2.55 (95% CI: 0.76 - 8.55)

Linear predictor
-1.816599 + (probability CNN) * 4.680619 + (age) * -0.0265213 + (sex) * 0.9346456

Equation formula to calculate probability of a scaphoid fracture
EXP(Linear Predictor) / (EXP(Linear Predictor) + 1)
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AbSTRACT

background
Evidence suggests that there is substantial and unexplained surgeon-to-surgeon 
variation in recommendation of operative treatment for fractures of the distal radius. 
We surveyed a global collaborative to understand bias and variation among surgeons 
to identify patient factors that influence recommendation for operative treatment of a 
fracture of the distal radius.

Question/Purposes
(1) What factors are associated with recommendation for operative treatment of a 
fracture of the distal radius? (2) Which factors are rated as the most influential on recom-
mendation of operative treatment?

Methods
One hundred thirty-one upper extremity and fracture surgeons evaluated 20 fictitious 
patient scenarios with randomly assigned factors (e.g. personal, clinical, and radiologic 
factors) for patients with a fracture of the distal radius. They addressed the following 
questions: (1) Do you recommend operative treatment for this patient (yes/no)? We 
determined the influence of each factor on this recommendation using random forest 
algorithms. Also, participants rated the influence of each factor—excluding age and 
sex— on a scale from 0 (not at all important) to 10 (extremely important).

Results
Random forest algorithms determined that age and angulation were having the most 
influence on recommendation for operative treatment of a fracture of the distal radius. 
Angulation on the lateral radiograph and presence or absence of lunate subluxation 
were rated as having the greatest influence and smoking status and stress levels the 
lowest influence on advice to patients.

Conclusions
The observation that—other than age—personal factors have limited influence on sur-
geon recommendations for surgery may reflect how surgeon cognitive biases, personal 
preferences, different perspectives, and incentives may contribute to variations in care. 
Future research can determine whether decision aids—those that use patient-specific 
probabilities based on predictive analytics in particular—might help match patient 
treatment choices to what matters most to them, in part by helping to neutralize the 
influence of common misconceptions as well as surgeon bias and incentives.
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InTRoDUCTIon

In the Netherlands, about 20-30% of patients with a fracture of the distal radius are 
treated operatively compared to 70-80% in Australia.1,2 Given that fracture patterns are 
similar in both countries, it is likely that surgeons are having undue bias on treatment 
decisions.

Decision aids are intended to neutralize the influence of the surgeon and limit misdi-
agnosis of patient preferences by ensuring their test and treatment choices are based 
on what matters most to them (their values) rather than misconceptions or surgeon 
bias. Estimates of the probabilities of various adverse events and the level of symptoms 
and limitations based on their specific injury pattern and personal characteristics might 
improve the appeal and utility of the decision aid. Artificial-intelligence (AI) algorithms–
probability calculators developed by programs that can iteratively learn from additions 
of data–may provide more detailed and accurate estimates for various outcomes.

To date, data-driven models can help determine who will develop diseases such as 
diabetes type 2 and chronic kidney disease, and they can estimate years of survival in 
patients with bone tumours.3-6 More sophisticated statistical models using large amounts 
of data may result in better probability modelling, which can facilitate decision-making. 
As a first step in developing AI predictive algorithms for fractures of the distal radius, 
it might help to understand factors influencing surgeon bias and variation in recom-
mendations for surgical management. Scenario-based survey studies help determine 
the sources of potentially unhelpful practice variation. Variation that persists in spite of 
clinical guidelines and appropriateness criteria.

Therefore, we surveyed a large international group of surgeons 1) to identify factors 
in fictitious case scenarios that influence recommendation for operative treatment of 
a fracture of the distal radius; and 2) to rate these same factors on a scale from 0 to 
10. These factors can subsequently be used to develop distal radius fracture specific 
decision aids intended to help patients come to decisions consistent with their values, 
independent of surgeon bias.

MeTHoDS

Participants
All 630 members of the ‘Science of Variation Group’ (SOVG) were invited to complete our 
survey. The SOVG is a global web-based collaboration based on camaraderie, and with-
out financial incentive, intended to evaluate variation in interpretation, classification, 
and treatment of musculoskeletal illness.7,8 Among 178 members that felt this survey 
pertained to their area of expertise, 131 (74%) completed the survey and were kept for 
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analysis (Table 1). Participants specialized in fracture surgery or upper-extremity. We 
used SurveyMonkey (Palo Alto, CA, USA) to create the online survey. The invitation was 
sent on March 29, 2019 with 2 reminders at 2 and 4 weeks.

Table 1: Surgeon and practice characteristics

Total = 131

N %

Sex

 Male 121 92

 Female 10 8

Location of practice

 Canada/United States 67 51

 Europe 40 31

 Other* 24 18

Subspecialty

 Hand and wrist 63 48

 Orthopaedic trauma 53 40

 Shoulder and elbow 15 11

Years in practice

 0-5 30 23

 6-10 31 24

 11-20 56 43

 21-30 14 11

Cases per month

 0-5 55 42

 6-10 52 40

 >10 24 18

Supervising trainees

 Yes 16 12

 No 115 88

N = number of participating surgeons.
*Other locations of practice were Asia in 2 (2%), Australia in 5 (4%), and South-America in 17 (13%)
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Factors Influencing Surgeon Recommendation for Operative Treatment
We presented each participating surgeon a unique set of 20 randomly created fictitious 
scenarios of patients with a fracture of the distal radius. For each patient scenario, 
participating surgeons were asked: Do you recommend operative treatment for this 
patient (yes/no)? The following 20 factors were randomly assigned in each scenario: 1) 
age (either between 43-57 years or 63-77 years); 2) sex (male versus female); 3) smoking 
status (yes versus no); 4) mechanism of injury (high-energy versus low-energy); 5) health 
and activity level of patient (healthy and active versus infirm and inactive); 6) patient 
wishes to avoid surgery (yes versus no); 7) coping strategies (very effective versus moder-
ately effective); 8) psychological distress (moderate symptoms of depression or anxiety 
versus slight symptoms of depression or anxiety); 9) stress (moderate financial, housing, 
health or relationship stress versus slight stress); 10) step-off (<2mm versus ≥2mm); 
11) gap (<2mm versus ≥2mm); 12) radial shortening (<3mm versus ≥3mm); 13) radial 
angulation (≥15° dorsal angulation versus ≥20° volar angulation versus neither volar 
nor dorsal angulation); 14) radial inclination (≥15° versus <15°); 15) lunate subluxation 
(presence or absence); 16) dorsal metaphyseal comminution (presence or absence); 17) 
volar metaphyseal comminution (presence or absence); 18) volar rim fracture (presence 
or absence); 19) die punch fragment (presence or absence); and 20) volar lunate facet 
fragment (presence or absence).

Surgeon Rating of Factor Influence
Each participating surgeon rated the patient factors for influence on advice to patients 
on a scale from 0 (not at all important) to 10 (extremely important). Age and sex were 
accidentally omitted.

Statistical analysis
We used random forest algorithms to determine the influence of each patient factor 
on recommendation for surgery in the patient scenarios.9 Random forest is a machine 
learning technique commonly used to measure the relative influence (referred to as 
importance) of each variable on variation in the outcome. The factor with the largest 
influence on decisions is discerned via analysis of multiple, mathematically created de-
cision trees based on conditional statements (i.e. if a condition is met, then an action is 
performed). The influence of all other factors is then compared to this factor by dividing 
the score of each variable over the factor with the largest influence. The most important 
variable has a score of 1.0.

Among the rated list of 18 patient factors, factors influencing surgical decision-making 
were presented with mean and standard deviation (SD).

There were no missing data. All statistical analyses were performed using Stata 15.0 
(StataCorp LP, College Station, TX).
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ReSULTS

Factors Influencing Surgeon Recommendation for Operative Treatment
Random forest algorithms showed that age was rated most influential and assigned 
a variable influence of 1 (Figure 1). Angulation was the second most influential factor 
(ranked 0.78 due to its relative influence). All other factors, varying from 0.67 (patient 
factor: avoid surgery) to 0.63 (patient factor: gap), were deemed of less influence.

Surgeon Rating of Factor Influence
Participants rated angulation (≥15 dorsal vs ≥20 volar vs. neither volar nor dorsal angu-
lation) as having greatest influence on recommending operative treatment with a mean 
of 7.8 (SD 1.6), followed by presence or absence of lunate subluxation with a mean of 7.7 
(SD 1.9) (Table 2). Smoking status (yes/no) was rated as having lowest influence (mean 
3.0; SD 2.5), followed by stress (moderate financial, housing or relationship stress vs. 
slight; mean 4.0; SD 2.3).

figure 1: Factor influence depicted for all patient factors included in 20 ‘fictitious’ case scenarios. Between 
parentheses factor influence for each variable.
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DISCUSSIon

Surgeons seem to have undue bias on a decision for operative treatment of a fracture of 
the distal radius.1,2 Decision aids are intended, in part, to reduce treatment inefficiencies 
and practice variation.10 To inform efforts to guide people to a decision based on what 
matters most to them and not based on misconceptions or biases, we studied factors 
that have the strongest influence on surgeon recommendations. Based on ‘fictitious’ 
case scenarios, it seems that age and angulation have the strongest influence on sur-
geon offer of operative treatment. Radiographic parameters and fracture characteristics 
were rated most important for guiding patients to operative or non-operative treatment.

This study has several limitations. First, the reader needs to consider whether the 
participating surgeons are representative of the average surgeon. Most participants 
work in academic practice, which might limit generalizability. On the other hand, prac-
tice setting accounts for minimal variation in our studies. Furthermore, surgeons are 
mainly from North America and Europe (107 out of 131 participating surgeons [82%]). 
Second, prior studies with similar ‘fictitious’ case scenario survey designs only incor-
porated 5 to 6 factors.11,12 The number of patient factors in our case scenarios may have 
interfered with surgical decision-making. As a result, most factors–except age and an-

Table 2: List of factors influencing outcome as rated by participants on a scale from 0 to 10

Mean
(±standard deviation)

Angulation (≥15 dorsal vs. ≥20 volar vs. neither volar nor dorsal angulation) 7.8 ± 1.6

Lunate subluxation (presence or absence) 7.7 ± 1.9

Die punch (presence or absence) 7.3 ± 1.9

Volar lunate facet (presence or absence) 7.2 ± 2.0

Step-off (<2mm vs. ≥2mm) 7.1 ± 2.0

Volar metaphyseal comminution (presence or absence) 6.9 ± 2.3

Volar rim (presence or absence) 6.9 ± 2.1

Radial shortening (<3mm vs. ≥3mm) 6.8 ± 2.0

Health and activity level of patient (healthy and active vs. infirm and inactive) 6.6 ± 2.3

Dorsal metaphyseal comminution (presence or absence) 6.4 ± 2.3

Patient wishes to avoid surgery (yes/no) 5.9 ± 2.4

Radial inclination (≥15 vs. <15) 5.9 ± 2.1

Gap (<2mm vs. ≥2mm) 5.5 ± 2.3

Mechanism of injury (high vs. low-energy) 5.4 ± 2.6

Effective coping strategies (very effective vs. moderately effective) 4.7 ± 2.3

Psychological distress (moderate symptoms of depression or anxiety vs. slight) 4.2 ± 2.4

Stress (moderate finanical, housing, or relationship stress vs. slight) 4.0 ± 2.3

Smoking status (yes/no) 3.0 ± 2.5



Chapter 5

88

gulation–seem to have comparable influence on treatment recommendations. Indeed, 
Halford et al.13 found that humans are only capable of processing four variables into a 
single cognitive representation at a time. Third, although each fictitious case scenario 
assigned each patient factor (including age and sex), we accidentally forgot to include 
age and sex as patient factors in the list where surgeons ranked importance. Given 
that age had substantial influence in the patient scenarios, it would have likely been 
ranked highly. Fourth, we only used categorical variables in our scenarios to facilitate 
statistical analysis. For example, angulation was categorized. This may have led to some 
confusion. For instance, we anticipate some surgeons may not have clearly understood 
“neither volar nor dorsal angulation.” Our chosen threshold (e.g. volar angulation ≥20°) 
were not extreme enough to create clear indications for surgery for many surgeons. 
These types of potential weaknesses apply to most studies of artificial patient scenarios. 
Fifth, radial shortening was one of the factors surveyed in our study, but ulnar variance 
is the preferred measure nowadays. Sixth, including other factors such as presence or 
absence of polytrauma or carpal tunnel syndrome may also have been of interest, but 
were not included as we decided to specifically focus on 20 factors that are considered 
most important for distal radius fractures. Seventh, the randomization process may 
have created rare combinations such as dorsally displaced fractures with volar lunate 
facet fractures, but this should be uncommon enough to have a limited influence. In ad-
dition, one should keep in mind that psychosocial factors such as psychosocial distress 
or effective coping strategies may have been assessed differently during a face-to-face 
assessment compared to fictive written case scenarios. As such, face-to-face evaluation 
may even introduce more surgeon bias, potentially resulting in greater variation than 
already found in this study. This potentially may also apply to radiographs instead of 
concrete written descriptions.

