Synthetic Studies Towards Spirangien A and Total Synthesis of (+)-Ascosalipyrone and ent-Micropyrone

A thesis submitted for the fulfilment of the degree of

Doctor of Philosophy

Claire Gregg
B. Tech. (Forensic & Analytical Chemistry), B. Sc. (Hons)
Flinders University

Faculty of Science and Engineering
School of Chemical and Physical Sciences
Adelaide, Australia
May, 2011
Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Claire Gregg
13th May 2011
Acknowledgements

I feel incredibly honoured to have worked for the last 5 years with my supervisor, Associate Professor Michael V. Perkins (Dr Mike). Dr Mike is not only a fantastic supervisor, but also a very kind, patient and understanding person who provided me with the guidance, support and motivation required to get through a very challenging time. I owe Dr Mike a tremendous debt of gratitude for always believing in me, even during those times when I didn’t believe in myself.

I am very lucky to have also shared this experience with my one-time lab-mate, sometimes mentor and always friend Dr Eric Dennis. Eric has leant a constant ear since the start and has provided me with endless help and friendship. I am also very grateful to the many other lab partners I have had along the way, particularly Mel, Julia, Clark, Luke and Jess, for their friendship and assistance.

Most sincere thanks also go to Professor Kevin Wainwright, Dr Martin Johnston, Tricia Butterfield and the various technical and administrative staff in the School of Chemical and Physical Sciences for their support when needed.

This thesis would not have been possible without the love and support of my family and friends. My mum and dad have provided unwavering emotional and financial support through difficult times, without which I could not have succeeded. Finally, deepest thanks to my dearest friends, who love me, take care of me and constantly make me smile.
Abstract

Polyketides are considered not only the largest class of secondary metabolites that share a common biosynthesis, but are also one of the most interesting classes of natural products due to their enormous structural diversity and broad spectrum biological activities. Chapter one introduces the reader to polyketide natural products, including their origin, structure and activity. This is followed by an overview of the aldol reaction, a highly useful synthetic tool in the biomimetic construction of polyketide motifs. The aldol reaction will feature extensively in the studies to follow.

Chapter two describes studies towards the synthesis of spirangien A (1), a highly cytotoxic and antifungal polyketide metabolite, isolated from the myxobacterium Sorangium cellulosum. The synthetic approach to spirangien A exploited the obvious C22-C23 acetate aldol disconnection in linear precursor 158. Model studies were conducted which showed that the diastereoselectivity of this aldol reaction is highly substrate controlled and depends heavily on the hydroxyl protecting group strategy. This model system lacked the C17 stereocentre of the natural product, which evidently exhibited strong 1,7-stereinduction, therefore the model was concluded to be an inadequate representation of the natural product system.

The aldehyde coupling partner 150 was synthesised in 10 steps (10% yield), utilising a highly efficient cross-coupling of zinc homoenolate 144 with (E)-2-bromo-2-
butene (48) to install the C28 stereocentre and two successive Evans syn aldol reactions to give the desired C24-27 stereotetrad and differential protection of the resulting hydroxyl groups. Ketone coupling partner 130 was synthesised from (R)-Roche ester (R)-32 in 16 steps (22% yield), using a mercury catalysed hydration of the terminal alkynyl functionality derived from ethynylmagnesium bromide (35) to afford the methyl ketone, and a syn,syn selective aldol reaction with (S)-Roche ester derived dipropionate equivalent (S)-10 to give the C14-17 stereotetrad. Coupling of the resulting aldehyde 150 and ketone 130 was achieved using a LiHMDS aldol to give 1.2-2.5:1 ds in favour of the desired product 158. The stereochemistry of aldol adduct 158 was assigned by conversion to the corresponding hemiacetal and subsequent nOe analysis. Spirocyclisation of the major product hemiacetal gave 165, from which stereochemical assignment was confirmed. Further manipulation of 165 in 3 steps (removal of the TBS groups, re-protecting with TES groups and finally cleavage of the PMB ether) would result in a formal synthesis of spirangien A, however limited availability of material prevented completion of the total synthesis.
Chapter three details the total synthesis of (+)-ascosalipyrone [(6S,8S)-4] and ent-micropyrene [(6S,8S)-5]. Ascosalipyrone (4), isolated from the obligate marine fungus A. salicorniae, and micropyrone (5), isolated from the plant H. italicum, are two novel, structurally related polyketide natural products. Both compounds have the same 4-hydroxy-α-pyrone containing core structure, differing only by an extra methyl group at C4 in micropyrene (5). Ascosalipyrone was reported as an inseparable mixture of diastereomers, while micropyrone was reported as a single isomer with a non-zero specific rotation.

