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Summary 

The enteric nervous system (ENS) plays a central role in mammalian gut physiology and is 

essential for normal function. Individual nerve cells contribute to the formation of complex 

functional circuits; their projections travel within and across the layers of the gut wall to form 

close associations with other neurons, smooth muscle cells and cells of the immune and 

endocrine systems. The circuits of the ENS take part in the initiation and control of gut motor 

patterns, they influence mucosal secretion, blood vessel tone and function of neuro-endocrine 

cells. They provide sensory feedback to the central nervous system and in turn are influenced 

by input from spinal efferent nerves. Over the last few decades, multiple distinct populations 

of ENS nerve cells have been described according to characteristics such as morphology, 

electrophysiology and immunoreactive content.  However, our understanding of how these 

neurons are connected, to form physical and functional circuits, is far from complete.   

 

The work presented in this thesis advances the detailed knowledge of connectivity of distinct 

neural circuits in the enteric nervous system of the mammalian colon. Chapter 1 is a review of 

current literature relevant to this project. In Chapter 2, we describe a novel circuit that involves 

the intrinsic sensory neurons of the gut preferentially directing their synaptic output onto 

populations of calretinin-containing neurons within the myenteric plexus of the guinea pig 

colon. We expand on this finding in Chapter 3, where neuronal tracing confirms our initial 

hypotheses and expands on previous knowledge of neuronal projections in the colon. 

 

Chapter 4 explores the connectivity of intrinsic sensory neurons using immunohistochemistry 

and tissue culture in the mouse colon. Given the advancing genetic manipulation techniques 
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in this animal, it is of great interest to understand the connectivity within its ENS more fully and 

compare with already described systems.  

 

Chapters 2-4 are primary research chapters based on articles published in peer-reviewed 

journals during the PhD candidature. These chapters contain the original published material 

formatted to match the rest of this thesis. Dr David Smolilo was the first author for each of 

these publications. Every chapter contains an outline of the contribution of individual joint 

authors to the work and a Co-Authorship Approval Form has been submitted in the appendix 

together with a PDF copy of all published material. 

 

The references are listed at the end of each respective chapter. 
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1.1. Structure of the mammalian gastrointestinal tract 

The focus of this review is on principles shared across the enteric nervous system of all 

mammalian species studied, including human. The guinea pig has been the most studied 

animal in enteric neuroscience over the last few decades, therefore experimental data in this 

thesis relates to the guinea pig ENS unless otherwise stated.  

 

1.1.1. Embryology of the gastrointestinal tract 

The mammalian gastrointestinal tract (GIT) is a long muscular tube whose lumen is continuous 

with the outside environment. During early development, three flat layers of the embryonic 

disc undergo a complex series of folding manoeuvres to form enclosed body cavities [1]. The 

gut tube passes through these cavities but is open at the oral and anal end. It retains its 

connection to the body wall by a mesentery (a double layer of peritoneum) which allows 

passage of blood vessels, lymphatics and nerves (Figure 1.1). As the gut folds and grows in 

length, a population of neural crest cells starts their migration from the site of the developing 

spinal cord. They continue to divide and differentiate during their long journey and eventually 

populate the entire gut to become neurons of the enteric nervous system. Problems with this 

stage of development may result in sections of gut that lack a nervous system and do not 

function normally e.g. Hirschsprung disease. 

 

The most basic division of the GIT is into a foregut, midgut and hindgut. These regions are 

associated with accessory organs and glands, derived from common tissue lineages. They 

obtain most of their blood supply from three major branches of the ventral aorta;  the coeliac, 

superior mesenteric and inferior mesenteric arteries travel within the mesentery to supply the 

foregut, midgut and hindgut, respectively. They are closely accompanied by nerve fibres and 

lymphatics. 
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Structures proximal to the oesophagus are grouped together and classified as the pharyngeal 

gut, they are particularly important for the development of the head and neck. The oral cavity 

and associated structures arise from several discrete regions of the cephalad embryo with a 

contribution from migratory crest cells.  

 

 

 

Figure 1.1 Mid-sagittal (A-D) and transverse (E) sections through a developing embryo 

illustrating the sequence of cephalocaudal folding, resulting in the formation of the gut tube 

and mesentery. Figure adapted from Langman’s Medical Embryology 13th Ed 2014 [1]. 
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1.1.2. Foregut 

In the mature animal, between mouth and anus, we find several regions that are structurally 

and functionally distinct. The foregut encompasses the oesophagus, stomach and proximal 

duodenum. The liver and pancreas, organs that play vital roles in digestion and metabolism, 

also derive from this region and drain bile and pancreatic enzymes into the duodenum. In 

addition, the respiratory system starts as an outgrowth of the ventral foregut wall, which initially 

forms the trachea and lung buds.  

 

1.1.3. Midgut 

Midgut structures include the part of duodenum distal to the opening of the bile duct and the 

entire small intestine, divided into a proximal jejunum and distal ileum. The large intestine is 

also a midgut derivative, but only up to the splenic flexure, where we find the confluence of 

the superior and inferior mesenteric artery territories.  

 

1.1.4. Hindgut 

The hindgut contributes to formation of the descending colon, sigmoid, rectum and upper part 

of anal canal. It also forms part of the urogenital system via its ventral component. Each of the 

above sections are further anatomically subdivided. The duodenum for example has four 

distinct parts, followed by the jejunum and ileum of the small bowel. The large bowel includes 

the caecum, appendix, ascending, transverse, descending and sigmoid colon. The rectum is 

also usually described as having an upper, mid and lower section, and the anal canal is divided 

into an inner and outer muscular sphincter complex. The structural divisions do not always 

coincide with functional differences, which tend to be more gradual in nature.  
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1.1.5. Layers of gut wall 

The wall of the gut has clearly defined tissue layers (Figure 1.2). The outside of the tube is 

covered by a thin layer of visceral peritoneum, known as the serosa. The muscular component 

of the gut is found in two layers, namely the longitudinal and circular muscle layers [2]. The 

nomenclature is consistent with the direction of muscle fibres relative to the axis of gut lumen 

i.e. longitudinal muscle fibres run parallel to the lumen whereas circular muscle fibres are 

oriented in a circumferential (perpendicular) plane.   

 

 

 

Figure 1.2 Figure illustrating the distinct layers of the gut wall with all of the neural elements 

coloured red. Adapted from Furness and Costa ‘Types of nerves in the enteric nervous system’ 

[3] 



20 
 

The mucosa forms the innermost layer of the gut, representing a physical barrier between the 

external world and the inner environment of the organism. It comprises the epithelium, lamina 

propria and muscularis mucosae. This barrier is at times only one cell layer thick. The mucosa 

folds to form villi and crypts, with some cells also characterised by micro-projections 

(microvilli). Both these features increase surface area greatly. Many different cell types make 

up the mucosal epithelial layer with functional adaptations that include a combination of 

secretion, absorption and protection.  

 

The lamina propria supports the mucosa and contains enteric nerves (submucosal plexus), 

lymphatics and blood vessels, embedded in loose connective tissue.  The muscularis mucosa 

consists of a thin layer of smooth muscle whose likely function is to allow the mucosa to fold 

and move.  

 

The majority of enteric neurons are found in two separate layers. The myenteric plexus 

(Auerbach’s plexus) lies between the longitudinal and circular muscle, while the submucosal 

plexus (Meissner’s plexus) lies between the circular muscle and the muscularis mucosa [2]. 

Neuronal projections travel extensively between the two plexuses as they do to all of the layers 

of the gut wall.  

  

1.2 Overview of the enteric nervous system 

 

1.2.1 Organisation of the enteric nervous system 

Within the wall of the gastrointestinal tract, a complex network of neurons make up the Enteric 

Nervous System (ENS). An estimated 200 to 600 million neurons comprise the ENS in the 

human gut, a number which approximates the population of neurons in the spinal cord [4]. The 
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ENS has been considered for a long time a part of the autonomic nervous system together 

with the sympathetic and parasympathetic divisions [5]. Separate from the brain and the spinal 

cord (the central nervous system, CNS) and confined to the periphery. In fact, if we step back 

and look at this from an evolutionary perspective, we see from the fossil record that the ENS 

likely developed independently, and preceded the appearance of the central nervous system, 

making it our ‘first brain’ so to speak [6]. 

 

Each ganglionated enteric plexus is a dense web of internodal strands speckled with 

thousands of ganglia. Each ganglion contains multiple neurons and each neuron gives off 

projections carrying message to local and distant targets. The myenteric plexus extends from 

the upper oesophagus to the internal anal sphincter and is mostly responsible for coordinating 

gut motility. The submucous plexus does not appear in the oesophagus and stomach, it 

contains less neurons then the myenteric plexus and is mainly involved in the regulation of 

secretory and vascular functions of the mucosa. Not surprisingly, accessory organs including 

the gallbladder, biliary tree and pancreas also contain ganglia, which are considered part of 

the ENS. 

 

There is bidirectional flow of information between the ENS and CNS and their respective roles 

vary considerably along the GIT. The CNS is vital in controlling the striated muscle of the 

upper oesophagus and oropharynx and plays a major role in controlling defecation at the other 

end of the gut. The functioning of the small intestine and colon on the other hand is fully reliant 

on the ENS, with extrinsic input having a modulatory role. The importance of the ENS to normal 

gut function is highlighted by pathological states where the ENS is congenitally absent or 

undergoes degeneration through an acquired disease. Hirschsprung’s disease is 

characterised by segments of colon with no ENS and the result is a functional large bowel 

obstruction that may be lethal in the newborn if not surgically treated [7]. Chagas’ disease, 
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due to a protozoan infection, causes degeneration within the ENS of an adult, with a failure of 

colonic motility resulting in megacolon as one of the most common clinical presentations [8, 

9]. In contrast, disrupting the extrinsic innervation of the gut has far less dramatic 

consequences and in fact, the intestine displays multiple reflex motility patterns after complete 

separation from the rest of the body.  

 

1.2.2 Classification of enteric neurons 

Enteric neurons show significant variation in morphology, neurochemical content, axonal 

projections and electrophysiology.  Grouping nerve cells based on shared characteristics 

creates a multitude of distinct populations. In the guinea pig distal colon, for example, there 

are at least 17 types of neurons described [10].  

 

Consistent with the gut’s capacity for autonomous coordination of complex behaviours [11], 

enteric neurons can also be classified into three classic functional groups of sensory neurons, 

interneurons and motor neurons. Together they form circuits, which control intestinal 

functions. Sensory neurons (also known as intrinsic primary afferent neurons, IPANs) respond 

to various stimuli and initiate a patterned response. Interneurons have either ascending or 

descending projections, which propagate signals along the length and circumference of the 

bowel wall. Motor neurons translate the sum of the ENS activity into physical movement by 

driving the smooth muscle of the gut wall. As discussed in later sections of this thesis, we are 

increasingly starting to appreciate that a large proportion of enteric neurons have more than 

one functional role [12].  

 

Based on the above information we can assume multiple subclasses of sensory, interneurons 

and motor neurons, forming distinct circuits, each responsible for a specific enteric function or 
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perhaps an aspect of a function. Inter-regional and inter-species variation in neurochemical 

markers of functionally homologous groups adds to the complexity of this topic.  

 

Morphology 

Dogiel provided one of the earliest and most influential morphological studies of enteric 

neurons and a classification system we still use today (See [13] for a review). His original 

classification system is commonly reduced to contain two main classes of neurons, particularly 

in small mammals; Dogiel type I neurons have a small cell body with multiple dendrites 

protruding from along its lateral edge and one single long process that is assumed to be an 

axon. Dogiel type II neurons have large round or oval cell bodies that give rise to multiple long 

and short processes in various arrangements.  

 

Rather than being purely descriptive, his observations sought to deduce possible functional 

roles from the structural features observed. Based on his studies he was the first to suggest 

that type II neurons have projection patterns that could be consistent with a sensory function.  

He also described type I neurons whose long projections terminated in smooth muscle, 

proposing them to be motor neurons.  

 

Projections 

Neuroanatomical tracing has been widely used to characterise neuronal pathways, including 

in the enteric nervous system [14]. Techniques such as electrophysiological mapping, 

retrograde and anterograde tracing, in combination with immunohistochemistry have revealed 

in detail the organised nature of the ENS. From these studies, we know the expected polarity 

and length of projections of many classes of enteric neurons and the expected target. These 

data have transformed what was initially an entangled mess of nerve cells and projections into 
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a reliable map, which is particularly important when planning or interpreting data from 

functional experiments. 

 

Chemical content 

Enteric neurons within a specific species and regions of gut express a combination of 

chemicals and proteins, some of them neurotransmitters. The progression from simple stains 

through to histochemical and immunohistochemical methods has allowed cataloguing of 

enteric neurons according to the combinations of these markers within them. Markers found 

in the soma of a neuron usually correspond to the markers in the varicose terminals of the 

same cell, but this is not always the case [15]. Certain markers correspond to 

neurotransmitters with predictable physiological actions, this makes it possible to make 

tentative assumptions about the functional nature of neurons that contain them. A good 

example is acetylcholine (ACh) and nitric oxide synthase (NOS), which are markers of 

excitatory and inhibitory neurons respectively. However, since markers in the cell body are not 

always found in its varicose projections, functional inferences based on cell body content alone 

should be interpreted with caution.  

 

1.3 Neurotransmitters in the ENS 

The majority of neurochemicals contained within enteric neurons do not appear to function as 

neurotransmitters, however there are several neurotransmitters that have been characterised.  

 

1.3.1 Inhibitory neurotransmitters  

Evidence for inhibitory neurotransmission in the gut came about in the 1960s, when Burnstock 

et al measured inhibitory responses in colonic taenia using intracellular and sucrose gap 

recording techniques [16, 17]. The observed hyperpolarisation was resistant both to 
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acetylcholine and noradrenaline receptor antagonists and became known as non-cholinergic, 

non-adrenergic (NANC) neurotransmission.  This initiated a search for inhibitory 

neurotransmitters within the ENS with several potential agents identified over the years.  

 

What has emerged so far is that the inhibitory response in the gut is multi-factorial. When 

stimulated, enteric motor neurons likely co-release at least three different inhibitory mediators, 

although this does depend on the stimulus duration and magnitude. Nitric Oxide (NO), 

peptides (likely VIP) and purines are each responsible for a part of the post-junctional enteric 

inhibitory response. The relative contribution of each transmitter to this response tends to differ 

between regions of gut and species, but the concept of co-transmission is the same. As a 

general rule, in transmural nerve stimulation experiments, VIP release requires higher 

stimulus frequencies (5Hz or more) than NO and peptide release in order to elicit a peptide-

mediated inhibitory response. Purines cause a fast, large amplitude depolarisation that last 

only for several hundred miliseconds, the response to NO is slower and can last for several 

seconds and VIP appears to cause the slowest response of the three agents [18] 

 

Nitric Oxide (NO) 

This is a major inhibitory neurotransmitter within the ENS [19]. Unlike other known 

neurotransmitters, NO is synthesised on demand and released as a gas, being produced by 

three different types of nitric oxide synthase (NOS) enzymes, namely neuronal NOS (nNOS), 

inducible NOS (iNOS) and endothelial NOS (eNOS), and has many known physiological roles 

apart from neurotransmission [20-22]. Since the initial experiments by Gillespie et al [23] on 

rat pelvic smooth muscle and Bult et al with experiments on canine gut [24], a great deal of 

data has shown that in the enteric nervous system NO is synthesized by neuronal nitric oxide 

synthase (nNOS), released by Dogiel type I enteric neurons [25, 26] and causes 

hyperpolarisation and relaxation of enteric smooth muscle [27].  Genetic knockout 
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experiments have confirmed that NO is synthesised on demand rather than being stored in 

vesicles and its synthesis is triggered by an increase in cellular Ca2+ [28]. The post-junctional 

effects of NO are dependent on cytoplasmic soluble guanylate cyclase (sGC) which activates 

the cGMP intracellular signalling pathway [29]. However, the exact mechanism of nitrergic gut 

muscle relaxation is still under investigation; smooth muscle forms a functional syncytium with 

interstitial cells, which makes it harder to separate the role of any single cell type (the section 

further on in this thesis entitled ‘Role of Interstitial cells in the neural control of smooth muscle’ 

has a review of this topic).  

 

Vasoactive intestinal polypeptide (VIP) 

VIP was originally isolated from porcine small bowel and shown to have multiple biological 

actions, including that of potent vasodilatation [30]. Its discovery in neurons of the ENS that 

have descending and circular muscle projections prompted fairly early on the suggestion of 

an inhibitory neurotransmitter role [31]. VIP and NOS co-localize in a significant proportion of 

enteric neurons and circular muscle varicosities; in guinea pig distal colon 90% of myenteric 

VIP immunoreactive (VIP-IR) neurons also contained NOS and 65% of NOS-IR neurons 

contained VIP [10], in mouse small intestine almost 100% of NOS-IR neurons contain VIP and 

75% of VIP-IR neurons contain NOS, the overlap between the two markers was similar in 

mouse colon [32]. Therefore, VIP is almost always present at the site of inhibitory (NOS) 

neurotransmission and is likely released at the same time when nerves are activated.  

 

VIP is derived from a 170 amino acid precursor (prepro-VIP) together with peptide histidine 

isoleucine (PHI), both of them are stored in large dense-core vesicles in the ENS and released 

in response to a sustained increase in intracellular Ca2+ [33, 34], this usually requires multiple 

stimuli and is the reason that neuropeptides in peripheral organs are commonly associated 

with ‘slow neurotransmission’ [35]. 
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In functional experiments vagal nerve stimulation caused VIP release, accompanied by 

relaxation of the stomach [36], exogenous VIP inhibited contraction of smooth muscle [37] and 

antibody-mediated VIP neutralisation caused a decrease in nerve-evoked relaxation by VIP 

and by electrical field stimulation [38]. More recently, using VIP knockout mice, Keef et al 

confirmed that VIP was responsible for an ultraslow component of inhibitory neuromuscular 

transmission in mouse internal anal sphincter [34]. 

 

Purines 

Purinergic NANC neurotransmission is mediated by P2. P2 receptors are divided into ion-

gated P2X and G-protein coupled P2Y receptors and further subdivided into multiple subtypes 

within each group (P2X1-7 and P2Y1,2,4,6,11,12,13) [39-41]. There is good evidence that small 

conductance Ca2+ sensitive K+ channels are involved [42, 43], and these are blocked by 

apamin [44]. 

 

ATP was put forward as a NANC inhibitory transmitter in the 1970’s based on several muscle 

preparation experiments [45] and has had a lot of support for that role [46, 47]. More recent 

experiments have cast doubt on ATP as the purine inhibitory transmitter in the ENS. Mutafova-

Yambolieva et al [48] have shown that β-Nicotinamide adenine dinucleotide (β-NAD) fulfils the 

classical criteria for a neurotransmitter better than NOS in mouse colon preparations. After 

blocking nitrergic neurotransmission, electrical field stimulation caused a frequency-

dependent release of β-NAD from intrinsic neurons, which was blocked by tetrodotoxin (Na 

channel blocker) or ω-conotoxin GVIA (synthetic blocker of N-Type Ca2 channels); the 

response to β-NAD was apamin-sensitive and blocked by P2Y1 and P2Y2 receptor 

antagonists.  
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ATP release was not proportional to stimulation frequency and was significantly less sensitive 

to ω-conotoxin, which suggest that a significant proportion comes from sources other than 

inhibitory nerve terminals, furthermore the effects of exogenous ATP were sensitive to apamin 

but not to P2Y receptor antagonists [48].  Almost identical findings were reported in monkey 

and human colon [49], furthermore stimulation of myenteric neurons with ACh and Serotonin 

caused a disparate release of the two substances; β-NAD release, but not ATP, was inhibited 

by tetrodotoxin or ω-conotoxin GVIA [50].  The results strengthen the argument for β-NAD as 

the inhibitory purine neurotransmitter and suggest ATP is released from nerve cell bodies 

rather than motor nerve terminals. Two other substances have also been proposed as 

neurotransmitters in GIT muscles of human, monkey and mouse; ADP-ribose and uridine 

adenosine tetraphosphate (Up4A) satisfy both pre and post junctional requirements for a 

neurotransmitter [51, 52]. Like with most new theories, this one is not without its controversies, 

with suggestions of β-NAD being a pre-junctional modulator of neurotransmitter release rather 

than a neurotransmitter [53, 54]. More experiments are required to tease this out.  

 

1.3.2 Excitatory neurotransmitters 

There are two main mechanisms of excitatory synaptic transmission within the ENS; rapid 

neurotransmission via fast EPSPs mediated by neuro-transmitters that act on ligand-gated 

post-synaptic channels and slow EPSPs via G-protein-coupled receptors and second 

messenger pathways.   

 

Acetylcholine (ACh) 

Acetylcholine is the main excitatory neurotransmitter at the enteric neuro-neuronal synaptic 

junction and causes fast EPSPs in postsynaptic neurons via nicotinic receptors [55, 56]. 

Nicotinic receptors have been localized to ascending and circumferential myenteric pathways 

[57], and in functional experiments, blocking nicotinic receptors with hexamethonium caused 
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significant inhibition of reflex-activated ascending pathways while the descending inhibitory 

signal was mostly resistant [58]. This data indicated that ACh acting on nicotinic receptors is 

the predominant mechanism in ascending excitatory ENS pathways and provides a minor 

contribution to excitatory descending ENS pathways. There is also evidence for a minor role 

of muscarinic receptors in slow neuro-neuronal transmission [59, 60]. 

 

Serotonin (5-HT) 

Serotonin mediates fast EPSPs by acting on 5-HT3 receptors, which are ligand-gated ion 

channels [61]. Myenteric 5-HT neurons have long descending projections that provide input to 

other descending interneurons [62], they are found in excitatory descending pathways to 

circular muscle [63] and possibly participate in slow synaptic transmission to myenteric IPANs 

[64]. 5-HT receptors also locate to mucosal terminals of myenteric IPANs, where they possibly 

initiate reflex activity in response to 5-HT release by enterochromaffin cells [65], although the 

physiological role of serotonin in enteric circuits is far from established [66]. 

 

Purines  

Purines (such as ATP) mediate fast EPSPs in enteric neurons by acting on P2X receptors 

[61]. These are not specific to any one sub-group of enteric neurons in the guinea pig gut, 

unless one examines the distribution of purine receptor subtypes. P2X(2) and P2X(3) are  

expressed in distinctive functional group of neurons [67, 68]; P2X(2) receptors seem to be 

specifically associated with fast synaptic transmission in descending motor pathways when 

one combines data from immunohistochemical and functional studies [67, 69, 70] and  P2Y(1) 

(metabotropic) receptors likely contribute to slow synaptic transmission in descending 

pathways [71].  
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Tachykinins 

Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) are tachykinin peptides found 

in the GIT [72], although NKB is relatively sparse [73]. Three tachykinin receptors have 

currently been well characterised; NK1-3 receptors couple to GTP-binding proteins that use 

the phospholipase C/phosphoinositide signalling pathway [74] and mediated slow EPSPs. 

Tachykinins (particularly SP) are widespread throughout the ENS, not specific to any 

functional groups of neurons and usually co-localize with the synthetic enzyme for ACh, 

choline acetyltransferase (ChAT) [75-77]. Having said that, tachykinins play an important and 

specific role in slow synaptic transmission between IPANs of the guinea pig ileum [78-80]. 

 

1.3.3 Other potential neurotransmitters within the ENS 

Glutamate is a major excitatory neurotransmitter within the central nervous system [81] and 

there is evidence for expression of glutamate, glutamate receptors and other proteins required 

for glutamate neurotransmission within the ENS [82, 83]. Despite this, there is not a lot of data 

that supports glutamate as a neurotransmitter within the ENS [84], although Swaminathan et 

al recently showed that glutamate may contribute to slow synaptic transmission in mouse distal 

colon [85]. 

 

γ-Aminobutyric Acid (GABA) is another central neurotransmitter that is easily detected in the 

ENS but whose function is elusive [86, 87], it may act more as a neuromodulator rather than 

a neurotransmitter as demonstrated in mouse ileum [88]. 

 

Cannabinoids, whether endogenous (anandamine, 2-AG), plant-derived or synthetic, have 

significant effects on the gastrointestinal system [89]. They are synthesized on-demand and 

appear to function as ‘retrograde synaptic signal molecules’ [90].  The CB1 receptor 
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associates with a range of cholinergic myenteric neurons in the guinea pig and rat [91] and 

functional studies have shown that cannabinoids inhibit intestinal motility, possibly by 

modulating cholinergic neurotransmission via pre- and post-synaptic mechanisms [92, 93]. 

The CB1 receptor also colocalises with all VIP and most of NPY-containing submucosal 

neurons and there is evidence that cannabinoid agonists inhibit mucosal secretion by 

modulating cholinergic secretomotor pathways [94]. The expression of the CB2 receptor in the 

gut is upregulated in states of inflammation, including inflammatory bowel diseases [95]. There 

is evidence for the endogenous cannabinoid system having a protective and regenerative role 

during inflammation of the gut, involving intrinsic and extrinsic signalling mechanisms [96]. 

 

1.4 Functional classification of enteric neurons 

 

1.4.1 Sensory neurons 

Neurons that detect changes in the physical or chemical environment of the tissue they 

innervate are essential to the function of any nervous system, including the ENS. They 

transduce and encode this information into a signal conveyed to integrative centres, where a 

response may be triggered based on the information received. Afferent neurons carry 

information towards central processing areas, such as reflex centres within the spinal cord or 

the myenteric plexus of the gut, where integration of multiple afferent signals takes place. 

Efferent neurons carry signals away from integrating circuits to effectors such as smooth 

muscle or secretory glands.  

 

Only a subset of afferent neurons in the viscera are thought to underlie the conscious 

sensation of pain. It has been argued that only these neurons are correctly termed ‘sensory’ 

neurons, to distinguish them from the rest of the visceral afferents which lack direct 
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connections to the CNS, being confined to the viscera [97].  Despite this distinction, the term 

‘sensory’ is often used more loosely (including in this thesis) to mean any component of the 

afferent pathway. 

 

1.4.2 Intrinsic sensory neurons 

Neurons located in the vagal, trigeminal and dorsal root ganglia of the central nervous system 

(CNS) provide sole sensory innervation for the whole body. The gut is an exception to this 

arrangement; it has a dual sensory innervation. In addition to extrinsic afferents, it contains an 

intrinsic population of afferent neurons located in the wall of the gastrointestinal tract. They 

are not strictly sensory neurons; being the first neuron of a reflex loop, their main role is to 

carry information to integrating circuits of the ENS. Although the presence of primary sensory 

neurons within the gut has been assumed for a long time, the proof of their existence has 

come much more recently. Furness et al demonstrated that motility reflexes may be initiated 

in guinea pig small intestine that has been isolated in organotypic culture long enough to 

allowing the complete degeneration of all extrinsic nerve fibres, ruling out the possibility of 

extrinsic circuits being involved in reflex initiation [98]. The heart is another organ that contains 

an intrinsic ganglionated neuronal network [99], possibly with its own intrinsic primary afferent 

neurons [100] however, there is not as much experimental data to date to support this. 

