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 SUMMARY 

Multitasking is common in operational workspaces, from air traffic control through to 

military command and control. Within many of these environments, efficient processing of 

visual information, such as warning alerts or cues, is fundamental. In this thesis, I explore 

whether increasing task load reduces visual processing efficiency. More specifically, I 

examine whether efficiency decreases when people are engaged in a demanding concurrent 

task, and whether display characteristics such as clutter, target salience, and signal location 

modulate processing efficiency.  

In the first study, participants performed a visual target recognition task either by 

itself, or while engaged in a visuo-manual tracking task. Analysis of response times revealed 

that processing was consistently limited-capacity when targets were large enough to be 

discriminated in peripheral vision (Experiments 1 & 2), and was super-capacity when targets 

were small enough to demand serial visual attention (Experiment 3). However, I found no 

difference in visual processing efficiency as task-load increased. 

The second study replicated Study 1, but for displays absent of any distractors. 

Consistent with the earlier experiments, processing capacity was consistently limited capacity 

and did not vary as a function of task load. 

The third study assessed the effect of target location on visual processing under load 

by manipulating the location of target information within the visual field. Participants 

responded to targets appearing at either high or low eccentricities (Experiment 1), or else in 

the upper or lower visual field (Experiment 2), while performing the tracking task. Processing 

efficiency was consistently capacity-limited and did not vary between target locations in 

either experiment.  

The fourth study examined changes in processing efficiency associated with 

manipulating both task load and target–distractor discriminability. Overall, highly 



 
xi 

discriminable targets were processed with greater efficiency than poorly discriminable 

targets, but efficiency was again similar across load conditions. These findings suggest 

increasing the discriminability between targets and distractors is more effective for increasing 

processing efficiency than reducing task load.  

The fifth study applied the basic dual-task paradigm from the earlier experiments to a 

higher-fidelity simulated military task. Participants monitored for visual targets within a 

simulated humanitarian aid scenario while either monitoring (low load) or teleoperating (high 

load) an unmanned vehicle. Despite greater mental workload during teleoperation, 

monitoring performance did not vary between conditions and was extremely poor across the 

board. 

These studies demonstrate one robust central finding: that increasing task load does 

not reduce processing efficiency for visual information. The studies also show that, in 

general, processing efficiency is limited capacity, being less efficient than a standard parallel 

model. Finally, I find that target salience, but not target location or distractor presence, is 

effective at increasing capacity. These findings have implications for display design of 

complex operational environments that optimise operator responding under concurrent task 

load. 
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 CHAPTER 1: INTRODUCTION 

Measuring Capacity:  

An Introductory Guide to Assessing Attentional Limitations 
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Measuring Capacity:  

An Introductory Guide to Assessing Attentional Limitations 

“Capacity, carefully defined, carefully measured by converging operations, and 

carefully localized in a specific system architecture, can help us predict and explain 

behavior. ” (Kantowitz, 1985, p. 172) 

There is a limit to the amount of information we can process at any particular moment 

in time. Not only are we limited in how much information we can take in from a quick glance 

at a detailed painting, but we also cannot keep up with 10 different conversations at once. The 

nature and severity of these limits is less clear, however. Since the mid-1900s, psychologists 

have attempted to measure cognitive processing capacity. Cherry (1953; 1954) began this 

work with a series of dichotic listening experiments, with the aim to understand how people 

process two sets of speech simultaneously. By assessing what information was picked up 

automatically from an unattended message while attention was focused on the other ear, 

Cherry identified limits in the ability to process concurrent auditory channels. A few years 

later, Miller’s (1956) seminal work on storage capacity in the short-term memory system 

demonstrated limits on the number of items that could be held in short-term memory. Taking 

into account these examples, Moray (1967) developed a general model of human information 

processing as a limited-capacity system.  

Early attempts to explain human information processing drew on information theory 

(Attneave, 1959; Garner, 1962), also known as communication theory (Shannon, 1948). This 

approach viewed the human as a communication channel through which information passed 

at a given number of ‘bits’ per second. Although cognitive psychologists later lost interest in 

information theory, the desire to measure the transmission of information from an external 

source through the human information processing system continued. Over the 60-odd years 

since information theory was introduced, a variety of different techniques for assessing 
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processing capacity have emerged. This broad range of techniques lead us to our central 

question: how can we best diagnose capacity limitations? 

Here, we review a variety of methods used by cognitive psychologists to examine 

capacity limitations in human performance. Though we recognise the importance of capacity 

limitations in memory and auditory processing, here, we focus on the methodologies used to 

assess limitations in visual perception. In the first section, we introduce how capacity has 

been defined over the years, and touch upon issues relating to capacity measurement. In the 

second section, we discuss a variety of techniques that involve manipulating display 

characteristics, such as set size, within a single set of stimuli. In the third section, we 

introduce a selection of dual-task methodologies that assess resource competition between 

concurrent tasks. In the fourth section, we discuss a more current technique that addresses 

some of the earlier paradigms: Systems Factorial Technology (SFT; Houpt, Blaha, McIntire, 

Havig, & Townsend, 2013; Houpt, Blaha, Base, & Burns, 2013). Finally, the last section 

recounts several of the main issues researchers should consider in the search for capacity 

limitation. By the end of this paper, we aim to provide clear insights into how to best measure 

the elusive concept of capacity.  

The What, When, Where, and How of Capacity 

Conceptualisations of capacity typically fall into three general categories. These 

categories view capacity as either the amount of space available, the amount of cognitive 

effort expended, or the rate of processing or ‘bandwidth’. Space-based definitions conceive of 

capacity as the quantity of information that can be processed; the larger the capacity, the 

more information that can be processed at any one time. Sperling’s (1960) early research 

assessed the number of items a person could immediately recall from a visual display; he 

described this phenomenon as the ‘span of apprehension’. Similarly, Broadbent (1965) 

viewed capacity within the context of available ‘states’ or resources within the nervous 
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system. In his view, capacity referred to the size of the set of available states. Effort-based 

definitions of capacity focus on the amount of work a cognitive system must invest to 

successfully perform a task. Examples of these include Kahneman’s (1973) notion of 

expending psychological ‘effort’ or Navon and Gopher’s (1979, p. 215) description of the 

“amount of resources invested”. Finally, speed-based definitions of capacity focus on the 

speed or efficiency of information processing. These definitions focus on changes to channel 

processing rates as a system’s load is increased (e.g., Townsend & Nozawa, 1995; Wenger & 

Townsend, 2000). Townsend and Ashby (1983, p. 13) defined capacity as “how a system 

reacts with regard to speed and accuracy when its processing load is varied”.  

The goal of measuring capacity is to identify how efficiently a cognitive system is 

working. Townsend and Ashby (1983) provide general definitions for how we can 

conceptualise different levels of capacity performance based on the speed or processing 

efficiency definition. Limited capacity refers to a model where an increase in the number of 

items to be processed slows processing rates or decreases accuracy. Unlimited capacity refers 

to the situation where an increase in the number of items to be processed does not change 

individual channel processing rates or accuracy. In other words, performance under an 

unlimited capacity model is unaffected by an increase in set size or task load. Finally, in a 

super-capacity system, increasing load increases processing rates or task accuracy.  

One important consideration when assessing a system’s capacity is to first specify the 

level of processing we wish to measure. We can consider the finer-grained processing of the 

individual channels or subsystems, or else we can focus on the more course-grained 

collective operation of subsystems reflected in performance of the system as a whole 

(Townsend & Ashby, 1983). Take, for example, the situation of a detective unit attempting to 

solve crimes. To reach a solution, a unit assigned to the case must investigate some number 

of leads. Imagine a unit of four agents is assigned the case. The unit would constitute a multi-
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channel system, with each agent acting as a separate ‘channel’ for following up possible 

leads. Alternatively, if the agency assigned a single detective to the case, the unit would 

constitute a single-channel system. Imagine that the number of leads to be investigated is the 

workload, and that each case may have between 1 and 10 critical leads to be pursued. 

Regardless of the number of channels operating in the system, if we are interested in 

understanding how quickly individual detectives (i.e., channels) are able to follow a lead to 

its conclusion, we are focusing on processing efficiency at the level of the individual units. In 

this case, if the time required for detectives to follow up each lead increases as the total 

number of leads increases—perhaps because the agency’s resources limit the rate at which 

detectives can follow up multiple leads simultaneously—we can say the detectives are 

performing with limited capacity. If individual detectives are able to chase leads at the same 

rate, regardless of the number of possible leads, performance is unlimited capacity. Such a 

situation would constitute one example of context invariance; the assumption that the 

processing rate for any given channel does not vary with changes to the number of channels 

operating (Ashby & Townsend, 1986; Blaha & Houpt, 2015). Note that context invariance 

does not only apply to unlimited capacity systems, but may also occur in other systems, such 

as in serial processing. Lastly, if increasing the number of leads to follow up increases how 

quickly individual detectives chase up each lead, the detectives are operating with super-

capacity.  

If, on the other hand, we are interested in assessing capacity of the agency as a whole, 

we are focusing on the efficiency of the system. From this perspective, each detective 

represents a single channel that contributes to how quickly the detective agency solves the 

case. When measuring capacity at the system level, we compare system performance relative 

to predictions of an unlimited capacity model in which channels operate completely 

independently and in parallel. We call this the standard parallel model, or the unlimited 
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capacity independent processing (UCIP) model (Houpt & Townsend, 2012). We go into 

more details about the UCIP model in a later section. For now, it is important to understand 

that if, relative to the UCIP, the agency takes longer to solve the case as the number of leads 

to be investigated increases, we can describe the agency as functioning with limited capacity. 

If increasing the number of leads does not change how quickly the agency solves the whole 

case relative to the UCIP, we have evidence for unlimited capacity. Finally, if a greater 

number of leads results in the agency solving the case faster than predicted by the UCIP, we 

can say the detective agency is operating with super-capacity. 

A critical point, here, is that the system may operate at a different level of capacity 

than its individual units. There are several reasons for why this situation may occur. One 

reason is the system’s architecture, or in other words, the way in which the different 

processing channels are structured (Townsend & Ashby, 1983; Townsend & Nozawa, 1995). 

Systems that require one channel to finish processing before the next can begin are described 

to be operating under a serial architecture. In our detective analogy, if, to solve the case, each 

lead needed to be investigated in a specific order, we would describe the process as serial. For 

instance, if finding the gun used as a murder weapon (first lead) leads an officer to investigate 

the shooting range from which the gun was stolen (second lead), we would have a serial 

process. In contrast, a system that allows all items to be processed concurrently is parallel. In 

our detective example, parallel processing would be occurring if the detectives can process all 

leads simultaneously, such as chasing up questionable offshore accounts while also carrying 

out DNA swabs and so on. Finally, systems that operate in parallel but that allow information 

to be accumulated across channels are coactive. Under a coactive architecture, all detectives 

could be working in parallel; however, rather than working independently, detectives could 

exchange information between one another. For example, two detectives that interview 

separate subsets of eyewitnesses and then meet to collate their results would constitute 
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coactive channels. In this situation, though all detectives are working in parallel with 

unlimited capacity, the benefit from working in a coactive manner allows the agency as a 

whole to operate with super-capacity.  

Another system characteristic that can affect information processing is the system’s 

stopping rule. If a system is operating with a self-terminating stopping rule, processing of 

individual items can stop as soon as any one target of interest is processed. An example of 

this stopping rule would be if a case involves both leads critical to solving the case and dead 

ends, and the detective agency must continue investigating all possible leads until a critical 

‘case-cracking’ lead is solved. Alternatively, a system may operate with a first-terminating 

stopping rule, which is where all possible items are targets, and the first channel on which a 

target is processed leads to a response. This type of stopping rule would occur if a case 

involved any number of possible leads, but each individual lead was enough to solve the 

whole mystery. Hence, the first lead solved results in a conviction. Finally, if a system must 

process all items in a set before ending processing, the system is described as using an 

exhaustive stopping rule. In the case of the detective agency, an exhaustive stopping rule 

would require all possible leads to be investigated before the murderer could be identified. 

Changing the stopping rule changes the benchmark against which we assess capacity for any 

given system. Thus, though changing a system’s stopping rule will not change how 

efficiently that system processes, it will change how we interpret the system’s processing.  

Finally, information processing can also vary depending on whether the channels 

operating are stochastically dependent or independent. Independently-operating channels, 

such as detectives working independently of one another, will not influence how other 

concurrent channels (i.e., detectives) process. Alternatively, if channels are stochastically 

dependent, finishing times for different channels are correlated. For example, two detectives 

could be stochastically-dependent if the time one detective takes to investigate a lead is based 
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on the time of the other detective. In situations that violate stochastic independency because 

of inter-channel correlations, a system may operate with limited- or super-capacity, even if 

the individual channels are operating with unlimited capacity. 

We can also differentiate resource models of information processing from structural 

or bottleneck models. Resource models assume a store of fungible mental assets or energy 

that can be divided or reallocated between cognitive processing operations. Interference 

between concurrent tasks occurs when task demands exceed the available resources 

(Kahneman, 1973). Resource models allow information to be processed in parallel when 

demands are low (and therefore do not exceed resources). However, when demands exceed 

resources, resource models suggest information will process in serial. Whereas some resource 

models emphasise a single, general capacity resource, which can be depleted by general 

cognitive load (Gopher & Sanders, 1984), others suggest there are different types of 

resources available and concurrent tasks will only interfere when tasks require similar 

resource pools (e.g., Navon & Gopher, 1979; Wickens, 1981; Wickens, 2008). Resource 

models contrast with structural, bottleneck, or single-channel models that argue resources 

cannot be shared at the bottleneck stage (e.g., Harold Pashler, 1994a; Ruthruff, Pashler, & 

Klaassen, 2001). Therefore, if multiple items require processing, each item must be processed 

one at a time. If an item is easy to process, rather than leaving spare resources available to 

process other items, as assumed by resource models, bottleneck models assume that the 

specific item will simply process faster. Thus, at no stage in the bottleneck can resources be 

shared between competing demands. The central difference between these two types of 

models, therefore, comes down to system architecture: whereas traditional capacity models 

allow parallel processing if demands are low enough, bottleneck models necessarily assume 

serial processing of information.  
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Before moving on to the methods, we first want to clarify that our focus of the current 

paper is about assessing capacity at the system-level. Thus, in the following sections we 

discuss a range of different ways in which researchers have attempted to capture processing 

efficiency for a whole cognitive system, rather than just for the individual channels.  

Single-Task Paradigms 

Early methods for assessing capacity involved manipulating the characteristics of a 

single stimulus input. These approaches, also known as single stimulation paradigms, assess 

performance at different levels of difficulty to measure how performance changes as a 

function of task difficulty (Kantowitz, 1985). Thus, in single stimulation studies, capacity is 

inferred from changes in speed or accuracy as a function of changes to different variables, 

such set size or display sequence.  

Choice Reaction Time Paradigms 

Some of the earliest studies in the field of human information processing began by 

testing the relationship between the number of different response alternatives and response 

time (RT) to detect a target. In the 1950s, Hick (1952) and Hyman (1953) provided early 

attempts at measuring processing capacity by analysing the set size/RT relationship. By 

asking participants to respond to one stimulus out of a set of n possible items, each tied to a 

different response, both Hick (1952) and Hyman (1953) examined changes in RT as the 

number of possible items increased. They found that that RT was proportional to the number 

of stimulus alternatives.  

Later on, Sternberg (1966) developed a memory scanning paradigm to assess how 

efficiently people could retrieve items from memory as the number of remembered items 

increased; he described this number as their ‘span of immediate memory’. Observers in 

Sternberg’s experiments memorised a list of 1 to 6 digits and were then presented with a test 

item. Immediately afterwards, they would make a speeded ‘Yes’/‘No’ response to indicate 
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whether the test item had been in the initial list. Similarly to the Hick-Hyman (Hick, 1952; 

Hyman, 1953) findings, Sternberg found a direct linear relationship between list length and 

RTs. He argued that the increase in RT associated with each additional item in memory was 

too great to be explained by parallel processing, and instead suggested that this pattern 

provided evidence that items in memory were processed in serial (though see McElree & 

Dosher, 1989, for a contrary conclusion).  

Both the choice RT and memory scanning paradigms have become popular methods 

for attempting to assess processing efficiency and system architecture (e.g., Jensen, 1979; 

Rensink, 2000; Treisman & Gelade, 1980; Wickens, Braune, & Stokes, 1987). In their 

seminal paper on feature integration, for instance, Treisman and Gelade (1980) compared RT 

search slopes for basic, single feature items (e.g., a red O among blue Os), with slopes of 

more complex, conjunction feature items (e.g., a red O among blue Os and red Vs). 

Compared to single feature search, which produced very shallow RT slopes, conjunction 

search RTs increased dramatically with increases in display set size. Treisman and Gelade 

argued that rudimentary features are registered in parallel at an early stage of visual 

processing, but that veridical perception of feature conjunctions requires serial processing.  

Despite its popularity, the manipulation of set size as a technique for assessing 

capacity has been criticized for several reasons. Critics have pointed out that changes in RTs 

as set size increase not only reflect changes in processing rate, but can also be influenced by 

statistical decision noise (e.g., Huang & Pashler, 2005; Huang, Pashler, & Junge, 2004). 

Statistical decision noise refers to the accumulating risk of error that results when set size 

increases. Assume that each item among some set of n has a non-zero probability p of 

producing an error response. The probability that all n items are processed without error is 

then (1–p)n, where 1–p is greater than zero but less than one. Thus, as n increases, the 

probability that all n items are processed without error decreases, even if p, the probability 
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that any single item will be processed erroneously, remains constant (Huang & Pashler, 

2005).  

Eye movements may also affect the steepness of RT slopes. Because larger set sizes 

make detection more difficult, observers are more likely to serially scan items in larger 

displays than they are in smaller displays. The additional time resulting from fixating 

individual items can then increase RTs for larger displays, creating steeper search slopes than 

for smaller displays. 

More fundamentally, Townsend and colleagues (e.g., Townsend, 1971; Townsend & 

Thomas, 1994; Townsend & Wenger, 2004) have shown that RT slopes are non-diagnostic 

for measuring capacity or architecture. Contrary to Sternberg’s argument that positive RT 

slopes are evidence of serial processing, Townsend demonstrated limited-capacity parallel 

processing may produce positive linear RT functions, mimicking the effects of a serial model.  

Thus, set size slopes are limited with regards to drawing inferences about capacity as they 

tend to conflate architecture with capacity.  

Whole versus Partial Report  

In an attempt to measure the ‘span of apprehension’, Sperling (1960) introduced the 

methods of whole and partial report. In whole report, participants are presented a brief 

display of multiple items and are then asked to recall as many items as they can. In partial 

report, participants are again presented with a brief display of multiple items, but they are 

only asked to recall a subset of the display. Most importantly, participants are not cued which 

parts to report until after the stimulus has disappeared. Thus, participants are required to 

encode the whole display before recalling the relevant items from memory. Using the whole 

report method for set sizes of between 3 and 12 items, Sperling discovered participants were 

only able to recall, on average, 4-5 items from the whole display, showing a clear limit to 

their performance on the task. When participants viewed a display but were cued to recall 
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only a subset of items using partial report, participants again showed a 4-5 item limit on their 

recall, but this limit was specific to the cued items. In other words, participants could recall 

items from the cued subsets, indicating they had successfully encoded all items at the 

perceptual level. Because participants were able to successfully recall approximately the 

same number of items in both partial and whole report, Sperling concluded that the capacity 

limit of 4-5 items occurred at the level of short-term memory. In contrast, as recall was high 

for items that were cued, he concluded that visual capacity was unlimited. Sperling’s findings 

were pivotal in distinguishing between capacity limits in perception and memory, showing 

that a person’s capacity to perceive visual information is much greater than his or her 

capacity to remember it. 

Detection Methods 

To circumvent the short-term memory constraints that limit whole report 

performance, Estes and Taylor (1964) devised an alternative method of ‘apprehension span’ 

that required only a present/absent decision about a single target within the display. An array 

of letters was displayed briefly, and the participant’s task was to determine which of two pre-

specified target letters appeared in the display. The set size varied between 3 and 16, but 

unlike the studies discussed above that focused on set size effects on RT, Estes and Taylor 

shifted the focus of analysis to detection accuracy. By modelling the detection data, Estes and 

Taylor estimated the mean number of items processed within a display as the number of 

elements increased. Similarly to the whole/partial report methods, the detection method 

showed no evidence of a capacity limit with increasing set size (Estes & Taylor, 1964, 1966).  

Although they found evidence of unlimited capacity, and thus, the location of items 

within the display should not have affected performance, a possible limitation of Estes and 

Taylor’s (1964) original study was that as set size increased, so too did the spread of the 

items from more central to more peripheral locations. To account for this potential 
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eccentricity effect, further studies manipulated set size while holding the spread of items 

approximately constant (Estes & Taylor, 1966; Estes & Wessel, 1966). Estes and colleagues 

(Estes & Taylor, 1966; Estes & Wessel, 1966) varied set sizes among 8, 12, and 16 items by 

ensuring that each row and column contained 2, 3, or 4 items, respectively, minimising any 

eccentricity effects due to set size. Similarly to their original study, they found the number of 

items processed within a display increased with the number of items within the display, and 

hence, they found no evidence of a capacity limit. 

In a further attempt to control for stimulus eccentricity, Eriksen and Spencer (1969) 

developed a rapid letter sequence paradigm. On each trial, the participant saw a sequence of 

letters and was asked to report whether or not the sequence contained a designated target 

letter. The items appeared in a set of ten locations forming an imaginary circle around a 

fixation point. The experimenters manipulated sequence length from 1 to 9, along with the 

interval between successive items. Increasing the interval between items was expected to 

enhance processing of each individual element, and hence, any evidence for a capacity 

limitation would appear as greater detection accuracy as the inter-stimulus-interval increased. 

Surprisingly, the increased time interval between stimuli did not aid performance; detection 

accuracy remained approximately constant as the interval between stimuli increased from 5 

ms to 3000 ms. However, as with the previous detection methods, Eriksen and Spencer also 

found a clear decrease in performance as a function of sequence size; though correct 

detection rates were consistent across sequence size, false alarm rates increased with 

sequence length. Eriksen and Spencer suggested that the lack of any inter-stimulus-interval 

effect was incompatible with a limited capacity model. Because processing efficiency of 

sequence items did not increase with increases in inter-stimulus-intervals, Eriksen and 

Spencer argued that a serial encoding process could not account for their findings. Instead, 

they suggested their results could be explained by either a multichannel encoder that could 
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process multiple channels concurrently, or else an attentional filter that could screen out 

irrelevant information (Broadbent, 1958). Furthermore, they suggested that the sequence 

length effect on error rates reflected statistical decision noise rather than indicating a 

performance limitation (Eriksen & Spencer, 1969). Thus, Eriksen and Spencer argued that 

they had had found evidence of an independent parallel model with processing efficiency 

being independent of other items being processed. 

Simultaneous versus Successive Displays 

Shiffrin and Gardner (1972) devised an alternative method for assessing visual 

capacity, in which some number of stimuli to be processed are either presented 

simultaneously for an interval of i ms, or in successive intervals of i ms each. The logic of the 

method is simple: both the simultaneous and successive displays require the same number of 

items to be processed (e.g., 4 items total), and are therefore matched for statistical decision 

noise. However, manipulating whether all items appear simultaneously or in successive 

intervals varies processing load that is imposed within a given amount of time. Thus, poorer 

performance with simultaneous displays than with successive displays provides evidence for 

a capacity limitation.    

In the simultaneous displays of Shiffrin and Gardner’s (1972) study, for example, the 

four corners of a square were each occupied with one item, one of which was a target. In the 

successive displays, two of the items appeared in one interval and the other two appeared in a 

second interval immediately afterwards. The exposure duration for all intervals was equal. 

For instance, if the total exposure duration of the simultaneous display was 50 ms, the 

exposure duration for each interval in the successive displays was also 50 ms. Following the 

displays, participants reported the location of a target item. Because successive displays 

reduced the number of items to be processed at any one time, they should have allowed better 

performance than simultaneous displays, but only if capacity was limited. If capacity was 
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unlimited, the two display types should have produced similar levels of performance. Shiffrin 

and Gardner found no effect of display type in their study and thus inferred that perceptual 

processing capacity was unlimited.  

More recent studies using the simultaneous/successive (SIM/SUCC) paradigm have 

found no evidence of capacity limits in symmetry detection (Huang et al., 2004), but have 

noted larger differences between simultaneous and successive displays when an observer 

must monitor for two or more targets (Duncan, 1980b). SIM/SUCC paradigms have also 

revealed differences in processing between different types of visual search tasks. Huang and 

Pashler (2005) used a SIM/SUCC paradigm to test for capacity limits in a difficult feature 

search, a conjunction feature search, and a spatial configuration search. Spatial configuration 

search, where a target is defined by the spatial arrangement of line segments rather than any 

single feature, has been shown to engender less efficient processing than that of conjunction 

or single feature search (Wolfe, 1998). Despite finding very steep RT search slopes across 

tasks, Huang and Pashler observed a successive advantage only for the spatial configuration 

task. In other words, both the difficult feature search and difficult conjunction search showed 

no evidence of a capacity limit even though their steep RT slopes appeared to indicate highly 

inefficient processing (Sternberg, 1966). These findings reiterate that RT search slopes are 

not an accurate measure of capacity.  

Though the SIM/SUCC paradigm is considered better than many of the previous 

techniques already presented, it is still limited as the time between the two intervals in the 

successive display could introduce memory losses that could reduce performance (Duncan, 

1980a). For example, if a target appeared in the first interval of a successive display, the 

participant might forget its location before the response is prompted. Thus, even if visual 

perception was limited capacity, memory losses could wash out any difference between 

successive and simultaneous displays, mimicking the effect of unlimited capacity. 
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SIM/SUCC designs that minimise memory load, such as using a binary response choice, 

reduce the likelihood that memory will contaminate performance.   

Partial Discrimination 

During the 1990s, Palmer and colleagues (Palmer, 1990, 1994; Palmer, Ames, & 

Lindsey, 1993) devised a method for assessing capacity that could circumvent the sensory 

and decisional confounds associated with visual search set size effects. Recognising that 

previous methods had confounded set size with eccentricity and positional uncertainty, 

Palmer (1990) developed a different type of paradigm. Palmer’s paradigm involved 

discriminating between features of briefly presented displays. In Palmer’s studies, the feature 

of interest was line length. In each trial, the participant viewed a fixation display, before 

viewing a brief study display containing between one and four stimulus lines of varying 

lengths positioned around a central fixation point. Finally, a test stimulus line appeared in one 

of the four locations of the study stimuli. The participant’s task was to judge whether the test 

stimulus line was longer or shorter in length than the line that had appeared in the same 

location in the study display. Participants responded by making a two-alternative forced-

choice judgement.  

By positioning items equally close to fixation, Palmer (1990) ensured that increasing 

set size from one to four items did not increase the eccentricity of items within the displays, 

and by positioning items equally distant from one another, he controlled for sensory effects 

such as lateral masking. By ensuring that sensory, decision, and response processes were 

matched across set sizes, Palmer could conclude any effect of set size on discrimination 

accuracy was due to attentional limits. His data showed that the threshold for discriminating 

between line lengths increased as the number of items in the display increased. He concluded 

that increases in set size compromised perception and memory for line lengths.  
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In a follow-up experiment, Palmer included a cueing paradigm to further control for 

potential sensory interference. To do this, Palmer differentiated between the total number of 

items that were displayed in a set and the number of cued or ‘relevant’ items. Holding the 

total number of items fixed while manipulating the number of cued items controlled for 

sensory interference while varying attentional load. In one experiment, he manipulated the 

displayed set size between 2 and 4 items, holding the number of relevant, or cued, items 

constant. Participants saw a fixation display, and then received a cue that directed them to 

attend to the two items on one of the diagonals of an imaginary square. Following the cue, a 

line segment appeared in each of the two cued locations, or else a line segment appeared in 

all four locations. Finally, a test stimulus appeared in either one of the two cued locations. 

The participant’s task was to determine whether the test stimulus matched the length of the 

item that had just appeared in the same location. Data showed no evidence of a display size 

effect, ruling out a sensory explanation of the set size effects seen in the first experiment.  

A second cueing experiment tested for any effect of attention, this time holding 

display size constant at 4 items while manipulating the relevant set size to either 2 or 4. Data 

showed a decrease in performance as the number of relevant items increased, implying an 

attentional explanation for the set size effect on line discrimination thresholds. In later 

studies, Palmer and colleagues examined discrimination set size effects for larger sets sizes 

and complex displays (Palmer et al., 1993) and for a variety of stimulus types (Palmer, 1994). 

Data revealed similar set size effects across different search tasks and stimuli, and they were 

fit well by a model that assumed attentional capacity limitations absent of statistical decision 

noise.  

General Issues with Single-Task Paradigms 

Over the history of using single-task or single-stimulation methods for measuring 

capacity, several important issues have emerged. One of the main issues concerns set size 
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effects on RT and how these effects are interpreted. As mentioned above, a set size effect can 

result from a processing capacity limitation, but can also result from sensory limitations, 

decision noise, or similar confounds. In contrast, the later paradigms, such as the SIM/SUCC 

and partial discrimination paradigms, control for those potential confounds.  

Another important point to mention here is that, in general, single-task paradigms 

have revealed similar conclusions about visual capacity. Across a variety of different 

paradigms, from the whole and partial report method (Sperling, 1960) to detection tasks (e.g., 

Eriksen & Spencer, 1969; Estes & Taylor, 1964, 1966) and even the SIM/SUCC paradigm 

(Shiffrin & Gardner, 1972), researchers have found a consistent pattern: that many basic 

judgements, such as basic letter recognition, are made with unlimited capacity. In contrast, it 

is only for more complex tasks, such as line length discrimination (e.g., Palmer, 1990, 1994; 

Palmer et al., 1993) or spatial configuration (e.g., Huang & Pashler, 2005), where we start 

finding clear limits to capacity. In other words, capacity limits appear to arise in situations 

where there is a controlled allocation of attention.  

Dual-Task Paradigms 

Dual-task paradigms, or double-stimulation, methods measure capacity by assessing 

performance reductions associated with performing two or more tasks concurrently 

(Kantowitz, 1985). The expectation in a dual-task paradigm is that by ‘saturating channel 

capacity’ (Poulton, 1965), the combined capacity demands of the two tasks will cause 

interference (Millar, 1975). The standard dual-task paradigm involves comparing single-task 

performance on each task to the performance observed when the two tasks are carried out at 

the same time (e.g., Bourke, 1997; Duncan, Martens, & Ward, 1997; McLeod, 1977; Talsma, 

Doty, Strowd, & Woldorff, 2006). Here, we focus on specific dual-task paradigms commonly 

used to assess processing capacity: the psychological refractory period paradigm, the 
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subsidiary task method, and the analysis of attention (or performance) operating 

characteristics.  

The Psychological Refractory Period 

One of the most well-known dual-task paradigms is the psychological refractory 

period (PRP) method, in which the participant receives two separate inputs, each requiring a 

separate response. The PRP refers to the delay in the response (R2) to a second stimulus (S2) 

that closely follows a primary stimulus (S1) compared to when R2 is performed on its own 

(Craik, 1948; Telford, 1931). Welford ( 1952) proposed the single-channel hypothesis to 

explain the PRP, positing a bottleneck in the response-selection stage of information 

processing. According to this model, the temporal proximity between the S1 and S2 reveals a 

processing bottleneck on the responses to the two stimuli, where the response to S2 can only 

occur once the response stage for S1 has completed. As such, the bottleneck theories attribute 

the PRP to a structural limitation rather than a capacity shortfall (Harold Pashler, 1994a, 

1994b; Ruthruff, Pashler, & Hazeltine, 2003; Ruthruff et al., 2001).  

Despite much support for a bottleneck model to explain the PRP (e.g., Marois & 

Ivanoff, 2005; Harold Pashler, 1994a, 1994b), some theorists have argued that an analytic 

focus on R2, the response time to the second stimulus, ignores a key finding also common in 

most studies: that R1, the response time to the first stimulus, is also inflated in the dual-

response condition (Herman & Kantowitz, 1970; Noble, Sanders, & Trumbo, 1981; Tombu & 

Jolicœur, 2002, 2003). Central bottleneck models predict that R1 will not change as the 

interval between S1 and S2 decreases (e.g., Harold Pashler, 1994a). In contrast, resource 

models assume a graded capacity allocation between tasks, and thus predict that decreasing 

the time between stimuli, as well as increasing the difficulty of the second task, should delay 

R1. Tombu and Jolicœur (2002) tested the effect of secondary task difficulty on the delay of 

R1. Consistent with a shared resource model, they inferred that increasing the difficulty of the 
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secondary task led to a greater amount of capacity allocated to S2, driving resources away 

from S1 and hence delaying R1. Incorporating aspects from both resource-sharing and 

bottleneck models, they proposed a central capacity sharing model that assumed information 

processing comprises of both limited and unlimited capacity stages (Tombu & Jolicœur, 

2002, 2003). According to the model, the limited capacity stages were during the central 

components of information processing. Tombu and Jolicœur used the model to account for 

evidence of both attentional bottlenecks and capacity sharing models in the PRP paradigm.  

However, not all researchers agree that the common delay of R1 in the PRP paradigm 

is evidence of limited capacity. Noble et al. (1981) examined the effects of a variety of task 

characteristics (such as the inter-stimulus interval or the processing demands of the first task) 

on the R1 delay, and found that the delay was independent of these task changes. This finding 

contradicted the predictions of capacity sharing models, which predict that increasing task 

demands should affect the R1 delay. As such, the authors argued that their findings were not 

evidence of a limited capacity model, but reflected concurrence costs, the general ‘overhead’ 

costs of performing two tasks concurrently (Navon & Gopher, 1979). Such costs could mimic 

the effect of a shared resource allocation between tasks, despite being the result of natural 

performance decrements expected by performing two tasks at the same time.  

As an alternative to both the bottleneck and capacity-sharing models, Meyer and 

colleagues (Meyer et al., 1995; Meyer & Kieras, 1997) introduced an adaptive executive 

control model that involved, what they described as, an Executive Process/Interactive-

Control (EPIC) architecture. Meyer et al. argued the bottleneck model was inconsistent with 

evidence that in many situations people can perform multiple tasks concurrently, or evidence 

that training can reduce the PRP effect. In contrast to the bottleneck model, the EPIC 

architecture assumes that people can select responses and perform operations for different 

tasks simultaneously, and that dual-task interference is caused by sensory or motor 
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limitations. Moreover, it assumes that interference between tasks can be reduced by changes 

to task prioritisation and scheduling (i.e., concurrent [parallel] versus sequential [serial] 

scheduling), or through practice. Thus, Meyer et al.’s model assumes that the PRP effect is a 

consequence of task strategy, not evidence of a cognitive limitation. Schumacher and 

colleagues (2001) argued in favour of Meyer et al.’s adaptive executive control model after 

finding minimal PRP effects on concurrent choice RT tasks following practice. They 

interpreted their findings as evidence that performance can vary depending on factors such as 

instructions and task priorities. In addition, they argued that inter-individual differences in the 

size of dual-task interference could be explained by personal preferences with task 

scheduling; daring scheduling produces concurrent task performance, whereas cautious 

scheduling results in performing tasks in succession.  

However, the notion of a strategic or voluntary explanation for the PRP has been 

criticised (e.g., Ruthruff et al., 2003, 2001). Ruthruff et al. (2003) tested whether the PRP 

could be explained by a bottleneck model or EPIC’s strategic model. Because EPIC assumes 

dual-task interference is caused by non-cognitive peripheral sources rather than cognitive 

limitations, Ruthruff et al. used a paradigm that eliminated all non-cognitive sources of 

interference, and that equally weighted the priority of each task. Despite controlling for these 

alternative sources of interference, Ruthruff et al. still found considerable dual-task 

interference, and hence, argued cognitive limitations are critical to explaining the PRP. The 

validity of the adaptive executive control model has also been questioned by studies showing 

little or no reduction in the PRP following changes to task prioritisation instructions (e.g., 

Levy & Pashler, 2008; Ruthruff et al., 2003).  

