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Summary 

Malaria is a blood-borne disease and a major cause of mortality in many parts of the 

world. Malaria is curable if diagnosed in time. Malaria can be diagnosed by microscopy 

analysis. Automatic malaria diagnosis has the potential to play an important role in reducing 

mortality due to malaria. The term parasitemia is used to reflect the severity of the malaria 

disease. This thesis aims to develop computer methods for automatic malaria diagnosis and 

parasitemia estimation.  

According to the literature on biomedical image processing and an understanding of 

blood and malaria, colour intensity is a strong indicator for malaria parasite identification. 

In addition, natural characteristics of malaria, such as size, shape and appearance of 

parasites, and blood components are also considered to play an important role in malaria 

identification and parasitemia estimation. However, the role of these natural characteristics 

in automatic malaria diagnosis is unknown and the contribution of automatic estimation of 

malaria parasiatemia has received relatively little attention.  

The focus of this thesis is to include the natural characteristics of blood components 

and malaria parasites in automatic malaria diagnosis and parasitemia estimation based on 

microscopy images. Parasitemia can be described as the number of malaria parasites in one 

microlitre (µl) of blood fluid. The location and the colour of malaria parasites in blood are 

known to characterize infected erythrocytes in visual images. In addition, the maximum 

parasitemia suffered in the human body has been clinically determined. Biologically, the 

composition and size of blood components have been also recognized. The role of these 

natural characteristics is to transform the knowledge of microscopy malaria diagnosis to 

automatic malaria diagnosis and parasitemia estimation.  

A number of experiments were conducted to determine the best parasitemia 

estimation based on erythrocyte classification in thin blood film images and parasite 

classification in thick blood film images. This study made use of the natural characteristics 

of blood components and malaria parasites to set adaptive thresholds for segmenting 

leukocytes and parasites. Colour intensity and location features of leukocytes, erythrocytes, 

and parasites were extracted and measured. Discriminant analysis was used to classify the 

leukocyte footprints as leukocytes or phagocytes, the parasite footprints as parasites or non-

parasites, and identify erythrocyte footprints as normal or infected. Classification 

performance was evaluated by informal readers using confusion matrices. Subsequently, the 
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percentage of infected erythrocytes in thin blood films and the number of parasites and 

leukocytes in thick blood films were converted to estimate parasitemia scores. Parasitemia 

estimation was validated by parasitemia scores from expert readers.  

Results indicate that the parasitemia estimation fitted well with parasitemia scores 

from expert readers both in thin blood films (r = 0.97, p-value = 0.54) and thick blood films 

(r = 0.79, p-value = 0.40), at α = 0.05 level. In thin blood films, the performance of 

erythrocyte classification based on the combination of the colour intensity features of 

parasites and location features perfomed better than that based on the only grayscale intensity 

features of erythrocytes. Meanwhile, morphological features may not be optimal for an 

automatic parasitemia estimation in thick blood films.  

In addition, a number of discoveries were made in the course of the study. The 

combination of the natural characteristics of blood components and malaria parasites is an 

essential feature to set an adaptive threshold for segmenting parasites in thin blood film 

images. Based on the fact that thrombocytes are naturally located outside of erythrocytes, 

this location feature is another essential feature to distinguish infected erythrocytes from 

thrombocytes in thin blood film images. In other words, better erythrocyte identification and 

parasitemia estimation were obtained by involving the natural characteristics of blood 

components and malaria in the parasite segmentation and erythrocyte identification in thin 

blood film images. In thick blood film analysis, the presence of leukocytes is vital for 

estimating parasitemia scores with leukocytes generally having the highest intensity in 

inverse thick blood film images. Accordingly, leukocyte intensity may be well utilized as a 

reference in setting adaptive thresholds for leukocyte and parasite segmentation.  

These discoveries have potential contributions to the fields of automatic malaria 

diagnosis and parasitemia estimation based on both thin and thick blood film images, and so 

form natural seeds for future work. 
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Chapter 1: Introduction 

1.1 Overview 

Malaria is a blood-borne disease that can be diagnosed by microscopy analysis. Malaria is 

caused by a parasite. For ease of exposition, the term "malaria parasite" or "parasite" will be 

used to refer to the parasite. Manual malaria diagnostic methods have potential problems 

due to the limitation of the human visual system in consistently inspecting large numbers of 

samples, especially in pandemic areas. Instead, this thesis tries to capture the knowledge of 

microscopy malaria diagnosis including the characteristics of blood components and malaria 

parasites, in a computer-aided malaria diagnosis system. An automatic system has the 

potential to estimate malaria parasitemia consistently and reliably.  

This introductory chapter is intended to provide context for this thesis. The disease of 

malaria is reviewed in Section 1.2 and the role and impact of malaria in an example country, 

Indonesia, is discussed in Section 1.3. The life cycle of malaria in the human body is 

reviewed in Section 1.4 and the components of blood fluid and their roles are reviewed in 

Section 1.5. Clinical malaria diagnosis in current practice is presented in Section 1.6, and 

the characteristics of malaria parasites and parasitemia estimation are discussed in Section 

1.7 and 1.8, respectively. The characteristics of colour images and the appearance of the 

components of blood in thin and thick blood films are presented in Section 1.9. This 

discussion leads to the motivation and objectives of the thesis in Section 1.10. This is 

followed by an overview of the data sets used in this thesis in Section 1.11 and an overview 

of the structure of the remainder of this thesis in Section 1.12. 

1.2 Malaria 

Malaria is a major cause of mortality and is a serious public health burden in many parts of 

the world. It was reported that around 40% of people in the world are prone to malaria 

(Suradkar 2013) and that malaria is particularly prevalent in lower-income countries subject 

to malaria endemics (Sachs & Malaney 2002). Furthermore, in April 2016, the World Health 

Organisation (WHO) updated a recent fact sheet reporting that the number of people, at risk 

of malaria was 3.2 billion - almost half of the world’s population, covering 95 countries and 

territories (WHO 2016).  

Malaria is caused by a parasite, called plasmodium (P), which infects human red 

blood cells (erythrocytes). There are four different malaria plasmodia: Plasmodium 
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falciparum, Plasmodium vivax, Plasmodium oval, and Plasmodium malariae. Among the 

four plasmodia, P. falciparum and P. vivax are the most prevalent and dominant malaria 

parasites. These plasmodia are responsible for most malaria infections and have the greatest 

potential to infect the human body. Marten et al. estimated that the number of malaria-

infected people will increase by 300 and 150 million for P. falciparum and P. vivax, 

respectively, by 2080 (Martens, P et al. 1999). 

The malaria parasite is spread from a malaria sufferer to another healthy person by a 

female Anopheles mosquito, the primary vector for malaria. The Anopheles mosquito sucks 

in the infected erythrocytes. The parasite then multiplies in the mosquito’s stomach. The 

malaria parasite is transmitted when an infected Anopheles mosquito bites another healthy 

person.  

The transmission of malaria depends on the number of live mosquitoes, which is in 

turn are affected by climatic factors including precipitation, temperature and humidity. In 

many tropical areas, malaria is seasonal and peaks during or immediately following 

monsoon. It may become epidemic when occurring in locations inhabited by people with 

low or no immunity against the disease, or when a large number of such people, seeking 

work or refuge, enter a site intensively infected by malaria (Jagessar & Rampersaud 2014). 

Similar to other mosquitos, Anopheles mosquitos need water to breed and so they 

are mostly found in wet areas, such as swamps and ponds. In addition, Anopheles mosquitos 

grow well in tropical climate regions, but they also can be found in temperate regions. By 

mathematical modelling, Marten et al. assessed the correlation of malaria to a range of 

factors, including climate change and geographical distribution of malaria mosquitoes 

(Martens, W et al. 1995). In the context of climate change, results from simulations indicated 

that epidemic mosquitos, including Anopheles, have the potential to increase two-fold in 

tropical regions and more than 100-fold in temperate regions due to a several-degree global 

mean temperature increase by the year 2100. This effect of increasing global temperature 

presents a real risk of reintroduction of malaria mosquito transmission into malaria free 

regions, such as parts of Australia and the United States.  

Clinically, many diseases produce similar symptoms. Typically, malaria exhibits flu-

like symptoms (Karcheva, Atanasova & Rainova 2017; Maichomo et al. 1999) the 

incubation period, between eight and 14 days (Baird et al. 1995). However, such period may 

differ according to the parasite's species. When no suitable medication is available or the 
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parasite has become resistant to available medication, the infection may develop fast and 

endanger the subject's life. Without proper treatment, this can lead to death. Malaria infects 

and eradicate erythrocytes, prompting anaemia, while blocking capillaries and thus 

preventing blood from reaching the brain (Aikawa et al. 1990).  

Due to the natural resilience of the human body to malaria, individuals with less than 

10% of infected erythrocytes are likely to survive. Those with parasitemia greater than 10% 

may need transfusion and have a high mortality rate (Garcia & Bruckner 1997). In other 

words, the human body can survive malaria only if less than 10% of erythrocytes are 

infected. 

Although the number of people at risk of malaria is still high, malaria is a preventable 

and curable disease (WHO 2016). Between 2001 and 2015, it was estimated that the number 

of malaria cases around the world decreased by 18% from 262 million to 214 million and 

the number of malaria deaths decreased by 48% from 839 thousand to 438 thousand (WHO 

2014b). P. falciparum malaria was effectively cured through the use of medicines Quinine 

and Fansidar (Hall et al. 1975). In the frame of research, cysteine proteinase was effective 

against Plasmodium vinckei in murine malaria (Rosenthal, Lee & Smith 1993). This means 

that medicines have the ability to cure people infected with malaria. Thus, diagnosis enables 

effective intervention in the successful treatment of malaria.  

1.3 Malaria Cases in Indonesia 

Indonesia has a long history of epidemics caused by malaria. It was estimated that malaria 

epidemics have appeared throughout the Indonesian archipelago since the first humans 

dwelled there (Elyazar, Hay & Baird 2011). Furthermore, in the same study, Elyazar et al. 

reviewed malaria cases and reported that Indonesia has been hit by a malaria outbreak every 

year. For example, malaria outbreaks occurred in 1999 in five provinces covering six 

districts with a case fatality rate of 1.12% (2,407 cases and 27 deaths) (Marwoto & 

Sulaksono 2003).  

1.3.1 Factors of Malaria Outbreaks 

Several factors have contributed to malaria outbreaks in Indonesia. Firstly, the unique human 

factor is transmigration, a special Indonesian government program. The program promotes 

the movement of populations from crowded islands, namely Java and Bali, to other less 

crowded islands, such as Kalimantan, Papua, Sumatra, and Sulawesi. The hometowns of 
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transmigrants are generally malaria free or have low malaria cases. However, the 

destinations of transmigrants are hyper malaria endemic areas (Figure 1.3). As a result, the 

more non-immune malaria transmigrants, the more new malaria sufferers. For instance, in 

1988 and 1992, between two and six months after new transmigrants arrived in Arso, Papua, 

local malaria epidemics occurred (Baird et al. 1995). As many as 14% of the new 

transmigrants were exposed to malaria within 14 days of arrival. The prevalence reached 

over 70%, and 10% of these were severely parasitemic and had to be hospitalized.  

Secondly, El Niño, a climate change effect, also participates in rising malaria 

outbreaks. El Niño causes a chain effect in a community. El Niño-affected regions receive 

reduced rainfall resulting in water and food shortages, especially in hilly areas. These water 

and food shortages forced people living in hilly regions, with high parasitemia, to migrate to 

lowland or coastal areas where water and food sources were relatively available. These 

human movements caused a significant increase in malaria transmission (Bangs & Subianto 

1999). 

1.3.2 Distribution of Malaria Disease 

Malaria cases have been found in almost all provinces of Indonesia (Figure 1.1), but the 

distribution in each province is not uniform (Figure 1.2) and average stratification between 

provinces is different (Figure 1.3). The stratification is determined by the annual parasite 

incidence (API), an indicator of malaria cases (the number of malaria sufferers per 1000 

local people). High numbers of malaria cases occurred in eastern Indonesia, especially West 

Papua and East Nusa Tenggara. In general, districts with high API are hilly and forested 

regions in remote areas. However, coastal and lowland areas are not free from malaria 

epidemic even though they have lower API (Bangs & Subianto 1999). 
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Figure 1.1: Map of Indonesia consisting 33 provinces in 2009. Modified and reprinted from 

www.indonesiamatters.com/images/indonesia-map.gif. 

 

 

0 

Free 

0-1 

Low 

1-5 

Moderate 

5-49 

 

50 – 100 

High 

> 100 

 

Figure 1.2: Distribution of malaria outbreaks throughout Indonesia in 2009. Reprinted from Buletin 

Jendela Data dan Informasi Kesehatan. 
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Figure 1.3: Malaria stratification in Indonesian provinces. Reprinted from Buletin Jendela Data dan 

Informasi Kesehatan. 

1.3.3 Economic Burden of Malaria Disease  

Malaria is estimated to costs Indonesia hundreds of millions (in US dollar) each year. The 

cost covers malaria prevention and treatment as well as income loss due to hospitalisation 

and mortality.  

The Indonesian ministry of health (Kemenkes) reported that in the year 2012 there 

were 1,237,389 malaria cases and 9,899 deaths (case fatality rate 0.8%) in Indonesia 

(Kemenkes 2015). The calculated economic loss due to malaria cases in 2012 was around 

US$ 505 million (Kemenkes 2015). Seventy-five per cent of the deaths caused by malaria 

were productive people. The income loss due to the mortality and hospitalisation were 

84.78% and 7.26% of the total malaria cost, respectively. Another load was the cost of 

malaria treatment, around 7.96% of the total cost. 

1.3.4 Obstacles for Preparing Blood Films in Remote Areas  

Microscopy diagnosis of malaria requires blood films. High quality blood films must be 

prepared from fresh peripheral blood taken directly from malaria-suspected patients. 

However, there are problems in preparing blood films from people suffering malaria in 

remote areas, far away from a malaria laboratory (more than a single day’s travel). This is 

because of the nature of human blood fluid and microorganisms. Without special tools, it is 

difficult to carry the human blood samples for a long time in good condition because the 

human blood fluid easily clots. Clotted blood fluid cannot be made into blood films properly 

in a laboratory. One method to overcome this is to add an anticoagulant to the blood samples, 
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but adding anticoagulant to blood fluid may alter cellular morphology and result in staining 

characteristics (Bain 2014). As a result, erythrocytes and leukocytes are difficult to recognize 

and count. Furthermore, the United Kingdom National External Quality Assessment Service 

(UK NEQAS) Parasitology reported that in some cases gametocytes and schizonts forms 

(host erythrocytes and the contained parasites) may be destroyed when exposed to 

anticoagulant (EDTA) for several hours (NEQAS 2016).  

Conversely, if blood films are prepared in the field, the blood films are prone to 

contamination by fungus and other microorganisms because the blood films are good 

environments for such growth. Consequently, malaria diagnosis can be destroyed by these 

organisms appearing on blood films. 

1.4 The Malaria Lifecycle in the Human Body 

In the human body, malaria parasites develop in two main stages: the liver stage and the 

blood stage. Malaria parasites are also able to dwell in the brain, in severe cases, and white 

blood cells (leukocytes) when parasites have been phagocytised by neutrophils (Section 1.7). 

The malaria parasite life cycle in the human body is shown in Figure 1.4. For malaria 

diagnosis based on microscopy, the blood sample is taken from peripheral blood (blood 

streaming under skin) and so the blood stage is of primary interest in this thesis.  

 

Figure 1.4 Malaria life cycle in the human body, modified and reprinted from the Centers for Disease 

Control and Prevention (CDC 2016). 

During the blood stage, malaria parasites undergo various form changes. From the 

liver stage, merozoites infect erythrocytes and start growing in the blood stage. In the 
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beginning of the blood stage, a merozoite develops to form an immature trophozoite (ring 

form). The diameter of the ring form of P. falciparum is between 1–2 µm (Murray, Rosenthal 

& Pfaller 2015; Palakuru 2016). The immature thropozoite, then progresses to a mature 

thropozoite or a gametocyte. Subsequently, the mature trophozoite starts to regenerate 

asexually and progress to a schizont form. The schizont form consists of a group of 

merozoites and has a diameter of between 7–8 µm. Finally, the infected erythrocyte bursts 

and releases new merozoites into the bloodstream. At this step, new merozoites are 

independent (outside of erythrocytes) before infecting other erythrocytes. Meanwhile, the 

gametocyte develops and regenerates sexually. The size of gametocyte is between 7–14 µm. 

1.5 Components of Blood Fluid 

Blood fluid consists of three main components: erythrocytes, leukocytes, and platelets 

(thrombocytes) (Ruberto, C. et al. 2000). Erythrocytes are red blood cells. Their main 

function is to carry oxygen from the lungs to tissue and carbon dioxide from tissue back to 

the lungs. Leukocytes are white blood cells responsible for counteracting foreign material 

including diseases. Thrombocytes, also known as platelets, play a role in clotting. The 

number of erythrocytes and leukocytes per microlitre of blood is normally about 5,000,000 

cells and 8,000 cells, respectively (Moody 2002; Vander, Luciano & Sherman 2001; WHO 

2010). Meanwhile, the number of thrombocytes is normally is around 250,000 (Vander, 

Luciano & Sherman 2001). This means that the number of thrombocytes and leukocytes are 

much fewer than that of erythrocytes. The ratio of the number of thrombocytes and 

leukocytes over that of erythrocytes is around 5% and 0.16%, respectively.  

Morphologically, the average diameters of normal erythrocytes and thrombocytes are 

approximately 7-8µm (Löffler & Rastetter 2000; WHO 2010) and 2µm (Freitas 1999), 

respectively. Thus, thrombocytes are smaller than erythrocytes with diameters around 25% 

the diameters of erythrocytes. Leukocytes are larger than erythrocytes and are divided into 

many classes: neutrophils, eosinophils, basophils, monocytes, and lymphocytes, which fall 

within a size range of 8-12 µm. The most dominant leukocyte class is neutrophils, 

approximately 50-70% of leukocytes with a size range of 8-10µm, followed by lymphocytes 

(20-40%), monocytes (2-8%), eosinophil (1-4%), and basophils (0.1%) with size ranges of 

6-12 µm, 15-30 µm, 10-12 µm, and 12-15 µm (Freitas 1999; Wheater, Burkitt & Daniels 

1979).  
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Figure 1.5 Erythrocyte views. Modified and reprinted from Biomed 108-Human Physiology. 

 

 
(a)  (b) 

 
(c)  (d) 

Figure 1.6: Original images from thin blood films (Section 1.11). Th is a thrombocyte. (a) An image 

from a positive slide containing infected erythrocytes (Ip). (b) An image from a normal slide. (c) An 

image containing a leukocyte (Lu). (d) An image containing a phagocyte (Pg) as described in Section 

6.4.  
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(a) 

 
(b) 

Figure 1.7: Original images from thick blood films (Section 1.11). Rm is residual erythrocyte 

membrane. Lu and Pg are as in Figure 1.6. (a) An example of image, from a positive slide, containing 

leukocytes and parasites (Pi). (b) An example of image containing leukocytes and phagocytes.  

Erythrocytes are relatively regular in shape. From the top, erythrocytes are circular in 

shape, but from the side they are biconcave discs (Figure 1.5). Unlike erythrocytes, 

thrombocytes are irregular shaped bodies, without a nucleus but with fine red granules on 

blueish background (WHO 2010). Like thrombocytes, leukocytes are relatively irregular in 

shape, but each leukocyte has a nucleus surrounded by cytoplasm; sometimes, the cytoplasm 

is granular. Some leukocytes have a multi-lobe nucleus, which forms an irregular shape and 

uncertain volume or area. Some erythrocytes, leukocytes, and thrombocytes are shown in 

Figure 1.6 and Figure 1.7. 

1.6 Methods for Clinical Diagnosis 

Currently, the most common malaria diagnostic technique relies on observing blood films 

of the subject under a microscope and then identifying the parasite. This microscopy based 

malaria diagnosis is the gold standard (WHO 2010). The method needs trained 

microscopists. To analyse malaria, generally, microscopists examine blood films after a 

preparation and staining process (WHO 2010) and view the blood films under a microscope 

in a laboratory. Microscopists find an appropriate area manually by moving the stage up and 

down and left and right and adjusting the fine focus and coarse focus and noting the number 

of parasites to determine parasitemia. Details of the process for determining parasitemia will 

be described in Section 1.8.  

Microscopy slides usually include two blood films from the same subject, a thin 

blood film and a thick blood film. These two blood films have different characteristics and 

different uses. Therefore, these are recommended for malaria diagnosis. A thick blood film 

is usually used to determine if there is an infection and to estimate parasitemia, especially if 

the parasitemia is low. This is because a thick blood film contains a larger amount of blood 
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per unit area of slide. A thin blood film is used to determine species and to estimate 

parasitemia if the parasitemia is high (Garcia & Bruckner 1997). 

An accurate and efficient diagnosis is possible in ideal conditions and by well-trained 

staff; however, in developing countries, especially in rural areas, the method is often 

inaccurate and inefficient. Potential weaknesses of the technique arise from (a) inaccuracy 

from the limitation of the human visual system in identifying huge samples due to high work 

load, (b) time consuming for inexperienced microscopists who must frequently refer to the 

references, (c) considerable cost for training microscopists (Oaks Jr et al. 1991; Ross et al. 

2006). Incorrect observation due to the lack of technique may potentially result in 

misdiagnosis or delayed diagnosis, possibly leading to a more severe disease state or death. 

Other methods for malaria diagnosis are rapid diagnostic tests (RDTs) based on 

antigen and quantitative real-time polymerase chain reaction (qPCR) diagnostics based on 

nucleic acid amplification. Although these tests use new technology, overall they are not yet 

as reliable as microscopy. For example, qPCR yielded misdiagnosis in cases of low 

parasitemia (Dakić et al. 2014). Accordingly, the role of these tests is as a method 

complementary to microscopy tests and must be confirmed by the microscopy method 

(Moody 2002). Because they are portable, easy, quick, and cost-effective to perform, RDTs 

are valuable and practical to use in remote areas, where microscopy tests are not available, 

or in emergency conditions, such as the early detection of malaria outbreaks (Mboera et al. 

2013).  

However, the RDTs do not replace the use of malaria microscopic examination and 

must be confirmed by microscopy (CDC 2016) for the following reasons. Firstly, the assay 

can only detect if the subject is infected or not, but is not able to determine the percentage 

of infected erythrocytes, which is an important prognostic indicator. Secondly, after being 

stored a year at room temperature, the performance of RDTs is relatively poor (Mboera et 

al. 2013). Thirdly, the currently approved RDT can only detect two different malaria 

antigens: one is specific for P. falciparum and the other is found in all four malaria species. 

In addition, the sensitivity of RDTs was low in diagnosis of P. ovale (Tanizaki et al. 2014). 

Thus, microscopy is needed to confirm all negative RDTs and determine the malaria species 

of positive RDTs.  
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1.7 Recognising the Malaria Parasite in Blood 

With proper Giemsa staining, it is possible to distinguish an infected erythrocyte from 

normal erythrocytes (Figure 1.8(a)) (WHO 2010). Each infected erythrocyte consists of a 

host erythrocyte, parasite(s), and vacuole. Each component of an infected erythrocyte 

responds to the stain differently. At the ring form, a parasite comprises one or two red dot 

chromatins, blue cytoplasm, and a clear vacuole (Figure 1.8(b)) (Dluzewski et al. 1992). The 

presentation of cytoplasm depends on the stage of development. In early stages, cytoplasm 

is small or even absent. At the developed stage, the pigment –a granular by-product of 

parasite growth– appears in colour from golden-brown to dark-brown or even black inside 

the parasite and with stippling, pink dots, which are the effect of parasite, on the host 

erythrocytes.  

In the schizonts form, an infected erythrocyte may contain full parasites (merozoites). 

Generally, the size of infected erythrocytes in the schizont form are bigger than normal 

erythrocytes (WHO 2010). Malaria parasites also appear in leukocytes in some cases. 

Neutrophils, a kind of leukocyte, may contain malaria pigment, which is a by-product of 

parasite metabolism and is all that remains of parasites that have been phagocytosed 

(engulfed or eaten) by neutrophils. 

 
(a)  

(b) 

Figure 1.8: Zoomed staining erythrocytes. (a) left cell is a normal erythrocyte and righ cell is an 

infected erythrocyte, zoomed and printed from an image of thin blood films (Section 1.11), (b) 

infected erythrocyte in detail, reprinted from WHO (WHO 2010). 

1.8 Parasitemia  

Parasitemia is the degree of malaria parasitic infection. There are several systematic 

measurements to assess parasite load in the blood based on thin and thick blood films. In 

thin blood films, parasitemia may be presented in two ways: the percentage system and 

parasitemia scores. The percentage system is calculated by noting the number of infected 

erythrocytes for every 100 erythrocytes (Equation (1.1)) and the parasitemia score is found 

by multiplying the percentages of infected erythrocytes by the standard count of erythrocytes 
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in one µl of blood fluid 5,000,000 erythrocytes/µl (Equation (1.2)) (Moody 2002; WHO 

2010). For ease of exposition, the term “standard correlation” (Equation 1.2) will be used to 

refer to the conversion of the percentage of infected erythrocytes to parasitemia scores. 