 

Intrinsic Primary Afferent Neurons (IPANs) 

IPANs are the first sensory neurons to be characterised in the guinea pig ileum [101]. They 

are Dogiel type II neurons that comprise an estimated 20% of the ENS neuron population 

[102, 103]. In the myenteric plexus, they have short local processes that ramify extensively, 

surrounding neurons in the same ganglion (including other IPANs). They also project to 

neighbouring myenteric ganglia, circular muscle, submucosal plexus and lamina propria of 

mucosa [104-106]. Although the majority of myenteric IPANs project locally or 
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circumferentially [107, 108], there is a sub-population with long descending projections, seen 

in both the small intestine and colon of the guinea pig [109, 110]. These cells with long 

descending projections also tend to have multiple short filamentous processes, and therefore 

have previously been described as ‘dendritic’ IPANs [104]. IPANs in the guinea pig and mouse 

colon interact with select groups of myenteric neurons via varicose ‘baskets’ which likely 

function to direct synaptic output and possibly form monosynaptic reflex arcs with circular 

muscle motor neurons [110, 111]. 

 

IPANs have AH type electrophysiological properties (AH-afterhyperpolarisation; a persistent 

membrane hyperpolarisation after an action potential) and respond to chemical stimulation of 

the mucosa [65, 101, 112, 113], stretch and compression [114-116], even when synaptic 

transmission is abolished. Furthermore, the magnitude of their response appears to be graded 

to strength of applied stimulus [117]. Stimulation of synaptic inputs to IPANs most commonly 

produces a slow excitatory postsynaptic potential (EPSP) characterised by depolarisation of 

cell membrane, blockade of the late AH and increase in somatic excitability [116, 118], this 

phenomenon peaks at about 15s and continues for as long as 4 minutes [119], although under 

certain condition a sustained slow EPSP may last for over 3 hours [118]. Slow EPSPs seem 

to be a consistant feature of AH cells, they are also present in mouse [116, 120] guinea pig 

[121], rat  [122, 123] and even one human colon AH cell recording [60]. This slow, sustained 

change in membrane potential may function to make an IPAN more responsive to a sensory 

stimulus and possibly promote the transmission of the resultant signal to second order neurons 

in the network.  

 

An interesting observation comes from a set of intracellular recordings from two myenteric 

neurons simultaneously [78].  It follows on from the study of synaptic inputs and demonstrates 

that varicosities of IPAN axons do in fact make functional synaptic connections with other 



34 
 

myenteric neurons, including other IPANS, and their synaptic transmission appears to be 

through slow EPSPs mediated by NK1 and NK3 dependent mechanisms [80, 124]. Combined 

with morphological and pharmacological studies, this suggests neighbouring IPANS form a 

self-reinforcing network in the myenteric plexus and rely predominantly on non-nicotinic 

neurotransmission.  

 

Fast excitatory postsynaptic potentials (EPSP) are usually absent during intracellular 

recording from IPANs of mouse gut and occur rarely (<5%) in guinea pig [103, 120, 121, 125].  

This finding is compatible with a sensory role, because it suggests IPANs are not driven by 

fast, synaptically mediated transmission. This is however, not quite consistent with other 

published observations; nicotinic acetylcholine and purinergic P2X receptors are known to 

mediate fast synaptic transmission [126] and these receptors are commonly found on IPANs 

in guinea pig intestine [67, 79, 127, 128]. More recently, calcium imaging of spontaneous and 

evoked myenteric neuronal activity in intact mouse colon demonstrated short latency calcium 

transients in 90% of IPANs examined [129]. A significant proportion of these would have been 

likely due to fast EPSPs.  Another study used a voltage-sensitive dye in guinea pig ileum 

where all mechanosensitive calbindin-immunoreactive myenteric neurons received fast 

EPSPs in response to electrical stimulation of internodal strands [130].  In both the imaging 

studies, using hexamethonium (nicotinic receptor agonist) abolished the fast EPSPs, and in 

the mouse colon, application of DMPP (nicotinic receptor agonist) during complete synaptic 

blockade activated all IPANs, a finding that is consistent with the presence of nicotinic 

receptors on the neurons observed.  

 

The reason for the discrepancy between functional imaging and microelectrode recordings is 

unknown. Interestingly, in a study looking at the pig small intestine, 77% of myenteric IPANS 

displayed fast EPSPs on intracellular recording [131]. Perhaps Dogiel type II cells in smaller 
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animals are more sensitive to microelectrode impalement compared to bigger species, 

although patch-clamp recordings, where there is no impalement of the cell, have not recorded 

fast EPSPs in mouse small intestine either [116]. The nature of synaptic input to IPANs is 

certainly an area where further investigation is required as we gather more data that points to 

functional polymodality of most ENS neurons.   

 

Dogiel type II neurons are also found in the submucous plexus, but only in certain species and 

not others. This may relate to a greater complexity of the submucosal ENS in large mammals 

compared to the mouse or guinea pig. The submucous plexus of the mouse intestine consists 

of one layer of ganglia containing three types of neurons, all of them Dogiel type I [132]. In the 

Guinea pig, we find one layer of ganglia with four types of neurons, including Dogiel type II 

cells [133]. The pig has two distinct networks and 14 different types of neurons, including 

IPANS [134] and in the human intestine we find a third intermediate layer and possibly Dogiel 

type II cells as well [135-138]. When examined in the guinea pig intestine, submucosal Dogiel 

type II neurons send projections both to neurons within the submucosal network and the 

myenteric plexus [132, 133]. Using techniques that allow visualisation of calcium transients in 

enterocytes, Filzmayer et al [139] demonstrated that a significant proportion of submucosal 

neurons (regardless of their morphology) in the human and porcine colon are 

mechanosensitive (up to 24% in human colon).  

 

The presence of classical putative IPANs and functionally mechanosensitive neurons in both 

plexuses of the larger animals raises the question of their respective roles.  We know there is 

a functional division between the plexuses, with the myenteric plexus controlling gut motility 

and the submucosal plexus likely involved with mucosal secretion and absorption [140-144]. 

It is interesting to speculate whether the more complex submucosal network requires its own 

set of IPANs to drive the circuitry, whereas in the smaller species the myenteric IPANs suffice. 
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Mechanosensitive Dogiel type I neurons 

It was not until recently that certain Dogiel type I neurons were shown to have mechano-

sensory properties, and since then we have seen this group of neurons reported across 

several species and gut regions [12].  Mechanosensitive enteric neurons (MEN) may be 

grouped according to the type of mechanical stimulus they respond to (compression, tension 

or shear) and their firing pattern (rapid, slow or ultra-slow adaptation).  Although Dogiel type II 

IPANs have certainly been shown to respond to mechanical stimulation [115, 116], the majority 

of mechanosensitive myenteric neurons are in fact a different population [12]. In both guinea 

pig and mouse intestine for example, interneurons and motor neurons responded in equal 

proportion to compression [130, 145]. Unlike Dogiel type II IPANs, these sensory neurons do 

not require muscle tension to fire [146], suggesting different populations of sensory neurons 

detect tension versus length in gut wall.   

 

Spencer and Smith demonstrated tension-sensitive neurons in the guinea pig distal colon, 

which were all S (S – synaptic; receive synaptic input as seen by fast EPSPs on 

electrophysiological recordings) type cells [106]. Interestingly, two different populations of 

neurons are preferentially activated during circumferential versus longitudinal stretch [146]. 

Circumferential stretch activated ascending and descending cholinergic (excitatory) pathways, 

which in turn produced ascending muscle contraction and descending muscle inhibition. In 

contrast, longitudinal stretch triggered NOS containing (inhibitory) descending interneurons, 

which may lead to inhibition of muscle contraction. Tension-sensitive myenteric neurons have 

also been demonstrated in guinea pig ileum, stomach and oesophagus [130, 147] as well as 

in the sub-mucous plexus of the pig and human [139]. Several groups of mechanosensitive 

enteric neurons respond to both compression and tension, producing distinct firing patterns 

for the two different types of mechanical stress [12].  
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Mechanosensitive enteric neurons have not been a major consideration in our study of enteric 

circuits so far and their functional role is not fully understood. Given that contraction and 

distension of gut muscle causes deformation of myenteric ganglia and large changes in 

neuronal shape [130, 148], they are likely to be involved in controlling motility in some way. 

One possibility is that they are involved in local control of muscle tension; the tension-sensitive 

ultra-slowly-adapting mechanosensitive neurons in the stomach are predominantly inhibitory 

in nature and may be in part responsible for the phenomenon of adaptive volume 

accommodation [12]. The combined activity of compression and tension-sensitive motor 

neurons in the intestine could theoretically contribute to propulsive motor patterns that are 

independent of synaptic transmission. Studies have previously demonstrated resistance to 

hexamethonium of distension-induced reflexes in guinea pig ileum [149, 150] and colon [151, 

152], giving credence to this idea.  

 

Other types of mechanosensitive neurons associated with the ENS include intestinofugal 

neurons in the guinea pig and mouse colon [153, 154] and extrinsic neurons with afferent 

fibres in guinea pig oesophagus, stomach and rectum [155-157]. These likely form long-range 

reflex loops involving components of the autonomic nervous system.  

 

The question of what mechanosensitive receptors or channels are found in these neurons is 

one that is a good starting point when trying to decipher their function within the ENS. Possible 

candidates so far include the large-conductance potassium channels (BK channels) [115] and 

the Piezo proteins. Quite interestingly, Piezo 1 has recently been localised in enterocytes of 

the human, mouse and guinea pig GI tract [158]. Expressed mostly (60%-100%) in inhibitory 

myenteric neurons, it was also seen in up to 76% of myenteric mechanosensitive neurons. 
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However, pharmacological experiments in that study, using activators and blockers of Piezo 

channels did not show any significant functional effect. Further experiments are warranted. 

Intestinofugal neurons 

Intestinofugal (viscerofugal) neurons have cell bodies within the wall of the gut and project to 

prevertebral ganglia, acting as the afferent limb of extrinsic reflex motor and secretomotor 

pathways. They are directly mechanosensitive, responding to changes in muscle length 

independent of muscle tension [153] and cause nicotinic-dependent fast EPSPs in 

postganglionic sympathetic neurons [159]. Sympathetic axons project back to the gut, running 

with the vascular bundle, completing the reflex arc [160].  

 

Intestinofugal neurons are also activated and receive fast nicotinic signals from multiple other 

myenteric pathways [161, 162] giving them a dual role of sensory and inter-neurons. Quite 

interestingly, Hibberd et al recently demonstrated that large numbers of, if not all, sympathetic 

neurons in prevertebral ganglia become temporarily entrained to the same firing rate as 

myenteric circuits driving the colonic motor complexes in mouse colon [163]. This suggests 

sympathetic reflexes to the gut may be driven primarily by the sum of ENS activity, rather than 

discrete stimuli such as gut volume changes.  

 

Rectospinal neurons 

Rectospinal neurons belong to a singular class of afferent neurons, identified in the rat rectum, 

with their cell bodies mostly in the myenteric plexus they project directly to L6/S1 spinal cord 

segments [164, 165]. There is no functional data available, however these represent a 

possible direct viscerofugal conduit from the ENS to the CNS.  

 

1.4.3 Extrinsic sensory neurons 
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The gastrointestinal tract is innervated by a combination of intrinsic and extrinsic systems and 

neural control of gut function is reliant on their interactions. Extrinsic afferent nerves transduce 

mechanical and chemical signals in the gut and carry them to the central nervous system for 

integration; they may lead to the activation of supraspinal centres as well as reflex pathways 

in the spinal cord that allow control of bowel function over larger distances and different 

regions of the GIT. Most of these signals do not cause conscious sensation but rather act on 

central neuroendocrine or autonomic centres. The signal they carry also undergoes significant 

modulation; descending spinal pathways from higher cognitive centres can influence central 

processing significantly [166]. Extrinsic sensory neurons also interact with many other cellular 

populations in the periphery; there is evidence that enteroendocrine cells, immune cells and 

gut microbiota are capable of altering mood and sensation, possibly through extrinsic sensory 

pathways [167]. 

 

Three major extrinsic afferent pathways exist: lumbosacral, thoracolumbar and vagal, with 

significant overlap, such that every region of the gut has a dual innervation. The upper gut, 

from the oesophagus through to proximal colon is innervated by vagal and thoracolumbar 

afferents, while thoracolumbar and lumbosacral pathways innervate the distal colon and 

rectum. In the rat, there is evidence that the vagal innervation extends as far distally as the 

descending colon although with decreasing density of innervation [168]. 

 

Vagal innervation 

The vagus nerve is one of 12 paired cranial nerves. Vagus means ‘wanderer’ in Latin and is a 

very appropriate name for this nerve; it is the longest cranial nerve, coursing from brainstem, 

through the neck, thorax and into the abdominal cavity. It contains both afferent and efferent 

nerve fibres, although afferent fibres predominate as much as 9:1 [169]. Its afferent fibres 

innervate most of the organs in the chest cavity, including the heart, lower airways, aorta and 
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oesophagus and via its abdominal branches the GIT (up to proximal colon), liver, biliary 

system, pancreatic islets, uterus and adipose tissue vasculature [170]. It is therefore a key 

element of the body-brain connection that monitors and controls the cardio-pulmonary and 

digestive systems.  

 

Vagal afferent fibres have nerve cell bodies in the nodose, jugular and petrosal ganglia, 

located at base of skull close to the bifurcation of the common carotid artery.  The nodose and 

jugular ganglia differ in their embryological origin, coming from the epibranchial placode and 

neural crest respectively [171, 172]. Not surprisingly, the vagal neuronal populations within 

them differ too; jugular afferents are quite similar to spinal afferents (they both originate from 

neural crest) and likely play a role in nociception, nodose afferents on the other hand transmit 

innocuous signals from physiological stimuli that  are vital for maintaining body homeostasis 

by activating the autonomic nervous system [171, 173]. As shown in the DRG afferent 

population, by analysing the transcription patterns of single cells, sensory neurons can be 

classified by their molecular ‘fingerprint’ into functional groups [174]. Just like neurons in the 

dorsal root ganglia, vagal afferents are actually quite specialized; there are distinct neurons 

sensitive to nutrients and stretch in the gut [175], the lung is innervated by two different vagal 

afferents with completely opposite physiological effects when activated [176], and recently 

Kapuri et al characterised 18 distinct neuronal populations within the mouse nodose ganglion 

based on their transcription profile [177]. This heterogeneity amongst vagal afferents suggests 

a greater range of sensory modalities and a wider field of sensory discrimination then 

previously suspected. 

 

Central projections of vagal afferents are mainly to the nucleus tractus solitarius (NTS); areas 

outside the NTS that receive vagal afferent projections include, the spinal trigeminal nuclei, 

the area postrema (controls emesis and mediates the emetic reflex), the dorsal motor nucleus 
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and nucleus ambiguus [178-180]. Second order neurons from vagal brainstem nuclei project 

to autonomic ganglia and higher brain centres that are involved in hormonal, affective and 

behavioural responses.  

 

A portion of vagal afferents make direct monosynaptic connections to parasympathetic 

efferents and both limbs of this reflex pathway travel in the same peripheral nerve trunks [181, 

182]. This concept is the same for the sacral afferent fibres, they share nerve trunks with 

parasympathetic efferent projections and the neurons that give rise to these projections are 

synaptically connected with the afferents in the spinal cord [183]. It makes functional sense 

that nerve fibres responsible for a reflex pathway share common peripheral nerves.  

 

Vagal sensory terminals 

 

Intraganglionic laminar endings (IGLEs) 

IGLEs are flat branching terminals of peripheral vagal axons, embedded in the connective 

tissue of myenteric ganglia. They are particularly concentrated in the oesophagus and 

stomach, becoming increasingly less dense in small bowel through to proximal colon [184]. 

The best immunohistochemical marker for IGLEs is the vesicular glutamate transporter 2 

(VGluT2), which has been shown to label all IGLEs in mouse oesophagus [185]; other markers 

which are specific for IGLEs include purinergic receptors P2X2 and P2X3 in rat and mouse 

[185-187] as well as calbindin and calretinin in rat oesophagus [188, 189]. 

 

Functionally they act as low-threshold, tension-sensitive mechanoreceptors, reacting to both 

distension and contraction, independent of chemical neurotransmission [190, 191]. These 

properties, together with their abundance in the stomach has led to speculation about the 
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possible role of vagal IGLEs in appetite and feeding behaviour regulation. Vagal afferents are 

activated by increasing stomach volume [192], gastric load suppresses meal size [193] and 

both of these effects are dependent on an intact abdominal vagus [194]. More recently, genetic 

knockout mice with depleted IGLEs have been shown to have increased meal duration and 

increased volume of water per meal [195]; conversely, mice with abnormally high 

concentrations of IGLEs had smaller meals with greater intervals between feeding [196]. 

Despite the meal variations, the total daily food intake and body weight was the same between 

experimental groups, suggesting that vagal IGLEs only play a part in short-term satiety.  

 

Intramuscular afferents 

Vagal intramuscular afferents, also called intramuscular arrays (IMAs), are fine varicose 

terminals of vagal afferents. They are found in longitudinal and circular muscle, from 

oesophagus to the colon, oriented in parallel to each other and surrounding muscle fibres 

[197] and very closely associated with interstitial cells of Cajal [198]. Although currently no 

functional data exists, structurally they are well suited to being muscle stretch detectors [199]. 

 

Mucosal afferents 

Vagal afferents within the mucosa have several region-specific morphologies. Afferents in the 

small intestine may be villus afferents, that supply varicose endings to the apical tips of villi or 

crypt afferents, which encircle the crypts of Lieberkuhn without entering the villi [198]. In the 

upper oesophagus, very fine ‘finger-like’ endings and ‘complex laminar’ mucosal terminals 

occur [200, 201]. Vagal mucosal afferents are sensitive to both mechanical and chemical 

stimuli. Although not activated by gut distension or contraction, they are sensitive to light 

mucosal stroking and compression [198, 202].  They are chemically activated by bile salts and 

a multitude of mediators released by the large population of enteroendocrine cells of the gut 

[203] in response to luminal content. They play an important role in satiety signalling; 
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Cholecystokinin (CCK) for example activates vagal mucosal endings [204] and influences food 

intake [205, 206], a phenomenon which requires an intact vagus nerve [207]. Vagal afferents 

also react to luminal amino acids, glucose, lipids and osmotic loads [208].  

 

Muscular-mucosal afferents 

There is possibly another group of vagal afferent terminals innervating the mucosa and the 

muscularis externa, demonstrated in oesophagus of ferret [209], muscular-mucosal afferents 

respond to mucosal distortion (particularly shear forces), distension and contraction of gut wall  

and may be well-suited to detecting movement of luminal content over the surface of the GIT 

[210]. A similar study in mice failed to identify this type of receptor, which could be due to the 

difficulty of separating mucosal stimulation from muscle distension in such thin tissue [211]. 

 

Spinal afferent gut innervation 

Spinal afferents in the GIT are involved in long-range reflexes but are also responsible for 

sensations such as discomfort, bloating and pain [212, 213]. Their cell bodies are located in 

the dorsal root ganglia (DRG) in thoracic, lumbar and sacral dorsal nerve roots. Transecting 

dorsal nerve roots results in a loss of pain perception and much of non-painful sensation from 

the innervated area.  

 

 DRG neurons have pseudo-unipolar morphology with projections to both the viscera and 

spinal cord; their central projections terminate within the dorsal horn of the thoracic, lumbar 

and sacral spine where they synapse with second order neurons or travel via distinct spinal 

tracts to the brainstem [214]. Central projections of visceral spinal afferents are wide-spread 

and may travel several vertebral levels after entering the spinal cord; their input to second 

order neurons is often convergent with somatic afferents [215] or spinal afferents from other 
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viscera [216], this probably explains why visceral pain is difficult to localise and the 

phenomenon of referral to somatic structures like skin. Adding to this, the same DRG nerve 

cell bodies have been identified as projecting axons to different parts of the same organ or to 

two different organs [217-219]. Visceral afferent signals that reach the brain are processed in 

at least three regions; cingulate gyrus, insula and the somatosensory cortex, where they may 

result in visceral sensation and influence affect [220]. 

 

The peripheral processes to the gut project in splanchnic and pelvic nerves that, unlike the 

vagus nerve, carry mostly efferent fibres. Splanchnic nerves innervate most of the gut from 

distal oesophagus to rectum, contain mostly high-threshold mechanoreceptors [221] and are 

an important pathway in visceral nociception [222]. Pelvic nerves supply distal colon to internal 

anal sphincter, they mostly carry mechanoreceptors with lower threshold profiles and their 

main role is sensation during normal gut functions. However, chemosensitivity to known 

noxious stimuli is present in both pelvic and splanchnic nerves [223] and so are afferents with 

high threshold profiles [224, 225], indicating that pelvic nerves also carry nociceptive 

information underlying the sensation of pain from pelvic organs. 

 

Thoracolumbar spinal afferents share peripheral nerve trunks with sympathetic projections to 

the gut, however there appears to be very little direct synaptic connectivity between the two 

pathways [226]; postganglionic sympathetic neurons receive multi-synaptic inputs from 

sympathetic preganglionic neurons located along multiple vertebral levels, forming a complex 

network within the thoracolumbar spine [227, 228]. 

 

Spinal afferent terminals  
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Anterograde tracing experiments from mouse dorsal root ganglia reveal a great variety of 

spinal afferent endings; 13 different morphological types can be distinguished with some 

individual axons that can supply three layer of gut and give rise to several hundred terminals 

[213, 229]. If one combines anatomical data with functional recordings, there are currently 5 

types of afferent terminals recognised.   

 

Vascular afferents 

Spinal vascular afferents are mechano-nociceptors that innervate intramural and mesenteric 

blood vessels with a fine branching network of axons that run along mesenteric arterioles and 

follow them into the submucosa [230]. They make up the majority of afferent fibres in the 

thoraco-lumbar pathway and approximately one third of the sacral afferents [231]. They are 

capsaicin sensitive and respond to localised pressure on blood vessel walls [232], large 

contractions or distension of the gut, traction of the mesentery and increases in intravascular 

pressure of mesenteric vessels [233, 234]. They give off axon collaterals that project to all the 

layers of gut wall, including the myenteric plexus, where they can initiate motor activity by 

stimulating myenteric circuits [233, 235].  

 

They express receptors for many endogenous mediators including, but not limited to 5HT, 

bradykinin, histamine, ATP and glutamate [210]. Vascular afferents also have efferent-like 

effects; by releasing CGRP and SP from their terminals, they cause vasodilatation and 

increased vascular permeability, resulting in localised oedema [236, 237]. They also cause 

mast cells to degranulate, releasing histamine and protease II, which stimulate the spinal 

afferent terminals in a positive feedback loop [238].  This phenomenon has been termed 

‘neurogenic inflammation’ and may occur throughout the body [239, 240]. In parallel to other 

inflammatory mechanisms, its role is likely to increase blood flow to an area of damage or 

infection.  
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Muscular afferents 

Intramuscular arrays (IMA) similar to ones present in vagal pathways have been described in 

the colon, rectum and internal anal sphincter [241]. There is little functional data apart from 

IMAs in the guinea pig internal anal sphincter and mouse rectum [242-244], where they seem 

to function as low-threshold mechanoreceptors. 

 

Rectal intraganglionic laminar endings (IGLEs) 

Rectal IGLEs are morphologically similar to their vagal counterparts, they are broad, flat 

terminals in myenteric ganglia, perhaps with less branching [156]. They act as slowly adapting 

low-threshold mechanoreceptors within the rectum of several species examined [156, 221, 

245] and are activated by physical distortion or compression most likely mediated by stretch 

sensitive ion channels [246]. 

 

Mucosal afferents 

Spinal mucosal afferents are quite similar to their vagal counterparts; they are remarkably 

sensitive to light stroking or compression of the mucosa but not to contraction or distension of 

the gut wall [221]. There is a greater concentration of mucosal afferents in the distal colon and 

rectum, they represent 1% and 15% of all afferents recorded from the mouse splanchnic and 

pelvic nerves respectively [221, 247]. Traced anterogradely from the DRG in mice, these 

afferents have fine varicose axons that ramify extensively in the mucosa and over 90% of 

them contain CGRP [229]. It is likely that pelvic mucosal afferents are involved in the control 

of defecation by providing conscious sensation of the passage of stool [231, 245]. Spinal 

mucosal afferents are also indirectly sensitive to chemical changes within the colorectal lumen; 
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Intraluminal irritants and microbial metabolites stimulate enterochromaffin cells to release 5-

HT and activate mucosal afferents via synaptic-like connections [248]. 

Muscular-mucosal afferents 

A population of spinal afferents with low-threshold sensitivity to both muscle distension and 

mucosal stroking has been described in the mouse pelvic spinal afferent pathway [221, 249]. 

These muscular-mucosal receptors have receptive fields in the distal 1cm of the rectum and 

become active in-sync with contractions of the gut wall [249]. Anterograde tracing from 

lumbosacral DRG has revealed a great variety within pelvic afferent terminals in the 

colorectum of the mouse [229], some of them innervate the crypts of Lieburkuhn and 

submucous ganglia and could anatomically correspond to the muscular-mucosal functional 

class of afferents. Just like spinal mucosal afferents, muscular-mucosal afferents may 

contribute to defecation mechanisms and conscious sensation. The transient receptor 

potential vanilloid 1 (TRPV1) channel and acid-sensing ion channel 3 (ASIC3) are needed for 

the proper functioning of muscular-mucosal afferents. Knockout mice lacking either of these 

channels have decreased mechanosensory function and pain response to colorectal 

distension [250], they also have a partial loss to the sensitising action of intra-colonic zymosan 

[251], suggesting that these afferents may also play a role in nociceptive mechanisms by 

contributing to peripheral sensitization.  

 

1.4.4 Interneurons 

Within the ENS, myenteric interneurons form a central processing network that integrates 

sensory input as well as hormonal and neural inputs from extrinsic sources. Interneurons are 

classified according to polarity of their projections; ascending and descending interneurons 

are further profiled according to the combination of neurochemicals present in their cell bodies. 

Classically, they are all Dogiel type I neurons. Their output is directed at motor neurons, 

intestinofugal neurons and interneurons [252]. What happens to the information converging 
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on this system in order to produce an output is largely unknown. It is likely that differential 

activity within interneuron groups allows a selection of gut motility patterns. Interneuron 

classes have the most variability in their neurochemical coding between gut regions and 

species [10, 32, 253], supporting this theory.  

 

Interneurons have either ascending or descending projections, whose functional length is 

extended by synapsing to other interneurons of the same class, forming interneuron ‘chains’ 

[254-257]. Additional projections include ones to the submucous plexus, connecting the two 

networks [258, 259]. Large mammals such as human and pig have a more complex and 

multilayered sub-mucous plexus compared to small laboratory animals, not surprisingly, 

submucosal interneurons can be found in the former and not the latter groups [260, 261]. 

