
Detecting and Mapping Seasonal Variations in Water 
Turbidity and Mouth Bar Geometry along an 

Asymmetrical Delta using Normalized Different 
Turbidity Index (NDTI) with Sentinel 2 Satellite Imagery 

By 

Ly, Chanveasna 

Thesis 
Submitted to Flinders University 

for the degree of 

Masters of Geospatial Information Science

College of Science and Engineering 

31/10/2021 



i 

TABLE OF CONTENTS 

TABLE OF CONTENTS .................................................................................................................. I 

LIST OF ABBREVIATIONS ........................................................................................................... IV 

ABSTRACT ................................................................................................................................... VI 

DECLARATION ........................................................................................................................... VIII 

ACKNOWLEDGEMENTS .............................................................................................................. IX 

LIST OF FIGURES ......................................................................................................................... X 

LIST OF TABLES ........................................................................................................................ XIII 

LIST OF EQUATIONS ................................................................................................................ XIV 

CHAPTER 1. INTRODUCTION ....................................................................................................... 1 

1.1. Background ...................................................................................................................... 1 

1.2. Thesis Structure ................................................................................................................ 2 

1.3. Study Area ........................................................................................................................ 2 

1.3.1. Geographical Setting ................................................................................................. 2 

1.3.2. Holocene sea level .................................................................................................... 3 

1.3.3. Holocene climate ....................................................................................................... 4 

1.1. Research Questions ......................................................................................................... 5 

1.2. Objectives ......................................................................................................................... 5 

1.3. Significance ...................................................................................................................... 6 

CHAPTER 2. LITERATURE REVIEW ............................................................................................. 7 

2.1. Review of Deltaic System ................................................................................................. 7 

2.1.1. Delta Overview .......................................................................................................... 7 

2.1.2. Morphological Controls of Delta ................................................................................. 9 

2.1.3. Deltaic Depositional Facies ...................................................................................... 11 

2.2. Review of Mitchell River Delta ........................................................................................ 12 

2.2.1. Evolution of Mitchell River Delta .............................................................................. 12 

2.2.2. Previous Studies about Mitchell River Delta ............................................................. 14 

2.3. Remote Sensing Perspective in Detecting Turbidity ........................................................ 15 

2.3.1. Remote Sensing Perspective vs In-Situ Method ...................................................... 15 

2.3.2. The Relationship of Satellite Spectral Reflectance with SSC and Turbidity .............. 15 

2.3.3. Various Satellite Sensors for Turbidity ..................................................................... 17 

2.3.4. Sensitive Wavelength Regions (Bands) for Turbidity ............................................... 20 

2.3.4.1. Single Red Band ............................................................................................... 20 

2.3.4.2. Single NIR Band ............................................................................................... 20 

2.3.4.3. Red and NIR Bands Combination ..................................................................... 21 



 

ii 

2.3.4.4. Green and Red Bands Combination (NDTI) ...................................................... 21 

2.3.4.5. Red, Green and NIR Bands Combination ......................................................... 22 

2.3.4.6. All Visible Bands (RGB and NIR) ...................................................................... 22 

2.4. GIS Applications in Mapping Delta Geometry ................................................................. 23 

2.4.1. Pixel-Based Methods ............................................................................................... 25 

2.4.1.1. Manual Digitizing .............................................................................................. 25 

2.4.1.2. Density Slicing .................................................................................................. 25 

2.4.1.3. Image Segmentation and Edge Detection ......................................................... 26 

2.4.1.4. Band Ratioing ................................................................................................... 27 

2.4.2. Sub Pixel-Based Methods ........................................................................................ 28 

2.4.2.1. Spectral Mixture Analysis .................................................................................. 29 

2.4.2.2. Sub-Pixel Analysis ............................................................................................ 29 

CHAPTER 3. METHODOLOGY .................................................................................................... 30 

3.1. Satellite Images Acquisition ............................................................................................ 30 

3.2. Pilot Procedure ............................................................................................................... 32 

3.3. Automation Procedure .................................................................................................... 36 

3.3.1. Image Pre-Processing (Automated Water Extraction) .............................................. 36 

3.3.2. Turbidity Detection using NDTI ................................................................................ 39 

3.4. Manual Digitizing Procedure ........................................................................................... 41 

3.4.1. Plume Pattern Corrections ....................................................................................... 41 

3.4.2. Digitizing Mouth Bar geometry ................................................................................. 41 

3.5. Hydrological and Meteorological data collection .............................................................. 42 

3.5.1. Fluvial Discharge Data ............................................................................................. 42 

3.5.2. Precipitation Data .................................................................................................... 42 

3.5.3. Tide Data ................................................................................................................. 43 

3.5.4. Wave Data ............................................................................................................... 43 

3.5.5. Wind Data ................................................................................................................ 43 

3.5.6. Digital Shoreline Data .............................................................................................. 44 

CHAPTER 4. RESULTS ................................................................................................................ 46 

4.1. Seasonal Variations of Plume Dimension and Orientation .............................................. 46 

4.1.1. Seasonal Variations in 2020 (15/01/2020 to 11/09/2020) ......................................... 46 

4.1.2. Seasonal Variations in 2021 (24/01/2021 to 12/08/2021) ......................................... 53 

4.2. Seasonal Variations of Mouth Bar Geometry .................................................................. 59 

4.3. Seasonal Variability of Turbidity Concentration associated to the Rates of Shoreline 

Changes .................................................................................................................................... 66 

CHAPTER 5. DISCUSSION .......................................................................................................... 71 

5.1. Sediment Plume Dimension and Orientation ................................................................... 71 



 

iii 

5.1.1. Wet Seasonal Variability .......................................................................................... 71 

5.1.2. Dry Seasonal Variability ........................................................................................... 72 

5.2. The Variability of Mouth bar Geometry ............................................................................ 75 

5.3. Erosional and Accretional Rate of Shoreline Changes .................................................... 77 

5.3.1. Erosional Coastline at North of the Main Mitchell River Outlet ................................. 77 

5.3.2. Accretional Coastline at South of the Main Mitchell River Outlet .............................. 78 

5.4. Key Limitations ............................................................................................................... 79 

5.4.1. Errors and Limitations of the Algorithm .................................................................... 79 

5.4.2. Research Limitations ............................................................................................... 82 

CHAPTER 6. CONCLUSION......................................................................................................... 83 

6.1. Summary ........................................................................................................................ 83 

6.2. Future Research ............................................................................................................. 84 

BIBLIOGRAPHY .......................................................................................................................... 85 

APPENDICES .............................................................................................................................. 95 

 

  



 

iv 

LIST OF ABBREVIATIONS 

ANNs Artificial Neural Networks 

BNs Bayesian Networks 

CDOM Coloured Dissolved Organic Matter 

CVA Change Vector Analysis 

DEA Digital Earth Australia 

E East 

EC Element Complex 

ENE East North East 

ENVISAT Environmental Satellite 

ESA European Space Agency 

ESE East South East 

ETM+ Enhanced Thematic Mapper Plus 

F-Mouth Bar Fluvial Mouth Bar 

GEE Google Earth Engine 

GIS Geographical Information System 

GoC Gulf of Carpentaria 

ka BP Kilo Annum (thousand years) Before Present 

km Kilometre 

km/h Kilometre per Hour 

km2 Square Kilometre 

m Metre 

MERIS Medium Resolution Imaging Spectrometer 

MNDWI Modified Normalised Different Water Index 

MODIS Moderate Resolution Imaging Spectroradiometer 

MODIS-A MODIS Aqua 

MODIS-T MODIS Terra 

MSG Meteosat Second Generation 

MSI Multispectral Instrument 

m3/s Cubic Metre per Second 

NE North East 

NDTI Normalised Different Turbidity Index 

NDWI Normalised Different Water Index 

NIR Near Infra-Red 

nm Nanometre 

NNE North North East 

NW North West 



 

v 

OBIA Object-Based Image Analysis 

OLCI Ocean and Land Colour Instrument 

OLI Operational Land Imager 

RS Remote Sensing 

SE South East 

SEVIRIS Spinning Enhanced Visible and Infrared Imager 

SLC Scan Line Corrector 

SMA Spectral Mixture Analysis 

SPM Suspended particulate matter 

SPOT Satellite Pour l’Observation de la Terre 

SVM Support Vector Machine 

SSC Suspended Sediment Concentration 

SWIR Short Wave Infra-Red 

yr BP Year Before Present 

3D Three-dimensional 

 

 

  



 

vi 

ABSTRACT 

Remote sensing studies for ocean monitoring first appeared in the 1960s and have subsequently 

increased in popularity (Potes et al. 2018). Satellite remote sensing compliments traditional in-situ 

data specimen and laboratorial examination of water quality variables, which is laborious and 

expensive and typically has a limited spatial and temporal range. In contrast to traditional field 

measurement techniques, satellite-based remote sensing methodologies are inexpensive and can 

cover relatively large spatiotemporal ranges. Satellite-based remote sensing techniques are effective 

for investigations that monitor river discharge into the coastal waters and subsequent reworking by 

near-shore basinal processes. This investigation focuses on suspended particulate matter (SPM) 

concentrations in rivers, their associated plumes, and the near-offshore. Monitoring of SPM 

concentrations is crucial for sediment transport and ecosystem modelling, and for understanding the 

morphology and evolution of marginal marine systems. Furthermore, the relative concentration of 

SPM has been treated as a proxy for turbidity and is used to investigate plume geometry and 

understand erosion and/or progradation of the coastline.  

This research aims to implement remote sensing to detect the relative suspended sediment 

concentration (SSC) for as a proxy for turbidity and erosional processes mapping the plume and 

mouth bar geometry for investigating two specific purposes: 1) to determine how fluvial discharge 

and basinal processes (waves, tides and longshore currents) influence mouth bar and sediment 

plume formation, and 2) determine how the interplay of sea level, sediment supply vs erosional 

activities influence the rates of localized progradation or erosion in the asymmetric, shallow basin, 

Mitchell River, Gulf of Carpentaria (GoC). The Mitchell River delta is complex delta system, which is 

an asymmetrical (sediment acquired from longshore drift trapping on the updrift delta as the mouth 

bar performs as a groyne), tide-dominated, wave-influenced, fluvial-affected (Twf) system (Nanson 

et al. 2013), with incredibly limited research where mostly about the lower delta plain and no research 

about near offshore system leading this research to be an understudied geographical regime that 

contribute to the understanding about the depositional sediment both onshore and offshore and 

enhance the understanding of delta morpho-dynamic. These understanding will become beneficial 

for delta ecosystem investigations in Australia, essentially in the GoC. Moreover, the most significant 

outcome of this research is to theoretically enhance understanding of processes affecting localized 

shoreline changes (either side of the asymmetrical delta).  

To detect and map the plume and mouth bar geometry, the Sentinel 2 L2A (atmospheric and 

geometric corrections) products were collected from January 2020 to August 2021 using automation 

process in Google Earth Engine (GEE) for analysis along the meteorological and hydrological 

statistics for the interpretation. The pilot process is performed to verify the best method in selecting 

sensitive bands included: (1) Red+Green+NIR, 2) Red+Green (NDTI), 3) Red+NIR+SWIR to get 

optimal result, which the NDTI is the most suitable, before the semi-automatically method is applied 
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for this study including automation process: 1) water area extraction (image pre-processing) using 

band ratioing method of MNDWI (Modified Normalized Different Index), 2) turbidity detection using 

band ratioing method of NDTI; manual process: 3) plume pattern corrections, and 4) digitizing mouth 

bar geometry. This method is performed in the ArcGIS Pro version 2.8.2 for both the pilot and semi-

automatically methods, yet the Erdas Imagine was assisted for visualizing the sensitivity of band 

combinations and spectral reflectance to enhance the confidence of choosing suitable bands in the 

pilot stage. Three significant inaccuracies of the algorithm revealed: 1) errors of MNDWI in masking 

out clouds where thin cloud and cloud shadow could be less masked out leading to confuse classified 

as plume and over masked out resulting in missing plume areas, 2) error of NDTI in differentiating 

pixels due to undistinguished between low concentration plume reflectance with water pixel leading 

to miss classified plume area, and 3) error of pixel-based classification in classifying plume boundary 

leading to assisting of the manual correction of plume pattern.  

The results revealed that the large-scale sediment plume orientated to southward (analogue to 

palaeo-flow orientation) in the wet season while it shifted its orientation in the dry season to northerly 

directed (analogue to longshore drift current) and parallel to the palaeo-channels orientation within 

the Mithcell River delta. Another discovery in this study showed that the high and very high turbidity 

constantly dominate in the vicinity of the north nearshore zone in both wet and dry seasons where 

severe coastline erosion has occurred. At the same time, the south nearshore zone of the Mitchell 

mouth bar, where the progradation coastline has prograded, experienced low turbidity in the dry 

season and moderate turbidity in the wet season.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Deltas form where rivers and streams debouch into a standing body (Seybold, Andrade & Herrmann 

2007). The place where fluvial sediments commence to accumulate into the delta is called a mouth 

bar. The Mouth bar is formed when an overload sediment is spread out from the river into a persistent 

water body (Bates 1953). As a river emerges into a standing body of water, there is an interaction of 

the river plume with the receiving standing body of water (Wright 1978). In estuarine and coastal 

water, the coastal river plume is the primary transport mechanism for fresh water, suspended 

sediment, dissolved carbon, nutrients, and pollutants (Guo et al. 2017). Deltaic systems are 

important from many perspectives; they provide habitats for many different species’ assemblages, 

including human populations and are important for many natural resources including water, 

agriculture, and fisheries. Morphology of deltaic system varies widely among deltas and is a function 

of many drivers including fluvial processes including discharge and sediment supply and basinal 

processes including waves, tides and longshore currents (Galloway 1975). The iconic delta called 

the Mississippi delta (known as the bird-foot delta since its appearance is more probable equivalent 

to the natural appearance of a bird’s foot) in Louisiana, USA is considered as a delta affected by the 

fluvial flow (Coleman 1976). Many deltas, however, exhibit complex morphologies, particularly if they 

are influenced by a variety of factors. For instance, the Ganges delta (Sundarbans Delta or Bengal 

Delta), located in Bengel region of South Asia, represents a complex morphology along the bat of 

Bengel due to the variation influences of the fluvial flow, waves and tides (Ainsworth, Vakarelov & 

Nanson 2011). This delta is characterised as wave-dominated, tide-influenced, fluvial-affected (Wtf). 

During the last three decades, numerous investigations have targeted on monitoring water quality 

parameters not only in coastal waters but also in inland using satellite imagery (Sebastiá-Frasquet 

et al. 2019). The product of satellite imagery delivers synoptic and recurrent indications of coastal 

water and could possibly be the only method on synoptic scales to monitor the dispersal of river 

plumes (Hopkins et al. 2013). By using the visual characteristics of coastal surface waters, it is 

possible to identify turbid plume water from ambient water masses (Lahet & Stramski 2010). 

Additionally, the surface reflectance characteristics derived from the satellite imagery were 

recognised as a consistence property in evaluating the variability of the plume geometry including 

its shape and area (Ahn et al. 2008; Hu et al. 2004; Palacios, Peterson & Kudela 2009). Therefore, 

the satellite sensors of ocean colouring are effective instruments to investigate and monitor the 

dynamic variables discharged by streams and rivers into the coastal water such as coastal water 

plume (Ody et al. 2016).The majority of the coastal river plume studies using satellite remote sensing 

technique have been caried out at inter-annual and seasonal scale when few studies have examined 

the plume variation in short-term period (inter-day or intra-day) to understand the drastic 

transformation for a short-term event (Guo et al. 2017). 
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The Mitchell River Delta in the Gulf of Carpentaria provides a unique opportunity to study a modern, 

minimally disturbed, mixed influenced delta in a shallow basin setting. Detailed sedimentary and 

stratigraphic analysis of the preserved Holocene delta has been provided by Lane et al. (2017); 

Massey et al. (2014); Nanson et al. (2013); Rhodes (1980). However, very constrained research is 

known about the near-offshore mouth bar and sediment plume processes, which are fundamental 

for understanding delta construction, and the effects of recent anthropogenic changes (for example, 

gully erosion triggered by grazing and sea-level rise).  

As such, this study aims to investigate the architecture and morphological processes of the mouth 

bars and sediment plumes of the modern delta in recent history, linking these findings to fluvial 

(rainfall and river discharge), and basinal processes (wave, wind, tide, longshore currents). Given 

the remote location of the study site and the high spatial and temporal advantages provided by 

satellite imagery, this thesis will employ remote sensing methods integrated with government field 

data in the analysis. 

1.2. Thesis Structure 

Chapter 1 aims to introduce the study site and articulate the research questions and objectives of 

the thesis. A detailed literature review on deltaic systems, remote sensing methods in detecting 

turbidity, and GIS applications in mapping delta geometry is presented in Chapter 2. Chapter 3 

provides a detailed description of the pilot process and the employed methodology. The results are 

presented in Chapter 4, with frequent refence to the appendices. Chapter 5 includes a detailed 

discussion of the key findings, particularly in relation to intra-seasonal mouth bar and sediment plume 

variability, and key limitations. Chapter 6 gives a brief conclusion and summary. It also highlights 

some limitations and directions for future investigation. 

1.3. Study Area 

The study area of the research is situated in the Mitchell River Delta, Gulf of Carpentaria (GoC), 

Queensland, Australia (Figure 1.1). This research specifically concentrates on the main Mitchell 

River mouth although various river outlets are reported on the Mitchell River delta. 

1.3.1. Geographical Setting 

The Mitchell River delta into is located on the west coast of the Cape York Peninsula in North 

Queensland, Australia and drains into the Gulf of Carpentaria (in Figure 1.2). The delta system is 

feed by a large megafan, and has a catchment area of 71 757 km2, draining from the Great Dividing 

Range highlands, 250 km to the east. The upper delta plain comprises a complex network of fluvial 

channels characterised by frequent avulsions (Lane et al. 2017). The lower delta plain expands 

approximately 17 km from the shoreline inland and approximately 50 alongshore (Rhodes 1980). 

The lower delta plain has built over the last 6500 years under a ~2m sea-level fall (Sloss et al. 2018), 
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as a series of lobes, the position of which is largely driven by avulsions on the upper delta plain and 

megafan (Lane et al. 2017; Nanson et al. 2013). The lobes display a complex architecture which 

reflects the relative influence of basinal processes (waves, tides, longshore currents) and sediment 

supply, which varies laterally and through time (Lane et al. 2017; Nanson et al. 2013). Currently, the 

delta is feed by three primary tidally affected distributary streams: the South Mitchell, Main Mitchell, 

and North Arm rivers (Figure 1.1).  

1.3.2. Holocene sea level  

During the Late Pleistocene lowstand in the Gulf of Carpentaria, low onshore and offshore gradients 

resulted in very minor channel incision (Jones, Martin & Senapati 1993). Low offshore gradients and 

a minor reduction in relative sea level resulted in widespread progradation of Holocene coastal 

systems following floods during the post-glacial marine transgression, which reached a sediment 

thickness of approximately 10 m on the Mitchell River (Lane et al. 2017).  

Sloss et al. (2018) used previous studies’ results and the modern data from the South Wellesley 

Archipelago to revise the history of the Holocene sea level change. Based on the revision, the 

Holocene sea level history was separated into three major phases: 

- Phrase 1 from approximately 12,000 to approximately 7000 yr BP (during the post-glacial 

marine transgression (PMT) of the GoC): there was an increased sea level in approximately 

11,700 yr BP breaching the Arafura Sill. The increase of sea level continued to reach 

approximately -30 m in 10,000 yr BP resulting in the full marine condition. 

- Phrase 2 from approximately 7000 to approximately 4000 yr BP (Mid-Holocene sea-level 

highstand): the sea level was equivalent to the present mean sea level (PMSL) in 7,700 yr 

BP and continued to increase between +1.5 m and +2 m of PMSL. 

- Phrase 3 from approximately 4000 yr BP to present (Regression from mid-Holocene sea-

level highstand to PMSL): the sea level remained approximately 1.5 m above PMSL during 

7,000 yr BP and 4,000 yr BP until a rapid decline to within ± 0.5 m of PMSL in approximately 

3500 yr BP. 

However, a recent sea level is reported to increase approximately 0.5 m in this modern shoreline 

period (between 2014 to 2020) according to the sea level projection tool from NASA 

(https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool). 

 

 

 

 

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
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1.3.3. Holocene climate  

The Mitchell basin is characterised by a hot and dry semi-arid to sub-humid climate that is highly 

seasonal with a long-dry season and a short-wet season. The rainfall is approximately 996 mm per 

year on average, with 97% falling during the rainy season. In the Mitchell catchment, over 90% of 

total runoff occurs during the three-month period (from January to March), which is extremely high 

when compared to rivers in southern Australia (Charles et al. 2016). 

Shulmeister (1999) identified three variations of climatic periods in the northern Australian Holocene 

climate:  

- from the early Holocene until 5 ka BP, the temperature and effective precipitation (EP) were 

increased 

- from 5 to 3.7 ka BP, the EP was increased 

- from 3.7 ka BP to the present, the EP was sharply declined, and there was an increase of 

variability in climate.  

 

Figure 1.1 Location Map of the Mitchell River Delta. 



 

5 

 

Figure 1.2 Location Map of the GoC focusing on the Mitchell Catchment Area. 

1.1. Research Questions 

Two research question raised in this research are: 

1. How do fluvial discharge and basinal processes (waves, tides and longshore currents) 

influence mouth bar and sediment plume structures in the asymmetric, shallow basin, Mitchell 

River Delta, Gulf of Carpentaria? 

2. How does the interplay of sea level, and sediment supply vs erosional activities influence the 

rates of localised progradation or erosion in the asymmetric, shallow basin, Mitchell River, 

Gulf of Carpentaria? 

1.2. Objectives  

These objectives responding to the raised questions in this research are: 

- Map changes in mouth bar geometry at various stages through two-year period and relate 

this to changes in rainfall, fluvial discharge, wind speed and direction and tide. 

- Map changes in sediment plume dimension and orientation using turbidity indices at various 

stages through two-year period and relate to changes in rainfall, fluvial discharge, wind speed 

and direction and tide. 

