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Thesis summary 

Groundwater models are widely applied in groundwater management to guide decision 

making. The success of groundwater management is directly dependent on a good 

understanding of the groundwater system. A conceptual model is a summary of our current 

knowledge about a groundwater system describing the dominating processes and the overall 

physical structure of the geology. One of the major sources of uncertainties in groundwater 

model predictions is the conceptual uncertainty that arises when more than one conceptual 

model can explain the available data. The goal of this thesis is to identify current approaches, 

unify scattered insights and develop a systematic methodology of hydrogeological conceptual 

model development and testing, which leads to an improved characterisation of conceptual 

uncertainty.  

Conceptual model development involves formulation of hypotheses about the groundwater 

system functioning. These are the initial decisions in the modelling that drive the groundwater 

model predictions and form the basis of the uncertainty analysis. In this thesis we advocate 

for a systematic model development approach based on mutually exclusive hypotheses. We 

developed bold hypotheses about the model structure, challenging what was considered 

possible for the system, in order to give more transparent explanation of which model 

structures were considered possible.  

Conceptual model testing consists of holding the developed models against data to evaluate 

their validity. Model testing is essential in order to gain confidence in the developed models 

and remove those models from the ensemble that are inconsistent with the data. We show that 

model testing does not have to be a time-consuming task but can happen in relatively simple 

forward models. We advocate for reserving as much data as possible for the model testing 
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exercise rather than using all data for model development in order to be able to explain why 

no other conceptual models are plausible.  

The methodology developed in this thesis is applied to the Wildman River area, Northern 

Territory, Australia. By acknowledging the existence of conceptual uncertainty, we increase 

the confidence in the water balance for the area. A second aspect of the investigation is the 

connectivity of sinkhole-like depressions in the area to groundwater and whether they may act 

as conduits of groundwater recharge. 

The insights gained from this thesis enables more accessible methodology for conceptual 

model development and testing. By acknowledging and accounting for conceptual 

uncertainty, more confidence can be gained in groundwater model predictions leading to 

improved groundwater management. 
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Chapter 1:  Introduction 

1.1 BACKGROUND 

1.1.1 Groundwater management and groundwater models 

As an accessible freshwater resource, groundwater represents an essential component for 

human needs and activities. Groundwater is used as a drinking water resource, for irrigation 

and thereby for food and fibre production, in industrial processes, to facilitate mining and 

coal seam gas extraction and to sustain the environment. Increased groundwater pumping 

raises the question of the sustainability of this resource (Giordano, 2009). Exploiting the 

groundwater system, can lead to negative impacts such as aquifer depletion (Terrell et al., 

2002), land subsidence resulting from dewatering and depressurization of an aquifer (Dixon 

et al., 2006), seawater intrusion causing bores to be contaminated by saltwater (Post, 2005) 

and destabilization of groundwater dependent ecosystems, directly impacting biodiversity (de 

Graaf et al., 2019).  

Groundwater models are widely applied for groundwater management to guide decision 

making as they serve as a simple but practical representation of the groundwater system in 

question. Groundwater models can simulate past and present conditions of the groundwater 

system as well as predicting future response to natural (e.g. climate) and anthropogenic stress 

(e.g. pumping) (Barnett et al., 2012). The success of groundwater management and avoidance 

of the above-mentioned consequences of overexploitation is directly dependent on a good 

understanding of the groundwater system (Konikow and Kendy, 2005). 

As groundwater models are simple representations of a complex reality, their predictions are 

inherently uncertain. Characterisation of the predictive uncertainty provides the decision-

maker the insights needed to understand the risks when it comes to groundwater management 
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(Middlemis et al., 2019). A good characterisation of the predictive uncertainty of a 

groundwater model has the potential to increase the likelihood to successfully identify 

suitable locations for developing a new groundwater resource (Sidiropoulos and Tolikas, 

2004), or aid in the design of mine dewatering and provide more robust estimates of 

environmental impact of mine operations (Currell et al., 2017). A poor understanding of the 

risks involved with making decisions around groundwater use can, worst-case, lead to a 

negative impact on the groundwater quantity and/or quality and often results in considerable 

costs when remedial actions must be imposed. At best, a poor understanding of the risks 

involved may lead to underutilisation of the water resource and thereby missed opportunities 

for agricultural or industrial development or town water supply. 

1.1.2 Uncertainties in groundwater models 

Uncertainties in groundwater models are generally classified into model structure uncertainty 

(incomplete understanding and simplified description of modelled processes), parameter 

uncertainty (parameter values) and input uncertainty including scenario uncertainty (external 

driving forces) (Refsgaard et al., 2006; Vrugt, 2016; Walker et al., 2003). Parameter and input 

uncertainty can generally be characterised by varying the parameters or input values 

continuously in the interval considered plausible for the values under consideration. On the 

other hand, structural uncertainty is characterised by coming up with discrete alternative 

model structures. Uncertainties of the former are sometimes referred to as aleatory (random 

uncertainty) while uncertainties of the latter category are epistemic (arising from lack of 

knowledge) (Beven, 2016).  

Conceptual uncertainty is that part of structural uncertainty that relates to the understanding 

of groundwater system functioning. The conceptual model definition is one of the first steps 

in any groundwater modelling exercise and precedes any effort to mathematically represent 

the groundwater system. The conceptual model provides the underlying assumptions about 
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dominating processes and physical structure in the groundwater model, so “If the conceptual 

model is incorrect, advanced numerical model[l]ing can only lead to nicely presented 

garbage” (Jiao et al., 2005).  

1.2 RESEARCH PROBLEM 

The hydrogeological conceptual model is, in this thesis, considered to be a scientific theory 

about groundwater system functioning. Applying a realist’s viewpoint (Okasha, 2002), a 

conceptual model is regarded as an attempt to describe the underlying nature of reality, while 

an anti-realist’s viewpoint is that the conceptual model is an instrument that helps us make 

predictions of observational phenomena (Figure 1.1). Related to the anti-realist’s viewpoint is 

the underdetermination of the scientific theory. Conceptual uncertainty concerns the 

underdetermination of the conceptual model leading to an equifinality of conceptual models. 

This means that the available evidence can give rise to different conceptual understandings 

(Stanford, 2017). This holds true for the hydrogeological conceptual model. Several studies 

have shown, that experts presented with the same data, generally come up with different 

interpretations of the conceptual structure, e.g. (Bond et al., 2007; Højberg and Refsgaard, 

2005; Seifert et al., 2012).  

 

Figure 1.1. Realism vs. anti-realism approach to conceptual modelling. The different philosophical understandings of the 

conceptual model lead to the application of different methods.  
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Traditionally in most groundwater modelling studies, only a single conceptual model is 

developed, thereby ignoring the conceptual uncertainty. The traditional conceptual model 

building approach is essentially a Kuhn cycle (Bird, 2018): a single paradigm (conceptual 

model) will be developed that describes the current understanding. The paradigm will be 

challenged by anomalies that will be explained away, but as the number and severity of 

anomalies built up, a crisis (or conceptual surprise) will occur. This crisis will end in a 

revolution that then culminates in a paradigm shift (a definition of a new conceptual model). 

Kuhn describes the transfer of allegiance from one paradigm to another as an act of will 

(based on faith and peer pressure), rather than rationality (based on evidence and reason) 

(Okasha, 2002). It happens only slowly and with resistance. This challenges the falsifiability 

of a conceptual model, which to some degree separates science from pseudo-science.  

In recent years the multi-model approach has received increased attention in hydrogeology 

e.g. (Mustafa et al., 2020; Rojas et al., 2010c; Troldborg et al., 2007). In the multi-model 

approach the underdetermination of the hydrogeological conceptual model problem is 

acknowledged and alternative conceptual models (or paradigms) are evaluated and used to 

make predictions. Most attention in literature has, however, been focused on making 

predictions using multiple models, not on how to create a set of multiple models.  

To develop a scientific theory, sometimes a distinction is made between discovery and 

justification. Discovery is the act of conceiving a theory, while justification is the process of 

justifying its claim to truth (Schickore, 2018). In hydrogeological conceptual model building 

discovery and justification can be correlated to conceptual model development and 

conceptual model testing, respectively. These are the two key aspects of the characterisation 

and evaluation of conceptual uncertainty. Conceptual model development involves 

formulation of hypotheses about the groundwater system functioning, while conceptual model 
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testing consists of holding these hypotheses against data to evaluate their validity. In the 

following, these two aspects are discussed.  

The objective of a groundwater model has an influence on how uncertainties should be dealt 

with (Middlemis et al., 2019). In the following sections we will differentiate between 

prediction focused and exploration focussed groundwater modelling. In prediction focused 

approaches, the objective is to make predictions answering management questions (Feyen and 

Gorelick, 2005) while in exploration focused approaches the objective is to gain a better 

system understanding without an immediate management question in mind (Hermans et al., 

2015).  

1.2.1 Model development 

The objective of the model development approach in an exploration focussed exercise is to 

populate the model space with all plausible models, while in a prediction focussed approach it 

is to populate the model space with all useful models, i.e. those relevant to the prediction. 

When exploring the model space for all plausible models, the model development should aim 

at making bold hypotheses that maximizes the difference between alternative models 

(Guillaume et al., 2016). The models that are useful or fit-for-purpose are those of the 

plausible models that have a great impact on a specific prediction (Beven, 2018).  

When the definition of the conceptual model is limited to the qualitative, fundamental 

understanding and insight into a system, theoretically it may be possible to populate the entire 

plausible model space, however, it is not practically possible.  

No practical guidelines exist to systematically characterise conceptual uncertainty. In fact, in 

philosophy of science it is discussed whether the act of discovery can even be systematic 

(Schickore, 2018). The condition that conceptual uncertainty can only be characterised by 

setting of discrete alternatives rather than as a continuous range, makes it difficult to handle. 



 

Chapter 1: Introduction  6 

 

The result of the multi-model approach is generally thought to rely on the creativity of the 

modeller or experts (Marshall, 2017) to develop alternative models. The creativity of a 

modeller will always be limited by confirmation bias, that is the way we interpret data is 

always biased by our initial understanding. The modeller may be unaware of committing to a 

conceptual understanding even before the data is interpreted and the translation of 

conceptualization to mathematical model structure might even happen informally. Therefore 

the ensemble of models in a multi-model approach is thought to be a result of subjectiveness 

and even chance (Gondwe et al., 2010; Rajabi et al., 2018; Refsgaard et al., 2006).  

As it is not practically possible to populate the plausible model space, it will consist of known 

unknowns and unknown unknowns. The known unknown conceptual models refer to models 

that we can develop, but which we are unable to discriminate between given current data. The 

unknown unknown conceptual models are the plausible conceptual models that we are still 

unaware of.  

When an unknown unknown is uncovered it is often termed a conceptual surprise 

(Bredehoeft, 2005). However, rather it would be a surprise if we in our first attempt were 

successful in developing the true conceptual understanding. 

A conceptual surprise related to the physical structure could be the discovery of a fault 

creating a barrier to groundwater flow. Another example is finding a palaeovalley that creates 

a direct pathway from the surface to deeper aquifers. Conceptual surprises related to the 

process structure could be identifying point-based groundwater as the main recharge process 

rather than diffuse recharge or finding evidence for a previously undetected groundwater 

discharge component to a lake water balance. The unknown unknowns may affect predictions 

such as catchment areas of wells, the vulnerability of the aquifers towards contamination and 

the sustainable extraction limit from aquifers. Surprises are however, rarely documented in 
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literature due to positive publication bias (Beven, 2018), that is papers are more likely to be 

accepted for publication if they report successful models. 

A general advice to alternative model development is that in addition to be collectively 

exhaustive they must be mutually exclusive (Refsgaard et al., 2012). The mutually exclusive, 

collectively exhaustive concepts are illustrated in Figure 1.2. The grey boxes represent the 

underdetermined, plausible model space that is populated with alternative models represented 

by the coloured boxes through the model development exercise. The alternative models are 

mutually exclusive when they do not overlap (representing non-overlapping ideas). They are 

collectively exhaustive when they cover the entire model space. The remainder of the model 

space that is not populated is represented by unknown unknown conceptual models. The 

alternative models populating the model space give rise to alternative predictions. The range 

of the predictions (on the x-axis) illustrates the uncertainty given the current knowledge. The 

aleatory uncertainty is here represented for each model by a normal distribution, but it could 

have any other probability distribution. The conceptual uncertainty is represented by the 

different models illustrated with different colours.  

In Figure 1.2a a mutually exclusive and collectively exhaustive range of models has been 

developed. This situation is not realistic as there will always be valid conceptual 

understandings that we are just not aware of yet. Even if we were able to define a collectively 

exhaustive range of models, it would be difficult to prove that no other plausible model 

existed.  

When the range of models is not collectively exhaustive (Figure 1.2b), that is all plausible 

models have not been developed, the resulting predictions are underestimating the conceptual 

uncertainty. As illustrated in Figure 1.2b, the predictions may also be biased. In groundwater 
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modelling it is generally understood that not considering the uncertainties on predictions only 

provides the illusion of certainty (Pappenberger and Beven, 2006; Pielke, 2001). 

When models are not mutually exclusive (Figure 1.2c), in that they represent similar ideas, 

they give rise to similar predictions. When predictions are based on many non-mutually 

exclusive models, a false confidence in these predictions can arise because they are based on 

many models. The confidence is false as one may expect more of the model space has been 

characterised by the many models, but as is illustrated in Figure 1.2c, this may not be the 

case.  

In summary, a systematic model development process is important because the modeller 

defines the set of plausible conceptual models that form the basis for the uncertainty analysis. 

These are the initial decisions in the modelling that drives where the predictions will end up. 

For modelling studies to be reliable, a clear path from data to results must be mapped. This 

implies that any assumption made in the modelling process must be justified by either data or 

a clear identification of the reasoning behind the assumptions. This leads to increased 

transparency in reporting which makes the work more defensible. While this framework is 

generally applied, most groundwater modelling studies fail to explain why no other 

conceptualisations are plausible. 
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Figure 1.2. Multiple conceptual models in the model space (bottom) and predictions one can expect to obtain from 

alternative models (top). Mutually exclusive (non-overlapping models in the model space), collectively exhaustive 

(alternative models fill out the entire model space) (MECE) models are illustrated in a) which is the unobtainable goal of the 

model development process. b) mutually exclusive, non-collectively exhaustive models may underestimate uncertainty and 

lead to biased predictions. c) alternative models that are not mutually exclusive may lead to very similar predictions and 

thereby a false confidence in the result.  

1.2.2 Model testing 

In a model testing exercise the understanding that we have developed is challenged by 

comparing the model with new data not previously used in the model development. In 

hydrogeology this is sometimes referred to as “model validation”, although this term is 

avoided here as it implies the result of the exercise and that models can actually be validated 

(Oreskes et al., 1994). The objective of model testing is to gain confidence in the developed 

models. A nice side effect is that we may be able to reject some models, which is sometimes 

considered even more valuable (Beven, 2018; Hunt and Welter, 2010). Rejecting models 

reduces the uncertainty of predictions and the workload for future modelling exercises in the 

area as one less conceptual model will have to be considered, i.e. if model testing shows 

preferential recharge to an aquifer is not probable, we do not need to consider this in future 

modelling exercises.  
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Some concepts related to model testing are illustrated in Figure 1.3. Again, the grey box 

represents the plausible model space, while the coloured ones represent alternative models. In 

a successful model testing exercise, some models that were otherwise plausible, will be 

rejected because they are inconsistent with the testing data. From Figure 1.3a to Figure 1.3b 

two models are rejected thereby reducing the plausible model space and the predictive 

uncertainty of groundwater models based on the defined conceptual model.  

In the exploration focused approach, we can afford to take an anti-realist viewpoint (Okasha, 

2002) in that we believe many models can explain data (Figure 1.1). However, in a prediction 

focused approach, we are often pushed to take a realist viewpoint; that some of these models 

are better than others. We are pushed towards the realism viewpoint as the problem otherwise 

becomes too computational expensive (e.g. Mustafa 2020). What makes some models better 

than others is, however, still controversial.  

In prediction focussed groundwater modelling, models are consequently sometimes removed 

from a model ensemble even if they are still considered plausible. Here the useful models are 

separated from models that are not useful. Whether models are useful often depends on the 

objective of the model workflow. The choice of models to be removed from the ensemble is 

based on an intercomparison of model performance, e.g. with a model selection technique or 

a Bayes Factor (Brunetti et al., 2017; Poeter and Anderson, 2005). In Chapter 3 we apply this 

approach and try to remove models from the ensemble by setting a threshold on the Bayes 

Factor.  

In an exploration focussed approach however, models are only removed from the ensemble if 

they are inconsistent with data, i.e. the consistent models are separated from models that are 

inconsistent. The models are compared directly to data rather than to each other. We apply 

this approach in Chapter 4 where a Bayesian framework is combined with a falsification type 
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approach. The falsification type approach consists of checking the models against 

independent data and rejecting models that are inconsistent. 

Models that are not eliminated from the ensemble are confirmed conditional on the available 

data (Beven and Young, 2013). In an exploratory analysis, the more data the model is tested 

against the more certainty we can have that the model is likely going to be correct. In a 

prediction focussed approach the data used for testing might be restricted by the modelling 

objective.  

Theoretically all models are wrong in that they are all very crude simplifications of reality, 

but the conditionally confirmed models are wrong within reasonable limits. They represent 

the models that are best suited to represent different aspects of the system. 

Model-based hypothesis testing is limited by confirmation holism, that is we can only test 

collections of hypotheses and not individual hypotheses. If a model is found to be inconsistent 

with data, we will not know if the fault lies with the hypothesis we sought to test or 

somewhere else in the model. A hypothesis can therefore also only be conditionally rejected 

based on the assumptions made elsewhere in the model. In the model testing approaches in 

Chapter 3 and 4 we have focused on very simple models. As simple models have fewer 

assumptions, the assignment of the fault of a rejected model to the correct hypothesis is more 

likely than in a complex model with many assumptions.  

In case all developed models are rejected (Figure 1.3c), a conceptual surprise has been 

uncovered. That is, none of the models in the ensemble are consistent with the data. A 

conceptual surprise should ideally lead to a complete overhaul of the conceptualization, 

rethinking the entire model structure. However, as this requires time and effort, sometimes 

the data that does not conform to our expectations is discounted unconsciously or the model is 

slightly changed through an ad-hoc modification to conform to the data. The latter approach 
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can be taken because of confirmation holism, i.e. the fault is thought to lie somewhere else, 

not in the conceptual understanding. This is a convenient assumption as starting the 

modelling process over from the beginning is avoided.  

In summary model testing approaches are important because they can increase the confidence 

in the models resulting from the model development exercise. Model testing in hydrogeology 

is, however, still relatively rare. In many of the studies reviewed in Chapter 2 alternative 

plausible models are removed from an ensemble without being falsified (realists’ approach) 

and even fewer studies only remove models from the ensemble if they are falsified (anti-

realists’ approach) (Figure 1.1). This means developed models are rarely justified using 

independent data. While we still don’t have a systematic approach to model development or 

discovery, we need to apply a systematic justification approach to make the groundwater 

modelling workflow a rational, logical process. 

 

Figure 1.3. Influence of conceptual model testing on the plausible model space and predictions. a) mutually exclusive but not 

collectively exhaustive alternative models developed through a model development exercise. b) The result of a testing 

exercise where two models have been rejected from the initial ensemble in a), thereby reducing the plausible model space 

and range of predictions. c) All models from a) are rejected and a new model has therefore been defined; the conceptual 

surprise. Note that parts of the model space may still be unknown although a conceptual surprise has been uncovered.  
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1.3 FIELD SITE AND DATA COLLECTION 

The methods presented in this thesis have been applied to Wildman River area, Northern 

Territory, Australia (Figure 1.4). Two major investigations in Wildman River area have been 

undertaken in recent years by the Department of Natural Resources in Northern Territory 

(Tickell and Zaar, 2017) and CSIRO as part of the Northern Australia Water Resource 

Assessment (NAWRA) (Turnadge et al., 2018a). The aim of both was to evaluate and 

improve understanding of the water resources as well as identifying areas suitable for 

groundwater dependent agricultural development. NAWRA further assessed the impact and 

risks of water resource and irrigation development by using a groundwater model.  

 

Figure 1.4. Overview of Wildman River area located in Northern Territory (NT), Australia. The field sites for the for Chapter 

4 are marked with blue stars.  
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The Wildman River area was chosen as a case study for this thesis as the area still has 

potentially important hydrogeological features that may impact the susceptibility of shallow 

groundwater to developments at the surface. These features, i.e. the degree of surface water – 

groundwater interactions via streams and sinkhole-like depressions, have been the subject of 

previous research but several open questions remain regarding their hydrogeological 

conceptualisation. Some of these conceptual questions related to the water balance of the 

Wildman River area are addressed in Chapter 3, while the structure and functioning of 

sinkhole-like depressions are addressed in Chapter 4.  

As part of Chapter 3, a field trip to Wildman River area (Figure 1.5) was conducted to collect 

water level measurements and to get a general hydrological and hydrogeological 

understanding of the area. A second field trip was conducted to collect essential data to 

investigate the sinkhole-like depressions (Chapter 4). Refraction seismic data, frequency 

domain electromagnetic induction (CMD data), sediment samples, water levels, topography 

and 360-degree photos were collected for five depressions, although not all the data was used 

in Chapter 4.  

   

Figure 1.5. Field trips to Wildman River area. Collecting water level measurements (left), sediment samples (middle) and 

seismic refraction data (right).  
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1.4 RESEARCH AIM 

Even if conceptual uncertainty is considered a major source of uncertainty in most 

groundwater modelling studies, no systematic approach exits to characterise and evaluate 

conceptual uncertainty. A systematic approach to evaluating conceptual uncertainty is 

necessary to increase the transparency and reproducibility of the groundwater modelling 

process and minimize the underestimation of uncertainty of model predictions. The aim of 

this thesis is to make conceptual model development and testing approaches in the multi-

model approach more accessible by developing workflows that collectively provide a 

comprehensive, objective, and repeatable workflow to develop and test conceptual models.  

While the focus of the application of the conceptual model uncertainty workflow is on a 

hydrogeological system, conceptual uncertainty is not specific to hydrogeology. Insights from 

this thesis can be transferred to other model-based disciplines where assumptions on the 

modelled system functioning are necessary like economy, biology and meteorology.  

The specific aims of the thesis are to:  

1. Identify current approaches, unify scattered insights and improve the methodology of 

hydrogeological conceptual model development for characterisation of conceptual 

uncertainty.  

2. Identify current approaches, unify scattered insights and improve the methodology of 

hydrogeological conceptual model testing to increase confidence in conceptual models 

and subsequent groundwater flow model outputs.  

3. Increase hydrogeologic system understanding of key features in Wildman River area 

such as the water balance and the recharge process by applying approaches 1 and 2.  

The way the aims of this thesis maps to the thesis structure is presented in Table 1.1.  

1.5 STRUCTURE OF THIS THESIS 

Chapter 2 provides an overview of how conceptual uncertainty have been considered and 

evaluated in international literature. The chapter goes beyond just reviewing the literature by 
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defining for the hydrogeological community an essential future pathway for simulating 

conceptual uncertainty. It focuses on the conceptual uncertainty in hydrogeological models, 

the presented concepts are however generally applicable to all spatio-temporal dynamical 

environmental systems models. This chapter has been published in the peer-reviewed Journal 

of Hydrology (Enemark et al., 2019a). 

Chapter 3 presents an approach to model-based Bayesian hypothesis testing in a simple 

additive stochastic groundwater balance model, which involves optimization of a model in 

function of both parameter values and conceptual model through trans-dimensional sampling. 

The method was demonstrated on a water balance model for the Wildman River area. 

Although none of the conceptual models could be rejected, more confidence was gained in 

the water balance predictions. This chapter has been published in the peer-reviewed journal 

Water (Enemark et al., 2019b). 

Chapter 4 proposes an approach to systematic hydrogeological conceptual model 

development and testing. The method is applied to the Wildman River area where sinkhole-

like depressions are tested using remote sensing and geophysical data to evaluate whether 

they can act as conduits for recharge. Despite focussing on a very specific conceptually 

uncertain component in Wildman River area, the presented methodology on systematically 

testing conceptual models is generally applicable. Chapter 5 is submitted to the peer-reviewed 

journal Water Resources Research. 

Chapter 5 summarises and infer conclusions from the thesis chapters and provides an outlook 

for applications and future investigations.  

The appendices A-C provide chapter specific additional information for chapters 3-5, while 

Appendix D provides a publication list resulting from the PhD project. 
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Table 1.1. Overview of thesis structure (Section 1.4) in relation to the research aims (Section 1.4).  

 Research aim 1 Research aim 2 Research aim 3 

Chapter 2 Identify current approaches, unify scattered 

insights, identify current challenges.  

 

Chapter 3 Mutually exclusive 

models in factorial 

approach based on study 

site specific literature 

review. 

Realism approach. 

Making testing more 

accessible by applying 

simple water balance 

model.  

Improve confidence in 

water balance. 

Chapter 4 Mutually exclusive 

models in factorial 

approach based on 

general literature review 

and drawing analogies to 

the study site. 

Anti-realism approach. 

Making testing more 

accessible by presenting 

a framework to model 

testing using an anti-

realism approach. 

Improve 

conceptualization of 

sinkhole-like 

depressions. 
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2.1 ABSTRACT  

Hydrogeological conceptual models are collections of hypotheses describing the 

understanding of groundwater systems and they are considered one of the major sources of 

uncertainty in groundwater flow and transport modelling. A common method for 

characterizing the conceptual uncertainty is the multi-model approach, where alternative 

plausible conceptual models are developed and evaluated. This review aims to give an 

overview of how multiple alternative models have been developed, tested and used for 

predictions in the multi-model approach in international literature and to identify the 

remaining challenges.  

The review shows that only a few guidelines for developing the multiple conceptual models 

exist, and these are rarely followed. The challenge of generating a mutually exclusive and 

collectively exhaustive range of plausible models is yet to be solved. Regarding conceptual 

model testing, the reviewed studies show that a challenge remains in finding data that is both 

suitable to discriminate between conceptual models and relevant to the model objective.  

We argue that there is a need for a systematic approach to conceptual model building where 

all aspects of conceptualization relevant to the study objective are covered. For each 

conceptual issue identified, alternative models representing hypotheses that are mutually 

exclusive should be defined. Using a systematic, hypothesis based approach increases the 

transparency in the modelling workflow and therefore the confidence in the final model 

predictions, while also anticipating conceptual surprises. While the focus of this review is on 

hydrogeological applications, the concepts and challenges concerning model building and 

testing are applicable to spatio-temporal dynamical environmental systems models in general.  
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2.2 INTRODUCTION 

Groundwater model conceptualization is a crucial first step in groundwater model 

development (Anderson et al., 2015a). It provides a systematic, internally consistent overview 

of system boundaries, properties and processes relevant to the research question, bridging the 

gap between hydrogeological characterization and groundwater modelling.  

As the conceptualization is related to the fundamentals of the problem definition, it is 

considered one of the major sources of uncertainty in numerical groundwater modelling 

(Gupta et al., 2012). Estimating parameters through calibration with an inadequate conceptual 

model may lead to biased parameter values (Doherty and Welter, 2010). Biased parameter 

values are especially problematic when extrapolating to predictions that are of a different type 

than the calibration data, represent a different stress regime, or have a longer timeframe than 

the calibration period (White et al., 2014). Not accounting for conceptual model uncertainty 

can potentially greatly underestimate total uncertainty and give false confidence in model 

results, as vividly illustrated in Bredehoeft (2005).   

To develop conceptual models, two major approaches have been traditionally applied: (i) the 

consensus model approach (Brassington and Younger, 2010) and (ii) the multi-model 

approach (Neuman and Wierenga, 2003) (Figure 2.1). The development of conceptual models 

is based on the available geological and hydrological information, which are observed data, 

such as water levels, borehole information and tracer concentrations, but often also include a 

component of soft knowledge, such as geological insights or expert interpretation.  
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Figure 2.1. Iterative process for the conceptual modelling process via the consensus or multi-model approach. Modified 

from Environment Agency (2002) and Suzuki et al. (2008). Each model test step involves introducing new data and thereby 

identifying new plausible models uncovering conceptual surprises, and rejecting other models that are inconsistent with the 

new data.  

In the single consensus conceptual model approach all available observations and knowledge 

is iteratively integrated into a single conceptual model (Barnett et al., 2012; Izady et al., 

2014), providing a staircase of confidence (Gedeon et al., 2013). In this case, the conceptual 

model represents the current consensus on system behaviour (Brassington and Younger, 

2010).  

As illustrated in Schwartz et al. (2017), conceptual model uncertainty is generally accounted 

for in the consensus approach by increasing the complexity of the model. Increasing 

complexity effectively turns conceptual model uncertainty into parameter uncertainty by 

adding more processes to the model and/or increasing resolution in space and time. Increasing 

the degrees of freedom means that non-uniqueness increases, which is often balanced through 

optimal model complexity favouring the simplest model that can adequately reproduce 

historical conditions (Young et al., 1996). The main advantage is that it comprehensively 

captures conceptual issues in the model. The main drawback is that models quickly become 

intractable and too computationally demanding to carry out parameter inference. Another 
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mechanism that is often applied to account for conceptual uncertainty, is conservatism, 

favouring the conceptualization that will result in the largest impact (Wingefors et al., 1999). 

Although inherently biased, the main advantage is that introducing conservative assumptions 

make the problem tractable and provides confidence that the simulated impacts are not 

underestimated. The largest drawback however, is that conservative assumptions depend on 

the type of impact investigated, may not be internally consistent and can lead to missed 

opportunities (Freedman et al., 2017).  

The alternative to the consensus approach is the multi-model approach, in which an ensemble 

of different conceptualizations is considered throughout the model process in parallel rather 

than sequentially. This approach reflects that the hydrogeological functioning of an aquifer 

system can be interpreted in different ways, especially if the available data is scarce 

(Anderson et al., 2015a; Beven, 2002; Neuman and Wierenga, 2003; Refsgaard et al., 2006). 

In the multi-model approach the aim is not to find the single best model, but to find an 

ensemble of alternative conceptual models, each with a different hypothesis on system 

behaviour. As depicted in Figure 2.1, this is also an iterative process, in which conceptual 

models are removed from the ensemble when they are falsified by increased knowledge or 

data, and where conceptual models are added when new data or insights prompt the 

development of a new hypothesis on model behaviour.  

In the consensus approach, once committed to a particular conceptualization, there is 

considerable inertia to change it as this would often involve a complete overhaul of the 

numerical model (Ferré, 2017). However, in the multi-model approach, given alternative 

conceptual models are developed and evaluated in parallel, it aids in solving the problem of 

conceptual “surprises” (Bredehoeft, 2005) as they are sought out. Even though the multi-

model approach is less prone to conceptual surprises than the consensus approach, it is not 

exempt from it. Using statistical terminology, as explained by Neuman (2003), both the 



 

Chapter 2: Hydrogeological Conceptual Model Building and Testing: A Review 23 

 

consensus approach and the multi-model approach are prone to Type I errors 

(underestimating model uncertainty by undersampling the model space) and Type II errors 

(relying on invalid model(s)). However, by using the multi-model approach we are less likely 

to commit either.  

This paper aims to provide an overview of the current status of the international literature on 

using multiple conceptual models in groundwater modelling. Reviews of the multi-model 

approach to date, such as Diks and Vrugt (2010), Schöniger et al. (2014), and Singh et al. 

(2010) mainly focus on the evaluation of multiple models and summarising of model results. 