There is still debate around whether the PRP is best explained by a resource sharing 

model, a bottleneck model (Ruthruff et al., 2003, e.g., 2001), or a combination of the two 

(e.g., Tombu & Jolicœur, 2002, 2003). Navon and Miller (2002) questioned the use of the 
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PRP 2-stimulus, 2-response paradigm for testing between single bottleneck and resource 

capacity theories. They argued that, because the paradigm is “inherently biased in favor of 

queuing” (Navon & Miller, 2002, p. 227), this method will generally show a bottleneck, 

regardless of the underlying processing model. 

Subsidiary Task Method 

The subsidiary task method differs from the PRP in that participants are instructed to 

prioritise a primary task, allowing performance on a secondary (subsidiary) task to represent 

the amount of spare or reserve capacity (Brown, 1966). Though this method may employ any 

of a variety of tasks, possibly the most well-known choice of subsidiary task is the probe RT 

task (Posner & Boies, 1971), described in full below. Given that different primary tasks may 

engender different effects on subsidiary task performance (Brown, 1966), some researchers 

have suggested that spare capacity is best measured using a battery of subsidiary tasks, rather 

than any single task (Kahneman, 1973).  

Probe reaction time tasks. Speeded probe RT is commonly used as a subsidiary task 

for measuring spare capacity in conjunction with a concurrent task. Posner and Boies (1971) 

devised a probe RT paradigm in which the participant responds to auditory probes (subsidiary 

task) while performing a same/different letter match task (primary task). In the letter match 

task, a letter first appeared (encoding stage), followed by a second letter shortly thereafter, 

and the participant was then required to make a rapid ‘same’/‘different’ judgement using a 

key press. Posner and Boies manipulated the timings of the probes at different stages during 

the primary task to assess changes in the amount of probe interference. In addition, they 

measured RTs both to probes on the subsidiary task and to letter stimuli on the primary task 

to assess performance changes at different levels of interference. Posner and Boies found 

probe RTs increased when the probe occurred at specific times during the primary task, such 

as during the response phase of the letter match task. They used these findings as evidence 
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that the probe RT reflected fluctuations in the attentional demands of the primary task, 

concluding they had found evidence of limited capacity performance. Moreover, probe RTs 

did not increase during the appearance of the first letter (i.e., the encoding stage) of the letter 

match task. Thus, they concluded that the stimulus encoding required in the early stages of 

the letter match task did not require processing capacity, but that post-encoding, conscious 

processes, such as rehearsal or response selection, demanded attentional resources. 

To test Posner and Boies’ (1971) conclusion that letter encoding during the primary 

task did not demand processing capacity, Comstock (1973) replicated the original probe RT 

paradigm. In contrast to Posner and Boies, she found increased probe RT interference when 

probes occurred during the encoding stage of the letter match task. She concluded that both 

the encoding of stimuli and response execution required resource capacity. Similar 

conclusions have been made by other researchers who have found processing limitations 

during stimulus encoding due to interference from a competing probe (e.g., Millar, 1975; 

Ogden, Martin, & Paap, 1980; Paap & Ogden, 1981; Shwartz, 1976). These varied findings 

highlight one of the issues regarding inferring interference via changes in RTs on the letter-

match task and to the probes.  

In addition to interpretation issues, several researchers have also questioned whether 

the probe RT task is a valid measure of central capacity (e.g., Kantowitz, 1985; McLeod, 

1978; Shwartz, 1976). Shwartz (1976) modified Posner and Boies’ (1971) original study to 

test for between- and within-modality effects on probe RT performance, pairing a visual 

primary task with either a visual or auditory probe task. He found that responses were slower 

to visual probes than to auditory probes. Because the probes occurred during the encoding 

stages of the letter-match task, he suggested this effect provided evidence for a capacity 

limitation during the perceptual processing stage.  
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Following on from Shwartz’s (1976) findings, McLeod (1978) further tested whether 

probe RT was an effective measure of central capacity, irrespective of response modality. For 

this purpose, he combined the primary letter match task with an auditory probe task, but he 

manipulated response modality. Half of the participants responded to the auditory probes 

manually, with a button press, and the other half responded by making a vocal “bop” sound. 

Data showed clear differences in RT between the two modalities. Not only were vocal 

responses slower than manual responses, but the magnitude of probe interference on the 

different stimuli in the letter match task differed depending on probe modality. More 

specifically, whereas vocal probe RTs did not differ between same and different letter match 

trials, manual probe RTs were longer when letter match trials were different than when they 

were the same. Thus, similarly to Shwartz, McLeod argued that the probe RT task was not a 

valid measure of a generalised central capacity, but instead gave evidence of modality-

specific resource limitations.  

Despite some findings identifying clear inter-modality differences in probe RT 

interference, others have argued that interference is generally consistent across task type (e.g., 

Proctor & Proctor, 1979). Recognising limitations in the design of Shwartz’ (1976) study 

comparing auditory and visual probes on RT, Proctor and Proctor (1979) tested whether the 

shape of the probe RT function varies over time, depending on probe type. In contrast to 

Shwartz, they found no difference between auditory and visual probes in influencing the 

probe RT function, so long as participants were aware of the modality of the probe. Whereas 

both types of probes produced identical RT functions when participants were aware of the 

probe modality, RTs to auditory probes were considerably longer than those to visual probes 

when the probe modality was not known. Surprisingly, the delayed RTs on the auditory task 

directly contrast the earlier modality-specific findings that show longer RTs when pairing the 

visual primary task with a visual probe (e.g., Shwartz, 1976). Proctor and Proctor argued that 
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this auditory task interference represented evidence that interference was due to central 

capacity processes, and moreover, that auditory tasks are more sensitive to changes in 

primary task resources than visual tasks.  

Performance Operating Characteristics and Attention Operating Characteristics 

An alternative method to measuring the effects of a primary task on secondary task 

performance is to plot the performance trade-offs between two concurrent tasks in the form of 

an attention operating characteristic (AOC) (Kinchla, 1969; Kinchla, 1980; Sperling & 

Melchnor, 1978) or a performance operating characteristic (POC) (Norman & Bobrow, 

1975). This method visualises changes in performance of one task as a function of 

performance on the other task. AOC/POCs are created by manipulating one variable of task 

performance, such as task priority, task difficulty, or allocation of attention to each task, 

while holding all other variables constant. The logic behind the AOC/POC is based on the 

shared resource model. If attention is limited capacity, increasing performance on one task 

should result in a corresponding decrease in performance on the other task. Unlimited 

capacity, in contrast, is assumed if performance on either task is robust against changes to 

performance on the other task. Thus, unlimited capacity performance should appear as perfect 

and consistent performance on the second task as performance on the first task increases. 

Norman and Bobrow (1975) argued that to successfully interpret an AOC/POC in terms of 

capacity limits, researchers should manipulate task priority, rather than task difficulty. 

However, others have suggested that manipulations of both task priority and task difficulty 

are critical for successful interpretations of the AOC/POC (e.g., Navon & Gopher, 1979).  

Early studies using the AOC/POC paradigm focused on speeded detection of 

luminance signals (Kinchla, 1969) and visual recognition (Sperling & Melchnor, 1978). 

Following on from these studies, in the late 1980s and early 1990s, Bonnel, Miller, and 

colleagues (Bonnel & Miller, 1994; Bonnel, Possamai, & Schmitt, 1987; Bonnel, Stein, & 
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Bertucci, 1992; Miller & Bonnel, 1994) developed a concurrent line length discrimination 

paradigm to test resource allocation between simultaneous tasks. Within the original 

paradigm (Bonnel et al., 1987), two separate pairs of vertical lines appeared in each display, 

one pair either side of fixation. Each trial, the participant made a ‘same’/‘different’ 

judgement about whether the two lines in each separate pair were equal in length. To gauge 

performance across the spectrum of resource allocation, participants were instructed to devote 

between 0% and 100% of their attention to the line pair on one side of fixation and the 

complementary percentage to the opposite line pair. Bonnel and colleagues plotted 

AOC/POCs showing discrimination performance (d’) for line pairs to the right of fixation 

against performance for line pairs to the left for each level of attention allocation, illustrating 

the changes in performance that resulted as cognitive resource allocation moved from one 

‘task’ to the other. The plots showed that varying the attention allocation from one stimulus 

pair to the other created a graded trade-off function. Comparing their findings to predictions 

of different task-switching and resource-sharing models, the authors concluded that the 

curves were evidence of a shared attentional capacity between the two tasks, rather than an 

‘all-or-none’ model (Bonnel & Miller, 1994). However, given the clear performance trade-

offs between the two tasks, processing was limited capacity.  

Because the analysis of AOC/POCs allows a quantitative measure of resource 

allocation between two concurrent tasks, Navon & Gopher (1979) suggested that the 

AOC/POC method is a better method of gauging capacity limitations than simply comparing 

a dual-task condition with a single-task. Despite this advantage, there are several issues that 

must be considered when implementing this paradigm (see Kantowitz & Knight, 1976, for a 

comprehensive review). One concern relates to the key assumptions of the method. 

AOCs/POCs assume there is a fixed amount of capacity available to complete tasks, and that 

all possible resources are consumed by performing the two tasks concurrently (Gopher & 
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Sanders, 1984; Kantowitz & Knight, 1976). If, together, the two tasks do not consume all 

available resources, the AOC/POC may give the misleading impression that capacity is 

unlimited, with increases in performance on one task showing little, if any, interference on 

the other task. Thus, the method cannot provide an accurate measure of capacity for situations 

in which two tasks consume less than all of the available resources. Moreover, these methods 

cannot account for theories that suggest total capacity can vary in response to task demands 

(e.g., Kahneman, 1973; Young & Stanton, 2002b). The AOC/POC method also assumes that 

the participant can control how they allocate capacity or resources between tasks and is not 

suitable for situations where a person has no control over their capacity allocation.   

Another issue is how to interpret performance using the AOC/POC paradigm 

(Broadbent, 1982; Gopher & Navon, 1980; Gopher & Sanders, 1984; Kantowitz & Knight, 

1976). Though a trade-off in performance is generally accepted as representing some form of 

shared-resource or limited capacity model, there may be multiple explanations for similar 

shapes of the AOC/POC (Broadbent, 1982; Gopher & Sanders, 1984). Without further 

modelling of the data, such as the methods used by Bonnel and Miller (e.g., Bonnel & Miller, 

1994; Bonnel et al., 1987, 1992; Miller & Bonnel, 1994), it may be difficult to clearly deduce 

a specific underlying model. Finally, it is important to ensure that participants do not change 

how they perform the two tasks concurrently compared to when they perform each task 

alone. This issue is known as the assumption of process invariance (Gopher & Sanders, 

1984). For process invariance to hold, both tasks must be performed as separate tasks, even 

when performed concurrently. The assumption of process invariance states that resource 

demands of two concurrent tasks should equal the sum of the resource demands for each 

individual task (Gopher & Sanders, 1984). In situations where tasks become cumulative to 

form a different task or where participants change strategies to accommodate both tasks, the 
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assumption of process invariance is violated and, thus, it becomes extremely difficult to 

interpret the critical effect of the change in task priority.  

Some critics have questioned the value of the AOC/POC technique as a true method 

for assessing capacity limitations. Kantowitz (1985) criticised the AOC/POC for only 

providing a way to plot data rather than being a true research paradigm, likening the 

technique to a histogram. He stated the technique had “no more special implications for 

assessing capacity limitations” than other graphical representations of data (Kantowitz, 1985, 

p. 155). However, Bonnel and Miller’s (Bonnel et al., 1992; Miller & Bonnel, 1994) 

modelling suggests the AOC/POC method can provide valuable insights into cognitive 

processing capacity and resource allocation. 

General Issues with Dual-Task Paradigms 

Regardless of the type of dual-task paradigm employed (i.e., whether it assesses spare 

capacity or performance trade-offs), researchers must be aware of several issues when 

assessing performance changes between concurrent tasks.  One of these issues is the type of 

interference at play. Performance losses in a concurrent task paradigm may result from 

cognitive resource competition, or else may be due to other factors such as structural 

interference, concurrence costs, or peripheral constraints. As mentioned earlier, structural 

limitations refer to bottlenecks in particular stages of processing, such as during response 

selection. If two tasks require a similar type of response, interference between the two tasks 

may result in temporary bottlenecks during the response stage of processing. Though this 

interference is inherently structural rather than capacity-related, the reduced performance 

may easily be misinterpreted as a capacity limitation. Similarly, concurrence costs refer to 

‘overhead’ costs associated with performing more than one task concurrently (Navon & 

Gopher, 1979). As explained by Damos (1991, p. 101), “performing two tasks concurrently is 

inherently different from performing one task, regardless of its complexity”. Concurrence 
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costs are basic costs associated with performing two tasks together that would not be present 

when performing one task alone. Concurrence costs may change the capacity allocated to 

each task, mirroring a capacity limitation. Finally, peripheral constraints are non-cognitive 

sensory or physical limitations that may affect the ability to perform tasks concurrently. For 

example, sensory limitations could include not being able to look in two different directions 

at the same time. Physical or effector limitations occur when concurrent tasks require similar 

motor responses. 

Similar to structural limitations and concurrence costs, dual-task performance may be 

affected by factors not present in single-task conditions. As stated earlier, process invariance 

is the condition that each task is performed in the same way when tasks are concurrent than 

when performed alone. If the participant changes their strategy for performing the tasks when 

moving from single- to dual-task, it becomes difficult to pull apart the factors leading to any 

dual-task costs. For example, if a participant unitises the individual tasks into one combined 

task or confuses the response mappings for individual tasks, the dual-task condition may be 

confounded with emergent processes (Duncan, 1979) that are absent from the single-task 

conditions. Moreover, if changing the difficulty of the first task also affects the difficulty of 

the second task, performance on the tasks may become intertwined, making it particularly 

difficult to pull apart performance on each task (Navon & Gopher, 1979).  

A major question with many dual-task paradigms relates to the assumption that the 

two tasks performed concurrently consume all available capacity (Gopher & Sanders, 1984; 

Ogden, Martin, & Paap, 1980; Tombu & Jolicœur, 2003). A performance decrease under 

dual-task conditions is assumed to represent evidence that the tasks’ total capacity demands 

exceed available capacity; however, this assumption is not necessarily true. As just 

mentioned, factors other than capacity saturation may cause performance losses. Moreover, 

the capacity-saturation notion contradicts theories that suggest available resources may 
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change or even increase with greater task demands up to a point (e.g., Kahneman, 1973; 

Young & Stanton, 2002b). Though variable-capacity theories generally argue that capacity 

will eventually reach a set limit, they assume that up to that point, increasing task demand 

will allow a greater amount of resources to be allocated to the tasks to maintain performance 

(Kahneman, 1973; Young & Stanton, 2002b). Thus, paradigms based on the idea that 

capacity can become saturated under dual-task load are limited to theories that assume 

capacity is ‘fixed’ (Navon & Gopher, 1979). 

The many issues associated with comparing single- and dual-task performance raise 

the question of whether a single-task is a meaningful baseline against which to test for 

processing capacity limits. Though some researchers have argued that a single-task baseline 

control is essential for assessing dual-task processing demands (e.g., Ogden et al., 1980), 

others have explained that manipulating task factors, such as priorities or instructions, is a 

better option than comparing dual- and single-task performance (e.g., Gopher & Sanders, 

1984). In fact, Gopher and Sanders (1984, p. 236) go as far as to say that single tasks are 

“only relevant to augment interpretation of dual task trends”. In any case, regardless of how 

dual-task performance is measured, some argue that researchers must always protect 

performance on the primary task while under dual-task conditions if they are to successfully 

interpret secondary task effects on capacity (Gopher & Sanders, 1984).  

Alternative Methods of Assessing Capacity 

In the previous sections, we discussed a variety of single- and dual-task methods, 

along with their advantages and disadvantages, for assessing visual processing capacity in the 

laboratory. In the current section, we discuss an alternative, more robust measure of capacity 

limitations. Prior to exploring this method, we will briefly touch upon an alternative measure 

used to assess capacity that forms the basis of this technique: the redundancy gain.  

The Redundancy Gain 
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The redundancy gain or redundant targets effect refers to the effect of faster 

processing when presenting two or more items mapped to a common response than when 

presenting only one of the items alone (Grice & Reed, 1992; Miller, 1982, 2015; Todd, 

1912). Redundancy gains are assessed using a redundant-targets paradigm. Each trial, a 

target may appear in one of two channels (single target conditions), or it may appear in both 

(redundant-target condition). The redundancy gain is the difference between the mean 

redundant-target condition and the mean of the mean RTs (or alternatively, the faster mean 

RT [cf., Biederman & Checkosky, 1970]) of the two single-target conditions. Because the 

redundancy gain provides a measure of performance changes as the number of items to be 

processed increases, it has been used as a measure of processing efficiency (e.g., Miller, 

Beutinger, & Ulrich, 2009; Mullin & Egeth, 1989).  

Mean RTs alone, however, cannot distinguish between limited, unlimited, and super-

capacity models. Without benchmarks against which we can compare redundancy gains, we 

have no concrete way of assessing the type of processing occurring in a system. For example, 

shorter RTs with dual targets than with a single target may represent highly efficient super-

capacity processing, with substantial processing benefits resulting from the concurrent 

targets. Alternatively, however, the same findings could instead represent performance of a 

limited-capacity system in which processing is only marginally improved with the addition of 

a second target. To provide a better measure of dissociating unlimited capacity from super-

capacity, Miller (1982) devised an upper bound on unlimited capacity parallel processing, 

known as the race model inequality. Miller’s inequality states that, in an unlimited capacity 

system, the cumulative distribution function of the redundant-target condition cannot exceed 

the summed cumulative distribution functions of the two single-target conditions. 

Performance that violates this bound can provide evidence in support of super-capacity 

processing. Similarly, Grice and colleagues (Grice, Canham, & Gwynne, 1984) delineated a 
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lower bound on unlimited capacity; values beyond this bound are evidence of limited 

capacity processing. However, both Grice et al.’s and Miller’s bounds are conservative, and 

neither can distinguish between gradations of capacity (see Colonius & Diederich, 2006, for 

an alternative opinion). Moreover, although performance that violates either Grice et al.’s or 

Miller’s bounds provides evidence against an unlimited capacity model, neither is necessary 

to reject unlimited capacity parallel processing. Thus, a more fine-grained measure of 

capacity is needed to distinguish variations of processing efficiency between the Grice and 

Miller bounds. 

Systems Factorial Technology and the Capacity Coefficient 

An alternative method for assessing processing capacity that builds upon the 

redundant-targets effect is built into a set of methods known as Systems Factorial Technology 

(SFT; Houpt et al., 2013; Houpt, Blaha, Base, & Burns, 2013). SFT provide a series of 

measures for assessing characteristics of cognitive systems. Most relevant to the present 

purposes, SFT provides a measure of workload capacity, the efficiency with which a system 

operates as the number of different channels under load—in other words, set size or 

workload—increases (Houpt & Townsend, 2012; Townsend & Eidels, 2011; Townsend & 

Nozawa, 1995).  

Workload capacity is measured using the capacity coefficient, C(t), which is the ratio 

of the cumulative hazard functions at different levels of workload (Houpt & Townsend, 2012; 

Townsend & Eidels, 2011). The capacity coefficient can assess differences in processing 

between single- and redundant-target displays (Townsend & Nozawa, 1995). To assess 

processing as the number of target items increases, a redundant-target paradigm is used. The 

capacity coefficient measures changes in capacity over time using the hazard functions for 

speeded responses. The hazard function, denoted h(t), provides a measure of moment-to-

moment variations in cognitive effort (Neufeld, Townsend, & Jette, 2007; Wenger & 
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Townsend, 2000). With regards to visual detection paradigms, the hazard function provides 

the instantaneous probability that a response will be executed at time t given that it has not 

yet been executed (Townsend & Ashby, 1983). The integral of the hazard function up to time 

t is known as the cumulative hazard function. In a standard unlimited capacity parallel model, 

the cumulative hazard function of the redundant-target condition is equal to the sum of the 

cumulative hazard functions of the two single-target conditions (Townsend & Nozawa, 

1995). C(t) is the ratio of the cumulative hazard function of the redundant-target condition 

over the cumulative hazard functions of the two single-target conditions.  

The capacity coefficient has many advantages, not least being its ability to 

discriminate between different capacity models. Mullin and Egeth (1989, p. 111) articulated 

quite succinctly that “a major obstacle to resolving the processing capacity issue is the 

difficulty of designing methodologies that distinguish unlimited-capacity from limited 

capacity models”. One of the main benefits of the capacity coefficient is that it provides 

easily interpretable performance benchmarks specifically for doing just this—for 

distinguishing between different levels of efficiency. As mentioned earlier on, the unlimited 

capacity independent processing (UCIP) model (Houpt & Townsend, 2012), is the standard 

parallel model, where individual channel processing rates are unaffected by task load. The 

capacity coefficient benchmarks processing based on this model. A C(t) of 1.0 indicates 

performance is equivalent to UCIP predictions (Houpt & Townsend, 2012). In other words, it 

represents unlimited capacity processing where the individual channels are unaffected by 

other concurrent channels. A C(t) greater than 1.0 provides evidence for super-capacity, or 

that an increase in workload results in a speed up in the individual channel processing rates. 

Finally, a C(t) below 1.0 indicates processing is limited by an increase in the number of 

channels processing; the more channels processing concurrently, the slower each individual 
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channel processes. Thus C(t) provides a way to clearly discriminate between different models 

of capacity.   

The capacity coefficient can also be used to assess differences in processing single-

target displays in the presence or absence of a distractor item (Blaha, 2011; Blaha & Houpt, 

n.d.; Houpt et al., 2013). Here, we can calculate capacity by dividing the cumulative hazard 

function for the condition in which the single target appears alone by the cumulative hazard 

function for the condition including the single target plus n distractors. In addition, we can 

use C(t) to assess capacity in redundant-target paradigms that use a first-terminating stopping 

rule, where the first target processed leads to the response, as well as designs using an 

exhaustive stopping rule, where a response is made only after all items are processed.  

In a recent paper, Blaha (2017b) identified the similarities between the capacity 

coefficient and dual-task measures of capacity for assessing cognitive processing. She 

demonstrated that both measures were based on similar assumptions about measuring 

performance, the resource requirements involved, and the difficulty of the secondary task. 

Unlike dual-task methods, however, the capacity coefficient can distinguish capacity from 

other aspects of human information processing such as system architecture, stopping rule, and 

inter-channel contingencies (Houpt et al., 2013). Because the capacity coefficient measures 

moment-to-moment fluctuations in processing rather than just capacity for a single time 

point, it provides a much more fine-grained analysis of processing capacity than most of the 

methods we have discussed so far.  

The standard capacity coefficient assesses processing for redundant-target displays 

relative to single-target displays in which the target appears alone, unaccompanied by 

distracting information. A recent extension of the standard coefficient, known as the 

resilience coefficient, R(t), assesses redundant-target processing relative to processing of a 

single target accompanied by a distractor, providing a measure of distractor costs (Cheng, 
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Moneer, Christie, & Little, 2017; Houpt & Little, 2017). Capacity and resilience coefficients 

can be converted to normalised values that allow the comparisons across experimental 

conditions or studies (Houpt & Townsend, 2012). Given its many benefits, the capacity 

coefficient may be useful for assessing processing capacity for a variety of perceptual tasks, 

including divided attention, selective cueing, and paradigms manipulating set size (Wenger & 

Townsend, 2000). Finally, though our interest in this paper focuses on processing efficiency 

for visual information, the capacity coefficient can also be applied to auditory or multi-modal 

displays (e.g., Fox, Glavan, & Houpt, 2014).  

General Issues with Measuring Capacity 

A particularly critical issue on the topic of capacity assessment is how we 

operationalise processing efficiency from the outset. How we define the elusive concept of 

capacity will directly affect which method or paradigm is most appropriate for measuring it. 

Most current definitions describe visual processing capacity as the efficiency with which 

information can be processed at any one time as the number of active processing channels 

increases (e.g., Houpt & Townsend, 2012; Townsend & Eidels, 2011). As such, effective 

capacity measures must manipulate the number of items for processing to see how processing 

changes with increases in workload.  

Related to this issue is the question of how we operationalise workload (Eriksen & 

Spencer, 1969). Kantowitz (1985, p. 140) explained that capacity “becomes meaningful and 

measurable only when the size of the element [i.e., unit of load] is first specified”. In some 

cases, load refers to the difficulty of a specific task; for example, we might wish to measure 

capacity for a tracking task by manipulating the difficulty of the tracking. More commonly, 

studies manipulate the number of items within a display, such as individual letters, shapes, or 

more complex figures, intending to manipulate the amount of information to be processed. As 

the number of items within the display increases, the number of ‘units of information’ also 
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increases. However, specific factors, such as learning or experience, may influence how we 

define ‘units of information’ (Eriksen & Spencer, 1969). With practice or experience, 

particular individual items or elements may be grouped into larger, more complicated ‘units’ 

of information. Because different paradigms may use differing definitions of load, one must 

be cautious when comparing capacity across studies. For example, a complex multiple-

display task that incorporates numerous pieces of updating information may provide very 

different conclusions about processing capacity than a basic visual search letter task, despite 

both tasks manipulating between one and 20 ‘units of information’. 

One misinterpretation of capacity stems from confusion over whether one is 

measuring processing of an entire system or rather just processing of the individual channels 

comprising the system. As we saw at the beginning of this paper with our analogy of the 

detective agency solving a crime, a complete system that displays super-capacity 

performance may not necessarily mean each channel is operating at a super-capacity rate. 

Similarly, inefficient processing does not necessarily mean that processing is capacity-limited 

(e.g., Huang & Pashler, 2005). Another issue to consider is that a system can only exhibit 

evidence of unlimited capacity up to the maximum set size available—determining capacity 

beyond the maximum number of items is not possible (Mullin & Egeth, 1989). This issue is 

especially important if the capacity of a particular system varies qualitatively depending on 

set size (Huang & Pashler, 2005). For instance, a system may exhibit unlimited capacity 

performance for set sizes of up to 10 items but begins exhibiting limited capacity beyond that 

set size. As such, paradigms which limit display size to only a small number of items risk 

limiting the conclusions that can be drawn about a particular system.  

A final challenge when measuring processing efficiency is distinguishing capacity 

from other human information processing concepts such as system architecture. 

Architecture—which primarily focuses on whether a system processes in parallel or in 
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serial—though related to capacity, is a separate and distinct concept (Townsend & Nozawa, 

1995). As such, methods that combine capacity and architecture measures may provide 

inaccurate interpretations of the underlying processing system. The RT slope method, for 

instance, has been criticised for assuming that longer RTs represent inefficient processing 

and, hence, serial architecture (Townsend & Wenger, 2004; Townsend, 1971; Townsend, 

1990). Instead, a similar RT slope may provide evidence for a parallel model operating with 

limited capacity. These findings emphasise the importance of employing methods that allow 

a direct test to differentiate processing capacity and system architecture. As it stands 

currently, SFT (Houpt et al., 2013; Houpt & Townsend, 2012), with its ability to distinguish 

between various aspects of information processing, may be the best methodology for 

capturing a cognitive system’s processing in the laboratory.  

Given the various issues with many of the current paradigms used for assessing 

capacity, is it better to assess processing using a range of techniques rather than just one? 

Kantowitz (1985) recommended researchers use a variety of methodologies to provide a more 

comprehensive view of processing than can be obtained from any single method. Similarly, 

Gopher and Sanders (1984) suggested a cognitive system’s information processing is best 

measured using the AOC/POC (Kinchla, 1969; Norman & Bobrow, 1975; Sperling & 

Melchnor, 1978) in conjunction with an RT slopes paradigm (Hick, 1952; Hyman, 1953; 

Sternberg, 1975). Though, as mentioned earlier on, the RT slopes task may be a poor choice 

for measuring capacity per se, both Kantowitz, and Gopher and Sanders raise valid points 

about whether processing should be measured with a battery of different tasks. One option for 

combining measures is to incorporate a single-task measure of capacity within a dual-task 

paradigm to assess processing changes (of the individual information units) as task load 

increases. In other words, an effective measure of capacity could involve incorporating one of 

the single-task methods discussed earlier, such as a SIM/SUCC paradigm, into a dual-task 
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paradigm that also measures performance on a concurrent task. Such a situation would not 

only allow us to measure workload in terms of the number of items appearing within the 

SIM/SUCC displays, but we could then also assess the effects of different levels of task load 

created by the concurrent task. Damos and Wickens (1977) employed a similar design to 

assess processing by incorporating a choice RT task with a secondary tracking task. 

Similarly, to assess the effects of ageing on processing efficiency, Wickens et al. (1987) 

asked participants to complete a variety of processing tasks, including three different 

modalities of Sternberg’s (1966) memory tasks, both alone and while performing a 

concurrent tracking task. These combined methods for assessing information processing may 

provide a more comprehensive picture of performance, allowing one to more clearly 

delineate unlimited capacity from limited and super-capacity processing.  
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Current Aims 

In many operational environments, such as in air traffic control or in the pilot flight 

deck, we need to convey visual information or alerts to an operator who is already engaged in 

an ongoing task. To be able to do this effectively, we need to understand whether the 

concurrent task compromises processing efficiency for visual information. Moreover, we 

need to know whether other task characteristics, such as distractor presence or target salience, 

might influence efficiency. Systems Factorial Technology (SFT) provides a novel and close-

to-ideal method for assessing capacity under a range of different conditions. Though SFT has 

recently been used to model overall system efficiency for multiple concurrent tasks (Fox & 

Houpt, 2018), the use of SFT for assessing visual information processing when a person is 

loaded by a demanding secondary task remains unexplored. Given SFT is highly sensitive 

and provides easy to interpret benchmarks for efficient processing, this method may be 

especially valuable for assessing capacity under dual-task load. As such, the current thesis 

combined two separate capacity measures—dual-task paradigms and SFT—to examine visual 

processing efficiency while loaded by a secondary visuo-manual task. Using this approach, 

this thesis aimed to address two main questions regarding processing efficiency under load. 

Firstly, it examined whether increasing task load reduces processing efficiency for visual 

information, and secondly, it explored whether specific task characteristics help drive 

processing under load. 

This thesis is comprised of five experimental chapters directed at addressing these 

aims. Chapter 2 is a published article comprising three experiments that examine the effect of 

dual-task load on peripheral visual target processing efficiency for distractor-present displays. 

Chapter 3 is a published proceedings paper comprising a follow-up experiment to those in 

Chapter 2, and explores dual-task effects on processing for distractor-absent displays. 

Chapter 4 is a manuscript in preparation comprising two experiments. It examines visual field 
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effects, in this case, eccentricity effects and upper versus lower visual field differences, on 

processing capacity while under dual-task load. Chapter 5 is a manuscript in preparation that 

assesses the benefits of salience—or target–distractor discriminability to be exact—in 

maintaining processing efficiency while under both single- and dual-task load. Chapter 6 

comprises a manuscript in preparation of an applied study completed in collaboration with 

Defence Science and Technology Group that extends the dual-task paradigm to a simulated 

military environment. Within this study, I use changes in signal detection theory (SDT; Green 

& Swets, 1966; Stanislaw & Todorov, 1999) over time to examine operator processing 

efficiency under both high and low levels of cognitive demand. Finally, in Chapter 7 I 

provide a general summary and interpretation of these findings gathered across all five 

studies, providing some general conclusions about visual information processing efficiency 

under dual-task load.  
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 CHAPTER 2: STUDY 1 

Redundant-Target Processing  

is Robust against Changes to Task Load 

The following chapter is a version of an article that was published in Cognitive 

Research: Principles and Implications in March 2018. The article comprises three 

experiments exploring the effects of dual-tasking on processing efficiency for peripheral 

visual targets in distractor-present displays. Two additional experiments that were included in 

an earlier version of this manuscript (Experiments 1c and 1d) can be found in Appendix A. 
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Abstract 

Monitoring visual displays while performing other tasks is commonplace in many operational 

environments. Although dividing attention between tasks can impair monitoring accuracy and 

response times, it is unclear whether it also reduces processing efficiency for visual targets. 

Thus, the current three experiments examined the effects of dual-tasking on target processing 

in the visual periphery. A total of 120 undergraduate students performed a redundant-target 

task either by itself (Experiment 1a) or in conjunction with a manual tracking task 

(Experiments 1b – 3). Target processing efficiency was assessed using measures of workload 

resilience. Processing of redundant targets in Experiments 1-2 was less efficient than 

predicted by a standard parallel race model, giving evidence for limited capacity parallel 

processing. However, when stimulus characteristics forced participants to process targets in 

serial (Experiment 3), processing efficiency became super-capacity. Across the three 

experiments, dual-tasking had no effect on target processing efficiency. Results suggest that a 

central task slows target detection in the display periphery but does not change the efficiency 

with which multiple concurrent targets are processed.  
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Significance Statement 

High workload environments often mean dividing attention between multiple visual 

tasks or displays. The current study examined aspects of visual display design that might 

influence target detection in multi-task environments. Using paired target 

discrimination/manual tracking tasks, we investigated the effects of target redundancy on 

participants’ ability to notice eccentric visual signals while engaged in a central task. Our 

goal was to assist display design by identifying factors that help multi-tasking operators to 

notice visual alerts and alarms in their peripheral vision. 
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Redundant-Target Processing  

is Robust against Changes to Task Load 

Operators in high-stress domains often need to divide attention between the central 

and peripheral visual fields. A pilot, for example, must also monitor for cockpit alerts while 

maintaining awareness of an aircraft’s position in space (Wickens, Sebok, McCormick, & 

Walters, 2016), and operators in air traffic control must remain responsive to critical alerts 

while managing the flow of air traffic (Imbert et al., 2014). Similarly, the increasing use of 

head-worn displays in professional roles means many operators are required to switch 

attention between tasks within their central visual field and peripheral events projected onto 

the headset (Pascale et al., 2015). Within each of these domains, performing effectively 

means processing information presented centrally, while also discriminating between critical 

and non-critical ‘noise’ events in the visual periphery. For system designers, this issue 

implies a need to understand the task and display characteristics that maximise peripheral 

detection and discrimination under conditions of high central load.  

An obvious technique to improve target detection is to increase target salience, the 

feature contrast between the target and its surroundings (Itti & Koch, 2000; Theeuwes, 2010). 

Unfortunately, visual heterogeneity reduces feature contrast (Humphreys, Quinlan, & 

Riddoch, 1989; Nothdurft, 1992), and in a cluttered, dynamic environment like the cockpit, 

even events designed to be highly salient can go undetected (Nikolic, Orr, & Sarter, 2004; 

Steelman, McCarley, & Wickens, 2013). Alternative strategies for ensuring rapid target 

detection are, therefore, useful. One converging strategy is to present targets redundantly, that 

is, on multiple channels simultaneously. Redundant presentation generally speeds target 

detection (Miller, 1982; Todd, 1912), and is endorsed in human factors engineering as a 

method of promoting information security (Wickens & Hollands, 2000; Wickens, Prinet, 

Hutchins, Sarter, & Sebok, 2011). For example, vehicle collision warning systems often 
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employ redundant visual or auditory signals to alert a driver of a potential collision (Ho, 

Reed, & Spence, 2007). Similarly, in aircraft settings, pilots respond faster to missile 

approach warnings as the number of informational channels delivering the warning increases 

(Selcon, Taylor, & McKenna, 1995). 

