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Summary 

In this thesis we investigate a new geometrical model of elementary particles 

derived in a unified way from the fundamental electromagnetic and spin fields. 

In basic physical phenomenology it thus has the characteristic features of a 

compound-particle model, but unlike most of the existing theories, dynamical 

treatment of the interaction makes up an essential part of the model. The scheme 

is motivated by the observation of an interesting analogy between the properties 

of particles. Maxwell’s equations, together with the Lorentz force law, form the 

foundation of classical electromagnetism, classical optics, and electric circuits. 

Departing from this point we establish a steady-state model to describe most 

experimentally established subatomic particles, but also enigmas such as dark 

matter and the Higgs boson. In addition, we use a fixed crystalline structure as a 

scaffold for the elements’ atoms including their electrons. This novel crystal 

theory aims to explain quantum mechanics and phenomena such as dark matter 

and teleportation, basing it on the known properties of atoms, their electronic 

shells, and nuclei. The crystalline symmetries, rotations, reflections, translations, 

and changes of colour are calculated and explained. They relate to transitions in 

the physics, such as matter to anti-matter, protons to neutrons, magnetic to 

electric, or invariant properties related to time and motion. The classical 

“standard model” concepts or reasoning via fields or forces, or less intuitive 

classes of particles such as quarks and gluons are replaced by a kind of simplified 

structure in a fixed “Parmenidean” crystal comprised of congruent tetrahedra in 

colours red, yellow, and black which represent axiomatically the positive, 

negative, and neutral charges. Basic physical ideas such as Pauli’s exclusion 

principle, Hund’s rule in atomic chemistry, the rules for sizes of electron shells 

and the need for excess neutrons in many stable nuclides are given reasons within 

the crystal model. Finally, a theorem about the spin of a particle is proved, that it 

can be calculated from the surface properties. 
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1. Introduction 

There are many observable effects in the quantum world which cannot be 

understood within the framework of classical mechanics or classical 

electrodynamics. Two characteristic examples show very clearly that the 

description within classical physics is incomplete and must be supplemented by 

some fundamental principles: the quantisation of atomic bound states for an 

electron in the field of a positive point charge, and the electromagnetic radiation 

emitted by an electron bound in an atom which, in a purely classical framework, 

would render atomic quantum states unstable. However, at this conjuncture 

quantum physics needs a very cogent model where atoms can be formed, and 

particles can interact with all the important properties being evident to us. Planck 

with Heisenberg, Bohr, Davisson, De Broglie, Einstein, and Schrödinger 

throughout history tried to discover the shape of the atoms, yet there are very 

ambiguous notations and assumptions hindering quantum physics to reach a way 

of describing elements, their atoms and their nuclei without contradictions nor 

leaps of imagination [1]. Despite that many experiments in the early 19th century 

until now showed us many useful discoveries such as electricity and magnetism, 

followed by the realisation of spin and wave equations, yet the full understanding 

of atoms, particles, and their properties, especially the particles’ actual 

interactions have been absent. Here, in a geometrical way, it is possible to develop 

a model that combines many discovered quantum properties of matter, as well as 

ideas about facts that are not definitive, such as dark matter and teleportation. 

Thus, we strive toward a foundation for the most valuable concepts of quantum 

physics and basic theories by relating it to a certain mathematical geometry, a 

crystalline structure or honeycomb with a special colouring of its tetrahedra 

scaffolded by the body-centred cubic lattice, a well-known regular kind of 

packing found in 3-dimensional space that is common in nature. The colours 

RBY in the crystal correspond to the charges of particles. It is known that the 

particles have certain quantum mechanical spin. Both charge and spin are additive 



 6 

so that they can be calculated from the sum of the charges and spins of all the 

component particles [3]. Using the crystal, we develop this further and in 

particular prove a spin theorem that calculates the spin of a particle from the spins 

of triangles on its surface.   

2. Basic Tetrahedron 

A fundamental geometrical shape used in this thesis is one of the famous 

polyhedra, that is a three-dimensional solid with four flat triangular faces, called 

the tetrahedron. We start out to create a special kind of tetrahedron that can be 

put together with others, joining at common faces. We make all the faces 

congruent to a special kind of isosceles triangle.  The tetrahedron has two long 

separated edges of length 2, being orthogonal in 3-d space to each-other, joined 

with four short edges of length √3.  The vertices of the tetrahedra are all to be 

found in a certain body-centred cubic lattice (BCC), so that the eight nearest 

vertices from a fixed vertex form cube in space. The BCC is the union of two 

cubic lattices C1 and C2, where a vertex of C2 is the central point of a cube of C1 

and vice-versa. Therefore, each tetrahedron has one long edge from C1 and one 

long edge from C2. Another property that follows is that there are 24 tetrahedra 

attached at each vertex of the BCC lattice.  The 24 faces of these tetrahedra away 

from the central point form a rhombic dodecahedron, with the 24 triangles of the 

tetrahedra being paired into 12 rhombuses, which has one diagonal long edge and 

four short external edges. The tetrahedra themselves fill space with no holes 

forming what is commonly called a tetrahedral “honeycomb”.  This can also be 

extracted from a rhombic dodecahedral honeycomb by subdividing each solid 

dodecahedron into 24 tetrahedra through the central point of each solid. 
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Figure 1 The BCC containing the tetrahedron drawn by OpenSCAD software. 

