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Abstract 
Restructuring of power systems, along with the integration of renewable energy resources in 

electricity networks, have transformed traditional power electricity distribution systems (EDSs) 

into new active distribution systems (ADSs). In addition, the rapid advancement of technology 

has enabled the bulk utilization of renewable generation units and battery energy storage (BES) 

systems in EDSs. The next step in this trend is the employment of electric vehicles (EV) and the 

coordinated integration of these vehicles into EDS which is investigated in this thesis.  

Following contributions are presented in this thesis to achieve the objectives in section 1.2: 

Contribution 1: A novel directly solvable set of power flow equations 

A new directly solvable power flow problem has been proposed for EDS, introducing a 

connectivity matrix in line with a new indexing of load flow equations. The new power flow 

model is developed generally and is capable to be added to any EDS study as the constraints of 

the model. This means, the power flow calculation does not need to be conducted separately. 

Therefore, the need of load flow calculation methodologies, such as Newton–Raphson method 

(NR) and forward backward sweep-based method (FBS), as well as optimization approaches, 

such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), is eliminated as the 

proposed model characterizes both load flow and energy management constraints in a single and 

unified model. This provides users the opportunity of solving the problem with commercial 

optimization packages, i.e., CPLEX, GAMS, etc., in a single shot with no need to develop further 

optimization approaches involving iterative procedures and load flow calculations. Note that, the 

employed modified load flow equations in line with the connectivity matrix can be used in any 



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

iv 

 

other EDS study, concerning load flow calculation, as the constraints of the model. 

Contribution 2: A general multi-objective energy management model for inverter-based 

integration of RES, and BES system 

The proposed directly solvable power flow problem is used to build up a multi-objective 

energy management model for RES-BES-equipped distribution systems. The first objective of the 

model minimizes total EDS power losses, and the second objective minimizes the voltage 

deviations of each bus over time. These objective functions are optimized being subject to load 

flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The 

proposed energy management model enables both active and reactive power controllability of 

RES and BES systems. New continuous variables are defined for RES and BES representing 

active and reactive power share of these systems during the operation. Accordingly, BES can 

absorb active or reactive power in each time slot and inject it back to the network as active or 

reactive power in another time slot. 

Contribution 3: Integration of EV loading into the energy management model and 

investigating the effects of EV charging on EDS voltage and power loss 

Electric vehicle activity is modelled by probability distribution functions. The EV’s dynamic 

energy balance is modelled based on EV connections and the model is merged into the energy 

management model.  

Contribution 4: The new robust optimization model to characterize uncertainties of RESs 

employing block coordinate decent method  

An adaptive robust optimization (ARO) approach is implemented to deal with the 

uncertainties of load in operating EDS through the proposed energy management model. 

Uncertain parameters are characterized by bounded intervals in polyhedral uncertainty sets. The 
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ARO model is a tri-level min-max-min problem which is not directly solvable. Therefore, a 

decomposition methodology is employed to recast the min-max-min ARO problem into two 

problems including a master problem and a sub-problem. A column-and-constraints (C&C) 

generation methodology is used to iteratively solve the decomposed problem through primal 

cutting planes. Two main decisions are made in ARO, namely "here-and-now" decisions, which 

are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are 

obtained after the realization of uncertain parameters. Several binary variables such as BES 

charging/discharging status must be obtained after uncertainty realizations in the sub-problem to 

be able to compensate the effects of uncertain load/price as recourse decisions. However, this is 

not possible by conventional dual-based robust models as considering these binary variables 

results in a mixed-integer sub-problem and the dual of a mixed-integer model is generally weak, 

non-tractable and complicated. Therefore, instead of using duality theory in solving the sub-

problem, Block Coordinate Descent (BCD) method is used in the proposed model. 

In terms of solution methodology, BCD method is used in the robust approach to iteratively 

solve the inner bi-level max-min sub-problem by means of Taylor series instead of transforming 

it into a single-level max problem by duality theory in conventional ARO models. BCD 

technique was originally devised to deal with single-level problems. By extending the application 

of the BCD technique to solve the two-level max-min sub-problem (resulted from the C&C 

generation technique), it is possible to avoid duality theory in solving the sub-problem.  

Therefore, the associated limitation in considering binary variables in the sub-problem is 

eliminated. In fact, mixed-integer models (even non-linear models) can be solved in the sub-

problem through the proposed BCD robust model. As a result, uncertainty-dependent binary 

variables such as BES charging/discharging statuses can be obtained after uncertainty realization 
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in the sub-problem as recourse decisions, resulting in more system flexibility in compensating the 

uncertainty effects of load. Moreover, the linearization of the dualized inner problem is avoided 

as the Lagrange multipliers are eliminated in this methodology. Thus, the case-sensitivity of the 

proposed model reduces as it does not reflect dual variables. 

The structure of the thesis is given below: 

After presenting an introduction to the objectives and scope of the research in the first chapter, 

the second chapter aims to present a review of recent advancements in both operation and 

planning of electric vehicle charging stations (EVCSs) in EDSs. In this respect, the conducted 

review provides supportive insights on the state-of-the-art operation and planning of electric 

vehicle charging stations in EDSs by introducing the recent trends, methodologies, and novelties 

in this field of study. The literature has been presented considering both qualitative and 

quantitative aspects. Since, the focus of this thesis is on the operation of EVCSs, after presenting 

the literature on operation and planning aspects of these systems, a more detailed operation-based 

review is conducted on the employment of CSs in electricity distribution system to highlight their 

associated effects on EDSs.  

In the third chapter, a new directly solvable and non-iterative load flow model is proposed to 

assist with EDS operation at the presence of EV loading, renewable energy sources (RESs) and 

BES. In particular, a connectivity matrix is introduced to characterize the configuration of EDS 

and provide a feasible general representation of load flow equations. This enables the proposed 

modified load flow equations to be mergeable in any type of EDS study as constraints. This way, 

the power flow model in Chapter 3 is employed and accordingly merged into the proposed 

energy management model which is presented and discussed in Chapter 4. In chapter 3, first he 

IEEE 33-bus electricity distribution system is employed to evaluate the effectiveness of the 

javascript:void(0)
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proposed general power flow model. Results are also compared to other power flow solutions 

such as forward backward Swipe-based method. 

The energy management model in Chapter 4 first integrates the employment of inverter-based 

RES and BES in the operation of power electricity distribution system. the energy management 

model is evaluated through the same system incorporating BES and RES to illustrate the 

effectiveness of the proposed energy management model in Chapter 4. 

Then, EV loading patterns is added to the model in Chapter 5 to investigate the effects of EV 

charging patterns on the operation of active EDSs at the presence of RES and BES systems. To 

do so, the EV load, formed by EV charging patterns, is modelled by probability density 

functions.  

The uncertainty of RES in distribution system is modelled through robust optimization (RO) 

in Chapter 6. The uncertainties are modelled by polyhedral uncertainty sets. Moreover, the 

conventional dual-based RO model is replaced with a new proposed RO model which employs 

block coordinate decent (BCD) technique instead of duality in solving the RO model. As a result, 

the obtained solutions are more realistic and robust as binary wait-and-see variables can be 

obtained as recourse decisions after uncertainty realizations which was not applicable in previous 

dual-based RO models. Moreover, linearization of the dualized inner problem is also avoided as 

Lagrange multipliers are eliminated. The effects of EV charging patterns, however, is 

investigated on a relatively smaller, but real-world, system which is the distribution system of a 

suburb in Adelaide, Australia. The results for operation of EVs are given in this chapter and 

different comparisons are conducted. Note that, the BCD robust model is also conducted on the 

last case study to characterize the uncertainties of RES generation in the model.  

Finally, Chapter 7 presents a summary of the conducted research in this thesis along with 
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future research plans. 

Further studies and application conducted by the proposed robust and BCD robust 

optimization models in this thesis are presented in Chapter 8 for interested readers. In chapter 8, 

two studies are presented. These studies are among the published studies.  

 

Keywords: 

Adaptive robust, block coordinate decent method, Connectivity matrix, directly solvable load 

flow, electricity distribution system,  non-linear programing, plug-in electric vehicles, Power loss 

minimization, robust optimization, storage system, uncertainty, voltage stability, voltage 

deviation.  
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1. Introduction 

Problem Description 

Environmental concerns such as global warming and fossil fuel limitations have been of 

considerable importance for energy provision sector in 21st century [1]. The transport sector 

plays one of the main roles in air pollution resulting in road transport electrification, whereby 

employing electric vehicles (EVs) seems to be a reasonable alternative, compared to combustion 

vehicles [2]. To supply the upcoming wave of electricity requirements by EVs, further energy 

alternatives such as renewable energy sources (RESs) should be integrated into electricity 

distribution system (EDS). In today's energy sector RESs, such as solar photovoltaic (PV) and 

wind turbine (WT), as well as battery energy systems (BESs) have been remarkably highlighted 

in practice. A simple schematic representation of a modern EDS with these elements is given as 

Fig. 1-1 [3]. CS refers to charging station. 

 

Fig. 1-1. A sample schematic representation of a sustainable EDS 
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The employment of RESs increments the quality and flexibility of EDS in supplying EVs on 

one hand, and facilitates meeting the global requirement of air pollution improvement and carbon 

emission reduction, on the other hand [4]. However, RES generation along with the customers' 

emerging proactive role has introduced several challenges such as energy imbalance, flickers, 

reverse power flow, and voltage rise in EDSs [5]. EVs with vehicle-to-grid (V2G) functions can 

be regarded as ideal assets to level the generation and consumption of electricity throughout the 

EDS by coordinately integrating into the system [6]. However, EV integration into the EDS must 

be implemented based on reasonable operational decisions considering system's constraints such 

as line congestion, voltage deviations, etc. 

Although, a proper operation-based energy management model can successfully provide a 

promising operational status for distribution system operators, the volatile nature of RESs still 

poses a noticeable effect on the optimal operation of distribution systems in practice. In fact, 

ignoring the forecast uncertainties associated with RES and EDS's load can result in non-optimal 

or even infeasible energy management solutions, while, considering these uncertainties along 

with the arbitrage abilities of V2G technology through EV charging can significantly improve the 

distribution system efficiency and its energy management [7]. 

Research Questions 

Research questions are added as the required tools to solve the problem.  

1) A new EDS energy management model is required to model the interactions between 

RESs, BESs, and EDS in the network as a whole while considering the inverter-based 

operation of these systems, as in the modern EDS operation, inverters can play a 

noticeable role in providing reactive power support to the network.  
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2) A new robust optimization model is required to first cope with the associated problems 

with scenario-based models, and also be applicable when characterizing binary decision 

variables after uncertainty realizations which is not applicable through conventional dual-

based RO models. 

Research objectives and scope 

This research investigates the optimal energy management of electricity distribution systems 

at the presence of EVs, by which the overall system power loss, energy cost, and renewable 

energy curtailments are minimized. 

In particular, the aims are: 

1. Providing an efficient energy management for electricity distribution system by coordinated 

integration of RES and BES systems at the presence of EVs. Using the arbitrage ability of BES 

charging/discharging as well as reactive power controllability of RESs, the system operator (SO) 

would be able to maintain the distribution system operational constraints such as voltage and 

frequency tolerance. In fact, the analysis of this thesis is finally conducted to investigate the 

effects of EV employment of EDS voltage and power loss.  

2. Maximizing/Minimizing the integration/curtailment of renewable energy sources (RESs) in 

electricity distribution system. This would be based on voltage deviations due to the sudden 

increase in  volatile RES generation. The arbitrage ability of BES technology is also used for this 

purpose. 

3. The overall system costs is minimized considering the upstream market energy prices, the 

arbitrage anility of BES technology, and the energy management model which handles the 

integration of renewables into electricity distribution system at the presence of EV charging 
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pattern. 

4. Providing immunized solutions against the uncertainties associated with RES generation 

through a novel robust optimization approach. Unlike previous uncertainty characterizations 

models, the novel robust model in this research is capable to provide more practical results for 

system operation. 

Dataset 

The IEEE 33 bus system is considered as the test systems in the case studies which have been 

used in numerous studies. Moreover, a realistic 6 bus system in Adelaide, Australia, is used as the 

final case study under uncertainty. More detailed data set is presented in the body of this thesis. 

Thesis organization 

The organization of this thesis is as follows: 

In Chapter 2, the background of the study is presented. The novel directly solvable EDS power 

flow model is given in Chapter 3. Chapter 4 is dedicated to the general multi-objective energy 

management model. The EV load model in EDS energy management model is presented in 

Chapter 5. The BCD robust model is introduced and discussed in Chapter 6. The thesis is 

concluded in Chapter 7. Chapter 8 represents further conducted studies at the time of this thesis 

that relate to the novel BCD robust model.  
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2. Literature Review, Knowledge Gap, 

Motivations, and Contributions 

This chapter presents the literature review divided into three parts including: 

1) Literature review on EDS energy management as a whole at the presence of RESs, BESs, 

and EVs. 

2) Literature review on uncertainty modelling approaches in electricity distribution system, in 

which probabilistic, stochastic, and robust models are reviewed and the advantages and 

disadvantages of each are counted. 

3) Literature review on EVCS integration into electricity distribution system, in which we 

review the important undertaken steps in characterizing EVCS to enhance the existing EDS 

energy management solutions.  

Finally, the knowledge gap, forming the main motivations behind this study, are presented.  

The contribution of this chapter is presented in the following accepted published research 

article which was not online at the time of submitting this thesis: 

M. Aghamohamadi, A. Mahmoudi, John K. Ward, M. H. Haque, "Review on the State-of-the-art 

Operation and Planning of Electric Vehicle Charging Stations in Electricity Distribution Systems," 

2021 IEEE Energy Conversion Congress and Exposition (ECCE), Toronto, Canada, 2021. 

 

The student has investigated the reviewed studies. Analysis and interpretation of the reviewed 

papers has been done by him and the co-authors. A draft of the paper was prepared by the 

student. Revisions and comments were provided by the co-authors so as to contribute to the 

interpretation. 

The literature review is as follows: 
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2.1. EDS Management at the Presence of EVs, BESs, and RESs 

The optimal operation of distribution system at the presence of EVCSs was presented by [8] to 

enhance the reliability of the distribution system. However, EDS constraints such as 

voltage/current tolerance weren’t considered in the study of [8]. Authors in [9] present a model to 

mitigate a huge number of EVs' charging patterns in which the EDS constraints are ignored, 

similar to [8]. This is a disadvantage as the main idea behind coordinated EV charging in EDS is 

to charge EVs when the system is not under pressure (off-peak hours) and use V2G technology 

when the system needs support (peak hours) [10]. In [11] a smart charging strategy was proposed 

for optimal integration of electric vehicles into electricity distribution system through V2G 

technology. The study of [11] showed that, the small energy trade between a single EV through 

V2G would not be considerable compared to the EDS energy trade scale. Therefore, the EVs 

support for distribution system is effective if an EV aggregator or an EVCS operator acts on 

behalf of EVs. A two layered charging strategy for a parking lot equipped with EV charging 

points was proposed in [12] considering realistic vehicular mobility and parking patterns. 

However, the effects of EV charging patterns on EDS were ignored. This becomes vital when 

EDS is under peak load or configuration-based stress according to which, the reliability 

constraints of the system may be jeopardized. Authors in [13] investigated the effects of different 

EV penetration levels on EDS reliability and operational constraints such as voltage deviation 

limitations and power losses. However, the study of [13] ignored the reactive power throughout 

the distribution system. In fact, most of the studies presented in the literature have investigated 

the effects of EV charging patterns on EDS through real power exchange only. In [14], a 

charging pricing methodology was proposed for EV charging to enhance the voltage profile in 

EDS, characterizing the EVCS's income and EV owners' response to price signals. However, the 
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study of [14] ignores the reactive power in its model. This issue also exists in the study of [15] 

where the real power demand of EVs is controlled through a balanced charging strategy by which 

both EV owners and system operator can achieve maximum benefits. A two layer energy 

management model was proposed in [16] to prevent overloading in EDS transformers by 

controlling EVs real power during charging. It deserves mentioning that, the studies [8, 11-13], 

similar to studies [14-16], only managed the real power of EVs in their models. However, EVs 

can also be used to inject/absorb reactive power to/from the grid with the help of their on-board 

bidirectional battery chargers [17]. Moreover, the inverters in EVCSs can also be employed in 

providing reactive power and voltage stability for the upstream network.  

The correlation between wind energy generation and EV integration was considered through 

EDS reconfiguration to reduce power losses in [18]. Although RES has been considered in the 

study of [18], it diEDS't characterize neither V2G nor BES in the energy management model. A 

summary of the above literature review, on EV, BES, and RES integration into EDS energy 

management, is presented by Table 2-1. Accordingly, a comprehensive energy management model 

is required to model all these elements at the same time while acknowledging the active/reactive 

power trade in the system, which forms the first motivation of this thesis.  
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Table 2-1. Approaches in EV integration into EDS energy management  

Reference No. EDS constraints RES integration BES integration V2G technology 

[6]     

[8]     

[9]     

[11]     

[12]     

[13]     

[14]     

[15]     

[16]     

[17]     

[19]     

[20]     

[18]     

 

2.2. EDS uncertainty modeling 

Partial study has focused on characterizing RES forecast uncertainties in distribution systems, 

so far. In [21], an energy management model was proposed for EDS to reduce prediction error for 

photovoltaic generation using feature mapping-based kernel function. The study of [21], in fact, 

did not optimize the energy management model based on uncertainties, as it aims to only reduce 

errors of RES generation, while these errors may change in practice. In other words, it provided 

more accuracy in terms of input RES generation prediction and the energy management model 

was solved as a deterministic problem (no uncertainty characterization was conducted). In [22] 

and [23], the uncertainties associated with renewable energy sources were modelled by 

probability density functions formed by Monte Carlo simulation. Such density function for solar 
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radiation is given by Fig. 2-1 [23].  

 

Fig. 2-1. Solar irradiance histogram and its estimated pdf [23] 

The scenario-based models of [22, 23] are subject to non-tractability which is due to the high 

required number of scenarios, especially, when several uncertain parameters are considered and a 

proper level of feasibility against different realizations of uncertain parameters is required. To 

obtain more tractable solutions, Stochastic Optimization (SP) was employed in [24] to 

characterize the uncertainties of renewable energy sources in distribution system. SP was also 

employed in [25] in a multi-objective economical/environmental operation of distribution system 

to model the uncertainties of wind generation over time. Similar SP models were also proposed in 

[26-29]. Despite the advantages of the aforementioned SP models of [24-29], they face the lack 

of tractability which is due to the required full distributional knowledge of uncertain parameters, 

which may not be easily available [7]. For example, in [29], the required scenarios for load, 

electricity price, wind power, and PV power are given in Fig. 2-2 parts A, B, C, and D, 

respectively, illustrating the huge required input data for scenario-based and stochastic models. 

Moreover, if the uncertain parameters deviate from the considered scenarios, the performance of 
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SP cannot be guaranteed against the uncertainties. This issue is also true for probabilistic models 

in [22, 23].  

 

Fig. 2-2. The uncertainty scenarios employed by [29] 

To cope with the aforementioned problems in probabilistic and stochastic models, robust 

optimization (RO) has been recently employed in the energy management of distribution system 

to characterize the uncertainties of load and renewables. RO considers the worst-case realization 

of uncertainties instead of modeling them through various scenarios in SP, resulting in a tractable 

problem with a moderate computational burden. A comparison between scenario-based model 

and RO is provided in Fig. 2-3 which shows the difference in SP and RO in terms of 

characterizing the uncertainties of electrical energy [29]. Fig. 2-3A represents both the forecast 

value and the actual realization in real world. To model the forecast uncertainties scenarios are 

generated as forecast values which is presented by Fig. 2-3B. However, in RO models, 

polyhedral bounded intervals are used instead of scenarios i.e., Fig. 2-3C. 
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Fig. 2-3. Comparison between SP and RO models [29] 

In [30], a robust optimal power flow (OPF) was proposed, characterizing the uncertainty of 

RESs in the distribution system. In [31] a data-adaptive robust optimization is proposed for 

economic dispatch of active distribution systems to characterize the uncertainties of RES. 

However, no BES was considered in the model of [30, 31], while the arbitrage ability of BES can 

significantly improve the renewables integration into distribution system. The data-adaptive 

model in [31] is conducted to reduce the conservativeness of RO which is due to the 

consideration of worst-case realization of uncertain parameters. However, it is subject to an 

extensive mathematical burden, which is due to the consideration of different uncertainty 

scenarios in solving the problem, while this can be achieved by examining the robust solutions 

(after solving the RO model) against trial scenarios. The forecast uncertainties associated with 

RES were modeled through RO in [32, 33] in which the tri-level min-max-min problem was 
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solved through the column-and-constraint generation (C&CG) methodology presented by [34], 

while, duality theory and linearization techniques (such as big-M technique) were used to recast 

the inner bi-level max-min problem into a single-level max problem. Despite the advantages of 

[30, 32, 33], they are subject to an extensive mathematical/computational burden which is due to 

the employment of decomposition methodology, duality theory, and big-M transformation 

technique when solving the RO problem. Moreover, the use of duality theory limits the 

application area of RO in terms of characterizing mixed-integer models in the second-stage 

problem (the inner max-min problem). This is due to the fact that, dual of a mixed-integer model 

is generally week, non-tractable and complicated [35]. This issue becomes more important when 

binary variables such as BES charging/discharging status need to be obtained after uncertainty 

realizations in the second-stage problem. Due to this limitation, the BES charging/discharging 

status, which is controlled by binary variables in [32, 33], was modelled in the first-stage problem 

with no uncertainty characterization, while, BES can optimally contribute to reduce the impact of 

uncertain production on the system by absorbing/injecting power in cases of surplus/deficit of 

renewable generation. Therefore, BES charging/discharging status should be adjusted in the 

second-stage problem in the face of uncertainties rather than the first-stage problem, which is 

solved prior to uncertainties. This conclusion forms the second motivation of this study.  

A comparison between the reviewed studies [22] - [33] is given by Table 2-2. 
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Table 2-2. Comparison between uncertainty approaches 

 Uncertainty modeling approach Considered uncertainty source 

Reference No. Probabilistic Stochastic Robust load RES  Price  

[22]        

[23]       

[24]       

[25]       

[26]       

[27]       

[28]       

[29]       

[30]       

[31]       

[32]       

[33]       

 

2.3. EVCS Operation and Planning in EDS 

Considering the environmental concerns associated with internal combustion engine (ICE) 

vehicles in recent years, a significant increase has been observed in transportation electrification. 

One of the trending approaches in this field is the EV employment which is a green alternative 

for ICE vehicles and can result in reducing CO2 emissions, air pollutions, greenhouse gases, etc. 

Although, EVs are environment friendly, these assets can pose noticeable effects on the planning 

and operation of EDS. This is because each EV can be considered as three apartment units in 

terms of electricity consumption, which is a serious issue for EDS given the considerable number 

of EVs in today's transportation system. In particular, the new escalating electricity demand by 
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EVs may result in serious EDS technical problems such as supply imbalance, unwanted 

harmonics, energy shortage, and voltage/frequency deviations. Despite the operational 

disadvantages associated with non-coordinated charging of EVs, these vehicles can become 

useful assets to EDS as many recent EVs are equipped with V2G technology which enables the 

energy trade from EVs to EDS [36]. This provides further operational flexibility and support for 

EDS if EVs are coordinately integrated. In this context, EV charging stations (EVCS) play a 

crucial role as they are responsible for the coordinated integration of a considerable number of 

EVs in EDS operation at a time [37]. EVCSs can level the load curve through peak shaving or 

valley filling and, accordingly, enhance the stability and performance of the EDS. EVCSs can 

also provide support for EDS when concerned by coordinating intermittent renewable energies, 

such as wind farm (WF) and Photovoltaic (PV) systems [38]. Considering the crucial role of 

EVCSs in EDS, however, inappropriate siting and sizing of EV charging stations could have 

negative effects on EDS [39]. This is important as EVCSs are not the only elements in EDS as 

many variables forming RESs, large-scale battery energy storages (BESs) are included in the 

conducted operation/planning models [40]. Although, there have been partial review studies on 

EV integration into EDS [41], no study has focused on the planning and operation of EV 

charging stations in EDS, while, these systems are about to be broadly installed in electricity 

distribution system in the coming years. Therefore, there is an urgent need for a proper summary 

on the operation and planning of EVCSs and their associated impacts on EDS to better reflect the 

pros and cons associated with these assets. The current section reviews the state-of-the-art 

operation and planning of electric vehicle charging stations as well as their associated impacts on 

electricity distribution system. The recent studies are introduced considering both qualitative and 

quantitative aspects. Study areas in operation/planning of EVCSs are introduced in Section 2. 

javascript:void(0)
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Studies focusing on the operation of EVCSs in EDS include five subsections concerning energy 

management, market participation, EDS support, renewable energy system (RES) integration, 

and demand response (DR) programs. Studies focusing on the planning of EVCSs include EVCS 

planning considering EDS operational constraints, EDS reinforcements, traffic and transportation 

constraints, coupled traffic-electric network constraints, and RES reinforcements in EDS. In 

Section 3, pros and cons of the reviewed studies are introduced. A quantitative study is also 

conducted in Section 4 on the current literature. Finally, highlights, observations, and possible 

future studies are presented in Conclusion Section. 

Electric vehicle charging stations are considered as hot load points in EDS, if working in a 

high percentage of their capacity [42]. Therefore, operation of EVCSs and their interaction with 

upstream EDS can become challenging, considering the dramatic increase in EV employment in 

the last and the coming years. Uncontrolled and unregulated charging of EVs can also result in an 

unexpected peak load at a specific time, which may exceed the capacity of the distribution grid 

[43]. Generally, there are two main solutions to meet the required electricity consumption by 

EVCSs and avoid operational issues such as loss of load, voltage/frequency imbalance in EDS. 

The first solution is the optimal operation of EVCS's and their interaction with EDS and other 

elements such as RESs and BESs systems in order to meet the required electricity by EVs while 

using the capacity of EDS [44]. The second solution is the EDS enforcement which requires an 

optimal planning to increase the capacity of EDS with different alternatives [45]. 

Optimal Operation of EVCSs in Distribution System 

In the recent years, there has been a considerable focus on optimal operation and integration of 

EVCSs and each study has investigated these solutions through different perspectives. In the 

current review, five main important aspects of EVCS operation are presented and discussed as 
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follows:  

Energy management: The rapid increasing demand of EVs has significantly reformed the net 

electricity consumption pattern in EDS among different sectors, i.e., residential, commercial, 

industrial, etc. This accordingly changes the power flow profiles and voltage/frequency status in 

EDS. Some studies have focused on the energy management of EVCSs equipped with RES 

and/or BES systems to maximize their benefits through optimal interactions with upstream EDS. 

To more realistically reflect the EVCS electricity demand, [46] presented a mathematical model 

for EV charging patterns in a rapid EVCS. The study also provided a forecast on EV arrival rates 

and the EVCS's demand. Despite their extra demand, EVCSs can provide remarkable 

opportunities for improving EDS energy management and grid support if coordinately operated 

[47]. In [48] a fuzzy-based control methodology was proposed for coordinated integration of EVs 

in a EVCS through V2G, while, dynamic load profile was employed to evaluate the effectiveness 

of the model in peak shaving and valley filling. Authors of [48] extended their work in [49], for 

real-time support of distribution system considering possible energy dispatch approaches at 

substation level. In [50] a systematic co-modeling and simulation framework was proposed to 

investigate the impacts of PEV charging facilities on the electric distribution system and 

transportation system. Six more references will be added in the full version of the paper.  

RES integration: Several studies have investigated the effectiveness of EVCSs in 

maximizing RES integration in EDS. In [51] a rule-based energy management strategy was 

proposed for Photovoltaic-assisted EVCSs to participate in upstream network ancillary services. 

An adaptive EVCS charging energy management model was introduced in [52] for optimal 

operation and reconfiguration of EDSs with high penetration of PVs. Integration of PV system 

was also considered in the proposed model of [36] to assist with EV charging patterns regarding 
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energy prices, V2G interactions, and reserve market dynamics. In recent years, many EVCSs 

have become equipped with PV systems to assist with EV charging patterns. In [43] an energy 

management for a solar-powered EVCS was introduced to optimally support the EDS network. 

Three more references will be added in the full version of the paper. 

EDS support: Considering the availability of V2G technology in EVs, EVCSs can play the 

role of an interface between a group of EVs and EDS to provide support for upstream network. 

This support can result in voltage/frequency stabilization, power loss minimization, reliability 

improvement, etc. [53]. A considerable number of studies have been investigating the possible 

EDS supporting opportunities by optimal operation of EVCSs, considering V2G availability. In 

[54] an operation managing strategy was proposed to reduce the cost of EV charging while 

providing technical support for upstream distribution system through V2G aggregators. The study 

of [43] proposes an efficient energy management approach for residential PV systems to power 

EVs while employing the V2G technology to mitigate the PV penetration impacts and allow the 

growth of PV systems in power grids. 

Market participation: Several studies have focused on the market participation concepts, 

such as bidding strategy, relying on the arbitrage ability of EVCS (due to V2G technology). In 

fact, EVCSs can be considered as prosumers with the ability of absorbing/injecting power 

from/to the upstream EDS in different time periods to maximize their daily benefit and meet the 

EV charging patterns at the same time [44]. In [55] the optimal model of an EV route has been 

proposed based on upstream market pricing, in particular time-of-use (TOU) pricing, to  

minimize the total distribution costs of the EV route while satisfying operating constraints. A 

learnable Parthenon-genetic algorithm with integration of expert knowledge about EV charging 

station and customer selection was developed to solve the model in [55]. An online pricing 
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scheme for EV charging was proposed in [56] with the application in EVSCs. According to the 

model. A myopic charging station was considered in the model of [56] illustrating that there 

exists a pricing mechanism which jointly maximizes the social welfare and the profit of the 

charging station when the charging station knows the utilities of the users. A price incentive-

based charging navigation strategy has been proposed for optimal charging/discharging 

management of EVs in EVCSs in [57]. The study considered the price variations and the spatial-

temporal influence of EVs' charging decision, especially the simultaneous charging requests. 

Four more studies will be introduced in the final version of the paper.  

Demand response: EV load distribution is skewed toward the stations located in the hotspot 

areas, instigating longer queues and waiting times, particularly during afternoon peak traffic 

hours. This can result in major challenges such as the increase of peak load and 

voltage/frequency instability. These cross effects have motivated researchers to conduct a series 

of studies to exploit the potential of EVCSs in demand response, especially in peak periods. In 

[58] a new dynamic pricing has been proposed to reduce the overlaps between residential loads 

and EVCSs load through EV load shifting in peak periods. The study results in dynamic prices to 

motivate EV owners to select EVCSs with lower prices which levels the distribution system's 

load. The ability of EVCSs in active participation in demand response provision has been shown 

in [59]. In the conducted study, an EV queuing model is employed to form the EV parameters 

associated with charging patterns. The model is then used for smart load control of EVCS to 

maximize the DR participation. The study of [59] shows a significant potential of EVCSs in DR 

provision by comparing the results with uncontrolled EV charging. DR participation of EV 

owners towards time-of-use tariff was considered in the optimal planning of EVCSs in [60]. The 

proposed model involved distribution system manager (DSM) benefit maximization derived from 
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the appropriate use of EVCS for charging and discharging vehicle batteries, reliability 

improvement and supplying network's load demand at peak times. Two more studies will be 

added to this section in the final version. 

Optimal Planning of EVCSs in Distribution System 

Regarding the considerable operational effects of EVCSs on EDS, it is important to investigate 

the expansion planning of these systems [38]. A considerable number of studies have been 

focusing on optimal sitting and sizing EVCSs in EDS. According to the conducted review, these 

studies have investigated the planning problem of EVCSs considering the following concerns: 

EDS reinforcement: The considerable increase in electric vehicles' employment counts as a 

load growth for EDS which results in EDS reinforcement. This has motivated several researchers 

to come up with solutions for joint planning of EDS and EVCSs. In [61] a robust mixed-integer 

model was proposed for multistage joint expansion planning of EDS and EVCSs, regarding the 

uncertainties of EDS and EV loads. The construction of substations, EVCSs, lines, and 

distributed generations (DGs) were determined through each stage of the planning horizon. 