Like a manipulation of salience, however, redundant information display is not 

guaranteed to aid performance. Constraints on processing resources can modulate the 

efficiency with which concurrent events are processed (Townsend & Eidels, 2011), limiting 

the benefits produced by a redundant target (e.g., Eidels, Townsend, Hughes, & Perry, 2014; 

McCarley, Mounts, & Kramer, 2007; Townsend & Nozawa, 1995). Moreover, under some 

conditions, the addition of the second target may produce no redundancy gain at all (Grice et 

al., 1984). More surprisingly, within a multi-task environment redundant signals may actually 

be disruptive. Wickens and colleagues (Seagull, Wickens, & Loeb, 2001; Wickens & 

Gosney, 2003) have reported evidence that redundant audio-visual target presentation in a 

monitoring task can disrupt performance in an ongoing tracking task. These results suggest 

that the demands of encoding or recognising redundant targets can divert processing 

resources from a concurrent task, producing interference. In the current experiments, we 

pursue this effect by examining the converse possibility, that the demands of a concurrent 

central task might limit the efficiency of redundant signal processing.  

Measuring the efficiency of redundant-target processing 

In a standard redundant-target task, participants make a speeded response to a target 

presented in either of two channels (e.g., on a visual channel and an auditory channel). On 

single-target trials, a target appears in only one channel (e.g., only the visual channel); on 

redundant-target trials, the target is presented in both channels (e.g., on both the visual and 

auditory channels). The observer responds as soon as a target is detected in either channel, a 

condition known as a first-terminating stopping rule (Colonius & Vorberg, 1994). Under 
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these conditions, redundant signals generally produce faster responses than single targets, a 

phenomenon known as a redundant signals effect (RSE) or redundancy gain (Miller, 1982). 

For example, for a driver approaching a railway crossing, the presentation of both a red 

flashing light and a loud bell is likely to allow faster detection, and consequently a faster 

braking response, than either warning presented alone. 

The RSE, however, may differ in magnitude under different task constraints, and in 

some cases, may be entirely absent. The size of the RSE reflects variations in a cognitive 

system’s architecture and workload capacity (Townsend & Eidels, 2011; Townsend & 

Nozawa, 1995), where architecture refers to the arrangement of channels (e.g., serial or 

parallel), and workload capacity refers to the efficiency with which the channels operate 

concurrently. In addition, the RSE can also reflect variations in inter-channel dependencies 

(Townsend & Wenger, 2004a). The simplest model of the RSE is the unlimited-capacity 

independent parallel (UCIP) model, wherein multiple channels operate with stochastic 

independence and each channel’s rate of processing remains unchanged, regardless of the 

total number of channels under operation (Townsend & Eidels, 2011). Under a first-

terminating stopping rule, the UCIP model produces a redundancy gain simply because the 

processing time of the system as a whole is based on the output of the fastest channel on each 

trial. This mechanism is known as statistical facilitation (Raab, 1962). Super-capacity occurs 

when an increase in the number of operating channels (i.e., workload) results in a 

corresponding increase in the individual channels’ processing rates, producing a larger RSE 

than predicted by the UCIP model. Conversely, limited capacity exists when an increase in 

workload decreases the processing rates of the individual channels, producing a smaller RSE 

than predicted by the UCIP model. In situations where capacity is highly limited, the 

redundancy gain may be no different to that of a serial model.  



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
48 

Importantly, unless capacity is extremely limited, mean RTs alone cannot distinguish 

gradations in parallel processing capacity within a redundant-target task. To establish whether 

a system is limited, unlimited, or super-capacity, we therefore need to analyse the data at the 

level of the RT distributions. As a means of distinguishing between statistical facilitation in 

the UCIP model and actual processing speed-ups with multiple channels, Miller (1982) 

established an upper bound on performance for the UCIP model, known as the race-model 

inequality. The inequality holds that in the UCIP model, the cumulative distribution function 

(CDF) of the redundant-target trials cannot exceed the combined CDFs for the two categories 

of single-target trials. Evidence that the CDF for the redundant-target trials exceeds the 

summed CDFs for the single-target trials at any time t thus disconfirms the UCIP model and 

implicates a super-capacity model instead. Analogously, Grice, Canham, and Gwynne (1984) 

identified a lower bound on UCIP performance, providing a test of extreme capacity 

limitations. The Miller and Grice inequalities, however, are both conservative tests that are 

insensitive to modest variations in capacity. Townsend and Nozawa’s (1995) workload 

capacity coefficient, C(t), provides a more fine-grained measure of efficiency, sensitive to 

variations in between the Miller and Grice boundaries.  

C(t) rests on the conceptualisation of the hazard function for speeded responses as a 

gauge of moment-to-moment cognitive expenditure. In a speeded task, the hazard function, 

h(t), indicates the instantaneous probability with which a response will occur at time t, given 

that a response has not yet occurred (Townsend & Ashby, 1983). The cumulative hazard 

function, H(t), is the integral of the hazard function up to time t. Importantly, within the UCIP 

model, the cumulative hazard functions for multiple operating channels are additive. In other 

words, if processing follows the UCIP model, the value of the cumulative hazard function in 

the redundant-target condition at time t is equal to the sum of the values of the cumulative 
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hazard functions of the two single-target conditions at time t. Taking advantage of this 

constraint, Townsend and Nozawa (1995) define the capacity coefficient, C(t) as, 

!(#) = &'(())
&'())*	&(())

	 , #	 > 	0,      (2.1) 

where HAB(t) refers to the cumulative hazard function of the redundant-target 

condition, and where HA(t) and HB(t) refer to the individual cumulative hazard functions for a 

target present only on channel A or channel B, respectively. Under the UCIP model, in which 

the cumulative hazard functions for channels A and B are additive, C(t) = 1.0. Values of C(t) 

greater than 1.0 indicate that HAB(t) > HA(t) + HB(t), implying super-capacity. Conversely, 

values less than 1.0 indicate that HAB(t) < HA(t) + HB(t), implying limited capacity. In 

extreme cases capacity may be fixed, C(t) = 0.5, implying a zero-sum trade-off between 

channels and producing performance akin to that predicted by a serial model. 

A transformation of C(t) that can be used to compare performance across experiments 

is the standardised capacity score, Cz (Houpt & Townsend, 2012). Cz provides a summary 

capacity measure collapsed over time and suitable for comparison between experimental 

conditions. Values follow a standard normal distribution, with a score of 0 indicating UCIP-

level processing, positive scores indicating super-capacity, and negative scores indicating 

limited capacity.   

The capacity coefficient was developed for examining judgements of displays 

wherein, on single-target trials, the position of the potential second target is empty. Recent 

developments have extended the approach to accommodate analysis of displays in which 

single-target conditions include a distractor in place of the empty space (Little, Eidels, Fific, 

& Wang, 2015). The measure of processing efficiency in this case has been termed resilience, 

R(t) (Little et al., 2015). R(t) is calculated with the formula used to calculate C(t), except that 

the cumulative hazard functions in the denominator of the equation represent single-target 

conditions on which a distractor is present,  
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/(#) = &'(())
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	 , #	 > 	0,     (2.2) 

where HAX(t) is the cumulative hazard function for single target A accompanied by a 

distractor, X, and HXB(t) is the cumulative hazard function for single target B accompanied by 

the X. R(t) can, in turn, be converted to a measure of normalised resilience (Houpt & Little, 

2017), referred to here as Rz, analogous to Cz. Resilience differs from capacity because, when 

a distractor is present on single-target trials, it can divert processing resources from the target, 

slowing target detection (Allen, Madden, Groth, & Crozier, 1992; Ben-David, Eidels, & 

Donkin, 2014). Resilience, therefore, reflects both the changes in target processing rate that 

occur as the number of targets increases, and the potential release from interference that 

occurs when a distractor is replaced by a target. 

Interpretation of resilience scores is more involved than interpretation of the workload 

capacity scores. By definition, channels in the UCIP system operate at the same rate 

regardless of processing load. Thus, the UCIP model predicts a benchmark value of R(t) = 1 

(Rz = 0), just as it predicts a benchmark value of C(t) = 1 (Cz = 0). More generally, a parallel 

self-terminating model predicts that R(t) will not vary as a function of distractor 

discriminability, and that redundant-target processing will be equally efficient in the 

experimental designs with and without distractors, that is, C(t) and R(t) will be equal (Little et 

al., 2015).  

In contrast, a serial self-terminating (SST) model predicts that R(t) will vary with the 

relative discriminability of the target and distractor. For simplicity, assume a case in which 

the cumulative hazard functions for targets A and B are identical, both with distractors, 

(HAX(t) = HXB(t)), and without, (HA(t) = HB(t)). On redundant-target trials, the first item 

processed will always be a target. The cumulative hazard function for redundant-target trials 

will, therefore, equal the cumulative hazard function for single-target trials without 

distractors, i.e., HAB(t) = HA(t). This reduces Equation 2 to,  



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
51 

/(#) = &'())
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	 , #	 > 	0,     (2.3) 

On single-target trials, assuming the target position is unpredictable, the number of 

items that are processed will vary randomly from trial to trial; on some trials only the target 

will be processed, and on the remaining trials, the distractor will be processed before the 

target. The difference between HAX(t) and HA(t) will thus reflect the time needed to process 

the distractor on those trials on which the target is not processed first. When the time needed 

to process the distractor is negligible relative to the time needed to process the target, HAX(t) 

will equal HA(t), and R(t) will be fixed. When the time needed to process the distractor 

becomes more substantial, HAX(t) decreases and R(t) becomes larger. In other words, the SST 

model predicts that resilience will be limited when distractor interference is negligible and 

will increase as distractor interference becomes larger.  

But regardless of the underlying architecture, values of R(t) < 1 or Rz < 0 imply that 

redundant targets are processed slower than predicted by the UCIP model, and values of R(t) 

> 1 or Rz > 0 imply that redundant targets are processed faster than predicted by the UCIP 

model (Houpt & Little, 2017). By analogy to the terminology applied to workload capacity, 

we will describe these effects as limited capacity and super-capacity, respectively. However, 

it is important to note that these labels describe performance of the multi-channel system as a 

whole and do not necessarily connote changes in the processing rates of the individual 

channels. As described above, for example, changes in distractor discriminability within an 

SST system may change R(t) from less than 1 to greater than 1, even if the target processing 

rate remains constant. 

Redundant presentation of peripheral signals will thus aid detection only if the signals 

are processed with spare capacity or resilience. Unfortunately, existing data do not make it 

clear that this will be the case. Some evidence suggests redundancy gains should be greater 

for more difficult single targets (Diederich & Colonius, 2004). Thus, targets appearing 
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concurrently with a manual tracking task may produce greater redundancy gains than targets 

appearing alone. Moreover, empirical data suggest attention is weighted toward the central 

visual field (Carrasco et al., 1995; Carrasco & Yeshurun, 1998; Wolfe, 1998), and modelling 

likewise suggests that elemental processing resources are denser in the central retina than in 

the eccentricity (Miller & Ulrich, 2003). A demanding task in the central visual field might 

further shift attention away from the retinal eccentricity (Leibowitz & Appelle, 1969; Reimer, 

2010), engendering visual tunnelling (Williams, 1985). For example, observers have higher 

detection thresholds for luminance probes in the visual periphery when performing a 

concurrent central task, with more difficult central tasks producing larger threshold increases 

(Leibowitz & Appelle, 1969). Similarly, accuracy on a peripheral discrimination task is 

higher when a concurrent central task is low in perceptual load than when it is high 

(Williams, 1985). Even task-irrelevant stimuli presented at fixation can interfere with 

processing of peripheral visual targets (Beck & Lavie, 2005; Schwartz et al., 2005). Within a 

peripheral redundant-target paradigm with a simultaneous central-load task, such effects 

might limit processing resilience of peripheral targets, reducing the magnitude of the RSE. In 

addition, a prominent account of dual-task performance, multiple resource theory, argues that 

resource competition between tasks drawing on similar processing resources will decrease 

performance (Wickens, 2002; Wickens, 1981). According to this theory, within a dual 

tracking/target detection paradigm, the central tracking task may consume visual processing 

resources, limiting the attentional resources necessary for processing peripheral items. Based 

on such an effect, we would expect to see poorer efficiency when the detection task is 

accompanied by the central tracking task.  

To test these possibilities, the current experiments assessed human performance 

within a dual-task paradigm pairing a central manual tracking task with a peripheral 

redundant-target task. We examined whether the detection of visual targets observed within a 
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dual-task paradigm produces a redundancy gain, and if so, just how efficiently the processing 

compares to that of the UCIP model. In Experiments 1 and 2, we used a target detection task 

to assess processing resilience while performing under both single- and dual-task load. 

Finally, in Experiment 3, we designed stimuli to preclude parallel target processing to 

examine resilience within a serial model. 

General Method 

Here, we describe methods of stimuli and procedure common to all of the experiments 

that follow.  

Apparatus and stimuli. Stimuli were presented on a 27” Samsung LED monitor, 

with a resolution of 1920 × 1080 pixels (1 pixel was equal to 0.33 mm) and a refresh rate of 

100 Hz. Participants completed the experiment at a viewing distance of approximately 600 

mm, although viewing distance was not fixed. The experimental program was created using 

Presentation software Version 16.5 Build 09.17.13 (Neurobehavioral Systems, 2018). 

Tracking task performance and responses to the concurrent target detection task were 

collected via a Logitech Attack 3 (Logitech, 2018) joystick.  

Stimuli for the target detection task were black capitalised letters, with Ts as targets 

and Ls as distractors. Letters appeared in the upper left (location A) and right (location B) of 

the screen with polar coordinates θ = ±51.15° from the vertical midline and r = 21.79° of 

visual angle from the screen centre point. The peripheral target/distractor stimuli were chosen 

randomly and with equal probability from among four combinations: redundant targets (TT), 

single target on left (TL), single target on right (LT), and redundant distractors (LL). 

Peripheral stimuli appeared approximately 20 times per 60-second trial, and remained 

visible each time until the participant issued a joystick response or a timeout duration of 2000 

ms was reached. To ensure that participants were unable to predict times at which a new 

target or distractor might appear in the periphery, the inter-stimulus interval between 
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successive events in the peripheral channels was drawn from a delayed exponential 

distribution. The delayed exponential is the sum of a fixed delay value with a random value 

drawn from an exponential distribution. Here, the fixed delay was set to 1000 ms and the 

mean of the exponential component was set to 2000 ms. Because the exponential component 

of the distribution was memoryless, these parameters ensured that the interval between 

successive stimuli was at least 1000 ms, but was unpredictable beyond that.  

Stimuli for the pursuit tracking task were a black cursor “+” in size 10 Arial font 

(0.76° × 0.76° of visual angle) and a red circular marker (subtending 0.95°). Both the cursor 

and the marker moved along a semicircle, extending into the upper visual field, with a radius 

of 9.93° centred along the horizontal midline of the display (see Figure 2-1). The pattern of 

target motion was created by summing sinusoids with frequencies of 0.07, 0.15, and 0.23 Hz 

(Strayer & Johnston, 2001). The centre point of the arc was 5.72° below the screen’s centre 

point. The component sinusoids were randomly phase-shifted to produce a different pattern 

of motion on each trial. The cursor moved along the same arc, at a maximum rate of 80° per 

second, but required manual control via the joystick to manoeuvre. To increase task 

difficulty, at the start of each trial the red target appeared at a randomly selected location 

along the semicircular path, whereas the cursor always began centred along the path. Thus, 

only the red marker was visible to participants. In all the experiments, the coordinates of both 

stimuli were recorded every 100 ms (every 3 frames) throughout each of the 20 tracking 

intervals. Figure 2-1a presents a schematic stimulus representation from a left single-target 

dual-task trial from Experiment 1b or Experiment 2. 
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Figure 2-1. a. A single-target dual-task trial from either Experiment 1b or the dual-task 

condition of Experiment 2. b. A single-target dual-task trial from Experiment 3. The 

participant pressed a button when he/she detected the target (in the top left of these figures). 

The tracking task involved manually manoeuvring the black cursor (+) with the moving red 

circle. The black cursor and the red circle moved along an invisible arc (presented here as a 

dashed line). Stimuli for the single- and dual-task experiments/conditions were similar, 

except the black cursor was not visible in the single-task versions. 

Procedure. Participants completed the task in a well-lit room. At the start of the 

session, participants were instructed to hold the joystick with two hands, allowing both 

thumbs to rest on the buttons on top of the joystick. To perform the detection task, 

participants were instructed to remain aware of targets appearing in the upper regions of the 

screen. Participants were required to respond as fast as possible if a letter T appeared in either 

one or both peripheral stimulus locations, but to refrain from responding if both peripheral 

letters were Ls. Responses were made by pressing the buttons on top of the joystick with both 

thumbs. Bimanual joystick button responses ensured that both hemispheres were activated 

during the task. As our aim was to understand the attentional processes involved in target 
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detection, using bimanual responses reduced the likelihood of any stimulus-response 

compatibility effects (e.g., congruency between targets and response hand).  

To enhance engagement, both tasks were framed within a driving scenario in which 

participants were asked to imagine they were driving a vehicle to the university. For the 

tracking task, participants aligned the cursor, representing their car, with the red marker, 

representing an in-vehicle navigation system. For the target-detection task, participants were 

told to imagine they were responding to traffic signals, where Ts represented red lights and 

Ls represented green lights. Thus, participants were required to brake by issuing a joystick 

button press as fast as possible if they encountered a red light (T), but to withhold responding 

if a pair of green lights (LL) appeared. Participants were encouraged to respond as fast as 

possible, whilst maintaining accuracy.  

Each tracking interval lasted 60 seconds, after which participants were given the 

chance for a short break before starting the next interval. To begin a new interval, participants 

pulled the joystick trigger. Within each block, participants completed a total of one 60-second 

practice interval, followed by 20 experimental intervals (the number of blocks varied between 

experiments). In general, within each testing session participants completed approximately 72 

trials for each of the four trial types (left, right, redundant, and target-absent).  

After finishing the experiment, participants completed the FLANDERS questionnaire. 

Participants were then asked if they held a current valid driver’s licence, and if so, 

approximately how many years of driving experience they had. Finally, participants were 

debriefed and thanked for their time.  

Experiment 1a 

Experiment 1a provided a baseline estimate of resilience for a parafoveal target 

detection task performed alone (i.e., in a single-task condition).   

Method  
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Participants. Twenty-five Flinders University undergraduate students (21 female; 

MAge = 23.08 years, SD = 5.12, Range = 18 – 40) were recruited as part of a course 

requirement. All participants had normal or corrected-to-normal visual acuity and normal 

colour vision, and were fluent in English. Participants were screened for right-hand 

dominance, with a minimum Flinders Handedness Survey (FLANDERS; Nicholls, Thomas, 

Loetscher, & Grimshaw, 2013) score of +5 (M = +9.76, SD = 0.66). Twenty participants held 

a current valid driver’s licence, with between 0.5 and 15 years of driving experience (M = 

4.69, SD = 3.61).  

Apparatus and Stimuli. In Experiment 1a, stimuli for the target detection task were a 

black capital T (target) and L (distractor) presented in 16-point Arial font (1.58° × 1.14° of 

visual angle) on a white background. Stimuli letters were randomly and independently rotated 

between 0° and 270°, in steps of 90°. In addition, the black cursor was invisible to ensure 

participants did not attempt to perform the tracking task.  

Procedure. In Experiment 1a, the participants’ only task was to monitor and respond 

to peripheral targets. As such, participants were instructed to ignore the movements of the red 

target circle and were not instructed to perform the tracking task. Participants completed one 

block of 20 60-second tracking intervals. The entire process took approximately 30 minutes. 

Analysis. For statistical analysis, raw resilience scores, R(t), were converted to 

standardised resilience scores, Rz, (Houpt & Townsend, 2012) using the ‘sft’ package (Houpt, 

Blaha, McIntire, Havig, & Townsend, 2014) for R (R Core Team, 2016). 

Analysis of RTs for correct responses, normalised resilience scores, and root mean 

squared error (RMSE) for tracking performance was performed through Bayesian parameter 

estimation using a Markov chain Monte Carlo (MCMC) sampling procedure (Kruschke, 

2013, 2015; Lee & Wagenmakers, 2013). This approach begins by assuming a prior 

distribution on a parameter value of interest, then updates the prior through probabilistic 
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sampling to approximate the posterior distribution on parameter values based on the observed 

data (Kruschke, 2015). Analyses were conducted using sampling functions from the JAGS 

package (Plummer, 2015) in R. RTs were analysed in a one-way, within-participant design, 

with additive effects of condition (first single-target, second single-target, redundant-targets) 

and participant. Effects were assumed to follow normal distributions with vague priors on 

their means and standard deviations. Following Kruschke (2015), 

Yparticipant, condition ~ N(a0  + aparticipant + acondition, σy2) 

σy ~ U(SD/1000, SD*1000) 

a0 ~ N(M, [100 × SD]2) 

aparticipant ~ N(0, σparticipant2) 

acondition ~ N(0, σcondition2) 

σparticipant, σcondition ~ 3 (α, β) 

α = SD/2 

β = 2 * SD 

where Yparticipant, condition is the RT for a given participant in each condition, σy is the 

estimated standard deviation of the normal distribution of RTs, a0 is the estimated grand 

mean RT, aparticipant is the participant effect, acondition is the condition effect, M is the grand 

mean of the observed RT scores, and SD is the standard deviation of the observed RT scores. 

Deflections from the grand mean representing effect of condition were constrained to sum to 

zero across conditions. Using the data sample mean and standard deviation to set parameters 

of the prior ensured that the prior distribution was scaled appropriately to the data (Kruschke, 

2015). To test for the possibility of lateral (left vs. right) attentional bias, along with 

redundancy gains, we estimated RTs in two different ways. In the first case, to check for the 

possibility of lateral asymmetries in performance, data were coded such that two single-target 

conditions represented the left single-target and right single-target trials. Thus, any difference 
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in RTs in the first case would signal participants had tended to respond to targets in one 

location faster than the other. In the second case, to provide a conservative estimate of the 

redundancy gain, data were coded such that the two single-target conditions represented the 

faster and slower mean single-target condition for each participant. Redundancy gain was 

defined as the difference between the shorter of the two single-target RTs and the redundant-

target RT. This method of measuring redundancy gains provides more conservative estimates 

than the alternative approach of comparing redundant-target RT to the mean of the single-

target RTs (cf. Biederman & Checkosky, 1970). 

Rz and RMSE scores were estimated in a one-sample design (Kruschke, 2013), 

Yparticipant ~ N(u, σ2) 

u ~ N(M, [100 × SD]2) 

σ ~ U(SD/1000, SD*1000) 

where Yparticipant is the score for a given participant, u is the estimated grand mean score, σ is 

the estimated standard deviation of the normal distribution of scores, M is the grand mean of 

the observed scores, and SD is the standard deviation of the observed scores. 

Each parameter estimate was based on four MCMC chains, run for 1000 burn-in 

steps, followed by 250,000 steps each. Chains were thinned to every fifth step in to reduce 

sample autocorrelation, (number of effective samples [Neff] > 4400). Visual inspection of the 

chains for different parameters indicated chains were visually mixing. All estimated 

parameters showed t-Rubin statistic values (Gelman & Rubin, 1992) of 1.01 or less, 

indicating satisfactory convergence of the MCMC chains (Kruschke, 2015). 

Results 

Error rates. Detection error rates were analysed to ensure participants had correctly 

followed instructions. As a general rule, the capacity coefficient is robust against error rates 

of up to 0.30 (Townsend & Wenger, 2004a). No participants in Experiment 1a produced false 
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alarm rates that exceeded this value (M = 0.10, Range = 0.01 – 0.20). Miss rates in all target 

conditions—single target on left (M = 0.01, Range = 0.00 – 0.09), single target on right (M = 

0.01, Range = 0.00 – 0.07), and redundant targets (M < 0.01, Range = 0.00 – 0.07)—were 

very low. On average, participants correctly responded to approximately 72 trials in each 

condition: M = 71.80 (Range = 67 – 75) for left-targets, M = 71.68 (Range = 67 – 75) for 

right-targets, and M = 71.56 (Range = 66 – 74) for redundant targets. Collapsed across target-

present and target-absent trials, the mean accuracy rate was very high, M = 0.97 (Range = 

0.93 – greater than 0.99). 

RTs. In all experiments, RTs were only analysed for correct target-present trials (i.e., 

excluding false-positive responses). Inspection of the data suggested that participants 

generally complied with the instructions to respond to targets bimanually, making button 

presses with both thumbs in quick succession. Analyses were carried out using the RT for the 

faster of the two button presses for each trial.  

Data showed no credible difference in RTs between single targets on the left (M = 577 

ms, 95% Bayesian Credible Interval (BCI; Kruschke, 2015) = [536, 618]) and on the right (M 

= 568 ms, 95% BCI = [527, 610]), (left-right difference: MDiff = 9 ms, 95% BCI = [-4, 22], d 

= 0.24). The mean single-target RT provides a measure of baseline response speed 

independent of any redundancy gain. Collapsed across the two single-target conditions, the 

mean single-target RT was 573 ms, 95% BCI = [532, 613]. Figure 2-2 shows the 95% BCIs 

for the mean single-target RT for Experiment 1a, along with those for the following 

experiments. As noted above, redundancy gains were calculated by subtracting RT for the 

redundant-target condition from RT for the faster single-target condition (left or right) for 

each participant. Even by this conservative measure, data gave clear evidence of a 

redundancy gain (redundant signals effect: MRSE = 37 ms, 95% BCI = [25, 48], d = 1.86), 

with the redundant-target condition (M = 523 ms, 95% BCI = [482, 564]) producing shorter 
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RTs than the faster single-target condition (M = 560 ms, 95% BCI = [519, 601]). Figure 2-3 

presents the mean and 95% BCI for the redundancy gain in each experiment. 

 

Figure 2-2. a. Means and 95% BCIs for single-target RTs (ms) in each experiment. b. Means 

and 95% BCIs on the task-load difference scores for single-target RTs in each experiment 

(single-task RT minus dual-task RT). 
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Figure 2-3. a. Means and 95% BCIs for redundancy gains (ms) by experiment. b. Means and 

95% BCIs for task-load differences in redundancy gains (single-task RT minus dual-task RT) 

by experiment. 

Resilience. As noted above, the standardised score Rz represents the normalised mean 

of R(t) across values of t, weighted inversely by the variability of R(t) at each time point 

(Houpt & Townsend, 2012). Values equivalent to zero represent UCIP processing, positive 

values indicate super-capacity, and negative values represent limited capacity. Mean Rz was 

credibly negative (MRz = -1.77, 95% BCI = [-2.35, -1.19]). See Figure 2-4 for the 95% BCIs 

for resilience scores for each experiment.  

 



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
63 

 

Figure 2-4. a. Means and 95% BCIs for standardised resilience/capacity scores for 

Experiments 1 to 3. b. Means and 95% BCIs for task-load differences in Rz (single-task 

minus dual-task) across experiments. 

Tracking performance. In Experiment 1a, the participant-controlled cursor was 

invisible, and participants were told to ignore the movements of the red dot of the tracking 

task. However, joystick movements were recorded. These data provided an estimate of 

chance-level tracking accuracy, suitable as a baseline against which to compare active 

tracking performance in the subsequent dual-task experiments. Performance was measured by 

calculating the RMSE in angular distance of the cursor position relative to the target position. 

Mean RMSE was 31.34˚, 95% BCI = [26.01, 36.66]. If participants followed instructions to 
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ignore the tracking task in Experiment 1a and perform it in the subsequent dual-task 

experiments, RMSE should be smaller in the later experiments.  

Discussion 

The goal of Experiment 1a was to provide a baseline measure of processing efficiency 

before any secondary task load was added. Resilience for redundant-target processing was 

highly limited, despite attention being wholly focused on the target detection task. Thus, 

within a standard distractor-present redundant-target task, the RT gains produced by 

redundant target presentation were smaller than predicted by statistical facilitation in a UCIP 

model. 

Experiment 1b 

Experiment 1b replicated the procedure of Experiment 1a but with the addition of a 

central manual tracking task, to test whether concurrent task load reduced processing 

resilience. 

Method 

Participants. As we aimed to match sample size from Experiment 1a, we ran 

participants until we had data for 25 participants who met the inclusion criteria for detection 

error rates. We achieved this goal after running 29 participants (see Error Rates section below 

for details on reasons for exclusions). All participants were undergraduate students (18 

female, MAge = 23.00 years, SD = 8.86, Range = 18 – 55), who received either AU$10 or 

course credit for their participation. None had participated in the previous experiment. All 

were right-hand dominant (MFLANDERS = +9.24, SD = 1.43), fluent in English, and had normal 

colour vision and normal or corrected-to-normal visual acuity. Twenty-three participants held 

current valid driver’s licences, with driving experience ranging from 2 to 38 years (M = 6.19, 

SD = 8.68). 
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Apparatus and stimuli. The apparatus and stimuli were identical to those used in 

Experiment 1a, except that the cursor in the pursuit tracking task was made visible.  

Procedure. In Experiment 1b, participants performed the peripheral target detection 

and manual tracking tasks concurrently. Participants were encouraged to maintain accuracy 

on both tasks, while also aiming to minimise RTs on the detection task. As in Experiment 1a, 

the task involved one block of tracking intervals, comprising one 60-second practice interval 

followed by 20 60-second experimental intervals. Lastly, participants completed the 

FLANDERS questionnaire, recorded their driving experience, and were debriefed.  

Analysis. Analysis was identical to that of Experiment 1a. 

Results 

Error rates. As with Experiment 1a, participants with false alarm or miss rates 

greater than 0.30 in any of the three target conditions were excluded from analysis. Data for 

three participants with excessive false alarm rates (ranging 0.30 – 0.67) and for one 

participant with excessive miss rates (as high as 0.79 in the right-single target condition) were 

excluded. Mean false alarm rates for the remaining 25 participants were much lower (M = 

0.09, Range = 0.01 – 0.22). Miss rates for the remaining participants were also very low (left 

single targets: M = 0.01, Range = 0.00 – 0.07; right single targets: M = 0.01, Range = 0.00 – 

0.08; and redundant targets: M = 0.01, Range = 0.00 – 0.06). On average, participants 

correctly responded to approximately the same number of left-target trials (M = 70.88, Range 

= 65 – 74), right-target trials (M = 70.84, Range = 65 – 74), and redundant trials (M = 71.56, 

Range = 68 – 74) throughout the testing session. Collapsed across all trials, mean accuracy 

was very high (M = 0.97, Range = 0.93 – greater than 0.99). 

RTs. Unlike Experiment 1a, RTs to left targets (M = 618 ms, 95% BCI = [583, 654]) 

were credibly shorter than those to right targets (M = 638 ms, 95% BCI = [602, 673]), (left -
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right difference: MDiff = -19 ms, 95% BCI = [-36, -3], d = 0.42). The addition of the manual 

tracking task in Experiment 1b produced a mean single-target RT (M = 628 ms, 95% BCI = 

[593, 663]) marginally longer than that of Experiment 1a, with the BCI on the difference 

between experiments just excluding 0, (single- minus dual-task difference: MDiff = -55 ms, 

95% BCI = [-108, -2], d = 0.57). Analysis confirmed that responses in the redundant-target 

condition (M = 574 ms, 95% BCI = [538, 610]) were faster than in the fastest single-target 

condition (M = 610 ms, 95% BCI = [575, 646]), (MRSE = 36 ms, 95% BCI = [23, 50], d = 

0.78). However, there was no credible difference between the size of the redundancy gain in 

Experiment 1b and that in Experiment 1a, (single- minus dual-task difference: MDiff = 0 ms, 

95% BCI = [-17, 18], d = 0.04). 

Resilience Scores. Resilience was again limited (MRz = -2.35, 95% BCI = [-2.89, -

1.80]), indicating redundancy gains were smaller than predicted by a UCIP model. As the 

number of correct trials was approximately consistent across Experiments 1a and 1b 

(approximately 71 correct target-present trials within each trial type), we can be confident 

that the variance in resilience does not differ substantially between experiments, and hence, 

we can compare resilience scores. A comparison between Rz scores in Experiments 1a and 1b 

found no credible difference, (single- minus dual-task difference: MDiff = 0.58, 95% BCI = [-

0.21, 1.37], d = 0.43). 

Tracking performance. Mean RMSE was 15.16° (95% BCI = [13.04, 17.25]), 

credibly lower than in Experiment 1a, (single- minus dual-task difference: MDiff = 16.18, 95% 

BCI = [10.47, 21.87], d = 1.79). Thus, data suggest that participants in Experiment 1b 

engaged in the tracking task as instructed. 

To test the possibility of a trade-off in performance between the target detection and 

tracking tasks, bivariate correlations were calculated between Rz scores and RMSE. The 

credible interval on the correlation included a value of 0.0 but was wide, r(23) = -.14, 95% 
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BCI = [-.58, .30], indicating that the data lacked resolution to strongly support or discredit the 

possibility of trade-offs between the two tasks. 

Discussion 

Experiments 1a and 1b tested whether a manual tracking task impairs processing 

efficiency for redundant visual targets. Consistent with previous findings (Eidels et al., 2014; 

Townsend & Nozawa, 1995), resilience was limited capacity. More surprisingly, resilience 

did not appear to suffer with the addition of a concurrent, central tracking task.  

Experiment 2 

Experiments 1a and 1b failed to find a clear difference in processing efficiency for 

redundant visual targets between single- and dual-task conditions. However, it is possible that 

the between-participants design of Experiment 1 simply was not sensitive enough to detect 

differences between the single- and dual-task conditions. To address this issue, Experiment 2 

used a within-participants design to replicate Experiments 1a and 1b, providing a second test 

of the relationship between task load and target processing efficiency. 

Method 

Participants. Thirty-two Flinders University students (MAge = 23.56 years, SD = 5.96, 

Range = 18 – 39) participated for AU$10. No participants had performed any of the previous 

experiments. Participants were all fluent in English, with normal colour vision, and normal or 

corrected-to-normal visual acuity. In addition, all participants were right-hand dominant 

(MFLANDERS = 9.56, SD = 0.23), and 28 had current valid driver’s licences, with experience 

ranging from 1 to 20 years (M = 5.24, SD = 5.00). 

Apparatus and stimuli. Apparatus and stimuli were the same as in Experiment 1.  

Procedure. The tracking and discrimination tasks were performed in the same way as 

in Experiment 1. However, each participant completed two blocks of trials. In one block, the 
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participant performed the target-detection task alone, following the same procedure as 

Experiment 1a (single-task condition). In the other block, the participant performed both 

tasks simultaneously, as in Experiment 1b (dual-task condition). Block order was 

counterbalanced across participants. To ensure Experiment 2 was consistent with Experiment 

1 and due to time constraints within testing sessions, we did not include a separate condition 

to assess tracking performance on its own. At the beginning of each block, participants were 

given a 60-second practice session, before completing 20 60-second intervals. Participants 

were given a short break between blocks. As in the previous experiments, participants 

finished the testing session by completing the FLANDERS questionnaire and recording their 

driving experience. The entire session took approximately 50 minutes. 

Analysis. Analysis was as in Experiment 1, but was adapted to account for the within-

participant manipulation of task load. Analysis of RTs now included additive effects of task 

load and the interaction of target condition by load (Kruschke, 2015), 

Yparticipant, task load, condition ~ N(a0 + aparticipant + atask load + acondition + atask load × condition, σy2) 

aparticipant ~ N(0, σparticipant2) 

atask load ~ N(0, σtask load2) 

acondition ~ N(0, σcondition2) 

atask load × condition ~ N(0, σtask load × condition2) 

σparticipant, σtask load, σcondition, σtask load × condition ~ 3 (α, β) 

α = SD/2 

β = 2 * SD,  

where deflections from the grand mean representing the effects of task load, condition, and 

their interaction were constrained to sum to zero across cells of the design. Likewise, analysis 

of Rz and RMSE included task load as an effect, 

Yparticipant, task load ~ N(a0  + aparticipant + atask load, σy2) 
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σy ~ U(SD/1000, SD*1000) 

a0 ~ N(M, [100 × SD]2) 

aparticipant ~ N(0, σparticipant2) 

atask load ~ N(0, σtask load2) 

σparticipant, σtask load ~ 3 (α, β) 

α = SD/2 

β = 2 * SD, 

where deflections from the grand mean reflecting the effects of task load were constrained to 

sum to zero across conditions. 