We found age and angulation to be the most influential factors for recommending 
operative treatment, while all other patient factors partitioned the data in a top-down 
decision tree structure in subsets with similar gained information. One can conclude 
that the impact from all other factors is similar and a hierarchy of impact could not be 
discerned among these factors. Kyriakedes et al.12 also found that age–together with 
fracture displacement–is associated with surgeon recommendation for operative treat-
ment of distal radius fractures. Data driven computer algorithms have the potential to 
provide estimated probabilities of treatment outcomes directly to patients, which might 
limit the influence of surgeon bias and preferences.14,15 And computers can account for 
more factors simultaneously than humans.

The finding that surgeons rate radiographic parameters and fracture characteristics 
as having greater influence on treatment recommendations than patient preferences, 
health, activity level, mind-set, and circumstances suggests that surgeons feel they are 
doing their best when they stick to the proper pathoanatomical indications. On the 
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other than this finding does suggest that surgeons may underestimate the influence of 
personal factors on ultimate outcomes when guiding patients as they choose a treat-
ment strategy.16-20

The discrepancy between what surgeons describe as important factors and what the 
statistical analysis demonstrates are influencing recommendations are evidence of 
surgeon-to-surgeon variation in the relatively influence of various factors, and perhaps 
the degree to which stated importance matches actual influence. Such discrepancies 
between declared and measured influence may reflect surgeon cognitive biases, past 
experiences, incentives, and personal preferences. For instance, surgeon personality 
traits, such as self-awareness or uncertainty, are substantially related to treatment deci-
sions in musculoskeletal fracture care.21,22 In addition, surgeons are less likely to choose 
surgery for themselves than they are to recommend surgery for a patient.23

Personal factors seem to have limited influence on surgeon recommendation for 
operative treatment. Surgeons may be estimating probabilities of various outcomes 
largely based on radiographic parameters, making a value judgement about those 
estimates, and then making a recommendation to patients. Future studies should focus 
on analysis of data by using sophisticated predictive analytics commonly referred to as 
artificial intelligence. This may provide more accurate estimates of various outcomes 
than surgeon expertise, wisdom, and gestalt. Furthermore, it may go without saying 
that what matters most to patients (patient values) ought to take precedence over what 
matters to surgeon (surgeon values, incentives, and biases).
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AbSTRACT

background
For fracture care, radiographs and two-dimensional (2-D) and three-dimensional (3-D) 
CT are primarily used for preoperative planning and postoperative evaluation. Intraar-
ticular distal radius fractures are technically challenging to treat, and meticulous preop-
erative planning is paramount to improve the patient’s outcome. Three-dimensionally 
printed handheld models might improve the surgeon’s interpretation of specific fracture 
characteristics and patterns preoperatively and could therefore be clinically valuable; 
however, the additional value of 3-D printed handheld models for fractures of the distal 
radius, a high-volume and commonly complex fracture due to its intraarticular configu-
ration, has yet to be determined.

Questions/purposes
(1) Does the reliability of assessing specific fracture characteristics that guide surgical 
decision-making for distal radius fractures improve with 3-D printed handheld models? 
(2) Does surgeon agreement on the overall fracture classification improve with 3-D 
printed handheld models? (3) Does the surgeon’s confidence improve when assessing 
the overall fracture configuration with an additional 3-D model? 

Methods
We consecutively included 20 intraarticular distal radius fractures treated at a Level 
1 trauma center between May 2018 and November 2018. Ten surgeons evaluated the 
presence or absence of specific fracture characteristics (volar rim fracture, die punch, 
volar lunate facet, dorsal comminution, step-off > 2 mm, and gap > 2 mm), fracture 
classification according to the AO/Orthopaedic Trauma Association (OTA) classification 
scheme, and their confidence in assessing the overall fracture according to the clas-
sification scheme, rated on a scale from 0 to 10 (0 = not at all confident to 10 = very 
confident). Of 10 participants regularly treating distal radius fractures, seven were or-
thopaedic trauma surgeons and three upper limb surgeons with experience levels rang-
ing from 1 to 25 years after completion of residency training. Fractures were assessed 
twice, with 1 month between each assessment. Initially, fractures were assessed using 
radiographs and 2-D and 3-D CT images (conventional assessment); the second time, 
the evaluation was based on radiographs and 2-D and 3-D CT images with an additional 
3-D handheld model (3-D printed handheld model assessment). On both occasions, 
fracture characteristics were evaluated upon a surgeon’s own interpretation, without 
specific instruction before assessment. We provided a sheet demonstrating the AO/
OTA classification scheme before evaluation on each session. Multi-rater Fleiss’s kappa 
was used to determine intersurgeon reliability for assessing fracture characteristics and 
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classification. Confidence regarding assessment of the overall fracture classification 
was assessed using a paired t-test.

Results
We found that 3-D printed models of intraarticular distal radius fractures led to no 
change in kappa values for the reliability of all characteristics: volar rim (conventional 
kappa 0.19 [95% CI 0.06 to 0.32], kappa for 3-D handheld model 0.23 [95% CI 0.11 to 
0.36], difference of kappas 0.04 [95% CI -0.14 to 0.22]; p = 0.66), die punch (conventional 
kappa 0.38 [95% CI 0.15 to 0.61], kappa for 3-D handheld model 0.50 [95% CI 0.23 to 
0.78], difference of kappas 0.12 [95% CI -0.23 to 0.47]; p = 0.52), volar lunate facet (con-
ventional kappa 0.31 [95% CI 0.14 to 0.49], kappa for 3-D handheld model 0.48 [95% CI 
0.23 to 0.72], difference of kappas 0.17 [95% CI -0.12 to 0.46]; p = 0.26), dorsal comminu-
tion (conventional kappa 0.36 [95% CI 0.13 to 0.58], kappa for 3-D handheld model 0.31 
[95% CI 0.11 to 0.51], difference of kappas -0.05 [95% CI -0.34 to 0.24]; p = 0.74), step-off 
> 2 mm (conventional kappa 0.55 [95% CI 0.29 to 0.82], kappa for 3-D handheld model 
0.58 [95% CI 0.31 to 0.85], difference of kappas 0.03 [95% CI -0.34 to 0.40]; p = 0.87), 
gap > 2 mm (conventional kappa 0.59 [95% CI 0.39 to 0.79], kappa for 3-D handheld 
model 0.69 [95% CI 0.50 to 0.89], difference of kappas 0.10 [95% CI -0.17 to 0.37]; p = 
0.48). Although there appeared to be categorical improvement in kappa values for some 
fracture characteristics, overlapping CIs indicated no change. Fracture classification did 
not improve (conventional diagnostics: kappa 0.27 [95% CI 0.14 to 0.39], conventional 
diagnostics with an additional 3-D handheld model: kappa 0.25 [95% CI 0.15 to 0.35], 
difference of kappas: -0.02 [95% CI -0.18 to 0.14]; p = 0.81). There was no improvement in 
self-assessed confidence in terms of assessment of overall fracture configuration when 
a 3-D model was added to the evaluation process (conventional diagnostics 7.8 [SD 0.79 
{95% CI 7.2 to 8.3}], 3-D handheld model 8.5 [SD 0.71 {95% CI 8.0 to 9.0}], difference of 
score: 0.7 [95% CI -1.69 to 0.16], p = 0.09).

Conclusions
Intersurgeon reliability for evaluating the characteristics of and classifying intraarticular 
distal radius fractures did not improve with an additional 3-D model. Further studies 
should evaluate the added value of 3-D printed handheld models for teaching surgical 
residents and medical trainees to define the future role of 3-D printing in caring for 
fractures of the distal radius.
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InTRoDUCTIon

Orthopaedic trauma surgeons have conventionally used radiographs and two-
dimensional (2-D) and three-dimensional (3-D) CT images for preoperative planning.1 
In general, 2-D and 3-D CT images have improved reliability for the classification of frac-
tures compared with radiographs,1-4 but classification remains an inconsistent exercise, 
often limited by substantial between-surgeon variation. Several studies reported poor 
reproducibility of fracture classifications and characterization, as well as large variation 
in subsequent treatment decision-making.5-7 For distal radius fractures, a previous study 
showed that the AO classification using radiographs and 2-D and 3-D CT images among 
a large international group of surgeons resulted in substantial agreement for Type A 
fractures, but only fair agreement for Type B fractures and moderate agreement for Type 
C fractures.8

One could argue that for surgical decision-making, fracture characterization—the 
description of key elements of a fracture that might influence the decision of whether 
or how to perform surgery—is more important than fracture classification. For instance, 
3-D CT images improve reliability and accuracy for recognizing specific characteristics 
of distal radial fractures.1 In light of that, it is reasonable to wonder whether 3-D printed 
models of complex intraarticular fractures might be even more helpful; these models 
have become relatively inexpensive and relatively available. Prior studies have found 
that 3-D printed handheld models improved the reliability of classifying acetabular 
fractures and recognizing specific distal humerus and coronoid fracture characteris-
tics.9-11 For distal radius fractures, the additional clinical value of 3-D handheld models 
for patient-clinician communication have been reported, but they did not address 
characterization and classification.12 To the best of our knowledge, there are no studies 
reporting on the additional preoperative clinical value of 3-D printed handheld models 
to recognize fracture characteristics and agree on the classification of intraarticular 
distal radius fractures. As so, the potential of 3-D handheld models for preoperative 
management, especially for a high-volume fracture that is often challenging due to its 
articular involvement, has yet to be determined.

Therefore, we asked: (1) Does the reliability of assessing specific fracture character-
istics that guide surgical decision-making for distal radius fractures improve with 3-D 
printed handheld models? (2) Does surgeon agreement on the overall fracture classifica-
tion improve with 3-D printed handheld models? (3) Does the surgeon’s confidence im-
prove when assessing the overall fracture configuration with an additional 3-D model?
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PATIenTS AnD MeTHoDS

Study Design and Participants
This cross-sectional survey was approved by our institutional review board. We consecu-
tively included 20 patients 18 years and older with an intraarticular distal radius fracture 
(AO Type 23 B1 to C3) who presented to a Level 1 trauma center between May 2018 and 
November 2018. We searched the picture archiving and communication system, using 
the term “CT wrist”, to identify patients who had a wrist CT scan. Only patients with 
availability of corresponding radiographs and 2-D and 3-D CT images were selected. Ten 
surgeons, of whom seven were fellowship-trained orthopaedic trauma surgeons and 
three were upper-limb surgeons working at the same Level 1 trauma center from which 
the patients were selected, were asked to participate as observers. Among the surgeons, 
experience ranged between 1 and 25 years after completion of residency training. All 
observers determined six fracture characteristics and classified the fracture according 
to the AO/Orthopaedic Trauma Association (OTA) Fracture and Dislocation Classifica-
tion.13 Participants then indicated their overall confidence regarding the fracture’s con-
figuration. Fracture characteristics were evaluated upon a surgeon’s own interpretation, 
without instruction before assessment. An information sheet demonstrating the AO/
OTA classification scheme before assessment was provided. A surgeons’ confidence was 
determined on an ordinal Likert scale ranging from 0 to 10.

Data were collected using standardized outcome sheets. Observations were made with 
1 month between each assessment. The initial evaluation was based on radiographs 
and 2-D and 3-D CT images; the second evaluation was based on radiographs and 2-D 
and 3-D CT images with an additional 3-D printed handheld model.

Survey Design
The survey included 20 patients, and for each patient, we asked the surgeons the fol-
lowing questions: (1) Are there any of the following fracture characteristics? (Volar rim 
fracture, die punch, involvement of the volar lunate facet, dorsal comminution, step-off 
> 2 mm, and gap > 2 mm). (2) According to the AO/OTA’s classification system,14 how 
would you classify the fracture? (AO Type 23 B1 to C3). And, (3) On a scale from 0 to 10, 
how confident are you about the overall fracture according to the classification scheme 
(0 = not at all confident to 10 = very confident)?