Authors of [62] also proposed a joint planning of EVCSs and EDS with the objective of 

minimizing the investment and operation costs while capturing maximum traffic flow in the 

selected residential area. Similar studies associated with joint planning of EDS and EVCSs are 

also given by [63, 64].  

RES, BES and DG reinforcement: Prominent features of RESs and DGs has been proven as 

an appropriate alternative for compensating relevant problems of EVCS installation. In [65] 

simultaneous optimal planning of EVCSs and DGs was presented to address the 

financial/technical/environmental challenges associated with EV charging patterns. The model 

was solved for the IEEE 33-bus system through a genetic algorithm, illustrating the effects of 
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EVCS installation in the presence/absence of DGs on total costs, reliability, loss, voltage profile, 

and emission. In the study of [66], authors have considered the time-varying nature of DG 

generation and load consumption (instead of the static values in previous literature) in optimal 

planning of EVCSs, DGs, and BESs in distribution system. A similar study was conducted in 

[67] for joint planning of RES, BES, and EVCSs. However, in the model of [67] the necessary 

charging demand of EVs was modeled based on travel patterns which makes it more realistic than 

other EV load modeling models. Moreover, scenario generation was employed to simulate the 

uncertainties associated with RES. To achieve more practical solutions, stochastic programing 

was employed in [68] to model uncertainties associated with EV charging patterns in the joint 

planning of EVCSs, RES, and BES.  

EDS operation constraints: Considering the dynamic nature of EDS and its sensitivity to 

load deviation in different load points, it is essential to reasonably locate and install the EVCSs 

throughout the EDS. Several studies in literature have focused on this problem in which EDS 

operational constraints such as voltage/frequency deviation as well as EDS reliability constraints 

are taken into consideration. In [69] an optimal planning model has been proposed for EVCSs 

considering the constraints of EDS. The study considers the voltage profile improvement as the 

benchmark, while, a combination of particle swarm optimization algorithm and genetic algorithm 

was used to solve the planning model. Power loss minimization is another important aspect to be 

considered in EDS operation and planning of EVCSs. In [38] EVCS planning was conducted 

considering both voltage profile improvement and power loss minimization as operating 

constraints, while the objective function was to minimize the total cost associated with EV 

charging stations to be planned. Two more references will be added to this section in the final 

version of the paper. 
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Transportation and traffic constraints: A practical perspective in the planning of EVCSs in 

distribution system is the consideration of traffic constraints. This is due to the fact that, EV 

changings are strongly dependent on EV travel patterns and the distribution of population in the 

area. A EVCS planning model capturing traffic and EV location parameters was proposed in [70] 

to maximize the EVCS service. The study was conducted on the IEEE 33-bus EDS joint with a 

25-node traffic network system. In [71] the traffic demand and battery data as well as the 

distribution of EVs were modelled by Monte Carlo simulation. The data was then used for 

optimal siting and sizing stand-alone EVCSs on highway networks.  

Coupled traffic-EDS constraints: EVCSs couple future transportation systems and power 

systems. That is, EV driving and charging behavior will influence the two networks 

simultaneously. To achieve more realistic and practical EVCS planning solutions, the cross-

effects between EDS and traffic network was considered in [72] and [73]. In [74] the EVCS's 

benefits was maximized through optimal sitting and sizing of the system considering changes in 

time, location and capacity. The model integrated electricity distribution system constraint, the 

user constraint and the traffic flow captured constraint. In addition to operational aspects of EDS 

and traffic network, the expansion of these system was considered in the optimal planning of 

EVCSs in [75]. In fact, the study of [75] conducted a simultaneous planning model including 

sites and sizes of new EVCSs, charging spots, traffic network lanes, and EDS lines. A similar 

study was also presented by [76] employing parking lots as an innovative solutions to achieve 

sustainable development in terms of EVCS planning. 

2.4. Quantitative Evaluation of the Literature 

In this section the conducted studies on optimal planning and operation of EVCSs are 
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analyzed on a quantitative basis. The reviewed studies in Section 3 are illustratively given by  

Fig. 2-4.  

Studies on EVCSOperation Planning

Energy management

Market participation

EDS support 

RES integration

Considering EDS 

reinforcement 

Considering traffic 

constraints

Considering RES, BES, 

and DG reinforcement 

Considering EDS 

constraints

Demand response

[10], [11], [12], [13], [14]

[15], [16], [1], [7]

[22], [23], [24]

[17], [18], [7]

[8], [19], [20], [21]

[29], [30], [31], [32]

[33], [3]

[25], [26], [27], [28]

[34], [35]

Considering EDS and 

traffic constraints

[36], [37], [38], [39], [40]  
Fig. 2-4. Categories of the reviewed studies in planning and operation of EVCSs (references in this 

figure are based on the paper: M. Aghamohamadi, A. Mahmoudi, John K. Ward, M. H. Haque, "Review 

on the State-of-the-art Operation and Planning of Electric Vehicle Charging Stations in Electricity 

Distribution Systems," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Toronto, 

Canada, 2021.) 

Fig. 2-5A shows the distribution of the reviewed studies over years starting from 2012, while, 

Fig. 2-5B shows the total number of the reviewed studies. According to Fig. 2-5A, number of the 

conducted studies in both operation and planning of EVCSs have significantly increased over 

years, especially after 2017. This is due to the increasing pattern of EV employment in cities and 

facing challenges in operation and planning of EVCSs in recent years. As it is seen in Fig. 2-5B, 

there has been more interest in the operation of EVCS in electricity distribution system, i.e., 33 

studies, compared to the planning of these systems, i.e., 25 studies. This is reasonable as the main 

challenge in recent years has been the integration of EVs into electricity network, while the 

number of EVs has not been considerable in many countries in the world. However, it is expected 

to face more EVCS planning studies in future which will be in line with the upcoming wave of 

EV employment.  
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Fig. 2-5. Annual (A) and total (B) number of reviewed studies, concerning EVCS operation and 

planning between 2012-2020 

2.5. Knowledge Gap and Motivations of this Study 

According to the conducted review, following knowledge gaps are presented: 

3) A new EDS energy management model is required to model the interactions between 

RESs, BESs, and EDS in the network as a whole while considering the inverter-based 

operation of these systems, as in the modern EDS operation, inverters can play a 

noticeable role in providing reactive power support to the network.  

4) A new robust optimization model is required to first cope with the associated problems 

with scenario-based models, and also be applicable when characterizing binary decision 

variables after uncertainty realizations which is not applicable through conventional dual-

based RO models. 
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5) And finally a proper exploration is required to investigate the effects of EVs on EDS 

voltage and power losses under the uncertainty of EDS load, to provide more realistic 

solutions for EDS energy management.   

2.6. Contributions of this study 

Following contributions are presented in this thesis to achieve the objectives in section 1.2: 

Contribution 1: A novel directly solvable set of power flow equations 

A new directly solvable power flow problem has been proposed for EDS, introducing a 

connectivity matrix in line with a new indexing of load flow equations. The new power flow 

model is developed generally and is capable to be added to any EDS study as the constraints of 

the model. This means, the power flow calculation does not need to be conducted separately. 

Therefore, the need of load flow calculation methodologies, such as Newton–Raphson method 

(NR) and forward backward sweep-based method (FBS), as well as optimization approaches, 

such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), is eliminated as the 

proposed model characterizes both load flow and energy management constraints in a single and 

unified model. This provides users the opportunity of solving the problem with commercial 

optimization packages, i.e., CPLEX, GAMS, etc., in a single shot with no need to develop further 

optimization approaches involving iterative procedures and load flow calculations. Note that, the 

employed modified load flow equations in line with the connectivity matrix can be used in any 

other EDS study, concerning load flow calculation, as the constraints of the model. 

Contribution 2: A general multi-objective energy management model for inverter-based 

integration of RES, and BES system 

The proposed directly solvable power flow problem is used to build up a multi-objective 
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energy management model for RES-BES-equipped distribution systems. The first objective of the 

model minimizes total EDS power losses, and the second objective minimizes the voltage 

deviations of each bus over time. These objective functions are optimized being subject to load 

flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The 

proposed energy management model enables both active and reactive power controllability of 

RES and BES systems. New continuous variables are defined for RES and BES representing 

active and reactive power share of these systems during the operation. Accordingly, BES can 

absorb active or reactive power in each time slot and inject it back to the network as active or 

reactive power in another time slot. 

Contribution 3: Integration of EV loading into the energy management model and 

investigating the effects of EV charging on EDS voltage and power loss 

Electric vehicle activity is modelled by probability distribution functions. The EV’s dynamic 

energy balance is modelled based on EV connections and the model is merged into the energy 

management model.  

Contribution 4: The new robust optimization model to characterize uncertainties of RESs 

employing block coordinate decent method  

An adaptive robust optimization (ARO) approach is implemented to deal with the 

uncertainties of load in operating EDS through the proposed energy management model. 

Uncertain parameters are characterized by bounded intervals in polyhedral uncertainty sets. The 

ARO model is a tri-level min-max-min problem which is not directly solvable. Therefore, a 

decomposition methodology is employed to recast the min-max-min ARO problem into two 

problems including a master problem and a sub-problem. A column-and-constraints (C&C) 

generation methodology is used to iteratively solve the decomposed problem through primal 
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cutting planes. Two main decisions are made in ARO, namely "here-and-now" decisions, which 

are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are 

obtained after the realization of uncertain parameters. Several binary variables such as BES 

charging/discharging status must be obtained after uncertainty realizations in the sub-problem to 

be able to compensate the effects of uncertain load/price as recourse decisions. However, this is 

not possible by conventional dual-based robust models as considering these binary variables 

results in a mixed-integer sub-problem and the dual of a mixed-integer model is generally weak, 

non-tractable and complicated. Therefore, instead of using duality theory in solving the sub-

problem, Block Coordinate Descent (BCD) method is used in the proposed model. 

In terms of solution methodology, BCD method is used in the robust approach to iteratively 

solve the inner bi-level max-min sub-problem by means of Taylor series instead of transforming 

it into a single-level max problem by duality theory in conventional ARO models. BCD 

technique was originally devised to deal with single-level problems. By extending the application 

of the BCD technique to solve the two-level max-min sub-problem (resulted from the C&C 

generation technique), it is possible to avoid duality theory in solving the sub-problem.  

Therefore, the associated limitation in considering binary variables in the sub-problem is 

eliminated. In fact, mixed-integer models (even non-linear models) can be solved in the sub-

problem through the proposed BCD robust model. As a result, uncertainty-dependent binary 

variables such as BES charging/discharging statuses can be obtained after uncertainty realization 

in the sub-problem as recourse decisions, resulting in more system flexibility in compensating the 

uncertainty effects of load. Moreover, the linearization of the dualized inner problem is avoided 

as the Lagrange multipliers are eliminated in this methodology. Thus, the case-sensitivity of the 

proposed model reduces as it does not reflect dual variables.  
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2.7. Conclusion 

This chapter presented a comprehensive review on the employment of EVs as well as different 

aspects considered in operation and planning of EVCSs in EDS. Contributions of the thesis were 

introduced and the aim of the research were developed. The rest of this thesis presents each 

contribution and the methodology used to achieve it.  

In the next chapter a directly solvable power flow model is developed to use in the energy 

management model.  

 

 

  



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

47 

 

3. Proposed General and Directly-solvable EDS 

Power Flow Equations to Solve Power Flow 

Problem 

This chapter presents a new directly solvable and non-iterative load flow model which is 

developed using a new bus indexing procedure. A connectivity matrix is also introduced to 

characterize the configuration of EDS and provide a feasible general representation of load flow 

equations. This enables the proposed modified load flow equations to be mergeable in any type of 

EDS study as the constraints of the model. Moreover, unlike previous iterative models, it can be 

solved directly through off-the-shelf optimization packages in a single shot with no need to 

further iterative optimization procedures such as metaheuristic methods. This results in a 

moderate mathematical and programing burden.  

The contribution of this chapter is presented in the following published research article [77]: 

M. Aghamohamadi, M. H. Haque, A. Mahmoudi and J. K. Ward, "A Novel Directly-solvable 

Non-iterative Load Flow Model for Radial Distribution System Studies," 2020 IEEE International 

Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020, pp. 1-6, doi: 

10.1109/PEDES49360.2020.9379828. 

 

 

The student has developed the conceptualization. He designed the optimization model. 

Analysis and interpretation of research data has been done by him and the co-authors. A draft of 

the paper was prepared by the student. Revisions and comments were provided by the co-authors 
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so as to contribute to the interpretation. 

 

NOMENCLATURE (for Chapter 3) 

𝑖/𝑗 Index of bus number 

𝑃𝑖𝑗/𝑄𝑖𝑗
  Active/Reactive power flow 

𝐿𝑖𝑗/𝐿𝑗𝑖 Indicator for branch existence between buses 𝑖 and 𝑗 

𝛯𝐼/𝛯𝐽 Set of indices 𝑖/𝑗 

𝑃𝑖𝑗
𝑙𝑜𝑠𝑠/𝑄𝑖𝑗

𝑙𝑜𝑠𝑠 Active/Reactive power loss in each branch 

𝑃𝑗
𝐿/𝑄𝑗

𝐿 Active/Reactive load at each bus 

𝑄𝑖𝑗
′  Reactive power flow through each branch 

𝑄𝑖j
𝑎/𝑄𝑖𝑗

𝑏  Shunt capacitors' reactive power in 𝜋 configuration 

𝑉𝑖 Voltage of bus 𝑖 

𝑟𝑖𝑗/𝑥𝑖𝑗 Resistance/Reactance of each branch 

𝐵𝑖𝑗
𝑎 /𝐵𝑖𝑗

𝑏  Shunt susceptance at sending/receiving end 

 

3.1. Introduction 

The solution of load flow problem is very important for operation, planning, expansion, and 

management of electricity distribution systems (EDSs). The load flow solution of EDS is usually 

obtained by various methods, such as Newton-Raphson [78], Gauss-Seidel [79], and forward-

backward sweep-based (FBS) methods [80]. In [81], a power flow analysis for droop-based 
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islanded microgrids was conducted using current injection-based Newton-Raphson (NR) method. 

An extended fast decoupled NR method was used in [82] for EDS reconfiguration. Although, NR 

is suitable for transmission system, it may have a poor convergence pattern for some radial EDSs 

having high R/X ratios of branches [83]. Moreover, the need of partial derivative of equations 

makes NR a time-consuming method in terms of both mathematical and programing burden. In 

[84], Gauss-Seidel (GS) method was employed for voltage stability in EDS. It was also used for 

EDS loadability analysis in [85]. However, GS method is generally complex, and has poor 

convergence pattern. In fact, computational time of GS method increases as the number of 

buses/branches increases. This issue becomes even more vital for larger EDSs [84].  

To overcome the aforementioned issues, FBS method was employed in [86] to integrate open 

unified power quality conditioners for EDS loss minimization. However, the  model of [86] 

utilizes particle swarm optimization (PSO) to determine planning solutions as they need to be 

fixed in the FBS method to determine EDS load flow solutions. In fact, in each iteration of 

particle swarm optimization in [86], FBS is conducted to determine EDS load flow based on the 

given planning solutions by PSO. In [87] genetic algorithm (GA) was used to minimize EDS 

power losses and voltage deviations by optimal integration of distributed generations and electric 

vehicles, where EDS load flow was conducted in each iteration of GA. Harmony search 

algorithm (HSA) was used in [88] to optimize the EDS reconfiguration and the placement of 

distributed generation units in EDS. Some of these models have been also employed for planning 

and operation of renewables and battery systems [89]. 

Although, the aforementioned load flow calculation methods are able to do the job, they need 

to be conjointly combined with other optimization algorithms such as GA, PSO, HSA, to be able 
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to optimize the required objective function and the related constraints in EDS studies. This is due 

to the fact that, existing EDS load flow methods only calculate the load flow and bus voltages 

and they are not mergeable into the main model to maintain the objective function throughout the 

network. In fact, it's the optimization engine that determines the EDS optimal planning or energy 

management solutions [90] while these solutions are fixed in the load flow calculation problem.  

The combination of metaheuristic optimization algorithms (or any other optimization 

approach) with EDS load flow calculation brings additional mathematical and programming 

burden to the model. Moreover, the computation time of the optimization may easily increase for 

complex models as it involves two procedures, i.e., optimization algorithm and load flow 

calculation in each iteration of the optimization procedure. Therefore, further load flow models 

are required with the ability of being directly solvable with no need to iterative and time-

consuming procedures, while, being easily mergeable in different EDS operational/planning 

models to avoid the use of external optimization engines such as GA, PSO, etc.  

To do so, a new EDS connectivity matrix in line with a new indexing of load flow equations 

have been used to develop a modified load flow model which can be solved directly without 

using iterative methods such as NR and FBS in EDS studies. Moreover, it can be merged into any 

other EDS study as the constraints of the model, considering the general structure of the proposed 

model. In fact, the need of optimization approaches, such as GA and PSO, is eliminated as the 

proposed model characterizes both load flow and the required constraints (depending on the 

application) in a unified model. This has been illustratively shown by Fig. 3-1. This provides 

users the opportunity of solving the problem with commercial optimization packages, i.e., 

CPLEX, GAMS, etc., in a single shot solving process with no need to develop further 
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optimization approaches involving iterative procedures and load flow calculations. As it is seen 

in Fig 3-1, in the proposed model, the need of optimization engines is eliminated as a single-shot 

solvable unified problem is developed for both power flow and optimization. Note that, Capacitor 

banks and voltage regulators are not included in the power flow model. 

Conventional Proposed 

An EDS study 

associated with 

load flow 

calculation

Objective 

function 

optimization

Load flow 

calculation

Solved by 

optimization 

engines such as 

GA, PSO,   

Solved by load 

flow calculation 

methods such as 

NR, FBS,   

Obtained variables 

are sent to load flow 

calculation

Given the obtained 

variables as fixed 

values, load flow is 

conducted

Iterative 

procedure

MATLAB / GAMS

MATLAB / GAMS

 

An EDS study 

associated with 

load flow 

calculation

Objective 

function 

optimization

Load flow 

calculation

Solved by 

optimization 

engines such as 

GA, PSO,   

Proposed 

modified general 

load flow model

A one-shot solvable unified 

problem characterizing PF 

as constraints of the model 

MATLAB / GAMS

 

Fig. 3-1. Comparison between the conventional and the proposed EDS power flow models 

3.2. The Proposed Modified EDS Load Flow Equations 

Fig. 3-2 shows the configuration of a simplified 6-bus distribution system as an example, 

considering the active power flow only, for the sake of simplicity (no load is considered). This 

configuration is only employed to numerically introduce the new indexing used in this study. 

Bus 2Bus 1 Bus 3

Bus 5

𝑃12  

𝑃25 

𝑃23 

Bus 6

Bus 4𝑃34 

𝑃36  

 

Fig. 3-2. Configuration of a simplified 6-bus EDS  

𝑃𝑖𝑗 is the power flow through the branch connecting the sending-end bus 𝑖 to the receiving-end 

bus 𝑗. For the considered system in Fig. 3-2, the relation between actual active power flow is 
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expressed as (1a)-(1b). 

𝑃12 = 𝑃23 + 𝑃25; (1a) 

𝑃23 = 𝑃34 + 𝑃36; (1b) 

As it is seen in (1a)-(1b), two indexes are needed to generally model the power flow 

considering both sending and receiving ends. Therefore, it is possible to have different values for 

𝑖 and 𝑗 in one equation (e.g., 𝑃𝑖=1,𝑗=2 and 𝑃𝑖=2,𝑗=3 in (1a)) which is not feasible in a general 

parametric representation of load flow equations. This is due to the fact that, each bus plays the 

role of a sending-end and a receiving-end at the same time. In fact, each bus is counted by 𝑖 if it 

is a sending-end and is counted by 𝑗 if it is a receiving-end. To cope with the mentioned 

infeasibility and avoid ambiguity, alias sets are employed for bus numbering in this study. Alias 

is an alternate name for a member or a shared member in a set which is used to improve the 

readability of an outline by descriptive names [91]. Accordingly, power flow equations in (1a)-

(1b) can be rewritten as (1c)-(1d), respectively, where the value of 𝑗 is equal at both sides of the 

equations. 

𝑃𝑖=1,𝑗=2 = 𝑃𝑗=2,𝑖=3 + 𝑃𝑗=2,𝑖=5; (1c) 

𝑃𝑖=2,𝑗=3 = 𝑃𝑗=3,𝑖=4 + 𝑃𝑗=3,𝑖=6; (1d) 

However, (1c)-(1d) still do not meet the requirements of a general representation to be feasible 

for all buses and branches of the system which is due to the different values of 𝑖 in either sides of 

the equation. In order to cope with this issue, a new connectivity matrix 𝑳 is proposed to 

represent the configuration of the EDS system. Each element of matrix 𝑳, represents the existence 

of a branch connecting bus 𝑖 to bus 𝑗 (𝐿𝑖𝑗 = 1 if a branch exists and 𝐿𝑖𝑗 = 0 otherwise). Elements 

of matrix 𝑳 alongside alias sets are further employed to develop the new modified load flow 
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equations. Regarding the fact that, 𝑖 and 𝑗 are alias indexes in alias sets Ξ𝐼 and Ξ𝐽, respectively, 

the connectivity matrix can be either presented by (1e) or (1f) in the following: 

𝑳 =

[
 
 
 
 
𝐿11
 … 𝐿1𝑗

 … 𝐿1𝑛
 

⋮ ⋱  ⋮          ⋮  
𝐿𝑖1
 

⋮
𝐿𝑛1
 

…
 
…

𝐿𝑖𝑗

⋮
𝐿𝑛𝑗
 

…
⋱
…

𝐿𝑖𝑛
 

⋮
𝐿𝑛𝑛
 

]
 
 
 
 

; (1e) 

𝑳 =

[
 
 
 
 
𝐿11
 … 𝐿1𝑖

 … 𝐿1𝑛
 

⋮ ⋱  ⋮          ⋮  
𝐿𝑗1
 

⋮
𝐿𝑛1
 

…
 
…

𝐿𝑗𝑖
⋮

𝐿𝑛𝑖
 

…
⋱
…

𝐿𝑗𝑛
 

⋮
𝐿𝑛𝑛
 ]

 
 
 
 

; (1f) 

 where,     1 ≤ 𝑖 ≤ 𝑛;   ,  1 ≤ 𝑗 ≤ 𝑛;   (1g) 

Therefore, the load flow equations for the 6-bus EDS in Fig. 3-2 can be rewritten as (1h) in the 

following: 

∑ (𝑃𝑖𝑗 ∙ 𝐿 𝑖𝑗)
𝑖∈𝛯𝐼

= ∑ 𝑃𝑗𝑖 ∙ 𝐿
 
𝑗𝑖

𝑖∈𝛯𝐼
;  ∀𝑗 ∈ 𝛯𝐽; (1h) 

The values of 𝑖 and 𝑗 cannot be the same as there is no branch connecting bus 𝑖/𝑗 to bus 𝑖/𝑗. 

Therefore, 𝑖 ≠ 𝑗. Therefore, 𝑃𝑖(𝑗+1) is used instead of 𝑃𝑖𝑗. Although 𝑛 can have any other value, 

but it should not be bigger than 1 because of the existence of sequential bus numbers in a radial 

system, i.e., 𝑃1,2, 𝑃2,3, 𝑃3,4, etc. Note that, 𝑛 = 1 is still true for other variables. For example, 

𝑃2,23 is defined as 𝑃𝑖=2,((𝑗=22)+1). However, if 𝑛 = 2 the problem would be infeasible for 𝑃1,2 as 

it is defined as 𝑃𝑖=1,((𝑗=0)+2), while, 𝑗 cannot be zero  (note that 𝑖 and 𝑗 are alias indices and don't 

have to be the same). Therefore, the general and feasible parametric representation of load flow 

equations can be expressed by (1i): 

∑ (𝑃𝑖(𝑗+1) ∙ 𝐿
 
𝑖(𝑗+1))

𝑖∈𝛯𝐼
= ∑ 𝑃(𝑗+1)𝑖 ∙ 𝐿

 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;  ∀𝑗 ∈ 𝛯𝐽; (1i) 
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This new presentation provides a general structure of the load flow problem that can be 

extended to any low voltage distribution system. This is due to the fact that, the new indices as 

well as the new connection matrix formulates any distribution system in a general way.  

Fig. 3-3 illustrates the considered well-known 𝜋 configuration of each branch of distribution 

system connecting bus 𝑖 to bus 𝑗 in the EDS energy management model as per the notations in 

nomenclature. 

𝑟𝑖𝑗  𝑥𝑖𝑗  

𝑦𝑖𝑗
𝑎  𝑦𝑖𝑗

𝑏  

𝑄𝑖𝑗
𝑎  𝑄𝑖𝑗

𝑏  

𝑉𝑖  𝑉𝑗  
𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗  

 

𝑃𝑖𝑗 + 𝑗𝑄𝑖𝑗
′  

 

 
𝑄𝑖𝑗

𝑙𝑜𝑠𝑠  𝑃𝑖𝑗
𝑙𝑜𝑠𝑠  

𝑉𝑗  𝑉𝑖  𝑉𝑗  

𝑉𝑗  

𝑉𝑖  

configuration of each distribution branch

𝑃
𝑗 𝐿

+
𝑗𝑄

𝑗 𝐿 

 

Fig. 3-3. Considered 𝜋 configuration for each branch, connecting bus 𝑖 to bus 𝑗 

 

A general representation for active and reactive power flow equations as well as bus voltage is 

given by (2) for a single period of time, derived from the 𝜋 configuration in Fig. 3-3 and the 

proposed general representation of power flow equations in (1) (which can be developed for both 

active and reactive power flows). 

∑ (𝑃𝑖(𝑗+1) − 𝑃𝑖(𝑗+1)
𝑙𝑜𝑠𝑠 − 𝑃(𝑗+1)

𝐿 )
𝑖∈𝛯𝐼

∙ 𝐿 𝑖(𝑗+1) = ∑ 𝑃(𝑗+1)𝑖 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;  ∀𝑗 ∈ 𝛯𝐽 (2a) 

∑ (𝑄𝑖(𝑗+1)
′ − 𝑄𝑖(𝑗+1)

𝑙𝑜𝑠𝑠 + 𝑄𝑖(𝑗+1)
𝑏 − 𝑄(𝑗+1)

𝐿 ) ∙ 𝐿𝑖(𝑗+1)
𝑖∈𝛯𝐼

= ∑ 𝑄(𝑗+1)𝑖 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;   ∀𝑗

∈ 𝛯𝐽 

(2b) 
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|𝑉(𝑗+1)|
2
= ∑ |𝑉𝑖|

2

𝑖∈𝛯𝐼
∙ 𝐿𝑖(𝑗+1) + ∑

𝑟𝑖(𝑗+1)
2 + 𝑥𝑖(𝑗+1)

2

|𝑉𝑖|2
∙ (𝑃𝑖(𝑗+1)

2 + 𝑄𝑖(𝑗+1)
′ 2

)
𝑖∈𝛯𝐼

− ∑ 2(𝑟𝑖(𝑗+1)𝑃𝑖(𝑗+1) + 𝑥𝑖(𝑗+1)𝑄𝑖(𝑗+1)
′ )

𝑖∈𝛯𝐼
;   ∀𝑖 ∈ 𝛯𝐼 

(2c) 

where,  

𝑃𝑖𝑗
𝑙𝑜𝑠𝑠 =

𝑟𝑖𝑗
|𝑉𝑖|2

∙ (𝑃𝑖𝑗
2 + 𝑄𝑖j

′ 2); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2d) 

𝑄𝑖𝑗
𝑙𝑜𝑠𝑠 =

𝑥𝑖𝑗

|𝑉𝑖|2
∙ (𝑃𝑖𝑗

2 + 𝑄𝑖j
′ 2); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2e) 

𝑄𝑖𝑗
′ = 𝑄𝑖𝑗 + 𝑄𝑖𝑗

𝑎 ;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2f) 

𝑄𝑖𝑗
𝑎 = 𝑌𝑖𝑗

𝑎|𝑉𝑖|
2; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2g) 

𝑄𝑖𝑗
𝑏 = 𝑌𝑖𝑗

𝑏|𝑉𝑗|
2
; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2h) 

In (2), the active power flow equation is given by (2a) for the branch connecting bus 𝑖 to bus 𝑗, 

if such a branch exists, i.e., 𝐿𝑖𝑗 = 1. In a similar way, (2b) represents the reactive power flow 

equation for each branch of EDS system. Voltage of each EDS bus is given by equation (2c) 

which is the modified version of voltage magnitude equation presented by [92]. Active and 

reactive power losses for each branch are given by (2d) and (2e), respectively. Equation (2f), 

represents the reactive power flow encountering shunt reactive losses at the sending end of each 

branch which is given by (2g), according to the considered 𝜋 configuration. Equation (2h) also 

represents the shunt reactive losses at the receiving end of each branch, i.e., 𝑄𝑖𝑗
𝑏 . The above 

presented EDS load flow equations are further employed to build-up the proposed unified EDS 

energy management model. 



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

56 

 

3.3. Validating the Proposed EDS Power Flow Model 

The proposed modified load flow equations in (2) are employed to calculate EDS load flow 

for 33-bus systems. The input data of 33-bus system is available in [93]. The single-line diagram 

of the system is shown in Fig. 3-4. 

 

 

Fig. 3-4. IEEE 33-bus system, considered as the case study 

Four scenarios or load levels (50%, 75%, 100%, and 125% of nominal load as scenario 1 to 4, 

respectively) are considered to evaluate the performance of the proposed model in 

underload/overload circumstances. These scenarios are considered for comparing the results 

obtained by the proposed model with that of the FBS load flow method. Fig. 3-5 shows the 

employed load levels for each bus of the system for scenarios 1, 2, and 4 (scenario 3 is the 100% 

similar to the IEEE 33-bus data set). Simulations are conducted using GAMS software package. 

Voltage magnitude at slack bus is 12.66 kV which is considered as the base value, while, the base 

value for power is 100 kVA. The obtained voltage magnitude of each bus is shown by Fig. 3-6 
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for scenarios 1-4. As it is seen in Fig. 3-6, the voltage values obtained by the proposed model are 

the same as that obtained by FBS for all load level scenarios.  

 

 

Fig. 3-5. Active (A) and reactive (B) load levels for scenarios 1-4 

 

 

Fig. 3-6. Voltage magnitude comparison for IEEE 33-bus system 

In addition to voltage magnitude, the active and reactive power flow through each branch of 

the system is compared with the FBS model in Fig. 3-7 and Fig. 3-8, respectively. Note that, the 

power flow solutions are reported for the nominal load level which is scenario 3 in this study. As 

shown in Fig. 3-7 and Fig. 3-8, the load flow results, obtained by proposed model, are exactly the 

same as the FBS results for both active and reactive power which validates the optimality of the 
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obtained solutions by the proposed load flow in this paper.  

 

Fig. 3-7. Active power flow comparison for 33-bus system 

 

Fig. 3-8. Reactive power flow comparison for 33-bus system 

The total power loss in the system obtained by the proposed model are compared with that of 

the FBS method in Table I for all scenarios. As it is seen in Table I, the obtained values by the 

FBS method and the proposed model are the same for all scenarios. The similarity of the obtained 

results was also observed for other load levels in scenarios 1, 2, and 4 in the simulations. 

Table 3-1. Active and reactive power loss comparison for all scenarios 

 Scenario No. 

1 

Scenario No. 

2 

Scenario No. 

3 

Scenario No. 

4 

Power type [kW]/[kVAR] Active Reactive Active Reactive Active Reactive Active Reactive 

Proposed model 47.07 31.35 109.75 73.13 202.67 135.14 329.85 220.08 

FBS method 47.06 31.34 109.75 73.13 202.67 135.14 329.85 220.08 
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3.4. Conclusion 

This chapter presented a directly solvable EDS load flow problem by introducing a new bus 

indexing model alongside a connectivity matrix to characterize the EDS configuration. The 

proposed model is directly solvable through off-the-shelf optimization packages in a single shot 

(it has been directly solved by GAMS software package in this study). Moreover, it is generally 

developed to be mergeable into any EDS studies involving load flow calculation, i.e., loss 

minimization, reconfiguration, planning, etc., as the constraints of the model. The ability of the 

proposed model in being directly solvable with no iterative optimization technique, eliminated 

the need of iterative optimization methods such as NR, GS, and FBS. The results obtained by the 

proposed load flow model were compared to those of the FBS method. Comparison of results 

indicated that the proposed model maintained the same outcome as FBS method, which shows its 

optimality in achieving expected active/reactive power flow and bus voltages. 

