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THESIS SUMMARY

The purpose of this Thesis Design of a Quantum Computer Operating Sys-

tem is to examine the capability of a Quantum Computer and investigate the

applicability of an Operating System to improve the efficiency of the devices.

This thesis is composed of ten Chapters, with each Chapter investigating

a different facet of the system. Chapter one is introductory and presents the

position of the author and defines the direction of the research. Chapter two

examines the relevant literature of both Quantum Computing and Operating

Systems in order to prepare the reader for the system developed in subse-

quent chapters. Chapter three encompasses the methodology underpinning

the research completed in this thesis, this includes the research plan, exper-

iment choice and philosophical worldview.

Chapter four concentrates on presenting the theoretical design of the

Glade OS system which forms the core of this Thesis. The theoretical sys-

tem demonstrates the capability of a Quantum Computer to process multiple

programs concurrently and presents a graph theory approach which elegantly

combines the existing information to allow the planning and management of

this approach. Chapter five then continues the Glade OS system with a direct

focus on the implementation of the system into code. This implementation

forms the basis of the testing in subsequent Chapters and demonstrates some

optimisations which are not currently available in commercially available al-

ternatives.



Chapter six analyses both the theoretical and implemented systems from

Chapters four and five in order to determine the efficiency, performance and

accuracy of the system. Chapter seven builds on the analysis by review a

series of extra improvements to boost the systems capabilities.

Chapter eight expands the Thesis by considering the application of the

Glade OS system in multiple different configurations. This Chapter demon-

strates the universality of the proposed system and the adaptability of the

approach. Chapter nine completes the review of Glade OS by investigating

the cyber security vulnerabilities within the system and the alternative con-

figurations from Chapter eight. A review of this content has not been seen in

current Quantum Computing research and highlights interesting approaches.

Conclusions are drawn in Chapter ten as the multifaceted analysis from

Chapters six to nine are combined and the answers to the research questions

from Chapter one are confirmed. The author suggests that Quantum Com-

puter Operating Systems should be introduced to all Quantum Computers

in order to improve their efficiency.
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1. INTRODUCTION

Traditional computers have exceeded all expectations with their develop-

ment [1]. To have a palm sized device which connects to the sum total of

human knowledge was amongst the wildest future ever forecast [1]. However,

traditional computers are not infallible, many problems are currently either

beyond the ability of computers or will take such an extreme amount of time

such that the results are no longer relevant [2]. This difficulty stems from

issues with the traditional model of computing, a binary model based on the

deterministic behaviour of electricity according to classical physics.

Quantum mechanics is largely believed to hold the keys to understand-

ing the universe [3], [4]. This is due to the nature of quantum mechanics

underpinning reality as humanity interprets it [3], [4]. Quantum mechanics

introduces the concept of superposition and entanglement, concepts which

run counter to the observable universe. In classical physics distinct states

exist and objects can only exist in one of these states at any distinct point

in time. In contrast, quantum mechanics permits a superposition of states

occuring simultaneously until an observation occurs. For example, A coin is

either heads or tails, a person is either wet or dry. Superposition allows the

state to exist in more than one state at a time and therefore combine multi-

ple states together which exceeds the options available when using standard

binary states in classical computing. These concepts offer a large boost to

the computing power, but also introduce significant drawbacks that must be

addressed.
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To combat the rise of large data sets and computationally difficult prob-

lems a new computing paradigm is required. In the early 1980’s Richard

Feynman explored the theoretical concept of a machine built on quantum

mechanics which could outperform traditional computers [5]. This concept

grew rapidly following Peter Shor presenting a real world use case with an

algorithm to factor large prime numbers using a quantum computer in 1994

[6], [7]. Today, quantum computing is a multi-billion dollar industry with

research and businesses covering the globe [8], [9]. Quantum computers owe

their success to the introduction of a new computing paradigm, one based

on quantum mechanics over the more deterministic classical physics.

Currently users of a quantum computer can create a process (AKA a pro-

gram composed of logic gates), have it allocated to the computers memory

and retrieve the results at the end. This is accomplished by utilising a single

job in single job out (SJISJO) philosophy which works well for a technology

under development. By testing the technology with a single job at a time

it reduces the sources of error and makes research and development easier.

While this SJISJO approach works for development, it is a mark of techno-

logical maturity that the system move from laboratory conditions to working

in a relevant environment.

The Technology Readiness Levels [10], [11] provide a roadmap for trans-

forming technology from a theory (TRL1) through to fully operational tech-

nology (TRL9). As a part of the transition from TRL4 onwards, the SJISJO

philosophy is inefficient. Classical computing faced a strikingly similar issue

to the one described above. Early computers focused on a single task at the

exclusion of all else, until IBM’s system/360 managed to implement multi-

programming [12, p. 37]. This single task method worked well to perfect

the operations, but lacked the versatility that made computers the universal

workhorses they are today. Early computer programs were entirely self con-

tained, detailing everything from the necessary operations through to how

to interact with peripheral devices. This approach led to limited program

portability, due to inconsistencies between different computers and manu-
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Table 1.1: Technology Readiness Levels - adapted from [10], [11]

Technology
Readiness
Level

Description

TRL9 Actual system proven in operational environment
TRL8 System complete and qualified
TRL7 System prototype demonstration in operational environment
TRL6 System/subsystem model or prototype demonstration in a rel-

evant environment
TRL5 Component or breadboard validation in relevant environment
TRL4 Component or breadboard validation in laboratory environ-

ment
TRL3 Analytical and experimental critical function an/or charac-

teristic proof of concept
TRL2 Technology concept or application formulated
TRL1 Basic principles observed and reported

facturers. To resolve this problem, in 1956 General Motors IBM mainframe

operators began to develop a program which could abstract the operation

of the computer from the user programs [13]. This approach allowed user

programs to focus on the specifics of their program, while relying on the

mainframe program to handle the operation of the computer system. Other

companies soon followed the General Motors approach, though the resultant

operating systems still varied wildly between different companies and com-

puters.

In the 1960’s IBM began development on their own operating system,

aiming to provide a consistent interface for all IBM machines [12]. Other

early pioneers of operating systems include Control Data Corporation, Com-

puter Sciences Corporation, Burroughs Corporation, GE, Digital Equipment

Corporation, and Xerox [12]. Unix was also published during the late 1960’s

with Microsoft’s Windows operating system still some time away in 1985 [12].

Today operating systems are core to the use and management of computers,

with annual profits of approximately $25 Billion (12% of total revenue) in

2022 [14], [15].
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The research presented within this Thesis works to extend the field of

quantum computing by examining and implementing the missing pieces of a

quantum computer operating system. As will be explored in Figure 2.8 an

operating system is composed of 3 pillars:

1. Process Management

• Scheduling

• Synchronisation

2. Resource Management

• Memory Management

• Context Management

3. Communications Management

• File Systems

• Communications Services

• Security

Current quantum computers can be argued to meet a subset of these require-

ments. The SJISJO approach does technically provide a means of scheduling

processes, accomplished by acting as a queue with a First In First Out al-

gorithm, and the memory management is a simple task of allocating what

the task requires from the resource pool before freeing and allocating for

the next process. The SJISJO approach removes the need for synchronisa-

tion and Context Management by only implementing a single job at any time.
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The research presented within this Thesis produces a system which sup-

ports full implementations of all components except for the File Systems and

Communications Services:

1. Process Management

• Scheduling

• Synchronisation

2. Resource Management

• Memory Management

• Context Management

3. Communications Management

• File Systems

• Communications Services

• Security

File systems have been excluded because the memory required to im-

plement them is not available at this time and so quantum computers are

physically incompatible with this requirement. Communication Services has

been excluded as it is only partially available, quantum computers and quan-

tum networking exist independently but exisiting implementations have yet

to be combined. The concept of quantum networking integration is discussed

in Chapter 7 but as it is still theoretical this Thesis cannot state it supports

the requirement in good faith.

1.1 Research Questions

The research within this Thesis will specifically focus on the following re-

search questions:

RQ1 Can a quantum computer support processing of multiple programs con-

currently?
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RQ2 Is there a framework which can be implemented on a quantum computer

to support processing of multiple programs concurrently?

RQ3 What is the cost and/or effect of adopting this framework on a quantum

computer? The cost and effect are considered in terms of:

RQ3A Implementation,

RQ3B Performance,

RQ3C Algorithmic Complexity,

RQ3D Versatility/portability,

RQ3E Security

This Thesis presents each of the research questions in order throughout

the remaining chapters while designing a system which could easily be utilised

today.

1.2 Chapter Breakdown

The remainder of this Thesis is a discussion covering the art of parallel com-

puting on a quantum computer before progressing into a presentation of a

quantum operating system. Specifically, the chapters construct the system

in a direct manner with each subsequent chapter building on the preceding

content directly.
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Chapter 2 reviews the related literature and develops the framework

through which the rest of this Thesis will be viewed. This chapter reviews the

standard implementations of hardware and software for a quantum computer

from the base definitions in order to determine a universal representation to

design a framework around. This universal framework was used to allow the

system in subsequent chapters to be applied to all currently accepted imple-

mentations of a quantum computer.

Chapter 3 formalises the methodological approach taken within this The-

sis and describes the criteria which will be used to review the artifact created

in the following chapters. The base system developed throughout this Thesis

is subsequently reviewed by these criteria in Chapter 7 before continuing to

develop the system further.

Chapter 4 addresses the first 2 research questions by first providing a proof

by construction that quantum computers can definitively support processing

of multiple programs concomitantly (RQ1). With that question addressed,

the remainder of the chapter constructs and defends a modular theoretical

framework which can be used to augment the existing quantum computer

work flow and thus add support for automatically allocating multiple pro-

grams concomitantly (RQ2). This framework is deliberately designed using

a modular approach to allow for the further augmentation and specialization

in future research, this modularity is explored in Chapters 6 and 7.

Chapter 5 further develops the framework constructed in Chapter 4 by

outlining the implementation in code, in doing so it presents the implemen-

tation cost associated with the third research question (RQ3A). This chapter

reviewed popular quantum computer simulators and found each lacking in

functionality to nicely implement the framework. Due to the missing fea-

tures an alternative simulator was developed which natively supported the

concept of parallel quantum programs. This new simulator approaches the

simulation of a quantum computer from a novel direction and thus this chap-

ter describes the implementation in exhaustive detail to ensure accuracy.
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Chapter 6 reviews the framework described in Chapter 4 and identifies

modular sections within the framework which can be replaced with alterna-

tive algorithms to accomplish the same task. These sections are reviewed

independently and the alternative algorithms are discussed with the inten-

tion of identifying the recommended algorithm for each section. Following

this review, 2 more categories of tests are employed. These include tests to

compare the performance of the framework against the existing popular sim-

ulators (as found in Chapter 5) and tests to confirm the accuracy of the new

simulator developed in Chapter 5. Combined this discussion and subsequent

tests presents the solution to Research Question 3B.

Chapter 7 further considers issues with the new framework with the intent

of either providing a solution, or exploring possible solutions before highlight-

ing areas which require further research. As these issues form the bottlenecks

of the system their algorithm complexity heavily impacts the performance of

the final system and this discussion forms the answer to Research Question

3C.

Chapter 8 explores more advanced configurations beyond the 1 quan-

tum computer to 1 classical computer configuration that has been used in

the previous chapters. This chapter explores three alternative configurations

and explores how the framework outlined in Chapter 4 can be applied to

each in turn. Due to resource limitations this chapter is largely theoretical

however it serves to demonstrate the universal nature of the framework pre-

sented in Chapter 4 and therefore resolves the Research Question 3D.

Chapter 9 reviews the framework presented in Chapter 4 and the alter-

native configurations presented in Chapter 8 with a focus on the security of

each. This chapter constructs a library of cyber-security issues which have

the potential to cause problems for quantum computation if not addressed.

Each issue is classified and graded before reviewing which configurations are

susceptible. Finally each issue is reviewed and either a solution or a series of
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mitigation strategies designed to reduce the danger of the issue is presented.

With the completion of this chapter the Research Question 3E is discussed

thereby resolving all of the research questions.

Chapter 10 completes the Thesis by summarising the content found through-

out the previous chapters. This conclusionary chapter demonstrates the key

findings, implications and limitations of the work presented within this The-

sis. Due to the rapid pace of development in this field this chapter also

includes a review of more recent literature (other than Chapter 2) and how

it applies to this Thesis. The research questions are summarised and the

final overall answers are presented. Finally this Chapter looks to the future

in an attempt to forecast what future work is required and where subsequent

research could have a significant impact on this area.



2. LITERATURE REVIEW

2.1 Quantum Computing

2.1.1 Definition of a Quantum Computer

Quantum computing has existed in one form or another for approximately 40

years and is popularly traced back to the “Simulating Physics with Comput-

ers” presentation by Richard Feynman [5]. In his talk Feynman discussed the

difficulties with using a ‘universal computer’ to simulate classical physics and

by extension quantum mechanics. The argument (correctly) hinged on the

requirement to move the mathematics from a continuous space to a discrete

space, for example considering the continuous flow of time affecting the sys-

tem as a series of discrete intervals which are applied in a linear fashion [5].

Because of this requirement classical computers can simulate an imitation

of a physical system but will never truly simulate the system. The solution

(according to Feynman) is to retreat from universal digital computers and

return to analog computing and direct simulation of events [5]. The question

that Feynman left the audience with was to “try to find out what kinds of

quantum mechanical systems are mutually intersimulatable”, in other words

is there a universal quantum computer that can be created to simulate all

other quantum systems [5]. This presentation directly led to the growth of

the quantum computing discipline and is widely considered the birth of the

field [16]–[19].

In response to the introduction of quantum computing into popular re-

search, the difficulty became defining what abilities a candidate quantum

computer would need to demonstrate in order to meet the definition of a

quantum computer. Some definitions had been published with a focus on
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the mathematics and theory of simulation [17], [20] however these definitions

are largely theoretical and lacked consideration of implementation. Due to

the drastic differences in the various developing hardware approaches, a hard-

ware agnostic definition was required. This quest led DiVincenzo (2000) to

define his 5+2 criteria for a quantum computer. They are as follows [16]:

Required:

R1 A scalable physical system with well characterised qubits

R2 The ability to initialize the state of the qubits to a simple fiducial state,

such as |000...0⟩

R3 Long relevant decoherence times, much longer than the gate operation

time

R4 A ‘universal’ set of quantum gates

R5 A qubit-specific measurement capability

Optional:

O1 The ability to interconvert stationary and flying qubits

O2 The ability to faithfully transmit flying qubits between specified sections.

To further elaborate on these criteria, in R1 a quantum computer must

be able to differentiate between individual qubits (e.g. q0 and q1 should be

entirely separate qubits). This allows for qubits to be singularly specified

and acted upon, this criterion also extends to individual qubit measurement.

For R2 a quantum computer which cannot be set to a state of |000...0⟩
cannot reliably perform computation. Any computer whether an abacus or

a desktop requires the ability to reset the computer to a simple base state.

R3 introduces the concept of Decoherence for Quantum Computers. De-

coherence is perhaps the greatest enemy of a quantum computer, the infernal

noise constantly corrupting quantum data. While the goal is to eventually
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remove this concern, current generation quantum computers AKA Noisy In-

termediate Stage Quantum Computers (NISQ) require time to reliably com-

pute the program and measure the result prior to the decoherence corrupting

the data [21], [22].

Lastly for R4 a universal gate set must be established, such that pro-

grammers can declare their programs in the logic gates ready for execution.

Or at least write their programs using an accepted abstraction layer.

The two optional criteria relate directly to networking functionality, which

is not directly required for initial quantum computation. In O1 ‘stationary’

qubits are traditional memory, whereas ‘flying’ qubits are qubits prepared

for networking purposes (i.e. transmitting and receiving). Therefore, it is

advantageous to be able to convert between the two, thus allowing for simple

data transmission with a minimal overhead. While the requirement to faith-

fully transmit the qubits (O2) allows for users to be assured that the data

will arrive as expected, and can therefore continue the use of the program as

normal.

2.1.2 Quantum Computer Hardware

2.1.2.1 Standard gate model of quantum computing

The gate model is considered the standard representation of quantum com-

puter algorithms and was touched on in Feynmans original presentation [5].

The model is analogous to the electronic circuits used to represent digital

computers. By representing each qubit as a single horizontal line moving

from left to right the model allows us to mark the operations we perform as

markers along the line in the order they need to be executed. For example a

basic 2-qubit circuit with an operation on the 2nd qubit would look similar

to Figure 2.1.
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|0⟩

|1⟩ X

Figure 2.1: Example Quantum Circuit - Each horizontal line represents the path
of a single qubit. The |0⟩ on the left represents a qubit starting at
state 0, while |1⟩ represents a qubit starting at state 1

Quantum gate array computers are perhaps the closest implementation

compared to traditional classical computers. Gate array computers are de-

signed to take a base input state and manipulate it through a circuit com-

posed of predefined logic gates [23]. This approach can be seen in the software

offerings by Rigetti [24], IBM [25] and Microsoft [26]. These quantum logic

gates include [27]:

1. Pauli-X

2. Pauli-Y

3. Pauli-Z

4. Hadamard

5. Phase Shift

6. π
8
shift

7. Control Gate

8. Toffoli

While the classical logic gates include:

1. Not

2. And

3. Or

4. Exclusive-Or (XOR)

5. Not-And (NAND)

6. Not-Or (NOR)

Each of the quantum logic gates are unitary, meaning that any transfor-

mation can be reversed by applying the conjugate transpose operation (U †)

and results in the Identity operation (Equation 2.1).

UU † = U †U = I (2.1)
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To this end, each quantum gate has a unitary matrix associated with it

[28]. The Control gate is designed to substitute in a 2 x 2 gate matrix in

place of the matrix featured in Equation 2.2.[
U01 U02

U03 U04

]
(2.2)

1. Pauli-X

[
0 1

1 0

]

2. Pauli-Y

[
0 −i
i 0

]

3. Pauli-Z

[
1 0

0 −1

]

4. Hadamard 1√
2

[
1 1

1 −1

]

5. Phase Shift

[
1 0

0 i

]

6. π
8
shift

[
1 0

0 e
iπ
4

]

7. Control Gate


1 0 0 0

0 1 0 0

0 0 U01 U02

0 0 U04 U03



8. Toffoli



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0


These gates are combined with the standard representation of qubits in

Section 2.1.4.2 to represent quantum programs.

2.1.2.2 Alternative models of quantum computation

Quantum computers are an expansive research area with researchers agree-

ing on very little. This has led to the development of multiple alternative

methods with which to perform quantum computation. These methods are

typically summarised with the main three approaches:

1. One-way Quantum Computer [29]

2. Adiabatic Quantum Computer [30]

3. Topological Quantum Computer [31]
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Each of the approaches above are explored in more detail below.

One-way Quantum Computer One-way Quantum Computers are a varia-

tion on the quantum gate array that receives a quantum system in a pre-

defined quantum state [29]. This input is then acted upon through the quan-

tum computer via measurements until it resolves to the required output [32].

It has been shown that quantum gate arrays are equivalent to One-Way

quantum computers, due to their ability to use logic gates to generate a

pre-defined quantum state from any base input state [27].

Adiabatic Quantum Computer Adiabatic Quantum Computers are designed

to work using the time dimension. Adiabatic computation is built to take a

simple quantum system which can be easily prepared in a ground state which

then evolves over time into a complex system which approaches the desired

solution [30], [33]. This representation is noted as being particularly good

for optimization problems and is currently in use by D-Wave computing in

Canada [34] though controversies exist around D-Waves quantum capabilities

[35]–[38].

Topological Quantum Computer Topological quantum computing aims to

braid quasi-particles together to encode quantum information [31]. These

quasi-particles have the interesting property of being their own anti-particles.

This approach is noted as being particularly good at error correction, with

much of the ability already hard-coded into the braiding [31]. It should be

noted that this approach is currently theoretical only, though there is evi-

dence for their existence, the quasi-particles are yet to be discovered [39].

Microsoft originally believed that they had found evidence of the Majorana

particle [40] until further examination of their full data set resulted in an

outright retraction of that paper.

It should be noted that every alternative approach is capable of being

simulated by the ‘standard’ circuit model [41], [42]. Therefore the choice

is largely inconsequential, with the choices merely better suited to perform
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certain tasks or be implemented by specific hardware approaches.

2.1.3 Different Implementations and Current Specifications

Now that the theory of a hardware implementation has been introduced, the

next step is to consider the various implementations and how they approach

the relevant problems. Quantum computer hardware is notoriously difficult

to fabricate. This has led to multiple separate technologies being explored

in parallel. These technologies include [39]:

• Trapped ion - IonQ

• Superconducting loops - Google, IBM, Quantum Circuits

• Silicon quantum dots - Intel, University of New South Wales

• Topological qubits - Microsoft, Bell Labs

• Diamond vacancies - Quantum Diamond Technologies Inc., Quantum

Brilliance, NVision

It should be noted that the current implementations of quantum com-

puting tend to straddle one of two implementations. Either the quantum

computer is a single complete system which is purely run through qubits, or

a hybrid with a classical computer [28], [43]. Both implementations have their

advantages and disadvantages, with the immediate research surrounding the

hybrid machines. Hybrid systems continue to work as a classical computer

would, with the added bonus of a quantum processor to use as needed [28],

[43]. This approach typically approaches a quantum computer as an exten-

sion of the GPU (Graphical Processing Unit) concept to formulate a QPU

(Quantum Processing Unit). It is expected that while pure quantum com-

puters will eventually exist, the immediate step is to incorporate the QPU

into traditional computing.

The different hardware implementations (introduced above) are outlined

below and are summarised again in Figure 2.2.



2. Literature Review 19

Figure 2.2: Summary of Technologies (Dec, 2016) from [39]. Reprinted with per-
mission from AAAS.

Superconducting Loops Superconducting loops work through use of Joseph-

son junctions to create resistance free loops of electrical current [44]. By

squishing layers of nonconducting materials between superconducting mate-

rials, the system produces a non-linearity within the circuit which defines the

2-level qubits. Manipulation of the Josephson junction through microwaves

enables the application of logic gates [44]. This approach benefits from tradi-

tional semiconductor fabrication, thereby reducing the cost in both time and

money. The downside is most current superconductors require extremely

cold temperatures in order to reach peak efficiency, thereby requiring the

computer to be extensively cooled in order to properly function.
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Trapped Ions Trapped Ion quantum computers work by utilising ions as

the qubits, and holding them individually in a trap through the use of an

electromagnetic field [45]. These trapped ions are then manipulated with

specific lasers to alter their state according to the instructions [45]. These

transformations can take many forms depending on the choice of hardware.

Variations come in the forms of:

• Use of different ions in the traps.

• New/Different Ion trap design.

• New/Different Ion trap configuration and layout.

• Variations in lasers.

Silicon Quantum Dots Silicon quantum dot quantum computers utilise sil-

icon nanoparticles which are protected from interference through quantum

wells [46]. These electrons are then excited by microwaves to transform

through the various states [46]. Similar to the superconducting loops tech-

nology, this approach can also benefit from its similarity to the traditional

semiconductor industry practices.

Topological Quantum Computer Topological quantum computing utilises a

unique approach based on quasi-particle braiding which is widely different

to the alternative implementations discussed here [31]. Therefore it requires

an extensive amount of novel research to be completed. While evidence has

been found suggesting the existence of Majorana particles, they have never

actually been (officialy) found [39], [40]. Because the required particles have

not been verifiably found, there are no statistics on the efficiency of this

variation. It is only included to complete the review and because of the

theoretical benefits.

Diamond Vacancies In order to combat the difficulties associated with cool-

ing Superconducting loops and Silicon quantum dots, researchers turned to-

wards more stable structures [47], [48]. By exploiting a vacancy within di-
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amond lattices, the quantum data is largely stable and can even operate

at room temperature [47], [48]. The addition or absence of light can then

be used to manipulate the quantum state as desired [47], [48]. Although

this approach allows for room temperature computing, it can cause difficulty

when attempting to coerce the qubits to work together (especially with en-

tanglement). The manufacturing cost of these machines is also larger than

alternatives due to the cost of materials and the specialised nature of their

construction.

Now that each of these technologies has a definition, the next logical ques-

tion is whether they are congruent with the definition of a quantum computer

explored in Section 2.1.1.

While Topological quantum computers do not have a physical implemen-

tation the theoretical implementations would meet the DiVincenzo criteria

[49]. Because of the lack of physical implementations there is significant work

to be done, however the current research is compatible due to also meeting

the DiVincenzo criteria. The other approaches all suffer from 2 main issues,

inter-connectivity and isolation. Isolation is the conflict between properly

isolating the qubits to protect against decoherence or opening the qubits

to allow them to be measured and manipulated [44], [50]. Similarly inter-

connectivity problems arise when trying to apply multiple qubit operations.

If these issues are resolved then these systems can be said to meet the criteria.

In summary, there are numerous possible options for the hardware of a

quantum computer. Each choice of hardware comes with its own problems

ranging from issues with the technology to difficulties with control of quan-

tum computations. Because of the numerous variables at play, choosing a

specific hardware technology for this software system is foolish. Developing a

hardware agnostic approach based purely on the consistent data ensures the

viability of the system on whichever hardware technology eventually wins.

Developing the system using this approach will require some hardware spe-

cific optimisations when implemented, though it will translate to each of the

hardware options.
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2.1.3.1 Why is this hardware different to traditional computers?

As discussed at the beginning of this Chapter, quantum computers are able

to actually simulate quantum processes instead of relying on a classical im-

itation [5]. All classical computers follow the model of the Turing machine

and are restricted to operating in discrete space [5]. Even the 2 competing

architectures of Harvard vs Von-Neumann do nothing to change the funda-

mental model of a system which completes one instruction at a time on a

relevant part of the system [5]. The instructions are completed by reading

the data into the registers and then performing the different operations in

sequential order. A core trick of digital computers is that they can appear

to work on multiple programs at the same time because they completed the

instructions so quickly and swap contexts so often that it is indistinguishable

from the user [51]. A related benefit of this single CPU multiprogramming

is that parts of the system that are not being worked on can be left alone

(either in the registers or transferred to memory) with the knowledge that

the data is consistent when the process returns [51], this knowledge directly

underpins the process management concepts discussed in Section 2.2.2 [51].

With quantum hardware, the model has changed significantly. The con-

cepts of programs being composed of instructions remains the same (although

the instructions themselves are different) and that the data is stored in some

form of memory is also consistent with the standard model. The difference

comes when you consider the composition of the memory. As the quantum

computer is an analog computer instead of a digital computer the concept

of time-blindness no longer applies. The analog approach balances all of the

variables constantly and uses time as a continuous force constantly evolving

the system [5]. This means that if a process is left unattended it is almost

certain that it will not be in the same state that it was left in [5]. The quan-

tum computer is also able to independently evolve each qubit which achieves

true parallelism instead of the trick that digital computers use of allocating

a small time slice to update each qubit instead of each qubit evolving at the

same time [5].



2. Literature Review 23

Another consequence of the updated model is that while in a digital com-

puter every piece of memory can communicate and work with every other

piece a quantum computer has specific restrictions. Quantum computers

come with a map of their qubits which demonstrates which qubits can in-

teract with each other and which qubits cannot. To demonstrate the conse-

quence of this problem consider a digital computer with n-registers but each

register will only talk with the registers on either side (e.g. register 4 will

only talk with registers 3 and 5). Because of this change, any program you

want to execute needs to fundamentally restructure its execution to ensure

that all of the operations can still occur and be processed in the correct order.

Because of the above differences the traditional operating systems can-

not be simply ported across. While the fundamental tenets of an operat-

ing system (process management, resource management and communications

management) remain the same, the approaches taken by existing operating

systems are not compatible with the components of a quantum computer.

2.1.4 Quantum Software

2.1.4.1 Mathematical Representation of a Quantum Computer

Qubits are the base unit of computation used by quantum computers [28],

[43], [52], [53]. Qubits are analogous to classical computer bits, which exist

in either high or low voltage states. These states are commonly referenced

as 0 and 1, or True and False. Typically a Bloch Sphere is used to best

represent the 3-Dimensional nature of qubits [28] (Fig. 2.3). The Bloch

Sphere is a natural extension of the unit circle (a circle with a radius of 1)

into 3 dimensions.

As shown in Figure 2.3, the binary 0 and 1 states have survived the transition,

though now referred to as states |0⟩ and |1⟩ instead. In fact all binary states

can be rewritten in the ket notation, 000 → |000⟩ or 010 → |010⟩, where
|000⟩ means all 3 qubits are in state |0⟩ [28], [43], [52]. This representation is
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Figure 2.3: Bloch Sphere

related back to the quantum physics waveform representation of a particle.

The particle is represented as [28], [43]:

|φ⟩ = α |0⟩+ β |1⟩ (2.3)

Where the complex number α indicates the amplitude of the state |0⟩
and the complex number β indicates the amplitude of the state |1⟩. Using

the wave function the probability of the qubit being in state |0⟩ has the

probability of |α|2 and state |1⟩ has the probability of |β|2. In these equations

the values of α and β are complex-valued. The only requirement is that

|α|2 + |β|2 = 1 in order to preserve the laws of probability (explored below).

Based on the rules defined above, one method to write a perfectly balanced

single qubit superposition is Equation 2.4 [28].

|φ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ (2.4)

α =
1√
2
, β =

1√
2
, |α|2 = 1

2
, |β|2 = 1

2
(2.5)

The wave function can also be used to show the outcome of multiple su-

perpositions. This is accomplished by combining the amplitudes and joining

the two states into one, e.g. |x⟩ ⊗ |y⟩ = |xy⟩.
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A common example of combined states is the four ‘Bell States’ that are

referred to in entanglement (equation 2.6) [28], [54].

|B00⟩ =
|00⟩+ |11⟩√

2
=

|00⟩√
2
+

|11⟩√
2

|B01⟩ =
|01⟩+ |10⟩√

2
=

|01⟩√
2
+

|10⟩√
2

|B10⟩ =
|00⟩ − |11⟩√

2
=

|00⟩√
2
− |11⟩√

2

|B11⟩ =
|01⟩ − |10⟩√

2
=

|01⟩√
2
− |10⟩√

2

(2.6)

These states show that there is a 0.5 probability (50% chance) of getting

either state |00⟩ or |11⟩ for the |B00⟩ and |B10⟩ or either state |01⟩ or |10⟩
for |B01⟩ and |B11⟩. This is due to the α and β values resolving the same as

Equation 2.5. The importance of this state (which is one of the four Einstein-

Podolsky-Rosen states) is that the results of the first quantum qubit dictate

the results of the paired qubit. If the first qubit in equation 2.6 is measured

at state |0⟩ then the second state must be state |0⟩ [28] and the same in

reverse. If the qubits are represented as an independent object then they can

be measured independently but if the qubits are entangled then affecting one

of them will have repercussions on the linked qubits [28].

No-Cloning Theorem A key difference between the classical computer model

and the quantum computer model is the ability to duplicate data. In the

classical computer the data can simply be read and a copy can be written.

This ability is commonly used throughout classical computing but is mostly

lacking in quantum computing [28], [43]. The problem in quantum computing

is that the qubits cannot be read without utilising the measurement operation

and therefore collapsing the data to one of the 2 base states [28], [43], [52],

[55]. Because of this restriction it is only possible to duplicate data that

is in a known state like one of the two basis states or one created by the
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programmer (as the steps to reproduce it are known) [28], [43].

2.1.4.2 How is the software written? (Languages and Abstractions)

Theoretical Implementation A common tactic for early adopters is to at-

tempt to simulate a new technology, allowing developers to build on the

technology while hardware approaches are built. In performing this tactic

researchers quickly came across a potential deal breaker, the sheer amount

of information required to describe a quantum state made it increasingly

difficult to simulate. A single qubit is defined as [28]:

|φ⟩ = α |0⟩+ β |1⟩ (2.7)

Which requires 21 complex values to be stored namely α and β. In order to

define two qubits, the waveform requires 22 complex values and is represented

as either Equation 2.8 or 2.9 [28], [43], [54].

|φ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ (2.8)

|ψ⟩ =


α

β

γ

δ

 (2.9)

Because this relationship continues to grow for each extra qubit, estab-

lished quantum simulators are limited to approximately 30 qubits (for ex-

ample Microsoft Q# [26], IBM Qiskit [25] and Rigetti Forest [24]). For n

qubits the number of amplitudes that need to be stored are 2n, with each

amplitude being a complex number which when absolute squared is between

0 and 1. This relationship scales exponentially and can rapidly consume all

the available memory in the simulator. The typical approach is to store the

entire state table of 2n states for the entire system and performing the ma-

nipulations upon that table [28], [43], [54]. As discussed in Section 5.1 this

approach does suffer from problems with precision of values (e.g. Pi) how-
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ever all computer models suffer from this flaw. The state table works well,

and is recognised as a consistent approach which can be used to simulate a

quantum system. State tables work well to simulate a single system for a

single task [56].

This approach however is not the only option, an alternative approach to

simulating the quantum state is Automatic measure. Automatic measure is

a technique utilised to reduce the state table to only a single output state

of qubits instead of growing rapidly to cope with entanglement. This tech-

nique performs a quantum logic gate and then instantly measures the output

instead of continuing with more logic gates. Because of the measurement

operation this approach only needs to keep a single state in memory instead

of the entire state table normally required [57], [58]. In order to ensure ac-

curacy this technique must perform optimisations on the provided quantum

programs which tends to lead to combining multiple gates together and per-

forming a single overall transformation instead of multiple little ones [57],

[58].

As an example, consider the circuit in Figure 2.4. In this circuit the qubit

is first transformed by a Hadamard gate before also receiving a Pauli-X gate.

Using the state table approach the status of the qubit would be represented

in a table representing the possibilities of a |0⟩ and |1⟩ output. Using the

Automatic Measure approach, after the first gate (Hadamard) the qubit is

measured as either |0⟩ or |1⟩ before continuing to the second gate (Pauli-X).

Because of the continuous measuring after each gate this approach only re-

quires storing the current output state instead of all the possible amplitudes.

It should be noted that both of these circuits produce the set of output states

with equivalent amplitudes, though some optimisations may be required in

larger examples.

|0⟩ H X = |0⟩ H X

Figure 2.4: An example Quantum Circuit for the Automatic Measure
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Overall there is no perfect approach, with each of the discussed ap-

proaches failing at varying points. The choice of implementation largely

depends on the amount of time available for implementation and the overall

purpose of the system. Use of the lookup table approach is simple in it’s

design and allows the developers to largely ignore the quantum nature of

these computations. The lookup table approach with a specified size can be

optimised and hard coded for the size, utilising matrix multiplication (e.g.

for gate operations) and a prescribed measurement function based on the

size. The Automatic Measure approach simplifies the memory management

of the system requires a lot of attention in order to properly calculate the re-

sultant memory state. Furthermore, it should be noted that according to the

Invariance Thesis [59] these emulations of quantum computers must eventu-

ally fail to perfectly emulate the systems unless it can be shown that BQP is

equivalent to P which would mean that quantum computers are equivalent

to classical computers.

Programming Languages The earliest known discussion of a quantum pro-

gramming language is from 1996 and includes a comprehensive discussion of

quantum psuedocode [60]. Knill [60] discusses the concepts of creating and

manipulating quantum registers as well as conditional statements. Since that

time, quantum software has evolved according to 3 distinct areas of research

[55]:

1. The Design of the Language

2. The Semantics of the Language

3. Verification and Analysis of Programs

Overall, regardless of the research direction the theory of quantum com-

puter programming is typically split between two paradigms [55]:

1. Superposition of Data

2. Superposition of Program
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Superposition of Data The majority of initial quantum programs will

belong to this paradigm, if only due to the similarity to classical program-

ming. Superposition of data follows the principle of “classical control, quan-

tum data”[55]. Which boils down to the use of classical control structures of

if statements, For/While/Do loops with quantum data being manipulated in

place of the classical data. This method relates very closely to classical pro-

gramming and is able to take advantage of many of the same advancements

found in classical programming[55]. This paradigm is designed to work best

with a Hybrid quantum computers, composed of a classical computer exe-

cuting the program and instructing the quantum computer what operations

to perform before returning the result back to the classical computer [55].

Superposition of Program A relatively new paradigm, superposition of

program extends the previous paradigm and incorporates quantum control

structures. Best summarised with the principle of “quantum control, quan-

tum data” [55]. This paradigm is a recent shift, designed to take full ad-

vantage of the previously noted full quantum computers. This paradigm is

completely different to classical programming and is therefore less common

[55].

Both the superposition of data and superposition of program paradigms

can be represented through the use of approved quantum operations (e.g.

gates). This leads to any system being able to support the results of both

paradigms as quantum circuits. Therefore as long as the system can support

a universal set of quantum operations then it can support both programming

paradigms equally.

Existing Applications As previously stated, existing quantum simulators

are aimed at researching the evolution of quantum programming languages

and the appropriate simulation of quantum systems. The later being a means

to continue development while eagerly awaiting physical quantum hardware.

Regarding the intended purpose, these quantum simulators are excellent im-

plementations. Typically composed of something similar to Figure 2.5.
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Figure 2.5: Q |SI⟩ framework - Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Symposium on Real-Time
and Hybrid Systems [61] (Q |SI⟩: A Quantum Programming Environ-
ment, Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang He,
Runyao Duan and Mingsheng Ying), 2018 Springer Nature Switzer-
land AG (2018)

The software stack depicted in Figure 2.5 is the design for Q |SI⟩ which
is offered from the University of Technology Sydney where the focus was on

[62]:

• Quantum algorithms and complexity

• AI applications of quantum computing

• Intermediate quantum computing and architectures

• Quantum programming and verification

• Quantum information theory and security
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With these key focus areas, the software stack above is optimised. How-

ever this stack suffers from a flaw found in every original quantum simulator

currently investigated (IBM Q [25], [63], Microsoft Q# [26], [64], Rigetti

[24], Q |SI⟩ [61]) it follows a single job in, single job out philosophy.

This approach is exponentially more efficient and optimised for research re-

garding quantum algorithms, but ignores the fact that classical computers

rarely completely focus on a single task. The typical load for a classical com-

puter stretches into the hundreds of processes with multiple processes being

executed simultaneously. Due to this oversight, current quantum simulators

are not suited to the research that is being attempted here. It was this ob-

servation that led to the development of the simulator as per Chapter 5.

There has been some attempt to multi-thread the simulators, however

that threading extends the simulator according to Figure 2.6. Notice that

the compiling and setup is handled in a single threaded instance, before pro-

viding n copies of the compiled program to a thread pool for execution. By

executing the same circuit multiple times the results can be tabulated and

then a probability distribution can be estimated. Calculating the probability

distribution in this manner saves time, however, it fails to consider the prob-

lems associated with concurrent execution of programs on actual hardware.
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New program

entered

Optimisation

and

Compilation

Execution Pool

Executor 1 Executor 2 Executor 3 Executor n

Tabulation Report

Program

Completed

and Removed

Figure 2.6: Faux Parallel (Thread Pool) Execution. The compiling and setup is
handled in a single threaded instance, before providing n copies of the
compiled program to a thread pool for execution. By executing the
same circuit multiple times the results can be tabulated and then a
probability distribution can be estimated.

2.1.4.3 Gate Computing as a middle ground

In order to join the hardware and software approaches together a middle

ground must be reached. This is typically found to be in the base opera-

tions (i.e. logic gates) that the hardware must support, in order to support

everything that the software implementation requires. The software imple-

mentations typically apply the logic found in the Divencenzo criteria [16]

(explored in Section 2.1.1).
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The logic gates are applied by multiplying the matrix representation of

the qubit against the matrix representation of the gate. As an example, a

qubit in state |0⟩ = [1, 0] when multipled against the Pauli-X gate

[
0 1

1 0

]
the result is |1⟩ = [0, 1] which is equivalent to performing a Not Gate.

A universal gate set is a sub collection of the logic gates which together

cover all the possible operations of the entire set of logic gates. A Universal

Gate Set of a quantum computer is typically associated as [27], [28], [65]:

• Hadamard

• Phase

• π
8
gate

• Control Not

Though if the Control Not gate is a more universal Control Gate then

that can reduce the universal gate set.

While the full suite of logic gates is preferable (as explored in section

2.1.2.1), the universal gate set is what is required to support the software.

It is worth noting that the universal gate set is not the preferred method

to support software implementation [24], [25], [28], [43]. This is due to the

sheer complexity and number of gates from the universal gate set required to

implement the other more specialised gates which naturally results in longer

execution times, higher error rates and unstable data. Therefore just because

you can create every other gate using the above universal set, having access

to other gates is recommended [24], [25], [28], [43].

This approach conforms with the established definition of a quantum

computer, as explored in Section 2.1.1 and can be used to represent the

standard digital computer logic gates if required (see Appendix B).
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2.1.4.4 Algorithms

An algorithm is defined as “a set of well-defined logical steps that must be

taken to perform a task” [66]. That definition explicitly ignores the tech-

nology used to execute the algorithm and focuses on the problem that the

algorithm resolves. In the same spirit, researchers began working on quan-

tum algorithms long before any usable quantum hardware was created.