Much less attention has been devoted to approaches that systematically develop and test 

different conceptual models. This review is therefore organized around the following four 

research questions: 

1. What is conceptual model uncertainty? 

2. How are alternative conceptualizations developed?  

3. How can alternative conceptualizations be tested? 

4. How are different conceptualizations used for predictions?  

Each section provides an overview of approaches in published studies, summarized in Table 

A.1 and Table A.2, and remaining challenges. While this review will focus on applications in 

a hydrogeological context, the concepts and challenges concerning model building and testing 

are applicable to spatio-temporal dynamical environmental systems models in general.  

2.3 WHAT IS CONCEPTUAL MODEL UNCERTAINTY?  

Anderson and Woessner (1992) and Meyer and Gee (1999) define a conceptual model as a 

pictorial, qualitative description of the groundwater system in terms of its hydrogeological 

units, system boundaries (including time-varying inputs and outputs), and hydraulic as well as 

transport properties (including their spatial variability). The conceptual model is often seen as 
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a hypothesis or a combination of hypotheses for the aspects of the groundwater system that 

are relevant to the model objective. 

Table A.1 provides a review of internationally peer reviewed publications that explicitly 

consider hydrogeological conceptual model uncertainty. These 59 studies have been 

identified from the Google Scholar database, where the search term “groundwater model” is 

combined with “conceptual model uncertainty”, “structural model uncertainty”, “alternative 

conceptual models” or “multi-model approach”. Only studies that include alternative 

conceptual models developed for groundwater modelling, for the purpose of either increasing 

system understanding or characterizing conceptual uncertainty, have been included. This list 

is considered to be representative of the treatment of conceptual model uncertainty through 

the multi-model approach in groundwater research in the last two decades. It is beyond the 

scope of this review to address the consensus conceptual model building approach. For each 

study, Table A.1 provides a short summary of the alternative conceptualizations, whether or 

not the objectives are explicitly defined and which aspects of the conceptualization are 

considered. 

In this section we discuss what is included in model conceptualization, how this needs to be 

linked to the objective of the modelling and the linguistic ambiguity in discussing conceptual 

model uncertainty. 

2.3.1 Conceptual model aspects 

Gupta et al. (2012) outlines five formal stages in the model building process: i) Conceptual 

Physical Structure, ii) Conceptual Process Structure, iii) Spatial Variability Structure, iv) 

Equation Structure and v) Computational Structure. The first two steps are part of the 

conceptual model, the third and fourth are part of the mathematical model and the last step is 

the computational model. This review will focus on the first two steps, as well as the Spatial 
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Variability Structure (Figure 2.2). The latter is included in our discussion of aspects of 

conceptualization as some studies in Table A.1 consider alternative models of the Spatial 

Variability Structure as conceptual uncertainty.   

 

Figure 2.2. Elements of a conceptual model. Items in green illustrate the Conceptual Process Structure, while items in blue 

illustrate the Spatial Variability Structure represented in the magnifying glass (Kh = horizontal hydraulic conductivity, Kv = 

vertical hydraulic conductivity, n=porosity, Ss = Specific storage, Sy = Specific yield). Items in orange illustrate the 

Conceptual Physical Structure represented the system geometry and hydrostratigraphy. 

The Conceptual Physical Structure captures the hydrostratigraphy as well as the horizontal 

and vertical extent of the system (respectively a watershed divide and an impermeable bottom 

boundary in Figure 2.2). The Conceptual Physical Structure further defines the 

hydrostratigraphic units and their extent, the barriers and/or conduits to groundwater flow 

(faults) and the compartmentalisation of the groundwater system into aquifers and aquitards. 

The Spatial Variability Structure is the description of the time-invariant hydraulic properties 
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of the system and their spatial variability (magnifying glass in Figure 2.2). The Conceptual 

Process Structure contains the boundary conditions that are time variant, such as heads and 

fluxes in and out of the system. These can be externally controlled and largely independent 

from the groundwater system dynamics (e.g., rainfall, pumping rates, drainage levels for mine 

dewatering, lateral zero-flow boundary) or internally controlled and largely dependent on the 

groundwater system dynamics (e.g., surface water-groundwater interaction, 

evapotranspiration). 

2.3.2 Modelling objective 

Despite being identified as the crucial first step in any modelling study (Anderson et al., 

2015a; Barnett et al., 2012; Brassington and Younger, 2010), only 33 out of 59 studies 

explicitly define the purpose or objective of the model in the introduction of the paper. This is 

especially relevant as some conceptualization aspects (such as detailed description of spatial 

variability of hydraulic properties) might be important to one type of prediction (e.g., travel 

time distribution), but might be less relevant to another type of prediction (e.g., hydraulic 

head distribution) (Refsgaard et al., 2012; Zhou and Herath, 2016). Alternative 

conceptualizations are for instance directly linked to model objectives when multiple 

conceptual models are developed to increase system understanding (Passadore et al., 2011) or 

aid in water management strategy (Højberg and Refsgaard, 2005). Many of the studies in 

which a model objective is not explicitly defined, are focused on method development, such 

as combining model averaging techniques (Rojas et al., 2008), comparing ranking strategies 

(Foglia et al., 2007) or model selection (Poeter and Anderson, 2005).  

2.3.3 Linguistic uncertainty 

There is considerable linguistic ambiguity in describing the uncertainty of groundwater 

system conceptualization. A prime example is the term ‘structural uncertainty’, which can 

indicate uncertainty in geological structure, as in Refsgaard et al. (2012), or can indicate the 
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number and type of processes represented in the numerical model, as exemplified in Clark et 

al. (2008).  

Furthermore, as argued in Nearing et al. (2016) any adequate model should encode all 

uncertainties to consider, i.e. the known unknowns. The name ‘multi-model approach’ is 

therefore somewhat misleading. The multiple models in the multi-model approach are 

samples of the overall plausible model choices that should characterize the conceptual 

uncertainty. This is no different than sampling parameters over a feasible range to 

characterize the parameter uncertainty. In this definition, the multiple models in the multi-

model approach therefore only represent a single model characterizing known unknowns. 

The linguistic uncertainty has led to a wide variation in what is considered to be conceptual 

model uncertainty (Table A.1). This varies from changing the hydraulic conductivity zonation 

extent and number (Carrera and Neuman, 1986; Foglia et al., 2007; Lee et al., 1992; Meyer et 

al., 2007; Poeter and Anderson, 2005) to considering different process representations 

(Altman et al., 1996; Aphale and Tonjes, 2017). Classifications of sources of uncertainty, 

such as presented in Walker et al. (2003), Refsgaard et al. (2006) or Vrugt (2016), often 

distinguish between model structure uncertainty (incomplete understanding and simplified 

description of modelled processes), parameter uncertainty (parameter values) and input 

uncertainty including scenario uncertainty (external driving forces). In groundwater model 

conceptualization, the distinction between these classes is not well defined. For example, 

should changing the Spatial Variability Structure of hydraulic conductivity, such as in Castro 

and Goblet (2003), Rogiers et al. (2014), or Linde et al. (2015), be considered conceptual or 

parameter uncertainty?  

Suzuki et al. (2008) provides a more pragmatic classification in which differentiation is made 

between first-order uncertainties (conceptual) and lower-order uncertainties. Lower-order 
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uncertainties are aleatory and can be modelled stochastically, while conceptual uncertainties 

are epistemic and are characterized by alternative models. Common in both the consensus 

model approach and the multi-model approach is that lower-order uncertainties are modelled 

stochastically within each conceptualization. For example, Hermans et al. (2015) uses 

different training images to describe spatial variability of hydraulic conductivity with 

multiple-point geostatistics; this can be considered a first-order uncertainty. The lower-order 

uncertainty is then the stochastic realisations of each training image. Likewise, changing the 

boundary from a no-flow to a head dependent boundary in Mechal et al. (2016) is first-order 

uncertainty, while changing the value of the head-dependent boundary in Aphale and Tonjes 

(2017) is considered a characterization of lower-order uncertainty. 

2.3.4 Summary of what is considered conceptual model uncertainty 

Groundwater system conceptualization is a collection of hypotheses describing the 

understanding of the different aspects of the groundwater system that are important to the 

modelling objective. Conceptual model uncertainty is the uncertainty due to the limited data 

and knowledge about a groundwater system. It is the first-order, epistemic uncertainty that is 

generally considered reducible but cannot be characterized by continuously varying a 

variable. Linguistic ambiguity and vague definitions of what constitutes conceptual 

uncertainty however hinders transparent discussions of this major source of uncertainty. We 

will therefore adopt the terminology of Suzuki et al. (2008) and focus on first-order 

uncertainty. 

2.4 HOW ARE DIFFERENT CONCEPTUALIZATIONS DEVELOPED? 

Not only is there a wide variety of conceptual model aspects, there is also a wide variety of 

ways to generate different conceptualizations (Table A.1). Generating different 

conceptualizations has not received much attention in the literature and guidance is likewise 

limited. Neuman and Wierenga (2003) discuss different approaches in developing alternative 
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conceptualization and suggest building alternative models until no other plausible 

explanations can be identified. Similar to this approach, Refsgaard et al. (2012) introduced 

the concept of the Mutually Exclusive and Collectively Exhaustive (MECE) criterion to 

hydrogeology. In order to be mutually exclusive, conceptual models have to be completely 

disjoint and represent independent hypotheses about the groundwater system. In order to be 

collectively exhaustive, the entire range of plausible conceptual models needs to be defined, 

including the unknown unknown plausible models. The unknown unknowns are the 

conceptual models that current data has not yet uncovered and will lead to conceptual 

surprises if they are. It has been acknowledged by several authors that defining a collectively 

exhaustive range is impossible in practice (e.g. Ferre, 2017; Hunt and Welter, 2010; 

Refsgaard et al., 2012).  

While the concepts and advice in Neuman and Wierenga (2003) and Refsgaard et al. (2012) 

are sound and highly relevant, few of the studies in Table A.1 adhere to them. From the 

studies of Table A.1, three main strategies are identified in developing alternative 

conceptualizations; (i) Varying Complexity, (ii) Alternative Interpretations and (iii) 

Hypothesis Testing. These strategies are illustrated in Figure 2.3. 
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Figure 2.3. Conceptual model development approaches in the multi-model approach. Illustration of how different 

conceptualizations of the Conceptual Physical Structure could take shape if based on the same data (boreholes in this case) 

through Varying Complexity (a), Alternative Interpretation (b) or Hypothesis Testing (c) strategy. Based on illustrations of 

alternative models in Harrar et al. (2003), Schöniger et al. (2015), Seifert et al. (2008) and Troldborg et al. (2007). 

In the Varying Complexity strategy, alternative models are generated by gradually increasing 

or decreasing the complexity of the same base conceptualization. In Figure 2.3 this is 

illustrated by describing the hydraulic property variability in an aquifer system either as (i) 

homogeneous units, (ii) zonation or (iii) a spatially continuous parameterization. The 

adequate complexity is typically evaluated based on the modelling goal (Höge et al., 2018; 

Zeng et al., 2015), the available data (Schöniger et al., 2015a), or the informative model 

complexity (Freedman et al., 2017). The underlying base conceptualization is not questioned 

and it is, often implicitly, assumed that all conflict between observed and simulated data is 
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due to the inability to capture the full complexity of the groundwater system in the numerical 

model. The Varying Complexity strategy does not fit well in the MECE paradigm as different 

levels of complexity in implementing the same conceptualization do not ensure mutually 

exclusive hypotheses. 

The Alternative Interpretation strategy consists of generating an ensemble of 

conceptualizations by different interpretations. Figure 2.3 illustrates this as two different 

hydrostratigraphic interpretations of the same borehole data set, independent by being 

interpreted by different teams who have no knowledge about the each other’s interpretation 

(e.g. Harrar et al., 2003; Hills and Wierenga, 1994). Compared to the Varying Complexity 

strategy, the Alternative Interpretation strategy has the advantage that the ensemble can 

include very different base conceptualizations (e.g. Refsgaard et al., 2006). However, the 

conceptualizations may end up being very similar and it is difficult to ensure that independent 

interpretations are mutually exclusive. 

In the Hypothesis Testing strategy, as advocated by Beven (2018), an ensemble of models is 

generated by stating different hypotheses about the system. Rather than multiple teams 

formulating their best interpretation of the same data in the Alternative Interpretation strategy, 

the Hypothesis Testing strategy involves the same team aiming to maximise the difference 

between alternative conceptualizations, while still adhering to the same dataset. In Figure 2.3 

this is exemplified through the presence or absence of a palaeovalley in two alternative 

conceptualizations. Both alternatives are consistent with the borehole data, but the 

interpretation with the palaeovalley present may be considered less likely. The chances are 

slim that such a vastly different conceptualization would be part of an ensemble generated 

through the Alternative Interpretation strategy, where only the most likely model is sought. 

None of the three strategies guarantees that the ensemble of models developed is collectively 
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exhaustive, but it is more likely for Hypothesis Testing to generate an ensemble of mutually 

exclusive models.  

The next sections review model building approaches and are structured around the three key 

components of the conceptual model illustrated in Figure 2.2; Conceptual Physical Structure 

(Section 2.4.1), Spatial Variability Structure (Section 2.4.2), and Conceptual Process 

Structure (Section 2.4.3). The focus is on different approaches to building multiple conceptual 

models within these three aspects and how the different strategies to multi-model building 

have been applied (Figure 2.3). Finally, Section 2.4.4 discusses assigning prior probabilities 

to alternative models. 

2.4.1 Conceptual Physical Structure  

Table A.1 lists several examples where the Conceptual Physical Structure of conceptual 

models has been tested through the Alternative Interpretation and the Hypothesis Testing 

strategy. Using an Alternative Interpretation strategy approach, five alternative 

hydrostratigraphic models were generated by five different (hydro)geologists in the study by 

Seifert et al. (2012) resulting in different number of layers, proportions of sand and clay in the 

quaternary sequence and the location of a limestone surface. Using the Hypothesis Testing 

strategy, Troldborg et al. (2007) developed three different models by assuming different 

depositional histories and thereby different number of layers in the models.  

While it is possible to test a global geometrical hypothesis about the Conceptual Physical 

Structure (e.g. Troldborg et al. (2007)), it is more common to test specific geometrical 

features through local hypotheses. A local hypothesis can for instance test the presence of a 

palaeovalley (Seifert et al., 2008), the connection between two aquifers (La Vigna et al., 

2014), or the extent of an aquifer (Aphale and Tonjes 2017). If one of the hypotheses is 
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falsified in these studies, the system understanding will improve in regard to that specific 

feature. 

2.4.2 Spatial Variability Structure 

Spatial Variability Structure is the component of the conceptual model that is most often 

included in a multi-model approach. Because hydraulic and transport properties are often 

scale-dependent and the adequate level of complexity depends on the modelling purpose, the 

description of properties is often tested by developing models with the Varying Complexity 

strategy. The strategy is applied either through dividing the study area into different zones of 

homogeneous hydraulic conductivities, so alternative representations can be generated by 

combining the different zones (e.g. Foglia et al., 2007), or by representing the geology in 

different conceptual models as homogenous, layered/zoned, or as heterogeneous (e.g. 

Schöniger et al., 2015).  

In the INTRAVAL Las Cruces trench experiment five different modelling teams developed 

unsaturated zone flow and transport models using the Alternative Interpretation strategy 

(Hills and Wierenga, 1994). Despite differences between the models, such as 

isotropic/anisotropic and spatially uniform/heterogeneous soil properties, none of the models 

was clearly superior considering several performance criteria. 

Geostatistical variogram based approaches facilitate the stochastic generation of many pixel-

based K realizations based on the same data and assumptions to characterize the lower-order 

uncertainty. Hypothesis Testing strategy has been applied assuming different variogram 

models to represent the K variation within the system (Samper and Neuman, 1989; Ye et al., 

2004).  Rather than defining different facies variogram, Pham and Tsai (2015; 2016) used 

three different variogram based geostatistical approaches (indicator kriging, indicator 
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zonation and general parameterization (Elshall et al., 2013)) to describe the variation between 

clay and sand units as smooth or sharp.  

In the multipoint geostatistics approach (MPS) (Strebelle, 2002) different conceptualizations 

can be represented by adopting different training images using the Hypothesis Testing 

strategy. Studies that have applied the MPS approach using more than one training image in 

groundwater modelling are still rare but include studies by He et al. (2014), Hermans et al. 

(2015) and Linde et al. (2015).  

Groundwater flow through fractured rock aquifers complicates the conceptualization as the 

groundwater flow occurs through both matrix and fractures. Selroos et al. (2002) considered 

e.g. stochastic continuum models and discrete fracture networks as alternative 

conceptualizations of fractured rock in Sweden; the models were shown to have different 

results in terms of solute transport behaviour 

2.4.3 Conceptual Process Structure 

The Conceptual Process Structure is the component in the conceptual model that is 

considered least in the multi-model approaches in the analysed studies (Table A.1). 

According to Gupta et al. (2012) this lack of attention in literature is mainly due to the 

process description typically being assumed to be complete. However, as illustrated by 

examples in Bredehoeft (2005), conceptual surprises might also occur for the Conceptual 

Process Structure as well as for the other components of the conceptual model. 

Among the many boundary conditions imposed on a groundwater model, groundwater 

recharge is by far the one that has received most attention in the literature. A number of 

methods exist for calculating groundwater recharge that take into account different sources of 

information (Doble and Crosbie, 2017; Scanlon et al., 2002) which can lead to different 

estimates of recharge when used in an Alternative Interpretation strategy approach. Ye et al. 
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(2010) used the Maxey-Eakin method, the chloride mass balance method and the net 

infiltration method to derive different estimates of recharge to assess the conceptual 

uncertainty. Each of the different interpretation methods resulted in a different spatial 

distribution of recharge.  

Different levels of model complexity have often been used across different spatial scales, 

such as for groundwater recharge estimation (Doble and Crosbie, 2017). Models range from 

simplified heuristic models at a global scale (Döll and Fiedler, 2008), simple 1-D bucket 

models for regional scale areas (Flint et al., 2000) to more complex numerical solutions of 

Richards’ equation at the field scale (Leterme et al., 2012; Neto et al., 2016). Nettasana 

(2012) tested the complexity of zonation of recharge by defining recharge based only on soil 

type in one model and in another model both on soil type and land use.  

The Hypothesis Testing approach for recharge estimation mainly focuses on a specific feature 

(Kikuchi et al., 2015; Rojas et al., 2010a). Aphale and Tonjes (2017) investigate the effect of 

a landfill on local recharge with three different hypotheses. Hypothesis Testing for lateral 

boundary conditions has been applied to lateral exchange flux with adjacent aquifers (Lukjan 

et al., 2016; Mechal et al., 2016; Nettasana, 2012). Kikuchi et al. (2015) test the existence of 

underflow through a subsurface zone into an adjacent basin.  

2.4.4 Assigning a prior probability 

A crucial aspect in any Bayesian modelling approach is assigning the prior probabilities. This 

prior is based on an initial understanding of the probability of a model related to the 

alternative models and is updated when additional data is introduced in the model testing step 

(Section 2.5). The assigned prior for the reviewed studies are presented in the first column of 

Table A.2.  
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In order to be objective and unbiased, different conceptual models are often considered to be 

equally likely, uninformed by data or knowledge. From the 26 studies in Table A.2 that 

assign a prior probability, 21 use a uniform, and thus uninformed, prior probability. Prior 

probabilities do however have a large influence on the posterior probability if the data used 

for updating the prior has limited information content. Rojas et al. (2009) showed that 

including proper prior knowledge about the conceptualizations increased predictive 

performance when compared to assigning uninformed priors. Additionally, uninformed priors 

are not consistent with the Hypothesis Testing approach, as shown in Figure 2.3c. If no other 

palaeovalleys were observed in the area, the palaeovalley hypothesis would be possible, but 

unlikely. A uniform prior probability would assign each hypothesis equal likelihood, which 

would not be appropriate.  

In the reviewed studies the prior has been based on expert opinion, data consistency and 

model complexity. For instance, using expert opinion in the study by Ye et al. (2008) the 

prior probability was based on expert’s belief in alternative recharge models considering the 

consistency with available data and knowledge. Systematic expert elicitation is a well-

established technique in environmental risk assessment and modelling (Krueger et al., 2012) 

to formalize expert belief into model priors. There are however few published studies on 

expert elicitation in groundwater conceptualization context. Elshall and Tsai (2014) used data 

consistency to inform the prior probability by basing it on calibration of hydrofacies using 

lithological data. Finally, using model complexity to inform the prior, in the study by Ye et al. 

(2005) higher probabilities were assigned to favour models with fewer parameters. This was 

also suggested by Rojas et al. (2010a) as a means of penalizing increased complexity. 

Nearing et al. (2016) argues that assignment of probabilities should not be based on a single 

component of the model but rather be based on the whole model. In the reviewed literature 

the priors have however, only been based on individual components. 
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2.4.5 Remaining challenges 

The review of studies in Table A.1 has shown that alternative models have been developed 

either by i) varying complexity of model description, ii) making alternative interpretations or 

iii) stating different hypotheses about the groundwater system. The goal of the multi-model 

development process is to define a mutually exclusive, collectively exhaustive range of 

models in which the true unknown model exists and where the risk of uncovering a 

conceptual surprise is zero. This is obviously unattainable, and we therefore discuss the 

remaining challenges next.  

First, Table A.1 shows that studies typically focus on exploring different hypotheses for a 

single aspect of the model (Conceptual Physical/Conceptual Process/Spatial Variability 

Structure). Only 5 out of 59 papers consider all three aspects simultaneously (Aphale and 

Tonjes, 2017; Foglia et al., 2013; Mechal et al., 2016; Rojas et al., 2010a; Ye et al., 2010). 

For the range of models to be collectively exhaustive, all conceptually uncertain aspects must 

be considered.  

Second, the study objective is not always considered when alternative models are developed 

for the multi-model approach (Table A.1). Models should encapsulate the behaviour that is 

important to the modelling objective (Jakeman et al., 2006), and The same should be true 

when characterizing conceptual uncertainty. On the other hand, “what may seem like 

inconsequential choices in model construction, may be important to predictions” (Foglia et 

al., 2013). To avoid ignoring the inconsequential model choices, the model objective should 

be used to guide the development of alternative models. This does imply that ensembles are 

not necessarily the same for all model objectives (Haitjema, 1995).  

Third, alternative conceptual models are not always defined as mutually exclusive (i.e. if 

model A is true, models B and C are false). Falsification, which is welcomed in the multi-
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model approach (Beven, 2018), will increase system understanding (Beven and Young, 

2013), but how much will depend on how the conceptual models are defined. In the 

Alternative Interpretation and Varying Complexity strategy, the models are not necessarily 

mutually exclusive in the sense that they do not represent different ideas about the 

groundwater system. In the Varying Complexity approach, alternative models are generated 

based on the same conceptual model represented in different complexities. A risk in the 

Alternative Interpretation strategy is that alternative models are almost identical in terms of 

understanding of the groundwater system.  

Fourth, the way the alternative models are developed does not always reduce the risk of 

conceptual surprises. Using the Alternative Interpretation strategy, many groups will come up 

with what they believe to be the most likely model, e.g. Seifert et al. (2012). Using the 

Varying Complexity strategy, only the complexity and not conceptual ideas will be tested. It 

is therefore unlikely that a conceptual surprise will be found before one is surprised in both 

Alternative Interpretation and Varying Complexity strategy.  

Last, when assigning priors to a range of models that we cannot ensure are collectively 

exhaustive, how do we account for unknown unknowns? The sum of prior probabilities for 

the ensemble of models always add up to one in the reviewed studies, thereby assuming a 

collectively exhaustive range of models have been defined. As discussed already, this is 

extremely difficult to ensure, so an approach to assign priors that accounts for unknown 

unknowns remains a challenge.  

The Hypothesis Testing strategy seems to be the only model development strategy that can 

ensure the models developed are mutually exclusive. However, hypotheses might still 

overlap. For example, Bresciani et al. (2018) test three hypotheses to explain mountain range 

recharge to a basin aquifer governed either by i) mountain-front recharge, ii) mountain-block 
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recharge or iii) both mountain-front recharge and mountain-block recharge. Some might 

argue that the third hypothesis overlaps to some extent with the other two, violating the 

mutually exclusive principle. However, only including the two first hypotheses claiming they 

are mutually exclusive and collectively exhaustive, would set up a false dilemma as parts of 

both hypotheses can be correct at the same time. It is thereby not always possible to state 

mutually exclusive hypotheses in hydrogeology, where the answer will be Boolean (true or 

false), for instance connectivity or no connectivity between aquifers (Troldborg et al., 2010). 

Sometimes the mutually exclusive hypothesis will have to be stated as endmembers (e.g. 

mountain-front recharge and mountain-block recharge) and the answer will be somewhere in 

between.  

Guillaume et al. (2016) discuss two methods to accommodate the conceptual surprises in the 

model development process: Adopting adaptive management and applying models that 

explore the unknown. In the first approach, management plans are kept open towards change 

and the iterative modelling process, illustrated in Figure 2.1, is a part of the modelling plan. 

The second method anticipates surprises by placing fewer restrictions on what is considered 

possible. Stating bold hypotheses about a system, ensures that system understanding can 

progress (Caers, 2018). A bold hypothesis around recharge inflows from faults and deep 

fissures connected to an adjacent aquifer is tested by Rojas et al. (2010a). The available data 

did not give reason to reject either of the models to achieve an increase in system 

understanding, but the alternative was bold. We argue that by being forced to be bold when 

developing hypotheses, the risk of rejecting plausible models by omission and adopting 

invalid range of models is greatly reduced. However, defining bold hypotheses does not 

preclude rejecting plausible models by omission. Hunt and Welter (2010) suggest to use 

terminology that recognize the existence of these unknown unknowns by presenting results 

with a specification of which aspects of the model that has been considered, thereby 
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enhancing transparency. An approach that aims at directly identifying unknown unknowns 

through bold hypothesis, considering the largest possible range of the conceptual uncertainty, 

have not been applied yet and remain a subject for further research.  

2.5 HOW ARE DIFFERENT CONCEPTUALIZATIONS TESTED? 

After developing a set of conceptual models, the models should be tested to establish to what 

degree they are consistent with the available data and knowledge (Neuman and Wierenga 

2003; Refsgaard et al. 2006). Groundwater models used for safety assessment of nuclear 

waste repositories, for instance, have been subject of considerable validation efforts (Hassan, 

2003; Rogiers et al., 2014; Tsang, 1987, 1991). Model testing and validation covers the same 

model evaluation process in which models are confronted with new data. However, the term 

validation is avoided in this review as models can never be proven correct (Konikow and 

Bredehoeft, 1992). Also, there is no internationally agreed definition of validation, which has 

led several organizations to develop their own operational definitions of validation (Perko et 

al., 2009). Finally, validation encourages testing to have a positive result (Oreskes et al., 

1994), that is, models are not expected to be wrong. As falsification is important in order to 

advance our understanding of a system (Beven, 2018), the term model testing is preferred 

here.  

Models are rejected if they are found to be inconsistent with data. In a Bayesian context, 

however, a conceptual model can never be completely rejected; its probability can only be 

greatly reduced. As there is a risk of eliminating models that could turn out to be good 

representations when new data is introduced, Guillaume et al. (2016) suggest to keep 

rejection decisions temporary to be able to return to otherwise excluded models. The models 

that are consistent with observational data are, however, only conditionally validated because 

they have not been proven to be inconsistent with data yet (Beven and Young, 2013; Oreskes 

et al., 1994). 
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Testing of conceptual models is not always done as part of the multi-model approach to 

groundwater modelling (Pfister and Kirchner, 2017). In Table A.2, only 30 out of 59 studies 

applied some form of model testing. However, model testing presents three major advantages.  

First, systematically developing and testing conceptual models will allow one to explain why 

no other conceptual models are plausible (Neuman and Wierenga 2003), and thereby reducing 

the risk of adopting an invalid range of models. Through systematic documentation and 

rejection of conceptual models, the modelling workflow becomes transparent and traceable, 

potentially avoiding court cases challenging the validity of conceptual models. In the impact 

assessment of the Carmichael Coalmine in Queensland (Australia), available geological and 

hydrological data allowed for at least one other conceptualization of ecological and culturally 

significant springs that could potentially be impacted by the coalmine (Currell et al., 2017). 

However, a conceptual model leading to an acceptably low modelled impact on the springs 

was adopted, which lead to the approval of the mine. A systematic model development and 

testing approach for conceptual modelling through the multi-model approach would be able 

to shed light on this type of confirmation bias.  

Second, model testing can lead to uncovering of unknown unknowns (Bredehoeft, 2005). Not 

many papers exist that actually reject all of the initial conceptual models or hypothesis about 

a groundwater system and come up with new plausible explanations, which renders this 

advantage of the model testing procedure somewhat invisible (Beven, 2018). There are, 

however, a few examples where models are conditionally validated after ad-hoc 

modifications to the model (e.g. Krabbenhoft and Anderson, 1986; Nishikawa, 1997; 

Woolfenden, 2008). Ad-hoc modifications are slight changes applied to a current model in 

order to explain conflicting data, but without falsifying the model as a whole. For example, 

Sanford & Buapeng (1996) developed a steady-state groundwater flow model for the 

Bangkok area, which was falsified by apparent groundwater ages. An ad-hoc modification 



 

Chapter 2: Hydrogeological Conceptual Model Building and Testing: A Review 42 

 

that assumed groundwater velocities were higher during the last glacial maximum yielded a 

simulated apparent age closer to the observations, thereby conditionally validating the model 

with the ad-hoc modification. Ad-hoc hypotheses are sometimes criticized as they make 

models unfalsifiable and knowledge does not progress through modifications (Caers, 2018). 

However, their existence illustrates the difficulty of developing a collectively exhaustive 

range of models initially and model testing is imperative if we want to uncover this.  

Third, Bayesian multi-model approaches benefit from allowing their prior probabilities to be 

updated because it dilutes the effect of the choice of priors (Rojas et al., 2009). It is here 

worth mentioning that most of the studies in Table A.2 that apply a Bayesian approach, 

update the prior probability using criteria-based weights (Section 2.6.1) while only eight 

studies apply a model testing procedure.  

In the subsequent sections, data relevant to conceptual model testing (Section 2.5.1), steps 

undertaken when testing conceptual models (Section 2.5.2), and the remaining challenges 

within model testing (Section 2.5.3) are discussed. Table A.2 presents an overview of the 

model testing applied in the studies identified using the multi-model approach (Section 2.3). 

2.5.1 Conceptual model testing data 

Three basic requirements for the nature of the data used for model testing are typically 

discussed: i) it should be different from the data used for developing the conceptual models 

(Tarantola, 2006), ii) it should be different from the data used for calibrating the model 

(Neuman and Wierenga, 2003; Refsgaard et al., 2006), and iii) it should depend on the 

modelling purpose (Beven, 2018).  

2.5.1.1 Model testing data and model building data 

Tarantola (2006) distinguishes between a priori information used to develop hypotheses and 

observations used to test models. Post-hoc theorizing (failing to separate model development 
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and testing data and accepting the resulting model) might lead to models being conditionally 

validated due to circular reasoning, e.g. the model should look this way to explain the data 

and the model is true because it explains the data. Another reason for keeping those two 

groups of data separate is to avoid underestimating conceptual uncertainty. By using 

geophysical SkyTEM data to both build a training image conceptual model and as soft 

constraint as part of a multiple-point geostatistics algorithm, He et al. (2014) demonstrated 

that this over-conditioning lead to an underestimation of uncertainty.  

2.5.1.2 Model testing data and model calibration data 

Testing data should also be different from calibration data to avoid that the conditional 

confirmation becomes an extension of the calibration (Neuman and Wierenga, 2003). In a 

review of handling geological uncertainty, Refsgaard et al. (2012) highlighted that it is 

possible to compensate for conceptual errors in groundwater flow models by calibrating 

parameters to fit the solution. The best test for any conceptualization involves comparison of 

model predictions to observations outside the calibration base. Cross-validation techniques, 

standard practice in statistical inference, are underutilised in groundwater modelling. 