In the net chapter, the power flow model in Chapter 3 will be used to develop the energy 

management model.  
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4. Proposed General Inverter-Based EDS 

Energy Management Model at the Presence of 

RES and BES 

This chapter presents a directly solvable multi-objective energy management model for 

electricity distribution system to minimize total power losses and bus voltage deviations by 

employing the arbitrage ability of distributed battery energy storage systems and renewable 

energy sources. The developed power flow equations in Chapter 3 are further employed to 

characterize the power flow of BES and RES to develop the proposed energy management 

model. Since the load flow equations are generally developed, they can be merged into the energy 

management model as the operating constraints. Therefore, the energy management model can 

also be directly solved in a single shot with off-the-shelf optimization packages and there is no 

need to conduct iterative algorithms to separately solve the load flow and the optimization 

problem. Both active/reactive shares of BES and RES are considered as variables of the model to 

provide active/reactive support for EDS. IEEE 33-bus system is employed to evaluate the 

effectiveness of the proposed model. The obtained results show significant improvement in both 

system power losses and voltage deviations which is due to the active and reactive power 

controllability of RES and BES systems. 

 

NOMENCLATURE (for Chapter 4) 

A. Indices  

𝑖/𝑗 Index of EDS buses 

𝑡 Index of operating time periods 
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B. Parameters  

𝐿𝑖𝑗 Bus connection indicator (𝐿𝑖𝑗 = 1 if a branch connects bus 𝑖 to bus 𝑗) 

𝑛 Total number of buses 

𝑃𝑗
𝐿 Active load at bus 𝑗 

𝑟𝑖𝑗 Resistance of the branch connecting bus 𝑖 to bus 𝑗 

𝑥𝑖𝑗 Series reactance of the branch connecting bus 𝑖 to bus 𝑗 

𝑌𝑖𝑗
𝑎 Shunt admittance at the sending end of the branch connecting bus 𝑖 to bus 𝑗 

𝑌𝑖𝑗
𝑏 Shunt admittance at the receiving end of the branch connecting bus 𝑖 to bus 𝑗 

𝜂𝑗
𝑐ℎ𝑔

 Charging efficiency of battery located at bus 𝑗 

𝜂𝑗
𝑑𝑖𝑠 Discharging efficiency of battery located at bus 𝑗 

𝐸𝑗
𝑙 Steady-state energy loss of battery located at bus 𝑗 

𝑇 Total operation time 

𝑉𝑗
𝑚𝑖𝑛 Minimum allowable voltage magnitude at bus 𝑗 

𝑉𝑗
𝑚𝑎𝑥 Maximum allowable voltage magnitude at bus 𝑗 

𝐼𝑖𝑗
𝑚𝑎𝑥 Maximum allowable current through the branch connecting bus 𝑖 to bus 𝑗 

𝑆𝑚𝑎𝑥
𝑐ℎ𝑔

 Maximum allowable charging apparent power for battery systems 

𝑆𝑚𝑎𝑥
𝑑𝑖𝑠  Maximum allowable discharging apparent power for battery systems 

𝐸𝑚𝑎𝑥
  Maximum allowable energy level for battery systems 

C. Variables  

𝑃𝑖𝑗𝑡 Active power flow from bus 𝑖 to bus 𝑗 in hour 𝑡 

𝑃𝑖𝑗𝑡
𝑙𝑜𝑠𝑠 Active power loss in the branch connecting bus 𝑖 to bus 𝑗 in hour 𝑡 

𝑄𝑖𝑗𝑡
′  Reactive power flow from bus 𝑖 to bus 𝑗 in hour 𝑡 

𝑄𝑖𝑗𝑡
𝑙𝑜𝑠𝑠 Reactive power loss on the branch connecting bus 𝑖 to bus 𝑗 in hour 𝑡 
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𝑄𝑖𝑗𝑡
𝑏  

Shunt reactive power loss at receiving end of the branch connecting bus 𝑖 to 

bus 𝑗 in hour 𝑡 

𝑉𝑖𝑡/𝑉𝑗𝑡 Voltage magnitude of bus 𝑖/𝑗 in hour 𝑡 

𝑄𝑖𝑗𝑡
𝑎  

Shunt reactive power loss at sending end of the branch connecting bus 𝑖 to bus 

𝑗 in hour 𝑡 

𝐸𝑗𝑡 Energy level for battery connected to bus 𝑗 in hour 𝑡 

𝑆𝑗𝑡
𝑐ℎ𝑔

 Apparent charging power for battery connected to bus 𝑗 in hour 𝑡 

𝑆𝑗𝑡
𝑑𝑖𝑠 Apparent discharging power for battery connected to bus 𝑗 in hour 𝑡 

𝑃𝑗𝑡
𝑐ℎ𝑔

 Active charging power for battery connected to bus 𝑗 in hour 𝑡 

𝑄𝑗𝑡
𝑐ℎ𝑔

 Reactive charging power for battery connected to bus 𝑗 in hour 𝑡 

𝑃𝑗𝑡
𝑑𝑖𝑠 Active discharging power for battery connected to bus 𝑗 in hour 𝑡 

𝑄𝑗𝑡
𝑑𝑖𝑠 Reactive discharging power for battery connected to bus 𝑗 in hour 𝑡 

𝑃𝑗𝑡
𝑃𝑉 Active power generated by PV connected to bus 𝑗 in hour 𝑡 

𝑄𝑗𝑡
𝑃𝑉 Reactive power generated by PV connected to bus 𝑗 in hour 𝑡 

𝑃𝑗𝑡
𝑊𝐹 Active power generated by WF connected to bus 𝑗 in hour 𝑡 

𝑄𝑗𝑡
𝑊𝐹 Reactive power generated by WF connected to bus 𝑗 in hour 𝑡 

𝑆𝑗𝑡
𝑊𝑇 Total generated apparent power by WF connected to bus 𝑗 in hour 𝑡 

𝑆𝑗𝑡
𝑃𝑉 Total generated apparent power by PV connected to bus 𝑗 in hour 𝑡 

𝐼𝑖𝑗𝑡 Current in the branch connecting bus 𝑖 to bus 𝑗 in hour t 

𝛽𝑗
  

Indicator for battery existence of bus 𝑗, i.e., 𝛽𝑗
 = 1 if a battery is connected to bus 

𝑗, 𝛽𝑗
 = 0 otherwise 

𝛼𝑗𝑡
𝑐ℎ𝑔

 Charging status indicator for battery connected to bus 𝑗 in hour 𝑡 
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𝛼𝑗𝑡
𝑑𝑖𝑠 Discharging status indicator for battery connected to bus 𝑗 in hour 𝑡 

D. Sets  

Ξ𝐼/ Ξ𝐽 Set of EDS buses 

𝛯𝑇 Set of operation time 

E. Vectors/Matrices  

𝑳  Connectivity matrix  

 

4.1. Background 

Load flow methodologies become of importance when it comes to topics related to expansion, 

operation, and management of EDSs. In particular, load flow calculation methodologies are 

simultaneously employed with other optimization engines such as genetic algorithm (GA) and 

particle swarm optimization (PSO) to determine the optimal solution of a given objective 

function and the associated constraints, depending on the application, i.e., EDS loss 

minimization, voltage control, sizing and sitting of BES systems, etc. EDS load flow calculation 

is usually conducted by methodologies such as Newton-Raphson-based method [78], Gauss-

Seidel [79], forward-backward sweep-based methods [80], etc. In [81], a power flow analysis for 

droop-based islanded microgrids was conducted using current injection-based Newton-Raphson 

(NR) methodology. NR method was also employed to solve the EDS power flow for calculating 

maximum loadability in [94]. An extended fast decoupled NR methodology was used in [82] for 

EDS reconfiguration. Although, NR is suitable for transmission system, it may has a poor 

convergence ratio for most radial EDSs which is due to their high R/X ratios of branches [83]. 

Moreover, the need of partial derivative of equations makes NR a time-consuming methodology 

in terms of both mathematical and computational burden. In [84], Gauss-Seidel methodology was 
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employed for voltage stability in EDS. It was also used for EDS loadability analysis in [85]. 

However, Gauss-Seidel methodology is generally complex, and its convergence may be long. In 

fact, calculation time of Gauss-Seidel method increases almost proportionally with the number of 

buses/branches. This issue becomes even more vital for larger EDSs [84]. To overcome the 

aforementioned issues in conventional load flow algorithms, forward/backward sweep (FBS) 

method was employed in [95] to integrate open unified power quality conditioners for EDS loss 

minimization. The model of [95] utilizes particle swarm optimization (PSO) to determine 

planning solutions as they need to be fixed in the FBS methodology to determine EDS load flow. 

In fact, in each iteration of particle swarm optimization in [95], FBS is conducted to determine 

EDS load flow based on the given planning solutions for open unified power quality conditioners 

throughout EDS. In a similar way, particle swarm optimization was used in [96] as the 

optimization engine to optimally integrate distributed generations into EDS and reduce power 

losses and voltage deviations. FBS was used in [96] for EDS load flow calculations in each 

iteration of particle swarm optimization. In [97] genetic algorithm (GA) was used to minimize 

EDS power losses and voltage deviations by optimal integration of distributed generations and 

electric vehicles, where FBS was used to calculate EDS load flow. Harmony search algorithm 

(HSA) was used in [98] to optimize the EDS reconfiguration and the placement of distributed 

generation units in EDS. 

Although, the aforementioned load flow calculation methodologies are able to do the job, they 

need to be conjointly combined with other optimization algorithms such as GA, PSO, HSA, etc., 

to be able to optimize the required objective function and the related constraints in EDS studies. 

This is because, EDS load flow methodologies only calculate the load flow and bus voltages and 
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they are not able to characterize the optimal operation of BES and RES elements throughout the 

network. In fact, it's the optimization engine that determines the EDS optimal planning or energy 

management solutions [95-97] while these solutions are fixed in the load flow calculation 

problem. The combination of metaheuristic optimization algorithms (or any other optimization 

approach) with EDS load flow calculation brings additional mathematical and programming 

burden to the model. Moreover, the computation time of the optimization may easily increase for 

complex models as it involves two procedures, i.e., optimization algorithm and load flow 

calculation in each iteration of the optimization. 

In addition to the methodological aspects in solving EDS optimization problems, 

characterizing technical features in modeling EDS elements, such as renewable energy sources 

(RESs) and battery energy storage (BES) systems, is of high importance in distribution systems. 

Recently, the role of BES systems has been magnified due to the employment of RES in today's 

smart grid. BES can compensate the negative effects of RES volatile generation on electricity 

distribution system's voltage stability and losses. Moreover, it offers distribution systems 

different and unique applications such as peak shaving [99], loss reduction [100], congestion 

management [101], and reliability enhancement [102]. In the study of [103] BES was used to 

improve the RES integration into distribution system using dynamic programming algorithm. 

However, the reactive power trade of RES and BES wasn't modeled in [103]. An energy 

management model for radial EDS was proposed by [104] using Vanadium redox flow batteries 

for load leveling and peak shaving. The study of [104] did not consider the reactive power 

capability of BES, while in practice, converter elements are coupled with BES systems and can 

provide reactive power trade for EDS. In a similar way, reactive capability of BES was ignored in 



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

66 

 

the study of [105] where an energy management model was developed for peak shaving and 

valley filling. In [106], an EDS energy management model was proposed to flatten network 

voltage profile and reduce system losses/costs in which no BES reactive power trade was 

considered, while, voltage profile in EDS is strongly dependent on reactive power flow 

throughout the network. In the study of [107], a control strategy for distributed BESs was 

developed to enhance the voltage profile on each bus of the EDS. However, BES reactive power 

trade was not modeled in [107], while, inverter-based operation of BES systems offers flexibility 

in absorbing or injecting active and/or reactive power. This practice is also applicable for RES 

generation employing the available energy conversion technologies in today's distribution 

systems. In [108], an EDS energy management model was developed to manage intermittent 

renewable resources through optimal operation of BES systems. Although, BES reactive power 

was considered in the study of [108], the controllability of RES reactive power was ignored. It 

deserves mentioning that, both RES and BES systems are equipped with inverter elements being 

able to control the active and reactive share of the generated power in each time slot of the 

operation. However, this should be modeled accurately in EDS studies to capture its applicability 

in practice. 

4.2. Motivations 

Relying on the literature, the motivations of this study are as follows: 

1) In terms of solution methodology, further approaches for conducting EDS studies involving 

load flow calculations, are required to: 

a) directly solve the optimization model and its EDS load flow together in a single shot by off-
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the-shelf optimization packages, with no need to additional load flow calculations and iterative 

optimization approaches such as PSO, GA, and HSA, and 

b) be able to perform in different EDS applications, involving load flow calculations, i.e., loss 

minimization, voltage control, sizing and sitting of BES systems, EDS reconfiguration, etc. 

2) In terms of RES and BES modeling in distribution systems, further models should be 

undertaken to enable the reactive controllability of these elements in real world electricity 

distribution systems, considering the applicability of inverter-based operation, nowadays. In fact, 

the practical potential of RES and BES cannot be fully exploited if the inverter-based operation 

of these systems is ignored in EDS studies. 

4.3. Contributions 

Following contributions are presented to extend the existing body of the work: 

1) A new directly solvable power flow problem has been proposed for EDS, introducing a 

connectivity matrix in line with a new indexing of load flow equations. The modified load flow 

equations are considered as constraints of the energy management model. Accordingly, the 

optimal RES and BES operations are obtained based on feasible load flow solutions. Therefore, 

the need of load flow calculation methodologies, such as NR and FBS, as well as optimization 

approaches, such as GA and PSO, is eliminated as the proposed model characterizes both load 

flow and energy management constraints in a single and unified model. This provides users the 

opportunity of solving the problem with commercial optimization packages, i.e., CPLEX, 

GAMS, etc., in a single shot with no need to develop further optimization approaches involving 

iterative procedures and load flow calculations. Note that, the employed modified load flow 
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equations in line with the connectivity matrix can be used in any other EDS study, concerning 

load flow calculation, as the constraints of the model. 

2) The proposed directly solvable power flow problem is used to build up a multi-objective 

energy management model for RES-BES-equipped distribution systems. The first objective of the 

model minimizes total EDS power losses and the second objective minimizes the voltage 

deviations of each bus over time. These objective functions are optimized being subject to load 

flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The 

proposed energy management model enables both active and reactive power controllability of 

RES and BES systems. RES generation is limited by its apparent power while the active/reactive 

share of power is reasonably decided through the optimization model. This is also developed for 

BES systems in both charging and discharging power trades. In fact, BES constraints including 

dynamic energy balance constraint and end coupling constraint are modeled based on BES 

apparent power trade, while, the active and reactive share of BES is modeled in EDS load flow 

constraints. New continuous variables are defined for RES and BES representing active and 

reactive power share of these systems during the operation. Accordingly, BES can absorb active 

or reactive power in each time slot and inject it back to the network as active or reactive power in 

another time slot. 

4.4. Proposed Directly Solvable EDS Load Flow Model 

A general representation for active and reactive power flow equations as well as bus voltage is 

given by (2) for a single period of time, derived from the 𝜋 configuration in Fig. 3-3 and the 

proposed general representation of power flow equations in (1) in Chapter 3 (which can be 

developed for both active and reactive power flows). 
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∑ (𝑃𝑖(𝑗+1) − 𝑃𝑖(𝑗+1)
𝑙𝑜𝑠𝑠 − 𝑃(𝑗+1)

𝐿 )
𝑖∈𝛯𝐼

∙ 𝐿 𝑖(𝑗+1) = ∑ 𝑃(𝑗+1)𝑖 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;  ∀𝑗 ∈ 𝛯𝐽 (2a) 

∑ (𝑄𝑖(𝑗+1)
′ − 𝑄𝑖(𝑗+1)

𝑙𝑜𝑠𝑠 + 𝑄𝑖(𝑗+1)
𝑏 − 𝑄(𝑗+1)

𝐿 ) ∙ 𝐿𝑖(𝑗+1)
𝑖∈𝛯𝐼

= ∑ 𝑄(𝑗+1)𝑖 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;   ∀𝑗

∈ 𝛯𝐽 

(2b) 

|𝑉(𝑗+1)|
2
= ∑ |𝑉𝑖|

2

𝑖∈𝛯𝐼
∙ 𝐿𝑖(𝑗+1) + ∑

𝑟𝑖(𝑗+1)
2 + 𝑥𝑖(𝑗+1)

2

|𝑉𝑖|2
∙ (𝑃𝑖(𝑗+1)

2 + 𝑄𝑖(𝑗+1)
′ 2

)
𝑖∈𝛯𝐼

− ∑ 2(𝑟𝑖(𝑗+1)𝑃𝑖(𝑗+1) + 𝑥𝑖(𝑗+1)𝑄𝑖(𝑗+1)
′ )

𝑖∈𝛯𝐼
;   ∀𝑖 ∈ 𝛯𝐼 

(2c) 

where,  

𝑃𝑖𝑗
𝑙𝑜𝑠𝑠 =

𝑟𝑖𝑗
|𝑉𝑖|2

∙ (𝑃𝑖𝑗
2 + 𝑄𝑖j

′ 2); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2d) 

𝑄𝑖𝑗
𝑙𝑜𝑠𝑠 =

𝑥𝑖𝑗

|𝑉𝑖|2
∙ (𝑃𝑖𝑗

2 + 𝑄𝑖j
′ 2); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2e) 

𝑄𝑖𝑗
′ = 𝑄𝑖𝑗 + 𝑄𝑖𝑗

𝑎 ;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2f) 

𝑄𝑖𝑗
𝑎 = 𝑌𝑖𝑗

𝑎|𝑉𝑖|
2; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2g) 

𝑄𝑖𝑗
𝑏 = 𝑌𝑖𝑗

𝑏|𝑉𝑗|
2
; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽 (2h) 

In (2), the active power flow equation is given by (2a) for the branch connecting bus 𝑖 to bus 𝑗, 

if such a branch exists, i.e., 𝐿𝑖𝑗 = 1. In a similar way, (2b) represents the reactive power flow 

equation for each branch of EDS system. Voltage of each EDS bus is given by equation (2c) 

which is the modified version of voltage magnitude equation presented by [92]. Active and 

reactive power losses for each branch are given by (2d) and (2e), respectively. Equation (2f), 

represents the reactive power flow encountering shunt reactive losses at the sending end of each 

branch which is given by (2g), according to the considered 𝜋 configuration. Equation (2h) also 
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represents the shunt reactive losses at the receiving end of each branch, i.e., 𝑄𝑖𝑗
𝑏 . The above 

presented EDS load flow equations are further employed to build-up the proposed unified EDS 

energy management model. 

4.5. Inverter-based Modeling of Battery Energy Storage System 

In this study, BES is used to contribute in the energy management of EDS through optimal 

charging/discharging cycles. Therefore, detailed insights into BES characteristics is necessary 

and the need for an appropriate model arises accordingly. In the following discussion, BES is 

modelled considering its practical limitations such as capacity, charging/discharging rates and 

efficiencies, standby power losses over time, and both the active and reactive power 

controllability through its inverter-based operation. Fig. 4-1 is a presentation of the dynamic 

energy balance of BES during charging/discharging and standby modes. As illustrated by Fig. 

4-1, BES absorbs 𝐸𝑐ℎ𝑔 during charging cycle. However, due to charging efficiency, resulting in 

charging losses, i.e., 𝐸𝐶𝐿, the actual stored energy is 𝐸𝐴. The stored energy level drops to 𝐸𝐵, 

representing the available energy for BES discharging during standby mode, which is due to 

standby losses of BES, i.e., 𝐸𝑆𝐿. Finally, the BES discharged energy, is lower than the available 

stored energy in BES, which is due to discharging efficiency of BES, resulting in discharging 

losses, i.e., 𝐸𝐷𝐿. 
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Fig. 4-1. Dynamic energy balance in BES system  

Accordingly, the multi-period dynamic energy balance of BES located at bus 𝑗 is given by 

(3a), which represents the stored energy level in BES considering the stored energy level in 

previous time period, i.e., 𝐸𝑗(𝑡−1), charging/discharging rates in the current time period, i.e., 

𝑃𝑗𝑡
𝑐ℎ𝑔

/𝑃𝑗𝑡
𝑑𝑖𝑠, and the standby losses of BES, i.e., 𝐸𝑗

𝑙. 

𝐸𝑗𝑡 = 𝐸𝑗(𝑡−1) + 𝜂𝑗
𝑐ℎ𝑔

∙ 𝑃𝑗𝑡
𝑐ℎ𝑔

−
1

𝜂𝑗
𝑑𝑖𝑠

∙ 𝑃𝑗𝑡
𝑑𝑖𝑠 − 𝐸𝑗

𝑙;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (3a) 

The end-coupling constraint of BES is presented by (3b) making sure that the final and initial 

energy levels of BES are similar. 

∑ (𝜂𝑗
𝑐ℎ𝑔

∙ 𝑃𝑗𝑡
𝑐ℎ𝑔

−
1

𝜂𝑗
𝑑𝑖𝑠

∙ 𝑃𝑗𝑡
𝑑𝑖𝑠)

𝑡∈𝛯𝑇
= 𝐸𝑗

𝑙 ∙ 𝑇;  ∀𝑗 ∈ 𝛯𝐽 (3b) 

Given the ability of inverters in generating internal reactive power, the share of active and 

reactive power is controlled in both charging and discharging cycles of BES. In inverter-based 

operation of BES, the inverter is responsible for absorbing/injecting reactive power from/to the 
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grid while BES is responsible for absorbing/injecting active power from/to the grid [109]. The 

BES active power is limited to its maximum allowable range which is dependent on the BES 

capacity. Since, the charging/discharging active power of inverter is supplied by BES, the 

internally generated reactive power in inverter is limited to its maximum allowable capacity 

which is expressed by inverter's apparent power. Therefore, constraints (3c) and (3d) are 

employed to express the relation between active and reactive power in inverter and BES. Note 

that, the efficiency of inverter, i.e., 𝜂𝑗
𝑖𝑛𝑣,𝐵𝐸𝑆

, has been considered in (3c)-(3d) when inverting BES 

active power to AC active power.  

|𝑆𝑗𝑡
𝑐ℎ𝑔

|
2
= (𝑃𝑗𝑡

𝑐ℎ𝑔
∙ 𝜂𝑗

𝑖𝑛𝑣,𝐵𝐸𝑆)
2
± 𝑄𝑗𝑡

𝑖𝑛𝑣,𝐵𝐸𝑆2;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (3c) 

|𝑆𝑗𝑡
𝑑𝑖𝑠|

2
= (𝑃𝑗𝑡

𝑑𝑖𝑠 ∙ 𝜂𝑗
𝑖𝑛𝑣,𝐵𝐸𝑆)

2
± 𝑄𝑗𝑡

𝑖𝑛𝑣,𝐵𝐸𝑆2;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (3d) 

According to the above BES-inverter model, the limitation of reactive power generation by 

inverter is completely dynamic in each operational time period, as it is dependent on the inverter 

capacity on one hand, and the BES charged/discharged active power on the other hand (as the 

inverted active power uses a portion of inverter's capacity). Therefore, by limiting the inverter's 

capacity, its reactive power generation is also limited to the allowable range, regarding the value 

of inverted active power in each time slot. 

4.6. Inverter-based Modeling of Renewable Energy Sources 

The same as BES inverter-based integration, RESs are modeled by their active power while 

the inverter is responsible for reactive power absorption/injection from/to the grid. Therefore, the 

active power produced by RES is directly injected to grid through inverter while the reactive 
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power is generated by the inverter. The apparent power of RES-inverter pack is given by 

(4a)/(4b) for PV/WF, while, it has been limited to converter's allowable capacity through (4c)-

(4d). Note that, the efficiency of PV/WF inverter, i.e., 𝜂𝑗
𝑖𝑛𝑣,𝑃𝑉

/𝜂𝑗
𝑖𝑛𝑣,𝑊𝐹

, has been considered in 

(4a)-(4b) as the PV/WF active power is injected to the grid through inverter.  

|𝑆𝑗𝑡
𝑃𝑉|

2
= (𝑃𝑗𝑡

𝑃𝑉 ∙ 𝜂𝑗
𝑖𝑛𝑣,𝑃𝑉)

2
± 𝑄𝑗𝑡

𝑖𝑛𝑣,𝑃𝑉2
;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (4a) 

|𝑆𝑗𝑡
𝑊𝐹|

2
= (𝑃𝑗𝑡

𝑊𝐹 ∙ 𝜂𝑗
𝑖𝑛𝑣,𝑊𝐹)

2
± 𝑄𝑗𝑡

𝑖𝑛𝑣,𝑊𝐹2
;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (4b) 

𝑆𝑗𝑡
𝑃𝑉 ≤ 𝑆𝑚𝑎𝑥

𝑖𝑛𝑣,𝑃𝑉;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (4c) 

𝑆𝑗𝑡
𝑊𝐹 ≤ 𝑆𝑚𝑎𝑥

𝑖𝑛𝑣,𝑊𝐹;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (4d) 

The coupling and the energy interaction between BES/RES, inverter, and grid are given by 

Fig. 4-2. 

𝑃𝑗𝑡
𝑑𝑖𝑠 ∙ 𝜂𝑗

𝑖𝑛𝑣 ,𝐵𝐸𝑆 ± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝐵𝐸𝑆  

𝑃𝑗𝑡
𝑐ℎ𝑔

± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝐵𝐸𝑆  𝑃𝑗𝑡

𝑐ℎ𝑔
∙ 𝜂𝑗

𝑖𝑛𝑣 ,𝐵𝐸𝑆  

𝑃𝑗𝑡
𝑑𝑖𝑠  

𝑃𝑗𝑡
𝑃𝑉/𝑃𝑗𝑡

𝑊𝐹  (𝑃𝑗𝑡
𝑃𝑉/𝑃𝑗𝑡

𝑊𝐹) ∙ 𝜂𝑗
𝑖𝑛𝑣 ,𝑅𝐸𝑆 ± 𝑗𝑄𝑗𝑡

𝑖𝑛𝑣 ,𝑃𝑉/𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝑊𝐹  

BES connected 

to inverter

RES connected 

to inverter

BES
Inverter Grid

RES Inverter
Grid

 

Fig. 4-2.  Representation of the BES and inverter coupling as well as their energy interaction with grid 

4.7. Proposed EDS Energy Management Model 

The considered system configuration for the EDS, equipped with RES and BES systems, is 
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given by Fig. 4-3, which illustrates the location of these elements at the receiving end of each 

branch as well as the power flow directions (injection/absorption of power for each element), as 

per the nomenclature. In the following, each element of the considered EDS configuration in Fig. 

4-3 is modelled and discussed. 

𝑟𝑖𝑗  𝑥𝑖𝑗  

𝑦𝑖𝑗
𝑎  𝑦𝑖𝑗

𝑏  

𝑄𝑖𝑗 𝑡
𝑎  𝑄𝑖𝑗 𝑡

𝑏  

𝑉𝑖𝑡  𝑉𝑗𝑡  
𝑃𝑖𝑗 𝑡 + 𝑗𝑄𝑖𝑗 𝑡  

 

𝑃𝑖𝑗 𝑡 + 𝑗𝑄𝑖𝑗 𝑡
′  

 

 
𝑄𝑖𝑗 𝑡

𝑙𝑜𝑠𝑠  𝑃𝑖𝑗 𝑡
𝑙𝑜𝑠𝑠  

𝑉𝑗 𝑡  𝑉𝑖𝑡  𝑉𝑗𝑡  

𝑉𝑗𝑡  

𝑉𝑖𝑡  

configuration of a distribution branch

𝑃
𝑗𝑡 𝐿

+
𝑗𝑄

𝑗𝑡 𝐿
 

𝑃𝑗𝑡
𝑊𝐹  

𝑃𝑗𝑡
𝑃𝑉 ∙ 𝜂𝑗

𝑖𝑛𝑣 ,𝑃𝑉 ± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝑃𝑉  𝑃𝑗𝑡

𝑃𝑉  

𝑃𝑗𝑡
𝑊𝐹 ∙ 𝜂𝑗

𝑖𝑛𝑣 ,𝑊𝐹 ± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝑊𝐹  

𝑃𝑗𝑡
𝑐ℎ𝑔

± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝐵𝐸𝑆  

𝑃𝑗𝑡
𝑑𝑖𝑠 ∙ 𝜂𝑗

𝑖𝑛𝑣 ,𝐵𝐸𝑆 ± 𝑗𝑄𝑗𝑡
𝑖𝑛𝑣 ,𝐵𝐸𝑆  𝑃𝑗𝑡

𝑑𝑖𝑠  

𝑃𝑗𝑡
𝑐ℎ𝑔

∙ 𝜂𝑗
𝑖𝑛𝑣 ,𝐵𝐸𝑆  

Grid
 

Fig. 4-3.  Considered 𝜋 configuration for each branch of EDS equipped with RES and BES systems  

The modified load flow equations in (2) are employed to build-up the proposed EDS energy 

management model, considering the general configuration of EDS branches in Fig. 4-3. The 

proposed model is expressed through (5).  

Multi-objective function:  

𝑂. 𝐹.= {

𝑓1 = min∑ ∑ ∑ 𝑃𝑖𝑗𝑡
𝑙𝑜𝑠𝑠

t∈𝛯𝑇𝑗∈𝛯𝐽𝑖∈𝛯𝐼
;                

𝑓2 = min∑ ∑ |𝑉𝑖𝑡 − 𝑉𝑖(𝑡−1)|
𝑡∈𝛯𝑇𝑖∈𝛯𝐼

;
 (5a) 
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s.t.  