 

1.4.5 Motor neurons  

Motor neurons innervate and control the muscle layers of the gut, including the longitudinal, 

circular and muscularis mucosae layers. Classically, they are Dogiel type I neurons with S-

type electrophysiology that receive synaptic input from interneurons and IPANs via fast and 

slow EPSPs respectively. Motor neurons are divided into excitatory and inhibitory classes 

based their effect on smooth muscle tissue.  

 

Excitatory motor neurons cause smooth muscle contraction; they contain the combination of 

choline acetyltransferase and tachykinin as immunohistochemical markers in all regions of the 

GIT, across all species examined. Other markers include enkephalin (ENK) and calretinin [10]. 

Inhibitory motor neurons cause smooth muscle relaxation; in all regions of the gut and all 

species examined, they may be consistently identified by the combination of NOS and 

vasoactive intestinal peptide (VIP).  Other markers are region and species dependent and 
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may include gastrin-releasing peptide, neurofilament protein (NFP) triplet, neuropeptide Y, 

gamma-aminobutyric acid (GABA), galanin (GAL) and somatostatin [10]. Of course, we cannot 

be certain that all of the neurochemicals identified within a class of motor neurons have 

physiological significance.  

 

In guinea pig small intestine all of the circular muscle motor neurons (CMMN) have their cell 

bodies in the myenteric plexus, where they comprise approximately 30% of the neuron 

population [262]. The axons of the myenteric CMMN form the deep muscular plexus before 

innervating the smooth muscle tissue with varicose terminals. In larger mammals, there is 

evidence that CMMN are also in the submucous plexus [137, 263]. Physiological and tracing 

experiments have shown inhibitory CMMN generally project aborally for longer distances then 

the excitatory CMMN, which tend to project in the oral direction [110, 264-269]. The majority 

of input received by CMMNs comes from pathways that project in the same direction as the 

motor neuron, with some minor exceptions [270]. This is congruent with the polarised nature 

of excitatory and inhibitory CMMN projections.  

 

The innervation of the longitudinal muscle layer is surprisingly different to that of circular 

muscle and more variable. In guinea pig small intestine LMMN comprise approximately 24% 

of the myenteric neurons, their axons branch extensively in the tertiary plexus, located 

immediately deep to the longitudinal muscle wall [271] and are mostly excitatory in nature 

(97%) with no polarisation of their projections [272]. This arrangement is very similar in guinea 

pig proximal colon [269] but not the stomach, where the inhibitory LMMN comprise 40% of the 

longitudinal muscle population and also have a distinctive aboral polarity [273]. In human small 

intestine the majority of LMMN neurons are located oral to the site of innervation [274]; in the 

colon the longitudinal muscle is supplied by excitatory motor neurons with predominantly 

ascending projections and inhibitory neurons that are not polarised [275]. 
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Vasomotor / Secretomotor neurons 

Several distinct neuronal populations innervate the mucosal epithelium and interact with the 

hormonal / inflammatory systems to control local blood flow and mucosal secretion. Up to 9 

litres of fluid is secreted into the gut lumen on a daily basis and most of this is reabsorbed 

before it reaches the distal colon [276]. It is therefore not surprising that movement of fluid and 

electrolytes across the gut epithelium is under tight regulation. It is highly likely that secretory 

and vasodilatory functions are directly linked to blood flow and motility in vivo [277, 278].   

 

Mucosal secretion is determined by membrane channels and transport proteins, which actively 

regulate the movement of electrolytes and therefore water across the gut epithelium. Chloride 

and sodium ions are the main electrolytes with bicarbonate having a more important role in 

the duodenum and colon. Neurotransmitters released by enteric motor neurons act on 

epithelial membrane receptors to activate second messengers such as cAMP and Ca2+ which 

in turn stimulate the secretion of ions (in particular Cl-) into the gut lumen [279, 280]. Water 

follows the osmotic gradient, passing through tight junctions between epithelial cells or 

aquaporin water channels [281]. The majority of enteric neurons involved in controlling 

mucosal function are found in the submucous plexus and are classified as motor (effector) 

neurons and further subdivided into cholinergic secretomotor\vasodilator neurons, cholinergic 

secretomotor (non-vasodilator) neurons and non-cholinergic secretomotor/vasodilator 

neurons [76].  

 

Cholinergic neurons that control secretion and vascular tone make up 12% of submucous 

neurons [282, 283]. They are Dogiel type I neurons with filamentous dendrites and contain 

calretinin [133, 284]. Cholinergic neurons that only project to mucosa (secretomotor / non-



51 
 

vasomotor) contain NPY as a marker and contribute 33% and 1% to the submucous and 

myenteric neuronal populations respectively [133, 282, 285].  

Non-cholinergic secretomotor / vasodilator neurons make up 43% of submucosal neurons and 

1% of myenteric neurons [282, 286]. They colocalise VIP as a marker, and are the only group 

of neurons in the submucous plexus that receive inhibitory postsynaptic potentials in addition 

to excitatory signals [287]. 

 

Secretory and vasodilatory reflexes may be activated by mechanical and chemical stimulation 

of the mucosa even when the myenteric plexus is surgically removed and extrinsic nerves 

ablated [288-290], suggesting that the submucous plexus contains all of the essential 

elements for this reflex. Vasodilatory reflexes may also be activated by myenteric neurons, 

whose projections can travel for several centimetres before stimulating motor neurons within 

the submucous plexus [291, 292]. Therefore, it is likely that the myenteric plexus input extends 

the length of gut over which reflexes occur and possibly coordinates mucosal function with 

motility patterns. There is sound evidence that extrinsic capsaicin-sensitive (sensory) afferents 

can stimulate mucosal secretion and vasodilatation by activating submucosal motor neurons 

[293, 294], however the exact mechanism of endogenous activation and circuit details are still 

to be determined.  

 

1.4.6 Enteric glial cells 

The ENS contains a large and very diverse population of glial cells; they are found in all layers 

of the gut wall and are closely associated with enteric neuronal structures. They outnumber 

enteric neurons as much as 7 to 1 [295], although this ratio is different between the myenteric 

and submucosal plexus as well as between species [296]. Although they are non-neuronal 

cells, found in the central as well as peripheral nervous system, a multitude of important 

functions within the ENS has recently been attributed to them, so they are worth mentioning 
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in this review. The greatest challenge to the study of enteric glial physiology has been the 

difficulty in selective manipulation of glial cells in an intact ENS and their functional sensitivity 

to being isolated, such as in cell culture for example. Recent developments in molecular 

biology and calcium imaging technology have advanced this field considerably. A growing 

body of data suggests the possibility of glial cells not only supporting the metabolic health of 

enteric neurons, but also taking part in enteric neuronal circuit activity. This has certainly 

added another layer of complexity to our attempts at understanding the physiology of the ENS. 

 

Enteric glial cells can be divided into at least four distinct morphological groups in the mouse 

[295, 297]. They express several markers including Sox-10, GFAP and S100β, which are not 

specific for any of the distinct morphological groups and may be absent in the majority of glial 

cells outside of myenteric ganglia [297]. Furthermore, expression of these markers appears to 

be dynamic and significant phenotypic plasticity occurs with changes in their environment 

[297] and states of inflammation [298]. This is highlighted by experiments that show enteric 

glia can form enteric neurons in culture [299], they can also take on the function of astrocytes 

and oligodendrocytes when transplanted into the CNS [300, 301]. 

 

The exact role of enteric glia in gut function is still unknown. Enteric glia express receptors for, 

and respond to, all the major classes of neurotransmitters found in the ENS [302, 303].  They 

synthesise and release neurotransmitters such as purines and NO, inflammatory cytokines 

and several other factors [295, 304, 305] and they receive input from extrinsic neural 

pathways, such as the TH containing sympathetic fibres in guinea pig distal colon [306]. They 

are excitable cells, becoming active during specific neural patterns such as colonic migrating 

motor complexes in mouse colon [307]. The significance of such glial activation is not known, 

however recent experiments using chemogenetic mice have shown that selective activation 

of glial Ca2+ signalling is capable of causing neurogenic contractions in ileum and colon, with 
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no effect on neurogenic relaxation [308]. Furthermore, the propagation of Ca2+ signalling 

through the glial myenteric network depends on the activity of the connexin-43 hemichannel. 

Selective ablation of this protein causes constipation in the live mouse and impairment of 

colonic excitatory and inhibitory neuromuscular transmission in ex-vivo experiments [309].  

 

Enteric glia may also influence non-neuronal cells within the gut; they are very closely 

associated with entero-endocrine cells [310] and glia-derived ATP could potentially signal 

surrounding interstitial cells or even smooth muscle cells directly [311]. Submucosal glia 

develop after birth and require the presence of gut bacteria in order to populate the lamina 

propria [312], which suggests an important interaction with gut microbiota. Selective activation 

of glia stimulates mucosal secretion while inhibiting glial function reduces secretion [313], 

implying a role in regulation of mucosal secretomotor function. Enteric glial cells also 

contribute to mucosal host defence by interacting with innate mucosal lymphoid cells and 

stimulating their immune response with neurotrophic factor signals [314]. 

 

Colonic transit slows down significantly with advanced age in humans, rats and mice [309, 

315, 316]. Quite interestingly, ageing in mice is associated with reduced glial responsiveness 

to stimulation and dysregulated connexin-43 expression [309], suggesting the possibility of 

glial dysfunction playing a part in age-related colonic motility problems. Other pathological 

states where glial dysfunction is thought to be a causative or contributing factor include slow-

transit constipation, postoperative ileus and chronic intestinal pseudo-obstruction [317-319]. 

 

Current data suggest that enteric glial cells are more than just an inert support structure for 

nerve cells, they potentially have roles in a wide spectrum of gut functions including motility, 

mucosal secretion and host defence. It is clear that a lot more research is needed to expand 

our understanding of enteric glial physiology.  
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1.5 Functional aspects of the gastrointestinal tract 

Gut functions, such as motility, require coordination of cellular activity across a large number 

of cell types, within and outside the gut wall. Distinct cell populations contribute to the makeup 

of multiple tissue types, which in turn form the hollow organ. The structural complexity of this 

organ, combined with the overlapping expression of many signalling molecules, makes it very 

challenging at times to determine the contribution of individual cell types to a function of 

interest. Not surprisingly, there is still vigorous debate on the exact role of many cell classes 

across the GIT. 

 

The gut has digestive, secretory, immune and endocrine functions. Ingested food and water 

are sequentially processed along the length of the tract. Mechanical and chemical digestion 

releases substances, which are absorbed, assimilated and used for growth and function of the 

animal. At the same time, unusable or harmful metabolic by-products are secreted and 

eliminated.  Accessory organs including salivary glands, pancreas, liver, gallbladder and bile 

ducts closely associate with the GIT along its length to aid these functions.  

 

The gut hosts the largest population of immune cells in the body. The various cell types are 

diffusely scattered close to the mucosal surface but also form specialised aggregations such 

as Peyer’s patches in the terminal ileum or Waldeyer’s ring in the oropharynx [320]. The 

immune system of the host animal relies on the lining of the intestine, both cellular and 

secretory, to control its exposure to antigens. It needs to strike a very delicate balance 

between tolerating the resident microbiome and mounting an offensive against invasive 

pathogens. Crohn’s disease is a good example of what happens when this system fails, 

resulting in autoimmune inflammation, likely caused by an abnormal reaction of gut immune 

cells to harmless microbiota [321]. 
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The gut is also the largest endocrine organ in the body. Enteroendocrine cells in luminal 

epithelium synthesise at least 20 different hormones with local and systemic effects. These 

hormones play a vital part in influencing the feeding behaviour of an animal, they regulate 

energy metabolism, likely modulate some motility patterns and control local secretion of 

digestive enzymes [322]. 

 

1.5.1 Muscular apparatus  

Digestion of food requires grinding, mixing and propulsion along the GI tract, at the optimal 

rate and in the correct direction.  The muscle of the gut provides the mechanical forces these 

motor patterns require for propulsion to take place. With the exception of proximal 

oesophagus, where striated muscle provides a degree of voluntary control, smooth muscle 

cells are the sole contractile element in the gut wall. Highly coordinated episodes of contraction 

and relaxation in the circular and longitudinal muscle layers underlie the required motility 

patterns. Smooth muscle also facilitates the function of multiple sphincters along the 

gastrointestinal tract. The lower oesophageal sphincter, the pylorus, the ileo-caecal valve and 

the internal anal sphincter function to control the rate and direction of movement of luminal 

contents. The heapato-pancreato-biliary system contains smooth muscle that controls storage 

and release of digestive substances into the duodenum.  

 

The longitudinal muscle layer is distributed evenly around the circumference of the gut tube. 

However, in the colon of certain larger mammals, this layer condenses to form several 

longitudinal bands known as taenia coli.  This pattern is quite easy to appreciate in the human 

colon for example. Contraction of the longitudinal muscle layer causes a shortening of the gut 

tube, a direct result of the orientation of muscle cells in this layer. In comparison, the circular 

muscle layer is thicker and causes a localised circumferential constriction of gut lumen when 

it contracts.  
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Excitation-contraction coupling 

Smooth muscle cells of the gut are ‘excitable’ and therefore, like other cells of this kind, have 

a resting electrical potential across their cell membrane. The activity of Ion pumps located in 

the cell membrane creates a significant concentration gradient, such that there are greater 

amounts of cations (mainly Na+ and Ca2+) outside the cell compared to inside, resulting in a 

negative electrical potential across the membrane.  An influx of positive charges causes this 

membrane potential to diminish or even reverse in polarity, a phenomenon known as 

membrane depolarisation. Depolarisation of smooth muscle membrane past a ‘threshold 

potential’ is the physiological trigger for smooth muscle contraction [323].  

 

The contraction of a smooth muscle cell is due to the interaction of structural proteins actin 

and myosin, generating force by either changing the length of the cell in its long axis (isotonic 

contraction) or increasing tension without a change in length (isometric contraction). An 

increase in the cytoplasmic calcium concentration activates a biochemical pathway allowing 

actin and myosin to interact, with the net effect of converting stored chemical energy in the 

form of ATP into mechanical energy.  

 

Depolarisation activates voltage dependent calcium channels in smooth muscle membrane 

and the resultant Ca influx down its concentration gradient causes an increase in cytoplasmic 

calcium concentration and muscle contraction. To a lesser extent, release of calcium from 

intracellular (sarcoplasmic reticulum) stores can contribute to cytoplasmic calcium 

concentration increases. This mechanism depends on activation of IP3 receptors on 

sarcoplasmic reticulum membrane [324].  

 

1.5.2 Interstitial cells of Cajal and generation of slow waves 
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Smooth muscle of the gut is a complex tissue. Apart from smooth muscle cells (SMC), it also 

contains other cell types, known as interstitial cells. Each cell type displays intrinsic 

electrophysiological properties and expresses a combination of receptors for 

neurotransmitters, inflammatory mediators, hormones and paracrine agents. Interstitial cells 

of Cajal (ICC) and Platelet-derived growth factor receptor-α positive (PDGFRα+) cells are 

electrically coupled to SMCs and to each other, via gap junctions, forming a functional 

syncytium [325, 326].  This allows interstitial cells to modulate SMC excitability, which is 

therefore dependent on a complex interplay between intrinsic mechanisms across several cell 

types and extrinsic signals.  

 

Smooth muscle of the gut displays an intrinsic rhythmicity, undergoing a cyclical oscillation of 

membrane potential. Commonly known as ‘slow waves’, this phenomenon was first reported 

in cat intestine [327] and likely underlies the phasic contractile behaviour quite commonly seen 

across the GIT. Recorded in the stomach, small intestine and colon of several species, 

including human, slow waves differ in frequency as well as morphology between species and 

between regions of gut [328]. They do not require the activity of the nervous system, hormones 

or paracrine agents. In fact, they can persist for days in isolated smooth muscle tissue kept in 

organotypic culture [329] [330].  

 

Interstitial cells of Cajal (ICC) account for less than 10% of cells within smooth muscle tissue 

[331]. There are several types of ICC, based on their location within the layers of the gut. The 

myenteric ICC appear to be the source of slow waves, which regenerate from cell to cell and 

drive the oscillation of membrane potential in smooth muscle [332-334]. First described by 

Cajal in 1893 [335], their function was only more recently elucidated when looking at the role 

of the tyrosine kinase Kit receptor in mice. This protein was shown to be expressed in smooth 

muscle of developing mouse gut; blocking its function in normal young mice using a 
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monoclonal antibody resulted in abnormalities of gut motility and c-Kit gene mutation mice 

lacking the gene product developed a lethal paralytic ileus [336].  Mice lacking the c-kit tyrosine 

kinase activity also lacked any slow waves on recordings from intestinal muscle strips, which 

were present in wild type animals [333, 337]. 

 

Since the probability of smooth muscle contracting increases with membrane depolarisation 

and decreases with membrane repolarisation, slow waves effectively modulate smooth 

muscle excitability in a cyclical pattern and may drive phasic contractile activity. Slow waves 

can generate depolarisations large enough to cause muscle contraction, however in most 

cases other excitatory (depolarising) signals are required to depolarise the membrane 

potential past that threshold [338, 339].  

 

The frequency of slow waves varies across GIT regions, an adaptation that is likely function-

specific. In mouse internal anal sphincter, where resting tone is significant, slow wave 

frequency is quite high (about 70 cycles per minute, cpm), this initiates phasic contractions 

which summate to produce anal tone [340]. Mouse small intestine and proximal colon has 

slow waves at about 45 cpm and 15cpm, respectively [341, 342]. This variation reflects the 

maximum frequency of contractile activity likely to be seen within these regions. Interestingly, 

it appears that ICC are mechanosensitive and can alter the frequency of  their slow wave in 

response to stretch [343]. 

 

Evidence suggests that a segment of gut may receive simultaneous input from more than one 

pacemaker system. In the rat colon for example, there are two distinct, superimposed patterns 

of cyclical activity in circular muscle, which originate in the myenteric and submucosal ICC 

networks independently [344]. There is evidence for a similar arrangement in dog and human 

colon, where it is possible to record the typical slow waves from circular muscle adjacent to 
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the submucous ICC network and a higher frequency pacemaker potential in circular muscle 

close to the myenteric ICC network [345, 346]. Very similar recordings have been obtained in 

pig colon when recording from circular and longitudinal muscle [347]. 

 

Our understanding of ICC physiology is still quite limited.  There are numerous membrane 

channels and receptors (including neurotransmitter receptors) expressed by ICC, all of which 

potentially modulate their function; the presence of serotonin receptors for example hints at 

the possibility of a brain-gut connection. Further research could potentially uncover novel 

therapeutic targets that may extend beyond gut motility disorders and include other organs 

that have ICC-like cells with pacemaker roles, such as the uterus [348] or urinary tract [349].  

 

Role of Interstitial cells in the neural control of smooth muscle  

The mechanisms by which motor neurons control the smooth muscle of the gut are still not 

fully understood. The traditional model is that motor neurons release neurotransmitters, which 

act directly on smooth muscle cell receptors to cause either a contraction or an active 

relaxation (direct neurotransmission). This has recently been challenged by the idea that 

neurotransmitters act on interstitial cells to cause changes in their activity which in turn are 

passed on to electrically coupled smooth muscle cells (indirect neurotransmission).  

 

Ultrastructural studies have demonstrated close contact between enteric nerve terminals and 

intramuscular ICCs in the stomach [350-352], colon [353] and deep muscular plexus ICCs of 

the small intestine [354-356]. Organised junctions with pre and post junctional synapse-

associated proteins have been described between ICCs and motor neuron varicosities in the 

mouse stomach [357]. The same type of connectivity does occur between enteric nerve 

terminals and smooth muscle cells [352, 358], however this seems to occur with a lower 
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frequency [351, 359]. All thee cell types that make up gut smooth muscle tissue express 

receptors specific to neurotransmitters released by motor neuron projections [356, 360, 361]. 

They also express membrane channels and components of intracellular messenger systems 

that mediate post-junctional responses to these signalling molecules [362, 363]. 

 

Functional experiments suggest that ICC appear to transduce signals from enteric neurons, 

although the concept is still not without controversy [364, 365]. Excitatory cholinergic and 

inhibitory nitrergic responses in smooth muscle can be elicited in mouse intestine only after 

the development and maturation of ICC-DMP; blocking Kit receptors causes a loss of ICC and 

a loss of excitatory and inhibitory responses [366]. Mutant mice lacking ICC-IM in the stomach 

had reduced or absent smooth muscle responses to cholinergic and nitrergic 

neurotransmission [350, 367, 368].  

 

Klein et al genetically engineered mice with an inducible knock-in Cre allele at the c-KIT locus, 

allowing them to target ICC in adult mice and perform loss of function experiments [369]. They 

demonstrated what had previously been reported only in germline mutant c-KIT mice and 

using monoclonal antibodies; acute depletion of ICC causes significant increases in GIT transit 

times and smooth muscle with depleted ICC lacks slow wave activity. Furthermore, excitatory 

junction potentials (and muscle contraction) could not be induced in ICC-depleted circular 

muscle of the colon and small bowel using electrical field stimulation, suggesting that ICC 

mediate excitatory signals from motor neurons. The effects of signals from inhibitory enteric 

neurons on ICC-depleted bowel were more difficult to interpret, ICC depletion had no effect 

on inhibitory junction potentials (IJP) but disrupting the intracellular Nitric Oxide (NO) signalling 

pathway (by deleting the Prkg1 gene) within ICC, abolished the NO-dependent slow 

component of the IJP (sIJP). 
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Dynamic intracellular Ca2+ changes (calcium transients), due to release of Ca2+ from 

intracellular stores, seem to play an important role in generating electrical activity patterns 

within ICC [370-373]. The increase in intracellular Ca2+ in turn activates Ca2+ sensitive 

membrane Cl- channels coded by Ano 1, which has an identical distribution to c-KIT along the 

GIT and is strongly expressed in ICC [370, 374].  

 

Baker et al used high-resolution imaging of calcium transients within ICC-DM of mouse 

intestine with ICC-specific expression of a genetically encoded fluorescent calcium marker 

(GCaMP3). Using electrical stimulation, pharmacological stimulation and inhibition, they 

demonstrated significant effects to Ca signalling within the ICC-DM in response to excitatory 

(NK1 and Muscarinic dependent) and inhibitory (NO and VIP) neurotransmission [375] [376], 

strengthening the argument for ICC as transducers of motor neurotransmission.  

 

PDGFRα+ cells are found within the muscular layers of the gut, very closely intertwined with 

ICC to form part of the smooth muscle tissue [377]. They express P2Y1 (Purine) receptors 

and small-conductance Ca2+– activated K+ channels (SK3 channels) in high concentrations 

[378]. Exogenous ATP and P2Y1 agonists cause a significant hyperpolarisation of PDGFR α+ 

cells, which are partially blocked by P2Y1 antagonists [379]. Purinergic neurotransmission 

causes fast inhibitory junction potentials and inhibition of smooth muscle contractions in the 

gut [41, 380]; increasing amount of data suggests that PDGFR α+ cells are mainly responsible 

for this response [381, 382]. Activation of α1 adrenoceptors on PDGFRα+ cells in the mouse 

colon causes a SK-current-mediated hyperpolarisation of PDGFRα+ cells and inhibition of 

contractile activity [383]. This suggests PDGFRα+ cells may also be important effectors of 

sympathetic neural regulation of colonic motility.  
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It is likely that physiological smooth muscle responses come about through a complex 

interaction of motor and extrinsic autonomic neurons and the three types of cells that make 

up smooth muscle tissue. The exact contribution from each cell type is still to be resolved.  

 

1.5.3 Extrinsic neural modulation of gut function 

The autonomic system exerts neural and hormonal influence over body systems in order to 

maintain homeostasis. The sympathetic and parasympathetic divisions have distinct central 

and peripheral pathways and generally have antagonistic effects on dually innervated tissue, 

including the GIT. The stomach and oesophagus in particular rely heavily on extrinsic neural 

inputs for their proper function compared to the rest of the GIT, where the ENS displays a 

higher degree of independent neural control [75, 384]. 

 

1.5.4 Sympathetic nervous system 

The sympathetic nervous system (SNS) has wide-ranging effects on the body, from simple 

spinal reflexes to very complex affective responses.  

 

Sympathetic preganglionic neurons (SPNs) 

SPNs originate within the thoracolumbar spinal cord (C8 to L4 in guinea pig). Most SPN cell 

bodies are located in the intermediolateral column of the lateral horn, in clusters within several 

autonomic nuclei [385, 386]. They supply para- and prevertebral sympathetic ganglia where 

they synapse with sympathetic postganglionic neurons. A subpopulation of SPNs project 

directly to the adrenal gland where they control the release of catecholamines by chromaffin 

cells [387]. 
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SPNs receive direct synaptic input from supraspinal and intraspinal neurons but not sensory 

(DRG) neurons. Supraspinal input comes from five main regions of the brain, namely the 

rostral ventrolateral and ventromedial medulla, the caudal raphe nuclei, paraventricular 

hypothalamus nucleus and the region containing the A5 noradrenergic neurons [388, 389]. In 

addition to descending signals, SPNs also receive input from spinal interneurons, which are 

active even when descending pathways have been interrupted [390, 391].  

 

There is evidence for several neurotransmitters being involved in transmission to SPNs. 

Glutamate causes fast excitatory post synaptic potentials (fEPSPs) while GABA and glycine 

both cause fast inhibitory post synaptic potentials (fIPSPs) [392, 393]. Exogenous 

catecholamines cause excitation and inhibition acting on α1 and α2 receptors, respectively 

[394], while serotonin is excitatory [395, 396]. There is a veritable palette of neuropeptides 

located in the region of spine where SPN have their cell bodies, the ones that have been 

tested have an excitatory effect on SPN (for a review, see [397]). 

 

Multiple functional classes of SPNs exist, always associated with postganglionic neurons that 

receive their synaptic output and innervate target tissue. Examples of these functional classes 

include but are not limited to sudomotor, pilomotor, inspiratory, vasodilators, vasoconstrictors 

and motility-regulators; some of these functional classes can be identified by a unique 

combination of neurochemicals, which tends to be region and species specific [398-402]. 

 

Sympathetic postganglionic neurons  

Sympathetic postganglionic cell bodies locate to sympathetic pre- and paravertebral ganglia, 

receive synaptic input mostly from SPN and project as the ‘final motor neurons’ to organs 

throughout the body. Paravertebral ganglia are paired structures, seen on either side of the 
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spinal cord, forming a ‘sympathetic chain’ from the cervical to the lumbar region. Prevertebral 

ganglia associate with the three major ventral branches of the abdominal aorta and share the 

same terminology: coeliac, superior mesenteric and inferior mesenteric [403].  

 

Within sympathetic ganglia, neurotransmission from SPNs to sympathetic postganglionic 

neurons is mediated by ACh acting on nicotinic receptors [404]. There is a sub-population of 

SPNs that also contain NOS, and are the likely source of nitrergic neurotransmission within 

sympathetic ganglia, and the adrenal medulla [405]. Numerous other substances that may 

have a role in neurotransmission have been identified in subpopulations of SPN including, 

GABA, ENK, corticotropin-releasing factor (CRF), somatostatin, substance P and VIP [406-

408]. 