Methodologies that minimize error variance provide some safeguard against calibration-

induced acceptance of improper conceptualizations (Kohavi, 1995; Moore and Doherty, 

2005; Tonkin et al., 2007). 

2.5.1.3 Model testing data and the modelling objective 

Refsgaard et al. (2012) further concluded that models that perform well according to one 

dataset might not perform well according to another dataset. This suggests that updating of 

prior probability should preferably be based upon the data type that the models are to make 

predictions about. Davis et al. (1991) argues that testing model performance outside areas 

relevant to the model objective can lead to rejection of models that might be fit-for-purpose. 

However, in many instances the data type that the models are used to make predictions, such 
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as groundwater fluxes or water balances, may not be directly available (Jakeman et al., 2006). 

On the other hand, Rojas et al. (2010b) showed that by introducing more and more data in a 

multi-model approach, they were able to further and further discriminate between retained 

conceptual models, suggesting the more diverse and numerous data used for testing the more 

confidence in the conceptualization.  

2.5.2 Conceptual model testing steps 

In the previous discussion the type and nature of auxiliary data to test conceptual models were 

introduced. But how should such data be incorporated to undertake a conceptual model 

testing exercise? Neuman and Wierenga (2003) introduced a three-step workflow for testing 

and updating prior probability of alternative conceptual models (Table 2.1). In addition to 

these three steps, a fourth step, the post-audit (Anderson and Woessner, 1992) will be 

reviewed here.   

Table 2.1. Comparison of model testing steps (pros and cons) and examples of applications in literature. The terminology of 

Step 1-3 is from model testing steps by Neuman and Wierenga (2003); definition of post-audit is from Anderson and 

Woessner (1992).  

Conceptual model 

testing step 

Pros (P) and cons (C) Example 

Step 1: “Avoid 

conflict with data” 

Narrows down range of plausible 

models before conversion to 

mathematical model (P) 

Hermans et al. (2015) tests training images for MPS against 

geophysical data.  

Step 2: “Preliminary 

mathematical model 

testing” 

Holistic test of the system (P) 

Parameters can compensate for 

conceptual error (C) 

Narrows down range of plausible 

models before complex 

mathematical model (P) 

La Vigna et al. (2014) tests the cause of hydraulic connection 

between two sand aquifers against hydraulic head in a simple 

numerical model and can reject two out of three scenarios.  

Step 3: “Confirm 

model” 

Holistic test of the system (P) 

Parameters can compensate for 

conceptual error (C) 

Parameters: Poeter and Anderson (2005) were able to reject 13 out 

of 61 models where the parameter distribution was wrong.  

State variables: Rojas et al. (2008) tested alternative conceptual 

models against hydraulic head and rejected two models but were 

unable to discriminate strongly between the rest of the models.  

Convergence: Poeter and Anderson (2005) rejects two models 

based on non-convergence. 

Step 4: Post audit Waiting time (C) 

Holistic test of the system (P) 

Parameters can compensate for 

conceptual error (C) 

Nordqvist and Voss (1996) concluded that a supply well was in 

risk of contamination through a multi-model approach. After the 

completion of the study, increased levels of contamination were 

observed in the well which conditionally validated the models.  
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2.5.2.1 Model testing step 1 

The first step in the Neuman and Wierenga (2003) guideline is referred to as “avoid conflict 

with data”, where  the model evaluation happens before the conceptual models are converted 

into mathematical models. In doing so, the conceptual models can be compared quantitatively 

or qualitatively with data, without parameters compensating for a wrong conceptualization. 

Table A.2 suggests this model testing step is rarely applied, which is not necessarily true. As 

the evaluation of conceptual models happens outside of a numerical groundwater model, it is 

probably preceding the workflow in many of the studies as part of the hydrogeological 

investigation but not explicitly reported on. In the review by Linde et al. (2015), a workflow 

of corroboration and rejection is presented that focuses on the integration of geophysical data 

in hydrogeological modelling. For example, synthetic geophysical data may be generated 

from different conceptual models, and subsequently compared with observed geophysical 

data (Hermans et al., 2015). The prior probability of each conceptual model is then updated 

based on the difference between observed and simulated geophysical data. In this model 

testing step, however, the model evaluation does not have to be qualitative. For example, 

hydraulic head and electrical conductivity data may be used to distinguish between 

hypotheses about whether mountain front and mountain block recharge was dominating as a 

recharge mechanism to basin aquifers (Bresciani et al., 2018).  

2.5.2.2 Model testing step 2 

The second step in which data is introduced to test alternative conceptual models is called 

“preliminary mathematical model testing” (Meyer et al., 2007; Neuman and Wierenga 2003; 

Nishikawa, 1997). A similar modelling step is suggested by La Vigna et al. (2014), where for 

each alternative conceptual model a simple numerical model is set up and compared with 

testing data (hydraulic head). The advantage of applying this model testing step is that 



 

Chapter 2: Hydrogeological Conceptual Model Building and Testing: A Review 46 

 

spending time on setting up complex mathematical model for poor conceptual models is 

avoided.  

2.5.2.3 Model testing step 3 

The third model testing step in Neuman and Wierenga (2003) is called “confirm model”. Here 

the mathematical model is set up in its most complex form. As a numerical model comprises 

a description of the groundwater system as a whole, all assumptions and the interaction of 

assumptions are tested at once. Models are then rejected either due to 1) unrealistic parameter 

values, 2) wrongly predicted state variables or 3) non-convergence.  

Sun and Yeh (1985) showed that the optimized parameters cannot be separated from the 

parameter structure on which they are based on. This means if the conceptual model is 

incorrect, so are the estimated parameter values. Therefore, calibrated hydraulic conductivity 

values are often compared with “independently” measured values from pumping tests (e.g. 

Engelhardt et al., 2014; Harrar et al., 2003; Mechal et al., 2016; Poeter and Anderson, 2005) 

to check whether parameter estimates are realistic. Unfortunately, scale effects may impede 

direct comparison. Depending on the quality and representativeness of the data, they may or 

may not be able to discriminate between alternative models as was demonstrated by 

Engelhardt et al. (2014) and Mechal et al. (2016) for calibrated hydraulic conductivity and 

transmissivity values, respectively. On the other hand, in the synthetic study by Poeter and 

Anderson (2005), 13 out of 61 models were rejected because the calibrated hydraulic 

conductivity of a low-conductivity zone exceeded the conductivity of what was considered a 

high-conductivity zone.  

Apart from comparing calibrated parameter values with observations, the predicted system 

variables can be compared with observations, such as hydraulic head, stream discharge, 

(tracer) concentrations, etc. In some multi-model studies, the number of models are limited 
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and the comparison of simulated and observed values can happen manually. For instance, 

Castro and Goblet (2003) could reject all but one conceptual model by manual comparison of 

the direct simulation of 4He concentrations with observed data. However, in cases where the 

lower order uncertainty is characterized within each conceptualization, automatic procedures 

are necessary to efficiently search for models that match field data (Rogiers et al., 2014; 

Rojas et al., 2010b, 2010c, 2010a; Schöniger et al., 2015a; Zeng et al., 2015). For instance, 

(Rojas et al., 2008) used the importance sampling technique Generalized Likelihood 

Uncertainty Estimation (GLUE) (Beven and Binley, 1992) to sample combinations of 

parameter sets and conceptual models and reject models according to an acceptance threshold 

for the misfit between simulated and observed model predictions.  

Finally, non-convergence of the groundwater model can indicate an error in the conceptual 

model (Anderson et al., 2015b). The interaction of assumptions that lead to groundwater 

models not converging has in many studies been regarded as sufficient evidence of 

conceptual model invalidity (Aphale and Tonjes, 2017; Poeter and Anderson, 2005). In Rojas 

et al. (2008) the models that did not meet the convergence acceptance criteria were assigned a 

likelihood of zero, eliminating their contribution to the model ensemble predictive 

distribution. However, conceptual models that do not converge may potentially be valid if no 

effort towards making them converge is made. The effort towards making a model converge 

in the consensus approach will probably be larger than in the multi-model approach as there 

will still be other models left.  

2.5.2.4 Model testing step 4 

The last model testing step considered in this review is the post-audit. The post-audit is 

performed years after the end of the modelling process, evaluating forecasts of the model on 

newly collected data. Anderson and Woessner (1992) summarize some modelling studies that 

have used post-audits while Bredehoeft (2005) focussed on identifying the conceptual 
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surprises that occurred in these modelling studies as a result of a post-audit. The advantage of 

the post-audit is that the model testing data is by default independent from the model 

development data, satisfying one of the basic requirements of model testing data (Section 

2.5.1). However, it is inconvenient to rely on this type of model testing as there may 

potentially be a long waiting period from the end of the model process until new data is 

collected.   

2.5.3 Remaining challenges 

This review has shown that models can be tested in at least four different steps in the 

modelling process: i) as a conceptual model, ii) as a simple numerical model, iii) as a 

complex numerical model and iv) as a complex numerical model years after development. In 

each step the prior probability can be updated and sometimes models can be rejected based on 

lack of support by observation of state variables, parameters or because the model did not 

converge. Identifying suitable data for model testing remains challenging.  

First, in theory the notion that testing data should be independent is sound, but in practice the 

separation of data is difficult. Many studies rely on ranking criteria to update the prior 

probability (which we will discuss in Section 2.6.1), rather than updating prior probability 

based on data that is independent of the model development. In using all data when 

developing models, it is no surprise that the models fit data. Post-hoc theorizing can easily 

result in undersampling of the model space (Kerr, 1998), as an initial range of plausible 

models will be accepted (because of circular reasoning) without looking for other plausible 

models. However, in many studies independent data might not be available and saving some 

data for the model testing process is a trade-off between being able to define a more complete 

model and being able to test assumptions. Cross-validation can partly address this issue 

during inference or calibration but will remain impractical in the conceptualization phase 

(model testing step 1) as biases towards existing but unavailable data might be made.  
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Second, in theory the data used for model testing should depend on the model objective, in 

order to not extrapolate when making predictions. A challenge arises when having to ensure 

that the model found fit-for-purpose for one dataset (e.g. hydraulic head), will also be fit-for-

purpose to predict another dataset (e.g. concentrations). For example, the alternative models 

developed by Castro and Goblet (2003) all performed well when calibrated with hydraulic 

head; however, all but one model was rejected when tracer data was introduced. Sensitivity 

and uncertainty analysis can potentially be used to identify which parameters are relevant to 

the predictions and to what extent they can be constrained by the available data. 

Third, the information content in the model testing data is in many studies relatively limited 

(e.g. Rojas et al., 2010c). The information content of model testing data relates to the amount 

and type of data available, but also the uncertainty of the data. For example, as discussed in 

relation to comparing calibrated hydraulic conductivity values to observed hydraulic 

conductivity values in Section 2.5.2, such comparison can be unreliable. The consequence of 

only limited information content in the model testing data is that discrimination among 

alternative models often cannot be made (Seifert et al. 2008). In addition, in a Bayesian 

context the consequence of limited information content in the testing data is that the prior 

probability will have a large influence on the posterior probability (e.g. Rojas et al., 2009).  

Another challenge relates to when a model can be considered falsified. Models are groups of 

hypotheses rather than a single hypothesis and many other assumptions are made in 

groundwater models such as model code and the characterization of lower order uncertainty. 

The model prediction thereby depends on many interactions of independent hypotheses and 

assumptions. Inconsistencies between model and data should therefore not necessarily be 

attributed to a single hypothesis and result in the falsification of that hypothesis (Pfister and 

Kirchner, 2017).  
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To accommodate these challenges, a more systematic approach to model development and 

testing is needed, where parts of the available data are used only for model testing. Ideally the 

data selected for model testing should depend on the model objective and the information 

content should be large enough to discriminate between models. There is thereby an 

opportunity for systematic (quantitative or qualitative) assessment prior to study (i) which 

aspects of the model will be relevant to the objectives and (ii) what data are needed to 

distinguish between hypotheses.  

2.6 HOW ARE DIFFERENT CONCEPTUALIZATIONS USED FOR 

PREDICTIONS? 

What has emerged from several of the studies so far in this review is that multiple plausible 

models may coexist for a given study area. So, how are predictions made with multiple 

models? For some studies (e.g. Foglia et al., 2013), one model (the most likely based on the 

highest support in data) is selected for predictive purposes (Section 2.6.1), while other studies 

(e.g. Tsai and Li, 2008) focus on ensemble predictions based on all plausible models (Section 

2.6.2). A modelling step that receives increasing attention in the literature is the identification 

of additional data needs in order to be able to discriminate between the alternative conceptual 

models (e.g. Kikuchi et al., 2015) (Section 2.6.3). The last four columns in Table A.2 present 

an overview of approaches being adopted when making predictions with multiple models. As 

mentioned in the introduction, several literature reviews (Diks and Vrugt, 2010; Schöniger et 

al., 2014; Singh et al., 2010) have already focussed on the model prediction and evaluation 

aspect of the multi-model approach. It is therefore not the aim to give a comprehensive 

review here, but to give a general overview of the most often applied approaches and instead 

focus on how the model development approach (discussed in Section 2.4) affects the 

predictions. 
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2.6.1 Model weighing and selection techniques  

Model weighing and selection techniques rank models according to how well they fit data, 

where the models with the lowest rank or weight have least support in the data. The purpose 

of ranking is to select the “best” model, but for many of the studies in Table A.2 ranking also 

provides weights for a model averaging technique (Section 2.6.2). For an excellent review of 

model selection techniques the reader is referred to Schöniger et al. (2014).  

In selecting between models, two principles often receive attention: The Principle of 

Parsimony (favouring the simplest model) and The Principle of Maximum Likelihood 

(favouring the model that gives the highest chance to facts we have observed). However, the 

Principle of Consistency (favouring models that do not contradict any effects we know) is 

even more important to consider when choosing between models (Martinez and Gupta, 2011). 

The most commonly applied ranking techniques in the analysed studies in Table A.2. are the 

Information Criteria, including Akaike’s Information Criterion (AIC) (Akaike, 1973), 

corrected AIC (AICc) (Sugiura 1978; Hurvich and Tsai 1989), Bayesian Information 

Criterion (BIC) (Schwarz, 1978) and Kashyap Information Criterion (KIC) (Neuman, 2003)  

and GLUE. The ranking from the information criteria depends on an error term representing 

model fit to observations and a penalty term that penalizes model complexity. In GLUE the 

ranking is only based on an error term.  

2.6.2 Model averaging techniques 

Model averaging techniques seek to summarize the results from the multiple model approach 

into an optimal prediction and a single measure of the total uncertainty by averaging the 

posterior distributions (Raftery et al., 2005). This posterior is obtained through an averaging 

approach that weighs the different model predictions according to the weight they obtained 

from the testing or ranking, combined with a prior probability of the individual models. For 



 

Chapter 2: Hydrogeological Conceptual Model Building and Testing: A Review 52 

 

excellent summaries of model averaging techniques the reader is referred to Diks and Vrugt 

(2010) and Singh et al. (2010).  

The most commonly applied approach to averaging predictions of conceptually different 

hydrogeological models is Bayesian Model Averaging (BMA) (Hoeting et al., 1999). The 

averaged predictions from multiple models have been shown to be more robust and less 

biased than the prediction from a single model (Vrugt and Robinson, 2007). Furthermore, 

they produce a more realistic and reliable description of the predictive uncertainty (Rojas et 

al., 2010a).  

The Bayesian model evidence is sometimes approximated with the information criteria to 

reduce computational effort constituting the Maximum Likelihood BMA (MLBMA) 

approach suggested by Neuman (2003). Given many of the information criteria are developed 

as model selection criteria, they tend to assign a large weight to only a few models (e.g. 

Nettasana, 2012; Rojas et al., 2010c; Ye et al., 2010), which is the main drawback of the 

MLBMA approach. This leads to the introduction of a statistical scaling factor to the 

information criteria (Tsai and Li 2008), leading to a flatter weight distribution among the 

alternative models.  

One of the disadvantages of the averaging procedures is that the system details of how each 

conceptual model affects the prediction, is lost (Gupta et al., 2012). To solve this problem, 

Tsai and Elshall (2013) suggested the hierarchal BMA (H-BMA) approach where the 

individual conceptual model components are evaluated through a BMA tree. In the BMA tree 

model components are organized at separate levels and the contribution of uncertainty of each 

aspect to the total uncertainty is quantified. By separating the uncertain model components in 

a BMA tree, the different aspects can be prioritized and provide an understanding of the 

uncertainty propagation through each uncertain aspect in the conceptual model.  
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2.6.3 Identify additional data needs 

Refining the prediction made by multiple models may sometimes be necessary in order to 

decrease the range of model predictions. Considering too many conceptual models, one may 

lose the purpose of model development because it indicates high model prediction uncertainty 

(Bredehoeft, 2005; Højberg and Refsgaard, 2005). Therefore, some studies have focussed on 

identifying additional data needs that could potentially discriminate between alternative 

conceptual models to reduce conceptual uncertainty (e.g. Kikuchi et al., 2015; Pham and Tsai, 

2015, 2016). The goal of collecting new data is not to confirm existing conceptual models, 

but to be able to discriminate between them.  

Kikuchi et al. (2015) offers a short review of optimal design studies in hydrogeology that 

attempt to identify the optimal measurement sets for monitoring networks to maximize a data 

utility function. For a few studies conceptual model discrimination is the design objective 

(Knopman et al., 1991; Knopman and Voss, 1988, 1989; Usunoff et al., 1992; Yakirevich et 

al., 2013), but this approach has yet not received much attention in hydrogeology according to 

Kikuchi et al. (2015).  

Identifying additional data needs will guide the post audit activity (Section 2.5.2.4) and the 

use of these data for model testing will ensure the data is independent from the model 

development data.  

2.6.4 Remaining challenges 

This review shows that current studies often either used criteria-based weights, either to 

identify the most plausible models or to provide weights for a model averaging technique. 

The current methods are generally limited by what is attainable through the model 

development approach. The main limitations and thereby consequences of the model 
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development approach for current methods on making predictions with multiple 

conceptualizations are discussed next.  

First, we can never make sure that we have developed a collectively exhaustive range of 

conceptual models (e.g. Ferré, 2017; Hunt and Welter, 2010; Nearing and Gupta, 2018) (as 

discussed in Section 2.4) but the prediction methods and the approaches in identifying 

additional data types rely on this. Undersampling the model space will lead to 

underestimation of the prediction uncertainty in the model averaging approaches. 

Furthermore, by focussing the collection of additional data on data that can discriminate 

between currently known conceptualizations, it is assumed that we already know all plausible 

conceptualizations. A challenge remains in directing additional data collection towards 

uncovering unknown unknown plausible conceptual models.  

Second, we can never make sure that the adopted range of models developed is valid (Type II 

error) (e.g Nearing and Gupta, 2018) but both the BMA and the criteria-based model 

weighing techniques rely on the best approximation of reality being in the ensemble. In the 

model selection approaches we can therefore never make sure that the best approximation of 

reality is selected as it will always be conditional on the developed range of models. In the 

model averaging approaches, adopting an invalid range of models leads to biased predictions, 

which remains a challenge.  

Third, in BMA it is assumed that models are mutually exclusive, so that some predictions are 

not given a higher weight following almost identical models give similar predictions. Not 

having mutually exclusive models gives a false sense of confidence in the modelling results, 

as a large number of alternative models considered will give the impression that a large range 

of the model space has been uncovered.   



 

Chapter 2: Hydrogeological Conceptual Model Building and Testing: A Review 55 

 

Fourth, the criteria-based model weighing techniques rely only on the Principle of Parsimony 

and the Principle of Maximum Likelihood, while the Principle of Consistency is disregarded 

through calibration. Through the calibration step the model is trained to compensate for a 

possible conceptual error through biased parameters (Refsgaard et al., 2012; White et al., 

2014) and the Principle of Consistency is therefore not taken into account. Criteria-based 

model weighing techniques use the same data twice in the modelling process, which as 

discussed in Section 2.5.1, leads to circular reasoning giving a false confidence in the result. 

Also, inconsistent assumptions in the conceptual model cannot be identified without 

introducing new data, but in the criteria-based model weighing techniques, models are readily 

rejected through zero-weight as they tend to inflate the weights of a few best models (e.g. Ye 

et al., 2010). The models that best compensate for conceptual errors through biased 

parameters are then combined to make predictions through model averaging, where it is 

claimed that conceptual model uncertainty is considered. However, given the biased 

parameters of the models, circular reasoning and rejection of plausible models, this result may 

be both biased and over-conservative.  

Last, the model averaging techniques assume that a single result is valid, however if the range 

of plausible model are mutually exclusive, they might lead to distinctly different predictions. 

One model might have a distinctly different prediction than the ensemble average or the 

probability mass may concentrate in multiple areas. This is the case for the synthetic example 

in the study by Kikuchi et al. (2015), where the spring flow depletion prediction is bimodal. 

In this case the average prediction is an outlier to where the probability mass is concentrated. 

The average prediction of an ensemble, especially bi- or multi-modally distributed ensembles, 

may not be a valid model outcome (Winter and Nychka, 2010). It is therefore preferable to 

summarise ensembles through more robust metrics, such as percentiles (e.g. 5th, 50th and 95th) 

as these will always be actual results made by a model. 
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Suggestions on solving the remaining challenges in relation to populating the model space 

(first, second, third point) has already been discussed in Section 2.4.5. The challenges 

mentioned in the remaining two points occur because of the reliance on methods that assume 

a single best model can be found. A way forward to accommodate these challenges could be 

full probabilistic approaches. Trans-dimensional inference methods have been applied in 

geophysics (e.g. Ray and Key, 2012) and reservoir geology (e.g. Sambridge et al., 2006) for 

similar problems. In these approaches, e.g. reversible jump Markov Chain Monte Carlo 

(Green, 1995), sampling occurs within the same dimension (conceptual model), but also 

between dimensions (conceptual models) exploring both the conceptual model space and the 

parameter space.  

2.7 CONCLUSION 

A review of 59 studies applying the multi-model approach for hydrogeological conceptual 

model development, has shown the following: 

1. A significant linguistic uncertainty still exists of what is considered conceptual 

uncertainty. There is a need for more consistent terminology. 

2. Current studies in conceptual model uncertainty often only focus on a single or limited 

set of conceptualization issues. There is a need for a systematic conceptualization 

approach to ensure all aspects of conceptualization are covered and documented. 

3. Current studies rarely consider the objective of the model before developing 

alternative models for the multi-model approach. The objective of the model should 

have an influence on both the model development and the data used for model testing.  

4. For each conceptual issue identified, alternative conceptual models should be 

formulated as hypotheses which, at least in theory, can be refuted. Hypothesis testing, 

especially bold hypothesis testing, is essential to increase system understanding and 

avoiding conceptual surprises. 
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5. In Bayesian inference with multiple models, informed priors are recommended, 

especially if the information content in the hypothesis testing data is low.  

6. The current multi-model prediction methods assume that there is a single outcome of 

the modelling process and that the developed models are mutually exclusive and 

collectively exhaustive. Presenting results requires a shift in mentality towards 

presenting ranges and acknowledging that unknown unknowns exist.  

The multi-model approach is superior to the consensus approach as it is transparent and 

accounts for conceptual uncertainty. However, to benefit fully from the multi-model 

approach, challenges remain in being more systematic in regard to both developing and 

testing alternative models. 
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3.1 ABSTRACT 

Conceptual uncertainty is considered one of the major sources of uncertainty in groundwater 

flow modelling. In this regard, hypothesis testing is essential to increase system 

understanding by refuting alternative conceptual models. Often a stepwise approach, with 

respect to complexity, is promoted but hypothesis testing of simple groundwater models is 

rarely applied. We present an approach to model-based Bayesian hypothesis testing in a 

simple groundwater balance model, which involves optimization of a model in function of 

both parameter values and conceptual model through trans-dimensional sampling. We apply 

the methodology to the Wildman River Area, Northern Territory, Australia, where we set up 

32 different conceptual models. A factorial approach to conceptual model development 

allows for direct attribution of differences in performance to individual uncertain components 

of the conceptual model. The method provides a screening tool for prioritizing research 

efforts while also giving more confidence to the predicted water balance compared to a 

deterministic water balance solution. We show that the testing of alternative conceptual 

models can be done efficiently with a simple additive and linear groundwater balance model 

and is best done relatively early in the groundwater modelling workflow. 
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3.2 INTRODUCTION 

The conceptualization of a groundwater flow problem is considered one of the major sources 

of uncertainty in groundwater flow modelling (Enemark et al., 2019a; Gupta et al., 2012). 

Conceptual uncertainty stems from the fact that the available data more often than not will fit 

more than one conceptual understanding (Bredehoeft, 2005). When dealing with conceptual 

uncertainty, hypothesis testing is essential to increase system understanding by refuting 

alternative conceptual models (Beven, 2018).  

The question we ask of the hypothesis testing exercise is framed by the model development 

approach. In practice, individual conceptual hypotheses cannot be tested through model based 

hypothesis testing; only collections of hypotheses can be tested (Nearing and Gupta, 2018; 

Oreskes et al., 1994). That is, if a hypothesis cannot be falsified in a model, it is only 

conditionally validated given the assumptions in other parts of the model. The challenge is to 

develop alternative models so that differences in performance can be attributed to individual 

hypotheses. For exploratory purposes, model development should aim at maximizing the 

difference between alternative models in order to gain most information from a potential 

model rejection (Caers, 2018; Guillaume et al., 2016).  

One branch of hypothesis testing is based on Bayesian probability theory. In Bayesian 

hypothesis testing, a prior belief about the suitability of a conceptual model is updated to a 

posterior belief by evaluating the model performance against data. The performance of 

alternative models are then compared in order to quantitatively rank and potentially reject 

hypotheses based on the so-called Bayes factor (Jeffreys, 1939; Kass and Raftery, 1995). 

Fields of application in hydrogeology include groundwater modelling (Rojas et al., 2010c, 

2010a), hydrogeophysics (Brunetti et al., 2017; Hermans et al., 2015) and solute transport 

modelling (Thomsen et al., 2016; Troldborg et al., 2010). In many applications, the data is not 

sufficient to allow for discrimination between the models, in which case Bayesian model 
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averaging is often applied where model predictions are weighed according to their 

performance against data (Höge et al., 2019).  

In hydrogeology, conceptual models are often tested in mathematical models, (e.g. Dausman 

et al., 2010; Remson et al., 1980). Since a model comprises the description of a system as a 

whole, all assumptions and the interaction of assumptions are tested at once. Also, data that 

does not directly relate to the conceptually uncertain feature can be integrated, because of the 

holistic testing of the system. 

A stepwise approach in regards to complexity to groundwater flow modelling and hypothesis 

testing is often promoted (Haitjema, 1995; Neuman and Wierenga, 2003). The simplicity of a 

model is in this paper defined in terms of setup- and run-time. In a stepwise approach, 

complexity is gradually built up, and involves testing the models in each step to better 

understand the relative importance of various assumptions. This is opposed to starting with a 

complex model where all known processes and structural aspects are incorporated “because 

they exist, not because they matter” (Haitjema, 1995).  

Although there seems to be consensus that testing simple models is advantageous, most 

model based hypothesis testing in hydrogeology happens in complex models. We argue that 

there is a need to also test models as early as possible with models being as simple as possible 

for at least four reasons. First, simple models can offer insight into system understanding that 

can be obscured in more complex models (Haitjema, 2006; Hunt and Zheng, 2012). Second, 

testing models early in the workflow enables identification of important sources of 

uncertainty and knowledge gaps to help prioritize research efforts, including data collection 

(Turnadge et al., 2018b). Third, pragmatic constraints on time and budget limit the number of 

models that can be tested and fewer models are tested when they are more complex 

(Refsgaard et al., 2012). Finally, rigorous model testing allows to identify conceptual 
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surprises early in the research effort, rather than detecting them after modelling has been 

completed. A stepwise approach to groundwater modelling is especially important when the 

multi-model approach is adopted; this is still mainly an academic exercise as developing 

several conceptual models rather than a single is a time-consuming task.  

One of the most widely applied and simplest approaches to represent a groundwater system is 

through an additive groundwater system water balance (Barnett et al., 2012; Dassargues, 

2018). Water balances are systematic records of the water fluxes going into and out of a 

groundwater system, and how these fluxes affect the stored volumes of water. The estimation 

of uncertainties in water balance components have been the topic of several studies (e.g. 

Baalousha, 2009; Sebok et al., 2016; Thompson et al., 2017), but conceptualization issues are 

rarely considered. By applying different conceptualizations, the number of parameters 

describing the water balance is variable. A trans-dimensional (Green, 2003) inverse problem 

is one where the dimension of the parameter space, and not just values of the parameters, is a 

variable to be solved for. Within the geosciences, trans-dimensional sampling has most often 

been applied in geophysics (e.g. Malinverno and Leaney, 2000), but has gained ground in 

hydrology in recent years (e.g. Jiménez et al., 2016; Mondal et al., 2010; Somogyvari et al., 

2017). In this paper we apply trans-dimensional sampling to a stochastic water balance in 

order to test conceptually uncertain components in the water balance problem.  

The aim of this study is to (1) develop a model development framework to test alternative 

conceptual models in a Bayesian framework, (2) apply it to a simple groundwater balance 

model and (3) evaluate if there is sufficient information in a water balance to gain insight on 

the conceptualization of a groundwater system. We apply the methodology to the Wildman 

River Area in the Northern Territory, Australia.  
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3.3 MATERIALS AND METHODS  

A simplified representation of the applied methodology is illustrated in Figure 3.1. In the 

stochastic water balance, different components, represented by different coloured circles, are 

included or excluded in the water balance equation in order to represent conceptual 

uncertainty. In each parameter realization, the magnitude of the components are varied in 

order to represent aleatory uncertainty (i.e. uncertainty that can be modelled stochastically), 

represented by the size of the circle in Figure 3.1a. The likelihood of each of these parameter 

and model realizations is based on the error of the water balance and a Metropolis-Hastings 

sampler (Hastings, 1970; Metropolis and Ulam, 1949) is applied over these likelihoods 

(Figure 3.1b) in order to estimate the probability of the different plausible models. The more 

likely a model is, the more often the sampling algorithm will visit the model. The posterior 

probability of a model is the number of accepted visits that is based on an acceptance 

probability. An inter-comparison of the posterior model probabilities reveals whether some 

models are preferred over others based on predefined threshold values of the Bayes factor. 

More details about the workflow illustrated in Figure 3.1, will be provided in Section 3.3.4. 
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Figure 3.1. a) Method for calculation of the water balance error, 𝛥. The colors of the circles represent different system 

subcomponents, C, while the size of the circles represents the magnitude of the subcomponent in each realization, 𝜃𝑖 with 𝑖 ∈

{1,… , 𝑁𝑅} where 𝑁𝑅 is the number of variable realizations. The combination of 𝜏ℎ with ℎ ∈ {1,… , 𝑁𝑈}, where 𝑁𝑈 is the 

number of uncertain model components, in the rows of 𝛵, constitutes a model, 𝑘𝑗 with 𝑗 ∈ {1, … ,𝑚} where 𝑚 = 2𝑁𝑈. The 

uncertain model components in 𝑈 includes 𝑁𝑈 components, while the certain model components in 𝐶 includes 𝑁𝐶 

components. b) Metropolis-Hastings sampling of the water balance realizations. The circles and arrows represent that are 

accepted or rejected based on the acceptance criteria, 𝛼. The dotted circles and arrows represent proposed moves that were 

not accepted. Figure 3.1b) modified from (Lee et al., 2015).  

In the following section, a detailed description of the methodology is presented. First, we 

propose an alternative model development methodology, and introduce the Bayesian 

inference and interpretation methods. The methodology described in these sections are 

entirely generic and therefore applicable to any type of model. Last, we describe the setup of 

the groundwater balance that facilitates effortless evaluation of numerous model realization.   