Parasitemia (%) = 
number of infected erythrocytes

total number of erythrocytes
 x 100 (1.1) 

 

Parasitemia score = 
parasitemia (%)

100 
x 5 000 000 (1.2) 

 

In thick blood film, parasitemia may be presented in two ways: the “plus system” 

and the parasitemia score. The plus system is simple but far less accurate for establishing 

parasite density. The plus system can be explained as below: 

+ = 1-10 parasites per 100 oil-immersion thick blood film fields 

++ = 11-100 parasites per 100 oil-immersion thick blood film fields 

+++ = 1-10 parasites per single oil-immersion thick blood film field 

++++ = more than 10 parasites per single oil-immersion thick blood film field 

 

The plus system may lead to confusion because “many workers forget the finer 

details of the system and mix up the code (the number of plus signs) and the count (the 

number of parasites per field or per 100 fields)” (WHO 2010), this leads to confusion and 

provides unreliable information on parasite density. In conclusion, the “plus system” is 

unreliable and as a consequence, the system is not recommended (WHO 2010, 2014a). The 

WHO encourages microscopists to use parasite quantitation instead. The parasitemia score 

is calculated by summing the number of parasites per number of leukocytes, multiplied by 

8000, a standard count of leukocytes/µl of blood fluid (Frean 2009; WHO 2010). 

Parasitemia score = 
number of parasites

number of leukocytes
x 8000 (1.3) 

 

1.9 Blood Film Images 

In normal practice, blood films are viewed under a microscope and decisions regarding the 

presence of malaria are made immediately. The slides (blood films) may be stored for future 
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reference, but no images are taken of the blood films. For automatic systems, images of the 

blood films must be acquired. The images must be of sufficient resolution for the image 

analysis methods to distinguish between erythrocytes, parasites, thrombocytes, leukocytes 

and artefacts. On the other hand, a sufficiently large portion of the blood film has to be 

imaged in order to examine sufficient amounts of blood to reach statistically sound decisions. 

Together, these two requirements dictate that hundreds of images are needed per blood film. 

1.9.1 Image Acquisition 

Since hundreds of images are needed, manual selection of imaging fields is not practical. 

Typically, a dedicated microscope fitted with a suitable camera scans a fixed rectangular 

shaped region of the blood film. Since the blood film is not entirely uniform, some images 

contain no information and some contain a prohibitively dense accumulation of stained 

material. Thus, not all images are useful for diagnosis and must be discarded. Another 

possibility is that fields are chosen automatically using additional artificial intelligence steps.  

Modern microscopes have a fixed illuminator to produce colour blood images; 

however, in some cases, the movement of the controller in shifting the glass is so fast that 

the camera cannot capture images properly. As a result, the images might be bluer or have 

different illumination due to differences in angle. 

1.9.2 Thin Blood Film Images 

Images of thin blood films from malaria-free subjects consist of background, erythrocytes, 

thrombocytes and possibly leukocytes. Thrombocytes are clearly located outside of 

erythrocytes (Figure 1.6(a), (b), (c), and (d)). Meanwhile, images of thin blood films from 

malaria infected subjects also contain background, erythrocytes, and thrombocytes, with the 

difference that some erythrocytes contain parasites (Figure 1.6(a) and (d)).  

A well-prepared thin blood film comprises a single layer of erythrocytes. 

Erythrocytes are clearly visible and dominant in the sense that the total area of the image 

(number pixels) associated with erythrocytes is greater than the area of the image of all other 

components, except possibly the background. In general, thrombocytes occupy the smallest 

percentage of the total area. This is in line with the fact that the number of thrombocytes is 

lower than the number of erythrocytes and they are smaller in size. Leukocytes are much 

less frequent than either erythrocytes or thrombocytes and are not necessarily present in 

every thin blood film image.  
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Generally, leukocytes have the highest intensity value, followed by malaria parasites 

(if present). Even though the size of a malaria parasite is much smaller than that of an 

erythrocyte, the intensity profile of malaria parasites is much greater than that of erythrocytes 

(Figure 4.8(c)). If a parasite lies within an erythrocyte (as happens most frequently), the 

intensity profile of the parasite is clearly visible over the profile of the erythrocyte. 

Commonly, thrombocytes have the lowest intensity histogram above background intensity 

and erythrocytes have a significantly different intensity from the background. In thin blood 

film images, thrombocytes may present on top of an erythrocyte and may appear as if it lies 

within the erythrocyte. 

1.9.3 Thick Blood Film Images 

A thick blood film has a thickness of many erythrocyte diameters and so an image of a thick 

blood film represents a much larger volume of blood than an image of the same resolution 

of a thin blood film. However, in thick blood films, erythrocytes have been dissolved and so 

individual erythrocytes are not visible in thick blood film images. The image contains 

residual erythrocyte membranes, thrombocytes, leukocytes, possibly artefacts and parasites 

if the subject is malaria positive. Because the volume of blood is larger, many more parasites 

can be seen in a thick blood film image compared to a thin blood film image of the same 

resolution from the same subject.  

Similar to thin blood film images, leukocytes generally have the highest intensity 

profile, followed by malaria parasites (if present) and background. However, thick blood 

film images are significantly different from thin blood film images. Significantly differences 

in thick blood film images are that erythrocytes disappear and residual erythrocyte 

membranes resulted from haemolysis, the process of releasing cytoplasm of erythrocytes 

into surrounding blood fluid, present in thick blood film images (Figure 1.7(a) and (b)). 

Furthermore, the background is completely absent in some cases.  

An important difference between a thick blood film image and a thick blood film 

viewed under a microscope is that thick blood film images are 2-dimensional. This means 

that the images do not allow the user to change focus as is done in practice for direct 

microscopy (Section 1.3). Therefore, some objects are difficult to interpret because they are 

out of focus or overlap with other objects.  
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1.10 Motivation and Objective of the Thesis 

From Section 1.2 and Section 1.6, the reduction of mortality and morbidity due to malaria 

disease and current malaria diagnosis barriers is vital. Accordingly, consistent accuracy of 

malaria diagnosis is crucial to avoid fatalities. Reliable and practical malaria diagnosis tools 

are important in malaria endemic countries, especially in remote areas.  

In malaria-infected human blood, malaria parasites infecting erythrocytes are also 

present in the images (Section 1.7). These parasites have different colour intensity and size 

characteristics from the main components of blood images. Based on morphology and colour 

intensity, it is possible to identify the parasites. Computer vision has the potential to diagnose 

malaria consistently and accurately; however, automatic diagnosis of malaria has received 

relatively little attention in the literature. 

The purpose of this study is to develop an automatic image analysis method for 

consistent and accurate malaria diagnosis and estimating parasitemia. The long-range goal 

is to produce a device that will be suitable for use in remote areas by persons having minimal 

training so that the barriers of malaria diagnosis in those areas, such as eastern Indonesia 

(Section 1.3), can be overcome. Such a device must be affordable for general use in 

developing countries. In this thesis, image analysis methods are developed that could be used 

in a reliable and automatic device. 

The contribution of this thesis is to provide a method for estimating parasitemia and 

to test the estimates on cases spanning a wide range of known levels of parasitemia. As 

described above, other studies have focussed on counting parasites or on estimating 

parasitemia without comparison to ground truth. 

1.11 Overview of Data Sets 

Slides with thin and thick blood films were provided by Hydas World Health (Pennsylvania, 

USA). The anonymized slides were made from blood samples collected under an 

Institutional Review Board sanctioned minimal-risk human-use protocol, treated with 

Giemsa stain and cover slips attached with mounting glue. The slides were scanned by 

Microscopes International using an automatic scanning microscope, fitted with a 10x ocular 

and a 40x objective lens, equivalent to a numerical aperture of 650. JPEG images at the 

resolution of the camera, 540x960, were produced.  
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A total of ten slides were provided for this study. Seven slides were positive for 

malaria and three slides were free of malaria. Each slide consisted of one thin and one thick 

blood film. Within each blood film, a 5 mm x 1 mm rectangle was imaged as a tessellation 

of 800 individual images of 540 x 960 pixels. Several images from each blood film were 

excluded due to faults, such as being blank, being too blue due to accumulation of stain, or 

being messy due to faults in the staining process. Some examples of thin and thick blood 

film images were shown previously in this Chapter in Figure 1.6 and 1.7. The slides came 

complete with parasitemia scores based on the evaluation of thick blood films from between 

14 and 24 expert readers per slide (Table 1.1). Expert readers are certified microscopists with 

expertise in reading malaria slides.  

Table 1.1: Parasitemia by experts. N is the number of experts for each positive slide and SD is 

standard deviation of their parasitemia. 

Slides 1 2 3 4 5 6 7 

Mean 103 634 1340 5583 11442 32730 319393 

Median 90 340 1440 5191 10885 32730 301996 

Minimum 19 39 320 48 3051 15736 30180 

Maximum 370 2987 2476 13500 36000 78300 976500 

SD 77 716 518 2592 6740 18972 178080 

N 20 24 24 24 24 14 24 

 

In addition to expert readers, this thesis involved two “informal” readers. The 

informal readers do not have formal microscopic training, but have gained substantial 

experience in viewing malaria parasites. Malaria parasites are not hard to identify in many 

cases. In difficult cases, the variation between trained microscopists, and even for the same 

microscopist viewing the images at different times, is similar to the performance of informal 

readers. In this thesis, experts’ parasitemia scores were used to validate parasitemia 

estimation of each slide in final testing. The informal readers assigned erythrocytes and non-

erythrocytes for testing erythrocyte identification, normal and infected erythrocytes for 

training and testing erythrocyte classification, and parasites and non-parasites for training 

and testing parasite classification. 

1.12 Structure of the thesis 

This thesis contains seven chapters including the current introduction chapter (Chapter 1). 

Chapter 2 reviews theories and techniques used in this thesis for developing the final 

methods of automatic malaria diagnosis. The remaining chapters describe the methods 

developed for automatic malaria diagnosis.  
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Methods for automatic malaria diagnosis based on thin blood film images are 

developed in Chapters 3 and 4. In malaria diagnosis, the methods presented in Chapter 3 use 

histograms of normal and infected erythrocytes; whereas, Chapter 4 develops methods that 

identify malaria parasites separately from erythrocytes. Also, a new feature derived from the 

natural characteristics of components of blood fluid to determine an adaptive threshold for 

image segmentation process is introduced. 

Methods for automatic malaria diagnosis based on thick blood films are developed 

in Chapters 5 and 6. Chapter 5 is a preliminary study to determine the extent to which 

physical appearance and size can be used to distinguish between parasites and thrombocytes. 

Meanwhile, Chapter 6 develops methods by segmenting leukocytes and malaria parasites. 

Then, leukocytes and malaria parasites are identified and counted to estimate parasitemia 

scores. Finally, Chapter 7 concludes the study and outlines further research opportunities.   
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Chapter 2: Technical Background and Literature Review 

2.1 Overview 

This thesis comprises extensions and applications of image analysis to estimate parsitaemia 

from thick and thin blood films. This chapter provides background on image normalization 

(Section 2.2) and mathematical morphology used to manipulate object shapes for supporting 

image pre-processing (Section 2.3). Segmentation methods are presented in Section 2.4 and 

methods for identifying objects resulting from segmentation are presented in Section 2.5. 

Features used in this thesis are described in Section 2.6 and median filters that can be used 

to remove small noise are discussed in Section 2.7. Section 2.8 describes Gaussian mixture 

models used to resolve object histograms into three groups of attributes and Section 2.9 

explains classifiers. Methods for selecting useful features and classifier performance are 

discussed in Section 2.10, 2.11 and 2.12. Section 2.13 provides a review of literature 

reporting work similar to that conducted in this thesis.  

2.2 Image Normalisation 

Images from different sources or acquired using different acquisition conditions or 

parameters are often not consistent in terms of overall brightness or colour. This may cause 

inconsistencies in the performance of automatic image analysis algorithms. The purpose of 

image normalisation is to establish consistency of luminance or colour over a set of images. 

In this section, two different methods are described which will be used in the following 

chapter.  

2.2.1 Colour Constancy  

The aim of colour constancy is to obtain the characteristics of the target objects that are 

independent of variation of luminance. Historically, this was compensating for varying light 

sources and so the description bellow is in terms of illuminant. There are different models 

of luminance transform. The simplest model that offers reasonable results is the diagonal 

model (Barnard 1999). This model was derived from the von Kries hypothesis (Kries 1878) 

that “human colour constancy is an independent gain regulation of the three cone signals, 

through three different gain coefficients”. 

Illuminate colour normalization is given by po = Dpu, where: po is the normalised 

image, D is diagonal-matrix transform, and pu is a colour image of unknown illuminate 



20 

 

(original image). In other words, the diagonal-matrix transform maps the colour response of 

unknown illuminate images to those of known illuminate images (Barnard, Cardei & Funt 

2002; Tek, F B, Dempster & Kale 2006).  

𝐷 = [

𝐷𝑟𝑟     0          0 
  0     𝐷𝑔𝑔        0  

  0        0       𝐷𝑏𝑏

] 

The image, p, is represented as a matrix of size 3xN, where N is the number of pixels and 

column k lists the R, G, B values of pixel k. 

The illuminate factors, the non-zero elements of the diagonal matrix 𝐷, are calculated 

by the ratios of the average values of each channel of the reference images (𝜇𝑖
𝑐) to those of 

unknown illuminate image (𝜇𝑖
𝑢). The reference value(s) can be derived from the average 

values of the scene under a known illuminate.  

𝐷𝑖𝑖 =
𝜇𝑖

𝑐

𝜇𝑖
𝑢   𝑖 = {𝑟, 𝑔, 𝑏}, 

𝜇𝑖
𝑐 =

1

𝑁
∑ 𝐼𝑖

𝑐   𝑖 = {𝑟, 𝑔, 𝑏}𝑁
1 , 

𝜇𝑖
𝑢 =

1

𝑁
∑ 𝐼𝑖

𝑢   𝑖 = {𝑟, 𝑔, 𝑏}

𝑁

1

 

where, Ic is the reference image. This is also called the database grey-world algorithm 

(Barnard, Cardei & Funt 2002; Hordley & Finlayson 2004). The database grey-world 

algorithm assumes that under uniform illumination, the reference image has stable average 

values for the image set.  

2.2.2 Histogram Normalisation 

An alternative to reduce the effects of different luminance in grayscale images is through 

normalization of the histogram of grayscale values. Histogram normalization is a technique 

based on viewing the distribution of intensities as a discrete probability distribution. There 

are several approaches to histogram normalization in grayscale images. “Median 

normalisation” is a simple and satisfactory method. The normalised image, 𝐼𝑛, is the ratio of 

the difference between the grayscale image and the minimum value to the difference between 

median and minimum value.  
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𝐼𝑛 =  
𝐼𝑢 − 𝛼

𝑀 − 𝛼
 (2.1) 

 

where, 𝐼𝑢 is the original grayscale image value, M and α are the median and the minimum 

values of grayscale pixels of the image 𝐼𝑢. One variation is to use the mean instead of the 

median in the formula above.  

The median and mean of a normal distribution are not significantly different; however, 

natural data, commonly, has an asymmetric or skewed distribution and (or) outliers. If a 

distribution is highly skewed, the median may be a more useful measure of the centre and if 

there are outliers, the median is more robust than the mean (Moore, McCabe & Craig 2012).  

2.3 Mathematical Morphology 

Mathematical morphology is a method for manipulating the shape of objects manifested on 

binary or grayscale images (Haralick, R. M., Sternberg & Zhuang 1987). Mathematical 

morphology, as a part of lattice theory, was introduced in 1984 by Serra where objects are 

visually perceived in the framework of a lattice (Serra 1984). This method was further 

developed by the International Society for Mathematical Morphology. This method offers 

many useful tools for image analysis including dilating, eroding, opening, closing, and filling 

of shapes. Some important definitions and functions, which are used extensively in this 

thesis, are described below in the context of binary images.  

2.3.1 Structuring element 

The basic principle of mathematical morphology is to manipulate a shape by set addition 

with a structure element. Let A denote a set of ‘on’ pixels in a binary image and let B denote 

a set of on pixels in another binary array. The basic morphological operation is 

𝐶 = 𝐴 ⊕ 𝐵 = {𝑎 + 𝑏|𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} 

The operation ⊕ is known as Minkowski set addition. In the simplest form, a structuring 

element consists of a small binary array specified by shape and size (Efford 2000). The shape 

(e.g., disk or diamond) is represented by the pattern of ones and zeros.  
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The two basic morphological operations are dilation and erosion. To dilate shape A 

by structure element B means to compute A ⊕ B. To erode shape A by structure element B 

means to compute 𝐴 ⊖ 𝐵 = (𝐴𝐶 ⊕ 𝐵)𝐶, where 𝐴𝐶 = 1 − 𝐴 is the complement of A. 

2.3.2 Opening and closing 

Opening is a morphological image process consisting of two operations: erosion of 

a given image, A, based on a structuring element, B, followed by dilation based on the same 

structuring element as the erosion operation. The opening of A by B is denoted A ο B  

𝐴 o 𝐵 = (𝐴 ⊖  𝐵) ⨁ 𝐵 

Conversely, closing is a combination of dilation followed by erosion.  

𝐴 ¥ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵 

In principle, opening and closing operation methods depend on the shape and size of 

structuring element, and objects of segmentation. 

Morphological operations provide useful fundamental characteristics for image 

filtering and segmentation tasks, such as eliminating small holes and sharp peaks, smoothing 

the contour of a segmented object, cutting off narrow isthmuses, and removing thin 

protrusions (Serra 1984; Vincent 1993b). In object identification, Haralick et al. reviewed 

two methods and concluded that mathematical morphology operations are more beneficial 

than convolution operations (Haralick, R. M., Sternberg & Zhuang 1987). Furthermore, 

Vincent used morphological operations to develop the opening by reconstruction algorithm 

for geodesic image analysis (Vincent 1993b). In the experiment, a disc of radius 2 was used 

as an opening to separate several connected components in a segmented image and, 

subsequently, a closing operation was employed to reconstruct the separated components. In 

industrial application, morphology operations were successfully used to detect defects in 

ceramic tiles (Elbehiery, Hefnawy & Elewa 2005). In this application, a dilation operation 

was used to enhance the defects and a fill gap operation was employed to increase the 

clearance of the cracks. In this paper, the shape and size of the structuring elements were not 

discussed clearly. Disk shaped structure elements have been used in opening methods for 

cell segmentation (Dorini, Minetto & Leite 2007; Ruberto, C. et al. 2000).  
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2.4 Segmentation Methods 

Image segmentation is a division of an image into objects based on their characteristics 

(Gonzalez, Woods & Eddins 2001). Every pixel in the image is categorized to one of the 

objects. Two different segmentation methods involved in this thesis are reviewed below. 

2.4.1 Segmentation based on boundaries: Canny’s Method 

One way to segment objects is to identify their boundaries. This requires edge detection as 

a first step. Canny’s algorithm provides optimal localization of edges  in general situations 

(Canny 1986). Edge localization can significantly reduce data size and remove useless 

information, but keep important morphological image properties. For these reasons, Canny’s 

method has been used in many image analysis tasks including segmentation in medical 

images (Huang, Y-L et al. 2008).  

An automatic system involving Canny’s algorithm was proposed by Huang, Y-L et 

al. The system used a Canny edge detector for edge detection of cells, the dilation operator 

to enhance the detected edges, and the opening operation to fill the cell bodies and smooth 

the cell footprints. The experimental results indicated that the proposed method well 

determined the outlines of a cell. The dataset consisted of 2573 cells from 45 images 

comprising six different patterns: 519 cells in diffuse patterns, 482 cells in peripheral 

patterns, 788 cells in coarse speckled patterns, 634 cells in fine speckled patterns, 64 cells in 

discrete speckled patterns, and 86 in nucleolar patterns. The system recognized 2130 cells 

consisting of 444 cells, 389 cells, 688 cells, 479 cells, 54 cells, and 76 cells in diffuse pattern, 

peripheral pattern, coarse speckled pattern, fine speckled pattern, discrete speckled pattern, 

and nucleolar pattern, respectively (Huang, Y-L et al. 2008).  

2.4.2 Segmentation based on intensity regions: Otsu’s Method 

Another way to segment images is to identify regions of fixed intensity. Thresholding 

techniques may be used to separate foreground objects from background. Success often 

depends on choosing an appropriate threshold and many applications require that such a 

threshold be chosen automatically. Otsu’s method for selecting a threshold (Otsu 1979) 

applies if the distribution of grayscale levels in an image is bimodal with one mode 

representing objects of interest. Otsu’s method works by finding the threshold that separates 

the image into two regions of maximum internal homogeneity. Since image intensity 
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variance is a measure of homogeneity, the threshold is chosen to minimize the region 

variance. Otsu’s method returns binary images that may consist of many objects.  

2.5 Object Identification Methods 

Object identification is a procedure for recognizing objects and/or its attributes. Three 

different algorithms employed in this thesis are presented below. 

2.5.1 Circle Hough Transform 

The circle Hough transform (CHT) is used to detect circles. The Hough transform was 

introduced in 1962 (Hough 1962) and first used a decade later to find lines and curves in 

images (Duda & Hart 1972). The CHT measures the response obtained by assuming that the 

image contains circles of radius r centred at (a,b) for every combination of a, b, and r (Duda 

& Hart 1972). The stronger the response, the larger the evidence that such a circle exists.  

Liangwongsan et al. investigated the use of CHT in detecting circle defect patterns 

of hard disk drives. Each input image was converted from Cartesian to parameter space by 

the CHT. A voting procedure was carried out with the maximum value indicating the 

corresponding radius for the circle. Then, the maximum value was compared with a 

threshold representing the boundary of the circle pattern to be classified. The threshold value 

was not discussed in the study. On a database of 120 defect media images, the system 

achieved an overall accuracy of 95.8% at five faulty detections (Liangwongsan et al. 2011)  

2.5.2 Distance Transform 

In a binary image, the distance transform assigns to every pixel in the foreground, the 

distance to the nearest pixel in the background. The distance transform is useful in many 

situations (Borgefors 1984; Danielson 1978; Huang, CT & Mitchell 1994) including object 

separation and identification.  

In some cases, binary images resulting from Otsu’s method (Section 2.4.2) are not 

properly segmented from the background, especially if there are touching and overlapping 

objects. To improve separation of the touching objects, Binghan et al. used the distance 

transform and dilation operator to separate objects in binary hepatitis pathology images 

(Binghan et al. 2002).  

In another implementation, Basalamah used a distance transform-based histogram to 

identify circle objects (Basalamah 2012). More specifically, the pixels in every cell were 
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scanned and distances between the pixels and all the edge pixels were calculated. A 

histogram was used to count the frequency of the distances. The bin with the largest number 

of distances identified the radius of the circle. The method is robust and able to detect circles 

and partial circles. 

The distance transform has been used to find the centres of erythrocytes (Sunarko et 

al. 2013). Morphologically, erythrocyte forms resemble circles which means that the centre 

of the binary footprint of an erythrocyte corresponds to a local maximum (Section 2.5.3) of 

the distance transform. This means that it is possible to detect erythrocytes by identifying 

circles. The centroids are determined by measuring distance from border objects. The local 

maxima of the distance transform are considered to be the centre of the objects. The 

algorithm could find perfectly circular objects; however, overlapping objects and imperfect 

objects were not appropriately recognized.  

In another study, Yadollahi and Prochazka employed mathematical processing 

consisting of the Watershed Distance Transform, Gradients and Region Growing Algorithms 

to separate overlapping objects in binary images by tracing boundary pixels and converting 

to polar coordinates and then smoothing the curve. The boundary line of occluded objects 

was detected by connecting local minima pixels. This algorithm is appropriate for separating 

two overlapping objects in a microscopic image; however, this algorithm has difficulty 

separating many occluded cells (Yadollahi & Procházka 2011).  

2.5.3 Regional Maxima 

In 2D images that are the output of the distance transform (Section 2.5.2), the regional 

maxima algorithm is a procedure which finds a local maximum of connected neighbourhood 

pixels. The algorithm returns binary images: pixels that are the locations of a local maximum 

value are replaced by 1; other pixels are set to 0.  

Vincent conducted a study on using regional maxima in developing area openings and 

closings. By employing the regional maxima algorithm, the computation of area openings 

and closings can be both computation and space efficient (Vincent 1993a) 

2.6 Features 

A feature is a measurable property of an object being observed that characterizes and 

discriminates the object (Bishop 2006). Choosing informative, discriminating and 
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independent features is a crucial step for effective algorithms in pattern recognition. Features 

used in this thesis are described below.  

2.6.1 Statistical Moment Features and Colour Channel Histogram 

In general, the recent technology of colour cameras creates and display colour images by 

mixing the colours: red (R), green (G), and blue (B) in different proportions (Efford 2000). 

Grayscale space and the other colour spaces can be derived from the primary colours. For 

examples: the space set of hue (H), saturation (S), and intensity (V) and the space set of 

luminance (Y) and colour information (Cb and Cr). For purposes of image processing, colour 

channels may be quantified and represented as a histogram. This allows computation of 

statistical properties.  

Statistical properties from any colour channel (R, G, B, H, S, etc.) may be computed 

over the image or regions of the image. Examples include central moments such as the mean, 

variance, skewness and kurtosis. Central invariant moments were introduced in the 1960s 

(Hu 1962) where the invariant moments were used as features to develop pattern recognition 

and data simulation. Dudani et al. employed central invariant moments of transformations, 

elevation angle, and distance to recognize aircraft types (Dudani, Breeding & McGhee 

1977). The automatic system was shown to be more accurate than human observers.  

In another study, Zitova and Flusser used invariant moments (the mean and standard 

deviation) of translation, rotation, and blurring to estimate camera motion. From an original 

image, 18 images were generated by rotating over two angles: 6.20 and 10.80, translating one 

pixel in vertical and horizontal directions, and blurring manually with defocus and two 

different foreign object insertions. The computed values were compared with the ground 

truth to evaluate the performance. The estimation accuracy was satisfactory with mean and 

standard deviation of differences in rotation: 0.06 and 0.05; vertical translation: 0.1 and 0.4; 

and horizontal translation: -0.3 and 0.5 (Zitová & Flusser 2002).  