 

It is important to note that here we only describe particles and single atoms but 

not molecules, for the molecules do not constitute a single entity expressing what 

is inside and outside the nucleus, and what is in the electron shells. Colours of 

tetrahedra in the crystal are the way to differentiate between the basic constituents 

of particles. R as red (positive charge), Y as yellow (negative charge), and B as 

black (neutral) have been chosen. In common research, atoms are based on 

protons, neutrons, and electrons, but evidently the proton and neutron are not 

elementary particles, so we must go deeper and utilise dark matter B and the anti-

particle of electron Y named positron R [2]. Therefore, we will choose R, Y and 

B tetrahedra as the elementary particles of this nominated study to form a proper 

quantum state for each atom, which is a nucleus and electron cloud combined.  

3. Numbered Vertices, Spin and Colouring 

A rotation in 3-d space describes the circular movement of a particle around an 

axis. There is also the angular momentum carried by elementary particles, 

composite particles, and atomic nuclei which is called spin [3]. However, with 

quantum spin, we think not of actual movement but of a state or property related 

to orientation. A fixed labelling 0, 1, 2, 3 of the BCC’s vertices induces that spin 

of any tetrahedron 0, 1, 2, 3 within it to obtain a spin which is either even (+ ½) 

or odd (- ½). With the following labelling of the BCC the important cubic sub-
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lattices are the 0, 2 vertices of C1 and the 1, 3 vertices of C2. With cartesian 

coordinates (a, b, c) for points in 3-d space, C1 is the set {(a, b, c) | a, b, c in 2ℤ 

(even integers)}, and C2 = {(a, b, c) | a, b, c in 2ℤ+1 (odd integers)}.   

Definition 3.1: The labelling of BCC is: 

0: a + b + c  0 (mod 4); has all a, b, c even, e.g (0, 2, 2) has label 0. 

1: a + b + c  1 (mod 4); has all a, b, c odd, e.g. (-1, 3, 3) has label 1. 

2: a + b + c  2 (mod 4); has all a, b, c even, e.g. (2, -2, 2) has label 2. 

3: a + b + c  3 (mod 4); has all a, b, c odd, e.g. (3, -5, 1) has label 3. 

There are two related coordinate systems that are used to describe positions in the 

crystal. The starting system has the (a, b, c) coordinates of the BCC lattice: that 

is, all the a, b, c are even integers, or all are odd. But this does not give the 

horizontal planes of the shells (layers of the AGP’s).  To achieve this, we define 

an (x, y, z) coordinate system that is given by following transformation:  

(x, y, z) = (
a−c

2
,

b

2
,

a+c

2
), with the a, b, c in the BCC’s three orthogonal directions.  

Thus,  

x represents the magnetism or what been called spin motion;  

y represents the time direction while time goes in a positive way; 

z represents the energy, and this increases up continuously as it represents the                                                

shells (more details in Chapter 8).   

Theorem 3.2:  The vertices of each fundamental tetrahedron has a labelling 0, 1, 

2, 3 induced by the BCC. 

Proof: The distances between the vertices of a tetrahedron are either √3 or 2, but 

the distance between vertices with the same label in the BCC is at least 2√2, since 
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the minimal differences are (2, 2, 0), (2, -2, 0) and so on.  Thus, the four vertices 

of the tetrahedron are labelled differently. 

Definition 3.3: The property of having even or odd spin is given in the following 

Fig. 2 and depends upon the orientation in space of the labelled tetrahedron. 

 

Figure 2 Two tetrahedra extracted from the labelling of the BCC to indicate the odd and even spins. 

 

Note that the orientation of any face of the tetrahedron determines its spin.  E.g., 

the face 1,2,3 is orientated from the outside either clockwise for odd spin or 

anticlockwise for even spin. 

 

Theorem 3.4:  

1. Mirror images of a tetrahedron have opposite spin. 

2. Tetrahedra that join at a common face have opposite spin. 

3. Tetrahedra that are translated or rotated via a mapping such as (x, y, z) to (x, 

y, z) + (u, v, w) have the same spin. 

 

Proof: A mirror image reverses orientation and therefore reverses spin.  Two 

tetrahedra with a common face are mirror images through that face.  Translations 

and rotations preserve orientation and therefore spin. 
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Definition 3.5: The connection graph of the tetrahedra is the graph with vertices 

which are the tetrahedra and has two of these joined by an edge whenever the 

tetrahedra have a common triangular face. 

 

Theorem 3.6: The connection graph is bipartite, with the bipartition of the vertices 

being induced by the spin. 