Power flow constraints including BES and RES active/reactive power:  

∑ (𝑃𝑖(𝑗+1)𝑡 − 𝑃𝑖(𝑗+1)𝑡
𝑙𝑜𝑠𝑠 − 𝑃(𝑗+1)𝑡

𝐿 + (𝑃(𝑗+1)𝑡
𝑃𝑉 ∙ 𝜂𝑗

𝑖𝑛𝑣,𝑃𝑉) + (𝑃(𝑗+1)𝑡
𝑊𝐹 ∙ 𝜂𝑗

𝑖𝑛𝑣,𝑊𝐹)
𝑖∈𝛯𝐼

− 𝑃(𝑗+1)𝑡
𝑐ℎ𝑔

+ (𝑃(𝑗+1)𝑡
𝑑𝑖𝑠 ∙ 𝜂𝑗

𝑖𝑛𝑣,𝐵𝐸𝑆)) ∙ 𝐿𝑖(𝑗+1)

= ∑ 𝑃(𝑗+1)𝑖𝑡 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 

(5b) 

∑ (𝑄𝑖(𝑗+1)𝑡
′ − 𝑄𝑖(𝑗+1)𝑡

𝑙𝑜𝑠𝑠 − 𝑄(𝑗+1)𝑡
𝐿 + 𝑄𝑖(𝑗+1)𝑡

𝑏 ± (𝑄(𝑗+1)𝑡
𝑖𝑛𝑣,𝑃𝑉 ∙ 𝜂𝑗

𝑖𝑛𝑣,𝑃𝑉)
𝑖∈𝛯𝐼

± (𝑄(𝑗+1)𝑡
𝑖𝑛𝑣,𝑊𝐹 ∙ 𝜂𝑗

𝑖𝑛𝑣,𝑊𝐹) ± 𝑄(𝑗+1)𝑡
𝑖𝑛𝑣,𝐵𝐸𝑆) ∙ 𝐿𝑖(𝑗+1)

= ∑ 𝑄(𝑗+1)𝑖𝑡 ∙ 𝐿
 
(𝑗+1)𝑖

𝑖∈𝛯𝐼
;   ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 

(5c) 

𝑃𝑖𝑗𝑡
𝑙𝑜𝑠𝑠 =

𝑟𝑖𝑗
|𝑉𝑖𝑡|2

∙ (𝑃𝑖𝑗𝑡
2 + 𝑄𝑖𝑗𝑡

′ 2
); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5d) 

𝑄𝑖𝑗𝑡
𝑙𝑜𝑠𝑠 =

𝑥𝑖𝑗

|𝑉𝑖𝑡|2
∙ (𝑃𝑖𝑗𝑡

2 + 𝑄𝑖𝑗𝑡
′ 2

); ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5e) 

𝑄𝑖𝑗𝑡
′ = 𝑄𝑖𝑗𝑡 + 𝑄𝑖𝑗𝑡

𝑎 ;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5f) 

𝑄𝑖𝑗𝑡
𝑎 = 𝑌𝑖𝑗

𝑎|𝑉𝑖𝑡|
2; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5g) 

𝑄𝑖𝑗𝑡
𝑏 = 𝑌𝑖𝑗

𝑏|𝑉𝑗𝑡|
2
; ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5h) 
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Voltage magnitude:  

|𝑉(𝑗+1)𝑡|
2
= ∑ |𝑉𝑖𝑡|

2

𝑖∈𝛯𝐼
∙ 𝐿𝑖(𝑗+1)

+ ∑
𝑟𝑖(𝑗+1)

2 + 𝑥𝑖(𝑗+1)
2

|𝑉𝑖𝑡|2
∙ (𝑃𝑖(𝑗+1)𝑡

2 + 𝑄𝑖(𝑗+1)𝑡
′ 2

)
𝑖∈𝛯𝐼

− ∑ 2(𝑟𝑖(𝑗+1)𝑃𝑖(𝑗+1)𝑡 + 𝑥𝑖(𝑗+1)𝑄𝑖(𝑗+1)𝑡
′ )

𝑖∈𝛯𝐼
;   ∀𝑖 ∈ 𝛯𝐼 , ∀𝑡 ∈ 𝛯𝑇 

(5i) 

𝑉𝑗
𝑚𝑖𝑛 ≤ |𝑉𝑗𝑡| ≤ 𝑉𝑗

𝑚𝑎𝑥;   ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5j) 

Current magnitude:  

|𝐼𝑖𝑗𝑡|
2
=

𝑃𝑖𝑗𝑡
2 + 𝑄𝑖𝑗𝑡

2

|𝑉𝑖𝑡|2
;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5k) 

|𝐼𝑖𝑗𝑡| ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 ∙ 𝐿𝑖𝑗;  ∀𝑖 ∈ 𝛯𝐼 , ∀𝑗 ∈ 𝛯𝐽, ∀𝑡 ∈ 𝛯𝑇 (5l) 

Battery storage constraints:  

(3a)-(3d) (5m) 

𝑆𝑗𝑡
𝑐ℎ𝑔

≤ 𝑆𝑚𝑎𝑥
𝑖𝑛𝑣,𝐵𝐸𝑆 ∙ 𝛼𝑗𝑡

𝑐ℎ𝑔
;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (5n) 

𝑆𝑗𝑡
𝑑𝑖𝑠 ≤ 𝑆𝑚𝑎𝑥

𝑖𝑛𝑣,𝐵𝐸𝑆 ∙ 𝛼𝑗𝑡
𝑑𝑖𝑠;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (5o) 

𝛼𝑗𝑡
𝑐ℎ𝑔

+ 𝛼𝑗𝑡
𝑑𝑖𝑠 ≤ 1;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (5p) 
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𝐸𝑗𝑡 ≤ 𝐸𝑚𝑎𝑥
 ∙ 𝛽𝑗

 ;  ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 (5q) 

RES constraints:  

(4a)-(4d) (5r) 

In the proposed energy management model, (5a) represents the two objectives of the study 

including loss minimization, expressed by 𝑓1, and voltage deviation minimization, expressed by 

𝑓2. The multi-objective optimization model is solved employing goal programming approach. 

Constraints (5b) and (5c) are the same as power flow equations (2b) and (2c), respectively, but 

they are different in two ways, including: 

1) They represent a multi-period power flow through EDS, rather than a single-period power 

flow, 

2) They include the power generation by PV and WF, i.e., 𝑃𝑗𝑡
𝑃𝑉+𝑃𝑗𝑡

𝑊𝐹 + 𝑗𝑄𝑗𝑡
𝑅𝐸𝑆, as well as 

charging/discharging power of BES, i.e., 𝑃(𝑗+1)𝑡
𝑐ℎ𝑔

+ 𝑗𝑄𝑗𝑡
𝑐ℎ𝑔

 / 𝑃𝑗𝑡
𝑑𝑖𝑠 + 𝑗𝑄𝑗𝑡

𝑑𝑖𝑠. 

The active and reactive power losses on each branch of the system are given by (5d) and (5e), 

respectively. Constraints (5f)-(5h) are the same as constraints (2f)-(2h), but in multi-period form. 

Constraint (5i) is also the multi-period representation of bus voltage magnitude in (2c) which is 

limited to its allowable operational ranges in (5j). Current magnitude of each branch connecting 

bus 𝑖 to bus 𝑗, is given by (5k) and is limited to its allowable operational ranges in (5l). 

Constraints (5m)-(5q) model the BES system in the proposed energy management model. (5m) 

refers to BES operation equations in (3a)-(3d). Constraint (5n)/(5o) represents the maximum 
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allowable charging/discharging power of BES installed on bus 𝑗. The maximum capacity of BES 

is also limited to the its maximum value by (5p) if a BES is connected to bus 𝑗, i.e., 𝛽𝑗𝑡
𝑐ℎ𝑔

= 1. 

Constraint (5q) makes sure that the BES is operating in one mode at a time, i.e., 

charging/discharging. The apparent power of PV and WF is also modeled by equations (4a)-(4b) 

which are encountered by (5r). 

The proposed energy management model in (5) determines the optimal EDS energy 

management solutions including: 

• Active/Reactive power flow and current magnitude of each branch of the system, 

• Voltage magnitude and its deviations in two consecutive time slots, for the whole 

operation horizon, 

• Active/Reactive power loss on each branch of the system, 

• Charging, discharging, and steady state mode of BES systems, 

• Reactive power generation by inverters connected to both BES and RES systems, 

According to the proposed model, the above variables are determined in a way that the EDS 

total power loss as well as voltage deviations are minimized. As it is seen from the mathematical 

presentation in (5), the load flow equations are considered as constraints of the optimization 

model and the model is solved directly through optimization softwares with no need to iterative 

load flow calculations and metaheuristic optimization algorithms. 
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4.8. Simulation results 

To evaluate the effectiveness of the proposed model, an IEEE 33-bus system has been 

considered for case study in this section. The data of the system is available at [93]. Voltage 

magnitude at slack bus is 12.66 kV which is considered as the base value, while, the base value 

for power is 100 kVA. The modified system includes five RESs and six BES systems in different 

locations of the distribution system. The single-line diagram of the system is shown in Fig. 4-4. 

The capacity of each BES system is 400 kWh. The generated power of RESs throughout the 

network are given by Fig. 4-5 for the considered 24-hour operation in this study. The standard 

active/reactive load of IEEE 33-bus system is used to generate a 24-h load pattern based on South 

Australia's daily energy consumption pattern which has been taken from [110].  
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Fig. 4-4.  Considered system for numerical simulations (modified IEEE 33 bus system) 
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Fig. 4-5.  Generated power by renewable energy sources in EDS, Legend from top to bottom referring 

to renewables in Figure 4-4 as: B, E, A, C, D 

The proposed multi-objective energy management model (5) is evaluated under two cases. 

Case 1: considers the first objective function, which is EDS loss minimization, i.e., 𝑓1 in (5a). 

Case 2: considers both objectives including voltage deviations and loss minimization, i.e., 𝑓1 

and 𝑓2 in (5a). 

The above cases have been studied through the energy management model, and the obtained 

results are reported as follows: 

The energy management model has been simulated on a 24-h basis. Therefore, there are 24 

hourly voltage magnitudes for each bus of the system. Hourly voltage magnitudes have been 

presented in Fig. 4-6 for both cases 1 and 2. As it is seen, the voltage magnitude of all buses in 

case 1 follows the IEEE 33-bus voltage pattern with some deviations over time. As expected, 

these deviations are reduced when case 2 is conducted, i.e., 𝑓2 in (5a) is added to the 

optimization. This reduction in voltage deviation over time is also highlighted with the reported 

results in Fig. 4-7 which represents the 25%-75% range of voltage magnitudes for cases 1 and 2. 
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Each box in Fig. 4-7 represents 24 hourly voltage magnitudes for each bus of the system, while, 

the median of voltage magnitudes has been presented by red line. As it is seen in Fig. 10, the 

deviations of hourly voltage magnitude have been reduced over time, i.e., the size of the boxes 

has decreased.  
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Case 2 Legend 
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Fig. 4-6.  Hourly voltage magnitude for each bus of IEEE 33-bus system for cases 1-2 
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Fig. 4-7.  Voltage magnitude (24-h basis) for each bus of the system for cases 1-3 

Standard deviations of hourly voltage magnitudes for each bus of the system are also 

compared in Fig. 4-8 for cases 1 and 2 to demonstrate the contribution of the second objective 

function, i.e., voltage deviation minimization, in reducing the voltage deviations over time. As it 

is seen, the standard deviation has considerably reduced on all buses of the system.  

 

Fig. 4-8.  Standard deviation of hourly voltage magnitudes for each bus of the system 

The hourly total power loss of EDS as well as the hourly load pattern is given by Fig. 4-9. As 

it is seen, the EDS total power loss increases as the average load level increases in final hours of 

the day, i.e., hours 18-24. For the same reason, the total power loss has reduced between hours 5-

16. The total EDS daily power loss is obtained as 2098 kW which is also shown by Fig. 4-10. 
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Fig. 4-9.  Hourly system power loss during the operating horizon 

 

Fig. 4-10.  Total system power loss for a 24-h operation 

To illustrate the effectiveness of the proposed energy management model in terms of reactive 

power controllability, EDS is operated with and without this feature and the obtained results are 

compared. Fig. 4-11 shows the hourly voltage deviations as well as EDS total losses for the 

operation horizon (24 hours). As it is seen, hourly voltage deviations have reduced as the reactive 

power controllability is conducted for RES only, BES only and both RES and BES. On the other 

hand, EDS total power loss has also reduced as the reactive power controllability takes place. 

This shows that, the inverter-based operation of RES and BES can significantly improve the EDS 

optimal operation in terms of both voltage regulation and power loss minimization.  
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Effects of reactive power controllability in voltage deviation 

 

Effects of reactive power controllability in loss reduction 
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Fig. 4-11.  Effects of inverter-based operation of RESs and BESs on voltage deviation and total power 

loss 

According to the inverter-based operation of RESs, it is the active and reactive power of 

PVs/WFs that contributes in power flow constraints (5b)-(5c), i.e., 𝑃(𝑗+1)𝑡
𝑊𝐹 , 𝑃(𝑗+1)𝑡

𝑃𝑉 , 𝑄(𝑗+1)𝑡
𝑊𝐹 , 

𝑄(𝑗+1)𝑡
𝑃𝑉 , while, these active and reactive shares of RESs are also presented in (4a)-(4b), forming 

the apparent power of PVs and WFs, i.e., 𝑆𝑗𝑡
𝑃𝑉, 𝑆𝑗𝑡

𝑊𝐹. In the following, the optimal decisions on 

the active/reactive power of RESs has been given by Fig. 14. As it is seen, no active power has 

been injected to bus 2 the during the whole operation horizon. Most of the injected power to bus 

10 is also reactive power. The share of active power, however, is considerably higher than the 

share of reactive power at buses 5, 13, and 26. These decisions have been optimally made 

regarding the load level at each bus, value of loss and voltage deviation which have been 

minimized by the objective function, and the BES charging/discharging power.  
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Wind farm at bus 13 PV at bus 26 

  

PV at bus 10 

 

Fig. 4-12.  Inverter-based operation of RESs (active/reactive share of the injected power) 

There are six battery storage systems throughout the EDS (see Fig. 4-4). These battery systems 

are operated according to the inverter-based model (3), according to which the BES can absorb 
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time period, and vice versa, i.e., 
𝑃𝑗𝑡
𝑐ℎ𝑔

𝑄
𝑗𝑡
𝑐ℎ𝑔 is not necessarily equal to 

𝑃𝑗𝑡
𝑑𝑖𝑠

𝑄𝑗𝑡
𝑑𝑖𝑠 . 

 The charging/discharging energy as well as active/reactive support of BESs have been 

presented by Fig. 4-13. As it is seen at the right-hand side of Fig. 4-13, BESs are mostly charged 

approximately between hours 1-4 and 13-17. The charging pattern of BESs is mostly due to the 

surplus of power produced by WFs during under-load hours, while, the stored power by BESs is 

discharged when RES generation drops, i.e., hours 5-10 and 17-23. Another reason of this 

discharge is the increase in average load during hours 17-22. The share of active and reactive 

power of BESs in both charging and discharging modes is given at the right-hand side of Fig. 

4-13.  
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Fig. 4-13.  Inverter-based BES energy level and apparent charging/discharging power as well as 

active/reactive share of BES power (right) 

4.9. Conclusion 

This chapter presented a new directly solvable energy management model for EDS to 

minimize total power losses and bus voltage deviations by employing the arbitrage ability of 

distributed battery energy storage systems and renewable energy sources. Two objectives were 

considered in the model, including power loss minimization and voltage deviation minimization. 

A new indexing for EDS buses was introduced which resulted in a general representation of EDS 

power flow equations. These equations were then introduced as the constraints of the proposed 

energy management model. Accordingly, the energy management model was able to be solved in 

a single shot through GAMS solver package with no need to metaheuristic optimization methods. 

The inverter-based operation (active and reactive power controllability) of RES and BES 
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elements were also considered in the energy management model to enable a realistic operation of 

these systems. 

A comprehensive case study was conducted using the standard IEEE 33-bus system. The 

optimality of the proposed power flow model was illustrated by comparing the obtained results 

with those of the FBS method. The 33-bus system was further equipped by RES and BES 

elements and the energy management model was conducted for a 24-h operation of the system. 

According to the obtained numerical results, it was shown that the integration of RES and BES 

elements can significantly reduce the EDS power loss and voltage deviations over time. This was 

highlighted by investigating the effects of these elements on the standard deviation of voltage 

magnitude over the 24-h operation horizon. It was also shown that the inverter-based operation of 

RESs and BESs can play an important role in reducing system losses and smoothening the 

voltage magnitudes as these two variables are strongly dependent on both the active and reactive 

power flow in EDS.  

The proposed model in this study can be employed by EDS operators to conduct day-ahead 

EDS operations and evaluate the effects of inverter-based operation of RESs and BESs on the 

system characteristics. The ability of the proposed model in being directly solved is another 

contribution of this study which eliminated the need to iterative load flow calculation 

methodologies as well as metaheuristic optimization techniques. The proposed inverter-based 

operation in the energy management model can also be employed to integrate other elements 

such as electric vehicle charging stations into electricity distribution system. 

The energy management model in this chapter, will be used to investigate the effects of EV 
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charging on distribution system. To do so, an EV model is developed in the next chapter.  
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5.  Load Modelling of EVs 

This chapter presents a comprehensive investigation on the effects of EV employment of the 

optimal operation of EDS. The developed energy management model in Chapter 4 is employed to 

investigate the effects of EV employment on power loss and voltage deviations of EDS operation 

at the presence of RES and BES systems. To do so, EV employment is modelled by probability 

density functions throughout the EDS, considering different probability density functions. Two 

types of EV charging is considered including fast and average speed charging. Different 

scenarios are investigated to evaluate the EV load. The obtained load scenarios will be used in 

Chapter 6 where the directly solvable energy management model is solved under uncertainty 

through robust optimization. The effects of EV loading will be shown in Chapter 6 as well.  

5.1. Charger type and EV brands considered in the load model 

Combined Charging System inlet is considered as the charging system for EVs. The 

Combined Charging System inlet is an industry-standard vehicle connector for convenient 

charging of Plug-in Hybrid Electric Vehicles (PHEV) and Electric Vehicles. Type 2 inlets and 

plugs support AC & DC Charging standards of Europe/Australia. This inlet is given by Fig. 5-1. 

 

Fig. 5-1.  Considered inlet for EVs 
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The following vehicles in Table 5-1 are considered for fast and average charging patterns.  

Table 5-1. Considered electric vehicles 

Vehicle make and 

model 
Vehicle view 

Battery 

Capacity 

Charger 

Type 

Driving 

Range 

Charging 

time 

Charging 

power 

Hyundai Kona 

Electric (slow 

speed charging) 
 

64kWh 
Type 

s2/CCS 
449 km 6 hours 9.4 kW 

Nissan LEAF (fast 

speed charging) 

 

40kWh 
Type 

s2/CCS 
243 km 2 hours 17 kW 

 

5.2. Scenario No.1 of EV loading (100% fast charging EVs) 

In this scenario 25 fast charging EVs are considered in an individual bus of the distribution 

system. The distribution of the start of the charging time for these vehicles follows normal 

distribution. However, the total value of the charging load on the bus is a summation of charging 

power of EVs over time.  

In the following, the EV charging load profile has been given by over 12 operating hours. 

 

Fig. 5-2.  EV charging load profile for scenario No. 1 of EV loading (100% fast charging EVs) 
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5.3. Scenario No.2 of EV loading (100% slow charging EVs) 

In this scenario 25 slow charging EVs are considered in an individual bus of the distribution 

system. The same as scenario No.1, the distribution of the start of the charging time for these 

vehicles follows normal distribution. However, the total value of the charging load on the bus is a 

summation of charging power of EVs over time.  

In the following, the EV charging load profile has been given by Fig. 5-3 over 12 operating 

hours. 

 

Fig. 5-3.  EV charging load profile for scenario No. 2 of EV loading (100% slow charging EVs) 

 

5.4. Scenario No.3 of EV loading (50% slow charging and 50% EVs) 

In this scenario 13 slow charging EVs as well as 13 fast charging EVs are considered in an 

individual bus of the distribution system. The same as scenario No.1 and No.2, the distribution of 

the start of the charging time for these vehicles follows normal distribution. However, the total 

value of the charging load on the bus is a summation of charging power of EVs over time.  

In the following, the EV charging load profile has been given by over 12 operating hours. 
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Fig. 5-4.  EV charging load profile for scenario No. 2 of EV loading (50% slow charging and 50% fast 

charging EVs) 

Note that, the above EV load models will be considered in the case study in Chapter 6, where 

the robust optimization approach is conducted to characterize the uncertainties of load in the 

energy management model which was presented in Chapter 4. 

The EV model in this chapter will be used long side the energy management model in chapter 

4, to investigate the effects of EV charging on distribution system.  
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6. The Proposed BCD Robust Energy 

Management model to Investigate the Effects 

of EV Employment under Uncertainties of PV 

and WT systems 

This chapter presents a new robust energy management model as an extension to Chapter 4. In 

Chapter 4, the new inverter-based directly solvable energy management model was introduced 

for EDS. In this chapter, the associated uncertainties of renewables in EDS are considered into 

account through robust optimization (RO). A new robust min-max-min optimization problem is 

developed through a decomposition-based column-and-constraint generation technique. Block-

coordinate-descent (BCD) methodology is used to solve the inner max-min problem rather than 

duality theory in conventional robust models. This enables a recourse-based characterization of 

integer variables, such as BES charging/discharging status, which was not applicable in previous 

robust models. A case study has been conducted for an EDS in Adelaide, South Australia 

including 6 buses. The robust solutions are obtained for different scenarios of EV charging 

pattern under uncertainty of renewables in EDS. The inverter-based operation of BES and RES 

systems is also considered in the model.  

6.1. Background and Motivation 

To cope with the mentioned problems with SP and scenario-based models (as indicated in 

Chapter 2), robust optimization (RO) has been employed in some recent studies to characterize 

uncertainties [111]. The advantage of RO is that it models the uncertainties by worst-case 

realization through bounded intervals, eliminating the need of scenario generation and 

distributional knowledge of the uncertain parameters [34, 112]. Therefore, the obtained solutions 
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would be feasible as long as the uncertainty realizations are within the user-defined bounded 

intervals, which makes it more reliable/practical than scenario-based and SP models in the 

literature. 

However, RO still faces some limitations in modelling uncertainties which is due to the use of 

duality theory in solving it. In particular, duality theory is used in min-max-min RO problems to 

transform the inner bi-level max-min problem into a solvable single-level max problem. A 

Robust bidding strategy was proposed for a wind farm coupled with a storage system in [113]. 

However, binary variables, indicating buying/selling bids, were eliminated in the model to ease 

the employment of duality theory. This results in export-only bidding which is not applicable in 

practice. Duality theory was also employed in [114] to solve a robust model predictive control-

based bidding strategy for a wind-storage systems. However, the model of [114] was a single-

stage max-min problem only. Binary variables indicating BES charging/discharging status were 

also eliminated in [115] to make it possible to conduct duality. Moreover, it was not possible to 

consider both buying and feed-in-tariff for day ahead bids in [115] as no binary variable was used 

to separate buying/selling status. This becomes important when the feed-in tariff is different than 

the buying price. To be more realistic, the charging/discharging status of BES was modeled by 

binary variables in [116]. However, the charging/discharging status of BES was characterized 

before uncertainty realizations to be able to conduct duality theory with no binary variables 

involved. Similar to [116], the charging/discharging status of BES was modeled before 

uncertainty realizations in [117-119].  

Note that, the mentioned RO studies in the literature have considered the uncertainties in their 

models and their solutions have proven to be more efficient than the deterministic approaches. 
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However, the BES charging/discharging binary variables have been eliminated or modeled in the 

master problem. As a result, the worst-case realization of uncertainties is determined when these 

variables are fixed in the sub-problem and therefore, these variables are not affecting the sub-

problem's objective function. In other words, these variables are obtained based on the primal 

cuts, containing the worst-case realization of uncertainties in the master problem and have no 

accountability in determining the worst-case realization itself. This means that, the sub-problem 

is solved without considering the cross effects between Operation binary variables and 

uncertainties. Therefore, the benefit of robust optimization has not been fully exploited. 

6.2. Contributions 

1) A robust optimization approach is proposed to solve the directly solved energy management 

model in Chapter 4. To overcome the problems in scenario-based and SP models, a min-max-min 

adaptive robust optimization is developed to characterize the uncertainties of renewables such as 

PV and WT generation by polyhedral uncertainty sets instead of scenarios. The problem is solved 

through a decomposition methodology and a column-and-constraint (C&C) generation technique 

[34], recasting the tri-level problem into a first-stage min problem and a second-stage max-min 

problem.  

2) The proposed RO model employs Block Coordinate Descent (BCD) method [120], which 

approximates the worst-case realization of uncertainties by means of Taylor series instead of 

transforming the inner max-min problem into a single max problem by duality theory. BCD was 

originally devised to deal with single-level problems. By extending the application of BCD 

technique to solve the two-level max-min sub-problem (resulted from the C&C generation 

technique), it is possible to avoid duality theory in solving the sub-problem. Since, dual of a 
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mixed-integer model is generally week, non-tractable and complicated [35], the extension of 

BCD technique instead of duality theory eliminates the limitation in considering binary variables 

in the max-min sub-problem. As a result, uncertainty-dependent binary variables such as BES 

charging/discharging statuses can be obtained after uncertainty realization in the sub-problem as 

recourse decisions, which was not applicable in previous dual-based RO models in the literature. 

This results in more system flexibility in compensating the uncertainty effects such as PV/WT 

shortage. 

3) Since, no duality is conducted, BES status can be freely modeled with binary indicators. 

This is the first application of min-max-min robust optimization in which binary variables are 

modeled in the inner max-min problem. Note that, the proposed model in this study is called 

"BCD robust", hereafter. 

6.3. Two-stage Adaptive Robust Approach 

In robust optimization, two main decisions are made including "here-and-now" decisions, 

which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are 

obtained after the realization of uncertain parameters. In this study, all operating variables in 

EDS, i.e., power loss, voltage, power flow, etc., are considered as "here-and-now" variables 

which are obtained before uncertainty realizations (as a result of the finalized day ahead 

operation of the system). Since, the uncertainties associated with PV/WT productions are realized 

when scheduling BES and RES systems, the BES and RES active power as well as their inverter-

based relative power are considered as "wait-and-see" decisions to compensate the effects of 

uncertainties.  
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The compact form of the proposed robust model is expressed through a tri-level min-max-min 

optimization problem as (2). 

Min𝑿∈Ξ𝐼(𝑨′ ∙ 𝑿 + Max𝑼̃∈Ξ𝑈𝑆 Min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀) (6a) 

s.t.  

Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏}𝑁𝑋  |  𝑪𝑿 ≥ 𝑫} (6b) 

Ξ𝑈𝑆 = {𝑼̃ ∈ ℝ𝑁𝑈̃   |  𝑼̃ = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−} (6c) 

Ξ𝐼𝐼 = {𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼̃) ≥ 0} (6d) 

In (6a), the outer min problem minimizes the objective function over the sizing variables 

which are obtained as "here-and-now" decisions. The expression 𝑨′ ∙ 𝑿 represents EDS power 

flow variables. Therefore, outer min problem is subject to power flow equations in Chapter 4, 

compactly expressed by (6b). The inner max problem maximizes the remaining term of the 

objective function (expressed by 𝑭′, 𝒀) over the worst-case realization of uncertain parameters, 

while the inner min problem minimizes it over the BES/RES operation variables, considered as 

"wait-and-see" decisions. Therefore, the inner max problem is subject to polyhedral uncertainty 

sets, expressed by (6c), while, the inner min problem is subject to the BES/RES operation 

constraints, presented by (6d).  

6.4. Solution Methodology to Solve the Proposed Robust energy management 

model 

The tri-level optimization problem in (2a) cannot be solved directly. Therefore, a 

decomposition methodology, by means of C&C technique [34], is employed to decompose the 
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tri-level min-max-min problem to a single-level min problem and a bi-level max-min problem. 

The single-level min problem is called "master problem" and the bi-level max-min problem is 

called "sub-problem", hereafter. The proposed decomposition methodology is described through 

the following steps: 

Step 1) The master problem is solved to determine "here-and-now" decision variables while 

being subject to "here-and-now" constraints only. The compact form of master problem is given 

by (6e)-(6g). 

min𝑿∈Ξ𝐼   ΛI ≡ 𝑨′ ∙ 𝑿 + ¥ (6e) 

s.t.  

Here-and-now constraints:  

𝑪𝑿 ≥ 𝑫;    𝑿 ∈ {0, 1}𝑁𝑋 (6f) 

Primal cut constraints:  

¥ ≥ 𝑭′, 𝒀 ;    𝑮 ∙ 𝑿 + 𝑩 ∙ 𝒀𝒄 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;  𝑐 ∈ Ξ𝐶  (6g) 

In the above problem, (6e) presents the epigraph form of master problem which minimizes the 

"here-and-now" terms of objective function, which are delivered from the sub-problem in 

previous iteration of column-and-constraint methodology (if the first iteration, primal cuts are 

replaced by constraints of the deterministic model). After achieving a solution in master-problem, 

the obtained "here-and-now" variables, i.e., 𝑿 are sent to the sub-problem as fixed values to 

determine both "wait-and-see" decision variables, and the new worst-case realization of uncertain 
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parameters including PV/WT generation. 

Step 2) Given the obtained here-and-now variables, sub-problem is solved to determine 

operation decision variables and worst-case realization of uncertain parameters. The vector of the 

fixed "here-and-now" variables is shown by 𝑿𝒄 in the sub-problem which is given by (6h)-(6j). 

Max𝑼̃∈Ξ𝑈𝑆 Min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀 (6h) 

s.t.  

Here-and-now constraints:  

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 ≥ 𝑲;  (6i) 

Uncertainty set constraints:  

𝑼𝑐 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑐 ∈ ℝ𝑁𝑈̃ (6j) 

The objective function in (6h) minimizes the operating costs over "wait-and-see" variables, 

while, maximizing it over the worst-case realization of uncertainties. The obtained worst-case 

realizations are then sent back to master problem as fixed values. In fact, in each iteration of the 

decomposition methodology a new set of constraints (primal cuts) are added to master-problem. 

Step 3) At the next iteration, master problem is solved, given the obtained worst-case 

realization of uncertain parameters through primal cutting planes in previous iterations, in order 

to find the new here-and-now decision variables to be sent to the sub-problem. The column-and-

constraint methodology iterates between master problem and sub-problem until the convergence 
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criteria is satisfied (i.e., the value of master problem and sub-problem get sufficiently close).  

Since, the inner max-min problem is a bi-level optimization model, it cannot be directly 

solved. As indicated in the contributions, BCD technique is used to recast the bi-level max-min 

problem into two single-level problems including a first-stage sub-problem, i.e., the inner min 

problem, and a second-stage sub-problem, i.e., the inner max problem. Since, duality theory is 

not used in the proposed robust model, it is possible to determine the binary variables in the sub-

problem as "wait-and-see" decisions. Therefore, despite the previous dual-based models, in 

which BES charging/discharging status was obtained before uncertainty realization as "here-and-

now" variables, it is based on the worst-case realization of uncertainties and are treated as 

recourse decisions ("wait-and-see" decisions) in the BCD model. In the following sub-section, 

the solving methodology for the sub-problem is described. 

6.5. Block Coordinate Descent (BCD) Methodology to Solve the Sub-problem 

The sub-problem is solved to determine "wait-and-see" variables at the presence of 

uncertainties, and 2) the worst-case realization of uncertain parameters, given the fixed values of 

here-and-now variables obtained by master problem.  

Note that the standard application of the BCD method relies on the availability of an analytical 

expression for the operating cost in terms of middle-level variables. In the absence of such an 

expression in the max-min sub-problem, at each iteration of the proposed BCD method, the sub-

problem for operating/bidding variables is built upon the first-order Taylor series approximation 

of the operating cost around the uncertainty realizations identified at the previous iteration. 

Therefore, the max-min sub-problem in (6h) is recast into a first-stage and a second-stage sub-
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problem. The first-stage sub-problem is given as (6k)-(6m). 

min𝑌∈Ξ𝐼𝐼   ΛII ≡ 𝑭′, 𝒀 (6k) 

PV-WT-BES operation constraints:  

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 ≥ 𝑲; (6l) 

Auxiliary constraints:  

𝑼𝒄 = 𝑼𝑧    ∶     𝝁 ≥ 0; (6m) 

Since, the here-and-now variables are fixed on their obtained values in master problem, the 

power flow variables are not included in the first-stage sub-problem. Instead, it includes the BES 

and RES operating constraints. Accordingly, the objective function (6k) minimizes the operating 

costs over "wait-and-see" variables, while being subject to operating constraints and auxiliary 

constraints representing the obtained worst-case realization of uncertainties by the second-stage 

sub-problem in previous iteration of the BCD method , i.e., 𝑼𝑧. 

𝝁 is the vector of dual variables representing the sensitivity of objective function (6k) toward 

uncertain parameters, including PV/WT production at each iteration z of the BCD method. These 

dual variables are further employed to develop the first-order Taylor series in the second-stage 

sub-problem only and no duality theory in conducted. 

The second-stage sub-problem is built upon the first order Taylor series approximation of the 

first-stage sub-problem over the uncertain parameters in previous iteration of BCD method, i.e., 

𝑧 − 1. Therefore, at iteration 𝑧 of the BCD method, the second-stage sub-problem is cast as (6n)-
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(6o). 

max𝑼̃∈Ξ𝑈𝑆  ΛIII ≡ΛII + 𝝁 ∙ (𝑼𝑧 − 𝑼𝑧−1) (6n) 

Uncertainty set constraints:  

𝑼𝑧 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑧 ∈ ℝ𝑁𝑈̃ (6o) 

The second-stage sub-problem determines the worst-case realization of uncertain parameters 

at each iteration 𝑧 of the BCD method, by which the approximated objective function (6n) is 

maximized. Constraint (6o) expresses the deviation of uncertain parameters in positive and 

negative directions. By solving the second-stage sub-problem, the worst-case realization of 

uncertain parameters is determined to be sent to the first-stage sub-problem. The first-stage sub-

problem is solved given the fixed values of worst-case realizations in the second-stage sub-

problem. 

This procedure continuous until the inner loop converges, i.e., the value of first-stage and 

second-stage sub-problems become sufficiently close. Therefore, the methodology to solve the 

min-max-min problem consists of two nested loops as follows: 

Outer loop: The master problem communicates with the sub-problem through the outer loop, 

conducting the C&C methodology, 

Inner loop: The iterations between first-stage and second-stage sub-problems are directed 

through the inner loop by means of BCD method. 

Fig. 6-1.  Outline of the proposed BCD robust methodology Fig. 6-1 gives the outline of the 
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proposed methodology and the compact formulation of each problem. In Fig. 6-1, the outer loop 

is shown by red lines and the inner loop is shown by blue lines. 