Also, Avci and Varol used seven invariant moments as features to classify parasite 

eggs in microscopic images. After a segmentation process, Hu’s seven invariant moments of 

the parasite egg footprints were extracted in order to classify human parasite eggs. The Hu’s 

seven invariant moments are invariant under translation, rotation, and scaling. Based on a 

sample set of 938 parasite eggs from sixteen human parasite egg types, classification using 

the multi-class support vector machine classifier resulted in an overall correct classification 

rate 97.70% (Avci & Varol 2009).  
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2.6.2 Ellipticity and Eccentricity 

Two useful features for describing shape are eccentricity and elliptical irregularity. 

Eccentricity is a very well establish concept although there are many variants (Ballard & 

Brown 1982; Burger & Burge 2016; Jähne 2005; Jain 1989). In principle, eccentricity is a 

measure of elongated shape. For an ellipse with major and minor semi axis lengths a and b, 

the eccentricity is commonly defined by  

Eccentricity = √1-
b

2

a2
 

Eccentricity has been used for centuries to describe elliptical shaped objects, 

especially the orbits of planets; however, in 1992, eccentricity was employed to classify a 

trajectory as a straight line, a curve to the left or a curve to the right (Charayaphan & Marble 

1992). Combined with other features, the eccentricity was used to interpret motion in 

American Sign Language. Five out of nine signs could be classified well by the proposed 

method.  

 

Figure 2.1: Ellipticity and Eccentricity. a is semi-major axis, b is semi-minor axis, A and B are area 

inside and outside of the best fitting ellipse. 

Elliptical irregularity was introduced in (Kruk et al. 2016) and is used to quantify the 

extent to which a shape differs from an ellipse. For any given shape in the plane (Figure 2.1), 

consider all ellipses having the same area as the shape. For each such equal-area ellipse, the 

area within the shape but outside the ellipse is a measure of how different the shape is from 

the ellipse. The equal-area ellipse for which this area is minimum is called the best fitting 
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ellipse. Let A denote the area of the shape. Note that A is also the area of the best fitting 

ellipse. Let B denote the area within the shape and outside the best fitting ellipse. Then the 

elliptical irregularity of the shape is given by 

Elliptical irregularity = 
B

 A
 

Because the shape and the best fitting ellipse have the same area, B is also equal to the area 

within the best fitting ellipse lying outside the shape. For an object of any shape, the best 

fitting ellipse can also be used to define the eccentricity of the shape. 

2.6.3 Heterogeneity 

Heterogeneity is a measure of how decentralised a distribution is. Young used heterogeneity 

as a feature to characterize chromatin distribution. Based on the histogram of luminance 

distribution (Figure 2.2), the heterogeneity was defined as 

Heterogeneity = 
NB+NW

NB+NG+NW

 

where, NB, NG , and NW  are the number of pixels with value less than 80% of mean, between 

80% and 120% of mean, and more than 120% of mean, respectively. Compared with 

morphological features, heterogeneity performed well in practice (Young, Verbeek & 

Mayall 1986).  

In 2011, Elter et al. included heterogeneity as one of the features of a classification 

system for detecting malaria parasites in thick blood film images. Based on a sample set of 

878 region of interests (ROIs) (266 parasites and 612 non-parasites), the experimental study 

showed that the classifier was able to identify ROIs with a high detection sensitivity (0.97) 

and low false-positive detections per image (0.80) (Elter, Haßlmeyer & Zerfaß 2011).  
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Figure 2.2: An example of histogram of a ROI. Thresholds are automatically selected at 20% above 

and below the mean value of the histogram. 

2.7 Median Filter 

A median filter is a non-linear method that may be used to remove noise while preserving 

edges, sharpen signals or images in many situations where an averaging filter could be used 

but a more robust method is needed. The median filter works as follows. From a moving 

finite window of real numbers, the neighbouring pixels in an m-by-n neighbourhood are 

sorted (the ith order statistic of N numbers X1, …, XN) and the new value of the central pixel 

is the median given by X(1+N)/2 if N is odd and (1/2)(XN/2 + X(N+1)/2 if N is even, where N = 

mn.  

In 1974, Tukey introduced one dimensional median filtering to smooth signals in 

time series analysis (Tukey 1974). In the following year, in combination with a linear filter, 

the median filter was utilized to smooth speech signals and reported quite efficient and 

competitive results (Rabiner, Sambur & Schmidt 1975). In the same area, Jayant made a 

comparative study of the use of the median filter and the mean filter in the transmission of 

digital speech signals and concluded that the two methods had the same performance for 

independent error occurrences (Jayant 1976).  

Meanwhile, Pratt developed two-dimensional median filters by using a two-

dimensional window with a size and shape to suppress noise and enhance images in image 

processing. Based on the examination of a various sizes of windows for the two-dimensional 

median filter, the 3x3 two-dimensional filter was recommended for significantly reducing 
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impulse noise in images (Pratt 1978). Furthermore, Huang et al. made a study to improve 

the speed of the two-dimensional median filter. By using a fast two-dimensional median 

filter, median filtering can be far more efficient because it is simple to update the histogram 

from window to window (Huang, TS, Yang & Tang 1979).  

Based on some recent work in the actual implementation of the median filter, several 

benefits in using the median filter have been seen. First, there is no reduction in contrast 

across steps, since output values available consist only of those present in the 

neighbourhood. Secondly, for small to moderate levels of (Gaussian) noise, the median filter 

is demonstrably better than Gaussian blur at removing noise whilst preserving edges for a 

given, fixed window size (Arias-Castro & Donoho 2009). In addition, the median filter is 

effective for removing speckle noise and salt-and-pepper noise in medical imaging although 

the median filter performance is not much better than Gaussian blur for high levels of noise 

(Arce 2005; Jayaraman, Esakkirajan & Veerakumar 2009).  

2.8 Gaussian Mixture Model 

A Gaussian mixture model (GMM) is a probabilistic model for describing characteristics of 

groups within a set of data points (Permuter, Francos & Jermyn 2003). The data points are 

modelled as having been generated from a mixture of a finite number of Gaussian 

distributions with unknown parameters. Let X = (X1, …, XL) be a data set and i 𝜖 {1, 2, ..., k} 

denote the index for group sets. By Bayes theorem, the Gaussian density function is 

𝑓(𝑥) = ∑ 𝑝𝑖

𝑘

𝑖=1

𝑁𝑖(𝑥|𝜇𝑖, 𝜎𝑖
2)  

 

𝑁𝑖(𝑥|𝜇𝑖, 𝜎𝑖
2) =

1

𝜎√2𝜋
exp (

−(𝑥 − 𝜇𝑖)
2

2𝜎𝑖
2 )  

 

where pi denotes the mixture proportion (the prior probability distribution) of each group 

and 𝑁𝑖(𝑥|𝜇𝑖, 𝜎𝑖
2) represents a multi-variate normal distribution with mean µi and standard 

deviation σi. These prior probabilities satisfy: ∑ 𝑝𝑖 = 1𝑘
𝑖=1  and 0 ≤ 𝑝𝑖 < 1.  

One numerical method for estimating the parameters of the Gaussian distributions is 

the expectation-maximization (EM) algorithm (Farnoosh & Zarpak 2008). The EM 
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algorithm is an alternative algorithm for the maximum likelihood estimation in the practical 

application (Fu & Wang 2012). The EM algorithm consists of two steps: E-step and M-step. 

The E-step finds the expected value of the complete likelihood given the current 

parameterization, 𝜃𝑟, while the M-step looks for the set of parameters 𝜃𝑟+1 that maximizes 

the expectation from the E-step (McLachlan & Peel 2004). Implementation of the EM 

algorithm requires the following four steps (Farnoosh & Zarpak 2008).  

1. Set k groups and initialize parameters:  

𝜃(0) =  (𝑝1
(0)

, … , 𝑝𝑘
(0)

, 𝜇1
(0)

, … , 𝜇𝑘
(0)

, 𝜎1
2(0)

, … , 𝜎𝑘
2(0)

) 

2. E-step: compute the probabilities according to 

𝑝𝑖𝑗
(𝑟+1)

=
𝑝𝑖

(𝑟)
𝑁(𝑥𝑗|𝜇𝑖

(𝑟)
, 𝜎𝑖

2(𝑟)
)

𝑓(𝑥𝑗)
 

3. M-step: update the parameter values as 

𝑝̂𝑖
(𝑟+1)

=
1

𝑛
∑ 𝑝𝑖𝑗

(𝑟)𝑛
𝑗=1 , 

𝜇̂𝑖
(𝑟+1)

=
∑ 𝑝𝑖𝑗

(𝑟+1)
𝑥𝑗

𝑛
𝑗=1

𝑛𝑝
𝑖
(𝑟+1) , 

𝜎̂𝑖
2(𝑟+1)

=
∑ 𝑝𝑖𝑗

(𝑟+1)
(𝑥𝑗−𝜇̂𝑖

(𝑟+1)
)2𝑛

𝑗=1

𝑛𝑝
𝑖
(𝑟+1) . 

4. Iterate steps 2 and 3 until:  

∑ 𝑒𝑖
2

𝑖 < 𝜀, 

where ei is an error, e.g. 𝑒𝑖 = 𝜇̂𝑖
(𝑟+1)

− 𝜇̂𝑖
(𝑟)

 and 𝜺 is a pre-set tolerance. 

In 1998, EM-GMM was successfully used to estimate human face skin colour (Yang 

& Ahuja 1998). The results demonstrate that the estimated GMM fits with skin images from 

a database. Reynolds et al. employed the modified EM-GMM for speaker verification 

(Reynolds, Quatieri & Dunn 2000). The results indicated that the method improves 

verification performance. Zivkovic developed an adaptive algorithm using GMM to improve 

image segmentation by background subtraction (Zivkovic 2004). The adaptive GMM was 

able to select an appropriate number of components for each pixel. In the study by Huang et 

al., the use of GMM showed exceptional performance in classifying multiple limb motion 

(Huang, Y et al. 2005). 



32 

 

2.9 Classifiers 

A classifier can be defined as a procedure that assigns an item to one of two or more classes. 

The classes are known a priori and one or more new observations are classified into one of 

the known groups based on the measured characteristics. In this section, two classifiers are 

described that will be used in the following chapters. 

2.9.1 Discriminant Analysis 

In this classifier, there are a fixed number of classes and known feature values of training 

objects. The goal is to find a decision rule (pattern) to classify a query point x into the 

corresponding class. Let X be the number of data points in group G. The discriminant 

analysis technique works as follows. 

For every sample of a group G in the training set, consider x in the feature space. The 

goal of discriminant analysis classifier is to find a good predictor for the group G of any 

sample from the training set. Suppose fk(x) is the density function of X in group G = k, and 

let πk denote the prior probability of group k, where ∑ 𝜋𝑘 = 1𝐾
𝑘 . Using Bayes’ theorem, an 

estimate of the posterior probability of a sample x being member of group k is  

𝑃(𝐺 = 𝑘|𝑋 = 𝑥) =  
𝑓𝑘(𝑥)𝜋𝑘

∑ 𝑓𝑘
𝐾
𝑘=1 (𝑥)𝜋𝑘

 

Subsequently, the point x in the feature space is assigned to the group k with the largest 

posterior probability P(G = k|X = x). The theoretical details and more information can be 

found in texts (Hastie, Tibshirani & Friedman 2001; McLachlan 2004) 

Let π1 and f1(x) be the prior probability and the density function of group 1, 

respectively and π2 and f2(x) be the prior probability and the density function of group 2, 

respectively. A sample x is assigned to group 1 if P(G = 1 | X = x) ≥ P(G = 2|X = x), otherwise 

the x is assigned to group 2. 

Among the classifiers, discriminant analysis is one of the most commonly used 

methods. A benefit of a discriminant analysis classifier is that it is quick to train (Lyons, 

Budynek & Akamatsu 1999). Also, the mathematical form is simple and the method is easy 

to implement while still being very powerful (Raudys, Š & Young 2004). Linear 

discriminant analysis is guaranteed to provide optimal classification if the distributions of 

the feature values in the groups are normal. Originally, discriminant analysis was developed 
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by Fisher to classify three species of iris flowers based on three different features (Fisher 

1936).  

In the study by Altman et al. the linear discriminant analysis was found to be 

promising for corporate distress classification, with classification accuracy of over 0.90 

(Altman, Marco & Varetto 1994). Also, the linear discriminant analysis was acceptable for 

classifying antibiotic resistance patterns of indicator bacteria (Harwood, Whitlock & 

Withington 2000). In 2001, Hadjiiski et al. employed linear discriminant analysis to classify 

masses as benign or malignant (Hadjiiski et al. 2001). In classifying benign and malignant 

masses on a data set of 348 mass ROIs comprising 169 benign and 179 malignant, the 

classifier achieved the mean Az score of 0.78.  

Lu et al. proposed linear discriminant analysis for human face recognition (Lu, 

Plataniotis & Venetsanopoulos 2003). Results showed excellent performance with only a 

very small set of features being used, its misclassification rate was 0.34. In another study in 

the field of economics, the linear discriminant analysis was used to predict financial distress 

of public companies listed in the Amman stock exchange (Al-khatib & Al-Horani 2012). 

2.9.2 Exhaustive Search Classifier 

Discriminant analysis automatically finds a discriminant surface that separates the classes in 

the training set. The surface found is guaranteed to be optimal if the underlying distributions 

for the considered features are normal. In cases where the features do not have normal 

distributions, better classification may be possible by considering non-linear discriminant 

surfaces using more complicated methods such as neural networks or support vector 

machines. These methods require large amounts of data to avoid over fitting –a natural 

consequence of allowing very complicated discriminant surfaces.  

An example of a method that retains much of the robustness of linear discriminant 

analysis but is more flexible in situations where the underlying distributions are not 

necessarily normal is to set thresholds for individual features rather than a single linear 

surface within the entire feature space. This must be accompanied with a rule for assigning 

class labels to the many compartments of the feature space generated by the individual 

thresholds and so requires good understanding of the expected contribution of individual 

features to the final decision. For this reason, setting thresholds for individual features is not 

commonly used in very complex classification problems.  
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In most applications, the best thresholds for each feature are not known ahead of time 

and so different combinations of thresholds must be considered to train the classifier. If the 

number of features is not too large, exhaustive search may be used to find the optimal 

combinations of thresholds. The feasibility of doing so also depends on the number of 

thresholds per feature that need to be considered –in other words, the resolution required for 

the threshold values. 

The method described above will be referred to as ‘exhaustive threshold 

classification’. Exhaustive threshold classification is closely related to classification based 

on decision trees (Hastie, Tibshirani & Friedman 2001). In decision trees, an optimal 

threshold is found for each individual feature using exhaustive search. The feature with the 

best performing threshold is used to segment the features space into two compartments 

according to the optimal threshold. Next, the same process is repeated separately on both 

compartments and these steps are repeated until a stopping condition is reached. The 

resulting classifier consists of a set of rules for assigning classes. A typical rule is of the 

form: assign class 1 if f1 > T1 and f3 > T2 and f2 < T3 or if f1 > T1 and f2 < T4 and f3 > T5 and 

assign class 2 otherwise. Here fi is the value of feature i and Tj is threshold j. The thresholds 

are set sequentially as the optimal threshold for the compartment at hand. The rule for 

assigning classes is determined automatically as part of the process.  

In exhaustive threshold classification, all the thresholds are considered 

simultaneously but the rule for assigning classes is fixed beforehand. In cases where the rule 

for assigning classes is indeed available as prior information, then exhaustive threshold 

classification is guaranteed to find the combination of thresholds that provides the best 

classification. The optimal combination of thresholds is not guaranteed by the decision tree 

due to the sequential nature of finding the thresholds. 

2.10 Feature Selection 

The aim of feature selection is to select a small set of meaningful features instead of 

using many features. In other words, feature selection is used to determine a subset of 

features that generates the optimal classification performance. There are several reasons why 

feature selection is crucial. Firstly, classification based on a complex decision rule and large 

number of features may need careful attention (Raudys, SJ & Jain 1991), and most 

importantly, using a large number of features relative to the number of samples in the data 

will result in artificially high classification. For any data set, arbitrarily good classification 
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may be achieved on training data if enough features are used but the results will usually be 

poor on testing data and in actual use. Secondly, the use of ineffective or redundant features 

may distract the classifier and result in unstable training. This means that the selected 

features are unreliable and are likely to lead to poor performance on test observations (Chan, 

Petrick & Sahiner 2000; Fukunaga 1990; Miller et al. 2003). Thirdly, wide-ranging features 

may result in high computational cost. On the other hand, careful feature selection can 

improve the performance of predictors.  

The performance evaluation of candidate methods in feature selection commonly 

requires a search strategy in selecting candidate subsets and an objective function. In the 

study by Dash and Liu, objective functions, called evaluation functions, are categorised into 

five groups: distance (also known as separability), information (or uncertainty), dependence 

(or correlation), consistency, and classifier error rate (misclassification rate) (Dash & Liu 

1997). Generally, the misclassification rate is used as the objective function in performance 

evaluations.  

Two feature selection methods used in the following chapters, exhaustive search and 

sequential feature selection, are reviewed below.  

2.10.1 Exhaustive Search Feature Selection 

Exhaustive search feature selection consists of evaluating all possible combinations of 

features to find the combination that results in the best value from the objective function.  

Given the number of original features is n, there are 2n – 1 possible feature subsets. 

This means that exhaustive search feature selection is practical only for relatively small 

numbers of n. However, this method for feature selection is one of the few methods that 

guarantees finding the optimal feature subset. If there are n features, but attention is restricted 

to selecting subsets of at most k features, then the number of feature sets to consider is M(n,k) 

= C(n,1) + C(n,2) + … + C(n,k), where C(n,i) is the binomial coefficient C(n,i) = n!/(n-i)!i!. 

Even for large n, M(n,k) is reasonable if k is not too big. As an example, for n = 100, there 

are about 10158 total subsets, but M(100,3) = 166,750.  

2.10.2 Sequential Feature Selection 

Sequential feature selection methods can be grouped into two main methods: sequential 

forward feature selection and sequential backward feature selection. Sequential forward 

feature selection starts with the empty set. All features are tested individually and the one 
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with the best performance is added to the set. At each step, all remaining features are tested 

in combination with the features already in the set until no features improve the performance 

or the improvement is less than a prescribed minimal improvement condition. There is no 

guarantee that this method finds the optimal feature subset.  

On the other hand, sequential backward feature selection starts from a full candidate 

set and features are sequentially discarded from the candidate set until the removal of further 

features does not improve the objective function. Sequential backward feature selection 

generally works best when the optimal feature subset is large. However, sequential backward 

feature selection is not able to re-evaluate the usefulness of features after they are removed. 

2.11 Cross-validation 

Cross-validation is a technique for estimating how well a classifier is likely to perform in 

making new predictions on unseen data (Hastie, Tibshirani & Friedman 2001). Cross-

validation splits the whole data set into K parts: K-1 parts are used for training and the 

remaining part for testing. This process is repeated K times, so that each of the K parts plays 

the role as the testing data once.  

Cross-validation was introduced in the 1931 by Larson (Larson 1931) and further 

developed by Mosteller and Wallace (Mosteller & Wallace 1963). In 1983, Efron developed 

a prediction rule involving cross-validation for estimating classification error rate (Efron 

1983). The results indicated that cross-validation offers almost unbiased error estimation but 

has high variance, so may result in unreliable estimates. However, this drawback may be 

ignored, especially if the data set is small.  

Sometimes, to improve the reliability of estimation performance, the entire K-fold 

cross-validation process is repeated multiple times (Refaeilzadeh, Tang & Liu 2008), each 

time with the data set divided into a new set of K-folds. The assignment into folds is usually 

random, but with consistent representation per class.  

2.12 Accuracy, Sensitivity and Specificity  

In the field of classification, accuracy is the proportion of correct prediction over the total 

number of cases including positive and negative ones.  

Accuracy = 
the number of correct assignments

the total number of actual cases
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Accordingly, accuracy is used to measure the classification performance. Generally, the 

higher accuracy, the better classification performance. 

Table 2.1: Confusion matrix with two groups. 

  Prediction 

  Positive Negative 

Actual 

Cases 

Positive TP FN 
Negative FP TN 

 

However, in the framework of medical analysis, misdiagnosis due to an error in 

diagnosing a patient as having disease when the patient is actually free disease has different 

consequences compared with a misdiagnosis as being free from disease when the patient 

actually does have the disease (Metz 1978). For this reason, the utilization of accuracy is not 

enough to be a performance indicator alone. Better measures of performance are given by 

sensitivity and specificity. These are based on the confusion matrix.  

Two useful measures of performance are sensitivity and specificity are given by:  

Sensitivity = 
the number of TP

the total number of TP and FN
 

Specificity = 
the number of TN

the total number of TN and FP
 

A general confusion matrix is a square matrix, L x L, containing the values of actual 

and predicted classification (Kohavi & Provost 1998). L denotes the number of groups. In a 

two group classification problems, there are four possible fractions: true positive prediction 

(TP), false positive prediction (FP), true negative prediction (TN), and false negative 

prediction (FN) (Table 2.1).  

Classification schemes may be adjusted to maximize sensitivity or specificity or, more 

usually, a linear combination of the two, according to the relative consequences of errors 

due to false positive reports compared to errors due to false negative reports. In the context 

of screening mammography programs, for example, high sensitivity is desirable since 

missing a true cancer may be fatal while erroneously classifying an anomaly as cancerous 

will likely be rectified by follow-up procedures. However, in the context of deciding if a 

severely invasive and dangerous intervention is required, high specificity is desirable.  
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2.13 Literature Review 

Many of the techniques of image normalisation and pattern recognition reviewed in Sections 

2.2 to 2.12 have been used for computer-aided malaria diagnosis based on thin and thick 

blood film images. Automatic estimation of malaria parasitemia based on microscopy 

images is the ultimate objective of this thesis. This section reviews previous work on 

identification of malaria parasites and parasitemia estimation on thin and thick blood film 

images.  

In the last two decades, many studies have reported on the use of image processing 

for medical diagnosis. The fundamental problems in medical diagnosis based on image 

analysis are segmentation and classification. Both fields are very large and only aspects 

related to this thesis will be reviewed. 

2.13.1 Detecting Malaria Parasites  

The scope of this section is to review previous work in the field of the identification 

of infected erythrocytes. 

Colour and morphological features have been developed for the identification of 

infected erythrocytes and normal erythrocytes from an image. Makkapati and Rao evaluated 

dominant hue range in the hue, saturation, and value (HSV) colour space of images to 

segment erythrocytes from the background and identified an optimal saturation threshold to 

detect malaria parasites. Erythrocytes were segmented by thresholding using Otsu’s method 

(Section 2.4.2) and a saturation value of 0.34 was manually determined as an optimum 

cytoplasm threshold. To check its sensitivity and specificity, the method was applied to 55 

images taken from Leishman-stained blood films. The segmentation yielded 88% sensitivity 

and 95% specificity (Makkapati & Rao 2011). The parasitemia level was not investigated. 

Ruberto et al. utilized granulometric functions on grayscale images based on size and 

shape, and employed colour transformation from red, green, and blue (RGB) to HSV. 

Parasite nuclei were identified by the intersection of regional maxima of image H and S. 

Then, the mean grayscale of the parasite nuclei computed on the image H and S, µH and µS, 

were used as threshold values to segment the objects of interest in image H resulting in image 

TH, and in image S to obtain TS, respectively. Finally, leukocyte and parasite footprints were 

obtained from the intersection of TH and TS, yielding image THS. Morphological erosion 

with a disk-shaped structuring element of size 22 (Section 2.3.1) was employed to remove 
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leukocyte footprints in THS images and a morphological smoothing was used to remove 

stray points and close small holes. Infected erythrocytes were identified and isolated by 

applying morphological reconstruction based on dilation of THS (Soille 2013). On a database 

of 12 images, a microscopist found 1,910 erythrocytes with 479 of the erythrocytes being 

infected. Parasitemia was 25.08% for infected erythrocytes. The algorithm found 1,953 

erythrocytes, of which 506 were labelled as infected. The parasitemia was estimated to be 

25.91% (Ruberto, C.  et al. 2000). However, a parasite classification was not conducted to 

distinguish parasites or artefacts. This means that all parasite candidates, THS minus 

leukocyte footprints, were assumed as parasites. Moreover, the parasitemia scores (the 

number of infected erythrocytes per µl of blood) were not reported. 

In another granulometry-based study, Ross et al. utilized morphological, colour 

intensity, and texture features of erythrocytes (natural feature candidates) for erythrocyte 

classification as normal or infected. Ross et al. used thresholding for erythrocyte and parasite 

classification. Otsu’s method (Section 2.4.2) was applied to segment erythrocytes from the 

background. Subsequently, the first minimum after the principal mode of the erythrocyte 

histogram was taken to be the parasite threshold. Six features were measured on the 

histogram of erythrocytes. The six features were size, eccentricity, smoothness, colour, 

texture, shape of parasites, and the number of parasites per erythrocyte. On a database of 

2361 infected erythrocytes, the system achieved a sensitivity of 92.07% and a positive 

predictive value of 39.64% with 1378 false positives and 78 false negatives. After testing, 

the method correctly identified 85.13% of the total number of erythrocytes and the accuracy 

of the classification system was 73% (Ross et al. 2006). However, the parasitemia level was 

not studied and thrombocytes were not considered. 