- Relate turbidity indices (as proxy for erosion), sediment supply and sea level changes to 

recent shoreline erosion and progradation rates on the Mitchell River Delta, Gulf of 

Carpentaria.   
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1.3. Significance 

The Mitchell River Delta provides a well-preserved, understudied area to investigate mixed-

influenced asymmetric delta morphodynamics. This study will reveal new insights into the shallow 

basin, asymmetrical, mixed-influence Mitchell River, Gulf of Carpentaria. Due to the limited research 

about the Mitchell River delta, which mostly investigate about the lower Mitchell River delta plain, 

the significance of this research remains in its capability as understudied geographical regime to 

contribute to the new understandings about context and its inclusion in the study of the water turbidity 

in the nearshore of shallow basin, Mitchell River, Gulf of Carpentaria. The study, moreover, 

enhances the understanding of the in the Gulf of Carpentaria associating to the erosion, progradation 

and sedimentation. Applicable to the sedimentation, it not only enhances the delta morpho-dynamic 

knowledges but also contributes to the discourse of both onshore and offshore depositional sediment 

mechanism in that region. The perspective of these analysis and discourse could be potentially 

beneficial for delta ecosystem investigations in Australia, essentially in the Gulf of Carpentaria. 

Finally, the most significant outcome of this research is to theoretically enhance understanding of 

processes affecting localized shoreline changes either side of the asymmetrical Mitchell River delta.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Review of Deltaic System 

2.1.1. Delta Overview 

Deltas can be defined as a substantial coastal sedimentary deposit including both subaerial and 

subaquatic portions at the location of rivers or streams debouch into a standing body of water 

(Reading 2009; Seybold, Andrade & Herrmann 2007). The point that the standing water enters the 

ocean or lake is the river mouth, and the place where sediments start to form into the delta is called 

a mouth bar. The Mouth bar is formed when an overload sediment is spread out from the river into 

a persistent water body creating a sediment plume (Bates 1953). It could have a scope and width of 

several kilometres and integrate for developing massive delta lobes (Bhattacharya 2006). The 

deposits of the mouth bar have an intricate structure although they appear to demonstrate a 

clinoform geometry progradation and upwards vertical profiles (Bhattacharya 2006). The formation 

of the deltas consists of the deposition of sediments such as sand or mud at the mouth bar (Seybold, 

Andrade & Herrmann 2007). Conventionally, worldwide deltas have been categorized principally by 

dominant forces included fluvial discharge, wave regime and tidal range as summarized in treble 

classifications (Burpee et al. 2015) such as River(Fluvial)-dominated delta, Wave-dominated delta 

and Tide-dominated delta according to Galloway (1975) classification scheme (in Figure 2.1).  

River-dominated delta occurs when the river flow and the resultant transportation of the sediments 

are exceedingly powerful while the marine influences such wave and tide reworking procedures are 

remarkably minimal (Seybold, Andrade & Herrmann 2007). It is elongated alongside with digitate 

shorelines because of the progradation into basin ward of their distributaries (Burpee et al. 2015), 

and this delta type tends to develop huge delta lobes into the ocean, which could slightly contain 

beyond distributary channels and appear with levees exposed above sea level, for instance, the Nile 

River Delta, Egypt (Seybold, Andrade & Herrmann 2007). This delta type is also called as the Bird-

foot delta since its appearance is more probable equivalent to the natural appearance of a bird’s 

foot, for example, the giant bird’s foot delta in Louisiana known as Mississippi River delta, USA 

(Coleman 1976). Tide-dominated deltas occur in regions with extensive tidal ranges or greater 

energy of tidal current. A delta of this kind similarly resembles an estuarine bay filled with various 

stretched islands parallel to the major tidal flow and perpendicular to the shoreline (Seybold, Andrade 

& Herrmann 2007), for instance, the Lena River Delta, Siberia and the Fly River delta, Papua New 

Guinea (Burpee et al. 2015). Wave-dominated deltas are characterised by their smooth shorelines 

and their planform structures of arcuate to cuspate when larger wave effects typically imply more 

cuspate shape of deltas (Anthony 2015). Wave dominated deltas typically have one or few 

distributary channels as waves typically rework mouth bar sediments into strand-plains, preventing 

river bifurcation (Bhattacharya & Giosan 2003). The Paraíba do Sul in Brazil is considered as a 
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wave-dominated delta exemplified by an extensive sedimentation of its beach ridge. These examples 

of delta types were reviewed in a previous study by Lane (2016) (as shown in Figure 2.2).  

Figure 2.1 Delta types based on Galloway (1975) classification scheme (Seybold, Andrade & 

Herrmann 2007). 

Figure 2.2 Satellite and shuttle photos of various modern deltas (NASA) showing a wide variation in 

morphology: (A). The Nile River Delta, Egypt; (B). The Mississippi River Delta, USA; (C). The Lena River 

Delta, Siberia; (D). The Fly River Delta, Papua New Guinea; (E). The Paraíba do Sul, Brazil  (Lane 2016). 

Image removed due to copyright restriction.

Image removed due to copyright restriction.
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2.1.2. Morphological Controls of Delta 

As mentioned in the Section 2.1.1, fluvial, wave, and tide energies are deemed to be responsible 

for the predominant monitored mechanisms on delta morphology (Ainsworth, Vakarelov & Nanson 

2011; Coleman & Wright 1975; Galloway 1975). 

All deltas, by definition, inevitably have some level of fluvial influence (Bhattacharya 2006). As a river 

emerges into a standing body of water, there is an interaction of the river plume with the receiving 

standing body of water (Wright 1978). The flow from the plume can be hypopycnal that occurs when 

the sediment plume is less intense than the receiving basin water. This frequently phenomenon 

occurs in deltas that enter oceans, as freshwater density is less than the density of salt water (Bates 

1953). In this situation, sediment becomes disconnected from the bedload and can migrate extensive 

distances to the offshore (Orton & Reading 1993). Hyperpycnal flow occurs when fluid from a 

sediment plume is denser than the receiving body of water. They can form during high discharge 

incidents such as a flood and typically result in a basal coarsening-up unit with a capping of fining 

up sediment deposited during the waning phases of accumulation. Since they are correlated with 

high discharge incidents, they generally scour and have erosive contacts. Most of the world’s deltas 

could possibly contain sporadic hyperpycnal sediment plumes (Mulder et al. 2003). At the seaward 

section of the delta, there is an autogenic procedure of mouth bar accumulation and terminal 

distributary channel development which affects the morphology of river-dominated delta plains. This 

mechanism which arises due to the spatial deceleration of the river plume turn into as it leaves the 

restrained setting of a channel (Wright 1977). The distance between the coastline and the basinward 

limit of the mouth bar is monitored by the degree of jet momentum flux, so for each sequential 

bifurcation, as flow is apportioned through distributaries, the jet moment flux declines, and so too 

does the terminal distributary channel extent (Edmonds & Slingerland 2007). 

Waves rework deltaic sediments into a coast-parallel alignment (Coleman & Wright 1975; Galloway 

1975). If wave energy relative to fluvial energy is adequate, the mouth bar sediments would 

eventually be reworked up the shoreline into strand plain deposits (Bhattacharya 2006). Due to this, 

wave-dominated deltas typically have constrained amounts of distributary channels with numerous 

waves affected deltas being consume by a single delta. The role of waves in shaping the delta 

shoreline and in modifying the expansion of large-scale delta have effectively concentrated on the 

scale to which waves, reaching shorelines of the delta, can generate currents that reallocate fluvial 

and coastal sediments. The destruction role of waves on the mouth bar evolution could be thoroughly 

related to longshore current because the latter produces a relocation approach of deposited 

sediment from river mouths (mouth bar) that could possibly turn out to be choked consequently 

impacting not only the main channel width but also backwater length (Anthony 2015). Dominguez 

(1996) illustrates how rivers could play a role as groynes on wave-dominated deltas causing 

sediment travelling alongshore to be preserved on the updrift side of the delta mouth. This 

phenomenon leads to asymmetric delta development, which has intense implications for the quality 
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of reservoirs on the downdrift and updrift sections of the delta as displayed in Figure2.3 

(Bhattacharya & Giosan 2003). Delta asymmetry has been examined on countless modern deltas 

around the world including the Mitchell River Delta (Nanson et al. 2013).  

Tide-affected deltas are altered by bidirectional currents and are characterised by distinctive features 

such as funnel shaped distributary channels, and elongate mouth bars and extensive tidal flats 

(Galloway 1975). Wide shelves and embayed environment can have amplifying impacts on tides, 

and as such, tide-dominated deltas are frequent in these environments (Ainsworth, Vakarelov & 

Nanson 2011). Tidal currents can eliminate fluvially sourced sediment from mouths of distributary 

channel (Bhattacharya 2006). Consequently, mouths of tide-dominated distributary channels could 

be secured for thousands of years (Ta et al., 2005). 

While major endmember influences of wave, tide and fluvial systems spontaneously occur, the 

majority of deltas reveal mixed-process morphologies (Ainsworth, Vakarelov & Nanson 2011). 

During the evolution of the delta, there could be severe fluctuations in process dominance. In this 

contemporary period, the alterations in process influence are being noticed within single deltaic 

mechanisms (Nanson et al. 2013; Vakarelov & Ainsworth 2013). 

Figure 2.3  A diagram illustrating three dissimilarities of wave dominated deltas. (A) a symmetric delta, 

net sediment transport from longshore drift is minimal. (B) an asymmetric delta; sediment resulting 

from longshore drift is confined on the updrift delta as the mouth bar behaves as a groyne. (C) A 

deflected delta; longshore drift is so intense relative to fluvial flow and the feeder channel is deflected 

in the direction of the longshore drift (Bhattacharya & Giosan 2003). 

Image removed due to copyright restriction.
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2.1.3. Deltaic Depositional Facies 

The delta is subdivided into three major depositional zones: (1) delta plain (upper and lower), (2) 

delta-front and (3) pro-delta (see in Figure 2.4), and the resulting deposits display a consistency in 

texture, structure and associated elements indicating the consequences of those disparate 

mechanisms (Nichols 2009). The delta plain is typically characterised by distributary channels and 

non-marine to brackish environments including swamps, tidal flats and lagoons (Bhattacharya 2006). 

The delta plain could be further separated into the upper delta plain and the lower delta plain. The 

extent of the upper delta plain would be the backwater limited, which for most deltas is the apex 

(driven by backwater mediated avulsions). For instance, on the Mitchell River delta, the apex is of 

the megafan and the upper delta plain is characterised by many avulsions. The lower delta plain is 

the zone between the shoreline and the upper tidal reach. Posamentier, Jervey and Vail (1988) 

explained the division of delta plain can be marked by the tidal limit, which also divides the fluvial 

dominated from the paralic portion of the delta. The delta front can be identified as the steeply sloping 

section of the delta where deposits slope of delta downward from sea level to the sea floor level. The 

pro-delta forms the foundation for the delta and has been historically interpreted to be constructed 

from suspension settling (Galloway & Hobday 2012). The pro-delta is the distal part of the delta 

characterised by mud deposition. the rapidly deposited fluid mud from hyperpycnal might be 

contributed to this pro-delta deposition (Bhattacharya & MacEachern 2009). 

Figure 2.4 Delta subdivision zones (Bhattacharya 2006). 

Image removed due to copyright restriction.
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2.2. Review of Mitchell River Delta 

2.2.1. Evolution of Mitchell River Delta 

The Mitchell River delta is partitioned into three depocentres; as the Main Mitchell depocentre, the 

Central Mitchell depocentre and the Nassau depocentre. Heap et al. (2001) indicated that the 

combination of these deltas represents the largest delta in Australia when considering the total 

mangrove area (more than 112 km2) and second largest considering to the total main channel length 

(more than 61 km). The Mitchell River delta morphologies are not only influenced by the interaction 

between tides, waves and fluvial energies (Ainsworth, Vakarelov & Nanson 2011), but also strongly 

related with the avulsion history of the megafan evolution throughout the Holocene (Nanson et al. 

2013). While end-member examples of fluvial, wave and tide processes naturally occur, the majority 

of deltas exhibit mixed morphological systems as stated by Ainsworth, Vakarelov and Nanson 

(2011). During the evolution of delta, the drastic changes in procedure dominance may occur. The 

alterations in process influence are being noticed inside single deltaic structures (Ainsworth, 

Vakarelov & Nanson 2011; Nanson et al. 2013). The complexity systems of mixed influences deltas 

classification are thoroughly demonstrated in the Figure 2.5. 

According to a study, the Mitchell River delta is categorized as tide dominated with fluvial influenced 

and wave affected (Massey et al. 2014). However, another research about the revolution of the 

Mitchell River delta by Nanson et al. (2013), which has later been expanded by Lane et al. (2017), 

explained that this delta has developed through three geometrically separated pulses of delta 

progradation such as a symmetrical, wave-dominated, fluvial-influenced, tide-affected (Wft) system 

at the early Holocene, to a rapidly prograding asymmetrical, tide-dominated, fluvial-influenced, wave-

affected (Tfw) system at the mid-Holocene, and lastly to an asymmetrical, tide-dominated, wave-

influenced, fluvial-affected (Twf) system at the modern shoreline (see in Figure 2.6). 

Figure 2.5 Complex delta system classification (Ainsworth, Vakarelov & Nanson 2011). 

Image removed due to copyright restriction.
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Figure 2.6 The Evolution of the Mitchell River Delta devided into 4 phases (Lane 2016). 

Albatross Bay, Weipa, 300 km north of the Mitchell River mouth, is the closest wave height gauge 

station to the Mitchell River delta. CSIRO Marine and Atmosphere Research modelling experiments 

indicate a reduction in wave height from a nearest recording station of the Mitchell River delta, 

stationed in Albatross Bay, Weipa approximately 300 kilometres north of the Mitchell River mouth, 

to the shoreline of this delta. The record from December to March, during the rainy season, reveals 

that the average wave height is 0.5 metre whereas it decreases to 0.35 metre during the dry season 

from April to November (Mouhoupt et al. 2004). In addition, the wave height could raise up to 3.5 

metres in the wet season due to the frequency phenomena of storms and cyclones (Mouhoupt et al. 

2004).  

Tides are periodically diurnal in the Southeast GoC while a semi-diurnal frequency is noticeable 

during neap tides (Munro 1984). According to the tidal range recorded at Karumba, the nearest 

recording station located approximately 250 kilometres south of the Mitchell River delta, it indicates 

that the tidal range could be 0.3 metres as low and 4 metres as high during the neap tide and spring 

tides, respectively. The average spring tidal range could be 3.3 metres, but it could technically raise 

to above the mean spring range during rainy season and decline to below the mean spring range 

during dry season due to seasonal amplitude variations of spring tide (Munro 1984). In the south-

east part of the GoC, the wind generated during the wet season by a summer monsoon increases 

the sea level to about 0.5 metres (Wolanski 1993), this occurrence causes the inundation of the 

enormous coastal plain described by supratidal mud flats (Ridd, Sandstrom & Wolanski 1988). 

Mainly throughout the year in GoC, a weak anticlockwise circulation form occurs with the association 

to the south-easterly trade winds monitoring months of the dry season (Forbes & Church 1983; 

Image removed due to copyright restriction.
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Wolanski 1993). However, the cyclone stimulated currents during the wet season generate a water 

circulation in clockwise direction at the GoC that has a stronger influence on sediment redistribution 

(Preda & Cox 2005).  

Catchment flow data is constrained on the Mitchell River. The data discovered by Rustomji (2010) 

is constrained as numerous stations are positioned on either river terraces or bed rock valleys and 

not illustrative of the current flow system to model consistent bank full discharges. Flood flows with 

a recurrence interval (or repeat interval) between 2 to 4 years separation into distributary channels, 

and the flow inside the main channel does not affect downstream increases (Rustomji 2010). Mitchell 

River discharge is extremely seasonal, and the summer monsoon from December until March 

correlates to excessive fluvial activity. In this contemporary period, the Mitchell River delta has been 

prograding into GoC for approximately 17 km (Nanson et al. 2013). 

2.2.2. Previous Studies about Mitchell River Delta 

There are limited number of previous studies about the Mitchell River delta in the Gulf of Carpentaria. 

A research applied remote sensing technics by using Landsat satellite imagery to identify 

approximately 130 km2 area of the active alluvial gullies within the Mitchell megafan and to determine 

the estimation of minimum river channel bed turnover (Brooks et al. 2008). By evaluating the spatial 

patterns of various erosion procedures within the megafan and utilizing the fan evolutionary 

framework to provide the awareness into the erosion mechanisms, this study initially concentrates 

on two main erosion factors included alluvial gully erosion and channel erosion (Brooks et al. 2008). 

Another study of the Mitchell River delta is to classify the diverse phases of the mixed-process delta 

evolution in term of procedure and architecture and to restructure the paleogeographic evolution of 

the Mitchell River delta by considering the distribution of depositional elements and published 

records of allogenic forcing mechanisms (Nanson et al. 2013). A similar study on the evolution and 

architecture of the Mitchell River Delta by Lane et al. (2017) is to connect the palaeogeographical 

evolution of the Holocene Mitchell River megafan and delta to autogenic and allogenic controls and 

to characterise the channel belt style and distribution across the Mitchell River megafan and delta 

using detailed mapping, vibracoring, trenching and topographic surveying. Massey et al. (2014) 

applied satellite imagery, field measurements data and analogues to construct 3D geocellular facies 

model of a modern mixed-influence delta system, the Mitchell River Delta and generate detailed 

mapping to identify 16 different facies elements and classify the delta. This 3D model, utilized both 

static and dynamic metrics to examine various techniques and degrees of basin model detail, was 

exposed to differing upscaling degrees of the horizontal and vertical dimensions and allowed 

assessment of volume and connectivity adjustments (Massey et al. 2014). 
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2.3. Remote Sensing Perspective in Detecting Turbidity 

Water remote sensing was initially reported about its employment to monitor ocean colouring since 

the 1960s and has been an increasing appeal to similarly operate this remote sensing technique for 

inland water quality (Potes et al. 2018). During the last three decades, numerous investigations have 

targeted on monitoring water quality parameters not only in coastal waters but also in inland using 

satellite imagery (Sebastiá-Frasquet et al. 2019). The satellite sensors of ocean colouring are 

effective instruments to investigate and monitor the dynamic variables discharged by streams and 

rivers into the coastal water such as suspended particulate matter (SPM) (Ody et al. 2016).  

According to a literature, testing the spectral reflectance of SPM concentrations and the capability of 

each sensor (in terms of spectral, spatial and temporal resolutions) to monitor the changing aspects 

of SPM in such estuaries and river plume are considerably substantial. Therefore, major components 

that should be considered and reviewed for water remote sensing perspective included the 

evaluation of remote sensing technique and traditional field measurement (in-situ method), the 

relationship of remote sensing with suspended sediments and turbidity, suitable satellite sensors 

and their products employed, sensitive wavelengths and bands selections from previous literatures 

are thoroughly demonstrated in sequence sections below.   

2.3.1. Remote Sensing Perspective vs In-Situ Method 

Satellite remote sensing compliments in-situ data specimen and laboratorial examination of water 

quality variables that is laborious and expensive with temporally and spatially inadequate. Unless a 

water reservoir is sufficiently observed with in-situ devices, remote sensing is the only approach to 

remotely monitor the quality of coastal and inland waters and be able to provide the initial warning 

systems for the water quality environment (Gholizadeh, Melesse & Reddi 2016). However, there are 

some difficulties for the satellite remote sensing implementation in water monitoring due to 

inadequate product accuracy, inexact data continuity and lack of programmatic provision included 

both software and training (Soomets et al. 2020). Despite the consequences of these technical 

dilemmas, remote sensing, an efficient technique for monitoring water quality, has shown to be 

advantageous in both spatial and temporal extends compared with in-situ procedures (Dörnhöfer & 

Oppelt 2016; Ogashawara, Mishra & Gitelson 2017). According to a study by Soomets et al. (2020), 

utilising remote sensing data in ocean monitoring has benefits in both spatial and temporal coverage 

over traditional time consuming and expensive in-situ procedures.  

2.3.2. The Relationship of Satellite Spectral Reflectance with SSC and Turbidity  

A variety of studies in the last decade focus on the approximation of turbidity, chlorophyll and 

coloured dissolved organic matter (CDOM) concentration (Chander et al. 2019; Gholizadeh, Melesse 

& Reddi 2016; Lim & Choi 2015; Luis et al. 2019). Turbidity is a significant optical component of 

water where suspended sediments disperse the light rather than transmit it in the column of water 

(Sebastiá-Frasquet et al. 2019). The turbidity increases with an enhancement in the suspended 
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solids or sediments concentrations in water (Garg et al. 2017), and it improves the water opacity 

obstructing the aquatic life (Güttler, Niculescu & Gohin 2013; Quang et al. 2017; Sebastiá-Frasquet 

et al. 2019). Since the turbidity and suspended sediment concentration (SSC) are considered to be 

intimately related (Garg, Aggarwal & Chauhan 2020; Sebastiá-Frasquet et al. 2019), these two 

parameters of water quality are commonly considered analogous or equivalent in the perspective of 

remote sensing field (Ritchie, Zimba & Everitt 2003). In a recent study, for example, the term of 

turbidity has been treated as a proxy for SSC in the in detection and investigation of  plume geometry 

(Garg, Aggarwal & Chauhan 2020).  

Amongst all the parameters of water quality, suspended sediments are the most problematic in both 

coastal and inland waters including rivers, lakes, and estuaries (Garg, Aggarwal & Chauhan 2020). 

For a detailed explanation of the relationships between the surface SSC, surface reflectance, plume 

geometry, and water discharge are extremely intense, the reader is referred to Schild et al. (2017). 

Conventionally, these sediments concentrations are visually measured or through gravimetric or 

laboratory assessment (Garg, Aggarwal & Chauhan 2020; Pavelsky & Smith 2009). Currently, 

sediment concentration is measured optically through Secchi disk depth or directly, using the light 

turbidimeters in the field (Pavelsky & Smith 2009; Quang et al. 2017). Measurements derived from 

field and laboratory studies measurements are constrained to the spot location and time, despite the 

fact that the total suspended particles concentration differs both spatially and temporally (Garg et al. 