 

Prevertebral sympathetic ganglia receive preganglionic input from the spine via thoracic and 

lumbar splanchnic nerves; the hypogastric nerve has preganglionic neuronal projections that 

supply the pelvic plexus. Paravertebral sympathetic ganglia receive preganglionic input from 

SPN that project out of the spine through the ventral roots and white rami of spinal nerves 

[403]. Apart from preganglionic input, certain populations of postganglionic sympathetic 

neurons in the prevertebral ganglia also receive synaptic input from viscerofugal neurons 

(VFN) and collaterals of spinal sensory neurons. VFNs located in stomach through to rectum 

have been shown to project to sympathetic postganglionic neurons in the coeliac ganglion 

[409]; the superior and inferior mesenteric ganglia receive VFN projections from distal colon 

and rectum [410].  

 

Nearly 100% of sympathetic fibres in guinea pig small intestine and stomach contain TH and 

β-Hydroxylase (markers of noradrenaline synthesis) [411], this is reflected by the dominance 

of noradrenergic neurons in mouse and guinea pig prevertebral ganglia [412, 413] and 
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supports the notion that noradrenaline is the main neurotransmitter used by sympathetic 

postganglionic neurons in the periphery.  

 

Sympathetic terminals within the gut 

Retrograde tracing studies in guinea pig suggest that the majority of the sympathetic supply 

to the GIT comes from prevertebral ganglia, with a smaller contribution from the paravertebral 

chain [414]. This is not consistent throughout the length of the gut as there is a large increase 

in concentration of paravertebral fibres in the distal gut; in the rectum and internal anal 

sphincter there may be more paravertebral than prevertebral sympathetic fibres [415, 416]. 

 

The output is organotopically arranged; foregut structures receive input mostly from the coeliac 

ganglion and hindgut structures are favoured by projections from more caudally located 

ganglia. Similarly, within a ganglion, there is a topography evident along the coronal plane 

[414]. This arrangement is logical, nerve fibres from the three prevertebral ganglia tend to 

travel with arteries of the same name, which in turn supply the GIT in a segmental fashion. 

Tracing studies in the rat and guinea pig reveal that the most distal part of the colon receives 

a significant sympathetic supply (up to one-third) from postganglionic sympathetic nerves 

located in the pelvic ganglia [417, 418]. 

 

Anterograde tracing from mesenteric nerve trunks shows that the myenteric plexus of the gut 

receives a very dense sympathetic innervation, with a high concentration of varicose fibres 

and many pericellular baskets evident [419]. There is also innervation of smooth muscle, 

including that of sphincters and blood vessels, as well as mucosa [420-423]. 

 

Regulation of gut motility  
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The sympathetic nervous system is capable of highly selective regulation of its output. For 

example, stimulating a known afferent pathway can elicit both excitation and inhibition of 

sympathetic effects [424, 425]. There are separate sympathetic pathways, functionally defined 

by their target cells, each with a unique discharge pattern that is appropriate for a given 

stimulus [389, 426]. Not surprisingly, separate populations of sympathetic neurons control 

motility, blood flow and mucosal secretion in the gut.  

 

Experimental sympathetic nerve stimulation inhibits ascending and descending cholinergic 

interneurons in the colon, and causes relaxation of smooth muscle [427]. The likely 

mechanism involves sympathetic nerve terminals releasing noradrenaline, which inhibits 

excitatory neurotransmission in the myenteric plexus, via presynaptic α2 receptor dependent 

suppression of ACh release [428, 429]. 

 

Reflex pathways that activate sympathetic gut projections include a class of motility-regulating 

sympathetic preganglionic nerves. There may be at least two different populations, based on 

different responses to bladder and colonic stimulation [430], they do not require supraspinal 

inputs to function [430] and are likely to be controlled exclusively by visceral reflex circuits 

under normal physiological conditions [431]. Recordings from motility-regulating 

postganglionic sympathetic neurons indicate that the majority can be divided into the same 

functional groups, and have the same proportions, as the preganglionic neurons projecting to 

their ganglia [432]. This suggests that within this circuit, central patterns are transmitted to 

target organs without significant modulation along the way.  

 

Regulation of gastrointestinal blood flow 
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Arteries, and to a lesser extent veins in the mesentery and bowel wall are densely innervated 

by vasoconstrictor sympathetic neurons that come from prevertebral and paravertebral 

ganglia [420]. Contraction of vascular smooth muscle causes a decrease in vascular diameter, 

increasing the resistance to blood flow and the intraluminal blood pressure. Vascular smooth 

muscle contraction in the gut caused by activation of sympathetic fibres is mediated by both 

α1 and P2X receptors, the relative contribution of each seems to be dependent on stimulus 

characteristics [433, 434]. A significant proportion of NPY-containing postganglionic neurons 

in the paravertebral ganglia function as vasoconstrictors to the mesenteric and submucosal 

circulation, likely mediating changes to intravascular volume (and thereby systemic blood 

pressure) by changing the amount of blood in the visceral circulation [420, 435, 436]. 

 

Regulation of secretory function 

Although mucosal secretion is mainly controlled by neurons within the submucosal plexus, 

there is evidence that sympathetic input to submucous secretomotor neurons may indirectly 

inhibit it. Presynaptic inhibition and inhibitory postsynaptic potentials in submucous neurons 

are caused by sympathetic neurons releasing noradrenaline and somatostatin, which act on 

SST and α2 receptors [437-439]. Furthermore, this may be part of a reflex pathway involving 

the viscerofugal neurons providing direct input to postganglionic sympathetic neurons [440]. 

 

1.5.5 Parasympathetic nervous system 

The parasympathetic nervous system contributes to the regulation of viscera, generally 

opposing the effects of sympathetic activation. Peripheral parasympathetic pathways come 

from two distinct regions. Neurons that innervate the head, chest and upper abdomen are part 

of the cranial nerve pathway, with the Vagus nerve providing the majority of parasympathetic 

input to the gut. The pelvis (including the distal GIT) is innervated by parasympathetic neurons 

that come from the sacral spinal cord. Afferent Vagal pathways, receptors and central nuclei 
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have already been discussed earlier in this thesis (under the section of ‘Extrinsic sensory 

neurons’); they will not be considered again.  

 

Although similar in functional arrangement to the SNS, capable of selective activation of 

independent circuits in response to stimuli, there are some basic differences in anatomical 

considerations. Unlike in the SNS, the parasympathetic preganglionic neurons synapse onto 

postganglionic neurons in ganglia that are very close to or even within the target organs. In 

the gut, all enteric neurons and interstitial cells of Cajal that receive vagal innervation are in 

effect ‘postganglionic’ parasympathetic neurons. The two systems also differ in the 

neurotransmitters used.  

 

Vagal efferent innervation of the GIT 

The vagus nerve contains functionally mixed populations of parasympathetic preganglionic 

nerves in addition to its afferent fibres.  Vagal preganglionic efferent fibres that project to the 

gut come from two regions within the medulla, namely the nucleus ambiguus and the dorsal 

motor nucleus of the vagus (DMNX). The pharynx and larynx are innervated by preganglionic 

fibres from the nucleus ambiguus, the stomach small intestine and proximal colon by neurons 

from the DMNX [168, 441, 442]. The source of innervation for the oesophagus varies between 

the two nuclei, in the species examined, due to differing composition of muscle (smooth v 

striated) making up the organ between species [443].  

 

Preganglionic myenteric innervation does not appear to be specific for any enteric neuronal 

classes but is rather extensive, particularly in the stomach, duodenum and caecum [168, 444, 

445]. Vagal effects therefore depend on the type of (postganglionic) enteric neuron being 
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stimulated at any one time and the same preganglionic vagal projections are capable of 

opposing effects in target tissue.  

 

The DMNX is a paired nucleus in the medulla. Vagal parasympathetic neurons within the 

DMNX are organised in rostro-caudally oriented columns which innervate the gut through five 

subdiaphragmatic vagal branches, namely anterior and posterior gastric, hepatic, coeliac and 

accessory coeliac [446]. They are also arranged viscerotopically, the medial and lateral groups 

of cells projecting to proximal and distal regions of the GIT, respectively [443, 446]. This level 

of organisation is not maintained in the periphery; the stomach for example is innervated by 

both gastric branches and the hepatic vagal branch, the duodenum gets supplied by all of the 

branches and the colon is dependent on the coeliac and accessory coeliac branches [168, 

442, 447]. 

 

 The vast majority (>95%) of preganglionic vagal efferents are cholinergic [448], and release 

ACh onto nicotinic receptors found on postganglionic neurons of target tissue [443]. Although 

NO and catecholamine neurotransmitters are present in sub-populations of vagal 

preganglionic neurons [449, 450], the application of nicotinic receptor antagonists terminates 

vagal neurotransmission [451], suggesting a modulatory function for non-cholinergic 

substances neurotransmitters.  

 

Vagal motor control of the gut 

Coordinating the motility of the oropharynx and proximal oesophagus during swallowing is an 

important role of vagal pathways. Motor neurons involved in this function, are located in the 

nucleus ambiguus (NA), more specifically, vagal motor neurons that control all of the striated 

muscle of the pharynx and oesophagus locate to the rostral part of the NA called the nucleus 



70 
 

retrofacialis  [452]. Experimental stimulation of oesophageal vagal motor neurons causes 

generalized contractions of striated muscle [453]. The coordinated motility pattern that creates 

peristalsis requires input from ‘swallowing neurons’ located in the nucleus tractus solitarius; 

they display a highly organised firing pattern which is transmitted to the vagal motor neurons 

and ultimately results in coordinated waves of striated muscle contractions in the oesophagus 

[452]. Once the food bolus passes into the smooth muscle portion of the oesophagus, reflex 

peristalsis is mediated by vagal preganglionic neurons located in the DMNX [452]. 

 

Vagal efferents provide parallel inhibitory and excitatory stimuli to smooth muscle of gut. 

Activating vagal efferent fibres can cause both contraction and relaxation of gastric smooth 

muscle [454-457] and acute vagotomy causes both an increase in tone in the fundus of 

stomach and a decrease in motility in its antrum [458]. It stands to reason that both inhibitory 

and excitatory mediators have to be released by postganglionic enteric neurons for that to 

occur. There is evidence that the excitatory pathway is mediated by ACh acting on muscarinic 

receptors and the inhibitory pathway likely depends on NO and/or VIP neurotransmission [458-

461]. Furthermore, there appears to be tonic activity within the excitatory cholinergic pathway 

and neurally mediated relaxation of the stomach can happen by either inhibiting that tonic 

activity or activating the inhibitory pathway (reviewed in [462]). Vagal efferent input also plays 

a part in gastric acid secretion, particularly in the cephalic phase of food ingestion, once the 

food bolus enters the stomach however, both vagal and spinal reflex pathways as well as 

mucosal receptors regulate acid secretion (reviewed in [463]).  

 

Vagal efferents are also involved in: controlling the tone of the lower oesophageal sphincter, 

pylorus and ileo-caecal valve [464-466], receptive relaxation of stomach [458] and modulation 

of contractile patterns in distal stomach, small bowel and proximal colon [467-469]. The 

extrahepatic biliary system, including the gallbladder and sphincter of Oddi, receive a dense 
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supply of vagal efferents that arise from the DMNX [470]. The functional significance is not 

fully understood, there is conflicting data from several studies (reviewed in [452]), however a 

excitatory role in bile evacuation seems likely. 

 

Sacral parasympathetic innervation of distal gut  

The majority of cholinergic parasympathetic projections to the distal colon, rectum, bladder 

and reproductive organs come from preganglionic neurons whose cell bodies locate to the 

sacral spinal cord (S1-S4 levels) [183]. Sacral preganglionic projections can take either of two 

pathways to the gut; they can either project directly to the bowel wall itself or alternatively, 

synapse with postganglionic neurons in pelvic ganglia (hypogastric / pelvic plexus). 

Postganglionic neurons from the pelvic ganglia then travel in rectal nerves to the distal colon 

and rectum to innervate enteric neurons [471-473]. Within the rectum, the myenteric plexus is 

most densely supplied by parasympathetic fibres, with the submucosal plexus and smooth 

muscle layers receiving a less-dense innervation [241]. One functional study showed that 50% 

of myenteric neurons in guinea pig rectum receive parasympathetic pelvic nerve input and 

most of them have ascending projections  [474]. Nicotinic receptor blockade abolished fast 

EPSPs, however approximately 14% of neurons continued to receive slow EPSPs, suggesting 

non-cholinergic transmission plays a minor role in this pathway [474]. A population of 

preganglionic parasympathetic enkephalinergic (ENK) neurons has also been reported in the 

sacral spinal cord of rat and cat [475, 476]. Although there is currently no data on their 

functional significance, opioids have been shown to modulate ACh release from preganglionic 

sympathetic neurons that project to the colon [477], raising the possibility of enkephalins 

modulating cholinergic transmission in that system.  

 

Pelvic ganglia are complex and variable structures, containing approximately equal 

proportions of parasympathetic and sympathetic neuronal cell bodies [478, 479]. Interestingly, 
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based on immunohistochemical studies, a proportion of postganglionic neurons within pelvic 

ganglia, including the neurons that project to the gut, receive both sympathetic and 

parasympathetic input [478]. Apart from the preganglionic parasympathetic input, pelvic 

ganglia also receive a minor contribution from viscerofugal neurons of the distal colon and 

rectum [480, 481]. There is no data on the function of this input, however this circuit would be 

well suited for mediating inhibitory colo-colonic or perhaps excitatory recto-colonic reflexes 

[482, 483]. 

 

Electrical stimulation of pelvic nerves evokes significant contractions from mid colon to rectum 

[484]. Transection of pelvic nerves in rats causes an acute disruption in the parasympathetic 

preganglionic input to the pelvic ganglia and results in decreased rectal motility and increased 

colonic transit time [485]. Surgical interruption of rectal branches from the pelvic plexus in a 

canine model results in disruption of the defecation reflex, loose stools and increased colonic 

transit [486]. Based on such studies it appears that sacral parasympathetic pathways 

modulate distal colorectal motility and play an important part in the process of defecation. 

 

Aims of this PhD project 

Over the last few decades, the guinea pig has been our animal of choice for studying the 

structure and function of the ENS. Guinea pig ileum in particular has been extensively studied 

and provided us with many insights [77], although a significant amount of data on gut motility 

has come from in vitro experiments on the colon [487-490]. Currently there are up to 13 distinct 

groups of myenteric neurons within the guinea pig colon containing the same neurochemical 

markers as found in the ileum, but in different combinations for each functional class [10, 105, 

491, 492]. 
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Identification of distinct circuits within the ENS is quite challenging, mainly because axons, 

varicosities and cell bodies are densely packed into myenteric ganglia making it hard to follow 

specific connections. Several studies have used techniques such as electron microscopy, 

high-resolution laser scanning confocal microscopy and immunohistochemistry to analyse 

structure and connectivity within the ENS. These studies have described inhibitory 

interneurons with axo-somatic connections to like cells, forming descending ‘chains’ of 

neurons from the same functional group [257]. In the same fashion, ascending calretinin-

containing interneurons have also been described [254] and intrinsic primary afferent neurons 

were shown to provide input to interneurons and inhibitory motor neurons, forming mono- and 

poly-synaptic reflex arcs [493-496]. An interesting feature of some of these circuits were dense 

pericellular varicose ‘baskets’, surrounding a neuron or a group of neurons, visible at light 

microscopy level and containing synaptic connections when examined using scanning 

electron microscopy [495, 497], likely representing a functional connection.  

 

Calbindin is a calcium binding protein that is a good marker of intrinsic primary afferent 

neurons in the guinea pig ileum [107, 498] but is not as specific in the colon [10]. Calbindin-

immunoreactive dogiel type II neurons in the colon share enough properties with their small 

bowel counterparts to assume that they have the same sensory function [121, 125, 499-501] 

and they have previously been noted to contribute to calbindin varicose baskets in the 

myenteric plexus of guinea pig ileum and stomach [104, 502]. In the first part of the project, 

using immunohistochemistry and high resolution confocal microscopy, we wanted to expand 

on this finding and determine if calbindin baskets in the guinea pig distal colon associate with 

any specific group of myenteric neurons. If this was the case, we could further our knowledge 

of the connectivity within the distal colon, in particular circuits involving intrinsic sensory 

neurons. As it turned out, we discovered evidence for a novel circuit, involving putative IPANs 

that formed calbindin baskets clustered around calretinin neurons and based on examination 
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of varicosities within the calbindin baskets and circular muscle, we proposed that colonic 

IPANs form monosynaptic reflex arcs with excitatory motor neurons and interneurons [503].  

 

In the second part of the project we set out to further this hypothesis; using retrograde tracing, 

immunohistochemistry and confocal microscopy we confirmed that calbindin baskets 

associate with calretinin ascending interneurons and calretinin excitatory motor neurons to 

circular muscle, we also identified unique classes of myenteric neurons based on their 

morphology, neuronal markers and polarity of projection [110]. 

 

With ongoing advances in genetic manipulation technology, the mouse is becoming 

increasingly important for ENS research. Yet, relatively little is known about mouse colonic 

circuits that underlie motility. We decided to investigate the connectivity of mouse colonic 

IPANs and compare to our findings in guinea pig. CGRP in mouse colon is specific to IPANS 

and to extrinsic (spinal) afferents and their varicosities [102, 504]. Using organotypic culture 

allowed us to isolate myenteric CGRP baskets without contamination from extrinsic sources. 

We described the populations of neurons within these baskets and analysed the 

neurochemical coding of CGRP basket and circular muscle varicosities. The most significant 

finding was that colonic IPANs in mouse colon direct their synaptic output to both excitatory 

and inhibitory neurons within their myenteric CGRP baskets [111].  
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Chapter 2 

Characterisation of calbindin-immunoreactive Dogiel type II neurons and their 

connections in the guinea pig distal colon 
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Introduction 

Embedded within the wall of the gastrointestinal tract, the enteric nervous system (ENS) is 

formed by continuous networks that extend from distal oesophagus to proximal anal canal and 

contain neural circuits responsible for controlling most gut functions [75, 102, 505, 506]. The 

ENS acts on intestinal smooth muscle in concert with the pacemaker system [507, 508] to 

produce a wide range of coordinated and adaptable movements, it also acts on a variety of 

cells involved in secretory, immune, endocrine and paracrine functions. While autonomous in 

many ways [509], the ENS receives modulatory input from the sympathetic and 

parasympathetic divisions of the autonomic nervous system [510]. In small experimental 

animals, the motor functions involve mostly neurons of the myenteric plexus [142, 511], while 

neurons in the submucosal plexus have been shown to control mucosal secretion and vascular 

tone [56, 133, 512].  The importance of the ENS for normal human gut function is exemplified 

by Hirschsprung’s disease, where a segment of large bowel is congenitally deficient in enteric 

neurons, commonly leading to impaired transit that may result in bowel obstruction. 

 

Neurons within the ENS may be classified functionally as sensory neurons (intrinsic primary 

afferent neurons, IPANs), interneurons or motor neurons. However, based on morphology, 

projections, immunohistochemistry and electrophysiology, many more distinct neuronal 

populations have been identified [10, 77, 125, 286, 501].  This implies multiple subclasses of 

sensory, interneurons and motor neurons, forming distinct circuits, responsible for a specific 

enteric function or perhaps an aspect of a function. To add to this complexity, there is 

significant inter-regional and inter-species variation in neurochemical markers of functionally 

homologous neurons [75, 125, 501, 513]. Variability in neurochemical coding appears to be 

greatest in interneurons and least in excitatory and inhibitory motor neurons, which are 

essentially the common effector neurons of any motor circuit. This could explain in part how 

functionally distinct regions of the gut share similar neural circuitry and yet produce motor 

patterns that are very different. 
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The guinea-pig colon has been widely used in vitro to study colonic motor patterns and 

function [487-490]. Although the basic neuroanatomy is known, it has not been described to 

the same extent as guinea-pig small intestine [77]. The current classification of myenteric 

neurons in the guinea pig colon reveals up to 13 distinct groups [10, 491, 501, 514]. Here, the 

neurochemical markers present are similar to those described in the small intestine of the 

same species. However, the combinations of markers for the different functional classes of 

myenteric neurons differs significantly, with only the neurochemical coding of the inhibitory 

and excitatory motor neurons being conserved. This is perhaps not surprising since the two 

regions of gut differ in the composition of their luminal content, motor patterns and function. 

 

A major difficulty in identifying circuits within the ENS is that myenteric ganglia have a dense 

concentration of projections and varicosities surrounding nerve cell bodies and therefore, any 

specific connections are hard to identify. Techniques such as high-resolution laser scanning 

confocal microscopy, electron microscopy and immunohistochemistry have allowed reliable 

analysis of structure and connectivity between enteric neurons. Several studies have used 

these techniques to detail neuronal connections in the myenteric plexus of the guinea-pig 

small intestine. On the assumption that neurochemical markers in cell bodies match the ones 

in their terminals, these studies describe descending inhibitory interneurons with axo-somatic 

connections to like cells, forming ‘chains’ of neurons from the same functional group [257]. 

Furthermore, IPANS (Dogiel type II calbindin neurons) were shown to provide input to these 

interneurons and to directly synapse onto inhibitory motor neurons, forming mono- and poly-

synaptic reflex arcs [493-496].  Ascending chains of calretinin interneurons were also 

described, some of them providing input to longitudinal muscle motor neurons [254]. 

 

In this paper, we present evidence of a novel morphological arrangement in the guinea pig 

distal colon involving an important class of neurons, putative IPANs, and selective classes of 
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ascending interneurons and excitatory motor neurons.  This hard-wired circuit has likely 

evolved over millions of years as a primeval reflex, to elicit local polarised neuronal reflexes. 

Methods 

 

Tissue collection, preparation and immunohistochemistry  

All animal procedures were approved by the Flinders University Animal Welfare Committee. 

Colonic tissue was taken from guinea pigs that were killed with a blow to the back of the head 

followed by transection of the carotid vessels and spinal cord. Both males and females were 

used, within a weight range of 300-500g. The abdominal cavity was opened with a ventral 

midline incision and segments of distal colon up to 6 cm from the pelvic brim were removed 

and placed into a Krebs solution (118 mM NaCl, 4.75 mM KCl, 1.0 mM NaH2PO4, 25 mM 

NaHCO3, 1.2 mM MgSO4, 11.1 mM D-glucose, 2.5 mM CaCl2, gassed with 5% CO2 in 95% 

O2, pH 7.4). Segments were flushed of luminal content, opened along the mesenteric border 

and pinned flat, mucosal side up, to a Sylgard-lined dish (Dow Corning, Midland, MI). 

Preparations were then fixed in Zamboni’s fixative (2% formaldehyde, 15% saturated picric 

acid in 0.1M phosphate buffer, pH 7) overnight. Whole-mounts of myenteric plexus and circular 

muscle were prepared by removing mucosa, submucosa and longitudinal muscle using sharp 

dissection. Dissected tissue was cleared by washing firstly in dimethylsulphoxide (DMSO, 

10min x 3) and then phosphate buffered saline (PBS, 0.15M NaCl with 0.01M phosphate 

buffer, pH 7). 

 

Preparations were incubated in a blocking solution of 10% normal horse serum in antibody 

diluent (0.1M PBS, 0.3M NaCl, 0.1% sodium azide) for 60 min at room temperature. Incubation 

in primary antibody was performed on a rocking tray at room temperature for two nights, 

followed by 3 x 10 min washes in PBS and incubation in secondary antibody for 4 hours at 

room temperature prior to mounting on a slide in 100% carbonate-buffered glycerol (pH 8.6). 



126 
 

The primary and secondary antibodies used in this study are listed in Table 1.1 and Table 1.2 

respectively. 

 

Table 1.1. Primary antibodies used in study 

Primary 

antibody 

Raised Immunogen Source/catalog# Dilution 

Calbindin Rabbit Recombinant rat 

calbindin D-28k 

Swant/CB 38 1:2000 

Calretinin Goat Human 

recombinant 

calretinin 

Swant/CG-1 1:1000 

NOS Sheep Recombinant rat 

brain neuronal 

NOS 

Emson/K205 1:1000 

 

NOS – nitric oxide synthase 

 

Table 1.2. Secondary antibodies used in study 

Secondary antibody Fluorophore Source/catalog# Dilution 

Donkey anti-rabbit IgG Cy3 Jackson / 711165152 1:200 

Donkey anti-goat IgG Cy5 Jackson / 705175147 1:100 

Donkey anti-sheep IgG AMCA Jackson / 713155147 1:100 

 

IgG – immunoglobulin G; Cy3 – indocarbocyanine; Cy5 – indodicarbocyanine; AMCA – 

aminomethylcoumarin. 
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Antibody Characterization  

 

Calbindin 

Calbindin polyclonal antibody (Swant, Belinzona, Switzerland, Cat# CB 38, 

RRID:AB_10000340) was raised in rabbit against recombinant rat calbindin D-28k. Western 

blot of guinea-pig brain homogenate results in a single band at 28KDa (equivalent to protein’s 

molecular weight). No staining was detected with this antibody in CNS tissue of knockout mice 

for D-28k calbindin (Swant calbindin data sheet). Furthermore, all staining was prevented on 

preincubation with recombinant rat calbindin D-28k [515].  

 

Calretinin 

Calretinin (Swant, Belinzona, Switzerland, Cat# CG1, RRID:AB_10000342) is a polyclonal 

antibody raised in goat against human recombinant calretinin.  It does not stain brain tissue 

from calretinin knockout mice (manufacturer’s data sheet).  Pre-incubation with purified 

calretinin protein eliminated immunoreactivity in mouse brain tissue and on western blotting it 

produces a single band at 29-30k which is equivalent to the protein’s molecular weight [516]. 

 

Neuronal Nitric Oxide Synthase (nNOS) 

The neuronal nitric oxide synthase antibody (nNOS, Emson, Cat# K205, RRID:AB_2314957 

– generously gifted by Dr. P. Emson) is polyconal and raised in sheep against recombinant 

rat brain nNOS.  On Western blots of guinea pig inferior mesenteric ganglion it labels a strong 

band at 160kDa and a faint band at 40kDA [415]. 
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Neuronal structures that were labelled with any of the 3 primary markers (antibodies) were 

regarded as calretinin-, calbinding- or NOS-immunoreactive neurons, varicosities or baskets.  

In the text, the terms calretinin, calbindin or NOS neuronal structures are used as equivalent 

to being immunoreactive.  

 

Image acquisition and analysis 

 

Fluorescence microscopy 

Preparations were viewed using an epifluorescence microscope (Olympus IX71, Japan) with 

the appropriate filters for the fluorophores used. Using a 20x or 40x objective water immersion 

lens, fluorescent images were captured by a Roper Scientific camera and AnalySIS Imager 

5.0 software (Olympus-SIS, Munster, Germany). Images were stored as TIFF files (1392 * 

1080 pixels) and optimized for contrast and brightness using Adobe Photoshop (2015 Adobe 

Systems Software Ireland Ltd) prior to further analysis. ImageJ (NIH, Bethesda) was used for 

analysis of immunofluorescence intensity (grey value measurements) as well as nerve cell 

body size. 