Kumar et al. developed a malaria identification scheme by applying adaptive 

thresholding with Otsu’s algorithm (Section 2.4.2) on the blue channel of RGB colour 

images in order to segment erythrocytes and parasites. Parasites and erythrocytes were 

segmented and counted separately. Erythrocytes were segmented by the Otsu threshold value 

and the Otsu threshold value plus 0.25 was used to segment the blue colour channel to obtain 

parasite footprints. In this study, there was no classification of parasite and erythrocyte 

footprints. After applying morphology to fill the holes of the erythrocyte footprints and 

dilation or erosion with disk shaped structure elements to remove noise, parasite and 

erythrocyte footprints were counted. The method was examined using a set of images 

containing 87 parasites and 311 erythrocytes from eight malaria-infected images. Following 

implementation, the scheme incorrectly recognized 18 of 311 erythrocytes and 14 of 87 
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parasites in the testing set. The study reported that the classification results on parasites were 

close to the manual counts even though some differences were observed regarding 

erythrocyte counts. In the frame of diagnosis, the parasitemia score was not computed in the 

study. In addition, in the classification strategy, thrombocytes, which naturally present in 

thin blood film images, were not considered. The result suggested that Otsu’s algorithm 

should be implemented on the green channel instead of the blue channel (Kumar et al. 2012).  

Savkare and Narote investigated support vector machines to classify erythrocytes 

into two classes: normal erythrocytes and infected erythrocytes. Ten features were extracted 

from erythrocyte footprints to estimate parasitemia. The ten features were geometric (radius, 

perimeter, area, compactness, and metric), colour saturation, and statistical features 

(skewness, kurtosis, energy, and standard deviation). To evaluate the performance, the 

automatic parasitemia was compared to manual reader parasitemia values. On a database of 

15 images, the system had sensitivity of 93.12% and specificity of 93.17% (Savkare & 

Narote 2011). However, the validations were performed on parasitemia score per image and 

parasitemia score per slide was not discussed. 

Kim et al. identified and classified erythrocytes and leukocytes in blood images 

automatically. The watershed transform was used to segment the images and then the k-

means algorithm was implemented to merge the nearest regions based on colour features. 

After identifying cells, a neural network model, with inner edges and counter features as 

input, was developed to classify erythrocytes and leukocytes. Furthermore, Kim et al. 

compared performance to two other algorithms: learning vector quantization-3 (LVQ-3) and 

k-nearest neighbour (KNN). Tested on a database of 680 erythrocytes and 410 leukocytes, 

the overall classification rate was 91% and 81% for erythrocytes and leukocytes, respectively 

compared with KNN (82%) and LVQ-3 (89%). The accuracy of the neural network classifier 

was better in this experiment (Kim et al. 2001). However, thrombocytes, that may resemble 

erythrocytes in size and intensity, were not considered and occluded erythrocytes, which 

naturally present in thin blood film images, were not discussed. 

Diaz et al. proposed the use of a genetic algorithm for pattern recognition in 

identifying infected erythrocytes. Five different histogram features were measured to 

distinguish normal or infected erythrocytes. The five histogram features were: colour, 

saturation level, grayscale, Tamura texture, and Sobel histogram. Based on a sample set of 

450 malaria images, classification using mean, standard deviation, skewness, kurtosis, and 

entropy of the histograms yielded a sensitivity of 94% and a specificity of 99.7% for 
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identification of infected erythrocytes (Díaz, González & Romero 2009). However, 

thrombocytes were not considered in the erythrocyte classification strategy. 

Tek et al. reviewed works on automatic malaria diagnosis based on microscopic thin 

and thick blood film images. The two main emerging areas reported by Tek et al. in which 

image processing was most likely to have an important role in malaria diagnosis were 

segmentation and classification. In thin blood film images, segmentation aims at separating 

the foreground, commonly consisting of erythrocytes, leukocytes, and parasites (if present), 

and the background. The typical problems of segmentation were identified as under 

segmentation or over segmentation. Under segmentation produces two or more blood cells 

in one region (occluded cells). Conversely, over segmentation results in a single blood cell 

segmented into two or more regions. Several methods have been presented to overcome 

these problems, such as morphological area closing and distance transform. However, none 

of these methods is applicable to high-occluded cells. In terms of classification, few 

classification studies were conducted to distinguish parasites and other stained objects and 

the proposal was to differentiate between normal and infected erythrocytes. In the frame of 

thick blood film images, only a preliminary study was reported. Overall, studies reported by 

Tek et al. resulted in useful systems to identify malaria parasites (Tek, F. B., Dempster & 

Kale 2009). However, these studies in thin blood films were not compared to parasitemia 

estimated by microscopists in thick blood films. 

Furthermore, Tek et al. investigated the use of image processing and pattern 

recognition methods to diagnose malaria based on thin blood film images. Probability 

density was used to determine stained cells, local area granulometry was applied to estimate 

size, and a modified KNN classifier was employed to detect malaria-infected erythrocytes 

in thin blood films. A set of 630 colour images from nine slides consisting of 669 infected 

erythrocytes and 3431 normal erythrocytes was used. A subset of 336 infected erythrocytes 

and 1645 normal erythrocytes was used for training. The other 333 infected erythrocytes and 

1645 normal erythrocytes were used for testing. In detection experiments, an accuracy of 

93.17% was achieved, with sensitivity of 72.37% and specificity of 97.45%. In the per slide 

detection performance, the algorithms needed to observe at least 45,889 erythrocytes to 

achieve a sensitivity of 72.37% in a slide of 500 parasites/µl. In the same slide, the classifier 

yielded a specificity of 97.45% with 114 false detections (Tek, F. B., Dempster & Kale 

2010). The parasitemia estimation was not discussed. 
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In thick blood film images, Toha and Ngah developed a system for computer aided 

malaria diagnosis. After converting to grayscale images, a threshold value T2 was used to 

segment the grayscale images for obtaining parasite footprint candidates (binary images). 

Then, cluster analysis using the Euclidean distance algorithm and size and locality was used 

to determine parasites. The system was tested by counting the number of malaria parasites 

in one image (Toha & Ngah 2007). However, the parasite count was not clearly reported and 

validation of the result was not discussed.  

Another study of malaria identification in thick blood film images was conducted by 

Elter et al. They focused on high detection sensitivity while accepting potentially low 

specificity per image and then reduced the number of false-positive detections to an 

acceptable level while maintaining the high detection sensitivity. The authors computed the 

arctan of the ratio of green and blue colour intensity to transform colour images into 

grayscale ones. Next, the black-top-hat morphological operator followed by threshold 

segmentation (the proportion of the green and the blue colour intensity as the threshold 

value) was used to separate potential malaria parasites from the background. A set of features 

consisting of statistical moment features, texture features, and colour features were extracted 

from each malaria parasite candidate. Then, a genetic algorithm was applied to the set of 

features to classify malaria parasite candidates. Of the 266 parasites and the 612 false-

positive detections, at a reasonable high sensitivity of 0.97, this system achieved 3.2 false-

positive detections per image without false-positive reduction and 0.8 false-positive 

detections per image with false-positive reduction. This demonstrated that the algorithm was 

suitable for the development of an automatic malaria diagnosis based on microscopic images 

(Elter, Haßlmeyer & Zerfaß 2011). However, parasitemia score was not presented. 

In the same year, Hanif et al. focused on enhancing the quality of malaria-infected 

thick blood film images. Dark stretching was used to make images clearer and threshold 

segmentation was applied to separate parasites from the background. The threshold value 

was controlled manually. The method was tested on three images and three different 

threshold values (200, 220, and 230) were applied to each stretched image. Visually, the 

results showed that the dark stretching method can improve the image quality and the three 

threshold values, especially 220, were suitable for segmenting the three different stretched 

images to obtain malaria parasites (Hanif, Mashor & Mohamed 2011). Nevertheless, the 

study did not discuss parasitemia scores. 
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2.13.2 Estimation of Parasitemia 

The estimation of infection level of malaria parasites may be determined based on the 

percentage of infected erythrocytes in thin blood films or the parasite quantitation in thick 

blood films.  

A study by Diaz et al., also described above, counted the percentage of infected 

erythrocytes to determine parasitemia. Of 12,557 erythrocytes, 12,513 erythrocytes were 

classified automatically as infected or uninfected and 44 erythrocytes were manually 

evaluated by a user. The total assessment yielded the parasitemia of 5.6% for infected 

erythrocytes. The study went further to determine the life form of parasites using a multi-

level perceptron classifier. The scheme was tested on the same data set consisting of 12,557 

erythrocytes with 11,844 healthy erythrocytes, 521 erythrocytes infected by parasites in ring 

form, 109 infected by parasites in trophozoite form, and 83 infected by parasites in schizont 

form. Evaluated by experts, an average sensitivity of 78.8% and average specificity of 91.2% 

were reported for life stage identification (Díaz, González & Romero 2009). Meanwhile, 

estimation of parasitemia scores was not reported.  

Frean estimated parasitemia scores based on thick blood films using open access 

software. Based on a range of 497 thick blood film images with varying levels of parasitemia 

(12 slides), strong correlation was achieved between the parasitemia estimation resulting 

from the software and that from microscopists (R = 0.99). Furthermore, on a database of 197 

images from eight slides, the parasitemia scores resulting from this software correlated well 

(R = 0.97) with that from microscopists (Frean 2009). However, this software was run semi-

automatically: leukocytes were counted manually and a parameter, the radius of parasite 

area, was also adjusted manually to remove outliers. 
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Chapter 3: Classifying Erythrocytes for Estimating 

Parasitemia in Thin Blood Film Images 

3.1 Overview 

This chapter presents a study on estimating parasitemia based on thin blood films. Estimating 

parasitemia from thin blood films requires counting individual erythrocytes and determining 

the proportion that are infected with the malaria parasite. To do this automatically requires 

several linked steps: detecting erythrocytes, segmenting erythrocytes, determining which 

erythrocytes are infected with the malaria parasite and then translating the ratio of infected 

erythrocytes to parasitemia scores that may be compared with human expert scores.  

These steps are presented in the chronological order in which they were addressed 

during this study instead of the order in which the steps are implemented in practice because 

the findings from the preliminary studies impacted choices made in subsequent steps. 

Accordingly, thin blood film images used in this study are described in Section 3.2. Section 

3.3 presents a study on comparing two methods for segmenting erythrocytes given that an 

erythrocyte is known to be present at a certain location. This study was taken on initially to 

verify that segmentation was possible in principle before addressing the other tasks needed 

for a full system. Section 3.4 presents a method for full automatic segmentation of 

erythrocytes without prior knowledge of the location of erythrocytes in the image. Section 

3.5 demonstrates the method used to determine if an erythrocyte is infected with a malaria 

parasite or not and Section 3.6 provides a method for relating the proportion of infected 

erythrocytes to parasitemia scores determined by human experts.  

3.2 Thin Blood Film Images 

For this part of the study, 610 images were randomly selected from the thin blood films of 

the seven positive slides (Section 1.12), approximately 87 images from each slide. Of these, 

twenty images were used for the erythrocyte segmentation study (Section 3.3), thirty images 

were used for training of erythrocyte classification (Section 3.5), 280 images were used for 

training the process for estimating parasitemia, and 280 were used for testing the process for 

estimating parasitemia. Typical thin blood film images contain two basic components 

(erythrocyte and thrombocytes) and some additional objects (parasites and occasionally 

some leukocytes).  
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3.3 Segmentation of known erythrocytes  

Recognizing erythrocytes is an important topic in automatic malaria diagnosis in thin blood 

films. A preliminary study to the main project of automatic malaria diagnosis from a thin 

blood film was conducted to select an appropriate erythrocyte segmentation method. The 

work was conducted on a limited data set of images. This preliminary study described in this 

section and the main study described in the following sections were presented in Engineering 

International Conference and published in the proceedings (Sunarko et al. 2013) and 

(Sunarko et al. 2017), respectively.  

For training and testing erythrocyte segmentation and classification, experimental 

results in this section were compared to ground truth established manually by a microscopist. 

This was because most normal and infected erythrocytes are clearly distinguishable. For 

parasitemia estimation, experiment results were compared to expert readers.  

Two different approaches to segmenting erythrocytes were compared. One method 

was based on edge-detection using Canny’s method followed by the circular Hough 

transform. The other method was based on setting a threshold using Otsu’s method followed 

by the distance transform. The study demonstrated that the use of a threshold followed by 

the distance transform to segment erythrocytes from the background is superior to edge 

detection followed by the Hough transform. This preliminary result provided the green light 

for the remaining investigation forming the bulk of this thesis.  

The reason for including this preliminary study here is that an important discovery 

made impacted both the processing steps and the focus of the main project. A naive 

implementation of Otsu’s method and distance transform leads to reasonably good 

segmentation and identification of erythrocytes. The experiment leading to these conclusions 

is described in the following sections. 

3.3.1 Images for Erythrocyte Segmentation Study 

Twenty images from seven positive slides of thin blood films (Section 1.11) were used in 

this experimental study. Of these, two images were from slide 1 and three images were from 

each of the other slides. An example of an original colour image is shown in Figure 3.1.   
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Figure 3.1: An example of original thin blood film image. The image shows malaria free erythrocytes 

and thrombocytes. 

 

(a) (b) 

 
(c) (d) 

Figure 3.2: Edge detection method for identifying erythrocytes. (a) An output of Canny’s operator 

applied to the image in Figure 3.1. Most detected edges were not continuous and some erythrocytes 

were converted into two or more different circles. Some edges not related to erythrocytes were also 

found. (b) An output of the circle Hough transform (CHT) applied to Figure 3.2(a). Red plus signs 

indicate circle centers found by CHT. Each circle center represents a candidate erythrocyte. Most 

erythrocytes were detected as more than one erythrocyte. Several erythrocytes at the border of the 

image were not detected. (c) An output of a clustering applied to the circle centres on Figure 3.2(b). 

Some circle centers in the same circle were grouped and represented by a circle center. (d) An output 

of the CHT and clustering applied to Figure 3.1. A false detection (indicated by the index 28) can be 

seen lying between four true erythrocytes, in the upper-right quadrant.  
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3.3.2 Experimental Details 

For the processing steps described here, the original colour images were converted to 

grayscale images based on luminance. MATLAB was used to implement the Otsu and 

Canny-based segmentation. The procedure for recognising erythrocytes is demonstrated by 

example images as shown in Figure 3.2 and Figure 3.3. 

 
(a) 

 (b)  (c) 

 
(d) 

 (e) 

Figure 3.3: Threshold method for identifying erythrocytes. (a) Output of the Otsu’s method applied 

to Figure 3.1(a). Some neighbouring erythrocytes in the original image were joined. Erythrocyte 

areas in binary images are wider than that of in the original images. Some erythrocytes, in the middle, 

were below threshold. In the upper-right corner, there is a cell with center below threshold. (b) Figure 

3.3(a) after applying the median filter and flood-fill operation. (c) The distance transform was applied 

to Figure 3.3(b). Some erythrocytes have many local maxima (+). All erythrocytes were detected, 

including many at the edge, some non-erythrocytes were also detected. (d) Clustering was applied to 

Figure 3.3(c). Each erythrocyte was represented by a single +. (e) Identified erythrocytes of Figure 

3.1.  
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3.3.2.1 The Edge Detection Method 

Canny’s algorithm (Section 2.4.1) was applied to the grayscale images to produce binary 

boundary images. To reduce noise from the binary images, median filtering (Section 2.7) 

using a 3x3-structure element was implemented. This resulted in many complete or nearly 

complete curves nominally corresponding to erythrocyte boundaries. In addition, some cell 

boundaries appeared as double boundaries and many spurious lines were found which were 

not associated with erythrocytes (Figure 3.2(a)). The CHT (Section 2.5.1) was applied to the 

boundary images to identify individual erythrocytes.  

Applying the CHT required setting a minimum radius, R01, and a maximum radius, 

R02, for the circles to be detected as the boundaries of erythrocytes. For very small values of 

R01 and R02, many small line segments were falsely detected as candidate erythrocyte 

boundaries. On the other hand, for very big values of R01 and R02, small erythrocytes were 

not detected and leukocytes were detected as candidate erythrocyte. From some preliminary 

runs with images containing only erythrocytes, the value R01 = 20 and R02 =40 were 

determined empirically to provide reasonable radii to retain erythrocytes and ignore 

leukocytes and thrombocytes. 

The outcome of this was a set of three values location centre (x-y coordinate) and 

radius for each candidate of erythrocyte. Figure 3.2(b) shows all detected circles including 

erythrocyte-like objects, in which not all the objects represent true erythrocytes. To 

determine which candidate erythrocytes represented true erythrocytes, the average radius, 

µR, and standard deviation, σR, of radii obtained from the CHT were calculated and the 

clustering method (Sunarko et al. 2013) described in the following section was used.  

3.3.2.2 Simple Clustering Method 

If several erythrocytes form a local cluster of cells, then their centres will be at least two cell 

radii apart. If candidate centres are closer than this number, then at least one of them is not 

the centre of a true erythrocyte and should be removed. In addition, if an erythrocyte is not 

perfectly round, then the Hough transform may result in several centres representing the 

same erythrocyte. These observations motivate the following algorithm for removing 

candidate centres that do not represent true erythrocytes. 

Let Pj denote the centre of an erythrocyte candidate.  

For Pj, j = 1, 2, 3, …, n 

1. For every i ≠ j, compute the distance Dij between Pi and Pj  
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2.   If Dij > µR – 3σR, no change, 

3.   Otherwise, remove Pi or Pj depending on which has the shorter radius. 

3.3.2.3 The Threshold Method 

Otsu’s method (Section 2.4.2) was applied to the grayscale images resulting in binary images 

showing the footprints of erythrocyte as white spots (Figure 3.3(a)). Some erythrocytes were 

well segmented as isolated single erythrocytes, for example erythrocyte number 5 (Figure 

3.3(d)); however, if erythrocytes are occluding or if they are just touching or closing 

together, for example erythrocyte A and B (Figure 3.1), only a single footprint Y is obtained 

for these cells (Figure 3.3(b)). This requires separate processing. For simplicity, the phrase 

“occluded erythrocytes” will be used to refer to cells that are just touching each other and 

cells that are actually occluding.  

A median filter (Section 2.7) was implemented to remove noise from the binary 

images and a flood-fill operation was applied to the filtered image to fill the holes in 

erythrocyte footprints due to the lower intensity (Figure 3.3(b)). Next, the distance transform 

(Section 2.5.2) was applied to the filled images and the regional maxima values (Section 

2.5.3) of the distance transform image were taken as the centres of erythrocytes. 

Subsequently, the radius of the erythrocyte was taken to be the distance between the centre 

and the minimum distance to the boundary. However, since erythrocytes are not perfect 

circles, one candidate can have many local maxima all having the same distance to the 

boundary. In addition, local maxima outside erythrocyte were found due to background noise 

or thrombocytes. As a result, there are many possible centres for each erythrocyte (Figure 

3.3(c)). The most appropriate centres for erythrocytes were determined by selecting 

erythrocyte footprints, distinguishing single erythrocytes from occluded erythrocytes, and 

employing the simple clustering algorithm described in the previous section on occluded 

erythrocytes. Details of these steps follow. 

First, bounds were found for the areas of erythrocyte footprints. To do this, 150 

manually established regions of interest (ROI) of infected and normal erythrocyte were 

considered. These were used to determine a minimal area as minA = 1300 pixels, a maximum 

area as maxA = 3400 pixels, and minimum radius of minR = 20 for erythrocyte footprints. 

Footprints with area less than minA were assumed to be noise or thrombocytes and were not 

considered further. Footprints with area greater than maxA were assumed to be leukocytes or 

occluded erythrocytes.  
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Leukocytes are very rare in thin blood film images since there are many fewer 

leukocytes than erythrocytes (Section 1.6); therefore, misidentifications of erythrocytes due 

to leukocytes do not significantly affect the counting of the number of erythrocytes. Thus, 

footprints due to leukocytes can be regarded as occluded erythrocytes without contributing 

much error. Subsequently, a simple clustering algorithm described in Section 3.3.2.2 

(removing Pi or Pj depending on which has the lower image intensity) was applied to the 

assumed single and occluded erythrocytes containing many erythrocyte centres to determine 

the true erythrocyte centres.  

3.3.3 Analysis Methods 

The performances of the two methods for segmenting erythrocytes were compared in terms 

of accuracy and sensitivity. Subsequently, a pairwise t-test was used to compare each of the 

methods with human observers. This resulted in a probability (p-value) that the observed 

difference was due to chance alone.  

3.3.4 Results and Discussion 

3.3.4.1 The Edge Detection Method 

Figure 3.2(d) shows outputs of the image segmentation based on the edge detection method. 

The results of comparing a human reader to Canny based segmentation are summarized in a 

confusion matrix (Table 3.1). Of the 654 erythrocyte samples, 575 were correctly identified, 

providing an accuracy of 86.73% and sensitivity of 88.06%. 

Table 3.1: Confusion matrix for erythrocyte classification performance of Canny’s algorithm and the 

CHT. The accuracy was 86.60%. 

  Predicted 

  Erythrocyte Non-erythrocyte 

A
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Erythrocyte 575 79 

Non-erythrocyte 10 0 

 

Although many erythrocyte were detected, the number of true detections reported by 

the edge-based segmentation was significantly lower than the human reader at the α = 0.05 

level (n = 20, p < 0.001). The method did not identify enough whole erythrocytes, especially 

erythrocytes at the edge of the image (Figure 3.2(b)). In addition, 10 blank areas lying 

between two or more erythrocytes, were incorrectly detected as erythrocytes (FP). The CHT 

used to recognize the erythrocytes is primarily to blame. The method is fundamentally driven 
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by recognition of circle shapes. The boundaries of some true erythrocytes did not form 

sufficiently consistent circles to be recognised and many false detections resulted from 

isolated line segments being recognised as circular boundaries. In addition, the method did 

not take into account the intensity patterns within the candidate circular boundaries. 

Therefore, this method is prone to inaccuracy.  

3.3.4.2 The Threshold Method 

Figure 3.3(e) shows the result of the image segmentation based on the threshold method. 

Potential erythrocytes were identified from the images with an accuracy of 99.37% and a 

sensitivity of 96.63% (Table 3.2). Furthermore, a paired t-test showed that there was no 

significant difference between human readers and the algorithm in terms of the number of 

true detections at the α = 0.05 level (p = 0.431, n = 20). However, uncommon erythrocyte 

shapes lead to some false detections (FP), detected as more than one erythrocyte, and some 

missed erythrocyte (FN). 

Table 3.2: Confusion matrix for erythrocyte classification performance of the Otsu’s method and the 

distance transform. The accuracy was 95.90% 

  Predicted 

  Erythrocyte Non-erythrocyte 
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Erythrocyte 631 23 

Non-erythrocyte 4 0 

 

In terms of FP, the Otsu-based segmentation identified a biconcave erythrocyte 

(Figure 1.5) as two erythrocytes. Also, the Otsu-based segmentation may not properly detect 

erythrocytes with unusual shapes (Figure 3.3(b, d, and e)). Unusual shapes can result from 

proximity to the boundary of the image or from the thresholding step if the intensity is not 

sufficiently different from the background. 

3.3.5 Conclusion 

These experimental results show that the Otsu-based segmentation gave similar results to a 

human reader. The Canny-based segmentation provided significantly poorer outcomes than 

a human reader (n = 20, p < 0.001). Hence, Otsu-based threshold segmentation is a better 

method for this task. Accordingly, Otsu’s method and distance transform were used for 

erythrocyte segmentation and erythrocyte identification in the remaining experiments.  
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3.4 Fully Automatic Segmentation and Classification of Erythrocyte 

Comparing the percentage of infected erythrocyte in thin blood films to parasitemia found 

by expert readers of thick blood films requires a process for automatically identifying large 

numbers of erythrocyte and classifying these as normal or infected.  

In order to develop such a system, the approximate minimal erythrocyte area was 

determined (Section 3.3.2.3) to identify a single erythrocyte. Although the sizes of 

erythrocyte varied between slides, the value of minA was small enough to not eliminate true 

erythrocytes but large enough to eliminate large numbers of thrombocytes and artefacts in 

all images.  

Steps for isolating footprints of individual erythrocyte has been described previously 

(Sunarko et al. 2013) but are included here for completeness. Connected objects in the binary 

images were extracted by a labelling algorithm (Haralick, Robert M. & Shapiro 1992). At 

this stage, connected components include artefacts, remaining thrombocytes, clusters of 

erythrocytes, regions touching the border of the image as well as proper erythrocytes (Figure 

3.3(d)). The distance transform was used on each footprint to determine the distance of each 

pixel within the footprint to the boundary and a regional maxima algorithm was used to find 

the local maxima of this distance function. If the footprint is a circular disk, there is a unique 

local maximum of the distance function at the centre but for other shapes, there may be 

several local maxima. Accordingly, footprints were separated into three groups; those with 

area less than minA which were discarded as representing thrombocytes or artefacts, those 

with area greater than minA and containing many local maxima of the distance function 

viewed as possible clusters of erythrocyte or single erythrocyte with shape significantly 

different than circular, and those with area greater than minA but with only one local 

maximum. Footprints in the latter group were identified as representing a single isolated 

erythrocyte. With this criterion, it became possible to automatically identify isolated 

erythrocyte in images for use in further processing steps as described below.  

The process for separating clusters of erythrocytes required knowing the average 

area, µA and the standard deviation σA of the areas of the footprints of erythrocyte. These 

values were found not to be consistent from one image to the next due to differences in focus 

and possibly other image acquisition parameters. Accordingly, the method required that µA 

and σA be computed separately for each image, unlike in Section 3.3 where a minimum size 

was found for several images from all slides. Thus, for each image processed, the isolated 
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erythrocytes identified by having area greater than minA and a single local maximum of the 

distance function were used to calculate µA and σA for that image.  