2017; Gholizadeh, Melesse & Reddi 2016).Moreover, the traditional field measurements are be both 

labour-intensive and time-consuming for water quality investigation, and  for estimating the sediment 

plume concentration although they could provide more precise results (Garg, Aggarwal & Chauhan 

2020; Pavelsky & Smith 2009; Quang et al. 2017). Therefore, SSC and turbidity measurements via 

remote sensing methods provides a cost-effective way to obtain data that is extensive both in space 

and time.   

Various proposals about satellite remote sensing investigations have been made using a variety of 

sensors over numerous coastal and inland reservoirs worldwide based on the spectral reflectance 

(Gholizadeh, Melesse & Reddi 2016). The application of  remote sensing to water bodies relies on 

the diverse natural water colours that correspond to their unique spectral reflectance due to the 

varying constituents of the water (Potes et al. 2018). Depending on their spectral response, these 

characteristics are recognized in satellite imagery, and the variations in the feature’s spectral 

properties will be caused even by a minor change in their composition (Garg, Aggarwal & Chauhan 

2020). As a result, many factors could impact the spectral reflectance in the water column such as 

seasonal changes, the concentration of atmospheric components, turbidity, suspended substance, 

sun-elevation angle, roughness of the water, emergent or submerged vegetation and water depth 

(Garg, Aggarwal & Chauhan 2020; Moore 1980). The amount of light reflecting off the surface water 

(water surface reflectance) of a sediment plume is a function of the sediment concentration, shape, 

size and type of materials consisting of not only minerals but also biological elements (Schild et al. 
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2017). It is additionally declared in the literature that there is a possible temporal deviation in turbidity 

intensity due to variability in weather, climate pattern and human anthropogenic along the banks 

(Garg, Aggarwal & Chauhan 2020; Luis et al. 2019). This composition of water is being detected and 

mapped utilising remote sensing data as it offers synoptical earth coverage at a conventional 

temporal time realm whilst it also has been done by examining how SSC transformation modifies the 

visual the water column composition (Garg, Aggarwal & Chauhan 2020). Other literature has shown 

that the spectral reflectance alterations in visible spectrum regions are substantial due to the 

variation in turbidity of the water (Brezonik, Menken & Bauer 2005; Garg, Aggarwal & Chauhan 2020; 

Liedtke, Roberts & Luternauer 1995). 

2.3.3. Various Satellite Sensors for Turbidity 

Choosing a proper satellite sensor in turbidity detection is extremely significant. This selection is 

mainly based on the spatial, spectral and temporal resolutions of the satellite sensor. Ody et al. 

(2016) stated that the limits and capabilities in terms of spatial, spectral and temporal resolutions of 

satellite sensors are suggested to be major consideration in monitoring the SPM dynamics. Although 

the turbidity is the major detecting aspect, different satellite sensors are required in various research 

circumstances relative to the research budget, spatial extend, temporal scale and the availability of 

effective spectral bands. Among currently available satellite-borne sensors, a variety of 

recommended sensors from previous turbidity monitoring studies are SEVIRI (Spinning Enhanced 

Visible and Infrared Imager) onboard the Meteosat Second Generation (MSG-3) geostationary 

platforms (Ody et al. 2016), the ocean colour sensor MODIS (Moderate Resolution Imaging 

Spectroradiometer) on board the polar-orbiting Aqua and Terra satellites, (Sebastiá-Frasquet et al. 

2019), the MERIS sensor onboard ENVISAT satellite (Potes et al. 2018), the Operational Land 

Imager (OLI) on the polar-orbiting Landsat 8 satellite (compared with Landsat 7) (Ody et al. 2016; 

Sebastiá-Frasquet et al. 2019), the SPOT 6 and 7 (Satellite Pour l’Observation de la Terre) (Ody et 

al. 2016) and finally the Multispectral Instrument (MSI) on Sentinel 2 (compared with the Ocean and 

Land Colour Instrument (OLCI) on Sentinel 3) (Garg, Aggarwal & Chauhan 2020; Renosh et al. 2020; 

Soomets et al. 2020). These satellite sensors are briefly demonstrated in the table 2.1. 

Table 2.1: Summary table of commonly applied satellites with their sensors, spatial and temporal 

resoultions for turbidity investigation. 

Satellites Sensors Spatial 
Resolution 

Temporal 
Resolution 

MGS-3 SEVIRI 3000 m 15 mn 

Aqua & Terra MODIS 250 m Daily 

ENVISAT MERIS 300 m 3 days 

Landsat 8 OLI 30 m 16 Days 

Landsat 7 ETM+ 30 m 16 Days 

SPOT 6/7 NAOMI 6 m Daily 

Sentinel 2 MSI 10m 5 Days 

Sentinel 3 OLCI 300 m 27 Days 
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One of most recommended sensors for turbidity monitoring is SEVIRI, on board MSG-3. The SEVIRI 

is a meteorological sensor orbiting on the geostationary platform MSG-3 that delivers information at 

an immensely high temporal resolution with an image captured every 15 minutes yet extremely low 

spatial resolution of 3 km (Ody et al. 2016). It is reported that two spectral bands out of 12 available 

bands can be implemented for SPM retrieval where the VIS0.6 spectral band (635 nm) for detecting 

SPM and the VIS0.8 spectral band (810 nm) for atmospheric corrections in sensing turbidity purpose 

(Neukermans et al. 2009; Ody et al. 2016). Due to its temporal and spatial resolutions conditions, 

this type of satellite sensor is inappropriate for small spatial scale but preferable for detecting the 

high frequency changes in turbidity.  

Because of various distinct research purposes, MODIS is considered to be a good candidate for 

studies where high temporal and medium spatial resolutions are required. MODIS is the ocean 

colouring sensor onboard the polar-orbiting Aqua (MODIS-A) and Terra (MODIS-T) satellite 

platforms. Both MODIS-A and MODIS-T sensors deliver a daily temporal resolution, which provide 

one image captured globally every day. In the term of spatial resolution, it is informed that MODIS 

sensors carry out 36 spectral bands with different three spatial resolutions of 250 m, 500 m and 1 

km (Ody et al. 2016).  

Additionally, MERIS sensor on board ENVISAT satellite is another satellite sensor providing similar 

spatial and temporal resolutions to the MODIS sensors for monitoring the turbidity. This satellite 

sensor presents a maximum spatial resolution of 300 m with 3 days of revisit time as its temporal 

resolution (Potes et al. 2018). A study over Portuguese reservoirs was proposed by Potes, Costa 

and Salgado (2012) utilising the semi-empirical bio-optical models to approximate chlorophyll 

concentrations and cyanobacteria in 2011 as well as turbidity in 2012 over Alqueva with images from 

MERIS sensor onboard ENVISAT satellite. Although these two sensors are believed to be a decent 

compromise of their revisit time (about 1 to 3 days revisit depending on cloud cover), high temporal 

resolution sensors (MODIS and MERIS) have an inadequate spatial resolution (typically varying from 

250 to 3000 m) (Sebastiá-Frasquet et al. 2019).  

To resolve this inadequate spatial resolution, an openly satellite series known as Landsat series, in 

particularly Landsat 8, is considered. The series of Landsat high spatial resolution sensors have 

proved their competence in detecting SSC in highly turbid waters (Ody et al. 2016; Vanhellemont & 

Ruddick 2014, 2015). However, OLI sensor on the Landsat-8 polar-orbiting satellite has an 

advantage over its senior satellite platform, the Landsat 7 carrying the Enhanced Thematic Mapper 

Plus (ETM+) sensor which is the improved version of the Thematic Mapper instruments onboard Landsat 

4 and Landsat 5, due to the product delivery with data gaps caused by the Scan Line Corrector (SLC) 

failure of Landsat 7. Beside the technical issue of SLC failure in Landsat 7, the Landsat 8 OLI has 

additionally enhanced its calibration, signal to noise qualities, greater 12-bit radiometric resolution and 

narrower spectrally wavebands if comparing to the Landsat 7 (Roy et al. 2016). The OLI sensor on 

Landsat 8 offers products with a spatial resolution of 30 m in 9 spectral bands in the visible, NIR and 
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shortwave-infrared (SWIR) wavelength regions and a temporal resolution of 16 days (Ody et al. 

2016). 

According to literature, higher spatial resolution sensors of Landsat series (30 m) were still not good 

enough for mapping the extremely dynamic turbid waters in coastal regions due to their low temporal 

resolution (16 days) (Dona et al. 2015; Gernez et al. 2015; Sebastiá-Frasquet et al. 2019). A variety 

of studies has revealed the capabilities in offering valuable information of SPOT 6 and SPOT 7 

satellite sensors in sensing SSC in the extremely dynamic turbid waters (Vanhellemont & Ruddick 

2014, 2015). The ocean colouring sensors of SPOT 6/7 (Satellite Pour l’Observation de la Terre) 

onboard geostationary satellite platforms contain not only a high spatial resolution of 6 m but also a 

high temporal resolution of a daily images captured with four multi-spectral bands included blue (450 

to 525 nm), green (530 to 590 nm), red (625 to 695 nm) and NIR (760 to 890 nm) (Ody et al. 2016; 

Vanhellemont, Neukermans & Ruddick 2014). However, the expensive charge of SPOT 6/7 products 

could be a challenge for low budget studies since these satellite products are not publicly; it is 

recommended in mapping turbidity if the research’s budget is not a concern because of its high 

spatial and temporal resolution. 

The innovative capabilities of recent ocean colouring satellite sensors have been mentioned by 

various studies in representing an efficient way to complement the dilemma in low research’s budget 

with ideal consideration in the term of spatial and temporal resolution for monitoring the transported 

SPM through river mouths, in river plumes and estuaries (Gholizadeh, Melesse & Reddi 2016; Potes 

et al. 2018). Since the combination of high temporal and high spatial resolution sensors could 

technically provide optimal RS observations of surface SPM dynamics in coastal waters, the next 

generation of ocean colouring sensors such as Multi-Spectral Instrument (MSI) and Ocean and Land 

Colour Instrument (OLCI) sensors respectively onboard the Sentinel 2 and Sentinel 3 polar-orbit 

platforms are employed in various turbidity detection studies (Ody et al. 2016). The Copernicus 

Sentinel 2 mission of the European Space Agency (ESA) consists of a constellation of two polar-

orbiting satellites, Sentinel 2A launched in June 2015 and Sentinel 2B launched in March 2017 in 

order to bring a remarkable potential to investigate both land observation and inland reservoirs 

(Potes et al. 2018). This mission integrates both high spatial (10 to 60 m) and high temporal 

resolution (5 days) with 13 spectral bands where four high spatial resolution bands (10 m) such blue 

(490), green (560), red (665) and NIR (842 nm) are essential to monitor turbid waters (Caballero, 

Navarro & Ruiz 2018; Gernez et al. 2015; Sebastiá-Frasquet et al. 2019). In contrast, Sentinel 3 

contains a medium spatial resolution of 300 m with high temporal resolution of 27 days onboard for 

marine and land investigation while its sensor, OLCI, was intentionally constructed with well-placed 

spectral bands for specifically water monitoring purpose (Sebastiá-Frasquet et al. 2019). For 

instance, a recent study revealed the comparable result from evaluating the performance of Sentinel 

2 MSI and Sentinel 3 OLCI sensors with the assistant of state-of-the-art atmospheric correction 

algorithms to observe from moderately to highly turbid estuarine waters in the Gironde Estuary, 
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France (Renosh et al. 2020). Soomets et al. (2020) explained that these two ESA satellite sensors 

are appropriate for turbidity studies, yet the bias of SPM ingredients in the turbid water is addressed 

where Sentinel 2 MSI sensor performance is greater for sensing SSC in smaller extend of turbid 

water areas whereas Sentinel 3 OLCI could perform better in sensing turbidity focusing Chlorophyll 

a (Chl-a) (Soomets et al. 2020). Another literature explained that the capability of Sentinel 2 MSI 

sensor has advantages over Sentinel 3 OLCI sensor because of the spatial and temporal resolution 

perspective (Ody et al., 2016). Hence, this MSI sensor is strongly believed to be a proper sensor in 

investigating turbidity in the term of high spatial and high temporal resolution for low budget studies. 

2.3.4. Sensitive Wavelength Regions (Bands) for Turbidity 

Defining turbidity in shallow waters necessitates the implementation of sensitive spectral bands to 

turbidity and contain an inadequate depth penetration to prevent an extensive involvement from the 

bottom (Caballero, Stumpf & Meredith 2019; Sebastiá-Frasquet et al. 2019). The sensitive spectral 

band to turbidity could be defined from just a single band to multiple bands combination of two bands 

or three bands. Literature indicates that even a single band, if properly selected, can offer a vigorous 

approximation of turbidity (Garg, Aggarwal & Chauhan 2020; Gholizadeh, Melesse & Reddi 2016; 

Pavelsky & Smith 2009).  

2.3.4.1. Single Red Band 

It is believed that a single red wavelength has been utilised to approximate the water turbidity (Garg, 

Aggarwal & Chauhan 2020; Shi & Wang 2009) since the reflectance in visible region, in particularly 

red wavelength region, increases with enhancement of turbidity or sediments in the water column 

(Doxaran et al. 2002; Garg, Aggarwal & Chauhan 2020; Garg et al. 2017; Gholizadeh, Melesse & 

Reddi 2016; Moore 1980; Pavelsky & Smith 2009). Early studies were successfully applied red band 

(620 – 670 nm) with spatial resolution of 250m from MODIS (Moderate Resolution Imaging 

Spectroradiometer) sensor to determine SSC even in the less turbidity region (Chu, V et al. 2012; 

Chu, VW et al. 2009; Schild et al. 2017). Another study revealed the successful in calculating SSC 

using the red spectral band not only from the MODIS sensors (both AQUA & TERRA) but also from 

further 2 sensors included of Landsat 8 OLI (Operational Land Imager) sensor and Spinning 

Enhanced Visible and Infrared Imager (SEVIRI) sensors (Ody et al. 2016). However, as turbidity 

improves and sediment concentration values achieve more than 80 mg/L, the surface reflectance 

overwhelms (Chu, VW et al. 2009) and decreases the correctness of defining SSC (Schild et al. 

2017). 

2.3.4.2. Single NIR Band 

Another single sensitive band that is likewise reported to equally respond to turbidity yet less 

impacted by the bottom reflectance in the shallow water is the NIR wavelength region (Garg, 

Aggarwal & Chauhan 2020; Sebastiá-Frasquet et al. 2019). According to Caballero, Stumpf and 

Meredith (2019), the NIR band, 704 nm wavelength, provides the essential reflectance of light to the 
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satellite sensor at depths between 1 and 2 metres. Nevertheless, the sensitivity to suspended 

particles is lost in incredibly turbid and shallow waters at longer wavelengths (Sebastiá-Frasquet et 

al. 2019). A study by Doxaran et al. (2002) demonstrated the reflectance of NIR wavelength region 

in between 700 and 900 nm range was almost zero for SSC values less than 50 mg/L yet improved 

as SSC increased (Schild et al. 2017). Consequently, it is believed that the application of the NIR 

wavelength region is highly applicable in extremely turbid waters with supreme concentrations of 

sediment (Schild et al. 2017). It is additionally reported in another literature that the atmospheric 

correction for most satellite imagery is necessitated for not only near-infrared (NIR) wavelength 

region but also all visible bands in order to achieve a precise outcome (Ody et al. 2016). 

2.3.4.3. Red and NIR Bands Combination 

Although a single band algorithm is proven to be a sensitive and appropriate in estimating turbidity, 

it is reported in another literature that depending on a single band algorithm occasionally can result 

in overestimation or underestimation of SSC (Garg, Aggarwal & Chauhan 2020; Kuhn et al. 2019; 

Pahlevan et al. 2019). Consequently, implementing bands combination of either two or three 

sensitive bands algorithms is suggested to achieve improved results (Garg, Aggarwal & Chauhan 

2020).  

The integration of red and NIR spectral bands in various Satellite-borne sensors primarily 

constructed for land and/or meteorological purposes is believed to be employed for monitoring SPM 

in coastal waters (Ody et al. 2016) while a variety of research has strongly agreed about the 

implementation of red and NIR collaboration could highly deliver a superior turbidity estimation 

(Doxaran et al. 2002; Toming et al. 2016). Garg, Aggarwal and Chauhan (2020) also explained that 

the reflectance of these two bands could individually offer a clearly respond to the SSC resulting in 

providing an improved result if integrated, the reflectance will boost with increment in turbidity. 

Moreover, Water absorption promptly improves from red (645 – 700 nm wavelength) to red edge 

NIR (700 – 780 nm wavelength) Vanhellemont and Ruddick (2016) since this absorption constraints 

the light received from the bottom while it reflects light scattered by suspended particles (Sebastiá-

Frasquet et al. 2019). Because of that, these bands combination provides an excellent stability 

between turbidity detection and bottom detection (Lee 2006). It is additionally confirmed by 

Numerous studies that these two spectral bands are applicable for successfully monitoring turbidity 

or suspended particles in optically dynamic zones (Caballero, Stumpf & Meredith 2019; Lee 2006; 

Toming et al. 2016). 

2.3.4.4. Green and Red Bands Combination (NDTI) 

Garg, Aggarwal and Chauhan (2020) reported the beneficial influence of sensitive green and red 

bands combination in detecting the turbid water while it is noticed by a recent deltaic study by 

Gholizadeh, Melesse and Reddi (2016) that the peak reflectance of in the turbid water zones highly 

shifts from the wavelength region of green to the red spectrum. Moreover, applying the NDTI 
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algorithm developed by Lacaux et al. (2007) into these sensitive bands’ combination could potentially 

generate the maximum enhanced outcomes of turbidity concentration with the comprehensive 

information for approximating temporal turbid waters (Garg, Aggarwal & Chauhan 2020). For 

instance, a recent study reported the satisfactory result of the application of green and red bands’ 

combination in Sentinel 2 satellite imagery to calculate NDTI compared to the reflectance value of 

individual visible and NIR bands for investigating the turbidity occurring in the Haihe River Basin 

(Chen et al. 2021). It is similarly confirmed by another study by Garg et al. (2017) that the NDTI’s 

results from band ratioing procedure (will be thoroughly explained in the Pixel-Based Methods 

section below) in mapping turbidity is exceptionally positive and recommended as evaluated to single 

band algorithm. However, these sensitive bands’ integration approach typically delivers qualitative 

rather than quantitative approximations of turbidity (Garg et al. 2017). It is reported in a recent study 

that this NDTI technique with green and red bands retrieved from Sentinel 2 product was 

implemented to represent qualitative terms of detected turbidity results in various stretches along 

the Ganga River since the field measurement data could not be collected due to the lockdown period 

of COVID-19 (Garg, Aggarwal & Chauhan 2020). Therefore, the NDTI of band ratioing algorithm 

using the combination of sensitive green and red bands is generally suggested for retrieving the 

turbidity concentration from spectral reflectance of multispectral satellite imagery in order to 

preferably obtain qualitative terms of detected turbidity results (Garg et al. 2017). 

2.3.4.5. Red, Green and NIR Bands Combination 

Another literature mentioned the integration of three spectral bands for turbidity reflectance. The 

wavelength regions of 560nm (green), 655 to 665 nm (red) and 865 (NIR) has been reported to be 

a powerful combination to sense the SPM concentrations varying from 1 to 2000 mg/L in clear water 

to highly turbidity (Renosh et al. 2020). Ody et al. (2016) similarly implemented the combination of 

green (560 nm), red (655 nm) and NIR (864 nm) spectral bands in detecting SPM concentrations 

with additionally atmospheric corrections using two spectral bands of SWIR bands (1601 nm and 

2380 nm) to enhance the inversion of spectral reflectance into SPM concentration. Following to this 

approach, another study utilised this collaboration technique of green, red and NIR bands at 555 nm, 

645 nm and 859 nm respectively in measuring SPM retrieval while applying the atmospheric 

correction algorithm using two SWIR bands at 1240 nm and 2130 nm provided by MODIS-A and 

MODIS-T sensors (Wang & Shi 2007). 

2.3.4.6. All Visible Bands (RGB and NIR) 

It has been declared that the SSC or turbidity has a great display in the visible wavelength region 

from blue to NIR (Caballero, Stumpf & Meredith 2019; Garg, Aggarwal & Chauhan 2020; Sebastiá-

Frasquet et al. 2019; Toming et al. 2016), and various studies employed all bands of the whole visible 

wavelength region for investigating turbidity estimation either independently or in integration 

(Sebastiá-Frasquet et al. 2019). For example, a recent study in India utilised the visible bands 
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through blue to NIR to analyse the spectral reflectance variations linking to the alteration of turbidity 

concentrations (Garg, Aggarwal & Chauhan 2020). By employing the density slicing method to slice 

or classify the reflectance of water pixel over each visible bands, Garg, Aggarwal and Chauhan 

(2020) explained that the increase of reflectance in visible wavelength regions represents the SSC 

enhancement leading to the assumption that high reflectance of pixels in all visible bands are 

considered as high turbid water regions whereas low turbid areas are represented in low reflectance. 

Another study by Potes et al. (2018) argued that the major purpose of RS measurements utilising 

principally wavelength in visible and NIR bands is to improve bio-optical models that focus to 

correlate radiometric (optical) and biological quantities. They additionally signified that the 

implementation of visible and NIR bands could sense the optically dynamic turbid area containing 

organic matters, but the uncertainties in the RS retrievals of turbidity were addressed depending on 

the existence of various ingredients interacted in the turbid water column (Ogashawara, Mishra & 

Gitelson 2017; Toming et al. 2016).  