Results 

Preliminary inspection found no effect of block order on any of the measures. As 

such, all analyses were carried out collapsed across block order. Analyses excluded data from 

three participants with excessive error rates (ranging 0.44 – 0.89 in any of the target 

conditions), one participant who appeared not to perform the tracking task in the dual-task 

condition (32.05° vs. 48.55° RMSE for the single- and dual-task, respectively), and one 

participant who failed to make enough button-press responses to be analysed. These 

exclusions left data from 27 participants for analysis. 

Error rates. False alarm rates were reasonable in both the single- (M = 0.08, Range = 

0.01 – 0.23) and the dual-task conditions (M = 0.08, Range = 0.01 – 0.21). Miss rates were 

low for each trial type in the single-task condition (left single: M < 0.01, Range = 0.00 – 0.06; 

right single: M < 0.01, Range = 0.00 – 0.03; redundant: M < 0.01, Range = 0.00 – 0.03) and 

in the dual-task condition (left single: M = 0.02, Range = 0.00 – 0.17; right single: M = 0.01, 

Range = 0.00 – 0.07; redundant: M = 0.01, Range = 0.00 – 0.08). The number of targets 

correctly detected in each of the three trial conditions was consistent across both the single- 

(left-targets: M = 71.41, Range = 67 – 75; right-targets: M = 71.62, Range = 69 – 75; 
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redundant-targets: M = 71.48, Range = 68 – 75) and dual-task conditions (left-targets: M = 

70.25, Range = 59 – 74; right-targets: M = 71.33, Range = 66 – 75; redundant-targets: M = 

70.71, Range = 67 – 74), meaning comparisons of Rz between conditions are appropriate. 

Collapsed across target-present and -absent trials, mean accuracy rate was extremely high 

within both the single- (M = 0.98, Range = 0.94 – 1.00) and dual-task conditions (M = 0.97, 

Range = 0.89 – 0.99). 

RTs. Consistent with Experiment 1a, data showed no difference in mean RT for 

single targets presented on the left compared with single targets on the right for the single-

task block (left: M = 601 ms, 95% BCI = [564, 639]; right: M = 601 ms, 95% BCI = [563, 

637]; MDiff = 0.79 ms, 95% BCI = [-22, 25], d = 0.08), and in contrast with the results of 

Experiment 1b, showed no difference in RTs for left versus right single targets in the dual-

task block (left: M = 628 ms, 95% BCI = [591, 665]; right: M = 633 ms, 95% BCI = [596, 

670]; MDiff = -5 ms, 95% BCI = [-29, 18], d = 0.14). Mean single-target RT was credibly 

longer when the tracking task was performed concurrently (M = 630 ms, 95% BCI = [595, 

665]) than when only the target-detection task was performed (M = 601 ms, 95% BCI = [566, 

636]), (MDiff = -29 ms, 95% BCI = [-47, -12], d = 0.42). Comparing the fastest single-target 

RTs (single-task: M = 587 ms, 95% BCI = [550, 624]; dual-task: M = 612 ms, 95% BCI = 

[575, 649]) with the redundant RTs (single-task: M = 550 ms, 95% BCI = [513, 587]; dual-

task: M = 581 ms, 95% BCI = [544, 618]) revealed clear redundancy gains of roughly the 

same size in both the single- (MRSE = 37 ms, 95% BCI = [15, 61], d = 1.47) and dual-task 

(MRSE = 31 ms, 95% BCI = [7, 53], d = 0.90) conditions, (MDiff = 7 ms, 95% BCI = [-21, 38], 

d = 0.26). 

Resilience. As in the previous experiments, normalised resilience scores for both the 

single- (MRz = -2.17, 95% BCI [-2.64, -1.70]) and dual-task (MRz = -2.33, 95% BCI [-2.81, -

1.87]) conditions were limited, well below the predictions of the UCIP model (see Figure 2-
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4). Furthermore, comparisons of resilience between the dual- and single-task conditions again 

failed to find evidence of a difference (MDiff = 0.16, 95% BCI = [-0.39, 0.76], d = 0.13). 

These results replicate the findings of Experiment 1, showing no credible effect of task load 

on dual-channel processing efficiency.  

Tracking performance. RMSE was substantially smaller in the dual-task block (M = 

16.87°, 95% BCI = [12.94, 20.78]) than in the single-task block (M = 32.97°, 95% BCI = 

[29.04, 36.86]) (MDiff = 16.11, 95% BCI = [10.68, 21.46], d = 1.07), indicating that 

participants followed instructions to perform both tasks simultaneously during the dual-task 

block. Data from the dual-task condition found no evidence of a trade-off between RMSE 

and Rz, with higher Rz scores predicting smaller tracking error, r(25) = -.36, 95% BCI = [-

.75, .04], although the BCI on this effect included 0.  

Discussion 

As in Experiments 1a and b, resilience was highly limited, but was not credibly 

smaller when participants performed a concurrent manual tracking task. Thus, the tracking 

and detection tasks did not appear to compete for processing resources (Wickens, 1981; 

Wickens, 2002), producing no performance trade-off between the tasks.  

Experiment 3 

The previous experiments found that processing efficiency for redundant visual 

targets, as measured by resilience, was similar across single- and dual-task conditions. In both 

cases, resilience was limited, producing mean Rz scores decisively below 0. Experiment 3 

sought to generalise the results of Experiments 1 and 2 by testing the effects of dual-task load 

on Rz under conditions in which the baseline, single-task resilience scores were not highly 

limited. 

Although neither of the first two experiments included a manipulation to diagnose 

system architecture, the observed resilience scores suggest that the left and right channels in 
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the target detection task were processed in parallel. As noted above, a serial processing 

architecture can produce limited-resilience processing. This type of processing only occurs 

when the time needed to process a distractor is significantly lower than the time needed to 

process a target (Little et al., 2015). There is little reason to expect that this would have been 

the case in Experiments 1 and 2. Moreover, past work has shown that TL stimuli can be 

processed in parallel (Sung, 2008; Yamani, McCarley, Mounts, & Kramer, 2013), at least 

under conditions in which they are above the limits of sensory resolution and are not subject 

to visual crowding (Bouma, 1970) or attentional suppression (Yamani et al., 2013). 

Experiment 3 measured resilience under single- and dual-task conditions using target 

and distractor stimuli designed to force serial processing and push resilience above the levels 

observed in the first two experiments. Targets and distractors were presented in a 4-pt font, 

and embedded in flanking characters intended to produce visual crowding (Bouma, 1970; 

Whitney & Levi, 2012) in the extrafoveal retina. This design meant that stimulus onsets could 

still be detected in the retinal periphery. However, to identify targets and distractors, 

participants had to foveate the stimuli, with little peripheral information to guide participants 

preferentially toward the target on single-target trials. Assuming that target and distractors 

required roughly the same amount of time to process, resilience should have reached super-

capacity levels (Little et al., 2015), allowing us to test the generality of our findings from the 

first two experiments. 

Method 

The following experiment was preregistered on the Open Science Framework: 

https://osf.io/k4pz2/register/5771ca429ad5a1020de2872e. 

Participants. We planned for a sample size of 30 participants who met the 

performance criteria for both the target detection and tracking tasks. To achieve this sample 

size, 34 undergraduate students from Flinders University (25 female; MAge = 21.32, SD = 
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3.88, Range = 17 – 35) participated in the experiment either for course credit or for AU$10. 

No participants had participated in any of the previous experiments. Participants all exhibited 

normal or corrected-to-normal visual acuity, normal colour vision, and English fluency. 

Participants were required to be right-hand dominant (MFLANDERS = +9.48, SD = 1.93); one 

participant who failed this requirement was immediately excluded from the study prior to 

further analysis. Thirty-one participants reported holding a current valid driver’s licence, and 

the mean years driving experience was 3.83 years (SD = 3.19; Range = 1 – 15 years). 

Apparatus and stimuli. The apparatus was the same as above. Stimuli were similar 

except for the following changes. First, stimuli for the target detection task were reduced to 

4-point font, with each letter subtending approximately 0.44° × 0.35° of visual angle. Second, 

targets and distractors were embedded within 5-item letter arrays. Target letters appeared in 

the same upper left and upper right locations as in Experiments 1-2, but were flanked on both 

sides by two letters randomly and independently selected from the set F, H, K, M, N, V, W, 

X, and Z. To avoid overlap between letters, target and distractor orientations were fixed at 0°. 

For an illustration of a dual-task single-target trial from Experiment 3, please return to Figure 

2-1b. 

Procedure and analysis. Procedure and data analysis were identical to Experiment 2.  

Results 

Data from one participant were removed from analysis for high false alarm rates in 

both the single- (0.53) and dual-task (0.61) conditions. Furthermore, data from two 

participants who produced roughly equal tracking error in both the single- and dual-task 

conditions (e.g., 27.58° vs. 29.64°, respectively) were also excluded. 

Error rates. False alarm rates for the remaining 30 participants were acceptable 

within both the single- (M = 0.07, Range = 0.00 – 0.19) and dual-task (M = .08, Range = 0.00 
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– 0.26) conditions. Similarly, target miss rates were low in all trial types for both the single-

task condition (left single: M = 0.01, Range = 0.00 – 0.16; right single: M = 0.02, Range = 

0.00 – 0.20; redundant target: M = 0.01, Range = 0.00 – 0.18) and the dual-task condition 

(left single: M = 0.03, Range = 0.00 – 0.15; right single: M = 0.03, Range = 0.00 – 0.14; 

redundant target: M = 0.02, Range = 0.00 – 0.14). Collapsed across target-present and target-

absent trials, mean accuracy rate was high and approximately equal in both the single (M = 

0.97, Range = 0.84 – greater than 0.99) and dual-task (M = 0.96, Range = 0.87 – greater than 

0.99) conditions. A similar number of targets were detected within each of the three trial 

types for both the single- (left single: M = 70.60, Range = 61 – 74; right single: M = 70.33, 

Range = 59 – 74; redundant target: M = 70.90, Range = 59 – 74) and dual-task conditions 

(left single: M = 69.77, Range = 58 – 74; right single: M = 69.70, Range = 60 – 73; redundant 

target: M = 70.13, Range = 62 – 73), allowing for comparisons of Rz between conditions. 

RTs. Comparisons of RTs for left and right single targets revealed faster responses for 

targets on the left than those on the right for both the single- (left: M = 794 ms, 95% BCI = 

[749, 838]; right: M = 976 ms, 95% BCI = [932, 1019]; MDiff = -182 ms, 95% BCI = [-227, -

139], d = 1.11) and dual-task conditions (left: M = 880 ms, 95% BCI = [836, 924]; right: M = 

1031 ms, 95% BCI = [987, 1074]), (MDiff = -151 ms, 95% BCI = [-194, -105], d = 1.43), 

indicating that participants adopted a left-to-right scanning strategy under serial processing 

conditions. Mean single-target RT was credibly faster in the single-task condition (M = 885 

ms, 95% BCI = [847, 923]) than the dual-task condition (M = 955 ms, 95% BCI = [917, 

994]), (MDiff = -70 ms, 95% BCI = [-101, -40], d = 0.50). We found clear evidence for 

redundancy gains when comparing the fastest single-target RTs (single-task: M = 776 ms, 

95% BCI = [733, 818]; dual-task: M = 877 ms, 95% BCI = [835, 920]) with redundant-target 

RTs (single-task: M = 688 ms, 95% BCI = [646, 730]; dual-task: M = 756 ms, 95% BCI = 

[714, 798]) for both levels of task load (single-task: MRSE = 87 ms, 95% BCI = [47, 127], d = 
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1.41; dual-task: MRSE = 121 ms, 95% BCI = [82, 161], d = 2.21). Although there was a trend 

for larger redundancy gains in the dual-task condition, the BCI on the difference score 

contained 0 (MDiff = -34, 95% BCI = [-91, 18], d = 0.50). 

Resilience. As expected, and in contrast to the results of the first three experiments, 

normalised resilience scores for both the single- (MRz = 0.78, 95% BCI = [0.20, 1.38]) and 

dual-task conditions (MRz = 0.69, 95% BCI = [0.09, 1.28]) were credibly super-capacity. 

However, consistent with the previous experiments, we found no evidence that processing 

resilience varied credibly between load levels (single- minus dual-task difference: MDiff = 

0.10, 95% BCI = [-0.57, 0.81], d = 0.06). 

Tracking Performance. RMSE was decisively smaller in the dual-task condition (M 

= 15.69°, 95% BCI = [11.91, 19.49]) than the single-task condition (M = 33.11°, 95% BCI = 

[29.29, 36.87]), (MDiff = 17.41, 95% BCI = [12.47, 22.28], d = 1.39). As in Experiment 2, 

data trended in the opposite direction to a trade-off between RMSE and Rz scores, r(28) = -

.35, 95% BCI = [-.72, .02], with the credible interval just overlapping 0. 

Discussion 

Experiment 3 assessed target processing efficiency within a forced serial process 

paradigm. As expected, serial scanning produced super-capacity processing of redundant 

targets (Little et al., 2015). Notably, the large difference in resilience scores found in the 

current experiment versus those in the earlier experiments supports the idea that, when 

stimuli were above sensory thresholds and not compromised by crowding, target processing 

was parallel with limited-capacity. But, despite the difference in processing architecture 

between experiments, none of the experiments found an effect of task load on processing 

efficiency. Resilience remained largely unaffected by variations in task load, despite large 

variations in baseline resilience values and changes to processing architecture.  
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General Discussion 

The current studies examined redundant-target processing within a dual-task 

paradigm. As expected, a concurrent manual tracking task increased RTs for target detection 

in the periphery. But despite this difference in baseline target detection times, the efficiency 

with which redundant targets were processed did not vary credibly between task loads. In 

other words, a central task slowed responses to peripheral targets, but did not change the rate 

at which multiple targets were processed relative to single targets. This effect was true 

regardless of whether targets were processed in parallel with limited resilience (Experiments 

1-2), or in serial with super-capacity resilience (Experiment 3).  

One interpretation is that the central manual tracking task and peripheral target 

detection task tapped into partially-independent pools of information-processing resources 

(Wickens, 2002). Although multiple resource theory includes visual attention as one form of 

processing resource, it posits separate pools of processing resources for both focal and 

ambient vision, linking focal processing to the central visual field and ambient to the 

peripheral visual field. The theory thus allows that the task-load manipulation might not have 

affected processing efficiency because the tracking task engaged central resources and the 

target detection task engaged ambient resources. Contrary to this hypothesis, though, mean 

single-target RTs for dual-task conditions were credibly longer than those for single-task 

conditions in across all experiments. These results suggest the central tracking and peripheral 

detection tasks likely tapped common processing resources, presumably at the stages 

Wickens (2002) labels perception or cognition; the target and distractor stimuli of Experiment 

3 were in fact designed to be indiscriminable in ambient vision, ensuring competition for 

focal attention between the central and peripheral tasks. Moreover, Wickens’ (2002) model 

proposes that focal processes are specialised for detailed object perception and recognition, 

whereas ambient processes are specialised for spatial processing. Assuming that participants 
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fixated near the display centre to perform the tracking task, the central and peripheral 

processing demands in the current experiments therefore would not have aligned well with 

the attentional pools hypothesised by multiple resource theory. To optimise the distribution of 

resources under the model, participants would have had to fixate near the boundary of the 

display while tracking the moving target with peripheral vision. Eye movement data might 

test whether any participants adopted such a strategy, or to estimate more generally how often 

eye movements occurred between the central and peripheral tasks. At best, though, the data 

indicate that distributing task load over different resource pools would have attenuated dual-

tasks costs, not eliminated them. 

An alternative explanation for the present results could be that even when redundant 

peripheral targets were themselves processed in parallel, attention shifted between the central 

and peripheral tasks in serial (Wickens & Gopher, 1977). By this account, participants would 

have performed the central tracking task while using a diffuse attentional window to monitor 

the display periphery for targets and distractors (Steelman et al., 2013; Van der Stigchel et al., 

2009). The visual transients produced by peripheral stimulus onsets would have interrupted 

the central tracking task (Yantis & Jonides, 1990), drawing attention towards the target and 

distractor stimuli for identification. In Experiments 1-2, attention in this interval would have 

been spread broadly over the left and right stimuli, processing them in parallel. By contrast, 

the design of the stimuli in Experiment 3 would have demanded that attention focus on the 

stimuli in serial, through a series of saccadic eye movements. In both cases, after detecting a 

target or confirming that both peripheral items were distractors, attention would have 

returned to the tracking task. Resilience would have been similar across the single- and dual-

task blocks, because, in both cases, attention would have been disengaged from the central 

task while peripheral items were being processed. 
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One caveat of this attention-switching account is that such a theory predicts a positive 

association between tracking error and resilience for the redundant targets, whereas our data 

trended in the opposite direction. The tendency toward better tracking among participants 

with higher resilience hints at individual differences in effort or ability, differences that might 

have masked any trade-offs between tracking and resilience. To better understand how 

attention is divided between the two tasks, future experiments might employ eye-tracking to 

identify participants’ attentional strategies, and to test for evidence of discrete attention shifts 

between the centre and periphery.  

In application, our results indicate that redundant visual signals are likely to be as 

effective at aiding visual detection under multiple-task conditions as under single-task 

conditions. This means both that redundant coding will be useful within multi-task 

workspaces, and that the results of single-task pilot testing can be used to predict the 

magnitude of RT gain that redundant signals will purchase in a multi-task environment. Thus, 

design guidelines for complex visual workspaces, such as pilot cockpits or vehicle 

dashboards, should encourage the use of redundant coding of visual alerts for enhancing 

detection.  

The data also imply a trade-off between redundancy gains and display complexity. 

We find that redundant visual targets in peripheral visual displays are of greatest value for 

low-salience stimuli, those that demand focused attention for detection or recognition, such as 

when monitoring a large set of gauges or meters. Stimuli of higher salience, discriminable 

enough to be processed in parallel, are more likely to be processed with limited resilience and 

with far more modest redundancy gains. This pattern suggests that as a general guideline, 

display designers might trade redundant target presentation against target salience, reserving 

highly salient display modes for the most critical signals and presenting information that is 

less urgent but still time-sensitive in lower salience, redundant signals. By using redundant 
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presentation as a substitute for high conspicuity, this strategy would reduce the risk of a 

salience-saturated environment in which high-contrast signals compete for attention or 

overwhelm the operator. 

Notably, our findings only consider identical redundant visual signals. Thus, 

additional work will be necessary to generalise the results to environments in which 

redundant signals are non-identical (Ben-David & Algom, 2009) or to environments 

involving auditory or multimodal stimuli (Diederich & Colonius, 2004; Fox et al., 2014). As 

many warning technologies and displays employ multimodal signals (Rowe & Halpin, 2013; 

Selcon et al., 1995), further research should examine whether redundant non-identical or 

multimodal signals also produce equally-efficient processing benefits within single- and 

multi-task environments.  

Conclusions 

Within a peripheral redundant-target paradigm, data give no evidence for poorer 

target processing efficiency while under the load of a secondary tracking task. However, in 

line with previous findings, (e.g., Little et al., 2015), data do show variations in processing 

efficiency as a function of display characteristics. Findings suggest there is a modest benefit 

to employing redundant targets in peripheral visual displays (e.g., on a vehicle dashboard) for 

situations in which targets are processed in parallel. However, we find redundant displays 

have more substantial benefits for target items that demand serial processing.  
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The datasets supporting the conclusions of this article are available in the Figshare repository, 

[https://figshare.com/s/be3a9ccbcf358569a80e (Experiments 1a & 1b); 

https://figshare.com/s/c8f3fad139c9b5afc01b (Experiment 2); 
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 CHAPTER 3: STUDY 2 

Dual-Task Redundant-Target Processing:  

The Case of the Limited Capacity Parallel Model 

The following chapter is a version of a published conference proceedings paper from 

the 62nd International Meeting of the Human Factors and Ergonomics Society in Philadelphia, 

NJ, September 2018. The paper involves a follow-up experiment to the experiments in 

Chapter 2. In contrast to the experiments in the previous chapter, here I explore dual-task 

effects on redundant-target processing in distractor-absent displays. 
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Abstract 

We examined the effect of a central tracking task on visual target processing efficiency in a 

combined target detection/manual tracking paradigm. Participants performed a redundant-

target task by itself, and concurrently with the tracking task. A measure of workload capacity 

gauged target processing efficiency. Processing was less efficient than predicted by a 

standard parallel race model under both levels of task load. However, data suggested no 

difference in processing efficiency between the single- and dual-task conditions. Our findings 

provide further evidence that processing capacity for peripheral visual targets is consistently 

limited but robust against changes to concurrent task load. 

  



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
84 

Dual-Task Redundant-Target Processing:  

The Case of the Limited Capacity Parallel Model 

The capacity of the human information processing system is limited (Moray, 1967), 

forcing operators to divide resources between concurrent tasks (Navon & Gopher, 1979). 

Resource competition between tasks can produce mutual interference, increasing response 

times (RTs) to critical events and decreasing response accuracy  (Wickens, 2002; 2008). In 

addition, a demanding central visual task performed with a peripheral visual task may 

produce a tunnel vision effect, diverting attention away from peripheral information 

(Crundall & Underwood, 1998; Crundall, Underwood, & Chapman, 1998; Williams, 1985). 

For example, drivers under cognitive load detect critical events more slowly (Strayer & 

Johnston, 2001), check their mirrors and speedometer less often (Recarte & Nunes, 2003), 

and scan the forward field of view more narrowly (Recarte & Nunes, 2000) than undistracted 

drivers. 

When attending to a central task, the amount of capacity available for processing 

peripheral visual signals is reduced. However, although dividing attention between tasks 

lengthens detection RTs, it is less clear whether this effect results from a decrease in target 

processing capacity (see also Morey, Thomas, & McCarley, 2018b). Thus, our current study 

tested the effect of a central visuo-manual tracking task on workload capacity (i.e., processing 

efficiency) for visual target detection. In other words, we explored whether dividing attention 

between two visually demanding tasks reduces how efficiently the cognitive system 

processes visual signals. 

Measuring Processing Capacity for Visual Signals 

A common method for assessing processing capacity is to use a redundant-signals 

task (Miller, 1982). A redundancy gain or redundant signals effect (RSE) is the speed-up in 
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response times associated with presenting two or more signals with the same meaning at the 

same time. 

Within a standard redundant signals paradigm, the participant is asked to attend to two 

channels (i.e., possible target locations) and issue a positive response if a target appears on 

either. The task is said to employ a first-terminating stopping rule (Colonius & Vorberg, 

1994), as a response occurs after the first target detection on either channel. 

Although a robust effect, the RSE may be small or even absent in some contexts. It 

can vary due to the cognitive system’s architecture—the arrangement of processing channels 

(i.e., in parallel or serial); due to changes to the system’s workload capacity, the efficiency at 

which the channels operate as the number of channels increases (Townsend & Ashby, 1983; 

Townsend & Nozawa, 1995); and due to dependencies between different channels 

(Townsend & Wenger, 2004a). For the present study, our primary interest was workload 

capacity, and understanding how processing efficiency varies as a function of task load. 

The simplest account of the RSE is the unlimited capacity independent processing 

(UCIP) model (Townsend & Eidels, 2011). Within this model, two or more channels operate 

simultaneously and with stochastic independence, and the rate of each individual channel is 

unaffected by the number of channels operating (Townsend & Eidels, 2011). Under a first-

terminating stopping rule, the UCIP produces an RSE purely because the RT for the whole 

system is based on the fastest channel’s finishing time for each separate trial, known as 

statistical facilitation (Raab, 1962). The UCIP provides a benchmark of unlimited capacity 

performance. Super-capacity obtains when an RSE is larger than predicted by the UCIP 

model. Finally, when an RSE is smaller than predicted by the UCIP, performance is limited 

capacity. Under extreme capacity limitations, a system may show no RSE. 

Although mean RTs can demonstrate an RSE, they cannot distinguish between 

moderately limited, unlimited, and super-capacity processing. Miller (1982) and Grice, 
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Canham, and Gwynne (1984) established upper and lower bounds on UCIP performance. 

However, these bounds provide highly conservative tests and are insensitive to modest 

differences in capacity. 

An alternative approach to studying capacity is to use the normalised capacity 

coefficient, Cz (Houpt & Townsend, 2012). Cz provides a fine-grained measure of channel 

processing and can detect differences in capacity between the two bounds (see also 

Townsend & Nozawa, 1995, or Townsend & Eidels, 2011, for a variant of the capacity 

coefficient that plots capacity as a function of time). Cz scores follow a standard normal 

distribution, with a mean of 0 and a standard deviation of 1. A value of 0 indicates UCIP 

performance, and values higher and lower than 0 indicate super-capacity and limited capacity 

processing, respectively.  

Notably, two variants of the redundant-targets task are possible. In the no-distractor 

variant, a target only ever appears on its own or with a redundant target; a distractor never 

accompanies a target. In this case, the task is purely a detection task rather than a 

discrimination task, and as such, the participant responds the moment an item appears on 

either channel. In the with-distractor variant, on the other hand, on single-target trials a 

distractor occupies the channel that does not contain a target. The task thus demands a 

discrimination decision: is either of the items a target? Responses are generally slower to 

distractor-present single-target displays than distractor-absent single-target displays, as the 

distractor can divert processing resources from the target (Houpt & Little, 2017; Little et al., 

2015). The RSE in the distractor-present paradigm conflates the release from interference that 

occurs when a distractor is removed with the RT facilitation that results when two copies of a 

target item are present (Houpt & Little, 2017).  

Our research question was whether processing efficiency for peripheral targets 

decreases when attention is divided between tasks. More specifically, we compared target 
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processing efficiency—Cz—for peripheral targets in a divided-attention, dual-task condition 

with Cz in a full-attention, single-task condition. A recent study (Morey et al., 2018b) found 

no dual-task costs to processing efficiency when targets were accompanied by distractors. In 

the redundant-targets task with a distractor, though, the effects of removing the distractor are 

generally larger than those of adding a second target (e.g., Allen et al., 1992). Therefore, any 

effects of concurrent task load on redundant-target processing facilitation could have been 

masked by variability caused by release-from-distractor interference. Thus, here we examined 

the effect of concurrent task load on peripheral target processing efficiency in a no-distractor 

redundant-targets paradigm. 

Method 

Participants 

Thirty undergraduate students from Flinders University (19 female; M = 22.47, SD = 

6.92, Range = 17 to 48 years) completed the study either for course credit or for AU$10. 

Participants were fluent in English, had either normal or corrected-to-normal visual acuity, 

and had normal colour vision. To control for any effects of hand dominance, only participants 

with a right hand dominance of at least +5 (M = +9.63, SD = 1.00) on the Flinders 

Handedness Survey (FLANDERS) (Nicholls et al., 2013) were eligible to participate. 

Twenty-two participants held current valid driver’s licences, with driving experience ranging 

from 0.5 to 30 years (M = 3.86, SD = 6.00). 

Apparatus and Stimuli 

Apparatus and stimuli were identical to those used in a recent study (Morey et al., 

2018b; Experiment 2); however, all distractors were removed entirely from the design. The 

experiment was performed on a 27” Samsung monitor with a screen resolution of 1920 x 

1080 pixels (each pixel = 0.33mm) and a refresh rate of 100 Hz. Participants sat 

approximately 600mm in front of the monitor. The experiment was programmed using 
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Presentation Software Version 16.5 Build 09.17.13 (Neurobehavioral Systems, 2018). A 

Logitech Attack 3 joystick (Logitech, 2018) collected responses to both the target detection 

task and the manual tracking task. 

The tracking task involved a small black cursor in 10-point Arial font (subtending 

0.76° × 0.76° visual angle) and a red circular target (subtending 0.95°). The target moved 

along an unmarked semi-circular path with a radius of 9.93° and a midpoint offset 5.72° 

visual angle below the screen centre. The tracking target’s movements were based on a 

combination of three sine waves (0.07, 0.15, and 0.23), making target motion effectively 

unpredictable (Strayer & Johnston, 2001). The cursor moved along the same semi-circular 

path as the target, but with a maximum speed of 80° per second. 

The target for the detection task was a black capitalised ‘T’ appearing on a white 

background. Targets appeared in 16-point Arial font, each subtending a visual angle of 1.58° 

× 1.14°. Targets appeared in the top left (Location A) and/or top right (Location B) locations 

of the monitor, with polar coordinates θ = ±51.15° from the vertical midline and r = 21.79° 

from the screen centre point. Every target appeared randomly rotated in 90° steps for 2000 

ms or until a button press was made; whichever came first. Figure 3-1 shows an example of 

the trial process within each 60-second tracking interval. 

On left single-target trials, a T appeared in Location A but Location B was empty; on 

right single-target trials, a T appeared in Location B but Location A was empty; and on 

redundant-target trials, both locations were occupied with a T. On target-absent trials, no 

targets were present, and as such, the trials appeared no different to a blank screen. The four 

trial conditions occurred with equal probability throughout the task and appeared in a random 

order. 

To respond to targets, participants pressed the buttons on the top of the joystick using 

both thumbs at the same time. To reduce temporal certainty, the inter-stimulus interval 
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between a target offset and the next onset was determined by an exponential distribution with 

a fixed delay of 1000 ms and an exponential component with a mean of 2000 ms.  

 

 

Figure 3-1. A left single-target trial (Slide 2) and redundant-target trial (Slide 4) within a 60-

sec dual-task tracking interval. While responding to targets in the top corners of the screen, 

participants used a joystick to manually manoeuvre a black cursor (+) to align with a moving 

red circle. The cursor and circle both moved along an imaginary semi-circle (shown here as a 

grey dashed line). In the single-task block, stimuli were identical except that the black cursor 

for the tracking task was made invisible. 

Procedure  

After providing informed consent, participants were tested for normal visual acuity 

and colour vision. We carried out the experiment in a single testing station in a quiet room. 

Participants were informed that they would perform two blocks of trials, and that in one block 

they would only perform the target detection task, whereas in the other block they would 

perform both the tracking and detection tasks. At the start of each block, the participant 

Continuous tracking interval (60 s)

2000 ms (or until button press)

1000 – 3000 ms

2000 ms (or until button press)

1000 – 3000 ms

Further trials
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performed a 60-second practice trial, then 20 experimental trials of 60 seconds each. 

Peripheral targets appeared approximately 20 times within each tracking interval. 

To enhance participants’ engagement with the tasks, we framed the experiment with a 

driving scenario. Participants were instructed to imagine the task simulated their drive to 

university. Holding the joystick with both hands, they were asked to align their vehicle (the 

black cursor) as best as possible with the navigator (red circular target). The target Ts were 

described as being red traffic signals. The participants’ task was to use both thumbs to press 

the two buttons on top of the joystick as soon as a stop signal (target) appeared. Both speed 

and accuracy were emphasised on the detection task. 

In the single-task block, participants performed the target detection task by itself. The 

red moving target was visible, but the black cursor was hidden. Participants were told to 

ignore the movements of the red dot and to focus on the targets. In the dual-task block, 

participants performed the detection and tracking tasks concurrently. Neither task was 

assigned a higher priority. Block order was counter-balanced across participants. 

After completing the experiment, participants filled in the FLANDERS questionnaire 

and verbally answered whether they held a current valid driver’s licence, and if so, how many 

years of driving experience they had accrued. 

Analysis  

We analysed capacity, mean RTs, and tracking error using a Bayesian parameter 

estimation based on a Markov chain Monte Carlo (MCMC) sampling procedure (Kruschke, 

2015; Lee & Wagenmakers, 2013). For complete details about the parameter estimations, 

please see Morey et al. (2018b; Experiment 2). 

Results 

Error Rates  
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Workload capacity analyses are robust against the effect of errors up to a value of 

about 0.30 (Townsend & Wenger, 2004a). False alarm rates were well below this value for all 

participants in both the single- (M = 0.02, Range = 0.00 – 0.09) and dual-task (M = 0.03, 

Range = 0.00 – 0.25) conditions. Miss rates were low in the single-task condition (single-

target on left: M = 0.01, Range = 0.00 – 0.16; single-target on right: M = 0.01, Range = 0.00 

– 0.15; redundant targets: M < 0.01, Range = 0.00 – 0.08), as well as the dual-task condition 

(single-target on left: M = 0.01, Range = 0.00 – 0.04; single-target on right: M = 0.01, Range 

= 0.00 – 0.06; and redundant targets: M = 0.01, Range = 0.00 – 0.08). Participants, on 

average, responded to approximately 71 trials within each target-present condition, regardless 

of task load (single-task condition: single-target on left: M = 70.64, Range = 59 – 74; single-

target on right: M = 71.07, Range = 69 – 74; and redundant targets: M = 71.54, Range = 64 – 

74; dual-task condition: single-target on left: M = 71.11, Range = 67 – 74; single-target on 

right: M = 71.14, Range = 67 – 74; and redundant targets: M = 71.18, Range = 68 – 73). 

Thus, the variance of Cz did not differ substantially between conditions. Collapsing across 

trials produced a very high mean accuracy rate in both the single- (M = 0.99, Range = 0.88 – 

1.00) and dual-task conditions (M = 0.99, Range = 0.93 – 1.00).  

Analyses excluded data from two participants who displayed excessively poor 

tracking performance in the dual-task condition, leaving an N of 28.  

RTs 

RTs were examined only for correct target-present trials (i.e., all false-positive 

responses were removed). Visual inspection of the data suggested that participants followed 

instructions to respond bimanually. We used the faster of the two button press responses on 

each trial for analysis. 

Mean single-target RT served as a measure of baseline response speed independent of 

any redundancy gain. As expected, mean RT was credibly shorter in the single-task condition 
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(M = 475, 95% BCI = [450, 500]) than the dual-task condition (M = 523, 95% BCI = [498, 

548]), (MDiff = -47 ms, 95% BCI = [-66, -28], d = 1.45). See Figure 3-2. 

To assess the size of redundancy gains, we compared the mean of the faster single-

target RT (left or right target) from each observer to the mean redundant-target RT. This 

method provides a more conservative estimate of redundancy gain than simply comparing the 

mean single-target RT with the redundant-target RT (cf. Biederman & Checkosky, 1970). 

Both task-load conditions had shorter RTs for redundant-target trials (single-task: M = 409, 

95% BCI = [382, 437]; dual-task: M = 484, 95% BCI = [456, 512]) than for the fastest single-

target trials (single-task: M = 423, 95% BCI = [396, 450]; dual-task: M = 507, 95% BCI = 

[480, 535]). However, redundancy gains were approximately equal in the single (M = 13, 

95% BCI = [-13, 39]) and dual-task (M = 23, 95% BCI = [-2, 50]) conditions, (MDiff = -10 ms, 

95% BCI = [-46, 13], d = 0.67) (see Figure 3-3).  

Figure 3-2. Mean single-target RTs (ms) and the task-load difference (with 95% BCIs). 
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Figure 3-3. Mean redundancy gains and the associated task-load difference. Error bars are 

95% BCIs.



 

 

Target Processing Capacity 

To quickly reiterate, Cz = 0 denotes unlimited capacity, Cz < 0 denotes limited 

capacity, and Cz > 0 denotes super-capacity. Here, processing capacity was credibly limited 

for both the single-task (MCz = -3.15, 95% BCI = [-3.66, -2.65]) and dual-task conditions 

(MCz = -2.92, 95% BCI = [-3.40, -2.43]). More critically, as shown by the difference score 

(star) in Figure 3-4, the data showed no difference in Cz due to the dual-task manipulation 

(MDiff = -0.23, 95% BCI = [-0.77, 0.25], d = 0.33).  

Figure 3-4. Single- and dual-task Cz scores, along with the task-load difference. Error bars 

are 95% BCIs.  