We considered a die punch fracture as a central impacted intraarticular fragment. 
A volar rim fragment is distal from the watershed line where the radiolunate ligament 
originates. As such, it is located radially from the volar ulnar corner fragment.
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Image Viewer and 3-D Printing
For all patients, the Digital Imaging and Communications in Medicine (DICOM) fi les from 
all radiographs and 2-D and 3-D CT images were loaded into Horos (version 3.3.4, An-
napolis, MD, USA), an open-source medical imaging viewer (Figure 1).

An independent researcher who was not involved in the patients’ care created all 3-D 
handheld models at our facility. Axial CT images with a slice thickness < 1.0 mm were 
obtained and saved as DICOM fi les and imported into 3-D Slicer (version 4.11.0, Boston, 
MA, USA). We used a threshold of 200 Hounsfi eld units to identify the distal radius and 
its fracture fragments because this resulted in minimal distortion from the surround-
ing soft  tissue. All 3-D models were exported as surface tessellation language fi les into 
Ultimaker Cura soft ware (version 3.6, Ultimaker BV, Geldermalsen, the Netherlands) for 
fi nal preparation and subsequent conversion to G-code. The following pre-processing 
parameters were used: layer height, 0.15 mm; infi ll density, 100%; print speed, 50 mm/s; 
and extruder temperature 210° C. A 3-D printer (Ultimaker 2 +, Ultimaker BV) was used to 
create the 3-D handheld models on a 1:1 scale, with polylactic acid (PLA) as construction 
material. Total costs of 3-D handheld printed models was estimated at USD 10 per case 
(printing time about 4.5 hours [USD 2/hour overhead costs] and USD 0.50 PLA material 
cost per print).

X-ray 2D CT 3D CT

First occasion
Second occasion

3D Print

figure 1: On the fi rst occasion, radiographs, 2D- and 3D CT-scans were assessed on a 2D computer screen 
(black solid line). As part of standard protocol in our hospital, these images are obtained to optimize pre-
operative planning for fractures of the distal radius. For the second occasion, in addition to standard care, 
3D hand-held models were printed with polylactic acid (PLA) as construction material (black dotted line).
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Statistical Analysis
Multi-rater Fleiss’s kappa was used to determine the intersurgeon agreement. The kappa 
value is a chance-corrected quantitative measure representing the degree to which 
observers agree with each other. To interpret kappa values, Landis and Koch15 proposed 
the following: a kappa between 0.01 and 0.20 refl ects slight agreement, between 0.21 
and 0.40 refl ects fair agreement, between 0.41 to 0.60 refl ects moderate agreement, 
between 0.61 and 0.80 refl ects substantial agreement, and greater than 0.81 refl ects 
almost perfect agreement.

Bootstrapping (number of resamples: 1000) was used to calculate the standard error, 
z-statistic, 95% CI, and p values for the kappa values to compare groups. Diff erences in 
confi dence in assessing fracture confi guration with and without 3-D handheld model 
were compared using the paired t-test. A two-tailed p value less than 0.05 was consid-
ered signifi cant. All statistical analyses were performed using Stata 15 (StataCorp LLC, 
College Station, TX, USA). There were no missing values for any of the collected variables.

ReSULTS

3-D printed models (3-D hand held model assessment) of intraarticular distal radius 
fractures led to no improvement in kappa values for the reliability for all characteristics 
compared with radiographs with 2-D and 3-D CT images (conventional assessment): 
volar rim (conventional kappa 0.19 [95% CI 0.06 to 0.32], kappa for 3-D handheld model 
0.23 [95% CI 0.11 to 0.36], diff erence of kappas 0.04 [95% CI 0.14 to 0.22]; p = 0.66), die 
punch (conventional kappa 0.38 [95% CI 0.15 to 0.61], kappa for 3-D handheld model 
0.50 [95% CI 0.23 to 0.78], diff erence of kappas 0.12 [95% CI -0.23 to 0.47]; p = 0.52), volar 
lunate facet (conventional kappa 0.31 [95% CI 0.14 to 0.49], kappa for 3-D handheld 
model 0.48 [95% CI 0.23 to 0.72], diff erence of kappas 0.17 [95% CI -0.12 to 0.46]; p = 
0.26), dorsal comminution (conventional kappa 0.36 [95% CI 0.13 to 0.58], kappa for 3-D 
handheld model 0.31 [95% CI 0.11 to 0.51], diff erence of kappas -0.05 [95% CI -0.34 to 
0.24]; p = 0.74), step-off  > 2 mm (conventional kappa 0.55 [95% CI 0.29 to 0.82], kappa for 
3-D handheld model 0.58 [95% CI 0.31 to 0.85], diff erence of kappas 0.03 [95% CI -0.34 
to 0.40]; p = 0.87), gap > 2 mm (conventional kappa 0.59 [95% CI 0.39 to 0.79], kappa for 
3-D handheld model 0.69 [95% CI 0.50 to 0.89], diff erence of kappas 0.10 [95% CI -0.17 
to 0.37]; p = 0.48) (Table 1).

The surgeons’ agreement on the overall fracture classifi cation demonstrated no 
improvement: kappa for conventional diagnostics, 0.27 (95% CI 0.14 to 0.39); kappa for 
conventional diagnostics with an additional 3-D handheld model, 0.25 (95% CI 0.15 to 
0.35); diff erence of kappas -0.02 (95% CI -0.18 to 0.14; p = 0.81). There was no improve-
ment in self-assessed confi dence in terms of assessment of overall fracture confi gura-
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tion when a 3-D model was added to the evaluation process (conventional diagnostics 
7.8 [SD 0.79] versus conventional diagnostics with an additional 3-D handheld model 8.5 
[SD 0.71], mean difference: 0.70 [95% CI -1.69 to 0.16]; p = 0.09).

DISCUSSIon

For distal radius fractures, radiographs in combination with 2-D and 3-D CT images are 
commonly used for preoperative planning.1 Using the AO/OTA classification scheme, 
interobserver agreement among surgeons for distal radius fractures on radiographs and 
CT was substantial for Type A, fair for Type B, and moderate for Type C fractures.8 Previ-
ous experience with 3-D printed handheld models demonstrated improved reliability 
among surgeons for classification of, for example, acetabular fractures.10 The additional 
value of 3-D printed handheld models for preoperative assessment of intraarticular 
distal radius fractures is unclear. We found that 3-D printed models did not improve 
fracture characterization or confidence in the surgeon’s assessment.

This study has several limitations. First, we only selected patients with a distal ra-
dius fracture who underwent CT, as this was necessary for subsequent 3-D printing. In 
general, patients who undergo CT are more likely to have relatively complex fracture 
patterns, resulting in a spectrum bias considering all distal radius fractures. However, 
we do not believe that including a different subset of patients with simpler fracture 
patterns will affect our results. We therefore consider this a minor limitation. Second, 
surgeons performed two evaluations, and might have remembered the first at the time 
of the second. However, we felt that one month between each assessment was sufficient 
to mitigate the risk of recall bias and therefore see this as a minor limitation.1,16 Third, 
only 10 surgeons participated in our study. A higher number of observers might have 
resulted in us finding statistical differences between the first and second evaluations. 
However, the absolute difference in kappa values is small and so even if there were a 
statistical difference, we do not feel that it would be clinically relevant.

We found that an additional 3-D printed handheld model did not improve interob-
server reliability for any of the included fracture characteristics. 3-D CT images improved 
assessment of fracture characteristics (such as, articular depression, fragment displace-
ment, comminution) compared with 2-D CT images and radiographs in several studies.1 
However, there was no additional value of a 3-D printed handheld model versus 3-D 
CT images when assessing specific fracture characteristics. This finding was confirmed 
by three other studies that demonstrate no or only slight improvement of 3-D printed 
handheld models for assessment of specific fracture characteristics in coronoid, distal 
humerus, and radial head fractures over 3-D CT images (Table 2).9,11,17
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Assessment of the AO classification type did not improve with the additional use of 
3-D handheld models in our study. In line with a specific fracture characteristic assess-
ment, there seemed to be an added value of 3-D CT images over 2-D CT images and 
radiographs.2-4 However, the added value of 3-D printed handheld models in addition 
to 3-D CT images for fracture classification is debatable, as prior evidence contradicts 
our finding of no difference (Table 3). For instance, 3-D handheld models versus 3-D CT 
images did improve fracture classification of acetabular fractures (difference of kap-
pas 0.17).18 Possible explanations for this contradicting finding are: (1) evaluation of a 
different anatomical area with its own complexities and classification scheme (Judet-
Letournel19) and (2) a less frequently occurring fracture resulting in smaller caseload 
and, therefore, less experience. In a study on intraarticular calcaneal fractures, 3-D 
handheld models improved classification reliability (difference of kappas 0.22) using 
the Sanders classification.20 However, this study compared 3-D handheld models only 
to 2-D CT coronal images, leaving other 2-D CT reconstructions and 3-D CT images out 
of comparison.18

In line with previous research, confidence regarding the overall fracture configuration 
did not substantially change with an additional 3-D handheld model.12 It is reasonable to 
assume that confidence expressed by our experienced fellowship-trained surgeons was 
already high at baseline, regardless of the imaging technique used, leaving relatively 
little room for improvement with an additional 3-D printed handheld model.

There is a possibility that 3-D printed handheld models may have greater potential 
for less-experienced surgeons because these models help visualize fracture patterns in 
a more realistic 3-D view than conventional imaging. Prior studies found that reliabil-
ity of fracture classification improved for less-experienced surgeons in training ( junior 
residents and medical trainees) compared with fellowship trained orthopaedic surgeons 
when assessing acetabular and calcaneal fracture classification.10,18 One can imagine 
sitting with a resident to discuss the surgical plan for approaching, reducing, and fix-
ing certain fracture fragments based on a 3-D handheld model. Interestingly, operative 
time for intraarticular distal radius fractures reduced when 3-D models were provided 
preoperatively, and, although we did not specifically evaluate, several participants of 
our study believed that the second assessment (with a 3-D printed handheld model) 
was faster.21

At our institution, PACS automatically generates 3-D CT by reconstructing axial 2-D CT 
slices. Surgeons use these 3-D CT images together with radiographs and 2-D CT as stan-
dard care, without additional costs. The implementation of 3-D handheld models into 
clinical practice is relatively easy and straightforward nowadays as the data is available 
via standard care (DICOM files from the 2-D CT scans) and the software for pre-processing 
is open-access and intuitive to use. In addition to routinely obtained preoperative imag-
ing for intraarticular distal radius fractures, the costs associated with 3-D printed hand 
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models are about USD 10 each. Despite this, our study demonstrated no clear advantage 
of 3-D handheld models in conjunction with radiographs, 2-D and 3-D CT images and we 
therefore deem implementation of 3-D models in clinical practice unnecessary.

In conclusion, this study showed that 3-D handheld models do not improve reliability 
for assessing and classifying intraarticular distal radius fractures. Further studies should 
seek to evaluate the added value of 3-D handheld models for teaching surgical residents 
and medical trainees to define the future role of 3-D printing in caring for distal radius 
fractures.
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AbSTRACT

Aims
The aim of this study was to investigate whether intraoperative 3D fluoroscopic imaging 
outperforms dorsal tangential views in the detection of dorsal cortex screw penetration 
after volar plating of an intra-articular distal radial fracture, as identified on postopera-
tive CT imaging.

Methods
A total of 165 prospectively enrolled patients who underwent volar plating for an intra-
articular distal radial fracture were retrospectively evaluated to study three intraopera-
tive imaging protocols: 1) standard 2D fluoroscopic imaging with anteroposterior (AP) 
and elevated lateral images (n = 55); 2) 2D fluoroscopic imaging with AP, lateral, and 
dorsal tangential views images (n = 50); and 3) 3D fluoroscopy (n = 60). Multiplanar 
reconstructions of postoperative CT scans served as the reference standard.

Results
In order to detect dorsal screw penetration, the sensitivity of dorsal tangential views 
was 39% with a negative predictive value (NPV) of 91% and an accuracy of 91%; com-
pared with a sensitivity of 25% for 3D fluoroscopy with a NPV of 93% and an accuracy of 
93%. On the postoperative CT scans, we found penetrating screws in: 1) 40% of patients 
in the 2D fluoroscopy group; 2) in 32% of those in the 2D fluoroscopy group with AP, 
lateral, and dorsal tangential views; and 3) in 25% of patients in the 3D fluoroscopy 
group. In all three groups, the second compartment was prone to penetration, while the 
postoperative incidence decreased when more advanced imaging was used. There were 
no penetrating screws in the third compartment (extensor pollicis longus groove) in the 
3D fluoroscopy groups, and one in the dorsal tangential views group.