2.4. GIS Applications in Mapping Delta Geometry 

A variety of classification methods integrating with satellite remote sensing technique have been 

implemented for deltaic research such as land and water line extraction, mouth bar identification and 

sediment plume detection. Munasinghe, Cohen and Gadiraju (2021) critically reviewed literature on 

employed classification approaches with satellite imagery in detecting deltaic features and 

investigating the variations of delta morphology over decades from 146 articles/books. According to 

this literature, 18 classification methods were identified and categorised into 3 major classes (as 

shown in the Figure2.7); (1) one-step change detection including image differencing and change 

vector analysis (CVA), (2) two-step change detection including pixel-based approaches (manual 

digitization, density slicing, unsupervised classification, supervised classification, image 

segmentation and edge detection, band ratioing, object-based image analysis, transformation 

method, decision trees and random forest classifier, artificial neural network, Bayesian network, and 

support vector machines) and sub-pixel-based approaches (Fuzzy logic, spectral mixture analysis, 

and sub-pixel analysis), and (3) ensemble classifications.  
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Figure 2.7 Classification of GIS techniques that have been implemented in detecting variation of delta 
morphology (Munasinghe, Cohen & Gadiraju 2021) 

One-step change detection is the application of GIS and RS techniques on multidate satellite 

imagery to notice a variation in one step such as the technique of layer arithmetic utilising of band 

mathematics on the reflectance values to differentiate between multidate imagery and the change 

vector analysis applying of the radiometric properties of multidate imagery to generate both 

magnitude and orientation of alteration. On the other hand, two-step change detection is the 

implementation of GIS and RS techniques to define morphology for a specific time step by using the 

identical or distinct set of approaches to retrieve morphology at a diverse time step for comparing; 

the ensemble classification is the approach of integrating multiple classification methods 

(Munasinghe, Cohen & Gadiraju 2021). 

This study is intentionally to review only the two-step change detection methods since this research 

aims to delineate the delta morphology in a specific time and later compare leading the one-step 

change detection become not suitable. Both pixel-based and sub-pixel-based methods in two-step 

change detections will be reviewed, but not all their techniques will be included. For sub-pixel-based 

method, the Fuzzy logic technique will not be explained since this classification method is a 

probability-based classification that could cause various uncertainties during classification resulting 

to inaccuracy rather than a hard classification (Xiao-ge 2002). For pixel-based method, unsupervised 

classification, supervised classification, object-based image analysis (OBIA), transformation method, 

and machine learning algorithms such as decision trees and random forest classifier, artificial neural 

Image removed due to copyright restriction.



25 

networks (ANNs), Bayesian networks (BNs), and support vector machine (SVM) will be excluded 

since they are considered inefficient in detecting and mapping deltaic morphological environment. 

The unsupervised and supervised classification methods are believed to be ineffective methods due 

to the inaccuracy results (Enderle & Weih Jr 2005; Khatami, Mountrakis & Stehman 2016; Shalaby 

& Tateishi 2007) whilst the OBIA technique is not suggested for huge boundary or area detection, in 

this case of turbidity, but recommended for detecting specific objects or feature based on their 

shapes in grouping adjacent pixels into classes, according to Kamal and Phinn (2011); Yoshino et 

al. (2014). Moreover, the dynamic in detecting deltaic boundary and turbidity could extremely be a 

challenge for the machine learning algorithms due to their technical issues such as overfitting, 

misidentifying turbid waters resulting in seriously inaccurate outcomes and requiring a huge amount 

of supplementary training data to set up networks in order to receive or enhance the accurate results 

(Munasinghe, Cohen & Gadiraju 2021). Hence, only effective and consistent classification 

approaches such as manual digitization, density slicing, image segmentation and edge detection, 

band ratioing, spectral mixture analysis, and sub-pixel analysis will be thoroughly demonstrated in 

the subsequence sections below. 

2.4.1. Pixel-Based Methods 

2.4.1.1. Manual Digitizing 

Manual digitizing on deltaic system is a technique to delineate the boundary line manually based on 

digitizer’s awareness and understanding of the morphological features, vegetation, and sediment 

characteristics of the delta. By applying humans’ interpretation and judgment skills in identifying what 

and where the boundary is, manual digitizing takes advantage over computer assisted classification 

methods (Kong et al. 2015). However, this method contains several fundamental issues. The first 

issue is the imprecisions induced through the repetitive digitization. Another concern is the 

digitization, which mainly based on digitizer’s experiences, can be challenging for the human eye to 

interpret the boundary since colour shades may gradually decay in particularly low-resolution images 

(Nath & Deb 2010). This method is also extremely time-consuming and monotonous which is 

expensive for labouring cost and ineffective if analysing numerous images. It is proven that the 

integration of digitization and automatic boundary detection procedures to map the deltaic boundary 

lines were favourably successful (Kong et al. 2015).  

2.4.1.2. Density Slicing 

The principle of density slicing consists of classifying the satellite images into distinct territories such 

land and water regions by frequently identifying a threshold value of a single spectral band. A 

performing of histogram analysis is generally implemented in order to define this significant threshold 

without bias (see in the Figure 2.8). It is believed that the overall performance of density slicing is 

efficient, but this technique has its specific limitations. The accuracy of water line estimation is 

occasionally minimal due to the complexity of land and water interactions in coastal deltaic areas 
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even though land and water mostly occur to be spectrally distinguishable. The reason could possibly 

be due to spectral confusion occurring from conditions such as inconstant depth and turbidity linking 

with the spatial resolution of the imagery.  This circumstance affects the boundary clarity boundaries 

and sections of mixed pixels that limits the water line mapping accuracy (Malthus & Mumby 2003; 

Ryu, Won & Min 2002). Additionally, the application of one spectral band typically cannot tolerate 

every form of alteration to be detected (Munasinghe, Cohen & Gadiraju 2021). It has been 

recommended that individual density slicing method is not adequate in defining the water line and 

typically should be applied in combination with other techniques to achieve greater deltaic boundary 

lines classification accuracies (Marghany, Sabu & Hashim 2010). 

Figure 2.8 Example of Density Slicing to extract water body using Landsat TM band 5 along the 
Danube delta (Munasinghe, Cohen & Gadiraju 2021) 

2.4.1.3. Image Segmentation and Edge Detection 

Image segmentation and edge detection approaches follow to the procedure of manual digitization 

further closely by differentiating an image into distinct sections where sharp intensity variations arise. 

One of two crucial image segmentation and edge detection methods, the alternative connective 

approach, is utilised in deltaic studies where consistent regions are intended to be developed by 

combining pixels or sub-regions on the similarity criterion fundamental (Le Moigne & Tilton 1995). 

This procedure is based on guiding the software by defining points manually along the boundary line 

of the original image. The program later analyses the image edges by following these points, and 

the analyst will verify the modification of identified boundary lines. This examination is noticed to be 

faster and additionally consistent than entirely automation procedures (Loos & Niemann 2002) 

because of the gathered information (training samples) by the analyst. Although it is considered as 

successful, this technique still contains limitations in potential inclusion of distinct feature classes 

into the same area resulting in difficulty of spectral partition and consequent classification of thematic 

information categories. 

Image removed due to copyright restriction.
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2.4.1.4. Band Ratioing 

Band ratioing method is the technique using two sensitive spectral bands combination of detected 

deltaic features to sense the reflectance level in order to identify detected deltaic areas, in particular 

land-water regions and turbid waters. In the case of land-water extraction, this technique exploits the 

green and SWIR bands whose wavelengths are absorbed by water resulting in water region 

rendered as white whereas land region rendered as black colours in the processed image 

(Munasinghe, Cohen & Gadiraju 2021). The calculation of these sensitive spectral bands’ integration 

within the MNDWI formular (as explained in the Figure 2.9) is applied to diminish the influence of 

suspended sediment near coastlines (Lohani 1999) and emphasise higher reflectance attributes 

from soil and strong vegetation offering a perspective for the land-water boundary (Braud & Feng 

1998; Guariglia et al. 2006). For turbidity detection, in addition, the method integrates the sensitive 

bands of green and red bands (as demonstrated in the Sensitive Wavelength Regions (Bands) 

section above) to calculate NDTI layer that can sense the variation of turbidity concentrations varying 

from low to high concentrations. By comparing with other approaches, this band ratioing is a 

comparatively rapid process of distinguishing alteration deltaic areas, yet the specific obstacle of this 

technique is addressed. For instance, the ratio of band calculation assumes values greater than one 

as water and less than one as land in large areas of the coastal zone while this ratio can be 

inaccurate for some deltaic and coastal zones based on their reality characteristics (Alesheikh, 

Ghorbanali & Nouri 2007). This ratio is believed to perform well in deltaic and coastal zones covered 

mainly by soil but not in regions with vegetative cover that can lead to erroneously classify other land 

use classes as water (Alesheikh, Ghorbanali & Nouri 2007). Therefore, this method is the most 

effective of instantly go-to approach comparing to other procedures in the purpose to rapidly extract 

the coastline and deltaic boundary lines with satisfactory results but not extremely precise. It is not 

suggested to implement this method if the research aims to generate extraordinarily accurate results 

of shoreline extraction (Munasinghe, Cohen & Gadiraju 2021). 
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Figure 2.9 Example of Band Ratioing to generate a land-water raster for shoreline extracting using 
Landsat OLI imagery along the Irrawaddy River delta. The combination and ratio of the Modified 
Normalized Water Index (MNDWI) is applied to emphasise water body. Left: A subtracted difference 
layer of SWIR and Green bands. Middle: An added difference layer of SWIR and Green bands. Right: 
The MNDWI raster (feature-accentuated layer) from the subtracted difference and the added difference 
layers (Munasinghe, Cohen & Gadiraju 2021) 

2.4.2. Sub Pixel-Based Methods 

Dissimilarly to discussed classification methods above based on per-pixel information in which every 

pixel is classified as one class, a comparatively latest discipline in image analysis, sub-pixel 

procedures, offers the prospect to extract information about the fraction of diverse classes within a 

mixed pixel (soft classification) as shown in the Figure 2.10. It has been reported soft classification 

methods were generally revealed to enhance the cartographic representations of transitional zones 

and heterogeneous landscapes (Frohn et al. 2012; Wei et al. 2008; Zhang 2009). 

Figure 2.10 The illustration of the mixed pixel in the imagery (Munasinghe, Cohen & Gadiraju 2021) 

Image removed due to copyright restriction.

Image removed due to copyright restriction.
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2.4.2.1. Spectral Mixture Analysis 

Spectral mixture analysis (SMA) is the technique to extract information about the surface substances 

appearing in a pixel that is performed by estimating the least-squares best match for every pixel 

along mixing boundary lines using spectral endmembers to account for the variation in the mixture 

composition of each pixel. An endmember ideally exemplifies a pure constituent of the mixtures 

represent in pixels. The SMA outcome is typically exhibited in the fraction images forms with one 

image of each endmember spectrum indicating the area dimensions of the endmembers within the 

pixel, and the selection and identification of endmember is deemed to be one of the most significant 

aspects in SMA (Small 2004; Theseira et al. 2003). A previous study by Lu, Moran and Batistella 

(2003) signified that SMA is beneficial in enhancing the accuracy of classification and is specifically 

critical in enhancing area approximation of deltaic classes based on coarse spatial resolution data. 

Beside its advantage over other techniques in enhanced accuracy, SMA distresses from two critical 

limitations. Firstly, it does not have potential endmembers appearing in areas greater than the image 

resolution, and features could be existed in tinier spots lesser than pixel proportions; this causes the 

endmember identification impossible for classification and subsequently be classified speciously. 

Secondly, endmembers are not indeed persistent within an image. Due to the existence reflectance 

values range for a specific endmember class, the overlap between diverse endmember classes 

could arise causing the incompatibility between the defined endmember and ground truth leading to 

misclassification results.  

2.4.2.2. Sub-Pixel Analysis 

Sub-pixel analysis process is characterized as the technique seeking for certain interested features 

from within hybrid digital number scale of a multispectral image pixel. This approach has benefits 

over SMA and fuzzy classifications since the overall constituents of every pixel is not restricted to a 

mixture of previously specified image classes (endmembers). The phases in sub-pixel approach 

consist of signature derivation for the interest feature and each pixel classification distinguishing the 

portion of interest feature represent. Consequently, an individual classification must be performed 

for each substance when the fraction pixel values differ from 0.0 to 1.0 (Ozesmi & Bauer 2002). 

However, this specific method of sub-pixel analysis was reported to be the least implemented 

technique for detecting and mapping deltaic environments although it provides the most accurate 

result among all 18 reviewed methods according to the reviewed literature (Munasinghe, Cohen & 

Gadiraju 2021). 
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CHAPTER 3. METHODOLOGY 

3.1. Satellite Images Acquisition 

In order to detect the sediment plume in main outlet of Mitchell River Delta, the Sentinel 2 level 2A 

from Multi Spectral Instrument (MSI) dataset has been utilised. The reason the Sentinel 2 satellite 

was considered for this research is due to its high spatial and high spatial resolutions which are 

beneficial in turbidity detection. The high spatial resolution can provide an opportunity to get more 

accurate result in identify sediment plume and mouth bar geometries while the high temporal 

resolution can offer a high chance in retrieving cloud free or minor cloud condition images, especially 

in the wet season. The Sentinel 2A and Sentinel 2B satellites were initiated by the European Space 

Agency (ESA) Copernicus program on 23 June 2015 and 07 March 2017, respectively, with global 

coverage every 5 days. The Sentinel 2 mission is to assist Copernicus land monitoring research, which 

includes the monitoring of vegetation, soil and water cover, along with observation of inland waterways 

and coastal extents. Its MSI sensor delivers imagery data with 13 spectral bands ranging from visible 

and near infrared to short wave infrared (central wavelength from 443 to 2190 nm) regions, with 290 

kilometres of a wide-swath width and a high spatial resolution of 10 metres (four visible and near 

infrared bands), 20 metres (six red edge and shortwave infrared bands) and 60 metres (three 

atmospheric correction bands) (Potes et al., 2018; Garg, Aggarwal & Chauhan, 2020; Soomets et 

al., 2020).  

The Google Earth Engine (GEE) was implemented to automatically collect Sentinel 2 level 2A 

imagery, which is atmospherically and geometrically corrected (computed by running Sen2cor 

according to Sentinel 2 level 2A catalogue detail) providing surface reflectance information, with 

cloud free and low cloud conditions (less than 10 percentages of cloud cover) of specific time periods 

(January 2020 to August 2021) from scihub. This imagery can be manually downloaded from the 

Sentinel Scientific Data Hub (https://scihub.copernicus.eu/). This imagery was chosen to analyse the 

relationship between the sediment plume pattern and stream flow and precipitation. Satellite imagery 

was acquired based on the minimum and maximum discharge and rainfall events in both wet and 

dry season. Due to the limitation of revisit time interval (every 5 days) of Sentinel 2 associating to 

meteorological condition issues in particularly in massive cloud events, the imagery could not be 

exactly gathered with precise days of minimum and maximum discharge and rainfall. The imagery 

collection is, however, acquired with as finest circumstances as possible to the requirement of 

discharge and rainfall perspectives, yet depending on the availability of Sentinel 2 imagery with 

acceptable cloud condition. The images are subset to the study area that focuses on the main outlet 

of the Mitchell River Delta (as mentioned above in Figure 1.1). The specifications of each band and 

wavelength regions are presented in Table 3.1 whilst the specifics of stretch wise satellite data 

applied and time periods selected are provided in Table 3.2.  
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Table 3.1: Summary table of Sentinel 2 satellite specification included its bands, wavelegth regions, 

central wavelegth and spatial resolution. 

Bands Wavelength Region Central Wavelength 

(nm) 

Resolution 

(m) 

1 Band 1 Coastal Aerosol 443 60 

2 Band 2 Blue 490 10 

3 Band 3 Green 560 10 

4 Band 4 Red 665 10 

5 Band 5 Vegetation Red Edge 705 20 

6 Band 6 Vegetation Red Edge 740 20 

7 Band 7 Vegetation Red Edge 783 20 

8 Band 8 Near Infrared (NIR) 842 10 

9 Band 8A Vegetation Red Edge 865 20 

10 Band 9 Water Vapor 945 60 

11 Band 10 Short Wave Infrared (SWIR) - Cirrus 1375 60 

12 Band 11 Short Wave Infrared (SWIR) 1610 20 

13 Band 12 Short Wave Infrared (SWIR) 2190 20 

Table 3.2: Summary table of specifically selected date with the Sentinel 2 satellite sensor and its 

products that were implemented in the research. These dates were chosen based on image availability 

of Sentinel 2 and cloud conditions relative to the low and high discharge and rainfall as possible.  

Dates Satellite / Sensor Product Cloud Condition 

1 15 / 01 / 2020 Sentinel 2 / MSI L2A Minor cloud 

2 14 / 02 / 2020 Sentinel 2 / MSI L2A Cloudy (not in critical region) 

3 20 / 03 / 2020 Sentinel 2 / MSI L2A Cloudy (only thin cloud) 

4 09 / 05 / 2020 Sentinel 2 / MSI L2A No cloud 

5 03 / 06 / 2020 Sentinel 2 / MSI L2A No cloud 

6 28 / 07 / 2020 Sentinel 2 / MSI L2A No cloud 

7 11 / 09 / 2020 Sentinel 2 / MSI L2A No cloud 

8 24 / 01 / 2021 Sentinel 2 / MSI L2A Minor cloud 

9 10 / 03 / 2021 Sentinel 2 / MSI L2A No cloud 

10 14 / 04 / 2021 Sentinel 2 / MSI L2A Minor cloud 

11 14 / 05 / 2021 Sentinel 2 / MSI L2A No cloud 

12 08 / 06 / 2021 Sentinel 2 / MSI L2A No cloud 

13 23 / 07 / 2021 Sentinel 2 / MSI L2A No cloud 

14 12 / 08 / 2021 Sentinel 2 / MSI L2A No cloud 
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3.2. Pilot Procedure 

A series of pilots were performed in ArcGIS Pro version 2.8.2 as an initial process in this study to 

evaluate the best bands combination to detect the turbidity. Although the single band algorithm 

included both red (665 nm) and NIR (842 nm) has been reported to be one of the most sensitive 

response of turbidity, it was not being considered in this research due to its issues of overestimated 

or underestimated in sensing the turbidity (Garg, Aggarwal & Chauhan 2020; Kuhn et al. 2019; 

Pahlevan et al. 2019). Therefore, three integrations of bands combination algorithm were employed 

in the pilot to check and compare the sensitivity of turbidity reflectance.  

Firstly, the combination of multiple bands included red, NIR and SWIR was selected on a Sentinel 2 

imagery on 15 January 2020 (see in Figure 3.1). It is believed that the combination of red and NIR 

can receive a good response of turbidity (Doxaran et al. 2002; Garg, Aggarwal & Chauhan 2020; 

Toming et al. 2016), and red, NIR and SWIR bands combination could be the enhancement version 

of red and NIR combination with additional SWIR band to improve the outcome. The reason the 

SWIR band was included is that the SWIR band can clearly reveal thin cloud regions which is the 

most problematic for image analysis in this Sentinel 2 imagery (as shown in the Figure 3.1). It is 

believed that both SWIR bands in Sentinel 2 can distinguish clouds from other features in the satellite 

image, especially when integrating these two SWIR bands with the blue band, and even differentiate 

between clouds and snows (Bian et al. 2016). Vanhellemont and Ruddick (2015) explained in their 

research that the implementation of SWIR band can highly benefit in ocean colouring process due 

to its capability to reveal some clouds that could be misclassified as water. After integrating these 

three bands into a raster image, the classification called the spectral unmixing method was applied 

to define the area of plume (low and high plume concentrations) and water by using training samples 

of multiple classes such as land, cloud, clear water, low plume concentration and high plume 

concentration classes. The spectral unmixing method is a sub-pixel-based classification method that 

can separate mixing features in a pixel, for example a pixel contains 2 classes of land and water, 

using training samples in the form of either spectral signatures or adjacent areas of similar pixel 

values. The outcome of this first pilot is demonstrated in Figure3.1 below.  

Secondly, another pilot was executed by using three spectral bands of green (560 nm), red (665 nm) 

and NIR (842 nm) on the identical Sentinel 2 image (in Figure 3.2). This band combination technique 

is reminiscent of the cooperation between theoretical and practical remote sensing perspectives. In 

theory, the red and NIR combination, as above mentioned, are considered to be the most sensitive 

bands, both in individual and combination approaches for turbidity approximation. In practise, the 

green and red bands are the wavelength regions that provide high spectral reflectance value of 

turbidity collected from multiple spots of sediment plume area. The spectral signature is represented 

in Figure 3.3. Although reviewing previous literature advantageous in providing a variety of principles 

on how to generally select sensitive bands for turbidity, observing and inspecting spectral signature 
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of specific investigated images can practically offer the exact reflectance information in sensing 

turbidity of one specific study location since different research regions can possibly have quite 

different variables in turbidity depending on the SPM compositions that can produce comparable 

spectral signature yet not identical. Based on these perspectives, the integration of green, red and 

NIR bands could hypothetically be a decent choice in sensing turbidity. Renosh et al. (2020) 

explained in their research about implementing the green, red and NIR bands with similar wavelength 

regions of 560 nm, 655 to 665 nm and 865, respectively, could sense the SPM concentrations in 

clear water to highly turbidity varying from 1 to 2000 mg/L. This band combination image was then 

employed with the identical classification method to the first pilot of the spectral unmixing and the 

approach on how training samples and classes are trained and identified. The testing result of this 

second pilot is exhibited in the Figure 3.2 below. 

Figure 3.1 (A) The analysed image of Red, NIR and SWIR bands combination (clearly differentiate 

between cloud, land and turbid water), (B) The analysed image of Red and NIR bands combination 

(indecisively differentiate between cloud, land and turbid water), (C) The raster layer of turbidity 

detection using the Red and NIR bands combination with the spectral unmixing method; the turbidity 

concentration could be identified (bule represents the water area while red represents the detected 

plume area). 
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Figure 3.2 (A) The analysed image of Green, Red and NIR bands combination, (B) The raster layer of 

turbidity detection using the Green, Red and NIR bands combination with the spectral unmixing 

method; the turbidity concentration could be identified (bule represents the water area while yellow 

represents the detected plume area). 

Finally, the third pilot was performed on the identical testing Sentinel 2 image using band ratioing 

technique to calculate the NDTI layer, an algorithm developed by Lacaux et al. (2007), from two 

sensitive band of red (560 nm) and green (665 nm) wavelength regions. The selection of these two 

sensitive bands’ combination is likewise based on both theoretical and practical remote sensing 

perspectives. Gholizadeh, Melesse and Reddi (2016) showed that the integration of sensitive green 

and red wavelength regions could offer the most effective spectral reflectance in sensing the turbidity 

concentrations among other sensitive bands. This indication is verified by not only other research 

but also the spectral signature observation from various turbidity spots in the Sentinel 2 image (as 

above mentioned in Figure 3.3). A study by Garg, Aggarwal and Chauhan (2020) demonstrated that 

the peak reflectance of in the turbidity concentration zones highly shifts from the green to the red 

wavelength region while the graph of spectral signature observation plotted from various turbidity 

spots likewise reveals the peak turbidity reflectance in the green and red spectrums. Garg, Aggarwal 

and Chauhan (2020) additionally mentioned that the application of band ratioing method of NDTI 

using green and red bands’ combination could potentially generate superior results of turbidity 

concentration with the comprehensive information for detecting temporal turbid waters. The output 

layer of this third pilot is displayed in the Figure 3.4 below. 
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Figure 3.3 Spectral profiles of selected high turbidity spots (see band numbers in Table 3.1). 