Tracking Performance 

Though tracking performance was not our primary focus, we analysed tracking error 

to check that participants had followed instructions in the dual-task condition. To assess 

tracking performance, we used the cursor and red tracking target coordinates to calculate root 

mean squared error (RMSE). The RSME provides a measure of how far the cursor deviates 

from the target’s path. Because we needed a comparison condition against which we could 

compare tracking performance in the dual-task block, we created a baseline control RMSE 

based on how participants would have performed had they not moved the cursor at all 
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throughout the dual-task block.  Thus, the control RMSE represents baseline performance had 

participants failed to perform the task entirely. Assuming participants had performed the 

tracking task as instructed, actual RMSE should be smaller than control RMSE. Actual 

RMSE for the dual-task condition (MRMSE = 16.67 ms, 95% BCI = [14.68, 18.69]) was 

credibly smaller than that of the control condition (MRMSE = 25.70 ms, 95% BCI = [23.71, 

27.70]), (MDiff = 9.03 ms, 95% BCI = [6.34, 11.70], d = 1.27), indicating that participants 

followed instructions to perform the tracking task. 

Discussion 

Building on from previous findings, the current study investigated task-load effects on 

workload capacity for distractor-absent displays. Consistent with previous findings using 

uncluttered distractor-present displays (Morey et al., 2018; Experiment 1 & 2), processing 

efficiency was extremely limited capacity within both task-load conditions. Taken together, 

these studies suggest processing capacity for large, uncluttered targets is limited capacity, 

regardless of distractor presence. 

Further consistent with Morey et al.’s (2018b) study, we found no effect of task load 

on redundant-target processing efficiency. Although mean single-target RTs were shorter 

under single-task load, this difference did not translate to a difference in processing efficiency 

between load conditions. In other words, the task-load difference in the speed of individual 

detections did not correspond with the rate with which multiple targets could be processed at 

any one time. 

This effect contradicts the expectation that concurrent tasks competing for processing 

resources should interfere with one another (Gopher & Navon, 1980; Navon & Gopher, 1979; 

Wickens, 2002; Wickens, 2008). What made peripheral visual efficiency robust against dual-

task load? We can dismiss two potential explanations that might have seemed a priori 

reasonable. One plausible possibility might be that peripheral target detection, because it 
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involved no distractors, required little or no attention. Contrary to this hypothesis, though, 

capacity for the peripheral task was decisively limited. Another possibility is that the two 

tasks tapped into different resource pools, linked to central and peripheral visual fields 

(Wickens, 2002), allowing them to be performed concurrently without interference. However, 

this hypothesis falters on the finding that mean single-target RTs were substantially longer in 

the dual-task condition than in the single-task condition. This result suggests that the tracking 

and target-detection tasks indeed tapped common resources at some stage of processing. 

Alternatively, an attention-switching model may explain attention within the dual-task 

condition (Wickens & Gopher, 1977). Unlike the single-task, where attention was focused 

wholly on the targets, in the dual-task condition participants may have shifted attention 

between both tasks with the on- and offset of targets. The time cost associated with switching 

between tasks could explain why mean RTs were longer in the dual-task condition than the 

single-task condition, despite processing efficiency remaining consistent across both 

conditions. Future studies using similar paradigms may benefit from tracking eye gaze to 

examine more directly how individuals divide attention between tasks.  

Overall, our findings suggest that the divided resource allocation when performing 

dual visual tasks does not influence processing capacity for visual targets. 
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 CHAPTER 4: STUDY 3 

Attentional Capacity  

is Constant Across the Visual Field 

The following chapter is an unpublished manuscript comprising two experiments 

examining target location effects on redundant-target processing capacity under load. Thus, 

here I manipulated both target eccentricity (Experiment 1) and visual field (Experiment 2) to 

assess whether capacity under dual-task load varies in response to the location of information 

in the visual field. 
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Abstract 

Target detection response times are typically shorter for targets at lower eccentricities than 

for those at higher eccentricities, and for targets in the lower visual field rather than for the 

upper visual field. The current experiments asked whether target location might also affect 

target processing efficiency within a dual-task paradigm. We manipulated the location of 

visual targets within a combined redundant-target detection/manual tracking task paradigm in 

two experiments. In Experiment 1, targets appeared intermixed at either high or low 

eccentricities. In Experiment 2, targets appeared intermixed between the upper and lower 

visual fields. Workload resilience (Little et al., 2015) provided a measure of redundant-target 

processing efficiency. In both experiments, processing efficiency was limited capacity (i.e., 

less efficient than predicted by an unlimited capacity parallel model) but did not vary as a 

function of target position. Our findings support the notion that redundant-target processing 

under dual-task load is generally inefficient, but robust against changes to target location 

within the visual field. 
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Attentional Capacity  

is Constant Across the Visual Field 

What we notice in everyday scenes depends on a range of factors. Highly salient 

objects or events can attract our attention (Itti & Koch, 2000; Wolfe & Horowitz, 2017), and 

knowledge can guide attention toward particular objects of interest (Theeuwes, 2010). But 

our focus may also be directed to particular regions within our visual field. Typically, targets 

at higher retinal eccentricities are detected more slowly, and are more likely to go undetected, 

than targets further in the retinal periphery (Carrasco & Yeshurun, 1998; Carrasco, Evert, 

Chang, & Katz, 1995; Carrasco, McLean, Katz, & Frieder, 1998; Nikolic, Orr, & Sarter, 

2004; Wolfe et al., 1998). This has been termed the eccentricity effect (Carrasco et al., 1995). 

It is caused, in part, by differences in spatial resolution across the retina (Carrasco & 

Yeshurun, 1998), but is exacerbated by a tendency to bias our attention towards the central 

visual field, prioritising items near fixation over more peripheral stimuli (Wolfe et al., 1998).   

The eccentricity effect is robust, appearing in tasks such as visual search (Carrasco et 

al., 1995; Wolfe et al., 1998) and target detection (Nikolic etal., 2004; Steelman, McCarley, 

& Wickens, 2013), through to driving (Crundall, Underwood, & Chapman, 1999; Recarte & 

Nunes, 2003) and pilot flight-deck tasks (Wickens, Muthard, Alexander, Van Olffen, & 

Podczerwinski, 2003; Wickens, Sebok, McCormick, & Walters, 2016; Williams, 1995). 

Critically, the costs of eccentricity might become even stronger under dual-task load, an 

effect known as cognitive tunnelling (Williams, 1985). Dividing attention between multiple 

visual tasks has been argued to narrow attention towards the centre of the display (Williams, 

1985, 1995), reducing the size of the observer’s effective visual field (Rantanen & Goldberg, 

1999) and compromising detection of peripheral targets (Ikeda & Takeuchi, 1975; Leibowitz 

& Appelle, 1969; Reimer, 2010).  
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Surprisingly, neither cognitive tunnelling nor eccentricity losses have been 

demonstrated in measures of target processing efficiency. In other words, it remains unclear 

what effect target eccentricity, when combined with a demanding central task, has on the 

efficiency of a cognitive system to process multiple visual items concurrently (Houpt & 

Townsend, 2012; Wenger & Townsend, 2000). Recent findings indicate a central loading 

task does not affect processing efficiency for peripheral redundant visual targets (Morey et 

al., 2018a; 2018b). Morey et al. ( 2018a; 2018b) measured processing efficiency for 

redundant visual targets appearing in the upper periphery of a visual display while 

participants performed a manual tracking task in the display centre. Average processing 

efficiency was limited capacity. More interestingly, in neither studies did processing 

efficiency vary in response to changes in task load. However, Morey et al.’s studies only used 

stimuli appearing at one level of visual eccentricity. Thus, any potential tunnelling effect 

would not have been detected.  

Moreover, some evidence from a single-task target identification paradigm has hinted 

at processing efficiency benefits associated with increasing eccentricity (Yamani, McCarley, 

& Kramer, 2015). Yamani et al. (2015) measured processing efficiency for redundant visual 

targets appearing on the vertical midline, at equal distances above and below fixation. In 

contrast to a typical eccentricity effect, processing efficiency for redundant visual targets 

increased as a function of eccentricity. Thus, higher eccentricity target pairs were processed 

more efficiently than lower eccentricity target pairs. 

In the current study, we tested for an effect of target eccentricity on target processing 

efficiency consistent with a standard eccentricity effect in response time data: that low 

eccentricity targets should be processed faster than high eccentricity targets (Carrasco et al., 

1995; Wolfe et al., 1998). To amplify any effect of eccentricity and to simulate a situation 
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where a cognitive system is overloaded with a concurrent cognitive task, we included a 

visuo-manual tracking task within the target-detection paradigm.  

An effective method for measuring processing efficiency is the redundant-targets 

paradigm (Todd, 1912; Townsend & Ashby, 1983). On each trial, an item appears on one or 

both of two potential stimulus channels. Each item can be either a target or distractor. The 

participant is asked to make a speeded response if either of the two items is a target, but to 

withhold if both items are known distractors. For example, a participant may be asked to 

respond if at least one of two items presented within a display is a puppy (i.e., target), but to 

withhold if both items are kittens (i.e., distractors). This type of paradigm is described as 

using a first-terminating stopping rule because a response can be made the moment a 

prescribed target is first detected on either channel, regardless of the presence of information 

on other channels (Colonius & Vorberg, 1994). Typically, when two or more targets with 

same meaning are presented simultaneously, response times (RTs) are faster than when a 

single target is presented alone (Miller, 1982). This phenomenon is known as a redundant 

signals effect (RSE) or redundancy gain (Miller, 1982; Todd, 1912).  

The magnitude of the redundancy gain depends on a constellation of factors. The first 

is the cognitive system’s workload capacity. Here, workload represents the number of items 

to be processed, and capacity is the efficiency with which the channels operate as workload 

increases (Townsend & Eidels, 2011; Townsend & Nozawa, 1995). The second factor that 

can affect the size of the RSE is the cognitive system’s architecture, or arrangement of 

processing channels (Townsend & Eidels, 2011; Townsend & Nozawa, 1995). Architecture 

can be either a serial, parallel, or co-active process. Finally, the RSE may also vary in 

response to the stochastic independence or dependence of channels, which refers to the 

statistical relationships between channels (Townsend & Wenger, 2004a). If a system operates 
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with complete stochastic independence, the finishing times for different channels on a single 

trial are uncorrelated. 

The simplest account of the redundancy gain is the unlimited capacity independent 

parallel (UCIP) model (Townsend & Eidels, 2011). In this model, channels operate 

simultaneously and with stochastic independence, and the processing rates of the individual 

channels remain constant regardless of the number of channels operating at any time. A UCIP 

model under a first-terminating stopping rule produces a redundancy gain because the 

processing time of the system as a whole is based on the RT of the first channel to finish 

processing (Raab, 1962). This effect is known as statistical facilitation (Raab, 1962). A 

system that produces redundancy gains larger than expected from the UCIP model—because 

of inverse dependencies between channels, or because an increase in workload produces a 

speed-up in channel processing (Townsend & Wenger, 2004a)—is said to operate with super-

capacity. Thus, added workload facilitates target processing. Alternatively, an increase in 

workload may produce gains smaller than expected from the UCIP model, either because of 

dependencies between channels or because processing rates decline as workload increases 

(Townsend & Wenger, 2004a). In this case, the system is said to operate with limited 

capacity.  

Using the UCIP model as a basis for standard parallel processing, Miller (1982) 

identified an upper bound on UCIP performance. Known as the race model inequality, this 

bound stipulates that, within the UCIP model, the cumulative distribution function (CDF) of 

the redundant-target condition cannot be greater than the combined CDFs of the two single-

target conditions. Violations of the race model inequality provide evidence for a super-

capacity model. In a similar fashion, Grice, Canham, and Gwynne (1984) identified a lower 

bound on UCIP performance that implies a limited-capacity model. However, both bounds 

provide conservative estimates of processing efficiency, and provide no way of 
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discriminating between moderate deviations from unlimited capacity. A statistic known as the 

capacity coefficient (Townsend & Eidels, 2011; Townsend & Nozawa, 1995) provides a more 

fine-grained measure, quantifying variations of redundant-target processing efficiency 

between and beyond the Miller and Grice bounds. 

The concept of workload capacity refers to processing efficiency for redundant-target 

trials as measured against single-target trials where the second potential target location is left 

empty, that is, does not contain a distractor. The presence of a distractor on a single-target 

trial tends to interfere with target processing, slowing responses (Ben-David et al., 2014; 

Little et al., 2015). Thus, redundancy gains tend to be larger when using distractor-present 

trials as the single-target baselines are greater than when using distractor-absent trials. A 

measure of processing efficiency related to the capacity coefficient, known as workload 

resilience, R(t) assesses processing efficiency taking into account the costs of single-target 

distractors (Little et al., 2015). R(t) can be converted to a normalised version of resilience, 

denoted Rz (Houpt & Little, 2017). Rz scores represent normalised measures of R(t) for all 

time points of t, inversely weighted depending on the variability of R(t) at each time point. 

Positive values of Rz indicate super-capacity processing, a value of zero indicates unlimited 

capacity, and negative values indicate limited capacity. Here, we used Rz to measure target 

processing efficiency.  

The current experiment examined whether redundant-target processing resilience 

decreases as a function of eccentricity. Using a similar paradigm to Morey et al. (2018a, 

2018b), we assessed target processing resilience at two levels of eccentricity. As reaction 

times are faster and more accurate for targets closer to fixation (e.g., Carrasco et al., 1995, 

1998; Wolfe et al., 1998), we expected processing efficiency to be greater for targets 

appearing closer to fixation than for those at higher eccentricities. Moreover, as eccentricity 

effects amplify under conditions of additional central load (e.g., Williams, 1985, 1995), 
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including a secondary tracking task should enhance differences in capacity between task 

loads. As such, we included a central loading task in the paradigm that ensured participants 

primarily fixated the screen centre. Thus, in Experiment 1, participants carried out a 

redundant-targets task with targets intermixed between low and high eccentricity locations, 

while also performing a concurrent joystick tracking task.  
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Experiment 1 

The current experiment was preregistered online on the Open Science Framework: 

https://osf.io/bm87v/register/5771ca429ad5a1020de2872e.  

Method 

Participants. Our preregistration stated that we would collect data until we had 30 

participants who met the inclusion criteria. We recruited 33 Flinders University 

undergraduate students (18 female; M = 23.62 years, SD = 10.66, Range = 17 – 73 years) to 

achieve this goal. All participants were compensated with course credit. Eligibility 

requirements were normal or corrected-to-normal visual acuity, normal colour vision, and 

English fluency. Data for two participants, one who failed the visual acuity test and one who 

left the study early, were immediately excluded. All participants were screened for right-hand 

dominance, defined as a minimum Flinders Handedness Survey (FLANDERS; Nicholls et al., 

2013) score of +5 (M = +9.84, SD = 0.09). Twenty-seven participants held a current, valid 

driver’s licence, with the mean years of driving experience being 6.87 years (SD = 10.75, 

Range = 0.5–55 years).  

Apparatus and stimuli. Stimuli were presented on a 27” inch Samsung SyncMaster 

SA950 Full HD 3D LED monitor with a screen resolution of 1920 × 1080 (pixel size = 0.33 

mm). The task was presented using Presentation Experiment Software (Neurobehavioral 

Systems, 2018). Participants sat approximately 600 mm from the monitor, though viewing 

distance was unconstrained. Inputs from the participant were collected with a Logitech 

Attack 3 joystick (Logitech, 2018).   

Stimuli for the tracking task were a red circular target (subtending 0.95°) and a black 

cursor “+” (0.76° × 0.76° of visual angle) in size 10 Arial font. The two stimuli moved left to 

right along a horizontal path, 19.85° in length, centred within the display. A horizontal 

tracking path was used to ensure fixation remained central within the display, and hence, to 
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maintain the fidelity of the target eccentricities. A combination of three sine waves with 

frequencies of 0.07, 0.15, and 0.23 Hz (Strayer & Johnston, 2001) determined the red target’s 

movement. To ensure the movement differed during each tracking interval and remained 

unpredictable to the participant, the three component sinusoids were randomly phase-shifted 

on each tracking interval. The black cursor could be manoeuvred using the joystick.  

Stimuli for the target detection task were black letters “T” and “L”, drawn in 16-point 

Arial font (1.6° × 1.1° of visual angle onscreen). Letters appeared in four combinations: two 

single-target combinations (TL and LT), a redundant-target combination (TT), and a 

redundant distractor combination (LL). On each trial, two stimulus letters appeared 

simultaneously in the upper half of the screen, at polar coordinates of 4± = 51.50º from the 

vertical midline and with an r of either 11.00° (low eccentricity) or 21.79° (high eccentricity) 

of visual angle from the screen centre point. Figure 4-1 presents a schematic illustration of 

the stimulus.  

Figure 4-1. On each trial, stimuli appeared at either a. a high eccentricity, or b. a lower 

eccentricity, closer to the centre of the screen. Throughout the experiment, participants 

matched up a black cursor (+) with a red circular target that moved along an invisible 

horizontal axis (shown here as a grey dashed line).  

Procedure. The task was carried out in a small, well-lit room. At the beginning of the 

testing session, participants were seated in front of the monitor with the joystick on the table 

a) b) 
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in front of them. After providing informed consent, participants were provided with 

instructions for the tasks, then completed a 60-second practice interval to familiarise 

themselves with the procedure.  

Participants were instructed to hold the joystick with both hands, with thumbs resting 

on the two buttons atop the joystick. The tracking task required participants to align the black 

cursor with the moving red target, manoeuvring the joystick back and forth to control the 

cursor. To encourage engagement with the task, participants were asked to imagine they were 

driving to their university and were required to use the joystick to direct their vehicle along a 

route designated by a navigation system (the red target). The participants’ goal was to keep 

the cursor as closely aligned with the moving target as possible.  

The target detection task required participants to respond to target letters that 

appeared in the display periphery. The letter T was designated as the target, and L as the 

distractor. In line with the driving scenario mentioned above, we explained that the stimuli 

represented traffic signals. Participants were told the onset of any T required them to issue a 

brake response as quickly as possible by depressing the left and right buttons on top of the 

joystick with both thumbs at the same time. Bimanual responses were requested in order to 

minimise stimulus-response compatibility effects (e.g., Simon, 1969) and lateral attentional 

asymmetries related to response activation. Participants were instructed that Ls, on the other 

hand, represented green lights and therefore required no response. Participants were told to 

respond if either or both stimuli were targets, and to withhold a response only if both stimuli 

were distractors. They were also asked to aim for speed, whilst maintaining accuracy.  

To allow for both strategic effects as well as inherent biases in attention, in the current 

experiment low and high eccentricity trials were randomly intermixed throughout each 

tracking interval. Any effect could then later be tested using a blocked paradigm to rule out 

the effects being due to strategic influences. Peripheral stimuli occurred at inter-trial intervals 
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drawn from a delayed exponential distribution with a fixed delay component of 1 second and 

an exponential component with a mean of 2 seconds. The delayed exponential distribution 

ensured that the time delay between one stimulus’ offset and the next one’s onset was no less 

than 1 second but was otherwise unpredictable to participants. Stimuli offsets were triggered 

by a button press by the participant, or if no response was made, a timeout of 2 seconds. 

Approximately 40 stimulus onsets (including both targets and distractors) occurred 

throughout each 60-second interval. 

Participants were asked to perform the tasks concurrently and were not asked to 

prioritise one task over the other. Following a practice interval of 60 seconds, each participant 

completed 20 60-second experimental intervals. After each interval, participants were 

allowed a short break. After completing the experiment, participants were debriefed and 

thanked for their time. The entire process took approximately 45 minutes.  

Statistical analyses. We used the ‘sft’ (Houpt, Blaha, McIntire, Havig, & Townsend, 

2014) package for R (R Core Team, 2016) to calculate standardised resilience scores (Rz) for 

participants at each level of target eccentricity. Tracking error was calculated as the root 

mean squared error (RMSE) in lateral and vertical position between the moving red target 

object and the participant’s cursor. Thus, a value of 0 indicated perfect tracking and larger 

values represented poorer performance. Tracking error was only calculated during periods in 

which targets were not present on screen to rule out any effect of the targets diverting 

attention away from the tracking task. 

We then analysed RTs, Rz, and tracking error using Bayesian parameter estimation 

through Markov chain Monte Carlo (MCMC) sampling (Kruschke, 2013, 2015; Lee & 

Wagenmakers, 2013). This process begins with a prior distribution on a parameter of interest, 

then uses a probabilistic sampling method to update parameter estimates based on the 

observed data, producing an estimated posterior distribution of parameter values (Kruschke, 



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
110 

2015). Parameter estimation was carried out using the R package, ‘JAGS’ (Plummer, 2015). 

As in Morey et al. (2018a, 2018b), we employed a one-way within-subjects design. We 

included the additive effects of target condition (single target 1, single target 2, redundant 

targets) and participant, as well as the additive effects of eccentricity and the target condition 

by eccentricity interaction. We assumed a normal likelihood distribution, and used vague 

priors on all parameters to avoid committing the data a priori to any strong conclusion: 

Yparticipant, eccentricity, condition ~ N(a0 + aparticipant + aeccentricity + acondition + aeccentricity × condition, 

σy2) 

aparticipant ~ N(0, σparticipant2) 

aeccentricity ~ N(0, σeccentricity) 

acondition ~ N(0, σcondition2) 

aeccentricity × condition ~ N(0, σeccentricity × condition2) 

σparticipant, σeccentricity, σcondition, σeccentricity × condition ~ 3 (α, β) 

α = SD/2 

β = 2 * SD  

Deflections from the grand mean were constrained to sum to zero for each of the 

effects of eccentricity, target condition, and their interaction. Likewise, analysis of RTs, Rz 

and RMSE for the tracking task included eccentricity as an effect, 

Yparticipant, eccentricity ~ N(a0  + aparticipant + aeccentricity, σy2) 

σy ~ U(SD/1000, SD*1000) 

a0 ~ N(M, [100 × SD]2) 

aparticipant ~ N(0, σparticipant2) 

aeccentricity ~ N(0, σeccentricity) 

σparticipant, σeccentricity ~ 3 (α, β) 

α = SD/2 
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β = 2 * SD, 

with the deflections from the grand mean for the effect of eccentricity constrained to sum to 

zero across conditions. 

Results  

Error rates. Prior to the main analyses, we calculated error rates to ensure that 

participants performed the target detection as instructed. The capacity coefficient is 

considered robust against error rates up to 0.30 (Townsend & Wenger, 2004a). Hence, 

participants who exceeded this value were removed from analyses. These exclusions led to 

the removal of data from one participant who produced excessive left- (0.98) and right- (0.98) 

target miss rates. This left data from 30 participants for analysis. For the remaining 

participants, false alarm rates were low-to-moderate (M = 0.10, Range = 0.00 – 0.23 and M = 

0.10, Range = 0.00 – 0.27 for low and high eccentricity, respectively). Within each trial 

condition, miss rates were low, and participants correctly responded to approximately 73 

targets within each trial condition, confirming that the variance of Rz scores was comparable 

across conditions (see Appendix B for details). The total proportion of correct trials was 

approximately equal in both the low (M = 0.96, Range = 0.80 – greater than 0.99) and high 

(M = 0.96, Range = 0.80 – 1.00) eccentricity conditions.  

RTs. False-positive RTs were excluded from analysis. After preliminary inspection of 

the data suggested that participants had correctly responded to target-present trials 

bimanually, we examined RT data using the faster of the two button-press responses for each 

target trial.   

There was no difference between RTs for left and right single-target trials in either the 

low eccentricity condition (left target: M = 594 ms, 95% BCI = [559, 630]; right target: M = 

603 ms, 95% BCI = [564, 636], left minus right difference: MDiff = -5 ms, 95% BCI = [-21, 

10], d = 0.12), or the high eccentricity condition (left target: M = 624 ms, 95% BCI = [588, 
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660]; right target: M = 630 ms, 95% BCI = [594, 666]), (MDiff = -7 ms, 95% BCI = [-22, 9], d 

= 0.14). To provide a measure of baseline response speed for single targets, we calculated the 

mean single-target RT. Figure 4-2 shows estimated mean single-target RTs, collapsed across 

left and right locations. Data showed a clear effect of eccentricity, with shorter RTs for low 

eccentricity targets (M = 598 ms, 95% BCI = [562, 633]) than for high eccentricity targets (M 

= 627 ms, 95% BCI = [592, 662]), (MDiff = -30 ms, 95% BCI = [-41, -18], d = 0.85). In Figure 

4-2, error bars for the difference score (star) do not cross zero, indicating a credible effect of 

eccentricity on mean single-target RTs. 

To measure redundancy gain, RTs for the redundant-target condition were subtracted 

from the faster of the two single-target conditions (i.e., left and right single-target conditions). 

This method produces a more conservative measure of redundancy gain than simply 

comparing the mean of the two single-target conditions with the redundant-target condition 

(cf. Biederman & Checkosky, 1970). Figure 4-3 shows estimated mean redundancy gains. 

Comparisons between the fastest single-target trials and redundant-target trials found 

evidence of small redundancy gains at both low (MRSE = 15 ms, 95% BCI = [1, 28]) and high 

(MRSE = 17 ms, 95% BCI = [3, 31]) target eccentricities. Redundancy gains did not vary as a 

function of eccentricity, (MDiff = -2 ms, 95% BCI = [-21, 15], d = 0.07). 
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Figure 4-2. Mean single-target RTs and difference scores (low – high eccentricity) for each 

level of eccentricity. Error bars are 95% BCIs. 

Figure 4-3. Mean redundancy gains and difference score (low – high eccentricity), along with 

corresponding 95% BCIs, for both levels of eccentricity.  

Resilience. Figure 4-4 presents estimated mean Rz scores. Resilience was decisively 

limited in both the low eccentricity (MRz = -3.22, 95% BCI = [-3.82, -2.64]) and high 

eccentricity (MRz = -3.01, 95% BCI = [-3.59, -2.42]) conditions. More interestingly, resilience 

scores did not differ credibly between the two levels of eccentricity, (MDiff = -0.22, 95% BCI 

= [-0.93, 0.43], d = 0.14). Thus, contrary to predictions, presenting targets closer to fixation 

did not engender greater processing efficiency.  

Figure 4-4. Mean Rz and difference score (low – high eccentricity) for the target-detection 

task for each level of eccentricity. Error bars are 95% BCIs. 

Tracking Performance. We measured tracking performance to ensure participants 

had performed the central loading task as instructed. As high and low eccentricity stimuli 

appeared intermixed during the task, we calculated an overall RMSE for the duration of the 

testing session. To provide a way of assessing whether participants had successfully 
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performed the task, we compared participants’ true RMSE with a control RMSE calculated 

under the assumption that participants had left the cursor in the starting position throughout 

the entire task. To keep the method consistent with the true RMSE, the control RMSE was 

only calculated based on moments when targets were not present. Results suggested 

participants had successfully followed instructions, as the true RMSE (MRMSE = 16.29º, 95% 

BCI = [14.40, 18.18]) was credibly smaller than the control RMSE (MRMSE = 25.71º, 95% 

BCI = [23.82, 27.58]), MDiff = 9.42º, 95% BCI = [6.88, 11.96], d = 1.35. To test whether a 

trade-off in performance occurred between the tracking and detection tasks, Rz scores were 

correlated with RMSE. Given that higher scores on the tracking task represent poorer 

performance, a positive correlation between the two tasks indicates that higher performance 

on one task was associated with poorer performance on the other task (i.e., a dual-task trade-

off). Our analyses gave no credible evidence of a correlation, r(28) = -0.14, 95% BCI = [-

0.40, 0.12], suggesting that participants did not trade off performance on one task against the 

other.  

Discussion 

Our aim for the current study was to test whether target processing under dual-task 

load is greater for targets that appear closer to fixation. By loading participants with a 

concurrent tracking task, we aimed to drive attention towards the centre of the display, 

increasing any eccentricity effect. Contrary to predictions, we found no evidence in support 

of a difference in processing resilience based on eccentricity. Rather, processing resilience 

was equally limited in both eccentricity conditions. Thus, despite including a concurrent 

central tracking task aimed at narrowing the visual field and driving attention towards the 

centre of the screen, target processing resilience was no more efficient for targets low in 

eccentricity than for target high in eccentricity. As with previous research (e.g., Carrasco et 

al., 1995; Carrasco & Yeshurun, 1998; Williams, 1985; Wolfe et al., 1998), we found an 
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eccentricity effect on raw RTs, with mean single-target RTs approximately 30 ms faster for 

targets low in eccentricity than for those high in eccentricity. However, this effect did not 

translate to a difference in redundancy gains, and more importantly, did not affect redundant-

target processing resilience.  
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Experiment 2 

In Experiment 1, the eccentricity manipulation was unsuccessful at influencing target 

processing efficiency. However, stimuli only ever appeared within the upper regions of the 

screen in Experiment 1. Visual search is also influenced by changes in visual field location, 

with biases existing between stimuli appearing in upper visual field (UVF) and the lower 

visual field (LVF) (Levine & McAnany, 2005; Qu, Song, & Ding, 2006; Skrandies, 1987; 

Thomas & Elias, 2011). Although we found no effect of target eccentricity in Experiment 1, a 

difference in processing efficiency could depend on whether targets appear in the UVF or 

LVF.  

Processing differences between upper and lower visual field stimuli are dependent on 

context and task type. A wide range of perceptual tasks show processing differences between 

the UVF and LVF, from word recognition (Mishkin & Forgays, 1952), to visually guided 

pointing tasks (Danckert & Goodale, 2001). The UVF is associated with faster visual search 

performance (Fecteau, Enns, & Kingstone, 2000), as well as better spatial resolution (Talgar 

& Carrasco, 2002), depth discrimination (Levine & McAnany, 2005), and greater 

performance on higher-level perceptual processing tasks, such as categorising the sex of 

human faces (Quek & Finkbeiner, 2014a) or hands (Quek & Finkbeiner, 2014b). The LVF, 

on the other hand, is associated with better contrast sensitivity (Skrandies, 1987), hue 

discrimination (Levine & McAnany, 2005), distractor-present target detection (Rezec & 

Dobkins, 2004), and processing of basic perceptual shapes, such as illusory contours (Rubin, 

Nakayama, & Shapley, 1996). 

Functional differences between the LVF and UVF are explained by differences in 

visual cortical networks (Previc, 1990). Information in the UVF is predominantly processed 

via the ventral visual pathway (in conjunction with the parvocellular pathway). The ventral 

pathway is responsible for local processing and assists with object identification and 
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processes information in extrapersonal space. In contrast, information in the LVF passes 

through the dorsal visual pathway (in conjunction with the magnocellular pathway). The 

dorsal pathway is responsible for global processing, focuses on coordinating spatial or motion 

information, and is biased toward peripersonal space (Milner & Goodale, 2008; Previc, 1990; 

Thomas & Elias, 2011). Unlike the ventral stream, which is associated with slower RTs, the 

dorsal stream has a temporal processing advantage (Nieuwenhuis, Jepma, Fors, & Olivers, 

2008).  

Target detection is generally better for stimuli in the LVF over those in the UVF, both 

in terms of response time and accuracy (Intriligator & Cavanagh, 2001; Rezec & Dobkins, 

2004). One explanation for superior performance on visual search and tracking tasks in the 

LVF is that attentional resolution is greater in the lower field (He, Cavanagh, & Intriligator, 

1996). Alternatively, detection advantages for LVF targets accompanied by distractors could 

reflect an uneven ‘attentional weighting’ across the visual field, which biases information in 

the LVF over information in the UVF (Rezec & Dobkins, 2004). 

The asymmetry in visual processing between the upper and lower visual fields could 

affect the efficiency of peripheral visual target processing. Faster and more accurate target 

processing in the LVF could imply more efficient processing of multiple concurrent targets 

than within the UVF. As mentioned above, the dorsal stream is linked to information 

processing in the LVF and is associated with faster temporal processing (Nieuwenhuis et al., 

2008). Thus, a logical extension is that processing efficiency for visual stimuli should be 

greater in the LVF compared to the UVF. Consequently, we would expect higher values of 

processing resilience (Rz) for targets in the LVF than in the UVF. 

In Experiment 2 we assessed whether processing capacity is greater for targets in the 

LVF than the UVF under dual-task load. Our methodology was identical to Experiment 1, 

with the exception that we intermixed high eccentricity targets between the UVF and the 
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LVF. To keep the design directly comparable to Experiment 1, participants performed the 

central visuo-manual tracking task while performing the redundant-targets task.  

Method 

Participants. As in Experiment 1, we aimed to collect 30 participants who passed the 

eligibility criteria and successfully completed the experiment. We tested 37 undergraduate 

students (30 female; M = 21.59 years, SD = 5.44 years, Range 18 – 50) in exchange for 

payment (AU$10). No participants had taken part in Experiment 1. Right-hand dominant 

participants, with a mean FLANDERS score (Nicholls et al., 2013) of +9.72 (SD = 0.78), 

were maintained for data analysis; one participant was removed. In addition, all participants 

had normal or corrected-to-normal visual acuity, normal colour vision, and were fluent in 

English. Twenty-eight participants held current, valid driver’s licences, with the number of 

years of driving experience ranging from less than 1 to 34 years (M = 4.10, SD = 6.04). 

Apparatus and stimuli. The same experimental setup and apparatus used in 

Experiment 1 were used in Experiment 2. Stimuli for the tracking task were identical to those 

of Experiment 1. 

Stimuli for the target-detection task were identical to Experiment 1, with letters 

appearing either in the previous upper locations (UVF trials) or else in the mirror-reversed 

locations within the lower half of the screen (LVF trials). Here, letters appeared at polar 

coordinates	4± = 51.50º from the vertical midline (i.e., to the left and right) and r = 21.79° 

visual angle from the screen centre point, with both targets appearing in the UVF or the LVF 

(refer to Figure 4-5 below). To allow for both strategic and non-strategic influences on 

performance, UVF and LVF stimuli were intermixed throughout the task. 

Procedure. The procedure was consistent with Experiment 1, except that participants 

were instructed to respond to targets appearing at high eccentricities in either the UVF or the 
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LVF. Once again, participants completed a single 60-second practice interval before carrying 

out the 40 experimental trials. Following completion of the task, participants filled out the 

FLANDERS questionnaire, recorded their driving experience, and were debriefed. The entire 

procedure took approximately 45 minutes.  

Figure 4-5. In Experiment 2, targets appeared in the high eccentricity locations from 

Experiment 1; however, on half of the trials, stimuli appeared in the UVF (a.), whereas on the 

other half of trials stimuli appeared in the LVF (b.).  

Statistical analyses. We employed the same Bayesian parameter estimation MCMC 

sampling method as in Experiment 1, but replaced the effect of eccentricity with the effect of 

visual field. 

Results  

Error rates. Five participants were removed from analyses for excessive false-go 

(e.g., 0.58) rates, leaving data for 31 participants for the main analyses (UVF: M = 0.09, 

Range = 0.00 – 0.20; LVF: M = 0.08, Range = 0.00 – 0.19). Miss rates were low in all 

conditions for both UVF and LVF trials; Appendix C shows in detail miss rates and the 

number of targets correctly detected in each trial condition. The number of targets correctly 

detected did not differ greatly between conditions, and hence, the variance of Rz was similar 

a) b) 
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between the UVF and LVF. The proportion of overall correct responses was high for both 

UVF (M = 0.95, Range = 0.81 – greater than 0.99) and LVF (M = 0.96, Range = 0.88 – 

greater than 0.99) targets.  