3.3.1 Model development method 

Conceptual models can generally be decomposed into a collection of hypotheses that describe 

the conceptual physical structure and the conceptual process structure (Gupta et al., 2012). 
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Note that the term conceptual model comprises a collection of hypotheses, while the term 

hypothesis concerns individual uncertain components in the conceptual model. More often 

than not, uncertain components will exist in the conceptual model, either to do with the 

geometry (e.g. hydrostratigraphy) or processes (i.e. boundary conditions) in the groundwater 

system. We suggest defining hypotheses for each conceptually uncertain component in the 

conceptual model in the following manner: 

- H0: The process/geometry does not matter for the prediction of interest.  

- HA: The process/geometry matters for the prediction of interest. 

In the null hypothesis (H0) the uncertain component is excluded, while the alternative 

hypothesis (HA) will include the uncertain component. Although we apply a Bayesian 

hypothesis testing framework, we borrow the null and alternative hypothesis terminology 

from null hypothesis significance testing to illustrate that the two hypotheses are mutually 

exclusive. This framework ensures models are mutually exclusive, so that the probability of 

the null hypothesis and the alternative hypothesis for a single uncertain component adds up to 

one. Making a statement about whether the conceptually uncertain component matters for the 

prediction of interest rather than whether it is present or not, places emphasis on the objective 

of the modelling exercise and makes the hypotheses easier to disprove. 

In a mathematical model, we can add an extra parameter to represent the conceptual 

uncertainty. We can turn an uncertain conceptual components on or off in function of 𝜏ℎ with 

ℎ ∈ {1,… ,𝑚} that takes a value of either 0 or 1. Here 𝜏ℎ = 0  represents the null hypothesis 

and 𝜏ℎ = 1 represents the alternative hypothesis. For the number of uncertain components, 

𝑁𝑈 , the number of possible combinations of the null and the alternative hypotheses is 𝑚 =

 2𝑁𝑈 . All possible models can be defined in matrix T, where each row represents an 

individual conceptual model, 𝑘𝑗 with 𝑗 ∈ {1,… ,𝑚} (Figure 3.1a): 
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Τ = [

𝜏1,1 𝜏1,2 ⋯ 𝜏1,𝑁𝑈

𝜏2,1 𝜏2,2 ⋯ 𝜏2,𝑁𝑈

⋮ ⋮ ⋱ ⋮
𝜏m,1 𝜏m,2 … 𝜏m,𝑁𝑈

]

𝑘1

𝑘2

⋮
𝑘m

 (3.1) 

By developing alternative models with a factorial design (Fisher, 1935) of uncertain model 

components, the difference in model performance can be attributed to individual uncertain 

model components.  

In hydrogeology, similar approaches have previously been presented, (e.g. Aphale and 

Tonjes, 2017; Pham and Tsai, 2016; Troldborg et al., 2010). This factorial approach is in 

contrast to approaches where alternative model development hypotheses are grouped in 

alternative models (Højberg and Refsgaard, 2005; Seifert et al., 2012; Ye et al., 2008a), thus 

limiting the information that can be gained from the modelling exercise. Hierarchical 

Bayesian Model Averaging (HBMA) (Chitsazan et al., 2015; Tsai and Elshall, 2013), 

presents a similar approach that also aims at separating and quantifying the contribution of 

uncertain model components to prioritize and provide an understanding of a conceptual 

model. The main difference between the model building approach in HBMA and the one 

presented here, is that in HBMA the hypotheses in are not necessarily mutually exclusive.  

3.3.2 Bayesian inference framework 

The goal of the Bayesian inference is to compute posterior probabilities for parameters and 

hypotheses based on data. When the dimension of the parameter vector is one of the 

unknowns, the joint posterior probability, 𝑝(𝑘, 𝜃𝑘|𝑌) of the model indicator 𝑘 and a 

parameter vector, 𝜃𝑘 given the data, 𝑌, becomes the basis of the inference and the problem 

can be categorized as trans-dimensional. The inference starts from a prior probability of 

models, 𝑝(𝑘), and a prior probability of parameters 𝑝(𝜃𝑘|𝑘), for each model, 𝑘. The prior is 

linked to the posterior through a likelihood function, 𝑝(𝑌|𝑘, 𝜃𝑘): 
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𝑝(𝑘, 𝜃𝑘|𝑌) = 𝑝(𝑌|𝑘, 𝜃𝑘) 𝑝(𝜃𝑘|𝑘) (3.2) 

The likelihood function describes the probability of the observed data given the model. To 

approximate the posterior probability we apply Markov Chain Monte Carlo simulation where 

each iteration consists of moving from the current parameter vector 𝜃𝑝 to the proposed 

parameter vector 𝜃𝑞 and from the current model 𝑘 to the proposed model, 𝑘′ (Figure 3.1b). If 

the proposal distribution is symmetric, each iteration step can be accepted with an acceptance 

probability, 𝛼, of (Sambridge et al., 2006): 

𝛼 = min {1,
𝑝(𝑌|𝜃𝑞 , 𝑘′)𝑝(𝑘′)

𝑝(𝑌|𝜃𝑝, 𝑘)𝑝(𝑘)
} (3.3) 

In practice, models are accepted if a uniform random number between 0 and 1 is lower than 

the acceptance probability, 𝛼. If the acceptance probability is lower than this random number 

between 0 and 1, the proposed model position (𝜃𝑞 , 𝑘′) is rejected and the algorithm stays at 

position (𝜃𝑝, 𝑘).  

3.3.3 Interpretation  

The Bayesian hypothesis testing problem involves interpretation of the marginal evidence for 

each model, 𝑝(𝑌, 𝑘). The marginal evidence is obtained by integrating the posterior over all 

plausible model parameters and describes how well the model explains data taking all 

plausible parameter combinations into account.  

For pairwise comparison of the evidence provided by data for models, the Bayes factor can be 

calculated. When the probabilities are converted to an odds scale (odds = probability/(1 – 

probability), the Bayes factor is defined as (Kass and Raftery, 1995):  

𝐵1,2 =
𝑝(𝑘1|𝑌)𝑝(𝑘2)

𝑝(𝑘2|𝑌)𝑝(𝑘1)
 (3.4) 

where the two indices, 1 and 2, are used here as a simple example to indicate two mutually 

exclusive models. When prior probabilities are uniform, the Bayes factor is equal to the ratio 
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of posterior probabilities. To ease interpretation, Kass and Raftery (1995) applied descriptions 

of the evidence provided for intervals of the Bayesian factor (Table 3.1). A Bayes factor 

below 1 shows support for the model in the denominator (𝑘2). These thresholds can be used 

as a guideline for decisions about model selection or rejection, however the interpretation 

may depend on context.  

Table 3.1. Interpretation of level of support for model 𝑘1 or 𝑘2 from Bayes factors as defined in equation (3.4), with 𝑘1 in the 

numerator and 𝑘2 in the denominator. When the probability of 𝑘1 and 𝑘2 is 1, the ranges of Bayes factor correspond to the 

probabilities in the “Probabilities” column.   

Bayes Factor Probabilities  Description 

< 0.005 < 0.075 Decisive support for k2 

0.005 – 0.05 0.075 – 0.182  Strong support for k2 

0.05 – 0.3 0.182 – 0.366  Substantial support for k2 

0.3 – 3 0.366 – 0.634  Inconclusive, no support for either k1 or 

k2 

3 – 20 0.634 – 0.818 Substantial support for k1 

20 – 150 0.818 – 0.925  Strong support for k1 

> 150  > 0.925 Decisive support for k1 

3.3.4 Water balance model 

The additive groundwater balance approach is based on the conservation of mass principle 

subtracting the water flowing out of the aquifer from the water flowing into the aquifer over a 

specified time period. We use positive numbers for water going into the aquifer and negative 

numbers for water going out of the aquifer. In this study we will independently identify the 

contribution of each component in the water balance, so that no component will have to be 

estimated from the residual. Not assuming perfect water balance closure is a requirement for 

the suggested method as the water balance error will be used to assess the likelihood of the 

model. The groundwater balance can be written: 

𝑄Input = −𝑄Output ± ∆𝑆 ± 𝛿 (3.5) 

Where 𝑄Input is the quantity of water entering the watershed (e.g. recharge, lateral recharge, 

river recharge); 𝑄Output is the quantity of water leaving the watershed (e.g. lateral discharge, 

river discharge, evapotranspiration); ∆𝑆 is the change in storage over the specified period of 
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time and 𝛿 is the error term that represents the remaining error in the water balance. The 

water balance may contain many subcomponents within the input and output component and 

a more general definition is therefore: 

𝛿 = ±𝑐1 ± 𝑐2 …± 𝑐N𝑐
 (3.6) 

Where each 𝑐 is a subcomponent in the water balance, either positive or negative, depending 

on whether water is flowing into or out of the aquifer and 𝑁𝑐 is the number of known 

subcomponents of the water balance. The different subcomponents are represented by 

different coloured circles in Figure 3.1a. 

Conceptual uncertainty in a water balance arises when some or all parts of the water balance 

components are hypothesized to exist, but not known to exist. We set up several hypotheses 

for the uncertain water balance components using the method described in Section 3.3.1: 

- H0: Water balance component does not matter for the prediction of interest.  

- HA: Water balance component matters for the prediction of interest.  

By applying the 𝜏 parameter to capture conceptual uncertainty as described in Section 3.3.1, 

the water balance can then be expanded to: 

𝛿 = ±𝑐1 ± 𝑐2 …± 𝑐N𝐶
± 𝜏1𝑢1 ± τ2𝑢2 …± 𝜏N𝑈

𝑢N𝑈
 (3.7) 

Where each 𝑢 represents a conceptually uncertain subcomponent who are all associated with 

a 𝜏 value and 𝑁𝑈 is the number of conceptually uncertain components.  

The uncertain components can be organized in a matrix U (Figure 3.1a) where the number of 

rows equals the number of uncertain components, 𝑁𝑈, while the certain components are 

organized in the matrix C, where the number of rows equals the number of certain 

components, 𝑁𝐶: 
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𝑈 = [

𝑢1,1 𝑢1,2 ⋯ 𝑢1,𝑁𝑅

𝑢2,1 𝑢2,2 ⋯ 𝑢2,𝑁𝑅

⋮ ⋮ ⋱ ⋮
𝑢𝑁𝑈,1 𝑢𝑁𝑈,1 … 𝑢𝑁𝑈,𝑁𝑅

] , 𝐶 = [

𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑁𝑅

𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑁𝑅

⋮ ⋮ ⋱ ⋮
𝑐𝑁𝐶,1 𝑐𝑁𝐶,1 … 𝑐𝑁𝐶,𝑁𝑅

] (3.8) 

In both matrices each column represents an individual parameter realization, where 𝑁𝑅 is the 

number of parameter realizations. In each realization the value of the subcomponent will be 

different, illustrated by the different sizes of the circles in Figure 3.1a. The magnitude of the 

subcomponents is modelled stochastically by drawing the value from a predefined prior 

distribution.  

By computing the dot product of T and C and adding U, all models can be simulated at the 

same time for all parameter vectors. This will yield a matrix Δ in which each row presents 

realizations within each individual conceptual model, 𝑘𝑗 with 𝑗 ∈ {1,… ,𝑚} and each column 

represents an individual realization based on different parameter vectors 𝜃𝑖 with 𝑖 ∈

{1,… ,𝑁𝑅} (Figure 3.1a): 

∆= 𝑇 ∙ 𝐶 + 𝑈 =

[
 
 
 
𝛿1,1 𝛿1,2 ⋯ 𝛿1,𝑁𝑅

𝛿2,1 𝛿2,2 ⋯ 𝛿2,𝑁𝑅

⋮ ⋮ ⋱ ⋮
𝛿p,1 𝛿𝑝,2 … 𝛿p,𝑁𝑅]

 
 
 
𝑘1

𝑘2

⋮
𝑘𝑝

𝜃p,1 𝜃p,2 … 𝜃p,𝑁𝑅
 

 (3.9) 

In Figure 3.1a, a zero in the T matrix will exclude the subcomponent in matrix Δ while a one 

will include the subcomponent illustrated by the presence and absence of the coloured circles 

in matrix Δ. This setup of the water balance problem takes advantage of parallelization and 

vectorization, enabling millions of random realizations to be realized per second. The 

metropolis sampling algorithm described in Section 3.3.2 can be defined on top of the already 

generated realizations by sequentially stepping through the columns of the matrix (Figure 

3.1b). The proposed model 𝑘′ is randomly chosen with weights according to the likelihoods 

of the different models based on the same parameter vector. 
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Likelihoods (𝑝(𝑌|𝑘, 𝜃𝑘)) can be computed based on the error of the water balance in matrix 

Δ. The water balance error 𝛿 is scaled to the magnitude of the input to the water balance 

(𝑄Input) to get a relative error. By using the relative error, a larger error is accepted for water 

balances with large water balance components, and smaller error for water balances with 

small water balance components. All priors will be constrained by data, so that all samples of 

the magnitude of the water balance components are considered plausible. 

The relative error term is assumed to be normally distributed with a mean of 0 and a standard 

deviation 𝜎 : 

𝑝(𝑌|𝑘, 𝜃𝑘) =
1

√2𝜋𝜎2
exp

(
𝛿

𝑄𝐼𝑛𝑝𝑢𝑡
− 0)

2

2𝜎2
 

(3.10) 

The observation error is here assumed to be captured by the parameters set of the prior 

probabilities of parameter values and 𝜎 is therefore only related to the remaining conceptual 

error in the model representing the unknown unknown conceptual components. The standard 

deviation of the water balance error directly controls the acceptance rate of the water balance 

realizations; as 𝜎  increases, more realizations will be accepted. It should be stated that as for 

all error formulas, errors of opposite sign will cancel out, reducing the overall error, and a 

conceptual model with many unknown unknowns might therefore perform well in this 

framework. 

As the magnitude and number of unknown unknowns in the model is unknown, there is no 

way of determining the value of 𝜎. The robustness of model ranking as defined by Schöniger 

et al. (2015b), has been evaluated in a sensitivity analysis by varying the standard deviation of 

the relative error of the water balance between 0 % and 10 %. To avoid making wrong model 

selection decisions based on the results, we have selected a standard deviation of the model 

error that is least decisive. That is, the difference between the probability of the null and the 
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alternative hypotheses are closest to each other. The least decisive value is the most 

conservative choice when the model objective is to differentiate between models. From the 

sensitivity analysis we determined that the most conservative value is 𝜎 = 2.5 %.  

3.4 CASE STUDY  

The Wildman River Area (Northern Territory, Australia) was chosen as case study area 

(Figure 3.2). The area covers about 400 km2 in the northern part of Northern Territory, next to 

the Kakadu National Park, between latitudes -12.77 and -12.47 and between longitudes 131.7 

and 131.93.  

 

Figure 3.2. The study area is a part of the Wildman River Area located between Mary River and Kakadu National Park in 

Northern Territory, Australia.  
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The topography in the catchment is relatively flat, and ranges from 100 m ASL in the south to 

20 m ASL in the north (Figure 3.2). Most of the land use is limited to cattle grazing and 

conservation. Mary-River National Park lies in the south-west of the area and Kakadu 

National Park to the east. The area has a tropical climate with about 98% of annual 

precipitation (1450 mm) occurring in the wet season, December to April (Turnadge et al., 

2018a).  

The basement geology in the region mainly consists of three units of the Mount Partridge 

Group which is a part of the Pine Creek Orogen: the Wildman Siltstone, the Koolpinyah 

Dolostone and the Mundogie Sandstone. The basement is tight to isoclinally folded with a 

strike of between 180 and 200 degrees. Unconsolidated sediments deposited in the Money 

Shoal Basin are unconformably overlaying the basement. These sediments are flat laying but 

repeated incision and infill through the Cenozoic is thought to have created two southwest-

northeast oriented palaeovalleys. Tickell and Zaar (2017) referred to these sediments as 

Mesozoic-Cenozoic (Mz/Cz) sediments, as ambiguity surrounds their age.  

The main aquifers consist of a semi-confined Mz/Cz sand aquifer and a confined dolostone 

aquifer that are assumed to be connected, supported by similarity in hydrogeochemistry 

(Tickell and Zaar, 2017). Very limited topographical and piezometric data in the area 

suggests that the main flow direction is vertical with a very slow horizontal component. 

Two major investigations have been carried out in the area by the Northern Territory 

Department of Environment and Natural Resources in relation to a water resource assessment 

for the area Tickell and Zaar (2017) and CSIRO as part of the Northern Australia Water 

Resources Assessment (Turnadge et al., 2018a, 2018c). (Tickell and Zaar, 2017) provided a 

first-order assessment of the regional-scale groundwater balance, while Turnadge et al., 

(2018a) provided a refinement of water balance components and conceptual model.  
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In the following Section 3.4.1, we will present the components that constitute the 

groundwater balance of the Wildman River Area. The different components will be computed 

based on parameter values described in Section 3.4.2 and on the alternative conceptual 

models described in Section 3.4.3. The parameter values and conceptualizations used here are 

based on abovementioned investigations.  

3.4.1 Water balance components 

The simplified groundwater balance of the Wildman River Area is written as: 

0 = 𝑄𝑅 − 𝑄𝐿 − 𝑄𝐵 + ∆𝑆 + 𝛿 (3.11) 

where 𝑄𝑅 is the net recharge to the water table from rainfall accounting for the losses due to 

plant transpiration or direct soil evaporation (Doble and Crosbie, 2017). Net recharge is 

calculated based on a recharge area (𝐴𝑅) and a recharge rate (𝑅𝑅):  

𝑄𝑅 = 𝐴𝑅 ∙ 𝑅𝑅 (3.12) 

𝑄𝐿 is the lateral groundwater outflow from the aquifers to adjacent areas. The lateral outflow 

for the Wildman River Area is calculated through cross-sections based on Darcy’s law. 

Darcy’s law depends on the transmissivity of the aquifer (𝑇𝑙), the width of the aquifer (𝑊𝑙) 

and the hydraulic gradient perpendicular to the cross-section (∆ℎ𝑙): 

𝑄𝐿 = 𝑇𝑙 ∙ 𝑊𝑙 ∙ ∆ℎ𝑙 (3.13) 

The lateral discharge consists of up to four subcomponents; lateral discharge across a 

northern boundary and a north-eastern model domain boundary, through the Mz/Cz sand 

aquifer and finally through the Koolpinyah Dolostone aquifer (Figure 3.3). The remaining 

boundaries in the model domain in south and northwest is bounded by impermeable (an order 

of magnitude less transmissivity) bedrock.  

𝑄𝑏 is the baseflow from the aquifer to streams and lagoons. In every time step (𝑡), total 

streamflow (𝑦𝑡) consists of overland flow that reaches the stream quickly, hence named quick 
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flow (𝑓𝑡), and baseflow (𝑄𝐵) that originates from groundwater discharge. The fraction of the 

streamflow that makes up the baseflow component is described by the baseflow index(𝛽) 

(Eckhardt, 2008): 

𝑄𝐵,streams = 𝑦𝑡 − 𝑓𝑡 = 𝛽 ∙ 𝑦𝑡 (3.14) 

The baseflow to streams consist of up to five subcomponents; Jimmy’s Creek, Opium Creek, 

Swim Creek, Cattle Creek, Ben Bunga Creek (Figure 3.3). The groundwater discharge to 

lagoons can be calculated based on seepage rate (𝑅𝐿) and lagoon area (𝐴𝐿):  

𝑄𝐵,lagoons = 𝐴𝐿 ∙ 𝑅𝐿 (3.15) 

The same seepage rate is assumed for all lagoons in the area.  

The final water balance component relates to groundwater storage, ∆𝑆. Based on the 

observation  the groundwater level returns to the similar level after each year (Turnadge et al., 

2018a), the annual storage is assumed to be around 0 m3.  

For the Wildman River area, transient data for each of the water balance components is 

scarce, therefore a steady-state water balance is considered. However, the Wildman River 

Area is quite dynamic as the aquifers are filled up in the wet season by the high rainfall 

events and starts emptying again in the dry season when only very limited rainfall occurs. 

Given the large difference between wet and dry season, we will set up a steady-state water 

balance for both the end of the dry season (1. December) and the end of the wet season (1. 

April). The wet season and dry season model will be combined into an annual model, so that: 

𝛿 = (𝑄𝑅,wet + 𝑄𝑅,dry) − (𝑄𝐿,wet + 𝑄𝐿,dry) − (𝑄𝐵,wet + 𝑄𝐵,dry) + (∆𝑆wet

+ ∆𝑆dry) 

(3.16) 



 

Chapter 3: Bayesian Hypothesis Testing in a Stochastic Water Balance Model 76 

 

3.4.2 Water balance parameters 

An overview of the parameter values used in the stochastic water balance model is shown in 

Table 3.2. A discussion of the derivation of the prior parameter distributions is found in 

Appendix B.1- B.4. Uniform distributions are used for all parameters defined by the 

minimum and maximum value, so that all parameter values in the ranges are equally likely. 

All the defined rates are used as spatial averages over the whole area. 

Table 3.2. Parameter values describing the water balance components in the Wildman River Area. The parameters are 

described with a uniform distribution between the minimum and the maximum value in the dry and in the wet season. 

Parameters that describe areas, width and transmissivities are constant over the year, and therefore only described by one set 

of a minimum and a maximum value. The term sand refers to Mz/Cz sand, while the term Dolostone refer to the Koolpinyah 

Dolostone.  

Component Parameter Dry 

Min 

Dry 

Max 

Wet 

Min 

Wet 

Max 

Unit 

Net 

Recharge 

Rate 0 0 32 178 mm/y 

Area 350 400 350 400 km2 

Lateral 

discharge  

Transmissivity Dolostone 109 2630 109 2630 m2/d 

Transmissivity Sand 163 1920 163 1920 m2/d 

Gradient North 0.0003 0.0009 0.0004 0.0012 - 

Gradient Northeast 0.0002 0.002 0.0004 0.004 - 

Width Dolostone North 3000 10000 3000 10000 m 

Width Dolostone 

Northeast 1000 7000 1000 7000 

m 

Width Sand North 1000 13000 1000 13000 m 

Width Sand Northeast 1000 7000 1000 7000 m 

Lagoons Area 2.9 3.2 2.9 3.2 km2 

Rate 0.5 2 0.5 2 mm/d 

Streams/ 

springs 

Baseflow Jimmy’s Creek 0.06 0.09 0.2 0.3 m3/d 

Baseflow Opium Creek 0.05 0.07 0.2 0.3 m3/d 

Baseflow Swim Creek 0.03 0.1 0.7 2.1 m3/d 

Discharge Cattle Creek 0.001 0.005 0.005 0.03 m3/d 

Discharge Ben Bunga 

Creek 0.001 0.005 0.005 0.03 

m3/d 

Base Flow Index 0.22 0.81 0.22 0.82 -  

Annual storage 0 0 0 0 - 

3.4.3 Alternative conceptual models 

Even though many investigations (Tickell and Zaar, 2017; Turnadge et al., 2018a, 2018c) 

have been carried out in the Wildman River Area recently, there are still several open 

conceptual questions. In this paper we focus on the conceptual issues that have a direct 

influence on the annual water budget of the catchment. In the following discussion, five 
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uncertain water balance components will be identified, and alternative hypotheses will be 

defined that demonstrate the conceptual issues; in a subsequent step their influence on the 

water balance will be quantified. The definition of hypotheses will be based on the method 

specified in Section 3.3.1. An overview of the conceptual model and conceptual uncertainties 

in the Wildman River Area is shown in Figure 3.3. 

 

 Figure 3.3. Conceptually uncertain components in Wildman River Area and hypotheses developed to characterize the 

conceptual uncertainty.  

Given the spatially sparse groundwater level observations in the study area, the groundwater 

flow around the northern boundary of the system can be interpreted in different ways. In one 

instance (Tickell and Zaar, 2017), groundwater was considered to flow north across the 

boundary along a northern palaeovalley (i.e. out of the domain) contributing to lateral 

discharge in the water balance. However, observations may also indicate a northeastwards 

groundwater flow, in which case groundwater will flow along the northern boundary rather 

than across, resulting in limited lateral discharge across the boundary. Two alternative 

hypotheses regarding the northern boundary component of lateral discharge are defined: 
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- H0: A northern palaeovalley does not exist and the groundwater flows along (i.e. 

parallel to) the northern boundary of the system and therefore no lateral discharge into 

or out of this area occurs. 

- HA: A northern palaeovalley exists and the groundwater flows across the northern 

boundary and therefore contributes to the total lateral discharge out of the model 

domain. 

Based on borehole observations and the location of what is inferred to be sinkholes developed 

above the Dolostone, Tickell and Zaar (2017) have interpreted the extent of the Koolpinyah 

Dolostone as a relatively continuous aquifer. However, the fact that the basement geology 

including the Koolpinyah Dolostone is folded tightly indicates the plausibility that the 

Dolostone aquifer consist of more or less structurally isolated aquifers. In this case only the 

Mz/Cz sand aquifer would contribute to lateral discharge while the Dolostone aquifer would 

not. This leads to the following hypotheses regarding the Dolostone component of lateral 

discharge: 

- H0: The Koolpinyah Dolostone is a compartmentalized aquifer and therefore its 

contribution to lateral discharge is unimportant. 

- HA: The Koolpinyah Dolostone is a continuous aquifer and contributes significantly to 

lateral discharge. 

Ben Bunga and Cattle Creek are ephemeral streams that drain northeastwards towards 

Kakadu National Park. They cease to flow in the early dry season but maintain several 

isolated permanent pools that are hypothesized to receive groundwater flow through diffuse 

streambed discharge (Tickell and Zaar, 2017). However, their ephemeral nature makes this a 

questionable assumption. It is considered very unlikely that only one of these creeks would 
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receive groundwater and the other not; therefore, the hypotheses for both creeks are combined 

into a single one: 

- H0: Ben Bunga and Cattle Creek are a rainfall-runoff feature, disconnected from the 

groundwater system.  

- HA: The streamflow in Ben Bunga and Cattle Creek originates from both groundwater 

discharge and rainfall-runoff.  

Swim Creek is an ephemeral stream that drains the central region of the Wildman River Area 

and flows northwards. It has ceased to flow at the end of the dry season in 15 out of 29 years 

of the recorded stream flow. The baseflow index was previously estimated to be around 50 % 

(Tickell and Zaar, 2017). A different conclusion was obtained by comparing the streamflow 

record from Swim Creek to that from Opium Creek (Turnadge et al., 2018a): streamflow for 

the former is generally an order of magnitude larger than that for the latter. This was 

attributed to the much larger surface water catchment of Swim Creek, which led to the 

assumption that Swim Creek is primarily fed by rainfall-runoff. The hypotheses regarding 

Swim Creek are defined as follows: 

- H0: Swim Creek is a rainfall-runoff feature, disconnected from the groundwater 

system.  

- HA: Streamflow in Swim Creek originated from groundwater as well as rainfall-

runoff. 

A large number of shallow depressions exist in the Wildman River area that are interpreted to 

be sinkholes formed on top of the Koolpinyah Dolostone (Tickell and Zaar, 2017). Some of 

these shallow depressions serve as permanent water features, referred to as lagoons, which 

has led Turnadge et al. (2018a) to hypothesize that they are groundwater discharge features. 

However, using a mass balance approach, groundwater discharge to the lagoon was found to 
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only occur during wetter than average climate conditions (Tickell and Zaar, 2017). Until date 

only the largest of the Twin Sisters lagoons has been subject to investigations, involving the 

comparison of lake stage recession to evaporation rate (Graham, 1985). Based on one year of 

observations, it was estimated the lagoon was a flow-through feature. In yet another study, 

analysis of the noble gas tracer Rn-222 in surface water samples collected from the lagoon, 

also did not yield conclusive results in regards to whether or not groundwater inflow occurs 

(Turnadge et al., 2018a). These ambiguous findings around potential groundwater 

contribution to Twin Sisters Lagoon makes this an important conceptual uncertainty. The 

other permanent lagoons in the area (Number One Billabong, Lake Lucy and Mistake 

Billabong) are assumed to behave in the same way as the Twin Sisters lagoons. The 

hypotheses regarding permanent lagoons are defined as follows: 

- H0: The permanent lagoons are rainfall-runoff features, disconnected from the 

groundwater system.  

- HA: The permanent lagoons are, at least in part, groundwater discharge features.  

In the above discussion, a total of five uncertain water balance components have been 

identified, while two alternative models have been defined for each uncertain component. 

Using the factorial design approach described in Section 3.3.1 thus gives 25 or 32 individual 

models that will be quantitatively evaluated.  

We assign a uniform prior probability to the 32 alternative combinations, i.e. all models are 

considered equally likely. By using uniform priors, we expect that the evaluation of internal 

model consistency expressed as the likelihood function (Section 3.3.4) dominates the 

resulting posterior distribution. Alternatively, the prior could have been based on an expert 

elicitation process, as in (e.g. Meyer et al., 2007; Ye et al., 2008b), to be able to further 

differentiate between the models. However, the scope of the paper is to evaluate whether 
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there is enough information in the water balance offer insight into the conceptualizations. 

Expert elicitation of the prior probabilities is therefore beyond the scope of this paper.  

3.5 RESULTS 

In this section, we apply the Bayesian hypothesis testing framework to the stochastic water 

balance in the case study. On a 2.4 GHz computer with 8 GB RAM every 10.000 realisation 

takes ~ 1s with an acceptance rate of the water balance realizations of ~ 27 %. A graphical 

description of the setup of the model is seen in Figure 3.1. The illustration shows that the 

forward model, i.e. the groundwater balance problem, is linear and additive, and the setup 

allows for vectorization and parallelization, which allows for evaluation of a large set of 

model versions. All implementations, calculations and sampling is performed in the Python 

3.6 computing environment with the software stack of NumPy (Oliphant, 2006) while the 

figures are prepared with Matplotlib (Hunter, 2007).  

3.5.1 Posterior probabilities of hypotheses based on assumed error 

The simple and conditional probabilities for the alternative hypotheses (HA) are shown in 

Figure 3.4. The simple probabilities shown in Figure 3.4a is the marginal probability of a 

subset of 16 out of the 32 different models (H0 vs HA). The conditional probability shown in 

Figure 3.4b is the marginal probability of a subset of 8 out of the 32 different models that 

meets the conditions described in the parentheses. The corresponding probabilities for the null 

hypotheses (H0) (only shown for Figure 3.4a) can be obtained as 1 subtracted the 

probabilities for alternative hypothesis. By applying Bayesian hypothesis testing, we have 

implicitly assumed that a quasi-true model can be identified from the alternative model 

ensemble (Höge et al., 2019). Given more data, the probabilities for HA or H0 would therefore 

further approach either 1 or 0.  
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The simple probabilities (Figure 3.4a) show that a clear preference for the alternative 

hypothesis is supported only for the conceptually uncertain Swim Creek with a value of 39 % 

and 61 % for the null and alternative hypothesis, respectively. The support can, however, still 

only be described as “Inconclusive” (Section 3.3.3), based on a Bayes factor of less than 3 

(63.5 %, Table 3.1). For the rest of the conceptual uncertain components, the change between 

the prior probability of 0.5 and the posterior probability is even smaller. This indicates that 

the information content in the closure of the water balance is too small to sufficiently 

differentiate between models for valid model rejection to occur. A balanced water budget can 

result from sufficiently accounting for all water balance components, but can also arrive from 

globally balanced errors (Dassargues, 2018). The results therefore suggest that without other 

constraints, all suggested conceptual models are valid because they are either true or can 

sufficiently balance errors in the conceptualization globally. A possible strategy to increase 

model discrimination is to further constrain parameter priors by collection of more data 

(Pham and Tsai, 2016). With further constraints on the parameter priors, i.e. reduction of 

parameter ranges in Table 3.2, the ability of the different models to balance errors globally 

reduces as the magnitude of the water balance components will vary less. Another strategy to 

increase the ability to differentiate between models is to apply informed priors, but as already 

stated in Section 3.4.3, this is beyond the scope of this paper.  