Figure 3.4 Result layer of turbidity detection using NDTI algorithm (bule represents the water area; 

yellow represents the low and moderate turbidity; brown represents the high and very high turbidity). 

By visually comparing these three pilots’ output layers, the NDTI layer of the third pilot is believed 

have the best out output when compared to the of first and second pilots using red, NIR, SWIR bands 

combination and green, red, NIR bands integration, respectively, with the spectral unmixing 

algorithm. Therefore, the band ratioing of NDTI algorithm will be chosen as the principal detection 

technique for analysing seasonal variations of turbidity in this research. 
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3.3. Automation Procedure 

After experimenting with multiple pilots, the automation procedure included two major stage of water 

extractions using MNDWI and turbidity detection using NDTI, which will be thoroughly exemplified in 

sections below, was processed for twice excluded the trial runs for testing if the automated algorithm 

is working. The first run was performed with a single Sentinel 2 image to inspect and evaluate the 

overall results and errors of the algorithm and to generate standard templates of the MNDWI index 

ranges for water extractions and NDTI indices values for both turbidity concentration visualising and 

plume boundaries extraction purposes intentionally for the final run. The second run was performed 

with the entire Sentinel 2 images (14 images) and generated standard templates of MNDWI and 

NDTI to receive the detected results utilising for the final mapping. This automated algorithm was 

executed in the ArcGIS Pro version 2.8.2 using the Model Builders platform (see Appendix 1) later 

converted into the ArcPy script (as presented in Appendix 2). However, this conversion produced 

some gaps causing the errors occurred in ArcPy environment and will be demonstrated in the 

Discussion section. 

3.3.1. Image Pre-Processing (Automated Water Extraction) 

Before detecting the turbidity using NDTI algorithm, the land area and clouds were required to be 

masked out from all Sentinel 2 L2A imagery as an image pre-processing (automated water extraction 

step). This step is considered as a beneficial step to clean undesirable regions (land area and clouds) 

from images in order to boost the processing momentum in the further processing (detection stage) 

since only the water regions are significant in this analysis. A variety of studies demonstrated about 

the benefit of masking out regions that are not significant for analysis, especially land area for 

monitoring the turbid water, in the purpose to enhance the processing speed (Munasinghe, Cohen 

& Gadiraju 2021). Moreover, masking out unnecessary part of images could improve the accuracy 

of the result since keeping images with all type of features or classes could lead confusion in 

detecting and classifying due to similar spectral reflectance of two district objects or classes. 

According to Munasinghe, Cohen and Gadiraju (2021), the accuracy of detection and classification 

could be diminished when numerous classes are characterized in satellite image analysis, in 

particularly the unsolicited classes. Various automation and manual methods have been 

implemented to differentiate between water and land areas while numerous of cloud masking 

algorithm are available in both online and offline versions. While a significant amount of research 

implemented the cloud masking algorithm to obtain cloud-free satellite image before applying 

classification methods to separate between land and water, this image pre-processing, on the other 

hand, was employed the automatically band rationing algorithm of Modified Normalised Different 

Water Index (MNDWI) to classify the water area. The reason behind this decision is that the water 

area is the only significant while other features are considered as insignificant leading to the 

classification of just water class and not water class. It is believed that the cloud masking algorithm 

is separately performed due to the possibility of misclassified or confusion in identifying clouds and 
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the objects with similar spectral reflectance as clouds such as white buildings or vehicles while this 

concern does not exist in this research. The band ratioing technique is one of effective pixel-based 

classification method that could promptly extract the two distinct features or classes such as land 

and water extraction yet inappropriate if the accurate extraction results are strongly required 

(Munasinghe, Cohen & Gadiraju 2021). Since the purpose of this water area extraction in this pre-

processing is primarily to enhance the further detection processing speed and not strongly focus 

about the accuracy of water area extraction, the MNDWI is the suitable method for this pre-

processing. The MNDWI is the combination of two bands (green and SWIR) to create the (Green – 

SWIR) layer dividing to the (Green + SWIR) layer where the MNDWI formular is explained in the 

Equation 3.1. It is, in addition, the enhancement version of Normalised Different Water Index (NDWI) 

which is originally introduced as band ratioing method to extract water from land area. The formula 

of NDWI is indicated in the Equation 3.2.  

Equation 3.1: The formular of Modified Normalised Different Water Index (MNDWI) 

𝐌𝐍𝐃𝐖𝐈 =
(𝐆𝐫𝐞𝐞𝐧 − 𝐒𝐖𝐈𝐑)

(𝐆𝐫𝐞𝐞𝐧 + 𝐒𝐖𝐈𝐑)

𝑊ℎ𝑒𝑟𝑒:  

𝐺𝑟𝑒𝑒𝑛 =  𝑡ℎ𝑒 𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 3 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

𝑆𝑊𝐼𝑅 =  𝑡ℎ𝑒 𝑆ℎ𝑜𝑟𝑡 𝑊𝑎𝑣𝑒 𝐼𝑛𝑓𝑟𝑎𝑅𝑒𝑑 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 11/12 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

Equation 3.2: The formular of Normalised Different Water Index (NDWI) 

𝐍𝐃𝐖𝐈 =
(𝐆𝐫𝐞𝐞𝐧 − 𝐍𝐈𝐑)

(𝐆𝐫𝐞𝐞𝐧 + 𝐍𝐈𝐑)

𝑊ℎ𝑒𝑟𝑒:  

𝐺𝑟𝑒𝑒𝑛 =  𝑡ℎ𝑒 𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 3 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

𝑁𝐼𝑅 =  𝑡ℎ𝑒 𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑅𝑒𝑑 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 8 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

After the MNDWI layers were generated from the entire Sentinel 2 images, these MNDWI layers 

were later applied to extract the water areas by identifying the MNDWI ratio values for three distinct 

categories using the Jenks Natural Breaks classification method of water and not water (land and 

clouds) classes while habitually two classes of water and land are categorised in a variety of studies. 

The Jenks Natural Breaks Classification approach is a statistics classification technique designed to 

group a set of values into an optimal class range with similar characteristics, known as a “natural” 

class. The reason of this diversity could be due to the researchers’ perspectives and the conditions 
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of collected satellite imagery (clouds free) in those studies while low cloud conditions and thin clouds 

in this research. The ranges of specified MNDWI ratio values using 3 classes provided more precise 

results of water areas than using 2 classes as shown in the Figure 3.5. It is displayed that using 3 

identified classes can clearly differentiate between water area (in red colour region), land area (in 

yellow colour region) and clouds area (in orange colour region), which this clouds area is missing 

when using 2 defined classes. It is, however, believed that the adjustments of the MNDWI ratio 

values ranges should be performed to enhance the accuracy of water area extraction if the manual 

process is employed or before generating these ratio scales into a standard template for the 

automated algorithm using the Model Builders since the minor inaccuracies of pixel values along 

water area boundaries were addressed. The ratio values of MNDWI in this study varies from -1 to 1 

where assigned ranges of -1 to -0.268, -0.268 to 0.361 and 0.361 to 1 represent land, clouds and 

water classes, respectively.  

Figure 3.5 (A) The RGB image used for analysis, (B) The raster layer of MNDWI without classification 

(stretch value), (C) The raster layer of MNDWI with two assigned classes (missing most cloud areas), 

(D) The raster layer of MNDWI with three assigned classes (most cloud areas revealed).
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3.3.2. Turbidity Detection using NDTI 

After the water area extraction, the automated turbidity detection stage is processed with the most 

effective band ratioing method of NDTI using two sensitive wavelength regions of green and red 

spectrums. Because of 3 significant circumstances, the band ratioing method of NDTI was 

hypothetically and practically considered as the most sufficient and efficient technique for this deltaic 

study. Firstly, by visually pilots’ comparison, this NDTI algorithm offered a comparable result of 

accuracy to other two approaches yet advantages in thorough information of turbidity concentration 

that is beneficial for further processing and analysing. Secondly, according to a literature, this band 

ratioing of NDTI method is believed to well operate in deltaic and coastal zones covered 

predominantly by soil, which is the case of this study area environment, but not in regions with 

vegetative cover that can lead to mistakenly classify other land use classes as water (Alesheikh, 

Ghorbanali & Nouri 2007; Munasinghe, Cohen & Gadiraju 2021). Finally, the NDTI algorithm using 

the mixture of sensitive green and red bands typically provides qualitative rather than quantitative 

estimations of turbidity and is suggested for research intentionally detecting the turbidity 

concentration from spectral reflectance of multispectral satellite imagery in order to preferably obtain 

qualitative terms of detected turbidity results (Garg et al. 2017). In this case, this method is extremely 

appropriate since the intention of this research is not to investigate and estimate the statistics of 

turbidity concentrations when the field measurement turbidity concentrations are unobtainable. A 

comparable scenario was also applied in a recent study where Garg, Aggarwal and Chauhan (2020) 

utilised this NDTI algorithm with the identical satellite sensor (Sentinel 2 MSI) to investigate and 

represent qualitative terms of detected turbidity results in several stretches along the Ganga River 

since the field measurement data could not be collected due to the lockdown period of COVID-19. 

The NDTI is the band ratioing algorithm that combine green and red wavelength regions to generate 

the (Green – Red) layer dividing to the (Green + Red) layer as NDTI formular is indicated in the 

Equation 3.2. After this procedure was performed, the results of NDTI layers revealed the detected 

turbidity concentration in the water that their indices values ranging from -1 to -0.5 represent from 

clear water to high concentration of sediment plume. However, this turbidity indices values were 

found challenging to identify and analysis both the turbidity concentrations and geometries. To 

overcome this difficulty for visualising turbidity concentrations, the comprehensive indices 

classification was executed by assigning the classes values in every 0.05 (as demonstrated in 

Figure 3.6). This classified NDTI indices was generated as a standard template using manual 

classification method for the automated algorithm using the Model Builders. Manual classification 

method is a classifying technique using humans’ interpretation to assign the indices ranges. 



40 

Equation 3.3: The formular of Normalised Different Turbidity Index (NDTI) 

𝐍𝐃𝐓𝐈 =
(𝐆𝐫𝐞𝐞𝐧 − 𝐑𝐞𝐝)

(𝐆𝐫𝐞𝐞𝐧 + 𝐑𝐞𝐝)

𝑊ℎ𝑒𝑟𝑒:  

𝐺𝑟𝑒𝑒𝑛 =  𝑡ℎ𝑒 𝐺𝑟𝑒𝑒𝑛 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 3 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

𝑅𝑒𝑑 =  𝑡ℎ𝑒 𝑅𝑒𝑑 𝑏𝑎𝑛𝑑 (𝑏𝑎𝑛𝑑 4 𝑖𝑛 𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙 2) 

In contrast to the NDTI indices classification for visualising purpose, another indices classification 

was implemented to identify clear water and turbid water areas. By evaluating, the appropriate 

indices ranges were assigned values from -1 to -0.4 for the clear water region while from -0.4 to 0.5 

for the plume area. Although the plume boundaries were extracted by from this automated 

classification approach, the inaccuracies of the boundaries and several confusions in the 

classification were addressed (the errors and limitations of this automated algorithm will be 

thoroughly discoursed in the discussion section below) leading to the assistant of manual digitisation 

method. 

Figure 3.6 NDTI layer after assigning indices (0.05 per class). 
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3.4. Manual Digitizing Procedure 

The manual digitising approach is the final process after the automation process in this study to not 

only correct the inaccuracy boundaries of the plumes but also to delineate the dynamic mouth bar 

geometries including mouth bar boundaries and possible distributary channels where the automation 

approach could not be successful executed. The corrections of plume patterns and the mouth bar 

geometries digitisation will be thoroughly demonstrated in sections below. This procedure is likewise 

performed in the ArcGIS Pro version 2.8.2.  

3.4.1. Plume Pattern Corrections 

In order to enhance the accuracy of the plume boundaries, the manual digitising was executed to 

correct various errors due to the limitation of the algorithm causing misclassified spots and the 

confusion in classifying different features as sediment plumes such as thin clouds, cloud shadows, 

unextracted clouds, and unextracted land regions. It is proven to be a satisfactorily successful in 

mapping the deltaic boundary lines with the integration of manual digitization and automatic 

boundary detection algorithm (Kong et al. 2015; Munasinghe, Cohen & Gadiraju 2021). The plume 

pattern corrections were manually delineating on every analysed NDTI layers using human’s 

interpretation and judgement to identify the edge of plume boundary with the assistant of Sentinel 2 

RGB images evaluation. RGB images are believed to be beneficial in assisting this correction since 

they could provide additional reality information about features and scenarios occurred in the study 

location on the specific time period. This editing process, furthermore, intends to correct the plume 

boundaries by removing overestimated areas and fill misclassified regions to obtain superior plume 

boundaries results. 

3.4.2. Digitizing Mouth Bar geometry 

Disparate to plume boundaries, the mouth bar geometries were not mapped using automated 

classification algorithm but the manual digitisation approach. Due to the complexity of geometrical 

mouth bar structures, the automated band ratioing using NDTI algorithm could not be successfully 

performed in mapping these dynamic structures resulting in manual digitisation process was 

implemented. By applying humans’ interpretation and judgment skills in identifying what and where 

the boundary is, manual digitizing is advantageous over computer assisted classification methods 

(Kong et al. 2015; Munasinghe, Cohen & Gadiraju 2021). Munasinghe, Cohen and Gadiraju (2021) 

demonstrated that this manual technique is extremely effective in mapping deltaic regions, in 

particularly mouth bar, where the identification of the deltaic boundary using automatic classification 

is tremendously problematic due to the shallowness and turbidity of water and dynamically shifting 

waterline. Another study additionally revealed that this deltaic type provides various obstacles for 

simple band mathematics techniques, especially band ratioing algorithm, in labelling mouth bar due 

to complicated physical scene characteristics on the satellite image (Munasinghe, Cohen & Gadiraju 

2021). 
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During this process, two deltaic features included the distributary channels within the mouth bar and 

the mouth bar boundaries were being delineating. The digitisation of distributary channels within the 

mouth bar were utilised on occasional time periods optically based on their possible appearances in 

the NDTI result layers. It is believed that the event of high fluvial discharge with high level of turbidity 

concentrations are the obstacles in visualising the geometry of distributary channels in some time 

periods especially in the wet season. On the contrary, the mouth bar boundaries were illustrated in 

in every time periods although the event of high fluvial discharge with high level of turbidity 

concentrations occurred. This digitisation of mouth bar boundaries was preferably an approximated 

drawing where they were supposed as mouth bars based on the patterns of high concentration SSC 

and exposed mouth bars pattern with the understating, knowledges about morphological deltaic 

structures and assumptions of the researcher. The exposed mouth bars could provide some principal 

patterns on the deposited sediments around mouth bars whilst the high turbidity concentration 

regions are believed to be the most potential deposited sediment areas. Based on these two 

assumption perspectives, the mouth bar geometries were mapped with uncertainty and biased 

boundaries since mapping features underneath oceans could be extremely problematic and mainly 

using imaginative sketching. 

3.5. Hydrological and Meteorological data collection 

3.5.1. Fluvial Discharge Data 

Seasonal wet-dry conditions are known to cause fluctuating river discharge and turbidity patterns. 

As such, the total daily discharge data (in m3/s) at Dunbar has been plotted over the study period 

(15 January 2020 until 25 August 2021) and compared with corresponding imagery.  River gauge 

data is limited in the Mitchell River catchment and Dunbar provides the best proxy for discharge at 

the river mouth. the daily discharge data from Dunbar station retrieved from Water Monitoring 

Information Portal about stream flow information at the Mitchell basin published by Queensland 

Government (https://water-monitoring.information.qld.gov.au/). The location map of stream flow 

gauge station is represented in Figure 3.7. 

3.5.2. Precipitation Data 

The intense correlation of precipitation and discharge through run off in enhancing or diminishing 

stream flow can be considered as an altered turbidity factor in this study. Likewise to discharge data, 

the daily precipitation data (in mm) from every gauge station in the Mitchell Basin are evaluated, yet 

just the statistic from Dunbar station is acquired due to identical circumstances and significant 

considered aspects of data availability limitations. Precipitation data was collected for the period 

January 2020 to August 2021 from Water Monitoring Information Portal about stream flow 

information at the Mitchell basin published by Queensland Government (https://water-

monitoring.information.qld.gov.au/). The location map of precipitation gauge station is shown in 

Figure 3.7. 

https://water-monitoring.information.qld.gov.au/host.htm?ppbm=919014A&rs&1&rslf_org
https://water-monitoring.information.qld.gov.au/host.htm?ppbm=919014A&rs&1&rslf_org
https://water-monitoring.information.qld.gov.au/host.htm?ppbm=919014A&rs&1&rslf_org


43 

3.5.3. Tide Data 

Tide is one of the three principal influences that affect a delta’s morphology (Ainsworth, Vakarelov & 

Nanson 2011; Galloway 1975). Unlike discharge and precipitation data, tide data is collected in 

hourly intervals for the specific time period of satellite imagery captured. Hourly tide data is acquired 

to assist our understanding of its impact for the investigation in between January 2020 and August 

2021 from the Karumba gauge station, the closest tidal station to the main outlet of the Mitchell River. 

The tide data is retrieved from Tide Predictions for Australia, South Pacific and Antarctica published 

by Bureau of Meteorology (http://www.bom.gov.au/australia/tides/). The location map of tidal station 

is indicated in Figure 3.7. 

3.5.4. Wave Data 

In addition to fluvial discharge and tide data, wave data is also considered as wave energy is has a 

substantial influence on delta morphology. Not only is wave height data included (significant wave 

height and maximum wave height) but also wave direction, which are both considered significant 

influences. The significant wave height is an average height of the highest third of the waves 

measured in a record while the maximum wave height is the supreme height of waves occurring in 

a record period since the wave data is technically recorded in every 30 minutes (exactly 26.6 minutes 

for recording period) when the nature of the wave can occur multiple times in this recoding period 

Queensland wave monitoring sites description. Hourly wave data is acquired from the Albatross Bay 

(Weipa) wave monitoring Station, which is the closest to the study site (there are only six wave 

monitoring station in the far north Queensland region).This wave data is downloaded from 

Queensland wave monitoring sites website (https://www.qld.gov.au/environment/coasts-

waterways/beach/monitoring/waves-sites) and presented for each of the dates the imagery was 

collected and analysed for the study period (see Table 3.2). The location map of this wave monitoring 

station is exhibited in the Figure 3.7. 

3.5.5. Wind Data 

The strong correlation of wind direction and speed with the ocean current (longshore current) is 

considered as the most significant aspect driving the seasonal variations of sediment plume and 

geometrical mouth bar orientation along the Mithcell River delta. Because of this, understanding the 

occurred scenarios of wind direction and speed in every specific period of investigation will assist in 

explaining the alteration of phenomena leading to the gathering of daily (hourly if possible) wind data. 

The daily wind data is acquired the investigation in between January 2020 and August 2021 from 

the Kowanyama gauge station, nearby wind station to the main outlet of the Mitchell River. The wind 

data is retrieved from Kowanyama, Queensland Daily Weather Observations published by Bureau 

of Meteorology (http://www.bom.gov.au/climate/dwo/IDCJDW4070.latest.shtml). The location map 

of wind station is specified in the Figure 3.7. 

http://www.bom.gov.au/australia/tides/
https://www.qld.gov.au/environment/coasts-waterways/beach/monitoring/waves-sites
https://www.qld.gov.au/environment/coasts-waterways/beach/monitoring/waves-sites
http://www.bom.gov.au/climate/dwo/IDCJDW4070.latest.shtml
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3.5.6. Digital Shoreline Data 

The relationship between shoreline changes rate and the turbidity is one analysis perspective among 

the investigation in this research where the turbidity is believed to be a strong proxy for the erosion 

in the Mitchell River delta. Since the Australian shoreline changes from 1988 to 2019 are detected 

yearly by using detecting algorithm on the Landsat imagery, the digital shoreline data is acquired 

from the Digital Earth Australia (DEA) for the specific year of investigation in this research (2020 and 

2021). The Derived product of DEA Coastline can be retrieved from DEA website 

(https://www.dea.ga.gov.au/products/dea-coastlines). 

The product of annual DEA coastline from Geoscience Australia integrates the Landsat satellite 

imagery with the tidal modelling to estimate the median coastline position at annual mean sea level. 

This rate of shoreline changes included the erosion and progradation rates are estimated at every 

30 metres along the entire Australia’s coastline (non-rocky coastline). Trends in coastal growth and 

retreat can be analysed on a local and continental scale each year, and patterns of shoreline change 

can be traced historically and regularly updated as satellite data is continuously gathered. This 

permits researchers to compare the present rates of coastal change to those seen in earlier years 

or decades. 

The sub-pixel method is applied by Geoscience Australia in extracting this annual DEA coastline. 

Comparing to traditional whole-pixel methods, the sub-pixel extraction method demonstrates a high 

level of accuracy when it comes to reproducing both relative waterline shapes and absolute waterline 

positions in environments with low contrast between land and water (Bishop-Taylor et al. 2019). The 

accuracy of this sub-pixel method applied on 30 m resolution of Landsat imagery is approximately 

1.5 m to 3.28 m when the optimal water index thresholds are employed (Bishop-Taylor et al. 2019). 

https://www.dea.ga.gov.au/products/dea-coastlines
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Figure 3.7 Location Map of All Gauge Stations. 
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CHAPTER 4. RESULTS 

Three significant results were discovered for independently investigating the seasonal variations in 

water turbidity and mouth bar geometry. (1) Firstly, the seasonal variations of sediment plume 

dimension and orientation were analysed throughout 2020 and 2021 and correlated to precipitation, 

fluvial discharge, wind conditions and basinal processes including wave, tide and longshore current 

in the Mitchell River delta. (2) Secondly, the significant variability of mouth bar geometries including 

mouth bar shape and optically detected distributary channels within the mouth bar were investigated 

in both wet and dry season. (3) Finally, the concentration of water turbidity was analysed linking to 

the sea level changes and sediment supply loads as proxy for erosion activities influencing the 

shoreline erosion and progradation rate along both sides of this asymmetrical delta within these two 

years period. 