Proof: From Theorem 3.4 (2) adjoining tetrahedra have opposite spin. 

 

Note that in graph theory, a bipartite graph is one that has a 2-colouring, or 

equivalently, every cycle in the graph has an even number of vertices (or edges).  

We can see that in the connection graph there are minimal cycles (circuits) of size 

4 and 6. These are obtained by rotations about the long and short edges 

respectively, by 90 degrees in the long case, by 60 degrees in the short case. 

 

In addition to a 2-colouring, the connection graph has an essentially unique 

(regular) 3-colouring (up to the 6 permutations of the 3 colours).   

 

Definition 3.7: A regular 3-colouring of the crystal into R, Y, B tetrahedra 

satisfies the following properties: 

1. It must be a way of assigning the three colours to the tetrahedra of the crystal 

so that no two tetrahedra of the same colour have a common face.   

2. The colouring of the four tetrahedra around a long edge alternate in two of 

the colours RYRY, RBRB or YBYB around that edge. 

3. The colouring of the six tetrahedra around a short edge goes either in the 

sequence RBYRBY or RYBRYB depending on the rotation clockwise or 

anticlockwise. 

 

Theorem 3.8: The crystal has a regular 3-colouring (which we consider fixed from 

now on). 



 11 

Proof: Consider a tetrahedron, colour it Y. There are four adjoining tetrahedra 

paired into those that have a common long edge. These pairs must have the same 

colour from Def. 3.7 (2).  Hence, we may assume that we colour these pairs with 

the remaining two colours.  Once we have done this the rotations about the short 

edges given by Def. 3.7 (3) will determine the entire colouring of the crystal 

uniquely, e.g. by first colouring the 24 tetrahedra of a rhombic dodecahedron 

(Chapter 2) and then translating this into the adjoining position of the honeycomb.  

4. Atomic Graph Paper 

After the tetrahedron in question was described in the model used in our study 

and the numbering of the tetrahedron’s vertices was considered, here we must go 

deeper and explain how the model works to illustrate the physical and chemical 

properties accurately.  

 

The main rules described in the atomic graph paper are:  

1- A shell of any atom is given by one piece of graph paper.  

2- Subshells s, p, d, f, g, and h where each subshell contains a number of electron 

pairs (more details in Chapter 9).  

3- Orbitals describe the location and wave-like behaviour of an electron in an 

atom.  

4- Two directions on the paper indicate time direction y (top left to bottom right) 

and spin direction x (bottom left to top right).  

5- The subatomic particles that make up every atom with calculated spin, charge, 

and parity.  

6- The tubes (separated by the blank squares) in the y direction alternate in 

magnetic spin. 

7- The subshells alternate in parity as they go out, starting with positive parity 

in the central s-subshell.     
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4.1 AGP1 for odd shells 

Bohr model shells developed in the old quantum theory by Arnold Sommerfeld 

modified the orbits to have quantum numbers. Then subshells appeared to give 

the electron subshells named sharp, principle, diffuse, fundamental, and g as the 

5th shell and higher (theoretically) [4].  

 

In the crystal theory, time and spin are the two dimensions corresponding to the 

atomic shells and their subshells. We draw on a graph paper the three mentioned 

coloured particles R, Y, B to demonstrate the main atomic particles, proton, 

neutron, and electron [2]. Squares labelled R, Y or B represent coloured 

tetrahedra in a certain horizontal layer of the crystal. 

 

Y-electrons in protons are also labelled by integers starting from zero to indicate 

the subshell location in the atomic graph paper as indicated in Fig. 3.  The protons 

are formed by the joined straight squares YBR in the APG. They are coloured 

orange in the AGP1, blue (or aquamarine) in the even AGP2. In the first shell and 

middle red s-subshell square, we get the proton as the simplest atom given by 

straight YBR labelled by zero as a starting point of the first free electron 𝑌0. The 

neutron next to the proton is the bent YBR formed by a  90° rotation of the proton 

in the crystal. Using the three particles that form every atom, proton,  and neutron 

we can build the shells, see their subshells and their orbitals. We must consider 

the odd shells and the even shells based on the quantum number n that will be 

explained later in Chapter 10 in more detail, so we begin with the odd shell as the 

lowest energy level of every atom, adding layers of shells in a vertical direction 

to this frozen core. 
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Figure 3 the atomic graph paper of odd shells starting from 1. 

 

 

4.2 AGP2 for even shells 

In the even shells, protons and neutrons take slightly different positions to the odd 

shells, yet the interactions between them are preserved. This second layer (not 

coloured) in the crystal is a reflection in the horizontal direction of the first layer. 

More precisely, it is a translation of the first layer by one step in the time direction. 

After that, the shells alternate appropriately using the AGP1 or AGP2.  Thus, any 

atom or nuclide (the nucleus of an atom) can be described using a number of 

AGP’s, one for each electron shell. 