The conditional probabilities (P(X|Y)) (Figure 3.4b) describe the probability of a hypothesis 

X given the assumption that another hypothesis Y is true. It thereby offers a preview of how 

the probabilities would change for hypothesis X if we found hypothesis Y to be true, e.g. by 

collecting additional data.  

Provided the alternative hypothesis of any uncertain component, but Swim Creek, the 

conditional probabilities are higher in case an alternative hypothesis (P(X HA|Y HA)) rather 

than a null-hypothesis (P(X HA|Y H0)) is used as the other given event (i.e. other uncertain 
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component). This indicates a general preference for applying more components to balance the 

water budget. That is, if none of the additional uncertain discharge components (alternative 

hypotheses) are applied, there is a surplus in the water balance. However, when Swim Creek 

model component is involved, a trade-off with the remaining alternative hypotheses can be 

observed. This is especially true for the conditional probability of the alternative hypothesis 

for Swim Creek given the Dolostone (P(Swim HA|Dolo H0)) and the northern boundary 

(P(Swim HA|North H0)) hypotheses, where the support becomes “substantial” (both 0.65), 

when the null-hypotheses are applied. This indicate that the input to the water balance is not 

large enough to account for both the alternative hypotheses for Swim Creek and the 

Dolostone or Northern boundary, that all include extra discharge terms. In conclusion, the 

largest change in conditional probability can be observed for when Swim Creek is involved 

and future field work should therefore aim at resolving this conceptual uncertainty first.  

  

Figure 3.4. Simple (a) and conditional (b) posterior probabilities of hypotheses concerning uncertain water balance 

components. (b) should be read: probability of row, given column, e.g. P(Dolo HA|North HA). In (b) the inverse probability 

(not shown here) is P(X HO|Y HA) = 1 - P(X HA|Y HA) and P(X HO|Y HO) = 1 - P(X HA|Y HO), respectively. All started 

with uniform probability (0.5).  In Figure 3.2, names in this figure refers to: BB/C = Ben Bunga and Cattle Creek, Dolo = 

Dolostone, Lag = Lagoons, North = Northern boundary and Swim = Swim Creek.  
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3.5.2 Model Predictions 

The prior and posterior predictions for recharge, lateral discharge and baseflow as obtained 

from the stochastic water balance calculations are shown in the top row of Figure 3.5. The 

obtained predictions represent a multi-model probability density function that takes account 

of all the conceptual models that seem plausible under the current state of knowledge as well 

as the parameter uncertainty. These results are compared with the deterministic estimates for 

the different water balance components in Tickell and Zaar (2017), who provided two 

independent water balance estimates, shown as vertical lines in Figure 3.5.  

Compared to the deterministic solutions from Tickell and Zaar (2017), the posterior 

probability has not changed significantly. However, in our stochastic predictions, both 

parameter and conceptual uncertainty are accounted for, we now have a water balance of 

which the confidence limits are quantified.  

The prior probability for baseflow is highly bimodal, caused by the trans-dimensional 

sampling between models that include extra baseflow components (alternative hypotheses for 

Ben Bunga and Cattle Creek, Lagoons and Swim Creek) and the models that exclude the 

extra baseflow component (corresponding null hypotheses). The prior probability for recharge 

and lateral discharge is however unimodal, suggesting that the conceptual uncertainty is of 

less importance than the parameter probability. 

The posterior probability for recharge and baseflow is multimodal (Figure 3.5, top row). 

While the prior probability for the baseflow is already multimodal, the prior for recharge is 

not and the shape of the posterior is therefore caused by the conditioning to the closure of the 

water balance. Overall the range of the posterior of the recharge is shown to be reduced to a 

maximum of 60 GL/y, whereas the maximum for the prior distribution is 70 GL/y. However, 

the posterior probability of the lateral discharge and baseflow has not changed significantly, 
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indicating low information in data (the balancing of the water budget), because a trade-off 

exist between the output components. Both lateral discharge and baseflow are loss terms in 

the water balance that will respond in a similar way when poorly defined parameter 

distributions are used, as is the case here.   

 

Figure 3.5. Prior and posterior probability of water balance components recharge, lateral discharge and baseflow. Top row 

shows the probabilities for all conceptual models, while in the remaining rows the posterior probabilities are subdivided into 

the null and the alternative hypothesis regarding the row. Individual estimates from (Tickell and Zaar, 2017) of the three 

water balance components is shown as vertical lines. Note the difference in scale for the prior and posterior probabilities.  

The impact of different hypotheses on the simulated recharge, lateral discharge and baseflow 

is shown in Figure 3.5; each row represents posterior probability subdivided into the models 

that includes the null and the alternative hypotheses (16 models each) for one of the five 
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uncertain components, as referenced in the row header. The within model variance is 

represented by either the red or blue probability distribution depending on the chosen model, 

while the between model variance is represented by the difference between the red and the 

blue probability distribution.  

In three out of five cases, we can observe an increase in the amount of recharge that can be 

supported in the model when an alternative hypothesis (blue) is applied, as all alternative 

hypotheses add an extra discharge component to the water balance. In only two cases 

recharge does not increase: i.e., for the conceptual uncertainty regarding Ben Bunga and 

Cattle Creek (row BB/C) and the Lagoons (row Lag). While these components directly 

impact the baseflow prediction, they are shown to have very little impact on recharge and 

lateral discharge. The conceptual uncertainty regarding the Dolostone (row Dolo) and the 

northern lateral boundary (row North), both directly impacting the lateral discharge 

prediction, is however shown to have a more pronounced indirect impact on recharge (i.e. the 

probability distribution shifts to higher values by about 10 GL/y). The largest impact on the 

overall predictions is, however caused by the conceptual uncertainty regarding Swim Creek 

(row Swim). The trans-dimensional sampling between including and excluding the discharge 

component from Swim Creek hypothesis directly impacts baseflow, which becomes bimodal, 

and thereby indirectly affects the prediction of recharge which also becomes bimodal.  

Again, it is shown that the reduction of uncertainty would be greatest if we were able to 

resolve the Swim Creek conceptual uncertainty e.g. by additional field work. The additional 

field work could target Swim Creek directly, but it could also aim at reducing the aleatory 

uncertainty of net recharge component. Figure 3.5 shows that if the net recharge to the area is 

more than 40 GL/y the alternative hypothesis for Swim Creek is true. However, if the net 

recharge to the area is less than 20 GL/y the null hypothesis for Swim Creek would be true.  
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3.6 DISCUSSION 

The results presented in Section 3.5 are consistent with what is presented in other 

groundwater modelling studies (e.g. Rojas et al., 2008, 2010c, 2010a; Schöniger et al., 2015a; 

Troldborg et al., 2010; Zeng et al., 2015), in that we have obtained posterior model 

probabilities and a probability distribution of predictions including both parameter and 

conceptual uncertainty. However, the methods with which these model results have been 

obtained, differ. The advantages and disadvantages of our approach compared to the above-

mentioned studies is discussed in the following. 

We applied a factorial design approach, where all possible combinations of hypotheses are 

tested, which enables the attribution of differences in model performance, directly to specific 

conceptually uncertain components. The factorial design approach can isolate the causes 

affecting the model predictions. However, as every new conceptually uncertain component 

doubles the number of possible models (assuming two hypotheses are defined for each 

uncertain component), the problem can quickly become time consuming. This practical 

barrier is referred to as the fallacy of factorial design in (Betini et al., 2017).  

To avoid making the problem numerically intractable, we have applied a very simple additive 

and linear model setup (rather than a 3D numerical groundwater flow or transport model), 

which enables us to run millions of models in the matter of seconds. The studies we compare 

our results to run between 4,000 and 300,000 realizations. By being able to run more 

realizations, we ensure a more stable result and that there is no practical limitation to how 

many different conceptual models can be evaluated. The simplicity of the model setup allows 

us to gain insight, without undue amount of time, which can be brought forward into 

subsequent more complex modelling.  
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The disadvantage of our simple approach is that the data the models is tested against is 

limited. In the applied setup the only data used to evaluate the models against, is the 

assumption that the water budget is balanced. All other data in the case study was used to set 

up the priors for the parameters describing the water balance. In contrast, the above-

mentioned studies included testing data such as hydraulic head, contaminant concentrations 

and pumping tests. The limited available evaluation data in the suggested approach means 

that we will not be able to discriminate between models to the same extent as the above-

mentioned studies. To improve the discriminatory power of this modelling approach more 

data should be reserved for model evaluation.   

The model cannot underpin environmental management but is an initial screening tool built to 

allow the modeler to gain insight into the system functioning, identify important sources of 

uncertainty and prioritize research efforts. In a stepwise approach to groundwater modelling 

(discussed in Section 3.2), the suggested approach would constitute one of the initial steps 

after the hydrogeological characterization before moving towards testing in a more complex 

mathematical model. This model testing step would then inform the succeeding steps 

ensuring a transparent workflow.  

3.7 CONCLUSION 

We presented an approach to model-based Bayesian hypothesis testing in a simple additive 

groundwater balance model, which involves optimization of a model in function of both 

parameter values and conceptual model. The proposed systematic conceptual model 

development method allows for directly attributing the differences in performance of 

alternative models to individual uncertain components in the conceptual model.  

The method was demonstrated on a water balance model for Wildman River Area. Five 

conceptually uncertain components resulted in 32 individual conceptual models and millions 
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of realizations with all conceptualizations being conditioned to the closure of the water 

balance. The following can be concluded from the case study: 

- More confidence has been gained in the water balance compared to the deterministic 

solution. Probabilistic distribution of predictions take account of all the conceptual 

models that seem plausible under the current state of knowledge as well as the 

parameter uncertainty. 

- The understanding of the system functioning has increased. None of the conceptual 

models can be ruled out, but we have a better idea of how important they are to the 

water balance predictions and how they impact parameter ranges.  

- The fieldwork going forward can now be prioritized in terms of the impact the 

different components have shown on the water balance predictions.  

Testing alternative conceptual models is recognized to increase transparency, help prioritize 

research effort and help uncover potential conceptual surprises. The overall conclusion of this 

study is that testing alternative conceptual models does not have to be a time-consuming task, 

but can be done in relatively simple models, e.g. as here, in a water balance model.  
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4.1 ABSTRACT 

Conceptual uncertainty is considered one of the major sources of uncertainty in groundwater 

flow modelling. Hypothesis testing is essential to increase system understanding by analysing 

and refuting alternative conceptual models. We present a systematic approach to conceptual 

model testing aimed at finding an ensemble of conceptual understandings consistent with 

prior knowledge and observational data. This differs from the traditional approach of tuning 

the parameters of a single conceptual model to conform with the data through inversion. We 

apply this approach to a simplified hydrogeological characterisation of the Wildman River 

Area (Northern Territory, Australia) and evaluate the connectivity of sinkhole-type 

depressions to groundwater. Alternative models are developed representing the process 

structure (i.e. different fluxes representing interactions between surface water and 

groundwater) and physical structure (i.e. different lithologies underlying the depressions) of 

the conceptual model of the depressions. Remote sensing data are used to test the process 

structure, while geophysical data are used to test the physical structure. Both data types are 

used to remove inconsistent models from an ensemble of 16 models and to update the 

probability of the remaining alternative conceptual models. Three out of five depressions that 

are used as a test case are conditionally confirmed to act as groundwater recharge features, 

while for the last two depressions, the data is inconclusive. Although the framework is not 

directly prediction oriented, the testing of plausible conceptual models will ultimately lead to 

increased confidence of any groundwater model based on accepted posterior 

conceptualisations.   
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4.2 INTRODUCTION 

The conceptual understanding of groundwater systems is widely recognized as a major source 

of uncertainty in hydrogeological model predictions (e.g. Refsgaard et al., 2012). 

Traditionally a single conceptual model forms the basis for the model predictions. However, 

the available data on the groundwater system often support more than one conceptualisation. 

Rejecting all but one plausible conceptual model by omission presents serious issues for the 

hydrogeological modelling workflow. The overall predictive uncertainty is at best 

underestimated; moreover, the model prediction may be biased due to the possible choice of 

an invalid model (Neuman, 2003). Further, the very choice of the most representative 

conceptual understanding of a system may be an ad hoc task (Clark et al., 2011) which 

presents a reproducibility issue for the groundwater modelling workflow.  

In this case, conceptual model testing presents a promising tool to increase transparency, 

reproducibility, and to integrate an automation of an expert’s thought in the modelling 

workflow (Enemark et al., 2019a). In model testing alternative understandings are proposed 

and independent data are used to attempt to refute the alternative concepts. Model testing 

allows for a transparent account of model choices, rejection of invalid conceptual models and 

unveiling of conceptual “surprises” (Ferré, 2017). By reporting alternative conceptual models 

and applying model testing, the confidence in the model predictions increases and the risk of 

potential bias decreases (Hassan, 2004).  

In literature the objective of model testing is often to reduce the number of plausible 

alternative conceptual models. Approaches to choose between alternative conceptual models 

was classified into three broad categories by Carrera et al. (1993): 1) Comparative analysis of 

predicted and observed values (Pirot et al., 2015; Zeng et al., 2015),  2) assessment of 

calibrated parameter values to observed values (Engelhardt et al., 2014; Poeter and Anderson, 

2005), and 3) “identification criteria” (model selection criteria) which are often based on 
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maximum likelihood and may also consider the principle of parsimony (Schöniger et al., 

2014).  

The currently applied testing approaches in hydrogeology suffer from several challenges. One 

of the challenges in conceptual model testing is to prioritize independent data for testing 

rather than using all available data for development of models. Testing data must be 

independent from model development data in order to avoid circular reasoning, 

overconfidence in the conceptual models and under-sampling of the model space (Chatfield, 

1995; Kerr, 1998).  

Without planning on prioritizing independent data for model testing, any data previously used 

for model development, might have little power to test the model (Rojas et al., 2010c). The 

power of the model testing data relates to the type, amount and uncertainty of that data. The 

consequence of testing alternative model conceptualizations with data that have limited 

information content is that discrimination among alternative models cannot be made 

(Enemark et al., 2019b; Seifert et al., 2008) and, in a Bayesian context, that the prior 

probability has a large influence on the posterior probability (Rojas et al., 2009).  

Finding existing data that is independent from that used for model development is often a 

challenge, and the best approach to ensure independence is probably to collect an entirely 

new data set (sometimes referred to as a post audit) (Anderson and Woessner, 1992). 

Another challenge is determining when models can be considered rejected. In hydrogeology, 

models are frequently rejected after the model probability has been updated. Rejection is 

typically based on a very low probability (Hermans et al., 2015; Park et al., 2013) or based on 

a threshold value for the Bayes Factor (Brunetti et al., 2017). These forms of model rejection 

require that another model exists that outperforms the rejected model (Gelman and Shalizi, 

2013); and it is therefore implicitly assumed that the range of alternative models is 
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collectively exhaustive (Enemark et al., 2019a). Further, the best performing model becomes 

unfalsifiable, meaning that conceptual “surprises” cannot be uncovered even if the model that 

most adequately represents the real system has not been developed yet.  

Hypothesis testing applying a Bayesian framework combined with falsification type approach 

is sometimes referred to as Popper-Bayes philosophy (Gelman and Shalizi, 2013; Linde et al., 

2015b; Tarantola, 2006). The Popper-Bayes philosophy address the challenge of when to 

reject models. This hypothetico-deductive framework builds on the idea that “observations 

cannot produce models; they can only falsify models”. The falsification type approach 

consists of checking the models against data and rejecting models that are inconsistent. The 

Bayesian framework on the other hand, offers a systematic approach to updating the prior 

beliefs about the adequacy of a model to posterior beliefs. 

The framework applied in this paper is shown in Figure 4.1. After developing the alternative 

model(s) (step 1), independent data is collected (step 2) to ensure the testing of the models is 

indeed independent thus avoiding circular reasoning. Forward models can then be run (step 3) 

to provide input to model rejection (step 4) after which the probability will be updated (step 

5). 

This approach differs from tuning the parameters of a single conceptual model to conform 

with the data through inversion. Traditionally, the difference between a forward modelled 

response and the observed response is used to drive an inversion to find the model that best 

explains data. Usually the model with the lowest mismatch between observed and modelled 

response is considered the best model. In the methodology applied here, instead of relying on 

the inversions which are prone to spatial averaging and smoothing to interpret the conceptual 

model, we use the forward modelled data in a unique way to ask the question, how well do 

our forward model response by our conceptual model fit the observed data? The method aims 
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at finding an ensemble of conceptual understandings that can be sufficiently explained by 

data, rather than finding the model that best fit data through a process of inversion. 

Conceptual model testing with similar frameworks has been successfully applied in several 

hydrogeophysical case studies (Linde, 2014). Model testing in hydrogeology without use of 

geophysical data and with more than one data type is however still largely unexplored with 

limited guidance in international literature and without workflows that can be readily adopted 

by practitioners.  

The objective of this study is to provide a generally applicable workflow for systematic 

conceptual model testing that (i) updates prior belief in conceptual models through Bayes 

Theorem, (ii) based on diverse types of data that (iii) have not been used in the development 

of the conceptual model. 

We apply this approach to a hydrogeological characterisation of the Wildman River Area 

(Northern Territory, Australia). More specifically we evaluate the connectivity of sinkhole-

type depressions in the area to groundwater. We update the belief in the hypotheses around 

the model structures first using remote sensing data and then using seismic refraction data, 

focussing on the process structure and physical structure of the conceptual model, 

respectively. The analysis is focused on five sinkholes that were characterized based on past 

data and for which geophysical and remote sensing data were collected for model testing. 

4.3 METHODOLOGY 

The systematic testing approach for exploratory analysis of conceptual models is presented in 

Figure 4.1. The workflow starts by developing alternative models (step 1) of prior 

conceptualisations representing different understandings of groundwater system functioning. 

These models are then compared to data independent of data used for model development 

(step 2) through running a forward model (step 3) based on the alternative understandings. 
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The correspondence between multiple model realisations and observations can then be used 

to reject the unsupported models from the prior model ensemble (step 4) and update the 

probability of the remaining alternative understandings (step 5). When all alternative models 

are rejected or when new data for model testing is available, the workflow can be repeated. 

In the following sections, we provide an overview of the individual components in the model 

testing workflow (Figure 4.1). This systematic conceptual model testing workflow is 

subsequently demonstrated on a case study area in the Wildman River Area, Australia, where 

sinkhole-type depressions are a common feature of the landscape, potentially contributing to 

highly localised groundwater recharge.  

 

Figure 4.1. Flowchart of systematic conceptual model testing for exploratory analysis. The objective of the approach is to 

start from prior uncertain conceptual models, test these with independent data and deliver posterior conceptual models that 

have a higher degree of confidence. The solid workflow lines are applied to the Wildman River area. In the application study 

the conceptual model is divided into a process structure and a physical structure and the methods applied in each step of the 

workflow are indicated in the boxes. The workflow has an iterative option (dashed lines) if/when new data is collected, or all 

alternative models are rejected.  

4.3.1 Develop alternative models 

Developing alternative conceptual models presents a natural first step of the systematic 

testing exercise (Figure 4.1). According to the definition by Gupta et al. (2012), a 

hydrogeological conceptual model is a summary of the current knowledge about the 

groundwater system. Any alternative understandings can therefore be based on a literature 
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review of the site under investigation as well as general or subject-matter knowledge about 

groundwater system functioning (Chatfield, 1995; Clark et al., 2011). During the site 

literature review, one must identify the rationale underpinning each assumption to ascertain 

whether alternative understandings could be possible or not (Peeters, 2017).  

Any hydrogeological conceptual model consists of a process structure and a physical 

structure (Carrera et al., 1993; Gupta et al., 2012). To fully characterise conceptual model 

uncertainty, both process and physical structure uncertainty must be considered. If the 

objective of model development is to explore conceptualisations, Caers (2018) and Guillaume 

et al. (2016) argue that the model development process should aim at making bold 

alternatives that maximize the difference between alternative models in order to gain the most 

insights from a potential model rejection.  

In a Bayesian approach, the formulation of a prior belief in each alternative conceptual model 

is also a part of the model development step. The prior belief is most often defined as 

uninformed (e.g. Pham and Tsai, 2015) but can potentially be derived using expert opinion 

(e.g. Ye et al., 2008). Nearing et al. (2016) suggested that assigning probabilities should not 

be based on an individual component of a model but rather should be based on the whole 

model. 

4.3.2 Independent data 

The second step in the testing workflow involves identifying independent observation data 

(Figure 4.1). As discussed in the introduction, the requirement for the testing data is that the 

data are independent from the model development data (i.e. data used in step 1, Figure 4.1) 

and that the alternative conceptual models would lead to distinguishable observations of that 

data type.  
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Oreskes et al. (1994) argued that “the greater the number and diversity of confirming 

observations, the more probable it is that the conceptualization embodied in the [forward] 

model is not flawed”. When the objective of the testing exercise is to explore the model 

space, this holds especially true.  

4.3.3 Forward models 

The third step in the testing workflow (Figure 4.1) involves setting up forward models that 

represents the alternative models defined in the first step.  

A forward model is a simplified mathematical description of the system that captures the 

main physical or process structures simulating the response of a given conceptual model and 

its parameter values. The response of the forward model is a synthetic dataset of the same 

datatype as the independent model testing data. In hydrogeology the forward model is most 

often a numerical groundwater model (Remson et al., 1980)  or solute transport model 

(Thomsen et al., 2016; Troldborg et al., 2010), but the forward model can also be a 

geophysical forward model (Brunetti et al., 2017; Hermans et al., 2015) or a water balance 

model (Enemark et al., 2019b). The key with forward model is that it allows us to predict a 

measurable response of any given combination of parameters and model structures, that we 

can then compare to observations.  

Simple forward models are often preferred over complex ones as simple models can offer 

insights into system understanding that can be obscured in more complex models (Haitjema, 

2006; Hunt and Zheng, 2012). Also, “pragmatic constraints on time and budget limit the 

number of models that can be tested and fewer models are tested when they are more 

complex” (Refsgaard et al., 2012; Schwartz et al., 2017). On the other hand, testing more 

complex models enables a more holistic consideration of the system.  
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4.3.4 Reject models 

Model rejection should ideally separate models that are both consistent with prior knowledge 

and with observations from models that are not. Model rejection (step 4, Figure 4.1) relies on 

extracting values or global patterns from the independent data (step 2) and comparing them to 

the same features of the forward model response (step 3) from the alternative conceptual 

models (step 1). What ’being consistent’ means must be defined before the forward model 

response is compared to the observations. Alternative conceptual models can be rejected 

through direct comparison of simulated and observed variables of state (Zeng et al., 2015), or 

through evaluation of model behaviour such as plume behaviour (Pirot et al., 2015) or 

groundwater flow patterns (Zyvoloski et al., 2003).  

In case all alternative models are being be rejected, a conceptual “surprise” (Bredehoeft, 

2005) has been uncovered and the model structure must be considered to be an unknown 

unknown. This means one should start over and develop new conceptualizations (as per step 1 

in the workflow, Figure 4.1).  

The remaining models are not validated sensu strictu, but their correspondence with the 

independent data supports their likelihood (Oreskes et al., 1994). The remaining models are 

therefore brought forward into the next model testing step where their prior probabilities are 

updated.  

4.3.5 Update probabilities 

The final step in the model testing workflow (Figure 4.1) is updating the prior probability of 

the remaining alternative model (after the model rejection step) to a posterior probability.  

In a Bayesian approach a prior probability of each alternative model 𝑝(𝑚𝑘) is updated to a 

posterior probability 𝑝(𝑚𝑘|𝑌𝑘) using Bayes’ rule (Webb, 2017): 
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𝑝(𝑚𝑘|𝑌𝑘) =
𝑝(𝑌𝑘|𝑚𝑘) ∙ 𝑝(𝑚𝑘)

𝑝(𝑌𝑘)
 (4.1) 

where the conceptual model element 𝑚𝑘 = [𝑚𝑝𝑙, 𝑚𝑝𝑠] and the observed data 𝑌𝑘 = [𝑌𝑝𝑙, 𝑌𝑝𝑠] 

refer to either the physical structure (𝑝𝑙) or the process structure (𝑝𝑠), that are both part of the 

conceptual model. The physical structure describes the hydrostratigraphy and geometry of 

aquifers, while the process structure contains the internally and externally controlled 

boundary conditions such as heads and fluxes in a system (Gupta et al., 2012). 

The prior probability of each model element 𝑝(𝑚𝑘) describes our belief in each model before 

any data is considered. The prior probability is therefore defined in the model development 

phase (step 1, Figure 4.1). If we can assume that the physical structure influences the process 

structure, then the priors can be defined as: 

𝑝(𝑚𝑘) = 𝑝(𝑚𝑝𝑙) ∙ 𝑝(𝑚𝑝𝑠|𝑚𝑝𝑙) (4.2) 

The observed data types can be said to be independent of each other if a parameter in the 

physical structure testing data set does not depend on any parameter in the process structure 

testing data set and vice versa. If the datatypes are independent, the likelihood 𝑝(𝑌𝑘|𝑚𝑘) 

describing the probability of the observed data given the model is:  

𝑝(𝑌𝑘|𝑚𝑘) = 𝑝(𝑌𝑝𝑙|𝑚𝑝𝑙) ∙ 𝑝(𝑌𝑝𝑠|𝑚𝑝𝑠) (4.3) 

The likelihood and thereby also the posterior probability rely on the relative performance of 

the individual model structures of the ensemble against data. As indicated in Figure 4.1, if 

new data exists/is collected the conceptual model probabilities can be updated again. The 

posterior conceptual model gives us an indication of how much confidence we have in 

different model components.  
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4.4 APPLICATION 

In this section we apply the methodology to test if widespread, enclosed sinkhole-like 

depressions in the landscape of Wildman River Area, Australia, connected to groundwater. 

First, a brief description is provided about the depressions in Section 4.4.1. In Section 4.4.2-

4.4.6, the individual steps in the suggested workflow (Figure 4.1), as they are applied to the 

case study area are discussed.  

4.4.1 Depressions in the Wildman River area 

The Wildman River area is located in the northern part of the Northern Territory, Australia. 

Most of precipitation (97 %) in the area occurs in the wet season from November to April 

(Turnadge et al., 2018a). The geology consist of sand and clay sediments of Mesozoic-

Cenozoic origin ranging in thickness of less than 25 m to over 100 m and overly the basement 

geology of dolostone, siltstone and sandstone (Tickell and Zaar, 2017). The area has in recent 

years been subject to two major hydrogeological investigations (Tickell and Zaar, 2017; 

Turnadge et al., 2018a), but still several open questions remain regarding its hydrogeological 

conceptualization.  

Approximately 100 km west of the field site, sinkholes are known to have developed on top 

of the dolomitic bedrock (Tickell, 2013). These sinkholes are generally rounded, broad, 

shallow depressions and often form closed water features that show phases of filling up with 

water in the wet season and drying out in the dry season (Schult and Welch, 2006).  

In the Wildman River area the dolostone is known to be less continuous but similar 

depressions are found. A x-ray diffraction analysis found that the dolostone mineralogical 

composition is mainly dolomite with fractions of muscovite and quartz (Turnadge et al., 

2018a) suggesting that dissolution and sinkhole formation may also have taken place. The 

locations of possible sinkhole features in the Wildman River Area have been mapped by and 
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described further in Appendix C.1 (Figure 4.2) (Easey et al., 2016; Mueller et al., 2016; 

Tickell and Zaar, 2017).  

  

Figure 4.2. Mapped depressions in the Wildman River Area, Australia. The depressions that are part of the field 

investigation are marked with a black square and named S1 to S5.  

At the end of the dry season (late October 2018), a fieldtrip was undertaken to investigate a 

subset of the mapped depressions in the Wildman River area. Five depressions (S1 to S5, 

Figure 4.2) were selected based on their accessibility and vicinity to existing boreholes and 

water level loggers. We prioritized the selection of sinkholes based on their difference in 

geometry and vegetation cover while making sure they covered different parts of the area. 

The collected data at each of the five depressions included a refraction seismic line, high 

water level marks, soil samples and topography. Further, PlanetScope satellite imagery has 

been collected over the area (Planet Team, 2017). 

4.4.2 Conceptual model development 

Previous investigations have hypothesized depressions in Wildman River area as sinkholes 

that may act as conduits for recharge (Graham, 1985; Turnadge et al., 2018a). This 

corresponds to observations that water levels in surficial aquifers respond within days of 

major rainfall events (Tickell and Zaar, 2017). Therefor, the null- and alternative hypotheses, 

respectively H0 and HA, tested in this paper are defined as follows: 
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- H0: Depressions are connected to the groundwater. 

- HA: Depressions are not connected to the groundwater. 

The hypothesis is that the depression are sinkholes, which in literature often is presented as 

groundwater flow conduits (Jardani et al., 2007; Kruse et al., 2006). Whether these sinkhole-

like depressions act as conduits of recharge is an important conceptual question to resolve as 

it creates a potential for any contamination to rapidly reach the water supply.  

The conceptual understanding is further refined in understandings of the process structure and 

physical structure (Figure 4.3). The physical structure accounts for different lithologies 

underlying the depressions (i.e. sand or clay), while process structure accounts for different 

interactions (i.e., fluxes) between the surface water and the groundwater. Process structure 

and physical structure are discussed in the subsequent sections. 

 
Figure 4.3. Alternative conceptual understandings of the physical and process structure of depressions in the Wildman River 

Area. The alternative understandings of the physical structure concern the presence (C, D) or absence (A, B) of a clay layer 

and the presence (B, D) or absence (A, C) of a high porosity zone in the middle of the depression. The dashed line in the 

physical structures represents an initial topography of the depression. The alternative understandings of the process 

structure consider whether the depression interacts (II, III, IV) or does not interact with the groundwater (I). Groundwater 

interactions tested are groundwater recharge (II), groundwater discharge (III) and whether the depressions are flow-

through features with both groundwater discharge and recharge (IV). In model II we do not attempt to differentiate whether 

the groundwater recharge feature is directly connected or disconnected to the groundwater.  

The alternative process and physical structures of the conceptual model of the depressions are 

shown in Figure 4.3. As stated in Figure 4.1, the alternative model structures are based on a 

literature review. A more detailed description of how these alternative structures have been 



 

Chapter 4: A Systematic Approach to Hydrogeological Conceptual Model Testing 104 

 

obtained can be found in the Appendix C.2. A summary of process and physical structures is 

discussed below.  

The process structures are based on a basic understanding of groundwater-surface water 

interactions of the depressions (Lloyd, 1999; Winter et al., 1998). The water balance of the 

depression is influenced by: 

- I: Evaporation only, there is no exchange between surface and groundwater.  

- II: Evaporation and groundwater recharge, where the groundwater flux occurs under 

either losing-connected or losing-disconnected conditions.  

- III: Evaporation and groundwater discharge.  

- IV: Evaporation, groundwater recharge and groundwater discharge.  

The physical structures are based on an understanding of the geomorphological development 

of depressions (Graham, 1985; Schult and Welch, 2006; Tickell, 2013; Turnadge et al., 

2018a): 

- A: Homogeneous sand subsurface without vertical stratification. 

- B: High porosity/permeability zone promoting water infiltration. 

- C: Homogenous sand with vertical stratification through a sealing clay layer. 

- D: High porosity/permeability zone overlain by a sealing clay layer. 

The conceptual models are defined to have a maximum depth of 30 m because the depth of 

investigation of the refraction seismic data is limited to 30 m. Boreholes from the area show 

that the Dolostone is observed at depths between 40 and 100 m (Tickell and Zaar, 2017) and 

the model structures does therefore not include Dolostone. Note only the location and depth 

of investigation of the seismic survey was used to guide the design of the physical model 

structures, not the obtained seismic data values.  