4.1. Seasonal Variations of Plume Dimension and Orientation 

4.1.1. Seasonal Variations in 2020 (15/01/2020 to 11/09/2020) 

The results of seasonal turbidity detection were identified from 7 specific dates in both wet and dry 

seasons in 2020 (see in Table 3.2) demonstrated in Appendix 3-01, Appendix 3-02, Appendix 3-

03, Appendix 3-04, Appendix 3-05, Appendix 3-06 and Appendix 3-07, respectively, with the 

overall assessment map represented in Appendix 5-01. These results predominantly signify the 

dimensions and orientations of the sediment plumes phenomena in 3 designated months of wet 

season and 4 designated months in dry season where the direction of the plumes is specifically 

indicated in Table 4.1. This table shows that the sediment plumes in the wet season were 

predominantly orientated to the south while they, in contrary, shifted to the north direction in the dry 

season; one unidentified plume direction on 14 February of wet season and one unoriented plume 

trend on 09 May of dry season are addressed.  

Two significant images in the wet season and two in the dry season of sediment plume on 15 

January, 14 February, 09 May and 03 June are thoroughly investigated comparing to statistics of 

daily precipitation, fluvial discharge and wind data as shown in Table 4.2 and hourly statistics of tide 

and wave data presented in Table 4.3. In addition, the graphs of daily precipitation and fluvial 

discharge for the entire year of 2020 are exhibited in Figure 4.1 and Figure 4.2, respectively.  

In the wet season, Figure 4.3 reveals a large-scale sediment plume (about 7 km length from 

shoreline) occurred in the 15 January 2020 image oriented to the south direction with no rainfall 

condition, and the fluvial discharge coming out from the Mitchell River was 8 m3/s. The wind direction 

and speed on that day was 13.1 km/h and oriented to north-east while the significant wave height 

was 0.217 m a 298-degree angle; the tide was reported to be 0.96 m. On 14 February 2020, the 

tremendous sediment plume magnitude (approximately 13.1 km into the offshore) is discovered with 
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undetermined orientation as demonstrated in Figure 4.4. Nearby gauge stations indicate that the 

precipitation rate was 0 mm whilst the fluvial discharge was approximately 411 m3/s on that day. The 

wind speed and direction were 27.7 km/h in north-west direction, and the tide level was confirmed 

as 1.85 m when the significant wave height was 1.149 m with the angle of 282-degree. 

In the dry season, a phenomenon arises on 09 May 2020 where the minimal magnitude of sediment 

plume (roughly 4.8 km into seaward) at the main outlet of the Mitchell River orientates to neither 

south nor north direction (see in Figure 4.5). Accordingly, the pattern of this sediment plume seems 

to be in the unoriented circumstance relatively to the influences of fluvial discharge, tide, wave and 

wind conditions. The fluvial discharge of 15 m3/s and 0 mm of precipitation were reported on that 

day while 2.59 m of tide level and 0.393 m of significant wave height with 108-degree angle were 

informed in the hour of this occurrence. The wind direction was reported to be east-north-east 

oriented with the speed of 13 km/h. Figure 4.6 shows the variability of the marginal plume extend 

(approximately 4.5 km from shoreline) shifting to the slightly north direction and corresponding to the 

direction of the exposed distributary channels within the Mitchell River delta on the 03 June 2020. 

The reported statistics on the occurrence day were 0 mm for precipitation, 8.4 m3/s for fluvial 

discharge, 2.01 m for tide level, 0.699 m for significant wave height and 216-degree for wave 

direction; the wind speed and direction were 18.4 km/h in east-south-east direction. 

Table 4.1: Summary table of the plume orientations and lengths from shoreline into the offshore at the 

main Mitchell River mouth on specific dates during wet and dry seasons in 2020.

Dates Seasons Plume Directions Plume Length 
(km) 

1 15 / 01 / 2020 Wet S 7 

2 14 / 02 / 2020 Wet Unidentified 13.1 

3 20 / 03 / 2020 Wet S 15.3 

4 09 / 05 / 2020 Dry Unoriented 4.8 

5 03 / 06 / 2020 Dry N 4.5 

6 28 / 07 / 2020 Dry N 5.8 

7 11 / 09 / 2020 Dry N 5.9 

Table 4.2: Summary table of daily rainfall, discharge, wind direction and wind speed statistics recorded 

on specific dates during wet and dry seasons in 2020. Daily wind direction and speed data are observed 

on 9 am at the Kowanyama station by the Bureau of Meteorology. 

Dates Rainfall 
(mm) 

Discharge 
(m3/s) 

Wind Direction Wind Speed 
(km/h) 

1 15 / 01 / 2020 0 8 NE 9.4 

2 14 / 02 / 2020 0 411 NW 27.7 

3 20 / 03 / 2020 0 210 ESE 9.4 

4 09 / 05 / 2020 0 15 ENE 13 

5 03 / 06 / 2020 0 8.4 ESE 18.4 

6 28 / 07 / 2020 0 1.8 SE 18.2 

7 11 / 09 / 2020 0 0.37 ESE 19 
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Table 4.3: Summary table of hourly tide, wave height and wave direction statistics recorded on specific 

dates during wet and dry seasons in 2020. 

Dates Time Tide 
 (m) 

Wave Height 
(m) 

Wave Direction 
(degree) 

1 15 / 01 / 2020 10:50 am  0.96 0.217 298 

2 14 / 02 / 2020 10:50 am 1.85 1.149 282 

3 20 / 03 / 2020 10:50 am 2.39 0.382 95 

4 09 / 05 / 2020 10:50 am 2.59 0.393 108 

5 03 / 06 / 2020 10:50 am 2.01 0.699 216 

6 28 / 07 / 2020 10:50 am 2.33 0.661 225 

7 11 / 09 / 2020 10:50 am 1.33 0.302 99 

Figure 4.1 Graph of daily discharge per day (in m3/s) in 2020. Blue highlight spots represent the 

selected dates for analysis. 

Figure 4.2 Graph of daily rainfall per day (in mm) in 2020. Blue highlight spots represent the selected 

dates for analysis. 
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Figure 4.3 Sediment Plume Orientation, Dimension and Concentration in Wet Season on 15 January 

2020. Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama 

station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge)  
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Figure 4.4 Sediment Plume Orientation, Dimension and Concentration in Wet Season on 14 February 

2020. Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama 

station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.5 Sediment Plume Orientation, Dimension and Concentration in Dry Season on 09 May 2020. 

Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama station 

by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.6 Sediment Plume Orientation, Dimension and Concentration in Dry Season on 03 June 2020. 

Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama station 

by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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4.1.2. Seasonal Variations in 2021 (24/01/2021 to 12/08/2021) 

Appendix 3-08, Appendix 3-09, Appendix 3-10, Appendix 3-11, Appendix 3-12, Appendix 3-13 

and Appendix 3-14 show the 7 results of seasonal turbidity identification from specific dates of wet 

and dry seasons in 2021 (see in Table 3.2) while Appendix 5-02 revealed the overall evaluation 

map of these scenarios. The dimensions and orientations of the sediment plumes occurrences in 3 

specified months of wet season and 4 specified months in dry season are mainly demonstrated in 

these maps where the plumes orientations are exclusively designated in Table 4.4. It is simplified 

that the orientations of sediment plumes were predominantly to the south direction in the wet season 

whilst they shifted to the north direction in the dry season. However, a sediment plume phenomenon 

on 14 May in the dry season is recognised as unoriented pattern. 

A crucial plume image on 10 March in the wet season and two significances on 14 May and 23 July 

in the dry season of sediment are systematically analysed correlating to statistics of daily 

precipitation, fluvial discharge and wind data as represented in Table 4.5 and hourly statistics of tide 

and wave data are indicated in Table 4.6. The graphs of daily precipitation and fluvial discharge for 

the entire year of 2021 are additionally displayed in Figure 4.7 and Figure 4.8, respectively.  

In the wet season, the enormous sediment plume dimension (roughly 12.5 km into the offshore) on 

10 March 2021 is shown in Figure 4.9 orientated to the southwest direction with 0 mm of the 

precipitation rate and 528 m3/s of the fluvial discharge while the wind speed was 11 km/h, and the 

wind direction was oriented to the eastward. The tide level was reported to be 2.21 m, yet the 

significant wave height and direction could not be obtainable on that day.  

In the dry season, Figure 4.10 demonstrates the instinctive trend occurred on 14 May 2021 where 

the sizable sediment plume extend (6.2 km from the shoreline) at the main outlet of the Mitchell River 

does not adjusts to either south or north direction. This sediment plume pattern appears to be in an 

impartial incidence relatively to the effects of fluvial discharge, tide, wave and wind conditions. The 

statistics on the occurrence day were reported to be 0 mm for precipitation, 51.6 m3/s for fluvial 

discharge, 3.02 m for tide level, 13 km/h for wind speed and north-north-east for wind direction while 

the significant wave height and wave direction were unavailable. 

On the 23 July 2021, the inconsistency of the minimal plume magnitude (3.9 km into seaward) 

switched marginally to the north direction and parallel to the exposed distributary channels 

orientation within the Mithcell River delta (as displayed in Figure 4.11). The fluvial discharge of 25.3 

m3/s and 0 mm of precipitation with 9.4 km/h of wind speed and north-north-east of wind direction 

are informed on that day while 2.20 m of tide level are likewise notified in the hour of this occurrence, 

yet the significant wave height and direction were not available. 
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Table 4.4: Summary table of the plume orientations and lengths from shoreline into the offshore at the 

main Mitchell River mouth on specific dates during wet and dry seasons in 2021. 

Dates Seasons Plume Directions Plume Length 
(km) 

1 24 / 01 / 2021 Wet S 7.2 

2 10 / 03 / 2021 Wet S 12.5 

3 14 / 04 / 2021 Wet S 8.4 

4 14 / 05 / 2021 Dry Unoriented 6.2 

5 08 / 06 / 2021 Dry N 3.6 

6 23 / 07 / 2021 Dry N 3.9 

7 12 / 08 / 2021 Dry N 3.7 

Table 4.5 Summary table of daily rainfall, discharge, wind direction and wind speed statistics recorded 

on specific dates during wet and dry seasons in 2021. Daily wind direction and speed data are observed 

on 9 am at the Kowanyama station by the Bureau of Meteorology. 

Dates Rainfall 
(mm) 

Discharge 
(m3/s) 

Wind Direction Wind Speed 
(km/h) 

1 24 / 01 / 2021 0 1059 ENE 14.8 

2 10 / 03 / 2021 0 528 E 11.2 

3 14 / 04 / 2021 0 51.7 ESE 18.4 

4 14 / 05 / 2021 0 51.6 NNE 13 

5 08 / 06 / 2021 0 35.6 ESE 13 

6 23 / 07 / 2021 0 25.3 NNE 9.4 

7 12 / 08 / 2021 0 18.1 E 14.8 

Table 4.6 Summary table of hourly tide, wave height and wave direction statistics recorded on specific 

dates during wet and dry seasons in 2021. 

Dates Time Tide 
 (m) 

Wave Height 
(m) 

Wave Direction 
(degree) 

1 24 / 01 / 2021 10:50 am 2.03 N/A N/A 

2 10 / 03 / 2021 10:50 am 2.21 N/A N/A 

3 14 / 04 / 2021 10:50 am 2.61 N/A N/A 

4 14 / 05 / 2021 10:50 am 3.02 N/A N/A 

5 08 / 06 / 2021 10:50 am 2.26 N/A N/A 

6 23 / 07 / 2021 10:50 am 2.20 N/A N/A 

7 12 / 08 / 2021 10:50 am 3.20 N/A N/A 
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Figure 4.7 Graph of daily discharge per day (in m3/s) in 2021. Blue highlight spots represent the 

selected dates for analysis. 

Figure 4.8 Graph of daily rainfall per day (in m3/s) in 2021. Blue highlight spots represent the selected 

dates for analysis. 
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Figure 4.9 Sediment Plume Orientation, Dimension and Concentration in Wet Season on 10 March 

2021. Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama 

station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.10 Sediment Plume Orientation, Dimension and Concentration in Dry Season on 14 May 2021. 

Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama station 

by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.11 Sediment Plume Orientation, Dimension and Concentration in Dry Season on 14 July 2021. 

Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama station 

by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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4.2. Seasonal Variations of Mouth Bar Geometry 

A total of 14 images over the study period were analysed to detect in mouth bar geometries and their 

subaqueous distributary channels deposited by the Main Mitchell River. Seven of the images were 

from 2020 (3 of wet season and 4 of dry season) and seven from 2021 (3 of wet season and 4 of dry 

season). The 2020 results are represented in Appendix 4-01, Appendix 4-02, Appendix 4-03, 

Appendix 4-04, Appendix 4-05, Appendix 4-06 and Appendix 4-07 for 15 January, 14 February, 

20 March, 09 May, 03 June, 28 July and 11 September, respectively whilst the results in 2021 are 

signified in Appendix 4-08, Appendix 4-09, Appendix 4-10, Appendix 4-11, Appendix 4-12, 

Appendix 4-13 and Appendix 4-14 for 24 January, 10 March, 14 April, 14 May, 08 June, 23 July 

and 12 August, respectively. Furthermore, Appendix 6-01 and Appendix 6-02 show the overall 

evaluation of mouth bar geometries in 2020 and 2021, respectively. 

Although 14 detected mouth bar patterns were mapped, only 5 distributary channels within the mouth 

bars could be optically identified for mapping, which specific dates summarised in Table 4.7. This 

table reveals that two time periods in 2020 (15 January and 11 September) and three dates in 2021 

(14 May, 08 June and 12 August) are the phases in which the distributary channels within the mouth 

bars could be optically detected. Accordingly, these 5 results are considered significant and 

thoroughly analysed and interpreted correlating to the statistics of fluvial discharge, precipitation, 

tides, waves, and wind conditions as summarily exhibited in Table 4.8 and Table 4.9 for daily and 

hourly observations, respectively.   

On 15 January 2020, Figure 4.12 revealed the pattern of wet seasonal mouth bar (about 4.1 km into 

offshore) containing some optical structure of distributary channels, in particularly at the adjacent 

region of the main outlet of the Mitchell River mouth. However, the distributary channels could not 

be detected at the edge portions of the mouth bar. No rainfall condition was reported on the day, and 

the fluvial discharge coming out from the Mitchell River was 8 m3/s. The wind direction and speed 

on that day could not be observed while the significant wave height was 0.217 m at the direction of 

298-degree angle; the tide was reported to be 0.96 m. On 11 September 2020, the boundary of dry

seasonal mouth bar (roughly 3.5 km from the main river mouth) was identified as demonstrated in 

Figure 4.13 with more revealable proportions of the distributary channels within this asymmetrical 

delta. The reported statistics on the occurrence day are 0 mm for precipitation, 0.37 m3/s for fluvial 

discharge, 9.4 km/h for the wind speed with north-east direction, 1.33 m for tide level, 0.302 m for 

significant wave height and 99-degree for wave direction. 

On 14 May 2021, poorly defined sections of distributary channels along the dry seasonal mouth bar 

margin (approximately 3.8 km seaward) were mapped (Figure 4.14). It was difficult to identify the 

pattern of these channels due to some optical missing parts. The fluvial discharge of 51.6 m3/s and 

0 mm of precipitation with 13 km/h of wind speed and north-north-east of wind direction are informed 

on that day while 3.02 m of tide level are likewise notified in the hour of this occurrence, yet the 
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significant wave height and direction could not be accessible. On 08 June 2021, an architecture of 

dry seasonal mouth bar (approximately 3.6 km into offshore) was detected alongside the roughly 

completed structures of the distributary channels as displayed in Figure 4.15. With 0 mm of the 

precipitation rate and 35.6 m3/s of the fluvial discharge are reported, the wind speed is informed to 

be 13 km/h while the wind direction is oriented to the east-south-east direction. The tide level is 

reported to be 2.26 m, yet the significant wave height and direction could not be obtainable on that 

day. On 12 August 2021, another dry seasonal mouth bar geometry (roughly 3.7 km from the river 

mouth) was discovered with the ideal pattern of distributary channels containing useful information 

(Figure 4.16). The statistics on the occurrence day are reported to be 0 mm for precipitation, 18.1 

m3/s for fluvial discharge, 3.20 m for tide level, 4.8 km/h for wind speed and eastward directed for 

wind direction while the significant wave height and wave direction are unavailable. 

Table 4.7: Summary table of the specified mouth bar geometries with their distributary channels  and 

lengths from the shoreline into the offshore at the main Mitchell River mouth on 5 specific dates during 

wet and dry seasons in 2020 to 2021. 

Dates Seasons Detected Channels Mouth Bar Length 
(km) 

1 15 / 01 / 2020 Wet Yes 4.1 

2 11 / 09 / 2020 Dry Yes 3.5 

3 14 / 05 / 2021 Dry Yes 3.8 

4 08 / 06 / 2021 Dry Yes 3.6 

5 12 / 08 / 2021 Dry Yes 3.7 

Table 4.8: Summary table of daily rainfall, discharge, wind direction and wind speed statistics related 

to 5 dates of specified mouth bar in 2020 and 2021. Daily wind direction and speed data are observed 

on 9 am at the Kowanyama station by the Bureau of Meteorology. 

Dates Rainfall 
(mm) 

Discharge 
(m3/s) 

Wind Direction Wind Speed 
(km/h) 

1 15 / 01 / 2020 0 8 NE 9.4 

2 11 / 09 / 2020 0 0.37 ESE 19 

3 14 / 05 / 2021 0 51.6 NNE 13 

4 08 / 06 / 2021 0 35.6 ESE 13 

5 12 / 08 / 2021 0 18.1 E 14.8 

Table 4.9: Summary table of hourly tide, wave height and wave direction statistics related to 5 dates of 

specified mouth bar in 2020 and 2021. 

Dates Time Tide 
 (m) 

Wave Height 
(m) 

Wave Direction 
(degree) 

1 15 / 01 / 2020 10:50 am 0.96 0.217 298 

2 11 / 09 / 2020 10:50 am 1.33 0.302 99 

3 14 / 05 / 2021 10:50 am 3.02 N/A N/A 

4 08 / 06 / 2021 10:50 am 2.26 N/A N/A 

5 12 / 08 / 2021 10:50 am 3.20 N/A N/A 
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Figure 4.12 Mouth bar Geometry included its Boundary and Distriburaty Channel in Wet Season on 15 

January 2020. Wind roses represented in maps and appendices are aggregated monthly at the 

Kowanyama station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.13 Mouth bar Geometry included its Boundary and Distriburaty Channel in Dry Season on 11 

September 2020. Wind roses represented in maps and appendices are aggregated monthly at the 

Kowanyama station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.14 Mouth bar Geometry included its Boundary and Distriburaty Channel in Dry Season on 14 

May 2021. Wind roses represented in maps and appendices are aggregated monthly at the Kowanyama 

station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.15 Mouth bar Geometry included its Boundary and Distriburaty Channel in Dry Season on 08 

June 2021. Wind roses represented in maps and appendices are aggregated monthly at the 

Kowanyama station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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Figure 4.16 Mouth bar Geometry included its Boundary and Distriburaty Channel in Dry Season on 12 

August 2021. Wind roses represented in maps and appendices are aggregated monthly at the 

Kowanyama station by the Bureau of Meteorology. (Note: cumec = m3/s for discharge) 
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4.3. Seasonal Variability of Turbidity Concentration associated to the 
Rates of Shoreline Changes 

Four analysed images (2 in 2020 and 2 in 2021) were investigated a correlation to the rates of 

shoreline changes that has been detected by Digital Earth Australia from 1988 to 2019 as 

demonstrated in Figure 4.17, Figure 4.18, Figure 4.19 and Figure 4.20.  

For the wet season in 2020, Figure 4.17 illustrates the turbidity that was identified on 15 January 

2020. It is noted that the moderate turbidity concentration was found in the main river mouth, and 

the high turbidity concentration was revealed around the nearshore regions at the north side of the 

main river mouth. The nearshore regions at the south side, however, noticeably experienced a large 

scale of low turbidity concentration. Figure 4.18 demonstrates the detected dry seasonal turbidity 

occurred in the 03 June 2020. It revealed the considerable extend of high turbidity concentration 

arose from the main river mouth to the north side in particular the nearshore regions. In contrary to 

that, the nearshore at the south side is discovered with an extremely minimal magnitude of the low 

turbidity concentration.   

In the wet season of 2021, a high turbidity on 10 March 2021 was detected as represented in Figure 

4.19. The result indicates the enormous high turbidity concentration amount occurred at the south 

side of the Mitchell River mouth from the nearshore to offshore regions while the north side of the 

nearshore region similarly experienced the high turbidity concentration but with lesser amount. It is 

additionally noticed that an intense minor ratio of very high turbidity concentration was exposed on 

that territory.  In the dry season in 2021, Figure 4.20 shows the occurrence of water turbidity in the 

23 July 2021. This result exhibits the minimal magnitude of very high turbidity concentration scenario 

on the north nearshore zone while an intermediate high turbidity concentration ratio was suspended 

in the vicinity of the main river mouth. Nonetheless, the south nearshore territory experienced the 

insignificant turbidity phenomenon where extreme minimal magnitude wad detected around this area 

on that day. 