“I work on quantum computing hardware and we are at the

stage where we are developing small hardware prototypes that are

still entirely useless. But in the medium term, what they will

be useful for is to help us discover what can be done. Quantum

computing is a really special field in the sense that we don’t have

quantum hardware of the scale that allows us to actually develop

quantum computing applications on the basis of the hardware. I

find it absolutely mind blowing and a testament to human ingenu-

ity that we do have quantum algorithms.” - Prof. Andrea Morello

[67]

Quantum algorithms vary in the specific approach they use but all of

them tend towards the same overall process [43]:

1. Initialise the quantum bits to a specific classical state

2. Transform the quantum bits from the classical state into a superposi-

tion state

3. Manipulate the superposition through the application of a series of

unitary transformations (logic gates)

4. Measure the system.

This process has created many quantum algorithms ranging from string

matching [68] to number factoring [6] and everything in between. Quan-

tum algorithms are typically focused solely on the mathematical approach
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|0⟩
Oracle

|1⟩

Figure 2.7: Example Quantum Circuit with an Oracle

(e.g. [6] and [69]) required to calculate the end result with the implementa-

tion left as an exercise for the reader.

A common tool used in quantum algorithms is an Oracle. Oracles are

treated as black box components within a circuit which is different for each

implementation. For example Grover’s search algorithm [69] requires an Or-

acle which can (through a unitary matrix) result in a 1 for the target state

and 0 for all other states [69]. Using this Oracle the algorithm can then

manipulate the chosen state directly and leave the other states untouched.

As an example Figure 2.7 demonstrates how the oracle would be repre-

sented in the gate format. In practice the oracle found in Figure 2.7 would

be replaced with a series of logic gates essentially making the Oracle similar

to a method/function or black box component within the algorithm.

2.1.4.5 Combination of Quantum Hardware and Software

Physical vs Logical qubits Equation 2.3 defined a singular Qubit [28] which

is then manipulated with operations like the logic gates from Section 2.1.2.1 in

order to implement the algorithms specified above. This approach is idealistic

but not currently realistic and is one of the largest issues in current quantum

computers.

If the Qubits were as precise as the mathematical equation suggests then

every time you implement a Hadamard gate you would assume that the qubit

would move from Equation 2.3 to:

H(|φ⟩) = α + β√
2

|0⟩+ α− β√
2

|1⟩ (2.10)



2. Literature Review 36

However inaccuracies with the hardware (either physical or noise based)

cause the results of operations to drift from the mathematical truth. As an

exaggerated example the physical Qubit of Equation 2.3 could result in:

H(|φ⟩) = α

2
|0⟩+

√
3β

2
|1⟩ (2.11)

In this exagerated example instead of the qubit moving to a 50/50 balance of

probabilities it moves to a 25/75 balance of probabilities which is not what

the algorithm expects. Because of the nature of Qubits, it is not possible to

retrieve the superposition without using a measurement which destroys the

superposition and returns a singular result. Therefore the algorithms must

work on blind trust that the operations are done accurately every time that

they are used. Even if the quantum systems only differ from the expected

result of an operation by a small amount as more and more operations are

applied the drift will compound with each inaccurate operation.

In a standard digital computer the results of the operation can be dou-

ble checked and then adjusted before continuing with the algorithm. Until

physical quantum computers have this same capability or assurances the al-

gorithms instead refer to logical Qubits instead of physical Qubits. Logical

Qubits are effectively treated as perfect Qubits where the data never de-

grades and the operations work perfectly every time. Logical Qubits are

currently composed of multiple Physical Qubits intertwined in some error

correction mechanism. This exact nature of different error correction codes

changes with each code but a simple example is to encode the same logical

Qubit into 3 physical qubits and compare the state of each physical Qubit in

a majority wins scenario [70], [71].

Noisy Intermediate Scale Quantum Computing (NISQ) A lot of the discus-

sion found within this review has focused on having perfect quantum com-

puters full of logical qubits. Unfortunately this is not the current reality as

the field works through the Noisy Intermediate Scale Quantum Computing

(NISQ) era [22]. The NISQ era is known for 2 large problems [22]:
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1. Noisy (physical) Qubits

2. Difficulty with scaling up to larger computers

The first problem of noisy qubits has been discussed above but the problem

of scaling is a new problem that needs to be considered. As explored above,

it is possible to intertwine multiple physical qubits together to form a logical

qubit so the simple answer is to simply add more qubits until everything

is eventually error corrected. The problem with this approach is that the

qubits need to be connected in a specific manner (decided by the chosen

error correction code) which requires a redesign of the entire computer to

accomplish this. Because of the interconnectivity between qubits it is difficult

to modularise this approach which makes scaling the technology very difficult.

To move beyond the NISQ era more accurate qubits will need to be developed

and quantum computers will need to grow in size to be comparable to the

digital computers we currently use [22].

2.2 Operating Systems

In order to properly investigate the current approaches of multi-processing

a review of classical operating systems is required. This review explores the

capabilities of an operating system and how they work together to accom-

plish their tasks. This grounding enables comparisons of classical operating

systems and the system proposed in Chapter 4.

2.2.1 Operating System Definition

Operating systems can be considered through a number of lenses, each with

a different set of responsibilities [72]. If you consider the Operating Sys-

tem to be the interface through which the computer and the user interact

this obscures the sheer complexity of the operating system and can lead to

considering the Operating System as a black box implementation. If you

consider the Operating System through the alternative lens of the manager

of the resources for the computer you quickly risk optimizing the computer
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with a focus on efficiency by ignoring the user. The true definition of an Op-

erating system is a combination of the different lenses, where management of

resources is important but only in response to contexts and inputs provided

by the user.

Operating Systems are perhaps best summarised as the low-level software

that supports a computer’s basic functions, such as scheduling tasks and

controlling peripherals [51], [72]–[74]. In 1982, JR Mentzner proposed the

hierarchical structure of operating systems found in Figure 2.8.

Figure 2.8: Operating System Hierarchy, adapted from [75].

The hierarchical structure is utilised to explore the relevant literature in

more depth.

2.2.2 Process Management

Whether discussing an early batch system or a more complex time-sharing

system, everything is conducted through processes. An operating system is

a collection of processes, which must be carefully managed and executed in

order to perform the correct actions. These processes vary from receiving

messages from peripheral devices through to adding and deleting characters

on the computer display. Often a single action, like a key press, is broken into

multiple smaller processes which result in the desired outcome. Processes will
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migrate between multiple states during their execution. The standard base

representation of the different process states is [72] (Figure 2.9).

New Process

Generated

Ready Running

Blocked

Process

Completed

and Removed

Dispatch

Timeout

BlockingUnblocking

Finish

Figure 2.9: Basic Process States [72]

Where the process moves between ready, executing and blocked as re-

quired. Though this representation covers most cases, it assumes that all

processes are stored in main memory. In the case that processes are too nu-

merous to be stored in main memory, some must be migrated to secondary

memory (suspended) while the main memory processes execute. To support

this an advanced diagram has been developed which extends the design to

include suspended processes [72] (Figure 2.10).
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New Process

Generated
Ready

Running

Blocked

Process Completed

and Removed

Ready/

Suspended

Blocked/

Suspended

Dispatch Timeout
Blocking

Unblocking

Finish

SuspendResume

unblock

SuspendResume

Figure 2.10: Advanced Process States [72]

A third model is used within Unix operating systems [72]. This model

enables the distinction between system processes and user processes within

the same model (Figure 2.11).
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Figure 2.11: Unix Process States [72]

Regardless of which model is implemented into the operating system the

consistent parts are the transition between Ready, Running and Finished

states. If the system works in a preemptive environment then the system

switches from a one way flow to allow for processes to migrate backwards and

forwards through the states [72]. The addition of long term computer mem-

ory allows the introduction of suspended processes to the model [72]. Under-

standing whether the new system works in a preemptive or non-preemptive

environment and whether long term memory is available dictates which model

should be applied.
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2.2.2.1 Task scheduling

Within process management is the ability to schedule multiple processes for

execution, according to the operation of the computer, and expect that they

will be executed in a timely manner [51], [72]–[74]. Processes vary in size

and complexity with larger tasks like copying a paragraph of text typically

broken down into smaller processes like writing a single character, or deleting

a single character. These processes are then compiled into a specific order

and executed according to that order. This scheduling is typically reduced

to one of the four main algorithms: [51], [72]–[74]

1. First In First Out (FIFO)

2. Shortest Process First / Shortest remaining time

3. Round Robin (RR)

4. Priority Queue (PQ)

Where each algorithm aims to optimise the efficiency of the computer.

Another consideration of scheduling is the number of execution streams avail-

able to the computer.

Single processor Previous incarnations of classical computers utilised a sin-

gle constant execution stream. With processes and data being loaded into the

stream to be completed. This method simplifies the execution of processes

by only having a single process executing at any set time, and therefore only

having peripherals and memory locations in use or not in use. The schedul-

ing portion of this implementation is largely limited to the order in which

the processes are executed. [51], [72]–[74]

Multiple processors Multiple execution streams allow for the execution of n

processes simultaneously. This adds an extra level of complexity with mul-

tiple processes vying for different peripherals and memory locations. This
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added complexity can lead to issues associated with computer deadlock. Re-

search in this area largely focus on optimal scheduling algorithms, and dead-

lock detection and resolution. [51], [72]–[74]

With most systems providing only limited implementations of each re-

source, for example I/O devices and processors, the management of their

usage is typically accomplished through the use of the following factors [72]:

• Fairness - All processes competing for resources should be given fair

and equal access to resources where able.

• Differential responsiveness - The Operating System should react to the

varying requirements of the processes, scheduling them to accommo-

date the relevant requirements.

• Efficiency - The Operating System should attempt to maximise the

amount of processes being processed, while minimising the wait time

for processes.

The above factors are in clear conflict with each other, therefore Operat-

ing Systems must attempt to find a balance between them.

Another consideration for the Operating System is how to organise the

processes for the processors. A common approach is to construct a singu-

lar queue (or heap) of processes and simply assign the next process to the

available processor as each processor becomes available [74]. This approach

works well for similar (generalised) processors however specialised processors

(such as the new M1 chipset [76] or I/O processors [72]) do not perform

well with this approach. This is due to each specialised processor perform-

ing better for their specialised processes but performing poorly for the other

processes. An alternative approach is to use multiple queues up to a pairing

of 1 queue to 1 processor, thus allocating the load better [72]. The down-

side with this approach is that the processes are assigned to a subset of the

processors and it is easy for some of the processors to become idle after they

work through their queues while other processors struggle to complete their
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queues [72]. As the alternative approach is an optional improvement to the

singular queue system, the system designed in this Thesis will feature the

single queue philosophy. This is due to Quantum Computers only featuring

a unique processors as resources model while also minimising the complexity

of the new system.

2.2.3 Resource Management

The second pillar of operating systems is resource management. Resource

management is composed of memory management and context management.

Memory management is concerned with the manipulation of data both in

and out of memory. While context management is concerned with all things

relevant to the individual programs. [51], [72]–[75]

2.2.3.1 Memory Management

The ability to create, access and manipulate values currently stored in mem-

ory is a critical component of an operating system. It is the manipulation of

these values that are outlined in the processes explored above.

This memory management is typically accomplished according to the fol-

lowing responsibilities [72]:

• Process isolation - Processes are to be kept independent, and are not

to interfere with each other.

• Automatic allocation and management - Memory manipulation should

be automatic, and based on process requirements.

• Support of modular programming - Programmers can define programs

into modules, which are created, deleted and altered dynamically.

• Protection and access controls - Memory must be protected from unau-

thorised access, and all authorised access must be closely monitored to

ensure it does not adversely affect the processes.
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• Long-term storage - The operating system must be able to differentiate

between long term storage and short term storage, as well as provide

long term storage to programs as required.

Modern multiprocessing Memory Management systems tend to have sim-

ilar requirements, including [72], [74], [77]:

• Relocation - The ability to transport a processes memory from one

memory location to another. It is expected that the entire process

will be moved safely and this is commonly used when a process grows

beyond its memory allocation or when a process is swapped out to the

ready state.

• Protection - Processes are to be kept independent except where they

are explicitly required to share data which is closely monitored.

• Sharing - There must be a mechanism to allow multiple processes to

access the same memory with proper supervision. This is often found

in a program that spawns multiple processes with a common data pool.

• Logical Organisation - Programs are segmented into logical compo-

nents known as modules which are then logically organised within the

memory system. This is accomplished by grouping common modules

together to allow for faster loading and swapping

• Physical Organisation - This requirement deals with the transfer of

data between the different physical memory systems including Main

memory and long term storage.

While these requirements have been developed over many years of trial

and error, they do contain an assumption towards modern computing tech-

nologies. This is evident in the discussion of long term storage and the ability

to move memory between locations. As this discussion turns towards quan-

tum computers a series of more technology independent requirements needs

to be considered. At a minimum a classical memory management system

needs [74]:
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• Allocation - The ability to load data and instructions in and out of

memory and place them at specific locations.

• Abstraction - Knowledge of the computers memory and what is avail-

able or taken.

• Isolation and Sharing - Process isolation and protection from unautho-

rized interactions.

While the other requirements mentioned above are good to have they are

non-essential requirements.

Every computer, whether classical or quantum, has a finite amount of

memory to distribute (Classical has bits, quantum has qubits). This mem-

ory must be fragmented and allocated to processes as required, before being

recalled after the process has completed. This is accomplished through nu-

merous methods, with the typical classical computer approaches of [51], [72]–

[74]:

1. First Fit algorithm (Find the first suitable available space in memory)

2. Last Fit algorithm (Find the last suitable available space in memory)

3. Best Fit algorithm (Find the available space in memory closest in size

to the requested space)

4. Worst Fit algorithm (Find the largest space in memory)

5. Buddy Fit algorithm (Recursively break the memory into chunks of

equal size, then perform best fit)

This practice needs to balance the needs of the processes and the avail-

able memory. This can, if not done correctly, lead to conditions of deadlock.

Classical computer memory is often considered as an infinite tape containing

a series of interchangeable cells, these cells all perform the same functions

of store, read and write and the only difference is the location of the cell
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within the tape [17]. Conversely, quantum computer memory is a not in-

terchangeable and is often represented in a 3 dimensional graph structure

[17]. This fundamental change in underlying structure and lack of universal-

ity means these algorithms are not suitable for quantum computer memory

management.

2.2.3.2 Context Management

Context management is concerned with maintaining the execution of pro-

cesses between time slices. When a process is removed from execution before

it can complete the assigned work, numerous details must be recorded, these

typically include [72]:

• Instruction counter - Current instruction

• Program data/memory

• Program location in memory.

failure to properly record these values will require the process to either

restart, or the process could potentially corrupt [51], [72]–[74]. Due to the

distinct lack of long term Quantum Memory it is not feasible to store the

program data/memory and this component is not included in the Thesis.

2.2.4 Communications Management

Communications management is composed of three main sections, File sys-

tems, Communications services, and Security.

2.2.4.1 File Systems

In classical computing, files are designed as collections of related data seg-

ments [51] which are coordinated by a file management system. This file

management system is responsible for providing access and relevant restric-

tions, while also maintaining the location and validity of files. This is applied

through different approaches dependent on the operating system supporting

it. The most common file systems are:
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Virtual File System The Linux operating system is typically known for

implementing a Virtual File System (VFS), the VFS allows for Linux to

build on top of an existing implementation of a file system. The VFS works

by taking requests from the user and then converting the requests into the

relevant requests for the underlying implementation. This allows Linux to

have a vast amount of portability, including running from a USB (Universal

Serial Bus) [51], [72]–[74].

New Technology File System Windows operating systems use a proprietary

format known as New Technology File System (NTFS), based on the needs of

the typical workstation. The design of NTFS is remarkably simple, breaking

into the following four regions:

1. partition boot sector

2. master file table

3. system files

4. file area

This approach allows for recoverability of files back to a consistent state,

securing and handling larger files [51], [72]–[74].

Due to the distinct lack of long term Quantum Memory it is not feasible

to store the program data/memory and this component is not included in

the Thesis.

2.2.4.2 Communications Services

Communications services are responsible for all communication throughout

the system. This includes messages between distinct processes, networked

system and distributed programs/files. This section is critical to the opera-

tion of current classical computation, without it, classical computers would

not be capable of interacting with the internet, other computers or co-

ordinating parallel processes internally.
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Communication between multiple distinct processes can take many forms,

though in practice is either temporary or permanent [78]. Temporary com-

munication only exists while it is being transmitted and is therefore suited

for synchronous processes, an analog example of this could be pigeon carriers

or radio transmissions as these are only detectable or receivable for a brief pe-

riod before disappearing. Permanent communication however is visible from

the message send until it is overwritten by another message, therefore suited

for either synchronous or asynchronous communication, an analog example

of this could be flying physical flags.

Without the ability to pass messages between concurrent processes, clas-

sical computers would be restricted to processing tasks sequentially. For ex-

ample, if the process needed to step through an array and add +10 to every

cell, the only conceivable approach would be to use a single process and move

sequentially. Attempting to split the task into multiple processes is doomed

to fail because processes cannot inform each other when they have completed.

The concept of computer networking extends the concept of interprocess

messages to intercomputer messages. Computer networking began in the

late 1950’s with the ARPANET project [79], attempting to introduce the

redundancy required for the United States to survive damage which could

be sustained during wartime. ARPANET operation began in 1969 with only

4 nodes and is responsible for most of the concepts still used today like seg-

menting messages into ‘packets’ [79].

Together, interprocess and intercomputer messages combine to allow for

distributed computing. Distributed computing is designed to segment opera-

tions and allow for distinct elements to be computed either on different parts

of the same computer (‘cores’) or on separate machines entirely. Common

issues include, message latency [80], concurrency and partial failures [81].
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2.2.4.3 Operating System Security Features

The security section of the operating system is responsible for managing the

use of the system. This is accomplished through encrypting and decrypting

files as required by the users, and by implementing access control mechanisms

such that only authorised users can interact with the relevant data [51], [72]–

[74].

Operating systems are designed to manage and provide information to the

relevant users. To this effect, a complete system must incorporate a balance

between the following categories [72]:

• Availability - The system should always be able to provide the required

data, regardless of interruptions. This area is concerned with issues like

Denial of Service attacks.

• Confidentiality - Data must be restricted to the authorised parties,

unauthorised access must be strictly rejected.

• Data integrity - The integrity of data is paramount, typically coupled

with Confidentiality to protect against unauthorised manipulation of

data.

• Authenticity - Testing for the authenticity of data, messages and iden-

tification of users.

Threats to security are typically either system threats, or malicous soft-

ware [72], [82].

System Threats System threats are classified as threats that are internal

to the base system. In 1980 Anderson [82] classified these threats into three

distinct categories:

1. The Masquerader

2. The Legitimate User

3. The Clandestine User
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The Masquerader is an entity which appears to be a legitimate user,

thus defeating the security countermeasures [82]. The Legitimate User is

a legitimate user of the system, however they have engaged in misfeasance

[82]. This misfeasance can range from accidentally abusing their access levels,

through to deliberately accessing and sharing data with non-cleared parties.

Lastly the Clandestine User is an entity who has control of the security

countermeasures and can therefore disguise their tracks [82]. A correctly

designed system should remain secure in the face of all three of these actors.

Malicous Software Malicous software is commonly referred to as Malware

or Viruses. While numerous variations of malicious software exist, they all

tend towards similar designs. These designs include: [51], [72]–[74]

• Trojan Horse - a program designed to perform a standard function

whilst also breaching the security of the host computer.

• Viruses - a program designed to alter the way a host computer operates

and which spreads amongst computers.

• Worms - a program which reproduces itself to spread between comput-

ers.

• Spyware - a program designed to gather data about you and your ac-

tivities before providing it to a third-party without your knowledge or

consent.

• Rootkit - a collection of computer software, designed to enable access

to parts of a computer system that is not enabled for the user and often

masks its existence or the existence of other software.

Both System Threats and Malicous Software must be handled by the op-

erating system. Failure to accomplish this can lead to an outcome between

simple user annoyance, through to a completely unusable system. Quan-

tum computers are currently very nascent systems in comparison to classical

computers, due to this short lifetime little malicious software exists for a

Quantum Computer. Current malicious quantum software works through
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improper memory management, thereby initiating uncontrolled communica-

tion between processes [83]. A correctly calibrated operating system must,

by design, eliminate (or vastly reduce) this threat.

2.3 Existing Quantum Computer Operating Systems

2.3.1 Existing Research (Show the limited research here)

This is not the first time that quantum computer operating systems have

been mentioned in literature, that honour belongs to Corrigan-Gibbs et al.

[84]. Though their work is the first to analyze the potential of quantum

computer operating systems, their work is “necessarily (and shamelessly)

speculative (p. 1)” [84]. Corrigan-Gibbs et al., spend their paper discussing

the end uses of a quantum operating system, skipping past the actual design

and implementation of the system. Due to this skipping of detail, their

aspirational paper reads better as an Application Programming Interface

(API) reference than an outline of a new system. Whilst the work presented

here demonstrates the first attempt to fully describe the parallelisation of

quantum programs on quantum hardware. It also appears that no further

work has been done on this project since the publication of that paper.

2.3.2 Existing approach

Quantum computers and quantum computer simulators have now moved

from specific laboratories to now being available for use by the general public.

To accomplish this research groups have elected to use the default Single Job

In Single Job Out (SJISJO) approach. The SJISJO philosophy can be seen

in figure 2.5 by the absence of supporting technology.

In Figure 2.5 the quantum program is loaded into the system through

the Pre-parser before moving directly towards the simulator engine and the

inevitable execution. There is clear evidence of quantum program analysis

through the analysis and verification modules but there is no point in the

design where the concept of a queue is introduced and seemingly no way to

process more than one quantum program at a time.
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2.3.3 Research Gap

Quantum technologies are set to change the world in numerous ways, both

known and unknown. Significant research has already been completed in the

fields of quantum computing and related technologies. This chapter reviewed

the current literature and assumed knowledge for the reader. Significant

problems have been identified in quantum hardware design, including oper-

ating temperatures, stability and error management. Conversely, numerous

strides have been made in quantum software as algorithms and use cases for

quantum computing seem endless.

Currently quantum computers are able to execute quantum programs in

a sequential manner. The current approaches work, and have been invaluable

for development and testing of quantum hardware technologies. The problem

with current approaches is the limitation of sequential execution. Sequential

execution leads to the following issues:

1. Increased runtime required to clear the program queue, which by ex-

tension requires spending further resources to maintain the quantum

computer.

2. Wasted resources due to only using part of the quantum computer.

The research presented in this Thesis attempts to resolve these issues by

designing a quantum operating system and then evaluating the proposed

solution. After reviewing the current literature, there are a series of capa-

bilities available in traditional computing that are not available in quantum

computing. These capabilities include:

• Multiprocessing

• Networking between quantum computers

• Security from cyber threats
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Traditional computers have long been able to act on multiple processes

at once and have used this to enable the multi-tasking that many take for

granted. Without this capability users would be restricted to a single pro-

cess at a time, no more writing documents while simultaneously performing

calculations.

The ability to communicate between traditional computers and therefore

co-ordinate their actions is core to the daily usage of traditional computers.

From this capability the concepts of sending messages (Email) and docu-

ments (File Sharing) were born (among others). Use of this capability can

allow for multiple smaller traditional computers to function as a larger com-

posite computer in order to complete the assigned tasks, this is known as a

Beowulf cluster.

Existing single operation quantum computers are strongly limited in terms

of cyber security threats. This is due to the computer only executing a sin-

gle process at a time which removes process interference threats and only

leaves physical hardware threats [85]. Implementing either multiprocess-

ing or networking will however extend the use cases of quantum computers.

These extensions allow for increased performance but also increase the risk

of malfeasance occurring. It is expected that the design and implementa-

tion of a quantum operating system should include either multiprocessing,

networking or both and must therefore attempt to combat the cyber threats

that can now occur.
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Quantum Hardware

Quantum Operating System

Quantum Software

Figure 2.12: An example of the Quantum Software Stack

The Quantum Operating System explored throughout this Thesis is in-

tended to replace the Quantum Operating System layer in Figure 2.12. This

inclusion will combine the software and hardware layers that currently exist

into a singular software stack ready for use.



3. METHODOLOGY

In order to perform any research an understanding of the methodology is

required. This Chapter begins with outlining the strategy being pursued

before exploring the research paradigms and the viewpoint used throughout

this research. Finally an overall research approach is outlined before this

Thesis continues with presenting the research.

3.1 Research Strategy

3.1.1 Design and Creation

The design and creation strategy is focused on designing and subsequently

developing new IT systems or products [86]. This strategy is a formalisation

of the stereotypical approach featured in IT departments and businesses.

This research strategy is composed of the following steps [86]:

1. Awareness - What is the problem?

2. Suggestion - How could this problem be fixed?

3. Development - Implement the solution

4. Evaluation - Examine the solution and assess the worth of the system

5. Conclusion - Consolidate the results, knowledge gained and tie any

loose ends together.

These steps do not need to be followed in a strict linear fashion, but rather

are typically iterated over recursively to resolve a single problem. This strat-

egy can also be deployed in a stepwise refinement approach to resolve each
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sub-problem separately until the overall problem is resolved.

Evaluation of this strategy is complicated due to the wide range of possible

outputs. When evaluating the resultant product of this strategy there are

numerous criteria one can consider, including the following [86]:

1. Functionality - Does it perform the required function?

2. Completeness - Is the solution complete? Or is it missing parts?

3. Consistency - Does the same input always produce the same output?

4. Accuracy - Is the output of the IT system correct?

5. Performance - How many resources does it consume? (Memory, Time,

etc.)

6. Reliability - Does the solution always work?

7. Usability - How user friendly is the solution?

8. Accessibility - Can people get to and use the solution? Is the solution

developed in accordance with universal design principles?

9. Aesthetics - Does the means to access the solution appeal to the user?

(Colour choice, text size, font, language choice, etc.)

10. Entertainment - Does the solution have any entertainment value to the

user?

11. Fit with organisation - Does the solution fit within the organisation

values or expectations?

Evaluating the product can take the form of black box testing (looking at

input and outputs), white box testing (looking within the product and tracing

the execution) or comparisons to alternative programs or scenarios. There are

several techniques which can be used for these evaluations, Proof of Concept

is a technique which focuses on purely producing a product to demonstrate
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that something can be produced [86]. This could take the form of testing

a new theory or trialing a new method to solve a problem. Alternatively

Proof by Demonstration focuses on the use of the product by various groups

and/or in various contexts [86]. Lastly Real-world Evaluation examines the

product within the context that it will actually be deployed in, instead of

the extensively curated alternative artificial environments [86].

3.1.2 Shanks Theory of Systems

Scholarship

Practice

Research

Reference

Disciplines

Information

Technology

problems,

data & cases

methods

problems

domain

knowledge enhanced

theories

frameworks &

hypotheses

theories

research approaches

Figure 3.1: Shanks Theory of Information Systems adapted from [87]

Shanks et al. [87] proposed the Shanks Theory of Information System frame-

work found in Figure 3.1 for research surrounding information systems. Shanks

defines the terms Scholarship, Research and Practice as follows:
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Scholarship “the process of systematizing existing knowledge relevant for a

discipline.” [87]

Research “A systemic process of acquiring new knowledge” [87]

Practice “The knowledge from practitioners within industry.” [87]

Thereby seperating the distinct components of the complete information sys-

tems discipline. Shanks [87] continues by expanding research into the follow-

ing three variants:

Exploratory Initial research, looking to see if an area yields interesting/useful

data. (e.g. designing a new programming tool)

Descriptive Research which attempts to describe all parts of a situation. (e.g.

UML (Unified Modeling Language) and diagramming of the systems)

Explanatory Research which attempts to explain what happened. (e.g. De-

bugging/backtracing)

In accordance with the above framework, the research presented within

this Thesis is exploratory. The last step of the research strategy is to define

the paradigm associated with the research.

3.1.3 Continuum of Research

The continuum (Fig. 3.2) of research [87], [88] is a graphical means to rep-

resent how the different research approaches and strategies place regarding

quantitative, qualitative and paradigms. The continuum demonstrates that

while the concepts of objectivity and subjectivity exist on separate sides of

the continuum, there is no truly subjective or truly objective research strat-

egy. Researchers will view their research according to the paradigm (above

the continuum) which anchors them in objective or subjective territory, while

their choice of research strategy will determine their actual position on the

continuum.



3. Methodology 60

Objective Subjective

Positivism Interpretivism

Critical Theory

Experiment Survey

Case

Studies

Action

Ethnography

Phenomenological

Studies

Conceptual

Studies

Simulation

Figure 3.2: Continuum of Research [86]–[88]

3.2 Paradigm and Experiments Choice

Given the gap statement from Section 2.3.3, the research will make extensive

use of computer models and programs. These models extend to include rudi-

mentary implementations of principles of quantum mechanics which by their

definition are non-deterministic. These models are designed to represent a

quantum computer which can receive and execute a quantum program. While

the quantum mechanics are non-deterministic, the computer models them-

selves are deterministic because they co-ordinate and manage the quantum

programs. Because of this deterministic nature the exploratory research

is found within the positivism paradigm with the major strategy being

design and creation. The experiments and specifics of this research are

found in Section 3.3.

3.2.1 Critiques of the Positivism Methodology

Werner Heisenberg, Niels Bohr and Wolfgang Pauli had concerns regarding

Positivism [3]. Their concerns can be distilled to the following points:

1. What is knowledge and understanding within Positivism?

2. Positivism is inherently blinkered.

The first concern looks at what it is to know or understand anything

according to Positivism doctrine. Heisenberg is quoted as saying “The posi-
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tivists would probably claim that ‘understanding’ is tantamount to ‘predic-

tive ability’...” (p. 206) [3] an argument supported by Neuman as late as

1991 [89]. The argument being whether because we can predict where a pen

will land (after rolling off a table) we can proclaim that we understand the

forces at play. Further, if somebody simply takes this equation (for predic-

tion of the pen) and plugs in the variables, can they also say they understand

the problem? Heisenberg contends that true understanding cannot be guar-

anteed from predictive ability citing the example of Ptolemy’s astronomy

predictions which while accurate, were built on the presupposition that the

earth is the center of the universe [3]. It was not until Newton applied the

laws of inertia and gravitation that the concept of a helio-centric universe

triumphed. Can it be said that Ptolemy understood the planets when his

model was so largely invalid?

Niels Bohr simultaneously argued that while he could “... readily agree

with the positivists about the things they want, but not about the things

they reject.” (p. 207) [3]. Bohr argued that positivists were so completely

obsessed with their specific facts that they largely ignored the overall picture.

Bohr agreed with the use of testing on provable hypotheses, the practice of

which served to largely eradicate superstition from scientific inquiry, how-

ever disagreed with the rejection of unfalsifiable concepts. Bohr specifically

indicted the French Academy for their total rejection of “stones falling out

of the sky” (p. 208) [3], because stones by their nature (according to pos-

itivists) cannot be in the sky unless someone threw them upwards. This

rejection continued until an excessive number of meteorites landed near to

Paris, forcing the positivists to adjust their views [90].

Considering the critiques above, the choice to utilise the positivism paradigm

does not change. The critique questions whether one can ever truly under-

stand anything, providing compelling arguments to that effect. This part

of the critique can be ignored for this specific research because the research

does not seek to understand new phenomena, rather to apply researched and

documented phenomena in a more effective manner. The second critique
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questions the nature of positivism to reject data and phenomena prema-

turely. This research stays within the bounds of already accepted research,

but accepts that new/updated phenomena may yield higher efficiency meth-

ods. Therefore the paradigm and experiments mentioned above in Section

3.2 is confirmed as the approach for this research.

3.3 Research Approach

The research presented in this thesis begins with an exploratory constructive

approach, by designing and constructing a system to fill the lack of multi-

processing, networking and cyber security threats (see Section 2.3.3). As this

is a novel problem and has therefore not been studied before, there is limited

literature and data sets available for accurate comparisons.

An initial quantitative analysis is provided in Chapter 4. Then moving

to an experimental review of this system and its distinct parts in order to

better quantify the power and capability of this new system.

Chapter 4 explores the missing capabilities identified above. This chap-

ter outlines the theoretical design of the system constructed in this research.

This system is designed to be self-containing and able to execute on whatever

quantum computer is available. Chapter 5 then focuses on the design, struc-

ture and development of the test program used in the subsequent chapters.

Chapter 6 combines the theoretical and practical elements presented in

Chapters 4 and 5 for an in depth analysis of the overall system. This chapter

also features a comparison test between the system developed in chapter

5 and other external systems currently available in the market, featuring

Microsoft Q#, IBM Qiskit and Rigetti Quilc/QVM. Data for this analysis is

generated according to the follow procedure:

1. Outline the different approaches to solving this problem

2. Generate data sets according to the expected input data and the ex-



3. Methodology 63

pected variability within that data.

3. Execute each algorithm (individually and sequentially) over the data

sets, recording results according to the measurements specified in the

analysis.

4. Compare and contrast the measured results in order to evaluate the

appropriateness of each solution, before recommending solutions ac-

cording to the evidence.

Chapter 7 expands the base system by investigating improvements for the

base system.

Chapter 8 reviews alternative configurations for the operating system,

exploring how the base system would respond to the various configurations

commonly seen in traditional computing.

Chapter 9 analyses the previous chapters product with a focus on system

security.

Finally, Chapter 10 completes with a review of the research conducted

and a discussion of future work.

3.4 Chapter Summary

This Chapter outlined the approach and considerations taken with this re-

search. The research performed through this Thesis takes the form of ex-

ploratory research within the positivism paradigm with the major strat-

egy being design and creation as established in Section 3.2. The following

chapters outline the developed system, the implementation of that system

and then moves into an ongoing discussion about the various features and

considerations of the system.



4. BASE OPERATING SYSTEM DESIGN

The majority of this chapter has already been published [91].

4.1 Introduction

Quantum computing stands as the next evolution in computing paradigms,

able to augment current computing with a fundamentally new approach.

Current work in quantum computing focuses on either creating the phys-

ical hardware (from a range of possibilities)[16], [63], [92]–[95] or looks at

utilising this new paradigm through software applications [6], [96]. Work

has been done on optimising quantum programs [27], [97], [98] and mapping

their resource allocation [99]–[104] so that it can be executed on the quantum

hardware. Using the current state of the art implementations, quantum com-

puters only execute a single program before moving onto the next program.

This approach is reminiscent of batch processing in classical computing how-

ever it fails to actively utilise the complete power of the quantum hardware.

The current brute force cost to optimise and map a quantum program is

so expensive that to map multiple quantum programs together is seemingly

intractable. The approach presented in this chapter tackles this problem and

presents an approach which results in simple parallel execution of quantum

programs. The approach utilises the information required for sequential ex-

ecution including program dependencies, program mappings and qubit con-

nectivities, reshaping it to elicit novel data which enables the simple parallel

execution. In the presentation of this approach Research Questions 1 and 2

are resolved.
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4.2 Limitations of Quantum Computers

Some components of a classical operating system cannot be transferred to a

quantum operating system due to current limitations with quantum comput-

ing. Qubits are currently limited to small execution times due to decoherence

and other sources of error [28], [43], [54]. This limited execution time results

in a lack of long term quantum memory ensuring that no quantum file sys-

tems can be implemented [28], [43], [54]. Due to the low execution time

it is currently advised to treat quantum programs as singular blocks, this

approach removes the luxury of context switching and limits the synchroni-

sation to allocating qubits to programs without currently considering shared

qubits.

While quantum networking [54] expands the capability and functionality

of a quantum computer in a similar fashion to current computing systems,

it is not required for a quantum computer as per the definition found in

Section 2.1.1. Quantum networking has therefore been intentionally omitted

from the approach presented below.

4.3 Quantum Process States

Traditional computing processes, maneouver through various states as they

compute. This is demonstrated in Figures 2.9, 2.10 and 2.11. These states

demonstrate the various evolutions of a process during its journey throughout

the computer. Figure 4.1 demonstrates these states for a quantum computer

process. The major difference between Figure 4.1 and Figures 2.9, 2.10 and

2.11 is the directionality of the diagram. Figures 2.9, 2.10 and 2.11 utilise a

bidirectional system where processes can be loaded on and off of the computer

essentially pausing part way through computation, Figure 4.1 alternatively

demonstrates that once a quantum process is loaded, it must run through to

completion. Figure 4.1 could be updated by allowing running processes to be

removed, though unlike Figures 2.9, 2.10 and 2.11 the data associated with

that process could not be saved and restarted later due to the no cloning
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theorem [28], [43] (see Section 2.1.4.1) and the lack of available quantum

memory, it would instead need to be completely wiped. This would require

the entire program to be started over, essentially wasting the time previously

spent computing.

New Process

Generated

Ready

Running

Blocked

Process

Completed

and Removed

Request

for

process

Parsed Map
Load

Block

Unblock

Finish

Figure 4.1: Basic Quantum Process States

4.4 Validity of Concurrency

It is well established that quantum computers are capable of executing a

quantum program on their hardware, depending on error and connectivity

(the connections between qubits) [28], [43]. What is typically overlooked is

the ability for a quantum computer to perform parallel, or concurrent com-

putations. The basic structure of a quantum program is a circuit similar to

Figure 4.2 which is a toy example of entanglement but serves the purpose of

an example quantum circuit with which to demonstrate concurrency.
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|0⟩

|0⟩ H

1 2 3

= |00>+|11>√
2

Figure 4.2: An example Quantum Circuit, specifically an example of generating
a basic entanglement state, commonly known as a Bell State (|B00⟩).
The horizontal lines represent an individual physical qubit and track
the operations performed on each qubit. The left hand side of the
circuit demonstrates that both qubits begin in state 0 (|0⟩) and end in

state |00⟩+|11⟩√
2

. The vertical red dotted lines are 1) the original state of

the circuit, 2) the circuit after applying the single Hadamard (state =
|00⟩+|10⟩√

2
) and 3) the circuit after applying the Control Not operation

(state = |00⟩+|11⟩√
2

).

There are two main approaches to concurrency on a quantum computer,

either the system attempts to execute multiple instances of the same circuit

and thus minimise the computation time or the system attempts to execute

multiple distinct programs at the same time. Regardless of the approach,

the concept hinges on the ability to execute more than one program at once.

Quantum hardware is unique in its design as it only allows certain physical

qubits to interact with each other [63], this is typically expressed in a con-

nectivity graph like Figure 4.3. The connectivity graph in Figure 4.3 comes

from an IBM quantum computer known as ibmq 5 yorktown - ibmqx2 v2.0.5

[63], and includes the error rates on the connections.

Quantum computers are typically not fully connected, therefore not all

programs will fit at every location (as evidenced by the lack of connections in

Figure 4.3). This also means that there can be extensive difference between

distinct physical quantum computers as well the same quantum computer at

a different period of time. This connectivity graph is only half of the prob-

lem, this example also requires the programs activity graph. The activity

graph specifies the qubits required by the process, and the communication

between them that the algorithm requires is denoted as an edge. The ac-
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tivity diagram is generated by parsing the instruction set of the process and

generating a node for every qubit specified, and a directed edge for every

controlled operation specified. An activity graph of the program described

in Figure 4.2 is shown in Figure 4.4.

0

1

2 3

4

0.02508
0.0168

0.02394 0.01879

0.01439
0.01894

Figure 4.3: Connectivity Graph for ibmq 5 yorktown - ibmqx2 v2.0.5 [63].

0 1

Figure 4.4: Activity Graph generated from Quantum Circuit in Figure 4.2

Ignoring the problem of finding the optimal qubit mapping for the pur-

poses of this example, it can be assumed that the system could choose qubits

0 and 1 to host the quantum program. Note that the change between Figure

4.5 and Figure 4.6 still leaves a configuration of 3 connected qubits. These 3

connected qubits could then be used to host an additional 2 qubit quantum

program, thus allowing for concurrent hosting of quantum programs (Figure

4.7).
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Figure 4.5: Initial System

0

1

2 3

4

Figure 4.6: Single Map

0

1

2 3

4

Figure 4.7: Double Map

The quantum circuit of the two split quantum programs is found in Figure

4.8, with the overall result of:

|00000 > +|11000 > +|00011 > +|11011 >
2

(4.1)

Upon measurement of the qubits, the resultant bitstring (for example: |00011 >)
should be segregated into the relevant results for each quantum program (for

example: |00 > and |11 >). Provided the qubit measurement is fine enough,

in accordance with DiVincenzo criteria #5 [16], it is simple enough to mea-

sure the individual qubits for that program alone, instead of measuring the

entire system and then subdividing.