Conclusion
Advanced intraoperative imaging helps to identify screws which have penetrated the 
dorsal compartments of the wrist. However, based on diagnostic performance charac-
teristics, one cannot conclude that 3D fluoroscopy outperforms dorsal tangential views 
when used for this purpose. Dorsal tangential views are sufficiently accurate to detect 
dorsal screw penetration, and arguably more efficacious than 3D fluoroscopy.
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InTRoDUCTIon

Open reduction and internal fixation (ORIF) with a volar plate is increasingly being used 
for the treatment of a distal radial fracture.1-7 One potential technical error is protrusion 
into the dorsal compartments with penetrating screws which are obscured on lateral 
fluoroscopic imaging by Lister’s tubercle, with the risk of extensor tendon irritation and 
rupture.8 Intraoperative dorsal tangential views, in which the forearm is placed in 75° 
inclination to the operating table with the wrist in flexion, have been shown to be a 
promising technique for avoiding dorsal cortical screw penetration (Figure 1).9-11 Several 
cadaveric and preclinical studies have shown the accurate identification of screw pen-
etration using this technique.12,13 Subsequently, Ganesh et al14 were the first to report 
the incidence of dorsal cortical penetration by screws using postoperative CT scans as 
the reference standard, addressing the accuracy of dorsal tangential views. In their pilot 
study, the incidence of penetrating screws on postoperative CT scans was 17% (five of 
30 patients).

In orthopaedic trauma, previous authors have described increased rates of revision 
intraoperative fixation using advanced 3D fluoroscopic imaging, reducing rates of 
further revision surgery compared with conventional 2D fluoroscopy.15-17 Mehling et al18 
described revision of misplaced screws after volar plating for 51 patients with a distal 
radial fracture. In one-third of patients, screws were found to be too long, too radial, or 
intra-articularly placed on intraoperative dorsal tangential views and these screws were 
not detected with conventional 2D fluoroscopy.

For the purpose of detecting dorsal penetration, we wished to know whether 3D fluo-
roscopy adds value compared with dorsal tangential views. Therefore, the aim of this 
retrospective study of three prospective cohorts of 165 patients treated with volar plat-
ing for a distal radial fracture was to determine whether intraoperative 3D fluoroscopy 
would be preferred to dorsal tangential views in the identification of screw penetration 
with postoperative CT imaging as the reference standard. Specifically, we compared 
1) the diagnostic performance of dorsal tangential views versus 3D fluoroscopy; 2) the 
incidence of postoperative screw penetration in three groups of intraoperative imaging 
using a) conventional 2D fluoroscopy, b) 2D fluoroscopy with dorsal tangential views, 
and c) 3D fluoroscopy; 3) specific compartments at risk using the different imaging 
modalities; and 4) the difference in number of penetrating screws in different patterns 
of fracture (AO-type 23).19
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MeTHoDS

In accordance with the Declaration of Helsinki, we retrospectively reviewed prospec-
tively collected postoperative CT scans of two prospective trials of adult patients with 
an intra-articular distal radial fracture with the approval of our Institutional Review 
Boards.20,21 This study was designed as a multicentre prospective matched cohort study, 
with retrospective image analysis of postoperative CT scans as the reference standard.

Study design – prospective matched cohort study
In the initial study, patients with fractures of the calcaneum, ankle, tibial pilon, and 
distal radius undergoing ORIF were included in a prospective multicentre randomized 
clinical trial (the EF3X- trial) investigating the effectiveness of the intraoperative use 
of advanced 3D versus 2D fluoroscopy.20 The main aim was to evaluate the quality of 
reduction and fixation of the fracture, with postoperative CT scans serving as the refer-
ence standard. We prospectively included patients that underwent volar plating of the 
distal radius. The analysis of patients with other extremity fractures, as well as the initial 
research question (i.e. quality of reduction), will be the subject of future publications.

figure 1: Diagrams of a) the dorsal tangential view, in which the arm is intraoperatively placed in 75° incli-
nation to the operating table with the wrist in flexion, enables inspection of the dorsal cortex of the distal 
radius; b) the anteroposterior view, with the arm on the table and the volar aspect upward perpendicular 
to the radiograph beam; c) the elevated lateral view, elevating the wrist 20° to enhance visualization of the 
radio-carpal joint.
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In the second study, patients with an intra-articular distal radial fracture were pro-
spectively included in a single Level-1 centre cohort study to evaluate the diagnostic 
performance characteristics of dorsal tangential views to detect dorsal screw penetra-
tion after volar plating, with postoperative CT as the reference standard. The current 
study extends this study to allow comparison of dorsal screw penetration in patients 
that did not have intraoperative dorsal tangential views, versus intraoperative dorsal 
tangential views, versus intraoperative 3D fluoroscopy, to evaluate the diagnostic per-
formance of dorsal tangential views.21

In this study, three prospective cohorts of patients with a distal radial fracture un-
dergoing ORIF from both prospective trials were combined to allow evaluation of the 
different intraoperative imaging strategies (Table 1): standard 2D fluoroscopy with an-
teroposterior (AP) and elevated lateral images (n = 55); 2D fluoroscopy with AP, elevated 
lateral, and dorsal tangential views (n = 50); and 3D fluoroscopy (n = 60).

Patient cohort 1 (2D fluoroscopy) and cohort 3 (3D fluoroscopy)
From the first study, two groups were included: the 2D and 3D fluoroscopy groups. 
Out of a total 206 patients with a distal radial fracture, 103 patients were allocated to 
2D and 103 patients to 3D fluoroscopy. For the purpose of this study, we excluded 91 
patients: 21 without a volar plate, 29 with additional dorsal and/or lateral plates that 
obscured dorsal screw penetration on postoperative CT, 29 with a postoperative CT scan 
of insufficient quality to serve as the reference standard, and 12 without a postoperative 
reference CT scan.

Table 1. Patient characteristics of the three groups.

Characteristic Cohort 1: 2DF Cohort 2: 2DF + DTV Cohort 3: 3Df

Patients, n 55 50 60

Mean age, yrs (range) 56 (24 to 76) 57 (18 to 87) 56 (22 to 79)

Sex, n (%)

Male 18 (33) 16 (32) 24 (40)

Female 37 (67) 34 (68) 36 (60)

Side of fracture, n (%)

Left 31 (56) 20 (40) 39 (65)

Right 24 (44) 30 (60) 21 (35)

AO/OTA-type 23, n (%)

A 8 (15) N/A 4 (7)

B 10 (18) 16 (32) 9 (15)

C 37 (67) 34 (68) 47 (78)

*DF, 2D fluoroscopy; 3DF, 3D fluoroscopy; DTV, dorsal tangential view; N/A, not applicable; OTA, Orthopaedic Trauma As-
sociation.



Chapter 7

118

We included the 115 patients who underwent volar plating for an intra-articular distal 
radial fracture: 55 were randomized to intraoperative 2D fluoroscopy, and 60 to 3D fluo-
roscopy. All patients were treated by or under the supervision of a senior orthopaedic 
or trauma consultant at one of the participating hospitals, between October 2009 and 
July 2014. A volar approach through the bed of flexor carpi radialis was used to expose 
the radius, as a modified Henry approach.22 Volar locking plates were used (locking com-
pression plates (LCPs) 2.4 mm23 and variable angle VA-LCPs 2.4 mm24 (DePuy Synthes, 
Oberdorf, Switzerland)). In the 2D fluoroscopy group, AP and elevated lateral views were 
used intraoperatively at the surgeons’ discretion. Dorsal tangential views were not part 
of hospital protocols and not used in the respective surgeons’ practice. Therefore, the 
2D fluoroscopy group served as the reference. 

Patient cohort 2 (2D fluoroscopy with dorsal tangential views)
From the second initial study, we included 50 prospectively enrolled patients who were 
treated with a VA-LCP (Synthes, North Ryde, Australia) for an intra-articular distal radial 
fracture at our Level-1 Trauma Centre, between May 2017 and August 2018, for retro-
spective use of this prospective data.21

Overall CT reference standard: assessment of dorsal cortex screw penetration
We defined dorsal penetration as screws penetrating by ≥ 0.5 mm.25 All patients had 
a postoperative CT scan of the wrist within one week with a slice thickness of < 1 mm 
(Somatom Definition AS+, Siemens, Erlangen, Germany). The scans were obtained in 
an axial plane and saved as Digital Imaging and Communications in Medicine (DICOM) 
files. We created triplanar reconstruction in OsiriX lite version 9 (open-source software; 
Pixmeo, Geneva, Switzerland)26 with an adjusted axial plane parallel to the screw. We 
only evaluated the most distal row of the locking plate as we consider that the anatomi-
cal space for the extensor tendons was the most limited in this region. Two observers 
(DWGL, MB), who were not involved in the patients’ care, independently evaluated each 
screw for 1) penetration of the dorsal cortex, 2) the total length of the screw, 3) the 
amount of dorsal penetration in millimetres (mm), and 4) the anatomical location of the 
violated compartment.

Measurements were obtained by following these steps (Figure 2): 1) The axial, sagittal, 
and coronal planes were adjusted parallel to each respective distal angular stable pen-
etrating screw. 2) In the axial plane, we measured the total length of the dorsal penetrat-
ing screw from its head to its tip. 3) We constructed a line at each side of the penetrating 
screw. 4) We determined the distance of penetration from the tip of the screw to the 
dorsal cortex by measuring the distance from the tip of the screw to this line. A video 
on the following URL demonstrates the measurement technique: www.traumaplatform.
org/currentprojects.
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Statistical analysis
Two independent observers not involved in patient care (DWGL, MB) conducted initial 
measurements in a set of 20 randomly selected cases in order to assess the interob-
server reliability of the new CT measurement technique. We used Kappa, a quantita-
tive measure accounting for agreement by chance among observers, to assess the 
interobserver agreement for penetration of the screw and the linear-weighted Kappa 
for the total length of a screw. Confi dence intervals (CIs) were calculated by using the 
standard error. According to Landis and Koch,27 the Kappa for dorsal screw penetration 
and the linear-weighted Kappa for the total length of a screw was almost perfect: 0.84 
(95% CI 0.74 to 0.94) and 0.82 (95% CI 0.70 to 0.95). A Kappa above 0.81 indicates almost 
perfect agreement. Interobserver agreement of screw penetration was calculated using 
an intraclass correlation coeff icient (ICC) with a two-way random-eff ects model with 
absolute agreement to assess how much each measurement diff ered from that of the 
other observer. The ICC for the distance of dorsal penetration was excellent: 0.96 (95% 
CI 0.95 to 0.97).28

D

1

2

B CA

Figure 2: Radiographs of triplanar reconstructions with the a) axial, b) sagittal, and c) coronal planes ad-
justed parallel to the distal angular stable penetrating screw. Measurements were performed in the ad-
justed axial plane parallel to the penetrating screw in the most radial position (i.e. second compartment). 
d) Number 1 is the line on which the total length of the penetrating screw was measured. Line number 2 
represents the penetrating distance of the screw.
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Patient characteristics were summarized with frequencies and percentages for cate-
gorical variables, and mean and range for continuous variables. Diagnostic performance 
characteristics were calculated according to standard formulae. Sensitivity applied to 
the proportion of actual correctly identifi ed positives. Accuracy corresponded to the 
proportion of correctly predicted penetrating and non-penetrating screws over all the 
measured screws. The negative predictive value (NPV) was defi ned as the probability of 
not having a penetrating screw when it was not detected intraoperatively. Using analysis 
of one proportion, CIs were calculated to compare sensitivity, accuracy, and the NPV for 
the diff erent imaging strategies. Overlap between lower and upper boundaries of the 
respective 95% CIs indicate no signifi cant diff erence.

We used a chi-squared test for linear trend to compare fracture patterns (i.e. AO-type 
23) among patients either with or without at least one dorsally penetrating screw. We 
determined it clinically relevant for surgeons to be able to reduce the incidence of dor-
sally penetrating screws from one in three patients as reported in the current literature 
(32%) with use of dorsal tangential views, to less than one in ten patients with use of 
3D fl uoroscopy (< 10%).29 In order to prove this clinically relevant decrease statistically, 
power calculations showed that 47 patients were needed in each group to achieve 80% 
power (α = 0.05, β = 0.20). All analyses were performed using Stata 15 (StataCorp, College 
Station, Texas, USA). Statistical signifi cance was set at p < 0.05.

ReSULTS 

Patient cohort 1 (2D fl uoroscopy): baseline incidence of postoperative 
screw penetration
Without the routine use of intraoperative dorsal tangential views or 3D fl uoroscopy, 40% 
of patients (22/55) had at least one dorsal screw penetrating (≥ 0.5 mm) on postopera-
tive CT imaging, and in 13% (7/55) two screws were penetrating. In total, 29/225 screws 
(13%) were penetrating with a mean distance of penetration of 1.1 mm (0.6 to 4.9) and a 
median length of 20 mm (interquartile range (IQR) 18 to 22).