These four results additionally imply the occurrence of the erosional coastline at the north nearshore 

zone where the high and very high turbidity concentration frequently occurred on both wet and dry 

seasons. At the same time, the coastline progradation is revealed at the south nearshore zone where 

experienced only the low turbidity phenomenon either on wet or dry season. The rates of shoreline 

changes from 1988 to 2019 provided from specified hot spots illustrate the erosional rates at the 

north nearshore zone from – 37 m near the north river mouth to the maximum of -190.86 m and later 

decreasing to – 20.86 m before it begins to prograde from 159.27 m until 241.91 m at the further 

north side. The progradation rates at the south nearshore are likewise indicated from the highest of 

490.94 m near the south river mouth to 10.1 m and later to 7.1 at the further south spot.  
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Figure 4.17 Sediment Plume Concentration relative to the rates of shoreline changes (1988 to 2019) in 

Wet Season  on 15 January 2020. 
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Figure 4.18 Sediment Plume Concentration relative to the rates of shoreline changes (1988 to 2019) in 

Dry Season  on 03 June 2020. 
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Figure 4.19 Sediment Plume Concentration relative to the rates of shoreline changes (1988 to 2019) in 

Wet Season  on 10 March 2021. 
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Figure 4.20 Sediment Plume Concentration relative to the rates of shoreline changes (1988 to 2019) in 

Wet Season  on 23 July 2021. 
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CHAPTER 5. DISCUSSION 

5.1. Sediment Plume Dimension and Orientation 

Spatial and temporal variations in fluvial flow, wave and tide energies and longshore drift direction 

deliver the dynamic conditions in arranging the sedimentary deposition in the Mitchell River delta 

(Massey et al. 2014). Accordingly, the variability of sediment plumes including their magnitude and 

orientation are investigated in relation to these fundamental influences for three significant 

perspectives, the wet seasonal variability, dry seasonal variability, and the inter-annual variability. 

5.1.1. Wet Seasonal Variability 

Results from wet seasonal detected plume demonstrate huge plume dimensions are both orientated 

to the south direction (Figure 4.3 and Figure 4.9). It is interpreted that the high fluvial discharge in 

wet season results in fluvial process dominance dominated over the basinal processes despite 

higher wind speeds (in Figure 4.9). The fluvial flow in the Mitchell River Delta is extremely seasonal 

where the peak discharge arises during the summer monsoon (December to April) (Rustomji 2010). 

However, there is a possibility of peak wave movement phenomenon throughout storm surges if the 

cyclones pass by (Massey et al. 2014). The correlation between this high monsoonal fluvial flow with 

this minimal wave amplitude during the wet season generate extreme turbid plumes with superior 

suspended sediment loads coming out from the Mitchell River into the shallow basin of GoC (Massey 

et al. 2014). While the high fluvial discharge during the monsoonal summer period generates large 

dimensions of high turbid plumes, there is evidence of the palaeo-flow influences on the plume 

orientation to the south in this period driven by longshore currents. Ainsworth et al. (2016) explained 

that the palaeo-flow orientation is directed alongshore from north to south opposed to the 

predominant longshore current direction, which is south to the north. However, the direction of the 

dry seasonal wind or a storm event might affect this paleo-flow direction which could cause breaking 

waves in southerly direction (Ainsworth et al. 2016). Suppiah (1992) mentioned that the direction of 

the wind in the dry season (May to November) is linked to the trade winds traveling from east to 

northwest path while opposite direction of winds is notified in the wet season (December to April). 

The clockwise trend of summer circulation is additionally reported in this shallow basin of GoC 

(Forbes & Church 1983; Wolanski 1993).  

However, a strange phenomenon occurred on 15 January 2020 (as shown in Figure 4.3) where the 

fluvial discharge was revealed to be exceptionally minimal (8 m3/s). This unusual circumstance 

creates an uncertainty about how this marginal fluvial flow could dominate over the process and 

create a huge scale of sediment plume. This could be due to the sediment in which was deposited 

at the earlier time has just been reworked on 15 January 2020. On the other hand, there is no doubt 

that this uncertainty might be due to the station where discharge data was gathered is not exactly 

on the main outlet of the Mitchell River. The Dunbar gauge station is situated at the upstream of the 
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Mitchell River and about 250 km from the river mouth. This means that the flow requires additional 

duration in reaching the river mouth while mysterious variables could arise during that traveling 

period, for instance the event of rainfall. In this case, the precipitation could possibly explain this 

circumstance. The precipitation data, which is likewise obtained from Dunbar station, shows that no 

rainfall event occurred on the 15 January 2020. However, about 17 mm of rainfall was recorded on 

14 January 2020 at the Dunbar station. This event could enhance the discharge amount and 

sediment load from run off, which possibly implies the occurrence of big plume on 15 January 2020, 

if the flow duration from the Dunbar station to the river mouth was one day. However, further 

sediment transport modelling should be performed in analysing to demonstrate this inexplicable 

phenomenon.  

5.1.2. Dry Seasonal Variability 

In contrast to the wet season, results of dry seasonal sediment plumes reveal the occurrences of 

smaller dimensions orientating to the north direction as exhibited in Figure 4.6 and Figure 4.11. 

These reduced plume dimensions are interpreted to be related to the low fluvial discharge during the 

dry season as revealed to be approximately 8 m3/s and 25 m3/s in Figure 4.6 and Figure 4.11, 

respectively. Low fluvial discharge is associated with reduced sediment loads (including suspended) 

and reduced turbulence (Bhattacharya 2006). According to Petheram et al. (2018), the fluvial 

discharge in the dry season significantly declines compared to the wet season due to monsoonal 

wet-dry rainfall patterns. Since approximately 95 % of runoff occurs in the wet season, the Mitchell 

River has occasionally experienced periods of no fluvial flow. It is reported that the groundwater 

discharge from the Tertiary sediments and Great Artesian Basin aquifers is the major source of the 

Mitchell River flow during the dry season (Petheram et al. 2018). Downstream at the river mouth, 

flow in the dry season is dominated by tidal currents (Nanson et al. 2013). During this period of low 

fluvial flow, basinal processes (waves, tides, and longshore currents) dominate. This is evident in 

imagery where we can see. Furthermore, the longshore current switches direction and is oriented 

towards the north (see in Figure 4.6 and Figure 4.11). This northerly directed longshore drift current 

occurring in the dry season is what we see preserved in the upper delta plain (see in Figure 5.1). 

For example, it is seen that palaoe-channels to the north of the Main Mitchell are oriented north of 

orthogonal to the palaeo-shoreline. This trend is also observed in the near offshore subaqueous 

distributary channels. This suggests that in spite of the temporary southerly orientated longshore 

drift current that occurs in the wet season, it is the northerly directed longshore current operating 

through the dry season that is influential what is ultimately preserved in the delta. It also supports 

interpretation that this northerly directed longshore current leading to delta has been operating for at 

least 2ka years based on dating and sedimentology of upper delta plain (Lane 2016; Massey et al. 

2014; Nanson et al. 2013). The reversal of longshore correlates to the reversal of north-westerly 

trade wides in the April to November dry season to the south-easterly directed winds in the wet 

season. 
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On the other hand, noticeable scenarios arise during the dry season as displayed in the Figure 4.5 

and Figure 4.10. In the early dry season period of May, the directions of the plumes on both 2020 

and 2021 seem like to be unoriented to either southward or northward. These two phenomena are 

not likely to be a coincidence since they were identically discovered in dry season, specifically in 

May, on not only 2020 but also 2021. It is hypothetically interpreted that these occurrences could 

possibly be due to the fluvial flow energy conflicting with the waves and tides energies were 

comparable or reach an impartial condition where neither energies of fluvial flow nor basinal 

processes could dominated over one another. Another possible explanation is that these scenarios 

occurred in a neutral period of the year where fluvial discharge, basinal processes and the winds 

were in a serene condition which could generate extremely insignificant influences on the plume 

directions and also the Mitchell River deltaic system. However, not any consistent evidence has been 

reported to emphasise this theory, and the further investigation with extended temporal scale should 

be performed in strengthening this hypothesis. 
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Figure 5.1 Example of Asymmetry Pattern and Distributary Arms Relative to the Northerly Sediment 

Plume Orientated in Dry Season on 03 June 2020. 
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Oriented Plume 
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5.2.  The Variability of Mouth bar Geometry 

The identification of mouth bar edges is mainly centred on the hypothesis that the mouth bar 

boundary is the submerged section of deltaic system. This identification was interpreted based on 

the Mitchell River delta morphology and other indicators included the wave breaking mostly occurring 

in the dry season at the edge of exposed mouth bar and the differences between high SSC and low 

SSC boundary in colour interpreted to be sand line of the mouth bar. Additionally, the mouth bar 

mapping is relative to the tides arising in those days of the images. This means that results of mouth 

bar geometries that we see in the images vary based on the tides. Due to the different of tidal range, 

results of the mouth bar mapping could contain some errors. Results reveal the expanded length of 

mouth bars vary from 3.5 km to 4.1 km into the offshore from the coastline. Nanson et al. (2013) 

stated that the width of modern Mitchell mouth bar was estimated to be 5 km seaward. This extend 

includes both sandy and muddy portions of the mouth bar. The sand line is approximately 3 km whilst 

mud line is considered to be over 3 km.  By interpreting these results with sand-mud lines (Figure 

5.2) generated from the sediment grab data in 2014 by Nanson et al. (2013), it is verified that the 

identified mouth bars are comparable to sand-mud lines in 2014. This also illustrates that the sand 

mouth bar could possibly prograde approximately 0.5 km to 1 km between 2014 and 2021. 

Figure 5.2 Sand Line (yellow dash line) shows the sand mouth bar boundary (Nanson et al. 2013). 

In Figure 4.12, the wet seasonal mouth bar on 15 January 2020 was accumulated with a bulbous 

morphology. This pattern is similar to the fluvial-mouth bar element complex (F-Mouth Bar EC as 

displayed in Figure 5.3), which its architectural style was classified in a study by Vakarelov and 

Image removed due to copyright restriction.
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Ainsworth (2013). This accumulation pattern seems likely to be mainly affected by the fluvial 

discharge correlated to the sediment loads with the marginal influences from the basinal processes 

(waves, tides and longshore current) and the wind energy. Ainsworth et al. (2016) explained the 

prediction of a fluvial dominated mouth bar at the Mitchell River delta could possibly be due to the 

conflicting in directions between the palaeo-flow orientated alongshore and the paleo-current 

orientated offshore. 

However, it was shown to be slightly distinct in the dry season. The architecture of dry seasonal 

mouth bar on the 11 September 2020 (in Figure 4.13) was commenced to disclose a wave-

dominated, tide-influenced and fluvial-affected mouth bar element complex (Wft-Mouth Bar EC as 

displayed in Figure 5.3). It is assumed that the basinal processes might be dominated over the fluvial 

discharge in reworking the deposited high sediment plume with the assistance of the wind energy. 

Furthermore, this unusual circumstance was likewise discovered on another time period of the dry 

season on 12 August 2021 as exhibited in Figure 4.16. A previous study about the evolution of the 

Mitchell River Delta identically showed the reworking of mouth bar depositional sediments by basinal 

processes after the fluvial sedimentation (Lane 2016). The transported sediment from fluvial 

procedures for the duration of the wet season is altered by both wave and tide throughout the dry 

season. This study additionally stated that the modern mouth bar of the Mitchell River delta has 

resulted from this consequence to be the wave-dominated, tide-influenced and fluvial-affected 

(Wft).This series of phenomena is considered as the verification of this hypothesis that the high fluvial 

discharge mainly controls the mouth bar formation over the basinal processes in the wet season 

whereas wave energy, tidal level and longshore current assisted by the wind energy are dominated 

over the insignificant fluvial flow in mouth bar formation on the dry season.   

Figure 5.3 The Mouth Bar Element Complex Categories originally classified by Vakarelov and 

Ainsworth (2013). 

Image removed due to copyright restriction.
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5.3. Erosional and Accretional Rate of Shoreline Changes 

The results from Figure 4.17, Figure 4.18, Figure 4.19 and Figure 4.20 illustrate the relationship 

between the shoreline alteration (erosion or progradation) rates and the turbidity conditions. It is 

revealed that the high and very high turbidity constantly dominate in the vicinity of the north 

nearshore spot in both wet and dry seasons where the coastline is extremely eroding. At the same 

time, the south nearshore territory of the Mitchell River mouth bar has differently experienced low 

turbidity concentration in the dry season and moderate turbidity circumstance in the wet season. The 

rates of shoreline changes from 1988 to 2019 show that the north shoreline near the mouth bar has 

retreated approximately 190 m (in total from 1988 to 2019) while the south coastline has prograded 

roughly between 7 m to 25 m in total from 1988 to 2019 (only the south spot adjacent to the river 

mouth with almost 490 m growth). 

5.3.1. Erosional Coastline at North of the Main Mitchell River Outlet 

In this research, the turbidity was implemented as a proxy for erosional activities along the Mitchell 

River delta shorelines. This relationship between turbidity and erosion exemplifies the high turbidity 

phenomena constantly arising in the vicinity of the north erosional coastline of the mouth bar. Since 

the erosional process can pollute the clarity of the water column, the turbidity will likewise increase 

as the extremely high turbidity might represented the severely erosional coastline condition. The 

coastal erosion is believed to be affected from both anthropogenic and naturogenic. While most of 

Australia’s main erosion issues have occurred due to the development or construction from humans’ 

activities, the variation of the Mitchell River delta coastline is reported to be moderately insignificant 

anthropogenic adjustment (Nanson et al. 2013). This means that there has not been infrastructure 

and disruptive irrigation (or purposeful channel diversion) as seen in other deltas. In the term of 

naturogenic influences, the interaction of increased sea level and the intense wave energy 

predominantly erode the coastline. Associating to the high wave energy, the storm surge event 

during the high tide related to the storm event could likewise wash out the sediment along the shore 

(Smith 2010). 

It is known that the increase of local sea level commonly causes the erosion leading the coastline to 

retreat landward (Smith 2010). The raised sea level could likewise adjust the wave direction striking 

at the coast and allow the wave to expand its effect further up and wider along the coastline (Smith 

2010). The sea level at the Mitchell River delta is estimated to have increased from modern baseline 

levels predicted (in 2014) approximately 0.5 m in 2020, 0.11 m in 2030, 0.83 m in 2100 and 1.43 m 

in 2150, according to the sea level projection tool from NASA (https://sealevel.nasa.gov/ipcc-ar6-

sea-level-projection-tool). This sea level rise projection is relative to a baseline scenario in between 

1994 to 2014. Additionally, it is believed that the intense wave energy plays an important role in 

causing the severe shoreline erosion in the north nearshore of the Mitchell River mouth bar. The 

accumulations of the coast along the Mitchell River delta principally comprise sand materials which 

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
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could be certainly damaged by waves (Nanson et al. 2013). Generally, the Australia’s severe 

erosional coastlines similar to the shoreline the Mitchell River Delta has been experienced with 

temporary coastal erosion due to storm events relating to high wave energy and peculiarly the 

extreme water level as the occurrence of storm surges during spring tides (Smith 2010). Massey et 

al. (2014) stated that the tidal current could potentially disperse the sediment out of the coast into 

the ocean although it is occasionally considered as a sedimentary redistribution procedure from the 

offshore into the inland zone. The tidal range in the Mitchell River delta can vary between 0.3 m to 4 

m during the neap tide and spring tide, respectively (Munro 1984). Nanson et al. (2013) additionally 

mentioned that the depositional alteration along the Mitchell River delta is a variability of climate 

conditions relating to the sediment flux. Because of either allogenic or autogenic aspects, the beach 

ridge along the shoreline of the Mitchell River Delta might erode when the sediment supply is 

marginal. Despite coastal erosion, the gradual and insignificant progradation could occasionally 

occur whilst the ridge vertically develops at the stalled coastline (Taylor & Stone 1996). Under 

comparable circumstance, the chenier plain could suffer the mudflat winnowing experience 

throughout multiple events of storms (Nanson et al. 2013).  

5.3.2. Accretional Coastline at South of the Main Mitchell River Outlet 

Results of turbidity concentration and accretion rates demonstrates the inter-annual occurrences of 

insignificant turbidity continuously arise in the vicinity of the south accretional shoreline of the mouth 

bar. Based on the relationship of turbidity and erosion, the less turbid water represents the minor 

erosional activities that could possibly allow the progradation to expand from depositional sediment 

from the Mitchell River mouth. Nanson et al. (2013) showed that the direction of longshore sediment 

transport is towards the south in the vicinity of the Mitchell River mouth, which causes asymmetric 

distribution of beach and barrier bar ridge to these visible at the modern shoreline, similar to the 

models of Bhattacharya and Giosan (2003). The bias is raised on this accretion hypothesis that this 

progradation should be due to the older erosional sediment from the Mitchell River Delta lobes as 

mentioned in a study by Lane (2016). This study mentioned about the autogenic evidence of obvious 

sediment rate increase in the central Mitchell depocentre during the modern shoreline evolution 

period. This sediment was sourced from the local supply in the main Mitchell depocentre including 

the Alice River (Lane 2016). 

Under comparably extreme rates of finer sediment supply, tidal flats (or chenier plains) along the 

Mitchell River delta could be further prevalent (Rhodes 1980). It is assumed that most of the modern 

sediment contributed to the gully every year migrates from predominant vertical scarp retreat from 

the gully head (Brooks et al. 2008). However, it is not to imply that secondary erosion of partially 

eroded failed blocks, reworking of gully outwash deposits, or gully sidewall erosion do not contribute 

significant amounts of modern sediment (Brooks et al. 2008). If the deposited substance is not 

revised from the gully surface, scarp retreat will be decelerated (Shellberg et al. 2016). Additionally, 

land use changes have increased the magnitude and distribution of alluvial gully erosion substantially 
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(Shellberg et al. 2016). Limited evidence, however, suggests the increased sediment supply in the 

modern shoreline period might be related to the anthropogenic catchment disturbance. It is 

presumed that intensive post-European settlement agricultural procedures in particular cattle grazing 

and related disturbance concentrated in riparian regions during dry season exacerbated gully erosion 

in the monsoon season along steep banks, adjoining floodplain hollows, and precursor gullies 

(Shellberg et al. 2016).  

5.4. Key Limitations 

5.4.1. Errors and Limitations of the Algorithm 

Although this implemented algorithm was successfully performed in detecting the water turbidity for 

this research, some technical issues were encountered causing some inaccuracies. These 

discovered errors play an important role in decreasing the precision of the outcomes, in this case 

the turbidity indices identification, so that the improvement should be considered in resolving these 

issues to obtain further accurate results. Various key sources of these inaccuracies can be varied 

from the MNDWI algorithm for water extraction, the NDTI algorithm for turbidity detection and the 

pixel-based classification methods in mapping the geometry of both sediment plume and mouth bar. 

The inaccuracies of water extraction using the MNDWI algorithm were found from two distinct 

sources included the overclassified turbidity as land region and clouds properties as water region. 

Due to the complexity of the water turbidity along the coastline, it becomes extremely problematic 

for the MNDWI algorithm to differentiate between turbid water regions and land area leading to the 

over classification them as land region. This confusion results in masking out some rational turbid 

water regions along the coastline.  However, these inaccuracies aspects and confusion have been 

reported to be ordinary concerns for water extraction procedure (Munasinghe, Cohen & Gadiraju 

2021). It is stated that the identification of the coastline in deltaic regions is extremely challenging 

due to the shallowness and turbidity of water, vegetative gradients, and dynamical variable waterline. 

It was likewise reported that waters in the highly turbid coastal regions could frequently be 

categorised as land class in countless typical algorithms since they are integrated with a variety of 

substances including suspended particles, sediments, and phytoplankton (Munasinghe, Cohen & 

Gadiraju 2021). Another error of the MNDWI was the inability to identify the thin clouds and cloud 

shadows although this algorithm provided the most effective approach in clouds masking for this 

research. This inaccuracy would potentially cause further confusion as plume identification using the 

NDTI algorithm. The adjustment of the MNDWI indices could possibly be beneficial in lessen or 

completely mask out the thin clouds and cloud shadows, yet another inaccuracy was addressed 

since some high concentration turbidity portions could be overclassified resulting in missing plume 

areas. These inaccuracies are demonstrated in Figure 5.4.  

The inaccuracies produced from the NDTI algorithm in turbidity detection were identified. It was 

revealed that the low turbidity concentration regions were partially misclassified. This NDTI algorithm 
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found those pixels extremely complicated to recognise due to undistinguished low concentration 

plume reflectance with water pixels as explained in Figure 5.5.  

Figure 5.4 Inaccuracy of the NDTI algorithm in turbidity detection resulting from MNDWI errors. 

Figure 5.5 Inaccuracy of the NDTI algorithm in turbidity detection. 

The classification for identifying the sediment plume boundary likewise provide some inaccuracies 

at the edge of the plume regions, especially the low concentration plume areas. Since this 

classification is mainly pixel-based method, the low concentration plume and water regions are 

frequently confused in characterising as either plume or water classes. Moreover, the assistance of 

manual digitisation would be an ideal solution in modifying the inappropriate edge of the plume in 

order to obtain the enhancement results. Although this integration is reported to be an effective 
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approach in mapping, mistakes still can be created during delineation in this study due to the 

repetitive operation linking to the interpretation of human eyes. Nath and Deb (2010) likewise 

mentioned these two issues in their study that it could be challenging for the human eyes to interpret 

the boundary since colour shades may gradually decay, especially with low-resolution images. 

Despite these four issues, another difficulty within the ArcGIS Pro software environment was found. 

Although the algorithm generated in the Model Builder in the ArcGIS Pro (in Appendix 1) was 

successfully executed in detecting the turbidity, the python script converted from this Model Builder 

environment was not completely operational when it was applied in the ArcPy environment. Two 

errors were found in while this script was operating in the Arcpy environment as mentioned in red 

circles in Appendix 2. The first main error is due to the data selection tool while the iterator tool is 

realised to be the second major error as displayed in red boxes in Figure 5.6. In this case, the data 

selection tool in the Model Builder is performed to select sensitive bands for the MNDWI and NDTI 

calculations. Iterator tool is the Model Builder’s function that could provide the capability in repeatedly 

process and analyse the entire available satellite images in a folder after one another. Instead of 

generating into a proper python format as they supposed to be, these two tools are converting into 

a string format (normal text in coding setting) resulting in incomprehensible coding language due to 

missing significant portions of variables and loop function. This ordinarily issue could be highly 

caused by the operating environments of the Model Builder and the ArcPy. The operation of ArcPy 

setting is the integration between python libraries with the geoprocessing toolbox whilst the Model 

Builder environment is operating within the geoprocessing toolbox associating to its distinct tool 

package, in this case the data selection and iterator tools. Consequently, these two distinct tools 

seem to not exist in the setting of ArcPy resulting in inappropriate conversion due to unrecognised 

language.  