4.4.2.1 Prior probabilities 

Current knowledge does not suggest any of the proposed model structures are more probable 

than others. However, the model structures are combined to (4 x 4 = ) 16 different conceptual 

models and as the processes are mediated by the physical structure (Gupta et al., 2012), we 

assume that the specified physical structure influences the probability of the specified process 
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structure. The groundwater exchange in the process structures (II, III, IV) combined with a 

sealing clay layer in the physical structures (C, D) is thereby assumed only half as probable as 

other combinations of the structures. This expresses our understanding of the physics of 

groundwater flow and the hydraulic barrier effect of clay.  

Assuming a uniform probability otherwise and that the probabilities add up to one, models 

including a sealing clay layer combined with any groundwater exchange are assigned a 

probability of 0.0385, while all other contending models are assigned a probability of 0.0769 

(Table 4.1).  

Note that the prior probability assignment is subjective and the effect of these choices on the 

posterior probability could be evaluated by exploring the result of other prior probabilities. 

This is however outside the scope of this study.  

It should also be noted that by assuming probabilities add up to one, we are implicitly 

assuming the range of models is collectively exhaustive, which is probably not the case. 

However, any remaining conceptual models are unknown unknowns.  

Table 4.1. Prior probabilities of conceptual models consisting of a process structure and a physical structure.  

Prior probability Process Structure  

I II III IV Total 

Physical 

Structure 

A 0.0769 0.0769 0.0769 0.0769 0.308 

B 0.0769 0.0769 0.0769 0.0769 0.308 

C 0.0769 0.0385 0.0385 0.0385 0.192 

D 0.0769 0.0385 0.0385 0.0385 0.192 

Total 0.308 0.231 0.231 0.231 1 

4.4.3 Testing data 

As indicated in Figure 4.1, the independent testing data for the process structure is remote 

sensing data, while refraction seismic data is used for testing the physical structure. All other 

collected data including soil samples, topography and water levels are used to parameterize 

the prior (Appendix C.5). A short overview of the independent data is given in the following 

while a more detailed description can be found in Appendix C.3.  
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The remote sensing data consists of PlanetScope imagery (Planet Team, 2017) from 19 dates 

with a pixel size of 3 m. The number of days between the first and last imagery is 192 days 

(24-04-2017 – 02-11-2017). The observations extracted from the remote sensing data 

provided a time series of the area of surface water in each depression on the 19 dates over the 

dry season in 2017. To extract this time series, the NDWI is calculated (McFeeters, 1996) and 

automatic thresholding (Otsu, 1979; Rosin, 2001) and a trajectory analysis (Powell et al., 

2008; Zomlot et al., 2017) is applied. The depressions all run dry during the dry season, albeit 

at different times; the observation of interest is the last day of water inundation.  

In a seismic refraction survey, the travel-time of the compressional P-wave from a seismic 

source to a series of known receiver locations is measured. The spatial distribution of the first 

arrival travel-times is controlled by the velocity below the profile. The travel-times can be 

inverted for using travel-time tomography to generate a 2D profile of seismic velocities (e.g. 

Zelt et al., 2013), but in this application we use the travel-times directly. For this study, we 

used 24 geophones spaced at 4 m resulting in 92 m profiles. The seismic source was a 

sledgehammer swung onto a 20 cm by 20 cm steel plate. The shot spacing was 4 m. To 

increase signal-to-noise ratio, 6 shots were stacked at each location. Since all the sinkholes 

were longer than 94 m, each seismic line was rolled at least once with the succeeding line 

starting in the middle of the first line at four depressions (S1 to S4) resulting in a total line 

length of 140 m. In the case of S5 the profile was rolled twice resulting in a total line length 

of 184 m. The first arrival time of the P-wave were picked manually. Noisy traces where the 

first arrival was not clear were not picked. The reciprocal travel-times, which represent the 

energy traveling from A to B and then again from B to A, were used as an indication of the 

uncertainty of the observations.  
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4.4.4 Forward modelling 

As indicated in Figure 4.1, the forward model for the process structure is a bucket water 

balance model, while for the physical structure it is a shortest path raytracing model 

combined with a rock physics model. A short overview of the forward model functioning is 

given in the following while a more detailed description can be found in Appendix C.4. 

Further the prior parameter distributions are also defined in Appendix C.5.  

The response from the alternative process structures is obtained from a bucket water balance 

model for accounting of the water presence in the depressions over the dry season. The 

forward model calculates the duration of water inundation after the start of the dry season. 

Four different models are defined based on the alternative process structures (Figure 4.3) 

defined in Section 4.4.1. The input to the forward models consists of samples from prior 

parameter distributions of maximum water depth in the individual depressions and rates of 

evaporation, groundwater recharge and groundwater discharge.  

The forward response from the alternative physical structures is obtained from a combination 

of a rock physics modelling and ray tracing using a shortest path algorithm (Moser, 1991; 

Rücker et al., 2017). Instead of picking a velocity range for each facies in our physical 

structure models we elected to utilize rock physics relationships to provide reasonable 

estimates for the velocities expected by our structure. Following the methods of Flinchum et 

al. (2018) and Holbrook et al. (2014) we estimate the seismic velocity of a porous media by 

using a Hashin-Shtrikman relationship to define velocities as a function of porosity and then 

us Gassmann’s equations (Brie et al., 1995; Mavko et al., 2009) to adjust for water saturation. 

Once the model structures were transformed into velocity with the refraction class from the 

open-source Python framework pyGIMLi (Rücker et al., 2017). The travel-times are based on 

shortest path methodology (Moser, 1991) of seismic waves. The velocity sections that are 
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based on the physical structures are then passed to pyGIMLi to produce the forward modelled 

travel-times. These travel-times are what are used in the subsequent analysis below. The input 

to the forward models consists of samples from prior parameter distributions of geometric 

(controlling the boundary locations in the physical structure) and lithological (controlling the 

velocity structure) parameters. 

4.4.5 Model rejection 

In the model rejection step (step 4, Figure 4.1), the two independent data sets (remote sensing 

and seismic refraction) are used to reject the alternative models of process structure (using 

remote sensing) and physical structure (using seismic refraction). 

For the time-dependent surface water area of a depression extracted from the remote sensing 

data, a likelihood function is defined (Appendix C.3). The likelihood function is defined as a 

beta distribution that has a bounded interval describing possible values. This means 

realisations from the forward model that lie outside of the bounds are assigned a zero 

likelihood. Model structures obtaining a zero marginal likelihood are rejected.  

To globally test the physical models, we apply a dimension reduction technique to the 

refraction seismic data. We apply Principal Component Analysis (PCA) using the PCA class 

from the open-source Python framework scikit-learn (Pedregosa et al., 2011). PCA reduce the 

number of dimensions by feature extraction, which means that from the first arrival variables 

(>900) we can create a smaller number of new variables that are combinations of the old 

variables. These new variables are ordered by how much variability they explain of the old 

variables. In our case we only keep the two first principal components as they explain more 

than 90 % of the variability. The principle components do not explain anything physical, but 

they describe the variability of the input data.  
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Based on the first two components of the PCA, we apply a novelty detection analysis 

(Markou and Singh, 2003) using the LocalOutlierFactor class from scikit-learn (Pedregosa et 

al., 2011). Novelty detection evaluates whether a new observation in a dataset is an outlier or 

not. In this case we evaluated whether the observation dataset (in terms of its first two PCs) is 

an outlier relative to the synthetic forward model response. If the observation dataset is 

deemed to be a novelty (i.e., outlier) relative to the model response, the model can be 

rejected. Similar approaches to this has been applied in other studies (Hermans et al., 2015; 

Park et al., 2013; Peeters et al., 2013; Pirot et al., 2019; Scheidt et al., 2015). 

4.4.6 Update model probability 

4.4.6.1 Process structure models (𝒀𝒑𝒔) 

The model evidence for the individual process structures is quantified by the marginal 

likelihood of the observed data given the model structure and parameters. The likelihood 

function for the depressions being dry is defined as a beta distribution based on the values 

from the time series of surface water area in the depressions (Section 4.4.3). A more detailed 

description of the derivation of the likelihood function can be found in Appendix C.3. 

4.4.6.2 Physical structure models (𝒀𝒑𝒍) 

To assign probabilities to the proposed physical structure models, we use a logistic regression 

classifier using the LogisticRegression class from scikit-learn (Pedregosa et al., 2011). 

Logistic regression is a supervised machine learning technique that can probabilistically 

classify data into discrete outcomes.    

The classifier is trained on the response from the forward geophysical model (i.e. the model 

realisations of first arrival data) using a known physical structure and is then applied to the 

observation data to predict the probability of each physical structure.  
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4.5 APPLICATION RESULTS 

In this section, we present the results of the applied methodology to the conceptualization of 

the depressions in Wildman River area. Our goal is to assess the plausibility of different 

conceptualizations by testing both the process structure and the physical structure with two 

different, and more importantly, independent types of data. The response of the forward 

models, a geophysical model and a water balance model, is compared with the observation 

through the model rejection step and probability update step (Figure 4.1, and Section 4.5.1 

and 4.5.2). Last, the updated probabilities of the process structure and physical structure 

models are combined to assess whether the depressions are connected to groundwater 

(Section 4.3).  

4.5.1 Process structure 

The water balance forward model (step 3 in Figure 4.1) generated 4,000 synthetic data sets of 

surface water area response of each of the five depressions (S1 to S5) from which the days the 

depressions are no longer inundated have been obtained. For each process structure (I to IV), 

1,000 responses are available, which represent prior beliefs given the prior parameter values 

and process structures. The cumulative probability of days, since the end of the wet season, at 

which the depressions are no longer inundated, is shown in Figure 4.3 (shaded areas). The x-

axis is limited to 250 days, as this is the maximum length of the dry season. The cumulative 

likelihood distributions (defined in Section 4.4.6.1) for the individual depressions, based on 

the remote sensing data of open water surface area, are indicated with a solid black line.  

In the model setup we have assumed that groundwater recharge and discharge effectively 

cancel each other out in a water balance, and therefore the results from model structure I and 

IV are the same. This non-uniqueness problem arises as the data will not be able to 

distinguish whether the water in the depression is a local (structure I) or regional feature 

(structure IV).  
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The presence of a groundwater recharge component in structure II decreases the number of 

days to dry out the depressions, while the presence of a groundwater discharge component in 

structure III increases the number of days required to dry out the depression.  

The results from the four different structures (I to IV) in depressions S1, S2 and S5 look 

similar, with the first realisations drying out after around 100 days. The realisations pertaining 

to S3 and S4 dry out at a slower rate, with none of the process structures in S4 drying out 

before the end of the dry season. This can be attributed to the greater maximum depth 

(Appendix C.5) of S3 and S4 and therefore higher starting volumes.  

Comparing the model responses (coloured histograms) to the likelihood function based on the 

remote sensing data (solid black line in Figure 4.4) reveals that the depressions are drying out 

much faster in reality than most of the forward model responses. Of the simulated responses, 

process structure II (green area) displays the fastest drying out curve for all five depressions, 

while process structure III consistently maintains water in its depressions for a considerably 

longer period.  
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Figure 4.4. Cumulative probability (cum. prob.) of the day after the start of the dry season where the depressions are no 

longer inundated from realisations of water balance models given different process structures I-IV (Figure 4.3). The 

cumulative likelihood function (cum. likelihood func.) shown in black, is defined based on remote sensing data. If all 

realisations of a process structure plot outside the lower and upper limit of the likelihood function, the process structure is 

rejected.  

The performance of the different process structures (I to IV) for the different depressions (S1 

to S5), given the remote sensing data, is further discussed in Table 4.2. Here we show the 

probability values based on marginal likelihoods of the individual models obtained from the 

likelihood function shown in Figure 4.4. Structure II clearly shows the smallest discrepancy 

with the observations and is outperforming the remaining process structures in all 

depressions. Any zero probability values indicate process structures whose realisations are all 

outside of the data-derived likelihood function and therefore obtain a zero marginal 
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likelihood. Such model structures are rejected (step 4 in Figure 4.1), while the probability of 

the remaining model structures are updated (step 5 in Figure 4.1). In depressions S2 and S4, 

only process structure II remains plausible after the testing exercise, while all four process 

structures are still plausible for S1 and S5.  

Table 4.2. Probability of different process structures I-IV (Figure 4.3) given the remote sensing data. The reported 

probabilities are marginal likelihoods of 1,000 synthetic forward model runs based on a likelihood function defined based on 

remote sensing data. Grey boxes indicate that the observation (likelihood function) is outside the prior range obtained from 

the forward water balance model.   

 I + IV: no 

connection + 

flow-through 

II: Groundwater 

recharge 

III: Groundwater 

discharge 

S1 0.50 0.37 0.13 

S2 0.00 1.00 0.00 

S3 0.01 0.99 0.00 

S4 0.00 1.00 0.00 

S5 0.37 0.56 0.07 

4.5.2 Physical structure  

The geophysical forward model (step 3 in Figure 4.1) generated 4,000 synthetic data sets of 

seismic responses for each of the five depressions (S1 to S5). For each physical structure (A 

to D), 1,000 responses were available. The interpretation of these datasets by means of 

principal component analyses is discussed on the basis the first two principal components 

(dimensions) shown in Figure 4.5. The first two dimensions represent between 87 % and 93 

% of the total variance of the seismic response for each of five depressions. In each plot, the 

red cross represents the observed response. The five rows of Figure 4.5 present the result for 

the five depressions (S1-S5), while the four columns present the effect on the seismic 

response of applying different physical structures (A to D).  

The input to the rock physics model for generating the seismic responses is the same for all 

depressions, therefore the difference between depressions S1 to S5 is solely due to the 

different inputs to the structural model. For depressions S4 and S5 more variation between 

forward model response is evident than for the three other depressions (note the different axes 

on Figure 4.5). This is probably due to the uncertainty of the water table that is relatively well 



 

Chapter 4: A Systematic Approach to Hydrogeological Conceptual Model Testing 114 

 

known in the S1 to S3 depressions but less well known for S4 and S5 (supplementary 

information).   

 

Figure 4.5. First and second component of the PCA of the forward model response of the geophysical models for depression 

S1 to S5 (rows) for each physical model structure (A to D). Note the different axes for S1 to S3 and S4 to S5. The coloured 

area indicates the frontier outside which the addition of a datapoint would be classified as a novelty. If the observation (red 

cross) plots outside the shaded area, a novelty detection algorithm classifies the observation as a novelty in relation to the 

model realisations and the model structure can be falsified.  
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Figure 4.6. a) Relation between the first PCA component and velocities for S1 and b) the second PCA component and the 

applied physical structures for S1. The illustrated velocities are mean velocities in the saturated sand zone. The first PCA 

component generally explains the differences in velocity, while the second component explains the differences in model 

structure. This means that the alternative structures do influence the forward response, but the effect is secondary to the 

velocity influence.  

The relationship between velocity (derived from the simulated seismic response) and the first 

PCA component and between different model structures and the second PCA component 

have been plotted for S1 (Figure 4.6). The velocity is seen to decrease with increasing values 

of the first PCA component. The second PCA component has lowest values for physical 

structure A, intermediate values for C and D and highest values for structure B. This pattern 

also holds true for the rest of the depressions (except for S5 where the relation between 

structure and the second PCA component is reversed). Figure 4.6 illustrates that the first 

component generally explains the velocity, while the second component explains the effect of 

different physical structures.  

Physical structure A and C are shown to generate a similar response with relatively lower 

variation than B and D; note that the latter two structures also show a similar response. A 

model which has a higher porosity zone (B and D) therefore has larger influence on the 

response (more positively correlated with the second principal component), while the addition 
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of a clay layer in the structural model (A and C) does not change the result significantly (low 

and negative correlation with second principal component).  

The observed data is illustrated with a red cross on Figure 4.5. Observation uncertainty has 

been considered (but not plotted) and generally leads to a variation of less than +/- 0.005 for 

the first two principal components. When the observed data point plots outside the forward 

model response (the shaded area), the data point cannot be predicted by the prior. A novelty 

detection analysis is applied to automatically classify the observation data as a novelty or an 

inlier within the prior range (step 4 in Figure 4.1). Recall that when the observation data is 

classified as a novelty, the prior used to generate the synthetic data is rejected. The coloured 

cloud indicates the frontier between inliers and outliers derived from the model realisations. 

The rejected models are assigned a zero probability in Table 4.3. For the accepted models, 

probabilities are calculated with logistic regression classification (step 5 in Figure 4.1). 

The results of logistic regression classification of the observed data trained on the realisations 

is shown in Table 4.3. Some correspondence can be observed between the observed data 

location on Figure 4.5 (red cross) and the probability performance of the different physical 

structures, i.e. when the response from a model structure is densest around the observation, it 

performs better. Note, however, that while only two dimensions of PCA are shown in Figure 

4.5, the logistic regression is based directly on the simulated values (thus uses the entire data 

set).  

For depression S1 and S2 the posterior probabilities are similar, indicating the alternative 

structures (A and C for S1 and B, C and D for S2) do not generate responses different enough 

to be able to discriminate between them. Depressions S3 and S4 shows a slight preference for 

structure B (0.37 and 0.67 probability, respectively), while S5 shows a preference for 



 

Chapter 4: A Systematic Approach to Hydrogeological Conceptual Model Testing 117 

 

structure C (0.52 probability) and generally low preference for structure B and D, including 

the high porosity zone in the middle of the depression.  

Table 4.3 . Model probabilities assigned through logistic regression classification of the observed data. Models rejected 

through novelty detection (grey) are assigned a zero probability.  

 
A: homogeneous 

B: high porosity 

zone 
C: clay layer 

D: high porosity zone 

+ clay layer 

S1 0.48 0.00 0.52 0.00 

S2 0.00 0.33 0.33 0.34 

S3 0.10 0.37 0.25 0.28 

S4 0.00 0.67 0.00 0.33 

S5 0.29 0.07 0.52 0.12 

4.5.3 Posterior probabilities of conceptual models 

Comparing the posterior probabilities obtained for the process structure (Table 4.2) and the 

physical structure (Table 4.3), it is apparent that the process structure probabilities are more 

decisive. This demonstrates the importance of the sensitivity of the datatype towards the 

developed alternative model structures and its ability to discriminate between them. Figure 

4.6 illustrates that the physical structure affects the realisations (based on PCA component 2), 

but that it is secondary (i.e. lower correlation) to the velocity estimates (based on PCA 

component 1). The velocities are estimated based on many parameters with relatively wide 

priors as they are based on literature values (Appendix C.5). In order to resolve and better 

discriminate between structures, informative priors are needed. On the other hand, while the 

difference between the process structures are more pronounced, despite the larger uncertainty 

of the observations, we can better discriminate between the models.  

The posterior probability of the conceptual models of the five depressions combined from the 

probability of the physical structure and the process structure are shown in Figure 4.7. The 

posterior probability is relatively decisive, especially in S2 and S4. It stands out that the 

different depressions obtain quite different results, although the expectation was that the 

depression would behave similarly. This illustrates the importance of considering more than 

one conceptual model and to have a sufficiently large testing data set. 
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Of the 16 different conceptual models, only two would allow for the depression to act as 

conduits of recharge, A-II and B-II. These models have been marked with a dashed box on 

Figure 4.7. In depression S2, S3 and S4, conceptual model B-II is outperforming the rest of 

the models indicating consistency with the depressions being conduits of recharge. In S1 the 

observations plot on the edge of the prior range of realisations for all physical structures 

(Figure 4.5), though structure A and C are still classified as probable models. This indicates 

that the “real” physical structure might still be an unknown unknown. Depression S5 is least 

decisive in terms of the model structure for both the physical structure and the process 

structure, and more model testing is required to discriminate between model structures.  

 

Figure 4.7. Posterior probability of the combined physical (A to D) and process structure (I to IV) for the individual 

depressions (S1 to S5). The prior probability for all depressions is shown in the top left plot. Dashed boxes identify the 

models that would allow for the depression being conduits for recharge. The conceptual models that have been marked with 

red crosses are rejected.  

4.6 DISCUSSION 

The combined updated model probabilities of the physical structure and the process structure 

revealed, based on independent data, that the depressions act as conduits for recharge for 
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three (S2 to S4) out of five depressions. For the two other depressions (S1 and S5), the data is 

more indecisive, and more testing would be needed to discriminate between model structures.  

We applied a systematic testing workflow consisting of: 

- Using a Bayesian framework with a rejection step that compared performance to data. 

- Using data for testing rather than development.  

- Using two lines of independent evidence for conceptual model testing. 

By applying this workflow rather than an inversion approach, we were able to uncover more 

than just one conceptual model that is consistent with the data for all depressions. It is also 

worth noting that the model testing exercise has changed our understanding of the depressions 

considerably. This is illustrated by comparing the prior probability to the posterior 

probability.  

Multiple lines of evidence are almost always used when developing conceptual models e.g. 

(Banks et al., 2019; Bresciani et al., 2018), hence the combination of geophysics and remote 

sensing data to develop conceptual models is not novel e.g. (Francés et al., 2014; Othman et 

al., 2018; Youssef et al., 2012). However, using multiple lines of evidence in a conceptual 

model development approach where data is used for testing rather than development is still 

rare. By integrating multiple lines of evidence in this study we gain more confidence in the 

conceptualization of the depressions. Also, in a Bayesian workflow, more model testing 

dilutes the effect of the choice of prior model structure probabilities, whose definition is the 

most controversial component in the Bayes framework (Sambridge et al., 2013).  

In line with findings of other model ensemble studies (Højberg and Refsgaard, 2005; Rojas et 

al., 2010c; Seifert et al., 2012), several conceptual models are consistent with current 

knowledge and observations. The ensemble of different model structures is obtained by using 

data to test models rather than developing them as in the consensus approach. Disregarding 
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alternative plausible model structures can eventually lead to biased and overconfident 

predictions.  

As for the model testing exercises in e.g. (Hermans et al., 2015; Scheidt et al., 2015; 

Schöniger et al., 2015a), we have applied our testing approach in a Bayesian context, where 

model structure prior probabilities are updated depending on model performance. The 

Bayesian approach provides a formal framework for iteratively incorporating new data and 

insights (Figure 4.1). In each model testing step, models that are inconsistent with data can be 

removed from the ensemble and conceptual surprises are thereby accommodated.  

The insight into the system functioning gained from testing alternative conceptual models can 

be used in future modelling exercises. With more confidence in the conceptual model, we 

have more confidence in predictions of (future) system behaviour, which provides more 

robust evidence to underpin environmental management decisions. 

Any multi-model approach is limited by our inability to define a collectively exhaustive range 

of models. However, by applying a rejection step in which model structure performance is 

compared to data rather than having an intercomparison of performances of different model 

structures, we avoid assuming the true model is within the ensemble of models tested. Indeed, 

following the workflow from Figure 4.1, all models can still be rejected. However, as 

probability adds up to unity after updating the probability, we are implicitly assuming the 

range of models is collectively exhaustive.  

Another limitation of the testing approach is that the result is limited by the information 

content in the testing data. When the information content is low, the definition of the prior 

probability becomes very important for the result of the testing exercise (Rojas et al., 2009). 

In relation to the information content of the data, the remaining plausible models after a 
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model rejection step are only conditionally accepted because they have not been proven to be 

inconsistent with data yet (Oreskes et al., 1994).  

The results are also limited by our assumption that the success and failures of model 

realisations relate to the model structures. Other uncertainties that may give rise to false 

positives (not rejection inconsistent model structure) or negatives (rejecting consistent model 

structure) include prior parameter definition, mathematical translation of the model structures 

and forward model definition. The testing exercise can only tell us if some part of 

hypothesis/forward model data is not right but not which part. 

Nevertheless, our approach is generic and can be applied to any hydrogeological conceptual 

model where conceptually uncertain component(s) exist. However, the generalizability of the 

methodology is limited by the complexity of the forward model. While running forward 

models is less intensive than model inversion, the number of model realizations needed to 

obtain a reliable model probability in Step 5 of our workflow increases the computational 

burden.  

Finally, the applied approach also allows us to uncover conceptual surprises (in case one 

would reject all models in the model rejection step), but it does not tell us how to deal with 

them. A conceptual surprise prompts the development of new hypotheses based on model 

behaviour. These would, at least indirectly, be based on the former model testing data, and 

therefore it should not be used for model testing again to avoid circular reasoning. It is 

beyond the scope of this paper to address this issue.  

4.7 CONCLUSION  

We proposed a systematic approach to hydrogeological conceptual model testing, which is 

needed to increase transparency in the groundwater modelling workflow and seek out 

conceptual surprises. 
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The approach focuses on using independent data to test models, rather than to develop them. 

Also, we have emphasised that models should be rejected by comparing performance against 

data rather than comparing model performance against competing models.  

We have applied the approach to the Wildman River Area, Australia, involving the testing of 

the connectivity of widespread, enclosed depressions to groundwater. 

Our suggested approach is generic and can be applied to any hydrogeological conceptual 

model where conceptually uncertain component(s) exists.  

  



 

 

 

 

Chapter 5:  Thesis Conclusion and Outlook 

 

In order to manage groundwater resources effectively, we need a good understanding of the 

groundwater system in question. This thesis has focussed on methods for improving the 

understanding of the conceptual model that formalises and integrates many of the underlying 

assumptions in a groundwater model. The conclusions that can be derived from this thesis can 

be divided into contributions to the general methodology for hydrogeological conceptual 

model development and testing and contributions to the hydrogeological conceptualization of 

Wildman River area. Finally, an outlook will be provided, discussing some future research 

directions. 

5.1 GENERAL METHODOLOGY 

5.1.1 Model development (Research aim 1) 

In this thesis we have advocated for a systematic approach to conceptual model building, but 

the act of discovery is not always seen as a scientific logical process (Schickore, 2018). The 

discovery of a model in the consensus approach in hydrogeology is somewhat guided by 

rules, e.g. (Barnett et al., 2012; Brassington and Younger, 2010), however this is not the case 

for the multi-model approach. This has led to a wide variety of approaches in literature 

around multi-modelling (Chapter 2). We identified current approaches and unified scattered 

insights to apply best approaches. We found that a hypothesis testing approach consisting of 

mutually exclusive alternative models was most suitable to develop alternative models.  

The conceptual model consists of physics-based hypotheses concerning the process structure 

and the physical structure. The process structure includes dominating processes and it is often 

assumed to be relatively well-known (Carrera et al. 1993). For example, the alternative 
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understandings of groundwater-surface water interactions between an aquifer and a lake will 

be limited to the lake being: 1) a groundwater recharge feature, 2) a groundwater discharge 

feature, 3) a flow-through feature, or 4) not connected to the groundwater. These different 

understandings are based on a literature review of the general understanding of surface water-

groundwater interactions. When characterising the process structure, the difficulty of the 

problem arises to a higher degree when characterising the spatial variability of the controlling 

parameters. This is however, not related to the conceptual model.  

For the physical structure the alternative conceptual models are generally considered to be 

more difficult to characterise. The approaches have therefore in literature been more varied. 

Alternative conceptual understanding of the physical structure could test the existence of 

palaeovalleys, faults, confining layers, continuity of layers etc. The exact location of these 

features would be part of the lower order uncertainty, i.e. not the conceptual model. 

As practical applications we developed models based on literature reviews. In Chapter 3 we 

developed alternative models starting from an existing conceptualisation and identified key 

assumptions in an initial water balance that needed systematic testing. In Chapter 4 we 

developed alternative models of sinkhole-like depressions and their role in groundwater-

surface water interactions based on general principles and understandings of such systems. 

Further, we emphasized the need to set up alternative models in a factorial approach to ensure 

that assignment of performance can be linked to the appropriate hypothesis that is being 

tested. Also, in both chapters bold hypotheses were considered, challenging what we 

considered to be plausible initially. By developing bold models, we were minimizing the risk 

of conceptual surprises.  
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5.1.2 Model testing (Research aim 2) 

A literature review in Chapter 2, showed that model selection techniques are often applied 

rather than model testing techniques in the multi-model approach. This may be due to the 

requirement that testing data must be independent, while model selection data does not. We 

advocated for a systematic testing approach in Chapter 2 and 4 to increase confidence in 

conceptual models.  

In our application studies, by limiting the use of data in the model development process, we 

attempted to avoid confirmation bias in the initial model ensemble and thereby gained a 

relatively wide prior range of conceptual models. Further, in Chapter 4, this approach led us 

to put aside as much data as possible for model testing. Being able to use data for testing 

conceptual models rather than development increases the confidence in the models as it gives 

a possibility to justify the ensemble. Further, more data to test models helps to better 

discriminate between the alternatives and thereby dilutes the effect of the prior probability. 

Lastly, using more data for model testing increases the chance of model rejection, which in 

the end is even more valuable than justifying a model as it explains why that specific model 

can be excluded from the model ensemble. In Chapter 4 we showed that it is not only the 

uncertainty of data or the number of datapoints that is important for the discriminatory power 

of the data, but also how sensitive the observation is to the alternative model structures.   

In Chapter 3 we only used the closure of the water balance to test models and were not able to 

reject any of the conceptual model structure combinations. We therefore further applied a 

Bayes Factor to evaluate whether some models were preferred over others. In Chapter 4 we 

had reserved more data for testing, including remote sensing and refraction seismic data, and 

were able to reject a few models. The testing approach provided us with a transparent and 

reproducible explanation of why the rejected models were not considered plausible.  
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As the characterisation of conceptual uncertainty relies on the definition of multiple model 

structures rather than just a single model structure, it leads to increased cost and CPU time 

required. Therefore, this thesis has focussed on model testing using simple models rather than 

complex 3D numerical models to make model testing more accessible. The alternative to 

using simple models is the application of surrogate modelling if more complex models are 

deemed necessary. However, surrogate models are not applied in this thesis. Chapter 3 

illustrated the use of simple stochastic water balance models to test competing conceptual 

models. Chapter 4 applied the testing procedure in a hydrogeological characterisation using a 

forward geophysical model and a bucket water balance model. By applying simple forward 

models, we have shown that model-based conceptual model testing does not have to be a 

time-consuming task.  

5.1.3 Impact on predictions  

Multiple models are difficult to develop, test and run but also more difficult to explain and 

present. Presenting the predictions from multiple models rather than from a single 

deterministic model inevitably becomes more complex. Most groundwater modelling studies 

employ a deterministic approach so understanding and communicating papers that employ the 

multi-model approach might appear both ambiguous and confusing. The results presented in 

the applications studies in this thesis consisted of presenting ranges and have acknowledged 

that unknown unknown conceptual models may exist. This type of communication of results 

might appear a bit more confusing than just presenting the results of a deterministic model, 

but it is a more honest representation of the uncertainties involved in groundwater modelling.  

5.2 WILDMAN RIVER AREA (RESEARCH AIM 3) 

The methods developed in this thesis were applied to the study site in Wildman River area. In 

Chapter 3 a stochastic water balance framework that incorporates the outstanding 

conceptualisation questions for the Wildman River area was developed. This study confirmed 
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and provided more confidence in the results of an existing (Tickell and Zaar, 2017) 

deterministic water balance. In chapter 4 we sought to increase the understanding of sinkhole-

like depressions that were hypothesized to act as conduits for recharge (Tickell and Zaar, 

2017; Turnadge et al., 2018a). Three out of five depressions that were used as a test case were 

conditionally confirmed to act as conduits for groundwater recharge, while for the last two 

depressions, the data was inconclusive. The study highlighted that not all sinkhole-like 

depressions act as sources of recharge and that it is not possible to assess the connectivity to 

groundwater solely from remotely sensed observations. 