The position of the screws at risk for dorsal penetration were 16/29 screws (55%) in 
the most radial position (second compartment), 5/29 (17%) in the second most radial 
position (second compartment), 7/29 (17%) in the most ulnar position (fourth compart-
ment), 1/29 (3%) in the second most ulnar position (third compartment), and none in 
the central position (Lister’s Tubercle, in plates with fi ve holes) (Figure 3).
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Patient cohort 2 (2D fl uoroscopy with dorsal tangential views)
The sensitivity of intraoperative dorsal tangential views to detect penetrating screws 
was 39% (95% CI 22 to 55) with a NPV of 91 (95% CI 88 to 96) and an accuracy of 91% 
(95% CI 89 to 95; Table 2).

With the routine use of dorsal tangential views, 32% of patients (16/50) had at least 
one screw penetrating on CT imaging, whereas in 4% (2/50) two screws were penetrat-
ing, and in 4% (2/50) three screws were penetrating. In total, 20/218 screws (9%) were 
penetrating with a mean distance of penetration of 1.5 mm (0.5 to 4.5) and a median 
length of 21 mm (IQR 18 to 24). Of the penetrating screws; 11/20 screws (55%) were in 
the most radial position (second compartment), 5/20 (25%) were in the second most ra-
dial position (second compartment), 3/20 (15%) were in the most ulnar position (fourth 
compartment), 1/20 (5%) was in the second most ulnar position (i.e. third compartment), 
whereas none were in the central position (in plates with fi ve holes). Additionally, 2/218 
screws (1%) were placed intra-articularly (one in the radio-carpal joint and one in the 
distal radial ulnar joint).

Radial Ulnar
Compartment 2nd Lister's 

Tubercle
3rd 4th

Screw position 1 2 central 2 1

2D

3D

2D + DTV

31 10 2 140

16 5 1 7.

11 5 1 3.

22 10 2 60

8 6 . 31

14 10 0 64

Total number penetrating screws

% of total number screws placed

Total number penetrating screws

% of total number screws placed

Total number penetrating screws

% of total number screws placed

figure 3: Diagram showing that screws in the second compartment were at highest risk of being too long, 
followed by the fourth, third, and central compartments.
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Patient cohort 3 (3D fluoroscopy)
The sensitivity of intraoperative 3D fluoroscopy was 25% (95% CI 8 to 42) with a NPV of 
93% (95% CI 90 to 96) and an accuracy of 93% (95% CI 90 to 96).

With intraoperative 3D fluoroscopy, 25% of patients (15/60) had at least one screw 
penetrating on CT imaging, whereas in 5% (3/60) two screws were penetrating. In total, 
18/248 (7%) were penetrating with a mean distance of penetration of 1.6 mm (0.7 to 4.0) 
and a median length of 20 mm (IQR 18 to 20).

Advanced imaging with fluoroscopy showed penetration in the following positions: 
8/18 screws (44%) in the most radial position (second compartment), 6/18 screws (33%) 
in the second most radial position (second compartment), 3/18 screws (17%) in the most 
ulnar position (fourth compartment), and 1/18 screw (5%) in the central position. No 
screws were penetrating in the second most ulnar position (third compartment).

Influence of fracture patterns on postoperative screw penetration
Fracture patterns, assessed with the AO-type 23 A to C, were equally distributed (p = 
0.467, chi-squared test) among patients with or without at least one penetrating screw 
(Table 3).

DISCUSSIon

Open reduction and internal fixation with a volar approach is commonly used in the 
treatment of distal radial fractures.1-7 Based on diagnostic performance characteristics 
and the incidence of screw penetration in the dorsal compartments, one can conclude 

Table 3. Patients with or without at least one penetrating screw.

Penetrating screw AO-type 23A AO-type 23B AO-type 23C p-value*

Patients, n 12 35 118

No penetrating screw, n (%) 9 (8) 23 (22) 75 (70) 0.467

≥ 1 penetrating screw, n (n%) 3 (5) 12 (21) 43 (74) 0.467

*Chi-squared test

Table 2. Diagnostic performance characteristics per imaging strategy. Cohort 1, the conventional 2D fluo-
roscopy cohort (i.e. the baseline cohort) was not included in the table.

Diagnostic performance characteristics Cohort 2: 2DF + DTV Cohort 3: 3Df

Patients, n 50 60

Sensitivity* (95% CI) 39 (22 to 55) 25 (8 to 42)

Negative predictive value* (95% CI) 91 (88 to 96) 93 (90 to 96)

Accuracy* (95% CI) 91 (89 to 95) 93 (90 to 96)

*2DF, 2D fluoroscopic; 3DF, 3D fluoroscopic; CI, confidence interval; DTV, dorsal tangential views.
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that the use of 3D fluoroscopy is not better than dorsal tangential views. Moreover, 
dorsal tangential views are arguably more efficacious for the purpose of detecting pen-
etration than advanced 3D fluoroscopy when taking into account the use of resources 
for intraoperative 3D imaging.

This study has strengths and weaknesses. A strength is the use of a new reliable CT-
measurement technique to evaluate and measure dorsal cortex screw penetration as 
the reference standard by which to compare the diagnostic performance characteristics 
of 3D fluoroscopy and dorsal tangential views. Weaknesses include the fact that the 
study was designed as an imaging study, thus lacking clinical data about the incidence 
of extensor tendon related complications such as tenosynovitis and tendon rupture. 
Secondly, it was a case control study of prospective cohorts rather than a prospective 
RCT comparing the use of dorsal tangential views with 3D fluoroscopy.

Sensitivity tended to increase for dorsal tangential views compared with 3D fluo-
roscopy (39% vs 25%), while the accuracy was high and similar between both groups 
(92% vs 93%). We suggest that the difference in sensitivity between the groups may 
be due to surgeons being familiar with dorsal tangential views as part of our hospital 
protocol, while the intraoperative use of advanced 3D fluoroscopy was not routine for 
most surgeons. When compared with the existing literature, previous studies involving 
dorsal tangential views reported sensitivities ranging from 58% to 70%, while, to the 
best of our knowledge, no authors have described the sensitivity for 3D fluoroscopy in 
the identification of dorsal screw penetration.9,30,31

The incidence of screw penetration was 25% for 3D fluoroscopy versus 32% in the 
dorsal tangential views group, and compared with a baseline incidence of 40% in the 
conventional 2D fluoroscopy group. This is comparable to one other study. A prospective 
trial evaluated the incidence of unrecognized dorsal screw penetration on postoperative 
CT scans after the intraoperative use of 2D fluoroscopy without dorsal tangential views 
or 3D fluoroscopy.32 The authors found penetrating screws in 37% of 30 patients. In 
contrast to studies using advanced imaging, Ganesh et al14 found prominent screw tips 
in 17% of 26 patients with ≥ 1 mm penetration on postoperative CT imaging with the 
intraoperative use of dorsal tangential views. Although our results suggest that screw 
penetration can be reduced, and the incidence was lowest in the most advanced imag-
ing 3D fluoroscopy group, still one in four patients had prominent dorsal screw tips in an 
extensor compartment. One could argue that using 3D fluoroscopy is time-consuming 
and expensive compared with dorsal tangential views, and requires a trained team to 
obtain the 3D images intraoperatively.

The second compartment was at the highest risk for screw penetration; however, 
while using more advanced imaging the number of penetrating screws decreased. Ad-
ditionally, no protruding screws remained in the third compartment (extensor pollicis 
longus (EPL) groove) with 3D fluoroscopy, whereas there was one penetrating screw in 
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the dorsal tangential views group (2%). This is in line with previous studies, in which 
the second compartment was the most commonly violated, followed by the third and 
fourth compartments.25,32 Despite the high number of penetrating screws in the radial 
compartment, the slope on the dorsal aspect of the radius provides some room for er-
ror, as reports on tendon ruptures in this compartment are scarce.33 In contrast, EPL 
in the third compartment might be more easily injured due to the small space and the 
narrow tendon sheath.34 The incidence of extensor tendon related complications due 
to penetrating screws varies between 0% and 30%, perhaps leaving most penetrating 
screws being asymptomatic.25,32,35,36 However, dorsal penetration can be avoided by a 
combination of meticulous technique, including subtracting 2 mm from the measured 
depth, and the use of correct imaging strategies such as dorsal tangential views. Given 
the additional costs and higher one-year complication rates associated with operative 
management compared with conservative management in older adults, one should 
aim to avoid the morbidity of extensor tendinitis, and surgical intervention for late 
rupture.2,37

Finally, although there is evidence that comminution of the dorsal cortex may hinder 
accurate intraoperative screw assessment, our findings reflect the fact that more severe 
fractures did not significantly impede the identification of dorsal cortical penetration (p 
= 0.467, chi-squared test).26

In conclusion, this study supports the use of dorsal tangential views to minimize 
dorsal penetrating screws after volar plating. One could argue that 3D fluoroscopy is not 
required to be part of a surgeon’s armamentarium to avoid screw penetration, as it did 
not improve the diagnostic performance, while implementing this technique in the daily 
routine may be labour-intensive and expensive.



125

Diagnosis of Dorsal Screw Penetration After Volar Plating

RefeRenCeS

 1. Costa ML, Achten J, Rangan A, Lamb SE, Parsons NR. Percutaneous fixation with Kirschner wires 
versus volar locking-plate fixation in adults with dorsally displaced fracture of distal radius: five-
year follow-up of a randomized controlled trial. Bone Joint J. 2019;101-B(8):978-983.

 2. DeGeorge BR, Jr., Van Houten HK, Mwangi R, Sangaralingham LR, Larson AN, Kakar S. Outcomes 
and Complications in the Management of Distal Radial Fractures in the Elderly. J Bone Joint Surg 
Am. 2020;102(1):37-44.

 3. Kakar S. Clinical Faceoff: Controversies in the Management of Distal Radius Fractures. Clin Orthop 
Relat Res. 2015;473(10):3098-3104.

 4. Koval K, Haidukewych GJ, Service B, Zirgibel BJ. Controversies in the management of distal 
radius fractures. J Am Acad Orthop Surg. 2014;22(9):566-575.

 5. Koval KJ, Harrast JJ, Anglen JO, Weinstein JN. Fractures of the distal part of the radius. The evolu-
tion of practice over time. Where’s the evidence? J Bone Joint Surg Am. 2008;90(9):1855-1861.

 6. Members of the Writing R, Voting Panels of the AUCotToDRF, Watters WC, Sanders JO, Murray J, 
Patel N. The American Academy of Orthopaedic Surgeons Appropriate Use Criteria on the treat-
ment of distal radius fractures. J Bone Joint Surg Am. 2014;96(2):160-161.

 7. Murray J, Gross L. Treatment of distal radius fractures. J Am Acad Orthop Surg. 2013;21(8):502-505.
 8. Al-Rashid M, Theivendran K, Craigen MA. Delayed ruptures of the extensor tendon secondary 

to the use of volar locking compression plates for distal radial fractures. J Bone Joint Surg Br. 
2006;88(12):1610-1612.

 9. Brunner A, Siebert C, Stieger C, Kastius A, Link BC, Babst R. The dorsal tangential X-ray view to 
determine dorsal screw penetration during volar plating of distal radius fractures. J Hand Surg 
Am. 2015;40(1):27-33.

 10. Haug LC, Glodny B, Deml C, Lutz M, Attal R. A new radiological method to detect dorsally penetrat-
ing screws when using volar locking plates in distal radial fractures. The dorsal horizon view. 
Bone Joint J. 2013;95-b(8):1101-1105.

 11. Hill BW, Shakir I, Cannada LK. Dorsal Screw Penetration With the Use of Volar Plating of Distal 
Radius Fractures: How Can You Best Detect? J Orthop Trauma. 2015;29(10):e408-413.

 12. Joseph SJ, Harvey JN. The dorsal horizon view: detecting screw protrusion at the distal radius. J 
Hand Surg Am. 2011;36(10):1691-1693.

 13. Ozer K, Wolf JM, Watkins B, Hak DJ. Comparison of 4 fluoroscopic views for dorsal cortex screw 
penetration after volar plating of the distal radius. J Hand Surg Am. 2012;37(5):963-967.

 14. Ganesh D, Service B, Zirgibel B, Koval K. The Detection of Prominent Hardware in Volar Locked 
Plating of Distal Radius Fractures: Intraoperative Fluoroscopy Versus Computed Tomography. J 
Orthop Trauma. 2016;30(11):618-621.