Master problem

min𝑿∈Ξ𝐼   ΛI ≡ 𝑨′ ∙ 𝑿 + ¥ 

Here and now constraints: 

𝑪𝑿 ≥ 𝑫;    𝑿 ∈ {0, 1}𝑁𝑋  

Primal cut constraints: 

¥ ≥ 𝑭′ , 𝒀 ;    𝑮 ∙ 𝑿 + 𝑩 ∙ 𝒀𝒄 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;  𝑐 ∈ Ξ𝐶 
 

 

Sub-problem

First-stage sub-problem

Second-stage sub-problem

min𝑌∈Ξ𝐼𝐼   ΛII ≡ 𝑭′ ,𝒀 

BES and RES operation constraints: 

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 
≥ 𝑲;  

Auxiliary constraints: 

𝑼𝒄 = 𝑼𝑧    ∶     𝝁 ≥ 0;    
 

max𝑼̃∈Ξ𝑈𝑆  ΛIII ≡ΛII + 𝝁 ∙ (𝑼𝑧 − 𝑼𝑧−1) 
Uncertainty set constraints: 

𝑼𝑧 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑧 ∈ ℝ𝑁𝑈̃ 

 

|𝚲𝐈𝐈𝐈 − 𝚲𝐈𝐈| 
≤ 𝜺 

 No

Yes

|𝚲𝐈𝐈 − 𝚲𝐈| 
≤ 𝜺 

Yes

Robust energy management solutions are obtained

 No.

Here and now variables are send to sub-problem

Worst-case realizations 

of uncertainties

Master problem is solved to determine here and now variables (forming 

the objective function of master problem). 

First-stage sub-problem is solved to determine PV-WT-

BES operation constraints which should be obtained after 

the worst-case realization of uncertainties provided by the 

second-stage sub-problem in the previous iteration of the 

inner loop

Second-stage sub-problem is solved using first-order Taylor series of the 

uncertainties to determine the worst-case realization of renewable 

generation. The obtained worst-case realizations are then sent to the First-

stage sub-problem as fixed values
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Fig. 6-1.  Outline of the proposed BCD robust methodology 

6.6. Numerical Study 

The simulations in this section are conducted on a 6-bus real world EDS in Adelaide, South 

Australia. Case study includes a PV and a WT system as well as a BES as indicated by Fig. 6-2. 

The employed EVs are as indicated in Chapter 5. Voltage magnitude at slack bus is 12.66 kV 

which is considered as the base value, while, the base value for power is 100 kVA. The obtained 

load models in Chapter 5 are also used in the simulations in this chapter. The capacity of each 

BES system is 400 kWh. The generated power of RESs throughout the network are given by Fig. 

6-3 for the considered 12-hour operation in this study (as 24 hour operation requires more time to 

solve, so for the sake of simplicity 12 hour operation is considred). The standard active/reactive 

load of EDS system is used to generate a 12-h load pattern based on South Australia's daily 

energy consumption pattern which has been taken from [110]. The uncertainty of PV and WT 

system has taken into consideration through polyhedral uncertainty sets. The number of uncertain 

PV and WT generation parameters is 24 including 12 uncertain parameters for each source in a 

12-hour operation horizon. The considered deviation range of uncertainties is 10% in negative 

direction for PV and WT generation to achieve the worst-case realization of uncertainties. The 

10% deviation is just an indication of uncertainties. It can be biased based on any other case 

study. 
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Fig. 6-2.  Case Study 

 

 

 

Fig. 6-3.  Generated power by PV and WT systems 

 

Load of bus 4 and 6 have been given by Fig. 6-4, Fig. 6-5, and Fig. 6-6 with and without EV 

charging patters for scenarios No.1, 2, and 3, respectively (see Chapter 5 for scenarios). As it is 

seen, the load profile is smoother as the number of slow charging cars increases.  
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Fig. 6-4.  Load of bus 4 and 6 with and without EV charging patterns – Scenario No.1 (100% fast 

charging EVs) 

 

 

Fig. 6-5.  Load of bus 4 and 6 with and without EV charging patterns – Scenario No.2 (100% slow 

charging EVs) 

 

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
er

 [
p

.u
]

Time [h]

Load of bus 4 with EV Load of bus 4 without EV Load of bus 6 with EV Load of bus 6 without EV

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
er

 [
p

.u
]

Time [h]

Load of bus 4 with EV Load of bus 4 without EV Load of bus 6 with EV Load of bus 6 without EV

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
er

 [
p

.u
]

Time [h]

Load of bus 4 with EV Load of bus 4 without EV Load of bus 6 with EV Load of bus 6 without EV



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

112 

 

Fig. 6-6.  Load of bus 4 and 6 with and without EV charging patterns – Scenario No.3 (50% slow 

charging and 50% fast charging EVs) 

In the following each scenario is considered for simulation which is based on the robust 

optimization of the energy management model in Chapter 4, considering the EV charging 

patterns in Chapter 5. However, a basic scenario is also conducted with no EV charging for 

comparison purposes.  

Considering scenario No.1 of EV charging patterns, the total hourly power loss of EDS is 

obtained as Fig. 6-7. 

 

 

 

Fig. 6-7.  Total hourly power loss of EDS for scenario No.1 

As it is seen, the value of power loss has increased dramatically, compared to the “No EV” 

scenario. This is due to the high increase in line current which has reached the maximum possible 

line current in some lines. Moreover, the loss of each line follows the square of the current which 

means small changes in current will result in high loss values on the line.  

The value of voltage magnitude for each bus of the system has been given by Fig. 6-8. As it is 

seen, the first bus has a higher voltage magnitude, and it reduces as we reach the last bus. 
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However, the overall voltage deviation is not out of the allowable operating rate which is ±5%. 

The deviations of bus 6 of the system is more considerable as it involves bus load and EV 

charging patterns which makes the voltage of this bus more dynamic compared to other buses.  

 

Fig. 6-8.  Hourly voltage of each bus of EDS for scenario No.1 

 

The BES optimal operation is given by Fig. 6-9 in which the BES energy level as well as 

charging/discharging power is compared with the “no EV” scenario. As it is seen, the 

performance of the battery in terms of discharging rate has changed in hours 6-10 where the EV 

load increases dramatically (see Fig. 6-4).  

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8 9 10 11 12

V
o

lt
ag

e 
[p

.u
]

Time [h]

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

114 

 

 

Fig. 6-9.  BES performance in bus 3 for scenario No.1 compared to the base scenario (no EV) 

The same set of data has been given for scenario No.2 which includes 100% of slow charging 

EVs. As it is seen in Fig. 6-10, the power loss increased in the same way as scenario No.1. The 

voltage behavior is also given by Fig. 6-11. As the same as scenario No.1, the voltage has dropped 

a little at the first hour of the operation horizon and has increased in the last couple of hours in 

buses 3-6.  

 

 

Fig. 6-10.  Total hourly power loss of EDS for scenario No.2 
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Fig. 6-11.  Hourly voltage of each bus of EDS for scenario No.2 

The BES operation including the energy level and the charging/discharging power in scenario 

No.2 has been compared to “no EV” scenario in Fig. 6-12. As it is seen, the arbitrage ability of 

BES has been used more in this scenario and it has been more charged/discharged in a higher 

rate. The reason is that there is lower EV load in this scenario in some hours and therefore, the 

BES can store more energy to discharge in required operating hours.  

 

Fig. 6-12.  BES performance in bus 3 for scenario No.2 compared to the base scenario (no EV) 

The complete set of results has been given by Fig. 6-13, Fig. 6-14, and Fig. 6-15 for scenario 
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No.3 which includes 50% of fast charging EVs and 50% of slow charging EVs.  

 

 

Fig. 6-13.  Total hourly power loss of EDS for scenario No.3 

 

 

Fig. 6-14.  Hourly voltage of each bus of EDS for scenario No.3 

 

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
er

 [
p

.u
]

Time [h]

Total loss (Scenario 3)

Total loss (No EV)

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8 9 10 11 12

V
o

lt
ag

e 
[p

.u
]

Time [h]

Bus 1 Bus 2 Bus 3 Bus 4 Bus 5 Bus 6



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

117 

 

 

Fig. 6-15.  BES performance in bus 3 for scenario No.3 compared to the base scenario (no EV) 

 

The total loss of the system has been given by Fig. 6-16. As it is seen, the increase in fast 

charging EV employment can significantly increase the EDS power loss as it involves more 

sudden increasing load patterns over time. This is seen in the total loss of scenario No.1 which 

has a considerably higher value compared to scenarios NO.2 and 3. This figure shows that the 

matter of coordinate charging of EVs becomes more vital as the number of fast charging EVs 

increases.  
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Fig. 6-16.  Total power loss of the system for each scenario 

 

As it was shown in Chapter 4, the reactive power controllability of the energy management 

model was useful for voltage control and reducing the deviations of the voltage over time. 

However, the value of reactive power injected to the network, through inverters connecting PV 

and WT to the grid, was limited to the total capacity of inverters according to equation (4) in 

Chapter 4. Therefore, if reactive power is required, the inverter reasonably curtails a portion of 

RES generation to enable some capacity for injecting reactive power to the network. However, if 

more active power is required by the load, such as EV loads, the inverter reasonably injects more 

reactive power as required by the load. This means at the presence of more reactive power 

demand, the capacity of inverter becomes less for injecting reactive power. This has been shown 

by Fig. 6-17 and Fig. 6-18 where the EV demand requires more active power and therefore, the 

capacity of inverters for injecting reactive power becomes less than the base scenario where 

inverters have enough capacity to inject more reactive power to network.  
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Fig. 6-17.  Injected reactive power from PV system 

 

 

Fig. 6-18.  Injected reactive power from WT system 

 

The increase in active power of PV and WT system is shown in Fig. 6-19 and Fig. 6-20. As it is 

seen, the value of injected active power has reduced in the base scenario to inject more reactive 

power which is due to the less demand of active power in base scenario (No EV demand in base 

scenario). However, in all other scenarios all the active power of both PV and WT system has 

been injected to the network as more active power is required at the presence of EVs.  
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Fig. 6-19.  Injected active power of PV to the grid 

 

 

Fig. 6-20.  Injected active power of WT to the grid 

 

6.7. Conclusion  

This chapter presented an investigation on the effects of EV employment on distribution 

system. In particular, the energy management of EDS was conducted based on the proposed 

directly solvable energy management model at the presence of RES, BES, and EVs. As it was 

shown the power loss of the system increased as the number of fast-charged EVs increases which 
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that the employment of EVs also affects the reactive power injection by RES and BES inverters. 

As it was shown in the results, the value of injected active power reduced in the base scenario to 

inject more reactive power which was due to the lower demand of active power in base scenario 

(No EV demand in base scenario). However, in all other scenarios, all the active power of both 

PV and WT system was injected to the network as more active power was required at the 

presence of EVs.  

The observations of this chapter showed that the employment of EVs can significantly affect 

the EDS total power loss, reactive power controllability, and voltage deviations.  
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7. Conclusion 

The aims and objectives of this thesis was to investigate the effects of EV employment of EDS 

operation variables such as voltage and power loss. In order to do these following aims were 

developed and introduced: 

• Providing an efficient energy management for electricity distribution system by 

coordinated integration of RES and BES systems at the presence of EVs.  

• Maximizing/Minimizing the integration/curtailment of renewable energy sources (RESs) 

in electricity distribution system.  

• Minimizing the overall system cost. 

• Providing immunized solutions against the uncertainties associated with RES generation. 

To do so, following contributions were introduced: 

• Contribution 1: A novel directly solvable set of power flow equations, 

• Contribution 2: A general multi-objective energy management model for inverter-based 

integration of RES, and BES system, 

• Contribution 3: Integration of EV loading into the energy management model and 

investigating the effects of EV charging on EDS voltage and power loss, 

• Contribution 4: A new robust optimization model to characterize uncertainties of RESs 

employing block coordinate decent method. 

• In Chapter 3, the directly solvable power flow model was introduced. The new directly 

solvable EDS power flow model did not need iterative metaheuristic algorithms to solve 

the power flow which was the main reason to be able to merge into any type of EDS study 

concerning power flow. The efficiency of the proposed power flow model was validated 



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

123 

 

by comparing the obtained results to those of the FBS method.  

• In Chapter 4, the energy management model for EDS was developed based on the merged 

power flow equations from Chapter 3. Moreover, the inverter-based operation of RES and 

BES systems was enabled in the proposed energy management model to provide more 

efficient solutions. It was shown that slow charging patterns can results in more smooth 

EV load patterns and vise versa.  

• In Chapter 5, the EV loading patterns were modeled through probability density functions 

to form a loading profile over 12 operating hours in EDS. This data was then used in 

Chapter 6 where the BCD robust optimization approach was used to solve the proposed 

energy management model at the presence of BES, RES, and EVs. Moreover, the 

uncertainties of RESs were applied in the robust model. By extending the application of 

BCD technique to solve the two-level max-min sub-problem (resulted from the C&C 

generation technique), it was possible for the first time to characterize BES 

charging/discharging status in the inner max-min problem to be obtained after uncertainty 

realizations, resulting in more practical/realistic solutions. Note that, this feature was not 

applicable in conventional dual-based robust models in the literature. 

According to the observations further studies can be conducted on optimal integration of 

EVCSs in EDS operation using the proposed energy management model.  

 

 

  



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

124 

 

8.  Published Studies Employing the Proposed 

Robust and BCD Robust Optimization 

Models  

 

8.1 Application No. 1  

 

Adaptive Robust Recourse-based Bidding Strategy and Capacity Allocation 

of PV-WT-BES Owning Prosumers under Uncertainties 

Abstract - This paper presents an adaptive robust co-optimization for capacity allocation and 

bidding strategy of a prosumer equipped with photovoltaic system (PV), wind turbine (WT), and 

battery energy storage (BES). The uncertainties of load and PV/WT productions are modeled 

through controllable user-defined polyhedral uncertainty sets. The proposed co-optimization 

determines the optimal capacity of PV-WT-BES, while, maximizing prosumer's benefit by 1) 

optimal self-scheduling of PV-WT-BES, and 2) effective interactions with grid through optimal 

buying/selling bids under uncertainties. In previous min-max-min robust models, it was not 

possible to characterize bidding strategy binary variables as recourse decisions which was due to 
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the use of duality theory in solving the inner max-min problem (duality theory is week and non-

tractable in the presence of binary variables). In this study, Block Coordinate Descent (BCD) 

method is used to solve the inner max-min problem by means of Taylor series instead of 

transforming it into a single-level max problem by duality theory. As a result, prosumer's bidding 

status (indicated by binary variables) can be successfully modeled as recourse decisions which 

makes the obtained solutions more realistic and robust. Linearization of the dualized inner 

problem is also avoided as Lagrange multipliers are eliminated. A post-event analysis is 

developed to avoid over/under conservative solutions and to determine the optimal robust settings 

of the model. A comprehensive case study is conducted for an industrial prosumer. To illustrate 

the effectiveness of the proposed BCD robust model, its long-term performance is compared with 

conventional dual-based models in the literature. Results show 10% long-term cost reductions 

when using the proposed model under uncertainties.  

Index Terms— Battery storage system, Block coordinate descent, Capacity optimization, 

Prosumer, Robust optimization, Renewable energy. 

 

NOMENCLATURE 

A. Indices 

𝑐 Index of iterations in C&C methodology. 

𝑑/𝑡 Index of day/hour. 

𝑛 Index of BES replacements. 

𝑠 Index of post-event trial scenarios.  

𝑧 Index of iterations in BCD methodology. 
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B. Parameters 

𝐴𝑚𝑎𝑥 Maximum number of PV units. 

𝐵𝑚𝑎𝑥 Maximum number of BES units. 

𝐶𝑝𝑣 Price of each PV unit. 

𝐶𝑤 Price of each WT unit. 

𝐶𝑛
𝑏𝑎𝑡 Price of each BES unit with the capacity of 𝐸 

′. 

𝐸𝑙 BES losses in each scheduling time step. 

𝐸𝑖𝑛𝑡 Initial SOC for each BES unit. 

𝐸𝑚𝑖𝑛
′  Minimum allowable energy for each BES unit. 

𝐸 
′ Capacity of each BES unit. 

𝐿̅𝑑𝑡/𝐿̃𝑑𝑡
  Forecasted/Uncertain load in hour 𝑡 of day 𝑑. 

𝐿𝑑𝑡
𝑑𝑒𝑣± Deviations of 𝐿̃𝑑𝑡

 . 

𝐿̂𝑑𝑡
𝑑𝑒𝑣± Maximum value of 𝐿𝑑𝑡

𝑑𝑒𝑣±. 

𝐿̌𝑑𝑡𝑠 Load in sth post-event trial scenario. 

𝕄 Sufficiently large constant. 

𝑁𝑋 Number of start-up variables in vector 𝑿. 

𝑁𝑈̃ Number of uncertain parameters in vector 𝑼̃. 

𝑁𝑌 Number of operation variables in vector 𝒀. 

𝑃̅𝑑𝑡
𝑣 /𝑃̃𝑑𝑡

𝑣  Forecasted/Uncertain generation for each PV unit. 

𝑃̌𝑑𝑡𝑠
𝑣  PV generation in sth post-event trial scenario. 

𝑃̅𝑑𝑡
𝑤 /𝑃̃𝑑𝑡

𝑤  Forecasted/Uncertain generation for each WT unit. 

𝑃̌𝑑𝑡𝑠
𝑤  WT generation in sth post-event trial scenario. 

𝑃𝑑𝑡
𝑣𝑑𝑒𝑣±

/𝑃𝑑𝑡
𝑤𝑑𝑒𝑣±

 Deviations of 𝑃̃𝑑𝑡
𝑣 /𝑃̃𝑑𝑡

𝑤 . 
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𝑃̂𝑑𝑡
𝑣𝑑𝑒𝑣±

/𝑃̂𝑑𝑡
𝑤𝑑𝑒𝑣±

 Maximum value of 𝑃𝑑𝑡
𝑣𝑑𝑒𝑣±

/𝑃𝑑𝑡
𝑤𝑑𝑒𝑣±

. 

𝑃𝑚𝑖𝑛
𝑖𝑛 /𝑃𝑚𝑎𝑥

𝑖𝑛  Minimum/Maximum allowable range of 𝑃𝑑𝑡
𝑖𝑛. 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡 /𝑃𝑚𝑎𝑥

𝑜𝑢𝑡  Minimum/Maximum allowable range of 𝑃𝑑𝑡
𝑜𝑢𝑡. 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

/𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

 Minimum/Maximum allowable range of 𝑃𝑑𝑡
𝑐ℎ𝑔

. 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 /𝑃𝑚𝑎𝑥

𝑑𝑖𝑠  Minimum/Maximum allowable range of 𝑃𝑑𝑡
𝑑𝑖𝑠. 

𝑄𝑛
𝑏𝑎𝑡 NPV coefficient for BES replacements.  

𝑄𝑠𝑦𝑠 NPV coefficient for annual values. 

𝑇 Number of scheduling time periods in each day. 

𝑊𝑚𝑎𝑥 Maximum number of WT units. 

𝑦 Maintenance cost as a percentage of CAPEX. 

𝜋𝑑𝑡 Electricity price in hour 𝑡 of day 𝑑. 

𝜂𝑐𝑐/𝜂𝑖𝑛𝑣/𝜂𝑐𝑜𝑛 Efficiency of charge controller/inverter/converter. 

𝜂𝑐ℎ𝑔/𝜂𝑑𝑖𝑠 Charging/discharging efficiency of BES.  

𝜃 Feed-in tariff price for electricity export to network.  

C. Sets 

Ξ𝐶 Set of iterations in C&C methodology. 

𝛯𝐷 Set of days. 

Ξ𝐼/Ξ𝐼𝐼 Set of "here-and-now"/"wait-and-see" variables. 

𝛯𝑁/Ξ𝑇/Ξ𝑈𝑆 Set of BES replacements/operational hours/uncertainties. 

D. Variables 

𝐴 Integer variable indicating the number of PV units. 

𝐴𝑐 Fixed value of 𝐴 in sub-problem at iteration c.  

𝐵 Integer variable indicating the number of BESs. 
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𝐵𝑐 Fixed value of 𝐵 in sub-problem at iteration c. 

𝐸𝑑𝑡 Battery SOC in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑖𝑛 Imported electricity from network in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑜𝑢𝑡 Exported electricity to network in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
ℎ  Inverter output power in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑠  Inverter input power in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑤  Generated electricity by WT units in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑣  Generated electricity by PV units in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑐ℎ𝑔

 BES charging power in hour 𝑡 of day 𝑑. 

𝑃𝑑𝑡
𝑑𝑖𝑠 BES discharging power in hour 𝑡 of day 𝑑. 

𝑊 Integer variable indicating the number of WT units. 

𝑊𝑐 Fixed value of 𝑊 in sub-problem at iteration c. 

𝑥𝑑𝑡
𝑖𝑛/𝑥𝑑𝑡

𝑜𝑢𝑡 Binary variable indicating energy importing/exporting status in hour 𝑡 of day 𝑑. 

𝑥𝑑𝑡
𝑐ℎ𝑔

/𝑥𝑑𝑡
𝑑𝑖𝑠 Binary variable indicating charging/discharging status of BES in hour 𝑡 of day 𝑑. 

𝑥𝑑𝑡
𝐿± Indicator for deviation of 𝐿̃𝑑𝑡

 . 

𝑥𝑑𝑡
𝑣𝑑𝑒𝑣±

/𝑥𝑑𝑡
𝑤𝑑𝑒𝑣±

 Indicator for deviations of 𝑃̃𝑑𝑡
𝑣 /𝑃̃𝑑𝑡

𝑤 . 

𝛼𝑑𝑡
𝑐ℎ𝑔

/𝛼𝑑𝑡
𝑑𝑖𝑠 Axillary variables.  

ΛI Value of master problem. 

ΛII Value of first-stage sub-problem. 

ΛIII Value of second-stage sub-problem. 

¥ Auxiliary continuous variable. 

Ψ Uncertainty budget. 

E. Vectors/Matrices  
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𝑨, 𝑭 Coefficient matrices of objective function.  

𝑩,𝑪, 𝑬, 𝑮,𝑯/𝑫,𝑲 Coefficient/requirement vectors.  

𝑼̅ Vector of forecasted value of uncertain parameters.  

𝑼𝒅𝒆𝒗+/𝑼𝒅𝒆𝒗− Vector of positive/negative deviation of 𝑼̅. 

𝑼̃ Vector of uncertain parameters. 

𝑿/𝒀 Vector of sizing/scheduling variables. 

𝑿𝒄/𝒀𝒄 𝑿/𝒀 at iteration c of the C&C method. 

𝑼𝑐 Worst-case realization of uncertain parameters in sub-problem to be send to master 

problem as fixed values. 

𝑼𝑧 Obtained worst-case realization of uncertain parameters in second-stage sub-problem. 

𝝁 Vector of dual variables. 

 

I. INTRODUCTION 

A. problem description 

Renewable energy sources (RESs) are boosting the evolution of energy systems worldwide 

[121]. The huge share of solar photovoltaic systems (PVs) as well as small-scale wind turbine 

(WT) employments have introduced some unexpected challenges such as energy imbalance, extra 

costs, and out-of-bid penalty allocations for RES-based prosumers [122]. To cope, battery energy 

storage (BES) systems have been employed by prosumers to a) provide more flexibility in market 

participation, and b) avoid out-of-bid power trades with upstream network [123-125]. Although, 

the integration of PV, WT and BES (PV-WT-BES) can provide a promising operational status, 

the arbitrage ability of prosumers cannot be fully exploited if their bidding strategy is scheduled 
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regardless of uncertainty realizations. This is because, the associated costs/benefits of the system 

are considered in the long-term planning such as capacity allocation solutions. Therefore, if the 

short-term schedule is obtained with no uncertainty characterization, the obtained capacity 

allocation solutions would not be exact and practical and may result in extra costs for both short-

term and long-term performance of the system. Therefore, further studies are required to provide 

realistic solutions for capacity allocation and bidding strategies of PV-WT-BES systems, 

considering the cross effects between short-term and long-term planning of such a system. In 

fact, the bidding strategies need to be modeled as recourse decisions after uncertainty realizations 

to be practical [126]. However, this is not applicable in the current robust optimization 

approaches as characterizing binary recourse variables (indicating buying/selling bids) is 

impossible due to the use of duality theory in these approaches. This is because, dual of a mixed-

integer model is generally week, non-tractable and complicated [35]. Accordingly, the optimality 

of PV-WT-BES sizing solutions becomes questionable as it depends on the benefits associated 

with bidding strategy [127].  

Therefore, further uncertainty modeling approaches are required to model prosumer's bidding 

strategies as recourse decisions to be obtained after uncertainties, resulting in more practical and 

realistic operation and capacity allocation solutions.  

B. Background 

Partial study has focused on characterizing uncertainties with sizing and bidding strategy of 

PV-WT-BES owning prosumers. Uncertainties of PV/WT generation and load were modeled by 

typical scenarios in [128]. Monte Carlo simulation was performed in [129] to model RES 
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uncertainties through scenario generation. Uncertainties of wind production were captured by 

probability density functions in [130]. However, scenario-based models [128, 129] and the 

probabilistic model of [130] require a full distributional knowledge of uncertain parameters 

which may not be easily available in practice [7]. To obtain more reliable solutions, optimal 

sizing of a PV-battery system was modeled through stochastic programing (SP) in [131]. SP was 

employed to model the uncertainties of solar radiation, wind, and load in BES sizing approach in 

[132]. In [133] the bidding strategy of a virtual power plant was conducted under a considerable 

number of uncertainty realization scenarios for electricity price and electric vehicle behavior 

through SP. The uncertainty of electricity price was characterized through SP in [134]. Despite 

the advantages of the aforementioned SP models, they are subject to a high computation time 

which is due to the huge number of uncertainty scenarios. To cope, a backward scenario 

reduction method was employed in [135] to decrease the computation time. Although, scenario 

reduction can accelerate the computation time in SP but it faces the lack of tractability which is 

due to the required distributional knowledge of uncertain scenarios, especially, when several 

uncertain parameters are considered and a proper level of feasibility against different uncertainty 

realizations is required (this may not be practical in practice) [136]. Moreover, if the uncertain 

parameters deviate from scenarios, performance of SP cannot be guaranteed. This issue is also 

true for Monte-Carlo and probabilistic methods. 

To cope with the mentioned problems, robust optimization (RO) has been employed in some 

recent studies to characterize uncertainties [111]. The advantage of RO is that RO models the 

uncertainties by worst-case realization through bounded intervals, eliminating the need of 

scenario generation and distributional knowledge of the uncertain parameters [34, 112]. 
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Therefore, the obtained solutions would be feasible as long as the uncertainty realizations are 

within the user-defined bounded intervals, which makes it more reliable/practical than scenario-

based and SP models in the literature. 

Conducting a min-max-min robust optimization 

model to characterize the uncertainties of load 

and PV/WT generation by their worst-case 

realization through polyhedral uncertainty sets 

instead of scenarios 

No scenario generation is required and the obtained solutions are 

obtained with a lower computational time

BenefitsMotivations

Scenario-based models require a full distributional knowledge 

of uncertainties which may not be applicable in practice

For large-scale models, SP is subject to a considerable 

computational time and non-tractability in some cases

If uncertainties deviate from the considered uncertainty 

scenarios, the solution becomes infeasible

Optimal capacity of PV-WT-BES system is dependent on 

optimal bidding strategy of the system under uncertainties

Proposing a co-optimization model for 

simultaneous optimal capacity allocation and 

bidding strategy of the PV-WT-BES system 

under uncertainties

The long-term capacity allocation decisions are obtained based on 

the optimal cost-benefits associated with short-term bidding 

strategy under uncertainties

The obtained solutions are feasible as long as the uncertain 

parameters are within the bounded intervals defined by polyhedral 

uncertainty sets

Employing BCD technique in solving sub-

problem instead of using duality theory 

The bidding strategy is a two-way energy trading scheme and is 

obtained after uncertainty realizations as recourse decisionsThe use of duality theory in conventional RO models results in 

export-only or non-recourse bidding strategies

The use of duality theory eliminates the possibility of 

allocating different prices for buying and selling bids

The proposed bidding strategy can consider different energy 

prices for buying and selling bids while being obtained after 

uncertainties

Contribution 1

Contributions 2 and 3

 

Fig. 1. Motivations, contributions, and benefits of the proposed model. 

However, RO still faces some limitations in modelling uncertainties which is due to the use of 

duality theory in solving it (duality theory is used in min-max-min RO problems to transform the 

inner bi-level max-min problem into a solvable single-level max problem). A Robust bidding 

strategy was proposed for a wind farm coupled with a storage system in [113]. However, binary 

variables, indicating buying/selling bids, were eliminated in the model to ease the employment of 

duality theory. This results in export-only bidding which is not applicable in practice. Duality 

theory was also employed in [114] to solve a robust model predictive control-based bidding 

strategy for a wind-storage systems. However, the model of [114] was a single-stage max-min 

problem only. Bidding binary variables were also eliminated in [115] to make it possible to 

conduct duality. Accordingly, it was not possible to consider both buying and feed-in-tariff for 

day ahead bids in [115] as no binary variable was used to separate buying/selling status. This 

becomes important when the feed-in tariff is different than the buying price. To be more realistic, 
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the buying/selling status of bidding strategy was modeled by binary variables in [116]. However, 

the buying/selling status was characterized before uncertainty realizations to be able to conduct 

duality theory with no binary variables involved. Similar to [116], the buying/selling status of 

prosumer was modeled before uncertainty realizations in [117-119].  

Note that, the mentioned RO studies in the literature have considered the uncertainties in their 

models and their solutions have proven to be more efficient than the deterministic approaches. 

However, the bidding binary variables have been eliminated or modeled in the master problem. 

As a result, the worst-case realization of uncertainties is determined when these variables are 

fixed in the sub-problem and therefore, these variables are not affecting the sub-problem's 

objective function. In other words, these variables are obtained based on the primal cuts, 

containing the worst-case realization of uncertainties in the master problem and have no 

accountability in determining the worst-case realization itself. This means that, the sub-problem 

is solved without considering the cross effects between bidding strategy and uncertainties. 

Therefore, the benefit of robust optimization has not been fully exploited. 

C. Motivations 

Ignoring the effects of uncertainties on bidding strategy, (determining buying/selling status 

before uncertainty realizations but not as recourse decisions to be obtained after uncertainty 

realization) is not realistic, as in practice, the bidding strategy should be modified when 

uncertainties of renewables and load arise. This also affects the system sizing solution as it is 

based on the benefits arisen from bidding strategies (Prosumer's benefit is directly dependent on 

the optimality of the bidding strategy). Based on the literature therefore, there is a lack of 
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viability in the existing robust bidding strategies which is due to the following reasons: 

1) Probabilistic, Scenario-based, and SP models may become infeasible and non-tractable in 

complex and large-scale cases. 

2) In some RO studies, bidding binary variables were eliminated to enable the application of 

duality theory. This results in export-only bidding and non-flexible feed-in tariff pricing.  

3) Although, bidding binary variables were modeled in some recent RO studies, these 

variables were characterized before uncertainty realizations so the duality could be conducted 

with no binary variables involved. Therefore, the bidding solutions were obtained ignoring the 

uncertainties.  

D. Contributions 

This paper is a continuation of an earlier work [137] in which duality theory was conducted to 

solve the inner max-min problem. Regarding the three aforementioned drawbacks of employing 

duality theory in the previous subsection (C. Motivations), the following contributions are 

presented in the proposed model: 

1) A robust sizing/scheduling co-optimization is proposed for a PV-WT-BES owning 

prosumer which determines the optimal system capacity while maximizing the prosumer's 

benefits by optimal scheduling of PV-WT-BES system and effective electricity buying/selling 

bids. To overcome the problems in scenario-based and SP models, a min-max-min adaptive 

robust optimization is developed to characterize the uncertainties of prosumer's load and PV/WT 

generation by polyhedral uncertainty sets instead of scenarios. The problem is solved through a 
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decomposition methodology and a column-and-constraint (C&C) generation technique [34], 

recasting the tri-level problem into a first-stage min problem and a second-stage max-min 

problem. Since the proposed RO model characterizes uncertainties by their worst-case 

realization, there is no need to scenario generation nor the distributional knowledge of 

uncertainty scenario. Therefore, the obtained RO solutions are feasible as long as the 

uncertainties are within bounded intervals of polyhedral uncertainty sets.  