5.3 OUTLOOK  

In chapter 4 we applied an approach where almost all data was put aside for model testing 

where the developed models were developed based on a literature review of general 

knowledge about sinkholes and groundwater-surface water interactions. However, when the 

problem becomes more complex, the task of developing alternative models based only on a 

general literature review, may not be manageable. The number of plausible models will be 

too many. The problem with using data for model development is that the range of developed 

models is subject to confirmation bias. A method where data can be used systematically to 

develop alternative models while avoiding confirmation bias is still needed.  

In chapter 3 the only data used for model testing was the closure of the water balance. This 

limited the possible discrimination between alternative models. In Chapter 4 we used both 

refraction seismic data and satellite imagery and were able to reject several conceptual model 

structures. The data used in testing exercises reported in the literature has mainly been with 

geophysical data. Avenues of model testing with other hydrogeological data such as pumping 

test data and environmental tracers in a Popper-Bayes approach has yet to be explored.   
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Although parts of this thesis have been devoted to discussing conceptual surprises and how to 

uncover them, we have not discussed how to deal with them. A conceptual surprise should 

prompt the development of new hypotheses based on model behaviour, but in literature a 

reaction to model rejection has sometimes been an ad-hoc modification, assuming something 

is wrong with the mathematical representation or due to simplifications, not the underlying 

conceptual model. If a new model or range of models are developed based on model 

rejection, it would at least indirectly be based on the data used for model testing. Therefore, 

the model testing data should not be used for model testing again to avoid circular reasoning. 

A framework of how to deal with conceptual surprises is still needed. 
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Appendix A: Chapter 2 

A.1 MODEL DEVELOPMENT LITERATURE REVIEW 

Table A.1. Examples of approaches to develop conceptually different models for the Conceptual Physical Structure (Ph), Conceptual Process Structure (Pr) and the Spatial Variability Structure 

(SVS). Approaches to developing different models include hypothesis testing (H), complexity testing (C) and interpretation testing (I), i.e. Figure 2.3. If the model objective is defined in the 

introduction of the paper the objective of the model is here considered well defined. The model objective is relevant to this table as the model objective should have an impact on what to include 

in the conceptualization.   

Study Is the model 

objective well 

defined? 

Conceptual multi-model development approach Ph Pr SVS 

Altman et al. (1996) Yes Two different representations describing unsaturated zone flow through fractured media including equivalent 

continuum and a dual permeability model. 

 H  

Aphale and Tonjes (2017) No Top of semi-confining unit either as uniform surface or undulating based on interpolation between boreholes (H). 

Northern extent of semi-confining unit represented by two different models (H). 

Vertical discretization of downward fining sediment in aquifer as either uniform or variable (H). 

Landfill effect on recharge either (i) no effect on recharge, (ii) recharge diverted to recharge basins adjacent to the 

landfill mounds, (iii) all recharge collected for off-site treatment (H). 

Drains segmented or not (H). 

H H H 

Carrera and Neuman 

(1986) 

No Ten alternative zonation patterns of hydraulic conductivity for synthetic aquifer.  
 

C  

Castro and Goblet (2003) Yes Four alternative models where constraints within a formation is imposed (i.e., linear, exponential or with increasing 

distance decrease in hydraulic conductivity or constant hydraulic conductivity values for all formations).  

 H  

Elshall and Tsai (2014) No Two different geological formation dips propositions (H). 

Three indicator geostatistical methods for representing geometry: indictor zonation, generalized parameterization and 

indicator kriging (H).  

H H  

Engelhardt et al. (2014) No Seven alternative conceptual models varying the number of parameters (horizontal and vertical hydraulic conductivity 

and specific yield) in 10 homogeneous zones by lumping zones together.  

 
C  

Feyen and Caers (2006) Yes Two different training images representing two different braiding and sinuosity scenarios of a fluvial system (H). 

Three different affinity and angle maps representing local variation in channel width and orientation (H).  

Three different variogram types: spherical, exponential or Gaussian (H).  

 H  

Foglia et al. (2007) No Five alternative models that differs in zonation of hydraulic conductivity. Alternatives developed by lumping together 

different zones of homogeneous hydraulic conductivity.  

 C  

Foglia et al. (2013) Yes  

 

Two different bedrock geometries defining the bottom of the groundwater system based on different data (I) 

Five different zonation of hydraulic conductivity (C).  

Recharge either zero, spatially uniform, zonated based on soil types or simulated through rainfall-runoff model (I).  

I C I/H 
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Study Is the model 

objective well 

defined? 

Conceptual multi-model development approach Ph Pr SVS 

  Streams are described with MODFLOW’s SFR and River package in alternative models imposing different 

assumptions (H).  

Gedeon et al. (2013) Yes An initial model including a crude description of e.g. a clay aquitard and an update of the initial model including new 

information to update the description of the aquitard. This is an example of a consensus approach allowing for updates 

and the classification system presented by Figure 2.3 therefore does not apply.  

N/

A 

N/

A 

N/A 

Harrar et al. (2003) Yes Two manually created alternative geological models are based on the same data and contains the same five sediment 

types but is interpreted by two different geologist. They differ in regards to the way the sediment type is assigned to 

the cells based on borehole data and the number of layers. Thereby one model reflects a more heterogeneous system 

while the other reflects a stratified system.  

I 
 

 

He et al. (2014)  No Two training images for an MPS algorithm where one is based on SkyTEM data and the other is based on a Boolean 

simulation.  

 H  

Hermans et al. (2015) Yes In the field example four different training images are produced through a Boolean simulation for an MPS algorithm 

to describe variation between sand, clay and gravel.  

 H  

Hills and Wierenga 

(1994) 

Yes Unsaturated zone and transport models developed by five different teams. The models differed in regards to soil being 

modelled as isotropic or anisotropic and homogeneous or heterogeneous.  

 I  

Højberg and Refsgaard 

(2005) 

Yes Three hydrogeological models manually generated by three different teams for different purposes.  I 
 

 

Johnson et al. (2002) Yes A one-layer, two layer and three layer model is considered to represent a layered basalt and interbedded sediment 

aquifer.  

H 
 

 

Kikuchi et al. (2015) Yes Inclusion of zero, one or two lenses of higher hydraulic conductivity in an otherwise homogeneous unconfined aquifer 

(H). 

Mountain front recharge as either a continuous line parallel to mountain front or through discrete stream features (H). 

Two models with and without underflow through subsurface zone to adjacent basin (H).  

H  H 

Knopman and Voss 

(1988), Knopman and 

Voss (1989) 

Yes Input of solute at upstream boundary of either i) constant, ii) decaying or iii) spatially varying initial condition (H). 

Two different models in regards to whether first-order decay is affecting the transport (H).  

One or three layers to describe the medium of well-sorted sand and gravel (C) 

 C H 

Knopman et al. (1991) Yes One-dimensional models of solute transport differing in regards to whether first-order decay is affecting the transport 

(H).  

One, two or three layer to describe the medium of well-sorted sand and gravel (C) 

 C H 

La Vigna et al. (2014) Yes Three models considered to explain connection between two sand aquifers is i) outside of groundwater model, ii) 

through silty-sandy lense and 3) through old, not backfilled well.  

H 
 

 

Lee et al. (1992) Yes Homogeneous, layered and randomly heterogeneous geologic description to model tracer migration.   C  

Li and Tsai (2009) Yes In the Baton Rouge Area case study: Three different influences of a fault in regards to connectivity between aquifers 

is considered: i) impermeable fault model, ii) low permeability model and iii) no fault model.   

H   

Linde et al. (2015) No Two training images for an MPS algorithm where one is based on a local outcrop and the other is based on an aquifer 

analogue.  

 H  

Lukjan et al. (2016) No Two hydrogeological interpretations, homogeneous or zoned (C).  

Five models by combining different outer boundary conditions as either head or no-flow boundaries (H).  

 C H 
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Study Is the model 

objective well 

defined? 

Conceptual multi-model development approach Ph Pr SVS 

Mechal et al. (2016) No Two different models with two different fault sets and one model not representing faults at all (H).  

Five models with increasing number of transmissivity zones (C). 

Two models with one representing all rivers and one only representing the major river (C).  

Two models of lateral boundary conditions where one considers outflow to an adjacent aquifer and one does not (H). 

H C C/H 

Meyer et al. (2003) No Nine different variogram models to explain log air permeability variation in unsaturated fractured tuff. 
 

H  

Meyer et al. (2007) Yes Two alternative models of spatial distribution of K: Homogeneous and zoned.  

A steady-state and a transient boundary condition to a stream.   

 C C 

Nettasana 

(2012)/Nettasana et al. 

(2012) 

No/Yes Three/two different independent interpretations of geology that differ in regards to e.g. number of layers (I).  

Two different zonation of recharge based on either soil type, or soil type and land use (C). 

Two models where some lateral boundaries are either no-flow or head boundaries to test outflow to adjacent aquifers 

(H). 

I 
 

C/H 

Nishikawa (1997) Yes Two models of different geometry where in the first the aquifers are horizontally layered and in the second the layers 

are folded offshore which would create a shorter pathway for seawater to intrude through an outcrop.  

H   

Nordqvist and Voss 

(1996) 

Yes Three models differing in zonation of transmissivity values, i) including description of esker core and outwash 

material, ii) a homogeneous model, iii) including an esker core with a discontinuity and outwash material.  

 C  

Passadore et al. (2011) Yes Alternative descriptions of how aquitards pinches out in sedimentary basin affecting the connectivity of aquifers. H 
 

 

Pham and Tsai (2015; 

2016) 

No Geological description by either indicator kriging, indicator zonation or general parameterization (H).  

Two different fault permeability architectures: i) the same for all lithologies or ii) different for the three different 

lithologies (C). 

H C  

Poeter and Anderson 

(2005) 

No 61 alternatives models by varying number and distribution of hydraulic conductivity zones generated by Sequential 

indicator simulations.  

 
C  

Refsgaard et al. (2006) Yes In an example five different consultants are asked to assess the vulnerability of aquifers towards pollution. They solve 

this task with different models in terms of geometry, processes and casual relationships and end up with vastly 

different predictions.  

I I I 

Rogiers et al. (2014) Yes A geostatistical representation of an aquifer is tested against a homogeneous representation. Within the geostatistical 

representation 50 realization are generated representing the lower order uncertainty.  

 C  

Rojas et al. (2008) No Seven alternative representations of geometry in a synthetic study differing in regards to number of layers and which 

layers are spatial correlated.  

I    

Rojas et al. (2010a) Yes Models either consider a one or a two layer hydrostratigraphic system.  

The hydraulic conductivity field is either described by i) constant hydraulic conductivity for each layer, ii) spatial 

zonation approach within the layer or iii) using Random Space Functions either conditional or unconditional.  

Recharge inflows originating from an eastern sub-basin described as i) diffuse recharge rates distributed over small 

areas of an alluvial fan, ii) point recharge fluxes at the apex of an alluvial fan or iii) recharge fluxes distributed over 

long sections of the eastern boundary. 

An additional recharge mechanism spatially distributed over the entire model domain that assumes a connection to 

adjacent aquifer is tested.  

H H H 

Rojas et al. (2010c) Yes Three alternative descriptions of geometry differing the number of hydrostratigraphic units included to test the worth 

of “soft” geological knowledge.  

H   

Samani et al. (2017) No Three models consisting of different number of zones of hydraulic conductivity (C).  C C/H 
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Study Is the model 

objective well 

defined? 

Conceptual multi-model development approach Ph Pr SVS 

Recharge divided in four or five zones (C). 

Highland recharge represented by either i) a head boundary or ii) a flux boundary (H). 

River represented by either i) recharge boundary or ii) flux boundary (H). 

Samper and Neuman 

(1989) 

No Five different semi variogram models (exponential, quadratic, spherical, pure nugget and exponential with nugget). 
 

H  

Schöniger et al. (2015) Yes Four alternative representations of a sandbox in a synthetic study going from simple to complex (homogenous through 

zonation/layered to geostatistical based on pilot points and to fully geostatistical).  

 C  

Seifert et al. (2008) Yes Two alternative model developed with and without the representation of a palaeovalley. For the study area the 

presence of the palaeovalley is known, but it is investigated what the impact on predicted vulnerability would be if the 

existence of the palaeovalley was not known.  

H   

Seifert et al. (2012) No Five alternative hydrostratigraphic models were generated by five different (hydro) geologists in a manual approach to 

geological model building. 

I   

Selroos et al. (2002) Yes Three different models describing the flow through fractured rock: i) Stochastic continuum, ii) discrete fractures, or 

iii) channel network.  

 I  

Troldborg et al. (2007) No Four alternative models developed different in regards to a global hypothesis about depositional history, zonation of 

an aquifer and which well logs to use for the interpretation.   

H/

I 

  

Troldborg et al. (2010) Yes Two models that differ in regards to contact between two sand aquifers potentially separated by a clay layer (H). 

Two models with a different description of source zone for contamination (H). 

H  H 

Tsai (2010) Yes Experimental, spherical and Gaussian semivariogram models to describe hydraulic conductivity distribution.   H  

Tsai and Elshall (2013) No Three alternative variogram to explain spatial variability of the hydrofacies (exponential, pentaspherical and 

Gaussian) (H). 

One variogram applied globally or local variograms by dividing model domain in zones (C) 

Two fault model or one fault model dividing the model domain into three or two zones respectively (H). 

H H/

C 

 

Tsai and Li (2008) No Voronoi tessellation, natural neighbour interpolation, inverse, square distance interpolation, ordinary kriging and three 

Generalized Parameterization methods (that are combinations of previous zonation approaches) to parameterize 

hydraulic conductivity. 

 H  

Usunoff et al. (1992) No Three different models describing solute transport with the processes: i) Fickian dispersion and diffusion, ii) fickian 

dispersion and neglected diffusion and iii) non-fickian dispersion and diffusion.  

  H 

Yakirevich et al. (2013) Yes Two models where one described a layered media and the other described a layered media with lenses based on 

boreholes. 

 C  

Ye et al. (2004) No Seven alternative variogram models for log permeability variations in unsaturated fractured tuff 
 

H  

Ye et al. (2010), Reeves 

et al. (2010) 

No Five geological interpretations by three different companies. Three models are developed in response to non-unique 

interpretations of specific geological features (a thrust fault, a barrier to groundwater flow and a combination of the 

two). 

Five groundwater recharge scenarios informed by different methods (chloride mass balance, net infiltration method, 

Maxey-Eakin method) (I). Also included the effect of a surface water runon-runoff component and whether recharge 

occurs beneath a specific elevation in some models to test these hypothesis (H).  

I/

H 

 
I/H 

Zeng et al. (2015) No Seven different representation of geometry by varying number of layers and the hydraulic conductivity distribution 

within the layers in a synthetic study.  

H 
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Study Is the model 

objective well 

defined? 

Conceptual multi-model development approach Ph Pr SVS 

Zhou and Herath (2016) Yes Three different models of geometry varying the number and extent of layers in a synthetic study.  H 
 

 

Zyvoloski et al. (2003) Yes To explain large hydraulic gradient a baseline model features a low permeability east-west zone, but there is no 

evidence for this feature, therefore three other models are proposed: i) Lower permeability hydrothermal alteration 

zone, ii) Alteration zone and NW-SE trending fault zone, iii) like the aforementioned but with additional fault 

features. 

H   

 

A.2 MODEL TESTING LITERATURE REVIEW 

Table A.2 Examples of approaches to test and make predictions with multiple plausible conceptual models. The ‘Prior’ column specifies if the prior probability in a Bayesian context is 

uninformed or informed by data or expert opinion. The sub-columns in the ‘Model Testing’ and ‘Model Predictions’ columns refer to modelling steps in the guideline by (Neuman and 

Wierenga, 2003). The fourth model testing step, the post-audit, is not included in this table as only one reviewed study (Nordqvist and Voss, 1996) applied this step. In the model testing steps the 

data type used for testing in the different steps are specified. In ‘Model Prediction’ the method used for ranking and making predictions is provided, where ‘X’ refers to methods not specified in 

the text. Additional data needs refers to the process of identifying additional data that could potentially discriminate between the conceptual models (as opposed to reducing parameter or 

prediction uncertainty).  

Study Prior Model Testing Model Predictions 

Uninformed/ 

informed  

Step 1 Step 2 Step 3 Model 

Ranking 

Individual 

Predictions 

Ensemble 

Predictions 

Additional 

data needs 

Altman et al. (1996) - - - Hydraulic 

conductivity.  

- X - - 

Aphale and Tonjes (2017) - - - - Area Metric - - - 

Carrera and Neuman 

(1986)  

- - - - IC1 - - - 

Castro and Goblet (2003) - - - Tracers - X - - 

Elshall and Tsai (2014) Informed - - - IC1 - H-

(ML)BMA2 

- 

Engelhardt et al. (2014) - - - Hydraulic 

conductivity 

IC1 - - - 

Feyen and Caers (2006) Uninformed Borehole 

data, seismic 

data, 

hydraulic 

conductivity.  

- - - - X - 

Foglia et al. (2007) - - - - IC1, CV3 - - - 

Foglia et al. (2013) Uninformed - - - IC1, X       
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Study Prior Model Testing Model Predictions 

Uninformed/ 

informed  

Step 1 Step 2 Step 3 Model 

Ranking 

Individual 

Predictions 

Ensemble 

Predictions 

Additional 

data needs 

Gedeon et al. (2013) - - - - - X - Sensitivity 

analysis 

Harrar et al. (2003) - - - Transmissivity - X - - 

He et al. (2014)  - - - - - X - - 

Hermans et al. (2015) Uninformed Geophysical 

data 

- - - - - - 

Hills and Wierenga (1994) - - - Volumetric water 

content, solute 

concentrations  

- X - - 

Højberg and Refsgaard 

(2005) 

- - - - - X - - 

Johnson et al. (2002) -  - -  Drawdown - - - - 

Kikuchi et al. (2015) Uninformed - - - - - X OD4 

Knopman and Voss (1988) - - - - - X - OD4 

Knopman and Voss (1989)        OD4 

Knopman et al. (1991)        OD4 

La Vigna et al. (2014) - - Hydraulic 

head 

- - - - - 

Lee et al. (1992) - - - Tracer plume obs.  - - - - 

Li and Tsai (2009) Uninformed - - - IC var5 - MLBMA6 - 

Linde et al. (2015) - Geophysical 

data 

- - - - - - 

Lukjan et al. (2016) Uninformed - - - IC1 X - - 

Mechal et al. (2016) - - - Baseflow, 

transmissivity 

IC1 X - - 

Meyer et al. (2003) Uninformed  - - - IC1 - MLBMA6 - 

Meyer et al. (2007) Uninformed  - Hydraulic 

head, uranium 

concentrations 

- IC1 - MLBMA6 - 

Nettasana (2012) Uninformed, 

informed 

- - Hydraulic head IC1, GLUE7 - GLUE-

BMA8, 

MLBMA6 

- 

Nettasana et al. (2012) - - - - - X - - 

Nishikawa (1997) - - - Hydraulic 

conductivity.  

- X - - 
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Study Prior Model Testing Model Predictions 

Uninformed/ 

informed  

Step 1 Step 2 Step 3 Model 

Ranking 

Individual 

Predictions 

Ensemble 

Predictions 

Additional 

data needs 

Nordqvist and Voss (1996) - - - - - X - OD4 

Passadore et al. (2011) - Seismic data 

and 

stratigraphic 

records  

- - - X - - 

Pham and Tsai (2015) Uninformed - - - IC1 - H-

(ML)BMA2 

OD4 

Pham and Tsai (2016) Uninformed - - - X - BMA9 OD4 

Poeter and Anderson 

(2005) 

- - - Hydraulic 

conductivity. 

Model 

convergence.  

IC1 - X - 

Reeves et al. (2010) Informed - - - X - X - 

Refsgaard et al. (2006) - - - - - X - - 

Rogiers et al. (2014) - - - Hydraulic head  - X - - 

Rojas et al. (2008) Uninformed - - Hydraulic head, 

Model 

convergence. 

- - GLUE-

BMA7 

- 

Rojas et al. (2010a) Uninformed - - Hydraulic head - - GLUE-

BMA7 

- 

Rojas et al. (2010c) Uninformed - - Hydraulic head IC1 - MLBMA6, 

AICMA, 

GLUE-

BMA7 

- 

Samani et al. (2017) Informed - - Hydraulic head IC1 - - - 

Samper and Neuman 

(1989) 

- - - - IC1 - - - 

Schöniger et al. (2015) Uninformed - - Pumping tests X - BMA9 - 

Seifert et al. (2008) - - - Tritium apparent 

ages  

- X - - 

Seifert et al. (2012) - - - Hydraulic 

conductivity 

X - X - 

Selroos et al. (2002) - - - - - X - - 

Troldborg et al. (2007) - - - CFC's, tritium and 

helium conc.  

- X - - 
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Study Prior Model Testing Model Predictions 

Uninformed/ 

informed  

Step 1 Step 2 Step 3 Model 

Ranking 

Individual 

Predictions 

Ensemble 

Predictions 

Additional 

data needs 

Troldborg et al. (2010) Uninformed - - Hydraulic head, 

conductivity and 

TCE 

concentrations 

- - BMA9 - 

Tsai (2010) Uninformed - - - IC var5  - MLBMA6 - 

Tsai and Elshall (2013) Uninformed - - - IC var5 - H-

(ML)BMA2 

- 

Tsai and Li (2008) Uninformed - - - IC var5 - MLBMA6 - 

Usunoff et al. (1992) - - - - - - - OD4 

Yakirevich et al. (2013) - - - - - - - OD4 

Ye et al. (2004) Uninformed  - - - IC1, CV3 - MLBMA6 - 

Ye et al. (2010) Informed - - - IC1, GLUE7 - GLUE-

BMA7 

 

Zeng et al. (2015) Uninformed - - Hydraulic head? 

Model 

convergence.  

- - GLUE-

BMA7 

- 

Zhou and Herath (2016) - - - Water balance, 

travel time 

distribution. 

IC1 - - - 

Zyvoloski et al. (2003) - - - Flow paths are 

inferred from 

hydrogeochemical 

data 

- X - - 
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1 Information Criteria including AIC, BIC, KIC etc. (IC) 
2 Hierarchal Bayesian Model Averaging (H-BMA) 
3 Cross-Validation (CV). 
4 Optimal design (OD). 
5 Information criterion corrected with variance window (IC var) 
6 Maximum Likelihood Bayesian Model Averaging (MLBMA) 
7 Generalized Likelihood Uncertainty Estimation Bayesian Model Averaging (GLUE-BMA). 
8 Generalized Likelihood Uncertainty Estimation (GLUE). 
9 Bayesian Model Averaging (BMA). 
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Appendix B:  Chapter 3 

The following describes the reasoning behind the prior ranges used for the stochastic water 

balance for Wildman River Area showed in Table 3.2. Since all prior ranges are based on the 

investigations by (Tickell and Zaar, 2017; Turnadge et al., 2018a), the reader is referred to 

these studies for further details on the study area.  

B.1 RECHARGE  

Net recharge has been estimated for the area using Chloride Mass Balance (CMB) method 

(Tickell and Zaar, 2017; Turnadge et al., 2018a) and environmental tracers (Turnadge et al., 

2018a). The CMB method relies on the ratio of chloride concentration in local rainfall and in 

the groundwater. For the environmental tracers a lumped parameter model was used to 

identify an appropriate conceptual model and from that recharge rates were estimated in 

(Turnadge et al., 2018a) using closed-form solutions for age-depth and concentration-depth 

relationships as described in (Cook and Bohlke, 2000).  

In (Tickell and Zaar, 2017) the net recharge was estimated based on the CMB method to 87 

mm/y and 183 mm/y. In (Turnadge et al., 2018a) the net recharge was estimated to be 

between 32 mm/y and 178 mm/y for most of the study area based on the CMB method 

(Figure B.1).The estimates from the environmental tracer method agreed with this result. As 

most precipitation occurs in the wet season, it is valid to assume recharge in dry season is 

zero for the purpose of this water balance.  
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Figure B.1. Estimates of net recharge based on the CMB method (Turnadge et al., 2018a).  

B.2 LATERAL OUTFLOW 

Lateral outflow is thought to occur towards north following Swim Creek and northeast to 

Kakadu National park along respectively a northern and a southern palaeovalley. The 

northern palaeovalley has been assumed be connected northwards to thicker sequence known 

to occur towards the coast (Tickell and Zaar, 2017) (pp. 29), but very limited borehole data 

exists to support this assumption.  

The lateral discharge is thought to consist of a component from each of the connected Mz/Cz 

sand aquifer and Koolpinyah Dolostone aquifer. 

B.2.1 Transmissivity 

In (Tickell and Zaar, 2017) a transmissivity value between 355 m2/d and 2100 m2/d based on 

pumping tests was used to estimate lateral discharge. A reinterpretation of pumping tests in 

(Turnadge et al., 2018a) (pp. 184) gave a range of transmissivity between 163 m2/d and 1920 

m2/d for the 5th and 95th percentile for the sand aquifer based on 21 pumping tests. The 

transmissivity was estimated to be 109 m2/d, 145 m2/d, 295 m2/d and 2630 m2/d for the 

Koolpinyah Dolostone (Turnadge et al., 2018a) (pp. 140). 
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B.2.2 Width 

The width of the sand aquifer can be constrained by borehole data (Figure B.2a),  In the 

geological model developed in (Tickell and Zaar, 2017) (pp. 33) the width is 4 km and 6 km 

(for depths>10 m) for the southern and northern palaeovalley, respectively. However, the 

effective width of lateral outflow might be much more or much less. In our water balance the 

maximum width is constrained by the outcrops of impermeable rock on both sides of the 

palaeovalleys (7 km and 13 km for the southern and northern palaeovalley, respectively), 

while the minimum is set to 1 km for both boundaries.   

The extent of the Koolpinyah Dolostone at the lateral boundaries can be constrained by 

observations of sinkholes and borehole observations. In (Tickell and Zaar, 2017) (pp. 22) the 

width is 1 km and 2.5 km for the north-eastern and northern boundary, respectively. The 

number of boreholes that include the Koolpinyah Dolostone is however very low (Figure 

B.2), and “sinkholes” are not known to be actually sinkholes developed on top of Dolostone. 

In our water balance the minimum and maximum width is defined by making a concave to 

convex hull of the data points. The width of the northern boundary vary between 3 km and 10 

km, while the north-eastern boundary vary between 1 km and 7 km.  
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Figure B.2. (a) The observations of thickness of the Mz/Cz sand in boreholes, where triangle indicate boreholes where the 

bottom of the Mz/Cz sand has not been observed and the interpretation by (Tickell and Zaar, 2017). (b) The location of 

observed sinkholes and boreholes observations of the Koolpinyah Dolostone with the interpretation of the extent of the 

Koolpinyah Dolostone by (Tickell and Zaar, 2017). 

B.2.3 Hydraulic gradient 

Continuous observations of the water level was started immediately prior to the report by 

(Tickell and Zaar, 2017) and (Turnadge et al., 2018a) presents up to 9 months (August or 

November 2016 to May 2017) of hourly observation from 23 loggers (location seen in Figure 

B.3).  

For the north-eastern boundary the loggers installed in the surficial leaky clay aquitard 

RN022961 and RN024174, and loggers installed in the semi-confined sand aquifer 

RN039073 and RN024667 can be used to constrain the gradient across the boundary (Figure 

B.3b). The gradient is respectively 0.001 and 0.0003 for the dry season, and 0.002 and 0.002 

for the wet season between the two loggers. In our water balance the gradient is set to vary 

between 0.0001 and 0.001 for the dry season and 0.001 and 0.003 for the wet season. 

Less data exist to constrain the gradient across the northern boundary. In our water balance 

the gradient is constrained by the head difference between RN024223 (Figure B.3b) and the 

ocean which is 0.0006 and 0.0008 in dry and wet season, respectively. For our water balance 
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we set the gradient to vary between 0.0003 and 0.0009 for the dry season and between 0.0004 

and 0.0012 for the wet season, respectively.  

The gradient for the Dolostone aquifer is assumed to be similar as groundwater chemistry has 

revealed the two aquifers are hydraulically connected forming a regional aquifer (Tickell and 

Zaar, 2017) (pp. 42). 

 
Figure B.3. Location of water level loggers and hydraulic head observation (a) at the end of the dry season (1. December 

2016) and (b) at the end of the wet season (1. April 2017). (a) includes an interpretation of the isopotential surface by 

(Tickell and Zaar, 2017). (b) includes the names of the water level loggers used for estimation of gradients across the lateral 

boundaries.  

B.3 BASEFLOW 

B.3.1 Streams 

Most surface water bodies in the area are ephemeral with flow resulting from rainfall-runoff 

(Turnadge et al., 2018a) (pp. 96). The exceptions are Jimmies and Opium Creek that are fed 

by springs. It is hypothesized that Swim Creek, Ben Bunga and Cattle Creek are also 

groundwater fed from diffuse discharge through the streambed. 

In (Tickell and Zaar, 2017) the baseflow index was estimated for Jimmy’s Creek and Swim 

Creek based on the mathematical recursive digital filter method developed by (Lyne and 

Hollick, 1979) of time series of streamflow. The baseflow index was estimated to 0.77, 0.7 
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and 0.65 for Opium Creek and 0.52, 0.46 and 0.3 for Swim Creek based on different baseflow 

separation techniques.  

For the purpose of our water balance, baseflow is estimated stochastically for Jimmy’s, 

Opium and Swim Creek streamflow observations with hydrograph separation. Jimmy’s creek 

stream flow rate is not observed but estimated based on a relation with Opium Creek found in 

(Tickell and Zaar, 2017). We will use the hydrograph separation method described in 

(Eckhardt, 2005) to estimate the baseflow based on observed streamflow: 

𝑄𝐵,𝑡 =
(1 − 𝛽) ∙ 𝛼 ∙ 𝑄𝐵𝑡−1

+ (1 − 𝛼) ∙ 𝛽 ∙ 𝑦𝑡

1 − 𝛼 ∙ 𝛽
 

(B.1) 

Where the maximum baseflow index (𝛽) represents the long-term ratio between baseflow and 

streamflow and the recession coefficient (𝛼) represents the proportion of remaining 

streamflow on the next time step. 𝑦𝑡 is the total streamflow at time step 𝑡 and 𝑄𝐵is the 

baseflow.The maximum baseflow index (𝛽) was set to uniformly vary 0.25 and 0.6 for Swim 

Creek and 0.6 and 0.8 for Jimmy’s and Opium Creek based on the results from the baseflow 

separation in Tickell and Zaar (2017). Eckhardt (2005) suggests a value of 0.8 for perennial 

streams and 0.5 for ephemeral streams with porous aquifers.  

The recession coefficient (𝛼) is set uniformly vary between 0.72 and 0.73 for Swim Creek 

and between 0.90 and 0.92 for Jimmy’s Creek and Opium Creek. These numbers are based on 

the method specified in (Eckhardt, 2008), where stream flow at time step k is plotted against 

stream flow at time step k-1 for periods where streamflow is decreasing for five consecutive 

days. The slope of a linear regression that passes through the origin is the recession 

coefficient. A least squares regression has been applied and a 95 % confidence interval is 

used for the slope by assuming errors are normally distributed.  
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No continuous streamflow observations exist for Ben Bunga and Cattle Creek, but they are 

thought to behave similar to Swim Creek. The baseflow index for Swim Creek obtained from 

the hydrograph separation is therefore assumed to be representative for Ben Bunga and Cattle 

Creek. Point estimates of streamflow from (Tickell and Zaar, 2017) and (Turnadge et al., 

2018a) are used to estimate baseflow.  

B.3.2 Lagoons 

Apart from streams and springs other surface water features that may be groundwater fed 

include Twin Sisters Lagoon, Number 1 Billabong, Lake Lucy and Mistake Billabong. Only 

the largest of the Twin Sisters lagoons has been subject to investigations.  