 

The facial connections between consecutive shells only go through a bold R or Y 

connected to a plain Y or R (resp.) directly above it.  Thus “boldness” of an R or 

Y character in the AGP denotes a horizontal flat upper surface face of the 

coloured tetrahedron, while a non-bold (plain) Y or R has a horizontal lower face. 
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Figure 4 the atomic graph paper of even shells starting from 2. 

 

 

4.3 Left and right-handed particles  

Handedness or chirality is a property of orientation of particles that describes the 

relationship of a mirror image to the particle itself. In classical physics, if the 

helicity of a particle’s spin is a positive direction, the spin direction is defined to 

be the same as its motion, and it is called a right-handed. If the direction and the 

motion of the particle are opposite, then the particle is called left-handed. The 

importance of handedness is to determine whether the particle transformation is 

a right or left representation. By Figure 2, the positive and negative orientations 

of a tetrahedron are indicating the particle’s spin-direction from a basic (static) 

property of the crystal, as opposed to a definition from movement. The mirror 

image changes the matter but not the mass to become an anti-particle. For 

instance, the mirror image of an electron Y is an anti-electron R called “positron”. 

A reflection also takes positive time to negative time, and the positive charge to 



 15 

the negative charge.  The general rule says that any left-handed particle can have 

a reflection or a mirror image that is a right-handed particle and vice versa.   

 

In the crystal the particle to anti-particle operation corresponds to taking mirror 

images and switching the red to yellow colours. The left-handedness of most 

known particles is taken to account by the AGP.  For example, an RB adjacent 

pair can be completed in two ways to a straight or a bent YBR.  The straight 

protons and the bent neutrons in the AGP turn out to be all left-handed (related 

by a translation/rotation in the crystal), while the bent and straight counterparts 

are right-handed, and we don’t normally use them in the AGP. 

 

Figure 5 The reflection (mirror image) of an electron to a positron drawn with OpenSCAD. 

 

5. Connections Described Using Graph Paper 

One of the more important concepts that must be addressed is the one that holds 

the cohesion (or binding) force between particles within the crystal model. What 

was clarified in the previous are the basic concepts through which we can 

understand the nature of each particle by colouring the main three tetrahedra, but 

in the mathematical perspective there are links between geometric shapes 
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centered through the point connections between the connected tetrahedra or 

longitudinal sides of equal congruent edges or even more strongly through 

adjoining congruent faces. The different kinds of connections here can induce us 

to define in graph theory the specific physical forms that can allow the 

investigation of binding forces inside or between particles. 

 

5.1 Horizontal connection in the same layer 

In the (face) connection graph G any two tetrahedra of the crystal with adjoining 

common faces combine by joining of isosceles triangles. This graph represents 

the connections between the coloured particles. In particular, the horizontal 

connections are within the chemical shell or crystal layer, where horizontal is 

defined by the same value of z in the (x, y, z) coordinate system specified in 

Section 3. 

 

 

Figure 6 Horizontal connection with R and B in the same shell between subshells S and P. 

 

5.2 Corner connection in graph paper 

These face connections between tetrahedra are represented in the AGP by squares 

R and Y that are connected in a single corner diagonally, bottom left to top right.  

The corresponding electrons and positrons will have opposite spin as they are in 

different tubes going top left to bottom right in the AGP. 
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5.3 Vertical connection 

The contact between shells is represented by the vertical connections between 

faces, and this concerns the change in energy of the shells around the nucleus.  A 

bold R or Y in a shell is joined to the plain Y or R in the shell above it.  Associated 

with this we notice the connection of one proton with a neutron from the same 

sub-shell directly above or below it.  In this way protons are kept apart from one-

another which would be expected as they have a positive charge which repels. 

See Fig. 7.  

 

 

Figure 7 Shells 1 and 2 with s-subshells directly above one-another illustrate the straight proton 

positions relative to the bent neutrons. 

 

5.4  Other possible connections between tetrahedra 

Further connections here are based on the joining of a point or two points or three 

between the different tetrahedra. There are many cases that are possible: 

• Connection by faces: R 
3

↔ Y, B 
3

↔ Y, and R 
3

↔ B.  

• Connection by edges: R 
2

↔ R, B 
2

↔ B, Y 
2

↔ Y, R 
2

↔ Y, B 
2

↔ Y, and R 
2

↔ B.  

• Connection by points: R 
1

↔ R, B 
1

↔ B, Y 
1

↔ Y, R 
1

↔ Y, B 
1

↔ Y, and R 
1

↔ B.  

 

These possibilities maybe be important for further investigations into binding 

energy and the origin of mass in particles. See Fig. 8.  
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Figure 8 The possibility of joining points between the coloured particles (drawn by Cinderella 

software). 