4.5 Scheduling and Memory Management

Determining which programs can and should be parallelised through some

form of a scheduling algorithm is key to achieving parallelisation. The pro-

posed solution to this is to construct an intricate and complicated data struc-

ture which enables relative simplicity in the algorithms. The data structure is
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|0⟩

|0⟩ H

|0⟩
|0⟩

|0⟩ H

= |00>+|11>√
2

+ |0 > + |00>+|11>√
2

Figure 4.8: Split Quantum Circuit. The top two lines (qubits 0 and 1 in Figure
4.7) host one version of the circuit in Figure 4.4 and the bottom two
lines (qubits 3 and 4) host another copy of the circuit

built using 5 separate graphs which are combined into a single multi-layered

graph with links between the layers where relevant. The layers are as follows:

1. Qubit Connectivity Map (Figure 4.9a)

• Nodes = Qubits,

• Edges = Connections between qubits

2. Program Mappings (Figure 4.9b)

• Nodes = Program Mapping,

• Edges = N/A (This graph by default does not include edges be-

cause each mapping is individual, however edges will be added

later in this chapter)

3. Program Dependency Map (Figure 4.9c)

• Nodes = Quantum Programs,

• Directed Edges = A→ B where A is dependent on B
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Layer 1

Q0 Q1 Q2 Q3

Q4 Q5 Q6 Q7

(a)

Layer 2

M0 M1 M2

M3 M4 M5

(b)

Layer 3

P0

P1

P2

P3

(c)

Figure 4.9: An example of single layer components a) An example of the qubit
connectivity map, b) An example of the Mapping graph, c) An example
of the process dependency graph

These layers form the base design of the data structure, with the links

connecting the layers as:

1. Connection between the program mappings (Figure 4.9b) and the pro-

gram dependency map (Figure 4.9c) where the mapping belongs to that

program. This should result in a 1..n mapping. see Figure 4.10a

2. Connection between the qubit connectivity map (Figure 4.9a) and the

program mappings (Figure 4.9b) where the qubits belong to the pro-

gram mapping. This should result in a n..n mapping. see Figure 4.10b
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Layer 2 & 3

P0

P1
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P3

M0 M1 M2

M3 M4 M5

(a)

Layer 1 & 2
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M3 M4 M5

Q0 Q1 Q2 Q3

Q4 Q5 Q6 Q7

(b)

Figure 4.10: Examples of Multilayer components a) An example of the programs
and their mappings, b) An example of the mappings connected to
their resources.

Overall this data structure combines all the required information for par-

allelism in a single concise structure. All of the information mentioned above

was also required in some capacity for sequential execution. An example of

this data structure can be found in Figure 4.11, with 5 graphs connected

together. While care has been taken to simplify the example, the complexity

of the data structure cannot be ignored.

Storing the nodes from Layer 3 in a priority queue allows for simple

application of a scheduler algorithm, for simplicity priority based on arrival

time also known as First In First Out (FIFO) is recommended. When the

scheduler determines the next program to execute, the edges between layers 3

and 2 can be followed to attempt each of the applicable mappings (preferably

starting with 0 cost (perfect mapping) and increasing from there). Mapping

cost is determined from the amount of swaps and tweaks required to force

the program to execute using that mapping. Swaps are defined as switching

the relative place of 2 connected qubits, for example qubits #1 and #2 in

Figure 4.3. Swaps are utilised in cases where qubit A needs to connect with

other qubits but is unable according to the current mapping, by changing the

relative position of A with B these connections can now be made. Tweaks
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are defined as edits to the program code which still retain the qubit positions,

for example reversing controlled operations allow the programs to be written

as B → A instead of A→ B. Mappings which perfectly mirror the Activity

graphs cost 0 to apply, with each swap increasing the cost by a fixed amount

[104]. In the sequential mode, the first mapping will always fit and execute,

before the system moves onto the next program.

Layer 3

Layer 2

Layer 1

P0

P1

P2

P3

M0 M1 M2

M3 M4 M5

Q0 Q1 Q2 Q3

Q4 Q5 Q6 Q7

Figure 4.11: An example of the multigraph data structure
Program dependency graph represented as the red nodes (P*) and
black directed edges, program mappings represented as the green
nodes (M*) with no edges, qubit connectivity map with the blue
nodes (Q*), programs and the connection to their mappings repre-
sented with red edges and the mappings and which qubits they lock
represented with orange edges.
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In the parallel mode, the next mapping may not fit (due to other pro-

grams currently consuming resources) and may require checking further, less

efficient mappings or even halting until other programs free their resources

(assigned qubits). Using the multi-layer data structure, unassigned layer 1

nodes (representing qubits) can be investigated as to whether mappings that

will use them are able to be executed (all required nodes available). This

approach allows the system to actively seek to execute more programs, how-

ever it ignores the current position of the scheduler. This can lead to issues

of starvation (where programs never receive enough resources) for the next

scheduled process because the nodes continue seeking processes which can

run now instead of waiting for the required memory. A resolution to this

is to have the scheduler ‘reserve’ nodes which will not be allocated to other

programs and will wait for the scheduled task.

The parallel option mentioned above requires a large amount of execu-

tion and program management to allow for the free qubits to be searched

for applicable programs to execute. A better approach is to employ the

use of a serialization conflict graph (Figure 4.13 and 4.14) commonly found

in database query processing [105]. This graph is used to determine when

programs (or queries in databases) can be run in parallel or if they must

be executed sequentially by reviewing what resources are required by the

program (query) and whether other programs (queries) require the same re-

sources [105].

In the case of a quantum computer, currently the only resource is the

qubits. By treating the programs as single indivisible blocks, the program

can be considered as ‘locking’ the relevant qubits until it has completed its

execution. By considering which programs lock which qubits (found within

the qubit connectivity and Mapping graph), edges can be introduced into

layer 2 which denote which programs do not lock the same qubits and can

thus be executed in parallel.
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Figure 4.12: Ego-Network Graph Example.

Specifically in the layered data structure, the conflict graph [105] will in-

form which mappings can be executed together which may include multiple

possible mappings of the same program. If the edges dictate two mappings

which cannot be executed together (Figure 4.13), then the number of edges

expands greatly and determining the parallel mappings to execute becomes

much more complicated. Alternatively using the edges to indicate two map-

pings which can be executed together (Figure 4.14) results in smaller edge

sets, while determining which mappings to execute refines to a maximum

clique problem [106] of the 1-egocentric network (a sub-network we define by

selecting a node and only including all of its connections. For example, Fig-

ure 4.12b is the 1-egocentric network for node A from the network described

in Figure 4.12a) [106] for the scheduled mapping.
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Layer 2

M0 M1 M2

M3 M4 M5

Figure 4.13: An example of the conflict
graph where edges mean
they cannot be executed in
parallel

Layer 2

M0 M1 M2

M3 M4 M5

Figure 4.14: An example of the conflict
graph where edges mean
they can be executed in
parallel

4.6 Overall System Design

The overall execution of the operating system is to continuously execute the

next program according to the scheduler. The executing program then gen-

erates a 1-egocentric network and retrieves the maximum clique from said

network to execute alongside the scheduled program.

The stages of adding a quantum program to be executed are as follows:

1. Quantum Program (PQ) submitted to operating system

2. PQ is added as a node in layer 3 of the multigraph data structure (MG)

3. PQ is optimised by the circuit optimisation engine

4. PQ is mapped to the quantum hardware by the mapping engine

• As each mapping is discovered it is added as a node in layer 2 of

MG and connected to the program node in layer 3 of MG

• As each mapping is discovered the layer 2 node in MG is connected

to the relevant layer 1 qubits.

5. All mappings are now added to the conflict graph
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The stages of removing a finished quantum program are:

1. Return the results to the program for the user.

2. Return to the layer 1 program node from the completed layer 2 mapping

node

3. Delete all layer 2 children (mappings)

• Remove all layer 3 qubit links from the layer 2 mapping nodes

• Remove the layer 2 mapping from the layer 2 conflict graph

If there is no programs to be executed it is recommended that the sched-

uler sleeps for a small period to allow for new programs to be added to

the queue. The cost of the above implementation is largely reliant on the

performance of the three largest system bottlenecks explored below.

4.6.1 System Bottlenecks

The largest bottlenecks with this system are all designed to be modular and

can be replaced with a better algorithm/library when they are discovered.

The system bottlenecks are:

1. Quantum program optimisation engine [97]

2. Quantum program mapping engine [104]

3. Parallel execution problem [106]

4.6.1.1 Quantum Program Optimisation Engine

Quantum program optimisation is the process of eliminating redundant op-

erations and attempting to simplify the overall program [97]. For example if

a quantum program performs a NOT operation followed by a second NOT

operation (see Figure 4.15 and Equation (4.2)) then the NOT operations

cancel each other resulting in the same output as though they were never

computed. These redundant operations result in time wasted and increases

the amount of error in the system.
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|ψ⟩ X X = |ψ⟩ I = |ψ⟩

Figure 4.15: Redundant Quantum Circuit

[
0 1

1 0

]
×

[
0 1

1 0

]
=

[
1 0

0 1

]
(4.2)

The optimisation process is not compulsory as sub-optimal programs can

still be mapped and executed, however optimised programs should result in

faster executions and/or a higher accuracy [97]. The balancing act with this

process is to ensure that the benefit gained from optimising the program is

at least as long as the time taken to optimise.

4.6.1.2 Quantum program mapping engine

Mapping a quantum program to quantum resources is an ongoing research

question [99]–[104]. At the core of the problem is the NP-Hard subgraph

isomorphism problem [104]. Locating a mapping that works can usually be

accomplished with relative speed, finding the optimal mapping is a different

story. A better mapping results in a more accurate result and a faster execu-

tion time [104]. Multiple attempts have been made to resolve this problem

but the current leading research stems from Siraichi et al [104]. This process

has to be completed for every quantum program that is entered into the sys-

tem. Any delay taken in the mapping stage affects each quantum program,

such that a 10 second delay to map a process results in a 100 second delay

to map 10 processes.

Siraichi et al. [104] present a method which does not require any un-

derlying knowledge of the qubit connectivity map and does not require any

underlying structure within the qubit connectivity map. Siraichi [104] ap-

proaches the problem by mapping the program onto the hardware one qubit

at a time, placing the qubit in response to already allocated qubits. This

approach has the added benefit of providing all possible mappings as a re-
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sult, which can then be used in the scheduling and memory management

of the system. The algorithm [104] suffers from exponential growth during

the search, where allocating qubits can result in growth which approximates∏q−1
k=0(n − k) where n is the number of qubits in the computer and q is the

number of qubits being mapped. In practice this limit is typically lower

because of the relationship between qubits limiting the applicable matches.

4.6.1.3 Parallel execution problem

The conflict graph approach greatly simplifies the search for programs which

can be executed in parallel and the maximal set of programs that can be

executed in parallel. Following the conflict graph approach (assuming an

edge represents 2 mappings that can be executed in parallel), the task is to

determine a clique (a set of nodes where all the nodes are connected through

edges) such that the clique is maximal (no more nodes are able to be added

to the clique). It is also recommended to find a maximum clique so as to

parallelise as many programs as possible.

Because there exists a scheduled node which we must include, a 1 or 1.5

egocentric network [106] may be employed to reduce the search space to only

those nodes which are neighbours of the scheduled node.

The parallel execution presented in this chapter is simple and basic, akin

to a structure built of blocks. A more advanced parallelism can be employed

through more specific application of the blocks. This approach yields bet-

ter parallelism, however improper implementation will result in exploitable

attack vectors. If the system considers a measurement as the trigger to free

a qubit then programs can be properly interwoven, however this requires

partial mapping and assumes that the qubit is not reused by the program.

By incorrectly employing the above advanced approach, the system is then

specifically open to CWE-416: Use After Free [107] and CWE-200: Exposure

of Sensitive Information to an Unauthorized Actor [108] attacks. Discussion

of general security concerns can be found in Chapter 9.
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4.7 System Scaling

Now that the system has been specified and explored, the final inquiry is how

well the system scales. In pursuit of an answer to this inquiry, the scaling

of a quantum computer has been seperated into vertical and horizontal scal-

ing. Vertical scaling considers the system still running on a single quantum

computer but of a larger size. Leaving horizontal scaling to consider keeping

the quantum computer the same size, but expanding over multiple quantum

computers to extend the computing power available. A further discussion of

system scaling can be found in Chapter 8, which expands on the introductory

analysis below.

4.7.1 Vertical Scaling

The designs and algorithms discussed within this paper will continue to pro-

duce accurate results for any sized quantum computer. This is due to simply

needing to search a larger graph structure which requires more processing

time. However due to inbuilt and inherent inefficiencies in the discussed

algorithms, the cost of deploying them on larger quantum computers will

continue to increase in accordance with the details of the quantum com-

puter. A discussion on whether all qubits or connections need to be included

can be found in Section 10.6.2.

4.7.2 Horizontal Scaling

An alternative method for increasing the size of the system is to employ

multiple distinct quantum computers under the purview of a single instance

of the system. Each quantum computer provides a connectivity graph of its

qubits and can be instructed individually. One can consider all n quantum

computers as a single graph of n connected components. Alternatively you

can store it as n graphs each of 1 connected component. Searching a single

disconnected graph is faster than searching each individual graph, however

the cost of considering all n graphs at once is greatly increased from consid-

ering them each individually.
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Computer 1 Computer 2

M0

M1

M2M3

M4

M5

M6M7

M8

M9

M10M11

M12

M13

M14 M15

Figure 4.16: An example of multiple Quantum Computer graphs for the system
to manage

Without access to a quantum network connection a quantum program can

only be split over multiple distinct quantum computers provided that the ac-

tivity graph is made of multiple connected components with each component

on a separate quantum computer.

4.8 Chapter Summary

This chapter demonstrated that not only is quantum computation parallelis-

able (Research Question 1), and there exists a system which can co-ordinate

and organise the concurrency (Research Question 2). The system proposed in

this chapter highlights the ongoing problems that need to be addressed in or-

der to fine-tune the system performance. These problems include Quantum

program mapping and the Clique identification problem. The algorithms

discussed above are intentionally generic, therefore applicable to as many

quantum computers as possible.

As quantum computers continue to grow, connect and mature, the algo-

rithms introduced here will require revisions for performance reasons. It is



4. Base Operating System Design 82

expected that as quantum computers increase the number and connectivity

of their qubits, the multigraph data structure will increase in density. Access

to quantum hardware would enable a more specialised implementation to be

discussed, though that implementation would then suffer from issues with

portability and maintenance.



5. GLADEOS DESIGN

Following the system outline in Chapter 4, the next stage of the research is

to model that system and review the behaviour. Following a brief discussion

of the issues with computer models, this chapter is dedicated to the design of

the computer model used for generating results in subsequent chapters. The

detailed information is provided so that any potential errors or assumptions

can be identified and accounted for and provides a solution for Research

Question 3A.

5.1 Issues with Computer Models

Using a computer based model to simulate a phenomena is a common ap-

proach to research for 2 reasons:

1. To confirm that the suggested model accurately simulates the phenom-

ena (e.g. the damage caused by a specific explosive) [109]

2. To test how the phenomena will react to specific inputs (e.g. how a

building reacts in strong winds)[110]

The major problem with computer models is that the results are only as

accurate as the model itself (as mentioned in Section 3.2.1). If the model

equates B = 2A when in reality B = A + C, then the results will be cor-

rect provided that A = C. However the moment that A ̸= C, the model

is incorrect and therefore all results must be double checked for validity or

outright dismissed, regardless of the precision of the computer that model is

implemented on. Therefore to ensure that the results are correct and valid,

effort must be undertaken to ensure that the model is accurate.
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A secondary problem with computer models is the war between precision

and accuracy. The precision of a solution comes from comparing results to

each other and measuring how close the measurements are to each other. For

example, if a computer model returns the result A ± 10 from an expected

range of [0,20] then it is not very precise because the recorded results vary

between measurements. A further consideration for precision is the units

used, for example the result may be A ± 10 however if the measurement is

in nanometers then the difference is vastly smaller than if the unit was meters.

In contrast, accuracy is measured as how close the reported result is to

the accepted true value. For example if a scale weighed a 1kg packet of

peanuts as 10kg then that scale is not accurate. The best results are both

accurate and precise, though this can be difficult to achieve with some com-

puter models.

Normal people commonly mistake computer models as both accurate and

precise by default, often taking the returned solution as the accepted truth.

Errors in computer models can cause multiple issues, including imprecise or

incorrect results. These errors include:

Rounding errors Errors encountered due to a lack of significant figures re-

sulting in approximations, for example 3.4 and 3.6 round to 3 and 4

respectively thereby changing the difference from 0.2 to 1 [111].

Logic errors Fundamental errors in the algorithm or equations which result

in incorrect results, for example A + B instead of A ∗ B. This type

of error can result in correct results under specific inputs (for example

A = B = 2) but overall leads to incorrect results [111].

Algorithm Stability Algorithm stability is a measure of how the inputs affect

the outputs of an algorithm. To be considered stable, a small change in

inputs should result in a small update in results. Instability of the algo-

rithm can be caused by problems with the algorithm or problems with

the underlying mathematical problem being solved by the algorithm

[111].
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Truncating errors Truncation errors also stem from a lack of significant fig-

ures resulting in removing the extra digits, for example 2.41 and 2.49

can both be truncated to 2.4 [111]. A common source of truncation is

using incorrect data types, for example integers can only store whole

numbers and will truncate or refuse other data types.

Irrational Errors Irrational numbers (numbers like π and
√
2 which cannot

be represented as A
B
) require an infinite number of digits to accurately

represent them. Because no data type can support that infinite dig-

its, all irrational numbers can only be represented by approximations.

Because of this all calculations with these numbers will produce ap-

proximate results.

The effect of individual errors may be considered small e.g. 2.123456 →
2.12346. However errors found in early stages of the computation flow down-

stream to affect the later stages [111]. For example if the computation only

uses integers (whole numbers) then 10
3
= 3 and 3 ∗ 3 = 9 where 10

3
∗ 3 = 10.

This error propagation affects the accuracy of the computation, though the

precision should remain relatively constant. Some approaches to reduce er-

rors include using better suited data types, increasing the number of signifi-

cant digits or algebraic manipulation of the formulas (x
3
∗3 → x) to minimise

possible sources of error.

5.2 Quantum Simulator: GladeOS

5.2.1 Requirements

The design of the Quantum Simulator (GladeOS) was created, in part, due

the limitations of the already existing tools. To test the feasibility of classical

scheduling algorithms, a simulator must adequately portray the mechanics

of a quantum computer. Each of the Quantum Simulators (simulators) iden-

tified are either:
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• Not capable of handling multiple circuits simultaneously (a key contri-

bution of the Thesis to be tested) [24]–[26], or

• Not capable of executing partial circuits [24]–[26], or

• Not capable of being extended [24], [26].

In the case of all known simulators, they are either unable to test or perform

the necessary operations to test classical scheduling algorithms, as they are

either:

• An interface to physical hardware (IBMQ, Riggetti Forest)

• A Single-User simulator (Qiskit, Q#, Rigetti Forest)

and were deemed unsuitable. As such, to answer the research questions

outlined in Chapter 3, one must first create the simulator that can handle

scheduling quantum operations with classical algorithms.

This scheduling is two-fold. Not only must the program share computing

time, it must also test memory (Qubit) allocation in this shared, scheduled

computing space. Given the expensive, specialised hardware (Quantum com-

puters and High Performance Computers) cannot feasibly be purchased or

obtained easily the simulator must thus run on commodity hardware. To

do so, there are several key concepts that were designed, Qubit simulation

design, Simulated Qubit Types and State on Demand.

5.2.2 Qubit Simulation Design

Due to the lack of commercial quantum hardware to develop with, simulating

the qubits is a necessity. Simulating the qubits also enables the amount and

configuration of the qubits to be changed and updated as required, thereby

helping to develop and test a universal solution. After investigating the var-

ious equivalent means to represent qubits and their associated costs (Table

5.1), it was decided that Dirac vector notation [28], [43] was the optimal rep-

resentation for our means. Using this notation every qubit can be represented
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using two complex floats, taken as alpha (α) and beta (β) appropriately

(Equation 2.3, reproduced below as Equation 5.1 for completeness). Using

this approach allows all gates to be simplified to their matrix representations

and thus saving on both compute power and time.

|φ⟩ = α |0⟩+ β |1⟩ =

[
β

α

]
(5.1)

Utilising dirac vector notation the computation of any given point upon

a Bloch sphere (Figure 2.3) can be performed with minimal memory over-

head. These vectors are stored in the form of a complex float. As these are

complex numbers, the distinction of standard computing types ‘float’ and

‘double’ must be addressed. As GladeOS is designed to run on commodity

hardware, memory usage must be kept to a minimum without sacrificing

accuracy. As such, complex floats allow for an acceptable level of accuracy,

as the single-precision nature is both adequate for dirac vector notation and

allows for reduced memory footprint which is significant when calculating

state arrays. As GladeOS stores only two complex floats, the memory foot-

print can be kept to a minimal level until the entanglement operations occur.

Table 5.1: Qubit representation decision matrix

Representation Positive Negative

ϕ and θ (Bloch sphere

representation)

Equations are defined

for single qubit opera-

tions, |ψ⟩ = cos θ
2
|0⟩+

eiϕsin θ
2
|1⟩. Requires

storage of 2 real float-

ing point values to

represent any posi-

tion.

Operations for multi-

ple qubits are not de-

fined and would re-

quire conversion to the

Dirac representation
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Boolean Data Because a measured

quantum bit returns

a single Boolean

datum, therefore it

should be possible to

simulate the system

in this manner. Gate

operations only have

2 options, a) flip the

boolean value or, b)

leave the boolean

value as is. Logic

gate operations like

Pauli-X (NOT) gate

are very simple (logi-

cally).

This method requires

a lot of analysis of

the quantum program

instructions to ensure

that the results are

accurate. The large

problem with this

method is that after

every gate, the qubit

must (essentially) be

measured in order to

quantify the change

to the Boolean.

Because of this sudo-

measurement chains

of gates are difficult

to employ. The ma-

jor issue with this

strategy is that it is

impossible to hold a

superposition state as

a qubit, therefore a

system which is built

using this approach

cannot prepare an

entanglement state.
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X, Y and Z Co-

ordinates

Using co-ordinates

allows for simple (π or

2π) rotations around

the sphere. This rep-

resentation removes

the requirement for

using imaginary num-

bers. Requires storage

of 3 real floating point

values to represent

any position.

The co-ordinate

system extends far be-

yond the Bloch sphere

therefore very easily

leading to invalid

co-ordinates which

do not appear on

the sphere. Complex

rotations around the

sphere are compli-

cated and typically

require conversion to

alternative represen-

tations.

α and β (Dirac repre-

sentation)

Extensive literature

exists, including

clearly defined Gates

and behaviors for

multiple qubit sys-

tem.

Difficult to represent

visually. Requires 2

complex floating point

values to represent

any position.

5.2.3 Simulated Qubit Types

This leads to a logical separation of stationary qubits [16] into an ‘open’

and an ‘entangled’ mode. ‘Open’ qubits are simply two complex floats that

GladeOS can perform operations on. If not performing entanglement op-

erations, a classical system with 8GB of Random Access Memory (RAM)

could easily address and manipulate millions of the ‘open’ qubits. For ex-

ample, each individual ‘open’ qubit is expected to consume approximately

48 Bytes of memory, therefore 20,800,000 qubits would consume 1 GB of

memory. ‘Entangled’ qubits become a separate logical flow of operations.
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Entangled qubits require a state array to perform any operations, given they

are now treated as a single unit. This “state array” (array of complex floats

e.g. [0f, 0f, 1√
2
f, 1√

2
f ]) does not have to be active in RAM until required.

As GladeOS reads in a known “controller” program, it can reconstruct the

entangled state at any given point, including historical operations. This state

array is both large and grows exponentially. In accordance with the oper-

ations of GladeOS, using complex floats, the memory consumption of the

entanglement operation is:

Memory = 2(Qubits+6) + (Qubits× 27) (5.2)

This equates to 33 entangled qubits requiring approximately 68 GB of

RAM to hold the state array. This state-on-demand leads to a known and

mitigatable issue with GladeOS - calculating this state array will take a

large amount of computing power. The benefit is that, for a system with

128GB of RAM, it is possible, in theory, to entangle up to approximate 500

qubits across multiple distinct sets of entangled qubits (allowing for system

overhead). The system is not capable of supporting a 34 qubit entangled

set, but it can support a 33 qubit entangled set and a 32 qubit entangled

set concurrently (as seen in Figure 5.1). The system can support multiple

distinct sets provided that each of the entanglement operations does not

contain more qubits than the descending series of applicable maximum (33,

32, 31...).

234

233 232

Figure 5.1: Example of the Relative Size Required by the Entangled Sets
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5.2.4 Global vs Local State array

Two methods were explored for managing the state of the quantum system.

The first option was to instantiate a global state array, assign qubits to pro-

grams and perform operations on the global state array. This approach had

the benefit of only managing a single instance of the state array, however sub-

dividing the state array made performing and checking operations complex

in addition to creating a major bottleneck for the simulator. The alternative

method of granting each program their own individual state array allows for

operations to be performed in parallel as well as greatly increasing the num-

ber of qubits that can be simulated (as explored in Section 5.2.3 and Figure

5.1).

5.2.5 State on Demand

This per-operation limit is not a common occurrence in quantum computer

simulators, due to concurrent program execution not being a standard re-

quirement or capability. This limit lends itself nicely to multi-user schedul-

ing testing, as each user can execute freely without co-ordinating with other

users. This is handled in GladeOS, by allowing the Scheduler to “know”

when it is executing “quantum operations” versus “preparing to perform”

said quantum operations. This distinction is invisible to the program exe-

cuting and is handled internally by GladeOS.

Importantly whilst this “Prep Time” is occurring, Quantum Phenomena,

like decoherence are in stasis. This split of program flow mitigates the ex-

tended time period of creating and calculating state arrays on low-powered

machines. Thus, maintaining the accuracy of the quantum simulation (e.g.

decoherence) by accounting for non-quantum simulator operations being per-

formed.



5. GladeOS Design 92

5.3 System Stack

This section covers the system stack of GladeOS. Figure 5.2 is a schematic

overview of the relationships between the different components of the stack.

CLA

Quantum

Program

Controller

Scheduler

Memory

Address

Translator

Memory

Qubit

Receiving

Port

Listener

Admin

Port

Listener

Send

Port

Listener

Receiving

Port

Handler

Admin

Port

Handler

Send

Port

Handler

Results

Queue

Parser

Logger

Settings

Work

Queue

Input/

Interface

Figure 5.2: GladeOS System Stack (Advanced). The White node indicates where
user input is entered into the system, Red nodes indicate networking
functionality while Black nodes indicate internal components of the
system.

5.3.1 Qubit

The Qubit class is designed to handle all single qubit facilities. It maintains

the α and β of the qubit (using Dirac Vector Notation). These data points

are acted upon by the logic gates which adjust the α and β accordingly. Also

included in this class is an independent timer which counts down until the α

and β are reset, thus simulating decoherence rendering the qubit erroneous.
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5.3.2 Memory

The Memory class handles all overreaching organising and managing of the

qubits as a block. This class treats the qubits as a set array from 0 through

to n and handles the interaction between programs and qubits.

5.3.3 Memory Address Translator

Because of the issues associated with observing quantum data the ‘memory

address translator’ was implemented for better management of the memory.

This class works similar to a page table in a classical computer OS, taking

the internal address used in the program (e.g. q[0]) and the program itself in

order to map that address to the correct qubit. This methodology allows all

programs to handle their internal addressing as normal (0..n) while ensuring

that the shared memory space remains properly segmented. This memory

address translator is only necessary because this system handles multiple

quantum programs at the same time (unlike other simulators currently avail-

able and a key advantage of GladeOS). This class can also be extended to test

a large number of memory allocation algorithms, including but not limited

to the Siraichi algorithm[104].

5.3.4 Scheduler

GladeOS extends the submission queue found in alternative systems and

allows the use of a variety of algorithms. The scheduler class is responsible

for taking the incoming quantum programs and allocating the execution time

to each program. This can be accomplished through a variety of algorithms,

including but not limited to:

• First In First Out (FIFO) [72], [74]

• Last In First Out (LIFO) [72]

• Priority Queue (PQ) [72], [74]

• Qbogo (random ordering) (proprietary)
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This class must also pay close attention to the decoherence time (discussed

in Section 5.7), waiting too long to execute a specific program can lead to

a need to restart the execution. It should be noted that monopolisation of

resources is a very real possibility for larger programs, especially if they fail

to complete in the time slots allocated. This can lead to starvation for all

other processes in the scheduler. Currently the system continues to execute

the process even if the decoherence time elapses, future work is needed to

fully address this issue. Upon completion the process is placed in the Results

Queue.

5.3.5 Controller

Critically, the controller class is responsible for handling a single quantum

program. This program which consists of an instruction list must also track

its progress and output. This controller is then cycled through according to

the scheduler and executes when it gains access to the processor unit. Once

the controller instance has been initialised, the system places the instance

into the work queue for immediate execution.

5.3.6 Networking Stack

This system is designed to function as a stand alone system and to interact

with users through the networking stack. This approach allows for a single

system to support multiple users at once. The different components of the

networking include:

Receiving The Receiving listener and handler is responsible for receiving

quantum programs from the user. The handler then submits the pro-

gram to the Parser before it is fully loaded as a controller in the work

queue. The only feedback returned to the user is an error message if it

fails to parse or a hash of the program if it succeeds.

Result The Result listener and handler is responsible for querying the results

queue and returning results to the user as a pair of hash and result.

After the results are returned they are removed from the system queue.
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Admin The Admin listener and handler is responsible for providing an up-

date of the system status which includes the number of results in the

queue. Continuously polling the Admin listener can be used to wait

until the number of results increases which indicates that a job has

been completed.

Together the networking components provide the various interactions that

the user would require from the system.

5.4 Command Line Arguments

As this system is designed as a test bench to gather raw data regarding

the performance of different components it has a large amount of flexibility

inbuilt. This flexibility is controlled through command line arguments which

are provided at initialisation, the list of commands is:

Table 5.2: Command Line Arguments

Command Description

--maxqubits or -m Changes the max number of ‘Open’ Qubits that

GladeOS will simulate. This disables all automatic

detection. Must be greater than -e if specified.

--maxentangles or -e Changes maximum number of ‘Entangled’ Qubits

that GladeOS will simulate. This disables all auto-

matic detection. Your system must have the Phys-

ical RAM available, or GladeOS will abort.

--controller or -c Expects a fully qualified path to a valid directory,

containing controller files.

--help or -h Shows this table

--clocks or -c Prints nanosecond scale clocks to screen

--maxthreads or -t Specifies number of processing threads for the net-

working thread pool
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Table 5.2: Command Line Arguments

Command Description

--recvport or -rp Specified port for GladeOS to listen on for new

jobs. Default: 7200

--sendport or -sp Specified port for GladeOS to listen on for all out-

bound traffic. Default: 5200

--adminport or -ap Specifies the port that GladeOS will use for all

admin status queries. Default: 6200

--logalltoconsole Enable printing all debug/trace information to

console, as well as disk.

--tracequbitops Enabled logging in Qubit ops and State-Array

tracing to disk

--logdir or -ld Directory for GladeOS to store its log-files. Must

be writable. Can be an aboslute or relative path.

Default: logs/

--logthreads or -lt Override the number of threads in the logging sys-

tem thread-pool. Default: 4

--logqueuedepth or -lq Override the number of messages that can be

stored in the log-buffer at a given time. Default:

10,000

--scheduler or -sm Set the Single-Threaded Controller Job Sched-

uler Mode. Valid Modes are: ‘FIFO’, ‘FILO’,

‘QBOGO’, ‘PQ’

--multischeduler or -

msm

Set the Multi-Threaded Controller Job Sched-

uler Mode. Valid Modes are: ‘FIFO’, ‘FILO’,

‘QBOGO’, ‘PQ’

--sleeptime or -st Set how many MILLI-seconds the scheduler will

sleep for when there is no work in the Queue. De-

fault: 250 MILLI-seconds. DO NOT set this too

low, or you will pin a CPU to 100 with all the

sleeps, and things WILL break.
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Table 5.2: Command Line Arguments

Command Description

--adminsecret Set the secret string required to access the Admin-

istration data of the system.

--sendsecret Set the secret string required to access the results

returned by the system.

5.5 Supported Gates

Quantum simulators (including Qiskit, Q# and Rigetti) utilise quantum logic

gates in order to construct quantum programs. The exact set of logic gates

can differ between simulators, though each supports an accepted universal

set of quantum logic gates. For this simulator the selected gates have been

chosen from the Quantum Computation and Quantum Information textbook

by Nielsen and Chuang [28] with additional rotation gates added to complete

the set.

5.5.1 Single qubit

The quantum logic gates which require a single qubit to execute are:

Table 5.3: Supported single qubit gates

Name GladeOS Com-

mand

Operation Matrix

Pauli X

(Not gate)

X(1) π rotation

around the X

axis

∣∣∣∣∣0 1

1 0

∣∣∣∣∣
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Table 5.3: Supported single qubit gates

Name GladeOS Com-

mand

Operation Matrix

Pauli Y Y(1) π rotation

around the Y

axis

∣∣∣∣∣0 −i
i 0

∣∣∣∣∣
Pauli Z Z(1) π rotation

around the Z

axis

∣∣∣∣∣1 0

0 −1

∣∣∣∣∣
Hadamard H(1) π

2
rotation

around the Y

axis and π rota-

tion around the

Z axis

1√
2

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣

Phase S(1) π
2

rotation

around the X

axis

∣∣∣∣∣1 0

0 i

∣∣∣∣∣
π
8

T(1) π
4

rotation

around the X

axis

∣∣∣∣∣1 0

0 ei
π
4

∣∣∣∣∣
Rotation X RX([10.041],6)

RX([θ],6)

Rotation around

X axis (angle

specified in de-

grees)

∣∣∣∣∣ cos( θ
2
) −isin( θ

2
)

−isin( θ
2
) cos( θ

2
)

∣∣∣∣∣
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Table 5.3: Supported single qubit gates

Name GladeOS Com-

mand

Operation Matrix

Rotation Y RY([236.461],6)

RY([θ],6)

Rotation around

Y axis (angle

specified in de-

grees)

∣∣∣∣∣cos( θ2) −sin( θ
2
)

sin( θ
2
) cos( θ

2
)

∣∣∣∣∣
Rotation Z RZ([56.025],6)

RZ([θ],6)

Rotation around

Z axis (angle

specified in de-

grees)

∣∣∣∣∣e−i θ
2 0

0 ei
θ
2

∣∣∣∣∣
Free Rota-

tion

R([10.041,236.461,

56.025],6)

R([θ,µ,ρ],6)

Rotation around

X, Y and Z axes

(angles specified

in degrees)

∣∣∣∣∣ cos( θ2) −isin( θ
2
)

−isin( θ
2
) cos( θ

2
)

∣∣∣∣∣
and∣∣∣∣∣cos(µ2 ) −sin(µ

2
)

sin(µ
2
) cos(µ

2
)

∣∣∣∣∣
and ∣∣∣∣∣e−i ρ

2 0

0 ei
ρ
2

∣∣∣∣∣

5.5.2 Multiple qubits

The other class of supported gates are gates which require multiple qubits to

enact. These gates are as follows:
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Table 5.4: Supported multiple qubit gates

Name GladeOS

Command

Input Operation Matrix

Controlled

Gate

C([1,2],X(3)) Control

qubit(s),

target qubit

Perform the specified

operation on the target

qubit if and only if the

control qubit(s) are |1⟩
. Supported operations

include Pauli X, Pauli

Y, Pauli Z or Hadamard

gates.

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 x1 x2

0 0 x3 x4

∣∣∣∣∣∣∣∣∣∣

The controlled gate can be extended for use with any of the supported

single qubit gates.

5.5.3 Proof of all gates

All of the single qubit gates have been built using the approved matrix imple-

mentations as specified in the book “Quantum Computation and Quantum

Information” [28]. To demonstrate this, each of the single qubit gates is in-

cluded below with the approved matrix [28] and the resulting state assuming

Equation 5.3 is the start state.

|φ⟩ = α |0⟩+ β |1⟩ (5.3)

5.5.3.1 Qubit class

The header of the qubit class (which stores the single qubit gates) from

GladeOS can be seen in Algorithm 5.1. It should be noted that the Alpha

and Beta values are stored as private variables within the qubit class and that

each of the single qubit gates are implemented as functions directly within

the qubit class (the specification for these gates can be found in Section 5.5).

This approach enables the system to manage each qubit independently and
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it only needs to combine multiple qubits when the gates require it.

� �
1 class Qubit {

2 private:

3 /// Alpha value of the qubit. Alpha|0> + beta|1>

4 std::complex <float > Alpha;

5

6 /// Beta value of the qubit. Alpha|0> + beta|1>

7 std::complex <float > Beta;

8

9 /// Decoherence time limit for the qubit.

10 std:: chrono ::duration <double , std::milli > decoherence

= std:: chrono :: seconds (500);

11

12 /// Asynchronous variable to facilitate the usage of

asynchronous timers.

13 std::future <bool > asyncFuture;

14

15 /// Unique ID value to differentiate qubits.

16 std:: uint16_t qubitID = 0;

17 public:

18 Qubit ();

19 ~Qubit ();

20 void UpdateQubitID(size_t ID);

21 [[ nodiscard ]] auto GetQubitID () const noexcept ->

size_t;

22

23 ///Gate Operations

24 void RotateX () noexcept;

25 void RotateY () noexcept;

26 void RotateZ () noexcept;

27 void RotatePhase () noexcept;

28 void RotatePiEight () noexcept;

29 void Hadamard () noexcept;

30 void FreeRotate(Instruction <std::uint16_t , float >::
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MultiAxisAngle theta) noexcept;

31 void RotateX(float theta) noexcept;

32 void RotateY(float theta) noexcept;

33 void RotateZ(float theta) noexcept;

34 static float rad2deg(float radians) noexcept;

35 static float deg2rad(float degree) noexcept;

36 auto Timer() noexcept -> bool;

37

38 [[ nodiscard ]] auto ZeroProb () const noexcept -> std::

complex <float >;

39 [[ nodiscard ]] auto OneProb () const noexcept -> std::

complex <float >;

40

41 /// Method to set the qubit to state |0>

42 /// @return Nothing

43 constexpr void SetZero () noexcept {

44 Alpha = std::complex <float >(1.0F, 0.0F);

45 Beta = std::complex <float >(0.0F, 0.0F);

46 }

47

48 /// Method to set the qubit to state |1>

49 /// @return Nothing

50 constexpr void SetOne () noexcept {

51 Alpha = std::complex <float >(0.0F, 0.0F);

52 Beta = std::complex <float >(1.0F, 0.0F);

53 }

54

55 /// Collapses the current state of the qubit into a

boolean output value

56 /// @return Boolean of resultant collapsed state.

57 auto Measure () noexcept -> bool;

58

59 /// Method to retrieve the (|1>) Beta values for the

qubit.

60 /// @return Beta
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61 [[ nodiscard ]] constexpr auto GetBeta () const noexcept

-> std::complex <float > { return Beta; };

62

63 /// Method to retrieve the (|0>) Alpha values for the

qubit.

64 /// @return Alpha

65 [[ nodiscard ]] constexpr auto GetAlpha () const noexcept

-> std::complex <float > { return Alpha; };

66 };� �
Algorithm 5.1: Example implementation of the Qubit Class

5.5.3.2 Pauli X

The Pauli X operation is described by Equation 5.4, the final state is shown

in Equation 5.5 with the accompanying code in Algorithm 5.2∣∣∣∣∣0 1

1 0

∣∣∣∣∣ (5.4)

|φ⟩ = β |0⟩+ α |1⟩ (5.5)� �
1 /// Qubit 180X rotation gate. Also known as the

Pauli -X gate or the not gate.

2 void Qubit :: RotateX () noexcept {

3 const std::complex <float > temp = Alpha;

4 Alpha = Beta;

5 Beta = temp;

6 }� �
Algorithm 5.2: A Pauli-X operation
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5.5.3.3 Pauli Y

The Pauli Y operation is described by Equation 5.6, the final state is shown

in Equation 5.7 with the accompanying code in Algorithm 5.3∣∣∣∣∣0 −i
i 0

∣∣∣∣∣ (5.6)

|φ⟩ = −βi |0⟩+ αi |1⟩ (5.7)� �
1 /// Qubit 180Y rotation gate. Also known as the Pauli -

Y gate.