 

Myenteric calbindin-immunoreactive varicosities forming basket-like structures 

Preparations of myenteric plexus labelled with calbindin antibodies revealed specialized 

dense clusters of varicosities that enveloped subsets of specific myenteric nerve cell bodies 

(Fig 1.1-1.2). We refer to these structures as ‘calbindin baskets’ and define them as the 

presence of intensely calbindin-immunoreactive varicose endings surrounding one or more 

myenteric neurons.  More than one calbindin basket was termed a ‘basket cluster’. 
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Analysis of calbindin basket relationship to calretinin and NOS myenteric neurons 

To determine the relationship between calbindin baskets and NOS nerve cell bodies, 6 ganglia 

from 6 animals (36 myenteric ganglia in total), immunolabelled for the two markers, were 

randomly selected and photographed. Three observers independently identified baskets in 

each photomicrograph of calbindin-immunofluorescence by drawing a digital outline and 

saving the image as a TIFF file. Observers did not have access to the matched ganglia NOS 

photomicrographs prior to the calbindin basket selection. To improve objectivity, only 

correlated calbindin baskets (where two or more observers selected the same basket within a 

ganglion) were used in the analysis. Baskets selected by only one observer were ignored. 

 

Following basket identification, matching calbindin and NOS photomicrographs were 

superimposed using ImageJ software and calbindin baskets were scored for the presence or 

absence of NOS nerve cell bodies within them. A similar analysis was then performed by the 

same observers, using the same images of matched ganglia (in random sequence) but 

selecting firstly the NOS neurons and scoring them according to their relation to calbindin 

varicosities and baskets. To determine the relationship between calbindin baskets and 

calretinin neurons, a similar analysis was performed, using photomicrographs of 36 randomly 

selected ganglia stained for calbindin and calretinin (n = 6). Calbindin- and calretinin-

immunoreactive nerve cell body size (area) and immunofluorescence intensity was also 

assessed in ImageJ. Only nerve cell bodies whose values were > 2 x S.D. above mean 

background intensity were considered immunoreactive and included in analyses. 

 

Analysis of calbindin and calretinin colocalisation in circular muscle varicosities 

Ten circular muscle regions within a preparation were randomly selected, and imaged using 

a 40x objective lens (n = 4), making sure no overlap occurred.  Five regions were selected by 

using the calbindin filter, and the other five using the calretinin filter, in an alternating manner. 
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Within randomly selected regions, rapidly switching between two filters while keeping constant 

focus allowed the observer to determine whether a varicosity contained one or more markers. 

Since the immunoreactive fibres are parallel to the muscle and are relatively sparse, all fibres 

in each field were assessed and thus the relative proportions of coexistence refer to the total 

number of labelled fibres seen in each field of view. 

 

Analysis of calbindin and calretinin colocalisation in myenteric varicosities 

Within myenteric ganglia, a similar method was used to determine calbindin / calretinin 

colocalization within varicosities that were not associated with calbindin baskets. Due to the 

large number of varicosities seen, a random sample was selected from each field of view. One 

hundred varicosities chosen for the first marker were tested for the presence of the second 

marker, then 100 varicosities of the second marker from the same field were tested for the 

presence of the first marker. As the sample is reasonably large, the relative proportion of 

varicosities of each marker could be evaluated. 

 

Analysis of calbindin Dogiel type II neuron relationship to calbindin baskets within ganglia 

66 ganglia from four animals were examined using the fluorescence microscope by a single 

observer.   Calbindin baskets and calbindin Dogiel type II cells were each counted and note 

was made of whether they were in contact with each other or located at some distance. .  In 

this paper we defined Dogiel type II neurons on a morphological basis as previously described 

[501] i.e. larger, round or oval, smooth bodied cells with more than one long process.   

 

Confocal microscopy 

To examine colocalisation of calbindin and calretinin within calbindin baskets, as well as 

determine the relationship between calbindin Dogiel type II neurons and calbindin baskets, 
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whole-mount preparations were viewed with a Leica TCS SP5 scanning confocal microscope 

(Leica Microsystems, Wetzlar, Germany). Calbindin baskets were imaged in randomly 

selected ganglia with a 40x objective oil lens at 3x optical zoom. The pinhole was set to 1 AU, 

scan area at 1024 x 1024 pixels, scan speed of 400Hz with three line averages. Images were 

exported as TIFF files for analysis. Only varicosities making up the inside layer of a calbindin 

basket, all the way around, were analysed, as these are most likely to provide synaptic input 

to the cell within the basket. 

 

Z-projections of select myenteric ganglia containing Dogiel type II cells and calbindin baskets, 

were created using a 60x objective oil lens at 1-2 optical zoom with all other settings as 

described above. Sequential scans were used to image ganglia labelled with two fluorophores, 

the images were acquired at 0.59 to 0.84 μM z-steps. Three dimensional projections were 

created using Imaris 8.4.1 software (Bitplane, Oxford Instruments) and exported as TIFF 

images or AVI video files. 

 

Statistics 

Statistical analysis was performed by ANOVA, Chi-squared test, or Student’s two-tailed t-test 

for paired or unpaired data using IBM SPSS Statistics 20 for Microsoft Windows (release 

20.0.0, IBM Corporation, USA). Differences between data sets were considered significant if 

P < 0.05. Results are expressed as mean ± standard error except where otherwise stated. 

Lower case “n” always indicates the number of animals used in a set of experiments.  

 

Results 

 

Calbindin baskets and calbindin Dogiel type II nerve cell bodies (putative IPANS)  
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Calbindin immunolabelling of guinea pig distal colonic myenteric plexus (n = 4) revealed 

intense cytoplasmic and less intense axonal/dendritic labelling of large, smooth nerve cell 

bodies, consistent with Dogiel type II morphological characteristics. Smaller, Dogiel type I 

nerve cell bodies were less frequently observed. Calbindin immunolabelling also revealed a 

dense supply of varicose axons within myenteric ganglia and internodal strands. Strikingly, 

calbindin varicosities appeared densely concentrated at particular sites in myenteric ganglia, 

giving the appearance of basket-like structures completely enveloping myenteric nerve cell 

bodies (Figure 2.1). We refer to these structures as calbindin baskets. Calbindin baskets had 

a tendency to form clusters, suggestive of selective connectivity within myenteric ganglia. 

Thus, we sought to study calbindin baskets further and elucidate their relationship with specific 

enteric neuronal classes. 

 

Of 68 myenteric ganglia analysed, the vast majority (66/68, 97%, n = 4) had at least one 

calbindin basket. Each ganglion contained an average 5.4 calbindin baskets (range 1 – 12; n 

= 4). There was a very close association of Dogiel type II calbindin neurons (presumed IPANS) 

to calbindin baskets. Out of the 66 ganglia that contained baskets, 51 (77.3%) baskets had at 

least one IPAN cell adjacent to them i.e. directly in contact with basket or neuropil associated 

with basket cluster. Three ganglia with baskets had a calbindin IPAN in the same ganglion but 

not in contact; only eleven (16.7%) basket-containing ganglia lacked Dogiel type II calbindin 

neurons. 
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Figure 2.1 Matched fluorescence micrographs of guinea-pig myenteric ganglion 

immunolabelled with calbindin (a) and nitric oxide synthase (NOS - b). Note the cluster 

ofcalbindin baskets (arrow). Nerve cell bodies containing NOS do not occur within calbindin 

baskets. Scale bar = 50 μm. 

 

Confocal microscopy revealed several notable features of calbindin baskets. The intensely 

calbindin-immunoreactive varicosities around the soma of individual neurons (basket cells) 

were most dense at the equator of the cell (horizontal axis of ganglion) and tapered off in 

density towards either pole (vertical axis of ganglion). Usually one of the poles, away from the 

cell equator, would be completely surrounded by a cap of varicosities with the opposite pole 

having very few or none, forming a basket or a calyx like structure (Figure 2.2). When several 

baskets clustered together, varicosities from multiple baskets combined to form a very dense 

neuropil centrally, with the baskets located around the periphery (Figure 2.3).  
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Figure 2.2. Three dimensional reconstruction of a confocal z-series showing a large calbindin 

Dogiel type II neuron (a,red) forming a basket around a calretinin-immunoreactive nerve cell 

body (a,cyan). b - Higher magnification view of the calbindin basket. Note that the terminals 

forming the basket can be traced directly to the Dogiel type II neuron.  Scale bar = 50 μm. 

 

Several z-projections were constructed to examine the relationship between calbindin Dogiel 

type II cells located adjacent to basket clusters. A fascinating observation was that baskets in 

close proximity were seen to arise directly from the varicose processes of the Dogiel type II 

cell (Figure 2.2).  Z-projections from several ganglia with calbindin Dogiel type II cells at some 

distance from basket clusters, but within the same ganglion, show their projections directed 

towards the clusters and joining their neuropil. However, due to the high density of calbindin 

varicosities, it was difficult to identify baskets from any single such projection. There were also 

calbindin projections that originated outside of the ganglion examined, seen targeting basket 

clusters. This suggests that calbindin Dogiel type II cells contribute to basket formation both 

locally within the same ganglion, and at some distance in other ganglia. 
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Figure 2.3. Matched confocal (single slice) micrographs of a single calbindin basket cluster. 

A dense neuropil is formed within the basket cluster, comprised of calbindin (red,a) and 

calretinin varicosities (cyan,b). A proportion of varicosities (~9%, see results) contained both 

calbindin and calretinin (see arrows in magnified section,c).  Scale bar = 20 μm. 

 

Calbindin baskets and NOS myenteric neurons 

Six preparations of guinea pig distal colon were double immunolabelled for calbindin and NOS 

(n = 6). NOS immunolabelling revealed cytoplasmic fluorescence of myenteric nerve cell 

bodies and numerous varicosities within myenteric ganglia (Figure 2.1).  

 

To analyse the relationship between calbindin baskets and nitrergic myenteric neurons, 

calbindin baskets were identified first and subsequently assessed for the presence of NOS 

nerve cell bodies within them. Three observers examined 36 ganglia (n = 6) after incubation 

with antisera to calbindin and NOS. An average of 170 calbindin baskets were identified per 

observer (range 151 to 192). There was a high level of agreement between observers, with 

149 (88%) baskets selected by multiple observers and thus included in further analysis. An 

average of 4.1 ± 0.5 (range 0 to 13) calbindin baskets occurred within a ganglion and the 
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majority of ganglia had a cluster of baskets. Remarkably, only one (0.7%) NOS neuron 

occurred within 149 calbindin baskets.  

 

Analysed in the reverse order, NOS nerve cell bodies were identified first and then calbindin 

immunoreactivity in the same location of the matched micrograph was assessed. An average 

of 452 NOS myenteric nerve cell bodies were independently identified (1355 total; n = 6). 

Overall, 7/1355 (0.5%) NOS neurons occurred within a calbindin basket (all seven were scored 

by the same observer) and the majority (66.1%) lacked surrounding calbindin fibres or 

varicosities. 

 

Taken together, these data suggest a strong negative association between calbindin baskets 

and NOS myenteric neurons. 

 

Relationship between calbindin baskets and myenteric calretinin neurons 

Calretinin neurons comprise another major population of myenteric neurons in the guinea pig 

distal colon. Calretinin neurons tend to cluster within myenteric ganglia [10, 517], similar to the 

distribution of calbindin baskets identified in the present study. Thus, six preparations of 

guinea pig distal colon were double immunolabelled for calbindin and calretinin (n = 6). 

Calretinin immunolabelling revealed cytoplasmic labelling of myenteric nerve cell bodies of 

different intensities (see below), and numerous varicosities within myenteric ganglia (Figure 

2.4).  
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Figure 2.4. Matched fluorescence micrographs of a myenteric ganglion showing a calbindin 

basker cluster (a, arrow) and a cluster of calretinin-immunoreactive nerve cell bodies occurring 

inside them (b,c,arrow). Scale bar = 50 μm. 

 

Similar analysis was performed as described above for NOS neurons by independent 

observers on 36 ganglia labelled by calbindin and calretinin antibodies (n = 6). An average of 

217 calbindin baskets were first identified per observer with 90% observer agreement (195 

baskets; n = 6). Of the 195 calbindin baskets, 159 (81.5%) contained a calretinin nerve cell 

body. In the converse analysis, 913 calretinin cells were identified first, and subsequently 

assessed for calbindin varicosities and baskets in matched micrographs. In total, 559/913 

(61.2%) calretinin myenteric nerve cell bodies occurred within calbindin baskets while 76 

(8.3%) calretinin cells lacked any associated calbindin varicosities. Taken together, these data 

suggest that calbindin baskets are selectively associated with calretinin myenteric neurons – 

a rare demonstration of circuit connectivity observable at the light microscopy level. 

 

Calbindin and calretinin colocalization in myenteric nerve cell bodies 

A subset of calretinin nerve cell bodies also contained calbindin immunoreactivity. However, 

the high intensity of calbindin immunofluorescence within basket clusters occasionally made 
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these cells difficult to discriminate using conventional fluorescence microscopy. Thus, in a 

separate series of experiments. Confocal analysis was used to determine the composition of 

basket cells with regards to the two immunohistochemical markers, see Figure 2.5. A total of 

102 calbindin baskets from 19 ganglia were examined (n = 4). Out of the total population of 

102 baskets, 42/102 (41.2%) contained CALR/- nerve cell bodies, 41/102 (40.2%) contained 

CALR/CALB nerve cell bodies, and 19/102 (18.6%) contained nerve cell bodies that 

expressed neither marker. No CALB/- nerve cell bodies occurred within calbindin baskets.  

 

 

 

Figure 2.5. Matched confocal micrographs (single slice) of calbindin baskets (red,a) 

surrounding calretinin immunoreactive nerve cell bodies (cyan, a and c). Note also the 

colocalization of calbindin in calretinin immunoreactive nerve cell bodies.  Scale bar = 10 μm. 

 

The existence of CALR/CALB and CALR/- populations is suggestive of different functional 

classes. Thus, the populations of myenteric nerve cell bodies containing these markers were 

characterised in a further series of experiments. In total, 660 calretinin nerve cell bodies were 

identified in 36 ganglia (n = 6). 305 (46.2%) nerve cell bodies were CALR/-, 239 (36.2%) were 

CALR/CALB and 116 (17.6%) were CALB/-. Within each ganglion there were an average of 
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8.5 ± 2.3 CALR/- nerve cell bodies, 6.6 ± 1.2 CALR/CALB nerve cell bodies and 3.2 ± 1.3 

CALB/- nerve cell bodies. The CALB/- profile was significantly associated with Dogiel type II 

morphological characteristics (χ2 = 431.6, P <0.001, adjusted standardized residual = 20.8, n 

= 6). Eighty-four of 116 (72.4%) CALB/- nerve cell bodies were Dogiel type II, but a significant 

proportion had Dogiel type I characteristics (27.6%, 32/116 nerve cell bodies). The vast 

majority of calretinin neurons were Dogiel type I (305/305 and 236/239 of CALR/- and 

CALR/CALB nerve cell bodies, respectively). As expected, CALB/- nerve cell bodies were 

significantly larger than CALR/- and CALR/CALB nerve cell bodies (579 ± 54μm2 vs 242 ± 14 

μm2 and 248 ± 16 μm2, respectively, P < 0.001, Bonferroni post-test, 1-way ANOVA, n = 6). 

However, there was no significant difference in nerve cell body size between CALR/- and 

CALR/CALB neurons (Figure 2.6). Interestingly, although similar proportions of calbindin 

baskets contained CALR/- (40.2%, above) and CALR/CALB (41.2%, above) nerve cell bodies, 

CALR/CALB nerve cell bodies were significantly more likely to be surrounded by calbindin 

baskets, compared to CALR/- and CALB/- neurons (χ2 = 140.9, P <0.001, adjusted 

standardized residual = 9.9, n = 6). In total, 154/239 (65%) of CALR/CALB nerve cell bodies 

occurred within calbindin baskets, compared to 106/305 (35%) of CALR/- nerve cell bodies 

and 0/116 CALB/- nerve cell bodies. 
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Figure 2.6. Frequency histogram showing nerve cell body sizes of calbindin- and calretinin 

immunoreactive myenteric neurons. Cells containing calbindin alone were predominantly 

Dogiel type II and significantly larger than cells containing either calretinin alone or both 

calbindin and calretinin together. 

 

Myenteric nerve cell bodies that contained calretinin had different immunofluorescence 

intensities. Indeed, there appeared to be two different populations of calretinin-

immunoreactive neurons based on strength of immunofluorescence intensity, with the strongly 

labelled neurons more often found in calbindin baskets. Measurement of calretinin 

immunofluorescence intensities revealed a bimodal distribution. However, the distribution did 

not appear to be explained by the two neurochemical profiles analysed (CALR/- and 

CALR/CALB): both CALR/- and CALR/CALB neurons showed similar bimodal distributions 

(Figure 2.7). Nevertheless, CALR/CALB nerve cell bodies showed significantly more intense 

immunofluorescence compared to CALR/- nerve cell bodies on average (245 ± 4% vs 209 ± 

3% background fluorescence, respectively, P < 0.001, independent samples t-test, n = 6). 
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Also, CALR/- nerve cell bodies in calbindin baskets had significantly greater 

immunofluorescence intensity compared to nerve cell bodies outside of baskets, 191 ± 2.2% 

background intensity v 145 ± 2.3% (P < 0.001, independent samples t-test, n = 6), see Figure 

2.8. 

 

 

 

Figure 2.7. Frequency histrogram showing the distribution of calretinin immunofluorescence 

intensity (normalized to background intensity) among cell containing calretinin alone or both 

calretinin and calbindin. On average, cell containing both markers had higher calretinin 

fluorescence intensity (245 ± 4% vs 209 ± 3% background fluorescence). 

 

Calbindin/calretinin colocalization in circular muscle varicosities 

To assess the colocalization of calbindin and calretinin immunofluorescence in varicosities 

projecting into the circular muscle, a total of 40 randomly selected circular muscle fields 

containing 458 varicosities (n = 4) were scored for calbindin and calretinin immunoreactivity 
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using a fluorescence microscope. There were 141 CALB/- and 33 CALR/- varicosities, but the 

majority contained both markers (284/458, 62.0% CALB/CALR varicosities).  

 

 

 

 

Figure 2.8. Frequency histrogram showing the distribution of normalized calretinin 

immunofluorescence in myenteric nerve cell bodies that occurred, or did not occur, within 

calbindin baskets. Overall, calretinin-immunoreactive neurons that occurred within calbindin 

baskets showed greater calretinin immunofluorescence in their nerve cell bodies. 

 

The same preparations were then used to determine co-localisation in randomly selected 

myenteric plexus varicosities that were not associated with calbindin baskets. A total of 2309 

varicose terminals were examined, 1054 were CALB+ out of which 120 (11.4%) colocalized 

with calretinin. Out of 1045 CALR+ varicosities examined, 90 (8.6%) were colocalized with 
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calbindin. Finally, the colocalization of calbindin and calretinin immunofluorescence in 

varicosities of calbindin baskets was assessed. The high density of innervation necessitated 

confocal microscopy. Thus, 54 calbindin baskets from 16 ganglia (n = 4) were examined using 

a confocal microscope. Within the calbindin baskets, 2603 varicosities surrounding and 

immediately adjacent to cell bodies were scored for calbindin and calretinin immunoreactivity. 

1623 (62.4%) varicosities were CALB/-, 748 (28.7%) CALR/- and 232 (8.9%) were 

CALB/CALR i.e. colocalised. 

 

This data suggests that the baskets are formed from varicosities of calbindin Dogiel type II 

IPAN’s and receive the major contribution from putative sensory neurons, followed by 

calretinin ascending interneurons and a minor contribution from CALR/CALB neurons of 

unknown functional class. 

 

Discussion 

This work reveals a never before described morphological architecture in the ENS that 

suggests a specialized functional link between putative colonic IPAN’s and histochemically 

identified ascending interneurons and excitatory motor neurons. The existence of different 

specialised circuits within the enteric nervous system has been surmised by the observation 

that several subsets of myenteric neurons exist, based on their neurochemistry, polarity and 

electrophysiology.  This has been supported by a large body of functional and structural 

research that includes pharmacological studies, intracellular recording, lesion studies, tracing 

dyes and electron microscopy. Studies of these subclasses of myenteric neurons have begun 

to reveal some of their connectivity in guinea-pig small intestine; however, this work is the first 

indication in the guinea-pig colon that, as predicted, subsets of myenteric primary sensory, 

interneurons and motor neurons are connected in very specific ways to underlie motor 

function.  
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Calbindin-containing neurons in the guinea-pig small intestine comprise only one population, 

namely a larger subclass of Dogiel type II neurons (IPANS) which project locally, to 

submucosa and mucosa but not muscle [107, 498]. They are the first neurons in motor reflex 

circuits of the gut, therefore called intrinsic primary afferent neurons (IPANS). Shown to 

respond upon stimulation of mucosa or muscle stretch, they drive interneurons and motor 

neurons to initiate a response [101, 518, 519]. By contrast, in the guinea-pig colon, calbindin 

is present in both Dogiel type I and type II neurons that branch locally [121] and also have 

ascending and descending projections within the myenteric plexus, projections directed at 

underlying circular muscle, mucosa and submucosal plexus [499]. Calbindin Dogiel type II 

neurons in the proximal colon myenteric plexus have been shown to project to mucosa and 

also display AH (after-hyperpolarization) type characteristics on electrophysiological studies 

[500], therefore matching the properties of IPANS in the small intestine and presumably having 

similar function. 

 

In the present work, we describe for the first time a remarkable arrangement of calbindin 

terminals within myenteric ganglia forming dense arrays of pericellular varicosities best 

described as baskets. Calbindin baskets were found in the majority of myenteric ganglia.  They 

were easily identified in whole mount preparations using conventional fluorescence 

microscopy and typically, they were found in clusters of up to thirteen baskets.   The most 

striking feature of these structures, as confirmed by confocal microscopy, is that they appear 

to arise directly from Dogiel type II calbindin myenteric neurons, which are very often found in 

contact with basket clusters or at least in the same ganglion.  Another interesting observation 

is the mutual avoidance between calbindin baskets and NOS neurons. Given that NOS is 

generally a marker of inhibitory neurons, one can assume cells within the baskets to be 

excitatory neurons. NOS neurons are known to be activated by mechanical stimulation and 

take part in enteric reflexes, therefore the apparent lack of strong calbindin input to them 

suggests that in the colon they may rely on interneurons for this to occur. 
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Dense pericellular baskets formed from varicosities containing somatostatin and bombesin 

have previously been described in the guinea pig small intestine myenteric plexus [255, 494] 

and VIP immunoreactive baskets in guinea pig proximal colon [514]. Furthermore, baskets 

identified on light microscopy have been shown to provide synaptic input to the neurons they 

surround [495, 497] and close apposition of varicosities to cell bodies identified on confocal 

microscopy correlates well to structural evidence of synaptic input seen with electron 

microscopy [257, 493-495].  Although it remains to be confirmed at the level of electron 

microscopy, our work suggests strong synaptic input from Dogiel type II calbindin neurons to 

neurons that lie within the calbindin basket clusters.  Such a direct connection between 

putative IPANs and an identifiable cluster of enteric neurons has not been observed before.  

 

Calretinin is a 29-kD calcium binding neuronal protein that has 58% homology to 28kD 

Calbindin and was initially isolated from chick retina [520]. Calretinin cells in the myenteric 

plexus of the guinea pig colon have previously been observed to form ‘clumps’, most often at 

the edge of a ganglion or close to intermodal strands [10, 517]. The present work confirms this 

distribution but also for the first time, shows a good correlation of calretinin neurons to 

calbindin baskets with 39.4% of all CALR/- and 65% of CALR/CALB neurons located within a 

calbindin basket.  

 

Neurons within calbindin baskets showed significantly greater intensity of calretinin 

fluorescence than neurons outside of baskets and morphologically all exhibited Dogiel type I 

dendritic and filamentous characteristics.  In the myenteric plexus of guinea-pig distal colon 

this type of neuron has oral or local/circumferential  projections [125] and all ascending 

filamentous interneurons have previously been shown to be calretinin immunoreactive [501].  

Lesion studies have also shown calretinin neurons projecting to underlying circular muscle 
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[517], a finding which our data confirms with the observation of calretinin and 

calretinin/calbindin containing varicosities in the circular muscle layer.  Based on the above, 

we can conclude that basket cells are likely to be composed of excitatory ascending 

interneurons as well as excitatory motor neurons to circular muscle.  Also, our finding that a 

good proportion of nerve terminal varicosities (28.7%) within baskets are labelled by calretinin 

alone, suggests that calretinin neurons within clusters, form ascending chains of excitatory 

interneurons.   

 

 

 

 

Figure 2.9. A schematic diagram showing the proposed myenteric neural circuits that involve 

calbindin baskets and three different populations of neurons. CM – Circular muscle cell, EMN 

– Excitatory motor neuron, AI – Ascending excitatory interneuron, IPAN – Intrinsic primary 

afferent neuron, UNK - unknown. 
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We are tempted to describe the preferential arrangement of calbindin baskets within myenteric 

ganglia as indication of a hard-wired “microcircuit” within the other ENS circuits. Specifically, 

we refer to Dogiel type II cells that give rise to calbindin baskets within colonic ganglia that 

contain both calretinin excitatory interneurons and excitatory motor neurons to circular muscle. 

Their major input appears to be from putative IPAN’s and they are linked by chains of 

ascending interneurons, forming excitatory reflex circuits (see Figure 2.9). How far this 

ascending chain would be effective is yet to be determined by functional studies. Therefore, 

this neural arrangement consists of a monosynaptic circuit where IPANS directly synapse onto 

excitatory motor neurons to circular muscle. 

 

Excitatory circular muscle motor neurons in the guinea-pig colon have local or short ascending 

projections [269] and Dogiel type II neurons tend to project for less than 2mm [125], therefore 

this circuit is well poised to underlie a motor reflex pathway responsible for circular muscle 

contraction at the site of stimulation or a short distance orally.  As the clusters of neurons 

within the calbindin baskets also contain calretinin interneurons, and these are known to 

project for several millimetres [125], the microcircuit revealed in this work includes a 

combination of short and long ascending excitatory reflex pathways. Interestingly, Dogiel type 

II neurons in the colon project to the mucosa, but the mucosal projections of these nerve 

endings are not required for intrinsic stretch-activated polarized reflexes. This was 

demonstrated in the guinea-pig distal colon, when the mucosa was removed and 

circumferential stretch-activated neuronal pathways to the smooth muscles were still robustly 

activated [489, 506, 521].  