 

6. Hexagonal Lattice of a Shell 

The hexagonal lattice here is used to represent the symmetry of the crystal’s 

planar connection graph within a shell or AGP. It can be made to look like a 

hexagonal plane lattice. The red, yellow, and black coloured points are the 

tetrahedra involved via the AGP graph. From Fig. 9, when a red connects with 

yellow it means the two tetrahedra are joined at a common face. But if a black 

connects with a black it means that there is a single black tetrahedron with a self-

connection. Thereafter, the black tetrahedron can join to two further reds and two 

further yellows within the same shell. This hexagonal structure illustrates very 

easily the three kinds of hexagonal circuits in the planar graph.  The first type 

contains 2 R’s and 4 B’s which in fact corresponds to a circuit of tetrahedra RBRB 

about a long edge in the crystal.  The second type contains 2 Y’s and 4 B’s which 

corresponds to a circuit YBYB about a long edge. The third type has 2 R’s, 2 Y’s 

and 2 B’s that are not joined (on opposite sides) in the hexagonal lattice, and so 

it corresponds to a circuit RYBRYB about a short edge in the crystal. 
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Figure 9 The hexagonal lattice of the AGP graph. 

 

7. Affine Coxeter Group of the Crystal  

The infinite group of symmetries falls within the Coxeter group system. First, the 

tetrahedra in the crystal form a tetragonal disphenoid honeycomb or oblate 

tetrahedrille which has vertices from the BCC lattice, otherwise called the 

𝐴3
∗/𝐷3

∗ lattice. From [6] we find clarifications of definitions for the affine 

Coxeter groups. Basically, they are generated by reflections subject to some 

relations between them, also containing translations in space. Now we go directly 

to describe the groups of symmetries produced by the coloured crystal. The 

Coxeter group of the BCC lattice is B3̃. This is the group of the whole crystal 

without colouring the tetrahedra. It is closely related to the group of the rhombic 

dodecahedral honeycomb that packs 3-dimentional space. Inside each rhombic 

dodecahedron there are 24 tetrahedra. Each tetrahedron is coloured R, B, Y. There 

are six permutations of three colours RYB. This leads to a normal subgroup N of 

index 6 in B3̃ that fixes all the colours.  Then there is the point subgroup that fixes 

a point of the BCC lattice.  This is a finite group B3 of order 48. There is the group 

fixing that point but also the three colours, and that is a normal subgroup of this 

group isomorphic to the elementary abelian group of order 8. Otherwise, there 
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are subgroups such as the one fixing a single colour and possibly permuting the 

other two, also the subgroups that consist entirely of rotations/translations and 

not reflections. These will conserve the spin, orientation, handedness of the 

particles.  

 

First, we note a certain lemma that tells us about normal subgroups. 

 

Lemma 7.1 (Felix Klein, folklore): If there is a group A acting on a set of objects 

T as a permutation group, and if there is a subset R of T that is fixed (not 

elementwise by the group).  Then the subgroup B of A that fixes each element of 

R is a normal subgroup of A. 

 

Proof: Clearly B is a subgroup of A because it is closed under products and 

inverses.  There is a homomorphism h from A to the symmetric group SR (set of 

permutations of R) that restricts a permutation of A to act only on R. Thus, the 

kernel B of h is a normal subgroup of A by the classical homomorphism theorem. 

 

We clarify these results about symmetry groups in several theorems below. 

 

Theorem 7.2: The point group of the BCC lattice is a group of order 48 

isomorphic to the group of the cube (or octahedron) in 3-d space. 

 

Proof: The fundamental solid made from 24 tetrahedra around a central point of 

the BCC lattice is the rhombic dodecahedron.  This can be formed from a cube 

by putting a pyramid onto each of the 6 faces of the cube. The 6 tops of these 

pyramids form an octahedron. Thus, we see that the symmetries of the cube are 

in 1-1 correspondence with those of the fundamental solid. 
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Note that the group of the cube is isomorphic to the wreath product ℤ2 Wr S3 of 

the cyclic group ℤ2 with the symmetric group S3, or equivalently it is the group 

of signed permutations on three letters, e.g., R, B, Y.  It may be represented using 

3 by 3 matrices which have a single ±1 in each row and column and 0’s elsewhere. 

 

Theorem 7.3: The subgroup of the point group that fixes the three colours is the 

elementary abelian group of order 8, isomorphic to the direct product ℤ2 × ℤ2 × 

ℤ2 made from 3 independent generator involutions. This group contains the 

identity element together with 3 rotations about 180 degrees around the three 

orthogonal directions of the BCC lattice together with 4 reflections so that every 

non-identity element is an involution. 

 

Proof: There are 24 triangles on the outside of the rhombic dodecahedron, split 

into 8 of each colour. Given two of these triangles one can find the unique rotation 

taking one to the other. However, rotations preserve spin and four of the red 

triangles and their tetrahedra have positive spin and four negative spin. That 

means the number of rotations preserving the colours is four. In addition, there 

are four reflections that change the spins. In total there are eight elements of this 

group. These are easily seen as the transformations that fix the three orthogonal 

coordinate a, b, c axes. 