 15. Hufner T, Stubig T, Citak M, Gosling T, Krettek C, Kendoff D. Utility of intraoperative three-
dimensional imaging at the hip and knee joints with and without navigation. J Bone Joint Surg 
Am. 2009;91 Suppl 1:33-42.

 16. Richter M, Geerling J, Zech S, Goesling T, Krettek C. Intraoperative three-dimensional imaging 
with a motorized mobile C-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care: a prelimi-
nary report. J Orthop Trauma. 2005;19(4):259-266.

 17. Wich M, Spranger N, Ekkernkamp A. [Intraoperative imaging with the ISO C(3D)]. Der Chirurg; 
Zeitschrift fur alle Gebiete der operativen Medizen. 2004;75(10):982-987.



Chapter 7

126

 18. Mehling I, Rittstieg P, Mehling AP, Kuchle R, Muller LP, Rommens PM. Intraoperative C-arm CT 
imaging in angular stable plate osteosynthesis of distal radius fractures. J Hand Surg Eur Vol. 
2013;38(7):751-757.

 19. Müller M. The Comprehensive Classification of Fractures of Long Bones. New York, NY: Springer-
Verlag. 1990.

 20. Beerekamp MS, Ubbink DT, Maas M, et al. Fracture surgery of the extremities with the intra-
operative use of 3D-RX: a randomized multicenter trial (EF3X-trial). BMC Musculoskelet Disord. 
2011;12:151.

 21. Bergsma M, Bulstra AE, Morris D, Janssen M, Jaarsma R, Doornberg J. Accuracy of Dorsal Tan-
gential Views to Avoid Screw Penetration with Volar Plating of Distal Radius Fractures. J Orthop 
Trauma. 2020.

 22. Henry MH, Griggs SM, Levaro F, Clifton J, Masson MV. Volar approach to dorsal displaced fractures 
of the distal radius. Techniques in hand & upper extremity surgery. 2001;5(1):31-41.

 23. 2.4 mm LCP Distal Radius System. A comprehensive plating system to address a variety of fracture 
patterns. 2009;http://synthes.vo.llnwd.net/o16/Mobile/Synthes North America/Product Support 
Materials/Technique Guides/SUSA/SUTG2.4DRPltJ4569F.pdf.

 24. Variable Angle LCP Two-Column Volar Distal Radius Plate 2.4. For fragment-specific fracture 
fixation with variable angle locking technology. Surgical Technique. DePuySynthes. 2015. http://
synthes.vo.llnwd.net/o16/LLNWMB8/INT Mobile/Synthes International/Product Support Mate-
rial/legacy_Synthes_PDF/ DSEM-TRM-0815-0464_LR.pdf (date last accessed 28 April 2020).

 25. Sugun TS, Karabay N, Gurbuz Y, Ozaksar K, Toros T, Kayalar M. Screw prominences related to 
palmar locking plating of distal radius. J Hand Surg Eur Vol. 2011;36(4):320-324.

 26. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional 
DICOM images. Journal of digital imaging. 2004;17(3):205-216.

 27. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 
1977;33(1):159-174.

 28. Cicchetti D. Guidelines, criteria and rules of thumb for evaluating normed and standardized as-
sessment instruments in psychology. Psychol Assess. 1994;6:284-290.

 29. Bergsma M, Doornberg JN, Duit R, et al. Volar plating in distal radius fractures: A prospec-
tive clinical study on efficacy of dorsal tangential views to avoid screw penetration. Injury. 
2018;49(10):1810-1815.

 30. Kiyak G. In vivo confirmation of the reliability of the dorsal tangential view of the wrist. Hand Surg 
Rehabil. 2018;37(1):56-59.

 31. Oc Y, Kilinc BE, Gulcu A, Varol A, Ertugrul R, Kara A. Ultrasonography or direct radiography? A 
comparison of two techniques to detect dorsal screw penetration after volar plate fixation. J 
Orthop Surg Res. 2018;13(1):70.

 32. Diong TW, Haflah NHM, Kassim AYM, Habshi S, Shukur MH. Use of Computed Tomography in De-
termining the Occurrence of Dorsal and Intra-articular Screw Penetration in Volar Locking Plate 
Osteosynthesis of Distal Radius Fracture. J Hand Surg Asian Pac Vol. 2018;23(1):26-32.

 33. Azzi AJ, Aldekhayel S, Boehm KS, Zadeh T. Tendon Rupture and Tenosynovitis following Internal 
Fixation of Distal Radius Fractures: A Systematic Review. Plast Reconstr Surg. 2017;139(3):717e-
724e.

 34. Bianchi S, van Aaken J, Glauser T, Martinoli C, Beaulieu JY, Della Santa D. Screw impingement on 
the extensor tendons in distal radius fractures treated by volar plating: sonographic appearance. 
AJR American journal of roentgenology. 2008;191(5):W199-203.



127

Diagnosis of Dorsal Screw Penetration After Volar Plating

 35. Arora R, Lutz M, Hennerbichler A, Krappinger D, Espen D, Gabl M. Complications following in-
ternal fixation of unstable distal radius fracture with a palmar locking-plate. J Orthop Trauma. 
2007;21(5):316-322.

 36. McKay SD, MacDermid JC, Roth JH, Richards RS. Assessment of complications of distal radius 
fractures and development of a complication checklist. J Hand Surg Am. 2001;26(5):916-922.

 37. Pang EQ, Truntzer J, Baker L, Harris AHS, Gardner MJ, Kamal RN. Cost minimization analysis of 
the treatment of distal radial fractures in the elderly. Bone Joint J. 2018;100-B(2):205-211.





part VI

Summary and Discussion





Chapter 8

Discussion





133

Discussion

In this PhD thesis, efforts have been made to improve diagnosis and characterization of 
wrist trauma. The aim was to focus on diagnostic applications of artificial-intelligence 
algorithms as well as three-dimensional imaging strategies. The general discussion will 
interpret the findings and propose potential future research.

PART I: RISK STRATIfICATIon In THe eMeRGenCY DePARTMenT

Chapter 2
In line with the Ottawa Ankle Rules, simplicity of a model is believed to enhance use in 
clinical practice.1,2 By only incorporating four variables, we deployed a freely available 
machine learning prediction tool that allows to calculate the probability of a fracture of 
the distal radius following wrist trauma with 98% sensitivity and 24% specificity.

It might be of interest to study whether our machine learning-based model reduces 
radiographic referral in a randomized controlled fashion, as we speculate this may 
lower healthcare related costs and simultaneously reduce length of stay in the ED. In a 
prospective cohort study, the initially developed Amsterdam Wrist Rules –based on the 
same dataset– decreased radiographic referral with 15%: however, eight variables were 
incorporated into this clinical decision rule, of which four are considered burdensome 
for the patient (e.g. radioulnar ballottement test).3 Using the same dataset, but now 
machine learning, a comparable accuracy with only four variables was achieved.

Our online accessible application can guide patients and clinicians to improve shared-
decision making. The current model only includes distal radius fractures, but future 
studies--combining large prospective wrist fracture databases--will be valuable for 
development of more extensive models encompassing all wrist injury related fractures. 
However, carpal fractures are outside the realm of our model. Therefore, end-users 
should apply our tool in conjunction with other models to evaluate significant wrist 
fractures.

PART II: DeeP LeARnInG foR fRACTURe DeTeCTIon

Chapter 3
Recent breakthroughs and widely used online services such as Spotify and Netflix play 
a key role in artificial intelligence’s excitement. Some believe AI technology is still in 
its early days and forecasted to accelerate the global gross domestic income with 14% 
in 2030.4 While AI is entering mainstream in many medical specialties, various sectors 
already adopted these innovative strategies to boost their growth.
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Chapter 3 demonstrated that AI and human examiners perform on par evaluating 
radiographs for certain fracture detection and classification tasks, and sometimes AI 
outperforms humans. However, the majority of these studies evaluated relatively easy 
discernible fractures, for example proximal humerus and distal radius.

Utilization and implementation of fracture detection and classification models in 
clinical practice is currently faced by challenges. For instance, labelling the outcome 
of interest (i.e. reference standard) for training an AI model is often a labour intensive 
manual task requiring considerable time. Not only a wide spectrum of clinical experi-
ence among physicians (i.e. fellowship trained musculoskeletal radiologists versus radi-
ology residents) but also poor reliability of most fracture classification systems lead to 
substantial variation in quality of labelled data sets with which algorithms are trained.5-8 
Latent class analysis, Bayesian statistics, and consensus meetings among experts are 
potential ways to improve the reference standard.9,10 AI derived models are known 
for being highly complex and often inscrutable. It is therefore difficult to explain how 
certain algorithms reach their conclusion. As a result, clinicians may be reluctant to rely 
on suggestions generated by a model that cannot be fully comprehended. For the end-
user, areas indicating presence of a fracture might be useful to improve transparency, 
interpretability and trust in the model, given the closer relationship between input data 
and subsequent prediction model.11 Furthermore, large amounts of data are necessary 
to sufficiently train AI models: however, in medicine, vast quantities of data are often 
difficult to obtain. Although electronic medical records (EMRs) are collecting health data 
digitally, routine care data is often stored as “crude oil” restricting its reuse for research 
purposes.12 Finally, it is yet to be elucidated how most AI models--trained on a particular 
data set--are able to carry their previously gained experience to new circumstances (i.e. 
external validation).

Chapter 4
Clinical applications of AI have high potential to change the way we practice fracture 
care. In a research environment, viable AI models have been developed in orthopaedic 
surgery.13-16 However, careful consideration is required to determine scenarios for which 
AI applications are beneficial. Evidence suggest that scaphoid fractures are easily missed 
on radiographs in the acute setting.17 If not treated correctly, these fractures can lead to 
severe long-term consequences. Chapter 4 utilized a deep learning model to identify 
radiographically visible and occult scaphoid fractures. Using a relatively small dataset 
encompassing 300 patients, our model showed a sensitivity and accuracy on par with 
five orthopaedic surgeons, but with lower specificity.

Given that our model is not able to look beyond the outcome of interest (i.e. presence 
or absence of a scaphoid fracture), it will miss for example a scapholunate dissociation 
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or bone tumour. In contrast, orthopaedic trauma surgeons or radiologists are more 
likely to diagnose these additional relevant findings.

At this stage, attempts to create deep learning algorithms for image-based analysis 
are hindered by the difficulty of fitting real-sized radiographs.18 We speculate that more 
computer memory capacity might eventually allow incorporation of real-sized radio-
graphs into an algorithm. It is of relevance to evaluate whether model development 
with full scale image projections--reflecting clinical practice--yield better performance 
or could detect other relevant findings in the entire radiograph.

We found that incorporating age and sex demographics alone did not improve the 
performance characteristics of our model. More extensive information on physical 
examination, symptoms, and injury details added to predictions from a deep learning 
algorithm might prove valuable in developing clinical prediction rules that could ac-
curately predict presence of a scaphoid fracture following wrist trauma. Future research 
might also assess whether more data will drive model performance.

PART III: CLInICAL PReDICToRS foR SURGICAL DeCISIon MAKInG

Chapter 5
There is a dearth of evidence in many clinical scenarios. Despite clinical guidelines 
and appropriateness criteria to better facilitate distal radius fracture management, 
treatment variations dominate clinical practice.19-22 Chapter 5 was set out as a scenario-
based survey study to better understand practice variation among surgeons. Based on 
fictitious distal radius fracture case scenarios, statistical analysis revealed that age and 
angulation were most influential in recommending operative treatment.

For fractures of the distal radius, the Appropriate Use Criteria--developed by the 
American Academy of Orthopaedic Surgeons--is a decision aid to help surgeons choose 
an evidence-based treatment.23 These criteria indicate the best available option con-
sidering the following five factors: AO/OTA fracture type, mechanism of injury, patient 
activity level, patient health (American Society of Anesthesiologists’ [ASA] status), and 
other injuries. While prior studies, in line with our findings, demonstrated that age and 
fracture displacement are important factors that drive treatment recommendation 
among surgeons, these factors are not yet adopted in the Appropriate Use Criteria.24,25 
Also, low agreement between the “appropriate” treatments recommended by the Ap-
propriate Use Criteria and a surgeon’s actual given treatment were found, especially 
for more severe distal radius fracture types.25 As such, we can conclude that, in spite of 
appropriateness criteria, variation in clinical practice persists.