 

In conclusion, this work provides neurochemical and morphological evidence for a specific 

intrinsic neural circuit in the colon.  The most likely functional role of this circuit is to underlie 
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ascending excitation and muscle contraction, triggered directly by the IPAN’s.  Although it is 

possible that the neural pathway revealed in this work may be involved in the formation and 

propulsion of the faecal pellet, it is not possible yet to attribute any specific motor pattern to 

this circuit, based on current data. To correlate this unique neuroanatomical arrangement with 

motor function, further studies are needed, focusing on projections and activity of cells within 

the baskets. It is possible that this circuit takes part in more than one motor pattern. Given the 

variety of motor patterns observed in the colon as well as evidence for extensive cross 

connectivity between neurons, ENS circuits must be capable of greater subtlety, redundancy 

and variety than previously suspected. 
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Chapter 3 

Retrograde tracing of neurons within the myenteric plexus and circular muscle of 

guinea pig distal colon 
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Introduction 

The enteric nervous system (ENS) contains polarised neural circuits responsible for controlling 

a wide variety of gastrointestinal functions Costa, Brookes [75]. Neurons that form ENS circuits 

can be functionally classified as sensory neurons (intrinsic primary afferent neurons, IPANS), 

interneurons and motor neurons. They can also be divided into several groups, based on the 

shape of their cell body and the number of long processes originating from it (See Figures 3.1-

3.8) [522]. Dogiel Type I neurons have one long process originating from their cell body 

(monopolar neurons) and include many motor neurons and interneurons.  Dogiel type II 

neurons have several long processes (multipolar neurons) and have a presumed role as 

sensory neurons. Based on morphology, chemical content and electrophysiology, 17 distinct 

populations of neurons have been described [10, 523]. This suggests the existence of multiple 

classes within each of the three functional groups. 

 

Retrograde neuronal tracing ex vivo, using carbocyanine dyes, is a powerful tool for 

characterising enteric neural projections [14].  This method has been used extensively in 

guinea-pig gut to identify myenteric neurons that project to circular and longitudinal muscle in 

the stomach [524-526], small intestine [264, 267] and proximal colon [269].  Retrograde tracing 

from a target tissue, such as a muscle layer or the mucosa identifies nerve cell bodies with 

axonal projections within that target. Application of tracer directly to the myenteric plexus 

identifies neurons whose axons pass through the point of tracer application. This allows 

determination of polarity, length of projection and distribution pattern of neurons forming that 

plexus. This technique has also been used to map pathways in the human colon [253, 274]. 

 

Recently, we described a novel arrangement of myenteric neurons in guinea pig distal colon, 

in which calbindin-containing Dogiel type II neurons (presumed IPANS) formed distinct basket-

like varicose structures around clusters of calretinin-containing nerve cell bodies [503].  Based 
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on immunohistochemical data and confocal microscopy this suggests specific connectivity 

between IPANS, excitatory motor neurons to circular muscle and excitatory ascending 

interneurons. Such a circuit is likely to form the basis of the polarised ascending excitatory 

intestinal reflex first described over a hundred years ago [11, 527, 528]. Similar basket-like 

varicose structures immunoreactive for somatostatin and bombesin have been previously 

described in the guinea pig small intestine [255, 494] and VIP immunoreactive baskets in the 

guinea pig proximal colon [514].  Using electron microscopy, these basket-like varicose 

structures have been shown to provide synaptic input to the cells they surround [495, 497]. 

 

In the present work, we combined immunohistochemistry with retrograde tracing from both the 

circular muscle and myenteric plexus layers to characterise projections of neurons 

immunoreactive for calbindin, calretinin and nitric oxide synthase (NOS), with particular 

attention to neurons found in calbindin-immunoreactive baskets that are involved in this 

distinctive circuit. 

 

Methods 

 

Tissue collection 

DiI tracing was analysed in five (n=5) circular muscle and four (n=4) myenteric plexus 

preparations from nine animals out of a total of 36 preparations from 9 animals. All animal 

procedures were approved by the Flinders University Animal Welfare Committee.  Adult 

guinea-pig of both sexes (360 – 480 g), were euthanised by stunning and exsanguination.  

Using aseptic technique, the abdomen was opened through the ventral midline followed by 

the removal of distal colon starting at the pelvic brim.  Tissue was immediately placed in sterile 

Krebs solution (118 mM NaCl, 4.75 mM KCl, 1.0 mM NaH2PO4, 25 mM NaHCO3, 1.2 mM 
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MgSO4, 11.1 mM D-glucose, 2.5 mM CaCl2, aerated with 5% CO2 in 95% O2, pH 7.4), flushed 

of luminal content, and opened along the mesenteric border.  Preparations were then pinned 

flat, mucosa uppermost, in a sterilised Sylgard-lined dish (Dow Corning, Midland, MI) and 

dissected to expose the region of interest.  Preparations (ranging from 4-6 cm in length) were 

washed several times using sterile Krebs solution and then transferred to a sterilised organ 

culture dish, pinned flat with the serosa facing down.  

 

Retrograde tracing and tissue culture 

The dye 1, 1’-didodecyl-3,3,3’,3’- tetra-methyl-indo-carbo-cyanine perchlorate (DiI, Molecular 

Probes, Eugene, OR) was evaporated from an ethanolic solution onto glass beads (Sigma 

Chemicals; 100 - 200 μm diameter).  To trace projections to circular muscle, the mucosa and 

submucosa were gently peeled off, exposing the underlying circular muscle. A single DiI-

coated glass bead was lightly pressed onto an area of circular muscle not visibly overlying a 

myenteric ganglion or internodal strands. To trace projections within the myenteric plexus, a 

short segment of circular muscle was stripped off to expose 2-3 rows of myenteric ganglia 

adhering to longitudinal muscle.  A DiI-coated bead was carefully placed onto a single inter-

nodal strand except in one preparation, where three beads were placed on adjacent inter-

nodal strands (this preparation was excluded from quantitative analysis of circumferential 

projections).  

 

After placement of DiI-coated beads, preparations were left for 10 minutes to allow the bead 

to adhere to the target tissue, preventing displacement during exchange of Krebs solution for 

culture medium (DME/F12; Sigma Chemical Co.) supplemented with 10% fetal bovine serum, 

100 μg/mL streptomycin, 100IU/mL penicillin, 2.5μg/mL amphotericin and 20 μg/mL 

gentamicin (Cytosystems, Castle Hill, NSW, Australia), pH adjusted to 7.4.  The tissue was 

cultured for 3 days in a humidified incubator (37°C, 5%CO2 in air), with daily exchange of 

culture medium and constant agitation on a rocking tray. 
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Immunohistochemistry  

Cultured tissue was fixed in modified Zamboni’s fixative (2% formaldehyde, 15% saturated 

picric acid in 0.1 M phosphate buffer, pH 7) overnight.  Fixed tissue was washed repeatedly 

in phosphate buffered saline (PBS, 0.15 M NaCl with 0.01 M phosphate buffer, pH 7.4) and 

mounted on a slide in bicarbonate-buffered glycerol (70% glycerol in 0.5 M sodium carbonate 

buffer, pH 8.6).  To determine adequacy and specificity of DiI labelling, preparations were 

examined using an epifluorescence microscope with the appropriate filter (Olympus IX71, 

Japan) to visualise DiI-filled neurons.  The criteria used for specificity of CM motor neuron 

labelling have previously been described and were based on punctate labelling that 

surrounded an unlabelled nucleus [264, 524].  Preparations with poor quality DiI uptake or 

with off-target filling were discarded.  In total, 4/9 myenteric plexus and 5/27 circular muscle 

preparations from 9 animals were judged suitable for immunohistochemistry. 

 

Whole-mount preparations selected for immunohistochemistry had remaining circular muscle 

removed to improve antibody penetration and visualisation. Tissue was permeabilised at room 

temperature in solutions of increasing carbonate-buffered glycerol concentration (60 minutes 

in 70%, 60 to 120 minutes in 100% glycerol, pH 8.6).  Preparations were then washed in PBS 

and incubated in a blocking solution of 10% normal donkey serum in antibody diluent (0.1 M 

PBS, 0.3 M NaCl, 0.1% sodium azide) for 60 minutes at room temperature.  Incubation with 

primary antibodies (Table 3.1) was performed on a rocking tray at room temperature for 48 

hours, followed by a PBS wash and incubation with secondary antibodies (Table 3.2) for 4 

hours. Preparations were then mounted on glass slides in carbonate-buffered glycerol. 

 

Antibody Characterisation  
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Calbindin (CALB) 

Calbindin polyclonal antibody (Swant, Belinzona, Switzerland, Cat# CB 38, 

RRID:AB_10000340) was raised in rabbit against recombinant rat calbindin D-28k. Western 

blot of guinea-pig brain homogenate results in a single band at 28KDa (equivalent to protein’s 

molecular weight) and no staining was detected with this antibody in CNS tissue of knockout 

mice for D-28k calbindin [529]. Furthermore, all staining was prevented by pre-incubation with 

recombinant rat calbindin D-28k [515].  

 

Calretinin (CALR) 

Calretinin (Swant, Belinzona, Switzerland, Cat# CG1, RRID:AB_10000342) is a polyclonal 

antibody raised in goat against human recombinant calretinin.  It does not stain brain tissue 

from calretinin knockout mice.  Pre-incubation with purified calretinin protein eliminated 

immunoreactivity in mouse brain tissue and on western blotting it produced a single band at 

29-30k which is equivalent to the protein’s molecular weight [516]. 

 

Neuronal Nitric Oxide Synthase (NOS) 

The neuronal nitric oxide synthase antibody (nNOS, Transduction Laboratories, Cat# N31020) 

is a monoclonal antibody raised in mouse against a 22.3 KDa protein fragment corresponding 

to amino acids 1095-1289 of human brain NOS. On Western blots of rat brain homogenate it 

labels a single band which corresponds to the expected molecular weight [530], 

manufacturer’s data sheet. 

 

Analysis of preparations 
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Whole-mount preparations were viewed using an epifluorescence microscope (Olympus IX71, 

Japan) equipped with fluorophore-specific filters and a computerised stage -mapping system 

which allowed accurate measurement of distance in both x and y axes with 1µm resolution 

[531]. Two independent observers were equally involved with mapping of preparations, each 

mapping approximately half of the preparations from each group.  Locations of all DiI-filled 

nerve cell bodies relative to the application site and their neurochemical content were 

recorded.  Maps of filled nerve cell bodies were generated based on x and y-axes, where x 

was parallel to the long axis of the specimen and coordinates were recorded as millimetres 

from application site. The tissue outline in each map-containing figure is representative of a 

typical preparation and contains coordinates for cells mapped from several animals. Maps and 

histograms of DiI-filled cells were generated using Prism 6 (GraphPad Software, Inc, La Jolla, 

CA, USA) software.  In this paper we use the terms NOS, calretinin (CALR) and calbindin 

(CALB) neurons to mean neurons which have NOS, calretinin and calbindin immunoreactive 

content respectively. Different populations of retrogradely traced enteric neurons were 

distinguished based on their combination of neurochemical content and nerve cell-body 

morphology. 

 

Statistical analysis  

Statistical analysis was performed by Chi-squared test, or Student’s two-tailed t-test for paired 

or unpaired data using IBM SPSS Statistics 23 for Microsoft Windows (release 23.0.3, IBM 

Corp., USA). Statistical differences were considered significant if P < 0.05. All data are 

presented as mean ± SD unless otherwise stated. Lower case “n” always indicates the number 

of animals. 

 

Results 
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All raw data acquired in this study, including nerve cell body mapping coordinates and 

neurochemical and morphological classifications are available 

at http://dx.doi.org/10.25957/5b4c2a573e682 

 

 

 

Figure 3.1. Fluorescence micrograph of guinea-pig myenteric ganglia demonstrating a DiI-

filled Dogiel type I cell traced from circular muscle (a).  Note the dye filled projections running 

within an intermodal strand (short arrow) as well as fibres running parallel to circular muscle 

(long arrow). Scale bar = 50 μm. 

http://dx.doi.org/10.25957/5b4c2a573e682
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Filling from circular muscle (CM) and from myenteric plexus (MP) 

 

Myenteric neurons projecting to circular muscle  

A total of 1267 myenteric nerve cell bodies were retrogradely filled by DiI from the circular 

muscle (CM) layer (average 253 ± 180 cells per preparation, n = 5, see Figure 3.9).  Of these, 

ascending circular muscle neurons comprised 54 ± 4% (709/1267 cells total) and descending 

circular muscle neurons comprised 46 ± 4% (558/1267 cells) of all filled cells. The vast majority 

of CM-projecting nerve cell bodies had Dogiel type I morphology (1188/1267 cells, 94 ± 4%, 

n = 5); 6% had Dogiel type II morphological characteristics (79/1267 cells). 

 

Dogiel type I neurons filled from circular muscle  

Most cells labelled from the circular muscle (624/1188) lacked all three neurochemical markers 

(calbindin, calretinin and NOS). Most of these triple-negative cells were located aboral to the 

DiI application site (563/624 cells) and represented the majority (79%, 563/709 cells) of 

ascending neurons labelled from circular muscle (Figure 3.9 - 3.10). 

 

NOS neurons comprised the second most numerous group of cells traced from circular muscle 

(447/1267 cells). The vast majority had descending projections (435/447 cells, ~ 97%). Indeed 

NOS neurons comprised 95% of all neurons with descending projections to circular muscle 

and made up virtually all neurons with descending projections longer than 2mm. NOS-

immunoreactive neurons consistently lacked both CALR and CALB immunoreactivity (Figure 

3.10). 
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Two smaller populations of Dogiel type I neurons with calretinin immunoreactivity were 

observed; one contained CALR alone (CALR+/CALB- ; 43/1267 cells) and the other had both 

CALR and CALB (CALR+/CALB+; 72/1267 cells). Both populations had primarily ascending 

projections to circular muscle (Figure 3.11).  Only two Dogiel type I cells (of 1267, n=5) traced 

from circular muscle contained CALB alone (CALR-/CALB+). 

 

 

 

Figure 3.2. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a) and  calretinin (b), showing a DiI-filled Dogiel type I neuron (c, arrow) traced from 

circular muscle, which is CALB-/CALR-. Scale bar = 50 μm. 
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Figure 3.3. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a) and  calretinin (b), showing a DiI-filled Dogiel type II neuron (c, arrow) traced from 

circular muscle, which is CALB+/CALR-. Scale bar = 50 μm. 
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Figure 3.4. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a), calretinin (b) and nitric oxide synthase (NOS – c), showing a calbindin-

immunoreactive Dogiel type II cell (CALB+/CALR-/NOS-, long arrow) filled by DiI (d) which 

was applied to circular muscle.  Note its close association to a cluster of calbindin baskets.  

Note also two DiI-filled, NOS-immunoreactive Dogiel type I cells (CALB-/CALR-/NOS+, short 

arrows). Scale bar = 50 μm. 
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Figure 3.5. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a) and  calretinin (b) showing two DiI-filled cells (traced from circular muscle) located 

in calbindin baskets. Note one of the cells is CALB+/CALR+ (long arrow) and the other one is 

CALB-/CALR+ (short arrow). Scale bar = 50 μm. 
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Figure 3.6. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a), calretinin (b) and nitric oxide synthase (NOS – c), showing a calbindin-

immunoreactive Dogiel type I neuron (CALB+/CALR-/NOS-, arrow) filled by DiI (d) which was 

applied to a myenteric internodal strand. Scale bar = 25 μm. 
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Figure 3.7. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a), calretinin (b) and nitric oxide synthase (NOS – c), showing two DiI filled cells 

traced from the myenteric plexus (d).  One of the cells is CALB+/CALR+ (horizontal arrow) 

and the other one is CALB+/CALR-/NOS- (vertical arrow).  Note that both of these cells are 

located in a calbindin basket cluster. Scale bar = 50 μm. 
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Figure 3.8. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

calbindin (a), calretinin (b) and nitric oxide synthase (NOS – c), showing a CALB+/CALR-

/NOS- Dogiel type I DiI-filled neuron (arrow, d) traced from the myenteric plexus.  This class 

of neuron comprised a significant proportion of neurons with long descending projections. 

Scale bar = 50 μm. 
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Dogiel type II neurons filled from circular muscle  

Of the 79 Dogiel type II neurons labelled from circular muscle, most were located close to the 

DiI application site (Figure 3.10), slightly favoring the oral side (46/79 cells). All of the Dogiel 

type II neurons were calbindin-immunoreactive and none of these  were  either CALR or NOS 

immunoreactive. 

 

Populations of myenteric neurons projecting within the myenteric plexus  

DiI applied directly to the myenteric plexus filled a total of 2757 myenteric nerve cell bodies 

(average 514 ± 493 cells per preparation, n = 4, see Figure 3.12). Myenteric neurons with 

descending projections comprised 60 ± 7% (1735/2757 cells total); the remaining 40 ± 7% 

(1022/2757 cells total) had orally-directed projections. Of the myenteric neurons filled from the 

myenteric plexus, 88% had a Dogiel type I morphology (2427/2757 cells); the remaining 12 % 

had Dogiel type II morphology (330/2757 cells; n = 4).  

 

Seven populations of myenteric neurons traced from the myenteric plexus could be 

distinguished by their combinations of nerve cell body morphology and neurochemical content. 

 

Dogiel type I neurons 

Dogiel type I neurons lacking all three markers (NOS-/ CALR-/ CALB-) accounted for 27% of 

all neurons filled from the myenteric plexus (733/2757); Most of these (89%; 649/733) 

projected orally (Figure 3.13).  

 

NOS+ neurons made up just under half (44%) of the Dogiel type I nerve cell bodies 

(1071/2427) filled from the myenteric plexus.  Of these, nearly all (97%; 1044/1071 total cells) 
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cells were located oral to the dye application site.  NOS-immunoreactive neurons accounted 

for about 60% of all descending neurons traced from the myenteric plexus (Figure 3.14, 3.20).  

 

The next largest population of Dogiel type I neurons was immunoreactive for both calretinin 

and calbindin; they accounted for about 10% of all neurons filled from the myenteric plexus 

(285 of 2575).  They had either descending (174 cells) or ascending (111 cells) projections 

(Figure 3.15).  Another population contained calretinin-immunoreactivity without either of the 

other markers.  These amounted to ~6% of neurons filled from the myenteric plexus (154/2757 

cells).  The majority of this type of cell had ascending projections (75%, 116/154 cells; Figure 

3.13). 

 

The last significant population of Dogiel type I neurons consisted of cells immunoreactive for 

CALB without either CALR or NOS (NOS-/CALR-/CALB+, Figure 3.15).  These accounted for 

~7% of filled neurons (184/2575 total cells) and were abundant in descending pathways 

(Figure 3.20), having some of the longest projections seen, up to the full length of preparations 

(35 mm). This type of neuron was rarely filled from the circular muscle. 

 

Six cells retrogradely traced from the myenteric plexus had Dogiel type I morphology with 

CALR and NOS (NOS+/ CALR+/ CALB-, n = 4). Two had ascending projections and all had 

relatively short projections in the longitudinal axis (<7 mm oral or aboral to the DiI application 

site). 

 

Dogiel type II neurons 
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Dogiel type II neurons traced from the myenteric plexus were all calbindin immunoreactive 

and comprised ~12% of all cells traced (330/2757 cells).  The majority of these (67%; 220/330 

cells; Figure 3.14) had descending projections. 

 

Myenteric neurons within calbindin baskets projecting to circular muscle 

About 9% of all DiI-filled myenteric neurons filled from circular muscle, were localized within 

calbindin baskets (113/1267); all of these had Dogiel type I morphology and were almost 

exclusively located aboral to the DiI application site (ie: had ascending projections).  

Considering just ascending neurons projecting to circular muscle, 16% were surrounded by 

calbindin baskets. (Figure 3.16). None were NOS immunoreactive.    

 

Calbindin-basket neurons that project to circular muscle could be classified into three different 

populations based on their neurochemical code (Figure 3.17); CALR+/CALB+ (65/113 cells), 

CALR+ (24/113 cells) and cells with none of the markers (24/113 cells). Of all DiI-filled 

CALR+/CALB+ myenteric neurons projecting to the circular muscle, 90% were surrounded by 

baskets (65 of 72 cells). For DiI-filled CALR+/CALB- CM-projecting neurons, the proportion in 

baskets was 56% and only 3% for cells that lacked any of the 3 markers (NOS-/ CALR-/ 

CALB). Thus, neurons with CALR+/CALB+ neurochemistry that project to the circular muscle 

were largely exclusive to calbindin baskets.  

 

Neurons within calbindin baskets traced from other myenteric ganglia 

Myenteric neurons in calbindin baskets comprised about 7% of all neurons traced from the 

myenteric plexus (190/2757 cells). The majority of these neurons had ascending projections 

(185/190 cells), all had Dogiel type I morphology and shared the same mixture of 
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neurochemical codes as the circular muscle-projecting neurons in baskets (ie CALR+/CALB+ 

or CALR+ alone or lacking all 3 markers - see Figure 3.18). 

 

 

 

Figure 3.9. Composite map showing the distribution of myenteric nerve cell bodies traced 

from circular muscle (n = 5). Neurons traced from circular muscle had significantly shorter 

longitudinal projections than neurons traced from myenteric plexus. Here, each black circle 

represents a single myenteric nerve cell body retrogradely-labelled with DiI. Nerve cell bodies 

were traced from the DiI-application site, located at the intersection of the X and Y axes (pink 

solid lines); the X-axis corresponds to longitudinal axis of colon. Data represents all nerve cell 

bodies traced in 5 preparations (n = 5). The data is plotted within the outline of an example 

preparation for illustration purposes, this does not imply all data was acquired from a single 

preparation (see methods). The black dashed lined located outside the preparation outline 

indicate the ranges within which 95% of nerve cell bodies were located, either side of the DiI-

application site. 
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Figure 3.10. Composite map showing the distributions of three classes of myenteric neurons 

traced from circular muscle from 5 preparations (n = 5); Calbindin Dogiel type II neurons, NOS 

neurons and neurons lacking all three markers (CALB-/CALR-/NOS-). Note the CALB-/CALR-

/NOS+ neurons had a well defined polarity, representing the vast majority of descending 

myenteric neurons to the circular muscle. Conversely, most ascending neurons were CALB-

/CALR-/NOS-. 
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Figure 3.11. Composite map showing the distributions of calretinin-containing myenteric 

neurons traced from circular muscle in 5 preparations (n = 5).  The majority of both classes of 

CALR+ neurons had ascending projections. Grey circles represent all nerve cell bodies traced 

from circular muscle, for comparison (1267 cells; n = 5). 
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Figure 3.12. Composite map showing the distribution of myenteric nerve cell bodies traced 

from myenteric plexus in 4 preparations (n = 4).  X-axis corresponds to longitudinal axis of 

colon. Note the greater range of longitudinal projections among neurons with descending 

projections, compared to ascending neurons. 
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Figure 3.13. Composite map showing the distributions of two classes of predominantly 

ascending myenteric neurons traced from myenteric plexus: those containing calretinin and 

those lacking any of the three markers (n = 4). 
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Figure 3.14. Composite map showing the distributions of NOS+ and Dogiel type II myenteric 

neurons traced from the myenteric plexus (n = 4).  Long descending projections characterised 

both NOS+ and CALB+ Dogiel type II neurons. 
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Figure 3.15. Composite map showing the distributions of calbindin-containing Dogiel type I 

myenteric neurons, traced from the myenteric plexus (n = 4). The majority of Dogiel type I 

neurons which contained calbindin alone had descending projections (174 descending vs. 9 

ascending) whereas the population of CALB+/CALR+ neurons comprised more equal 

numbers of ascending and descending neurons (174 vs. 111). 
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Figure 3.16. Composite map showing the distribution of all myenteric neurons traced from 

circular muscle whose nerve cell bodies were located within calbindin baskets (n = 5).  

Neurons within baskets were almost exclusively ascending. 
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Figure 3.17. The distributions of myenteric neurons traced from circular muscle and located 

in calbindin baskets, based on calretinin and calbindin immunoreactivity (n = 5).  
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Figure 3.18. Distribution of myenteric neurons traced from the myenteric plexus and located 

in calbindin baskets, based on calretinin and calbindin immunoreactivity (n = 4). The shaded 

rectangle represents the 95% projection range of neurons in calbindin baskets traced from 

circular muscle. The occurrence of neurons outside this area suggests that neurons in 

calbindin baskets comprise populations of ascending interneurons as well as ascending 

neurons to circular muscle. 
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Comparison between projections to circular muscle and within the myenteric plexus 

It was instructive to compare distributions of neurons labelled from circular muscle and 

myenteric plexus.  A small majority of DiI-filled neurons traced from the myenteric plexus (60 

+ 7%) had descending projections; for neurons projecting to circular muscle, the 

corresponding figure was less than half (46 ± 4%). Projections traced within the myenteric 

plexus were longer on average than those traced from the circular muscle (ascending: 3.7 ± 

0.8 mm vs 1.7 ± 0.7 mm, descending: 7.4 ± 2.2 mm vs 1.6 ± 0.4 mm; P = 0.004 and <0.001, 

respectively, independent samples t-test, n = 4 and 5, respectively).  Furthermore the longest 

ascending and descending projections within the myenteric plexus were greater than those to 

the circular muscle (14.68 mm vs 9.54 mm ascending MP- vs CM-traced neurons, 

respectively; 34.18 mm vs 14.17 mm, descending MP- vs CM-traced neurons, respectively; 

see also Figures 3.9 and 3.12 for comparison). 

 

Fills from the circular muscle revealed DiI-filled axons running within the myenteric plexus.  

This means that DiI applied to myenteric ganglia (or internodal strands) will fill both circular 

muscle motor neurons and other populations of cells (interneurons and sensory neurons).  

Logically, DiI-filled neurons that project further in the myenteric plexus than the longest CM-

projecting neuron are likely to belong to mixed populations of inter- and sensory neurons.  We 

refer to these as "long ascending” or “long descending” neurons and defined them as lying 

beyond the region containing 95% of CM-projecting neurons for the same neurochemical 

class.  By this definition, DiI applied to the myenteric plexus labelled 349 long ascending 

neurons and 994 long descending neurons (out of 2757 neurons in total; n = 4). Using this 

method, it is possible that we have failed to identify a population of short interneurons with 

projection lengths equal to or shorter than those of motor neurons. Indeed, using intracellular 

dye filling, interneurons have been shown to give off synaptic outputs in the first row of ganglia 

from the dye-filled cell body, on its way to the circular muscle layer [106].  This suggest that 

‘functionally’ short interneurons do exist. 
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The largest population of long ascending neurons had Dogiel type I morphology and lacked 

CALB, CALR and NOS immunoreactivity (135/349 cells). In comparison, relatively few long 

descending neurons (80 of 994) lacked all 3 markers NOS-immunoreactive neurons 

comprised a small number of long ascending neurons (23 of 349 cells), but were the largest 

population of long descending neurons (493/994). CALB-immunoreactive Dogiel type I 

neurons were also abundant among the long descending neurons filled from the myenteric 

plexus.  They represented 16% (160/994) of these cells but were sparse in long ascending 

pathways (9/349 cells, n = 4).  CALR+/CALB+ Dogiel type I neurons comprised a higher 

proportion of long ascending neurons, (23%, 80/334 cells) than long descending neurons (8%, 

79/994 cells; Figure 3.19 – 3.20). 

 

Dogiel type I neurons which contained CALR-immunoreactivity without CALB or NOS were 

mostly ascending (64/96 cells). They made up 18% of long ascending neurons (64/334) but 

only ~3% of long descending neurons (32/994 cells; Figure 3.19 – 3.20). 