TABLE I. Advantages of the proposed model compared to the literature  

Reference No. Uncertainty 

modelling approach 

Consideration 

of RES/BES 

Recourse-based 

BES operation 

Recourse-based 

bidding 

Scheduling 

strategy 

Capacity 

allocation 

[9] Scenario-based PV/WT/BES     

[10] Scenario-based PV/WT/BES     

[11] Scenario-based WT/BES     

[13] SP PV/BES     

[14] SP PV/WT/BES     

[15] SP PV/BES     

[16] SP PV/WT/BES     

[17] SP PV/WT/BES     

[18] Scenario-based PV/BES     

[19] Dual-based RO WT     

[20] Dual-based RO -     

[22] Dual-based RO WT/BES     

[23] Dual-based RO WT/BES     

[24] Dual-based RO PV/BES     

[25] Dual-based RO WT/BES     

[26] Dual-based RO PV/BES     

[27] Dual-based RO WT/BES     

[28] Dual-based Affinely 

RO 

PV/BES     

Proposed model BCD robust PV/WT/BES     

2) The proposed RO model employs Block Coordinate Descent (BCD) method [120], which 

approximates the worst-case realization of uncertainties by means of Taylor series instead of 
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transforming the inner max-min problem into a single max problem by duality theory. BCD was 

originally devised to deal with single-level problems. By extending the application of BCD 

technique to solve the two-level max-min sub-problem (resulted from the C&C generation 

technique), it is possible to avoid duality theory in solving the sub-problem. Since, dual of a 

mixed-integer model is generally week, non-tractable and complicated [35], the extension of 

BCD technique instead of duality theory eliminates the limitation in considering binary variables 

in the max-min sub-problem. As a result, uncertainty-dependent binary variables such as 

buying/selling bids and BES charging/discharging statuses can be obtained after uncertainty 

realization in the sub-problem as recourse decisions, which was not applicable in previous dual-

based RO models in the literature. This results in more system flexibility in compensating the 

uncertainty effects such as PV/WT shortage or sudden increase in load. 

3) Since, no duality is conducted, prosumer's power trading with upstream network can be 

freely modeled with binary indicators, resulting in a two-way power trading scheme instead of an 

export-only bidding strategy such as [113]. Followed with the same reason, it can model both 

buying and selling bids with different buying and feed-in tariff prices. To the best of authors' 

knowledge, this is the first application of min-max-min robust optimization in which binary 

variables are modeled in the inner max-min problem. The motivations, contributions, and the 

associated benefit with each contribution are summarized in Fig. 1. Note that, the proposed 

model in this study is called "BCD robust", hereafter. 

E. Validation 

The following validations are conducted in order to demonstrate the effectiveness of the 
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proposed BCD robust model: 

1) The obtained BCD robust solutions are examined against a sufficiently large number of 

uncertainty realizations through a post-event analysis. 

2) Long-term performance of the optimal BCD robust solutions is compared to the solutions 

obtained based on conventional dual-based robust models such as [116-119] in which bidding 

strategy decisions are made prior to uncertainties. 

F. Significance compared to the literature 

The advantages of the proposed BCD robust co-optimization model are compared to the 

previous models in the literature in Table I. As it is seen, only some SP models, i.e., [15-17], 

have considered recourse-based bidding and BES operation which is due to the fact that SP does 

not involve duality in its solving methodology. However, no capacity allocation was considered 

in these studies. Moreover, SP may become infeasible and non-tractable in complex and large-

scale cases (See Section I.A). In particular, the advantages of the proposed BCD robust co-

optimization model are as follows: 

It considers the correlation between optimal bidding strategy of the system and its capacity 

allocation, which is more practical than considering these problems individually, 

There is no need to scenario generation techniques as robust optimization is used instead of SP 

which characterizes uncertainties by their worst-case realization, 

Due to the employment of BCD technique instead of duality theory in solving the inner max-
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min sub-problem, it is possible to model bidding variables as well as BES variables as recourse 

decisions after uncertainty realization which is more realistic in practice. 

Since there is no limitation in modelling recourse-based binary variables in the proposed BCD 

model, it is also possible to have two-way bidding with different buying/selling prices, while, 

these variables are obtained as recourse decision which was not possible in conventional dual-

based models. 

II. DETERMINISTIC PV-WT-BES SIZING/OPERATION MODEL 

Fig. 2 represents the configuration of PV-WT-BES system, its interactions with upstream 

network, and the energy flow through each element, as per the notations in nomenclature. The 

inverter in Fig. 2 is responsible for synchronizing the injected power to the network. The 

objective of the deterministic model is to minimize system costs that includes capital 

expenditures (CAPEX), operational & maintenance expenditures (OPEX), and energy costs. The 

proposed deterministic model is formulated as (1). 

𝑃𝑑𝑡
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𝐿̅𝑑𝑡 = 𝑃𝑑𝑡
ℎ + 𝑃𝑑𝑡

𝑖𝑛 − 𝑃𝑑𝑡
𝑜𝑢𝑡 ; ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇; 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑤 + 𝑃𝑑𝑡
𝑣 − 𝑃𝑑𝑡

𝑐ℎ𝑔
+ 𝑃𝑑𝑡

𝑑𝑖𝑠 ;  ∀𝑑 ∈ Ξ𝐷 ; ∀𝑡 ∈ Ξ𝑇 

𝑃𝑑𝑡
𝑤 = 𝑊 ∙ 𝑃̅𝑑𝑡

𝑤 ∙ 𝜂𝑐𝑜𝑛 ; ∀𝑑 ∈ Ξ𝐷 ; ∀𝑡 ∈ Ξ𝑇  

𝑃𝑑𝑡
𝑣 = 𝐴 ∙ 𝑃̅𝑑𝑡

𝑣 ∙ 𝜂𝑐𝑐 ; ∀𝑑 ∈ Ξ𝐷 ; ∀𝑡 ∈ Ξ𝑇 

 

Fig. 2. Considered PV-WT-BES configuration and its energy flow. 
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Min  𝐴 ∙ 𝐶𝑝𝑣 + 𝑊 ∙ 𝐶𝑤 + ∑ 𝐵 ∙ 𝐶𝑛
𝑏𝑎𝑡 ∙𝑛∈𝛯𝑁 𝑄𝑛

𝑏𝑎𝑡⏞                          
𝕄1= 𝑁𝑃𝑉 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝐴𝑃𝐸𝑋

+  

𝑦 ∙ 𝑄𝑠𝑦𝑠 ∙ (𝐴 ∙ 𝐶𝑝𝑣 + 𝑊 ∙ 𝐶𝑤 + 𝐵 ∙ 𝐶𝑛=1
𝑏𝑎𝑡 )⏞                        

𝕄2= 𝑁𝑃𝑉 𝑜𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡𝑠

+ +𝑄𝑠𝑦𝑠 ∙ ∑ ∑ (𝑃𝑑𝑡
𝑖𝑛 ∙ 𝜋𝑑𝑡 − 𝑃𝑑𝑡

𝑜𝑢𝑡 ∙ 𝜃)𝑡∈𝛯𝑇𝑑∈𝛯𝐷
⏞                          

𝕄3= 𝑁𝑃𝑉 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑠𝑡𝑠

;  

(1a) 

s.t. 

AC/DC Power flow constraints: 

 

𝐿̅𝑑𝑡 = 𝑃𝑑𝑡
ℎ + 𝑃𝑑𝑡

𝑖𝑛 − 𝑃𝑑𝑡
𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇; (1b) 

𝑃𝑑𝑡
ℎ = 𝑃𝑑𝑡

𝑠 ∙ 𝜂𝑖𝑛𝑣;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1c) 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑤 + 𝑃𝑑𝑡
𝑣 − 𝑃𝑑𝑡

𝑐ℎ𝑔
+ 𝑃𝑑𝑡

𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1d) 

PV/WT generation constraints:  

𝑃𝑑𝑡
𝑣 = 𝐴 ∙ 𝑃̅𝑑𝑡

𝑣 ∙ 𝜂𝑐𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1e) 

𝑃𝑑𝑡
𝑤 = 𝑊 ∙ 𝑃̅𝑑𝑡

𝑤 ∙ 𝜂𝑐𝑜𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1f) 

BES operational constraints:  

𝐸𝑑𝑡 = 𝐸𝑑(𝑡−1) + (𝑃𝑑𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠) ∙ 𝛥𝑡  

−𝐸𝑙 ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  

(1g) 

∑ (𝑃𝑑𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠)𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵 ∙ 𝑇; ∀𝑑 ∈ Ξ𝐷  (1h) 
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𝐸𝑑(𝑡=0) = 𝐸𝑖𝑛𝑡 ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷 (1i) 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝑃𝑑𝑡
𝑐ℎ𝑔

≤ 𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1j) 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝑃𝑑𝑡
𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡
𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1k) 

−𝕄 ∙ 𝑥𝑑𝑡
𝑐ℎ𝑔

≤ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝕄 ∙ 𝑥𝑑𝑡
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1l) 

𝐵 − 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑐ℎ𝑔

) ≤ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝐵 + 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑐ℎ𝑔

);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  

(1m) 

−𝕄 ∙ 𝑥𝑑𝑡
𝑑𝑖𝑠 ≤ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝕄 ∙ 𝑥𝑑𝑡
𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1n) 

𝐵 − 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑑𝑖𝑠) ≤ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝐵 + 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑑𝑖𝑠);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  

(1o) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵 ≤ 𝐸𝑑𝑡 ≤ 𝐵 ∙ 𝐸 

′;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1p) 

𝑥𝑑𝑡
𝑐ℎ𝑔

+ 𝑥𝑑𝑡
𝑑𝑖𝑠 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1q) 

Upstream network interaction constraints:   

𝑃𝑚𝑖𝑛
𝑖𝑛 ∙ 𝑥𝑑𝑡

𝑖𝑛 ≤ 𝑃𝑑𝑡
𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥

𝑖𝑛 ∙ 𝑥𝑑𝑡
𝑖𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1r) 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡

𝑜𝑢𝑡 ≤ 𝑃𝑑𝑡
𝑜𝑢𝑡 ≤ 𝑃𝑚𝑎𝑥

𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡
𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1s) 
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𝑥𝑑𝑡
𝑖𝑛 + 𝑥𝑑𝑡

𝑜𝑢𝑡 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1t) 

Allowable sizing limitation constraints:  

𝐴 ≤ 𝐴𝑚𝑎𝑥; (1u) 

𝐵 ≤ 𝐵𝑚𝑎𝑥; (1v) 

𝑊 ≤ 𝑊𝑚𝑎𝑥; (1w) 

The objective function (1a) involves three terms 𝕄1, 𝕄2 and 𝕄3. Term 𝕄1 minimizes the 

net present value (NPV) of CAPEX which includes the cost of PV-WT-BES installation and 

replacement during the planning horizon. The inverter cost has been considered as a part of BES 

cost, while, the charge controller and converter costs are considered as a part of PV and WT 

costs, respectively.  
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Fig. 3. Dynamic changes of state-of-charge (SOC) of BES 

The NPV of annual OPEX, includes maintenance costs, i.e., 𝕄2, and energy cost, i.e., 𝕄3. 

𝕄2 represents a pre-determined percentage of PV-WT-BES installation cost, excluding 
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replacement costs, while the annual energy costs including electricity buying/selling bids are 

optimized through 𝕄3. In fact, 𝕄3 maximizes the annual benefits of PV-WT-BES through its 

interactions with grid. 

The objective function is subject to constraints (1b)-(1w). The power flow through the PV-

WT-BES system is expressed by constraints (1b)-(1f) (see Fig. 2). Accordingly, constraint (1b) 

represents the AC power flow between inverter, load, and upstream grid. The power flow through 

the inverter is modeled by (1c). The DC power flow between inverter, BES charging/discharging, 

and PV-WT system is also given by constraint (1d).  Note that the assumed configuration for PV 

panels is parallel. Therefore, the total generated power is calculated by (1e), regarding the 

number of installed PV panels (i.e., 𝐴) with the capacity of 𝑃̅𝑑𝑡
𝑣 . Constraint (1f) presents the 

available power outputs for WT, considering the number of installed units (i.e., 𝑊) with the 

capacity of 𝑃̅𝑑𝑡
𝑤 . Constraints (1b), (1d) and (1e)-(1f) are shown in Fig. 2 along with the related 

junction points.  

The dynamic behavior of BES and its SOC has been illustrated in Fig. 3. As it is shown, the 

charging and discharging status are subject to loss of energy, i.e., 𝐸𝑐𝑙 and 𝐸𝑑𝑙, respectively, 

which is due to the storage efficiency in charging/discharging mode. Moreover, each storage is 

subject to steady-state mode losses. Accordingly, the dynamic energy balance for storage 𝑘 

representing battery state-of-charge (SOC) is expressed by (1g). At the final operational time 

period, BES must have the same SOC as the first time period which is known as end-coupling 

constraint and is expressed by (1h). Note that, 𝛥𝑡 in (1g) is 1 hour. Constraint (1i) indicates the 

initial SOC of battery at the first operating period of each daily operation horizon which is 
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provided at the last operation period of the previous day. The BES charging and discharging rates 

are limited to the allowable ranges by constraints (1j) and (1k), respectively. Note that constraints 

(1j) and (1k) represent the allowable charging and discharging rate of the entire battery bank. 

Therefore, the number of BESs in the battery bank must be multiplied with the binary variables 

𝑥𝑑𝑡
𝑐ℎ𝑔

 and 𝑥𝑑𝑡
𝑑𝑖𝑠 to represent the maximum/minimum allowable ranges for the battery bank (𝑃𝑚𝑎𝑥

𝑐ℎ𝑔
, 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

, 𝑃𝑚𝑎𝑥
𝑑𝑖𝑠 , 𝑃𝑚𝑖𝑛

𝑑𝑖𝑠  account for each individual BES). To avoid non-linearity (products of 

𝑥𝑑𝑡
𝑐ℎ𝑔

/𝑥𝑑𝑡
𝑑𝑖𝑠 and 𝐵) big-M linearization technique is used to develop a linear model. Accordingly, 

auxiliary constraints (1l)-(1o) illustrate the linear relationship between BES charging/discharging 

rate and two other decisive variables including sizing variable 𝐵, as the available BES capacity, 

and binary variables 𝑥𝑑𝑡
𝑐ℎ𝑔

 and 𝑥𝑑𝑡
𝑑𝑖𝑠, indicating charging/discharging status of BES. Constraint 

(1p) limits the BES SOC to its minimum/maximum values with regard to the number of installed 

BESs (i.e., 𝐵) with the capacity of 𝐸 
′. The BES can either be charged, discharged, or out of 

operation at a time, regarding constraint (1q). Constraint (1r)/(1s) represents the allowable range 

of power trade through buying/selling bids by means of binary variables 𝑥𝑑𝑡
𝑖𝑛/𝑥𝑑𝑡

𝑜𝑢𝑡. Constraint (1t) 

ensures that the prosumer can either buy or sell electricity at each operation time-step. If 𝑥𝑑𝑡
𝑖𝑛 +

𝑥𝑑𝑡
𝑜𝑢𝑡 = 0 means no energy trading is happened. Finally, the number of installed PV panels, WTs, 

and BESs are limited to their allowable ranges by constraints (1u)-(1w). 

III. BCD ROBUST PV-WT-BES SIZING/SCHEDULING MODEL  

As seen from the proposed deterministic model, the uncertainties associated with prosumer's 

load and PV/WT generation are ignored as they are substituted by their forecasts i.e., 𝐿̅𝑑𝑡, and 

𝑃̅𝑑𝑡
𝑣 /𝑃̅𝑑𝑡

𝑤 , in the deterministic model (1), respectively. Therefore, the obtained solutions from 
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solving this deterministic model would not be feasible if the uncertain parameters deviate from 

their forecasts. To have a reliable sizing/scheduling, these uncertainties have been characterized 

through a BCD robust model in this section. 

In robust optimization, two main decisions are made including "here-and-now" decisions, 

which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are 

obtained after the realization of uncertain parameters. In this study, sizing variables including the 

number of PV panels, WTs, and BES units i.e., 𝐴, 𝐵, and 𝑊, respectively, are considered as 

"here-and-now" decisions which are obtained before uncertainty realizations. Since, the 

uncertainties associated with load demand and PV/WT productions are realized when scheduling 

PV-WT-BES system (after installation), the operation variables (i.e., all variables excluding 

sizing variables 𝐴, 𝐵, and 𝑊) are considered as "wait-and-see" decisions. 

The compact form of the proposed BCD robust model is expressed through a tri-level min-

max-min optimization problem as (2). 

Min𝑿∈Ξ𝐼(𝑨′ ∙ 𝑿 + Max𝑼̃∈Ξ𝑈𝑆 Min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀) (2a) 

s.t.  

Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏}𝑁𝑋  |  𝑪𝑿 ≥ 𝑫} (2b) 

Ξ𝑈𝑆 = {𝑼̃ ∈ ℝ𝑁𝑈̃   |  𝑼̃ = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−} (2c) 

Ξ𝐼𝐼 = {𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼̃) ≥ 0} (2d) 

In (2a), the outer min problem minimizes the objective function over the sizing variables 
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which are obtained as "here-and-now" decisions. The expression 𝑨′ ∙ 𝑿 represents terms 𝕄1 and 

𝕄2 of the objective function (1a) containing sizing decision variables. Therefore, outer min 

problem is subject to sizing constraints (1u)-(1w), compactly expressed by (2b). The inner max 

problem maximizes the remaining term of the objective function (i.e., term 𝕄3 expressed by 

𝑭′, 𝒀) over the worst-case realization of uncertain parameters, while the inner min problem 

minimizes it over the operation variables, considered as "wait-and-see" decisions. Therefore, the 

inner max problem is subject to polyhedral uncertainty sets, expressed by (2c), while, the inner 

min problem is subject to the operation constraints, presented by (2d). In fact, (2d) represents the 

set of constraints (1b)-(1t). 

A. Solution Methodology to Solve the Proposed Robust PV-WT-BES Sizing/Bidding 

Problem 

The tri-level optimization problem in (2a) cannot be solved directly. Therefore, a 

decomposition methodology, by means of C&C technique [34], is employed to decompose the 

tri-level min-max-min problem to a single-level min problem and a bi-level max-min problem. 

The single-level min problem is called "master problem" and the bi-level max-min problem is 

called "sub-problem", hereafter. The proposed decomposition methodology is described through 

the following steps: 

Step 1) The master problem is solved to determine "here-and-now" decision variables 

including PV, WT, and BES sizing solutions while being subject to sizing constraints only. 

Therefore, the objective function (3a) includes the terms 𝕄1, and 𝕄2 of the deterministic 

objective function (1a). Therefore, the objective function (3a) includes the terms 𝕄1, and 𝕄2 of 
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the deterministic objective function (1a). It is also subject to constraints (1u)-(1w) including 

sizing variables. The compact form of master problem is given by (3). 

min𝑿∈Ξ𝐼   ΛI ≡ 𝑨′ ∙ 𝑿 + ¥ (3a) 

s.t.  

Sizing constraints:  

𝑪𝑿 ≥ 𝑫;    𝑿 ∈ {0, 1}𝑁𝑋 (3b) 

Primal cut constraints:  

¥ ≥ 𝑭′, 𝒀 ;    𝑮 ∙ 𝑿 + 𝑩 ∙ 𝒀𝒄 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;  𝑐 ∈ Ξ𝐶  (3c) 

In the above problem, (3a) presents the epigraph form of master problem which minimizes the 

"here-and-now" terms of objective function, i.e., , while, being subject to sizing constraints in 

(3b) and primal cuts in (3c) which are delivered from the sub-problem in previous iteration of 

column-and-constraint methodology (if the first iteration, primal cuts are replaced by constraints 

of the deterministic model). After achieving a solution in master-problem, the obtained "here-

and-now" variables, i.e., 𝑿 (representing 𝐴, 𝐵 and 𝑊), are sent to the sub-problem as fixed values 

to determine both "wait-and-see" decision variables, i.e., PV-WT-BES scheduling/bidding 

variables, and the new worst-case realization of uncertain parameters. 

Step 2) Given the obtained sizing decision variables, sub-problem is solved to determine 

operation decision variables (including system scheduling and prosumer's bidding strategy) and 

worst-case realization of uncertain parameters. The vector of the fixed "here-and-now" variables 
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is shown by 𝑿𝒄 in the sub-problem which is given by (4). 

Max𝑼̃∈Ξ𝑈𝑆 Min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀 (4a) 

s.t.  

PV-WT-BES operation constraints:  

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 ≥ 𝑲;  (4b) 

Uncertainty set constraints:  

𝑼𝑐 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑐 ∈ ℝ𝑁𝑈̃ (4c) 

The objective function in (4a) minimizes the operating costs over "wait-and-see" variables, 

while, maximizing it over the worst-case realization of uncertainties. The obtained worst-case 

realizations are then sent back to master problem as fixed values. In fact, in each iteration of the 

decomposition methodology a new set of constraints (primal cuts) are added to master-problem. 

Step 3) At the next iteration, master problem is solved, given the obtained worst-case 

realization of uncertain parameters through primal cutting planes in previous iterations, in order 

to find the new sizing decision variables to be sent to the sub-problem. The column-and-

constraint methodology iterates between master problem and sub-problem until the convergence 

criteria is satisfied (i.e., the value of master problem and sub-problem get sufficiently close).  

Since, the inner max-min problem is a bi-level optimization model, it cannot be directly 

solved. As indicated in the contributions, BCD technique is used to recast the bi-level max-min 
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problem into two single-level problems including a first-stage sub-problem, i.e., the inner min 

problem, and a second-stage sub-problem, i.e., the inner max problem. Since, duality theory is 

not used in the proposed robust model, it is possible to determine the bidding binary variables in 

the sub-problem as "wait-and-see" decisions. Therefore, despite the previous dual-based models, 

in which bidding strategy was obtained before uncertainty realization as "here-and-now" 

variables, the obtained bidding strategy solutions of the proposed BCD robust model are based on 

the worst-case realization of uncertainties and are treated as recourse decisions ("wat-and-see" 

decisions). In the following sub-section, the solving methodology for the sub-problem is 

described. 

B. Block Coordinate Descent (BCD) Methodology to solve the sub-problem 

The sub-problem is solved to determine 1) the optimal PV-WT-BES operation variables as 

"wait-and-see" decisions at the presence of uncertainties, and 2) the worst-case realization of 

uncertain parameters, given the fixed values of sizing variables obtained by master problem. In 

the conducted BCD methodology, the first-stage sub-problem is responsible for determining 

"wait-and-see" decision variables, while the second-stage sub-problem determines the worst-case 

realization of uncertain parameters.  

Note that the standard application of the BCD method relies on the availability of an analytical 

expression for the operating cost in terms of middle-level variables. In the absence of such an 

expression in the max-min sub-problem, at each iteration of the proposed BCD method, the sub-

problem for operating/bidding variables is built upon the first-order Taylor series approximation 

of the operating cost around the uncertainty realizations identified at the previous iteration. 
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Therefore, the max-min sub-problem in (4) is recast into a first-stage and a second-stage sub-

problem. The first-stage sub-problem is given as (5). 

min𝑌∈Ξ𝐼𝐼   ΛII ≡ 𝑭′, 𝒀 (5a) 

PV-WT-BES operation constraints:  

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 ≥ 𝑲; (5b) 

Auxiliary constraints:  

𝑼𝒄 = 𝑼𝑧    ∶     𝝁 ≥ 0; (5c) 

Since, the sizing variables are fixed on their obtained values by master problem, the terms 𝕄1, 

and 𝕄2 of the deterministic objective function (1a), as well as the sizing constraints (1u)-(1w) 

are not included in the first-stage sub-problem. Instead, it includes the term 𝕄3 in (1a) and the 

associated operation constraints (1b)-(1t). Accordingly, the objective function (5a) minimizes the 

operating costs over "wait-and-see" variables, while being subject to operating constraints in (5b) 

and auxiliary constraints representing the obtained worst-case realization of uncertainties by the 

second-stage sub-problem in previous iteration of the BCD method , i.e., 𝑼𝑧. 
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Master problem

min𝑿∈Ξ𝐼   ΛI ≡ 𝑨′ ∙ 𝑿 + ¥ 

Sizing constraints: 

𝑪𝑿 ≥ 𝑫;    𝑿 ∈ {0, 1}𝑁𝑋  

Primal cut constraints: 

¥ ≥ 𝑭′ , 𝒀 ;    𝑮 ∙ 𝑿 + 𝑩 ∙ 𝒀𝒄 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;  𝑐 ∈ Ξ𝐶 
 

 

Sub-problem

First-stage sub-problem

Second-stage sub-problem

min𝑌∈Ξ𝐼𝐼   ΛII ≡ 𝑭′ ,𝒀 

PV-WT-BES operation constraints: 

𝑮 ∙ 𝑿𝒄 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝒄 ≥ 𝑲;  
Auxiliary constraints: 

𝑼𝒄 = 𝑼𝑧    ∶     𝝁 ≥ 0;    
 

max𝑼̃∈Ξ𝑈𝑆  ΛIII ≡ΛII + 𝝁 ∙ (𝑼𝑧 − 𝑼𝑧−1) 
Uncertainty set constraints: 

𝑼𝑧 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑧 ∈ ℝ𝑁𝑈̃ 

 

|𝚲𝐈𝐈𝐈 − 𝚲𝐈𝐈| 
≤ 𝜺 

 No

Yes

|𝚲𝐈𝐈 − 𝚲𝐈| 
≤ 𝜺 

Yes

Robust PV-WT-BES sizing/operation solutions are obtained

 No.

Sizing variables are send to sub-problem

Worst-case realizations 

of uncertainties

Master problem is solved to determine sizing variables             by which 

the terms                   in objective function (1a) (forming the objective 

function of master problem as (3a)) are minimized. 

First-stage sub-problem (4a)-(4w) is solved to determine 

PV-WT-BES operation constraints which should be 

obtained after the worst-case realization of uncertainties 

provided by the second-stage sub-problem in the previous 

iteration of the inner loop

Second-stage sub-problem (5a)-(5h) is solved using first-order Taylor series 

of the uncertainties to determine the worst-case realization of renewable 

generation and load. The obtained worst-case realizations are then sent to the 

First-stage sub-problem as fixed values

𝑨,𝑩, 𝑪 

𝕄𝟏 and 𝕄𝟐 

 

Fig. 4. Outline of the proposed BCD robust methodology. 

𝝁 is the vector of dual variables representing the sensitivity of objective function (5a) toward 

uncertain parameters, including load demand and PV/WT production at each iteration z of the 

BCD method. These dual variables are further employed to develop the first-order Taylor series 
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in the second-stage sub-problem only and no duality theory in conducted. 

The second-stage sub-problem is built upon the first order Taylor series approximation of the 

first-stage sub-problem over the uncertain parameters in previous iteration of BCD method, i.e., 

𝑧 − 1. Therefore, at iteration 𝑧 of the BCD method, the second-stage sub-problem is cast as (6). 

max𝑼̃∈Ξ𝑈𝑆  ΛIII ≡ΛII + 𝝁 ∙ (𝑼𝑧 − 𝑼𝑧−1) (6a) 

Uncertainty set constraints:  

𝑼𝑧 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−;   𝑼𝑧 ∈ ℝ𝑁𝑈̃ (6b) 

The second-stage sub-problem determines the worst-case realization of uncertain parameters 

at each iteration 𝑧 of the BCD method, by which the approximated objective function (6a) is 

maximized. Constraint (6b) expresses the deviation of uncertain parameters in positive and 

negative directions. By solving the second-stage sub-problem, the worst-case realization of 

uncertain parameters is determined to be sent to the first-stage sub-problem. The first-stage sub-

problem is solved given the fixed values of worst-case realizations in the second-stage sub-

problem. 

This procedure continuous until the inner loop converges, i.e., the value of first-stage and 

second-stage sub-problems become sufficiently close. Therefore, the methodology to solve the 

min-max-min problem consists of two nested loops as follows: 

Outer loop: The master problem communicates with the sub-problem through the outer loop, 

conducting the C&C methodology, 
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Inner loop: The iterations between first-stage and second-stage sub-problems are directed 

through the inner loop by means of BCD method. 

Fig. 4 gives the outline of the proposed methodology and the compact formulation of each 

problem. In Fig. 4, the outer loop is shown by red lines and the inner loop is shown by blue lines. 

IV. Extended Form of Master Problem and Sub-problem 

A. Master Problem 

The epigraph form of the master problem including primal cutting planes given by sub-

problem, can be written as (8). 

MinΛI ≡(𝐴 ∙ 𝐶𝑝𝑣 + 𝑊 ∙ 𝐶𝑤 + ∑ 𝐵 ∙ 𝐶𝑛
𝑏𝑎𝑡 ∙𝑛∈𝛯𝑁 𝑄𝑛

𝑏𝑎𝑡) + 𝑦 ∙ 𝑄𝑠𝑦𝑠 ∙ (𝐴 ∙ 𝐶𝑝𝑣 + 𝑊 ∙

𝐶𝑤 + 𝐵 ∙ 𝐶𝑛=1
𝑏𝑎𝑡 ) + ¥  

(8a) 

s.t.  

𝐴 ≤ 𝐴𝑚𝑎𝑥; (8b) 

𝐵 ≤ 𝐵𝑚𝑎𝑥; (8c) 

𝑊 ≤ 𝑊𝑚𝑎𝑥; (8d) 

¥ ≥ 𝑄𝑠𝑦𝑠 ∙ ∑ ∑ (𝑃𝑑𝑡𝑐
𝑖𝑛 ∙ 𝜋𝑑𝑡 − 𝑃𝑑𝑡𝑐

𝑜𝑢𝑡 ∙ 𝜃)𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;   ∀𝑐 ∈ Ξ𝐶   (8e) 

𝐿̃𝑑𝑡
𝑐 = 𝑃𝑑𝑡𝑐

ℎ + 𝑃𝑑𝑡𝑐
𝑖𝑛 − 𝑃𝑑𝑡𝑐

𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8f) 
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𝑃𝑑𝑡𝑐
ℎ = 𝑃𝑑𝑡𝑐

𝑠 ∙ 𝜂𝑖𝑛𝑣 − 𝑃𝑑𝑡𝑐
𝑑𝑚𝑝;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶 (8g) 

𝑃𝑑𝑡𝑐
𝑠 = 𝑃𝑑𝑡𝑐

𝑤 + 𝑃𝑑𝑡𝑐
𝑣 − 𝑃𝑑𝑡𝑐

𝑐ℎ𝑔
+ 𝑃𝑑𝑡𝑐

𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇; ∀𝑐 ∈ Ξ𝐶  (8h) 

𝑃𝑑𝑡𝑐
𝑣 = 𝐴 ∙ 𝑃̃𝑑𝑡

𝑣𝑐
∙ 𝜂𝑐𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶 (8i) 

𝑃𝑑𝑡𝑐
𝑤 = 𝑊 ∙ 𝑃̃𝑑𝑡

𝑤𝑐
∙ 𝜂𝑐𝑜𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8j) 

𝐸𝑑𝑡𝑐 = 𝐸𝑑(𝑡−1)𝑐 + (𝑃𝑑𝑡𝑐
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡𝑐
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠) ∙ 𝛥𝑡 − 𝐸𝑙 ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈

Ξ𝐶   

(8k) 

∑ (𝑃𝑑𝑡𝑐
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡𝑐
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠
)𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵 ∙ 𝑇; ∀𝑑 ∈ Ξ𝐷;  ∀𝑐 ∈ Ξ𝐶   (8l) 

𝐸𝑑(𝑡=0)𝑐 = 𝐸𝑖𝑛𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑐 ∈ Ξ𝐶  (8m) 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡𝑐
𝑐ℎ𝑔

≤ 𝑃𝑑𝑡𝑐
𝑐ℎ𝑔

≤ 𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡𝑐
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶   (8n) 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡𝑐

𝑑𝑖𝑠 ≤ 𝑃𝑑𝑡𝑐
𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡𝑐
𝑑𝑖𝑠 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶   (8o) 

−𝕄 ∙ 𝑥𝑑𝑡𝑐
𝑐ℎ𝑔

≤ 𝛼𝑑𝑡𝑐
𝑐ℎ𝑔

≤ 𝕄 ∙ 𝑥𝑑𝑡𝑐
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8p) 

𝐵 − 𝕄 ∙ (1 − 𝑥𝑑𝑡𝑐
𝑐ℎ𝑔

) ≤ 𝛼𝑑𝑡𝑐
𝑐ℎ𝑔

≤ 𝐵 + 𝕄 ∙ (1 − 𝑥𝑑𝑡𝑐
𝑐ℎ𝑔

);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  

(8q) 

−𝕄 ∙ 𝑥𝑑𝑡𝑐
𝑑𝑖𝑠 ≤ 𝛼𝑑𝑡𝑐

𝑑𝑖𝑠 ≤ 𝕄 ∙ 𝑥𝑑𝑡𝑐
𝑑𝑖𝑠 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8r) 
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𝐵 − 𝕄 ∙ (1 − 𝑥𝑑𝑡𝑐
𝑑𝑖𝑠) ≤ 𝛼𝑑𝑡𝑐

𝑑𝑖𝑠 ≤ 𝐵 + 𝕄 ∙ (1 − 𝑥𝑑𝑡𝑐
𝑑𝑖𝑠);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  

(8s) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵 ≤ 𝐸𝑑𝑡𝑐 ≤ 𝐵 ∙ 𝐸 

′;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8t) 

𝑥𝑑𝑡𝑐
𝑐ℎ𝑔

+ 𝑥𝑑𝑡𝑐
𝑑𝑖𝑠 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (8u) 

𝑃𝑚𝑖𝑛
𝑖𝑛 ∙ 𝑥𝑑𝑡𝑐

𝑖𝑛 ≤ 𝑃𝑑𝑡𝑐
𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥

𝑖𝑛 ∙ 𝑥𝑑𝑡𝑐
𝑖𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶   (8v) 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡𝑐

𝑜𝑢𝑡 ≤ 𝑃𝑑𝑡𝑐
𝑜𝑢𝑡 ≤ 𝑃𝑚𝑎𝑥

𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡𝑐
𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶   (8w) 

𝑥𝑑𝑡𝑐
𝑖𝑛 + 𝑥𝑑𝑡𝑐

𝑜𝑢𝑡 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (8x) 

The objective function (8a) minimizes the NPV of CAPEX and maintenance costs by 

determining the optimal PV-WT-BES sizing solutions as "here-and-now" decision variables i.e., 

𝐴, 𝐵, 𝑊. The limitations of sizing variables are given by (8b)-(8d). Constraints (8e)-(8x) 

represent the primal cuts submitted from the sub-problem. The subscript (c) and the superscript 

(c) in (8), indicate the associated "wait-and-see" variables and the fixed values of the uncertain 

parameters at iteration c of the C&C methodology, respectively. Constraints (8f)-(8x) are 

equivalent to constraints (1b)-(1t). However, the forecast values of uncertain parameters in (1) 

(i.e., 𝐿̅𝑑𝑡, 𝑃̅𝑑𝑡
𝑣 , 𝑃̅𝑑𝑡

𝑤 ) are replaced with the obtained worst-case realizations from the sub-problem at 

iteration c (𝐿̃𝑑𝑡
𝑐 , 𝑃̃𝑑𝑡

𝑣𝑐
, 𝑃̃𝑑𝑡

𝑤𝑐
).  