2 void Qubit :: RotateY () noexcept {

3 const std::complex <float > temp = Alpha;

4 Alpha = Beta * (ComplexStatics :: comp_NegOne *

ComplexStatics :: comp_I);

5 Beta = temp * ComplexStatics :: comp_I;

6 }� �
Algorithm 5.3: A Pauli-Y operation

5.5.3.4 Pauli Z

The Pauli Z operation is described by Equation 5.8, the final state is shown

in Equation 5.9 with the accompanying code in Algorithm 5.4∣∣∣∣∣1 0

0 −1

∣∣∣∣∣ (5.8)

|φ⟩ = α |0⟩ − β |1⟩ (5.9)
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� �
1 /// Qubit 180Z rotation gate. Also known as the Pauli -

Z gate.

2 void Qubit :: RotateZ () noexcept {

3 Beta = Beta * (ComplexStatics :: comp_NegOne);

4 }� �
Algorithm 5.4: A Pauli-Z operation

5.5.3.5 Hadamard

The Hadamard operation is described by Equation 5.10, the final state is

shown in Equation 5.11 with the accompanying code in Algorithm 5.5

1√
2

∣∣∣∣∣1 1

1 −1

∣∣∣∣∣ (5.10)

|φ⟩ = α + β√
2

|0⟩+ α− β√
2

|1⟩ (5.11)� �
1 /// Qubit Hadamard rotation gate. Also known as coin -

flip gate or 90Y-Rotation and 180X-Rotation.

2 void Qubit :: Hadamard () noexcept {

3 const std::complex <float > temp = Alpha;

4 Alpha = (Alpha + Beta) * ComplexStatics :: comp_Onesqrt2

;

5 Beta = (temp - Beta) * ComplexStatics :: comp_Onesqrt2;

6 }� �
Algorithm 5.5: A Hadamard operation
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5.5.3.6 Phase

The Phase operation is described by Equation 5.12, the final state is shown

in Equation 5.13 with the accompanying code in Algorithm 5.6∣∣∣∣∣1 0

0 i

∣∣∣∣∣ (5.12)

|φ⟩ = α |0⟩+ iβ |1⟩ (5.13)� �
1 /// Qubit Phase rotation gate. Also known as Pi/4 gate

.

2 void Qubit :: RotatePhase () noexcept {

3 Beta = Beta * ComplexStatics :: comp_I;

4 }� �
Algorithm 5.6: A Phase operation

5.5.3.7 π
8

The π
8
operation is described by Equation 5.14, the final state is shown in

Equation 5.15 with the accompanying code in Algorithm 5.7∣∣∣∣∣1 0

0 ei
π
4

∣∣∣∣∣ (5.14)

|φ⟩ = α |0⟩+ βe
iπ
4 |1⟩ (5.15)� �

1 /// Qubit Phase/2 rotation gate. Also known as Pi/8

gate.

2 void Qubit :: RotatePiEight () noexcept {

3 Beta = Beta * exp(ComplexStatics :: comp_I * static_cast

<float >(0.785398163397448309616));}� �
Algorithm 5.7: A Pi/8 operation
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5.5.3.8 Rotation X

The Rotate X operation is described by Equation 5.16, the final state is

shown in Equation 5.17 with the accompanying code in Algorithm 5.8∣∣∣∣∣ cos( θ2) −isin( θ
2
)

−isin( θ
2
) cos( θ

2
)

∣∣∣∣∣ (5.16)

|φ⟩ = (cos(
θ

2
)α− isin(

θ

2
)β) |0⟩+ (−isin(θ

2
)α + cos(

θ

2
)β) |1⟩ (5.17)

� �
1 /// Free rotation on the X-Axis

2 /// @param theta Degree to rotate.

3 void Qubit :: RotateX(float theta) noexcept {

4 theta = deg2rad(theta);

5 const std::complex <float > temp = Alpha;

6 Alpha = (Alpha * (cosf(theta / 2.0F))) + (Beta * (

ComplexStatics :: comp_NegI * (sinf(theta / 2.0F))));

7 Beta = (temp * ComplexStatics :: comp_NegI * (sinf(theta

/ (2.0F)))) + (Beta * (cosf(theta / (2.0F))));}� �
Algorithm 5.8: A Rotate-X operation

5.5.3.9 Rotation Y

The Rotate Y operation is described by Equation 5.18, the final state is

shown in Equation 5.19 with the accompanying code in Algorithm 5.9∣∣∣∣∣cos( θ2) −sin( θ
2
)

sin( θ
2
) cos( θ

2
)

∣∣∣∣∣ (5.18)

|φ⟩ = (cos(
θ

2
)α− sin(

θ

2
)β) |0⟩+ (sin(

θ

2
)α + cos(

θ

2
)β) |1⟩ (5.19)
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� �
1 /// Free rotation on the Y-Axis

2 /// @param theta Degree to rotate.

3 void Qubit :: RotateY(float theta) noexcept {

4 theta = deg2rad(theta);

5 const std::complex <float > temp = Alpha;

6 Alpha = (Alpha * (cosf(theta / (2.0F)))) + (Beta * (

ComplexStatics :: comp_NegOne * sinf(theta / (2.0F))));

7 Beta = (temp * (sinf(theta / (2.0F)))) + (Beta * (cosf

(theta / (2.0F)))); }� �
Algorithm 5.9: A Rotate-Y operation

5.5.3.10 Rotation Z

The Rotate Z operation is described by Equation 5.20, the final state is shown

in Equation 5.21 with the accompanying code in Algorithm 5.10∣∣∣∣∣e−i θ
2 0

0 ei
θ
2

∣∣∣∣∣ (5.20)

|φ⟩ = e−i θ
2α |0⟩+ ei

θ
2β |1⟩ (5.21)� �

1 /// Free rotate on the Z-axis

2 /// @param theta degree to rotate the Z-axis.

3 void Qubit :: RotateZ(float theta) noexcept {

4 theta = deg2rad(theta);

5 Alpha = Alpha * (exp(( ComplexStatics :: comp_NegI * (

theta) / (2.0F))));

6 Beta = Beta * (exp(( ComplexStatics :: comp_I * (theta) /

(2.0F))));

7 }� �
Algorithm 5.10: A Rotate-Z operation
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5.5.3.11 Free Rotation

The Free Rotate operation is described by Equation 5.22, the final state is

shown in Equation 5.23 with the accompanying code in Algorithm 5.11∣∣∣∣∣ cos( θ2) −isin( θ
2
)

−isin( θ
2
) cos( θ

2
)

∣∣∣∣∣
∣∣∣∣∣cos(µ2 ) −sin(µ

2
)

sin(µ
2
) cos(µ

2
)

∣∣∣∣∣
∣∣∣∣∣e−i ρ

2 0

0 ei
ρ
2

∣∣∣∣∣ (5.22)

|φ⟩ =

(αe−i ρ
2 (cos(

θ

2
)cos(

µ

2
) + isin(

θ

2
)sin(

µ

2
)) + βe−i ρ

2 (−cos(θ
2
)sin(

µ

2
)− isin(

θ

2
)cos(

µ

2
))) |0⟩+

(αei
ρ
2 (−cos(θ

2
)sin(

µ

2
)− isin(

θ

2
)cos(

µ

2
)) + βei

ρ
2 (cos(

θ

2
)cos(

µ

2
) + isin(

θ

2
)sin(

µ

2
))) |1⟩

(5.23)� �
1 ///Free rotation on the X,Y and Z axis.

2 /// @param theta Rotation degree around all axis

3 void Qubit :: FreeRotate(Instruction <std::uint16_t , float

>:: MultiAxisAngle theta) noexcept {

4 RotateZ(theta [2]);

5 RotateY(theta [1]);

6 RotateX(theta [0]);

7 }� �
Algorithm 5.11: A Free Rotate operation

These single qubit gates have been extended into 2 qubit gates by im-

plementing a control gate variation. The control gate implementations are

designed to take any number of control bits, which are all required to be 1

before execution.

Following the use of a control gate the qubits in question are considered

entangled, and can no longer be modelled correctly by separating them. A

clear example of this is the four Bell States, which are generally used to

prove entanglement. Because of this performing manipulations on entangled
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states of n qubit length is a complicated endeavour. The following proof uses

a generic representation of a 3 qubit system but can be expanded to any

length.

5.5.3.12 Multiple Qubit logic proof

The three qubits used for this system are defined as:

|φ1⟩ = α |0⟩+ β |1⟩

|φ2⟩ = γ |0⟩+ δ |1⟩

|φ3⟩ = ϵ |0⟩+ ρ |1⟩

Their entangled qubit system is therefore represented as:

State =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αγϵ

αγρ

αδϵ

αδρ

βγϵ

βγρ

βδϵ

βδρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.24)

The main requirement to perform a single qubit operation is to determine the

paired states. Paired states are states which differ only by a single value. For

example State[0] = αγϵ and State[4] = βγϵ differ by a single value, namely

α and β. By identifying these paired states for the relevant qubit, the single

qubit operations can all be performed on the entangled states. To identify

the paired states one can use the following equation:

Pair = Index+ 2n−(q+1) (5.25)

Where Index is the current position in the state matrix (e.g. Equation

5.24), n is the number of distinct qubits that form the 2n state matrix. Lastly
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q is the relative position (read left to right) of the target qubit, starting at 0

and running through to n− 1. Using Equation 5.25 one can simply calculate

the state which is paired to the current state. For example in a state table

of n = 3 qubits state 0 is paired with:

Pair = 0 + 23−(0+1) = 0 + 22 = 4 (5.26)

In processing it is important to ensure that states are not processed twice.

Using the above example, when state 4 has been processed it is imperative

that states 4,5,6 and 7 be skipped. Failure to skip already processed states

will result in incorrect values. A simple recourse is to jump the same length

as the pair equation. For example, 3 is paired with 7, so jumping 4 states

will result in state 8. This method should, if applied correctly, ensure that

each state is only processed once. These operations will now be explored for

each gate.

5.5.3.13 Standard Code

The majority of the code for controlled operations is code for preparation.

The template is as follows:� �
1 void Memory :: ControlledMTPauliX(Controller &c, const std

::vector <uint16_t > qubitIndexes) {

2 //Temp Index for StateCalc

3 const auto target = c.instructions.at(c.

instructionIndex).getMTarget ();

4 std::vector <uint16_t > workingIndexes(qubitIndexes);

5

6 //Calc States

7 bool lastSpot = false;

8 if (std::find(workingIndexes.begin(), workingIndexes.

end(), target) == workingIndexes.end()) {

9 workingIndexes.emplace_back(target);

10 lastSpot = true;

11 }
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12 auto stateArrayIT = CalcAllTheMTThings(c,

workingIndexes);

13

14 const auto len = stateArrayIT ->first.size();

15 const auto iterIndex = std:: distance(stateArrayIT ->

first.begin (),

16 std::find(stateArrayIT ->first.begin(), stateArrayIT

->first.end(), target));

17

18 const auto value = static_cast <std::uint32_t >(std::pow

(2.0F, static_cast <float >(len - (iterIndex + 1UL))));

19

20 auto iter1 = stateArrayIT ->second.begin();// iterator

at the start of the state array

21 auto iter2 = stateArrayIT ->second.begin();// iterator

at the start of the state array

22 std:: advance(iter2 , value);//Move iter2 to the pair

value

23 auto iter3 = iter2;// iterator to indicate when the

system is going to start repeating

24 std::complex <float > tmp = 0.0F;// Create a temp value

to hold the value at iter1 for computation purposes.

25 bool performOP = false;

26 float Cindexvalue = 0;

27 std:: uint16_t CiterIndex = 0;

28 for (auto i = 0UL; i < std::pow (2.0F, len - 1); i++) {

29 performOP = true;

30 for (auto cqubit : qubitIndexes) {

31 //need to check that all the qubits are 1.

32 CiterIndex = std:: distance(stateArrayIT ->first.

begin (),

33 std::find(stateArrayIT ->first.begin(),

stateArrayIT ->first.end(), cqubit));

34

35 if (std::fmod(std:: floor(Cindexvalue / (std::pow
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(2.0F, static_cast <float >(len - (CiterIndex + 1UL))))

), 2.0F) == 0) {

36 performOP = false;

37 }

38 }

39 if (performOP) {

40 std:: iter_swap(iter1 , iter2);//swap the iterators

41 }

42 Cindexvalue ++;

43 std:: advance(iter1 , 1);

44 std:: advance(iter2 , 1);

45 if (iter3 == iter1) {

46 std:: advance(iter1 , value);

47 std:: advance(iter2 , value);

48 iter3 = iter2;

49 Cindexvalue = Cindexvalue + value;

50 }

51 }

52 }� �
Algorithm 5.12: A controlled operation template

The different part of each operation is found on line 39-41. That specific

if statement holds the code necessary to execute the operation, by changing

that segment of code the operation changes entirely. For simplicity (and

conciseness) the following snippets focus on this if statement.

5.5.3.14 Pauli X

Swap the paired states.� �
1 if (performOP) {

2 std:: iter_swap(iter1 , iter2);//swap the iterators

3 }� �
Algorithm 5.13: A controlled Pauli-X template
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5.5.3.15 Pauli Y

Multiply the first state by i. Multiply the second state −i. Swap the paired

states.� �
1 if (performOP) {

2 *iter1 *= ComplexStatics :: comp_NegI;

3 *iter2 *= ComplexStatics :: comp_I;

4 std:: iter_swap(iter1 , iter2);

5 }� �
Algorithm 5.14: A controlled Pauli-Y template

5.5.3.16 Pauli Z

Leave the first state alone. Multiply the second state by −1� �
1 if (performOP) {

2 *iter2 *= ComplexStatics :: comp_NegOne;

3 }� �
Algorithm 5.15: A controlled Pauli-Z template

5.5.3.17 Hadamard

This gate is the most complicated out of the available selection. Recall that

|φ1⟩ = α |0⟩+ β |1⟩ (5.27)

will be manipulated into

|φ1⟩ =
α + β√

2
|0⟩+ α− β√

2
|1⟩ (5.28)

Then by using the paired states State[0] = αγϵ and State[5] = βγϵ,

one can create (αγϵ+βγϵ)√
2

and by moving the like terms to the front of the

equation it results in γϵ( (α+β)√
2
). Which due to the commutive property of

multiplication is re-arranged to α+β√
2
γϵ which is the correct result for the first
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half of the paired state. The second half of Equation 5.28 follows the same

steps as the first half, however it alters the sign to result in α−β√
2
γϵ.� �

1 if (performOP) {

2 tmp = *iter1;

3 *iter1 = (tmp + *iter2) / static_cast <float >(sqrt

(2));

4 *iter2 = (tmp - *iter2) / static_cast <float >(sqrt

(2));

5 }� �
Algorithm 5.16: A controlled Hadamard template

5.5.3.18 Phase

Leave the first state alone. Multiply the second state by i� �
1 if (performOP) {

2 *iter2 *= ComplexStatics :: comp_I;

3 }� �
Algorithm 5.17: A controlled Phase template

5.5.3.19 Pi/8

Leave the first state alone. Multiply the second state by e
iπ
4� �

1 if (performOP) {

2 *iter1 *= std::exp(ComplexStatics :: comp_I *

static_cast <float >(0.785398163397448309616));

3 }� �
Algorithm 5.18: A controlled Pi/8 template
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5.5.3.20 Rotation X

Replace the first state with (cos( θ
2
)α − isin( θ

2
)β) and the second state with

−isin( θ
2
)α + cos( θ

2
)β.� �

1 if (performOP) {

2 if (iter1 == stateArrayIT ->second.end()) {

throw QException("BAD ITERATOR ACCESS!"); }

3 *iter1 = (* iter1 * (cosf(theta / 2.0F))) +

(* iter2 * (ComplexStatics :: comp_NegI * (sinf(theta /

2.0F))));

4 *iter2 = (* iter1 * ComplexStatics :: comp_NegI

* (sinf(theta / (2.0F)))) + (*iter2 * (cosf(theta /

(2.0F))));

5 }� �
Algorithm 5.19: A controlled Rotate-X operation

5.5.3.21 Rotation Y

Replace the first state with (cos( θ
2
)α − sin( θ

2
)β) and the second state with

sin( θ
2
)α + cos( θ

2
)β.� �

1 if (performOP) {

2 temp = *iter1;

3 *iter1 =

4 (* iter1 * (cosf(theta / (2.0F)))) +

(* iter2 * (ComplexStatics :: comp_NegOne * sinf(theta /

(2.0F))));

5 *iter2 = (temp * (sinf(theta / (2.0F)))) +

(* iter2 * (cosf(theta / (2.0F))));

6 }� �
Algorithm 5.20: A controlled Rotate-Y operation
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5.5.3.22 Rotation Z

Multiply both state 1 by e−i θ
2 and state 2 by ei

θ
2 . (Note the negative sign)� �

1 if (performOP) {

2 temp = *iter1;

3 *iter1 = *iter1 * (exp(( ComplexStatics ::

comp_NegI * (theta) / (2.0F))));

4 *iter2 = *iter2 * (exp(( ComplexStatics ::

comp_I * (theta) / (2.0F))));

5 }� �
Algorithm 5.21: A controlled Rotate-Z operation
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5.5.3.23 Free Rotation� �
1 if (performOP) {

2 // performing each rotation , the order doesn’

t matter it should end up at the same spot.

3 // Rotate X

4 temp = *iter1;

5 *iter1 = (* iter1 * (cosf(theta / 2.0F))) +

(* iter2 * (ComplexStatics :: comp_NegI * (sinf(theta /

2.0F))));

6 *iter2 = (temp * ComplexStatics :: comp_NegI *

(sinf(theta / (2.0F)))) + (*iter2 * (cosf(theta /

(2.0F))));

7

8 // Rotate Y

9 temp = *iter1;

10 *iter1 = (* iter1 * (cosf(lambda / (2.0F))))

+

11 (* iter2 * (ComplexStatics ::

comp_NegOne * sinf(lambda / (2.0F))));

12 *iter2 = (temp * (sinf(lambda / (2.0F)))) +

(* iter2 * (cosf(lambda / (2.0F))));

13

14 // Rotate Z

15 temp = *iter1;

16 *iter1 = *iter1 * (exp(( ComplexStatics ::

comp_NegI * (phi) / (2.0F))));

17 *iter2 = *iter2 * (exp(( ComplexStatics ::

comp_I * (phi) / (2.0F))));

18 }� �
Algorithm 5.22: A controlled Free Rotate operation
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Please note that each of the values prescribed above have been extracted

directly from their relative matrix. The other operation which can be per-

formed on an entangled set is a controlled operation. This is a much more

complicated operation opposed to the single gate operations explored above.

The control gate requires the ability to manipulate the state only when the

control qubit is in the |1⟩ state. While this is simple for a single qubit, it

gets more expensive with every qubit to parse through every state to check

whether it is in the correct state. To combat this expense, the Equation 5.29

was devised by building upon the equations created in Section 5.5.3.12 (proof

in Section 5.6). ⌊
Index

2n−(q+1)

⌋
%2 (5.29)

In Equation 5.29 Index is the current position in the state table (decimal),

n is the number of distinct qubits that form the 2n state table. q is the

relative position of the control qubit, starting at 0 before running through to

n− 1 and %2 applies the modulus division operation between the result and

the constant 2. To demonstrate the accuracy of this equation the following

example has been provided.

n = 3, q = 1

A three qubit state table appears as:

State =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αγϵ

αγρ

αδϵ

αδρ

βγϵ

βγρ

βδϵ

βδρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.30)
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Table 5.5: Example results for 3 qubit state, checking value of bit 1 (LtR)

Index State Equation Output
0 αγϵ ⌊0

2
⌋%2 0

1 αγρ ⌊1
2
⌋%2 0

2 αδϵ ⌊2
2
⌋%2 1

3 αδρ ⌊3
2
⌋%2 1

4 βγϵ ⌊4
2
⌋%2 0

5 βγρ ⌊5
2
⌋%2 0

6 βδϵ ⌊6
2
⌋%2 1

7 βδρ ⌊7
2
⌋%2 1

iterating over the state table with
⌊

Index
23−(1+1)

⌋
%2 =

⌊
Index

2

⌋
%2 yields the

following output:

State =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αγϵ

αγρ

αδϵ

αδρ

βγϵ

βγρ

βδϵ

βδρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.31)

Where indexes 2,3,6,7 are |1⟩, demonstrated in Table 5.5.

Remember that this is only useful in determining the states that the

chosen control bit is in |1⟩ state. Recursive tests can be used for multiple

control bits. To actually apply the controlled gate it is necessary to find

the paired states for the target qubit. This search is conducted using the

methodology presented in Equation 5.31.
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5.6 Logic

Any binary state is represented as a string of length n composed of “0” or

“1” ’s as the alphabet. A pair of binary states is defined as 2 binary states

which differ by exactly a single character. For example states 000 and 010 are

paired states which differ by the central character. To simplify this, binary

strings can be represented as A0B and A1B where A and B are binary strings

of their own. For example, if A = 101 and B = 010 then A0B = 1010010 and

A1B = 1011010 are paired states. The difficulty comes from determining the

pair state from the original state, that is, pair(B1) = B2.

An iteration of a binary string is defined as all possible values of a binary

state of length m given by 2m values. For example an iteration of m = 2 is

[00, 01, 10, 11]. The difference between A0B and A1B is a single iteration of B.

To determine the length of B one could parse the entire binary representation

and count the distance, alternatively it can be calculated by subtracting

the length of A + 1 (+1 to account for the differing character) from the

length of the full binary string. It may appear that we have simply moved

the problem, however the length of A is given by the index of the differing

character (supplied by the user). For example the state 01101 is of length

5, and with the index of the differing character as 3 (01101), A is 011 and

B is 1. The jump value to the paired state is calculated by Equation 5.32

where n is the length of the full state, and I is the index of the differing

character. Given a decimal value 13 = 01101 and an Index of 3 the pair

state is 13+ jumpV alue = 13+ length(B) = 13+2n−(I+1) = 13+25−(3+1) =

13 + 21 = 15.

length(B) = 2n−(I+1) (5.32)

This approach can be expanded to consider differing substrings instead

of differing characters. This expansion only requires altering the jump value

of n− (I + 1) to n− (I + C) where C is the length of the substring. Given

any decimal index L, L±jumpV alue returns the index where only the speci-

fied substring is different (moved 1 value along the iteration of the substring).
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An application of this jump value equation is to determine what the

specific value of the specified substring is for a particular decimal index. For

example, given decimal index 13 = 01101, substring index 2 of length 2 we

are retrieving 01101. This is demonstrated in equation 5.33⌊
Index

2n−(I+C)

⌋
%2C (5.33)

The Equation 5.33 is composed of 3 sections:

1. Count the number of iterations.

2. Convert that number to an integer.

3. Determine the substring value from the number.

Step 1 is achieved through the Index
2n−(I+C) the division returns how many

iterations of B have been completed. Step 2 is achieved by flooring the

returned division. Finally step 3 is achieved by performing a modulus division

which returns the decimal value. To complete the above example

⌊
Index

2n−(I+C)

⌋
%2C =

⌊
13

25−(2+2)

⌋
%22 =

⌊
13

25−4

⌋
%4 =

⌊
13

2

⌋
%4 = ⌊6.5⌋%4 = 2

(5.34)

The end result of the equation is the decimal value of 2, which in binary

is 10. Using the above equation it is simple to mathematically extract the

decimal representation of the specified binary substring from the decimal

representation of a binary string.
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5.7 Decoherence

Another issue which other simulators address in different ways is the issue

of decoherence. This is a phenomenon which affects all long term quantum

data. For this reason it has been built into the system. Because different

quantum hardware is known to have significantly different decoherence times

the system decoherence time of GladeOS is a variable which can be specified

at run time (it can also be randomly set).

Decoherence is the effect of interference on the quantum state [43]. An

example to explain this concept further is the release of a helium balloon.

If there is absolutely no interference then the balloon will rise straight up

until it cannot be seen anymore. However this is rarely the case, typically a

multitude of wind currents are swirling around which manipulate the balloon

and drag it off it’s original course. One could model these winds and then

account for them if they had enough accuracy and compute power, but as

this software is required to utilise commodity hardware this is not a valid

approach. Instead the implemented decoherence effect is to resolve the qubit

to the zero state at the end of the decoherence timer (simulating a hard pro-

jective measurement and reset of the value). Using this method allows for

the timer to be paused during preparation time (i.e. time associated with

setting up the simulator, but not the simulation itself), allowing for an ac-

curate representation while still maintaining minimal memory costs.

Given that the feature is not entirely accurate in the representation of

decoherence, it is expected that quantum program developers (users) should

not rely on the outcome of the decoherence timer for any part of their algo-

rithm or outcomes. Rather, they should instead develop their algorithms to

combat the decoherence.
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5.8 Virtual Memory Addressing

If given a specific hardware mapping and a program to map, the simple

approach is to hardcode the qubit id’s (physical memory address) into the

program. This approach allows the program to execute on this specific hard-

ware, and simplifies the processing required by the system to execute the

program. This approach can then be extended to encode a second process

to execute on an alternate set of qubits. Using this method requires a large

amount of planning time to fit the programs and is not scalable as quantum

computers continue to grow and develop. The problem with this approach is

that the program and their mapping is intertwined and therefore not trans-

latable to alternate quantum computers.

To ensure that the quantum programs can be executed on any hardware

map, an algorithm must be employed to map the program to a relevant

section in memory. Using this approach leaves the developer with a choice

to make, either:

• Translate the program in place and update the qubit ID’s with the

mapped qubits (Compilation), or

• Construct a ‘lookup table’ mapping the program qubit ID to the phys-

ical qubit ID, to be used when attempting to perform an operation

(Interpretation).

Both of these approaches will succeed and when there is only a single

active program it is largely an academic exercise to choose between them.

Translating in place will result in slightly faster execution times as the few

clock cycles spent perusing the lookup table (in the second approach) are

shaved off. However using the lookup table allows the original program to

be maintained in case of accidental corruption through the mapping process.

The lookup table approach is reminiscent of the virtual memory addressing

technique found in classical computing.
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When supporting multiple active programs at a single time the above

approaches need to be reconsidered. The lookup table approach still works,

however, as it is a single source of truth, it must be protected from concur-

rent table accesses and/or data corruption. This can be easily accomplished

by locking the table and only allowing a single program to use the table at

any point. This approach works, however it struggles due to constant lock

thrashing as every operation in each active program must wait on this lock.

The much better approach when supporting multiple active programs is

the ‘in place translation’. This approach is performed at the very end of

the memory allocation procedure, meaning that the only time active pro-

grams may need to wait is when they are being allocated. Due to concerns

over memory allocation corrupting the program, both the original instruction

string and the parsed components of the instruction are stored. The trans-

lation process alters the parsed components leaving the original instruction

string untouched.

5.9 Measurement

Measurement of a quantum system is a complex endeavour which is essential

for receiving results out of the system. Measurement of a single qubit (with

no entanglement) is a relatively simple task, perform a random number gen-

eration of 0 or 1 based on the α and β respectively. Random number genera-

tion is a known problem for standard computers, therefore to accomplish this

generation a Mersenne twister engine [112], [113] has been employed (Algo-

rithm 5.23). Measuring an entangled state however is a much more complex

operation. Standard practice for measuring a single bit from an entangled

set is to retrieve the probability of that state being a 0 or 1 and perform the

standard measurement, before renormalising the state array according to the

result [28], [43]. This approach can then be extended to measure each qubit

independently, thereby measuring the entire system. This approach works

well for single qubit measurement or measurement of small entangled states,

however for relatively large entangled states (> 10) this approach is com-
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putationally intensive and cannot be assisted by including more execution

threads.

� �
1 /// Collapses the current state of the qubit into a

boolean output value

2 /// @return Boolean of resultant collapsed state.

3 auto Qubit :: Measure () noexcept -> bool {

4 if (settings ->GetQubitTracing ()) { GLADE_INFO("Measure

, Before Op: Alpha: {0}, Beta: {1}", this ->Alpha ,

this ->Beta); }

5 // These data types all exist within <random >

6 // Mersenne Twister Engine; Must call the functor on an

existing std:: random_device in order to function ,

7 //will break if parenthesis balance is altered

8 std:: mt19937_64 e((std:: random_device ())());

9 // Compute bernoulli distribution with a probability of

true being the absolute value of beta

10 // where state = alpha |0> + beta |1>

11 std:: bernoulli_distribution d(pow(std::abs(Beta), 2));

12 return d(e);// Generate a single boolean from the

distribution

13 }� �
Algorithm 5.23: Measurement operation for a single qubit

The alternative approach for full state measurement that has not been

utilised in this simulator is to generate a random number (r) between a

lower bound (e.g. 0) and an upper bound ( e.g. 100 ), then summing the

relative probabilities (s) of each state until s > r whereby that state is

chosen. For example, in Table 5.6 the state table shows that all states have

equal probability (25%). After generating r, the value is compared to the

probabilities in the state table. If 0 < r <= 25 then the measured value

would be m = |00⟩, likewise if 25 < r <= 50 ∴ m = |01⟩, if 50 < r <= 75 ∴

m = |10⟩ and if 75 < r <= 100 ∴ m = |11⟩. As r = 80 (Equation 5.35),

the returned result is m = |11⟩. To manage the precision of this alternative
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method the boundary values could be adjusted and the random number could

move from an integer value to a decimal notation. This process reduces the

amount of computation being performed while still remaining true to the

core amplitudes of the state array. As the number of qubits in the state

array grows, the benefit of this approach continues to grow.

Table 5.6: Example State Table

State Probability

|00⟩ 25%

|10⟩ 25%

|01⟩ 25%

|11⟩ 25%

r = 80 ∴ m = |11⟩ (5.35)

5.10 Using GladeOS

Now that the system has been outlined, the last missing piece is how to inter-

act with this simulator. The simulator was designed to be a standalone server

program (similar to Rigetti [24]), where multiple users can interact with a

single instance of the program. This decision was made to allow for better

testing of multiple quantum programs and to prepare the system for future

research into multiple users. To allow for this, the preferred method for com-

municating with the program is through specified network ports. GladeOS

supports 3 specific ports:

• Receiving Port (Default: 7200). This port is used by users to transmit

quantum programs to the simulator to be executed.

• Admin Port (Default: 5200). This port is used by users to query the

current status of the simulator.
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• Send Port (Default: 6200). This port is used by users to receive output

from the simulator.

These ports each have a very specific task, and are adjustable using the com-

mand line arguments found in Table 5.4. Using network ports to facilitate

communication allows for users to create custom front end applications to

best suit their audience. In the interest of security, the Admin Port and the

Send Port require the user to authenticate before data will be transmitted.

This authentication takes the form of a ‘secret’ string which must be trans-

mitted to the system. These secrets can be left as default, or set to a custom

secret through command line arguments.

5.10.1 Program structure

Quantum programs are written according to the language specification out-

lined in Table 5.5.1 and 5.4. Programs are written with a single gate on each

line, with an ‘END’ on the final line (as seen in Listing 5.24). Anything after

the ‘END’ is treated as superfluous and ignored.� �
1 X(0)

2 Y(1)

3 H(2)

4 X(2)

5 Z(2)

6 X(1)

7 END� �
Algorithm 5.24: Example Quantum Program

Programs are added to the system queue by transmitting them to the

Receiving Port. The system parses the program and immediately adds it to

the queue for execution as soon as possible. When the program is submitted,

assuming everything is copacetic, the system will return a hash of the pro-

gram text. This hash is used to identify the program later and is provided

along with the eventual result by the Send Port e.g. hash:result.
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5.10.2 Interacting with GladeOS using Python

The majority of the tests performed throughout this Thesis take advantage

of the simplicity of python networking. In Algorithm 5.25, python methods

have been provided which access each of the 3 ports. The provided methods

allow for use through the requests library, or standard http networking.� �
1 ADMIN_URL = ’http :// localhost :5200 ’

2 CONTROLLER_URL = ’http :// localhost :6200’

3 RESULTS_URL = ’http :// localhost :7200 ’

4 ADMIN_SECRET = "REDACTED"

5 RESULTS_SECRET = "REDACTED2"

6

7 def get_results ():

8 results = requests.post(url=RESULTS_URL , data=

RESULTS_SECRET)

9 time.sleep (5)

10 return results.json()

11

12 def get_jobs_in_progress ():

13 admin = requests.post(url=ADMIN_URL , data=

ADMIN_SECRET)

14 time.sleep (5)

15 return admin.json()["JobsInProgress"]

16

17 def enqueue_new_job(controller):

18 controller = requests.post(url=CONTROLLER_URL , data=

controller)

19 time.sleep (5)

20 if controller.json()["EnqueState"] != 1:

21 return False

22 return True

23

24 def get_results_http ():

25 conn = http.client.HTTPConnection("localhost" ,7200)

26 payload = RESULTS_SECRET
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27 conn.request("POST", "undefined", payload)

28 res = conn.getresponse ()

29 time.sleep (5)

30 data = res.read()

31 data = data.decode(’utf -8’)

32 data = json.loads(data)

33 conn.close()

34 return data

35

36 def get_jobs_in_progress_http ():

37 conn = http.client.HTTPConnection("localhost" ,5200)

38 payload = ADMIN_SECRET

39 conn.request("POST", "undefined", payload)

40 res = conn.getresponse ()

41 time.sleep (5)

42 data = res.read()

43 data = data.decode(’utf -8’)

44 data = json.loads(data)

45 return data["JobsInProgress"]

46

47 def enqueue_new_job_http(controller):

48 conn = http.client.HTTPConnection("localhost" ,6200)

49 payload = controller

50 conn.request("POST", "undefined", payload)

51 res = conn.getresponse ()

52 data = res.read()

53 data = data.decode(’utf -8’)

54 data = json.loads(data)

55 time.sleep (0.5)

56 if data["EnqueState"] != 1:

57 return False

58 return True� �
Algorithm 5.25: Example interaction with GladeOS
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5.11 Chapter Summary

The server program GladeOS works according to the details supplied above.

GladeOS incorporates 10 single qubit gates and all again as multi-qubit vari-

ations. This required the development and implementation of unique mathe-

matics (found in Section 5.6) in order to properly apply the gates and perform

the relevant tasks. With the implementation of GladeOS (Research Question

3B), this Thesis can now explore the effect of multiprocessing in a quantum

computer.

The system explored above in exhaustive detail is included to provide

substance behind the results featured in Chapter 6. The development of

GladeOS provides practical and foundational software on which the results

of the later chapters can be obtained. This system was also meticulously

outlined to ensure that any faults in the logic or mathematics of the system

could be found, thus assisting in validating the later results.



6. ANALYSIS OF GLADEOS

Now that the base system (Chapter 4) has been outlined and the implemen-

tation (Chapter 5) has been presented, the analysis of these systems can

be presented. This analysis focuses on 4 areas of performance (Research

Question 3B):

1. Algorithm efficiency

2. Comparison with existing solutions

3. Accuracy tests

4. Design and Creation methodology evaluation

Section 6.1 reviews the different components of the presented systems.

This review investigates the different algorithmic approaches and the perfor-

mance of each. This review ends with a recommendation of which algorithm

to employ for each of the identified bottlenecks.

Section 6.2 moves beyond the system presented within this Thesis and

compares the performance to the other commercially available simulators.

These simulators are tested by providing a library of quantum programs

to be executed. This execution is tracked in terms of time required and in

terms of memory usage. The accuracy of the simulators is not tested because

the commercial simulators are accepted to be accurate and the accuracy of

GladeOS is tested in Section 6.3.

Section 6.3 demonstrates the accuracy of the GladeOS implementation

by performing a Chi-Squared test on each of the base gates (and some other

small programs). Demonstrating that a quantum simulator is accurate could
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be an entire extra research project due to the probabilistic nature of the sim-

ulators. Because of this the tests work by calculating the expected output

for the provided programs and comparing that probability distribution to

the results of executing that program 10000 times.

Finally, Section 6.4 reviews the systems presented in Chapters 4 and 5

and discusses in this Chapter against the criteria outlined in Chapter 3. This

review considers the system from the many facets of the Design and Cre-

ation methodology. Together with the other sections these reviews present

an overview of the performance of the system and provide a solution to Re-

search Question 3B.

6.1 Algorithm efficiency

Built using a modular approach, the base design of the operating system

is established in Chapter 4 and implemented in Chapter 5. This modular

approach outlines the goal of each segment, with the actual algorithmic im-

plementation up for debate. This modular approach highlights the main

areas which can greatly impact the performance of the system. These areas

are:

1. Quantum program mapping

2. Maximal clique detection

3. Program Scheduler

These bottlenecks are each discussed below, these discussions utilise graph

theory approaches to ensure the outcomes remain applicable to the Glade OS

system outlined in Chapter 4. Improvements in any of the the above areas

will yield improvements to the entire system.
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6.1.1 Quantum Program Mapping

The example provided in Section 4.4 takes the program requirements as an

activity graph (Figure 4.4) and allocates available resources from the con-

nectivity graph (Figure 4.3) in the form of a mapping (Figures 4.5, 4.6 and

4.7). Regardless of whether the quantum computer is restricted to executing

a single quantum program or seeking to execute multiple quantum programs

simultaneously, all programs must be mapped to qubits. This problem is

similar to the register allocation problem found in classical computing where

a finite set of resources are available for use and must be coordinated in

order to complete the intent of the program. Currently the only available

resources are qubits which are intrinsically linked to the hardware and have

limited interactions between them.

In order to map a quantum program onto the hardware we need to lo-

cate a copy of the activity graph within the connectivity graph (see Section

4.4). Locating (isomorphic subgraph) copies of the activity graph within the

connectivity graph is an example of the subgraph isomorphism NP-problem.

Isomorphic graphs are graphs which are structurally the same, the position

of the nodes is irrelevant and what matters is the connections between them.

The graphs found in Figure 6.1 are an example of this isomorphism. The

subgraph component of subgraph isomorphism relates to searching for Graph

G1 inside of Graph G2 where G1 ⊆ G2

It is not always possible to perfectly fit G1 inside of G2. In the case

where G1 > G2 then the G1 cannot be found within that hardware, due to

insufficient resources. In the other case where G1 ≤ G2 then if G1 cannot be

found within G2, then G1 can normally be carefully edited in order to fit the

hardware graph. These edits typically take the form of a SWAP function

switching the state of two qubits (Figure 6.2)

This operation increases the number of logic gates and the time required

which raises the error rate of the program. Inaccurate logic gates can result in

errors propagating through the computation, therefore including more gates
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Figure 6.1: Isomorphic Arrangements of the Same Distinct Graph

|ψ⟩ |Ψ⟩

|Ψ⟩ |ψ⟩

Figure 6.2: SWAP Quantum Circuit

will inevitably result in less accurate computations. Furthermore, the effect

of random noise on the system which over time results in system decoherence

and unusable results must also be considered. In Noisy Intermediate-Scale

Quantum (NISQ) technologies error rates are naturally high and excessive

swaps will only serve to raise the error rate of the program [21], [22]. There

are numerous mapping algorithms, though most tend to suffer from restrict-

ing themselves to only a specific device or set of devices, or excessively poor

performance in worst case (Table 6.1). The Siraichi algorithm found in Sec-

tion 6.1.1.1, was chosen due to its generality, consistent performance and

suitability for extension.
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6.1.1.1 Siraichi Algorithm summary

The full details of this algorithm can be found in “Qubit Allocation as a

combination of subgraph isomorphism and token swapping” [104], for com-

pleteness/simplicity a short summary has been included here. The Siraichi

algorithm steps through the quantum program and considers all possible

mappings simultaneously in order to find the lowest cost. The cost is defined

according to the amount of swap and redirection operations the mapping

uses and the extra operations required to transform between mappings. If

the quantum program consists of a single connection, then Figure 6.3 shows

all the possible edges that can be mapped.
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Figure 6.3: All 6 Possible Edges for A → B

The Siraichi algorithm [104] has three options when considering a con-

nection A → B:
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1. If both the qubits (A and B) are unknown, then create a seperate

mapping for every available edge in the hardware graph. (Fig. 6.3)

2. If one of the qubits (A or B) is unknown, then map the unknown qubit

in terms of the known qubit

3. If both qubits are known (A and B) and there is an edge between them,

then do nothing.

If at any point the unknown qubits are unable to be mapped or if an

edge does not exist between two known qubits, then the mapping can be

considered invalid. If all mappings are considered invalid, then the current

mappings are saved and the next connection should be considered as a brand

new mapping. This cycle repeats until the entire program has been mapped,

then the algorithm reviews the different saved mappings and investigates the

cost to transform from Mapping M1 →M2 through SWAP operations.

Alternative algorithms do exist, however the analysis presented in [104]

and Table 6.1 demonstrates the superiority of this algorithm. New algorithms

may further improve upon the performance of [104], however for now it is

selected as the default model. In Table 6.1 a ✓ indicates that the algorithm

has this flaw, while a ✗ indicates the opposite.

Table 6.1: Mapping algorithm comparison, different algorithms suffer from similar
problems.