 

Lastly, CALB-immunoreactive Dogiel type II neurons made up a significant proportion of 

neurons with long descending projections (18%, 165/994 cells; Figure 3.14) and a much 

smaller proportion of long ascending pathways (38/349 cells). 

 

Neurons in calbindin baskets projecting to circular muscle or to other myenteric ganglia 

Cells in calbindin baskets traced from circular muscle and from myenteric plexus included the 

same three neurochemical populations, although in different proportions.  

 

Of all cells filled by DiI applied to the circular muscle (1267cells) CALR+/CALB+, 

CALR+/CALB- and CALR-/CALB-/NOS- cells in baskets accounted for 58%, 21% and 21% of 
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this subtype respectively.  Of all cells filled by DiI applied to myenteric ganglia, the same 

classes of basket cells respectively made up 28%, 35% and 37% (χ2 test, p < 0.001, adjusted 

standardized residuals > 2, n = 5 and 4). Thus cells in calbindin baskets coded CALR+/CALB+ 

were more likely to project to the circular muscle, compared to the other groups (Figure 3.17).  

 

One hundred and seventeen nerve cell bodies in calbindin baskets traced from the myenteric 

plexus, representing all three neurochemical classes, had oral projections longer than any 

neurons traced from circular muscle. Thus, all three immunohistochechemical classes 

surrounded by calbindin baskets must include both ascending motor neurons and ascending 

interneurons (Figure 3.18).  

 

Circumferential projections 

DiI-filled axons running in the myenteric plexus over several millimetres frequently show 

considerable sideways (circumferential) drift.  Unsurprisingly then, the circumferential 

distributions of myenteric neurons traced from the circular muscle and from myenteric plexus 

(averaged over the length of the preparation) were very similar (5.38 mm orally and 6.20 mm 

aborally vs 4.99mm orally and 6.29 mm aborally, circular muscle and myenteric plexus, 

respectively, see all Figures). However, DiI applied to circular muscle filled extensive 

circumferential projections in secondary branches contacting the DiI bead in the circular 

muscle layer. These secondary branches were substantially disrupted in fills from the 

myenteric plexus (due to local removal of the circular muscle).  This is evident when comparing 

Figures 3.9 and 3.12 close to the DiI application site. NOS+ neurons traced from circular 

muscle had longer circumferential distributions than other classes (average circumferential 

distance from DiI-application site: 3.2 ± 0.34 mm; P < 0.05, versus cells containing no marker 

and CALR+ neurons, Bonferonni post-test, 1-way ANOVA, n = 4) 
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Figure 3.19. The major classes of ascending neurons identified in the present study. Here, 

projection lengths and proportions of Dogiel type I myenteric neurons ascending projections 

are shown.  These cells were not associated with calbindin baskets. The length of neurons 

shown in this figure represents the maximum distance from the DiI application site within which 

95% of neurons of that class occurred (the exact value in mm is given within each neuron 

outline).  % refers to contribution of neuron class to total ascending projections within 

myenteric plexus or circular muscle respectively. 
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Figure 3.20. The major classes of descending neurons identified in the present study. Here, 

projection lengths and proportions of Dogiel type I myenteric neurons with descending 

projections are shown.  These cells were not associated with calbindin baskets. Maximum 

distance away from DiI application site containing 95% of neurons shown for each class of 

neuron (number within each neuron outline in mm). % refers to contribution of neuron class to 

total descending projections within myenteric plexus or circular muscle respectively. 
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Figure 3.21. Schematic diagram showing projection lengths and proportions of Dogiel type I 

myenteric neurons located in calbindin baskets and Dogiel type II calbindin neurons, traced 

from myenteric plexus and circular muscle. Maximum distance away from DiI application site 

containing 95% of neurons shown for each class of neuron (number within each neuron outline 

in mm). % refers to contribution of neuron class to total ascending or descending projections 

within myenteric plexus or circular muscle respectively. 
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Figure 3.22. Schematic diagram showing a model of IPAN connections to specific classes of 

Dogiel type I myenteric neurons located in calbindin baskets and possible connections to 

descending (NOS) pathways, which remain to be determined. 
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Discussion  

 

Our study is the first analysis of motor neurons in the guinea-pig distal colon; in addition, we 

have also described projections of neurons within the myenteric plexus. We were able to 

distinguish seven populations of myenteric neurons based on calbindin, calretinin and NOS 

immunoreactivity, cell morphology and projections. Furthermore, we were able to characterise 

myenteric neurons which receive highly selective input from calbindin-immunoreactive IPANS, 

via calbindin synaptic baskets [503]. 

 

Our work, summarised in Figure 3.22, builds on previously published data from studies based 

on immunohistochemistry and lesion experiments, to support the idea of multiple distinct 

enteric neural circuits. Our results also confirm some of the general principles of ENS 

organization; we saw a significant polarity of myenteric neuron projections, with the aborally-

projecting neurons being more numerous and having longer projections than the orally-

projecting neurons, an arrangement that was first described in the guinea-pig guinea pig small 

intestine [109, 492, 532] and the human colon [253, 274].  We have also shown that neurons 

running within the myenteric plexus have longer projections than neurons projecting to circular 

muscle and therefore include populations of non-motor neurons, likely to be interneurons or 

sensory neurons with long projections.  

 

Neurons projecting to the circular muscle  

Neurons that supply the circular muscle have axons in the deep muscular plexus and can be 

labelled by DiI with a high degree of selectivity. DiI applied to the surface of circular muscle, 

away from any underlying myenteric plexus ganglia or internodal strands, was clearly seen to 

label circular muscle fibres in a circumferential orientation to the application site (See Figure 
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3.1). Individual nerve fibres were seen running parallel to these muscle fibres for significant 

distances, within the deep muscular plexus, before reaching the myenteric plexus layer.  Any 

preparations in which there was DiI labelling the tertiary plexus nerve fibres (supplying 

longitudinal muscle) or directly the axons of the myenteric plexus, were discarded.   

 

Nerve fibres that are labelled by DiI, as they pass through the area of dye application to 

submucosa or mucosa, may ‘contaminate’ the pool of labelled motor neurons, however this is 

unlikely to represent significant numbers. This is supported by the different distribution 

patterns and different neuronal populations obtained when DiI is applied to mucosa directly 

[105]. 

 

Dogiel type I neurons with descending projections were largely NOS immunoreactive and 

therefore likely to be inhibitory motor neurons, which is consistent with a remarkably well 

preserved polarity of inhibitory motor neurons observed across all gut regions and species 

examined [268, 525, 526, 533].  

 

While nearly all descending motor neurons with projections longer than 2mm contained NOS, 

there was a population (22%) of short descending motor neurons that did not contain NOS. It 

is possible that this represents a population of purinergic inhibitory motor neurons that contain 

immunoreactivity for the vesicular nucleotide transporter VNuT [534], a marker for vesicular 

ATP which is one of the other inhibitory transmitters of motor neurons [46, 535]. This may be 

evidence for 2 classes of inhibitory motor neurons, some of which may also contain the peptide 

VIP [10].  Alternatively, it is possible that some of the short descending motor neurons that 

lack NOS immunoreactivity may be excitatory motor neurons with local projections to the 

circular muscle, as described in the guinea pig small intestine [264, 267]. 
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Our work also suggests the existence of at least three populations of Dogiel type I ascending 

motor neurons.  The most numerous group lacks all three markers used in this study; the other 

two contained either CALR alone or CALR/CALB. It is likely that all three classes are excitatory 

motor neurons and would be expected to contain ChAT and possibly a tachykinin [10].  

 

Many of these excitatory motor neurons are surrounded by dense, calbindin-immunoreactive 

nerve endings, previously described as “calbindin baskets”. These baskets arise, at least in 

part, from nearby calbindin Dogiel type II neurons [503], suggesting a very strong, direct 

connection between sensory neurons and some excitatory motor neurons.   

 

Our finding that most of the CALR+/CALB+ motor neurons (90%) were in baskets suggests 

specificity to this connection, since a smaller proportion of CALR+/CALB- neurons were 

surrounded by baskets. These findings challenge previous assumptions that there is only one 

common final excitatory motor neuron pathway underlying intestinal motility.  It also 

establishes the principle that functional classes of neurons may be distinguished by the types 

of synaptic inputs that they receive, as well as by their morphological and 

immunohistochemical coding.    

 

When DiI was applied to circular muscle, a small proportion (6%) of the DiI-filled neurons were 

Dogiel type II with calbindin-immunoreactive content.  These cells are likely to be IPAN’s 

similar to those in the small intestine that project extensively within the myenteric plexus and 

to the mucosa but apparently not to muscle [107, 498]. Dogiel type II neurons have been 

retrogradely labelled from circular muscle in guinea-pig and human proximal colon [269, 274] 

as well as guinea-pig ileum [264, 267], in similar small proportions to our data.  This may 
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represent IPANS whose projections are filled at the circular muscle layer en route to the 

mucosa. Another possibility is that some Dogiel type II cells may have dedicated projections 

to circular muscle.  

 

Calbindin-immunoreactive varicose axons are present in the circular muscle layer [503], and 

they disappear after the overlying myenteric plexus is surgically removed [514].  Also, some 

neurobiotin-filled Dogiel type II cells have projections to circular muscle with varicose endings 

[106] and a functional study of IPANS in guinea-pig ileum showed that they respond to 

circumferential tissue stretch and that this depends on smooth muscle tone [536].  Thus, a 

tantalising possibility is that varicose calbindin fibres in the circular muscle are efferent 

branches of IPANS, which form an axo-axonal reflex pathway capable of stimulating the 

circular muscle by releasing tachykinins, which have previously been shown to cause 

depolarisation and contraction of smooth muscle [537] via NK2 receptors. This could explain 

why pellet propulsion persists in colonic preparations during blockade of nicotinic, purinergic, 

5HT3 and NK3 receptors [538]. 

 

Neurons traced from application of DiI to myenteric plexus  

Application of tracer directly onto an internodal strand of the myenteric plexus filled more 

neurons with descending projections than ascending projections and projection lengths were 

significantly longer than for neurons innervating the circular muscle.   

 

NOS-containing Dogiel type I neurons were the most numerous type of cell traced from 

myenteric ganglia; they and represented 39% of the DiI-filled myenteric cell population. Many 

of these neurons had longer projections than the longest neurons projecting to the circular 

muscle suggesting the presence of descending NOS interneurons, consistent with lesion 
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studies in guinea-pig colon and small intestine [539, 540]. NOS-containing cells accounted for 

41% to the pool of long descending neurons (with projections longer than motor neurons), 

indicating that other populations of long descending interneurons must exist [10]. 

 

Calbindin-immunoreactive Dogiel type II neurons represented only 12% of the myenteric 

neurons retrogradely filled from the myenteric plexus which is lower than the 38% reported in 

guinea-pig small intestine [492]. Whether our data is an underestimate of the actual population 

size for methodological  reasons, or a true difference in the roles played by IPANs in the small 

and large intestine remains to be established.  

 

Calbindin immunoreactivity is present in only 12% of all myenteric neurons in the guinea pig 

colon (Lomax 2000) and these include both Dogiel type I and Dogiel type II neurons.  In 

comparison, Calbindin is present in 24% of all myenteric neurons in the small intestine (Costa 

et al 1996) all of which are Dogiel type II.  This suggests that Calbindin immunoreactivity, per 

se, does not determine or identify the function of enteric neurons. 

 

Calretinin was present in two populations of Dogiel type I neurons; CALRET+/CALB- and 

CALRET+/CALB+. Initial studies of calretinin based on lesion experiments concluded that 

calretinin immunoreactivity is not specific to any functional class of neurons in the guinea-pig 

distal colon, localising in ascending and descending interneurons as well as motor neurons 

[517, 541]. In subsequent studies, these calretinin-containing classes were distinguished by 

colocalisation with other neurochemical markers [10]. Our results support these findings. 

 

CALR+/CALB- nerve cell bodies filled from the myenteric plexus were mostly aboral to the DiI 

application site and many had projections longer than the longest circular muscle motor 
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neurons (Figure 3.13).  This implies that CALR+/CALB- neurons include both ascending 

interneurons and motor neurons. Whether the same neuron can project to both the circular 

muscle and to other ganglia is not clear but seems unlikely based on the lengths of projection.  

Based on their neurochemical coding, CALR+/CALB- neurons are likely to contain ACh and 

TK as co-transmitters [10] and be excitatory. 

 

In contrast, CALRET+/CALB+ neurons had preferentially aboral projections within the 

myenteric plexus (Figure 3.15) with significantly longer projections than neurons projecting to 

the circular muscle.  Again this suggests that some of these neurons are likely to be 

descending interneurons.  These neurons are also likely to be excitatory [10].  

 

Dogiel type I neurons with calbindin alone (CALR-/CALB+) formed another significant class 

with long descending projections, accounting for 10% of all descending neurons (Figures 3.15, 

20). Most of these cells are likely to be interneurons, however stretch sensitive neurons in 

guinea pig distal colon with long descending projections have been demonstrated using 

pharmacological methods [542] and Dogiel type I mechanosensitive S-Type neurons were 

also demonstrated using intracellular recordings [106].  Therefore, this group may also contain 

neurons that are sensory in function.  

 

Lesion studies in the distal colon showed accumulation of calbindin-immunoreactive content 

on both sides of a myectomy, suggesting both ascending and descending projections [499].  

However, subsequent studies based on colocalisation of markers suggested that calbindin 

interneurons in the distal colon are all descending [10]. Our work represents the first direct 

evidence for the existence of this group of descending interneurons in the guinea-pig distal 

colon. Dogiel type I calbindin interneurons have been shown to have descending projections 

in the proximal colon too [514].  
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Neurons in calbindin baskets 

In our previous work, we revealed a specialised arrangement of calbindin-immunoreactive 

nerve endings forming dense, basket-like structures in most myenteric ganglia. Although 

previously described [499], we discovered the source of these structures to be adjacent Dogiel 

type II neurons (IPANS) and revealed their strong association with calretinin neurons [503]. In 

the present work, we have shown that the majority of cells in calbindin baskets have ascending 

projections (Figures 3.16, 3.18, 3.21) to either circular muscle or myenteric ganglia. 

 

Approximately 9% of myenteric neurons that innervate circular muscle were surrounded by 

calbindin baskets and thus are likely to receive direct synaptic input from IPANS.  All had orally 

directed projections and 79% of them were calretinin-immunoreactive. Thus many are likely 

to be excitatory motor neurons as we previously speculated [503]. This is a significant result 

because it suggests two different populations of circular muscle excitatory motor neurons; 

those with baskets and those without. The functional implications of this are that final excitatory 

motor pathways in the colon can be selectively activated by distinct circuits, which may 

responsible for different motor patterns.  

 

Based on lengths of projections, some ascending interneurons were also surrounded by 

calbindin baskets. This also allowed comparison of neurochemical content between calretinin-

immunoreative motor neurons and interneurons. The result of this comparison suggests that 

CALRET+/CALB+ neurons within baskets are likely to be excitatory motor neurons and 

conversely, motor neurons to circular muscle with that coding are almost exclusively found in 

calbindin baskets. This is a remarkable observation, in that it may provide a chemical code for 

a new class of motor neuron in the colon, characterised by strong input from sensory neurons 

(IPANS) and taking part in excitatory ascending reflex pathways. Several motor patterns have 
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been distinguished in the guinea-pig distal colon [490, 543]; establishing the functional role of 

this specific pattern of connectivity is an exciting prospect. 
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Chapter 4 

Characterisation of CGRP-immunoreactive Dogiel type II neurons and their 

connections in the mouse distal colon 
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Introduction 

The enteric nervous system (ENS) is essential for normal function of the mammalian 

gastrointestinal tract [544, 545]. Although capable of autonomous activity, there is a significant 

anatomical and functional association with the rest of the body systems. The ENS is comprised 

of a highly organised network of nerve cells, including its own population of intrinsic sensory 

neurons (intrinsic primary afferent neurons, IPANs). These have been best characterised in 

the guinea-pig ileum [102, 518], however analogous neurons have been demonstrated in small 

and large bowel of other animals [546, 547]. This suggests IPANs may be a common feature 

of the ENS. Data from structural and physiological experiments is consistent with them being 

the ‘first neuron’ of a circuit, likely to play an important role in initiating motor activity by 

activating both ascending and descending pathways in response to either chemical or physical 

stimuli [518]. The morphological characteristics shared by IPANs include a large, oval cell 

body with multiple axonal processes (Dogiel type II classification) that travel extensively within 

the myenteric plexus and project to the circular muscle and mucosa [108-110, 500, 548, 549]. 

Electrophysiological studies consistently correlate the presence of a long-lasting after-

hyperpolarisation (AH) phase following a broad action potential with Dogiel type II morphology 

[103, 121, 125]. However, there is now a more complex picture emerging, with recent 

experiments challenging the concept of neurons with clearly defined and mutually exclusive 

functional roles. Dogiel type II cells receive fast synaptic inputs from other neurons, suggesting 

an active role in integrative activities of neural circuits [129, 130, 550, 551]. Conversely, 

neurons with other morphologies have been shown to be directly mechanosensitive and 

therefore sensory in their function [106]. 

 

We recently described a neural circuit involving calbindin-immunoreactive Dogiel type II cells 

(CALB+; presumed IPANs) in the guinea-pig distal colon. Here, they make strong 

morphological connections with CALR+ excitatory motor neurons to circular muscle and 

excitatory ascending interneurons via CALB+ varicose baskets [110, 552]. This circuit could 
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well represent the underlying neuroanatomy of the ascending excitation seen on local 

mechanical stimulation [506, 528] and also suggests a monosynaptic reflex arc to circular 

muscle. While the guinea pig ENS is the most extensively characterised, it is the mouse that 

is becoming an increasingly important mammalian species for enteric neuroscience research 

as advances in molecular biology techniques allow for gene manipulation and mice with 

specific genetic deletions. Yet, relatively little is known about the circuits underlying mouse 

colonic motor patterns. Whether colonic IPANs make similar connections in mouse as in 

guinea pig remains to be established. This is important since we know that IPANs (and other 

types of enteric neurons) show variations in neurochemical and electrophysiological 

characteristics, with differences being apparent between species and between different 

regions of the gut within the same animal [553].  

 

In the mouse colon, CGRP occurs in intrinsic Dogiel type II cell bodies and processes [554], 

as well as in extrinsic (spinal) nerves and their varicose terminals [229, 504, 555-557]. In this 

study, isolated mouse colon was maintained in organotypic culture, leading to degeneration 

of extrinsic CGRP+ processes, leaving intrinsic nerve structures intact [558-560]. This allowed 

the use of CGRP as an exclusive marker for IPANs and their processes, making possible a 

study of their connectivity with NOS and CALR containing cells. We described baskets of 

CGRP+ varicose fibres in the ganglia of the myenteric plexus and characterised the neurons 

located within them. We also examined nerve terminals in circular muscle, to establish a 

connection to the cells in CGRP+ baskets, based on shared combination of immunochemical 

markers. 

 

Methods 

 

Tissue collection  
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Animal procedures were approved by the Animal Welfare Committee of Flinders University. In 

total, 8 C57BL/6 mice were killed by isofluorane inhalation, followed by the removal of the 

distal colon through a ventral midline incision. The colon was placed in a Sylgard-lined 

dissection dish, containing sterile Kreb’s solution (118 mM NaCl, 4.75 mM KCl, 1.0 mM 

NaH2PO4, 25 mM NaHCO3, 1.2 mM MgSO4, 11.1 mM D-glucose, 2.5 mM CaCl2, aerated with 

5% CO2 in 95% O2, pH 7.4).  

 

After flushing luminal content, the terminal 20 mm of distal colon was incised longitudinally 

along the mesenteric border and pinned tightly to the dish surface, mucosa uppermost. Four 

control preparations were fixed overnight in Zamboni’s fixative (2% formaldehyde, 15% 

saturated picric acid in 0.1 M phosphate buffer, pH 7). The other 4 preparations were subject 

to 3 washes in sterile Krebs solution (each instance in separate 10 ml specimen cups). All 

washes in Krebs solution or phosphate buffered saline (PBS) were performed on a rocking 

tray. Preparations were then transferred to a sterile Sylgard-lined culture dish, pinned flat with 

mucosa uppermost. 

 

Organotypic culture 

Sterile Krebs solution was replaced with culture medium (DME/F12; Sigma Chemical Co.) 

supplemented with 10% fetal bovine serum, 100 μg/mL streptomycin, 100 IU/mL penicillin, 2.5 

μg/mL amphotericin and 20 μg/mL gentamicin (Cytosystems, Castle Hill, NSW, Australia), pH 

adjusted to 7.4. Preparations were cultured for 4 or 5 days in a humidified incubator (37°C, 

5% CO2 in air), with daily exchange of culture medium and constant agitation on a rocking 

tray. Cultured preparations were fixed as described above. 

 

Immunohistochemistry and image acquisition   
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Cultured and control preparations were treated identically after fixation. Preparations were 

washed in phosphate buffered saline (PBS) to remove fixative (10 min x 3; 0.15 M NaCl with 

0.01 M phosphate buffer, pH 7.4). After removing the mucosa by sharp dissection, tissue was 

cleared in dimethylsulphoxide (10 min x 3) followed by PBS washing (10 min x 3). Preparations 

were incubated with blocking solution for 60 min at room temperature (10% normal horse 

serum in antibody diluent; 0.1 M PBS, 0.3 M NaCl, 0.1% sodium azide). Incubation in primary 

antibody was performed on a rocking tray at room temperature for two nights, followed by 3 x 

10 min washes in PBS and incubation in secondary antibody for 4 hours at room temperature 

prior to mounting on a slide in 100% carbonate-buffered glycerol (pH 8.6). The primary and 

secondary antibodies used in this study are listed in Table 4.1 and Table 4.2, respectively.  

 

Preparations were viewed and imaged using an epifluorescence microscope (Olympus IX71, 

Japan) equipped with discriminating filters to match the fluorophores used (Chroma 

Technology Co., Battledore, VT). Images were captured by a Roper Scientific camera and 

AnalySIS Imager 5.0 software (Olympus-SIS, Munster, Germany) via 20x or 40x water 

immersion lenses. Images were stored as TIFF files (1392 * 1080 pixels) and optimized for 

contrast and brightness using Adobe Photoshop (2015 Adobe Systems Software Ireland Ltd) 

prior to further analysis. 

 

Antibody characterisation 

 

CGRP (Rabbit)  

The CGRP antibody (Peninsula Laboratories, Cat# T-4032, RRID:AB_2313775) is a 

polyclonal antibody collected from rabbits immunised with a synthetic rat alpha-CGRP peptide. 

It produces the same staining pattern as reported in multiple studies using several other CGRP 
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antibodies and staining is reduced or completely prevented by preabsorption with rat CGRP 

[561].  

 

Calretinin (Mouse) 

The calretinin antibody used (CALR, Swant, Cat# 6B3, RRID:AB_10000320) is a monoclonal 

antibody raised in mice by immunisation with recombinant human calretinin – 22k [562]. It 

labels a band at 29KDa in brain homogenate of various animal species, including mouse, and 

there is no staining seen in the cerebellum of calretinin knockout mice [516]. In our study, the 

specificity of the calretinin immunohistochemical reaction was determined by omission of the 

primary antibody incubation step; we saw no staining when colonic mouse tissue was 

incubated in secondary anti-mouse antibody alone. 

 

Neuronal Nitric Oxide Synthase (nNOS;Sheep) 

The neuronal nitric oxide synthase antibody (nNOS, Emson, Cat# K205, RRID:AB_2314957 

– generously gifted by Dr. P. Emson) is polyconal and raised in sheep against recombinant 

rat brain neuronal NOS. On Western blots of guinea pig inferior mesenteric ganglion it labels 

a strong band at 160 kDa and a faint band at 40 kDA [415] 

 

Data analysis  

 

Analysis of cell populations within CGRP baskets 

Myenteric plexus preparations labelled with CGRP antibody revealed clusters of intensely 

CGRP-immunoreactive varicosities that formed a basket-like shape around one or more 

myenteric nerve cell bodies (Figure 4.1). In this paper, we refer to these structures as ‘CGRP+ 
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baskets’. Myenteric nerve cell bodies within CGRP+ baskets were assessed for NOS and 

CALR immunoreactivity in 10 randomly selected and photographed ganglia from each 

preparation. To do this, CGRP baskets were identified in photomicrographs of CGRP 

immunofluorescence and a digital outline drawn around them using ImageJ software (NIH, 

Bethesda).  

 

Matching photomicrographs of NOS and CALR immunofluorescence were superimposed and 

then analysed by rapidly switching between the images. Each identified CGRP+ basket was 

scored for the presence or absence of the two markers within a nerve cell body. Analysis of 

myenteric nerve cell bodies inside CGRP+ baskets was performed without prior incubation 

with colchicine and therefore nerve cell bodies were not scored for CGRP 

immunofluorescence (see results / discussion). 

 

Colocalisation analysis of circular muscle nerve fibre varicosities  

In the same preparations, CGRP, NOS and CALR immunofluorescence was imaged in 10 

randomly selected fields of view within the circular muscle (40x, water immersion lens). Since 

NOS+ terminals were most numerous, the filter used to visualize NOS was used to determine 

focal plane depth for each field of view before imaging CGRP and CALR immunofluorescence. 

Focal depth was kept constant while switching filters and no overlap of photographed regions 

occurred. The photomicrographs of the three markers were matched and superimposed using 

ImageJ. CGRP+ varicosities were selected in the field of view by random movement of cursor 

(up to a maximum of 10) and a digital outline drawn around them. By switching between the 

other superimposed images, colocalisation with the other two markers in varicosities was 

scored. This protocol was repeated for the other two markers to obtain proportions of varicose 

fibres containing each marker alone and the other possible combinations of markers (Figure 

4.2, Table 4.4). 
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Colocalisation analysis of CGRP basket varicosities 

To examine colocalisation of immunoreactivity for other markers within CGRP basket 

varicosities, 10 myenteric ganglia from 4 cultured preparations were randomly selected and 

photographed using the 40x lens. All distinguishable varicosities making up the inner-most 

layer of selected CGRP baskets were examined as they are most likely to provide synaptic 

input to a neuron within the basket. The immunoreactive content of every varicosity was 

scored, and then the presence or absence of the other two markers determined using matched 

and superimposed photomicrographs as described above (Figure 4.3, Table 4.4). 

 

Statistical analysis  

Statistical analysis was performed by ANOVA, or Student’s two-tailed t-test for paired or 

unpaired data using Prism 8 (GraphPad Software, Inc, La Jolla, CA, USA). Differences 

between data sets were considered significant if P < 0.05 and all P values are reported as 

exact values to three decimal places, except where P < 0.001. Results are expressed as mean 

± standard error except where otherwise stated. Lower case “n” always indicates the number 

of animals used in a set of experiments. 
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Figure 4.1. Matched fluorescence micrographs of a myenteric ganglion immunolabelled with 

CGRP (a), calretinin (b) and NOS (c). Note in the overlay (d) the CGRP+ baskets (arrow) 

clustered around a group of CALR+ and NOS+ neurons. Scale bar = 20 μm. Fresh-fixed 

tissue. 