For footprints with area greater than minA and multiple local maxima of the distance 

function, the following steps were used to identify isolated erythrocyte and separate clusters 

into individual erythrocyte. The average radius µR and standard deviation σR for isolated 

erythrocyte (assuming round erythrocyte footprints) were computed from µA and σA. Let Ci, 

i = 1, 2, …, n denote the local maxima of the distance function over a single footprint. Each 

Ci is viewed as a candidate for representing an isolated erythrocyte. Let Dij denote the 

distance between Ci and Cj. If Dij < µR - 3σR, either Ci or Cj was removed from the list of 

candidate erythrocyte depending on which had the lower image intensity value. This process 

was repeated until Dij ≥ µR - 3σR for all i, j for which Ci and Cj remained on the list of local 

maxima of the distance function over the footprint. The motivation for this process is that 

erythrocytes comprising a cluster are often not round and local maxima of the distance 

function tend to appear in small clusters near the centres of the erythrocytes comprising the 

cluster. Completion of this step allowed the number of erythrocytes comprising a cluster to 

be determined by using the algorithm described in Section 3.3.2.2. 

3.5 Classifying ROIs as Infected or Normal Erythrocyte 

Having established a method for identifying erythrocytes, the next objective is to determine 

which erythrocytes are infected with the malaria parasite and which are not.  

This study for training of erythrocyte classification is presented in the three sections 

below. The data involved in this experiment is described in Section 3.5.1 and the experiment 

details are explained in Section 3.5.2. Finally, Section 3.5.3 presents results, discussion and 

conclusion. 

3.5.1 ROIs for Training of Erythrocyte Classification 

Thirty thin blood film images with known malaria parasites were proportionally selected 

from the seven positive slides described in Section 1.11 based on parasitemia level. Each 

selected image consists of normal and infected erythrocytes. A total of sixty ROIs of 

individual well isolated erythrocytes were visually identified from these images. Of the sixty 

ROIs, thirty were infected erythrocytes and thirty were normal erythrocytes.  
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3.5.2 Experimental Details 

After image pre-processing (Section 3.3.2) and segmentation using the threshold method 

(Section 3.3.2.2), each erythrocyte was represented by the histogram of intensity values in 

the original grayscale image within the footprint of the erythrocyte. The rationale for 

referring to the grayscale image was that, while the image is in colour, the various 

components of the image are distinguishable due to differences in how well they take up the 

stain. In other words, salience is due to the level of staining and so the image in essentially 

monochromatic (Figure 3.4). Examples of histograms of infected erythrocytes and normal 

erythrocytes are presented in Figure 3.5. For each footprint, the skewness and kurtosis of the 

distribution of grayscale intensity values for the erythrocyte were extracted.  

 

Figure 3.4 Colour distribution of a colour image. Ten-thousand pixels were sampled from one of the 

thin blood film images (the image at coordinates X = 0, Y = 40 in a positive slide). For each pixel, 

R, G and B values were plotted as point in 3-dimensional RGB space. 

Generally, infected erythrocytes can be divided into three parts with different colours 

and intensities (Section 1.8). The host erythrocyte is light red (moderate intensity), the 

chromatin and cytoplasm are dark red/blue (low intensity), and the vacuole is transparent, 

its colour intensity depending on the effect of acidity (pH) during the staining process. The 

intensity of the vacuole is higher or equal to that of the host erythrocyte. Accordingly, a 

Gaussian mixture model with three Gaussians was used to separate the histogram of the 

grayscale values of the erythrocyte into three groups nominally representing the parasite, the 

vacuole and the remaining components of the erythrocyte. The Gaussian with the lowest 
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mean value was assumed to be the one corresponding to the parasites as this component is 

reliably the darkest within the cell if parasites are present. Thus, for a parasite-infected 

erythrocyte, the lowest mean of the three Gaussians was expected to be noticeably lower 

than the lowest mean of the three Gaussians for erythrocyte with no parasites. Accordingly, 

the lowest of the three Gaussian means was used along with the skewness and kurtosis to 

represent the erythrocyte as a feature vector of length three. 

 (a)  (b) 

Figure 3.5: The histogram of grayscale values of two individual erythrocytes: (a) an infected 

erythrocyte has low intensity value, negative skewness, and stronger peak; otherwise, (b) a normal 

erythrocyte has high intensity value, positive skewness, and wide peak. 

Linear discriminant analysis (LDA) was used to classify the erythrocyte as infected 

or not based on the three features described in the previous paragraph. LDA is an optimal 

classifier if the underlying distributions are normal, but not otherwise. Visual inspection of 

the distributions indicated that simple thresholds for the features might provide better 

classification. Accordingly, an exhaustive search over possible thresholds for the three 

parameters was also conducted. More specifically, let m, s and k denote the smallest mean, 

skewness, and kurtosis of the intensity distribution over the erythrocyte footprint and let M, 

S, and K denote threshold values for these parameters. Then the erythrocyte was assigned as 

infected if (s < S or k > K) and (m < M) and was assigned as normal otherwise. The accuracy 

of classification was tested for 21 equally spaced values of S in the interval (-0.1, 0.1), 10 

equally spaced value of K in the interval (1, 10) and 51 equally spaced values of M in the 

interval (150, 200). These ranges were determined by inspection and by some preliminary 

runs. 

For ease of exposition, the term "threshold classifier" will be used to refer to 

exhaustive search over threshold values described in the previous paragraph and the term 
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"LDA classifier" will be used to refer to the classifier based on LDA. The training error of 

LDA classifier was 0.1883 and the lowest training error of the threshold classifier was 

0.1667. Although the threshold classifier provided better classification, it was not successful 

in identifying a unique set of values for the thresholds M, S and K because the same lowest 

training error was obtained for many of the parameter combinations tested. The points for 

which the minimum training error was attained formed a connected set, Ω, in the M; S; K 

feature space. The set Ω comprised 343 of the 10,710 points tested in the feature space. 

Optimal thresholds were eventually found as part of the process for translating percentages 

of infected erythrocytes to parasitemia scores (described in Section 3.6). 

3.5.3 Results, Discussion, and Conclusion 

The values of statistical features for classifying ROIs as infected or normal erythrocytes are 

presented in Table 3.3 The infected erythrocyte tended to have skewness and mean of the 

lowest group of Gaussian higher than that of a normal erythrocyte. On the other hand, the 

mean of kurtosis of the normal erythrocyte was slightly lower than that of infected 

erythrocyte. Figure 3.6 shows a scatter plot of statistical features from these ROIs and the 

classification performance is presented in a confusion matrix (Table 3.4).  

Table 3.3: Features of infected erythrocyte and normal erythrocyte. The s, k, and m of infected and 

normal erythrocytes are significantly different (p < 0.001, n = 10, α = 0.05). 

  Infected Erythrocyte Normal Erythrocyte 

  s k m s k m 

Minimum -1.0927 2.5680 108.8287 -0.0137 2.0047 141.8255 

Mean -0.1870 4.1217 150.0926 0.8116 3.3044 164.8371 

Maximum 0.6517 5.9702 169.2149 1.3157 4.2995 187.5006 

 

Table 3.4: Confusion matrix obtained from erythrocyte classification using the LDA classifier. The 

classification accuracy was 83.33% 

  Predicted 

  

Infected 

Erythrocyte 

Normal 

Erythrocyte 
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Infected Erythrocyte 20 10 

Normal Erythrocyte 0 30 

 

According to Table 3.4 and Figure 3.6, it seems that the algorithm distinguishes 

infected and normal erythrocytes reasonably well. These results were based on a relatively 
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small number of examples of infected and normal erythrocytes. Furthermore, the 

erythrocytes used were manually selected to be isolated cells for which determining the true 

state was very reliable.  

 

Figure 3.6. Scatter plots of the statistical feature values for ROIs. The red asterisk and blue squares 

denote infected and normal erythrocyte, respectively. X-axis, Y-axis, and Z-axis are skewness, 

kurtosis, and min-mean respectively. The classification error was 0.117. 

A thorough study on a large number of examples to determine the performance of the 

algorithm in classifying erythrocytes in their full diversity of appearance as expected in 

practice was not conducted for two reasons. First, assigning the true state (infected or not 

infected) for a large and diverse sample is problematic and is likely to result in some incorrect 

assignments even if performed by an expert. Incorrect assignments lead to incorrect 

performance scores and may lead to systematic error in classification as the classifier will 

be trained to make some wrong decisions. Second, the final objective is not to count infected 

and normal erythrocytes but to estimate parasitemia. Accordingly, further refinement and 

further testing of the algorithm was conducted using expert parasitemia scores of the full 

sample as the objective rather than the correct assignment of individual erythrocytes. This 

work is described in the next section. 

3.6 Estimating Parasitemia 

Although automatically identifying erythrocytes and classifying these as infected or not was 

a necessary part of the study, the final objective was to determine if estimates of the level of 
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infection determined by computing the percentage of infected erythrocytes correlate to 

values of parasitemia reported by expert human readers. Thus, the linear discriminant 

analysis classifier trained in the erythrocyte classification step (Section 3.5) was used to 

determine the percentage of infected erythrocyte to total erythrocyte for all seven slides from 

patients with malaria. Forty images were randomly selected from each slide for a total of 

280 images. This set of images is denoted by T1. The linear discriminant analysis classifier 

was applied to the images in T1 without further training. Since the true percentage of infected 

erythrocyte was not known for these images, it could not be used as a performance criterion. 

Instead, the correlation between the ratios of infected erythrocyte and the parasitemia values 

reported by human experts based on thick blood films from the seven slides was computed. 

The analogous experiment could not be conducted using the threshold classifier since 

the study on segmenting erythrocyte (Section 3.4) failed to produce a unique set of thresholds 

M, S, and K to implement the classifier. Instead, the set of images T1 was used to retrain the 

threshold classifier using the criterion of correlation with human expert values of 

parasitemia. Eight combinations of thresholds M, S and K representing vertices of Ω and 

midpoints between vertices of this set were used to compute correlation with parasitemia. 

The optimal values of M, S, and K determined by this method were then tested on a 

separate set of images. In this testing step, 40 new images were randomly selected from each 

slide for a total of 280 images. This set of images is denoted T2. The threshold classifier 

using the optimal values of M, S, and K found in the training step using the set of images T1 

was applied to the set of images T2 to estimate the correlation between the percentage of 

infected erythrocytes computed by the algorithm and parasitemia levels determined by 

human experts.  

Expert parasitemia values from thick blood film ranged over several orders of 

magnitude from 90 to 3x106 parasites/µl (Table 1.1) while percentages of infected 

erythrocytes found by the algorithm ranged from about 1 to 28. Accordingly, a linear 

relationship between these quantities cannot be expected. Instead, the relationship P = bBa 

was tested, where P represents parasitemia judged by expert readers on thick blood films, B 

is the percentage of infected erythrocytes found by the algorithm from the 280 thin blood 

film images comprising testing set T1, and a and b are constants. Hence, a regression was 

performed on log P and log B. The resulting regression formula was then used to predict 

parasitemia from the percentage of infected erythrocyte measured on the 280 testing images 

comprising set T2. 
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3.6.1 Results for Estimating Parasitemia 

The set Ω represents combinations of threshold values for M, S, and K that resulted in the 

same minimal classification error during the preliminary stage of classifying erythrocyte as 

infected or normal. In this case, performance was measured according to the percentage of 

correct classifications of individual erythrocyte as infected or not. In the second stage, the 

thresholds in Ω yielded highly varying results (Table 3.5). In this case, performance was 

measured according to correlation with expert estimates of parasitemia based on thick blood 

films. The best performing combination of threshold values M = 170, S = -0.02 and K = 5 

was used to classify 280 images in the testing set T2. The correlation between the percentage 

of infected erythrocyte as judged by the algorithm with this set of thresholds was 0.875 

(Table 3.6), only slightly lower than the correlation found using the same combination of 

thresholds during training on the set T1 (Table 3.5). 

Table 3.5: Percentage of infected erythrocytes in thin blood films for selected vertices and mid-points 

of Ω for training data. r is the coefficient of linear correlation with experts parasitemia scores based 

on thick blood films. 

Threshold values Percentage of infected erythrocytes 
r 

M S K 1 2 3 4 5 6 7 

170 -0.02 5 0.929 1.788 2.071 2.900 3.726 6.654 21.530 0.883 

170 0.05 3 8.388 1.845 72.945 3.196 18.530 54.005 88.790 0.324 

173 0.01 6 0.880 2.019 1.545 2.989 3.974 6.298 18.683 0.869 

170 -0.01 10 0.734 1.845 1.216 2.752 3.626 5.980 16.904 0.858 

173 0.02 6 1.076 2.076 1.611 3.078 4.272 6.428 18.361 0.863 

170 -0.02 4 2.959 1.845 19.855 2.900 5.763 17.539 47.865 0.500 

180 -0.02 5 1.736 3.460 2.104 5.090 4.968 6.977 21.530 0.803 

175 0.01 7 0.954 2.711 1.249 3.403 4.471 6.428 17.972 0.799 

 

Table 3.6: Correlation between percentage of infected erythrocytes in thin blood film and parasitemia 

values in thick blood film. B is percentage of infected erythrocytes in thin blood film and P is 

estimation of parasitemia values in thick blood film for the same slide as thin blood film. C is 

estimation of parasitemia scores based on standard correlation (Equation 1.2). r is as in Table 3.5. 

Slides 1 2 3 4 5 6 7 r 

B 0.978 1.663 2.169 2.716 4.565 6.594 28.430 0.875 

P 155 612 1220 2181 8371 21699 955269 - 

C 48900 83150 108450 135800 228250 329700 1421500 - 

 

The regression formula resulted from training step, P = 164B2.59, is shown in Figure 

3.7(a) and the resulting parasitemia estimation, using the regression formula, in the testing 

step is shown Figure 3.7(b) and Table 3.6. 



60 

 

 (a) 
 

(b) 

Figure 3.7: Predicting parasitemia. (a) Regression for training images. For each slide, the algorithm 

produces an estimate of the percentage of infected erythrocytes, the log of which provides the 

horizontal coordinate of the open circles. For each slide, there are several estimates of parasitemia 

from human experts (Table 1.1), the logs of which provide the vertical coordinates of the open circles. 

The regression line (solid line) is log(P) = log(b) + a log(B), where B is the proportion of infected 

erythrocytes from the algorithm, P is the mean of parasitemia estimated by experts, a = 2.59 and b = 

1.64 x 102. (b) The open circles are as in (a) but with the log of the percentage of infected erythrocytes 

taken from the testing images. Since the estimates for the testing images are not identical to the 

estimates from the training images, the horizontal coordinates are not exactly the same as for (a). The 

vertical coordinates of the open circles are the same as in (a) since the experts’ estimates are fixed 

for each slide. Here × indicates the estimate of parasitemia found by applying the regression formula 

found in (a) to the percentage of infected erythrocytes in the testing images. 

3.6.2 Discussion and Conclusion 

The algorithms presented in this section may be used to determine the percentage of 

erythrocytes infected with malaria parasites and to estimate the parasitemia scores. From 

training, the formula P = 164B2.59 was obtained. This formula gives an estimate of the 

parasitemia scores, the units used by human experts when reporting parasitemia based on 

viewing thick blood films. For the seven parasitemia scores available for this study, this 

formula predicts a score for every slide that fell within the range of values reported by the 

human experts (Figure 3.7(b)). Accordingly, the method developed here may be viewed as 

a plausible alternative to reading thick blood film slides in terms of accuracy. 

In this study, forty images from each slide were used. In a fully developed system, 

the number of images could be left variable according to the number of infected erythrocytes 

encountered. If the percentage of infected erythrocytes in the first few images is high, then 

fewer images are needed to attain a robust estimate of parasitemia. If the percentage of 

infected erythrocytes is low or zero, more images would be needed to establish a reliable 

value of parasitemia. A device for automatic detection of malaria will have to work in close 

to real time. However, this study was conducted only to see if estimating parasitemia 
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automatically on thin blood film images is plausible. The algorithms presented here have not 

been implemented to minimise run time but care has been taken to select well established 

methods that are amenable to efficient implementation.  

There are many possible sources of inaccuracy that could be addressed in future 

work. For example, carbon dioxide rich erythrocytes are darker in colour than other 

erythrocytes and hence detecting parasites in these erythrocytes may be less reliable. A 

separate algorithm for detecting carbon dioxide rich erythrocytes could reduce the rate of 

misclassification of infected and normal erythrocytes. In addition, the original colour images 

were converted to grayscale according to luminance. This may result in some loss of 

information and so there may be room for improvement.  

The core of the algorithm is a quick estimate of the number of infected and normal 

erythrocytes. This part of the algorithm was developed on only sixty visually selected ROI 

comprising a single erythrocyte each. This part of the algorithm was not tested directly on 

an independent data set of ROIs. The reason is that the process of identifying and extracting 

ROIs manually is time consuming and impractical. In addition, selection of ROIs of this type 

does not result in a sample of erythrocytes that represents the wide range of appearance of 

erythrocytes in images. Also, regardless of the amount of refining of this step of the 

algorithm, some infected erythrocytes will be incorrectly classified as normal and some 

normal erythrocytes will be incorrectly classified as infected. Since the objective of the study 

is not to classify erythrocyte but to estimate parasitemia, the crucial question is not to 

determine the misclassification rate, but to understand the impact on estimating parasitemia. 

Accordingly, validation was performed on final estimates of parasitemia instead of 

classification rates of individual erythrocyte. 

Although this study and that of Savkare and Narote (2011) similarly aim to estimate 

parasitemia, the respective results cannot be directly compared with each other due to 

significant differences in the validation process. While Savkare and Narote’s validation 

yielded parasitemia per image, the study presented here went further by producing 

parasitemia levels per slide, which were validated using manual diagnosis by a number of 

experts based on thick blood films from the same subjects. This study clearly demonstrates 

that computer analysis of thin blood films is able to provide estimates of parasitemia that 

agree with human expert assessment of thick blood films. In this respect, the results of this 

study are more closely in line with that of Purwar et al. (2011), despite the latter’s use of the 

same thin blood films in both automatic analysis and manual validation by a sole pathologist. 
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Meanwhile, the clinical method to correlate the percentage of infected erythrocytes 

in thin blood films to parasitemia scores (the number of parasite per µl) is found by 

multiplying the percentage of infected erythrocytes by the standard count of erythrocytes in 

a µl of blood (Equation 1.2). Based on the standard correlation (Equation 1.2), the 

parasitemia scores of this algorithm were shown in Table 3.6.  

According to biological experiments (Dowling & Shute 1966; Trape 1985), 

parasitemia in thin blood films appears higher than that in thick blood films due to 

haemolysis (de-haemoglobinization) and the staining process. The loss of parasites during 

the processing of thick blood film varies greatly from 60% to 90% and 0% to 5% according 

to the experiment by Dowling and Shute and the experiment by Trape, respectively. For ease 

of exposition, the term “DS correlation” (Equation 3.1) and “TR correlation” (Equation 3.2) 

will be used to refer to the conversion of parsitaemia scores in thick blood films (Pthick) to 

actual parasitemia scores in thin blood films (Pthin) based on these two studies. Thus, the 

conversion using DS correlation is from  

PthinDS
 ∈ [

5

4
 Pthick, 

5

3
Pthick] (3.1) 

 

and using TR correlation is from  

PthinTR
 ∈ [Pthick, 

20

19
Pthick] (3.2) 

 

Table 3.7: Parasitemia scores in thin blood film after conversion from experts’ scores (Table 1.1) by 

DS correlation and TR correlation.  

Slides 1 2 3 4 5 6 7 

DS 4.80x101 - 

3.70x103 

9.80x101 - 

2.99x104 

8.00x102 - 

2.48x104 

1.20x102 - 

1.35x105 

7.63x103 - 

3.60x105 

3.93x104 - 

7.83x105 

7.55x104 - 

9.77x106 

TR 2.00x101 - 

3.89x102 

3.90x101 - 

3.14x103 

3.20x102 - 

2.61x103 
4.80x101 - 

1.42x104 
3.05x103 - 

3.79x104 
1.57x104 - 

8.24x104 
3.02x104 - 

1.03x106 

 

The algorithm presented here was moderately consistent with the work by Dowling 

and Shute (Dowling & Shute 1966). The system fitted the three high parasitemia slides well, 

slightly overestimated the middle parasitemia slide, and significantly overestimated the three 

low parasitemia slides (Table 3.7). 
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One reason for this discrepancy is that the algorithm is not applicable to crowded 

fields of thin blood films. One infected erythrocyte forming part of a normal cluster of 

occluded erythrocytes might cause all erythrocytes in the cluster to be detected as infected 

erythrocytes. This could increase the parasitemia level.  

Another reason for over estimation of parasitemia is that some thrombocytes located 

near erythrocytes were captured by Otsu’s method as parts of erythrocyte footprints. The 

number of thrombocytes is from around 5% of erythrocytes (Vander, Luciano & Sherman 

2001) up to 8% of erythrocytes. Accordingly, this proportion is big enough to possibly play 

a role in over estimating parasitemia. 

A dark normal erythrocyte touching, overlapping, or next to another normal 

erythrocyte may affect the histogram of the occluded normal erythrocyte due to the output 

of the Otsu’s method. Thus, all normal erythrocytes forming part of a group of occluded 

normal erythrocytes might be identified as infected erythrocytes. If two or more erythrocytes 

are very close to each other, touching or overlapping then Otsu’s method may result in a 

single footprint for these erythrocytes. By the process described in Section 3.3.4.2 the 

number of separate erythrocytes comprising this footprint will be determined for the purpose 

of counting erythrocytes. However, no processing steps have been included to actually 

separate these erythrocytes. Accordingly, a single disease state will be assigned to all these 

erythrocytes. Thus, a single infected erythrocyte or a single unusually dark erythrocyte may 

result in other nearby erythrocytes being incorrectly labelled as infected. For example, a dark 

normal erythrocyte, A, adjacent to another ordinary normal erythrocyte, B, (Figure 3.8(a) 

and (b)) was segmented by Otsu’s method to be an occluded erythrocyte (Figure 3.8(c)). As 

a result, the skewness of the grayscale histogram of the occluded normal erythrocyte was 

negative (-0.21) and the lowest mean of the three Gaussians for the occluded erythrocyte 

was 128.21 (Figure 3.8(d)). Accordingly, both normal erythrocytes (A and B) were detected 

as infected erythrocytes. This also contributes to over estimation of parasitemia.  

Despite the fact that plausible estimates of parasitemia were found using automatic 

image analysis on thin blood films, a final system based on this algorithm alone may not be 

practical for estimating very low levels of parasitemia or for reliably concluding that a 

subject is malaria free. Accordingly, the long-range role of the algorithm presented here is 

as part of a system that automatically analyses both thin and thick blood films. In 

combination, analysis of thin and thick blood films is more likely to provide accurate 
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estimates of levels of parasitemia for both very low and very high levels of infection and 

have the capacity to confidently declare subjects free of malaria. 

 
(a) 

 
(b) 

 

 
 

(c)  
(d) 

Figure 3.8: Dark erythrocyte affecting feature of occluded erythrocyte. (a) Original image consisting 

of dark normal erythrocyte A and ordinary normal erythrocyte B. (b) the grayscale image of Figure 

3.8(a). (c) An occluded erythrocyte footprint as the output of the Otsu’s method applied to Figure 

3.8(b) on erythrocyte A and B. (d) The histogram of grayscale value of the occluded erythrocyte 

matching with Figure 3.8(c). 

To reduce the over estimation of parasitemia, parasites could be segmented 

independently of erythrocytes and then identified to determine infected erythrocytes. Such a 

process for identifying infected erythrocytes is described next in Chapter 4.  
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Chapter 4: Parasite and Erythrocyte Identification for 

Estimating Parasitemia in Thin Blood Film Images 

4.1 Overview 

This chapter presents an alternative method for identifying infected erythrocytes and 

estimating parasitemia from thin blood films. The seven positive malaria thin blood films 

used for conducting experiments in this chapter were described in Section 1.11. This chapter, 

starting with Section 4.2, describes the thresholding method applied for parasite 

segmentation and establishing parasite threshold values. Leukocyte segmentation is 

discussed in Section 4.3. In Section 4.4, two candidate features for classifying parasite 

footprints are explored. This section also compares performance based on ROIs in Sections 

4.4.1.1 and 4.4.2.1. This is followed by a method for identifying infected erythrocytes in 

Section 4.5. This section also evaluates performance of the method. Estimating parasitemia 

is presented in Section 4.6, which also includes the chapter discussion and conclusion.  

4.2 Segmenting Parasites 

In this study, the colour and brightness of the background was slightly different between 

images from the same blood films and significantly different between different blood films 

(Section 1.9.1 and Figure 1.6). An example of an original image containing erythrocytes, 

thrombocytes, and parasites is shown in Figure 1.6(a). To reduce the variation of 

backgrounds, the image normalization discussed in Section 6.3 was applied to the original 

images (Figure 1.6(a)). The image normalization described in Section 2.2.1 requires a 

reference image. In this case, a clear background image from one of the thin blood films was 

used as the image reference (Figure 4.1). Figure 4.2(a) shows the normalized image. 

 

Figure 4.1: Reference image for image normalisation. 
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Figure 4.2: Pre-processing for parasite segmentation. (a) The normalized image of Figure 1.6(a) with 

Figure 4.1 as reference image, (b) the grayscale of the normalized image, (c) the inverted grayscale 

image of 4.1(b), (d) the histogram of the inverted image. (e) The binary image of the inverted 

grayscale image including footprints of erythrocytes, thrombocytes, and parasites.  