We speculate that factors derived from our study may provide insights that can be 
used when developing distal radius fracture specific decision aids. These decision aids 
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intend to help surgeon and patient come to a treatment choice that best matches a 
patient’s requirements and expectations. AI predictive models--sophisticated statistical 
calculators commonly developed with large amounts of data--have the potential to 
estimate tailored treatment probabilities based on a patient’s specific risk profile and 
fracture characteristics without taking preferences, misconceptions, and surgeon bias 
into account. These predictive models will limit treatment inconsistencies among sur-
geons.7,26,27 In contrast to humans, who can only cognitively process four factors at the 
same time, these computer models are able to simultaneously process far more factors 
than just four.28

PART IV: 3D PRInTInG foR PReoPeRATIVe PLAnnInG

Chapter 6
Optimal understanding of intraarticular distal radius fractures is paramount to facilitate 
preoperative planning. For distal radius fractures, 3D CT images in addition to radio-
graphs and 2D CT images improve assessment of specific fracture characteristics.29 In 
line with prior research on other anatomical fracture locations, our study demonstrated 
that combining a 3D printed handheld model for evaluating specific distal radius frac-
ture characteristics with fracture classification does not improve preoperative reliability 
among surgeons.30-32 3D handheld models for teaching surgical residents and medical 
trainees merits further study as well as determining whether using sterilized 3D hand 
held models intra-operatively might prove valuable. Today, 3D printing has become 
cheap, user-friendly, and implementation into clinical practice is straightforward. This 
enhances the widespread adoption of the 3D printing techniques into medical special-
ties. Outside its potential value for teaching, we do not recommend its use in clinical 
practice for caring of intraarticular distal radius fractures.

PART V: 3D fLUoRoSCoPY foR InTRAoPeRATIVe ASSeSSMenT

Chapter 7
Intra-operative anteroposterior and lateral 2D fluoroscopy views have been traditionally 
used to evaluate fracture reduction and implant positioning for patients with a distal 
radius fracture. However, the complex 3D shape of the dorsal cortex often obscures 
evaluation of correct screw positioning. Dorsal tangential views (DTV) have been shown 
promising for reducing post-operative iatrogenic dorsal cortex penetration after volar 
plating for distal radius fractures.33-35
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Literature is conflicting as to whether intra-operative use of 3D fluoroscopy might 
be a valuable adjunct. Also, 3D fluoroscopy detected misplaced screws in one third of 
patients that underwent volar plating for distal radius fractures: however, these screws 
were missed on conventional 2D fluoroscopy.36 On the other hand, quality of distal radius 
fracture reduction and fixation demonstrated no difference between intra-operative use 
of 2D- and 3D fluoroscopy: however, these findings might potentially be slightly under-
powered and therefore final conclusions might not be arrived at.37

In our study, we compared the intra-operative use of conventional 2DF (anteropos-
terior and elevated lateral projections), conventional 2DF with additional DTVs, and 
3D fluoroscopy by determining the post-operative incidence of dorsal cortex screw 
penetration after volar plating for a distal radius fracture. We found that 3DF did not 
improve the diagnostic performance over DTVs. Based on these findings, we deem the 
intra-operative role of 3D fluoroscopy limited for detection of dorsal cortex penetrating 
screws for fractures of the distal radius. We concur that using DTVs, as compared to 3D 
fluoroscopy, are potentially more efficient in the daily clinical routine, easier to obtain 
intra-operatively, and also less expensive.

fUTURe PeRSPeCTIVeS

There are many fragmented individual endeavours to improve trauma care. Substantial 
inconsistencies are seen among surgeons for treatment recommendation for fractures 
of the distal radius.20,21 Open-source data--preferably from institutions across different 
continents--should be collected to improve fracture detection as well as enhance treat-
ment management. At the forefront of these initiatives is the single-centre “Medical 
Information Mart for Intensive Care” (MIMIC)-database, an openly available anonymised 
data set including patient demographics, clinical data, and medications of about 60.000 
patients admitted to critical care units of Beth Israel Deaconess Medical Center.38 Using 
those databases, AI models may potentially reduce humans’ subjective interpretation as 
they only rely on input variables. On the other hand, bias in data is a problem not easily 
tackled.

A previous study incorporated about 4,000 patients to derive a formula to predict loss 
of threshold fracture alignment for distal radius fractures: however, a subsequent vali-
dation study demonstrated the calculator lacks generalisability when used in a different 
patient population.39,40 Research efforts--utilizing deep learning algorithms with large 
data sets from different institutions--might prove valuable for deriving models that can 
accurately predict or even outperform human examiners, for example to help forecast 
distal radius fracture instability.
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Another core interest for distal radius fracture management is to accurately estimate 
the patient-reported outcome for both conservative and surgical treatment. This might 
help surgeon and patient to initially decide on the best available treatment option for 
an individual patient. Artificial-intelligence algorithms, along with dynamic learning 
features, have the potential to improve over time as more patient data is provided.

Following the landmark example of the MIMIC collaborative in the field of intensive 
care medicine, our group coined the “Machine Learning Consortium” in the field of or-
thopaedic trauma surgery to enhance an open access mentality and drive synergy. The 
ML Consortium facilitates sharing of patient data and radiographs between institutions 
and across continents to combine strengths of each respective institute. For example, 
legislation and commercial contracts prohibit our collaborators at the Massachusetts 
General Hospital (MGH) in Boston to integrate their ML algorithms in the EMR. In con-
trast, such coupling of ML algorithms is legally allowed and technically facilitated at 
the University Medical Centre Groningen. Many of such endeavours are now underway 
within our ML consortium including development and internal validation of the initial 
algorithm in one centre, external validation in a subsequent collaborative centre, and 
“silent” prospective running as the ultimate test.

In summary, narrow-patterns tasks such as image-based analyses are at the forefront 
of the digital medicine AI era. Medicolegal regulations need to be confronted before 
widespread adoption into clinical practice is feasible. Although the European Union’s 
recently embedded General Data Protection Regulation ensures data protection and 
privacy across Europe, data-sharing regulation is a matter of variability among different 
countries, trust, and cost. In addition, inscrutability of many AI algorithms may not be 
able to explain why the model errs. Finally, patient behaviour has large impact on for 
example treatment outcome, but it remains elusive whether suggestions made with the 
help of AI will lead to effective action or behavioural changes.
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Summary in English

PART I: RISK STRATIfICATIon In THe eMeRGenCY DePARTMenT

Although only one third of patients presenting to the ED with wrist pain after sustaining 
an injury have a fracture of the distal radius, the majority is referred for radiographic 
evaluation. Therefore, Chapter 2 intended to develop and externally validate a machine 
learning algorithm to predict the probability of a fracture of the distal radius for patients 
presenting to the ED after sustaining wrist trauma. For this, we included 854 patients 
that were prospectively enrolled at EDs of five hospitals; 488 patients in the derivation 
cohort and 366 in the validation cohort. Among nineteen variables, we used a random 
forest algorithm to determine the most influential predictors for incorporation into the 
algorithm (i.e. age, swelling of the wrist, visible deformation, and distal radius tender to 
palpation). Four machine-learning derived algorithms were developed on the deriva-
tion cohort: boosted decision tree, support vector machine, neural network, and Bayes 
point machine. Each algorithm’s performance was assessed according to the following 
metrics: (1) c-discrimination (i.e. AUC); (2) calibration; and (3) Brier-score. All models 
showed nearly similar performance: c-statistics ranged between 0.86 and 0.88, while the 
Brier score was 0.16 for all models. Calibration slopes ranged between 0.72 and 0.84 
and calibration intercepts ranged between -0.05 and -0.21. Bayes point machine was 
the best-fit algorithm. At a threshold of 0.05, the sensitivity and specificity were 0.98 
and 0.24 respectively. The Bayes point machine algorithm was incorporated into an 
open access web-based application (accessible: http://traumaplatform.shinyapps.io/
distalradius_ed).

PART II: DeeP LeARnInG foR fRACTURe DeTeCTIon

This part starts with Chapter 3, an overview of aggregated literature (systematic review) 
addressing the accuracy and AUC of AI fracture detection and classification models. 
Also, we evaluated the performance of AI in a research setting compared with the per-
formance of human examiners. For fracture detection, we found that the AUC reflected 
near perfect prediction (range, 0.95-1.0), and the accuracy ranged from 83% to 98%. For 
fracture classification, the AUC was 0.94, and the accuracy ranged from 77% to 90%. AI 
outperformed human examiners for detecting and classifying hip and proximal humerus 
fractures, and showed equivalent performance for detecting wrist, hand and ankle frac-
tures. Fracture detection and classification using AI shows promising performance. AI 
may enhance processing and communicating probabilistic tasks in medicine, including 
orthopaedic surgery. At present, inadequate reference standard assignments to train 
and test AI is the biggest hurdle before integration into clinical workflow. The next step 
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will be to apply AI to more challenging diagnostic and therapeutic scenarios when there 
is absence of certitude.

Preliminary experience suggests that deep learning algorithms are nearly as good as 
humans in detection of common, displaced, and relatively obvious fractures (e.g. distal 
radius or hip fractures). Chapter 4 tested the utility of a deep learning algorithm for 
scaphoid fractures, often a subtle or non-displaced fracture that is difficult to diagnose 
on radiographs. Specifically, we studied: (1) the diagnostic performance characteristics 
of a deep transfer learning algorithm in detecting scaphoid fractures using four radio-
graphic imaging views; (2) whether the algorithm together with patient demographics 
would improve performance characteristics; (3) the algorithm’s diagnostic performance 
as compared to five orthopaedic surgeons; and (4) the reliability of five human observ-
ers as well as the reliability between the algorithm and human consensus. Consecutive 
patients evaluated for a possible scaphoid fracture with radiographs and CT or MRI as 
reference standard were included until we had 150 fractures and 150 non-fractures as 
defined by radiologist diagnosis. We utilized a deep learning algorithm (a convolutional 
neural network [CNN]) for automated fracture detection on radiographs. The algorithm 
had an AUC of 0.77, 72% accuracy, 84% sensitivity, and 60% specificity. Adding age and 
sex--by using a multivariable logistic regression--had no significant influence on diag-
nostic performance. Specificity favoured the orthopaedic surgeons, while sensitivity 
and accuracy did not differ between the algorithm and human observers. The reliability 
among five surgeons was substantial (Fleiss’ Kappa = 0.74). The reliability between the 
algorithm and human observers was only fair (Cohen’s Kappa = 0.34).

PART III: CLInICAL PReDICToRS foR SURGICAL DeCISIon MAKInG

Evidence suggests that there is substantial and unexplained surgeon-to-surgeon 
variation in recommendation of operative treatment for fractures of the distal radius. In 
Chapter 5, we surveyed a global collaborative to understand bias and variation among 
surgeons to identify patient factors that influence recommendation for operative treat-
ment of a fracture of the distal radius. One hundred thirty-one upper extremity and frac-
ture surgeons evaluated 20 fictitious patient scenarios with randomly assigned factors 
(e.g. personal, clinical, and radiologic factors) for patients with a fracture of the distal 
radius. They addressed the following question: Do you recommend operative treatment 
for this patient (yes/no)? We determined the influence of each factor on this recommen-
dation using random forest algorithms. Also, participants rated the influence of each 
factor--excluding age and sex--on a scale from 0 (not at all important) to 10 (extremely 
important). Random forest algorithms determined that age and angulation were hav-
ing the most influence on recommendation for operative treatment of a fracture of the 
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distal radius. Angulation on the lateral radiograph and presence or absence of lunate 
subluxation were rated as having the greatest influence and smoking status and stress 
levels the lowest. The observation that--other than age--personal factors have limited 
influence on surgeon recommendations for surgery may reflect how cognitive biases, 
personal preferences, different perspectives, and incentives may contribute to varia-
tions in care.

PART IV: 3D PRInTInG foR PReoPeRATIVe PLAnnInG

Three-dimensional printed hand-held models might improve the surgeons’ interpreta-
tion of specific fracture characteristics pre-operatively and may therefore facilitate 
management. In Chapter 6, we determined whether the reliability of six specific distal 
radius fracture characteristics improve with additional pre-operative use of 3D printed 
hand-held models. Also, reliability of fracture classification (AO-type 23) and the sur-
geons’ confidence (scale from 0 to 10) when assessing overall fracture configuration 
were assessed. On two occasions, ten surgeons evaluated 20 intraarticular distal radius 
fractures for presence or absence of the following fracture characteristics: volar rim 
fracture, die punch, volar lunate facet, dorsal comminution, step-off >2mm, and gap 
>2mm. Surgeons only used radiographs, 2D- and 3D CT-scans during the first occasion 
(i.e. conventional diagnostics). A month later, they used conventional diagnostics with 
an additional 3D printed hand-held model. We found that 3D printed hand-held models 
of intraarticular distal radius fractures led to no change in kappa values for the reliability 
of all characteristics. Fracture classification did not improve (conventional diagnostics: 
kappa, 0.27 [95% CI, 0.14 – 0.39] versus conventional diagnostics with an additional 3D 
printed hand-held model: kappa, 0.25 [95% CI, 0.15 – 0.35]). Confidence regarding over-
all fracture configuration showed no statistical difference (conventional diagnostics: 
7.8 [95% CI, 7.2–8.3] versus conventional diagnostics with an additional 3D hand-held 
model: 8.5 [95% CI, 8.0–9.0]; p=0.09).