RTs. Single-target RTs did not differ between left and right locations for either the 

UVF (left: M = 632 ms, 95% BCI = [590, 673]; right: M = 638 ms, 95% BCI = [597, 680]; 

MDiff = -7 ms, 95% BCI = [-22, 9], d = 0.15) or the LVF trials (left: M = 644 ms, 95% BCI = 

[602, 685]; right: M = 649 ms, 95% BCI = [607, 690]; MDiff = -5 ms, 95% BCI = [-21, 12], d 

= 0.07). As shown in Figure 4-6, mean single-target RTs, calculated by averaging the RTs of 

the two single-target trials, trended toward being faster in the UVF than in the LVF, though 

the BCI on the RT difference between hemifields just included 0 (UVF trials: M = 635 ms, 

95% BCI = [595, 676]; LVF trials: M = 646 ms, 95% BCI = [606, 687]; MDiff = -11 ms, 95% 

BCI = [-23, 1], d = 0.23).  

Data showed similar redundancy gains for UVF trials (M = 19 ms, 95% BCI = [4, 

33]) and LVF trials (M = 16 ms, 95% BCI = [1, 30]), (MDiff = 3 ms, 95% BCI = [-15, 22], d = 

0.07) (see Figure 4-7 below). 

Figure 4-6. Means and difference scores (UVF – LVF) 95% BCIs for single-target RTs 

(collapsed across left and right locations).  
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Resilience. Figure 4-8 shows mean Rz values and 95% BCIs for both visual fields. Rz 

scores were limited, both for UVF trials (MRz = -3.04, 95% BCI = [-3.58, -2.52]), and LVF 

trials (MRz = -3.11, 95% BCI = [-3.63, -2.60]). Furthermore, there was no credible difference 

in resilience between the UVF and LVF, (UVF minus LVF difference: MDiff = 0.01, 95% BCI 

= [-0.58, 0.75], d = 0.04). 



 

 

 

Figure 4-7. Redundancy gains and mean difference score (UVF – LVF) (and corresponding 

95% BCIs) for UVF and LVF targets.  

 

Figure 4-8. Mean Rz and difference (UVF – LVF) scores by visual field. Error bars are 95% 

BCIs. 

Tracking Performance. As in Experiment 1, we compared observed RMSE in the 

tracking task with a control RMSE value that assumed the cursor had not been moved at all 

throughout the task. Observed RMSE (M = 16.27°, 95% BCI = [15.16, 17.38]) was credibly 

smaller than the control RMSE (M = 25.68°, 95% BCI = [24.55, 26.81]), (MDiff = 9.41°, 95% 

BCI = [7.93, 10.90], d = 2.26), indicating that participants performed the central tracking task 
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as instructed. Correlating true RMSE with overall Rz found no evidence of a trade-off in 

performance between the two tasks, r(29) = .04, 95% BCI = [-.22, .30]. 

Discussion 

Experiment 2 tested whether workload resilience for peripheral visual targets varies as 

a function of visual field. Specifically, we had predicted faster RTs, and hence, more efficient 

redundant-target processing, for targets appearing in the LVF than the UVF. For mean RTs, 

we found a trend toward faster detections for targets appearing in the UVF than in the LVF. 

Critically, despite a small difference in RTs between the two visual fields, we found no 

credible difference in processing resilience as a function of visual field.  

General Discussion 

A target’s distance from fixation (e.g., Carrasco et al., 1995, 1998; Wolfe et al., 1998) 

and its location within either the upper or lower visual field (e.g., Intriligator & Cavanagh, 

2001; Levine & McAnany, 2005; Rezec & Dobkins, 2004), can influence detection. Based on 

these findings, we tested whether eccentricity and visual field differences influence 

redundant-target processing efficiency while under load from a secondary central tracking 

task. Overall, we found little evidence to suggest that a target’s location within the visual 

field directly affects processing efficiency under load. Across all conditions, processing 

resilience was limited, providing evidence for inefficient processing of multiple targets.  

In Experiment 1, we found no evidence to support an effect of eccentricity on 

processing resilience. Despite a 30 ms advantage for low eccentricity targets, redundancy 

gains and resilience scores between high and low eccentricity targets did not differ credibly. 

One explanation for finding no effect of eccentricity relates to the spatial separation between 

targets. Previous findings suggest that attended items very near one another in the visual field 

compete for perceptual resources, producing mutual interference that gets smaller as the 

separation between targets increases (McCarley, Yamani, Kramer, & Mounts, 2012; Yamani 
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et al., 2013). This introduces the risk that gains in efficiency at smaller eccentricities may 

have been offset by interference produced when targets moved nearer one another. However, 

this seems an unlikely explanation for the current findings, as spatial attentional interference 

tends to be modest when displays are uncluttered (Yamani et al., 2013) and when attended 

items are in different lateral hemifields (Mounts & Gavett, 2004). Here, targets appeared in 

the left and right visual fields even when they were at the smaller eccentricity, and displays 

included no clutter beyond the moving target and cursor. Spatial attentional interference 

between the targets is therefore likely to have been weak at best.  

The absence of display clutter may also explain why capacity did not increase with 

eccentricity, as reported by Yamani et al. (2015). In that study, processing efficiency 

increased as redundant targets moved farther from the centre of the visual field, in directions 

along the vertical midline. However, when displays were uncluttered, this effect was only 

evident for older adults; younger adults showed no change in capacity with increases in 

eccentricity unless displays were cluttered. Given that the displays in the current study were 

uncluttered and our participant sample primarily comprised young adults, potential benefits to 

processing efficiency at large eccentricities may have been small. Further experiments 

exploring this relationship may clarify the interactions of clutter, target discriminability, and 

target eccentricity that modulate processing efficiency, and may delineate the boundary 

conditions under which capacity and resilience remain robust across the visual field.  

In addition to finding no effect of target eccentricity, we also found no evidence for an 

effect of upper versus lower visual hemifield on resilience. Processing in both the UVF and 

the LVF, despite a trend toward shorter RTs in the UVF, was limited capacity. Thus, 

together, these two experiments find consistent evidence that redundant-target processing 

across the visual field is, by and large, limited capacity, and is not affected by a target’s 

position in space. Our findings corroborate recent research showing that large targets 
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appearing on uncluttered backgrounds are processed in parallel, even under the load of a 

visuo-manual loading task (Morey et al., 2018a, 2018b), with below-UCIP processing.  
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 CHAPTER 5: STUDY 4  

Benefits of the ‘Pop-Out’ Target:  

Salience Attracts Attention under Task Load 

The following chapter is an unpublished manuscript of an experiment exploring the 

relationship between task load and target salience in driving processing capacity for single 

visual targets. 
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Abstract 

Increasing signal salience is a common method for improving target detection in high-stress, 

multi-operational environments. It remains unclear, however, whether dividing attention 

between concurrent tasks reduces an operator’s ability to detect a high salience target. Thus, 

the current experiment tested whether performing a concurrent tracking task reduces the 

benefit of salience on a target-detection task. Thirty-four participants performed a combined 

target-detection/manual tracking dual-task paradigm. Targets were either high in salience 

(highly discriminable from non-targets) or low in salience (poorly discriminable from non-

targets). Workload capacity (Blaha & Houpt, n.d.; Townsend & Eidels, 2011) was used to 

measure target processing efficiency. Despite a trend toward more limited capacity in the 

dual-task condition, capacity was not credibly affected by task load, and overall, processing 

was capacity-limited. However, there was a main effect of salience, with higher salience 

targets engendering more efficient processing than their low salience counterparts. Our 

findings suggest increasing target salience may be a valuable method for increasing 

processing of critical signals or events within both single-task, full-attention contexts, as well 

as within dual-task, divided-attention environments.   
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Benefits of the ‘Pop-Out’ Target:  

Salience Captures Attention under Task Load 

On a quiet Friday night, an air traffic controller works in the control room of a small 

city airport. Every so often, the controller coordinates with local radar centres and informs 

ground control of upcoming departures, while intermittently updating awaiting aircrafts of 

route clearances before taxiing. While attention is divided between tasks, a light starts 

flashing, indicating a possible system error. The alert is highly noticeable, rapidly capturing 

her attention and allowing the controller to immediately defuse the situation. But, what if it 

had been a much busier night at the airport, increasing operator task demand in the air traffic 

control room? Would the benefits of a salient signal be enough to protect against interference 

from concurrent tasks?  

Every day, different factors drive us to notice specific items within our visual 

environment (Theeuwes, 2010; Wolfe & Horowitz, 2017). Attention capture occurs when 

stimuli attract attention automatically (Most, Scholl, Clifford, & Simons, 2005). Stimulus-

driven, bottom-up processing contributes heavily to attention capture (Theeuwes, 1994). 

Bottom-up processing refers to instances where the physical properties of a stimulus allow it 

to stand out from its surrounding environment, capturing attention (Itti & Koch, 2000; 

Nothdurft, 1992; Theeuwes, 1994). Properties of an object, such as its shape, colour, size, or 

luminance, increase the object’s salience, or the feature contrast between the object and its 

background (Itti & Koch, 2000; Parkhurst, Law, & Niebur, 2002; Theeuwes, 1994; Treisman 

& Gelade, 1980). The greater the difference between competing stimulus properties—in other 

words, the greater a level of salience—the more likely a property will ‘pop-out’ and be 

noticed. Conversely, the more similar a stimulus attribute is to other competing information, 

the lower the object’s salience, and hence, the poorer the search efficiency (Duncan & 

Humphreys, 1989). 
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Although much research on attention guidance has been done using highly abstracted 

laboratory tasks, the value of stimulus salience has also been demonstrated in more 

naturalistic tasks. For example, pilots are faster and more accurate at detecting changes in a 

visual surveillance task when the critical information is highlighted (Wickens, Muthard, 

Alexander, Van Olffen, & Podczerwinski, 2003), and when the contrast between target 

symbology and background is high (Ververs & Wickens, 1998). Guidelines for visual display 

design, therefore, recommend manipulations of salience to improve noticeability of critical 

signals in high-stress operational environments (e.g., Federal Aviation Administration, 2011; 

General Aviation Manufacturers Association, 2000; Wickens, Sebok, McCormick, & 

Walters, 2016).  

High salience does not guarantee rapid target detection, however. Some data have 

suggested that purely bottom-up capture is impossible, and that the tendency for salient 

stimuli to attract attention is contingent on the observer’s attentional set for a particular 

feature (Folk, Remington, & Johnston, 1992). Other work, analogously, has suggested that a 

salient stimulus can capture attention only if it lies within a window of spatial attention 

(Belopolsky, Zwaan, Theeuwes, & Kramer, 2007). An easily visible stimulus can therefore 

be overlooked if an observer’s attention is ‘tuned’ to a different set of visual features (Most et 

al., 2001; Most et al., 2005; Simons & Chabris, 1999) or is focused on another visual 

stimulus (Cartwright-Finch & Lavie, 2007; Mack & Rock, 1998). A visual stimulus can also 

fail to capture awareness if the observer is engaged in a non-visual task (Boot, Brockmole, & 

Simons, 2005; Fougnie & Marois, 2007; Strayer, Drews, & Johnston, 2003), though in other 

circumstances, cognitive load can interfere with an observer’s ability to suppress attention 

capture by a salient stimulus (Boot et al., 2005; Lavie & De Fockert, 2005).  

The finding that concurrent load modulates attention capture is pertinent to the design 

of visual workspaces and displays, as operators rarely perform a visual monitoring task in 
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isolation. In many circumstances, rather, they perform several demanding tasks concurrently, 

including multiple visually-demanding tasks. Studies of visual monitoring have found that 

some salience benefit is preserved under multi-task load. For instance, Nikolic, Orr, and 

Sarter (2004) asked participants to detect critical signals in a peripheral visual display while 

concurrently playing a videogame in a central channel. Data confirmed that peripheral stimuli 

with high feature contrast were easier to detect than low-contrast stimuli. Similarly, an 

experiment measuring detection rates for peripheral visual signals in a simulated flight task 

found that distinctive targets were more readily detected than non-distinctive ones; however, 

this effect was more pronounced when attention was biased away from the target locations 

(Steelman et al., 2013). 

However, neither Nikolic et al. nor Steelman et al. compared the effects of salience 

under task-load to those under a single-task baseline condition. Instead, both paradigms 

focused on the benefits of salience when loaded by a concurrent visuo-manual task. 

Therefore, it is still unclear whether high salience is equally effective for enhancing 

detections when attention is directed entirely at the monitoring task and when divided 

between tasks. Thus, the goal of the current study was to explore whether increased salience 

assists processing, despite changes to the level of task-load. More specifically, we tested 

whether dual-tasking reduces the benefits of salience. To address this question, we adopted a 

paradigm similar to that used in previous studies of processing efficiency under task-load 

(Morey et al., 2018a, 2018b), pairing a peripheral target detection task in conjunction with a 

visuo-manual tracking task. By manipulating the salience of target stimuli in this paradigm, 

we were not only able to measure the effect of salience on response times (RTs), but also the 

effect of salience on target processing efficiency.   

Measuring Processing Efficiency 
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We assessed whether target salience enhances processing both when a person is 

performing a detection task alone and when dividing attention with a concurrent visuomotor 

task. To do this, we measured workload capacity, an element of Townsend and Nozawa’s 

(1995) Systems Factorial Technology (SFT) (Houpt, Blaha, McIntire, Havig, & Townsend, 

2013; Houpt, Blaha, Base, & Burns, 2013). Workload capacity refers to the efficiency for 

processing visual targets as the number of items processing on different channels (i.e., 

workload) increases (Townsend & Eidels, 2011; Townsend & Nozawa, 1995). Thus, the 

greater a person’s workload capacity, the faster that person can process multiple items, and, 

consequently, identify a target, at any moment in time. For highly cluttered displays 

containing multiple competing items, a greater processing capacity is required to process all 

items simultaneously. Although differences in processing capacity may change in response to 

perceptual and cognitive load (Fitousi & Wenger, 2011), whether salience can protect against 

task-load interference on workload capacity has not yet been tested.   

Workload capacity is calculated using the capacity coefficient, C(t), (Townsend & 

Nozawa, 1995; Townsend & Wenger, 2004a). C(t) provides a measure of a cognitive 

system’s energy throughput expenditure for each moment in time and is calculated by 

comparing the cumulative hazard functions for targets on different channels. The hazard 

function h(t) in a speeded response task represents the instantaneous probability that a 

process will end (i.e., the participant will make a response) at time t, given that the participant 

has not yet made a response (Townsend & Ashby, 1983). The cumulative hazard function, 

H(t), is thus the integral of the hazard function up to time t. C(t) compares multiple-channel 

processing with channel processing for each channel independently. The benchmarks for 

these predictions stem from the conceptualisation of the standard parallel model, also known 

as the unlimited capacity independent processing (UCIP) model. As the name implies, the 

model carries three critical premises: parallel processing, stochastic independence, and 
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unlimited capacity. The premise of parallel processing stipulates that multiple channels 

operate concurrently, each with its own evidence accumulator. The premise of stochastic 

independence stipulates that finishing times for the multiple channels are uncorrelated. 

Finally, the premise of unlimited capacity stipulates that individual channels operate at the 

same rate as the total number of channels in operation increases. C(t) gauges the performance 

of a system relative to the predictions of the UCIP model. 

C(t) was originally developed for use with the redundant-target paradigm (Todd, 

1912) and was later extended for application to tasks requiring exhaustive processing of 

multiple stimuli (Townsend & Wenger, 2004a). Recent work has developed a variant of the 

capacity coefficient for the single-target self-terminating (ST-ST) visual search task (Blaha, 

2011; Blaha & Houpt, n.d.; see also Houpt et al., 2013). In the ST-ST paradigm, a target 

appears either alone or in the company of n distractors and the observer responds when they 

detect the target. Hence, the search process ends when the observer detects a target, 

regardless of the presence of distractors. C(t) is then, 

CST-ST(t) = Kk,1(t)/Kk,n(t)  (5.1) 

where Kk,1(t) is the cumulative reverse hazard function for the condition in which a 

target is present on channel k and the display contains no distractors, and Kk,n(t) is the 

cumulative reverse hazard function for the condition in which a target is present on channel k 

and the display contains n distractors. Within an ST-ST model, if the processing rate of the 

target on channel k is unaffected by the number of n channels also processing, and hence, 

Kk,1(t) = Kk,n(t), we find evidence for the UCIP model. Thus, an ST-ST paradigm relies on the 

prediction that a UCIP model will produce a CST-ST(t) = 1.0. When processing within an ST-

ST system is more efficient than the UCIP (i.e., super-capacity), CST-ST(t) > 1.0. Finally, 

when ST-ST processing is poorer than predicted by the UCIP, we find evidence of limited 

capacity processing and CST-ST(t) < 1.0.  
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The standardized capacity coefficient, Cz, (Houpt & Townsend, 2012) is a 

transformation of C(t) that provides a summary measure of processing efficiency, averaged 

over time. Under the assumption of UCIP processing, Cz is distributed with a mean of 0 and 

standard deviation of 1. Therefore, reliable deviations from 0 imply limited capacity (Cz < 0) 

or super-capacity (Cz > 0). The main advantage of using a normalised measure of capacity is 

that we can compare processing efficiency from different paradigms or experiments, making 

Cz a valuable tool for assessing processing efficiency for two different types of target stimuli. 

Thus, Cz allows us to compare processing for targets that are poorly discriminable from their 

distractors (i.e., low in salience) with targets that are more highly discriminable from their 

distractors (i.e., high in salience).  

Few studies have examined task-load effects on ST-ST capacity (though, see Fox & 

Houpt, 2018, for a model of multi-tasking performance); however, recent findings suggest 

that redundant-target paradigms with peripheral target displays elicit limited capacity 

processing that is resistant to changes in task load (Morey et al., 2018a, 2018b). Hence, 

processing efficiency for redundant targets does not appear to change with an increase in task 

load. Together, these findings suggest redundant-target processing efficiency is highly robust 

against changes in task load. Critically, the speed-up in responding associated with presenting 

targets redundantly (i.e., the redundancy gain) may simply be too strong to be sensitive to 

changes in the level of task load. In other words, the benefit from employing redundant 

targets may be enough to shield against any fluctuations in the person’s cognitive capacity 

resulting from changes in task load. Single-target paradigms, on the other hand, may be more 

sensitive to increases in task load, as there is no second target to boost processing when 

loaded by a secondary task. Thus, it is entirely plausible that dual-task effects, though absent 

from redundant-target paradigms, occur for single-target displays.  
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Our main aim was to assess processing capacity as a function of task load and target 

salience, and to determine whether increasing target salience is beneficial to target detections 

despite changes to the level of task load. More specifically, we predicted that increasing 

target salience, by enhancing discriminability between targets and distractors, would increase 

processing efficiency for single peripheral, visual targets. We also expected that increasing 

salience would improve processing efficiency for both single- and dual-task conditions, but 

increased salience would produce a greater benefit for the single-task condition.  

Method 

The current study was preregistered and is currently available online on the Open 

Science Framework. To access the preregistration information please visit: 

https://osf.io/278ba/register/5771ca429ad5a1020de2872e. 

Participants 

As preregistered, we planned to collect data for 30 participants who met the eligibility 

criteria and completed the experiment successfully. We achieved this N after testing a total of 

34 participants (26 female; MAge = 20.62, SD = 5.57, Range = 17 – 48 years). The final 

sample excluded three participants who failed to follow instructions (e.g., responded to no-go 

stimuli) and one who experienced a computer error during the experiment. All participants 

were Flinders University undergraduate students, compensated with either course credit or 

AU$10. Participants were screened for normal or corrected-to-normal visual acuity and 

normal colour vision. All participants were fluent in English and had a minimum Flinders 

Handedness Survey (FLANDERS) (Nicholls et al., 2013) score of +5 (M = +9.82, SD = 

0.72). Twenty-seven of the 34 participants held current valid driver’s licences, with driving 

experience ranging from 0.5 to 32 years (MYears = 3.31, SD = 6.14). The study was approved 

by Flinders University’s Social and Behavioural Research Ethics Committee. 
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Apparatus and Stimuli 

Stimuli were presented on a 27” Samsung LED monitor with a screen resolution of 

1920 x 1080 pixels, 0.33 mm per pixel, and a screen refresh rate of 100 Hz. We developed 

the experimental program and stimuli using Presentation software Version 16.5 Build 

09.17.13, (Neurobehavioral Systems, 2018). Participants viewed the display from a distance 

of approximately 60 cm. A Logitech Attack 3 joystick (Logitech, 2018) collected tracking 

and target detection inputs. 

The participants performed a combination target-detection and visuo-manual tracking 

task similar to that used in earlier studies (Morey et al., 2018a, 2018b). On each trial, either 

one or two stimulus letters appeared in the upper hemifield of the screen, 13.81° above the 

horizontal midline and ± 1.53° to the left and/or right of the vertical midline. We presented 

peripheral letters in close proximity to one another to strengthen the interference between 

them (Bouma, 1970; Yamani et al., 2013). Stimuli were capital letters in 16-point Arial font, 

each subtending 1.58° × 1.14° visual angle, and appearing randomly rotated in 90° steps from 

0° to 270°. To manipulate target salience, we employed two target letters that differed in their 

discriminability from the distractor letter, L. The low salience target was a letter T, 

distinguished from the distractor by the arrangement of constituent features (Wolfe, 1998). 

The high-salience target was a letter O, distinguished from distractor by curvature, a low-

level visual feature (Treisman & Gormican, 1988; Wolfe & Horowitz, 2004). On target-

present trials, a target could be either paired with a distractor or presented alone. This 

produced 11 different trial letter combinations including eight target-present trial types (T_; 

_T; TL; LT; O_; _O; OL; LO, where the underscores represent the absence of a stimulus) and 

three target-absent trial types (LL; L_; _L). Salience trials were intermixed throughout each 

tracking interval to allow for strategic effects of attention. 
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Values of inter-trial intervals were sampled from a delayed exponential distribution 

with a fixed delay of 1000 ms and an exponential component with a mean of 1000 ms. Thus, 

onsets appeared no earlier than 1000 ms after the offset of the previous trial but were 

unpredictable after that. Stimuli remained onscreen until a joystick button press response 

from the participant, or until a timeout limit of 2000 ms.  

Stimuli for the tracking task were a red circular target (subtending 0.95° of visual 

angle) and a black cursor (+) in 10-point Arial font (0.76° × 0.76° of visual angle). The target 

moved along an imaginary semi-circular arc (19.85° in diameter and offset 5.72° below the 

screen’s centre point) that was centred horizontally within the display, and that arched into 

the upper visual field with its base on the horizontal midline. To ensure the movements of the 

red circle were unpredictable to the participant, the target followed a path determined by a 

combination of the sine waves 0.07, 0.15, and 0.23 Hz (Morey et al., 2018a, 2018b; Strayer & 

Johnston, 2001). For each tracking interval, the sinusoids were randomly phase-shifted. The 

cursor moved along the same semi-circular path as the target but was controlled by 

participants using the joystick and moved at a maximum velocity of 80° per second. 

Although only one block involved the tracking task, the red circular target and black cursor 

were visible on screen throughout every tracking interval during both the dual- and single-

task blocks. Figure 5-1 shows a sample series of stimulus events.  
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Figure 5-1. A series of sample trials within a 60-sec dual-task tracking interval. Here, after 

starting the interval, a low salience target (T) accompanied by a distractor (L) appear for a 

maximum of 2000 ms, followed by an inter-stimulus interval between 1000 and 2000 ms. 

This is followed by a distractor-only (L) trial, and later with a high salience target-only (O) 

trial.  

Procedure  

After providing informed consent and completing the visual tests, participants 

completed the primary experimental task in a private testing station.  Participants were told 

they would perform two separate tasks. The first was to monitor for visual targets in two 

adjacent positions in the upper periphery of the display. Participants were told that the letters 

‘T’ and ‘O’ were both targets, and that the appearance of a target required a button press 

response. Participants were instructed to hold the joystick with both hands, with their two 

thumbs on the buttons on top of the joystick, and to respond to targets bimanually. Bimanual 

responses were intended to minimise stimulus-response compatibility effects in RTs (e.g., 

Simon, 1969) and reduce the risk of lateral attentional biases resulting from greater response-
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2000 ms (or until button press)
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T  
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related activation in one hemisphere. Participants were told to respond as quickly and as 

accurately as possible whenever a target appeared on screen, regardless of whether the target 

was accompanied by a distractor. The appearance of only a distractor, on the other hand, 

required no response.  

The second task was a visuo-manual tracking task. This required the participant to 

manoeuvre the joystick to align the cursor with the red moving target, simulating visuo-

manual tasks such as driving a car or steering a remote-controlled device. Because the 

target’s motion was largely unpredictable to the participants, the task required attention to 

perform successfully. 

Participants were told they would perform two blocks of 22 60 second tracking 

intervals each. They were also told that in one block they would only perform the target-

detection task (single-task condition) whereas in the other they would perform both tasks 

(dual-task condition). In the dual-task, participants were asked to monitor for targets whilst 

maintaining tracking performance. Single-task instructions asked participants to focus 

entirely on the target detection task and to ignore the cursor and moving red target of the 

tracking task. The order of single- and dual-task blocks was counterbalanced across 

participants. Each block began with a 60 second practice interval for the first block. After 

completing the experimental task, participants filled out the FLANDERS questionnaire, and 

verbally reported whether they held a valid driver’s licence, and if so, the number of years of 

driving experience they had accrued. They were then debriefed. The study took 

approximately 55 minutes to complete.  

Analysis  

To assess performance on the manual tracking task, we calculated the root mean 

squared error (RMSE) between the position of the participant’s cursor and the moving red 

tracker. Though the tracking task was only performed by participants during the dual-task 



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
140 

condition, we measured RMSE within the single-task condition as well. This provided a 

baseline measure of tracking performance to ensure participants had performed the task as 

instructed in the dual-task blocks.  

For all calculations of capacity scores, we used the ‘sft’ package (Houpt, Blaha, 

McIntire, Havig, & Townsend, 2013; Houpt, Blaha, Base, & Burns, 2013) within R (R Core 

Team, 2016). Standardised capacity scores, Cz, was calculated separately for each participant, 

in each experimental condition.  

Inferential analyses were performed using Bayesian parameter estimation with the 

‘JAGS’ (Plummer, 2015) R package. Bayesian parameter estimation works by initially 

assuming a prior distribution for parameters of interest, then sampling values from that 

distribution using a Markov chain Monte Carlo procedure to generate an estimated posterior 

distribution of parameter values in light of the observed data. RTs were analysed in a 2 (task 

load: single, dual) x 2 (salience: low, high) x 2 (distractor condition: absent, present) within-

subjects design, with an additive effect of participant (Kruschke, 2015). We assumed normal 

likelihood distributions and vague priors on all means and standard deviations. Following 

Kruschke (2015),  

Yparticipant, task load, salience, distractor condition ~ N(a0 + aparticipant + atask load + asalience + adistractor 

condition + atask load × salience × distractor condition, σy2) 

a0 ~ N(M, [100 × SD]2) 

aparticipant ~ N(0, σparticipant2) 

atask load ~ N(0, σtask load2) 

asalience ~ N(0, σsalience2) 

adistractor condition ~ N(0, σ distractor condition2) 

atask load × salience × distractor condition ~ N(0, σtask load × salience × distractor condition2) 

σparticipant, σtask load, σ salience, σ distractor condition, σtask load × salience × distractor condition ~ 3	(α,	β)	



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
141 

α = SD/2 

β = 2 * SD,  

where M and SD denote the mean and standard deviation, respectively, of the observed RT 

values. Use of the observed values in the parameter prior distributions ensured that 

distributions were appropriate to the scale of the data. Deflections from the grand mean were 

constrained to sum to zero for each of the effects of task load, salience, distractor condition, 

and their interaction. Analysis of Cz was similar, but did not include the effect of distractor 

condition (which is accounted for in the calculation of Cz), 

Yparticipant, task load, salience ~ N(a0  + aparticipant + atask load + asalience, σy2) 

σy ~ U(SD/1000, SD*1000) 

a0 ~ N(M, [100 × SD]2) 

aparticipant ~ N(0, σparticipant2) 

atask load ~ N(0, σtask load2) 

asalience ~ N(0, σsalience2) 

σparticipant, σtask load, σtask load ~ 3	(α,	β)	

α = SD/2 

β = 2 * SD, 

where M and SD denote the mean and standard deviation, respectively, of the observed Cz 

values. Deflections from the grand mean for the effects of task load and salience were again 

constrained to sum to zero across conditions. 

 

Results 

Error Rates 

All 30 of the included participants produced false alarm rates below a preregistered 

cut-off value of 30% (Townsend & Wenger, 2004b) in both the single (M = 0.07, Range = 0 – 
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0.27) and dual-task blocks (M = 0.07, Range = 0.01 – 0.28). Collapsing across all trials 

(including target absent trials) produced very high overall mean accuracy rates in both the 

single- (M = 0.96, Range = 0.88 – 1.0) and dual-task conditions (M = 0.95, Range = 0.85 – 

greater than 0.99). Miss rates were very low across conditions and are reported, along with 

the mean number of correct target present trials within each condition, in Appendix D. As the 

number of correct target trials did not differ greatly between conditions, the variance of the 

Cz statistic reported below should be similar across conditions. 

RTs 

RTs for false-positive responses (i.e., responses to distractor-only trials) were 

excluded from analysis. The experimental program recorded participants’ RTs for both hands 

(bimanual button presses). The faster of the two RTs for each trial was selected for analysis.  

Data showed the expected main effects of distractor presence, target salience, and task 

load (see Figure 5-2 below). First, RTs for distractor-present trials (M = 559 ms, 95% 

Bayesian Credible Interval [BCI; Kruschke, 2015] = [553, 564]) were credibly longer than 

those for distractor-absent trials (M = 527 ms, 95% BCI = [521, 533]), (MDiff = 31 ms, 95% 

BCI = [20, 43], d = 0.83). Second, responses to high salience targets (M = 534 ms, 95% BCI 

= [528, 539]) were credibly faster than those to low salience targets (M = 552 ms, 95% BCI = 

[546, 557]), (MDiff = 18 ms, 95% BCI = [6, 29], d = 0.42). Finally, RTs in the single-task 

block (M = 512 ms, 95% BCI = [507, 518]) were credibly shorter than RTs in the dual-task 

block (M = 573 ms, 95% BCI = [568, 579]), (MDiff = 61 ms, 95% BCI = [50, 72], d = 0.87).  

To test for a 3-way interaction between task load, target salience, and distractor 

presence, we assessed the interaction contrast (IC; Keppel, 1991) between target salience and 

distractor presence for each level of task load. The interaction contrast was calculated as 

follows: 

IC = RTLP - RTHP - RTLA + RTHA,  (5.2) 



TARGET PROCESSING EFFICIENCY UNDER LOAD 
  

 
143 

where the subscripts L (low) and H (high) denote the level of target salience, and the 

subscripts P (present) and A (absent) denote the level of distractor presence. A value of IC = 

0 would indicate additive effects of salience and target distractor, a value greater than 0 

would indicate superadditive effects, and a value less than 0 would indicate subadditive 

effects. The IC was calculated separately for the single-task condition (ICSingle) and the dual-

task condition (ICDual). Though both were nominally positive, neither ICSingle (M = 7.00, 95% 

BCI = [-13.81, 33.73]) nor ICDual (M = 12.93, 95% BCI = [-7.81, 43.66]) were credibly 

different from 0. Furthermore, the two values of IC did not differ from one another, (MDiff = -

5.78, 95% BCI = [-41.78, 25.07], d = 0.16).  

Workload Capacity 

To reiterate, Cz values below 0 represent limited capacity processing, values greater 

than 0 represent super-capacity processing, and values of 0 represent UCIP-equivalent 

processing.  

Within both the single- and dual-task conditions, Cz scores were negative, indicating 

limited capacity. In line with expectations, high salience targets (MCz = -0.81, 95% BCI = [-

1.17, -0.44]) produced higher values of Cz than low salience targets (MCz = -1.80, 95% BCI = 

[-2.17, -1.44]), (MDiff = -1.00, 95% BCI = [-1.36, -0.63], d = 0.81). However, despite a trend 

towards more efficient processing in the dual-task condition (MCz = -1.18, 95% BCI = [-1.54, 

-0.82]) than single-task condition (MCz = -1.43, 95% BCI = [-1.80, -1.08]), there was no 

credible main effect of task load on Cz, (MDiff = -0.26, 95% BCI = [-0.62, 0.10], d = 0.18). 
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Figure 5-2. a. Estimated mean RT as a function of task load, salience, and distractor 

presence. b. Estimated mean difference scores reflecting the main effects of task load (dual-

task – single-task), salience (low – high), and distractor presence (present – absent) on mean 

RTs. Error bars are 95% BCIs. In b, error bars not overlapping zero indicate credible effects.
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The central hypothesis for the current study was that target salience would enhance 

target processing efficiency in both conditions, but to a greater extent for the single-task 

condition. Contrary to this prediction and as presented in Figure 5-3, data showed no credible 

interaction between salience, task load, and processing efficiency. Under single-task load, 

high salience targets (MCz = -0.91, 95% BCI = [-1.35, -0.48]) were processed more efficiently 

than low salience targets (MCz = -1.96, 95% BCI = [-2.39, -1.52]), (MDiff = -1.04, 95% BCI = 

[-1.54, -0.55], d = 0.80). Similarly, under dual-task load, high salience targets (MCz = -0.70, 

95% BCI = [-1.14, -0.27]) were processed more efficiently than low salience targets (MCz = -

1.65, 95% BCI = [-2.09, -1.22]), (MDiff = -0.95, 95% BCI = [-1.44, -0.46], d = 0.81). The ICCz 

was very close to 0 (ICCz = 0.09, 95% BCI = [-0.55, 0.76], d = 0.07), implying additive 

effects of task load and salience.  

Tracking Performance 

We measured tracking performance to check that participants had followed 

instructions to track the cursor in the dual-task but not the single-task condition. We 

calculated RMSE of the participant’s cursor from the red moving target. Higher scores 

indicate poorer tracking performance. To check participants followed instructions to only 

track during the dual-task block, we compared RMSE between both levels of task load. As 

expected, dual-task RMSE (MRMSE = 14.28º, 95% BCI = [13.22, 15.34]) was credibly smaller 

than single-task RMSE (MRMSE = 26.07º, 95% BCI = [25.04, 27.13]), (MDiff = 11.80º, 95% 

BCI = [10.49, 13.11], d = 3.46), indicating that participants performed the tracking task 

during the dual-task block as instructed. 
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Figure 5-3. a. Estimated mean normalised capacity scores as a function of salience and task 

load. The grey zero line represents UCIP model performance.  b. Estimated difference scores 

of the main effects for salience (low – high) and task load (dual-task – single-task). Error bars 

are 95% BCIs. 
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Discussion 

In the current study, we tested whether a concurrent visuo-manual task reduces the 

value of target salience for boosting visual processing efficiency. As expected, high salience 

targets were processed with greater efficiency than low salience targets. To reiterate, within 

the ST-ST paradigm (Blaha, 2011; Blaha & Houpt, n.d.; see also Houpt et al., 2013), C(t), or 

its normalised version, Cz, is calculated by comparing the processing rates of a target alone 

versus a target appearing with one or more distractors. The observed negative values of Cz 

indicate that the addition of a distractor slowed the processing of a target. This finding was 

true both for low and high salience targets, indicating that salience did not make the target 

fully immune to distractor interference. Cz was higher for high-salience targets, indicating 

that salience reduced the difference in processing rates between distractor-present and 

distractor-absent target trials. More critically, dual-tasking did not reduce the benefits of the 

salience effect. Even under high task load, high salience targets were detected more 

efficiently than low salience targets.  

Our current findings are consistent with our previous studies showing no dual-task 

cost on peripheral target processing (Morey et al., 2018a, 2018b). Our earlier studies showed 

that performing a visuo-manual tracking task had no effect on processing capacity for 

redundant peripheral visual targets (Morey et al., 2018a, 2018b). Here, we show these 

findings extend to single-target visual displays. In other words, target processing efficiency is 

not affected by changes to task load for redundant-target displays, nor is capacity influenced 

by task load for single-target displays. Thus, regardless of display type, task load does not 

affect visual processing capacity.  