In (Tickell and Zaar, 2017) an analysis of time series of water levels in the lagoon showed 

that at low water levels the rate of water level recession can be attributed to evaporation, 

while at high water levels there might be some net groundwater inflow to the lagoon. They 

estimated up to 12.5 % of the water balance in the dry season could not be accounted for by 

evaporation, which could correspond to a groundwater discharge of 0.75-1.8 mm/d. (Graham, 

1985) also observed a higher evaporation rate than water level recession in the season 1984-

85, which could be attributed to groundwater discharge at a rate of 2 mm/d. In lack of better 

data these values are extrapolated to other lagoons that are also thought to be depending on 

groundwater. We assume the same rate of groundwater discharge in the wet and in the dry 

season.  

B.4 STORAGE 

Turnadge et al. (2018a) provided an estimate of time required for the groundwater mounding 

in the wet season to dissipate. They estimated the time to 1 year which is consistent with the 

existing conceptualization as a fill-and-spill system (Tickell and Zaar, 2017; Turnadge et al., 

2018a) (pp. 119). The annual storage ∆𝑆𝑎 is therefore thought to be around 0.  
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Appendix C:  Chapter 4 

C.1 DEPRESSIONS IN WILDMAN 

In the period 25.-31. October 2018 in the end of the dry season, a fieldtrip was conducted in 

order to investigate the sinkholes in the Wildman River area. The objective was to investigate 

whether the sinkholes act as preferential recharge features. Five sinkholes were selected for 

focus of the investigation, spending one day at each sinkhole. These sinkholes were chosen 

based on their accessibility and vicinity to existing boreholes and water level loggers. It was 

prioritized to select sinkholes that were different regarding geometry, vegetation cover and 

from different parts of the area. It was not considered necessary to investigate sinkholes in 

both recharge and discharge area as they are thought to have the same geology regardless of 

hydraulic characteristics.  

Prior to the fieldtrip a literature review established the location of depressions in the Wildman 

River Area. Table C.1 presents a short review of how the five investigated depressions have 

been mapped in literature. Tickell and Zaar (2017) mapped the location of doline features by 

indication location as point features based on satellite imagery and field visits. In a landform 

classification based on soil and vegetation samples as well as satellite imagery, the 

depressions were delineated as “flodded depressions and perennial billabongs” (Easey et al., 

2016). Finally, the depressions have been outlined in the Water Observations from Space 

(WOfS) (Mueller et al., 2016), a dataset generated from Landsat-5 and Landsat-7, showing 

observations of surface water features over the period 1987-2014 in Australia with a 

resolution of 25 m. The orange polygons in Figure 4.2 delineate areas with at least a single 

occurrence of water in the WOfS dataset.  
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Table C.1. Short literature review of the five investigated sinkholes. Easey et al. (2016) present maps of the land resources 

in the area in the scale 1:25 000. Both are based on soil and vegetation samples as well as satellite imagery, respectively. 

Mueller et al. (2016) and present mapping of surface water bodies based on Landsat imagery in the scale of 25. Tickell 

and Zaar (2017) mapped sinkhole features by indication location as point features based on satellite imagery and field 

visits.  

Depression Tickell and Zaar 

(2017) 

Easey et al. (2016) Mueller et al. 

(2016) 

S1 Marked as 

sinkhole 

11a (swamps, wetlands, flooded 

depressions and perennial billabongs) 

Included  

S2 Marked as 

sinkhole 

Not in map extent Included 

S3 Marked as 

sinkhole 

11a (swamps, wetlands, flooded 

depressions and perennial billabongs) 

Included 

S4 Marked as 

sinkhole 

Not in map extent Included 

S5 Not included 11a (swamps, wetlands, flooded 

depressions and perennial billabongs) 

Included 

C.2 ALTERNATIVE MODEL DEVELOPMENT 

C.2.1 Process structure models 

The hydrogeological process structure of the depressions can be described in terms of their 

connection to the groundwater. When describing the depressions that containing seasonal or 

permanent water in the area, the terms lagoon, billabong, waterhole, pond, swamp and lake 

have been used interchangeably (Lloyd, 1999). We assume that the depressions could interact 

with groundwater in the same fashion as a lake.  

Lakes interact with groundwater in three basic ways (Winter et al., 1998): 1) the lake receives 

groundwater discharge throughout the entire lakebed, 2) the lake losses groundwater recharge 

throughout the entire lakebed, and 3) part of the lake bed receives groundwater discharge 

while other parts of the lakebed losses groundwater recharge. Further, the depressions may 

not interact with groundwater at all. In case 2, the water level may be connected or 

disconnected from the water table, but we will not test the difference between the two. This 

result in four alternative understandings of the process structure (also see Figure 4.3). The 

water balance of the depression is influenced by: 

- I: Evaporation only, there is no exchange between surface and groundwater  
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- II: Evaporation and groundwater recharge, where the groundwater flux occurs under 

either losing-connected or losing-disconnected conditions.  

- III: Evaporation and groundwater discharge.  

- IV: Evaporation, groundwater recharge and groundwater discharge.  

C.2.2 Physical structure models 

In developing alternative understandings of the physical structure beneath the depressions, we 

focus on understandings that would influence refraction seismic data and at the same time 

would affect whether the structure would allow preferential recharge. 

Turnagde et al. (2018) suggested the depressions have formed as either dropout or buried 

sinkholes that develop on top of areas of relatively higher porosity where surface water 

infiltrates preferentially. The infiltrating water eventually results in dissolution of the 

dolomitic bedrock that forms underground cavities that eventually lead to collapse of the 

overlying features. This development history suggests that the permeability underneath the 

sinkhole is greater than outside the sinkholes. 

A sinkhole developed in 2013 in the Darwin Region initially had steep walls, however over 

time the walls slumped and the sinkhole began to look like an older broad, shallow depression 

(Tickell, 2013). It has been hypothesized that over time a layer of low permeability clay and 

organic matter develop on top of the depressions sealing it from the groundwater (Graham, 

1985; Schult and Welch, 2006).  

The depth of investigation of the refraction seismic data is less than 30 m. Boreholes from the 

area show that the Dolostone is observed at depths between 40 and 100 m. The conceptual 

models are defined to have a maximum depth of 30 m and does therefore not include 

Dolostone.  

Combination of the understandings of the development history of the depressions lead to four 

different physical structure models (also see Figure 4.3). 
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- A: Homogeneous sand subsurface without vertical stratification. 

- B: High porosity/permeability zone promoting water infiltration. 

- C: Homogenous sand with vertical stratification through a sealing clay layer. 

- D: High porosity/permeability zone overlain by a sealing clay layer. 

C.3 TESTING DATA 

C.3.1 Process structure models (𝒀𝒑𝒔) 

The remote sensing data consists of PlanetScope imagery (Planet Team, 2017) from 19 dates 

over the dry season; the first and last date respectively being 24-04-17 and 02-11-17. The 

PlanetScope satellites collects 4 bands (blue, green, red and near infrared) with a pixel size of 

3 m. All the obtained imagery was captured during clear sky conditions. 

Normalized Difference Water Index (NDWI) (McFeeters, 1996) can be used to assess the 

vegetation water content and the presence of open water bodies. NDWI compares how much 

near-infrared light (NIR) is reflected compared to visible green light (GREEN): 

NDWI =
GREEN − NIR

GREEN + NIR
 (C.1) 

Here low values represent vegetation and soil features, while high values represent water 

bodies. Histograms of NDWI images that contain water will generally show a bimodal shape 

where the modes represent land and water pixels respectively.  

The observation of interest is here the number of days after the start of the dry season, when 

the depressions run dry. The date where the depression is dry is interpreted through the 

application of a two-step approach to consider both spectral characteristics and spatial 

distribution of the water in the image: 

1. Automatic thresholding. Segmentation into land and water based on thresholding.  

2. Trajectory analysis. Correct all trajectories according to predefined rational rules. 

Otsu’s method (Otsu, 1979) is used to perform automatic thresholding between water and 

non-water features when the NDWI image histogram is bimodal. The method searches for the 

optimal threshold that maximizes the inter-class variance by analysing the histogram of the 
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image. The method is suitable for thresholding when the image histogram is bimodal but is 

less applicable when the water area is much smaller than the background. Rosin’s unimodal 

thresholding method (Rosin, 2001) is used when the NDWI image histogram is unimodal. 

The method searches for the point on a straight line between the histogram peak and the last 

empty bin that is furthest from the histogram. Following thresholding, the masks are cleaned 

by dilating with a one-pixel disk, filling donuts and eroded back again with the one-pixel 

disk.  

A trajectory analysis (Powell et al., 2008; Zomlot et al., 2017) is performed that is based on 

the time series of each pixel to seek out classification errors. Classification errors can occur, 

e.g. because shallow water may not have a pure water signature, the view may be obstructed 

by tree canopy, or general noise may exist.  

Since only images for the dry season have been obtained, we can assume the following rule 

applies in the trajectory analysis of the time series of each pixel: if a pixel is classified as wet 

and later is classified as dry, it is assumed to be correctly classified and considered to 

represent the drying out of the depression. For the remaining trajectories, the following rules 

are applied for correction (Figure C.1): 

- Rule I: If a pixel has a trajectory that includes a sequence of dry-wet-dry, the pixel in 

the second time slice in this sequence is reclassified as dry. 

- Rule II: If a pixel has a trajectory that includes a sequence of dry-wet-wet, the pixel in 

the first time slice in this sequence is reclassified as wet. 

- Rule III: If a pixel has a trajectory that includes a sequence of dry-dry-dry, the rest of 

the pixels in the time slices are reclassified as dry.  
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Figure C.1. Trajectory analysis application for correction of time series. Three rules (Rule I-III) are applied to correct 

trajectories extracted from automatic thresholding so that pixel time series can only go from wet to dry. 

The likelihood function for the depressions being dry is defined as a beta distribution. Beta 

distributions are defined by four parameters: 𝛼, 𝛽, a lower limit and an upper limit. Solving 

the distribution for these four parameters requires the following assumption, which is based 

on the surface area of water over time for the depressions (Figure C.2):  

- The lower limit is defined as the first date when less than 5 % of the maximum water-

covered area is left in the depression.  

- 10th percentile is defined as the first date when less than 3 % of the maximum area is 

left in the depression.  

- 90th percentile is defined as the first date when less than 1 % of the maximum area is 

left in the depression. 

- The upper limit is defined as the first date no water is observed in the depression. 

 

Figure C.2. Likelihood function definition based on timeseries of surface water area over time for depression S2. 
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C.4 FORWARD MODELLING 

C.4.1 Process structure models 

A simple bucket water balance model was set up for each depression over the dry season 

(May-October) to calculate the day the depressions run dry:  

𝑖𝑛𝑓𝑙𝑜𝑤 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 ± ∆𝑑 

𝑑𝑡  =  𝑑𝑡−1 − 𝑖𝑛𝑓𝑙𝑜𝑤 + 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 

(C.2) 

where 𝑑𝑡 is the water depth at timestep 𝑡 and 𝑑𝑡−1 is the water depth at timestep 𝑡 − 1. The 

result of the water balance model is the timestep, where 𝑑𝑡 = 0. The inflow will consist of 

groundwater discharge (zero rainfall inflow during the dry season) and the outflow of 

groundwater recharge and evaporation according to the applied process structure.  

The prior parameter probabilities used in the bucket water balance for all depressions are 

defined in Section C.5. 

C.4.2 Physical structure models 

In order to compute the travel-times from a known subsurface structure we need to define 

relationships between the elastic properties and how these vary as a function of porosity and 

water saturation. Instead of picking a velocity range for each facies in our physical structure 

models we elected to utilize rock physics relationships to provide reasonable estimates for the 

velocities expected by our structure. This section outlines the rock physics relationships we 

used to calculate velocities given a specific lithology (e.g. clay or sand) and a known 

porosities and water saturation. From these parameters our relationships provide a p-wave 

velocity that can be fed into a program to calculate the first-arrival travel times. The first 

arrival travel-times can be directly compared to ones measured in the field. The well-known 

relationship between bulk modulus, shear modulus and density and velocity are given 

(Telford and Telford, 1976):   
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𝑉𝑝 = √𝐾 +
4
3𝐺

𝜌
 

(C.3) 

𝑉𝑠 = √
𝐺

𝜌
 (C.4) 

𝜌 = 𝜌𝑚(1 − 𝜙) + (𝑠𝑤𝜌𝑤 + (1 − 𝑠𝑤)𝜌𝑎)𝜙 (C.5) 

where 𝑉𝑝 is p-wave velocity in km/s, 𝑉 is the s-wave velocity in km/s, 𝐾 is the bulk modulus 

in GPa, 𝐺 is the shear modulus in GPa, 𝜌 is the density in g/cm3, 𝜙 is porosity and 𝑠𝑤 is the 

water saturation. Here we calculate density as a function of porosity and water saturation. The 

density is calculated prior to the velocity calculation as a linear average. 𝜌𝑚 represents the 

density of the solid phase, 𝜌𝑤 the density of water, and 𝜌𝑎 the density of air. 

To calculate the elastic properties at different porosities and water saturations we use a porous 

rock physics model based on Hertz–Mindlin contact theory (Helgerud, 2001; Helgerud et al., 

1999; Mindlin, 1949) and modified Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963). 

The step to calculate the elastic properties follows three steps.  First, we must calculate the 

elastic moduli at the critical porosity (Eq. (C.7). The critical porosity is defined as the 

porosity at which the rock goes from grain supported to fluid supported (Nur et al., 1998). 

Second, we define the elastic properties between zero and the critical porosity using a Hashin-

Shtrikman relationship (Eq. (C.8 and(C.9) (Hashin and Shtrikman, 1963). Third, to ensure 

that we define a velocity for any given input we define the elastic moduli above the critical 

porosity using a Reuss average (Eq. (C.10) (Dvorkin et al., 1999; Nur et al., 1998). The 

critical porosity is defined as the porosity at which the rock goes from being grain supported 

to being fluid supported (Nur et al., 1998). After we have obtained the elastic properties at 

different porosities, we use a two more relationships to account for influence of fluid on 

velocity. First, we estimate the bulk modulus of the fluid air mixture in the pores (Eq. (C.12). 
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Second, we use Gassmann’s equation (Eq. (C.11) to predict the saturated bulk modulus. 

Finally, the bulk and shear modules are converted to velocity (Eq. (C.3 and (C.4). 

The Hertz-Mindlin model, we calculate the elastic properties at a critical porosity and 

effective pressure, or depth, using Eq. (C.7).   

𝐾𝐻𝑀 = √
𝐶2(1 − 𝜙𝑐)2𝐺𝑚

2

18𝜋2(1 − 𝜐)2
𝑃

3

 (C.6) 

𝐺𝐻𝑀 =
5 − 4𝜐

5(2 − 𝜐)
√

3𝐶2(1 − 𝜙𝑐)2𝐺𝑚
2

2𝜋2(1 − 𝜐)2
𝑃

3

 (C.7) 

where 𝐾𝐻𝑀 and 𝐺𝐻𝑀 are the bulk and shear moduli at the critical porosity (𝜙𝑐), 𝑃 is the 

effective pressure in GPa, 𝜐 is Possion’s ratio of the material, and 𝐶 is the number of contacts 

per grain. Poisson’s ratio is calculated using the bulk and shear moduli defined by literature 

(Table C.2). The critical porosity is approximately 0.4 for sandstones but can be as low as 

0.05 for igneous rocks (Mavko et al., 2009; Nur et al., 1998).  

To find the effective moduli of the dry rock (𝐾𝑒𝑓𝑓 and 𝐺𝑒𝑓𝑓 f) at porosities between zero and 

the critical porosity, we use the modified Hashin-Shtrikman (HS) lower bound (Eq. (C.8) and 

upper bound (Eq. (C.9). We use both of these boundaries to constrain possible elastic moduli 

(Mavko et al., 2009). The upper Hashin-Shtrikman boundary is often time referred to as the 

“stiff” sand model and the lower boundary is referred to as the “soft” sand boundary.  The 

equations for the lower bounds are the following: 
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(C.9) 

For porosities higher than the critical porosity, we use Reuss average (Dvorkin et al., 1999; 

Nur et al., 1998) (Eq. (C.10): 
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(C.10) 

The last step is to include the fluid effect on elastic properties for various saturations. In near-

surface applications, the saturating fluid will be a mixture of water and air. A common way to 

model how saturation influences the elasticity is through an effective fluid model (Mavko et 

al., 2009). Once an effective fluid bulk modulus 𝐾𝑓𝑙 is calculated, it can be included in the 
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rock physics model using into Gassmann’s equations (Mavko et al., 2009) to calculate the 

saturated-rock bulk modulus 𝐾𝑠𝑎𝑡  (Eq. (C.11). The shear modulus 𝐺𝑠𝑎𝑡  is not influenced by 

saturation, so it is equal to the effective shear modulus 𝐺𝑒𝑓𝑓 of the dry rock. 

𝐾𝑠𝑎𝑡

𝐾𝑚 − 𝐾𝑠𝑎𝑡
=

𝐾𝑒𝑓𝑓

𝐾𝑚 − 𝐾𝑒𝑓𝑓
+

𝐾𝑓𝑙

𝜙(𝐾𝑚 − 𝐾𝑓𝑙)
 

𝐺𝑠𝑎𝑡 = 𝐺𝑒𝑓𝑓 

(C.11) 

To calculate the effective fluid bulk modulus (𝐾𝑓𝑙), we use Brie’s equation (Brie et al., 1995) 

(Eq. (C.12).  

𝐾𝑓𝑙 = (𝐾𝑤 − 𝐾𝑎)(1 − 𝑠𝑎)𝑒 + 𝐾𝑎 (C.12) 

where 𝐾𝑤 is the bulk modulus of water (2.1 GPa) and 𝐾𝑎 is the bulk modulus of air (0.01 

GPa), 𝑠𝑎 is the air saturation, and e is an empirical parameter usually equal to 3 (Mavko et al., 

2009).  

Using the rock physics relationships (Eq. (C.3-(C.12) we can now define the physical 

structure in terms of velocity. This is a critical step because the forward model code requires 

velocity values, not lithology, porosity, or density. Given the conceptualization and the rock 

physics modelling we can now produce a saturated and unsaturated velocity for the clay, the 

sand anon the high porosity sand. From this step, the velocities that represent each physical 

structure (Figure C.3) can be easily projected onto a triangular mesh and fed to pyGIMLi 

(Rücker et al., 2017) to compute the travel-times. Using the same configuration that we 

collected the data within the field, that is 36 geophones spaced equally at 4 m with a shot 

every four meter we can calculate the travel time from each source to each receiver. The ray 

tracing algorithm in pyGIMLi is based on a shortest path algorithm (Moser, 1991). Since 

there is not inversion involved the forward modelling process runs quickly making it possible 

to run many realizations and produce travel-time curves for 1000s of models. The prior 
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parameter probabilities used in the refraction simulation and the rock physics model are 

defined in Section C.5.  

 

Figure C.3. Workflow for generating one realization of the physical model structure. One of four model structures (Figure 

4.3) is chosen (a) and geometrical parameters are sampled to translate the model structure into a geometrical structure (b) 

(Figure C.5). Further lithological parameters are sampled as input to a rock physics model that translate the lithologies into 

velocities (c). The velocity structure is used as input to pyGimli to obtain a realization of first arrivals (d). The dimensions of 

the realization of first arrivals is reduced in a Principal Component Analysis (PCA) to two principal components (e). This 

workflow is repeated 1000 times for each realization.   

C.5 ON DEFINING PRIOR RANGES FOR PARAMETERS 

The following describes the reasoning behind the prior probability ranges for the parameters 

used in the forward geophysical model and bucket water balance model for the depressions. 

All prior parameter ranges are described by uniform probability distributions defined by the 

minimum and maximum value, so that all parameter values in the ranges are equally likely. 

Some parameters depend on the geometry of the depressions and a few geometrical properties 

are therefore defined in the following. The outline of the depression is here defined as the 

maximum water filled area based on the PlanetScope imagery in the start of the dry season 

(24/4-2017). The edge of the sinkhole is defined as the point on the seismic line that crosses 

the outline and the centre is defined as the point on the seismic line furthest from the outline 

within the depression. This, with exception of depression S4 where the seismic line is too 

short to cross near the geometrical centre of the depression because of its size. Here the centre 

is defined as the point in the depression furthest  
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Figure C.4. Geometry and seismic inversions of the seismic refraction data of the five depressions (S1 to S5).  

C.5.1 Physical structure 

The prior probabilities of the parameters for the forward geophysical model is shown in Table 

C.2. The parameters in the geophysical model can be divided into geometrical parameters that 

control the zonation of the cross-section and lithological parameters that determine the 

velocity within the different zones used in rock physics model.  
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Table C.2. Prior parameter probabilities for the physical structure for each depression (S1 to S5).  

 S1 S2 S3 S4 S5 Unit 

W.Z.O U(30.4, 32.4) U(27.1, 29.1) U(29.1, 31.1) U(11.6, 16.8) U(18, 29) m 

W.Z.I U(30.4, 32.4) U(27.1, 29.1) U(29.1, 31.1) U(11.6, 16.8) U(18, 29) m 

W.X U(36, 79) U(28, 71) U(8, 135) U(40, 135*) U(64, 115) m 

P.X.U U(36, 79) U(28, 71) U(8, 135) U(40, 135*) U(64, 115) m 

P.X.L U(36, 79) U(28, 71) U(8, 135) U(40, 135*) U(64, 115) m 

C.X U(0, 79) U(0, 71) U(0, 135) U(0, 135*) U(0, 115) m 

C.Z U(28.5, 32.5) U(24.6, 28.6) U(27, 31) U(11.8, 15.8) U(26, 30) m 

𝜃ℎ U(𝜃𝑡 + 0.05, 𝜃𝑡 + 0.15) - 

𝜃𝑡 U(0.2, 0.4) - 

𝐾𝑐𝑙𝑎𝑦 U(5, 12) GPa 

𝐾𝑠𝑎𝑛𝑑 U(12, 18) GPa 

𝐺𝑐𝑙𝑎𝑦 U(3, 7) GPa 

𝐺𝑠𝑎𝑛𝑑 U(5, 11) GPa 

𝜌𝑐𝑙𝑎𝑦 U(2.6, 2.75) g/cm3 

𝜌𝑠𝑎𝑛𝑑 U(2.6, 2.65) g/cm3 

 

C.5.1.1 Geometrical priors 

The geometry in the sinkholes are described in the cross-section where the seismic data has 

been collected. The structure of the model is described by lines that are defined by points, that 

make up the geometrical parameters (Figure C.5). The lines intersect and create polygons or 

zones of similar velocity.  

 

Figure C.5. Geometrical parameters for the geophysical forward model. The parameters described with a X varies 

horizontally, while parameter names including a Z varies vertically. 

Water table 

The water table line describes the location of the water table at the time of the seismic survey. 

The water table is defined by three points. In some of the sinkholes, auger holes were drilled 
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deep enough to meet the water table, while in the other sinkholes, the definition of the priors 

must rely on water table loggers in the vicinity of the sinkholes.  

The water table logger RN24177, 20 m away from S1, measured 31.4 mASL at the time of 

the survey. In the model the water table is set to vary between 30.4 mASL and 32.4 mASL for 

both the water table z coordinates (W.Z.O and W.Z.I). In S2 the water table was measured in 

an auger hole in the middle of the sinkhole at 28.1 mASL at the time of the survey. In the 

model the water table is set to vary between 27.1 mASL and 29.1 mASL. In S3, the water 

table was measured in an auger hole in the middle of the sinkhole at 30.1 mASL at the time of 

the survey. In the model the water table is set to vary between 29.1 mASL and 31.1 mASL. 

S4 is located between logger RN039077 in north-north-west (1.5 km away) and logger 

RN039769 in east-south-east (6 km away). The water level at the time of the survey was 11.6 

mASL and 18.3 mASL at logger RN039077 and RN039769, respectively. An auger hole of 1 

m depth (16.9 mASL) in the middle of the sinkhole did not meet the water table and the prior 

is therefore set to vary between 11.6 mASL and 16.8 mASL. S5 is located between logger 

RN039769 in east-north-east (3 km away) and logger RN038022 in north-north-east (3 km 

away). The water level at the time of the survey was 18.28 mASL and 18.82 mASL at logger 

RN039769 and RN038022, respectively. A 1.9 m deep (29.1 mASL) auger hole did not meet 

the water table. The water level is set to vary between 18 mASL and 29 mASL at S5.  

The prior range for the parameter controlling the location of the bend in the water table (W.X) 

is estimated based on topography of the seismic cross-section. The lower limit is set at the 

edge of the sinkhole while the upper limit is set 5 m from the centre of the depressions.  

Porosity line 

The porosity describes a sharp contrast in porosity between the lithology within and outside 

the sinkholes. It is described by two parameters, P.X.U and P.X.L, that vary horizontally and 
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are defined within the same prior range. The lower limit is set at the edge of the sinkhole 

while the upper limit is set 5 m from the centre of the sinkhole.  

Clay line 

The clay line describes a sharp boundary between sand and clay in the sinkhole. The clay 

layer represents the sediments that are deposited on top of the sinkhole after the collapse. 

From other sinkholes in the area, it is known sinkholes are not more than 5 m deep (Schult 

and Welch, 2006). The upper bound for the clay layer is therefore set to 5 m below the 

elevation in the centre. The lower bound is set to 1 m below the elevation in the centre.  

The C.X variable controls the lateral extent of the clay layer. The lower limit is set at the edge 

of the profile while the upper limit is set 5 m from the centre of the sinkhole. 

C.5.1.2 Lithological property priors 

The velocity in the different zones described in the geometrical model is determined by a rock 

physics model.  

The parameters for this model include porosity, bulk modulus, shear modulus and the density 

for which a prior probability distribution will be defined. It also includes the water saturation, 

the Hertz-Mindlin grain contact parameter and the critical porosity which are all kept 

constant. Generally, these values have not been measured in the area and must be estimated 

from literature.  

In each realisation the rock physics model is applied for each velocity zone. Each input value 

drawn from the uniform distribution (Table C.2) is used as the mean value from which a 

normal distribution is defined. The values in each mesh grid cell is populated from this 

normal distribution. The standard deviation of the normal distribution is defined as (max-

min)/10.  

Water saturation 
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The water saturation is a constant value of 0.2 for unsaturated zone and 0.99 for the saturated 

zone.  

Grain contact parameter 

The grain contact parameter is the average number of contacts per grain which generally 

ranges between 4 and 12 (Mavko et al., 2009). We apply a constant value of 4 for the grain 

contact parameter as an initial sensitivity analysis showed that this parameter is relatively 

insensitive.  

Critical porosity 

The critical porosity is the porosity where rock goes from being grain supported to being fluid 

supported. A constant value of 0.4 is used as the critical porosity, which is the critical 

porosity of sandstone (Mavko et al., 2009). As for the grain contact parameter an initial 

sensitivity analysis showed that this parameter is relatively insensitive.  

Porosity (𝜽𝒉, 𝜽𝒕) 

Manger (1963) summarised 900 data items of porosity for sedimentary rock mostly from 

America, Great Britain, Germany and Switzerland. According to Manger (1963) the porosity 

for both sand and clay can range between 0.2 and 0.5.  We are interested in defining a higher 

porosity 𝜃ℎ zone in the middle of the depressions and a zone of more typical values of 

porosity 𝜃𝑡 around the depression. The latter zone is set to vary between 0.2 and 0.4, while 

the high porosity zone is set to always have a porosity between 0.05 and 0.15 higher than the 

typical porosity zone.   

Bulk modulus (𝑲𝒄𝒍𝒂𝒚, 𝑲𝒔𝒂𝒏𝒅)  

Literature values for shear modulus has been found in (Vanorio et al., 2003; Wang et al., 

2001). The bulk modulus has been reported to have values for sand of 13-17 GPa and for clay 

of 6-11 GPa. In the forward model for the seismic cross-section the bulk modulus is set to 

vary between 12 GPa and 18 GPa for sand and between 5 GPa and 11 GPa for clay.  

Shear modulus (𝑮𝒄𝒍𝒂𝒚, 𝑮𝒔𝒂𝒏𝒅) 
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Literature values for shear modulus has been found in (Vanorio et al., 2003; Wang et al., 

2001). The shear modulus has been reported to have values for sand of 6-10 GPa and for clay 

of 4-6 GPa. In the forward model for the seismic cross-section the shear modulus is set to 

vary between 5 GPa and 11 GPa for sand and between 3 GPa and 7 GPa for clay.  

Mineral density (𝝆𝒄𝒍𝒂𝒚, 𝝆𝒔𝒂𝒏𝒅) 

In an x-ray diffraction analysis of sediment samples from Wildman River Area, Turnadge et 

al. (2018) found that the sand mineralogical composition is mainly quartz with minor fraction 

of kaolin. The sandy clay is also mainly composed of quartz (~65 %) but contain more kaolin 

(~30 %). Further, the sandy clay contains minor fractions of muscovite and goethite. The 

mineral density of quartz and kaolin is 2.6-2.65 g/cm3 while it is 3.3-4.3 g/cm3 for goethite 

and 2.77-2.88 g/cm3 (“Mineralogy Database,” n.d.). We set the prior for sand density to vary 

between 2.6 g/cm3 and 2.65 g/cm3 and for clay between 2.6 g/cm3 and 2.75 g/cm3 

considering the mineralogy.  

C.5.2 Process structure 

The prior ranges for the parameters in bucket water balance based on the alternative 

understandings of the process structures of the depressions is presented in Table C.3. 

Table C.3. Prior parameter probabilities for the process structure models.  

 S1 S2 S3 S4 S5 Unit 

𝑑𝑚𝑎𝑥 U(1.2, 1.6) U(1.2, 1.6) U(1.7, 1.9) U(2.3, 2.6) U(1.3, 2) m 

𝐸 U(5, 9) mm/d 

𝑞𝑟𝑒𝑐 U(0.5, 2.5) mm/d 

 𝑞𝑑𝑖𝑠 U(0.5, 2.5) mm/d 

Maximum water depth (𝒅𝒎𝒂𝒙) 

The five depressions have not been visited in the end of the wet season and the maximum 

water depth have therefore not been observed. From trees in depressions however, high water 

marks (Figure C.6) could be identified all depressions except S1. These values can be 
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compared with values obtained by comparing maximum water filled area of the sinkholes 

(24/4-17) with elevations obtained in the field, see Figure C.4.  

 

Figure C.6. High water level marks on trees in sinkhole 153 used to estimate maximum water depth in wet season. 

Pan evaporation (E) 

Tickell and Zaar (2017) used pan evaporation in the dry season ranging from 5.9 to 7.9 

mm/day. Rayner (2005) presented a modelled Class A pan evaporation dataset for Australia 

based on a simple linear combination of gridded solar radiation and vapour pressure deficit. 

The pan evaporation is about 5 – 9 mm/day from May to September in the Top End in this 

dataset. This range is used as prior range in the water balance for the depressions.  

Groundwater recharge and discharge (𝒒𝒓𝒆𝒄,  𝒒𝒅𝒊𝒔) 

The groundwater recharge/discharge have not been investigated for the five depressions. 

However, the major Twin Sisters Lagoon, that is assumed to have same development history, 

has been the subject of to some investigation. 

In an analysis of time series of water levels in the lagoon, Tickell and Zaar (2017) showed 

that at low water levels the rate of water level recession can be attributed to evaporation, 

while at high water levels there might be some net groundwater inflow to the lagoon. They 

estimated up to 12.5% of the water balance in the dry season could not be accounted for by 
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evaporation, which could correspond to a groundwater discharge of 0.75–1.8 mm/day. 

Graham (1985) also observed a higher evaporation rate than water level recession in the 

season 1984–85, which could be attributed to groundwater discharge at a rate of 2 mm/day. In 

lack of better data these values used as prior parameter range for groundwater 

recharge/discharge in the water balances. 
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