Algorithm Hardware Restric-

tions

Swaps

only

Poor Runtime Com-

plexity

Shafei [103] ✓ ✓ ✓

Gerard [114] ✗ ✓ ✗

Siraichi [104] ✗ ✗ ✗

Lao [115] ✗ ✓ ✓
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6.1.2 Maximal Clique Algorithms

A core component of the operating system presented in Chapter 4 is the

ability to determine parallelisable quantum programs through the use of the

dependency graph. This component relies on the ability to determine a max-

imal clique from within the dependency graph. To enhance this discussion,

a few terms need to be defined.

A clique is a set of nodes within a graph, which are all directly connected

to each other by edges (a distance of 1). Cliques can be made of any size or

shape, the only requirement is that every node must be directly connected

to every other node in the clique. An example of a set of nodes which do not

form a clique can be found in Figure 6.4a. An example of a valid clique can

be found in Figure 6.4b.

A maximal clique is a set of nodes within a graph that form a clique and

cannot be extended to include any other nodes. An example of this is the

difference between Figure 6.4b and Figure 6.4c. Figure 6.4b is a valid clique,

however it can be extended further to include Node 4. After including Node

4, there are no more nodes which can be added to the clique and still form

a valid clique.

Amaximum clique is the largest possible clique which can be found within

the given graph. A maximum clique is by definition a maximal clique, as if

the clique could be extended any further then it would not be the maximum

clique.
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Figure 6.4: Clique Examples

To find a clique within a graph is a relatively simple task by simply

building the clique 1 node at a time and checking the edges each time. Once

a clique has been identified it can then be checked as to whether it can be

extended in order to confirm it as a maximal clique. There is currently no

fast algorithm to locate a maximum clique [116], often requiring searching

almost the entire graph in order to confirm that the maximal clique they

identified is the maximum clique.
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6.1.2.1 Original Algorithm

The original algorithm is designed to mimic the current implementation of

executing one program at a time. To accomplish this the algorithm reads

the vertices from the edge list in the order they are specified. Figure 6.5

demonstrates the execution of the algorithm, with the following key:

• Black and White nodes are uncatagorised

• Red nodes are selected

• Gray nodes are previosuly selected nodes not able to be selected again.

and the legend for Figure 6.5 is contained in Psuedocode 1 where each step

results in a single node that is ready for further processing.

Psuedocode 1 Original Example Legend

1: no nodes are selected.
2: node 1 is selected and processed.
3: node 1 is deselected and node 2 is selected.
4: node 2 is deselected and node 3 is selected.
5: node 3 is deselected and node 4 is selected.
6: node 4 is deselected and node 5 is selected.
7: node 5 is deselected and node 6 is selected.
8: node 6 is deselected and node 7 is selected.

The algorithm is O(n) time-space complexity, essentially just a simple

loop stepping through each node one at a time (according to lexicographical

ordering). There is limited calculation in this algorithm, thereby acting as

the control group for this analysis.
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Figure 6.5: Original (Brute Force) Algorithm walkthrough. Nodes are identified
in lexicographical order and processed one at a time. Black and white
nodes are uncatagorised, red nodes are selected, gray nodes are previ-
ously selected nodes not able to be selected again.
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� �
1

2 def runAlgo3(graphs , file):

3 print("Algorithm 3")

4 print("An emulation of the existing architecture")

5 resultList = []

6 for graph in graphs:

7 cliques = []

8 clique = []

9 controller = readGraphFromFile(graph)

10 while not controller.fully_allocated ():

11 source = controller.get_source ()

12 clique.append(source.id)

13 source.allocate_vertex ()

14 cliques.append(list(clique))

15 clique.clear ()

16 resultList.append(list(cliques))

17

18 return resultList

19

20 � �
Algorithm 6.1: Original Algorithm

6.1.2.2 Greedy Local Search - Set

This algorithm searches from the known node out, using only the edges from

that known node as the search space. This approach searches the graph ver-

tex list in lexicographical ordering, meaning that it favours cliques containing

nodes earlier in the ordering. This also means that this approach may not

find the maximum graph, but it will provide a maximal clique (dependent on

what order the nodes are interacted with). The algorithm has been demon-

strated in Figure 6.6, where Figures 6.6b to 6.6h demonstrate constructing

the first clique from the original graph, with the following key:
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• Black and White nodes are uncatagorised

• Yellow nodes are available options

• Red nodes are selected

• Gray nodes do not fit within the clique

and the legend for Figure 6.6 is contained in Psuedocode 2 which results in

a clique of size 5 {1, 2, 3, 4, 7} ready for further processing.

Psuedocode 2 Greedy Local Search Example Legend

1: Original Graph.
2: Node 1 is chosen (according to lexicographical ordering). Edges from

node 1 are illuminated.
3: Node 1 has been selected, following the edges node 2 is selected and

added to the clique.
4: Following the lexicorgaphical ordering of the nodes directly connected to

the chosen node (#1), node 3 is assessed. As node 3 is directly connected
to all nodes in the existing clique, it as added to the clique.

5: Following the lexicorgaphical ordering of the nodes directly connected to
the chosen node (#1), node 4 is assessed. As node 4 is directly connected
to all nodes in the existing clique, it as added to the clique.

6: Following the lexicographical ordering of the nodes directly connected
to the chosen node (#1), node 5 is assessed. As node 5 is not directly
connected to all nodes in the existing clique, it as left out of the clique.

7: Following the lexicorgaphical ordering of the nodes directly connected
to the chosen node (#1), node 6 is assessed. As node 6 is not directly
connected to all nodes in the existing clique, it as left out of the clique.

8: Following the lexicorgaphical ordering of the nodes directly connected to
the chosen node (#1), node 7 is assessed. As node 7 is directly connected
to all nodes in the existing clique, it as added to the clique.

A python implementation has also been provided in listing 6.2, with a

time-space complexity of O(n2).



6. Analysis of GladeOS 144

1

2

3 4

5

67

(a)

1

2

3 4

5

67

(b)

1

2

3 4

5

67

(c)

1

2

3 4

5

67

(d)

1

2

3 4

5

67

(e)

1

2

3 4

5

67

(f)

1

2

3 4

5

67

(g)

1

2

3 4

5

67

(h)

Figure 6.6: Greedy Set Algorithm Walkthrough. This algorithm processes nodes
in cliques, each clique is generated by stepping through each node in
a lexicographical order. Once chosen, the Nodes edges are stepped
through adding new nodes to the clique one at a time, skipping past
nodes which don’t fit. Black and White nodes are uncatagorised, Yel-
low nodes are available options, Red nodes are selected and Gray nodes
do not fit within the clique.
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� �
1

2 def runAlgo1(graphs , file):

3 print("Ego Network Approach #1")

4 print("This approach only considers the ego network

from the specified node in a set order ,")

5 print("this reduces the search space making the

clique detection faster")

6

7 # a data structure to hold the clique

8 resultList = []

9

10 for graph in graphs:

11 # create the graph from the file

12 controller = readGraphFromFile(graph)

13 # create the required data structures

14 # to store the nodes that compose the clique

15 clique = []

16 # to store the ID of each node in clique (in the

same order)

17 cliqueIDs = []

18 # to store the list of cliques which cover the

graph

19 cliques = []

20 while not controller.fully_allocated ():

21 # specify that the scheduled node must be

included

22 source = controller.get_source ()

23 clique.append(source)

24 cliqueIDs.append(source.get_id ())

25 # Core algorithm

26 # we can ignore the nodes which are not part

of the ego network from the source. So we step

through all the connections from the scheduled node.

27 for possible in source.get_connections ():
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28 # a variable to check against to confirm

that all the members of the clique are neighbours

29 # it is reset here for each run.

30 allneighbours = True

31 # if the node is already allocated then

we can ignore it.

32 if possible.is_allocated ():

33 allneighbours = False

34 if allneighbours:

35 for checkagainst in clique:

36 # if any member of the clique is

not connected to the others then it is not a clique

37 if checkagainst not in possible.

get_connections ():

38 allneighbours = False

39 # if all the neighbours is satisfied

then add the node to the clique.

40 if allneighbours:

41 clique.append(possible)

42 cliqueIDs.append(possible.get_id ())

43 # Mark each node in the clique as allocated

44 for vertices in clique:

45 vertices.allocate_vertex ()

46 # append the clique to the list and reset

the other lists

47 cliques.append(list(cliqueIDs))

48 clique.clear ()

49 cliqueIDs.clear ()

50 resultList.append(list(cliques))

51 return resultList

52

53 � �
Algorithm 6.2: Greedy local search - set algorithm
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6.1.2.3 Greedy Local Search - Random

This algorithm searches from the known node out, using only the edges from

that known node as the search space. This approach searches the graph ver-

tex list in random ordering, meaning that it attempts to find the optimal

cliques instead of favouring lexicographical ordering. This alteration could

also result in suboptimal cliques which would have been avoided by consider-

ing the nodes according to lexicographical ordering. This also means that this

approach may not find the maximum clique, but it will provide a maximal

clique. The algorithm has been demonstrated in Figure 6.7, where Figures

6.7b to 6.7h demonstrate constructing the first clique from the original graph,

with the following key:

• Black and White nodes are uncatagorised

• Yellow nodes are available options

• Red nodes are selected

• Gray nodes do not fit within the clique

and the legend for Figure 6.7 is contained in Psuedocode 3 which results in

a clique of size 5 {1, 2, 3, 4, 7} ready for further processing.

Psuedocode 3 Greedy Local Random Search Example Legend

1: Original Graph
2: Node 1 is chosen and nodes 2,3,4,5,6 and 7 are highlighted as possibilities.
3: Node 3 is added to the chosen clique, leaving nodes 2,4,5,6 and 7 as

possibilities.
4: Node 6 is tested, found to be invalid and removed from the group of

possibilities.
5: Node 7 is added to the chosen clique leaving 2,4 and 5 as possibilities.
6: Node 4 is added to the chosen clique leaving 2 and 5 as possibilities.
7: Node 5 is tested, found to be invalid and removed from the group of

possibilities.
8: Node 2 is added to the chosen clique leaving no further possibilities, thus

ending the algorithm.
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A Python implementation has also been provided in Algorithm 6.3, with

a time-space complexity of O(n(n+n)) = O(n2) (assuming that the random

shuffle [117] used to select a node performs similar to the Fisher-Yates shuffle

[118], [119] that was used in this code, alternative algorithms will result in

alternative complexities).
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Figure 6.7: Greedy Random Algorithm Walkthrough.
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� �
1

2 def runAlgo2(graphs , file):

3 print("Ego Network Approach #2")

4 print("This approach only considers the ego network

from the specified node in a random order ,")

5 print("this reduces the search space making the

clique detection faster")

6 print("")

7 resultList = []

8 for graph in graphs:

9 controller = readGraphFromFile(graph)

10 clique = []

11 clique2 = []

12 cliques = []

13 while not controller.fully_allocated ():

14 # specify that the scheduled node must be

included

15 source = controller.get_source ()

16 clique.append(source)

17 clique2.append(source.get_id ())

18 forLoopOutput = source.

get_connections_random ()

19 # Core algorithm

20 # we can ignore the nodes which are not part

of the ego network from the source.

21 for possible in forLoopOutput:

22 # a variable to check against to confirm

that all the members of the clique are neighbours

23 # it is reset here for each run.

24 allneighbours = True

25 if possible [0]. is_allocated ():

26 allneighbours = False

27 if allneighbours:

28 for checkagainst in clique:
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29 # if any member of the clique is

not connected to the others then it is not a clique

30 if checkagainst not in possible

[0]. get_connections ():

31 allneighbours = False

32

33 # if all the neighbours is satisfied

then add the node to the clique.

34 if allneighbours:

35 clique.append(possible [0])

36 clique2.append(possible [0]. get_id ())

37

38 # print the clique that was found

39 for vertices in clique:

40 vertices.allocate_vertex ()

41 cliques.append(list(clique2))

42 clique.clear ()

43 clique2.clear()

44 resultList.append(list(cliques))

45

46 return resultList

47

48 � �
Algorithm 6.3: Greedy local search - random algorithm

6.1.2.4 Maximum Graph Search

In opposition to the previous algorithms, this approach is guaranteed to find

a maximum clique. This is accomplished by generating the powerset (all

possible combinations of nodes) and determining all the cliques within the

powerset. Then searching from the bottom (largest set possible AKA set of

all nodes) until a set is found that is a clique and contains the known node.

Because this approach needs to generate all possible cliques it requires much

more upfront processing, though is guaranteed to return the maximum clique
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at all times. The implementation found in Algorithm 6.4 features a time-

space complexity of O(n3) which exceeds the other algorithms by an entire

power. The performance of this algorithm is based largely on two factors, the

number of nodes in the graph and the density of the graph. The more nodes

present in the graph result in a larger powerset, thereby requiring more time

to step through that set. As the density of the graph increases the number of

powerset elements which double as a valid clique will increase and therefore

require storing, overall requiring more space.

� �
1 def runAlgo4(graphs , file):

2 print("Algorithm 4")

3 print("Determine all the maximal cliques , then

select the largest clique that contains the chosen

vertex")

4 # find the biggest clique (to maximise the number of

programs)

5 # if the clique contains the specified node then

great ,

6 # else the clique can be disregarded and restart the

procedure.

7 resultList = []

8 for graph in graphs:

9 controller = readGraphFromFile(graph)

10 confirmedcliques = []

11 cliques = []

12 # need some code to generate all the possible

combinations

13 for subset in powerset(controller.get_vertices ()

):

14 clique = True

15 # need some code to check that the

combination is a clique

16 for index in range(len(subset)):

17 for index2 in range(len(subset)):
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18 if index == index2:

19 continue

20 if controller.get_vertex(subset[

index ]) not in controller.get_vertex(

21 subset[index2 ]).

get_connections ():

22 clique = False

23 if clique:

24 cliques.append(subset)

25 while not controller.fully_allocated ():

26 confirmed = []

27 source = controller.get_source ()

28 # need to confirm that the clique contains

the necessary vertex.

29 for possible in cliques:

30 confirmMe = True

31 # print(possible)

32 if source.id not in possible:

33 confirmMe = False

34 for node in possible:

35 if controller.get_vertex(node).

is_allocated ():

36 confirmMe = False

37 if confirmMe:

38 confirmed.append(possible)

39 for V in confirmed[len(confirmed) -1]:

40 controller.get_vertex(V).allocate_vertex

()

41 confirmedcliques.append(confirmed[len(

confirmed) -1])

42 resultList.append(list(confirmedcliques))

43

44 return resultList� �
Algorithm 6.4: Maximum Graph Algorithm



6. Analysis of GladeOS 154

6.1.2.5 Data Set Details

In order to assess Algorithms 6.1, 6.2, 6.3 and 6.4 a series of trials is required.

Because it is difficult to accurately identify the exact scenario that the algo-

rithms will run on multiple test data sets have been established. The test files

are designed to work with 2 main parameters: Nodes and Density. Nodes is

defined as the number of nodes in the data set and Density is defined as the

percentage of edges between the nodes. For example if we have 10 Nodes and

100% Density then we have 10 Nodes with edges between all of them (fully

connected graph).

The Nodes can be found in one of five sets:

• Nodes 10-50 (small nodes)

• Nodes 50-100 (large nodes)

• Nodes 10-100 (average nodes)

• Nodes 100-1000 (extra large nodes)

• Nodes 1000-10000 (extra extra large nodes)

The Density can be found in one of three sets:

• Density 10-50 (small density)

• Density 50-100 (large density)

• Density 10-100 (average density)

To best compare the above algorithms, the data sets outlined in Table

6.2 were generated with each composed of 100 files (1 program per file). The

data sets vary in number of nodes and the density of edges. The number

of nodes varies because the number of quantum programs in the queue is

expected to vary. Similarly because an edge indicates programs which can

be run in parallel, the density of edges is expected to vary over the lifetime

of the system.
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Table 6.2: Data Set details

Data Set Nodes Density
SNSD 10-50 10-50
SNLD 10-50 50-100
SNAD 10-50 10-100
LNSD 50-100 10-50
LNLD 50-100 50-100
LNAD 50-100 10-100
ANSD 10-100 10-50
ANLD 10-100 50-100
ANAD 10-100 10-100
XLNSD 100-1000 10-50
XLNLD 100-1000 50-100
XLNAD 100-1000 10-100

6.1.2.6 Data Results

The purpose of these experiments are not to determine the best algorithm for

a specific use case, rather an attempt to determine a general best practice.

Because the goal is to review the results generally, the results have been

averaged across the entire data set. The results are composed of two parts,

cliques which count the average number of cliques found and size which

marks the average size of each clique.

Note: to appropriately simulate the ego random algorithm the algorithm

is executed 10 times and then averaged. This average value is used due to the

fluctuations in the results due to the random shuffle. The other algorithms

have a consistent performance so they are not averaged.
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Table 6.3: Maximal clique algorithm comparison

Data

Set

Details Algorithm 1

- Imitation

Algorithm 2

- Ego Set

Algorithm 3

- Ego

Random

SNSD Files: 100

µ(nodes) : 28.84

σ(nodes) : 13.7

µ(edges) : 295.56

σ(edges) : 267.4

Cliques: 28.84

Size: 1.0

Cliques: 8.88

Size: 3.25

Cliques: 8.89

Size: 3.24

SNLD Files: 100

µ(nodes) : 24.69

σ(nodes) : 14.39

µ(edges) : 626.81

σ(edges) : 626.14

Cliques: 24.69

Size: 1.0

Cliques: 2.72

Size: 9.069

Cliques: 2.7

Size: 9.12

SNAD Files: 100

µ(nodes) : 24.93

σ(nodes) : 14.66

µ(edges) : 398.92

σ(edges) : 409.34

Cliques: 24.93

Size: 1.0

Cliques: 5.57

Size: 4.47

Cliques: 5.58

Size: 4.47

LNSD Files: 100

µ(nodes) : 73.16

σ(nodes) : 15.79

µ(edges) : 1609.36

σ(edges) : 955.96

Cliques: 73.16

Size: 1.0

Cliques: 17.85

Size: 4.098

Cliques: 17.79

Size: 4.11

LNLD Files: 100

µ(nodes) : 75.47

σ(nodes) : 16.21

µ(edges) : 4460.38

σ(edges) : 1899.83

Cliques: 75.47

Size: 1.0

Cliques: 5.07

Size: 14.89

Cliques: 5.05

Size: 14.94



6. Analysis of GladeOS 157

Table 6.3: Maximal clique algorithm comparison

Data

Set

Details Algorithm 1

- Imitation

Algorithm 2

- Ego Set

Algorithm 3

- Ego

Random

LNAD Files: 100

µ(nodes) : 73.18

σ(nodes) : 15.85

µ(edges) : 3132

σ(edges) : 2115.35

Cliques: 73.18

Size: 1.0

Cliques: 10.4

Size: 7.04

Cliques: 10.47

Size: 6.99

ANSD Files: 100

µ(nodes) : 49.13

σ(nodes) : 27.68

µ(edges) : 904.44

σ(edges) : 967.11

Cliques: 49.13

Size: 1.0

Cliques: 13.22

Size: 3.72

Cliques: 13.11

Size: 3.75

ANLD Files: 100

µ(nodes) : 50.63

σ(nodes) : 28.96

µ(edges) : 2552.91

σ(edges) : 2308.99

Cliques: 50.63

Size: 1.0

Cliques: 4.06

Size: 12.61

Cliques: 4.01

Size: 12.61

ANAD Files: 100

µ(nodes) : 44.71

σ(nodes) : 27.4

µ(edges) : 1380.49

σ(edges) : 1714.16

Cliques: 44.71

Size: 1.0

Cliques: 8.51

Size: 5.25

Cliques: 8.51

Size: 5.25

XLNSD Files: 100

µ(nodes) : 535.57

σ(nodes) : 270.85

µ(edges) : 83322.06

σ(edges) : 79419.67

Cliques:

535.57 Size:

1.0

Cliques: 86.58

Size: 6.18

Cliques: 86.26

Size: 6.2
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Table 6.3: Maximal clique algorithm comparison

Data

Set

Details Algorithm 1

- Imitation

Algorithm 2

- Ego Set

Algorithm 3

- Ego

Random

XLNLD Files: 100

µ(nodes) : 545.12

σ(nodes) : 239.99

µ(edges) : 161606.89

σ(edges) : 123920.41

Cliques:

545.12 Size:

1.0

Cliques: 20.37

Size: 26.89

Cliques: 20.27

Size: 26.89

XLNAD Files: 100

µ(nodes) : 526.21

σ(nodes) : 275.54

µ(edges) : 127983.31

σ(edges) : 118264.02

Cliques: 526.2

Size: 1.0

Cliques: 43.99

Size: 11.96

Cliques: 43.78

Size: 12.02

6.1.2.7 Analysis of Results

Analysis of the results found in Table 6.3 reveals a handful of verifiable trends.

The original (imitation) algorithm currently being used to schedule quantum

programs will always complete and return a result within a standard time.

The greedy local search algorithms returns a smaller set of resultant cliques

for largely the same execution time. The difference between the random and

set variations of this algorithm are largely minute, though on average the

random variation does tend towards slightly larger cliques thereby resulting

in slightly less cliques overall.

Conversely the Maximal clique algorithm (brute force implementation)

is guaranteed to return an optimal strategy, but suffers from an increase in

time which parallels the growth in the factorial series. The maximum graph

search algorithm has been omitted from Table 6.3 due to excessive execu-

tion times. For instance, attempts to simulate data set SNSD and SNAD

required multiple hour computations including some graphs in excess of 648

hours (∼27 days) on hardware detailed in Table 6.6. These excessive execu-
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tion times render this algorithm ill suited to this task.

The graphs this algorithm is expected to process over is difficult to esti-

mate. The number of nodes in the graph will be equal to either the entire

length of the queue or a defined subset of the queue. The number of edges

(density of the graph) will largely be determined by the size of the programs

in the queue and the size of the quantum computer being utilised. The worst

case scenario of a large (or extra large) queue of small jobs being executed

on a large quantum computer is expected to mirror the XLNLD data set,

which is featured in Table 6.3. Reducing the queue length or only taking a

subset of the queue at a time will drop the XL → S, while jobs which closely

fit the quantum computer will lower the density of the graph.

Because of the varying sizes of the graph it is difficult to perfectly pre-

scribe an algorithm. The original and maximum search algorithm can easily

be excluded because of their excessive output and execution times, leaving

only the two greedy local search algorithms. There are cases where the greedy

local search algorithm performs better than the random variation however

those times are few and far in between (only 3 of the results in Table 6.3

show this). It is for these reasons that moving forward, the recommendation

is to adopt the greedy local search algorithm with a random variation.

6.1.3 Scheduling Algorithms

After the quantum programs have been optimised and mapped, the system

must determine which program to execute first. The major difference be-

tween scheduling for a classical computer and a quantum computer is that

due to decoherence and a lack of functioning quantum memory, preemptive

scheduling algorithms are not recommended. Leaving a quantum process

partially complete and unattended results in errors corrupting the data and

without quantum memory, results cannot be saved for reuse later. This

means that once you start a program, the wisest choice is to complete the

execution. Combined with the maximal clique detection outlined in Section
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6.1.2.4 the programs will not be executed in a static schedule, depending on

the relationships between the programs, but it will continue to execute all

available programs. The different scheduling algorithms for this analysis are:

First In First Out (FIFO) As each program is sent into the operating system

it is added to the tail of the queue, the next programs are selected from the

head of the queue [72], [74]. In the worst case scenario, where no programs

can be processed concurrently, all programs will be executed in the order they

arrive in [72], [74]. This algorithm has no chance of program starvation (a

program never executing) [72], [74]. FIFO focuses on treating every program

equally and to best ensure that programs are executed in order to minimise

the wait time for all programs [72], [74].

Last In First Out (LIFO) As each program is sent into the operating system

it is added to the head of the queue, the next programs are selected from the

head of the queue [72]. In the worst case scenario, where no programs can

be processed concurrently, all programs will be executed in the reverse order

they arrive in [72]. This algorithm has a high chance of program starvation

while the amount of new programs being added outweighs the number of

programs being executed [72]. This algorithm relies on the number of new

programs slowing down and allowing the stored programs to execute. LIFO

is designed to focus on the most recent programs as the programs which the

user wants to execute at this time, the other programs can be left for later

(if the user has waited this long, they can wait even longer) [72]. This design

decision is more accurate when only considering a single users programs,

instead of multiple users all attempting to take advantage of the computing

power.

Priority Queue This algorithm adds an extra layer of consideration by treat-

ing programs as individual programs instead of merely one of a set [72], [74].

By treating programs as individuals, it becomes possible to consider the pri-

ority of the program as the deciding factor. Program priority can be found

from a variety of factors including arrival time (if the only factor then it is
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akin to FIFO or LIFO), which user submitted it, or how long it has been

idle [72], [74]. This algorithm commits to executing programs based on how

important they are, it can suffer from program starvation for low priority

programs [72], [74]. This algorithm does not provide a set execution plan,

instead capitulating to the priorities as they adapt. For the test performed in

Table 6.4 priority was simulated by performing a random shuffle (using the

Fisher-Yates shuffle [118], [119]) on the queue (originally ordered according

to FIFO principles).

Testing Rationale Because the quantum programs are stored within a graph

data structure, it is difficult to evaluate the efficiency of scheduling algo-

rithms without properly considering the effect of the graph. Due to this,

the scheduling algorithm analysis is combined with the clique detection al-

gorithms considered in Section 6.1.2. The programs are ordered according

to the scheduling algorithm being tested before completing the same dataset

with the greedy local clique algorithm with a random variant prescribed

above.

The difference between scheduling algorithms is expected to be relatively

minor, and it is therefore expected that larger data sets will demonstrate this

difference more clearly. The result of these estimations are that the data set

being used for this experiment is the XLN* datasets (XLNSD, XLNLD and

XLNAD). The data in Table 6.4 represents the average (mean) of processing

the graphs according to the algorithms selected.
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Table 6.4: Scheduling algorithm comparison

Data

Set

Details FIFO LIFO Priority

Queue

XLNSD Files: 100

µ(nodes) = 535.57

σ(nodes) = 270.85

µ(edges) = 83322.06

σ(edges) = 79419.67

Cliques:86.36

Size:6.2

Cliques:86.28

Size: 6.2

Cliques:86.29

Size:6.2

XLNLD Files: 100

µ(nodes) = 545.1

σ(nodes) = 239.99

µ(edges) = 161606.89

σ(edges) = 123920.41

Cliques:20.33

Size:26.81

Cliques:20.31

Size:26.82

Cliques:20.31

Size:26.82

XLNAD Files: 100

µ(nodes) = 526.20

σ(nodes) = 275.54

µ(edges) = 127983.30

σ(edges) = 118264.02

Cliques:43.74

Size:12.03

Cliques:43.76

Size:12.02

Cliques:43.79

Size:12.02

Reviewing the data from Table 6.4, it appears that regarding the number

of cliques LIFO consistently performs as either the best option or the second

best. Conversely, the FIFO and Priority Queue implementations swing from

being the best in some cases to the complete worst in others. It should be

noted that the difference between the best and worst algorithm is typically

only a couple of decimal points, for example 43.74 → 43.78. Because of this

small swing of 0.04 and the inherent starvation risk associated with LIFO

it is the recommendation of this analysis that FIFO be the scheduling algo-

rithm employed, though the impact of this choice appears relatively minor.

Priority Queue was strongly considered however this approach has an added

cost of managing the priority of the programs which is not required for FIFO

or LIFO.
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In the worst case situation, each of the scheduling algorithms considered

above will perform by processing a single quantum program before continuing

onto the next one. This limit forms an upper bound for the execution time

with the clique detection algorithms acting to lower that bound where possi-

ble. Because of this, the choice of scheduling algorithm has little to no impact

on how long it takes to execute the entire program queue. Any scheduling

algorithm can be used with this system, with the only consideration being

that it should be starvation-free.

6.2 Overall Simulator Comparison

6.2.1 Data Sources

The data used in the tests is generated according to the script found in

Appendix A.1. The odds of getting any one of the base gates is 1
10

and any

of the controlled gates is 1
90
. The difference is due to the controlled gates

only being actionable when the ‘C’ gate is selected from the initial random

generation. By editing the script in Listing 6.5, the following variables can

be defined:

1. Number of files.

2. Number of qubits for each file.

3. Number of gates per file.

4. Restricting the gates for each file.

The testing procedure for this system is explored in Figure 6.8. Test files

are generated according to the generation script above, before being funneled

into the appropriate simulators. Finally the results are recorded using the

Python memory-profiler to chart the time cost against the memory cost.
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Generator

Script

Controllers
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Scripts
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Rigetti

Qiskit
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Figure 6.8: Testing Procedure

The testing script below is also editable, with the following options:

1. Which subset of simulators you want to execute the files through

2. How many times each file is executed.� �
1 # this file is to run all the tests

2 # run GladeOS

3 # run Qiskit

4 # run rigetti

5 # etc ....

6

7 import datetime

8 import os

9 import subprocess

10 import sys

11 import time
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12 import qsharp

13 from memory_profiler import profile # comment this out

for mprof plot

14

15 from glade.Glade import GladeTester

16 from qiskitDirectory.QISKIT import QiskitTester

17 from rigetti.RIGETTI import RigettiTester

18 import qsharpDirectory

19 from qsharpDirectory.QSHARPparser import QsharpParser

20 from qsharpDirectory.QSHARP import QsharpTester

21 import importlib

22

23 def getTime ():

24 return datetime.datetime.now()

25

26 @profile

27 def runQiskit(controllers , num_shots):

28 for controllerName in controllers:

29 qiskittester = QiskitTester(controllerfilenames=

controllerName , shots=num_shots)

30 qiskittester.start()

31 del qiskittester

32

33 @profile

34 def runRigetti(controllers , num_shots):

35 pqvm = subprocess.Popen(["qvm", "-S"])

36 pquilc = subprocess.Popen(["quilc", "-S"])

37

38 rigettiTester = RigettiTester(controllerfilenames=

controllers , shots=num_shots)

39 rigettiTester.start ()

40 del rigettiTester

41 pqvm.kill()

42 pquilc.kill()

43
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44 @profile

45 def runQsharp(controllers , shots):

46 # shots = 1

47

48 for cf in controllers:

49 parser = QsharpParser () # create a parser

50 parser.start(controllerfilename=cf) # create a

new operation.qs file

51

52 qsharp.reload ()

53 tester = QsharpTester () # tester to run the

operation.qs file

54 for x in range(shots):

55 tester.start () # actually run the operation

.qs file

56 printNewlines (2)

57 del parser

58 del tester

59

60 @profile

61 def runGlade(controllers , num_shots):

62 subs = 0

63 directory = ’Controllers/’

64 # open glade with default args

65 args = [’glade/Glade_Executable/GladeOS ’, ’-msm’, ’-

t 1’, ’--logalltoconsole ’] #, ’-mt 5’, ’-msm FIFO ’,

’--logalltoconsole ’] # , ’--logalltoconsole ’]

66 returnCode = subprocess.Popen(args)

67 time.sleep (5)

68 # Make us a ’GladeOS ’ Object to call stuff with.

69 gt = GladeTester(controllerfilenames=controllers ,

shots=num_shots)

70 # Start it.

71 gt.start ()

72 returnCode.kill()
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73 del gt

74

75 def printNewlines(number):

76 for x in range(number):

77 print("")

78

79 @profile

80 def runMe():

81 print()

82 print("=========================================")

83 print(" TestRunner Python file V1.0")

84 print("=========================================")

85 print("Script start")

86

87 runGladeTrigger = False

88 runQiskitTrigger = False

89 runRigettiTrigger = False

90 runQsharpTrigger = True

91

92 sleepTime = 3

93

94 if len(sys.argv) > 1:

95 shots = sys.argv [1]

96 else:

97 shots = 5

98

99 preTime = getTime ()

100

101 time.sleep(int(sleepTime))

102 directory = ’Controllers/’

103 controllers = []

104 for filename in os.listdir(directory):

105 if filename.endswith(".txt"):

106 controllers.append(directory+filename)

107 continue
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108 else:

109 continue

110 controllers.sort()

111 time.sleep(int(sleepTime))

112 print(controllers)

113 # run Glade.

114 if runGladeTrigger:

115 runGlade(controllers , int(shots))

116 gladeTime = getTime ()

117 printNewlines (3)

118 time.sleep(int(sleepTime))

119

120 # run qiskit.

121 if runQiskitTrigger:

122 runQiskit(controllers , int(shots))

123 qiskitTime = getTime ()

124 printNewlines (3)

125 time.sleep(int(sleepTime))

126

127 # run rigetti.

128 if runRigettiTrigger:

129 runRigetti(controllers , int(shots))

130 rigettiTime = getTime ()

131 printNewlines (3)

132 time.sleep(int(sleepTime))

133

134 # run qsharp

135 if runQsharpTrigger:

136 runQsharp(controllers , int(shots))

137 qsharpTime = getTime ()

138 printNewlines (3)

139 time.sleep(int(sleepTime))

140

141 totalTime = getTime ()

142 print("=========================================")
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143 print("Global script time taken: " + str(totalTime -

preTime))

144 print("Qiskit script time taken: " + str(qiskitTime

- preTime))

145 print("Rigetti script time taken: " + str(

rigettiTime - qiskitTime))

146 print("Qscript time taken: " + str(qsharpTime -

rigettiTime))

147 print("Glade script time taken: " + str(qsharpTime -

gladeTime))

148 print("Script Completed")

149

150 runMe()� �
Algorithm 6.5: Testing Script

6.2.2 Issues Encountered

The gathering of data has not been without issue. The following sections

cover those issues including issues with some of the simulators.

6.2.2.1 General problems

As shown in the feature matrix (Table 6.5), the simulators differ consid-

erably in their design. This leads to difficulties comparing two simulators

together as each is built to their own specification and for their own purpose.

Qiskit and Q# were developed to research and develop quantum computer

programming. Due to this design choice, while the program optimisation

and execution are extremely rapid they seem to forget simulating critical

aspects of quantum hardware, ignoring potential bottlenecks and thus being

overly optimistic on performance measures. Rigetti conversely was designed

to fully simulate a quantum computer and everything that entails. To that

end, Rigetti utilises server programs to handle the simulation load.
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Table 6.5: Quantum simulator feature matrix

Feature GladeOS Qiskit Q# Rigetti

Program Execution ✓ ✓ ✓ ✓

Program optimisation ✗ ✓ ✓ ✓

Hardware emulation ✓ ✓ ✗ ✓

Program mapping ✓ ✗ ✗ ✓

Multithreaded execution ✓ ✓ ✓ ✓

Decoherence emulation ✓ ✗ ✗ ✗

Due to inconsistencies in the quantum circuit language between simula-

tors, some instructions have had to be added or composed of multiple smaller

instructions to enable equal testing of all the simulators. All the simula-

tors support a completely connected qubit connectivity graph thus enabling

all qubits to be entangled with all others, this does simplify the previously

introduced 3 layer graph structure by removing the mappings and simply

allocating qubits to programs.

6.2.2.2 IBM Qiskit

Qiskit is a very popular choice of quantum computer simulator with extensive

libraries of code to better support that execution. Qiskit libraries range

from bare metal hardware programming to high level artificial intelligence

libraries. Running a standard instance of Qiskit, is very user friendly though

deceptive with the options. Qiskit employs a version of OpenMP embedded

within itself. While this is not hidden from the user, it is not made clear

either. In order to get the best comparison possible, equivalent settings and

options are required. Qiskit naturally defaults to a multi-threaded version

which undermines the nature of the comparison. This issue was combated by

restricting the “max parallel shots=1” [120] and “max parallel threads=1”

[120] thereby restricting the system to only executing one ‘shot’ (circuit) at

a time and allowing for a valid comparison.
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6.2.2.3 Rigetti

Rigetti is perhaps the most accurate simulator on the market, sacrificing

speed for accuracy. The difficulty with Rigetti’s QVM and QUILC server

programs are the antiquated software stack required to support it. The pre-

requisites are:

1. Standard UNIX build tools

2. SBCL (a recent version, but not SBCL 1.5.6): Common Lisp compiler

3. Quicklisp: Common Lisp library manager

4. ZeroMQ: Messaging library required by RPCQ. Development headers

are required at build time.

These pre-requisites prove (in my experience) to be require excessive precision

to correctly install (on a base Ubuntu 20.04 install).

6.2.2.4 Microsoft Q#

Microsoft’s quantum ambitions have recently been set back with the retraced

article on the Majarona particles [40]. During this storm, they have contin-

ued to further develop their quantum simulator. The major limitation of Q#

is the requirement to compile the code which takes longer depending on the

length of the files. This limitation appears when trying to execute multiple

distinct programs in sequential order.

Previous attempts to profile the Q# simulator have required new pro-

grams to overwrite a specific file (on disk) which was then imported into the

program and executed. To change to the next program, the new program

had to overwrite the existing program and then re-import the file so that

the changes would be detected and recognised. This method proved to be

extensively difficult to import modules and files correctly without constantly

importing the qsharp library unnecessarily.
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This limitation has been addressed by using the compile command and

instead of writing to a file, merely holding the string in memory and compiling

it when required.

6.2.3 Results

The formula to calculate the standard error is found in Equation 6.1, with

the following legend:

• SE is the standard error of the sample

• σ is the standard deviation of the sample

• n is the number of samples

SE =
σ√
n

(6.1)

Equation 6.1 is used throughout this section to calculate the error rate

of the time and memory measurements for the different simulators. To ac-

complish this the samples are composed of the time each distinct execution

required and the maximum amount of memory that was required in each

distinct execution respectively.

Table 6.6: Details of the system which conducted the experiments

Software Version

Operating System Ubuntu 20.04

RAM 16GB

CPU Intel i7-6770HQ
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6.2.3.1 Qiskit

Table 6.7: Packages and versions used to evaluate the Qiskit platform

Software Version

Python 3.8.5

Qiskit 0.23.5

Qiskit Aer 0.7.4

Qiskit Aqua 0.8.2

Qiskit IBMq Provider 0.11.1

Qiskit Ignis 0.5.2

Qiskit Terra 0.16.4
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Figure 6.9: A scatterplot of the time and memory measurements recorded over 20
executions of the 100 program test using the Qiskit platform
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Figure 6.10: A plot of the memory usage across time using the Qiskit platform

Legend:

[ ] compile all 26.847s

[ ] start 56.694s

[ ] run all controllers 29.797s

[ ] runQiskit 58.063s

[ ] runMe 76.082s

The data captured in Figure 6.9 demonstrates that the Qiskit quantum sim-

ulator takes on average 3551.12±11.86 seconds and consumes 884.15±0.924

MiB. The data in Figure 6.9 ranges between 3486.3 and 3749.45 in execution

time (difference of 263.14) and between 878.785 and 894.13 in memory con-

sumption (difference of 15.35).
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The Qiskit simulator is provided as open source Python package avail-

able through github (https://github.com/Qiskit) and common Python

package managers like pip. Qiskit benefits from a modular approach which

enables users to be hyper-specific about the relevant components or to leave

it largely up to the package to handle it for you. For the purposes of this

test the specifics have been largely left to Qiskit, so as to simulate a standard

instance. The only specified piece is the use of the ′qasm simulator′ as the

backend, while everything else has been left to the package.

IBMs’ Qiskit packages form an ecosystem attempting to cover all parts

of quantum computing (Table 6.8). Which extends the standard simulation

package extensively, providing options not found in either of the four other

simulators. For this reason the test was limited to only include functionality

that was consistently available on all platforms.

The graph found in Figure 6.10 demonstrates the amount of memory used

by a typical execution of the Qiskit platform over time. It has a series of

useful sections marked to assist in the understanding of the information. The

sections correspond with methods within the Python script:

• runMe - This method is responsible for reading the data set and then

starting the relevant simulator.

• runQiskit - This method is responsible for preparing and executing all

parts of the Qiskit script.

• start - This method is responsible for compiling each of the programs

(see below) and executing them on the Qiskit platform.

• Compile all - This method is responsible for compiling each of the pro-

grams found in the data set for execution with the rigetti platform.

• run all controllers - This method is responsible for executing each of

the compiled programs on the Qiskit platform
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It can be seen that most of the memory growth stems from the compilation of

Qiskit programs before slowly increasing throughout the programs execution.

There are also 2 red dashed lines (1 horizontal and 1 vertical) which mark

the point where the memory consumption is at its peak. The system origi-

nally launches to a base consumption of roughly 219.67MiB before growing

linearly throughout the compilation routine. Following the compilation rou-

tine the memory growth slows greatly. While the programs are executed, the

memory wavers slightly while slowly creeping upwards. Following the execu-

tion, the memory usage scales back down to a level approximately 419.48MiB

as the Qiskit ecosystem is closed down.

Table 6.8: Qiskit components

Package Coverage

Aer Simulation of quantum computers

Aqua NISQ algorithms

Ignis Error Correction and noise reduction

Metal Development of quantum hardware

Terra Core component, basic elements like

quantum circuits, pulses and manag-

ing interfaces between components

The graph found in Figure 6.10 demonstrates a largely variable runtime

graph. The graph separates the test into compilation and execution routines,

which combine to form the test. The compilation routine features little con-

sistency, instead favoring a significant swing up followed immediately by a

small swing down and a period of constant memory usage. This pattern

continues throughout the compilation and results in steady growth upwards.