 

Theorem 7.4: The full group of the BCC lattice is B3̃, which is generated by the 

point group together with the translations that move one vertex of the BCC to 

another. They move all the other points the same direction and distance. 

 

Proof: This is classically a well-known result [6]. 

 

Note that the translation group of the BCC is a free (torsion free) abelian group 

with 3 generators.  Using (a, b, c) coordinates we define a translation Trst to be 
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the mapping (a, b, c) to (a + r, b + s, c + t), moving everything by the vector (r, s, 

t).  Then one set of generators is {T200, T020, T111}. 

 

Theorem 7.5: The subgroup N of the full group that fixes the colours is the group 

of the coloured crystal.  Thus 

 

N ⊲ B3̃, and B3̃/N   S3. 

 

Proof: This is a normal subgroup N of B3̃ of index 6 (with a factor group S3) by 

Theorem 7.1 generated by the elementary abelian point group of order 8 of 

Theorem 7.2 and the translations that always fix the colours.   

 

Theorem 7.6: The subgroup of the point group that fixes a single colour, denoted 

PR, PB or PY, but perhaps permuting the other colours, is a subgroup of index 3 in 

the point group P. These three groups are conjugate (non-normal) subgroups of 

order 48/3 = 16. 

 

Proof: The point group is a permutation group of order 48 that permutes the three 

colours, so that the stabilizer of a colour (the subgroup fixing the colour) is a 

subgroup of index 3.  

 

Note that the PB subgroup, together with the translations, is the group that can be 

used to determine the colouring of the black tetrahedra, and as it contains 

reflections it can also take particles to antiparticles, such as a positron R to an 

electron Y.  For any two black tetrahedra containing a common vertex there will 

be two elements of this group moving one to the other and fixing that point.  One 

will be a rotation and the other a reflection. 
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Here we analyse more of the symmetry operations in the crystal and relate it to 

the four generator reflections of the Coxeter group. One can move throughout the 

crystal using reflections at common faces of the tetrahedra.   

 

Every tetrahedron in the crystal has its vertices labelled 0, 1, 2, 3 as we saw in 

Fig. 2. Hence, the three coloured tetrahedra Y, R, B reflect to each-other through 

common faces by using the operators x0, x1, x2, x3, where xi denotes reflecting 

in the face {0, 1, 2, 3} \ {i} of the tetrahedron. 

 

This picture shows the connections within a deuteron and the corresponding 

generators of the Coxeter group. 

 

 

Figure 10 A deuteron and the corresponding generators of the Coxeter group. 

 

The following diagram shows a sequence of alternating protons and neutrons 

connected in the time y direction and how the generators of the Coxeter group 

change.  This sequence repeats every four times along a tube of the crystal. 

 

 

Figure 11 Protons and neutrons connected in the time y direction with the generators of the Coxeter 

group illustrated. 
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The four operations xi above related to the tetrahedra of the crystal have an 

analogy with the following Coxeter group, satisfying similar relations.  The group 

𝐴̃3 has a set S of four Coxeter generators {x0, x1, x2, x3}, where  xi are reflections 

in 3-d space.  The presentation of 𝐴̃3 via generators and relations can be written  

 

〈 x0, x1, x2, x3 | xi
2 = (x0x2)2 = (x1x3)2 = (x0x1)3 = (x0x3)3 = (x1x2)3 = (x2x3)3 = 1 〉. 

 

This group is infinite and includes translations.  Note that the product of two 

reflections is a rotation. 

Consequently, the Coxeter-Dynkin diagram is the square graph; see Fig. 12.  

 

Figure 12 The Coxeter-Dynkin diagram 𝐴3̃. 

 

Now we consider the finite point group in more detail. 

There are four deuterons obtained from 4 protons and 4 neutrons found in the 

AGP1 and AGP2 s-subshells.  These make the element Be-8 [18] from the 

rhombic dodecahedron in the crystal; see Fig. 13. We label the vertices of the 

rhombic dodecahedron V = 1, 2, 3, …, 14. There are 24 faces of the planar graph 

on the surface of the rhombic dodecahedron including the outer face, which is 

made from the three vertices 2, 9, 10; see Fig. 14. 

 

A3̃ 
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Figure 13 Beryllium-8 with 4 deuterons in the crystal drawn with OpenSCAD. 

 

 

Figure 14 The rhombic dodecahedron with labelled vertices V = 1, 2, 3, …, 14. 

 

The Coxeter group B3 that is the point group of the crystal can be considered as 

the subgroup of S14 as it acts on the 14 vertices of the rhombic dodecahedron. 

Again, there are four interesting elements of this permutation group that have 

similar relations to the previous group elements with the same labels.   Let us 

keep these labels as a matter of interest. 

We define them as follows. 

The operators  x0, x1, x2, x3 acting on the vertices are, 
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i- x0 = reflection in horizontal plane. 

      = (1 11) (2 14) (4 12) (3 13) 

ii- x1  = reflection in diagonal plane. 