The current findings lend support to existing guidelines (e.g., Federal Aviation 

Administration, 2011; General Aviation Manufacturers Association, 2000) encouraging 

designers to increase stimulus salience to improve visual processing, both in simple, single-
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task contexts and in more complex, operational environments. Increasing feature contrast 

between target information and irrelevant or distractor information may be especially 

valuable for increasing the noticeability of critical information in complex operational 

displays, such as those used in air traffic control and in military command and control.  

One argument for the lack of a dual-task cost to capacity may be that the tracking task 

was insufficient at increasing resource demand. However, this explanation seems unlikely. 

Although the tracking task did not reduce processing capacity, it was difficult enough to 

increase RT for target detection. Thus, our results provide evidence of interference between 

the target-detection and tracking tasks. Alternatively, the findings here may reflect an 

attention-switching model (e.g., Morey et al., 2018b; Wickens & Gopher, 1977). While 

directing attention toward the moving tracker, a stimulus onset may have interrupted 

performance on the tracking task (Yantis & Jonides, 1990), temporarily diverting attention 

towards the stimuli and allowing rapid stimulus identifications. Thus, the visual targets could 

be processed in parallel during the dual-task block, despite attention switching serially 

between the tracking and detection tasks. Such a model could explain the lack of any credible 

difference between the single- and dual-task conditions. 

The current study used a novel method to assess visual processing capacity under task 

load while manipulating salience. This is the first time the ST-ST measure of workload 

capacity has been used to assess the effects of salience on processing within a dual-task 

design. The clear effect of salience, along with the trend towards an effect of task load, 

suggests that the ST-ST method may be a useful measure for assessing processing capacity 

under load.   
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Preface 

The previous studies in this thesis examined task-load effects on visual target 

processing in highly-controlled laboratory environments. To test whether these findings 

extend to more real-world domains, the following study assessed visual monitoring under 

dual-task load in a high-fidelity operational scenario. The study was a collaborative project 

with researchers at Defence Science and Technology Group in Edinburgh, South Australia. 

Here, we conducted a study to measure detection performance of a commander either 

manually operating or supervising the movements of a semi-autonomous ground vehicle 

using a high-fidelity driving simulator. A vehicle operating autonomously, requiring little 

manual input (i.e., requiring only supervisory control), is expected to produce low operator 

workload. We therefore liken the supervisory control mode to the single-task condition in our 

earlier experiments. Conversely, the higher level of cognitive demand and the extra tasks of 

steering and accelerating/braking in the manual control (i.e., teleoperation) condition is akin 

to the dual-task condition in our laboratory experiments. Thus, the current study implemented 

a dual-task paradigm in an ecologically valid, complex military environment.  

Given the constraints of a high-fidelity simulation (e.g., less controlled target onset 

and offsets, greater variability between participants), we infer changes of processing capacity 

directly from response times (RTs) and from signal detection theory (SDT; Green & Swets, 

1966; Stanislaw & Todorov, 1999) measures of sensitivity and bias, rather than using the 

more sophisticated measures in the previous chapters. Though, as mentioned previously, RTs 

and accuracy/sensitivity provide an imperfect means of assessing capacity, we used them 

here as a crude measure of visual processing performance that is most feasible given 

limitations of the simulation software and other methodological constraints. As a 

manipulation check to confirm that operator workload differed across vehicle autonomy 

mode, we also measured subjective workload between conditions.  
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Abstract 

Increasing automation in high-stress environments can reduce operator task load and 

workload. As such, it may be valuable for improving concurrent task performance. Here, we 

tested whether higher levels of unmanned vehicle autonomy improved operators’ 

performance on a primary visual monitoring task within a simulated humanitarian aid task. 

Twenty-one participants performed a target monitoring task while operating a vehicle under a 

low (teleoperation) or high (supervisory control) level of vehicle autonomy. SDT measures of 

sensitivity (d’) and bias (c) were accumulated over time to assess changes in monitoring 

following target onset. Performance on the control task was assessed using vehicle speed and 

the number of critical incidents within the scenario. Despite higher levels of subjective 

workload in teleoperation than supervisory control, d’ and c did not vary between vehicle 

control conditions. The current findings suggest the reduced workload resulting from 

increased system autonomy might not improve monitoring performance on a visual detection 

task.  
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Visual Detection Under Load  

in a Simulated Military Dual-Task 

Automation is technology that carries out tasks, or parts of tasks, that were previously 

performed by humans (Parasuraman, Sheridan, & Wickens, 2000). By reducing the number 

and complexity of tasks performed by human operators, automation provides a possible 

solution for freeing up human cognitive capacity. Autonomous vehicles, in particular, are 

increasingly being used in the high-risk operational settings, such as mining (e.g., Komatsu 

Australia, 2018; Rio Tinto, 2018), to improve efficiency and safety by minimising the 

opportunity for human error. An increase in vehicle autonomy may allow operators to 

improve performance on other, non-driving tasks. In future military command and control 

environments, for instance, increasing vehicle autonomy has the potential to increase the 

operator’s capacity to plan a route or monitor the environment for hazards (e.g., Ivanova, 

Gallasch, & Jordans, 2016). Thus, performance on other non-driving, yet still important tasks, 

may improve as the level of vehicle autonomy increases.  

In general, humans are not well-equipped to perform multiple tasks simultaneously 

(e.g., Wickens, 2002; Wickens, 2008). Many prominent theories of multiple task performance 

argue that task performance depend on the cognitive resources required by each task; when 

concurrent tasks tap into similar resource pools, exceeding the maximum available capacity, 

performance declines (e.g., Gopher & Navon, 1980; Navon & Gopher, 1979; Wickens, 1981; 

Wickens, 2008). Given the risks associated with overloading an operator, autonomous 

systems provide a potential option for increasing task efficiency by reducing the number of 

tasks an operator performs concurrently, freeing up cognitive capacity necessary for other, 

non-driving tasks (Manzey, Reichenbach, & Onnasch, 2012; Sethumadhavan, 2009; Young 

& Stanton, 2007). 
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Several studies support the notion that fully or partially automating one task can 

reduce operator workload and increase cognitive resources available for a concurrent task 

(e.g., Griffiths & Gillespie, 2005; Kaber & Endsley, 2004; Parasuraman, Cosenzo, & De 

Visser, 2009; Young & Stanton, 2002a; Young & Stanton, 2004; Young & Stanton, 2007). 

For example, Griffiths and Gillespie (2005, Experiment 3) found that automation in a driving 

task reduced RTs to tones in a secondary tone localisation task, without compromising 

performance to the primary task. Moreover, increased automation has also often been linked 

to decreased operator workload (Parasuraman et al., 2009; Young & Stanton, 2002a). Young 

and Stanton (2002a, 2002b, 2007) showed that an increase in automation on a simulated 

driving task decreases workload, and furthermore, frees up capacity for a concurrent visuo-

spatial task. However, they also found a potential cost to automation: that attentional 

resources may shrink in situations when workload is low. Young and Stanton argued that if 

automation reduced workload too much, the mental resources necessary to carry out tasks 

decrease, limiting performance. Thus, their findings suggest automation may increase 

available resources for a secondary task, so long as the automation does not also reduce 

mental workload too far.  

In addition to causing mental underload, highly reliable automation can reduce 

operator attentiveness (e.g., Kessel & Wickens, 1982; Wickens & Kessel, 1979). In 

particular, highly reliable automation can make operators less prepared to respond to critical 

events within the environment (such as an impending hazard on the road) or to changes in a 

system’s status. In system fault-detection tasks, for example, operators are faster and more 

accurate at detecting errors when manually controlling the system than when supervising a 

system operating in autonomous mode (Kessel & Wickens, 1982; Wickens & Kessel, 1979).  

Automation may also be problematic for tasks requiring operators to maintain an 

awareness of their surrounding situation (Endsley, 1995; Endsley & Garland, 2000). Chen et 
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al. (2017) compared different levels of automation on performance on a simulated submarine 

track management triple-task. The automation was designed to assist performance on a 

contact classification task and a contact tracking task, but not on a concurrent dive task. 

Compared with no automation, static automation, in other words, automation that was on 

throughout the duration of the task, led to faster and more accurate target classifications in the 

classification task, increased the number of accurate decisions on the contact tracking task, 

and also reduced subjective workload. However, despite these improvements in performance 

on the automated tasks, compared with the no automation condition, static automation 

severely impaired situation awareness and reduced performance on the non-automated 

concurrent dive task (Chen et al., 2017). In fact, even when automation was switched on and 

off manually by the operator (adaptable automation) or automatically based on task load 

(adaptive automation), situation awareness was poorer than the no automation control 

condition. Thus, in some situations, automated systems may lead operators to have a poorer 

awareness of their surroundings than those requiring manual control. This reduced awareness 

could lead to poorer performance on a concurrent task, especially if the task requires 

monitoring or detecting events within the environment. 

Here, we examined how increasing vehicle automation on a driving task affects 

performance on a concurrent target monitoring task. Participants either supervised a 

simulated unmanned ground vehicle in an autonomous control mode (supervisory control) or 

a manual control mode (teleoperation), while completing a target detection task. In line with 

theories that suggest automation may reduce operator task load and thereby enhance operator 

performance (e.g., Griffiths & Gillespie, 2005; Wickens, 1981; Wickens, 2008), we expected 

the supervisory control mode would allow greater target detection than the teleoperation 

mode.  
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Method 

The study was approved by Defence Science and Technology Group’s Ethics Review 

Panel and the Flinders University Social and Behavioural Research Ethics Committee. The 

study was also preregistered on the Open Science Framework. A link to the preregistration 

information can be found at: 

https://osf.io/hb98p/register/5771ca429ad5a1020de2872e?view_only=4c1fed94e84249e4962

cf6810de5ac52. 

Participants 

Twenty-one participants (9 female; MAge = 36.81, SD = 18.59, Range = 21 - 80), 

including nine Defence Science and Technology Group current and former staff, five Flinders 

University students, and seven other individuals recruited from the general public, 

volunteered to take part in the current study. Though our preregistered goal was to run 30 

participants if possible, time constraints and difficulty recruiting prevented that.  

All participants reported normal or corrected-to-normal visual acuity and normal 

colour vision. All participants were regular drivers holding a current valid driver’s licence, 

with an average of 20.05 years of driving experience (SD = 18.61, Range = 2 – 63 years). 

Three participants reported having personal military experience. All participants were fluent 

in English. Most participants reported having only basic experience using driving simulators 

or the Virtual Battlespace 3 software, and eight participants reported working within the area 

of simulation technology. Eleven participants reported having at least an intermediate level of 

videogaming experience. After excluding data for one participant who terminated the session 

early due to simulator sickness (who showed an increase in pre- to post-session SSQ scores 

of 37.4), we were left with 20 complete data sets for analysis. 

Apparatus and Stimuli 
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Participants completed the study in an individual testing station within a simulation 

laboratory onsite at DST Edinburgh, South Australia. Participants sat in a vehicle simulator 

throughout the duration of the task. The simulator consisted of a driver’s seat fixed to a 

motion base that could be adjusted in three degrees of motion, a steering wheel, and three 

pedals (accelerator, brake, and reverse). To minimise the risk of simulator sickness, motion 

and vibration settings for the motion base remained switched off throughout the duration of 

the study. Participants used the steering wheel to perform the teleoperation task. All 

participants wore Sennheiser over-ear headsets throughout the testing session. The headsets 

played sounds within the scenario such as the vehicle accelerating. Visual stimuli were 

displayed on a 26” flat screen monitor with a screen resolution of 1920 × 1080 pixels (1 pixel 

was equal to 0.03 cm), mounted to the wall in front of the participant. Participants completed 

the task at a viewing distance of approximately 1000 mm, though viewing distance was not 

held fixed and could vary depending on each participant’s seat position. The monitor 

provided the participants with a forward view of the scenario, giving the impression that a 

camera was fixed to the front of the vehicle being operated. 

A battlefield management system (BMS) was presented on a Windows Surface Pro 

tablet on a table in front of the participant. The BMS showed a map view of the scenario and 

tracked the position of the vehicle at it moved along the prescribed route, identified by a 

black line. 

The simulation scenario was created using Virtual Battlespace 3 (VBS 3; Bohemia 

Interactive Simulations, 2015, Version 3.7.0.127787) software. The scenario involved 

participants partaking in a simulated military reconnaissance mission on a fictitious island, 

Sahrani. The scenario involved either remotely controlling or supervising an unmanned 

reconnaissance vehicle carrying aid supplies along a predetermined route. The terrain in the 

scenario varied between rural and urban landscapes.  
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The scenario was split into two blocks: in one block participants manually controlled 

the vehicle (teleoperation condition), and in the other block, the vehicle operated in a 

driverless mode in which participants could not control the vehicle’s movements (supervisory 

control condition). During the teleoperation block, participants used the steering wheel and 

foot pedals to control the movements of the vehicle along the prescribed route. In the 

supervisory control block, a confederate located in a separate testing station manually 

operated the vehicle. The confederate was thoroughly practiced on the task to ensure 

performance across participants was as consistent as possible. The same trained research 

assistant acted as the confederate for every session. Block order was counterbalanced 

between participants. Due to time constraints within each testing session, and as we were 

primarily interested in visual processing rather than vehicle control, we did not include a third 

condition to measure vehicle control performance on its own.  

Throughout each scenario, participants completed a concurrent target-detection task in 

a go/no-go design. Targets were human threats (armed persons) and non-targets were human 

non-threats (unarmed persons). Both targets and non-targets appeared intermixed throughout 

the scenario and appeared intermittently along the predetermined route, in locations both on 

and off the road. Targets and non-targets could be stationary (e.g., person standing still on the 

side of the road) or dynamic (e.g., running out from behind a tree and across the road). 

Participants were asked to respond to targets with a speeded button press on a response panel 

attached to the front of the steering wheel. Response times were recorded from the moment a 

target became visible onscreen, as determined during scenario development. A response was 

counted as a hit if it occurred within 5 seconds of the time a target became visible. A 

response was counted as a false alarm if it occurred within 5 seconds of the time a non-target 

became visible. Button presses made outside of the 5 second period following the appearance 

of the target were not recorded. Although a target’s distance from the vehicle and its location 
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varied throughout the scenario, in general, the 5 second time period was long enough that a 

target was no longer visible on screen by the time the response period ended (i.e., due to the 

vehicle having driven past the target). To avoid confounding target responses, no more than 

one target was ever visible at any moment throughout the task. In total, there were 35 targets 

and 18 non-targets per block. 

Vehicle speeds were recorded with a sampling rate of 2 Hz, and were timestamped to 

allow comparison of the teleoperation and supervisory control blocks.  

Materials & Measures 

Demographics Questionnaire. We recorded general participant information via a 

demographics questionnaire (e.g., age, gender, highest level of education). The questionnaire 

also asked for participants’ gaming knowledge and experience (e.g., How would you rate 

your knowledge of video gaming (i.e. how it works)? None? Basic? Intermediate? Expert?), 

and whether participants were experienced with simulation technology. In addition, the 

questionnaire measured participants’ previous experience with using the Virtual Battlespace 3 

software and with driving simulators.  

Simulator Sickness Questionnaire. A Simulator Sickness Questionnaire (SSQ; 

Kennedy, Lane, Berbaum, & Lilienthal, 1993) was administered to identify any participants 

at risk of experiencing simulator sickness. Participants first completed the SSQ on arrival at 

the testing session, and then after each practice and experimental block. 

NASA-TLX. The NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988) 

was administered to participants to assess workload at each level of vehicle control. Measures 

were taken immediately after completing each block. The NASA-TLX displays high validity 

and reliability and is regularly used in studies measuring operator workload.  
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Number of critical incidents. To provide a crude measure of participants’ 

performance on the vehicle control task, we recorded the number of critical incidents in each 

session. A critical incident was defined as any situation that violated the ‘mission 

instructions’ to ensure the vehicle arrived as safely as possible at the destination. Critical 

incidents included any instances in which the vehicle collided with a pedestrian (either target 

or non-target) or with a stationary object (e.g., wall, street sign), and instances in which the 

participant either rolled the vehicle or required assistance to return to the prescribed route. 

Critical incidents were recorded in both the teleoperation and supervisory control block. 

Procedure 

After providing informed consent, participants completed the basic demographic 

questionnaire and completed the SSQ as a baseline measure of simulator sickness. Next, 

participants were introduced to the driving simulator and scenario. We asked participants to 

imagine they were the commander of a reconnaissance mission on the fictitious island of 

Sahrani. Their role was to remotely supervise or teleoperate an unmanned vehicle between 

two locations to deliver aid supplies. Participants were told that, due to dangerous conditions 

around the island, they would need to either remotely supervise or remotely operate the 

vehicle from a command centre at the base camp. Thus, rather than driving a vehicle and 

risking human life, their task was to supervise the vehicle remotely, relying on the cameras 

fixed to the front of the vehicle.  

Participants were also instructed that the vehicle could operate in two different control 

modes. The first was a supervisory control mode in which the vehicle operated 

autonomously, without the need for direct input from the participant. The second was a 

teleoperation mode, in which the vehicle required direct manual control from the participant. 

Participants were not informed that a confederate was driving the vehicle in the supervisory 

control condition, but were told that the vehicle was operating in a mode in which the 
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participant was not the driver. As noted, we trained the confederate thoroughly to ensure the 

supervisory control drive was similar across participants. Nonetheless, to alleviate any 

participant concern over apparent mistakes or imperfections in the performance of the self-

driving vehicle, we informed participants that the supervisory control mode was not perfect, 

and thus, on some occasions the vehicle could erroneously veer off track or have difficulty 

navigating tight corners. Participants were informed that they would undergo one block in 

each control mode. A cover story explained that the control mode depended on the conditions 

of the environment the vehicle was driving through. 

Participants were also informed that they would need to watch out for and respond to 

threats appearing throughout the scenario. They were instructed to respond to armed human 

threats via a speeded button press on a key located on the steering wheel, and to make no 

response if an unarmed human non-threat appeared. Participants were informed that they 

should only press the button for threatening targets (armed persons) and to withhold 

responses for all non-threatening targets (unarmed persons). We told participants that armed 

targets posed a threat to the aid mission and, therefore, targets identified throughout the 

scenario needed to be reported as soon as possible back to the base camp via a button press. 

Participants performed the target-detection task throughout the full experimental session. 

They were required to perform the detection task during supervisory control and 

teleoperation. We instructed participants to keep their left index finger or thumb on the 

response board attached to the steering wheel at all times to encourage rapid responses. This 

meant that in the teleoperation condition, participants primarily controlled the vehicle using 

their right hand on the steering wheel. We encouraged both speed and accuracy on the 

detection task. We told participants to continue performing the detection task, regardless of 

the performance of the self-driving vehicle in the SC condition. 
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To familiarise themselves with the task, all participants performed a practice block 

before starting the experimental block. During the practice, participants were introduced to 

the vehicle simulator and audio headsets. They were introduced to the accelerator, brake, and 

reverse pedals and were given five minutes to practice manoeuvring the vehicle. Participants 

were asked to obey normal road rules and to obey the speeds limits of 50-kilometres per hour 

(kph) in urban or built-up settings and 80-kph in rural environments. These were the same 

speeds that the experimental confederate attempted to maintain while operating the vehicle in 

the supervisory control condition.   

After familiarising themselves with the vehicle controls, participants completed a 

brief practice task comprised of two phases. In the first phase, the vehicle operated in the 

supervisory control mode, autonomously driving from one town to a second, nearby town. 

Thus, for the first part, participants were only required to perform the detection task. After a 

short break to complete the SSQ, participants completed the second phase of the practice task 

during which the vehicle was switched to the teleoperation mode. The second practice phase 

required the participant to manually control the vehicle using the steering wheel and foot 

pedals, while still performing the monitoring task. Participants received verbal feedback 

throughout the practice.  

Once comfortable with performing both the vehicle control and target-detection task, 

participants began the experimental session. Half the participants began in supervisory 

control; the other half began in teleoperation. To ensure participants completed the 

teleoperation task in approximately the same amount of time as the supervisory control task, 

we emphasised the importance of completing the task as quickly as possible without 

exceeding speed limits. We emphasised that the target detection and the vehicle control tasks 

should be given equally priority. Half way though the scenario, the vehicle reached a stop 

sign indicating that is was time to switch control modes. Participants stopped the scenario and 
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completed the SSQ and the NASA-TLX for the control mode they had just performed. After 

a short break, they began the second block, using the alternate control mode. At the end of the 

second block, participants once again completed the SSQ and the NASA-TLX.  

The total time in the experimental task was approximately 35 minutes, though this 

varied depending on performance. The full testing session lasted approximately 70 minutes. 

Statistical Analyses 

We analysed the workload, detection, and vehicle control data using Bayesian 

parameter estimation through Markov chain Monte Carlo (MCMC) sampling (Kruschke, 

2013, 2015; Lee & Wagenmakers, 2013). This procedure begins with a prior distribution on a 

parameter of interest, then uses probabilistic sampling to update parameter estimates based on 

the observed data, resulting in estimates of the posterior distribution of parameter values 

(Kruschke, 2015). For each analysis, we calculated 95% Bayesian Credible Intervals (BCI; 

Kruschke, 2013, 2015) around the parameters of interest. Parameter estimation was carried 

out using the R package, ‘JAGS’ (Plummer, 2015). Estimates were based on four chains of 

length 62,500 iterations each; visual inspection of these chains indicated chains were mixing. 

Iterations were thinned to every fifth step (Neff > 29000). Each chain began with a burn-in 

sequence of 10,000 iterations. 

We analysed workload data using a model based on Kruschke (2013, 2015) that 

modelled a one-sample, within-subjects design. The model fitted a likelihood distribution 

with broad priors on the mean and standard deviation. Because NASA-TLX workload scores 

must lie between 0 and 100, we set a uniform prior (0, 100) on the group-level mean of the 

workload scores, and a uniform prior (0, 100) on the group-level standard deviation. We used 

the one-sample model to estimate parameter values separately for the supervisory control and 

teleoperation conditions, and to estimate the difference score between conditions. To estimate 
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parameter values for the speed and critical incident data, we used a similar model to the 

above, but we changed the prior to fit a normal likelihood distribution.  

To assess performance on the detection task between teleoperation and supervisory 

control, we first broke detection responses into separate 500 ms bins from target onset to 

response timeout, then analysed cumulative d’ and c as a function of time bin. Analyses thus 

show both the asymptotic level of performance within each condition, and the time course 

with which target detectability and response bias changed as the participant approached a 

target. We used a model from Rouder and Lu (2005) to estimate d’ and c, based on the 

cumulative hit and false alarm rates for each time bin.  

Results 

Workload 

We compared workload across driving conditions to ensure that participants found the 

teleoperation task more demanding than the supervisory control task. As expected, total 

NASA-TLX workload scores were higher for the teleoperation block (M = 61.61, 95% BCI = 

[56.35, 66.92]) than for the supervisory control block (M = 53.06, 95% BCI = [45.45, 

60.65]), (supervisory control minus teleoperation difference: MDiff = 8.56, 95% BCI = [3.10, 

14.01], d = 0.70), suggesting that the teleoperation was more cognitively demanding than 

supervisory control. As overall workload scores on the NASA-TLX are out of 100, these 

scores suggest both conditions produced moderate levels of workload. 

Detection Performance 

 Because participants produced no false alarms within the first two time bins in the 

supervisory control condition, estimated values of d’ and c within those bins were greatly 

inflated. Thus, here, we only report estimated parameters from the 5th time bin onwards, by 

which point both conditions had accumulated a modest number of false alarms. Parameter 

estimates for the first four time bins are included in Appendix E.   
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Figure 6-1a presents the mean and 95% BCI of d’ as a function of time bin, and 

Figure 6-1b presents the mean and 95% BCI of the difference score between d’ values for the 

supervisory control and teleoperation conditions. Data trended towards greater d’ the longer a 

target remained on screen, though the change in d’ from the 5th to the 10th time bins indicated 

that this pattern was not credible for either condition (supervisory control: MDiff
 = 0.31, 95% 

BCI = [-0.26, 0.86]; teleoperation: MDiff
 = 0.32, 95% BCI = [-0.22, 0.86]). In contrast to 

expectations, values of d’ in teleoperation and supervisory control did not differ credibly 

from one another within any time interval.  

Figure 6-2a presents the mean and 95% BCI of c as a function of time bin, and Figure 

6-2b presents the mean and 95% BCI of the difference score between values of c for the 

supervisory control and teleoperation conditions. Data indicate that participants adopted a 

very conservative response bias in the detection task but tended to become less conservative 

as target screen time increased. Notably, this effect was only credible (between the 5th and 

10th time bins) for the supervisory control condition (MDiff = -0.52, 95% BCI = [-0.96, -0.11]). 

Teleoperation did not show a credible change in response bias over time (MDiff = -0.37, 95% 

BCI = [-0.77, 0.03]). Additionally, at no time interval did c differ credibly between 

teleoperation and supervisory control.  

Inspection of raw hit and false alarm rates provides a perhaps more intuitive view of 

the data. Figure 6-3 below presents the estimated mean value and 95% BCI for hit rate, along 

with the mean and 95% BCI for the difference score between conditions. As shown, hit rates 

steadily increased over time within both conditions, but reached a maximum of just under 

0.50. Thus, detection rates were low regardless of condition. Though hit rates did not differ 

credibly between conditions during the first 4000 ms after appearing on screen, mean 

difference scores indicate hit rates were credibly greater in supervisory control than 

teleoperation in the 4500 ms and 5000 ms time bins. Given that neither d’ nor c differed 
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between conditions, however, this difference in hit rates seems likely to be spurious effect, 

reflecting a happenstance combination of sensitivity and bias values in those particular time 

bins rather than a true difference in ability between conditions. 

Analysis of false alarm rates over time indicated that participants were generally 

successful at withholding responses to non-targets, with false alarm rates below 0.05 for most 

time intervals (see Figure 6-4a). The difference in false alarm rates between conditions was 

not credibly different from zero within any time bin (Figure 6-4b).
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Figure 6-1. a. Mean cumulative sensitivity, d’, across time within each condition. Error bars 

represent 95% BCIs. b. Mean d’ difference score (supervisory control – teleoperation) and 

95% BCIs for each time bin. Error bars overlapping the grey zero line represent non-credible 

differences between conditions.  
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Figure 6-2. a. Mean cumulative decision criterion, c, across time for supervisory control and 

teleoperation. Error bars represent 95% BCIs. b. Mean c difference score (supervisory control 

– teleoperation) and 95% BCIs for each time bin. Error bars overlapping the grey zero line 

represent non-credible differences between conditions.  
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Figure 6-3. a. Mean cumulative hit rates across time for supervisory control and 

teleoperation. Error bars represent 95% BCIs. b. Mean hit rate difference (supervisory control 

– teleoperation) and 95% BCIs for each time bin. Error bars overlapping the grey zero line 

indicate non-credible differences between conditions.  
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Figure 6-4. a. Mean cumulative false alarm rates (and 95% BCIs) across time for supervisory 

control and teleoperation. b. Mean false alarm rate difference (supervisory control –

teleoperation) and 95% BCIs for each time bin. Error bars overlapping the grey zero line 

indicate non-credible differences between conditions.  
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Vehicle Control Performance  

Speed control. In the current study, the vehicle control task acted as a loading on top 

of the target detection task. We were still interested in vehicle control performance, however, 

to ensure participants had followed instructions and had made a valid attempt to traverse from 

the starting point to the destination as quickly and safely as possible. Because of difficulties 

measuring lane deviation in the simulation, our main measure of driving performance was 

speed. This measure also allowed us to compare performance of the vehicle under 

supervisory (autonomous) conditions with performance when teleoperated by participants.  

Comparing vehicle speeds between the two conditions found mean speeds were lower 

for teleoperation (M = 52.78 kph, 95% BCI = [49.55, 56.09]) than supervisory control (M = 

62.54 kph, 95% BCI = [59.26, 65.77]), (MDiff = 9.75 kph, 95% BCI = [5.31, 14.10], d = 0.97). 

This indicates that participants operated the vehicle cautiously, driving slower than 

instructed, resulting in lower speeds than the vehicle operating in supervisory control (i.e., 

when the confederate was driving). 

Number of critical incidents. In addition to the speed measures of vehicle 

performance, we recorded the number of critical incidents participants experienced 

throughout the scenario. So that we had a baseline to compare against participants’ 

teleoperation performance, we also recorded all critical incidents that occurred during the 

supervisory control block. Because our confederate received extensive training on the task, 

we expected fewer critical incidents in the supervisory control condition than in the 

teleoperation condition. As expected, a greater number of critical incidents occurred, per 

session, during the teleoperation block (M = 2.62, 95% BCI = [1.96, 3.27]) than the 

supervisory control block (M = 0.69, 95% BCI = [0.04, 1.35]), (MDiff = 1.93, 95% BCI = 

[1.03, 2.80], d = 0.95). However, as the number of critical incidents in the teleoperation 

condition was reasonably low, we have some evidence that participants followed instructions 
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to navigate the vehicle as safely as possible. The most common critical incident in both the 

supervisory control condition (M = 0.5 incidents per session, SD = 0.69) and the teleoperation 

condition (M = 1.90 incidents per session, SD = 1.21) was a collision with a stationary object, 

such as a building or street sign.  

Discussion 

Increasing automation reduces the number of tasks an operator must perform at any 

one time, helping to reduce cognitive workload and also potentially increase performance on 

other tasks. The current study examined whether automating a vehicle control task could 

improve performance on a primary visual monitoring task. By manipulating whether 

participants supervised or remotely operated a vehicle, we manipulated whether participants 

were performing only a single- or dual-task, respectively. Our general premise was that the 

increased cognitive load associated with performing both the teleoperation and monitoring 

tasks simultaneously would reduce monitoring performance for visual targets when compared 

with performing the monitoring task alone. These analyses uncovered two main findings 

about monitoring performance in the detection task. Firstly, as predicted, the supervisory 

control condition resulted in lower workload than the teleoperation condition. Secondly, 

neither sensitivity nor response bias differed credibly between the supervisory control and 

teleoperation conditions. Participants tended to use a highly conservative response bias, 

regardless of condition. This style of responding meant participants produced low hit rates 

(reaching a maximum of 50%) and extremely low false alarm rates (around 5%). Moreover, 

discrimination between targets and non-targets did not vary at any stage between the two 

conditions. Thus, contrary to expectations, the reduced workload in the supervisory control 

condition did not result in better target discrimination, nor did it change response bias, 

compared with teleoperation. 
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We measured cognitive workload in the current study to ensure participants found the 

teleoperation condition more demanding than supervisory control. In line with expectations, 

workload scores were higher in the condition where participants had to teleoperate the 

vehicle while monitoring for visual targets. Thus, performing the teleoperation task did 

increase cognitive demand beyond the monitoring task alone. Existing literature shows that 

increasing cognitive demand may reduce the size of a person’s visual field (Ikeda & 

Takeuchi, 1975; Rantanen & Goldberg, 1999), causing a ‘tunnel vision’ effect (Williams, 

1985), and can reduce how quickly people respond to critical events (Strayer & Johnston, 

2001). What is interesting, then, is why the added cognitive load of the teleoperation 

condition did not also reduce visual monitoring performance. One explanation may be that 

the cognitive workload was not high enough to influence visual information processing. 

Recall that teleoperation and supervisory control both produced only moderate levels of 

workload. Thus, though teleoperating the vehicle was more cognitively-demanding than 

simply supervising it, this extra cognitive demand still may have not been enough to 

influence detection.  

A more likely explanation for finding no difference in target detection between the 

two task-load conditions is that participants compensated for the added load of the 

teleoperation condition by reducing their vehicle speed. Though we instructed them to follow 

strict speed limits throughout the task (i.e., 50-kph in urban areas and 80-kph in rural areas), 

participants tended to err on the side of caution by maintaining a lower than recommended 

speed. Consequently, speeds during teleoperation were lower than those in supervisory 

control when the confederate was regulating the vehicle’s speed. This implies that 

participants may have strategically traded-off performance on the vehicle control task to 

minimise the risk of missed targets in the monitoring task. Thus, though we instructed 

participants to prioritise both tasks equally during the dual-task block, our findings hint 
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toward participants prioritising the monitoring task at the expense of the teleoperation. This 

difference in task prioritisation, and the resulting difference in speed, may have masked a 

difference in sensitivity between the teleoperation and supervisory control conditions. 

Conversely, though, faster speeds in the supervisory control condition may have 

encouraged a spurious performance advantage. If the vehicle was moving at faster speeds 

during supervisory control than during teleoperation, then at any moment following the onset 

of a possible target, the vehicle would have been closer to the target during supervisory 

control than teleoperation. This would suggest the supervisory control condition was easier 

purely on the basis of the distance between the vehicle and possible targets, and thus, could 

explain any detection benefits within supervisory control.  

Another point to mention here is that, on the whole, detection rates were very low in 

the current task. We designed the task to simulate a realistic scenario, and hence, 

incorporated targets that ranged from extremely easy (e.g., standing next to the road) to 

extremely difficult (e.g., standing behind trees in the periphery) to detect. However, given the 

high frequency of target events (targets/non-targets appeared every 15 seconds or so) and the 

high target-to-distractor ratio, it is particularly surprising that response bias was conservative 

across conditions. It is possible that the conservative responding reflected how we framed the 

detection task and by the limited time frame for responding to a potential target. Although we 

did not punish incorrect responses (i.e., false alarms or misses), participants may have 

responded more conservatively based on the hypothetical risk of making a false alarm in the 

real world. As military environments often entail high-risk consequences for judgements 

(e.g., risk of civilian death if personnel incorrectly fire at an unknown identity), in this study, 

participants may have simply been over-cautious in making judgements about possible 

targets. Such an effect may have been further enhanced by the limited time window for 

making a response. Because participants only had a total of 5000 ms to make a response after 
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a potential target became visible in the scenario, overly-cautious responders may have 

responded too late to record a response, leading to very low hit and false alarm rates. Had we 

presented targets for a longer duration, for instance, up to 10 000 ms, we may have found 

higher response rates overall. Considering hit rates, in general, were low, extending the 

response period may have captured additional detections that were missed in the current 

study due to the limited time window for responding.  

Finally, it is important to recognise that the monitoring-only condition provided an 

extremely non-demanding supervisory control task. During supervisory control, participants 

only had to monitor for visual targets and did not need to attend to the performance of the 

vehicle as they were never required to step-in and regain vehicle control in the case of errors. 

Thus, some may argue that the current study’s supervisory control mode is less of an example 

of a semi-autonomous supervisory control mode than used in previous studies (e.g., Kessel & 

Wickens, 1982; Wickens & Kessel, 1979; Young & Stanton, 2004) and is more of a full task 

offloading. Though this is true, it makes the fact we found no effect of task load on target 

detection measures more surprising. If participants were equally poor at detecting targets 

across conditions even when the baseline condition involved near-perfect automation 

requiring no operator input, it gives little hope that a supervisory monitoring task that 

demands careful attention will improve concurrent visual target detection. Considering 

participants were predominantly comprised of untrained civilians, future research may benefit 

from including trained military personnel who are experienced in target detection tasks. Such 

research would help identify whether the reduced load from an automated system can assist 

visual processing among experienced personnel.  
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 CHAPTER 7: GENERAL DISCUSSION 

Over the years, a variety of different measures have been used to assess processing 

capacity or processing efficiency for visual information. In many studies, the interest has 

focused on processing capacity while under single-task load; in other words, how efficiently 

we can process multiple sources of information when we are wholly focused on those 

different pieces of information. In the current set of studies, I used a handful of converging 

measures—workload capacity (Houpt & Townsend, 2012; Townsend & Nozawa, 1995), 

workload resilience (Houpt et al., 2013; Houpt & Little, 2017), and detection measures of 

SDT (Green & Swets, 1966; Stanislaw & Todorov, 1999)—to assess visual processing 

efficiency under concurrent task load. These studies of capacity had two main aims. Firstly, 

they sought to determine whether processing efficiency decreases with increases in 

concurrent task load. Secondly, they aimed to identify potential factors that influence 

processing capacity when a person is under increased levels of task load.  