The normalized image was converted to grayscale image (Figure 4.2(b)) based on 

luminance for the same reason as described in Section 3.5.2. There is no essential loss of 

information in converting to grayscale. At this stage, parasites and thrombocytes appear 

darker than normal erythrocytes, but erythrocytes are much darker than the background. For 

reasons explained in Section 6.4, the grayscale image was inverted (Figure 4.2(c)). The 

inverted grayscale image and its histogram (Figure 4.2(d)) clearly show that the foreground 
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and background have significantly different intensities. Thus, simple thresholding 

segmentation based on Otsu’s method (Section 2.4.2) was applied to the inverted grayscale 

image to obtain a binary image (Figure 4.2(e)) comprising a foreground of isolated regions 

representing erythrocyte footprints and a small number of thrombocyte and parasite 

footprints.  

 

Figure 4.3: Parasite segmentation. (a) The plot of the grayscale intensity profile along the line y =325 

in Figure 4.2(c) passing a parasite, and (b) the plot of the grayscale intensity profile along the line y 

=367 in Figure 4.2(c) passing a thrombocyte.  

From the discussion in Section 1.5, the area of the footprint of a thrombocyte is 

around 6.25% of the area of an erythrocyte and the number of thrombocytes is typically 

around 5% of the number of erythrocytes. Also considering that the maximum level of 

parasitemia is 10% (Garcia & Bruckner 1997), infected erythrocytes compared to total 

erythrocytes, and that the area of the ring-stage parasite is around 6.25% (Section 1.4 and 

Section 1.5), the maximum of total thrombocyte and parasite area is around 0.94% of the 

total erythrocyte area. Meanwhile, as discussed in Section 1.9.2, parasites and thrombocytes 

generally have higher intensities than erythrocytes and the intensities of parasites are 

normally higher than that of thrombocytes (Figure 4.3(a) and (b)). The parasites themselves 

do not account for sufficient area to influence the calculation above. This is because the 

number of parasites does not exceed 10% of the number of erythrocytes (above this level, 

the disease is fatal) and the area of the high intensity part of the parasite is roughly 6% of 

the area of an erythrocyte. Hence, the total area contributed by parasites is less than 1% of 

the area contributed by erythrocytes.  
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Figure 4.4: Candidate parasite footprints. 

Thus, to segment parasites and thrombocytes from erythrocyte footprints, an adaptive 

threshold was set at 0.94% of the highest foreground intensity from the grayscale image. 

Figure 4.4 shows the parasite footprint as a result of the adaptive thresholding segmentation. 

This segmentation by adaptive threshold reliably retains parasites, but may also retain 

thrombocytes and some dark erythrocytes. Further steps to separate parasites from these 

other objects are described in subsequent sections. 

In thin blood films, the number of leukocytes is much less than that of erythrocytes. 

Most thin blood film images do not contain a leukocyte. When a leukocyte is present in a 

thin blood film image, it is generally the only one. However, if a leukocyte exists in an image, 

the leukocyte will influence the results of parasite segmentation. To remove the existence of 

leukocytes in an image, a process of segmenting and removing is required. This process is 

explained in the next section. 

4.3 Leukocyte Segmentation and Subtraction 

In view of the previous section, removing leukocyte footprints from erythrocyte footprints 

before segmenting parasites is important for obtaining accurate parasitemia estimation. One 

way of doing this is by segmenting leukocytes and subtracting the leukocyte footprints from 

erythrocyte footprints. From the discussion on leukocytes in Section 1.9.2 and by inspection 

of seventy image intensity profiles consisting of leukocytes, Figure 4.5(b), as well as based 

on the relative intensities of leukocytes and other main blood components in thin blood film 

images, an adaptive leukocyte threshold value at 0.7 of the highest intensity pixels normally 

associated with leukocytes was determined empirically to segment leukocytes from other 

components. This segmentation by the adaptive threshold reliably retains leukocytes, but 

may also retain parasite and dark erythrocyte footprints in some images without leukocytes. 
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To reduce this error, (µ + 3σ) of maximum erythrocyte intensities was used as the threshold 

for leukocytes, instead of 0.7 of the highest image intensity.  

 

 

Figure 4.5: Segmenting and removing leukocyte from erythrocyte footprints. (a) Inverted 

grayscale image of the Figure 1.6(c). A leukocyte at position x = 600 and y = 300. (b) A plot 

of the profile intensity along the line y = 300. (c) Leukocyte footprint of the image of 4.5(a), 

(d) erythrocyte footprints of the image of 4.5(a) including leukocyte footprint, and (e) 

erythrocyte footprints of the image of 4.5(a) without leukocyte footprint.  

The leukocyte segmentation and subtraction procedure is illustrated through example 

images in Figure 4.5. The leukocyte threshold was used to identify the leukocyte footprints 

(Figure 4.5(b)) and Otsu’s method was applied to the inverted grayscale image (Figure 
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4.5(a)) to obtain the footprints of the erythrocytes and leukocyte (Figure 4.5(c)). In this 

example, the leukocyte footprint was relatively free from noise. In other images, some noise 

or parasite footprints accompanied leukocyte footprints. To remove the noise and residual 

parasite footprints from leukocyte footprints, an opening filter (Section 2.3.2) with circular 

structure element radius R = 6 was applied. After that, the leukocyte footprint was subtracted 

from the erythrocyte footprint to remove the leukocyte footprint. The Figure 4.5(d) shows 

the erythrocyte footprints after removal of the leukocyte footprint. In this case, the leukocyte 

footprint was removed fully because the thresholding process resulted in a footprint of the 

leukocyte that closely matched the size of the leukocyte footprint in the erythrocyte binary 

images.  

However, in other images, applying the leukocyte threshold resulted in leukocyte 

footprints that were smaller than those in erythrocyte footprints. In such cases, after the 

subtraction process, some leukocyte footprint borders remained. To avoid this, dilation with 

the same structuring element as the opening filter was applied to leukocyte footprints before 

the subtraction process.  

According to the nature of a leukocyte (Section 1.5), leukocytes will engulf parasites. 

Thus, the probability of a parasite being located very close to a leukocyte is small and so the 

dilation process will not affect counting the number of parasites very much. Despite the 

dilation process, a few thin leukocyte footprint borders were present in some cases. 

Generally, these remaining borders were very small compared to thrombocyte footprints 

captured in erythrocyte footprints. Accordingly, these remaining borders did not 

significantly affect the estimate that the total thrombocyte and parasite (if present) area is 

around 0.94% of the total erythrocyte area (Section 4.2). However, these remaining 

leukocyte borders might be detected as parasites. This will mislead the parasitemia count. 

To distinguish the remaining borders from parasites, the parasite classification discussed in 

Section 4.4 was used. 

Aside from normal leukocytes, infected thin blood film images may contain 

phagocytes or schizonts (Section 1.5 and Figure 1.6(d)). Therefore, leukocyte footprints 

might also contain schizonts footprints. To distinguish schizonts from leukocyte, leukocyte 

classification (Section 6.5) was applied to the leukocyte footprints.  
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4.4 Parasite Classification 

To compute parasitemia in thin blood films, parasites must be identified and counted. The 

segmentation by adaptive threshold described above reliably retained parasites, but also 

retained some thrombocytes, dark erythrocytes, and leukocyte borders. To distinguish 

parasites from these other objects, the morphology of candidate parasites and the histograms 

of green values within the candidate parasite footprints were considered. 

4.4.1 Morphological Feature Analysis to Recognise Parasite  

This section describes data set, experimental details and results for training of parasite 

classification. 

4.4.1.1 Images for training of parasite classification 

The data set involved in this part of the study comprised a total of 96 images from the seven 

thin blood films described in Section 1.11. Each image contained parasites, thrombocytes, 

dark erythrocytes, or leukocytes.  

4.4.1.2 Experimental Details 

In the pre-processing step, the selected images were normalized by applying the colour 

normalization described in Section 6.3. Subsequently, the normalized images were 

converted to grayscale images and threshold segmentation (Section 4.2) was applied to get 

binary images containing parasite footprints, thrombocyte footprints, dark erythrocyte 

footprints, and leukocytes. Here, 140 ROIs were extracted from the training images. Of 

these, 35 were parasite footprints, 35 were thrombocyte footprints, 35 were dark erythrocyte 

footprints, and 35 were leukocyte border footprints. Since parasites, thrombocytes, dark 

erythrocytes, and leukocytes were not always present in the same images, some of these 

ROIs were from the same images and others were from different images.  

In this experiment, the morphology values of the ROIs were extracted. The ellipticity 

and eccentricity (Section 2.6.2) for each selected ROI corresponding to parasite, 

thrombocyte, dark erythrocyte, or leukocyte border were calculated. Quadratic discriminant 

analysis, a variant of discriminant analysis (Section 2.9.1), was used to classify the candidate 

parasites as true parasites or not. Figure 4.6 shows an example of the process of parasite 

classification and the results.  
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Figure 4.6: Parasite identification. (a) Erythrocyte and candidate parasite footprints. Blue pluses 

indicate the centers of full single erythrocytes. Green pluses indicate the erythrocyte centers at 

occluded erythrocytes or border erythrocytes. Magenta dots indicate the centers of candidate 

parasites. (b) Parasite classification based on its location. Red and green stars indicate parasites and 

non-parasites, respectively.  

4.4.1.3 Results, Discussion and Conclusion  

Figure 4.7 shows a scatter plot of the morphology values of the ROIs and confusion matrices 

(Table 4.1 and 4.2) reports the classification results of ROIs obtained using the discriminant 

analysis. According to the confusion matrices and Figure 4.7, the ellipticity and eccentricity 

parameters of parasites were not significantly different from those of the other objects. Thus, 

the ellipticity and eccentricity were not reasonable as features for parasite classification. 

Therefore, these features were not included in classifying parasites in the remainder of the 

study. 

Table 4.1: Confusion matrix obtained from parasite classification using quadratic discriminant 

analysis based on ellipticity and eccentricity of ROIs. The classification accuracy is 45%. 

 

 

Predicted 

 Parasite Thrombocyte Dark Erythrocyte Leukocyte Border 

A
ct

u
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s 

Parasite 7 16 2 10 

Thrombocyte 3 31 1 0 

Dark Erythrocyte 5 5 6 1 

Leukocyte Border 10 5 19 19 

Table 4.2: Confusion matrix of ROI (as in Table 4.1) classification based on parasite or non-parasite. 

The classification accuracy is 67.14%. The sensitivity and specificity are 20% and 82.86%, 

respectively. 

 

Predicted 

Parasite Non-Parasite 
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s Parasite 7 28 

Non-Parasite 18 87 
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Figure 4.7: Ellipticity and eccentricity values of ROIs. Red asterisks are parasites, green diamonds 

are thrombocytes, magenta squares are dark erythrocytes, and blue circles are leukocyte borders.  

4.4.2 Colour Intensity Feature Analysis to Recognise Parasite 

An alternative method for parasite classification was carried out based on colour intensity 

features as parameters. According to Figure 4.8(b), (c), and (d), the intensity of the green 

channel dominates the colour image intensity profile, especially for parasites, thrombocytes, 

and erythrocytes. Visually, the profiles of the green channels of parasites are symmetric and 

spiky. Meanwhile, the profiles of thrombocytes are also symmetric but the curves are wider 

than that of parasites. In addition, the green channels of dark erythrocytes show characteristic 

plateaus. This means that the green channels of parasites, thrombocytes, and dark 

erythrocytes are distinguishable. Thus, the statistical descriptors of the green channels were 

used to classify parasites, thrombocytes, dark erythrocytes, or leukocytes. In particular, 

variance, skewness, and kurtosis were used.  

4.4.2.1 Data and Experimental Details for Colour Feature Analysis 

A set of 140 training ROIs were selected from binary images computed as part of the pre-

processing step explained in Section 4.4.1.2 was used in this colour feature analysis. For 

each ROI, the green channel was extracted from the corresponding normalized colour image 

(Section 6.3) and the ROI was represented by the variance, skewness and kurtosis of its green 

channel values. Discriminant analysis (Section 2.11.1) was used to classify the ROI as 

representing parasites or not.  
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Figure 4.8: Colour profiles: (a) a plot of the colour intensity profile along the line y = 325 in Figure 

4.2(a). There is a parasite at approximately x = 160 and erythrocytes at around x = 75-160, 170-225, 

450-500, and 550-600. (b) A plot of the colour intensity profile along with the line y = 367 in Figure 

4.2(a). A thrombocyte exists at around x = 350-375. (c) A plot of the colour intensity profile along 

the line y = 225 in Figure 4.2(a). There is a dark erythrocyte at around x = 225-275.  

4.4.2.2 Results of Training, Discussion and Conclusion 

The green channel values of the ROIs are shown in Figure 4.9 and classification performance 

based on green colour feature for distinguishing parasites, thrombocytes, dark erythrocytes, 

or leukocytes are displayed as confusion matrices (Table 4.3). According to Table 4.3, the 

classification accuracy was 78.57%. 

Table 4.3: Confusion matrix of classification based on green colour channel feature for parasite, 

thrombocyte, dark erythrocyte, or leukocyte border.  

 

Predicted 

Parasite Thrombocyte 

Dark 

Erythrocyte Leukocyte Border 

A
ct

u
al

 

cl
as

s 

Parasite 22 0 0 8 

Thrombocyte 8 33 1 1 

Dark Erythrocyte 0 1 33 0 

Leukocyte Border 5 5 1 22 
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However, the main purpose of this part of this study was to determine a pattern for 

classifying ROIs as parasites or non-parasites. When viewed as a classification into two 

classes, parasites and non-parasites (thrombocyte, dark erythrocyte, and leukocyte border), 

the classification accuracy is 85% (Table 4.4). The sensitivity and specificity are 73.33% 

and 88.18%, respectively. 

 

Figure 4.9: Green channel values of ROIs. Red asterisks are parasites, green diamonds are 

thrombocytes, magenta squares are dark erythrocytes, and blue circles are leukocyte borders. X-axis 

is standard deviation, Y-axis is skewness, and Z-axis is kurtosis. Scatter plots for the red and blue 

channels are very similar to the green channel and are not shown separately. 

Table 4.4: Confusion matrix of classification as parasite or non-parasite.  

 

Predicted 

Parasite Non-Parasite 

A
ct

u
al

 

cl
as

s Parasite 22 8 

Non-Parasite 13 97 

 

This classification experiment confirmed that colour intensity features, in particular, 

statistical descriptors of the green channel, are able to distinguish ROIs with parasites from 

ROIs without parasites. Subsequently, this classification experiment will be referred to the 

parasite recognition.  
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4.5 Identifying Infected Erythrocytes 

The purpose of this section is to identify infected erythrocytes by distinguishing parasites 

infecting erythrocytes from independent parasites and thrombocytes. In Section 4.2, 

parasites were segmented by the threshold method. In some cases, the parasite segmentation 

also produced footprints of thrombocytes. There was also the possibility that a single 

erythrocyte contained multiple footprints, which may imply the presence of either several 

parasites in one cell or a single parasite detected as more than one footprint. However, since 

the use of thin blood films in this study is not to calculate the number of parasites but to 

identify infected erythrocytes, only one parasite footprint in each erythrocyte is recognised 

as a representation of the cluster of footprints in the cell. The representative footprint was 

selected through the clustering method explained in Section 3.3.2.2. 

Two consecutive procedures were used to distinguish parasites from thrombocytes. 

The first procedure used the fact that thrombocytes appear outside of erythrocytes, as 

explained in Section 1.9.2, as the feature. If (Xe,Ye) represents the centroid of the 

erythrocyte footprint, (Xp,Yp) represents the centroid of the candidate parasite footprint and 

R is the radius of the erythrocyte footprint, then if |Xpi-Xei|>R AND |Ypi-Yei|> R, the 

footprints are located outside erythrocyte and thus can be confirmed as thrombocytes or 

independent parasites (ignored in calculation of infected erythrocytes); otherwise, the 

footprints may be either thrombocytes touching an erythrocyte or true parasites. This 

indicates that the location of thrombocytes by itself, despite being an essential feature, is not 

sufficient to differentiate parasites from thrombocytes. 

To resolve these two possibilities, these first steps were followed up with a second 

procedure utilising colour features to distinguish between parasites and thrombocytes. In this 

procedure, the green channel of each candidate parasite footprint was extracted from the 

associated normalized colour image and the variance, skewness and kurtosis of the green 

channel were extracted. These three green feature values were then classified by means of 

the pattern discovered in Section 4.4.2 as true parasites or non-parasites. In this case, the 

parasite candidates classified as true parasites represent infected erythrocytes. The 

combination of erythrocyte detection, location feature, and parasite identification method 

described above will be referred as the erythrocyte identification method.  
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4.5.1 Images for Testing the Erythrocyte Identification 

For validation of the performance of the erythrocyte identification method described in the 

previous section, a data subset of around 1000 images consisting of 75075 erythrocytes from 

the testing data set (Section 4.6.1) were selected randomly. Around 100 images were 

collected from each thin blood film.  

4.5.2 Results of Testing, Discussion and Conclusion  

The experiment of the erythrocyte identification yielded a confusion matrix (Table 4.5). The 

accuracy was 99.84%, the sensitivity was 73.88%, and the specificity was 99.87%.  

Table 4.5. Confusion matrix of testing classification for infected or normal erythrocytes. 

 

Predicted 

Infected Normal 

A
ct

u
al

 

cl
as

s Infected 266 94 

Normal 32 74683 

 

In the context of classification performance, the specificity of the erythrocyte 

identification was similar to that of the parasite recognition (Section 4.4.2). However, the 

accuracy and specificity of the erythrocyte identification were significantly different from 

those of the parasite recognition. According to Table 4.3, the big contributor of 

misclassification in the parasite recognition is FP due to thrombocytes and leukocyte borders 

detected as parasites. The location feature used to filter thrombocytes and leukocyte borders 

from parasites in erythrocytes had a role in reducing the misclassification. Thrombocytes 

and leukocyte borders, which are far away from erythrocytes, are not involved in the 

classification process of the erythrocyte identification. This means that the location feature 

is combined with colour intensity pattern to classify erythrocytes in the erythrocyte 

identification. This significantly reduces the effect of thrombocytes and leukocyte borders. 

Thus, the accuracy and the specificity of the erythrocyte identification method are much 

higher than those of the parasite recognition method using only the colour intensity feature 

to distinguish between parasites and non-parasites. 

In addition, in the erythrocyte identification, the number of normal erythrocytes was 

much higher than the number of infected erythrocytes. The maximum proportion of infected 

erythrocytes is 10% (Garcia & Bruckner 1997). Statistically, the probability of TN in the 

erythrocyte identification is much higher than that in the parasite recognition. Furthermore, 
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most normal erythrocytes have a lower intensity than the parasite adaptive threshold. This 

means that the normal erythrocytes were automatically assigned as true normal erythrocytes 

(TN) without being involved in the parasite classification process. Accordingly, the 

specificity and accuracy of the erythrocyte identification are significantly higher than those 

of the parasite recognition.  

For classification, Table 4.5 indicates that the classification performance of the 

proposed algorithm performs at least as well as that of Tek’s study (Tek, F. B., Dempster & 

Kale 2010) in three categories: accuracy 93.3%, sensitivity 72.4%, and specificity 97.6%. 

For specificity, the proposed algorithm slightly outperforms or is relatively similar to Tek’s 

study. However, for accuracy and specificity, the proposed algorithm performs substantially 

better. This might be because the proportion of normal erythrocytes in Tek’s data set was 

much less than in this study. 

The erythrocyte identification method was applied to testing data (Section 4.6.1) for 

parasitemia estimation, as described in the following section. The outcome of the diagnosis 

was then compared with that of parasitemia scores by expert readers.  

4.6 Estimating Parasitemia 

The parasitemia may be estimated by noting the number of infected erythrocytes as a 

percentage of the total number of erythrocytes and using Equation 1.2 to give the parasite 

count per µl of blood. 

4.6.1 Images for Testing Parasitemia Estimation 

From the seven positive thin blood films and three negative thin blood films described in 

Section 1.11, a data set of 1590 images from the seven positive thin blood films (the same 

as data set used in Chapter 3) and 900 images from the three negative thin blood films were 

randomly selected (between 200 and 300 images from each slide) for testing parasitemia 

estimation.  

4.6.2 Testing for Parasitemia Estimation 

Every candidate parasite footprint was identified and the location feature (Section 4.5) was 

applied to the testing data set (Section 4.6.1). If the candidate parasite was detected inside 

an erythrocyte, then the colour pattern method (Section 4.5) was applied to classify the 

candidate parasite as parasite or non-parasite.  
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4.6.3 Results of Testing, Discussion, and Conclusion 

In this chapter, three steps for segmentation and identification were used to estimate 

parasitemia in thin blood film: the first step was erythrocyte segmentation followed by 

identification (Section 3.4); the second step was parasite segmentation followed by 

classification; and, the final step was parasitemia estimation using the standard correlation 

(Equation (1.2)). From the first and second step, the percentage of infected erythrocytes was 

obtained. The percentage of infected erythrocytes resulting from the testing step is described 

in Table 4.6 and Table 4.7. In addition, the resulting parasitemia estimation from the testing 

step is shown in Figure 4.10 and Figure 4.11.  

Regression analysis was used to determine if there was a correlation between the 

percentages of infected erythrocytes resulting from this algorithm in thin blood films and 

parasitemia scores from expert readers in the corresponding thick blood films. The 

correlation result is shown in Figure 4.10. The result indicates that there is good correlation, 

r = 0.91. Furthermore, the estimates of parasitemia and parasitemia scores from expert 

readers have a strong correlation, r = 0.98.  

 

Figure 4.10: (a) The regression for testing images. For each slide, there are green open circles 

representing estimates of parasiatemia from human experts in thick blood films. The correlation 

between percentage of infected erythrocytes for testing images in positive thin blood films and 

parasitemia scores from human experts in thick blood film was 0.91. (b) The estimation of 

parasitemia in thin blood films and parasitemia scores from expert readers in thick blood films. The 

open green circles are as in Figure 4.10(a) and the blue stars are the estimates of parasitemia from 

the percentage of infected erythrocytes for testing images resulted from this algorithm after 

correlation with parasitemia scores by standard correlation (Equation 1.2).  

 



80 

 

 

Figure 4.11: Estimates of parasitemia scores. (a) The green vertical lines are ranges of parasitemia 

scores from expert readers in thick blood films after converting to thin blood film scores using DS 

correlation (Equation 3.1). (b) The magenta vertical lines are ranges of parasitemia scores from 

human experts in thick blood films after converting to thin blood film scores using TR correlation 

(Equation 3.2). 

Table 4.6: Percentage of infected erythrocytes in negative thin blood films. The mean was 0.004% 

and standard deviation was 0.0001%. NS1, NS2, and NS3 are negative slide 1, 2, and 3.  

Slides NS1 NS2 NS3 

B 0.0040 0.0039 0.0041 

P 200 193 205 

 

Table 4.7: Percentage of infected erythrocytes in positive thin blood films (B) and their estimation 

of parasitemia scores (P) based on the standard correlation. PS1, PS2, PS3, …, PS7 are positive slides 

1, 2, 3, …, 7. 

Slides PS1 PS2 PS3 PS4 PS5 PS6 PS7 

B 0.0047 0.0128 0.0375 0.1262 0.3310 0.6951 2.2291 

P 234 639 1,875 6,309 15,372 34,754 111,455 

 

Subsequently, a t-test was used to determine if the difference in estimation 

performance of parasitemia estimates due to this algorithm compared with parasitemia 

scores from expert readers. The results indicate that there is no significant difference 

between the performance (p = 0.37, n = 7, α = 0.05) and the mean of experts’ parasitemia 

scores. Similarly, the parasitemia resulting from this algorithm was found to be not 

significantly different (p = 0.40, n = 7, α = 0.05) from the median of experts’ parasitemia 

scores.  

For the negative thin blood films, zero parasitemia scores were not obtained (Table 

4.6). This may be caused by the presence of inaccuracy in the process of parasite 
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classification (Table 4.3 and Table 4.4). This could be addressed in future work, given that 

thrombocytes touching normal erythrocytes were not considered in the training process. 

Classification inaccuracy is due to false positives (FP) in distinguishing between 

thrombocytes and parasites. Some thrombocytes located near (less than the average radius 

of erythrocytes) or on erythrocytes were analysed as candidate parasite footprints. The 

number of thrombocytes is from around 5% of erythrocytes (Vander, Luciano & Sherman 

2001) up to 8% of erythrocytes. Accordingly, this proportion was big enough to play role in 

the over estimation of parasitemia and caused less sensitivity, 73.88% (Table 4.5). On the 

other hand, some bright parasites, probably young parasites, were mostly not detected 

because their intensities on inverted grayscale images are lower or not significantly different 

from normal erythrocytes. This produced false negative misclassification and reduced 

sensitivity. However, if the estimates of parasitemia scores from the negative thin blood 

films were joined with the scores from the positive thin blood films, the performance of the 

parasitemia estimation was not still significantly different (p = 0.54, n = 10, α = 0.05) from 

the parasitemia scores from expert readers.  

The algorithms presented in this chapter did provide better estimation of parasitemia 

than that in (Sunarko et al. 2017). Generally, results from this algorithm indicate that 

estimates of parasitemia were in line with parasitemia scores from expert readers in thick 

blood films both directly (Figure 4.10(b)) and in terms of DS correlation (Figure 4.11(a)) or 

TR correlation (Figure 4.11(b)). However, the parasitemia value resulting from this 

algorithm in the lowest parasitemia slide was among the outliers.  

Comparisons between the study in (Sunarko et al. 2017) and this study must be made 

judiciously. The study in (Sunarko et al. 2017) was focused on distinguishing infected 

erythrocytes from uninfected erythrocytes based on erythrocyte analysis. Here, infected 

erythrocytes were determined based on not only erythrocyte identification but also parasite 

analysis. Parasites were segmented and analysed independently from their erythrocytes. 