      = (4 10) (3 9) (6 11) (7 14) 

iii- x2  = reflection in vertical plane.  

      = (1 3) (8 10) (5 7) (11 13) 

iv- x3  = reflection in diagonal plane.  

      = (2 5) (3 6) (8 12) (9 11) 

 

Hence,  

 x0 x1= (1 11) (2 14) (4 12) (3 13) (4 10) (3 9) (6 11) (7 14) 

          = (1 11 6) (2 14 7) (3 9 13) (4 10 12) (5) (8)  

                     ⇒  (x0 x1)3 =  1. 

 

x0 x1 is a 120° rotation (of order 3) about the fixed line through vertices 5 and 8.  

This verifies one of the generator relations in the definition of the Coxeter group. 

Also, all the other relations of 𝐴̃3 are easily verified. The reason why these latter 

operators do not generate an infinite group is that many additional relations are 

satisfied. 

 

Inside this rhombic dodecahedron graph, see Fig. 14, there are two important 

subsets.  First, there is the cube of 8 vertices 2, 4, 5, 7, 8, 10, 12, 14. Also, there 

is the dual octahedron 1, 3, 6, 9, 11, 13.  The group acts on these elements 

separately forming two orbits. 

 

The group generated by these elements xi is of order 24 and isomorphic to S4 (e.g. 

by a Magma calculation). 
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Interestingly, there is another subgroup of the group B3 isomorphic to S4 that is 

the group of rotations. We can list these here and see that the different types 

correspond to the conjugacy classes of S4.  Note that the rotations are about lines 

connecting opposite points on the rhombic dodecahedron. 

 

• Identity, e 

• 6 rotations at 6 vertices of octahedron by 90 degrees, (1234) 

• 3 rotations at 6 vertices of octahedron by 180 degrees, (12)(34) 

• 8 rotations at 8 vertices of cube by 120 degrees, (123) 

• 6 rotations at the 12 centres of the rhombic faces, (12) 

The sizes of the conjugacy classes match: conjugate permutations are those with 

the same cycle structure e.g. the permutations (12), (13), (14), (23), (24), (34) 

form the conjugacy class containing (12).  Since 1+6+3+8+6 =24 we have the 

entire group S4 represented by the collection of rotations. 

8. Shells in the Crystal  

In this chapter we summarize how the shells work in the crystal using the 

coordinate system (x, y, z). The shells represent the electron layers going out from 

the nucleus, but in the crystal model they also contain the layers of protons and 

neutrons that are associated with the electrons. The energy level is represented by 

the value of z which is also related to the shell number.  

- Shell 1: z in [i −  1, i], the lowest energy innermost shell.  

- Shell 2: z in [i, i + 1]. 

- Shell 3: z in [i + 1, i + 2]. 

- Shell k: z in [i + k −  2, i + k − 1], top outermost shell.  

The top shell is directly observable but below that the atom is not directly 

observable. This gives a reason for the existence of unseen connections such as 

teleportation and entanglement in quantum mechanics. 
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If an electron Y transfers via a wave function or some outside stimulus (an 

energetic photon), this does not restructure the crystal which remains invariant. 

We could detect the electromagnetic field via the RY structures within the crystal, 

but there are other forces such as the strong force which are hidden away in the 

depths of the crystal.  

 

9. Subshells 

In classical quantum physics when atoms eject an electron that must generate a 

shell vacancy, and the new vacancies may occur in shell 1 or shell 2 or even 

higher shells. Subsequently, the ejection of an electron initiates a change of all 

vacancies up to the outermost subshell [15, 16]. Based on electron ejection or 

photon emission, scholars discovered subshells contained inside the shells as 

follows: 

 

i. The s-subshell of any shell consists of two electrons maximally.  

ii. The p-subshell of any shell consists of six electrons maximally.   

iii. The d-subshell of any shell consists of ten electrons maximally.  

  

  

 

 Visible layer of the outer shell. 

 

 

 Hidden field of the inner shell.  

Figure 15 He-4 with grey highlighted surface-edges indicates the outer seen world of the atom drawn with OpenSCAD. 
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iv. The f-subshell of any shell consists of fourteen electrons maximally.  

v. All subshells split into pairs of electrons of opposite spin. 

 

 

 

Figure 16 The two atomic graph papers illustrate the shells and the subshells and how many electrons 

Y are contained in the various subshells. 

 

In the crystal model the subshells in a certain shell (one AGP) surround the 

previous one, going out from the centre.  Lines of various colours denote these 

subshells: 

• red ↦ s. 

• green ↦ p. 

• black ↦ d. 

• blue ↦ f. 

• red ↦ g. 

• green ↦ h. 

 

Each electron in a proton is numbered Yi starting with i = 0 from the middle red 

s-subshell going in anticlockwise spiral outwards.  This gives us also the 

numbering of the proton that contains the corresponding electron inside each 

deuteron.  This numbers each deuteron from the electron-proton inside. The 
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electrons in the neutrons are therefore not specifically numbered but inherit 

specific numbers from the neutrons that contain them. 