The synthesis of two potential diastereomers of each natural product from a common intermediate was achieved. A highly diastereoselective syn aldol reaction between both the (R)-77 and (S)-77 enantiomers of Evans’ auxiliary and chiral aldehyde 178 was exploited to produce aldehydes (6R,7S,8S)-177 and (6S,7R,8S)-177. The linear precursors (6R,7S,8S)-193 and (6R,7S,8S)-194 were constructed by addition of β-ketoesters 175 or 176 respectively to aldehyde (6R,7S,8S)-177, with DBU promoted cyclisation to install the 4-hydroxy-α-pyrone ring system. Removal of the protecting groups and Jones oxidation gave two possible isomers of each ascosalipyrone and micropyrone. No epimerisation of the α-stereocentre was observed for the micropyrone isomers but partial epimerisation (3:1) was seen for ascosalipyrone isomers. This was attributed to less steric congestion for ascosalipyrone, which lacks one pyrone methyl. Comparison of the NMR and specific rotation assigned the structure of (+)-ascosalipyrone [(6S,8S)-4] and micropyrone [(6R,8R)-5].
Glossary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>Å</td>
<td>angstroms</td>
</tr>
<tr>
<td>AcOH</td>
<td>acetic acid (glacial)</td>
</tr>
<tr>
<td>Ac₂O</td>
<td>acetic anhydride</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>AR</td>
<td>analytical reagent</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>atm</td>
<td>atmospheres</td>
</tr>
<tr>
<td>9-BBN</td>
<td>9-borabicyclo[3.3.1]nonane</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>bp.</td>
<td>boiling point</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>Bz₂O</td>
<td>benzoic anhydride</td>
</tr>
<tr>
<td>c</td>
<td>concentration (g/100 mL)</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>CAN</td>
<td>cerium ammonium nitrate</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>C₆D₆</td>
<td>deuterated benzene</td>
</tr>
<tr>
<td>CD₃OD</td>
<td>deuterated methanol</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>CSA</td>
<td>10-camphorsulfonic acid</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift (parts per million)</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>(c-Hex)₂BCl</td>
<td>dicyclohexylboron chloride</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMA</td>
<td>N,N-dimethylacetamide</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(N,N-dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>(Sia)$_2$BH</td>
<td>disiamylborane</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin Periodinane</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>ds</td>
<td>diastereoselectivity</td>
</tr>
<tr>
<td>E</td>
<td>entgegen (opposite)</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq.</td>
<td>equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (and others)</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>FGI</td>
<td>Functional Group Interconversions</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>HF</td>
<td>hydrofluoric acid</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond connectivity</td>
</tr>
<tr>
<td>HMQC</td>
<td>heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HRESIMS</td>
<td>high resolution electrospray ionization mass spectroscopy (spectrum)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>ie.</td>
<td>id est (that is)</td>
</tr>
<tr>
<td>i-</td>
<td>iso-</td>
</tr>
<tr>
<td>Ipc</td>
<td>diisopinocampheyl</td>
</tr>
<tr>
<td>IBX</td>
<td>2-iodobenzoic acid</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (Hz)</td>
</tr>
<tr>
<td>KHMDS</td>
<td>potassium hexamethyldisilaside</td>
</tr>
<tr>
<td>LC</td>
<td>liquid chromatography</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamine</td>
</tr>
<tr>
<td>LiHMDS</td>
<td>lithium hexamethyldisilazide</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
</tbody>
</table>
mol mole
mp. melting point
MS mass spectrum
NMR nuclear magnetic resonance
nOe nuclear Overhauser effect
NOESY nuclear Overhauser and exchange spectroscopy
OTf trifluoromethanesulfonate (triflate)
[O] oxidation
Ph phenyl
PMB para-methoxybenzyl
PMP para-methoxyphenyl
ppm parts per million
PPTS pyridinium para-toluenesulfonate
Pr propyl
pyr pyridine
Rf retention factor
rt room temperature
sat. saturated
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
t- tertiary
(Thex)BH₂ thexylborane
TES triethylsilyl
TfOH trifluoromethanesulfonic acid (triflic acid)
THF tetrahydrofuran
TLC thin layer chromatography
TMS trimethylsilyl
p-TsOH para-toluenesulfonic acid
p-TsCl para-toluenesulfonyl chloride
Ts toluene sulfonyl (tosyl)
UV ultraviolet
X4 hexanes
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xp</td>
<td>Evans auxiliary</td>
</tr>
<tr>
<td>μmol</td>
<td>micromole</td>
</tr>
<tr>
<td>Z</td>
<td>zusammen (together)</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
</tbody>
</table>
Contents