The interesting part comes from within the execution routine. The memory

usage continues to grow during the execution routine, though it ignores the

pattern from the compilation routine and instead slowly grows as the exe-

cutions require it. Following the test, the system still retains a large growth
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from approximatelty 219.67MiB up to approximately 419.48MiB. It is as-

sumed that the retained growth stems from storing the compiled programs

and the results from the executions.

6.2.3.2 Rigetti

Table 6.9: Packages and versions used to evaluate the Rigetti platform

Software Version

Python 3.8.5

QVM 1.17.1

QUILC 1.23.0

PyQuil 2.28.0

SBCL 2.0.1.debian

ZeroMQ 4.3.2-2ubuntu1 amd64

Quicklisp 2021-02-13

Magicl 0.9.1

RPCQ 3.8.0
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Figure 6.11: A scatterplot of the time and memory measurements recorded over
20 executions of the 100 program test using the Rigetti platform

The Rigetti simulator contains perhaps the most difficult build requirements

of the four simulators tested here. The requirements include:

1. The QVM (quantum virtual machine) program (built from source)

(https://github.com/quil-lang/qvm)

2. The pyquil python package (available through pip)

3. The QUILC (Quantum Instruction Langauage Compiler) program (built

from source). (https://github.com/quil-lang/quilc) Extra require-

ments:

(a) Standard UNIX build tools

(b) SBCL (Steel Bank Common Lisp) (not SBCL 1.5.6) a common

Lisp compiler.

(c) QuickLisp (a common Lisp library manager)

(d) ZeroMQ (Messaging library required by RPCQ)
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Figure 6.12: A plot of the memory usage across time using the Rigetti platform

Legend:

[ ] start 81.881s

[ ] compile all 12.334s

[ ] runRigetti 92.319s

[ ] runMe 110.336s

The QVM and pyquil installation are simple, provided that QUILC has been

properly installed. The pyquil package provides a user-friendly interface to

the QVM/QUILC

The data captured in Figure 6.11 demonstrates that the Rigetti quantum

simulator takes on average 1683.52±2.737 seconds and consumes 777.94±0.07

MiB. The data in Figure 6.11 ranges between 1660.59 and 1703.517 in exe-

cution time (difference of 42.92) and between 777.1 and 778.49 in memory
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consumption (difference of 1.38).

The graph found in Figure 6.12 demonstrates the amount of memory used

by a typical execution of the Rigetti platform over time. It has a series of

useful sections marked to assist in the understanding of the information. The

sections correspond with methods within the Python script:

• runMe - This method is responsible for reading the data set and then

starting the relevant simulator.

• runRigetti - This method is responsible for preparing and executing all

parts of the Rigetti script.

• start - This method is responsible for compiling each of the programs

(see below) and executing them on the Rigetti platform.

• Compile all - This method is responsible for compiling each of the pro-

grams found in the data set for execution with the Rigetti platform.

It can be seen that most of the memory growth stems from the compilation

of Rigetti programs and then remains relatively consistent throughout the

execution. There are also 2 red dashed lines (1 horizontal and 1 vertical)

which mark the point where the memory consumption is at its peak. The

system originally launches to a base consumption of roughly 219.5MiB be-

fore growing linearly throughout the compilation routine to a maximum of

322.93MiB. Following the compilation routine the memory growth slows

greatly. While the programs are executed, the memory wavers slightly while

remaining largely consistent. Following the execution, the memory usage

scales back to the original level as the Rigetti ecosystem is closed down.



6. Analysis of GladeOS 181

6.2.3.3 Q#

Table 6.10: Packages and versions used to evaluate the Q# platform

Software Version

Python 3.8.5

Qsharp 0.15.2103.133969

Qsharp Chemistry 0.15.2103.133969

Qsharp Core 0.15.2103.133969

Jupyter Core 4.7.1

Jupyter Packaging 0.7.12

Jupyter Server 1.5.1

JupyterLab 3.0.12

JupyterLab Pygments 0.1.2

JupyterLab Server 2.4.0
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Figure 6.13: A scatterplot of the time and memory measurements recorded over
20 executions of the 100 program test using the Q# platform
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Figure 6.14: A plot of the memory usage across time using the Q# platform

Legend:

[ ] compileAll 9444.652s

[ ] fireAll 7.899s

[ ] runQsharp 9455.044s

[ ] runMe 9473.063s
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Figure 6.15: A plot of the memory usage across time using the Q# platform con-
centrated on the initial warm up stage.

Legend:

[ ] compileAll 9444.652s

[ ] fireAll 7.899s

[ ] runQsharp 9455.044s

[ ] runMe 9473.063s
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Figure 6.16: A plot of the memory usage across time using the Q# platform con-
centrated on the final conclusion stage

Legend:

[ ] compileAll 9444.652s

[ ] fireAll 7.899s

[ ] runQsharp 9455.044s

[ ] runMe 9473.063s

The data captured in Figure 6.13 demonstrates that the QSharp quantum

simulator takes on average 47995.06±118.06 seconds and consumes 268.68±
0.14 MiB. The data in Figure 6.13 ranges between 47196.298 and 49373.153

in execution time (difference of 2176.85) and between 267.16 and 269.63 in

memory consumption (difference of 2.47).

The graph found in Figure 6.14 demonstrates the amount of memory
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used by a typical execution of the Q# platform over time. The graph is

visibly distorted because of the excessive time spent performing the test.

Figures 6.15 and 6.16 have been included to demonstrate the start up and

shut down components of Figure 6.14. Figures 6.14, 6.15 and 6.16 has a series

of useful sections marked to assist in the understanding of the information.

The sections correspond with methods within the python script:

• runMe - This method is responsible for reading the data set and then

starting the relevant simulator.

• runQsharp4 - This method is responsible for preparing and executing

all parts of the Q# script. (3 variations were tested to try and get the

best performance from the Q# system).

• CompileAll - This method is responsible for compiling each of the pro-

grams found in the data set for execution with the Q# platform.

• fireAll - This method is responsible for executing them on the Q#

platform.

It can be seen that most of the memory growth stems from the compila-

tion of Q# programs and then remains relatively consistent throughout the

execution (Figure 6.15). There are also 2 red dashed lines (1 horizontal

and 1 vertical) which mark the point where the memory consumption is at

its peak. The system originally launches to a base consumption of roughly

219.33MiB before growing linearly throughout the compilation routine. It

should be noted that the time spent during the compilation is excessive and

it is responsible for the time required to perform the test. The amount of

time spent actually executing the program is 0.083% of the time taken to

complete the test. Following the compilation routine the memory growth

slows greatly. While the programs are executed, the memory wavers slightly

while remaining largely consistent. Following the execution, the memory us-

age scales back to the original level as the Q# ecosystem is closed down.

The amount of memory consumed during the test remains largely stagnant,

holding at approximately 229.05MiB which indicates that the method of
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compilation is not expensive in terms of memory but expensive in terms of

time. This expense hints at either a sub-optimal compilation routine or the

inclusion of some NP problems therefore delaying the compilation while it

solves the computationally difficult (NP) problems.

6.2.3.4 GladeOS

Table 6.11: Packages and versions used to evaluate the GladeOS platform

Software Version

Operating System Ubuntu 20.04

Python 3.8.5

Requests 2.22.0

Requests NTLM 1.1.0

Requests Unixsocket 0.2.0

GladeOS 3.0

gcc 11.1

g++ 11.1

The data captured in Figure 6.17 demonstrates that the GladeOS quantum

simulator takes on average 29.89± 0.02 seconds and consumes 226.76± 0.12

MiB. The data in Figure 6.17 ranges between 30.0977 and 29.72 in execution

time (difference of 0.377) and between 227.855 and 226.14 in memory con-

sumption (difference of 1.71).
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Figure 6.17: A scatterplot of the time and memory measurements recorded over
20 executions of the 100 program test using the GladeOS platform

The graph found in Figure 6.18 demonstrates the amount of memory used

by a typical execution of the GladeOS platform over time. It has a series

of useful sections marked to assist in the understanding of the information.

The sections correspond with methods within the python script:

• runMe - This method is responsible for reading the data set and then

starting the relevant simulator.

• runGlade - This method is responsible for preparing and executing

all parts of the GladeOS script, which involves starting the external

GladeOS server program with the specified arguments (pausing to en-

sure it has actually started) and then actually beginning the test.

• start - This method is responsible for compiling each of the programs

(see below) and executing them on the GladeOS platform.
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Figure 6.18: A plot of the memory usage across time using the GladeOS platform

Legend:

[ ] start 24.882s

[ ] runGlade 30.005s

[ ] runMe 48.026s
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Figure 6.19: A concentrated view of the memory usage during the runtime of the
GladeOS platform

Legend:

[ ] start 24.882s

[ ] runGlade 30.005s

[ ] runMe 48.026s

There are delays inbuilt into the testing script to ensure clear delineation

between each component of the script. It can be seen that most of the

memory growth stems from the compilation of GladeOS programs and then

remains relatively consistent throughout the execution. There are also 2

red dashed lines (1 horizontal and 1 vertical) which mark the point where

the memory consumption is at its peak. The system originally launches to

a base consumption of roughly 220.355MiB. While the programs are exe-

cuted, the memory wavers slightly while remaining largely consistent with a
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maximum of 226.19MiB. It should be noticed that the plot in Figure 6.18,

varies (with regards to Memory Consumption) very slightly throughout the

test and profiles a largely consistent usage (Figure 6.19). Because of how

GladeOS was designed, it is very difficult to extrapolate compilation times

compared to execution times and it shall therefore be treated as joint. Fol-

lowing the execution, the memory usage remains at the higher level as the

GladeOS ecosystem is closed down.

Part of the problem with measuring GladeOS performance, is that all

of the compilation is done on the GladeOS program and is only accessed

through network connections. The code within GladeOS is so heavily opti-

mised that the Python requests library cannot send the programs fast enough

to actually occupy the GladeOS program.

The times found in Table 6.12 demonstrate the average speed of each

operation, indicating that a program which features only 1000 Pauli-X gates

would on average take 0.14 microseconds (µs) to execute. This speed means

that the GladeOS system is having to pause and wait while the Python

script can provide the next program. For a more precise test of GladeOS’s

capabilities please refer to Section 6.3.
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Table 6.12: Logic gate operation times for the GladeOS system

Operation Time Taken [ns]

Pauli-X 138.61

Pauli-Y 238.57

Pauli-Z 150.65

Phase 154.73

Half-Phase 325.21

Rotate-X 357.9

Rotate-Y 337.95

Rotate-Z 515.41

Free-Rotate 15619.4
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6.2.3.5 Combined results

Table 6.13: All versions

Software Version

Operating System Ubuntu 20.04

RAM 16GB

CPU Intel i7-6770HQ

Python 3.8.5

Qiskit 0.23.5

Qiskit Aer 0.7.4

Qiskit Aqua 0.8.2

Qiskit IBMq Provider 0.11.1

Qiskit Ignis 0.5.2

Qiskit Terra 0.16.4

QVM 1.17.1

QUILC 1.23.0

PyQuil 2.28.0

SBCL 2.0.1.debian

ZeroMQ 4.3.2-2ubuntu1 amd64

Quicklisp 2021-02-13

Magicl 0.9.1

RPCQ 3.8.0

Qsharp 0.15.2103.133969

Qsharp Chemistry 0.15.2103.133969

Qsharp Core 0.15.2103.133969

Jupyter Core 4.7.1

Jupyter Packaging 0.7.12

Jupyter Server 1.5.1

JupyterLab 3.0.12

JupyterLab Pygments 0.1.2

JupyterLab Server 2.4.0

Requests 2.22.0

Requests NTLM 1.1.0

Requests Unixsocket 0.2.0

GladeOS 3.0

gcc 11.1

g++ 11.1
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Table 6.14: Average Results

Simulator Time Taken [s] µ± σX̄ Maximum Memory [MiB]

µ± σX̄

GladeOS

(1T)

29.89 ± 0.021 226.76 ± 0.12

Q# 47995.065 ± 118.0585 268.682 ± 0.14

Qiskit 3551.12 ± 11.86 884.15 ± 0.924

Rigetti 1683.52 ± 2.737 777.94 ± 0.07
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Figure 6.20: Scatterplot Results Global (20 executions of 100 Program test).
Range of values is indicated with the error bars.

Comparing the results from the varying simulators reveals interesting results.

Simulators either follow one of two trends, either relatively large consump-

tion of memory but minimal execution time or small memory footprint with

a large execution time. Q# (microsoft) exemplifies the second trend, taking

between 13 and 14 hours to complete the random test while maintaining the

second smallest memory footprint (approximately 268.68MiB). Qiskit and
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Rigetti demonstrate the first trend, taking 1 hour with 884.15MiB and 30

minutes with 777.94MiB respectively.

The results from the varying simulators indicates that GladeOS outper-

forms the 3 commercial simulators by varying margins. It is believed that

this is due to a number of reasons including the specialised matrix approach

(see Chapter 5), a smaller amount of support libraries and a small core devel-

opment. The simulators tend to either implement the entire state array as a

single large matrix or employ alternative means to perform their calculations.

The seperation of the state array into smaller matrices is an approach that

has not been seen outside of GladeOS. Also worth noting is that each of the

comparison simulators go beyond the standard requirement of simulating the

state array by employing quantum programming libraries or hardware emula-

tion to attempt to reach a higher level of accuracy or to benefit the end user.

Lastly, each of the comparison simulators has been developed by a large and

ever changing development team. They are either open-sourced (Qiskit) or

the product of a department within Microsoft or Rigetti and therefore suffer

from the inevitable penalties of ever changing design and implementation of

new research. GladeOS by comparison was developed in a small stretch of

time with a specialised and consistent design that includes numerous opti-

misations like using pointer arithmetic and regular expressions in order to

reduce the memory usage and processing time.

6.3 GladeOS Specific Tests

As alluded to during the multiple simulator tests, the performance of GladeOS

was an upper bound which included multiple internal waits. Based on this,

more precise tests were desired, designed and developed. Because the other

simulators tested in Section 6.2.3 were so far apart from GladeOS results

they have been ignored for these tests, otherwise the GladeOS results would

have been compared to the nearest neighbour simulator.
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6.3.1 Known Limitations

The only times that GladeOS fails is when the program queue grows faster

than the program processes them or the system requires too much memory

to calculate and exceeds the provided RAM. In these case the program will

eventually ask for more memory than the operating system can provide, forc-

ing the operating system to kill the program.

To counter the system requesting too much memory there exists a hard

limit as to the number of qubits that can be entangled in a single group.

This unfortunately is a known issue and is readily acknowledged by the qubit

limits of other simulators [24]–[26]. Programs may have multiple entangled

groups, but if any group exceeds the maximum size then the system will be

reaped by the host OS. As the maximum size is determined by the amount

of RAM that the host computer has at that specific point in time, it is not

possible to restrict submissions based on this limit. Further, because the

system measures qubits individually except for the entangled groups, pro-

grams which require significantly more than the entanglement limit can be

computed without crashing.

To counter the program queue problem the following variables have been

defined:

P The time taken to parse a single gate

N The number of gates in the program (averaged over the file set)

E The time taken to process a single gate

H The amount of execution threads provided to the program.

G The number of graphs in the file set

Sc The cost of storing a single graph.

T The amount of time that has passed.
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On average it takes approximately 3 − 6ns to parse a single qubit gate

and approximately 6− 9ns to parse a control gate. Meanwhile the times to

process a gate can be found in Table 6.12 with a maximum of approximately

1570ns. Therefore given that E is significantly larger than P it is a clear

given that EN > PN .

f(T ) = min

(⌊
T

PN

⌋
, GPN

)
(6.2)

g(T ) = min

(⌊
TH

EN

⌋
, GEN

)
(6.3)

Q = (f(t)− g(t))Sc (6.4)

Equation 6.2 calculates the amount of files parsed, while Equation 6.3

calculates the amount of files completed. Combining both equations into

Equation 6.4 yields the approximate size of the queue (Q) at at that point

in time (T).

Equations 6.2 and 6.3 where devised by calculating the amount of time it

takes to parse and execute a gate respectively. That value multiplied by the

number of gates returns the amount of time required to parse (or execute)

that gate. That value is the divisor of T to allow the value to plotted over

time, as T grows the equations grow in proportion to the PN and EN .

The Floor operations where included because parsed (or executed) gates are

counted as discrete values instead of continuous, this means that until T

reaches P T
PN

= 0 and once T reaches P then T
PN

= 1. Unfortunately, T

continues to grow infinitely so to include a cap on the growth the minimum

function has been used with the GPN or GEN acting as the maximum

allowable value. If T grows beyond that value then the function will always

return GPN or GEN as they are no less than the left hand side. These
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concepts were combined in Equation 6.4 to calculate the size of the queue

by subtracting the amount executed from the amount currently parsed and

multiplying the result by the storage cost (Sc).

Each program that is parsed into the system is composed of (Sc):

• A vector of Instructions

• A uint16 t instruction counter (2 bytes)

• a ‘State array map’ - vector of Pair(unordered set (uint16 t), vector of

complex floats)

• A hash of the controller file (4 bytes)

The size of the state array is determined by the number of qubits al-

located to the controller. Each entangled group of qubits will have a pair

within this outer vector, for n entangled qubits, the unordered set will have

n entries and the inner vector will hold 2n values. Therefore overall the state

array costs n ∗ 2 + 2n ∗ 4 bytes (where 2 and 4 are the relevant data sizes).

The instruction counter is a fixed value of 2 bytes while the instruction size

is significantly more complicated. This is due to the instructions consisting

of:

• Instruction type enum (4 bytes)

• Qubit identification number (uint16 t, 2 bytes)

• Vector of control bits (2 ∗ C bytes, where C is the number of entries)

• Vector of angle rotations (maximum 3 ∗ 4 bytes)

If we assume that every instruction is a controlled rotate (utilising all 3 an-

gles) with a single control bit, then each instruction has a maximum size of

4 + 2 + 2 + 12 = 20 bytes. Which results in a size of 20 ∗ I bytes (where I

is the number of Instructions). Every controller file that is processed by the

system grows the system by Sc = (20∗ I)+(n∗2)+(2n+2)+(4) bytes. Note:
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N ≈ I − 1 because of the final “END” instruction.

Following these formulas, provided that the Equation 6.5 does not exceed

the amount of available memory then the system will sustain the load.

mem =

(
min

(⌊
T

PN

⌋
, GPN

)
−min

(⌊
TH

EN

⌋
, GEN

))
∗((20I)+(2n)+(2n+2)+(4))

(6.5)

If the following assumptions are made:

• P = 10 nano seconds

• N = 1000 gates

• E = 1500 nano seconds

• H = 1

• G = 500

• Sc = (20I) + (2n) + (2n+2) + (4) where:

– I = 1001

– N = 10

then Figure 6.21 represents the memory consumption of the system and the

upper limit. The blue line represents the trend described by Equation 6.5

and the red line equates to 5Mb of memory.
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Figure 6.21: Memory Usage Estimation

6.3.2 Expected Output Tests

The following tests are designed to test the accuracy of the systems programs.

Each test is composed of:

• The program file.

• A histogram showing the expected results (as calculated), against the

execution results (averaged over 10,000 executions).

These tests are included to demonstrate the correctness and accuracy of the

developed system. While it would be possible (with reworking of code) to

retrieve the program state from the simulator, it would be ignoring the mea-

surement operation and therefore result in an incomplete evaluation. The

results collected are retrieved as a 3-bit string, thereby producing values be-

tween 000 (0) and 111 (7) inclusive.

In order to properly evaluate a measured probability distribution against

an expected probability distribution a ‘goodness of fit’ test is required. This

test compares the measured distribution to the expected distribution and re-

turns a statistic that demonstrates how probable it is that the 2 distributions
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match. There are multiple ‘goodness of fit’ tests available but for this re-

search the Fisher’s Exact Test and Chi Squared tests were considered as they

work with any expected distribution instead of requiring a normal distribu-

tion for the expected distribution. Overall the Chi Squared test was chosen

due to issues with scaling the Fishers Exact test to larger distributions. The

Chi Squared formula can be seen in Equation 6.6 where Oi is the observed

value and Ei is the expected value for that group (state) in the data.

χ2 =
∑ (Oi − Ei)

2

Ei

(6.6)

Where there is more than 1 correct (valid) answer a χ2 test (Equation

6.6) [121] has been utilised to determine the goodness of fit between the

calculated and the simulated results. The χ2 test was chosen because of its

ability to scale to varying sizes and number of elements as opposed to other

tests like Fischers Exact Test which is limited in the data sizes it supports.

The problem with the χ2 test is that it cannot handle cells with 0’s in them,

the following methods were explored to deal with this limitation:

1. Find an alternative test

2. Jitter the results by 0.000000001.

3. Ignore the 0’s entirely

The first option is to source an alternative test, one that can handle the

0 cells. The only goodness of fit tests that could handle 0 cells were very

specifically limited to set sizes (typically a 2x2 table) which would not suit

the data presented below. The second option was to jitter the results by

a significantly small value. This value would remove cells from holding 0’s

while also minimising the impact on the calculations. Ultimately this ap-

proach will work, however it introduces noise into the data leading to test

results which are inaccurate (to a small degree). The final option considered

was to ignore the 0 cells. This option was proposed due to the cells which

store the 0 values having a probability of appearing in the output equal to

0% (read impossible). Therefore if the values appeared then the goodness of
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fit test was irrelevant as the simulator would be clearly producing incorrect

values. Therefore this option was chosen to handle the 0 columns for the

purposes of the χ2 test.

For the Chi-square goodness-of-fit tests below each program was executed

10000 times to allow the distribution to regress to the mean and allow for an

accurate comparison. It is hypothesised for each test that the distributions

will be considered consistent. A p-value less than 0.05 will indicate statistical

significance and therefore infer that the generated results are not consistent

with the calculated results which means the quantum gate implementations

are flawed.
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6.3.2.1 Pauli X Gate

This program is included to demonstrate the application of the Not (Pauli-X)

gate and the related accuracy.� �
1 X(0)

2 � �
Algorithm 6.6: Pauli-X Test Program
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Figure 6.22: Comparitive histogram of the expected (calculated) results and those
generated from executing the Pauli-X test program (Algorithm 6.6)
in the GladeOS system
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6.3.2.2 Pauli Y Gate

This program is included to demonstrate the application of the Pauli-Y gate

and the related accuracy.� �
1 Y(0)

2 � �
Algorithm 6.7: Pauli-Y Test Program
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Figure 6.23: Comparative histogram of the expected (calculated) results and those
generated from executing the Pauli-Y test program (Algorithm 6.7)
in the GladeOS system
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6.3.2.3 Pauli Z Gate

This program is included to demonstrate the application of the Pauli-Z gate

and the related accuracy.� �
1 H(0)

2 Z(0)

3 � �
Algorithm 6.8: Pauli-Z Test Program
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Figure 6.24: Comparative histogram of the expected (calculated) results and those
generated from executing the Pauli-Z test program (Algorithm 6.8)
in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.0784, with a corresponding pvalue of 0.78 using 1

degree of freedom. Based on this p-value, there is no statistical significant

difference and the system has a high probability of being accurate.
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6.3.2.4 Hadamard Gate

This program is included to demonstrate the application of the Hadamard

gate and the related accuracy.� �
1 H(0)

2 � �
Algorithm 6.9: Hadamard Test Program
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Figure 6.25: Comparative histogram of the expected (calculated) results and those
generated from executing the Hadamard test program (Algorithm
6.9) in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.01, with a corresponding p-value of 0.92 using 1

degree of freedom. Based on this p-value, the system is not statsitically

significantly different from expected and so has a strong probability of being

accurate.
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6.3.2.5 Hadamard Gate 2

This program is included to demonstrate the application of the hadamard

gate and the related accuracy.� �
1 H(0)

2 H(1)

3 � �
Algorithm 6.10: Dual Hadamard Test Program
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Figure 6.26: Comparative histogram of the expected (calculated) results and those
generated from executing the Dual Hadamard test program (Algo-
rithm 6.10) in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.01616, with a corresponding pvalue of 0.98 using

3 degree of freedom. Based on this p-value, the system is not statistically

significantly different from expected and so has a strong probability of being

accurate.
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6.3.2.6 Phase Gate

This program is included to demonstrate the application of the Phase gate

and the related accuracy.� �
1 H(0)

2 S(0)

3 � �
Algorithm 6.11: Phase Test Program
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Figure 6.27: Comparative histogram of the expected (calculated) results and those
generated from executing the Phase test program (Algorithm 6.11)
in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.27, with a corresponding pvalue of 0.6 using 1 degree

of freedom. Based on this p-value, there is no statistical significant difference

and the system has a high probability of being accurate.
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6.3.2.7 π
8
Gate

This program is included to demonstrate the application of the π
8
gate and

the related accuracy.� �
1 H(0)

2 T(0)

3 � �
Algorithm 6.12: π

8 Test Program
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Figure 6.28: Comparative histogram of the expected (calculated) results and those
generated from executing the π

8 test program (Algorithm 6.12) in the
GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.27, with a corresponding pvalue of 0.6 using 1 degree

of freedom. Based on this p-value, there is no statistical significant difference

and the system has a high probability of being accurate.
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6.3.2.8 Rotate X Gate

This program is included to demonstrate the application of the Rotate-X

gate and the related accuracy.� �
1 RX([90] ,0)

2 � �
Algorithm 6.13: Rotate-X Test Program
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Figure 6.29: Comparative histogram of the expected (calculated) results and those
generated from executing the Rotate-X test program (Algorithm 6.13)
in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.2116, with a corresponding pvalue of 0.65 using 1

degree of freedom. Based on this p-value, there is no statistical significant

difference and the system has a high probability of being accurate.
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6.3.2.9 Rotate Y Gate

This program is included to demonstrate the application of the Rotate-Y

gate and the related accuracy.� �
1 RY([90] ,0)

2 � �
Algorithm 6.14: Rotate-Y Test Program
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Figure 6.30: Comparative histogram of the expected (calculated) results and those
generated from executing the Rotate-Y test program (Algorithm 6.14)
in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.1444, with a corresponding pvalue of 0.7039454151516744

using 1 degree of freedom. Based on this P-value there is no indication of a

statistically significant difference.
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6.3.2.10 Rotate Z Gate

This program is included to demonstrate the application of the Rotate-Z gate

and the related accuracy.� �
1 RZ([90] ,0)

2 � �
Algorithm 6.15: Rotate-Z Test Program
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Figure 6.31: Comparative histogram of the expected (calculated) results and those
generated from executing the Rotate-Z test program (Algorithm 6.15)
in the GladeOS system
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6.3.2.11 Free Rotate Gate

This program is included to demonstrate the application of the Free Rotate

gate and the related accuracy.� �
1 R([90 ,90 ,90] ,0)

2 � �
Algorithm 6.16: Free Rotate Test Program
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Figure 6.32: Comparative histogram of the expected (calculated) results and those
generated from executing the Free Rotate test program (Algorithm
6.16) in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.16, with a corresponding pvalue of 0.69 using 1

degree of freedom. Based on this p-value, there is no statistical significant

difference and the system has a high probability of being accurate.
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6.3.2.12 Basic Entanglement

This program is included to demonstrate the application of the Basic entan-

glement setup and the related accuracy.� �
1 H(0)

2 C(0,X(1))

3 � �
Algorithm 6.17: Basic Entanglement Test Program
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Figure 6.33: Comparative histogram of the expected (calculated) results and those
generated from executing the Basic Entanglement test program (Al-
gorithm 6.17) in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.0324, with a corresponding pvalue of 0.86 using 1

degree of freedom. Based on this p-value, there is no statistical significant

difference and the system has a strong probability of being accurate.
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6.3.2.13 W Entanglement state

This program is included to demonstrate the application of the W Entangle-

ment gate and the related accuracy.� �
1 H(0)

2 C(0,X(1))

3 C(0,X(2))

4 � �
Algorithm 6.18: W Entanglement Test Program
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Figure 6.34: Comparative histogram of the expected (calculated) results and those
generated from executing the W Entanglement test program (Algo-
rithm 6.18) in the GladeOS system

Utilising a Chi Square test with the measured and expected results, the

Chi Square statistic is 0.25, with a corresponding pvalue of 0.62. Based

on this p-value, the system is not statistically significantly different from

expected and so has a high probability of being accurate.
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6.3.2.14 Summary

The results of the previous tests have been summarised in Table 6.15. It

should be noted that none of the tests failed to produce the expected re-

sults and that the worst test cases were only ±26 away from the expected

5000/5000 split. These tests demonstrate that Glade is both accurate and

precise and validates the design presented back in Chapter 5.

Table 6.15: Summary of Glade Specific Tests

Test Name Chi-Squared statistic P-Value Difference
Pauli-X 0 1 ±0
Pauli-Y 0 1 ±0
Pauli-Z 0.0784 0.78 ±14

Hadamard 0.01 0.92 ±5
Hadamard 2 0.01616 0.98 ±15

Phase 0.27 0.6 ±26
π
8

0.27 0.6 ±26
Rotate X 0.2116 0.65 ±23
Rotate Y 0.1444 0.7 ±19
Rotate Z 0 1 ±0

Free Rotate 0.16 0.69 ±20
Basic Entanglement 0.0324 0.86 ±9
W Entanglement 0.25 0.62 ±25

6.4 Design and Creation Evaluation

Following the construction and testing of the system (described in Chapter

4 and built in Chapter 5), the next stage is an evaluation in accordance with

the principles outlined in Section 3.1.1. Those criteria are:

1. Functionality

2. Completeness

3. Consistency

4. Accuracy
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5. Performance

6. Reliability

7. Usability

8. Accessibility

9. Aesthetics

10. Entertainment

11. Fit with organisation

Together, the above criteria explore the system from multiple facets provid-

ing a multidimensional review.

Functionality The overall functionality of the software system is to receive

and process quantum programs. In this aspect the system performs accord-

ing to the specification. The novel functionality of the system is the ability

to perform parallel processing, in this regard the system further conforms to

specification. Regarding the parallel processing the functionality is a poor

mans imitation of the true parallel processing available to quantum comput-

ers, a true representation of the parallel processing would be a thread for

every qubit and performing processing through that. Developing this simu-

lator to function on existing commercially available hardware would require

limiting the functionality according to the standard number of cores. To

create a truly parallel simulator, one could limit the number of qubits in

the simulation to the number of cores in the available hardware and execute

all the threads in a truly parallel manner. Given that computer programs

do not execute in isolation, it would be almost impossible to guarantee that

qubit to core ratio of 1 instead of alternative programs, therefore performing

parallel processing according to this design is not feasible. For the purposes

of this system the parallel processing is accomplished by utilising a thread

(from a pool of size n) per quantum program. This approach demonstrates
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the benefit of multi-processing on a quantum computer though does suffer

from slight inaccuracies (just like every simulation).

Completeness As explored in Section 5.1 computer models always suffer

from inaccuracies, resulting in outputs which suffer from the summation of

errors. In this regard very few software models can ever be considered truly

complete and certainly not this model (which utilises a number of irrational

numbers). Quantum programs are composed of logic gates, which combine

to form a complete program. Should a simulator support a universal gate set

then any unsupported gates can be created as a composition of the supported

gates. In this capacity, the simulator supports the universal gate set of

Hadamard, Phase, π
8
and Control gates as well as a complement of extra

commonly available gates.

Consistency The question of consistent results with quantum programs is

a difficult one to answer. The output of a quantum program is a single bit

string of length n. At the conclusion of the program runtime however the re-

sult is a probability distribution of various bit strings of length n. The act of

reading results ‘collapses’ the distribution down to a single result. Because of

this, the same program can be executed multiple times and result in x unique

bit strings. This difference in output does not mean that the program is pro-

ducing inconsistent results, it merely requires further examination. Analysis

of the probability distribution is required to confirm the consistency of the

system. When examination of the distribution is accomplished, the execution

of the same program results in an equivalent distribution. In this capacity,

the output of the system is strongly consistent, as shown in Section 6.3.2.

Accuracy System accuracy suffers from the same problems as system con-

sistency, in addition to the inaccuracies presented in Section 5.1. Because

of the issues presented with measuring system consistency, it is not suitable

to measure system accuracy at the end of the system. Further, because of

the issues presented in Section 5.1 perfect system accuracy is impossible.

Knowing this, the system has been made as accurate as possible by utilising
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complex float data types and ensuring adequate data type sizes to reduce

truncation and rounding errors.

Performance Performance of a software system can be difficult to measure,

composed of any of a number of criteria:

• Execution time

• Resource Usage

• Scalability

• Result correctness

• Result accuracy

• Impact of bias

among others. Therefore the best measures of performance are the tests

conducted above.

Reliability The hallmark of a reliable system is one that can successfully

handle erroneous conditions without needing a restart. As evidenced from

Section 6.3.1, the system has 2 known limitations. Regardless of the speed

that programs are received, the amount of programs that are sent or the

submission of invalid programs the system continues to compute. The only

environments where the system is shown to fail is where the size of the submit-

ted programs was so great that it overwhelmed the host operating system by

consuming all available RAM even on a test computer with 256GB of RAM,

or such that multiple sources flood the system with programs faster then they

can be processed, resulting in forced termination from the operating system.

Usability The system is designed to execute as a server program with no

graphical presence. Depending on the command line arguments everything

including the logs are written to file automatically with no user involvement.

To submit quantum programs or read results, users will need to communicate
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with the program on the specified ports. All parts of the system, including

logging and ports are able to specified at start time. Because of this design,

the system can be utilised through many different methods ranging from user

friendly to pure network programming.

Accessibility As explored under usability, the system can be accessed by a

range of different methods with varying accessibility. Because this system is

not designed with a typical front end, user accessibility is a feature left to

the end user. Tools like Postman can simplify the process while providing

a graphical user interface, alternatively simple programs can be written to

submit programs and retrieve results which can be customised to individual

users requirements.

Aesthetics Unlike most products developed with the design and creation

methodology the system exists in a bubble insulated from the end user. Due

to this bubble, the system has minimal aesthetics to evaluate. The only con-

ceivable aesthetics that can be evaluated are the choice of language with the

command line arguments (CLA). The CLA were chosen either for their us-

age of technical terminology (e.g. port, qubit) or because they were phrases

which detailed their function. Because of these reasons, the choice of lan-

guage was never really available for discussion, though it does assume some

familiarity with the technical terminology.

Entertainment The system is not intended to perform an entertaining func-

tion and therefore is unable to be evaluated according to this criteria.

Fit with organisation The system is not designed to be the product of any

single organisation and was not produced as a commercial product. Instead

the system exists as a research tool to be utilised as a testing ground for

novel and interesting theorems. As a research tool, the system exhibits the

reliability, accuracy and flexibility expected of such a tool. In this capacity

the system is a clear fit within the values and expectations of research.
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6.5 Chapter Summary

The results featured above in this chapter complete the overview of the origi-

nal system constructed through Chapters 4 and 5. The above results present

the recommended algorithms for various bottlenecks of the system in an at-

tempt to alleviate them. It has been demonstrated that the GladeOS system

accurately performs the specified quantum programs and in doing so per-

forms well when compared with other more established simulators. Lastly,

now that the system has been established, it has been assessed according

to the criteria discussed in Chapter 3 and has been found to perform favor-

ably. This system is not without its flaws, as Chapters 7, 8 and 9 will now

illuminate.



7. IMPROVEMENTS FOR THE QUANTUM OPERATING

SYSTEM

7.1 List of Improvements

While there is always improvements that can be made to any system, this

Section will focus on a short list which each have a large impact. These

improvements attempt to address the following issues:

1. Runtime Difference Issue

2. Quantum Networking Integration

3. Inter-programs Synchronisation

The first problem relates to the co-ordination of executing multiple pro-

grams at the same time, failure to resolve this issue can result in increased

execution time and a strong possibility of increased error rates. The second

problem investigates the different ways that quantum networks could be in-

tegrated into quantum computers and therefore into the Operating System.

Lastly, the final problem investigates the concept of synchronising the execu-

tion of multiple programs so that they can work with each other instead of

merely working side by side. Each of these problems is defined and discussed

below before a recommended solution is provided. Together these improve-

ments demonstrate the complexity of the system and provide an overview of

the systems algorithmic complexity (Research Question 3C).
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7.2 Runtime Difference Issue

There is a known issue in the base system (Chapter 4) where quantum pro-

grams may be able to work alongside each other, but vary significantly on

their execution time. For example a program (A) that takes 1 second to ex-

ecute and a program (B) that takes 10 seconds to execute could potentially

perform concurrently, however there will be a large portion of dead time (9

seconds) between the conclusion of program A and B. Because of the difficul-

ties associated with stopping and starting quantum programs, the solution

to this problem must be implemented prior to the programs commencement

of execution.

It is possible to estimate the length of a quantum program by counting

the number of gates on the critical path and multiplying them by the appro-

priate multipliers (different for each hardware system and so not discussed

here). This will provide a base time cost for the program which can then be

adjusted for each implementation according to the additional swaps required

to make the implementation work (according to the Siraichi algorithm [104]

which has been discussed in Section 6.1.1.1).

Using the cost (generated from the procedure in the previous paragraph),

it is elementary to compute the difference between two quantum program

mappings with a simple subtraction. The problem then shifts to construct-

ing a clique where the sum of the difference is minimal. Which is a simple

extension of already implemented algorithms (see Section 6.1.2) to consider

the weightings of the edges when composing the cliques. In Figure 7.1 a

random example has been included to demonstrate the concept, in this case

the optimal clique is M0 and M5 because their time difference is 0.5 which

is less than any of the other available cliques (for example M0 and M2 has a

cost of 4). In general this approach adds a small piece of data onto the base

system with the benefit of presenting a solution to the time difference issue

which scales with the number of programs.
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If the system can perform measurements of independent qubits then there

are no more steps to follow. Otherwise following the identification of the

clique, the larger programs begins execution and the smaller program can be

delayed in order to synchronise the measurement operations accordingly.

Layer 2

0.5 1.5

4

1

M0 M1 M2

M3 M4 M5

Figure 7.1: An example of the conflict graph (from Section 4.5) with edge values
indicating difference between the lengths.

By utilising this approach to generate graphs (like Figure 7.1) the system

can then select similarly timed programs to execute. This has the benefit

of solving the runtime difference issue by removing the disparity in length

between the grouped programs. Using this approach ensures that the pro-

grams with the most similar execution time are grouped together and by

adding padding (empty space) to the smaller programs these can be artifi-

cally lengthened to be equivalent to the larger programs in the group.

7.3 Quantum Networking Integration

Traditional networking involves multiple interconnecting pieces which each

transform the data as required. As different technologies interconnect they

typically require transforming the data from stored bits into digital bits, and

then digital bits to microwave signals or pulses of light [122]–[124]. These

transformations require that the data is read bit by bit and then converted,

sometimes requiring multiple passes over the same data. Unfortunately quan-

tum data cannot be measured without losing information or cloned at all [28].

Because of this converting quantum bits to alternate representations with-
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out loss of information is a very complicated endeavour and the subject of

much research [54], [125]. Different hardware implementations of quantum

computers have innate properties that lend themselves well to quantum net-

working. For example, encoding quantum information in photons allows for

relative simple transmission down fibre optic cabling [125].

Integrating quantum networking into the Operating System requires great

precision. Entanglement links are expensive and should be used carefully to

ensure the system receives a maximum benefit. Entanglement links work

by sharing a quantum state over a period of space, this link is only usable

before either end is measured [54]. Recreating these broken links requires

the creation and distribution of a quantum state, the cost (in terms of time

and resources) of which is dependent on the technologies chosen. A quantum

network connection is commonly used for quantum key distribution [54],

[126]–[128], though a natural extension is to enable teleportation of qubits

between two distinct quantum computers [54]. An example of linking two

distinct quantum computers can be found in Figure 7.2 or Figure 7.3.

Computer 1 Computer 2

M0

M1

M2M3

M4

M5

M6M7

M8

M9

M10M11

M12

M13

M14 M15

Figure 7.2: An example of Quantum Networking between 2 distinct fully connected
computers. The connection is formed through M0 and M13 as an
entangled pair
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Computer 1 Computer 2
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Q1 Q2

Figure 7.3: A second example of using Quantum Networking to connect two quan-
tum computers. The connection is formed through Q1 and Q2 as an
entangled pair, which are distinct from the actual computers them-
selves (similar to a NIC in traditional computing).

There are at least 2 approaches to network integration, either integration

between 2 computers memory directly (Figure 7.2) or connecting quantum

networks seperate from the computers memory (similar to a NIC in tradi-

tional computing) (Figure 7.3). Regardless of how the networking is imple-

mented, the networked devices can be integrated together.

Quantum network links are delicate with a single usage lifetime, mea-

suring either of the entangled pair will cause the alternate to resolve itself.