 

10. Quantum Numbers Explained by the Crystal 

The location and energy of every electron in an atom is determined by a set of 

four quantum numbers that describe the different atomic orbitals and spins.  

Classically, orbitals are a region of probability (given by a wave function) where 

an electron can be found in space. There are subshells (of types s, p, d, f, …) with 

different shapes. In addition, the more electrons in an atom, the more orbitals are 

needed to accommodate them all.  

 

10.1  Principal Quantum Number  

The first quantum number is the principal quantum number n which can have any 

positive integer value. A higher energy level of this number usually indicates a 

further distance away from the nucleus [17]. In the atomic graph paper, the 

quantum number is indicated by the value of z (the vertical direction in the 

crystal).  

 

10.2  Orbital/Azimuthal Angular Momentum Quantum Number  

The next quantum number is the orbital angular momentum quantum number 𝑙 

with value (from zero to n −  1). These are also labelled s, p, d, f, g… For 

instance, if there is a quantum number n = 3 then 

𝑙 =  0, … . , n − 1, 

⇒ 𝑙 =  0, 1, 2 subshells called s, p, d. 

In standard physics the value of  𝑙 corresponds to an orbital topological shape. 

Thus, the s-subshell is a spherical shape, and the other subshells are split into 

several pieces. In the crystal the s subshell is topologically a sphere (the He-4 

atom), while the higher subshell p is a torus, and further out they split into pieces. 
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10.3  Magnetic Quantum Number  

The third quantum number is the magnetic quantum number M𝑙. This number M𝑙 

can have an integer value anywhere from negative 𝑙 to positive 𝑙. For instance, if 

we have 𝑙 =  2, then it can take five different values: 

M𝑙 =  −2, −1, 0, 1, 2.  

This quantum number basically determines how many pairs of electrons of 

opposite spin there can be per energy level. In the crystal graph paper AGP these 

pairs are formed by electrons symmetrically situated on opposite sides of the 

central point. 

 

10.4  Spin Quantum Number  

The last quantum number that an electron possesses is the spin quantum number 

Ms. This Ms has a value either - ½   or + ½ [17].  

 

In conclusion, in quantum theory, every electron in an atom has a unique set of 

quantum numbers, so no two electrons can have precisely the same quantum 

numbers as stated by the Pauli Exclusion Principle [2]. In the crystal model, an 

electron is joined to a specific proton. The spin of a proton and its daughter 

electron are the same and the Pauli principle is evident from the unique 

positioning of electrons and other particles in the crystal.    

    

 

Figure 17 Two electrons of opposite spins and protons in the s-subshell from AGP1. 
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11. Spin Theorem 

In this section we prove the spin theorem.   

 

We can show the theorem about spin of a particle, calculating it from the external 

surface properties.  

 

The spin of the triangular face depends on the numbering of its vertices in the 

crystal. Consider Fig. 2 and Def. 3.3. A tetrahedron of even spin has four kinds 

of triangular faces, 012, 031, 023, 132 looking from the outside and going 

clockwise around each face. On the other hand, a tetrahedron of odd spin has 

triangular faces, 021, 013, 032, 123 going clockwise. Thus, the spin of a 

tetrahedron can be calculated from the orientation of just one face e.g. 012. Using 

this observation we obtain the spin theorem that follows.  

 

Theorem 11.1: The spin of a particle can be calculated from the spins of the 

triangles on its surface. 

 

Proof: The spin of a particle is the sum of the spins of its constituent tetrahedra; 

see Chapter 1. In a particle there are triangular faces that are internal to the 

structure. These spins cancel out because spins are opposite on each side of the 

face. Therefore, the total spin can be calculated from the 012 triangles on the 

outside surface. Similarly, the other triangles 013, 023 or 123 could have been 

used to calculate the spin. 

 

Note that [18, Sec. 7.2] contains a similar theorem about charge: the triangular 

faces can be categorised by their colours and how they connected to another 

colour. For example, a Ry triangle is a red face of a tetrahedron that is connected 

to a yellow face of the adjoining tetrahedron. Similarly, a Yr triangle is a yellow 
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face of a tetrahedron that is connected to a red face of the adjoining tetrahedron. 

Then the formula for charge of a particle is  

C = R – Y = (Ry – Yr) / 2,  

where Ry and Yr are the numbers of those types of triangles on the surface of 

the particle. This is very similar to the spin theorem we have just proved.  

12. Conclusion  

We interpreted many properties such as spin, charge and antiparticles using the 

crystal. Accurate scientific principles are combined with physical data into the 

crystal model. Symmetry groups of the crystal are calculated, including the point 

group and the full group of the body-centred cubic lattice. We established a spin 

theorem about particles that shows the property of spin is a surface property, 

calculated in the crystal model from the spins of the surface triangles. The model 

leads to a more detailed and general understanding  of the crystal model of 

quantum physics and chemistry. 
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