 

 

 

Figure 4.2. Matched fluorescence micrographs of circular muscle layer immunolabelled with 

CGRP (a), calretinin (b) and NOS (c). Note varicose nerve fibres running in the direction of 

muscle fibres. White arrow highlights a CGRP+CALR+ varicosity. Scale bar = 20 μm. Tissue 

from organotypic culture. 
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Figure 4.3. Matched fluorescence micrographs of myenteric plexus ganglion immunolabelled 

with CGRP (a), calretinin (b) and NOS (c). Arrow highlights a CGRP+CALR+ varicosity 

contributing to a CGRP basket. Scale bar = 20 μm. Tissue from organotypic culture. 

 

 

 

Figure 4.4. Fluorescence micrograph of a myenteric ganglion and internodal strands 

immunolabelled for CGRP. Note the two morphological subtypes of CGRP+ fibres; major 

smooth fibres (long arrow) and minor varicose fibres (short arrow). Scale bar = 20 μm. Tissue 

from organotypic culture.  
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Figure 4.5. Matched confocal fluorescence micrographs of a myenteric ganglion 

immunolabelled with CGRP (a), calretinin (b) and NOS (c). Note the CGRP+/CALR+, Dogiel 

type II neuron (large arrow) which is contributing to local varicose baskets and making close 

contact with CALR+ neurons (small arrows). Scale bar = 20 μm. Tissue from organotypic 

culture.  

 

 

 

Figure 4.6. Schematic diagram showing a potential model of IPAN connections to specific 

classes of myenteric neurons located in CGRP baskets.  
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Table 4.1. Primary antibodies used in study 

Primary 

antibody 

Raised Immunogen Source/catalog# Dilution 

CGRP Rabbit Synthetic rat 

alpha-CGRP 

peptide 

Peninsula/T-4032 1:1000 

Calretinin Mouse Human 

recombinant 

calretinin - 22k 

Swant/6B3 1:1000 

NOS Sheep Recombinant rat 

brain neuronal 

NOS 

Emson/K205 1:1000 

 

NOS – nitric oxide synthase 

 

Table 4.2. Secondary antibodies used in study 

Secondary antibody Fluorophore Source/catalog# Dilution 

Donkey anti-rabbit IgG Cy3 Jackson / 711165152 1:200 

Donkey anti-mouse IgG Cy5 Jackson / 136608 1:200 

Donkey anti-sheep IgG AMCA Jackson / 713155147 1:200 

 

IgG – immunoglobulin G; Cy3 – indocarbocyanine; Cy5 – indodicarbocyanine; AMCA – 

aminomethylcoumarin. 
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Results  

 

Degeneration of extrinsic CGRP in organotypic culture 

In fresh fixed preparations (n = 4), numerous CGRP+ axons and varicosities occurred in both 

myenteric plexus and circular muscle layers. Within myenteric ganglia dense clusters of 

CGRP+ varicosities formed basket-like structures (CGRP+ baskets) which surrounded nerve 

cell bodies. Relatively thick, smooth axons of intense CGRP-immunoreactivity passed through 

myenteric plexus and circular muscle. Such axons are characteristic of extrinsic spinal 

afferents [229], which degenerate in organotypic culture of isolated colon [560]. We refer to 

these axons here as “major axons”, while varicose fibres with relatively weak CGRP 

immunoreactivity were called “minor” axons (Figure 4.4).  

 

Both axon types were quantified in myenteric internodal strands of freshly-fixed preparations 

(n = 4) and organ cultured preparations (n = 4). After organ culture, major axons decreased 

on average to less than 20% of levels in fresh fixed preparations (1.3 ± 0.3 to 0.2 ± 0.1 per 

internodal strand, P = 0.004, independent samples t-test, n = 4 control, 4 cultured). There was 

no significant change in the minor axon count in organ-culture preparations compared to fresh 

fixed preparations (4.1 ± 0.5 vs 4.1 ± 0.4 fibres per internodal strand, P = 0.977, independent 

samples t-test, n = 4 control, 4 cultured). Myenteric CGRP+ baskets were also quantified, to 

determine whether they were formed by neurons that were extrinsic or intrinsic to the gut. 

There were on average 12.3 ± 0.4 CGRP+ baskets per myenteric ganglion after organ culture, 

compared to 11 ± 1.3 CGRP+ baskets in fresh-fixed tissue (P = 0.337, independent samples 

t-test, n = 4 control, 4 cultured). Taken together, these results suggest that major fibres have 

predominantly extrinsic origins, while both minor fibres and CGRP+ baskets arise from intrinsic 

enteric neurons. 
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CALR and NOS content in myenteric nerve cell bodies 

Analyses were performed on CGRP+ baskets and varicosities in cultured preparations, free 

of extrinsic CGRP sources (n = 4). Triple immunohistochemical labelling revealed NOS+ and 

CALR+ myenteric nerve cell bodies. On average there were 12.8 ± 0.5 NOS+ nerve cell bodies 

and 14.9 ± 2.6 CALR+ nerve cell bodies per myenteric ganglion (n = 4). Myenteric nerve cell 

bodies with the combination CALR+/NOS+ comprised 38 ± 5 % (4.9 ± 0.8 per ganglion; n = 4) 

of all NOS+ neurons and conversely, 33 ± 2 % (n = 4) of all CALR+ neurons. 

 

CGRP+ myenteric nerve cell bodies were also detectable (Figure 4.5), including some located 

within CGRP+ baskets. However their staining was weak and inconsistent, therefore they were 

not taken into account during analysis. CGRP immunoreactivity of nerve cell bodies improved 

significantly after overnight incubation in colchicine, at the expense of immunoreactivity within 

CGRP varicosities, including those making up CGRP baskets.  

 

CALR and NOS content in nerve cell bodies within the CGRP+ baskets 

Most nerve cell bodies surrounded by CGRP+ baskets lacked both CALR and NOS 

immunoreactivity (CALR-/NOS-; 5.8 ± 0.2 per ganglion; 48 ± 3 %, n = 4; P < 0.05 compared 

to any other group; one-way ANOVA, Tukey post-test). CALR-/NOS+ (2.6 ± 0.6 per ganglion; 

21 ± 4 %, n = 4) and CALR+/NOS- (2.4 ± 0.5 per ganglion; 19 ± 4 %, n = 4) were similarly 

proportioned with CALR+/NOS+ (1.6 ± 0.3 per ganglion; 13 ± 2 %, n = 4) representing the 

smallest group. These results are listed in Table 4.3.  

 

Immunohistochemical characterisation of varicosities in CGRP+ baskets and circular muscle. 
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To study CGRP baskets in more detail, the CGRP basket varicosities were quantitatively 

analysed for the presence and colocalisation of calretinin and NOS immunoreactivity and 

compared to varicosities in the circular muscle (n = 4). 

 

CGRP+ baskets 

CGRP+ varicosities represented the greatest number of varicosities in CGRP+ baskets. 

CALR+ varicosities were also abundant, representing on average 80 ± 9 % of the number of 

CGRP+ varicosities, and there was significant co-localization of the two markers in the 

varicosity population (see below; n = 4). NOS+ varicosities were sparse in comparison; they 

averaged 12 ± 5 % the numbers of CGRP+ varicosities.  

 

Most CGRP+ varicosities colocalized with CALR (59 ± 11 %, n = 4), or occurred alone (41 ± 

11 %). None colocalized with NOS. Among CALR+ varicosities, the vast majority colocalized 

with CGRP (75 ± 5 %), and a small proportion occurred alone (22 ± 5 %); few contained NOS 

(3 ± 2 %) and none contained the combination of both CGRP+ and NOS+. Of the few 

varicosities in baskets that were NOS+, most contained NOS alone (63 ± 17 %) or colocalized 

with CALR (34 ± 16 %). Few contained both CGRP and CALR (2 ± 2 %), while none 

colocalized with CGRP alone. Thus, baskets were comprised predominantly of CGRP+ 

varicosities with or without CALR. A small proportion were CALR+ without CGRP, while NOS+ 

varicosities were sparse. These results are summarised in Table 4.4. 

 

Circular muscle 

The circular muscle layer contained nerve fibres with all three markers used in this study, with 

NOS being the most abundant and CGRP being relatively sparse. Of the CGRP+ varicosities 

examined, the most common contained CGRP alone (65 ± 9 %), and a smaller proportion also 
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contained CALR (27 ± 6 %). Few CGRP+ varicosities contained NOS (5 ± 4 %) or both CALR 

and NOS (2 ± 3 %). Among CALR+ circular muscle varicosities, most colocalized with NOS 

(52 ± 8 %) or occurred alone without CGRP (35 ± 3 %). A small proportion occurred with 

CGRP (13 ± 6 %), while virtually none (0 ± 1 %) occurred with both CGRP and NOS. Most 

NOS+ varicosities occurred without CGRP or CALR in circular muscle (80 ± 5 %). A small 

proportion contained CALR (19 ± 5 %). Few NOS+ varicosities occurred with CGRP (1 ± 1 %) 

or both CGRP and CALR (1 ± 1 %). These results are summarised in Table 4.4. 

 

Differences between baskets and circular muscle 

There were significant statistical interactions between chemical code and location (baskets vs 

circular muscle) for CGRP (P = 0.005) and CALR (P < 0.001), but not NOS varicosities (P = 

0.357) by two-way ANOVA (Table 4.4).  

 

Among the CGRP+ varicosities, CALR- / CGRP+ / NOS- and CALR+ / CGRP+ / NOS- 

accounted for most varicosities in both baskets and circular muscle. However, CALR- / 

CGRP+ / NOS- varicosities represented significantly greater proportions of all CGRP+ 

varicosities in the circular muscle (65 ± 9 %), compared to those in baskets (41 ± 11 %, P = 

0.027, n = 4), while proportions of CALR+ / CGRP+ / NOS- varicosities were significantly 

greater in baskets (59 ± 11 %) than in the circular muscle (27 ± 6 %, P = 0.003, n = 4). 

 

Amongst the CALR varicosities, those coded CALR+ / CGRP+ / NOS- were a significantly 

higher proportion of varicosities in baskets than in circular muscle, representing 75 ± 5 % and 

13 ± 6 %, respectively (P = 0.001). Conversely, varicosities coded CALR+ / CGRP- / NOS+ 

represented higher proportions in circular muscle varicosities, 52 ± 8 %, compared to only 3 ± 

2 % in baskets (P = 0.018). Varicosities containing CALR alone comprised modest proportions 
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in both circular muscle and baskets (35 ± 3 % and 22 ± 5 %, respectively), but they were not 

significantly different (P = 0.142). There were no statistically significant differences in the 

proportions of varicosities between these regions where NOS was the reference marker. 

 

Table 4.3 – Proportions of nerve cell bodies inside CGRP baskets by neurochemical profile 

Chemical code % CGRP baskets Ave per ganglion P (Tukey)* 

CALR-/NOS- 48 ± 3 5.8 ± 0.2 - 

CALR-/NOS+ 21 ± 4 2.6 ± 0.6 0.023 

CALR+/NOS- 19 ± 4 2.4 ± 0.5 0.030 

CALR+/NOS+ 13 ± 2 1.6 ± 0.3 0.002 

*Compared to CALR-/NOS- group (one-way ANOVA, Tukey post-test, n = 4). No other 

comparisons between groups showed significant differences. 
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Table 4.4 – Proportions of varicosities by chemical code, compared between locations 

Reference Chemical code Basket (%) Circ. Muscle 

(%) 

Adjusted P 

CGRP CALR- / CGRP+ / NOS- 41 ± 11 65 ± 9 0.027 

 CALR+ / CGRP+ / NOS- 59 ± 11 27 ± 6 0.003 

 CALR+ / CGRP+ / 

NOS+ 

0 ± 0 2 ± 3 0.998 

 CALR- / CGRP+ / NOS+ 0 ± 0 5 ± 4 0.955 

CALR CALR+ / CGRP- / NOS- 22 ± 5 35 ± 3 0.142 

 CALR+ / CGRP+ / NOS- 75 ± 5 13 ± 6 0.001 

 CALR+ / CGRP+ / 

NOS+ 

0 ± 0 0 ± 1 0.862 

 CALR+ / CGRP- / NOS+ 3 ± 2 52 ± 8 0.018 

NOS CALR- / CGRP- / NOS+ 63 ± 17 80 ± 5 0.825 

 CALR+ / CGRP- / NOS+ 34 ± 16 19 ± 5 0.810 

 CALR+ / CGRP+ / 

NOS+ 

2 ± 2 1 ± 1 0.875 

 CALR- / CGRP+ / NOS+ 0 ± 0 1 ± 1 0.862 

Percentages refer to the total reference marker population; P values refer to two-way ANOVA, 

Sidak post-tests (n = 4 in each group). 
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Discussion 

In this study, we describe a neural circuit in mouse distal colon in which IPANs connect with 

sub-populations of myenteric neurons via specialised pericellular baskets of CGRP-

immunoreactive varicose nerve fibres (Figure 4.6). Electron microscopy studies have 

demonstrated the presence of synaptic connections between varicose pericellular baskets and 

neurons that they surround [495, 497]. It is therefore likely that the connections described here 

represent functional synaptic connections. 

 

Source of varicosities in myenteric CGRP+ baskets 

Neurons coded CALR- / CGRP+ / NOS- and CALR+ / CGRP+ / NOS- were the major 

contributors to CGRP+ baskets in the myenteric plexus. CGRP in mouse colon is present in 

Dogiel type II neurons, which are putative IPANs of the ENS. In colchicine treated tissue, all 

CGRP-immunoreactive cells have Dogiel type II morphology and 99% of them also contain 

calretinin [554]. Conversely, the vast majority of CALR+ Dogiel type II cells contain CGRP 

[554]. Furthermore, the use of organotypic culture in our study eliminated any contamination 

by extrinsic CGRP containing nerve fibres. This makes it highly likely that the varicose CGRP+ 

nerve fibres of the pericellular baskets described in our work arise from IPANs. 

 

The only other substantial contributor to baskets were varicosities that contain calretinin alone. 

Myenteric interneurons containing calretinin represent a potential source of these varicosities 

[563]. Additionally, small proportions of Dogiel type II neurons contain calretinin without CGRP 

[554]. Interestingly, the proportions of varicosities coded CALR+ / CGRP+ / NOS- favoured 

baskets over circular muscle among both CGRP and CALR varicosities, but this was not the 

case for those coded CALR- / CGRP+ / NOS-. This may reflect different branching patterns of 

the two populations or some degree of target specificity in differently coded Dogiel type II 

neurons.  
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Sources of varicosities in the circular muscle 

Most CALR+ varicosities in the circular muscle occurred alone or with NOS. These results are 

compatible with those of Sang and Young (1996) [32], who also identified calretinin nerve 

terminals in the circular muscle, with and without colocalized NOS. These are likely to be 

projections of inhibitory and excitatory motor neurons, some of which likely originate from cells 

in CGRP+ baskets.  

 

CGRP+ varicosities in the circular muscle layer were sparse. Very small proportions of these 

colocalised with either calretinin or NOS. Assuming all of them are from Dogiel type II cells, 

they either indicate direct circular muscle innervation by IPANs or possibly represent Dogiel 

type II projections that are passing through the circular muscle layer on their way to mucosa. 

The former possibility is supported by data from direct microelectrode recordings and 

neurobiotin injection into Dogiel type II cells, showing varicose terminals in the circular muscle 

layer of distal mouse colon [106]. 

 

Myenteric neurons within CGRP baskets 

The largest proportion (48%) of neurons within CGRP+ baskets contained none of the markers 

used in our study (CALR-/CGRP-/NOS-), and therefore represent an opportunity for future 

investigation. The rest of the baskets housed neurons with a combination of NOS, CALR and 

CGRP immunoreactive content. 

 

We found that approximately 33% of CGRP baskets were occupied by a NOS-containing 

neuron. NOS is a marker consistently found in inhibitory neurons of the gut, the majority of 

which project in the aboral direction and include motor as well as inter-neurons [563-565]. 

ChAT is a marker of excitatory neurons [532, 563, 566, 567], and generally most (>95%) 
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myenteric neurons either contain NOS or ChAT [568] i.e. they are either inhibitory or excitatory 

in nature. Based on this, it follows the other 67% of neurons in CGRP baskets are likely to be 

excitatory, ChAT-containing cells.  

 

Calretinin is not specific to any functional group of cells, however in our study we can divide 

CALR+ cells into inhibitory or excitatory groups based on the presence or absence of NOS 

respectively. Both of these group of CALR+ cells are present in CGRP+ baskets.  

 

Our finding of CGRP+ neurons in CGRP+ baskets strongly implies connectivity and possibly 

communication between IPANs of the myenteric plexus. Data that shows IPANs in mouse 

receive slow synaptic inputs upon electrical stimulation of circumferentially orientated 

internodal strands supports this idea [116]. And so does the finding of IPANs in guinea pig, 

which project to other IPANs around the gut circumference, thereby forming a recurrent 

network [78, 569]. It is likely that IPANs form similar networks in the mouse colon. 

 

Proposed circuit 

One of the earliest observations in gut physiology is that a focal stimulus triggers ascending 

excitation and descending inhibition [570]. This causes gut contraction oral to the stimulus and 

relaxation aboral, a mechanism likely promoting movement of luminal content in the 

appropriate direction. Based on the findings of this paper, we propose a neural circuit (Figure 

6) that has all the elements necessary to underlie the above mechanism. This comprises 

IPANs, which respond to a stimulus, and in turn activate both excitatory (ascending) and 

inhibitory (descending) neurons in the CGRP baskets. We have detailed a similar circuit based 

on calbindin baskets in guinea pig distal colon, with one fundamental difference; the IPAN 

pericellular baskets did not contain NOS+ neurons [552]. This suggests a lack of direct input 
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from IPANs to inhibitory (NOS-containing) neurons in guinea pig colon and it must be assumed 

that the descending (inhibitory) circuit is activated via interneurons, or possibly that a different 

sensory neuron is involved.  

 

Our study highlights fundamental similarities in neural connectivity of the enteric nervous 

system between species and gut regions, where intrinsic sensory neurons activate ascending 

and descending chains of interneurons and possibly drive motor neurons directly via 

monosynaptic pathways. 
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Chapter 5 

General Discussion 

 

 

“Brevity is the soul of wit”   

(Polonius in Hamlet, William Shakespeare) 
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The gut is the only hollow organ with its own intrinsic nervous system. The enteric nervous 

system (ENS) probably evolved before the central nervous system [6] and controls many (if 

not all) of the functions of the gastrointestinal tract, including motility. It is essential for normal 

life, as highlighted by the morbidity and mortality associated with maladies of its dysfunction 

[571]. The simple yet profound observation of reflex activity in a segment of gut separated 

from the host animal, noted as early as 1755 by the Swiss physiologist Albrecht von Haller 

[572], sparked a scientific investigation that is still ongoing today.  

 

Much progress has been made in our understanding of the many types of enteric neurons that 

make up the ENS [10, 32, 76, 77, 101, 113, 121, 133, 136, 274, 286, 563]. The circuits they 

form [252, 268, 275, 493, 499, 500], the substances required for neurotransmission [18, 63, 

150, 506, 573], the role of interstitial cells and glia [295, 337], the extrinsic systems that 

modulate ENS activity [153, 163, 397, 453, 473, 482, 574-577] and the motility patterns that 

are the result of intrinsic smooth muscle rhythms and enteric circuit activity [152, 487, 578-

582]. Great technical advances in fields such as genetic manipulation and bioelectronics 

medicine rely on the ongoing study of neural circuits to provide the roadmap for their 

application.  

 

The aim of this PhD project was to further our knowledge of neural circuits underlying colonic 

motility in mammals and in particular, how the intrinsic primary afferent neurons (IPANs) relate 

to other functional neuronal groups. We approached this aim from several angles, using 

techniques such as immunohistochemistry, fluorescence microscopy, organotypic culture and 

retrograde tracing.  

 

Initially we explored the idea that calbindin–containing varicose ‘baskets’ in the myenteric 

plexus of guinea pig colon represent specialised structures that allow a concentration of 
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synaptic output onto a neuronal cell body contained within. We based this idea on previous 

observations of Somatostatin- and bombesin - containing pericellular baskets in guinea pig 

ileum [255, 494], VIP containing baskets in guinea pig proximal colon [514] and evidence of 

synaptic connections within these structures [495, 497], suggestive of a functional connection. 

Furthermore, we postulated that these calbindin baskets are formed from a significant 

contribution by IPANs of the colon, and if that was indeed the case, we could determine what 

other neurons receive their synaptic output. 

 

We characterised myenteric calbindin baskets in guinea pig colon both quantitatively and 

qualitatively. One of the most striking features we noticed was that calbindin-immunoreactive 

Dogiel type II neurons were often closely associated to clusters of calbindin baskets, and on 

3-dimensional reconstructions, it was clearly identified that some of these baskets arose 

directly from projections of these presumed IPANs. This was a very exciting detail, not 

previously reported. We were motivated to examine in detail the chemical coding of neurons 

within the myenteric baskets, the basket varicosities and varicosities within circular muscle, to 

characterise the neuronal populations within calbindin baskets and determine if they supply 

the circular muscle. Our decision to focus on NOS- and calretinin-immunoreactive neurons 

was based on previously described neurochemical profiles of different myenteric neuronal 

classes within the guinea pig distal colon [10] and our assumptions that many of these neurons 

likely represent second order neurons within myenteric circuits.  

 

Analysing our data from the immunohistochemistry experiments, we made several interesting 

observations. NOS-immunoreactive neurons are very rarely found in calbindin baskets, given 

that NOS is a marker of inhibitory enteric neurons, this suggests that calbindin baskets contain 

excitatory neurons and therefore inhibitory neurons are not primarily activated by IPANs. This 

was certainly an unexpected finding because we know that during reflex activity, both 
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excitatory and inhibitory pathways are active simultaneously [528]. We speculate that 

inhibitory neurons in guinea pig distal colon are triggered by one or a combination of several 

possible inputs; NOS neurons are mechanosensitive and in fact respond to longitudinal stretch 

by inhibiting circular muscle activity [583], therefore inhibitory pathways may be activated 

directly by stretch. NOS neurons could also be activated via interneurons, which themselves 

could be mechanosensitive or receive excitatory input from IPANs.  

 

We carried out further experiments using a retrograde tracing technique to address our 

hypotheses. We traced myenteric pathways and myenteric projections supplying the circular 

muscle, something that has not been done in guinea pig distal colon before. We found that 

there was indeed an association between calbindin baskets and excitatory myenteric neurons; 

these neurons were further shown to be ascending interneurons and circular muscle motor 

neurons. One of our key findings was that we could classify motor neurons into at least three 

groups, based on their immunoreactivity and association with calbindin baskets i.e their 

synaptic input. This was exceptionally interesting to us and suggests there are different 

populations of motor neurons, rather than a ‘common final motor pathway’. Although the 

functional relevance of these findings remains to be established, we can speculate which 

known motor patterns could rely on these circuits, with a view to testing this in the future with 

functional experiments.  

 

Propulsive motor patterns in the colon are the result of complex interplay between neurogenic 

(nerve-cell mediated) and myogenic (spontaneous muscle activity) mechanisms [152, 584]. 

Myogenic activity, such as ‘ripples’ and slow waves may be observed after blocking all nerve 

function [488, 585]; in rat and rabbit colon, myogenic activity alone is capable of generating 

anally-directed propulsion in vitro, which is not the case in guinea pig [584, 586, 587]. 

However, these motor patterns only occur after chemical stimulation using carbachol (ACh-



234 
 

mimetic drug), their magnitude is significantly lower compared to normal controls and they lack 

directional polarity, suggesting that under physiological conditions, myogenic activity is not 

sufficient for colonic propulsion. Myogenic and neurogenic mechanisms work together through 

a self-sustaining neuro-mechanical loop, whereby luminal content progresses along the length 

of the gut by the sequential activation of polarised reflexes [584]. This mechanism is 

adaptable, the size and consistency of luminal content affects the speed of propulsion [487]. 

 

Several distinct neurogenic motor patterns occur in guinea pig colon devoid of any mobile 

content; transient neural events (TNEs), cyclic motor complexes (CMCs) and distal colon 

migrating motor complexes (DCMMC) have been recorded simultaneously in the isolated 

guinea pig colon [588]. It is very interesting to note that these motor patterns can occur in the 

same preparation either alone or in any combination, at the same time. Data presented in the 

study by Costa et al strongly suggests that specific neural circuits generate each of these 

patterns independently. CMCs and DCMMCs but not TNEs were blocked by smooth muscle 

relaxants (L-type calcium channel blockers), modulation of IPAN activity using TRAM-34 

(antagonist of the calcium-activated potassium channel) disrupted CMCs but not TNEs or 

DCMMCs, only CMCs were sensitive to inhibition of nNOS activity and cholinergic 

neurotransmission via nicotinic receptors was required for CMCs and TNEs but not DCMMCs 

[588]. The circuit we have characterised involves IPANs and ascending excitatory 

interneurons, given the above observations on colonic motor patterns, it is possible that this 

circuit is involved in the generation of DCMMCs.  

 

We were particularly interested to determine if a similar intrinsic neural circuit has evolved in 

the mouse distal colon. Hence, we performed a series of experiments designed to identify 

CGRP-containing intrinsic pathways that belong to intrinsic sensory neurons. Our findings in 

that study both confirm similarities in ENS structure between species but also highlight some 
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major differences. Arguably, the most remarkable observation was that IPANs in mouse distal 

colon associate with both inhibitory (NOS-containing) and excitatory neurons via the myenteric 

CGRP-immunoreactive varicose baskets. This is of course, in direct contrast to our findings in 

guinea pig colon, where calbindin baskets and NOS neurons were mutually exclusive. This 

potentially highlights a major difference in the activation of inhibitory pathways between the 

two species. The caveat with our two studies based on analysis and comparison of 

neurochemical coding in cell bodies and varicosities is that the neurochemical profile of a cell 

body does not always match the one in its varicose projections; therefore, it is vital to have 

functional data for a more complete picture. Colonic motor complexes occur in mouse colon, 

depend on a functional ENS and involve the coordination of synchronised activity of large 

populations of excitatory and inhibitory motor neurons [580, 589, 590]. Cyclic colonic motor 

patterns have also been recorded in several other species [582], including the isolated human 

colon [591]. The enteric circuit composed of a sensory neuron activating excitatory and 

inhibitory myenteric neurons could certainly underlie such motor activity. 

 

A random mixture of both male and female animals was used in all of the above-mentioned 

studies.  Although we have to consider the possibility of differences in ENS neuroanatomy and 

neurochemical profiles between the two sexes, we have not analysed our data based on sex. 

This is following the precedent of the majority of studies on guinea pig ENS as referenced in 

this thesis, and taking into account the greater number of animals that would have to be used 

in order to power the studies for such a question.  

 

Studies that examine neural connectivity within the ENS provide the basis for understanding 

functional observations and guide further experiments. Correlating neural circuits with function 

helps to translate experimental data into a broader understanding of gut physiology, and sets 

up a foundation for the development of possible interventions in gut pathology.  
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