Improper usage of entangled networking pairs can lead to unexpected inter-

ference on programs which utilise the entangled qubits. Figure 7.4 illustrates

a quantum circuit where without knowledge of the initial entanglement (B00)

the output of the circuit is flawed. The expected output of the circuit is to

generate a state of |11⟩. Instead, the quantum circuit in Figure 7.4 results

in a largely different outcome (Equation 7.1) which results in the bottom 2

qubits in a superposition of |00⟩ and |11⟩ which is also dependent on the

remaining top qubit.

|011⟩+ |100⟩√
2

(7.1)
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B00 =
|00⟩+|11⟩√

2
X

|0⟩

1 2 3

= |011⟩+|100⟩√
2

Figure 7.4: An example Quantum Circuit which suffers from errors due to entan-
glement

Traditional usages of quantum networking links include assisting with

quantum key distribution [126]–[128] and accommodating qubit teleportation

[54]. The operation of quantum teleportation is performed through the circuit

found in Figure 7.5.

|ψ⟩ H

B00 =
|00⟩+|11⟩√

2

X Z |ψ⟩

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 7.5: Quantum Circuit for the Teleportation Operation

The Quantum Teleportation operation (Figure 7.5) works by ’teleporting’

a single qubits state through an entangled pair. To the user this has the effect

of moving a single qubits state from one location to another. This transmis-

sion is certified against interception [28], [54], [125] and allows the user to de-

tect if someone is attempting to intercept the communication [28], [54], [125].

The ability to transmit the state from 1 qubit to another computer emulates

the traditional networking used worldwide and allows quantum computers

to work together if they are properly synchronised. An unfortunate part of

the Quantum Teleportation operation is that the entangled qubit pair is de-

stroyed during the operation, this means that the pair can only be used once

and will need to be regularly replaced in order to be effective [28], [54], [125].
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Co-ordinating a program to execute over multiple computers is a stan-

dard feature of classical computing, but rather difficult in quantum comput-

ing. The method described below borrows heavily from the Siraichi [104]

approach, merely extending it to increase the effectiveness. A quick recap of

the Siraichi method can be found in Section 6.1.1.1. The Siraichi approach

can largely be implemented as is, with two upgrades/updates:

1. When mapping qubits, expand the considered space to include multiple

distinct graphs which each represent their quantum computer

2. When joining the distinct sets together, there are two stages:

(a) Using the entanglement links to get the qubits to the relevant

graphs (at great cost to the mapping).

(b) The standard swapping stage presented in Siraichi.

The first upgrade of expanding the considered area is elementary to im-

plement, as it merely provides more options to sort through. The crux of the

difference is in the second upgrade. The following section will explore this

change in detail:

7.3.1 Qubit Swapping Outline

Once the qubits have been placed according to the Siraichi algorithm, the

algorithm employs ‘token swapping’ algorithms to move the qubits into the

new positions. Token swapping algorithms use a standard graph data struc-

ture and place small pieces of data (colours, strings, integers, etc.) known

as tokens (see Figure 7.6a). The goal is to move the tokens from their ini-

tial placement to the desired final placement in the least swaps possible (see

Figure 7.6b). This is accomplished according to the Miltzow algorithm [129],

[130] which moves the qubits to their end position one by one. By prioritising

swaps where both ‘tokens’ want to swap with each other (in order to reach

their goals), the end resultant sequence is reduced.

Token swapping was originally designed such that each token was unique

and there were no repeats [129], [130]. This was then extended to include
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the variation where repeats of tokens was allowed (it does not matter which

orange token lands on the node, so long as one does) as seen in Figure 7.6c

[129], [130]. In both of these cases it doesn’t matter how many swaps you

perform or how many times you utilise each edge, it only matters that the

tokens end up at the correct node. When concerned with moving the qubits

within a quantum computer the standard algorithms are sufficient.

When considering moving qubits between quantum computers the prob-

lem increases in difficulty. Transporting qubits is best achieved through

Quantum Teleportation [54] which can switch the states of 2 entangled qubits,

though this is a one sided operation which is difficult to model. It is much

easier to consider the problem of Quantum Teleportation if we consider con-

nections between computers as bi-directional, using 2 entanglements in order

to send and receive a qubit. This approach then mirrors the token swapping

problem mentioned before, with one major difference. That difference is that

each teleportation edge can only be used once before it has to be renewed.

Because of the difficulty associated with establishing the entanglement links,

it is considered that once a teleportation edge has been used it is no longer

available for the subsequent operations. Depending on the specific hardware

this operating system is implemented on, the renewal of entanglement links

may be quite simple and cheap though this is considered to be the minority of

cases. In that specific case the links may be considered as reusable resources

and treated accordingly.

There is the very real opportunity that not all quantum computers need

to move qubits. This is modeled by the satisfied quantum computers already

having the correct token for their position. The satisfied computers are still

present in the entanglement graph, because they may need to be used, but

represented as already solved. There are a number of approaches to solve

this problem, which are explored in Sections 7.3.2 to 7.3.5.
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Figure 7.6: An example of a token swapping graph, token’s are represented as red
letters and must end at the node of the same label. (a) demonstrates
an unsolved token swapping graph while (b) depicts a solved version
of the same graph and (c) demonstrates a token swapping graph with
duplicates allowed.

7.3.2 Brute Force

The first step in attempting to solve any problem is to evaluate the brute

force solution for its suitability. The brute force approach for this problem is

to attempt every possible permutation of the edge set of all possible lengths

and see if that permutation solves the system. By starting from permutations

of length 1 and working up to length n, it ensures that the system finds the

smallest possible solution. The downside to this approach is that for any

suitably large system, the number of permutations is excessive.

1 +
n∑

r=1

n!

(n− r)!
(7.2)

For example, for a system of 10 computers the number of permutations to

step through are 10+90+720+5040+30240+151200+604800+1814400+

3628800+3628800 = 9864101 which at a rate of 10 permutations every second

it equates to 986410.1 seconds or, 16440.1683 minutes or, 274 hours or, 11.4

days which is not feasible for use within this algorithm.
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7.3.3 Graph Theory Approach

The next approach is to test each swap as it is performed on the graph. This

approach is similar to a depth first search and builds a chain of swaps as it

progresses. An inline optimisation can be made with this approach by testing

after each swap to see if the graph is still balanced (Fig. 7.7). Balanced in

this context is defined as every token being able to reach their target node,

as seen in Figure 7.7 where each token (red number) can be moved to match

the qubit number (e.g. 0 can reach/is linked to Q0). When the system

is unbalanced (Fig. 7.8), the system cannot be solved, as 0 is unable to

reach the qubit Q0. Therefore when the system becomes unbalanced there is

absolutely no sequence of swaps that can make the system solvable and the

search can stop and retreat back to the next chain.

Layer 1
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3

Q0 Q1

Q2 Q3

Figure 7.7: An example of a balanced
map as every token (red num-
ber) can reach/is connected
to the relevant qubit number
(0 → Q0)

Layer 2
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3

Q0 Q1

Q2 Q3

Figure 7.8: An example of an
unbalanced map as
tokens (red number)
are unable to reach
the relevant qubit
number (0 ↛ Q0)

This approach in the worst case will be equivalent to the brute force

approach as it needs to test all permutations. In the best case the system

is already solved and this will be identified at the start while the average

case is not able to calculated as it is largely dependent on the connectivity

and size of the graphs. The benefit of using this system, is that it identifies

impossible states faster and can find unsolvable systems quicker than brute

force.
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7.3.4 Matrix Approach

Another approach that can be utilised is to utilise matrix manipulation to

resolve the problem. By representing the tokens as a matrix, and the final

position as a matrix then a transformation matrix can be used to interconnect

the two. Representing the tokens as a matrix is accomplished by listing the

tokens currently placed on the nodes in the order of the nodes, the final

position is also written in the same order but transposed. Using these three

matrices the following equation holds true:

[
3 1 2

]
× T =

12
3

 (7.3)

Where T is the transformation matrix, in this specific example:

T =

0 0 1

1 0 0

0 1 0

 (7.4)

Because the transformation matrix is simply moving the values around

without editing them at all we can consider this Transformation Matrix as

a Permutation Matrix [131]. A permutation matrix is a more specialised

transformation matrix and is categorised by being square and having a only a

single 1 in each row and column [131]. Taking the permutation matrix, it can

be decomposed into a series of elementary matrices using the Gauss-Jordan

elimination method [131], [132]. Elementary matrices are matrices which

differ from the identity matrices by only a single row operation, in this case

swap operations [132]. The process to decompose the matrix is to augment

the transformation matrix against the identity matrix and then solve for

the inverse [132]. The row operations that are performed to generate the

inverse are then used as the series of swaps. Because permutation matrices

are by definition composed of a series of swaps they are guaranteed to have

an inverse, this approach can be used with any size permutation matrix [131].
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The first step in this example is to align the permutation matrix alongside

the identity matrix. A solid bar has been placed between them to better

delineate the 2 matrices.  0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

 (7.5)

The second step in this example is to switch the first and second rows. This

swap was chosen first to ensure that the first line of the permutation matrix

is now the same as the original identity matrix. 1 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 1

R1 ↔ R2 (7.6)

The third (and final) step in this example is to switch the second and third

rows. This swap finishes the transformation from the original permutation

matrix to the identity matrix. After this swap the sequence of required swaps

is now known.  1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0

R2 ↔ R3 (7.7)

This method yields the inverse of the matrix and the series of operations

that produce the matrix. This approach will always yield a finite sequence

of at most n swaps for a n ∗ n matrix, though the swaps may not be allowed

with the current entanglement graph. The sequence that is generated is

based purely on how the solver approaches finding the inverse (e.g. left to

right, right to left, top to bottom etc...). This approach completely ignores

the current edge list and struggles to take advantage of a provided graph.
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7.3.5 Abstract Algebra Approach

The final approach explored to resolve this problem is through utilising a

branch of Abstract Algebra known as Group Theory. Group Theory utilises

the cyclic notation for permutations, for example, the transformation used

in the Section 7.3.4 would be written like Equation 7.8.(
1 2 3

2 3 1

)
=
(
1 2 3

)
(7.8)

Where Equation 7.8 demonstrates both the 2-line and 1-line notation as

the left hand side and right hand side of the Equation respectively. The

2-line notation is read as the top line becomes the bottom line, so 1 becomes

2, 2 becomes 3 and 3 becomes 1. The 1-line notation is read as each number

becomes the next one in the chain, it is common to have multiple cycles when

written in the 1-line notation. Equation 7.9 demonstrates the multiple cycles

perfectly, it should be noted that each cycle starts and ends at the brackets.(
1 2 3 4 5

5 4 1 2 3

)
=
(
2 4

)(
1 5 3

)
(7.9)

Every permutation can be written in the 1-line notation, as a product of

disjoint cycles. Meaning that each element is contained in only one cycle and

only appears once. Because the cycles do not conflict with each other they

can be written in any order. The 1-line permutation in Equation 7.9 can be

decomposed further, as demonstrated by Equation 7.10. Equation 7.10 also

highlights a key insight in that while every cycle can be written as a series

of transpositions (swaps), it is not a unique series of transpositions.

(
2 4

)(
1 5 3

)
=
(
2 4

)(
3 5

)(
1 5

)
=
(
2 4

)(
1 5

)(
1 3

)
(7.10)

The tricky part with this approach is to ensure that the sequence of
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transpositions only includes the swaps that are allowed according to the graph

(swaps can only occur if pairs of elements are in the edge list). This can be

accomplished through the careful application of some simple transformation

rules:

1. (1 2) = (2 1)

2. (1 2) (1 2) = (1) (2) = ∅

3. (1 2) (3 4) = (3 4) (1 2)

4. (1 2) (2 3) =

(a) (1 3) (1 2) or

(b) (2 3) (1 3)

5. (1 2) (3 4) = (1 2) (2 3) (2 3) (3 4)

It is recommended that while rule 5 works with any insertion, the swap

that is inserted is two of either (1 3), (2 3), (1 4) or (2 4) this means that

both (1 2) and (3 4) can interact with the inserted transpositions (as per rule

4). The parity of a permutation is defined as the number of transpositions

(swaps) modulus 2, in other words odd or even. The parity of a permutation

is constant, therefore in order to represent it at a higher level the permutation

must grow or shrink by a factor of 2 (as per rule 5). Any attempts to alter

a permutation without maintaining the permutation parity will result in a

new permutation that is not equivalent to the original.

7.3.6 Recommendations

The Siraichi algorithm will handle the qubit mappings within the quantum

computers, while any of the above approaches (brute force → abstract alge-

bra) can determine the swaps required in order to move the qubits around for

the next series of operations. This approach extends the Siraichi algorithm

by adding in some extra edit commands and extra costs. The swaps can

be fit to take advantage of existing entanglement connections, using Section
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7.3.2 or 7.3.3 will fit using only existing connections. While Section 7.3.5

can fit but may require new connections to be constructed and Section 7.3.4

has little to no relation to the original graph and will determine an optimal

solution that will regularly require multiple new connections.

Recommending a single algorithm is not a simple task, as the algorithmic

choice is largely dependent on the hardware that is being used. If the network

links are preset and cannot be changed easily, then the recommendation is

the Graph Theory approach (Section 7.3.3) as it is guaranteed to provide

either a valid solution or a correct impossible ruling. However, if the network

links are able to be altered or extended then the Matrix approach (Section

7.3.4) will provide a more optimal solution. It is expected that the Abstract

Algebra approach may in time surpass the Graph Theory approach, though

determining an algorithmic approach to apply the aforementioned rules is a

complex task. Further analysis and research is required in order to determine

a singular optimal approach to this distributed computing problem, however

the different approaches presented in Sections 7.3.2 to 7.3.5 demonstrate that

the problem is at least solvable, if not efficiently.

7.4 Synchronization

The parallel processing presented in Chapter 4 and implemented in Chapter

5 is a primitive variety. By simply segmenting the quantum programs, the

quantum programs operate in parallel though they cannot communicate.

Part of the strength of classical parallel programming is the communication

which allows sharing resources and data [51], [72]–[74]. Two approaches to

sophisticated quantum parallel processing are either implementing a shared

computing space or employing ancillary qubits.
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7.4.1 Shared Computing Space

One concept that is currently not explored is the idea of shared computing

space in quantum computing. This ability to share data between programs

is an ability found in classical computing via threaded programming models

with shared memory space or more complex arrangements with message pass-

ing interfaces between processes on the same or different computers. This

method is not without risks, these risks can be collected into the following

three categories:

1. Qubits entangled with another program and one of them measures.

2. Edit the qubit value (single qubit gates).

3. Overwriting the qubit.

Entangled with another program, one of them measures This category cov-

ers the condition where 2 or more programs entangle with the same qubit.

This can be used to great effect to link the programs together and share the

data between them. However, when done un-intentionally this can lead to

premature collapse of superpositions. Which causes incorrect solutions to be

generated by the programs. This issue is one that will be extremely hard to

diagnose due to the random nature of the race condition, where we cannot

guarantee the order of execution of two parallel programs [133].

Edit the qubit value This category covers the condition where data is stored

by a single program but edited by another program. This can be used for

positive effect by using the result of the second program to influence the first

program. The issue stems from cases where neither program is expecting

the contact. Here program 1 is expecting their data to remain consistent

(or perhaps some third program to connect with it). While program 2 is

expecting the data slot to be free and open for storage. This leads to program

1 working with incorrectly edited data, and program 2 has failed to correctly

store their data. This leads to both programs failing to execute as expected,

though this issue is much easier to debug. A subset of this category is the
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measurement case. By measuring the data already stored in the shared

compute space, it irrevocably changes the data and can force the original

program to experience critical failure.

Overwriting the qubit Shared computing space means that both parties

have some degree of access to the same data space. It is a simple process for

a program to measure the current state and then set the data to the correct

state for storage. This irrevocably overwrites the data and one cannot recover

the original state. In this case, the second program has the correct data stored

while the first program proceeds with the overwritten data which leads to

largely incorrect outputs [134].

7.4.2 Ancillary Qubits

An alternative approach to placing quantum programs on to quantum com-

puters is to place the program onto any qubits and to utilise ancillary qubits

in order to forge a symbolic link between the target and the source.

|ψ⟩
|0⟩
|Ψ⟩

=

|ψ⟩

|0⟩

|Ψ⟩

Figure 7.9: Quantum Circuit using Ancillary Qubits

This relationship is demonstrated in Figure 7.9, with a single control

not operation being replaced by 3 consecutive operations. Use of Ancillary

qubits requires programs to expand their requirements and also requires care-

ful scheduling of each operation. There is no requirement to perform the 3

replacement control not operations consecutively, however they must be com-

pleted in order prior to using the ancillary qubit or using the original qubit

in another operation.
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This approach allows quantum programs to execute on most quantum

hardware, provided there is a path of unallocated qubits between each pair

of qubits. The major issue with this approach is that every multi-qubit op-

eration now requires n = 1 + 2 ∗ A extra operations to complete (where A

stands for the number of ancillary qubits used). Each operation requires

time to act which steadily increases the risk of decoherence and other errors

within the system.

Another issue with the use of ancillary qubits is it exponentially increases

the number of possible mappings to search for. Because of these reasons,

the use of ancillary qubits has been abandoned in favour of using mapping

techniques like those featured within the Siraichi method[104].

7.4.3 Synchronisation recommendations

Because of the difficulties associated with controlling a single quantum com-

puter, let alone 2 interconnected quantum computers, there are no known

quantum algorithms which are designed to work with each other. With-

out these algorithms, even if a protocol could be established there would be

no method to validate the protocol. Based on current quantum computing

technology both the shared computing space and ancillary qubit methods

increase the number of gates and therefore increasing the error rate of the

programs. Therefore it has been decided that as the field currently stands,

synchronisation stands as a desideratum.

7.5 Chapter Summary

To summarise, there are a variety of optimisations that can be made to

tweak the the original system outlined in Chapter 4 to suit the users spe-

cific implementation. The original system outlined in Chapter 4 will work as

originally designed; however effective optimisation results in improved per-

formance and efficiency. Implementing the time difference extension is easily

integrated into the algorithms found in Chapter 6.
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The quantum networking integration requires further research, namely

because integration between a universal quantum computer (Section 2.1.1)

and quantum networking technology is not readily available. Both universal

quantum computers and quantum networks exist in isolation, however their

joint application is only theorised about. While the theories enable research

to be conducted on their use cases, it is difficult to prepare an answer with

the limited resources.

The synchronisation using ancillary qubits greatly simplifies the initial

mapping of programs to qubits, however it results in a large growth of overall

complexity for runtime. It is for this reason that, while this area may recieve

further research, it is deemed ill suited for use in current technology.



8. ALTERNATIVE CONFIGURATIONS

The focus of this Thesis has been the development of an operating system

for a specific configuration of 1 classical computer to 1 quantum computer.

This configuration was chosen because of the inherent simplicity while also

accurately representing the inherent problems. This Chapter extends the

discussion on system scaling by introducing and discussing 3 alternate con-

figurations:

1. 1 classical computer - * (n) quantum computer

2. * (n) Classical computer - 1 quantum computer

3. * (n) classical computer - * (n) quantum computer

These configurations are extensions of the already discussed system (Chap-

ters 4 and 7) and aim to apply that system into these configurations. Alter-

native strategies for handling access within each configuration will exist and

this Chapter was not intended to be a universal list of configurable options,

merely an introduction.

8.1 1 Classical Computer - * (n) Quantum Computer

In the current NISQ (Near Intermediate State Quantum) environment scaling

quantum computers to include more qubits is a recognised challenge [135].

An alternative approach to quantum computer scaling is to integrate multi-

ple smaller quantum computers together to form a larger pool of available

qubits. This configuration is similar in design to a Beowulf cluster [136] (This

has been touched on in Section 7.3). This configuration of multiple distinct
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quantum computers can differ based on the inclusion of quantum network-

ing. Section 8.1.1 and Figure 8.1 discuss the implementation where quantum

networking is not feasable, while Section 8.1.2 and Figure 8.2 discuss the

implementation where quantum networking can be considered.

8.1.1 Quantum Networking Disabled

CC0

QC0

QC1

QC2

QC3

QC4

QC5

Figure 8.1: 1 Classical Computer (Purple Rectangle) to Multiple Quantum Com-
puters (Red Diamond)

By employing multiple distinct quantum computers under the purview of a

single instance of the system, each quantum computer provides a connectivity

graph of its qubits and can be instructed individually. One can consider all

n quantum computers as a single graph of n connected components thereby

allowing for searching over multiple quantum computers. Alternatively you

can store it as n graphs each of 1 connected component thereby limiting the

search to programs that only fit within a single quantum computer. Searching

a single disconnected graph is faster than searching each individual graph due

to searching a single albeit larger graph over multiple smaller graphs, how-

ever the cost of considering all n graphs is greatly increased from sequentially

considering them individually.
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Without access to a quantum network connection a quantum program

can only be split over multiple distinct quantum computers provided that

the activity graph is made of multiple connected components where each

component is allocated to a separate quantum computer. If the search is

restricted to considering each quantum computer individually then it will ig-

nore the mappings which span multiple computers. A search can be included

at the end of the entire system, however this creates double handling of the

same search space. Alternatively programs could be partially mapped and

then combined with other partial mappings, though this greatly increases

the complexity of the search and increases the complexity of the scheduling

and mapping space.

8.1.2 Quantum Networking Enabled

CC0

QC0

QC1

QC2

QC3

QC4

QC5

Figure 8.2: 1 Classical Computer (Purple Rectangle) to Multiple Quantum Com-
puters (Red Diamond)

Using a quantum network connection allows programs to be spread over mul-

tiple quantum computers through entanglement connections and the use of

teleportation operations. As shown in Chapter 7 (Section 7.3) where quan-

tum entanglement links are established, the system cannot be modeled as
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completely seperate quantum computers. Quantum computers that are en-

tangled must be searched as a single device, failure to do so can lead to

incorrect or invalid mappings. The networking shown in Figure 8.2 is an

upper bound, the system can be anywhere in between Figures 8.2 and 8.1.

This networking may result in multiple distinct groups of entangled comput-

ers which can be considered as a single graph of n entangled components or

as n graphs each of 1 entangled components.

Another consideration is that the entangled qubits may be mapped for

use within a program. It must be remembered that entangled qubits are not

in the base state |0⟩ like the rest of the system, instead they are likely in a

Bell State (as provided in Equation 2.6). If this fact is not considered, then

the program that utilises those entangled qubits will not return the correct

result due to unexpected interference.

8.2 * (n) Classical Computers - 1 Quantum Computer

A configuration that already exists within the multiple online quantum com-

puting platforms [63] is multiple classical computers, all submitting their

programs to the same quantum computer. This configuration has two ap-

proaches, either the quantum computer talks with a single classical com-

puter directly and the others through the classical network (trusted master

nodestar topology [137]) or all quantum computers can talk directly to the

classical computer (decentralised network [138], [139] approach). It is as-

sumed that due to the ubiquitous nature of classical networking that all of

the classical computers are connected through a network, if this network is

the traditional internet then further steps will be required to ensure data

security.
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QC0

CC0

CC1

CC2

CC3

CC4

CC5

Figure 8.3: Multiple Classical Computers (Purple Rectangle) to 1 Quantum Com-
puter (Red Diamond)

8.2.1 Free for all Implementation

The worst approach to sharing the utilisation of a quantum computer is to

implement a free for all. This approach features a configuration similar to

that shown in Figure 8.3 and has no (or limited) communication between

the classical computers, with each of them sending instructions to the quan-

tum computer without considering the effect on the other submissions. This

approach will almost certainly result in completely untrustable results due

to unintentional interaction between various submissions. Because this ap-

proach is such a bad concept and will almost always fail it will be ignored

for the rest of this Thesis and is only mentioned for completeness.

8.2.2 Trusted Node (Master computer) Implementation

The trusted node approach hosts the operating system on ‘classical com-

puter 0’ (CC0), and asks that all submitted programs are transmitted to the

trusted node. The trusted node then maps and executes the programs on

the quantum computers before returning the relevant results to the relevant

origin node.
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QC0

CC0

CC1

CC2

CC3

CC4

CC5

Figure 8.4: Master Classical Computer Implementation

The trusted node approach requires devout and complete trust in the

elected node. The trusted node can be used to authenticate and/or block

other users in order to ensure that only valid users can gain access. The

trusted node could be used to return incorrect or invalid results to the users

in order to deceive them. The trusted node requires access to the source code

(at minimum the gate operations) of each submitted program, otherwise it

cannot pass the submission to the quantum computer.

This access means that the trusted node can duplicate or save the pro-

grams for review at another date. This allows the owner of the trusted node

to effectively steal intellectual property from the other nodes with minimal

trail. In order to combat this, licensing and other agreements can be de-

ployed, though these are out of the scope of this thesis. Blind quantum

computing [140], a technique which obscures the purpose of the quantum

computation from even the owner of the quantum computer, could also be

used to circumvent not trusting the trusted node, however that will require

a quantum networking connection.



8. Alternative Configurations 246

8.2.3 Decentralised (Blockchain) Implementation

In order to circumvent the required trust in the previous configuration, a

decentralised implementation can be employed. This approach is reminis-

cent of blockchain technologies [141], whereby a single blockchain [141] exists

for the quantum computer and nodes may add quantum programs onto the

blockchain [141]. With the inherent security of blockchain [141] a firm trail is

included to protect intellectual property, though it does require that all users

have a copy of the blockchain [141] which will spread the source code further.

This approach still requires a specified node to execute the scheduler and

co-ordinate the quantum computer, however the actions of that scheduler

can easily be reviewed by the other nodes by observing the manipulations to

the blockchain [141].

QC0

CC0

CC1

CC2

CC3

CC4

CC5

Figure 8.5: Multiple Classical Computers to 1 Quantum Computer

8.3 * (n) Classical Computers (purple rectangle) - * (n)

Quantum Computers (red diamond)

The final alternate configuration stems from a blend of the two previous

configurations, where an organisation has procured a handful of quantum

computers for their multiple staff members to engage. This is analogous to

High Performance Computing (HPC) configurations.
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CC0 CC1 CC2 CC3 CC4 CC5

QC0 QC1 QC2 QC3 QC4 QC5

Figure 8.6: Multiple Classical Computers (Purple Rectangle) to Multiple Quan-
tum Computers (Red Diamond)

8.3.1 High-Performance Computing Approach

The HPC approach borrows from the approach utilised by universities and

other research institutions with their HPC installations. This approach bor-

rows from the trusted node approach (Section 8.2.2) and provides a specific

node which receives the submissions from other classical computers. This

trusted node then maps and executes the process on some subset of the

available quantum computers. This approach also inherits the weaknesses

and cyber security vulnerabilities of Section 8.2.2.

CC0

CC1 CC2 CC3 CC4 CC5

QC0 QC1 QC2 QC3 QC4 QC5

Figure 8.7: Multiple Classical Computers (Purple Rectangle) to Multiple Quan-
tum Computers (Red Diamond) - HPC Approach



8. Alternative Configurations 248

8.3.2 Subdivision Approach

Another approach is to break the current groups up into smaller groups, and

can even be groups as small as 1-1 groups. This approach can be useful

if an organisation wishes to provide for instance 3 quantum computers for

their research division (n classical computers) and the rest should be divided

amongst all the remaining departments. Alternative use cases could be to

provide access for different subscription tiers, though in this case it should

be noted that the current system does not support a classical computer be-

longing to 2 different subdivisions at this stage.

It is not required to provide access to all quantum computers from all

classical computers. Where C is the number of classical computers and Q is

the number of quantum computers, there are 3 possible outcomes:

1. C = Q

2. C < Q

3. C > Q

By subdividing off the computers the capabilities of any singular pro-

gram execution are limited, however the complexity of program compilation

and assignment is greatly simplified due to the restriced search space. An

approach is to subdivide the computers (both classical and quantum) into

groups, for example a group of 6 CC and QC can be divided into 2 groups

of 3 computers each (Figure 8.8).



8. Alternative Configurations 249

CC0 CC1 CC2 CC3 CC4 CC5

QC0 QC1 QC2 QC3 QC4 QC5

Figure 8.8: Seperate Groups Subdivided from the Original Set.

These subdivided groups do not need to be perfectly split in half, they

can be split any which way the user wishes. The sub-divided groups can

then be split recursively or treated as distinct groups. After subdividing, the

system will resemble one of 3 states. Depending on the resultant state of the

system, it is recommended to review the relevant section according to the

list:

1. 1 CC and N QC (see Section 8.1)

2. N CC and 1 QC (see Section 8.2)

3. N CC and N QC (see Section 8.3)

8.4 Chapter Summary

This Chapter introduced the various different configurations that quantum

computers could be established within networks. The system established in

Chapter 4, GladeOS, works with all of the setups described above. These

configurations are outlined in order to better discuss the different approaches

one could take to fit the Chapter 4 system onto the hardware. These con-

figurations are also introduced here in order to correctly assess the potential

cyber security threats in Chapter 9.



9. CYBER SECURITY ANALYSIS

The current research surrounding Quantum computers is focused on the use

of quantum computers over the management of and results from quantum

programs. Existing research of cyber security vulnerabilities and quantum

computers has focused on either issues within the algorithms [127], physical

apparatus issues (e.g. photon detector dead time [85]) or using algorithms

to break current security standards [6], [7], [142]. Issues between the operat-

ing system and the quantum computers have not been as strongly assessed.

The vulnerabilities identified below are the result of an initial assessment,

with a focus on issues that the introduction of an operating system creates

(Research Question 3E). It is expected that there are vulnerabilities beyond

what has been identified below and that they will be identified as future

research continues.

9.1 Cyber security analysis of GladeOS

The cyber security analysis of the system outlined in this Thesis is separated

into destructive and constructive attacks. Destructive attacks do not achieve

any tangible benefit to the attacker, they simply disrupt the other quantum

programs, a classical example would be DOS (Denial Of Service)/DDOS (Dis-

tributed Denial Of Service) attacks [143]. While constructive attacks aim to

achieve a beneficial outcome to the attacker, a classical example would be

Buffer Overflow attacks [144]. Each of the vulnerabilities identified below are

either existing classical security issues, issues that were experienced during

this research project or concepts that were generated from the discussions

throughout this Thesis.
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9.2 Templates

Table 9.1: Vulnerability Template

Vulnerability

Name

A short descriptive name

Vulnerability

Description

A sentence or two describing the vulnerability

Vulnerability

Likelihood

How likely is it that the vulnerability can

occur. Low - High

Vulnerability

Danger

How dangerous is the vulnerability (how

much damage would happen if it was

triggered) Low - High

Vulnerability

Classification

Does this attack benefit the attacker

(Constructive) or just cause chaos

(Destructive)? Constructive/Destructive

Attacker

Cost

How much effort/resources does the attack

require from the attacker? Low - High

Attacker

Benefit

How much benefit does the attacker gain

from causing this attack? Low - High

Vulnerability

Mitigation

A sentence or two exploring how to mitigate

the vulnerability

Vulnerable

OS Versions

A list of which OS versions can be affected

by the vulnerability: 1, 2, 3, 4, 5, 6, 7, 8

(versions according to Table 9.2)

Table 9.1 demonstrates the various components used throughout the cy-

ber security analysis. The overall approach is to:

1. Describe the vulnerability (name and description)

2. Examine the risk of the vulnerability (likelihood and danger)

3. Classify the vulnerability (constructive/destructive)

4. Determine if this attack is worth performing? (cost and benefit)
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5. Describe how to mitigate the vulnerability

6. Outline what operating system versions are susceptible to this vulner-

ability.

These components have been compiled into Table 9.1 with a small descrip-

tion for each component.

9.3 Vulnerability assessment

Now that the standard template has been defined and the various terms

explained the vulnerability assessment can begin. This assessment begins by

providing an overview of the different operating systems versions in Table

9.2. Following this overview Table 9.3 outlines the complete list of identified

vulnerabilities and which operating systems versions are susceptible to each.

Each vulnerability is then explored in detail before a summary is provided

in Section 9.4.

Table 9.2: Operating System Versions

Version Number Version Name Source
1 Base Chapter 4
2 Improved Chapter 7
3 1..n without Networking Section 8.1.1
4 1..n with Networking Section 8.1.2
5 Trusted Node Section 8.2.2
6 Decentralised Section 8.2.3
7 HPC Section 8.3.1
8 Subdivision Section 8.3.2

Due to space considerations the versions in the Table 9.3 are referred to by

their version number in Table 9.2. In Table 9.3 a ✓ indicates that the

system is susceptible for this vulnerability, while a ✗ indicates that the

system is not susceptible to this vulnerability.
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Table 9.3: Attack legend

OS Version 1 2 3 4 5 6 7 8

Invalid File ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Slow Loris ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Communication

Disrupt

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Denial of

Service

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Over allocated

memory

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Out of bounds

memory

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Incorrect

amplitude

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OS interference ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

False Flag ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Improper

Subdivision

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Untrustworthy

leader

✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗

Asynchronous

Computing

✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Network Fail ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

QC System

Crash

✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

OS System

Crash

✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Man in the

Middle

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OS slowdown ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Tables 9.4 to 9.20 represent a detailed look at each attack listed in Table

9.3. Each attack is presented using the Template from Section 9.2 with

some attacks receiving multiple mitigation sections to encompass the different

available approaches. After reviewing each attack in detail a summary can

be found in Section 9.4.

Table 9.4: Invalid File attack

Vulnerability

Name

Invalid File attack

Vulnerability

Description

By supplying an invalid file to the system, it

could attempt to force the system to fail in

repeatable ways. Invalid files include incorrect

qubit numbers, use of char for qubits instead

of numbers etc...

Vulnerability

Likelihood

Low

Vulnerability

Danger

Minimal

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low

Vulnerability

Mitigation

By parsing the files as they are received the

system ensures that only valid files are admit-

ted to the system.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.5: Slow Loris

Vulnerability

Name

Slow DoS attack

Vulnerability

Description

The slow DoS attack involves opening commu-

nication with the Operating system and then

never completing the communication [145].

This approach can be focused on either a slow

READ which uses multiple packets to trans-

mit data or slow GET which utilises all the

(finite) available sockets for the system and

results in no communication being possible

[145]. In this case, the slow GET attack can

stop people from being able to submit pro-

grams at all by taking all the sockets and hold-

ing onto them.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Low

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low

Vulnerability

Mitigation

#1

Limit the number of connections from a

single user (fails against a distributed attack)

[145]
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Vulnerability

Mitigation

#2

Restricting the time a client can stay

connected for. (Still impacted by the attack,

just to a lesser amount. Can also cause valid

submissions to fail due to poor network for

example).

Vulnerability

Mitigation

#3

Restricting the minimum bandwidth required

for a valid connection. (Fails against users

with inadequate, intermittent, limited or

faulty connections/internet access)

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.6: Communication disruption attack

Vulnerability

Name

Communication disruption between OS and

Quantum Hardware

Vulnerability

Description

If the attacker can gain access to the hard-

ware and therefore intercept the messages be-

tween the operating system and the hardware

then the attacker can impersonate the OS and

launch invalid requests. The attacker could

also return false results to the system. NOTE:

attack requires access to hardware

Vulnerability

Likelihood

Low

Vulnerability

Danger

High

Vulnerability

Classification

Constructive and/or Destructive

Attacker

Cost

High

Attacker

Benefit

Medium/High

Vulnerability

Mitigation

Proper security considerations must be taken

with the physical hardware and its location,

there is no method to resolve this through the

operating system.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.7: Denial of service attack

Vulnerability

Name

(Distributed) Denial Of Service

Vulnerability

Description

By spamming excessive amounts of ‘fake’ pro-

grams, the attacker can overload the queue

thereby extending the processing time for

loading new programs as the serialisability

conflict graph scales excessively. This attack

can also extend the amount of time it would

take to process a valid program that a user

submitted.

Vulnerability

Likelihood

Medium

Vulnerability

Danger

Low

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low

Vulnerability

Mitigation #

1

The first approach is to place a time limit on

each program as they enter the queue. This

approach automatically removes a program

from the queue if it exceeds the time limit

stopping the attack, but will also result in user

programs returning an unable to execute er-

ror message. This approach will also happen

when the system is under a completely valid

heavy load.
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Vulnerability

Mitigation #

2

The memoization [146] approach is to take the

hash of each program file as it appears, then

record the results of already executed pro-

grams and respond to duplicate programs with

the result from the previous execution. This

hashing approach can fix the attack, though if

the attacker generates random programs each

time then the system will still need to treat

them as valid requests. The hashing approach

will also interfere with multiple executions of

the same program sometimes required to reach

multiple distinct results (or generate a prob-

ability distribution) and should be used with

care. This approach can be used in simulators

where they can return the probability distri-

bution as calculated instead of requiring mul-

tiple executions (e.g. Qiskit, Q#)

Vulnerability

Mitigation #

3

The final approach is to profile the source of

these programs and cut off access to users who

are abusing their upload privileges. This ap-

proach will also impact power users in their

day to day activities. This approach will fail

against a distributed denial of service attack

because the source of the programs constantly

changes.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.8: Overallocation of memory attack

Vulnerability

Name

Over allocation of memory

Vulnerability

Description

If the program requests n qubits but requires

m qubits (where n > m) then the program

would reserve extra memory thereby limiting

the computational capability of the quantum

computer.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Low

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Medium

Vulnerability

Mitigation

Instead of the program forming the request for

computer resources, the request is generated

by the system upon review of the program.

This approach ensures that the requests for

resources are valid and utilise valid program

files.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.9: Out of bounds memory access attack

Vulnerability

Name

Out of bounds memory access

Vulnerability

Description

If the program requests n qubits but requires

m qubits (where n < m) then the program

would attempt to access memory that is not

allocated to it.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Low

Vulnerability

Classification

Constructive and/or Destructive

Attacker

Cost

Low

Attacker

Benefit

Medium

Vulnerability

Mitigation

Instead of the program forming the request for

computer resources, the request is generated

by the system upon review of the program.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.10: Incorrect Original Amplitude Attack

Vulnerability

Name

Incorrect Original Amplitude

Vulnerability

Description

The simplest destructive attack is to move the

qubits to an alternative starting amplitude |ψ⟩
instead of |0⟩, this attack causes the next pro-

gram to use those qubits to provide the in-

correct output. This can be accomplished by

performing a quantum program composed of

a handful of operations which results in |ψ⟩,
and fail to measure the qubits.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Medium

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low

Vulnerability

Mitigation

To defeat this attack the operating system

should employ a sweep of reset |0⟩ operations
to destroy any quantum data left at the com-

pletion of a quantum program.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.11: Program Interference Attack

Vulnerability

Name

Operating system/Program Interference

Vulnerability

Description

The operating system assumes that it has

complete control over the quantum computer,

if this is incorrect it can lead to race conditions

or multiprogram interference at the quantum

computer level.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Medium

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low

Vulnerability

Mitigation

There is no known mitigation to this attack.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.12: False Flag Attack

Vulnerability

Name

False flag (Digital Twin) attack

Vulnerability

Description

The attacker can imitate a quantum computer

digitally, and when the operating systems de-

tects the extra quantum computer it will at-

tempt to connect with it. If the attacker is suc-

cessful in connecting with the operating sys-

tem then it could do whatever it wanted with

the requests sent to it.

Vulnerability

Likelihood

Low (requires access to the

network/premises)

Vulnerability

Danger

High

Vulnerability

Classification

Constructive and/or Destructive

Attacker

Cost

High

Attacker

Benefit

High

Vulnerability

Mitigation

Ensuring proper security controls on the net-

work and premises, as well as proper authen-

tication between the operating system and de-

vices. Another approach is to preset the quan-

tum machines that the operating system will

control (reducing the dynamic scaling of the

system) however the attacker then just needs

to impersonate one of the preset machines.

Vulnerable

OS Versions

3, 4, 5, 6, 7, 8
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Table 9.13: Improper subdivision vulnerability

Vulnerability

Name

Improper subdivision

Vulnerability

Description

Failure to correctly split into subdivisions

leads to multiple operating systems attempt-

ing to manage the same quantum computers.

This leads to crossover and interference be-

tween programs. NOTE: This is a vulnerabil-

ity without an attacker, it is caused by mis-

managed resources.

Vulnerability

Likelihood

Low

Vulnerability

Danger

Low

Vulnerability

Classification

Destructive

Attacker

Cost

N/A

Attacker

Benefit

N/A

Vulnerability

Mitigation

The only complete approach to stop this vul-

nerability is to have a seperate management

program on each quantum computer to ensure

their is no crossover (and to manage it when

it happens).

Vulnerable

OS Versions

8
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Table 9.14: Untrustworthy leader attack

Vulnerability

Name

Untrustworthy leader

Vulnerability

Description

The trusted node approach requires a single

‘trusted’ leader node to co-ordinate the tasks

and host the OS. If this node is not trust-

worthy then that node can easily implement

a ‘man in the middle’ attack.