Figure 5.6 Iterators and Select Data (Utilities) tools in the Model Builder Enviroment. 

It is strongly believed that the further correction of this ArcPy script would be an ideal solution in 

resolving this issue by applying two uncomplicated coding techniques. By replacing the useless 

string line of data selection tool with the variable creating to select the sensitive bands and applying 

these variables into the MNDWI and NDTI raster calculations. Similarly, substituting the ineffective 

string line of iterator tool with the loop function (could possibly a “For” loop) from python library would 

probably resolve this error and generate a proper functional script for detecting the turbidity. 

However, this hypothesis solution has not been implemented yet due to limited time period of this 
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research, and it is believed that this script correction procedure is not a priority circumstance in this 

research since the processing within the Model Builder was a successful operation to detect the 

turbidity.     

However, this band ratioing of NDTI is considered as a sufficient and effective method in detecting 

turbidity especially with a massive amount of imagery. It can not only accelerate the detection 

performance but also provide satisfactory turbidity results. Munasinghe, Cohen and Gadiraju (2021) 

the method of band ratioing is the most instantaneously efficient process comparing to other 

techniques in the purpose to instantly extract the coastline and deltaic boundary lines with 

satisfactory results yet not extremely precise. Results of turbidity from this NDTI algorithm can 

provide very comprehensive information about the turbidity, especially the concentration range due 

to its normalised indices ratios comparing to other accurate sub-pixel methods like spectral unmixing. 

5.4.2. Research Limitations 

The fundamental limitations of this research are the accuracy and accessibility of the implemented 

data included interpretation statistics (meteorology and hydrology data) and analysed image 

(Sentinel 2 imagery).  

In terms of accuracy, satellite imagery and meteorology and hydrology gathered may possibly be 

incompatible when evaluated to one another because of the data collection environments for this 

research where meteorology and hydrology data is acquired from secondary sources. There is a 

study reporting the limitation of secondary meteorology and hydrology data in the Mitchell catchment 

area are astonishingly marginal causing difficulty in investigation and analysis the findings (Petheram 

et al. 2018). On the other hand, due to the fact that the field observation data for validation is 

extremely complicated to be measured in this study region, the validation of applied method with 

field observation data could not be performed whilst the detection and investigation are primarily 

based on turbidity indices estimation of spectral surface reflectance from satellite imagery addressed 

in previous literature reviews about water turbidity detection.  

In terms of data availabilities, implemented interpretation data will be inadequate to meteorological 

and hydrological site statistics available in the Mitchell catchment area and Gulf of Carpentaria 

through publicly Australia government data and other explicitly available sources since this research 

does not gather new primary data. According to a recent report about the study site, the availability 

of data in the Mitchell catchment area and the Gulf of Carpentaria are tremendously limited due to 

the lack of meteorological and hydrological stations with countless deficiency statistics while many 

gauge stations were closed (Petheram et al. 2018). Beside the interpretation data, designated 

satellite imagery accessibility will be restricted to the Sentinel 2 surface reflectance specifications of 

spectral, spatial and temporal resolutions related to the frequency of revisit time and the 

meteorological conditions. 
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CHAPTER 6. CONCLUSION 

6.1. Summary 

This research aimed to apply remote sensing technique to detect the relative suspended sediment 

concentration (SSC) for as a proxy for turbidity and erosional processes mapping the plume and 

mouth bar geometry for investigating two specific purposes: 1) to determine how fluvial (rainfall and 

river discharge) and basinal processes (waves, tides and longshore currents) affect sediment plume 

and mouth bar formation, and 2) to determine how the sea level change, sediment supply and 

erosional activities affect the localised erosion and progradation rates along the asymmetrical delta, 

Mitchell River delta, in the GoC.  

The Sentinel 2 L2A products with spatial resolution of 10 m and temporal resolution of 5 days 

acquired between 15 January 2020 and 12 August 2021 were applied for this analysis and 

investigation. The MNDWI algorithm was employed to extract the water area before implementing 

the NDTI algorithm to detect the turbidity. This detected turbidity was utilised to map the plume and 

mouth bar geometries by classifying the NDTI indices with the assistance of manual digitising to 

enhance the results’ accuracy.  

The results showed that the huge magnitude of wet seasonal plume occurred and orientated to the 

southerly direction that is analogue to the southward monsoonal palaeo-flow direction. This 

occurrence was interpreted to be relative to the dominance of high fluvial discharge over the basinal 

processes during summer monsoonal period. In contrary, the sediment plume reduced its scale and 

altered its orientation to the northerly direction during the dry season that is analogue to the northerly 

directed longshore drift current. This plume orientation was noticed to be parallel to the palaeo-

channels direction within the Mitchell River delta plain. It was interpreted that this phenomenon was 

related to the dominance of waves, tides and northerly directed longshore drift currents over low 

fluvial discharge during the dry season. Another discovery in this research illustrated that the high 

and very high turbidity constantly dominate in the vicinity of the north nearshore zone in both wet 

and dry seasons where severe coastline erosion has occurred. At the same time, the south 

nearshore zone of the Mitchell mouth bar, where the progradation coastline has prograded, 

experienced low turbidity in the dry season and moderate turbidity in the wet season. It was 

interpreted that localised shoreline changes (either side of the asymmetrical delta) were affected 

from the increased sea level relative to erosional activities (waves and tides) and amount of 

deposited sediment load. Due to the raised sea level during this modern shoreline period, the severe 

erosional coastline becomes noticeable at the north side of the Mitchell mouth bar whereas the south 

side of this asymmetrical mouth bar has prograded relative to the amount of sediment load from gully 

erosions triggered by humans’ disturbance in agricultural sector, particularly the cattle grazing. 
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6.2. Future Research 

For the future research, the temporal and spatial scale of the research should be extended. In the 

term of temporal extended, more annual periods should be considered for further analysis in order 

to investigate the inter-annual variability of the sediment plume and mouth bar formations. In this 

case, the Landsat series are recommended due to their extremely high temporal resolution (since 

1960s until present). Additionally, the investigation of monthly variation with extended temporal scale 

should be performed to enhance the understanding on exact months for huge scale of southerly 

orientated plume and marginal northward plume magnitude while it is assumed that the plume 

direction is unoriented either southward or northward in May. The further investigation of monthly 

variation with extended annual periods could strengthen this hypothesis. In the term of spatial 

extended, the study area should be expanded further to the south region of the Mitchell River delta 

to enhance the understanding about delta morphology along the GoC. About 200 km southward of 

this asymmetrical delta, there is another delta (the Gilbert River delta) that should be considered for 

further study since the research about the Gilbert River delta is extremely constrained as well as the 

Mitchell River delta.  

Due to the limitation of interpretation data from Australian government sources in the Mitchell 

catchment (Petheram et al. 2018), there are some data gaps and missing that could affect to the 

investigation. For instance, the relationship of the main Mitchell River with the distributary streams 

is mysterious since there is no discharge data measured at the downstream of the Dunbar gauge. 

This leads to error in analysis (the phenomenon occurred on 15 January 2020 as explained in the 

Section 5.1.1). Because of that, the flied measurement (if possibly) should be considered in linking 

with the satellite remote sensing to improve the accuracy of the analysis. In the case of flied 

measurement could be performed, however, various modellings for streamflow, tides and waves 

should be considered to obtain the data at the Mitchell River mouth. 

With climate change, it is assumed that the storm activity might be increased. This increased storm 

activity could adjust the wave energy. Hence, the investigation of storm activity due to climate change 

should be considered for the further research. 

Finally, the script correction for the automation process should be considered. The future research 

should revise the python script in order to operate the turbidity detection. The revised python script 

will be very beneficial since it can be operated in online environments (ArcGIS Python for API) such 

Google Colab or Jupyter Notebook, which can allow other researcher to perform automation process 

for turbidity detection. 
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Appendix 2: Python Scripts in ArcPy Environment. 

Part 1: Script of Setting Up the Working Folders. 

# -*- coding: utf-8 -*- 

"""Generated by ArcGIS ModelBuilder on : 2021-10-19 01:18:08""" 

import arcpy 

from sys import argv 

def 

CreateWorkingFolder(OUTPUT="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDect

ionUsingNDTI(2020)\\OUTPUT"):   

# CreateWorkingFolder   

# To allow overwriting outputs change overwriteOutput option to True.   

arcpy.env.overwriteOutput = False   

# Model Environment settings   

with 

arcpy.EnvManager(scratchWorkspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDe

ctionUsingNDTI(2020)", 

workspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDectionUsingNDTI(2020)"):  

# Process: Create Folder (Create Folder) (management)   

MNDWI = arcpy.management.CreateFolder(out_folder_path=OUTPUT, out_name="MNDWI")[0]   

# Process: Create Folder (2) (Create Folder) (management)   

MNDWI_Reclass = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="MNDWI_Reclass")[0]   

# Process: Create Folder (3) (Create Folder) (management)   

MNDWI_Poly = arcpy.management.CreateFolder(out_folder_path=OUTPUT, out_name="MNDWI_Poly")[0]   

# Process: Create Folder (4) (Create Folder) (management)   

MNDWI_Poly_Selected = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="MNDWI_Poly_Selected")[0]   

# Process: Create Folder (5) (Create Folder) (management)   

MNDWI_Poly_Elimin = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="MNDWI_Poly_Elimin")[0]   

# Process: Create Folder (6) (Create Folder) (management)   

Cleaned_Images = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="Cleaned_Images")[0]   

# Process: Create Folder (7) (Create Folder) (management)   

NDTI = arcpy.management.CreateFolder(out_folder_path=OUTPUT, out_name="NDTI")[0]   

# Process: Create Folder (8) (Create Folder) (management)   

Processing_Folder = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="Processing_Folder")[0]   

# Process: Create Folder (9) (Create Folder) (management)   

Output_Plume_Boundary = arcpy.management.CreateFolder(out_folder_path=OUTPUT, 

out_name="Output_Plume_Area")[0]if __name__ == '__main__':   
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# Global Environment settings   

with 

arcpy.EnvManager(outputCoordinateSystem="PROJCS["WGS_1984_UTM_Zone_54S",GEOGCS["GCS_WGS_1984",DAT

UM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degre

e",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PAR

AMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",141.0],PARAMETER["Scale_Factor",

0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]"):   

CreateWorkingFolder(*argv[1:]) 

Part 2: Script of Creating a Replica Dataset for Analysis. 

# -*- coding: utf-8 -*- 

"""Generated by ArcGIS ModelBuilder on : 2021-10-19 01:16:55""" 

import arcpy 

def #  NOT  IMPLEMENTED# Function Body not implemented 

def CreateDataset():   

# CreateDataset   

# To allow overwriting outputs change overwriteOutput option to True.   

arcpy.env.overwriteOutput = False   

DATA = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\DATA"   

for Raster, Name in #  NOT  IMPLEMENTED(DATA, "", "", "RECURSIVE"):   

# Process: Copy Raster (Copy Raster) (management)   

_name_ = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\INPUT_D

ATA\\%name%"   

arcpy.management.CopyRaster(in_raster=Raster, out_rasterdataset=_name_, 

config_keyword="Image_2020_01_15", background_value=None, nodata_value="65536", 

onebit_to_eightbit="NONE", colormap_to_RGB="NONE", pixel_type="16_BIT_UNSIGNED", 

scale_pixel_value="NONE", RGB_to_Colormap="NONE", format="TIFF", transform="NONE", 

process_as_multidimensional="CURRENT_SLICE", build_multidimensional_transpose="NO_TRANSPOSE") 

if __name__ == '__main__':    

# Global Environment settings   

with 

arcpy.EnvManager(outputCoordinateSystem="PROJCS["WGS_1984_UTM_Zone_54S",GEOGCS["GCS_WGS_1984",DAT

UM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degre

e",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PAR

AMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",141.0],PARAMETER["Scale_Factor",

0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]", 

scratchWorkspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDectionUsingNDTI(20

20)", 

workspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDectionUsingNDTI(2020)"):  

CreateDataset() 
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Part 3: Script of Automation Analysis for Turbidity Detection. 

# -*- coding: utf-8 -*- 

"""Generated by ArcGIS ModelBuilder on : 2021-10-19 01:13:50""" 

import arcpy 

from arcpy.ia import * 

from arcpy.ia import * 

from sys import argv 

def #  NOT  IMPLEMENTED# Function Body not implemented 

def 

PlumeDectectionUsingNDTI(INPUT_DATA="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\

PlumeDectionUsingNDTI(2020)\\INPUT_DATA", 

MNDWI_Layer="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(20

20)\\OUTPUT\\MNDWI\\MNDWI_%name%", 

Output_clean_Image="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsing

NDTI(2020)\\OUTPUT\\Cleaned_Images\\c_%name%", 

Output_NDTI="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(20

20)\\OUTPUT\\NDTI\\NDTI_%name%", 

Poly_Plume_Boun="C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDT

I(2020)\\OUTPUT\\Output_Plume_Area\\Poly_Boun_Plume_%name%.shp"):   

# PlumeDectectionUsingNDTI    

# To allow overwriting outputs change overwriteOutput option to True.   

arcpy.env.overwriteOutput = False   

# Check out any necessary licenses.   

arcpy.CheckOutExtension("3D")   

arcpy.CheckOutExtension("spatial")   

arcpy.CheckOutExtension("ImageAnalyst")   

arcpy.ImportToolbox(r"c:\program files\arcgis\pro\Resources\ArcToolbox\toolboxes\Data Management 

Tools.tbx")   

MNDWI_3ClassifyColor_lyrx = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\Symbolo

gy_Samples\\MNDWI_3ClassifyColor.lyrx"    

Sample_NDTI_ColorMap_30classes_v4_lyrx = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\Symbolo

gy_Samples\\Sample_NDTI_ColorMap_30classes_v4.lyrx"   

for Image_2020_01_15_tif, Name in #  NOT  IMPLEMENTED(INPUT_DATA, "", "", "NOT_RECURSIVE"):   

# Process: Select_Band (Select Data)         # Select Data Utility is not implemented   

# Process: Select_Band_2_ (Select Data)         # Select Data Utility is not implemented   

# Process: MNDWI_Calculation (Raster Calculator) (ia)   

MNDWI_Calculation = MNDWI_Layer   

MNDWI_Layer = (Green - SWIR)  / (Green + SWIR)   

MNDWI_Layer.save(MNDWI_Calculation)   

# Process: Reclassify (Reclassify) (sa)   
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Reclass_MNDWI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Reclass_MNDWI"   

Reclassify = Reclass_MNDWI   

Reclass_MNDWI = arcpy.sa.Reclassify(in_raster=MNDWI_Layer, reclass_field="VALUE", remap="-

0.982405 -0.267951 1;-0.267951 0.361079 2;0.361079 1 3", missing_values="DATA")   

Reclass_MNDWI.save(Reclassify)   

# Process: Raster to Polygon (Raster to Polygon) (conversion)   

Polygon_MNDWI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Polygon_MNDWI.shp"   

with arcpy.EnvManager(outputMFlag="Disabled", outputZFlag="Disabled"):   

arcpy.conversion.RasterToPolygon(in_raster=Reclass_MNDWI, out_polygon_features=Polygon_MNDWI, 

simplify="SIMPLIFY", raster_field="VALUE", create_multipart_features="SINGLE_OUTER_PART", 

max_vertices_per_feature=None)   

# Process: Select gridcode = 3 (Select Layer By Attribute) (management)   

Poly_MNDWI_gc_3, Count = arcpy.management.SelectLayerByAttribute(in_layer_or_view=Polygon_MNDWI, 

selection_type="NEW_SELECTION", where_clause="gridcode = 3", invert_where_clause="")   

# Process: Copy Features (Copy Features) (management)   

Poly_Sel_MNDWI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Poly_sele_MNDWI.shp"   

arcpy.management.CopyFeatures(in_features=Poly_MNDWI_gc_3, out_feature_class=Poly_Sel_MNDWI, 

config_keyword="Image_20200911.tif", spatial_grid_1=None, spatial_grid_2=None, 

spatial_grid_3=None)   

# Process: Calculate Geometry Attributes (Calculate Geometry Attributes) (management)   

Poly_Sel_MNDWI_with_Area = 

arcpy.management.CalculateGeometryAttributes(in_features=Poly_Sel_MNDWI, 

geometry_property=[["Area", "AREA"]], length_unit="", area_unit="SQUARE_KILOMETERS", 

coordinate_system="PROJCS[\"WGS_1984_UTM_Zone_54S\",GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",

SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.01745

32925199433]],PROJECTION[\"Transverse_Mercator\"],PARAMETER[\"False_Easting\",500000.0],PARAMETER

[\"False_Northing\",10000000.0],PARAMETER[\"Central_Meridian\",141.0],PARAMETER[\"Scale_Factor\",

0.9996],PARAMETER[\"Latitude_Of_Origin\",0.0],UNIT[\"Meter\",1.0]]", 

coordinate_format="SAME_AS_INPUT")[0]   

# Process: Select Area &gt; 99 (Select Layer By Attribute) (management)   

Poly_Sel_MNDWI_2_, Count_2_ = 

arcpy.management.SelectLayerByAttribute(in_layer_or_view=Poly_Sel_MNDWI_with_Area, 

selection_type="NEW_SELECTION", where_clause="Area > 99", invert_where_clause="")   

# Process: Copy Features (2) (Copy Features) (management)   

Poly_Elimi_MNDWI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Poly_Elimi_MNDWI.shp"   

arcpy.management.CopyFeatures(in_features=Poly_Sel_MNDWI_2_, out_feature_class=Poly_Elimi_MNDWI, 

config_keyword="Image_20200911.tif", spatial_grid_1=None, spatial_grid_2=None, 

spatial_grid_3=None)   
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# Process: Extract by Mask (Extract by Mask) (sa)         

Clean_Image = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\c_image"        Extract_by_Mask = Clean_Image        Clean_Image = 

arcpy.sa.ExtractByMask(in_raster=Image_2020_01_15_tif, in_mask_data=Poly_Elimi_MNDWI)        

Clean_Image.save(Extract_by_Mask)         

# Process: Copy Raster (Copy Raster) (management)        

arcpy.management.CopyRaster(in_raster=Clean_Image, out_rasterdataset=Output_clean_Image, 

config_keyword="", background_value=None, nodata_value="-32768", onebit_to_eightbit="NONE", 

colormap_to_RGB="NONE", pixel_type="16_BIT_UNSIGNED", scale_pixel_value="NONE", 

RGB_to_Colormap="NONE", format="TIFF", transform="NONE", 

process_as_multidimensional="CURRENT_SLICE", build_multidimensional_transpose="NO_TRANSPOSE")        

# Process: Apply Symbology From Layer (Apply Symbology From Layer) (management)        

MNDWI_Classify = arcpy.management.ApplySymbologyFromLayer(in_layer=MNDWI_Layer, 

in_symbology_layer=MNDWI_3ClassifyColor_lyrx, symbology_fields=[["COLOR_EXPRESSION_FIELD", "", 

""]], update_symbology="DEFAULT")[0]         

# Process: Select_Band_3_ (Select Data)         # Select Data Utility is not implemented         

# Process: Select_Band_4_ (Select Data)         # Select Data Utility is not implemented         

# Process: NDTI_Calculation (Raster Calculator) (ia)         

NDTI_Calculation = Output_NDTI         

Output_NDTI = ( cRed  - cGreen ) / ( cRed  + cGreen )         

Output_NDTI.save(NDTI_Calculation)         

# Process: Apply Symbology From Layer (2) (Apply Symbology From Layer) (management)        

NDTI_Classify = arcpy.management.ApplySymbologyFromLayer(in_layer=Output_NDTI, 

in_symbology_layer=Sample_NDTI_ColorMap_30classes_v4_lyrx, symbology_fields=[["VALUE_FIELD", "", 

""]], update_symbology="DEFAULT")[0]         

# Process: Reclassify (2) (Reclassify) (sa)         

Reclass_NDTI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Reclass_NDTI"         

Reclassify_2_ = Reclass_NDTI         

Reclass_NDTI = arcpy.sa.Reclassify(in_raster=Output_NDTI, reclass_field="VALUE", remap="-1 -

0.400000 1;-0.400000 0.500000 2;0.500000 1 3", missing_values="DATA")         

Reclass_NDTI.save(Reclassify_2_)         

# Process: Raster to Polygon (2) (Raster to Polygon) (conversion)         

Polygon_NDTI = 

"C:\\Kevin\\MGISc2020\\Thesis\\Methodology\\ImageProcessing\\PlumeDectionUsingNDTI(2020)\\OUTPUT\

\Processing_Folder\\Polygon_NDTI.shp"         

with arcpy.EnvManager(outputMFlag="Disabled", outputZFlag="Disabled"):            

arcpy.conversion.RasterToPolygon(in_raster=Reclass_NDTI, out_polygon_features=Polygon_NDTI, 

simplify="SIMPLIFY", raster_field="VALUE", create_multipart_features="SINGLE_OUTER_PART", 

max_vertices_per_feature=None)         

# Process: Select gridcode = 2 (Select Layer By Attribute) (management)         

Poly_NDTI_gc_3, Count_3_ = arcpy.management.SelectLayerByAttribute(in_layer_or_view=Polygon_NDTI, 

selection_type="NEW_SELECTION", where_clause="gridcode = 2", invert_where_clause="")         
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# Process: Copy Features (3) (Copy Features) (management)   

arcpy.management.CopyFeatures(in_features=Poly_NDTI_gc_3, out_feature_class=Poly_Plume_Boun, 

config_keyword="Image_20200911.tif", spatial_grid_1=None, spatial_grid_2=None, 

spatial_grid_3=None) 

if __name__ == '__main__':    

# Global Environment settings   

with 

arcpy.EnvManager(outputCoordinateSystem="PROJCS["WGS_1984_UTM_Zone_54S",GEOGCS["GCS_WGS_1984",DAT

UM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degre

e",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PAR

AMETER["False_Northing",10000000.0],PARAMETER["Central_Meridian",141.0],PARAMETER["Scale_Factor",

0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]", 

scratchWorkspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDectionUsingNDTI(20

20)", 

workspace=r"C:\Kevin\MGISc2020\Thesis\Methodology\ImageProcessing\PlumeDectionUsingNDTI(2020)"):  

PlumeDectectionUsingNDTI(*argv[1:]) 
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