Therefore, false positives due to the effects of infected erythrocytes or thrombocytes on the 

other normal occluded erythrocytes could be avoided and thus reduce the error.  

In (Sunarko et al. 2017), erythrocyte classification was based on erythrocyte features. 

In some cases of occluded erythrocytes, a histogram computed over all occluded 

erythrocytes represented not only individual erythrocytes but also the other erythrocytes or 

thrombocytes joined in the occluded cells. This leads to miss-interpretation in erythrocyte 

classification. Meanwhile, parasite features were strictly based on a local parasite candidate. 
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Hence, a histogram represented an individual parasite candidate. In addition, here, the 

erythrocyte identification based on parasite features was coupled with location feature and 

clustering analysis. Before being classified as a parasite infecting an erythrocyte, a parasite 

candidate was determined by location feature whether the candidate was inside or outside of 

an erythrocyte. If the candidate was outside, it was ignored because this step consists of 

identifying infected erythrocytes, not noting the parasites themselves. Subsequently, the 

parasite candidate was classified based on parasite features as parasite or non-parasite. In 

cases where there are many parasites infecting an erythrocyte, a simple clustering algorithm 

(Section 3.3.2.2) was applied to select one of them and ignore the others.  

The method can estimate parasitemia via automatic analysis of thin blood film 

images with error no greater than the variation between expert malaria readers. The 

important observation in this chapter is that the combination of erythrocyte identification 

and parasite analysis outperforms features from erythrocyte analysis alone. This 

significantly reduced the overestimation of parasitemia obtained in (Sunarko et al. 2017).   
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Chapter 5: Morphological Features 

As discussed in Section 1.6, both thick and thin blood films are valuable and microscopists 

are highly recommended to look at both when conducting a malaria examination (Moody 

2002). In this chapter and the next, computational methods are developed to automatically 

diagnose and estimate parasitemia based on thick blood film images. 

Thick blood film images (Section 1.9.3) contain three main components: leukocytes, 

thrombocytes, and cytoplasm, and possibly parasites if the images are from positive slides. 

Parasites contain one or two dot chromatins. A source of error in malaria diagnosis based on 

thick blood film images is in distinguishing between parasites and thrombocytes. The 

probable reason is that thrombocytes also contain chromatin (Elter, Haßlmeyer & Zerfaß 

2011) or chromatin-like material (Howard & Hamilton 2013; Thein 2001). Human readers 

use physical appearance of parasites and thrombocytes as well as colour and size in malaria 

diagnosis.  

This preliminary study to the main project of automatic parasitemia estimation based 

on thick blood film images was conducted to ascertain if physical appearance and size can 

be used to distinguish parasites from thrombocytes. The most commonly seen stage of 

parasites is the trophozoite stage which, in thick blood films, is characterised by the presence 

of a red chromatin dot together with blue cytoplasm of lower intensity in the shape of a ring, 

a partial ring or more irregular shapes called “amoeboid” (WHO 2010). In P. falciparum, a 

second chromatin dot is often seen (WHO 2010). 

Two studies were undertaken to determine the extent to which these features could 

be used to distinguish between parasites and thrombocytes in thick blood films. In the first 

study, the size of secondary structure in the neighbourhood of each candidate parasite (if 

present) was recorded and the size (total intensity) of the secondary feature was recorded as 

a feature for classification. This method will be referred to as the “second structure method”. 

In the second method, the presence of a second dot was used to distinguish between parasites 

and thrombocytes. The motivation for this approach was that the first dot identified could 

represent either a chromatin dot associated with a parasite or a thrombocyte. The presence 

of a second dot would suggest a second chromatin dot and hence a P. falciparum parasite. 

All seven malaria positive slides in the data set were known to be P. falciparum infections. 

This method will be referred to as the “chromatin dot method”. 
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For this study, 80 images from each slide were used to establish feasibility. The 

following pre-processing steps were common to both methods.  

Colour images were converted to grayscale images based on luminance and 

templates for leukocytes were constructed for each image as in Section 6.5. The number of 

leukocytes present in each image determined by the number of connected components in the 

leukocyte template was recorded.  

5.1 Stripe Artefact Removal 

When small patches of images were observed (tantamount to zooming), images from some 

slides were found to show significant horizontal striping patterns and, in some cases vertical 

striping to a lesser degree. When present, horizontal stripes consisted of alternating rows of 

light and dark stripes of single pixel width but extending over the full width image. Vertical 

stripes, when present, tended to appear in blocks of size 8 × 8 but did not necessarily follow 

a pattern of alternating light and dark stripes (Figure 5.1(a)). 

A program was written to mitigate these stripe artefacts. To remove the horizontal 

striping pattern, the intensity sum over all odd numbered horizontal rows of pixels was 

computed (odd row sum) and the intensity sum over all the even numbered rows of pixels 

was computed (even row sum). A constant, C was added to every pixel in the odd rows to 

insure that the new odd and even row sums would be equal. Thus the constant C was given 

by 

C = 
even row sum - odd row sum

N/2
 

Here N is the total number of pixels in the image. This strategy resulted in reducing (albeit 

not totally eliminating) the apparent horizontal striping (Figure 5.1(b)). 

After adjusting for the horizontal striping artefacts, the vertical stripes were 

addressed for each 8 × 8 block of pixels at a time according to the following rule. If, within 

and 8 × 8 block, the intensity sum of a column was less than the column sums of each of the 

columns on either side, then a constant was added to all the pixels in the column so that the 

new column sum would be equal to the mean of the column sums of the two columns on 

either side. This strategy resulted in reducing the vertical striping (Figure 5.1(c)). 



85 

 

 

Figure 5.1: Removing stripe pattern – local patch. A zoomed view of an image patch consisting of 

48 rows and columns. (a) is the original patch. (b) is the same patch after removing horizontal stripes. 

(c) is the same patch after removing horizontal and vertical stripes and (d) is the patch after 

subsequent local smoothing. 

Next, a local smoothing filter was used to remove the remnant striping patterns. This 

filter consisted of a 3×3 patch of pixels with intensity value 1/9. The striping patterns in the 

resulting image were noticeably reduced (Figure 5.1(d)). Applying a smoothing filter alone 

did not reduce the striping patterns nearly as well. 

5.2 Finding Candidate Parasites 

A filter, h, was used to search for high intensity dots associated either with parasites (a 

chromatin dot) or thrombocytes (Figure 5.2(a) and (b)). The filter consisted of an image 

patch with intensity values given by 

ℎ(𝑥, 𝑦) = {
−𝐴, 𝑖𝑓 𝑅2 < 𝑥2 + 𝑦2 ≤ (𝑅 + 1)2

1, 𝑖𝑓 𝑥 = 0, 𝑦 = 0
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where the number A was chosen so that ∑ ℎ(𝑥, 𝑦) = 0𝑥,𝑦 . Here, R is the radius of the circle 

on which the filter is positive. The motivation for this filter is that, being zero sum, the filter 
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effectively sets the background to have mean zero. Since h(0, 0) = 1 and h(x, y) = 0 for points 

(x, y) near (0, 0), the filter locally acts as the identity. Thus, this filter preserves local intensity 

structure well but flattens the image to have mean zero background. 

 
Figure 5.2: Candidate parasites. (a) An example grayscale image. (b) The same image after flattening 

by filter h. (c) After applying the intensity threshold T = 20. (d) After applying the leukocyte template 

to remove remaining edge effects from leukocytes. 

 

The filtered image was inverted (so that foreground features were represented by 

positive intensity values) and thresholded at zero to remove background fluctuations. Several 

intensity profiles were examined to determine that an intensity threshold of 20 was suitable 

for identifying parasites and thrombocytes (Figure 5.2(c)). The resulting binary image will 

be referred to as the parasite-thrombocyte footprint image. 

Since the spatial extent of the flattening filter was very small compared to the area 

of a leukocyte, the interior of regions corresponding to leukocytes were automatically set to 

background values. However, the edges of leukocytes gave rise to high responses to the filter 

as would be the case for any linear zero-sum filter. Thus, edges of leukocytes were present 

in the parasite-thrombocyte footprint image. To remove these edge responses, the parasite-

thrombocyte footprint image was multiplied element-wise by the leukocyte template. 

Finally, the parasite-thrombocyte footprint images also contained a number of small specks, 
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too small to be considered candidate parasites. Accordingly, all connected components of 

area 5 pixels or less in the parasite-thrombocyte footprint image were removed (Figure 

5.2(d)). 

The remaining connected components in the parasite-thrombocyte footprint image 

were viewed as associated either with parasites or non-parasite objects, including 

thrombocytes and remaining artefacts. Since only the number of true parasites was of 

interest, attention focused on classifying these components as representing parasites or not. 

 
Figure 5.3: Second structure method. (a) The bright spot at the centre is the intensity image associated 

with a connected component C in the parasite-thrombocyte footprint image and the image shown 

includes the disk D extracted from the flattened image. The lower bright spot is not part of C but is 

part of D. (b) After removing C. (c) After identifying the largest component in D after removing C. 

(d) The intensity image associated with the second largest structure near C. 

5.3 The Second Structure Method 

For each connected component in the parasite-thrombocyte footprint image, several 

processing steps were taken. Let C denote a connected component in the parasite- 

thrombocyte footprint image and let (x0, y0) denote the centre of this set. A disk shaped 

region, D, of radius 15 pixels centred at (x0, y0) was extracted from the flattened image (the 

grayscale image after flattening but prior to applying the threshold) (Figure 5.3(a)). The 

intensity function in D corresponding to the connected component C was set to zero so that 
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the only pixels with positive intensity values in D corresponded to objects in the image other 

than the candidate parasite associated with C (Figure 5.3(b)). A new intensity threshold (T = 

8) was applied to D resulting in a binary patch, P, the size of D and comprising footprints of 

structures near the candidate parasite associated with C, but excluding this candidate itself 

(Figure 5.3(c)). The total intensity (integral of the intensity function) in the flattened image 

over each of the connected components in P was computed and the component with the 

largest such total intensity was taken to represent the most prominent secondary structure 

near C (Figure 5.3(d)). The total intensity over this component was recorded as the size, s, 

of the most prominent secondary structure near C. Since the original (primary) structure C 

was removed from the parasite-thrombocyte footprint image, this structure was not eligible 

to play the role of a second structure for a different candidate parasite and hence a single pair 

of dots was only considered once as one potential parasite. 

For a given threshold t, the component C was designated as a parasite if s ≥ T and as 

a non-parasite if s < T. For each slide, a parasitemia score was obtained by multiplying the 

number of parasites found in the 80 sample images from this slide by 8000/L, where L is the 

number of leukocytes found within the 80 images. The number 8000 comes from the 

standard value for the number of leukocytes per μl of blood. The parasitemia scores produced 

in this manor were compared to the average parasitemia scores reported by human experts 

(Figure 5.5). 

5.4 The Chromatin Dot Method 

Starting with the parasite-thrombocyte footprint image described in Section 1.2, all 

connected components of area less than 65 pixels were considered candidate chromatin dots. 

If two candidate chromatin dots were found with centres less than 25 pixels apart, the two 

were considered to be pairs of chromatin dots and counted as a single parasite. Connected 

components without a neighbour within 25 pixels distance were considered isolated dots not 

associated with parasites (Figure 6.4). Parasitemia was computed by the same method as 

described in Section 1.3 using the leukocyte count derived from the leukocyte template. 
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Figure 5.4: Parasite detection based on pairs of chromatin dots. The image is the same example as in 

Fig. 5.2(a). Red circles indicate detections of chromatin dot pairs associated with parasites and green 

circles indicate isolated dots rejected as being associated with parasites. The mean human expert 

parasitemia score for the slide from which this image came was more than 300,000. 

5.5 Results 

Neither method for estimating parasitemia agreed well with the parasitemia scores reported 

by expert readers (Figures 5.5 and 5.6). 

 

Figure 5.5: Expert and second structure parasitemia. For each slide, the log of the parasitemia score 

estimated using the second structure method is plotted according the horizontal axis and the log of 

the human expert score is plotted according to the vertical axis. Each slide is represented by several 

blue circles, one for each human expert. The red line is the regression line. The results are shown for 

the threshold on the size of the second structure yielding the lowest error. Logarithms were used 

because the parasitemia values ranged over five orders of magnitude. 

For the second structure method, the estimate of parasitemia depends on the threshold 

used for the size (total intensity) of the second structure. A search over threshold values 
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within the range of second structure sizes was conducted to find the best fit according to the 

sum mean square error between estimates of parasitemia for each slide and the mean of the 

human expert estimates of parasitemia. The fit associated with the threshold yielding the 

least error by this method indicates that the estimates based on the second structure method 

does not agree well with human expert estimates (Figs. 5.5). For the chromatin dot method, 

there was no parameter over which to optimize the fit (Figure 5.6). 

 

Figure 5.6: Expert and chromatin dot parasitemia. For each slide, the log of the parasitemia score 

estimated using the chromatin dot method is plotted according the horizontal axis and the log of the 

human expert score is plotted according to the vertical axis. Each slide is represented by several blue 

circles, one for each human expert. The red line is the regression line. Logarithms were used because 

the parasitemia values ranged over five orders of magnitude. 

5.6 Discussion and Conclusion 

The two methods presented in this chapter were designed to exploit visual clues used by 

human experts to distinguish between parasites and non-parasite objects of similar size and 

image intensity, including thrombocytes. The approaches were both aimed specifically at 

detecting P. falciparum in the trophozoite stage and were simple in that shapes of structures 

were not carefully analysed. It was hoped that such an approach would be flexible and allow 

the detection of all the variations of the ring shapes and the presence of a second chromatin 

dot. Only results on a training set of 80 images per slide were presented, because results 

were so poor that there was little point in measuring performance on a testing set. 

The poor results indicate that much more care is needed to characterise the shapes of 

structures rather than measuring just their total image intensity. Probably, modern image 
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analysis methods could be used to extract shape features from candidate parasites that would 

result in accurate detection of P. falciparum in the trophozoite stage. However, this study 

indicates that such feature extraction methods would likely be somewhat complex and that 

a large suite of such algorithms would be needed to identify the various species of malaria 

parasites and their various stages. In all, the processing time required per image would 

increase substantially. 

Long processing times for images are prohibitive in a study that aims at the long-

term goal of developing a simple, cost effective and accurate device that could be used in 

under developed regions of the world to diagnose malaria. In order to separate malaria 

negative subjects from low parasitemia malaria positive subjects, hundreds of images from 

a thick blood film are needed. Thus, a modest increase in processing time per image easily 

results in unrealistic total processing time for the slide. 

Accordingly, this study supports the notion that an algorithm that imitates the human 

expert’s process for detection of parasites may not be optimal for an automatic system. 

Instead, an alternative study involving intensity and colour features was conducted (Chapter 

6) to improve on these results. 
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Chapter 6: Estimating Parasitemia from Thick Blood Film 

Images 

6.1 Overview 

This chapter presents the identification of leukocytes and malaria parasites for the purpose 

of estimating parasitemia scores based on thick blood films. This chapter starts with 

describing the data used in this study in Section 6.2. Methods for image normalisation are 

demonstrated in Section 6.3. Section 6.4 and 6.6 explain the process of segmenting 

leukocytes and parasites, respectively. The classification of leukocytes and parasite 

footprints are explored in Section 6.5 and 6.7, respectively. Section 6.8 discusses counting 

parasites and computing parasitemia scores. Results for estimating parasitemia are discussed 

in Section 6.9. Finally, Section 6.10 reviews this chapter. 

6.2 Thick Blood Film Images 

Images for this part of the study were taken from thick blood films. A total of 171 

images were selected from seven positive slides (Section 1.11) for the training steps (Section 

6.3.1, 6.5.1, and 6.7.1) and a total of 2424 images were selected from ten slides consisting 

of three negative slides and seven positive slides (Section 1.11) for testing parasitemia 

estimation (Section 6.9). Between 200 and 300 images were randomly selected from each 

slide.  

Typical thick blood film images contain leukocytes, thrombocytes, and, in infected 

thick blood films, parasites. The original images were RGB colour images having different 

intensity and colour backgrounds. These differences might occur due to variation in staining 

or image acquisition. To compensate for these differences, the original images were 

normalized as described in the following section. 

6.3 Image Normalisation  

Two normalization methods were tested to explore image normalization effects on 

consistency of image intensity: grey-world normalization and median normalization. These 

two normalization algorithms were used for the following reasons. Qualitative experiments 

using the first method revealed that the method was very effective and robust against the 

different input image colour characteristics (Tek, F B, Dempster & Kale 2006). On the other 

hand, the second normalization method was simpler but applies only to grayscale images.  



93 

 

6.3.1 Images for Normalization Experiments  

Sixty three images from seven slides of thick blood films (Section 6.2) were involved in this 

experimental study. The primary objective of this normalization study was to get consistent 

images that fit all slides. As such, this data set comprised nine images from each slide. 

6.3.2 Experimental Details 

The first normalization method was applied to colour images. In this colour normalization 

study, the grey-world algorithm based on a reference image (Figure 4.1) described in Section 

2.2.1 was implemented separately on each colour channel to establish colour consistency 

over the various slides. The algorithm described in Section 2.2.1 used the mean value of 

image intensity to generate illumination factors. However, in this study, the median was used 

instead of the mean because the median is more robust than the mean value in representing 

the population (Moore, McCabe & Craig 2012). For this reason, the illumination factors 

were sought by dividing the medians of each channel of the reference med[i]c by those of 

unknown med[i]u, yielding the following equation: 

𝑚[𝑖] =
𝑚𝑒𝑑[𝑖]𝑐

𝑚𝑒𝑑[𝑖]𝑢
 i = [r, g, b] (6.1) 

Otherwise, the grey-world normalisation followed the method described in Section 

2.2.1. The grey-world normalisation procedure is demonstrated by example images shown 

in Figure 6.1. The histograms of the normalised images are shifted (see Figure 6.1(g) and 

(h)) and aligned to the reference histogram (see Figure 6.2(b)). In addition, although the 

original colour RGB images were normalised, in this case, small differences in background 

intensity between images still remained. This may due to the effect of staining resulting in 

different tissues appear as having roughly the same colour but at different intensities. Even 

though the blood film images produced by modern microscopes coupled with dedicated 

cameras are colour images, the distribution of colour forms essentially a one-dimensional 

subset of the colour space (Figure 3.4). The colours are not fully distributed in all directions 

of the colour space. Thus, the colour space is essentially one-dimensional.   
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(a) 

 
(b) 

(c) 
 

(d) 

 
(e) 

 
(f) 

 
(g) h 

Figure 6.1: Image normalisation: (a) and (b) are original images, (c) and (d) are normalised images 

of (a) and (b), (e) and (f) are histogram of original images of (a) and (b) with median 148 and 195, 

respectively, (g) and (h) are histogram of normalised images of (c) and (d) with median 169 and 183, 

respectively. 
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Accordingly, image normalization can be carried out on grayscale images. After 

converting the input colour images to grayscale images, the median normalisation (Section 

2.2.2) was used to replace the grayscale image by Equation (2.1). In this case, α was set to 

the Nth least value, where N is 10% of total number of pixels.  

6.3.3 Results, Discussion, and Conclusion 

To confirm the usefulness of the image normalization, qualitative and quantitative 

experiments were conducted. A set of images from different slides with different intensities 

(Section 6.3.1) was used to compare outputs. 

Table 6.1: Median of image intensity. G1 is the grayscale of the original images. G2 is the grayscale 

of the normalized RGB images. G3 is the grayscale of the normalized grayscale images. SD is 

standard deviation. 

  Min of Median Max of Median Mean of Median SD of Median 

G1 93 244 170.80 40.66 

G2 183 194 186.67 3.20 

G3 0.875 1.161 1.010 0.063 

 

From a qualitative perspective, Figure 6.1 shows some examples of original and 

normalized images using the modified grey-world algorithm described above. The original 

images have a wide variety of colour background intensities (see Figure 6.1(a) and (b)) and 

the medians of their histograms (Figure 6.1(e) and (f)) are significantly different, with values 

148 and 169, respectively. After the normalization process, the normalized images are 

relatively consistent as indicated by the histograms of the normalized images. They have 

median values at the same indexes, at around 190 (see Figure 6.1(g) and (h)) and, visually, 

the colour backgrounds of the normalized images are similar (see Figure 6.1(c) and (d)).  

Subsequently, the quantitative experiment demonstrated the consistency of images 

as shown in Table 6.1. Sixty-three images from seven positive slides (Section 1.11) were 

involved. The original images consist of a great range of median intensities from 93 to 244 

with mean and standard deviation at 170.80 and 40.66, respectively. In contrast, the 

normalized images have a much narrower range of intensity from 183 to 194 with median 

and standard deviation at 186.67 and 3.20, respectively. Also, using the median 

normalization (Section 2.2.2) yields a narrow range for median intensity (from 0.875 to 

1.161) with the average of the median and standard deviation of median being at 1.010 and 

0.063 respectively.  
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Table 6.2: Maximum intensity of leukocytes. 

 Slides 

Colour Normalized 

Images 

Grayscale Normalized 

Images 

Minimum Maximum Minimum Maximum 

1 162 209 0.6219 0.9563 

2 142 208 0.4122 0.7266 

3 166 233 0.7234 1.1959 

4 169 210 0.7212 1.0118 

5 154 237 0.4895 0.9779 

6 159 243 1.0152 1.3002 

7 215 255 1.1302 1.4681 

 

 

Figure 6.2: Reference image: (a) grayscale image, (b) A plot of the profile intensity along the line y 

= 200 in Figure 6.2(a). The leukocyte at about x = 200 and the parasites at around x = 150, 730, 820, 

and 950 have lower intensities in the profile.  

In addition to the experiment described in Section 6.3.2, a brief study involving 420 

leukocyte footprints from seven positive slides was also undertaken to ascertain if retaining 

full colour information provides a better final detection of malaria compared to reducing 

each image to grayscale based on luminance. The results indicated that there was no 

difference in final performance whether images were processed as full colour images or 

converted to grayscale. Table 6.2 shows that patterns of normalized RGB images and 

normalized grayscale images were the same, namely there were still differences in the ranges 

of leukocyte intensity in different slides. Accordingly, images were converted to grayscale 

and then the median normalization was applied to get more consistent images for subsequent 

processing steps. 

Figure 6.2(a) shows the grayscale image converted from Figure 6.1(a). In the grayscale 

images, darker pixels, such as leukocytes and parasites, have lower intensity (Figure 6.2(b)).  
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6.4 Segmenting Leukocytes 

Automatic malaria diagnosis requires a process for automatically identifying and classifying 

leukocytes as normal or phagocytes. In this study, the term “phagocytes’ is used to refer to 

leukocytes or erythrocytes containing one or more malaria parasites. The phagocytes might 

be leukocytes engulfing malaria parasites, gametocytes, or groups of parasites resulting from 

haemolysed schizonts (a form of the malaria parasites, as described in Section 1.4 and 1.7). 

Many image analysis methods are designed with the assumption that target objects of interest 

are bright (foreground) compared to dark background. For this reason, the grayscale images 

were inverted prior to further processing steps (Figure 6.3(a)), meaning that leukocytes (as 

a target) have higher intensity values than other objects in images. However, leukocytes, in 

fact, have a variable intensity range and are superimposed on varying background (Figure 

6.3(b)). The effects of various backgrounds within images will be discussed in the parasite 

segmentation step (Section 6.6). Furthermore, because of the remaining small differences in 

image background intensity between images from different slides, an adaptive threshold was 

determined to segment leukocytes from background and other objects. To do this, seventy 

ROIs containing leukocytes from seven slides were used to determine an adaptive leukocyte 

intensity threshold, minimum leukocyte area, and the minimum intensity of leukocytes.  

 

Figure 6.3: Pre-processing steps: (a) the inverted image from Figure 6.2(a), (b) A plot of the profile 

intensity along the line y = 200 in Figure 6.3(a). The leukocyte at about position x = 200 has a wide 

tall spike profile. The parasites at approximately x = 150, 730, 820, and 950 result in thin narrow 

spikes in the profile. The other components have a varying profile.  

Based on Equation (1.3), the number of leukocytes must be greater than zero in order 

to obtain a definite parasitemia score. Also, considering the nature of thick blood films 

explained in Section 1.9.2, the highest intensity value is always located at leukocyte pixels 

and the leukocyte intensities vary between images, especially between slides (Table 6.2). 

Then, by inspection of seventy image intensity profiles, e.g., Figure 6.3(b), an adaptive 
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leukocyte threshold value of 0.7 of the highest intensity pixels generally associated with 

leukocytes was decided empirically to segment leukocytes from other components. 

The reason for using the maximum leukocyte intensity as reference for the threshold 

of leukocytes and parasites was that leukocytes must be present to calculate parasitemia 

score (Equation (1.3)). The leukocyte threshold value was low enough to keep leukocytes 

but high enough to eliminate large numbers of parasites in all images. By using this adaptive 

leukocyte threshold, segmented images consisted of leukocyte footprints and a few parasite 

footprints in some cases. 

The minimum leukocyte intensity was found to be 0.412 (see Table 6.2). In cases 

where the highest image intensity pixel was less than the minimum leukocyte intensity (for 

example, there is no leukocyte in the image), the leukocyte intensity threshold was the 

minimum leukocyte intensity (0.412). The adaptive threshold was applied to each inverted 

image to obtain binary images consisting of a foreground of isolated regions, referred to as 

footprints of leukocytes, and some noise (Figure 6.4(a)). The noise is removed by using an 

opening filter.  