Vulnerability

Likelihood

Medium

Vulnerability

Danger

High

Vulnerability

Classification

Constructive and Destructive

Attacker

Cost

Low

Attacker

Benefit

Medium to High

Vulnerability

Mitigation

There is no known mitigation to this attack.

Test programs with known expected results

can be sent over the connection to profile the

connection. A possible resolution can be to

elect a different trusted node to act instead of

the untrustworthy leader.

Vulnerable

OS Versions

5
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Table 9.15: Asynchronous Computing Attack

Vulnerability

Name

Asynchronous execution

Vulnerability

Description

When working with multiple quantum com-

puters on a single problem, the communica-

tion delay between the OS and the quantum

computers can cause executions to become

asynchronous. This delay causes gates to be

executed out of sequence and therefore cor-

rupts the program execution. This problem

can be exacerbated by attackers intercepting

and delaying network traffic between the com-

puters.

Vulnerability

Likelihood

Medium / High

Vulnerability

Danger

Medium

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low
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Vulnerability

Mitigation

The traditional response to this problem is to

pause computation while waiting for the sec-

ondary machine to catch up and synchronise

[147]. Unfortunately due to the constraints

of quantum mechanics this approach does not

work. The easiest approach is to account for

the delay on the lines and delay the quicker

message so that it should arrive at the same

time as the slower message. This vulnerabil-

ity is strongly correlated with the 2 generals

problem [148] in computer networking in that

there is no perfect solution to this problem.

Vulnerable

OS Versions

3, 4, 5, 6, 7, 8
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Table 9.16: Network Fail Attack

Vulnerability

Name

Network Fail

Vulnerability

Description

Communication between the Operating Sys-

tem and the Quantum Computer is facilitated

through traditional networking, even quan-

tum networking channels must be supported

by classical networking channels [54]. Should

the classical network channels fail (for any rea-

son) then the quantum networking channels

they support are either delayed or outright

useless [54]. Likewise, if the quantum com-

puter can no longer communicate with the op-

erating system then the entire stack collapses

[54].

Vulnerability

Likelihood

Low

Vulnerability

Danger

Medium

Vulnerability

Classification

Destructive

Attacker

Cost

Low/Medium

Attacker

Benefit

Low

Vulnerability

Mitigation

By following traditional computer networking

standards the majority of these issues should

be mitigated. Other issues like cable failure

can be very difficult to predict and/or mitigate

and must be dealt with as they occur.

Vulnerable

OS Versions

1,2, 3, 4, 5, 6, 7, 8



9. Cyber Security Analysis 270

Table 9.17: Operating System Crash Attack

Vulnerability

Name

Operating System Crash

Vulnerability

Description

Causing the computer executing the operating

system to crash results in the entire software

stack collapsing. This crash can be caused at

the operating system level itself, or on the

physical machine itself (either through net-

working or physical interaction).

Vulnerability

Likelihood

Low

Vulnerability

Danger

High

Vulnerability

Classification

Destructive

Attacker

Cost

High

Attacker

Benefit

Low

Vulnerability

Mitigation

Controlling access to the physical machine is

the major priority. If the only method to ac-

cess the computer is through the submission of

jobs, then provided that the system validates

job submissions it should be relatively impreg-

nable. Securing the aforementioned will result

in mitigation of this vulnerability.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.18: Quantum Computer System Crash Attack

Vulnerability

Name

Quantum Computer System Crash

Vulnerability

Description

Overloading any part of the fragile quantum

computers can cause them to crash and fail

to compute anything. This requires precise

knowledge of the hardware and/or access to

the machine either physical or over the net-

work.

Vulnerability

Likelihood

Medium

Vulnerability

Danger

Medium

Vulnerability

Classification

Destructive

Attacker

Cost

Medium

Attacker

Benefit

Low

Vulnerability

Mitigation

Securing access to the quantum computers is

priority number 1. The next step is to ensure

that all editable variables are validated before

being executed. These 2 steps should result

in a complete mitigation. More specific miti-

gation will depend on the quantum computers

utilised in the system.

Vulnerable

OS Versions

1,2, 3, 4, 5, 6, 7, 8
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Table 9.19: Man in the Middle

Vulnerability

Name

Man in the Middle

Vulnerability

Description

Intercepting and editing user requests before

they arrive at the quantum computer can al-

low attackers to edit the request to either

stymie the legitimate user, benefit the attacker

or just to eavesdrop on the calculation and re-

sults.

Vulnerability

Likelihood

Medium

Vulnerability

Danger

High

Vulnerability

Classification

Constructive and/or Destructive

Attacker

Cost

Medium

Attacker

Benefit

Low and/or High

Vulnerability

Mitigation

Because the vulnerability occurs prior to com-

munication with the OS, there is limited re-

course for the OS to take. Using classical stan-

dards like encrypting communication between

the OS and the client, will attempt to min-

imise the occurrence of this attack.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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Table 9.20: OS slowdown attack

Vulnerability

Name

OS slowdown

Vulnerability

Description

Spamming the system with requests which

only consume 1 qubit will be easily added to

the queue and therefore simply mapped to ev-

ery qubit in the system. This will result in

n mappings (for a system with n qubits) and

will greatly increase the number of mappings

saved in the system. When the computer

next attempts to load programs, it will have

to parse an extra dense conflict serialisability

graph which will take extra time. This attack

will slow down the computer at the very least

if not reach denial of service levels. NOTE:

just like the slow loris attack, this attack could

entirely be caused through legitimate means.

Vulnerability

Likelihood

Medium

Vulnerability

Danger

Low

Vulnerability

Classification

Destructive

Attacker

Cost

Low

Attacker

Benefit

Low
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Vulnerability

Mitigation

It would be trivial to exclude these smaller

process requests, however they will not al-

ways be malicious requests. There is no mit-

igation except to process the requests as re-

ceived. To reduce the time spent searching

through the enourmous conflict serialisability

graph, a dynamic graph algorithm could be

employed which will update its choice as new

mappings are received and be ready to pro-

vide the OS with ‘a’ clique when requested.

This way the runtime of these quantum com-

putations is utilised as processing time for the

clique algorithm.

Vulnerable

OS Versions

1, 2, 3, 4, 5, 6, 7, 8
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9.4 Attack Summary
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Figure 9.1: An overview of all of the attacks explored above. Y-axis Height
indicates Likelihood, Shape indicates Danger (Circle=Low, Rect-
angle=Medium), Shape Border colour indicates Attacker Cost
(Blue=Low, Yellow=Medium, Red=High) and Shape Fill colour in-
dicates Attacker Benefit (Blue=Low, Yellow=Medium, Red=High).
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9.5 Chapter Summary

This Chapter explored a series of possible vulnerabilities within the system

as described in Chapter 4 as a solution to Research Question 3E. The dis-

cussion was extended to include whether the alternate configurations, with

and without networking, were susceptible to the vulnerabilities as well. It is

assumed that there are vulnerabilities that were not identified in this Thesis,

as the field grows and develops over time. As seen in Table 9.3, different vari-

ations of the operating system are vulnerable to different attacks. The base

and improved systems appear to be the most secure, however that is because

the vulnerabilities they are not susceptible to are vulnerabilities related to

the integration between multiple machines. Increasing the complexity of the

system (adding more computers) increases the attack surface and results in

more vulnerabilities.

Mitigation strategies have been identified for every attack listed in Table

9.3, though 8 of the 17 strategies acknowledge that they do not completely

solve the problem. Most of the identified vulnerabilities have a mitigation

identified and assuming that the mitigations are applied then these vulner-

abilities can mostly be treated as solved. Should the mitigations not be

correctly applied, then these vulnerabilities can still be considered as active

attack vectors into the users system. A proper security analysis will require

access to physical hardware for a consistent period of time in order to accu-

rately test these and other vulnerabilities.



10. DISCUSSION AND CONCLUSION

10.1 Discussion

At the beginning of this Thesis 3 research questions were presented to the

reader.

RQ1 Can a quantum computer support processing of multiple programs con-

currently?

RQ2 Is there a framework which can be implemented on a quantum computer

to support processing of multiple programs concurrently?

RQ3 What is the cost and/or effect of adopting this framework on a quantum

computer? The cost and effect are considered in terms of:

RQ3A Implementation,

RQ3B Performance,

RQ3C Algorithmic Complexity,

RQ3D Versatility/portability,

RQ3E Security

These research questions were developed throughout the Thesis with solu-

tions presented throughout the document.

Chapter 4 presented a ‘validity of concurrency‘ (Section 4.4) which di-

rectly confirmed Research Question 1. This proof demonstrated that it was

possible to support processing of more than 1 programs concurrently. This

proof was then augmented by presenting a framework which addressed Re-

search Question 2. This system demonstrated the ease with which multiple
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program management can be developed into a quantum system.

Chapter 5 built on the framework presented in Chapter 4 by implementing

it into code. This implementation provides a solution for Research Question

3A and works as the base implementation for the other Chapters and results

in the Thesis. Overall the major cost in the implementation was the simula-

tion of the qubits and this would be removed when the system is implemented

on physical hardware.

Chapters 6 and 7 worked to present Research Questions 3B and 3C. Be-

cause there are no other multi-program quantum systems currently available

a theoretical check is not possible, therefore the performance comparison is

made between the implementation from Chapter 5 and commercially avail-

able alternatives. It is difficult to check the performance of a quantum simu-

lator directly due to the probabilistic nature of the computation. Therefore

the testing was performed in terms of processing speed and memory usage,

with separate tests to ensure the accuracy of the implementation. In all of

the criteria the implementation excelled and this was especially clear in Fig-

ure 6.20 where the results were vastly different.

For Research Question 3C the underlying algorithmic complexity of the

framework is minimal with the majority of the bottlenecks being program

mapping, clique detection or program scheduling algorithms. The program

mapping algorithm is currently recommended to utilise the Siraichi algorithm

[104] which has a performance of O(|Q|!2 × |Q| × |ψ|) where |Q| is the num-

ber of qubits in the hardware graph and |ψ| is the number of edges in the

activity graph. The recommended clique detection algorithm is to employ a

random search of nodes with a complexity of O(2n2) for n mappings and the

recommended scheduler is FIFO which contains a minimal overhead, merely

requiring a queue to be maintained. Together these complexities demonstrate

that ongoing work is needed to optimise this framework but an initial stan-

dard has now been created that other research can be benchmarked against.
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Chapter 4 had a minor discussion on the versatility of the initial frame-

work which was then scaled up in Chapter 8. These discussions demon-

strated that the answer to Research Question 3D is resoundingly positive.

The framework presented not only scales for 1 classical computer and n

quantum computers, but can by extended to also include multiple classi-

cal computers alongside multiple quantum computers. The modular nature

of the framework does mean that the system will suffer performance losses

if the quantum computers get too large or numerous, however better algo-

rithms and other optimisations can work to reduce these losses. Because

the framework was developed with hardware agnosticism as a core principal

this framework is applicable to all situations making it as versatile as possible.

Finally Chapter 9 built on the existing cyber security issues and analysed

the vulnerabilities found within the framework (and the listed variations).

These vulnerabilities go well beyond the existing set of vulnerabilities which

focused on issues within the algorithms, physical apparatus issues or using

algorithms to break current security standards. The vulnerabilities presented

in this Chapter compose an initial understanding of the risks of Quantum

Systems Software and a solution or mitigation has been presented for each of

the issues. This discussion demonstrates that the answer to Research Ques-

tion 3E is that yes there are risks and issues but these issues are equivalent

or less than current classical computer cyber security issues.

Also earlier in this Thesis, the gap statement (Section 2.3.3) introduced

3 areas that were missing from the literature:

1. Multi-processing

2. Networking between quantum computers

3. Security from cyber threats

This Thesis has demonstrated novel contributions and addressed these re-

search questions through the implementation of the Operating System con-

tained within this Thesis.
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The first area of multi-processing was proven feasible in Section 4.4 and

is the basis around which the entire operating system is based. This Thesis

has not only demonstrated that multi-processing is possible in theory, but in

Chapter 6 it has clearly shown the benefit of this approach.

Quantum Networking is an already acknowledged field and is well re-

searched [54], [125], [149]–[151]. The component that is missing is exactly

how the already explored quantum networks can interconnect with the quan-

tum computers. This problem could easily be the focus of an entire extra PhD

program and so simplifications needed to be made to facilitate the discussion

found within this Thesis. Section 7.3 explored two possible implementa-

tions of quantum networking before shifting to the underlying problem of

how to integrate the networking capability with existing quantum programs

and a discussion on how to resolve this problem. It is clear that this area

requires further study to be ready for implementation however the discus-

sion presented in Section 7.3 demonstrates that this is a solvable problem

by employing a variant of the token swapping algorithm within the program

mapping algorithm.

Lastly, the third area of security from cyber threats is one that has, until

now, not appeared in the public repositories. There is significant research

around using quantum computers to facilitate cyber security attacks by per-

forming feats like breaking encryption algorithms[6], [7], [142]. There has

even been attacks designed to disrupt quantum networking connections be-

tween quantum devices [85], [127]. While fascinating there has not been a

discussion of the numerous problems that can occur when quantum comput-

ers are processing data. Until the implementation of multi-processing these

effects were largely theoretical, now they are almost tangible. The discussion

found in Chapter 9 demonstrates the wealth of possible methods of attack

and should highlight the need for a further discussion of these effects.
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10.2 Key findings

Within this Thesis a nascent merging of the fields Quantum Computing

and Operating Systems has been discussed. The result of this is a Quantum

Computer Operating System which has been designed according to hardware

agnostic principles. This design was then implemented before being critically

evaluated according to numerous benchmarks including outperforming exist-

ing simulators.

The results presented within this Thesis demonstrates a practical imple-

mentation of a newly designed multi-processing quantum operating system.

This system performs to a similar standard as the existing single-processing

systems with limited overhead. This system is designed to horizontally or

vertically scale to work across a wide variety of quantum computing systems.

10.3 Interpretations

The system implemented in Chapter 5 was developed in accordance with ac-

cepted definitions within the unique approach developed within this Thesis.

For a system developed under these conditions to automatically produce sim-

ilar results when compared to commercial variants like Qiskit, Rigetti and

Q# strongly indicates that this multi-processing approach should continue

to yield strong positive impacts. With further development from specialised

developers and implementation onto actual quantum hardware it is expected

that this trend should only continue.

It is readily acknowledged that bottlenecks exist within GladeOS includ-

ing the quantum program mapping and searching for maximal cliques. In

fact Chapters 6 and 7 were dedicated to directly examining some of them

and offering potential adjustments for them like adding weights to the clique

graph to assist with the runtime difference issue. At this stage some bottle-

necks have been resolved to acceptable standards while others will require

further study and subsequent research to resolve.



10. Discussion and Conclusion 282

10.4 Implications

The research presented in this Thesis has demonstrated that the previous

systems of quantum computing were inefficient. The existing simulators are

perfectly viable for the current small devices, with the inefficiencies growing

as the devices scaled. Quantum computing is already an incredibly expensive

field ($674 million dollars US [8]) and any reduction in the operating cost

has potential for considerable cost reductions.

The research presented in this Thesis demonstrates that parallel process-

ing can be included with their standard operating procedure. Further to this

new capability the research also considered a multitude of security concerns

surrounding this parallel system (and the variants), highlighting where vul-

nerabilities exist and recommendations of how to alleviate them.

Accurate implementation of GladeOS as outlined in this Thesis should

result in notable benefits. These benefits include savings in the cost of run-

ning and maintaining these expensive machines and in the turnaround time

of quantum jobs submitted by clients and users. For example, by executing

multiple quantum programs the overall execution time is reduced thereby

requiring less liquid nitrogen to cool the computer.

As discussed in Chapter 9, this system is not without risks. These risks

may be a negative for some interested parties, but of great interest to others.

Eventually parallel processing on a quantum computer will be implemented

and a thorough discussion will need to be built on the introduction provided

in Chapter 9. This Thesis has barely scratched the possibilities for the effect

of controlled interaction between multiple parallel quantum programs.

10.5 Limitations

The research presented in this Thesis explores a field which has received lim-

ited coverage. This research has been completed over a 3 year period which
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greatly limited the amount of long term research options. The focus of this

research was on theoretical and simulated results given the limited accessi-

bility to quantum computing hardware. The establishment of these results

provides a setting for additional experiments and verification on quantum

computing hardware.

The simulator (Chapter 5) was designed to use the α and β approach

along with the accepted logic gate representations. This technique allows

users to simulate quantum computation, however it fails to consider the fol-

lowing:

• Accurate simulation of decoherence [28]

• Precision of complex floats compared to complex numbers

• Cross talk in quantum systems [152]

• Mixed states (and density operators) [28]

• The idiosyncratic tendencies of specific hardware implementations. [28],

[39]

• The speed of quantum computers [28]

• Accuracy of the logic gates (always assuming 100% accuracy)

• Accuracy of the measurement operation

• Quantum Error Correction [153], [154]

• Inherent parallel operations of quantum computers.

• Multiple quantum computers interacting through networking (either

traditional or quantum) [54]

The simulator was designed specifically to audit the concept of executing con-

current quantum programs and it accomplished that. Further experiments

will be required to fully determine the effect that parallel quantum programs
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have on a physical quantum computer.

Without the ability to compare our results with other approaches at re-

solving the same parallel programming problem, there is no accepted method

to critically critique the research output. Within the research a comparison

has been made to commercial sequential programming simulators, though

that comparison is limited in it’s effectiveness because the simulators are all

attempting to prioritise different variables and details (including accuracy,

speed, simplicity, etc.). Because of this missing method, a variety of tests

were executed in Chapter 6, with the hope that one or a combination of these

could act as a stand-in for this benchmarking method.

10.6 Research conducted since this Thesis began

As this field continues to rapidly evolve there is additional recent literature

which needs to be considered when discussing the future directions.

10.6.1 Quantum Hardware Updates

IBM initially released their quantum roadmap around November 2021 [155]

before updating it in 2022 [156] with a focus on:

1. Increase performance of the processor

2. Develop a better understanding of errors

3. Simplify how quantum computers are programmed

IBM argues that they can increase the performance of the processor by

joining together multiple smaller quantum chips instead of attempting to

directly scale the technology like Google. IBM’s approach works based on

the implementation of short range (high fidelity) connections and long range

(up to 1m long) (low fidelity) connections [156]. IBM also claims to be im-

plementing dynamic circuits which allow the user to send commands to the

computer and receive feedback. This feedback can then be used to perform

further computation which is a feature that has not been seen before [156].
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This feature further extends to the proposed implementation of using clas-

sical multi-threading to segment quantum circuits based on their trivially

parallelisable form so that the execution can be spread over multiple distinct

quantum computers [156]. Combining the 2 above features with the last

concept of quantum circuit knitting (breaking a singular circuit down into

an equivalent series of smaller circuits, executing them and then recombin-

ing the results) IBM is threatening to radically alter the quantum landscape

from a batch processing system and turn it into a real-time system [156].

In comparison, Google released their quantum roadmap back in May 2021

[157] with a focus on further developing the quantum hardware and control

software compared to IBM’s approach of developing support for quantum

software support. Googles approach hinges on the concept of combining

between 100 and 1000 physical qubits and converting it into a single error

corrected logical qubit [158]. In future hardware versions Google plans to

combine these long lived qubits together in order to function as a long term

quantum computer [158].

While there is nothing explicitly wrong with either roadmap, it will be

interesting to see which technology lasts the test of time. Both roadmaps

are on track to complete and each promises unique benefits. If the two

technology giants can each follow their roadmap and achieve their milestones

then the field of quantum computing is about to receive a large shake up. A

combination of the larger computers from Google coupled with the software

techniques coming from IBM would see quantum computers becoming much

more reliable and much more efficient.

10.6.2 Parallel Processing Updates

• Qubit interference

• Break the qubit map into segments based on error rates.

• Simultaneous execution of circuits.
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Other researchers have begun working on the concept of executing multi-

ple quantum circuits on distinct pieces of the hardware. This is being pursued

for a couple of reasons:

• Removal of high error rate sections.

• Increase processing speed due to smaller search space.

• Qubit Interference.

0

1

2

3

4

5

6

7

8

9
1

2

3

14

15

16

17

18

9

5

6

2

3

4

Figure 10.1: Segmented connectivity graph for a hypothetical quantum computer.
The number on the edge indicates the error rate for that edge (higher
is worse). The number on the node indicates the unique node ID.

In [159] the researchers have recognised the same inefficiency that has

been highlighted in this Thesis and have come to a similar conclusion regard-

ing the adoption of parallel processing. The research attempted to address

parallel processing through 3 main points [159]:

1. “We advocate the use of multi-programming to improve the utilization

and throughput of NISQ computers, whereby the qubits are used to

concurrently run multiple workloads.”

2. “We develop Fair and Reliable Partitioning (FRP) algorithms that try

to split the qubit resources into multiple groups in a fair manner, while

avoiding the qubits/links that have extremely high error rates.”

3. “We develop the Delayed Instruction Scheduling (DIS) policy to miti-

gate the interference of measurement operations of one program on the

gate operations of the co-running programs.”
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4. “We propose an Adaptive Multi-Programming (AMP) design that mon-

itors the reliability impact at run time and reverts the system to isolated

execution mode if the reliability impact is high.”

As the first point is addressed by the implementation of the second point

this Thesis considers them as a singular point. With regard to these points,

the first point of multi-programming is a large portion of this Thesis and

while Das et al [159] encourage the study of this field they set an arbitrary

limit in themselves of only 2 programs at a time. This limitation seems to

have been imposed for no other reason than because 2 is an easy starting

point. It should be recognised that Das et al’s approach does cross check the

error rates of the 2 program mapping against the singular program mappings.

This cross check increases the required processing but does work towards en-

suring that every program receives optimal results.

To the second point of Das’s DIS policy, this is only an issue if the quan-

tum computer is not compliant with the DiVincenzo criteria (established in

[16]. If the computer complies with the criteria than distinct/independent

measurement of a qubit is available and can be used to run programs at any

rate. If the computer does not comply with the criteria then the measure-

ments must be co-ordinated as Ohkura et al [160] wrote. This restriction has

also been noted within this Thesis in Chapter (7) and both researchers have

reached a consistent solution.

To the final point of Das’s AMP design, while the comparisons between

the results of their individual and shared trials is appreciated the approach

suffers from the presupposition that the individual test is more accurate than

the shared test. A true measure of reliability is only possible if the system

is continuously running some pre-determined diagnostic program for which

the true result is known ahead of time. This is because without knowledge of

the true solution there is no way to determine if the computer has performed

an erroneous computation or simply returned an unlikely result. Because of

this oversight, the proposed framework has a sharply reduced efficiency when

used in a ‘production’ environment. Users of a quantum computer service
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rarely know the solution to their calculations prior to excution of their code,

if they knew the solution then the code would not need to be executed. The

only way to utilise the framework proposed by Das et al [159] is to build in a

calibration test every few runs (to test the reliability) which takes time away

from the queue the computer is processing but helps to ensure the accuracy

of the results. An alternative to the AMP framework is to multiply the re-

sults from the individual run by 2 instead of running the parallel runs. This

would have the added benefit of halving the processing time and ensuring

that the results of the shared trials neatly match the individual trial results.

The proposed framework in Das’s paper is clever in its attempt to contin-

uously adjust the ‘partitions’ according to the 2 programs that want to run

on the computer (like Figure 10.1). For example, one run of the framework

could group qubits 0, 1 and 2 as group 1 and build group 2 of qubits 5, 6,

7 and 8. A subsequent run of the framework may realign the partitions to

be qubits 1, 2, 3, 4, 5 and 6 for group 1 and 7, 8 and 9 for group 2. This

approach allows the system to be flexible and adjust depending on the pro-

grams that are attempting to execute. The problem with this approach is the

significant computational overhead associated with this approach, for every

run of the framework the partitions need to be recalculated (from scratch)

and only then can the mapping process for the quantum algorithm begin.

In [161] Niu and Todri-Sanial have again recognised the need for multi-

programming and even refer to [159] as inspiration. The focus in this research

is regarding the effect of crosstalk on their parallel circuits and how best

to work around that. Curiously, in this paper the researchers included an

approach to calculate the maximum amount of throughput that can be per-

formed on a quantum computer with reliable results. At the time of research

the upper limit was computed to be approximately 38% [161], and though

this has likely changed and is computer dependent this approach could easily

be adopted for future research.

In [162] Deshpande et al raises the concept that parallel circuit execution
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could have a negative impact due to the inclusion of crosstalk. This is not an

error featured in my cyber security analysis (Chapter 9) however there are

numerous considerations I have identified that have not made it into Desh-

pande’s research. As this research is marked as ’in progress’ there is little

in the way of results to review. With that said, the research completed here

seems to indicate pairing a very specific (almost tailored) malicious circuit

with the target circuit in order to have an effect. The research conducted

within this Thesis uses a random allocation algorithm designed to fill spaces

rather than placing specific circuits with each other thereby relegating the

issue to an unfortunate coincidence over a targeted attack. The notion of

a quantum antivirus raises interesting questions though I do not think they

will bear closer examination. Quantum computers are still too nascent and

individual with different qubit layouts and interference patterns for a set of

malicious code patterns to be compiled within a database.

In [160] Ohkura et al present the concept that the amount of crosstalk

present in a circuit is related to the distance (defined in qubits) between

parallel quantum circuits. While this relationship was not able to be directly

quantified it was experimentally demonstrated that as the distance between

circuits increased the rate of crosstalk fell.

10.6.3 Effect of current literature on the research completed in this Thesis

The literature and roadmaps presented above strongly indicate that paral-

lel quantum execution is (as argued in this Thesis) one of the next natural

evolutions of the technology. Due to current resource limitations the liter-

ature presented here is limited to discussions of NISQ devices the research

presented within this Thesis can be adjusted to account for NISQ devices

or deployed as outlined on a more stable quantum computer (using logical

qubits over physical qubits).

The recent literature presented above has highlighted a handful of things

that were not able to be considered within the research conducted in this
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Thesis. The largest unfaced issue is the idea of crosstalk and errors being

generated because of parallel circuits. This issue was not able to be properly

addressed because (as noted in Chapter 5) no appropriate simulator was

identified and so one was created. Because of this crosstalk was not able

to be considered as it is an effect only found in physical quantum computer

hardware. To address crosstalk in the approach outlined in this Thesis the

only change is an extra process occurring on the hardware graph. Instead

of merely using the hardware graph as a means to link qubits to program

mappings, it can be extended to allow qubits to be disabled thereby disabling

all program mappings which utilise that qubit. Alternatively, if crosstalk

sections are identified then one could include those sections in the program

mappings and not actually use them. This would isolate the sensitive region

of the computer and allow for better computation without needing to disable

qubits.

10.7 Recommendations and Future Work

It is expected that research will continue in the field of quantum systems soft-

ware, with great strides still to be made as the hardware develops further.

Implementing this system onto physical quantum hardware is the obvious

next stage of this research, which will provide much richer data sets. Re-

ducing the run time of these initial quantum computers (which rely heavily

on hard to come by resources) is a goal that must be encouraged. Whether

through program optimisation, multi-processing or some other means the end

result of reducing execution time is a positive impact.

The GladeOS simulator outlined and utilised throughout this Thesis is by

no means finalised. There are still numerous avenues to improve the simulator

or extend the capabilities to support further research. Some examples of these

avenues include:

1. GPU support for quantum gates, this could be accomplished through

either:

• CUDA Compute Unified Device Architecture, or
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• OpenCL (Open Computing Language)

2. Enable multiple networked instances (simulation of multiple quantum

machines)

3. Enable support for multithreaded scheduling (improve execution speed

by removing unnecessary bottlenecks)

Currently all development has been built to run on the processor and

memory of the host system directly. In order to alleviate some of the bur-

den and increase the processing capabilities of hosts an extension into GPU

calculation is required. Use of the GPU would allow the host to offload ma-

trix operations and process multiple qubits simultaneously. This extension is

designed to work with CUDA (Computer Unified Device Architecture) and

OpenCL (Open Computing Language) thereby allowing the extension to use

most GPU systems.

The current system is designed to utilise a single quantum computer,

however most computing devices today take advantage of multiple processors

to execute programs faster and more efficiently. Replicating this behaviour to

utilise multiple quantum computers is the next major update to the system.

This has been left out of the original version described in this Thesis in

order to simplify the original testing. This update also requires significant

progress in the field of quantum computing and for a networking standard

to be defined before it can be completed.

10.8 Thesis Summary

Quantum computers are a nascent field of study which is rapidly making

strides in both hardware and software areas. At the beginning of the Thesis

3 Research questions were posed:

RQ1 Can a quantum computer support processing of multiple programs con-

currently?
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RQ2 Is there a framework which can be implemented on a quantum computer

to support processing of multiple programs concurrently?

RQ3 What is the cost and/or effect of adopting this framework on a quantum

computer? The cost and effect are considered in terms of:

RQ3A Implementation,

RQ3B Performance,

RQ3C Algorithmic Complexity,

RQ3D Versatility/portability,

RQ3E Security

These questions were answered throughout the Thesis with each Chapter

building on the preceding Chapters to provide answers. These answers were

consistently positive with Research Question 1 and 2 being demonstrated in

Chapter 4 and the analysis being broken over the remaining Chapters.

During the review of available literature it was noted that the concept

of managing the operation of quantum programs was underdeveloped with a

specific focus on:

1. Multi-processing

2. Networking between quantum computers

3. Security from cyber threats

and whether the above features were feasible and if they could make a no-

ticeable effect compared to the existing approaches. These identified gaps

closely mirror the Research Questions and in answering those this Thesis has

provided contributions to these gaps as well.

It was recognised that the existing approaches of single program execu-

tion worked and were a good case for testing and evaluating the hardware

implementation. It was further recognised that the information required for
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sequential execution including program dependencies, program mappings and

qubit connectivities which can also be used to extend the functionality of the

system. It was also recognised that there is significant discussion around the

preferred quantum hardware implementation and the system was therefore

designed to work with a hardware agnostic approach so as to be applicable

to whichever hardware was eventually crowned the standard.

The information found in the program dependencies, program mappings

and qubit connectivities was combined in an intricate web of graph data

structures. This novel graph structure allowed for the system to determine

multi-processing opportunities which could then be actioned by the schedul-

ing system.

It was found that the existing quantum simulators (Qiskit, Q# and

Rigetti Forest) suffered from a fundamental design flaw in that they only

allowed for a single quantum program to be executed at once. Due to this

flaw a new quantum simulator (GladeOS) was designed and implemented

which supported multi-processing and was also designed to allow for greater

flexibility regarding the 30 qubit limit for most simulators. This flexibility

required the development of some extended math to determine exactly how

to apply the quantum gates to the relevant quantum bits.

Using the new GladeOS simulator, a series of bottlenecks were evalu-

ated with the aim of recommending algorithms to best suit the needs of

the user. Following this evaluation, GladeOS was compared and contrasted

against the aforementioned simulators from Microsoft, IBM and Rigetti and

returned surprising results. Figure 6.20 demonstrated that the GladeOS sys-

tem outperformed the other commercial systems (by an order of magnitude

in some cases). These results were further encouraged after testing the indi-

vidual gates presented in the system and every gate returning the expected

distributions.

With positive results from the analysis section the Thesis continued onto
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reviewing possible updates and the effect they would have on the system.

This began with a review of serious bottlenecks and possible approaches to

resolve them. It was discovered that some of these bottlenecks are solvable,

while others are equivalent to NP-hard problems and a simple solution is

therefore not expected. This discussion then pivoted to consider the various

alternative configurations for quantum computers and traditional computers

which are all supported by the designed system.

The final component to this Thesis is the cyber security analysis which

considered a wide variety of potential threat actors and scenarios. These vul-

nerabilities were then categorised according to likelihood and danger. Most of

the vulnerabilities that were discovered were able to be patched in principle,

though a few are still outstanding.

10.9 Conclusion

Overall, the research presented in this Thesis is intended to be as complete

of a system as possible. The research enables interested parties to implement

this parallel quantum computer system with minimal issues. The influx of

researchers into this area [159]–[162] speaks to the benefit of this research and

approach. Currently, one could be forgiven for thinking that this research

area is not strictly necessary for current stage quantum devices. However, as

the quantum systems continue to mature the number of qubits will exceed

the requirements of the algorithms which will then strictly require a system

similar to the one described throughout this Thesis.
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Appendix A

ANALYSIS APPENDIX

The full data generation script from Chapter 6� �
1 import random

2 from datetime import datetime

3

4 GATES = [’X’, ’Y’, ’Z’, ’T’, ’S’, ’C’, ’R’, ’RX’, ’RY’,

’RZ’]

5 GATE = [’X’, ’Y’, ’Z’, ’T’, ’S’, ’R’, ’RX’, ’RY’, ’RZ’]

6 ROTATEGATES = [’X’, ’Y’, ’Z’]

7

8 def generate_circuit(numQubits , numGates):

9 print("Generating Circuit. qubits:" + str(numQubits)

+ " gates: " + str(numGates))

10 circuit = ’’

11 histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0]

12 SET = random.choices(GATES , k=numGates)

13 for s in SET:

14 histogram[indexof(s)] = histogram[indexof(s)] +

1

15 if s == ’C’:

16 extra = random.choice(GATE)

17 histogram[indexofControlled(extra)] =

histogram[indexofControlled(extra)] + 1

18 target = random.randrange(numQubits)

19 control = random.randrange(numQubits)

20 while control == target:
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21 target = random.randrange(numQubits)

22 if extra == ’RX’ or extra == ’RY’ or extra

== ’RZ’:

23 circuit = circuit + s + ’([’ + str(

control) + ’],’ + extra + ’([’ + str(

24 random.random () * random.randrange

(360)) + ’],’ + str(

25 target) + ’))\n’

26 elif extra == ’R’:

27 circuit = circuit + s + ’([’ + str(

control) + ’],’ + extra + ’([’ + str(

28 random.random () * random.randrange

(360)) + ’,’ + str(

29 random.random () * random.randrange

(360)) + ’,’ + str(

30 random.random () * random.randrange

(360)) + ’],’ + str(

31 target) + ’))\n’

32 else:

33 circuit = circuit + s + ’([’ + str(

control) + ’],’ + extra + ’(’ + str(

34 target) + ’))\n’

35 elif s == ’RX’ or s == ’RY’ or s == ’RZ’:

36 circuit = circuit + s + ’([’ + str(

37 random.random () * random.randrange (360))

+ ’],’ + str(

38 random.randrange(numQubits)) + ’)\n’

39 elif s == ’R’:

40 circuit = circuit + s + ’([’ + str(

41 random.random () * random.randrange (360))

+ ’,’ + str(

42 random.random () * random.randrange (360))

+ ’,’ + str(

43 random.random () * random.randrange (360))

+ ’],’ + str(
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44 random.randrange(numQubits)) + ’)\n’

45 else:

46 circuit = circuit + s + ’(’ + str(random.

randrange(numQubits)) + ’)\n’

47 circuit = circuit + ’END\n’

48 print(circuit)

49 return circuit , histogram

50

51

52 def indexof(s):

53 if s == ’X’:

54 return 0

55 if s == ’Y’:

56 return 1

57 if s == ’Z’:

58 return 2

59 if s == ’T’:

60 return 3

61 if s == ’S’:

62 return 4

63 if s == ’C’:

64 return 5

65 if s == ’R’:

66 return 6

67 if s == ’RX’:

68 return 7

69 if s == ’RY’:

70 return 8

71 if s == ’RZ’:

72 return 9

73

74

75 def indexofControlled(s):

76 jumpvalue = 10

77 if s == ’X’:
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78 return 0+ jumpvalue

79 if s == ’Y’:

80 return 1+ jumpvalue

81 if s == ’Z’:

82 return 2+ jumpvalue

83 if s == ’T’:

84 return 3+ jumpvalue

85 if s == ’S’:

86 return 4+ jumpvalue

87 if s == ’R’:

88 return 5+ jumpvalue

89 if s == ’RX’:

90 return 6+ jumpvalue

91 if s == ’RY’:

92 return 7+ jumpvalue

93 if s == ’RZ’:

94 return 8+ jumpvalue

95

96

97 def ascii_histogram(data , today):

98 labels = [’X’, ’Y’, ’Z’, ’T’, ’S’, ’C’, ’R’, ’RX’, ’

RY’, ’RZ’, ’CX’, ’CY’, ’CZ’, ’CT’, ’CS’, ’CR’, ’CRX’,

’CRY’, ’CRZ’]

99 for i in range(len(data)):

100 # printout(labels[i] + ":\t" + ’|’ + (’+’ * data

[i]), today)

101 printout(labels[i] + ":(" + str(data[i]) + ")" +

(" " * (10 - (len(str(labels[i])) + len(str(data[i])

) + 3))) + "\t" + ’|’ + (’+’ * data[i]), today)

102

103

104 def printout(output , today):

105 print(str(output))

106 fileName = "output" + str(today) + ".txt"

107 outF = open(fileName , "a+", encoding=’ascii’,
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newline=’\r\n’)

108 outF.write(str(output) + ’\n’)

109 outF.close()

110

111

112 numberFiles = 100

113 qubitArray = []

114 gateArray = []

115 histogramArray = []

116 TotalQubits = 0

117 TotalGates = 0

118 today = datetime.now()

119 for a in range(1, numberFiles +1):

120 fileName = "Controllers/generated" + str(a) + ".txt"

121 outF = open(fileName , "w", encoding=’ascii’, newline

=’\r\n’)

122 numbQubits = random.randrange (2, 10)

123 numbGates = random.randrange (1, 10000)

124 qubitArray.append(numbQubits)

125 gateArray.append(numbGates)

126 TotalQubits = TotalQubits + numbQubits

127 TotalGates = TotalGates + numbGates

128 CIRCUIT , histogram = generate_circuit(numbQubits ,

numbGates)

129 histogramArray.append(histogram)

130 for line in CIRCUIT:

131 # up to 10 qubits , and 20 gates.

132 # write line to output file

133 outF.write(line)

134 outF.close()

135 printout("----------------------------------", today)

136 printout("Statistics for research:", today)

137 printout("Qubit array: " + str(qubitArray), today)

138 printout("Gate array: " + str(gateArray), today)

139 printout("Average number of qubits: " + str(TotalQubits/
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numberFiles), today)

140 printout("Average number of gates: " + str(TotalGates/

numberFiles), today)

141 printout("Number of files: " + str(numberFiles), today)

142 printout("Gate distribution: ", today)

143 printout("Key: [’X’, ’Y’, ’Z’, ’T’, ’S’, ’C’, ’R’, ’RX’,

’RY’, ’RZ’, ’CX’, ’CY’, ’CZ’, ’CT’, ’CS’, ’CR’, ’CRX

’, ’CRY ’, ’CRZ ’]", today)

144 histogramoverall = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]

145 for h in histogramArray:

146 printout(str(h), today)

147 for h in histogramArray:

148 printout(str(h), today)

149 ascii_histogram(h, today)

150 for i in range(len(h)):

151 histogramoverall[i] = histogramoverall[i] + h[i]

152 printout("Overall: ", today)

153 printout(str(histogramoverall), today)

154 ascii_histogram(histogramoverall , today)

155 printout("----------------------------------", today)� �
Algorithm A.1: Random Data Files Generation Script



Appendix B

ALTERNATE GATE REPRESENTATIONS

This appendix outlines how to construct the standard digital computer gates

from the minimum gate set.

B.1 Standard Logic gates

B.1.1 NOT

A Ā = |A⟩ X
∣∣Ā〉

Figure B.1: Equivalent Quantum NOT circuit

B.1.2 AND

A

B
A.B

=

|A⟩ |A⟩
|B⟩ |B⟩

|0⟩ X |A.B⟩

Figure B.2: Equivalent Quantum AND circuit
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B.1.3 OR

A

B
A+B

=

|A⟩ X X |A⟩

|B⟩ X X |B⟩

|0⟩ X X |A+B⟩

Figure B.3: Equivalent Quantum OR circuit

B.1.4 XOR

A

B
A
⊕

B

=

|A⟩ X X |A⟩

|B⟩ X X |B⟩

|0⟩ X X X |A
⊕

B⟩

Figure B.4: Equivalent Quantum XOR circuit

B.1.5 NAND

A

B
A.B

=

|A⟩ |A⟩
|B⟩ |B⟩

|0⟩ X X
∣∣A.B〉

Figure B.5: Equivalent Quantum NAND circuit
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B.1.6 NOR

A

B
A+B

=

|A⟩ X X |A⟩

|B⟩ X X |B⟩

|0⟩ X
∣∣A+B

〉
Figure B.6: Equivalent Quantum NOR circuit

B.1.7 XNOR

A

B
A
⊕

B
=

|A⟩ X X |A⟩

|B⟩ X X |B⟩

|1⟩ X X X
∣∣∣A⊕B

〉

Figure B.7: Equivalent Quantum XNOR circuit