Cognitive Capacity Under Dual-Task Load 

One aim for this set of studies was to examine whether visual processing capacity is 

reduced when an observer divides attention between a target detection or recognition task and 

a concurrent visuo-manual task. Before I go on, however, I should first reiterate what 

processing efficiency tells us. In all these studies except Study 5, I measured processing 

efficiency using either the resilience or capacity coefficient measures. Both of these measures 

gauge the efficiency of multiple-item processing—such as when two targets appear 

concurrently or when a target appears alongside a distractor—relative to single-item 

processing. Thus, these measures provide ratios of processing efficiency that we can compare 

between different experimental conditions. Processing efficiency is therefore different from 

processing quality, which focuses on how quickly or how accurately single targets are 

processed. Critically, equivalent processing efficiencies do not necessarily imply that the 
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underlying processing rates, and hence, processing qualities, are also equivalent. Thus, in the 

following sections, when I state that processing efficiency does not vary across conditions, I 

refer to the ratios of multiple-item to single-item processing, rather than the rates of the 

underlying channels.   

Across all these studies except one, I found processing capacity to be limited. More 

importantly, I found no evidence that target processing efficiency is further limited by 

concurrent visuo-manual task load. Thus, dividing attention between tasks did not further 

reduce the efficiency of an already limited-capacity system. Experiments 1 and 2 of Study 1 

examined processing efficiency for widely-separated visual targets in uncluttered displays, 

while the participant performed the detection task alone or with a concurrent visuo-manual 

tracking task. Both experiments found resilience to be limited capacity, producing less 

efficient performance than predicted by the standard parallel model, or the unlimited capacity 

independent processing model (UCIP; Houpt & Townsend, 2012; Townsend & Nozawa, 

1995). However, neither experiment found a difference in workload resilience across levels 

of task load. Study 2 replicated the null effect of task load using workload capacity for 

distractor-absent displays. Thus, both workload resilience for distractor-present displays and 

workload capacity for distractor-absent displays appear resistant to changes in concurrent 

task load. The same pattern was found in Study 1, Experiment 3, in which displays were 

designed to demand serial processing of targets and distractors. As expected, resilience 

reached super-capacity levels when stimuli required serial processing (Houpt & Little, 2017; 

Little et al., 2015). Nevertheless, resilience level was unaffected by a concurrent tracking 

task. 

The findings for these experiments may be best explained by an attention-switching 

model (e.g., Wickens & Gopher, 1977) in which the target detection/discrimination and 

manual tracking tasks are interleaved. In such a model, performance on the continuous 
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tracking task in the dual-task condition is interrupted by the onset of targets and distractors in 

the periphery. These onsets capture attention away from the tracking task, drawing attention 

to the peripheral stimuli (Yantis & Jonides, 1990). Because of the time needed to shift 

attention from the tracking task to the peripheral stimuli, RTs to targets in the dual-task 

condition are longer than those in the single-task condition. However, once attention switches 

to the detection task, stimuli are processed similarly to those in the single-task condition. 

Thus, in both conditions, information is processed with similar efficiency; the only difference 

in target detection/discrimination between conditions is a base-time cost resulting from task-

switching. This model would allow processing of targets to occur in parallel, even though 

attention is switching between tasks in serial.  

The lack of a task load effect also appeared in Study 5. Rather than directly measuring 

processing using the capacity coefficient or resilience measures, Study 5 inferred capacity 

from signal detection performance in a conventional analysis of dual-task costs. Results 

generalised the findings of the previous studies, replicating the lack of any task load effect. 

Thus, despite increasing operator mental workload relative to supervisory control (single-

task), teleoperation (dual-task) showed no evidence of compromising visual processing. 

Thus, using a higher-fidelity realistic task produced very similar results to the controlled 

laboratory studies: increasing task demand did not reduce visual processing efficiency.  

The Roles of Eccentricity, Visual Field, and Salience in Driving Processing Efficiency 

The second aim of the current set of studies was to identify task characteristics that 

might moderate processing capacity while under task load. These factors included a target’s 

location in the visual field, whether that be the eccentricity of the target from centre or the 

location of the target within the upper or lower visual field, as well as target salience.  

In Study 3, Experiment 1, I explored whether increasing target eccentricity could 

decrease processing capacity for redundant peripheral targets. In line with theories that 



PROCESSING EFFICIENCY UNDER DUAL-TASK LOAD 

 
181 

presume attention is biased toward the central visual field (e.g., Carrasco, Evert, Chang, & 

Katz, 1995; Carrasco, McLean, Katz, & Frieder, 1998; Crundall, Underwood, & Chapman, 

1999; Williams, 1985), I predicted low eccentricity targets would be processed more 

efficiently than high eccentricity targets. In Experiment 2, I predicted processing efficiency to 

be greater in the LVF than the UVF. But, despite shorter RTs for targets appearing at low 

eccentricities or in the LVF, I found no evidence that target location affected processing 

resilience. The visual search literature demonstrates that the quality of processing varies 

across the visual field, with clear RT benefits for targets appearing closer to, rather than 

further from, fixation (e.g., Carrasco & Yeshurun, 1998; Carrasco et al., 1995, 1998; Wolfe, 

O’Neill, & Bennett, 1998). Similarly, target RT benefits are greater in the LVF rather than 

UVF (e.g., Intriligator & Cavanagh, 2001; Rezec & Dobkins, 2004). These differences in 

processing quality, though, do not change the efficiency with which attention is divided over 

multiple channels. 

Information salience was the final factor I explored in relation to information 

processing under load. Generally, information that is higher in salience, meaning that it 

stands out more against its background or against other information (Itti & Koch, 2000; 

Wolfe, 1998), is detected faster and more accurately than information that is lower in salience 

(e.g., Duncan & Humphreys, 1989; Steelman, McCarley, & Wickens, 2013; Ververs & 

Wickens, 1998; Wickens, Sebok, McCormick, & Walters, 2016). In Study 4, I examined 

whether increasing salience can bolster capacity even under distraction by a concurrent visuo-

manual task. As predicted, salient targets were not only processed faster, but they were also 

processed more efficiently, than low salience targets. This effect was consistent across both 

the single- and dual-task conditions, suggesting that, in contrast to task load, target salience is 

critical in driving processing efficiency.  
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This salience effect is consistent with research that shows enhanced detection when 

targets are higher contrast levels from their backgrounds (e.g., Duncan & Humphreys, 1989; 

Lamy, Leber, & Egeth, 2004; Theeuwes, 1994; Wickens et al., 2016). More critically, these 

findings support current guidelines for designing systems or displays that encourage efficient 

performance (e.g., Federal Aviation Administration, 2011; General Aviation Manufacturers 

Association, 2000; Wickens et al., 2016). Given salience was effective for increasing 

processing capacity both when participants only detected the targets and when distracted by 

the concurrent task, I have evidence supporting salience as a valuable factor for enhancing 

multiple-item processing in more complex environments. As workload capacity scores under 

high salience were very close to UCIP performance, these findings also point towards 

salience driving processing that is almost equivalent to unlimited capacity parallel models. 

These findings directly contrast the limited capacity values of my earlier studies. Thus, of the 

different factors I explored in the current studies, target salience appears to have the greatest 

potential for enhancing processing under dual-task load. Further research exploring salience 

benefits to capacity when loaded by multiple concurrent tasks may assist display design 

within complex workspaces. 

The Role of Cognitive Architecture in Explaining Capacity 

Though not directly relevant to my research question, one final important concept that 

relates to workload capacity and that is relevant to the current set of studies is cognitive 

architecture. As mentioned earlier on, architecture refers to the structure of the system 

processing, such as whether information is processed in parallel, serially, or coactively 

(Townsend & Ashby, 1983). Although I did not directly test architecture using Systems 

Factorial Technology (SFT) in the current set of studies, I did indirectly infer architecture 

from measures of workload capacity and resilience. Across all of these experiments (except 

Study 1, Experiment 3, in which participants were forced to process targets in serial) I found 
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consistent evidence of capacity limitations. The notion of a limited capacity parallel model 

was supported by almost equivalent levels of processing efficiency in distractor-absent 

displays (Study 2) and distractor-present displays (Study 1, Experiments 1 and 2). In contrast, 

when we forced participants to adopt a serial processing strategy (Study 1, Experiment 3), 

processing increased to super-capacity levels, as predicted by Little et al. (2015).  

As noted earlier, it is important to remember that architecture is a separate and 

independent concept from capacity. The findings from the current set of studies do, however, 

demonstrate how capacity and architecture interact, and they also show how different 

contexts or stimuli may engender different processing structures, as well as different levels of 

efficiency.  

Summarising Cognitive Capacity Under Task Load 

The current studies examined a range of factors that may explain visual information 

processing while dividing attention between tasks. Overall, I found that, regardless of a 

target’s location within the display or the presence or absence of distractors, visual processing 

efficiency is consistently limited capacity, performing poorer than predicted by the UCIP 

model. More importantly, I found increasing resource demand by performing a concurrent 

task made no difference to processing efficiency. The only factors that demonstrated clear 

evidence for changing capacity were target salience and processing architecture. The current 

studies identified few instances of variations to capacity, and they suggest that processing, by 

and large, is capacity-limited. Thus, these findings support recent arguments that limited 

capacity and super-capacity are more common phenomena than unlimited capacity (Blaha, 

2017a).  

The current studies employed two different ways to conceptualise, and hence, 

measure, capacity: the first involved a normalised score, whereas the second measured a 

change in detection performance over time. Despite clear differences in the methods for 
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assessing capacity across these studies, overall, I discovered evidence for two similar 

findings. Firstly, I found that visual processing is not affected by dual-task load, and 

secondly, I discovered that visual processing is, overarchingly, inefficient.  

Notably, these studies only considered capacity when performing either a single task 

alone or two tasks concurrently. As many real-world contexts, such as operating a vehicle or 

flying an aeroplane, involve performing multiple concurrent tasks, it would be valuable to 

assess whether performing additional tasks may eventually deplete cognitive resources, and 

consequently, limit processing capacity (see Fox & Houpt, 2018). Thus, future research may 

hint at whether increasing the number of concurrent tasks reduces capacity further, or 

whether capacity is stable in response to any and all variations in task load. In addition, the 

current findings identified clear capacity benefits for high rather than low salience targets, 

both under single- and dual-task load. Because of the potential benefit of increasing multiple-

item processing in high-stress, operational environments, exploring whether salience can also 

increase processing efficiency in real-world contexts may be a valuable avenue for future 

research.  
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 APPENDIX A 

Additional Experiments Excluded from Study 1 (Chapter 2) 

The following two experiments were follow-ups to Study 1, Experiment 1 that were 

cut from the article ‘Redundant Target Processing is Robust Against Changes to Task Load’ 

by Morey, Thomas & McCarley (2018) prior to publishing. This section also contains a 

within-study meta-analysis to examine the overall effects of task load on processing capacity 

using the data pooled from some of the original published experiments and the additional 

experiments below. This appendix also contains extra material focusing on the role of 

leftward attentional biases in target processing. Following reviewer suggestions, and to 

increase the coherence of the manuscript, this section was cut from the published version. 

Note that these experiments contain the original analyses, and thus do not contain 

difference means and BCIs for each comparison (differences are inferred by overlapping 

BCIs between conditions). 

 

A Leftward Bias in Target Processing? 

By default, attention tends to rest unevenly and asymmetrically across the visual field. 

An inherent bias toward the central visual field prioritises stimuli near the fixation over those 

that are more eccentric (Carrasco & Yeshurun, 1998; Carrasco, Evert, Chang, & Katz, 1995; 

Wolfe, O’Neill, & Bennett, 1998). Similarly, a modest attentional bias towards the left side of 

space produces a corresponding neglect of the right (Mattingley et al., 2004; Nicholls, Loftus, 

Orr, & Barre, 2008). This asymmetry, known as pseudoneglect, manifests in simple 

perceptual and cognitive tasks (e.g., Fecteau, Enns, & Kingstone, 2000; Śmigasiewicz et al., 

2010; Thomas, Castine, Loetscher, & Nicholls, 2015; Thomas, Loetscher, & Nicholls, 2014; 

Thomas & Elias, 2011), and in visuomotor tasks ranging from sports performance (Nicholls, 

Loetscher, & Rademacher, 2010), through to locomotor (Nicholls et al., 2008; Nicholls, 
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Loftus, Mayer, & Mattingley, 2007) and vehicular navigation (Nicholls, Hadgraft, et al., 

2010; Nicholls, Jones, & Robertson, 2016). 

Some evidence suggests that pseudoneglect also affects drivers’ ability to notice 

objects or events in traffic scenes (Benedetto, Pedrotti, Bremond, & Baccino, 2013). 

Benedetto et al. (2013) tested for leftward attentional biases within a simulated driving task. 

Participants controlled a vehicle within a desktop simulator, responding to road signs that 

occasionally instructed them to change lanes. Signs appeared in pairs, one each on the left 

and right roadside, and the two signs within a pair always provided the same instruction. 

Despite this symmetry of the stimulus information, participants’ eye movements showed a 

strong leftward bias, with approximately 90% of fixations directed to the road sign on the 

left. Benedetto et al. concluded that a leftward attentional bias affects performance even in 

complex, naturalistic tasks such as driving. However, by only presenting the targets 

redundantly within each trial, Benedetto et al. were unable to determine whether the leftward 

bias was the result of an inherent processing constraint that favours the left field, or was 

rather a strategic bias adopted by the participants. That is, their data did not reveal whether a 

left-field advantage might have been present when targets were presented singly, on only one 

side of visual space.  

Experiment 1c 

Peripheral target processing efficiency was limited in both the single and dual-task 

conditions of Experiment 1 (See Chapter 2). However, targets were randomly rotated letters 

T and L, characters distinguished only by the spatial arrangement of common features. 

Theories of visual attention often hold that the ability to recognise or detect conjunctions or 

configurations of features demands focused attention, but that elementary visual properties 

are processed in parallel across the visual field by high-capacity feature detectors (Treisman 

& Gelade, 1980; Wolfe & Bennett, 1997). This implies that, although target processing 



PROCESSING EFFICIENCY UNDER DUAL-TASK LOAD 

 
219 

efficiency was limited in the first experiment, it may be closer to unlimited when targets and 

distractors are distinguished by basic, highly-discriminable features. Therefore, Experiment 

1c replicated Experiment 1b using target and distractor characters (X and O for target and 

distractor, respectively) that were distinguishable by elementary visual properties.  

Method 

Participants. Twenty-two Flinders University students (14 female) were recruited for 

AU$10 or for course credit. The mean age of participants was 22.55 years (SD = 9.57, Range 

= 18 to 63). None of the participants had taken part in Experiments 1a or 1b. All participants 

were fluent in English, had normal colour vision, and had normal, or corrected-to-normal, 

visual acuity. The minimum FLANDERS score required for inclusion was +5 (M = +9.31, 

SD = 1.36). Eleven participants had current driver’s licences with between 0.5 and 30 years 

of driving experience (M = 5.59, SD = 8.33).  

Apparatus and stimuli. Experiment 1c employed the same materials, computer 

program, and apparatus as Experiment 1b. The stimuli in this experiment differed in that the 

target was now an X and the distractor an O.  

Procedure. Participants were instructed to make a joystick button press response if an 

X appeared in either of the peripheral stimulus locations and to refrain from making a 

response when only Os appeared. All other aspects of the experiment remained the same.  

Analysis. Analysis was the same as for the experiments above. 

Results 

Error rates. In Experiment 1c, two participants with excessive false alarm rates 

(>.30) were removed from analysis. Mean false alarm rate for the remaining 20 participants 

was lower than 10 percent (M = 0.06, SE = 0.01). Participants were generally very good at 

responding to targets, with extremely low miss rates for all target conditions (left single: M = 

0.01, SE < 0.01; right single: M = 0.01, SE < 0.01; redundant: M < 0.01, SE < 0.01). 
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Throughout the testing session, participants made approximately the same number of correct 

responses to targets on the left (M = 71.9, SE = 0.28), targets on the right (M = 71.55, SE = 

0.29), and to redundant targets (M = 71.65, SE = 0.24). 

RTs. A comparison of mean RTs for left single targets (M = 537 ms, 95% BCI = 

[489, 583]) against right single targets (M = 529 ms, 95% BCI = [482, 576]) produced no 

credible difference, d = 0.19. Furthermore, evidence found the more discriminable stimuli, X 

and O, produced a faster mean single-target RT (M = 534 ms, 95% BCI = [485, 583]), than 

did the T and L stimuli from Experiment 1b, d = 0.95.  

As in Experiment 1, data gave strong evidence for a redundancy gain when comparing 

the fastest single-target RTs (M = 518 ms, 95% BCI = [471, 565]) and the redundant-target 

RTs (M = 493 ms, 95% BCI = [447, 540]), d = 0.75. Comparing the size of the redundancy 

gain for the current experiment (MRSE = 25 ms, 95% BCI = [10, 39]) to that of Experiment 1a, 

d = 0.51, and to that of Experiment 1b, d = 0.17, found no credible evidence of a difference 

for either comparisons.  

Resilience. As mentioned above, employing stimuli distinguished by basic features 

was expected to increase parallel processing efficiency for redundant targets, resulting in 

higher resilience values. Surprisingly, Rz remained extremely limited in Experiment 2 (MRz = 

-3.06, 95% BCI [-3.59, -2.53]), d = 2.78, showing no evidence of a difference when 

compared with Experiment 1b, d = 0.51. Thus, despite producing faster RTs, increasing 

target-distractor discriminability failed to boost resilience scores. The similarity in processing 

efficiency across experiments is consistent with a parallel process model (Little et al., 2015).  

Tracking performance. Relative to the single-task condition in Experiment 1a, mean 

RMSE was smaller, (MRMSE = 15.09˚, 95% BCI = [12.80, 17.34]), suggesting that participants 

performed the tracking task as instructed. Data gave no credible evidence for a relationship 

between RMSE and Rz scores, r(18) = .22, 95% BCI = [-0.27, 0.72].  
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Experiment 1d 

Experiments 1 and 2 compared redundant-target RTs to trials in which a single target 

is accompanied by distractor occupying the alternative location. Under these conditions, 

either a serial or parallel processing architecture can produce a redundancy gain (Houpt & 

Little, 2016; Townsend, 1990) and low resilience values (Little et al., 2015). For example, a 

parallel process with a modest or no redundancy gain will produce limited resilience values. 

When items are processed in parallel, distractors produce little competition for processing 

resources, and hence, the presence of distractors does not impair target discrimination. Thus, 

RTs for redundant-target trials will be equal or similar to RTs for single-target trials, resulting 

in little no redundancy gain, and consequently, limited resilience values.  

It is also possible, however, that limited resilience values result from a serial model in 

which targets are prioritised over distractors (Wolfe, 1994). Wolfe’s (1994) revised model of 

guided search suggests that visual search involves an initial parallel processing of information 

across the visual field to generate independent maps, or feature maps, of basic visual features, 

such as shape or colour. These feature maps thus lead the observer to pre-attentively identify 

locations within the visual field with higher featural activation, which then lead to the serial 

processing of the items based on activation level. Based on this model, if, on single-target 

trials, feature maps for targets have higher levels of activation than those of distractors, on 

average, targets will be detected and fixated faster than distractors. Thus, even though all 

items are processed in serial, detection RTs on single-target trials will be faster than those 

within a standard serial model in which targets and distractors are processed equally likely. 

Notably, however, although detections on redundant-target trials will likely be faster than on 

single-target trials, the smaller redundancy gain will result in lower resilience scores, overall.  

Hence, the data for the first two experiments are consistent with both a parallel model 

and a serial model where targets were prioritised over distractors. To clarify the processing 
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architecture for peripheral redundant targets, Experiment 1d, therefore, replicated the general 

procedure of Experiment 1b, but removed all distractors from the single-target trials, thus 

making it a pure target detection task. As noted above, redundant-target processing efficiency 

measured relative to a single-target condition without distractors is termed capacity (Little et 

al., 2015). Capacity, unlike resilience, is unaffected by potential costs of distractor 

processing. A redundancy gain as compared to a single-target condition with no distractors 

implies a parallel processing model (Townsend, 1990), and in conjunction with a redundancy 

gain, normalised capacity scores less than zero imply processing less efficient than predicted 

by the UCIP model. Converging evidence for or against a parallel model is possible from a 

comparison of capacity and resilience scores. Holding stimulus characteristics and task 

demands otherwise equal, a parallel processing model suggests that capacity and resilience 

scores should be similar, and thus comparable (Little et al., 2015). Conversely, a serial model 

suggests that capacity should be more limited than resilience, as target detection will produce 

a smaller (or no) redundancy gain in the absence, rather than presence, of distractors. As 

such, Experiment 1d tested this notion by assessing capacity within a distractor-absent 

display. 

Method 

Participants. Twenty-one Flinders University students (16 female) completed the 

experiment for AU$10 payment. The mean age was 22.57 years (SD = 6.67, Range = 18 to 

48). No participants had taken part in any of the previous experiments. The eligibility 

requirements were English fluency, normal colour vision, and normal or corrected-to-normal 

visual acuity. All participants had a minimum FLANDERS score of +5 (M = +9.52, SD = 

0.93). Fourteen participants held current driver’s licences, with a mean of 4.45 years of 

driving experience (SD = 6.62, Range = 0.5 to 30 years). 
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Apparatus and stimuli. Experiment 1d employed the same materials as Experiment 

1b; however, all distractors were replaced with a blank space. As such, only targets (Ts) were 

presented. All other aspects of the task remained the same. 

Procedure. The procedure for the joystick task was identical to that of Experiments 

1b and 2. For the target-detection task, participants were instructed to initiate a button press if 

a target (T) appeared, but to refrain from making a response when no targets were presented. 

All other aspects of the task remained the same. 

Analysis. Analysis was the same as for the experiments above. 

Results 

Error rates. In Experiment 1d, no distractors were presented, and consequently, a 

false alarm meant the participant responded when no stimuli were present. Unsurprisingly, 

this was an uncommon occurrence, and false alarm rates were lower than in the first three 

experiments (M = 0.02, SE < 0.01). One participant was removed from analyses for having an 

excessive miss rate (> 0.60). For the remaining 20 participants, miss rates for single targets 

on the left (M = 0.03, SE = 0.01), single targets on the right (M = 0.02, SE = 0.01), and 

redundant targets (M = 0.02, SE = 0.01) were very low. The mean number of targets correctly 

detected was approximately equal across trial types (left targets: M = 71.25, SD = 0.36; right 

targets: M = 71.05, SD = 0.37; redundant targets: M = 71.05, SD = 0.41). 

RTs. Similar to previous findings, data gave substantial evidence in favour of the null 

when comparing RTs for single targets presented on the left (M = 511 ms, 95% BCI = [466, 

556]) with those on the right (M = 515 ms, 95% BCI = [471, 560]), d = 0.10. Thus, once 

again, RTs showed no evidence of a leftward attentional bias. 

The mean single-target RT (M = 513 ms, 95% BCI [469, 557]) was considerably 

faster than that of Experiment 1b, d = 1.19. However, there was no credible difference in the 

mean single-target RT when compared with that of Experiment 1c, d = 0.20. Responses to 
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redundant targets were only slightly faster (M = 471 ms, 95% BCI = [426, 515]) than those to 

the fastest single targets (M = 499 ms, 95% BCI = [454, 542]), d = 1.00, producing a mean 

raw redundancy gain of 28 ms, 95% BCI = [15, 40]. Comparisons of the redundancy gain 

with those of Experiments 1b and c found no credible differences in both cases, d = 0.10, vs. 

Experiment 1b, and d = 0.08, vs. Experiment 1c. 

Capacity. Analogous to the resilience scores, for statistical analysis, raw capacity 

scores were converted to the standardised capacity score, Cz. As with Rz, Cz values of zero 

indicate unlimited capacity, values greater than zero indicate super-capacity, and values less 

than zero indicate limited capacity. Consistent with the previous experiments, capacity scores 

were still highly limited (MRz = -2.44, 95% BCI = [-3.15, -1.73]), d = 1.65. Thus, even when 

distractors were removed capacity remained well below that of a UCIP model. Furthermore, 

there was substantial evidence suggesting against any difference in the normalised capacity 

scores between the distractor-free condition in the current experiment and the normalised 

resilience scores of the distractor-present condition of the earlier experiment using similar 

stimuli (Experiment 1b), d = 0.01. The similarity of resilience and capacity again provides 

additional evidence consistent with a parallel processing architecture. 

Tracking performance. Mean RMSE on the tracking task was 17.29˚, 95% BCI = 

[13.53, 21.04], (as compared with 29.84˚, 95% BCI = [25.28, 34.43] in Experiment 1a), 

suggesting participants were engaged in the task. Data failed to reveal any correlation 

between tracking error and standardied capacity scores, r(18) = -.07, 95% BCI = [-0.58, 

0.44].  

Cross-Experiment Meta-Analyses (MA). Data from all previous experiments were 

used to calculate meta-analyses for the attentional bias RTs (see Figure A-1) and 

capacity/resilience scores (see Figure A-2). Analyses were calculated using a Bayesian 

hierarchical model (Kruschke, 2015), implemented in JAGS 4.1.0 statistical software 
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(Plummer, 2015). All three meta-analyses assumed normal priors on the grand mean, with a 

gamma prior and uniform distributions on the priors of the grand mean and SD, respectively. 

Analyses were carried out using four chains of 50,000 samples. In Figure A-1, MA is very 

close to the centre line (M = -6, 95% BCI = [-17, 5]), and its credible interval overlaps zero, 

thus showing no evidence of a spatial bias effect for single-target RTs. Figure A-2 shows MA 

for processing efficiency was limited capacity (M = -2.65, 95% BCI = [-2.99, -2.31]), and the 

narrow credible intervals around MA illustrates that this was a consistent effect throughout 

Experiments 1b-d.  

 
Figure A-1. 95% BCIs for lateral bias scores for each experiment. The single-task experiment 

(Experiment 1a) is represented by a hollow circle whereas the three dual-task experiments 

(Experiments 1b-d) are represented by full circles. The symbol labeled MA represents the 

mean value estimated from a Bayesian hierarchical meta-analysis of the three dual-task 

experiments. The radius of each symbol is proportional to N for the corresponding analysis. 

Bias scores were calculated by subtracting left single-target RTs from right single-target RTs. 

Consequently, negative values represent a leftward bias and positive values represent a 

rightward bias.  
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Figure A-2. 95% BCIs for standardised capacity/resilience scores for each experiment. The 

single-task experiment (Experiment 1a) is represented by a hollow circle whereas the three 

dual-task experiments (Experiments 1b-d) are represented by full circles. The symbol labeled 

MA represents the mean value estimated from a Bayesian hierarchical meta-analysis of the 

three dual-task experiments. The radius of each symbol is proportional to N for the 

corresponding analysis. Positive scores represent super-capacity, whereas negative scores 

represent limited capacity. Where Cz = 0/Rz = 0, processing is equivalent to that of a UCIP 

model.  

Discussion 

 Experiment 1d examined processing efficiency within a distractor-absent dual-task 

condition. When compared with distractor-present displays (Experiment 1b), Experiment 1d 

produced faster single-target RTs. However, redundancy gains between the two experiments 

were not credibly different. Thus, consistent with a parallel process model (Little et al., 2015) 

processing efficiency did not vary as a function of distractor presence. In fact, target 

4-4 -3 -2 -1 0 1 2 3

Cz

Experiment 1a (TL - No Tracking)

Experiment 1b (TL - Tracking)

Experiment 1c (XO)

Experiment 1d (T-Blank)

MA (Experiments 1b-d)



PROCESSING EFFICIENCY UNDER DUAL-TASK LOAD 

 
227 

processing efficiency was equally limited capacity in both experiments, providing evidence 

for a limited-capacity parallel model of target processing. 

General Discussion 

Across all experiments, there was no leftward bias for target detection, with the 95% 

credible intervals for all experiments overlapping zero. These findings contrast with those of 

Benedetto et al. (2013), who found a strong attentional bias toward targets presented on the 

left. The procedure and stimuli of the current experiments differed from Benedetto et al.’s in 

multiple ways, making it difficult to attribute the differences in outcomes to any specific 

factor. Benedetto et al. employed a more high-fidelity driving simulator, and gauged 

attentional bias from oculomotor behavior rather than RTs. One particularly interesting 

explanation for the difference between Benedetto’s findings and the current results relates to 

the spatial distribution of target information. In Benedetto et al.’s (2013) experiment, target 

symbols, when they appeared, were always presented bilaterally. Consequently, participants 

could consistently look at either the left or right road sign to determine when to change lanes. 

Under this circumstance, a strategy of focusing attention on a single information channel may 

ease information access or reduce an operator’s workload. In the present study, however, 

participants needed to attend to both sides of the display or risk missing a target. As such, 

participants were required to distribute their attention more evenly across the visual field. 

This suggests that operators may be more prone to displaying a leftward bias when 

information is presented bilaterally. Thus, when an operator is aware that the same 

information will be presented bilaterally, they may have a tendency to focus on only the left 

side of a display. When the placement of the information is less predictable, they may 

distribute their attention bilaterally to increase their chances of accurately detecting targets. 

Thus, a leftward attentional bias may drive target detection, but only when other factors, such 

as target redundancy or operator expectancy, are favorable. 
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Although pseudoneglect has been observed in a range of tasks (e.g., Mattingley et al., 

2004; McCourt, 1999; Nicholls et al., 2007; Nicholls & Roberts, 2002; Thomas & Elias, 

2011; Thomas, Stuckel, Gutwin, & Elias, 2009), the null evidence of lateral bias across the 

present experiments raise the question of how broadly the phenomenon generalises. These 

results echo other recent findings showing that lateralised attentional biases are not present 

for detection of target stimuli (Learmonth, Gallagher, Gibson, Thut, & Harvey, 2015). 

Furthermore, they are consistent with evidence of low correlations between the various tasks 

used to examine spatial biases (e.g., line bisection, greyscales, lateralised visual detection 

tasks), suggesting that pseudoneglect may be a multi-component phenomenon that manifests 

differently across different tasks (Learmonth et al., 2015). The implications for display design 

are that, controlling all other factors (i.e., target expectancies and eccentricities), targets are 

likely to be detected equally well when presented on the left and right sides of the display.  
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 APPENDIX B 

Error Rates for Study 3, Experiment 1 (Eccentricity Experiment – Chapter 4) 

 

Table B-1. 

Miss Rates and the Number of Correct Target-Present Trials from Study 3, Expt 1 

 
 Low Eccentricity  High Eccentricity 

 Miss Rate 
(M, [Range]) 

No. Correct Responses 
(M, [Range]) 

 Miss Rate 
(M, [Range]) 

No. Correct Responses 
(M, [Range]) 

Left Single 0.02 
[0.00 – 0.26] 

74,70 
[37 – 85] 

 0.02 
[0 – 0.28] 

74.07 
[41 – 83] 

Right Single 0.03 
[0 – 0.18] 

70.90 
[20 – 84] 

 0.02 
[0 – 0.23] 

71.33 
[34 – 83] 

Redundant 0.02 
[0 – 0.20] 

78 
[43 – 84] 

 0.02 
[0 – 0.22] 

71.60 
[21 – 84] 
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 APPENDIX C 

Error Rates for Study 3, Experiment 2 (Visual Field Experiment – Chapter 4) 

 

Table C-1. 

Miss Rates and the Number of Correct Target-Present Trials from Study 3, Expt 2 

 Upper Visual Field  Lower Visual Field 

 Miss Rate 
(M, [Range]) 

No. Correct Responses 
(M, [Range]) 

 Miss Rate 
(M, [Range]) 

No. Correct Responses 
(M, [Range]) 

Left Single 0.03 
[0.00 – 0.20] 

72.03 
[20 – 83] 

 0.03 
[0.00 – 0.12] 

70.07 
[38 – 83] 

Right Single 0.03 
[0.00 – 0.19] 

65.62 
[17 – 84] 

 0.04 
[0.00 – 0.17] 

69.60 
[20 – 84] 

Redundant 0.03 
[0.00 – 0.28] 

70.72 
[39 – 85] 

 0.02 
[0.00 – 0.12] 

73.41 
[38 – 83] 

 

 



PROCESSING EFFICIENCY UNDER DUAL-TASK LOAD 

 
231 

 APPENDIX D 

Error Rates for Study 4 (Salience Experiment – Chapter 5) 

 
Table D-1. 

Miss Rates and Number of Correct Target-Present Trials from Study 4 

 Single-Task  Dual-Task 

 Miss Rate 
(M, [Range]) 

No. of correct 
responses 

(M, [Range]) 

 Miss Rate 
(M, [Range]) 

No. of correct 
responses 

(M, [Range]) 

Low S; 
Distractor-

absent 
 

0.01 
[0 – 0.07] 

54.53 
[42 – 58] 

 0.02 
[0 – 0.17] 

54.63 
[44 – 58] 

Low S; 
Distractor- 

present 

0.01 
[0 – 0.06] 

54.97 
[41 – 58] 

 0.02 
[0 – 0.10] 

54.83 
[43 – 58 

High S; 
Distractor- 

absent 

0.01 
[0 – 0.05] 

54.73 
[42 – 59] 

 0.02 
[0 – 0.13] 

54.73 
[45 – 58] 

High S; 
Distractor- 

present 

<0.01 
[0 – 0.07 

54.97 
[41 – 58] 

 0.02 
[0 – 0.16] 

54.83 
[43 – 58] 
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APPENDIX E 

Detection Data Excluded from Study 4 (Simulation Detection Study – Chapter 6) 

 

Table E-1. 

Detection Means [95% BCIs] for Excluded Time Bins (Bins 1-4) from Study 4 

  Time Bin 

  
1 

500 ms 

2 

1000 ms 

3 

1500 ms 

4 

2000 ms 

d’ 

SC 25.74 [2.22, 70.24] 25.43 [2.39, 69.69] 1.69 [0.99, 2.65] 1.26 [0.83, 1.80] 

TO 1.65 [0.21, 7.92] 0.77 [0.25, 1.78] 0.85 [0.44, 1.37] 0.98 [0.60, 1.46] 

Diff 24.10 [1.12, 68.64] 24.66 [1.65, 68.91] 0.84 [0.12, 1.77] 0.28 [-0.20, 0.78] 

c 

SC 27.93 [4.42, 72.42] 27.13 [4.09, 71.41] 3.03 [2.37, 3.98] 2.34 [1.96, 2.86] 

TO 3.66 [2.27, 9.94] 2.39 [1.92, 3.38] 2.20 [1.84, 2.69] 2.09 [1.76, 2.53] 

Diff 24.27 [1.29, 68.84] 24.74 [1.74, 68.99] 0.84 [0.13, 1.75] 0.26 [-0.20, 0.72] 

FAR 

SC <.01 [<.01, < .01] <.01 [<.01, <.01] <.01 [<.01, .01] .01 [<.01, .03] 

TO <.01 [<.01, .01] .01 [<.01, .03] .02 [<.01, .03] .02 [.01, .04] 

Diff -0.01 [-0.01, -0.01] -0.01 [-0.03, -0.01] -0.01 [-0.03, -0.01] -0.01 [-0.03, 0.01] 

 SC 0.01 [0.01, 0.03] 0.05 [0.01, 0.03] 0.09 [0.06, 0.12] 0.14 [0.10, 0.19] 

HR TO 0.02 [0.01, 0.04] 0.05 [0.03, 0.08] 0.09 [0.06, 0.12] 0.14 [0.10, 0.18] 

 Diff -0.01 [-0.02, 0.01] -0.01 [-0.03, 0.01] < 0.01 [-0.03, 0.03] 0.01 [-0.03, 0.04] 

Note. Diff = difference scores (supervisory control – teleoperation) 