PART V: 3D fLUoRoSCoPY foR InTRAoPeRATIVe ASSeSSMenT

Chapter 7 investigated whether 3D fluoroscopy imaging outperforms DTVs to detect 
dorsal cortex screw penetration after volar plating for an intraarticular distal radius frac-
ture. One-hundred sixty-five patients who underwent volar plating for an intraarticular 
distal radius fracture were evaluated to study three intra-operative imaging protocols: 
2D fluoroscopy imaging with antero-posterior (AP) and elevated lateral images (n=55); 
2D fluoroscopy imaging with AP, lateral, and DTV images (n=50); and 3D fluoroscopy 
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(n=60). Multi-planar reconstructions of post-operative computed tomography (CT) scans 
served as the reference standard. To detect dorsal cortex screw penetration, sensitivity 
of DTVs was 39% with a negative predictive value of 91% and an accuracy of 91%. For 3D 
fluoroscopy imaging, sensitivity was 25% with a negative predictive value of 93%, and 
an accuracy of 93%. On the CT reference standard post-operatively, we found penetrat-
ing screws in 40% of patients in the 2D fluoroscopy reference cohort; in 32% of patients 
in the 2D fluoroscopy cohort with AP, lateral and DTV images; and in 25% of patients in 
the 3D fluoroscopy cohort. The 2nd compartment was prone for penetration in all three 
imaging groups, while post-operative incidence decreased when more advanced imag-
ing was used. No penetrating screws remained in situ with 3D fluoroscopy in the third 
compartment (extensor pollicis longus [EPL] groove), and one in the DTV-group. We 
concluded that advanced intra-operative imaging aids in identifying protruding screws 
in the dorsal wrist compartments. However, one cannot conclude that 3D fluoroscopy 
outperforms DTVs for this purpose.
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Samenvatting

DeeL 1: RISICo STRATIfICATIe oP De SPoeDeISenDe HULP

Een derde van de patiënten die zich presenteren op de spoedeisende hulp na een letsel 
van de pols heeft een fractuur van de distale radius. De meerderheid van deze patiënten 
wordt echter verwezen voor aanvullende röntgendiagnostiek. In hoofdstuk 2 hebben 
wij machine learning algoritmen ontwikkeld en extern gevalideerd om te voorspellen of 
een patiënt een fractuur van de distale radius heeft. Deze algoritmen zijn ontwikkeld met 
data van 854 patiënten die prospectief zijn geïncludeerd op de spoedeisende hulp van 
vijf ziekenhuizen. De algoritmen zijn initieel getraind met 488 patiënten en vervolgens 
gevalideerd met 366 patiënten. Met behulp van random forest algoritmes zijn uiteinde-
lijk vier van de negentien variabelen opgenomen in het algoritme: leeftijd, zwelling van 
de pols, zichtbare vervorming en pijn bij palpatie van de distale radius. Een boosted 
decision tree, support vector machine, neural network, en Bayes point machine zijn 
getraind. C-discriminaties lieten een variatie zien van 0.86 tot 0.88, terwijl de Brier-score 
vergelijkbaar was voor ieder algoritme (0.16). De kalibratiehellingen varieerden tussen 
0.72 en 0.84 en kalibratiesnijpunten tussen -0.05 en -0.21. Bayes point machine was het 
best presterende algoritme, met een sensitiviteit van 98% en specificiteit van 24%. Deze 
is vervolgens ontwikkeld als een vrij toegankelijke onlineapplicatie:   (http://trauma-
platform.shinyapps.io/distalradius_ed).

DeeL II: DeeP LeARnInG VooR fRACTUUR DeTeCTIe

Het tweede deel start met hoofdstuk 3, een overzicht van de literatuur waarin de AUC 
en accuracy van kunstmatige intelligente algoritmen voor fractuur diagnose en fractuur 
classificatie uiteengezet wordt. Tevens zijn de prestaties van deze algoritmen vergeleken 
met prestaties van artsen. Voor fractuur diagnose vonden we een AUC tussen 0.95 en 1.0, 
terwijl de accuracy varieerde van 83% tot 98%. De AUC voor fractuurclassificatie was 0.94 
en de accuracy varieerde van 77% tot 90%. In vergelijking met artsen waren de kunst-
matige intelligente algoritmen beter in het diagnosticeren en classificeren van heup- en 
proximale humerusfracturen. De algoritmen en artsen presteerden vergelijkbaar voor 
het diagnosticeren van pols-, hand- en enkelfracturen. Tot op heden bestaan veel on-
toereikende referentiestandaarden voor het trainen en testen van deze algoritmen. Dit 
is een van de grootste uitdagingen voordat implementatie van deze toepassingen in de 
klinische praktijk haalbaar wordt geacht.

Onderzoek toonde aan dat deep learning algoritmen dezelfde prestaties hebben als 
artsen voor diagnose van veel voorkomende, verplaatste en relatief makkelijk aan te 
tonen fracturen (bijvoorbeeld distale radius en heupfracturen). Hoofdstuk 4 onderzoekt 
of een deep learning algoritme scaphoïd fracturen kan diagnosticeren op röntgenfoto’s. 
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De prestaties van het algoritme hebben wij vergeleken met vijf orthopedisch chirurgen. 
In totaal zijn 300 patiënten onderzocht die zich presenteerden op de spoedeisende 
hulp met een verdenking op een scaphoid fractuur. Hiervan hadden 150 patiënten een 
fractuur en 150 patiënten geen fractuur. De referentiestandaard voor het algoritme, 
aan- of afwezigheid van een fractuur, werd bevestigd op CT of MRI door een radioloog. 
Het algoritme had een AUC van 0.77, een accuracy van 72%, een sensitiveit van 84% en 
een specificiteit van 60%. De prestaties van het algoritme verbeterden niet door toevoe-
ging van leeftijd en geslacht. Specificiteit was beter voor orthopedisch chirurgen. Het 
algoritme en orthopedisch chirurgen hadden een vergelijkbare sensitiviteit en accuracy. 
De betrouwbaarheid onder vijf chirurgen was aanzienlijk (Fleiss’ Kappa = 0.74). De be-
trouwbaarheid tussen het algoritme en chirurgen was redelijk (Cohen’s Kappa = 0.34).

PART III: KLInISCHe VooRSPeLLeRS VooR CHIRURGISCHe 
beSLUITVoRMInG

Er is substantiële en onverklaarbare variatie onder chirurgen voor het aanbevelen van 
een operatieve behandeling voor distale radius fracturen. In hoofdstuk 5 proberen we 
meer inzicht te krijgen in deze variatie door een   wereldwijd panel van chirurgen te vra-
gen welke patiëntfactoren de aanbeveling voor operatie van een distale radius fractuur 
beïnvloeden. Honderdeenendertig chirurgen hebben twintig fictieve patiëntscenario’s 
geëvalueerd. Een computerprogramma heeft scenario’s gecreëerd waarin verschil-
lende persoonlijke-, klinische- en patiëntfactoren willekeurig werden toegewezen. Bij 
iedere casus werd de volgende vraag gesteld: zou u wel of geen operatieve behandeling 
aanbevelen voor deze patiënt? Vervolgens werd de invloed van elke patiëntfactor op de 
behandelingskeuze berekend met behulp van een random forest algoritme. Daarnaast 
beoordeelden de deelnemers de invloed van elke factor op een schaal van 0 tot 10. Het 
algoritme toonde aan dat leeftijd en angulatie factoren zijn met de meeste invloed op 
het aanbevelen van een operatieve behandeling. Angulatie op de laterale röntgenfoto 
en aan- of afwezigheid van lunatum subluxatie waren als meest invloedrijke factoren be-
oordeeld, terwijl rookstatus en stress als minst belangrijk werden beschouwd. Behalve 
leeftijd en geslacht lijken persoonlijke factoren een beperkte invloed te hebben op de 
aanbeveling voor operatieve behandeling.
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PART IV: 3D GePRInTe MoDeLLen VooR PReoPeRATIeVe 
VooRbeReIDInG

In hoofdstuk 6 onderzochten we voor zes fractuurkenmerken van de distale radius of de 
betrouwbaarheid onder 10 chirurgen toeneemt door toevoeging van 3D geprinte draag-
bare modellen. Daarnaast werd de betrouwbaarheid voor fractuurclassificatie (AO-type 
23) beoordeeld. Iedere chirurg beoordeelde 20 intra-articulaire distale radius fracturen 
op aan- of afwezigheid van de volgende zes fractuurkenmerken: volaire rim aantasting, 
die punch, volaire lunatum facet, dorsale verkleining, step-off >2mm en gap >2mm. 
Chirurgen gebruikten tijdens de eerste evaluatie röntgenfoto’s, 2D- en 3D CT-scans 
(d.w.z. conventionele diagnostiek). Tijdens de tweede evaluatie, een maand later, werd 
naast conventionele diagnostiek ook een extra 3D geprint draagbaar model gebruikt. 
De toevoeging van 3D geprinte draagbare modellen heeft niet geleid tot een verbetering 
van de zes onderzochte fractuurkarakteristieken. Daarnaast leidde het gebruik van 3D 
geprinte draagbare modellen niet tot verbeterde fractuurclassificatie (conventionele 
diagnostiek: kappa, 0.27 [95% BI, 0.14 - 0.39] versus conventionele diagnostiek met een 
extra 3D-geprint draagbaar model: kappa, 0.25 [95% BI, 0.15 - 0.35]).

PART V: 3D DooRLICHTInG VooR InTRAoPeRATIeVe 
beooRDeLInG

In hoofdstuk 7 hebben wij onderzocht of 3D fluoroscopie een betere intra-operatieve 
beeldvormingsmodaliteit is dan DTV om dorsaal uitstekende schroeven aan te tonen na 
volaire plaatfixatie van een distale radius fractuur. Drie verschillende intra-operatieve 
beeldvormingsstrategieën zijn vergeleken: 2D fluoroscopie met AP en laterale afbeeldin-
gen (n=55), 2D fluoroscopie met AP-, laterale- en DTV-afbeeldingen (n=50) en 3D fluoro-
scopie (n=60). Reconstructiebeelden van postoperatieve CT-scans werden gebruikt om 
aan- of afwezigheid van uitstekende schroeven in de dorsale cortex te bepalen. De sen-
sitiviteit van DTV was 39%, de negatief voorspellende waarde was 91% en de accuracy 
91%. Voor 3D fluoroscopie was de sensitiviteit 25%, de negatief voorspellende waarde 
93% en de accuracy ook 93%. Bij 40% van de patiënten werd in het 2D fluoroscopie re-
ferentiecohort (AP en laterale afbeeldingen) een uitstekende schroef gezien. In het DTV-
cohort was dit 32%, terwijl dit 25% was voor patiënten in het 3D fluoroscopie cohort. 
Voor alle drie de beeldvormingsstrategieën werden in het 2de dorsale compartiment de 
meest uitstekende schroeven gezien. Naarmate meer geavanceerde beeldvorming werd 
gebruikt nam de hoeveelheid uitstekende schroeven af. Voor 3D fluoroscopie zagen we 
geen uitstekende schroeven in het derde compartiment, terwijl dit één schroef betrof 
in het DTV-cohort. Geavanceerde intra-operatieve beeldvormingstechnieken kunnen 
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helpen bij het identificeren van uitstekende schroeven in de dorsale compartimenten 
van de distale radius. Voor het aantonen van uitstekende schroeven kan men niet con-
cluderen dat intra-operatieve 3D fluoroscopie beter presteerde dan DTV.
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Abbreviations

AbbReVIATIonS

2D = two-dimensional
3D = three-dimensional
95% CI = 95% confidence interval
AI = artificial intelligence
AUC = area under the receiver operating characteristic curve
CT = computed tomography
DL = deep learning
DTV = dorsal tangential view
ED = emergency department
IQR = interquartile range
ML = machine learning
MRI = magnetic resonance imaging
ORIF = open reduction internal fixation
SD = standard deviation
SOVG = science of variation group
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