Declaration i
Acknowledgements ii
Abstract iii
Glossary vii

Chapter One: Introduction

1.1 Natural Products Chemistry 1
 1.1.1 A Historical Perspective 1
 1.1.2 Secondary Metabolites 2
1.2 Polyketide Natural Products 2
 1.2.1 Biological Activity 5
 1.2.2 Biosynthesis 7
 1.2.3 Sources of Novel Bioactive Compounds 10
 1.2.4 Structural Features of Polyketides 14
 1.2.4.1 Structural Sub-Classes of Polypropionates 14
 1.2.4.2 Cyclisation Modes 17
1.3 Asymmetric Synthesis of Natural Products 21
 1.3.1 The Aldol Reaction 22
 1.3.1.1 Enolate Geometry 23
 1.3.1.2 π-Face Selectivity 26
 1.3.1.3 Substrate Control 28
1.4 Synthetic Targets 36
1.5 References 38

Chapter Two: Synthetic Studies Towards Spirangien A

2.1 Introduction 43
 2.1.1 Isolation of Spirangiens A and B 43
 2.1.2 Structure Elucidation and Modification 45
2.2 Previous Work

2.2.1 Paterson’s Total Synthesis of Spirangien A 47
2.2.2 Kalesse’s Studies Towards 1,3-diene 3 50
2.2.3 Other Synthetic Studies Towards Spirangien A 54

2.3 The Synthetic Approach to Spirangien A 57

2.3.1 Retrosynthetic Analysis 58

2.4 Model Studies

2.4.1 Synthesis of Model Ketone 53 62
2.4.2 Synthesis of Model Aldehydes 85 and 107 71
2.4.3 Model Aldol Coupling 85

2.5 Towards a Formal Synthesis of Spirangien A 105

2.5.1 Synthesis of major Ketone Fragments 130 and 133 105
2.5.2 Synthesis of Major Aldehyde Fragment 150 112
2.5.3 Aldol Coupling and Spirocyclisation 123
2.5.4 Proposed Strategy for a Formal Synthesis 140

2.6 Conclusion 141

2.7 References 143

Chapter Three: Total Synthesis of (+)-Ascosalipyrone and ent-Micropyrone

3.1 Introduction 149

3.1.1 Isolation and Biological Evaluation of Ascosalipyrone 149
3.1.2 Structure Elucidation of Asosalipyrone 150
3.1.3 Isolation and Biological Evaluation of Micropyrone 152
3.1.4 Structure Elucidation of Micropyrone 153

3.2 The Synthetic Approach to Ascosalipyrone and Micropyrone 155

3.2.1 Retrosynthetic Analysis 156

3.3 Synthesis of Ascosalipyrone and Micropyrone 158

3.3.1 Synthesis of Diastereomeric Aldehydes (6R,7S,8S)-177 and (6S,7R,8S)-177 via a syn-Aldol Coupling 158
3.3.2 Studies Towards the Synthesis of an Alternative Aldehyde Intermediate via an anti-Aldol Coupling

3.3.3 Extension of the Linear Chain

3.3.4 Cyclisation, Deprotection and Oxidation

3.4 Structural Assignment

3.5 Conclusion

3.6 References

Chapter Four: Experimental

4.1 General Experimental

4.2 Experimental for Chapter Two

4.2.1 Model Ketone Synthesis

4.2.2 Model Aldehyde Synthesis

4.2.3 Model Aldol Coupling

4.2.4 Ketone Fragment Synthesis

4.2.5 Aldehyde Fragment Synthesis

4.2.6 Major Fragment Union and Cyclisation

4.3 Experimental for Chapter Three

4.4 References

Appendices

Appendix A: Additional Spectral Data for Chapter Two

Appendix B: Additional Spectral Data for Chapter Three