B. Sub-problem 

In the following, both first and second-stage sub-problems are presented and discussed. 
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1) First-stage Sub-problem 

The first-stage sub-problem is given by (9).  

MinΛII ≡𝑄𝑠𝑦𝑠 ∙ ∑ ∑ (𝑃𝑑𝑡
𝑖𝑛 ∙ 𝜋𝑑𝑡 − 𝑃𝑑𝑡

𝑜𝑢𝑡 ∙ 𝜃)𝑡∈𝛯𝑇𝑑∈𝛯𝐷   (9a) 

s.t.  

𝐿̃𝑑𝑡
 = 𝑃𝑑𝑡

ℎ + 𝑃𝑑𝑡
𝑖𝑛 − 𝑃𝑑𝑡

𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  (9b) 

𝑃𝑑𝑡
ℎ = 𝑃𝑑𝑡

𝑠 ∙ 𝜂𝑖𝑛𝑣 − 𝑃𝑑𝑡
𝑑𝑚𝑝;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  (9c) 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑤 + 𝑃𝑑𝑡
𝑣 − 𝑃𝑑𝑡

𝑐ℎ𝑔
+ 𝑃𝑑𝑡

𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9d) 

𝑃𝑑𝑡
𝑣 = 𝐴𝑐 ∙ 𝑃̃𝑑𝑡

𝑣 ∙ 𝜂𝑐𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9e) 

𝑃𝑑𝑡
𝑤 = 𝑊𝑐 ∙ 𝑃̃𝑑𝑡

𝑤 ∙ 𝜂𝑐𝑜𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9f) 

𝐸𝑑𝑡 = 𝐸𝑑(𝑡−1) + (𝑃𝑑𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠) ∙ 𝛥𝑡 − 𝐸𝑙 ∙ 𝐵𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9g) 

∑ (𝑃𝑑𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑑𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠
)𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵𝑐 ∙ 𝑇;  ∀𝑑 ∈ Ξ𝐷  (9h) 

𝐸𝑑(𝑡=0) = 𝐸𝑖𝑛𝑡;  ∀𝑑 ∈ Ξ𝐷  (9i) 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝑃𝑑𝑡
𝑐ℎ𝑔

≤ 𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

∙ 𝛼𝑑𝑡
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9j) 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝑃𝑑𝑡
𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 ∙ 𝛼𝑑𝑡
𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9k) 
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−𝕄 ∙ 𝑥𝑑𝑡
𝑐ℎ𝑔

≤ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝕄 ∙ 𝑥𝑑𝑡
𝑐ℎ𝑔

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9l) 

𝐵𝑐 − 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑐ℎ𝑔

) ≤ 𝛼𝑑𝑡
𝑐ℎ𝑔

≤ 𝐵𝑐 + 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑐ℎ𝑔

);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  

(9m) 

−𝕄 ∙ 𝑥𝑑𝑡
𝑑𝑖𝑠 ≤ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝕄 ∙ 𝑥𝑑𝑡
𝑑𝑖𝑠;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9n) 

𝐵𝑐 − 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑑𝑖𝑠) ≤ 𝛼𝑑𝑡

𝑑𝑖𝑠 ≤ 𝐵𝑐 + 𝕄 ∙ (1 − 𝑥𝑑𝑡
𝑑𝑖𝑠);  

∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  

(9o) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵𝑐 ≤ 𝐸𝑑𝑡 ≤ 𝐵𝑐 ∙ 𝐸 

′;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9p) 

𝑥𝑑𝑡
𝑐ℎ𝑔

+ 𝑥𝑑𝑡
𝑑𝑖𝑠 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9q) 

𝑃𝑚𝑖𝑛
𝑖𝑛 ∙ 𝑥𝑑𝑡

𝑖𝑛 ≤ 𝑃𝑑𝑡
𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥

𝑖𝑛 ∙ 𝑥𝑑𝑡
𝑖𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9r) 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡

𝑜𝑢𝑡 ≤ 𝑃𝑑𝑡
𝑜𝑢𝑡 ≤ 𝑃𝑚𝑎𝑥

𝑜𝑢𝑡 ∙ 𝑥𝑑𝑡
𝑜𝑢𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9s) 

𝑥𝑑𝑡
𝑖𝑛 + 𝑥𝑑𝑡

𝑜𝑢𝑡 ≤ 1; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9t) 

𝐿̃𝑑𝑡
 = 𝐿̃𝑑𝑡

(𝑧)
∶  𝒻𝑑𝑡

 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9u) 

𝑃̃𝑑𝑡
𝑣 = 𝑃̃𝑑𝑡

𝑣(𝑧)
∶  𝓀𝑑𝑡

 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9v) 

𝑃̃𝑑𝑡
𝑤 = 𝑃̃𝑑𝑡

𝑤(𝑧)
∶  𝓎𝑑𝑡

 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9w) 

The objective function (9a) determines the optimal annual energy costs including 



 
 

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle 
Employment on Distribution System 

157 

 

buying/selling bids as "wait-and-see" decisions. Constraints (9b)-(9t) are similar to those of the 

deterministic model but different in two ways, including 1) sizing variables, i.e., 𝐴, 𝐵, and 𝑊, are 

fixed on the obtained "here-and-now" solutions by master problem at iteration c of the C&C 

methodology, i.e., 𝐴𝑐, 𝐵𝑐, and 𝑊𝑐, and 2) the forecast values of uncertain parameters, i.e., 𝐿̅𝑑𝑡, 

𝑃̅𝑑𝑡
𝑣 , and 𝑃̅𝑑𝑡

𝑤 , are fixed on the worst-case realization of uncertain parameters obtained by the 

second-stage sub-problem at iteration z of the BCD method, i.e., 𝐿̃𝑑𝑡
(𝑧)

, 𝑃̃𝑑𝑡
𝑣(𝑧)

, and 𝑃̃𝑑𝑡
𝑤(𝑧)

, by 

constraints (9u)-(9w). 

Dual variables 𝒻𝑑𝑡
 , 𝓀𝑑𝑡

 , and 𝓎𝑑𝑡
 , in (9u)-(9w) represent the sensitivity of objective function 

(9a) toward uncertain parameters, including load demand and PV/WT production at each iteration 

z of the BCD method. 

2) Second-stage Sub-problem 

The second-stage sub-problem is cast as (10). 

MaxΛIII
(𝑧) ≡ΛII

(𝑧) + ∑ ∑ 𝒻𝑑𝑡
 (𝐿̃𝑑𝑡

(𝑧) − 𝐿̃𝑑𝑡
(𝑧−1))𝑡∈𝛯𝑇𝑑∈𝛯𝐷 + ∑ ∑ 𝓀𝑑𝑡

 (𝑃̃𝑑𝑡
𝑣(𝑧)

−𝑡∈𝛯𝑇𝑑∈𝛯𝐷

𝑃̃𝑑𝑡
𝑣(𝑧−1)

) + ∑ ∑ 𝓎𝑑𝑡
 (𝑃̃𝑑𝑡

𝑤(𝑧)
− 𝑃̃𝑑𝑡

𝑤(𝑧−1)
)𝑡∈𝛯𝑇𝑑∈𝛯𝐷   

(10a) 

s.t.  

𝐿̃𝑑𝑡
(𝑧)

= 𝐿̅𝑑𝑡 + 𝐿𝑑𝑡
𝑑𝑒𝑣+

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10b) 

𝐿̃𝑑𝑡
(𝑧)

= 𝐿̅𝑑𝑡 − 𝐿𝑑𝑡
𝑑𝑒𝑣−

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10c) 
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𝑃̃𝑑𝑡
𝑣(𝑧)

= 𝑃̅𝑑𝑡
𝑣 + 𝑃𝑑𝑡

𝑣𝑑𝑒𝑣+
;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10d) 

𝑃̃𝑑𝑡
𝑣(𝑧)

= 𝑃̅𝑑𝑡
𝑣 − 𝑃𝑑𝑡

𝑣𝑑𝑒𝑣−
;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10e) 

𝑃̃𝑑𝑡
𝑤(𝑧)

= 𝑃̅𝑑𝑡
𝑤 + 𝑃𝑑𝑡

𝑤𝑑𝑒𝑣+
;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10f) 

𝑃̃𝑑𝑡
𝑤(𝑧)

= 𝑃̅𝑑𝑡
𝑤 − 𝑃𝑑𝑡

𝑤𝑑𝑒𝑣−
;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10g) 

0 ≤ 𝐿𝑑𝑡
𝑑𝑒𝑣+ ≤ 𝐿̂𝑑𝑡

𝑑𝑒𝑣+ ∙ 𝑥𝑑𝑡
𝐿+;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (10h) 

0 ≤ 𝐿𝑑𝑡
𝑑𝑒𝑣− ≤ 𝐿̂𝑑𝑡

𝑑𝑒𝑣− ∙ 𝑥𝑑𝑡
𝐿−;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10i) 

0 ≤ 𝑃𝑑𝑡
𝑣𝑑𝑒𝑣+

≤ 𝑃̂𝑑𝑡
𝑣𝑑𝑒𝑣+

∙ 𝑥𝑑𝑡
𝑣𝑑𝑒𝑣+

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (10j) 

0 ≤ 𝑃𝑑𝑡
𝑣𝑑𝑒𝑣−

≤ 𝑃̂𝑑𝑡
𝑣𝑑𝑒𝑣−

∙ 𝑥𝑑𝑡
𝑣𝑑𝑒𝑣−

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10k) 

0 ≤ 𝑃𝑑𝑡
𝑤𝑑𝑒𝑣+

≤ 𝑃̂𝑑𝑡
𝑤𝑑𝑒𝑣+

∙ 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣+

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (10l) 

0 ≤ 𝑃𝑑𝑡
𝑤𝑑𝑒𝑣−

≤ 𝑃̂𝑑𝑡
𝑤𝑑𝑒𝑣−

∙ 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣−

;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10m) 

𝑥𝑑𝑡
𝐿+ + 𝑥𝑑𝑡

𝐿− ≤ 1;   ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10n) 

𝑥𝑑𝑡
𝑣𝑑𝑒𝑣+

+ 𝑥𝑑𝑡
𝑣𝑑𝑒𝑣−

≤ 1;   ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10o) 

𝑥𝑑𝑡
𝑤𝑑𝑒𝑣+

+ 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣−

≤ 1;   ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (10p) 

∑ (𝑥𝑑𝑡
𝐿+ + 𝑥𝑑𝑡

𝐿− + 𝑥𝑑𝑡
𝑣𝑑𝑒𝑣+

+ 𝑥𝑑𝑡
𝑣𝑑𝑒𝑣−

+ 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣+

+ 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣−

)𝑡∈𝛯𝑇 ≤ Ψ; ∀𝑑 ∈ Ξ𝐷  (10q) 
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The objective function (10a) maximizes the operating cost under the worst-case realization of 

uncertainties. Constraints (10b)-(10g), express the deviations of uncertain load and PV/WT 

generation in positive and negative directions, respectively. The deviations of uncertain 

parameters are limited to their allowable ranges through constraints (10h)-(10m). Constraints 

(10n)-(10p) make sure that the uncertain parameters only deviate in positive or negative 

directions. The total number of hourly deviations for all uncertain parameters is limited to the 

user-defined uncertainty budget Ψ in constraint (10q). Ψ = 0 represents a deterministic model as 

no uncertain parameter is allowed to deviate. However, as the value of  Ψ increases, the 

robustness of the solution increases. Accordingly, the highest value of Ψ leads to the most robust 

solution against the uncertain parameters.  

V. Numerical Study 

A. Data Set 

Studies of this paper are conducted over a 20-year planning horizon, indicating PV/WT 

lifetime, while the BES/inverter lifetime is estimated for 10 years [138]. The forecasted load data 

has been obtained from [139] and scaled for an industrial prosumer, illustrated by Fig. 5A. The 

forecasted PV generation for a PV panel with 1kW capacity on north facing 30° tilted using solar 

insolation and ambient temperature at Port Augusta,  South Australia, is given by Fig. 5B [140]. 

Note that, the considered configuration of PV array is parallel. This is because a) parallel 

configuration of PV panels makes the maximum power point (MPP) tracking more efficient, 

exact, and cheaper, and b) it has a more reliable performance under certain shading conditions 

[141] (the use of either the conventional series configuration or the parallel configuration is 
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highly dependent on both the application type and the climatic conditions). The WT generation is 

also given by Fig. 5C for a WT with the capacity of 1kW at Port Augusta, South Australia 

[140].The WT generation is also given by Fig. 5C for a WT with the capacity of 1kW at Port 

Augusta, South Australia [140]. The wind turbine is considered as dynamic speed. The cost of 

BES is $800/kWh [138], while, the cost of PV and WT is $1,300/kW and $2,800/kW, 

respectively [142]. These costs are based on Australian Dollars. The maximum power range for 

PV/WT, BES capacity, BES charging/discharging rate, and import/export bids are given by Table 

II. Note that the steady-state energy losses of each BES has been considered as %3 of the BES 

capacity. Moreover, the characteristics of all BESs are the same. The electricity buying price is 

considered as TOU tariff with 41.53 ¢/kWh for hours 07-20 and 27.01 ¢/kWh for other hours, 

while, the feed-in tariff is 14 ¢/kWh in all times [143]. These prices are considered through smart 

metering of buying/selling bids. Since the operation is conducted for 24 hours and in each hour 

there are three uncertainty sources (accounting for hourly load, hourly PV generation, and hourly 

WT generation), 72 uncertain parameters exist in the 24-h operation horizon, i.e., 3 × 24 = 72. 

Some of the uncertain PV generation parameters are already zero during night hours. Four cases 

with different uncertainty budgets (i.e., Ψ) are considered in this study. These cases include Case 

1, Case 2, Case 3, and Case 4.  Each case is subject to 5%, 10%, 15%, and 20% deviation of 

uncertain parameters, respectively. These cases also become more conservative against 

uncertainties by increasing the values of Ψ. The simulations were conducted using CPLEX [110]. 
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Fig. 5. The considered load, PV generation, and WT generation data. 

TABLE II. Power ranges of the Studied PV-WT-BES system (Fig. 2) 

Parameter Range [kW/h] Parameter Range [kW] 

PV capacity 0 ≤ 𝑃𝑑𝑡
𝑣 ≤ 500 BES discharging rate 40% of 𝐸 

′ 

WT capacity 0 ≤ 𝑃𝑑𝑡
𝑤 ≤ 500 Imported power 0 ≤ 𝑃𝑑𝑡

𝑖𝑛 ≤ 400 

BES capacity 0 ≤ 𝐸𝑑𝑡 ≤ 500 Exported power 0 ≤ 𝑃𝑑𝑡
𝑜𝑢𝑡 ≤ 50 

BES Charging 

rate 
40% of 𝐸 

′ - - 

 

B. Robust Solutions 

Tables III and IV show the obtained optimal values of objective function and capacity of 

PV/WT/BES for each case toward different uncertainty budgets, respectively. According to the 

reported results in Tables III and IV, it is pointed out that: 
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TABLE III. Total NPV of PV-WT-BES installation/operation costs (20 years)  

Ψ 
Total installation/operation cost [$] over 20 years 

Case 1 Case 2 Case 3 Case 4 

0 4,032,492 4,032,492   4,032,492   4,032,492   

24 4,298,258   4,586,364   4,891,449   5,240,414   

48 4,350,143   4,685,701   5,041,602   5,489,975   

72 4,365,654   4,722,127   5,104,865   5,548,492   

 

TABLE IV. PV-WT-BES capacities for Cases 1-4 with 24-step size of Ψ (units are based on kW) 

Ψ Case 1 Case 2 Case 3 Case 4 

 PV WT BES PV WT BES PV WT BES PV WT BES 

0 332 366 402 332 366 402 332 366 402 332 366 402 

24 328 397 482 284 424 500 223 452 500 218 454 500 

48 354 402 431 377 443 466 390 486 480 324 500 354 

72 362 400 412 399 439 433 435 481 441 408 500 322 
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Fig. 6. Deviation indicators, deviation ranges, and worst-case realizations of uncertain parameters (for Ψ = 48 and 

10% deviation based on post-event analysis). 
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1) Since no uncertainty has been realized in for Ψ = 0, it represents a deterministic 

sizing/scheduling model with no uncertainty realization, regardless of the associated deviation 

ranges in each case. The deterministic results are shaded in Tables III and IV. 

2) The value of objective function increases as the robustness level (both the uncertainty 

budget Ψ and deviation range) increases, reflecting higher values of load and lower values of 

PV/WT generation. 

3) The capacity of PV, WT, and BES does not follow a decreasing/increasing pattern as the 

robustness level increases. This is because, the optimality of objective function depends on both 

investment cost and the prosumer's operation costs. Therefore, in some cases, it is more 

beneficial to reduce the system capacity as the robustness level increases. 

C. Post-event Analysis 

The obtained RO solutions become more immunized against uncertainties as the robustness 

level increases. This feature is called "robustness worth" which means that the prosumer will face 

minimum extra costs if uncertainties arise. 

However, this immunization comes at a higher expense which is called "robustness cost" (see 

Table III). Therefore, selecting a very high robustness level leads to over-conservative solutions 

resulting in unnecessary robustness cost and impractical robustness worth, and vice versa. To 

provide an optimal balance between robustness worth and cost, and to avoid over/under 
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conservative RO solutions, a post-event analysis has been conducted in this study. According to 

this analysis, the obtained RO solutions for each robustness level (uncertainty budget Ψ and 

deviation range) are examined against a sufficiently large number of uncertainty realizations, 

leading to unavoidable electricity shortage/surplus. The energy shortage, i.e., specified as load 

shedding, and the energy surplus, i.e., specified as PV/WT curtailment, have been modeled by 

additional free variables in the post-event analysis, while the obtained robust solutions are fixed. 

Therefore, the mixed-integer linear model in (1) becomes a linear model, only characterizing load 

shedding and PV/WT curtailment. The mathematical model of post-event analysis is given as (7). 

Note that, only constraints associated with load shedding and PV/WT curtailment are considered 

in post-event model and other constraints are eliminated as they are fixed on the obtained robust 

solutions (they are constants and have no effect on the post-event value). The subscript (s) in (7), 

indicates the associated variables in each trial scenario.  

𝑃𝐸 = ∑ ∑ ∑ (
|𝑌𝑑𝑡𝑠

𝑠ℎ |+|𝑌𝑑𝑡𝑠
𝑐𝑢 |

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
)𝑡∈𝛯𝑇𝑑∈𝛯𝐷𝑠∈𝛯𝑆   (7a) 

where;  

𝐿̌𝑑𝑡𝑠 = 𝑃𝑑𝑡
ℎ + 𝑃𝑑𝑡

𝑖𝑛 − 𝑃𝑑𝑡
𝑜𝑢𝑡 + 𝑌𝑑𝑡𝑠

𝑠ℎ ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑠 ∈ Ξ𝑆;  (7b) 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑤 + 𝑃𝑑𝑡
𝑣 − 𝑃𝑑𝑡

𝑐ℎ𝑔
+ 𝑃𝑑𝑡

𝑑𝑖𝑠 + 𝑌𝑑𝑡𝑠
𝑐𝑢 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑠 ∈ Ξ𝑆  (7c) 

𝑃𝑑𝑡
𝑣 = 𝐴 ∙ 𝑃̌𝑑𝑡𝑠

𝑣 ∙ 𝜂𝑐𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑠 ∈ Ξ𝑆 (7d) 

𝑃𝑑𝑡
𝑤 = 𝑊 ∙ 𝑃̌𝑑𝑡𝑠

𝑤 ∙ 𝜂𝑐𝑜𝑛;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑠 ∈ Ξ𝑆  (7e) 
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∀ 𝑌𝑑𝑡𝑠
𝑠ℎ , ∀ 𝑌𝑑𝑡𝑠

𝑐𝑢 ∈ ℝ (7f) 

The post-event value is obtained by (7a) in which the summation of the absolute value of load 

shed and PV/WT curtailment, i.e., 𝑌𝑑𝑡𝑠
𝑠ℎ , and 𝑌𝑑𝑡𝑠

𝑐𝑢 , respectively, for each trial scenario is 

normalized over the total number of trial scenarios. Since, the considered uncertainties include 

load and PV/WT generation, only the energy flow constraints (1b) and (1d) as well as PV/WT 

generation constraints (1e) and (1f) are considered in the post-event model. These constraints are 

rewritten as (7b)-(7e) in which the load shedding variable 𝑌𝑑𝑡𝑠
𝑠ℎ  and the PV/WT curtailment 

variable 𝑌𝑑𝑡𝑠
𝑐𝑢  are employed to provide feasibility. The type of these variables is indicated in (7f). 

Problem (7) is solved for different robust setting as presented by Table III and the robust setting 

resulting in the lowest post-event cost is considered as the optimal robust setting for the model.  

After solving the post-event model, these settings are obtained as Ψ = 48 with 10% deviation 

of uncertain parameters. Fig. 6 provides information on the exact deviation indicators, i.e., 𝑥𝑑𝑡
𝐿±, 

𝑥𝑑𝑡
𝑣𝑑𝑒𝑣±

, and 𝑥𝑑𝑡
𝑤𝑑𝑒𝑣±

, worst-case realizations, i.e., 𝐿̃𝑑𝑡
(𝑧)

, 𝑃̃𝑑𝑡
𝑣(𝑧)

, and 𝑃̃𝑑𝑡
𝑤(𝑧)

, and deviation range of 

uncertain parameters, i.e., 𝐿𝑑𝑡
𝑑𝑒𝑣±

, 𝑃𝑑𝑡
𝑣𝑑𝑒𝑣±

, and 𝑃𝑑𝑡
𝑤𝑑𝑒𝑣±

, regarding the optimal robust settings 

obtained by post-event analysis. As it is seen in Fig. 6, row (A), the summation of all binary 

indicators, is 48. The inner max problem has allocated each one of these 48 indicators to selected 

parameters to deliver a worst-case event (24 for load, 16 for WT generation, and 8 for PV 

generation). The 10% deviation range results in the worst-case realization of the selected 

parameters which is given by row (B) in Fig. 6. The value of deviation is also illustrated by row 

(C) in Fig. 6 for each uncertain parameter. As it is seen, the worst-case load has increased after 

uncertainty realization, while, both PV and WT generations have reduced.  
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Fig. 7. Results of the conducted post-event analysis (for Ψ = 48 and 10% deviation based on post-event 

analysis). 

The numerical results of the post-event analysis are given in Fig. 7 which indicates that the 

lowest value of electricity shortage/surplus has occurred for Ψ = 48 and 10% deviation. 

Economical and Operational Solutions under the Obtained Optimal Robust Settings  

The prosumer's cash-flow over the 20-year planning horizon is given by Fig. 8. The 

installation cost accounts for 377/443 kW of PV/WT capacity and 466 kWh of BES capacity. The 

BES itself is replaced each 10 years. The whole system is subject to annual maintenance and 

operation costs which are obtained as $70,815 and $197,294 in the first year, respectively. The 

total NPV cost of prosumer for a 20-year horizon with and without PV-WT-BES system is 

compared in Fig. 9 for both deterministic model (Fig. 9A) and the BCD robust model (Fig. 9B). 

The prosumer's total NPV cost before the PV-WT-BES installation is $7,679,709 which only 

accounts for electricity importing cost as the prosumer has no capacity in exporting electricity. 

However, this value has reduced after installing PV-WT-BES by $2,994,008 in Fig. 9A where no 

uncertainty has been considered. This reduction in NPV cost of the system is due to the system's 

ability in supplying load and providing upstream network interactions through buying/selling 
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bids. Note that, the NPV cost of the system has also been reduced by $2,994,008 when 

considering uncertainties which is shown in Fig. 9A. However, the NPV cost is higher than the 

deterministic model which is due to the consideration of worst-case realization of uncertainties 

(as mentioned in the post-event analysis, conservativeness comes at a higher costs). The annual 

payments/payoffs of prosumer are also given in Fig. 9B. As it is seen, the annual payment has 

considerably reduced from $834,522 to $124,560 for the deterministic model and $133,861 for 

the BCD robust solutions. As expected, no payoff would be obtained before installation of PV-

WT-BES system, while, after installation, the annual payoff reaches $709,962 for deterministic 

solution and $700,661 for the BCD robust solution. 

 

Fig. 8. Cash flow for the PV-WT-BES installation/operation (for Ψ = 48 and 10% deviation based on post-event 

analysis). 

 

Fig. 9. Total NPV cost in 20-years (A) and Annual payment/payoff (B) (for Ψ = 48 and 10% deviation based on 
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post-event analysis). 

The operational decisions, including import and export electricity, PV/WT generation, and 

hourly load demand are presented by Fig. 10 for a random day. The maximum generated power 

by PV/WT has been shown by blue and red lines in Fig. 10. These operational decisions are 

obtained based on the energy availability and upstream network TOU price signals in each hour. 

As seen in Fig. 10, the value of imported electricity is zero or very low between hours 7-20 which 

are the high-priced hours under TOU rate. Instead, the produced energy by PV/WT is consumed 

by prosumer during these hours. Also, BES is charged by the produced PV/WT to be discharged 

during night. As expected, the imported electricity is approximately zero in hours 19-20 where 

the BES has extensively discharged in these hours to contribute in the optimal operation of the 

system. These operational decisions are made based on 𝕄3 in (1a), and constraints (1b)-(1t). 

 

Fig. 10. Hourly operational decisions for a random day (for Ψ = 48 and 10% deviation). 

The hourly SOC of battery, i.e., SOC, and its charging/discharging rates for a random day are 

given by Fig. 11 to illustrate the optimal 24-h scheduling solutions obtained from the proposed 

BCD robust model.  
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As mentioned in the introduction section, binary variables indicating buying/selling bids as 

well as BES charging/discharging status have been obtained in the sub-problem after the 

uncertainty realizations. These binary variables are given in Fig. 12 and Fig. 13.  

 

Fig. 11. State-of-charge (SOC) and charging/discharging rates for a random day (for Ψ = 48 and 10% deviation 

based on post-event analysis). 

 

Fig. 12. Binary variables indicating prosumer's buying/selling bids 

 

Fig. 13. Binary variables indicating BES charging/discharging status 
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The energy balance between PV-WT-BES system, load, and grid is given in Fig. 14 by Sankey 

diagram for both the deterministic and BCD robust models. As it is seen in Fig. 14, the value of 

load has increased by 10% which is based on the obtained worst-case realization in Fig. 6B for 

load consumption. Although, the capacity of the PV/WT system has increased in BCD robust 

model the increase in generated power by PV/WT is not as much as the capacity growth. This is 

due to the consideration of uncertainties in the robust model. For example, WT capacity has 

increased by 17.3%, while the generated power by WT has only increased by 9.97%. The same 

behavior is observed for PV system where its capacity has increased by 11.9%, while the 

generated power has only increased by 5.8%. This is due to the negative deviations of PV/WT 

generation when uncertainties are considered. These deviations, indicating the worst-case 

realization of uncertain PV/WT generation, have been illustrated by black dots in Fig. 6B for 

both PV and WT generation.  
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Fig. 14. Energy balance between PV-WT-BES system elements 

D. Validation of the Obtained BCD Robust Results 

To validate the effectiveness of the proposed model, the obtained BCD robust solutions are 
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compared to the obtained results of conventional dual-based robust models such as [116-119] in 

which the bidding strategy decisions are made prior to uncertainties (to ease the employment of 

duality theory). Fig. 15 shows the results of this comparison for optimal robust settings Ψ = 48 

and 10% deviation of uncertainties. As it is seen, the value of objective function has reduced by 

$553,115 which is due to the ignorance of uncertainties in the conventional dual-based robust 

model (ignoring uncertainties results in lower conservative bidding strategy). However, the 

results of the post-event analysis show that the long-term performance of the BCD robust model 

is subject to a lower amount of post-event cost when facing different uncertainty realizations. In 

particular, the post-event cost has been reduced by 10% when employing the proposed BCD 

robust model which shows its long-term effectiveness in comparison to conventional dual-based 

robust models. 

 

Fig. 15. Comparison results between the proposed BCD robust model and the conventional dual-based robust 

models in the literature 

VI. Conclusion 

This paper presented a BCD robust co-optimization model for simultaneous capacity 

allocation and bidding strategy of a PV-WT-BES owning prosumer, considering uncertainties of 
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prosumer's load and PV/WT generations. The proposed model was solved using column-and-

constraint methodology through primal cutting planes. In terms of methodology, BCD method 

was conducted to solve the inner max-min problem instead of using duality theory. The 

conducted robust co-optimization as well as its solution methodology resulted in the following 

benefits: 

Since sizing solutions can affect the benefits associated with daily operation/bidding strategy 

of the system, considering the uncertainty-dependent bidding strategy in the capacity allocation, 

results in optimal benefits for both long-term (capacity-related) and short-term (operation-related) 

perspectives.  

By extending the application of BCD technique to solve the two-level max-min sub-problem 

(resulted from the C&C generation technique), it was possible for the first time to characterize 

prosumer's buying/selling bids in the inner max-min problem to be obtained after uncertainty 

realizations, resulting in more practical/realistic solutions. Note that, this feature was not 

applicable in conventional dual-based robust models in the literature. 

Followed by point 2, it was also possible to consider different pricing schemes for buying bids 

and feed-in tariffs as each were modelled by different binary variables. 

Results for different robust settings were reported, illustrating the effects of uncertain 

parameters on the value of objective function and the optimal capacity, illustrating the effects of 

different conservativeness levels on the solutions. 