 

Figure 6.4: Segmented leukocytes. (a) the binary image results from the grayscale image in Figure 

6.3(a) after applying the optimum adaptive threshold, (b) the footprints of leukocytes results from 

the binary image in Figure 6.4(a) after applying an opening filter.  

The opening filter, described in Section 2.3.2, requires a circular disk structure 

element constructed by a size parameter, R. For very small values of R, small noise is 

removed. On the other hand, very big values of R results in eliminating leukocyte footprints. 

The value R = 5 was determined empirically to provide a reasonable size to retain leukocytes 

and remove noise. The opening filter was applied to remove noise. The resulting image 
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(Figure 6.4(b)) contained only footprints corresponding to leukocytes and a phagocyte, in 

the bottom-left quadrant. 

6.5 Leukocytes Classification 

To compute parasitemia, both the number of leukocytes and the number of parasites must be 

counted. Since parasites also lie within phagocytes, the phagocyte footprints, which might 

present among leukocyte footprints, must be investigated. To classify candidate leukocyte 

footprints (e.g., Figure 6.4(b)) as leukocyte or phagocyte footprints, the histogram of the 

grayscale intensity values of the leukocytes and phagocytes matching with their leukocyte 

footprints were considered. 

6.5.1 ROIs for training of leukocyte classification 

One hundred ROI of individual isolated leukocytes were identified visually from 33 images. 

Of these, fifty were normal leukocytes and fifty were phagocytes. Of the fifty normal 

leukocytes, 25 were randomly selected for training to select significant features and 25 were 

reserved for testing to determine the best objective function for classification. Likewise, fifty 

phagocytes were randomly separated into two groups of equal size for training and testing.  

6.5.2 Experimental Details 

The intensity values for leukocytes were extracted from the grayscale image using the 

footprint as a template. For each footprint, the mean, the standard deviation, skewness, and 

kurtosis of the distribution of grayscale intensity values for the leukocytes were extracted. 

Accordingly, an exhaustive search over possible features for the two parameters was also 

conducted. In the following, m, v, s, and k denote the mean, standard deviation, skewness, 

and kurtosis of the intensity distribution over the leukocyte footprint.  

In the image pre-processing step, images containing leukocytes or phagocytes were 

converted to grayscale images, and pre-processed by applying image normalization 

described in Section 6.3. Thresholding segmentation (Section 6.4) was applied to the 

normalized images and 100 ROIs (Section 6.2) were selected. For each selected ROI 

corresponding to a leukocyte, m, v, s and k were extracted from the normalized grayscale 

images.  

Feature selection used the sequential forward feature selection method (Section 

2.10.2) using a discriminant analysis classifier (Section 2.9.1), and 10-fold cross validation 
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(Section 2.10.3) was applied to compute classification error of every feature or combination 

of features. The set of training ROIs was used to determine optimal feature combinations 

and the set of testing ROIs was used to determine classifier performance on unseen data.  

6.5.3 Results 

The values of the statistical features for classifying ROIs as normal leukocyte or phagocytes 

are presented in Table 6.3. Table 6.4 shows the results of feature selection for the set of 

training ROIs and a confusion matrix for selected features (v, k, s) is presented in Table 6.5.  

Table 6.3: Features from leukocytes and phagocytes. 

  

Phagocytes Leukocytes 

m v s k m v s k 

min 2.4209 0.0166 -1.0700 1.8823 2.6127 0.3763 -1.1139 1.5898 

mean  2.9450 0.1399 -0.5766 2.6032 3.2272 0.6931 -0.6650 2.2087 

max 3.6234 0.2846 0.0128 4.0891 3.8120 1.3252 -0.0987 3.3250 

SD 0.3085 0.0793 0.2765 0.6523 0.2980 0.2655 0.2360 0.4351 

 

Table 6.4: Classificfation performance on the training set using sequential forward feature selection 

and 10-fold cross validation. 

50 observation, 10-Fold Cross validation 

Features Error rate Features Error rate 

m 0.41 v, s 0.11 

v 0.10 v, k 0.10 

s 0.33 v, k, m 0.11 

k 0.47 v, k, s 0.05 

v, m 0.11 v, k, s, m 0.05 

 

6.5.4 Discussion and Conclusion 

According to Table 6.3 and Table 6.4, the feature subset of v, k, and s and the feature subset 

of v, k, s and m have the least misclassification error. In other words, these feature subsets 

have the greatest potential for classifying leukocyte footprints as representing leukocyte or 

phagocytes.  

Since the chance of over fitting increases with the number of features, smaller feature 

sets are generally preferred. In this case, the error rate did not improve by including m and 

the feature subset v, k, s is preferred over the subset v, k, s, m. Also, the pairs of the features 

(Table 6.4 and Figure 6.5) indicate that the feature m is not specific for distinguishing 
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leukocyte or phagocyte. The classification error of the combination of v and m in Table 6.4 

may appear satisfactory just because the selected leukocyte ROIs are mostly associated with 

high variance intensity while phagocytes are mostly associated with low variance intensity 

(Figure 6.5). This means that variance of intensity might be playing the main role in 

classifying leukocyte and non-leukocyte footprint. Otherwise, the role of mean alone is 

unclear. Therefore, this feature was not used in classifying leukocytes in the remainder of 

the study. On the other hand, the subset v, k and s was reasonable for adoption as the set of 

features for classification. 

 

Figure 6.5: Classification results using quadratic discriminant analysis for leukocyte classification. 

The classification error was 0.11. 

6.6 Segmenting Parasites 

Aside from the leukocyte segmentation and classification described in Sections 6.4 and 6.5, 

automatic malaria diagnosis requires parasite detection and enumeration. To segment 

parasites, a difference of Gaussian filters (Section 2.8) was applied to remove varying 

background and retain the spikes in the image associated with parasites. In order to 

implement the filter, the size of the filter and the standard deviation must be set. The key to 

choosing the size of the filter (the size of the non-zero patch on which the function is defined) 

is to make it large enough that near the edge, the filter has value zero. If not, then the jump 

from non-zero values at the edge and the implied zero values beyond the edge of the filter 

will create artefacts. Otherwise, the filter should be as small as possible since the size 

determines the run time. The size of 31 x 31 pixels and standard deviations σ = 3.0 and σ = 

3.9 were determined empirically (Figure 6.6(a) and (b)). The standard deviation for the first 
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Gaussian was found by trying a few values to get a good balance between enhancing 

parasites and blurring of the image. The effect of applying the filter in Figure 6.3(a) results 

in ''flat'' image though blurred (Figure 6.7(a)).  

 

Figure 6.6: Filter Gaussian: (a) the difference of Gaussian filter for background removal and 

enhancing parasites, (b) profiles of a parasite and the filter superimposed. The blue line is a part of 

the profile of Figure 6.3(b) focused on a spike due to a parasite. The red line is the profile of the first 

Gaussian filter. 

By inspection of some profiles, e.g., Figure 6.7(d), the parasite threshold value of 0.03 

of the highest intensity pixels, was determined. This threshold was applied to the filtered 

images from which the leukocytes had been removed to segment parasites from other 

objects. The parasite threshold value was low enough for parasites to emerge but high 

enough to eliminate thrombocytes and plasma. The resulting images, Figure 6.8(a), contain 

only footprints associating with parasites. However, an effect of applying the filter of size 

(2n+1) x (2n+1) is the presence of white lines near the edge (within n pixels of the edge) of 

the images. Compared to the whole area, the edge is not significant. Hence, the border of 

width n pixels was removed (Figure 6.8(b). The next step was to count the number of 

parasites. 
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Figure 6.7: Processing for parasite segmentation. (a) The flat image of Figure 6.3(a), (b) the flat 

image minus non-dilated leukocytes, (c) the flat image minus dilated leukocytes, (d) parasite intensity 

profile. 

 

Figure 6.8: Segmented parasites. (a) Parasite image with white lines near the edge of image, 

(b) parasite image. 

6.7 Parasite Classification 

In some cases, thrombocytes have higher intensity than the parasite threshold. Also, some 

small sections of leukocyte border occasionally remain even though leukocyte dilation and 

subtraction (Section 6.6) were applied. As a result, some parasite footprint images (Section 



104 

 

6.6) contain thrombocyte footprints and small leukocyte borders. A method for 

distinguishing parasites from thrombocytes and leukocyte borders suitable for thick blood 

films was developed in the following experiment. 

6.7.1 Data and Experimental Details 

Seventy-five ROIs were identified visually from 75 images. Of these, 25 were parasite 

footprints, 25 ROIs were individual isolated thrombocyte footprints, and 25 ROIs were 

leukocyte border footprints.  

In this experiment, the intensity values derived from the ROIs were extracted. For 

each selected ROI corresponding to parasite, thrombocyte, or leukocyte border, a variance 

of luminance feature (Y), heterogeneity (h) (Section 2.6.3), and the four central moments: 

mean (m), variance (v), skewness (s) and kurtosis (k) (Section 2.6.1) were calculated. 

Quadratic discriminant analysis (Section 2.9.1) was used to classify the candidate parasites 

as true parasites or not. 

6.7.2 Results, Discussion, and Conclusion 

The values of features mentioned in the previous section for classifying ROIs as parasites or 

not are presented in Table 6.5. The classification error resulting from the combination of m, 

v, and h (Table 6.6) appears to be the most satisfactory. This means that the mean and 

variance of intensity and the heterogeneity are suitable for classifying parasite and non-

parasite footprints in thick blood films. Therefore, the other features, s, k, and Y, were not 

used in classifying parasites in the remaining of the study. 

Table 6.5: Features from parasites, thrombocytes, and leukocytes. P, T, and L denote parasites, 

thrombocytes, and leukocyte borders. SD is standard deviation. In this case, vY is variance of Y value. 

  m v s k h vY 

P 

min 1.7462 0.0475 0.0012 1.5041 0.1933 2.0539 

mean 2.6091 0.2192 0.2101 2.2931 0.3952 5.2791 

max 3.8606 0.5437 0.9407 3.1318 0.6500 12.0602 

SD 0.5266 0.1295 0.2111 0.3860 0.1066 2.0914 

T 

min 2.9631 0.0477 0.0744 1.7942 0.3500 1.6348 

mean 3.6596 0.2304 0.4099 2.4017 0.4688 6.3246 

max 5.0565 0.3952 1.1081 3.8485 0.5667 8.6746 

SD 0.6111 0.0846 0.3019 0.5454 0.0622 1.9498 

L 

min 2.8149 0.0772 0.0149 1.8260 0.2788 2.6953 

mean 4.9813 0.4130 0.4806 2.4532 0.4508 9.2472 

max 6.8808 0.8481 0.8196 3.4544 0.5833 17.4172 

SD 1.0980 0.1676 0.2039 0.3852 0.0702 2.9292 
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Table 6.6: Feature selection with quadratic discriminant analysis classifier to classify parasites, 

leukocyte borders, or thrombocytes. FC is feature combination and ER is error rate. 

75 observations, 5-Folds Cross-validation 

FC ER FC ER FC ER FC ER 

m 0.307 m, v 0.280 m, h, s 0.253 m, h, vY, s, v 0.227 

v 0.560 m, s 0.360 m, h, k 0.307 m, h, vY, s, k 0.307 

s 0.533 m, k 0.32 m, h, vY 0.227 m, h, vY, s, v, k 0.227 

k 0.747 m, h 0.253 m, h, vY, v 0.253   

h 0.520 m, vY 0.280 m, h, vY, s 0.240   

vY 0.440 m, h, 

v 
0.267 m, h, vY, k 0.253   

 

The classification performance based on mean, variance, and heterogeneity for 

distinguishing parasites, thrombocytes, or leukocyte borders are displayed as confusion 

matrices (Table 6.7). According to Table 6.7, the classification accuracy was 0.85. However, 

the main purpose of this part of this study was to determine a pattern for classifying ROIs as 

parasites or non-parasites. When viewed as a classification into two class, parasites and non-

parasites (thrombocytes and leukocyte borders), the accuracy was 88% (Table 6.8). 

Table 6.7: Confusion matrix for classification of parasites, leukocyte borders, or thrombocytes. The 

classification accuracy is 85%. 

  Predicted 

  Parasites Leukocyte borders Thrombocytes 

A
ct

u
al

 

C
la

ss
 Parasites 18 2 0 

Leukocyte borders 6 17 6 

Thrombocytes 1 5 20 

 

Table 6.8: Confusion matrix for classification of parasite or non-parasites in the training stage. The 

classification accuracy is 88%. The sensitivity and specificity are 90% and 87.27%, respectively. 

  Predicted 

  Parasites Non-parasites 

A
ct

u
al

 

C
la

ss
 Parasites 18 2 

Non-parasites 7 48 

 

6.8 Estimating Parasitemia 

As a preliminary study, samples from several images were used to identify individual 

parasites and determine an average size. A simple way to do this is to visually examine 
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images, such as in Figure 6.8(b), and make sure that only bright spots associated with 

parasites in the original image are used for such a calculation. Once an average parasite area 

is known, then counting the number of parasites in the image is just a matter of summing 

over the area of white pixels and dividing by the standard average parasite size determined 

previously. If there are some noise pixels in the image, these do not contribute much to the 

total area and so do not have much effect on the number of parasites counted.  

For validation of parasite classification, a data subset of around 1000 images from the 

testing data set (Section 6.2) was selected randomly and proportionally. This subset was used 

to test the parasite classification method described above. The performance of the method 

was also validated by comparing these automatically identified parasites to those identified 

by an informal reader. 

The final step, the calculation of parasitemia was done using the conventional method 

(Equation (1.3)) described in Section 1.8. The number of leukocytes and parasites were 

calculated over all images in the testing data set described in Section 6.2. The performance 

of this algorithms for estimating parasitemia was validated by comparing these parasitemia 

estimations to the parasitemia scores given by expert readers. Beside correlation, due to the 

small sample involved in this study, a nonparametric test, t-test was used to validate this 

algorithm.  

6.9 Results for Estimating Parasitemia 

During initial experiments to obtain a standard threshold of leukocyte and parasites, iteration 

with various thresholds applied to several image samples from all slides showed that an 

optimum threshold for producing precise areas of leukocytes and parasites compared with 

visual investigation were 0.7 and 0.03 of the maximum intensity of leukocytes, respectively. 

Table 6.9. Confusion matrix of parasite classification as a part of the estimating parasitemia 

experiment.  

  Predicted 

  Parasites Non-parasites 

A
ct

u
al

 

C
la

ss
 Parasites 7492 2774 

Non-parasites 520 1335 
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Validation scores for parasite classification were recorded in a confusion matrix 

(Table 6.9). The accuracy of classification was 72.82%, the sensitivity was 72.98%, and the 

specificity was 71.97%. 

 

Figure 6.9: Estimating parasitemia scores of positive slides. For each slide, the algorithm produces 

an estimate of the parasitemia scores indicated with blue stars. For each slide, there are several 

estimates of parasitemia scores from human experts (Table 1.1), the logs of which provide the vertical 

coordinates of the green open circles and the blue stars. The log of median provides the horizontal 

coordinate of the green open circles and the blue stars.  

Parasitemia scores per slide generated by the automatic diagnosis process fitted well 

with expert parasitemia scores (r = 0.79 and p-value = 0.40 at α = 0.05; Table 6.10 and Figure 

6.9).  

Table 6.10: Comparison between estimated parasitemia and median of expert’s scores. P-value 

obtained from t-test is 0.38. EP is estimate of parasitemia scores and EM is median of experts’ 

parasitemia scores. PS1, PS2, PS3, …, PS7 are positive slide 1, 2, 3, …, 7. NS1, NS2, and NS3 are 

negative slide 1, 2, and 3. 

Slides NS1 NS2 NS3 PS1 PS2 PS3 PS4 PS5 PS6 PS7 

EP 39 51 1631 140 129 1769 898 8934 54677 63440 

EM 0 0 0 103 634 1340 5583 11442 32730 319393 

 

6.10 Discussion and Conclusion  

In the course of this study, choices were made regarding the inclusion of colour intensity 

features and details of extracting and computing these features, multiple image 

segmentation, and estimating parasitemia. At the lowest level, the choices were made 
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according to the experience of microscopists and known manifestations of malaria parasites 

in thick blood films. Examples include focusing on the ROIs of leukocytes and parasites and 

investigating colour and features associated with intensity and area. However, the 

understanding in biology and physics of the appearance of leukocytes and malaria parasites 

in constrained thick blood films explained in Section 1.9.3 and Section 6.2, is not sufficient 

to accurately predict colour features that contribute to good automatic identification of 

parasites. Accordingly, some choices regarding the details of extracting features were made 

without specific guidance. In these cases, choices were made based on small experiments 

and observations. 

Although this study and that of Frean (Frean 2009) similarly aim to estimate 

parasitemia on thick blood films, the respective ways and methods are different. Frean 

diagnosed malaria parasites semi-automatically, leukocytes were identified manually. In this 

study, parasitemia was estimated in a fully automatic way. Both leukocytes and parasites 

were enumerated automatically. Furthermore, this study was able to detect phagocytised 

parasites. 

In the context of parasite classification, the performance of testing is relatively less 

than that of parasite classification (Section 6.7). According to Table 6.10, the big contributor 

of misclassification was FN, which may due to phagocyte (gametocyte) borders detected as 

non-parasites. Phagocyte borders were not considered in the training. Another contributor 

was a lower TN. Parasite segmentation resulted in parasite candidates, in which the number 

of parasites are much higher than the number of non-parasites. Statistically, the probability 

of getting non-parasites (TN) in testing is much lower than that of getting parasites (TP). 

This was significantly different from training, where the number of ROIs of parasites and 

the number of ROIs of non-parasites were the same. Accordingly, the specificity in testing 

was lower than that in training. 

Another big contributor of misclassification is negative images coming from a thin 

patch of thick blood films (Figure 6.10(a)). A thin patch is a patch from the edges of thick 

blood films. In thin patch areas, the staining of the residual haemolysed erythrocytes is 

relatively transparent (thin) and clear. In this area, the thrombocytes strongly respond to the 

stain used (Figure 6.10(b)); therefore, these thrombocytes have a darker colour (low 

intensity) almost similar to parasites (Figure 6.10(f)) from a positive slide. Thrombocytes in 

thin areas of thick blood films and parasites have almost the same response to the stain. This 

produces many FP, lowering the performance of parasite classification. Conversely, the 
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residual haemolysed erythrocytes in thick patches of thick blood films (e.g., Figure 6.10(c)) 

is relatively thicker than that in the thin patches, is evenly distributed, and have absorbed 

more dye. Therefore, the colour response of thrombocytes is similar to that of the residual 

haemolysed erythrocytes (Figure 6.10(d)). As a result, the colour intensities of inverse 

images from this area are lower than that of the parasite adaptive threshold. Thus, these 

thrombocytes were not assigned as parasite candidates. This means they were not involved 

in the parasite classification process.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
(e) (f) 

Figure 6.10. Patch (Pa) areas of thick blood films. (a) A patch of images from thin area of a negative 

slide. (c) A full thick patch area of a negative slide. (e) A semi full thick patch area of positive slide. 

(b), (d), and (f) are image examples from (a), (c), and (e), respectively.  

Furthermore, in some cases, patches of imperfect staining in thick blood films meant 

that the colour response of gametocytes were brighter (lower intensities in inverse images) 

than the parasite adaptive threshold. As a result, these gametocytes were not assigned as 

parasite candidates. This means they were not involved in the parasite classification process 
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and thus, the probability of TP decreased. Accordingly, the accuracy and sensitivity in 

testing are lower than those in training. 

Despite that fact that sources of misclassification can be identified, overall, the 

methods presented in this chapter are useful for estimating parasitemia in the sense that 

estimates fell within the ranges of expert parasitemia scores.   
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Chapter 7: Concluding Remarks and Future Work 

The main objective of this study was to develop an image analysis method for automatic 

malaria diagnosis and parasitemia estimation. Previous computer-aided malaria diagnosis 

schemes that were based mainly on thin blood film images, only considered erythrocytes 

and parasites, or emphasized reporting just the accuracy of identifying parasites (Section 

1.10), which is not the same as estimating parasitemia. Unlike the previous studies, this study 

considers all the main components in blood as must be done in fully automatic systems. This 

study goes farther than many previous studies in that blood films with different levels of 

parasitemia are considered, not just one level. In addition, this study is based not only on 

thin blood film images, but also on thick blood film images. In malaria diagnosis, the thick 

blood film is important because one thick blood film consists of many layers of erythrocytes, 

so that large amounts of blood can be examined quickly and easily. Usually, experts diagnose 

malaria parasites and estimate the parasitemia based on thick blood films (WHO 2010). So, 

one may expect that automatic malaria diagnosis based on thick blood film images may also 

be important. However, this study found that automatic malaria diagnosis based on thick 

blood film images was limited.  

The objective of developing a method for accurate diagnosis was not successful. A 

number of false positive parasites were detected in the negative blood films; therefore, zero 

parasitemia scores were not obtained. However, the objective of developing a method for 

estimating parasitemia was successful. This study reveals that the method is able to estimate 

parasitemia based on automatic analysis of thin and thick blood film images with error no 

greater than the variation between expert readers. Relevant discussions and conclusions were 

included at the ends of Chapters 3, 4, 5, and 6.  

Chapter 3 investigated infected erythrocytes based on erythrocyte features to estimate 

parasitemia scores. This study perceived that the estimation approach was moderately 

consistent with Dowling and Shute’s (1966). The system is well suited for the three high 

parasitemia slides and slightly overestimated for the middle parasitemia slide, and 

overestimated for the three low parasitemia slides. Moreover, the results were not in line 

with the Trape’s (1985) study. This study found that the overestimations were from three 

reasons described in Section 3.6.2.  

Chapter 4 introduced a new feature for parasite segmentation of thin blood film 

images and investigated erythrocytes and parasites to identify infected erythrocytes and 
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estimate parasitemia scores. The results show that the parasitemia estimation fitted well with 

parasitemia scores from expert readers (coefficient correlation r = 0.97 and p-value = 0.54 

at α = 0.05. In addition, the outcomes were in line with both Dowling and Shute’s (1996) 

study and Trape’s (1985) study. Therefore, the combination of erythrocyte detection, 

location feature, and parasite identification to investigate infected erythrocytes resulted in 

better parasitemia estimation than that in Chapter 3.  

Chapter 5 investigated parasite detection in thick blood film images based on 

physical appearance and size of parasite footprints to estimate parasitemia scores. The 

morphological approach was not successful for estimating parasitemia. In addition to size, 

this study indicated that intensity feature is needed to extract parasite profiles for parasite 

classification.  

Chapter 6 developed a parasite detection method in thick blood film images to 

estimate parasitemia scores. Following the suggestion by Kumar et al. (Kumar et al., 2012) 

and that of Chapter 5 in parasite identification, this study evaluated grayscale and green 

colour channel to extract parasite profile for estimating parasitemia. The results 

demonstrated that the parasitemia estimation was not significantly different from experts’ 

parasitemia scores (Table 6.9 and Figure 6.9), with coefficient correlation r = 0.79 and p-

value = 0.40 at α = 0.05. 

It should be noted that parasitemia estimation based on thin blood film images 

described in Chapter 3 systematically overestimates parasitemia. Thus, this method may be 

impractical for estimating low parasitemia slides or for credible assignment of negative 

slides. On the other hand, identifying erythrocytes combined with analysing parasites 

separately from the erythrocyte host has significantly better performance in terms of 

reducing the overestimation of parasitemia.  

Meanwhile, parasitemia estimation based on thick blood film images indicated that 

there was no significant difference between this automatic malaria diagnosis system and 

experts’ parasitemia scores. The parasitemia scores in all positive slides fitted well within 

manual expert readers. Nevertheless, there were some slight overestimation of parasitemia. 

Each of these observations have possibly important ramifications and are seeds for 

future work. Although these results do not establish that a particular method for analysing 

blood film images is clearly best for estimating parasitemia scores, an important set of 
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features has been identified. This will be of benefit to future work on combining automatic 

malaria diagnosis based on thin and thick blood film images. 

The parasite segmentation presented in this thesis uses a multi-threshold method. 

This method has provided an unplanned, but possibly important, new direction of research. 

This illustrates that the field of segmentation for malaria diagnosis based on thin and thick 

blood film images has great potential. 

In this work, parasitemia estimation was tested on a limited number of slides (blood 

films). Large numbers of high quality images of blood films showing the full range of clinical 

presentation in terms of parasitemia levels (including many negative cases), different species 

of malaria parasites and at different life-stages of the parasite life cycle are needed in order 

to conduct a full study on automatic detection of malaria. No such data set currently exists, 

or is difficult to obtain since blood films are not normally imaged during examination and 

special equipment is needed to do so. 

In summary, the main contribution of this study is that automatic methods for 

estimating malaria parasitemia were developed which predict parasitemia scores that are not 

significantly different from expert readers. The first contribution is the introduction of a new 

feature to segment malaria parasites in thin blood film images. Supported by a literature 

review and empirical evidence, the study contributes the following: 

1. This study refines the benefit of colour image normalization from Tek, et al. (Tek, F 

B, Dempster & Kale 2006) using the diagonal model (Barnard, Cardei & Funt 2002) 

and the database grey-world algorithm (Hordley & Finlayson 2004). To obtain the 

grey values, this study uses a real background image of a slide as a reference image 

(Section 4.2).  

2. This study introduces a new feature derived from the natural characteristics of 

components of blood film to determine an adaptive threshold for image segmentation. 

The further contribution is the estimation of parasitemia scores based on the 

percentage of infected erythrocytes in thin blood film images. As a validation, these results 

are compared to parasitemia scores from expert readers based on thick blood films and 

manual erythrocyte identification from informal readers in thin blood films. 
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