To avoid over/under conservative solutions, the optimal robust settings were determined 
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through the conducted post-event analysis, i.e., Ψ = 48 and 10% deviation on uncertain 

parameters, by which the minimum electricity shortage/surplus is achieved in the long-term 

performance.  

Based on the optimal robust settings, the value of objective function over a 20-year horizon 

was $4,685,701 and the capacities of PV, WT, and BES were obtained as 377, 443, and 466, 

respectively.  

Moreover, the BCD robust solutions were compared to the solutions obtained from solving the 

conventional dual-based robust models such as [116-119]. For this comparison, dual-based RO 

model was developed and solved for the case study by authors. This comparison illustrated that 

the proposed model is subject to 10% reduction of post-event cost at the presence of uncertainties 

which indicates more robustness against the uncertainties in practice. 

This study can assist commercial/industrial prosumers by providing practical and financially 

optimal sizing and bidding solutions when designing PV-WT-BES systems.  
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8.2 Application No. 2 (references are at the end of the paper) 

 

Two-stage Robust Sizing and Operation Co-optimization for Residential PV-battery 

Systems Considering the Uncertainty of PV Generation and Load 

This study presents a two-stage adaptive robust optimization (ARO) for optimal sizing and 

operation of residential solar-photovoltaic (PV) systems coupled with battery units. Uncertainties 

of PV generation and load are modeled by user-defined bounded intervals through polyhedral 

uncertainty sets. The proposed model determines the optimal size of PV-battery system while 

minimizing operating costs under the worst-case realization of uncertainties. ARO model is 

proposed as a tri-level min-max-min optimization problem. The outer min problem characterizes 

sizing variables as "here-and-now" decisions to be obtained prior to uncertainty realization. The 

inner max-min problem, however, determines the operation variables in place of "wait-and-see" 

decisions to be obtained after uncertainty realization. An iterative decomposition methodology is 

developed by means of column-and-constraint technique to recast the tri-level problem into a 

single-level master problem (the outer min problem) and a bi-level sub-problem (the inner max-

min problem). Duality theory and Big-M linearization technique are used to transform the bi-

level sub-problem into a solvable single-level max problem. The immunization of the model 

against uncertainties is justified by testing the obtained solutions against 36500 trial uncertainty 
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scenarios in a post-event analysis. The proposed post-event analysis also determines the optimum 

robustness level of the ARO model to avoid over/under conservative solutions. 

Index Terms— PV-battery system, Renewable energy, Residential energy system, Robust 

optimization, Solar photovoltaic. 

NOMENCLATURE 

A. Indices 

𝑐 Index of iterations 

𝑑 Index of day 

𝑛 Index of battery replacements 

𝑡 Index of hour 

B. Parameters 

𝐴𝑚𝑎𝑥 Maximum allowable number of PV panels 

𝐵𝑚𝑎𝑥 Maximum allowable number of batteries 

𝐶𝑝𝑣 Price of PV panel with power generation 𝑃̅𝑑𝑡
  

𝐶𝑛
𝑏 Price of battery with the capacity of 𝐸′ 

𝐸′ Capacity of battery 

𝐸𝑚𝑖𝑛
′  Minimum energy level of battery 

𝐸𝑖𝑛𝑡 Initial energy level of battery in hour 𝑡 = 0 

𝐸𝑙 Stand-by losses of battery 

𝐿𝑇𝑝𝑣 Lifetime of PV panels 

𝐿𝑇𝑛
𝑏 Lifetime of battery 

𝐿̅𝑑𝑡 Forecast electric load in hour 𝑡 of day 𝑑 

𝐿𝑑𝑡
𝑑𝑒𝑣+ Deviation of 𝐿̅𝑑𝑡 in positive direction 

𝑦 Percentage of maintenance cost 

𝕄1,𝕄2 Sufficiently large constants 

𝑁𝑋 Number of sizing variables in vector 𝑿 



 
 

Investigating the Effects of Electric Vehicle Charging Stations on Active Operation of Electricity Distribution Systems 
Incorporated with Distributed Renewables and Battery Systems 

 

𝑁𝑈̃ Number of uncertain parameters in vector 𝑼̃ 

𝑁𝑌 Number of operation variables in vector 𝒀 

𝑃̅𝑑𝑡
  Forecasted power generation by each PV unit 

𝑃𝑑𝑡
𝑑𝑒𝑣− Deviation of 𝑃̅𝑑𝑡

  in negative direction 

𝑃𝑚𝑎𝑥
ℎ /𝑃𝑚𝑖𝑛

ℎ  Maximum/minimum capacity of inverter unit 

𝑃𝑚𝑎𝑥
𝑛 /𝑃𝑚𝑖𝑛

𝑛  Maximum/Minimum allowable power trade 

𝑃𝑚𝑎𝑥
𝑐ℎ /𝑃𝑚𝑖𝑛

𝑐ℎ  Maximum/minimum charging rate for battery 

𝑄𝑛
𝑏 NPV coefficient for battery replacements 

𝑄𝑝𝑣 NPV coefficient for annual operation costs 

𝑇 Number of scheduling time periods in each day 

T1,… , T17 Dualized terms of sub-problem objective function  

𝜂𝑖𝑛𝑣/𝜂𝑏 Efficiency of inverter/battery 

Ψ𝑢 Uncertainty budget 

Ψ𝑙/Ψ𝑝 Number of uncertain hourly loads/ PV generation 

¥ Auxiliary continuous variable 

𝜋𝑑𝑡
  Price of electricity in hour 𝑡 of day 𝑑 

C. Sets 

Ξ𝐷 Set of days 

Ξ𝐼 Set of sizing (here-and-now) decision variables 

Ξ𝐼𝐼 Set of operation (wait-and-see) decision variables 

Ξ𝑁 Set of battery replacements during PV panels' lifetime 

Ξ𝑅 Set of dual variables 

Ξ𝑇 Set of hours at each day of the scheduling horizon 

Ξ𝑈𝐿 Polyhedral load uncertainty set 

Ξ𝑈𝑃 Polyhedral PV generation uncertainty set 

Ξ𝑈𝑆 Set of uncertain parameters 

D. Variables 

𝐴 Number of PV panels with power generation 𝑃̅𝑑𝑡
  

𝐵 Number of batteries with the capacity of 𝐸 
′ 
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𝐸𝑑𝑡 Total installed battery capacity in hour 𝑡 of day 𝑑 

𝐿̃𝑑𝑡 Uncertain load in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
𝑛  Purchased electricity from grid in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
𝑑𝑚𝑝

 Dumped power in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
𝑐ℎ Charging rate for each battery in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
𝑣  Total PV generation in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
𝑠  Inverter input in hour 𝑡 of day 𝑑 

𝑃𝑑𝑡
ℎ  Inverter output in hour 𝑡 of day 𝑑 

𝑃̃𝑑𝑡 Uncertain generation of PV unit in hour 𝑡 of day 𝑑 

W𝑑𝑡
+ ,W𝑑𝑡

−  Auxiliary binary variables 

𝑑𝑡
+ , 𝑑𝑡

−
 Auxiliary dual variables 

ΛI/ΛII Objective function value of master/sub-problem 

E. Vectors and matrices 

𝑨, 𝑭 Coefficient matrices of objective function 

𝑪, 𝑬/𝑫 Coefficient/requirement vector 

𝑼̅ Forecast of uncertain parameters 

𝑼̃ Uncertain value of 𝑼̅ 

𝑼𝒅𝒆𝒗+/𝑼𝒅𝒆𝒗− Positive/negative deviation of 𝑼̅ 

𝑿, 𝒀 Vector of sizing/operation variables 

 

I. INTRODUCTION 

A. Problem Description 

Solar photovoltaics (PVs) are boosting the evolution of energy systems worldwide. 

Government of South Australia reports 880 MW installed PV through small-scale residential 

systems by 2018 [1]. The application of PVs in both residential and industrial sectors has 
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introduced several technical problems such as supply imbalance, reverse power flow, and 

voltage/frequency deviations. To cope, batteries are becoming of interest for PV 

owners/merchants to a) improve the integration of PVs into grid, and b) provide arbitrage 

abilities for a more efficient energy management and market participation [2].  

The economic benefit of a PV-battery system is directly dependent on its optimal operation 

and interaction with upstream network, considering the value of load, PV generations and 

network prices in each hour. Although, the integration of PV and batteries can provide a 

promising operational status, unexpected uncertainties associated with PV generation and load 

can significantly affect their optimal operation, resulting in additional costs. In fact, ignoring the 

operational uncertainties can change the optimal long-term benefits considered in the cost-benefit 

analysis when designing PV-battery systems which leads to over/under design solutions. 

Moreover, the obtained solutions of deterministic studies such as [3-5] might be non-optimal or 

even infeasible when the uncertain parameters deviate from their forecast values [6]. Therefore, 

an accurate modeling of these uncertainties can lead to lower/higher operational costs/benefits for 

PV-battery owners, on one hand, and avoid over/under design solutions for such system, on the 

other hand. 

B. Background and Motivation 

Partial study has characterized the associated uncertainties with sizing of PVs and battery 

units. In [7], the sizing problems were conducted based on scenario generation to model the 

deviations of input data. In the sizing model presented in [8], Monte Carlo simulation was 

conducted to generate scenarios for renewables uncertainties. Monte Carlo simulation was also 
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performed in the battery sizing problem in [9] to model the uncertainties of PV generation. K-

means clustering method was used in [10] to simulate the uncertain PV generations. Uncertainties 

were also modeled through probability density functions in [11-12]. The main drawback of the 

mentioned studies [7-12] is the lack of tractability due to the huge number of required scenarios, 

especially, when several uncertain parameters are considered, and a proper level of feasibility is 

required against different realizations of uncertain parameters. To obtain more reliable solutions, 

stochastic programing (SP) was performed in optimal sizing of a PV-battery system and a PV-

diesel-storage system in [13] and [14], respectively. Followed by [15] SP was employed to model 

the uncertainties of solar radiation in optimal facility sizing of a microgrid. The application of SP 

was extended for optimal battery sizing in an isolated microgrid, using probabilistic scenarios in 

[16]. The study of [17] also characterized the uncertainties associated with battery capacity sizing 

through stochastic programing. Despite the advantages of the SP models in literature, i.e., [13-

17], they face the lack of tractability which is due to the required full distributional knowledge of 

uncertain parameters in stochastic programing, which may not be easily available in practice [6]. 

Moreover, if the uncertain parameters deviate from the simulated scenarios, the performance of 

SP cannot be guaranteed against the uncertainty realizations. This issue is also true for the 

scenario-based models in [7-12]. 

To cope with these limitations, robust optimization (RO), as a tractable and practical 

methodology, was employed in different application areas. The uncertainties in RO are 

characterized by bounded intervals within polyhedral uncertainty sets. Therefore, it eliminates the 

need of scenario generation as it does not depend on distributional knowledge of the uncertain 

parameters [18-20]. As a result, the obtained solutions would be feasible as long as the 
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uncertainty realizations are within the bounded intervals, which makes it more reliable and 

tractable than SP and scenario-based models in the literature. So far, no study has been conducted 

to appropriately characterize the uncertainties associated with PV-battery sizing/operation 

problem through robust optimization technique.  

C. Contributions 

Following contributions are presented in this paper to extend the existing body of work: 

1) In this paper, both deterministic and adaptive robust optimization (ARO) models for sizing 

and operation of PV-battery systems are proposed to a) cope with the aforementioned issues 

associated with scenario-based models, and b) obtain reliable and tractable solutions for PV-

battery sizing/operation under different realizations of uncertain parameters. The proposed model 

is generally developed to be applicable in other sectors such as industrial, commercial, etc.  

2) Uncertainties associated with PV generation and load are considered in the ARO model. 

The proposed model characterizes the sizing/operation variables in place of "here-and-

now"/"wait-and-see" decisions, which are independent/dependent on uncertainty realizations. The 

robustness of PV-battery sizing/operation solution is measured via uncertainty budgets formed by 

polyhedral uncertainty sets which limit the number of uncertain parameters pertaining to PV 

generation and load. The proposed ARO sizing-operation model is a tri-level min-max-min 

optimization problem, which is not solvable by off-the-shelf optimization packages. Therefore, a 

decomposition methodology is developed to recast the tri-level min-max-min problem into a 

single-level min problem and a bi-level max-min problem. The single-level min problem 

characterizes the sizing variables as "wait-and-see" decisions, while, the PV-battery operational 
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variables are determined by the bi-level max-min problem as "here-and-now" decisions. The 

compact formulation of column-and-constraint technique in [21], is extended and adapted to 

iteratively solve the decomposition methodology with primal cuts. Moreover, duality theory as 

well as Big-M transformation technique are applied to recast the bi-level max-min problem into a 

solvable single-level linear max problem.  

3) Since, robust optimization determines the optimal solution based on the worst-case 

realization of uncertain parameters, it may result in over conservative solutions. To avoid this, a 

post-event analysis is developed to justify the immunization of the obtained results against 

uncertainties and determine the optimal robust settings of the proposed PV-battery 

sizing/operation model.  

The Motivations and Contributions of this study are illustratively given by Fig. 1.  

II. DETERMINISTIC PV-BATTERY SIZING/OPERATION MODEL 

In this section, a deterministic sizing/operation optimization model is presented for a PV-

battery system.  

Proposing a two-stage adaptive robust optimization for optimal 

sizing and operation of residential solar-photovoltaic systems 

coupled with battery units. 

Proposing an uncertainty-aware operation by two-stage adaptive 

robust optimization to eliminate the need of scenario generation 

and to be able to characterize recourse decisions.

Immunized solutions against uncertain 

parameters including energy prices and 

load.

Feasible and practical solutions with a 

moderate computational and 

mathematical burden.

Contributions BenefitsMotivations
Optimal size of the systems needs to be 

determined based on its optimal operation 

under uncertainties.

Previous models are computationally 

extensive and non-feasible in some cases.

Conducting a post-event analysis which examines the obtained 

robust solutions against trial uncertainty scenarios.

A proper robustness balance for the 

model to avoid extra costs.

Robust optimization may result in over 

conservative solutions.

 

Fig. 1: Motivations, contributions, and benefits of the conducted study 
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Fig. 2 illustrates the considered configuration of the system and the power flow through each 

element, as per the notations in nomenclature.  

The objective function of the proposed PV-battery sizing/operation model (i.e., 𝑂. 𝐹.) 

minimizes the investment costs, maintenance  costs, and PV-battery system operating costs. The 

proposed deterministic model is formulated as (1). In (1a), 𝕊1 models the PV-battery installation 

cost including the capital expenditures and the net present value (NPV) of battery replacements. 

Inverter investment/replacement cost has been also considered in this term as a constant. The 

NPV of system maintenance cost is modeled by 𝕊2, which indicates a pre-identified percentage 

of installation cost of PV-battery. 𝕊3 is the power trade cost between PV-battery system and grid.  

𝑂. 𝐹.≡ min  𝐴 ∙ 𝐶𝑝𝑣 + ∑ 𝐵 ∙ 𝐶𝑛
𝑏 ∙𝑛∈𝛯𝑁 𝑄𝑛

𝑏⏞                
𝕊1

+ 𝑦 ∙ 𝑄 
𝑝𝑣 ∙ (𝐴 ∙ 𝐶𝑝𝑣 + 𝐵 ∙ 𝐶𝑛=1

𝑏 )⏞                  
𝕊2

+

𝑄𝑝𝑣 ∙ ∑ ∑ (𝑃𝑑𝑡
𝑛 ∙ 𝜋𝑑𝑡)𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                  
𝕊3

  

(1a) 

Power flow constraints:  

𝐿̅𝑑𝑡 = 𝑃𝑑𝑡
ℎ + 𝑃𝑑𝑡

𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1b) 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑣 − 𝑃𝑑𝑡
𝑐ℎ ∙ 𝜂𝑏;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1c) 

𝑃𝑑𝑡
ℎ = 𝑃𝑑𝑡

𝑠 ∙ 𝜂𝑖𝑛𝑣 − 𝑃𝑑𝑡
𝑑𝑚𝑝;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1d) 

Operational constraints:  

𝑃𝑑𝑡
𝑣 = 𝐴 ∙ 𝑃̅𝑑𝑡

 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1e) 
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𝐸𝑑𝑡 = 𝐸𝑑(𝑡−1) + 𝑃𝑑𝑡
𝑐ℎ ∙ 𝜂𝑏 − 𝐸𝑙 ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1f) 

∑ 𝑃𝑑𝑡
𝑐ℎ

𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵 ∙ 𝑇; ∀d ∈ Ξ𝐷  (1g) 

𝐸𝑑(𝑡=0) = 𝐸𝑖𝑛𝑡 ∙ 𝐵; ∀d ∈ Ξ𝐷  (1h) 

Allowable limitations:  

𝑃𝑚𝑖𝑛
ℎ ≤ 𝑃𝑑𝑡

ℎ ≤ 𝑃𝑚𝑎𝑥
ℎ ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1i) 

𝑃𝑚𝑖𝑛
𝑛 ≤ 𝑃𝑑𝑡

𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1j) 

−𝑃𝑚𝑎𝑥
𝑛 ≤ 𝑃𝑑𝑡

𝑛 ≤ −𝑃𝑚𝑖𝑛
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1k) 

𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵 ≤ 𝑃𝑑𝑡

𝑐ℎ ≤ 𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇   (1l) 

−𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵 ≤ 𝑃𝑑𝑡

𝑐ℎ ≤ −𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (1m) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵 ≤ 𝐸𝑑𝑡 ≤ 𝐸 

′ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (1n) 

𝐴 ≤ 𝐴𝑚𝑎𝑥; (1o) 

𝐵 ≤ 𝐵𝑚𝑎𝑥; (1p) 

Note that, ∀𝑃𝑑𝑡
𝑛 , ∀𝑃𝑑𝑡

𝑐ℎ ∈ ℝ. Therefore, positive values of 𝑃𝑑𝑡
𝑛  represent electricity buying from 

the network, while the negative values illustrate electricity sold to the network. In a similar way, 

𝑃𝑑𝑡
𝑐ℎ represents both battery charging and discharging rates by positive and negative values, 

respectively. Constraints (1b)-(1c) give the power equality expressions on each junction of PV-
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battery system (see Fig. 2). In fact, (1b) shows the power flow between load, network, and 

inverter output at the AC side of the system (after inverter), while, (1c) illustrates the power flow 

between PV, battery, and inverter at the DC side of the system (before inverter). The power 

conversion through the inverter is presented by (1d).  

𝑃𝑑𝑡
𝑠  

𝑃𝑑𝑡
ℎ  

  𝑃𝑑𝑡
𝑐ℎ  

Inverter

Grid

𝑃𝑑𝑡
𝑛  𝐿𝑑𝑡

  

𝑃𝑑𝑡
𝑣  

Load

Battery

𝑃𝑑𝑡
𝑑𝑚𝑝

 

PV

Meter

PV generation

Load pattern
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Fig. 2: Residential PV-battery system configuration and its power flow 

Constraint (1e) presents the available PV generations for the total number of installed PV 

panels (i.e., 𝐴) with the capacity of 𝑃̅𝑑𝑡
 . The dynamic energy balance of battery is specified by 

(1f). The end-coupling constraint is given by (1g), making sure that the total charging energy is 

equal to the total discharging energy in battery, during the operation horizon. Therefore, the 

initial and final battery levels are equal, providing enough battery level for the next 24-h 

operation horizon. Constraint (1h) indicates the initial energy level of battery at the first time 

period of the next 24-hour operation, which is provided at the previous 24-hour operation of the 

system. Constraint (1i) limits the inverter capacity. The grid power trade and the battery charging 

rate are limited to their allowable ranges in constraints (1j)-(1m). Constraint (1n) limits the 

battery energy level with regard to the total number of installed batteries (i.e., 𝐵) with the 

capacity of 𝐸 
′. The number of PV panels and battery units are limited to their allowable ranges 
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through (1o)-(1p), respectively. Note that, the values of 𝐴𝑚𝑎𝑥 and 𝐵𝑚𝑎𝑥 are controlled by user 

and are dependent on the available space for PV and battery installation, respectively. In the 

proposed deterministic model, the uncertainties associated with PV generation and load are 

ignored as they are substituted by their forecasts i.e., 𝑃̅𝑑𝑡
  and 𝐿̅𝑑𝑡 in (1), respectively. Therefore, 

the obtained solutions of the proposed deterministic model would not be optimal if the uncertain 

parameters deviate from their forecasts. 

III. ADAPTIVE ROBUST PV-BATTERY SIZING/OPERATION 

A. Uncertainty Set Realization 

In this study, the uncertainties associated with PV generation and load are characterized 

through bounded intervals within polyhedral uncertainty sets as presented by (2). 

Ξ𝑈𝐿 = {𝐿̃𝑑𝑡 = 𝐿̅𝑑𝑡 + 𝐿𝑑𝑡
𝑑𝑒𝑣+; ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇}  (2a) 

Ξ𝑈𝑃 = {𝑃̃𝑑𝑡 = 𝑃̅𝑑𝑡 − 𝑃𝑑𝑡
𝑑𝑒𝑣−; ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇}  (2b) 

0 ≤ 𝐿𝑑𝑡
𝑑𝑒𝑣+ ≤ 𝐿̂𝑑𝑡

𝑑𝑒𝑣+;   ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇 (2c) 

0 ≤ 𝑃𝑑𝑡
𝑑𝑒𝑣− ≤ 𝑃̂𝑑𝑡

𝑑𝑒𝑣−;   ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇 (2d) 

∑ ∑ |
𝐿𝑑𝑡
𝑑𝑒𝑣+

 𝐿̂𝑑𝑡
𝑑𝑒𝑣+|𝑑∈Ω𝑑𝑡∈𝛯𝑇 ≤ Ψ𝑙  (2e) 

∑ ∑ |
𝑃𝑑𝑡
𝑑𝑒𝑣−

𝑃̂𝑑𝑡
𝑑𝑒𝑣−|𝑑∈Ω𝑑𝑡∈𝛯𝑇 ≤ Ψ𝑝  (2f) 
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Ψ𝑢 = Ψ𝑙 + Ψ𝑝 (2g) 

The uncertain parameters 𝐿̃𝑑𝑡 and 𝑃̃𝑑𝑡 in (2), can deviate from their forecast values 𝐿̅𝑑𝑡 and 𝑃̅𝑑𝑡 

in both positive and negative directions. However, the worst-case of load uncertainty happens in 

positive deviations and the worst-case of PV generation uncertainty happens in negative 

directions (reduction/increase in load/PV is a beneficial uncertainty, not a worst-case). Therefore, 

the negative deviations of load, and the positive deviations of PV generation are disregarded in 

the uncertainty set realizations (2a)-(2b). These deviations are limited to their user-defined 

allowable ranges through constraints (2c)-(2d). The parameters 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ and 𝑃̂𝑑𝑡

𝑑𝑒𝑣− are the 

maximum allowable values of bounded intervals, representing the deviation range of uncertain 

parameters. The number of uncertain parameters pertaining to PV generation and load are 

determined by uncertainty budgets Ψ𝑙, and Ψ𝑝 in (2e) and (2f), respectively, while Ψ𝑢 in (2g) 

represents the overall uncertainty budget. Since, robust optimization determines the solution 

based on the worst-case realization of uncertain parameters, it selects the maximum allowable 

value of deviation for each uncertain parameter.  In fact, in the optimization we have 𝐿𝑑𝑡
𝑑𝑒𝑣+ =

𝐿̂𝑑𝑡
𝑑𝑒𝑣+ and 𝑃𝑑𝑡

𝑑𝑒𝑣− = 𝑃̂𝑑𝑡
𝑑𝑒𝑣−. Therefore, in (2e) and (2f) we have 

𝐿𝑑𝑡
𝑑𝑒𝑣+

 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ = 1 and 

𝑃𝑑𝑡
𝑑𝑒𝑣−

𝑃̂𝑑𝑡
𝑑𝑒𝑣− = 1. The 

highest value for Ψ𝑢  is equal to the total number of uncertain parameters. In this circumstances, 

all uncertain parameters can deviate from their forecast values. Although, the value of Ψ𝑢  is 

determined by the user, in this paper we have developed a post-event analysis in Section V which 

provides user the optimum value of Ψ𝑢 , 𝐿̂𝑑𝑡
𝑑𝑒𝑣+, and 𝑃̂𝑑𝑡

𝑑𝑒𝑣−.  

B. Proposed Adaptive Robust Model 
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In robust optimization, two main decisions are made including "here-and-now" decisions, 

which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are 

obtained after the realization of uncertain parameters. In this study, the PV-battery sizing 

variables including the number of PV panels and battery units (i.e., 𝐴 and 𝐵, respectively) are 

considered as "here-and-now" decisions. This is because, the PV-battery system would be 

installed before any uncertainty realizations associated with load, and PV generation during 

system operation. However, uncertainties become of importance when operating PV-battery 

system (after installation). Therefore, these operation variables are considered as "wait-and-see" 

decisions and are obtained under uncertainty realizations. 

The compact form of the proposed adaptive robust model is expressed through a tri-level min-

max-min optimization problem as (3). 

min𝑿∈Ξ𝐼(𝑨′ ∙ 𝑿 + max𝑼̃∈Ξ𝑈𝑆 min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀) (3a) 

s.t.  

Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏, 𝟐, 𝟑, … }𝑁𝑋  |  𝑪𝑿 ≥ 𝑫} (3b) 

Ξ𝑈𝑆 = {𝑼̃ ∈ ℝ𝑁𝑈   |  𝑼̃ = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−} (3c) 

Ξ𝐼𝐼 = {𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼̃) ≥ 0} (3d) 

In (3a), the outer min problem minimizes the objective function over the sizing variables. 

Accordingly, the outer min problem would be subject to the associated sizing constraints, 

presented by (3b). The inner max problem maximizes the objective function 𝑭′, 𝒀 over the worst-
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case realization of uncertain parameters, while the inner min problem minimizes it over the 

operation variables.  

Master problem

min𝑿∈Ξ𝐼  ΛI  ≡  𝑨′ ∙ 𝑿 + 𝜆 

s.t. 

PV-battery sizing constraints: 

Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏, 𝟐, 𝟑, … }𝑁𝑋   |  𝑪𝑿 ≥ 𝑫} 

Primal cut constraints: 

𝜆 ≥ Ξ𝐼𝐼 =  𝒀 ∈ ℝ𝑁𝑌  |  𝑬(𝑿,𝒀, 𝑼̃) ≥ 0  
 

 

Sub-problem

max𝑼 ∈Ξ𝑈𝑆 min𝑌∈Ξ𝐼𝐼  ΛII  ≡  𝑭′, 𝒀 

s.t. 

PV-battery operational and power flow constraints: 

Ξ𝐼𝐼 = {𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼 ) ≥ 0} 

Uncertainty set constraints: 

Ξ𝑈𝑆 = {𝑼 ∈ ℝ𝑁𝑈   |  𝑼 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−} 

 

max𝑼̃∈Ξ𝑈𝑆 ,𝑌∈Ξ𝐼𝐼  ΛII  ≡  (𝑯 − 𝑮 ∙ 𝑼̃)
′
∙ 𝚫 

s.t. 

Dual constraints: 

𝑬′ ∙ 𝚫 ≤ 𝑨; 
Uncertainty set constraints:  

Ξ𝑈𝑆 = {𝑼 ∈ ℝ𝑁𝑈   |  𝑼 = 𝑼̅ + 𝑼𝒅𝒆𝒗+ − 𝑼𝒅𝒆𝒗−} 

 

|ΛII − ΛI| 
≤ 𝜀? 

No

Yes

The robust sizing-operation solutions are obtained

Duality 

theory

 

Fig. 3: Outline of the conducted methodology 

Accordingly, the inner max problem is subject to polyhedral uncertainty sets in (3c) while, the 

inner min problem is subject to the operation constraints as (3d). The tri-level optimization 
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problem in (3) cannot be solved by off-the-shelf optimization packages. Therefore, a 

decomposition methodology is employed to decompose the tri-level min-max-min problem into a 

single-level min problem and a bi-level max-min problem by means of column-and-constraint 

technique [21]. The single-level min problem is called "master problem" and the bi-level max-

min problem is called "sub-problem", hereafter. The decomposition methodology is shown by 

Fig. 3 and discussed through the following steps: 

Step 1) The master problem is solved to obtain PV-battery sizing decisions. The obtained 

results are then sent to the sub-problem as fixed values.  

 Step 2) Given the obtained sizing decision variables, sub-problem is solved to determine both 

operation decision variables and the worst-case realization of uncertain parameters. These results 

are sent to the master problem as primal cuts. 

Step 3) At the next iteration master problem is solved, given the obtained worst-case 

realization of uncertain parameters through primal cutting planes. In this step, the new sizing 

decision variables are obtained and sent to the sub-problem. 

The above methodology iterates between master problem and sub-problem until the 

convergence criteria is satisfied (i.e., the values of master problem and sub-problem become 

sufficiently close). 

IV. EXTENDED FORM OF MASTER AND SUB-PROBLEM 

A. Master Problem 
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Master problem is solved to determine "here-and-now" decision variables including PV-

battery sizing solutions, while being subject to sizing constraints only. Therefore, the objective 

function of the master problem includes the terms 𝕊1, and 𝕊2 of the deterministic objective 

function (1a) (as the only terms that are dependent on sizing variables, determining "here-and-

now" decisions) and is subject to constraints (1o)-(1p) (as the only dependent constraints on 

sizing variables). The operational constraints (i.e., (1b)-(1n)) are also added to the master 

problem through primal cutting planes provided by the sub-problem in each iteration of the 

decomposition methodology using column-and-constraint technique. The epigraph form of the 

master problem is presented as (4).  

min
𝐴,𝐵∈Ξ𝐼,𝑃𝑑𝑡𝑐

𝑛 ,𝑃𝑑𝑡𝑐
𝑑𝑚𝑝

,𝑃𝑑𝑡𝑐
ℎ ,𝑃𝑑𝑡𝑐

𝑠 ,𝑃𝑑𝑡𝑐
𝑣 ,𝑃𝑑𝑡𝑐

𝑐ℎ ,𝐸𝑑𝑡𝑐∈Ξ
𝐼𝐼
ΛI ≡ (𝐴 ∙ 𝐶𝑝𝑣 + ∑ 𝐵 ∙ 𝐶𝑛

𝑏 ∙𝑛∈𝛯𝑁 𝑄𝑛
𝑏)⏞                  

𝕊1

+

𝑦 ∙ 𝑄 
𝑝𝑣 ∙ (𝐴 ∙ 𝐶𝑝𝑣 + 𝐵 ∙ 𝐶𝑛=1

𝑏 )⏞                  
𝕊2

 + ¥  

(4a) 

s.t.  

𝐴 ≤ 𝐴𝑚𝑎𝑥; (4b) 

𝐵 ≤ 𝐵𝑚𝑎𝑥; (4c) 

¥ ≥ 𝑄𝑝𝑣 ∙ ∑ ∑ (𝑃𝑑𝑡𝑐
𝑛 ∙ 𝜋𝑑𝑡)𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;   ∀𝑐 ∈ Ξ𝐶  (4d) 

𝐿̃𝑑𝑡
𝑐 = 𝑃𝑑𝑡𝑐

ℎ + 𝑃𝑑𝑡𝑐
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (4e) 

𝑃𝑑𝑡𝑐
𝑠 = 𝑃𝑑𝑡𝑐

𝑣 + 𝑃𝑑𝑡𝑐
𝑐ℎ ∙ 𝜂𝑏;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶 (4f) 
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𝑃𝑑𝑡𝑐
ℎ = 𝑃𝑑𝑡𝑐

𝑠 ∙ 𝜂𝑖𝑛𝑣 − 𝑃𝑑𝑡
𝑑𝑚𝑝;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (4g) 

𝑃𝑑𝑡𝑐
𝑣 = 𝐴 ∙ 𝑃̃𝑑𝑡

𝑐 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (4h) 

𝐸𝑑𝑡𝑐 = 𝐸𝑑(𝑡−1)𝑐 + 𝑃𝑑𝑡𝑐
𝑐ℎ ∙ 𝜂𝑏 − 𝐸𝑙 ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (4i) 

∑ 𝑃𝑑𝑡𝑐
𝑐ℎ

𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵 ∙ 𝑇; ∀d ∈ Ξ𝐷;  ∀𝑐 ∈ Ξ𝐶  (4j) 

𝐸𝑑(𝑡=0) = 𝐸𝑖𝑛𝑡 ∙ 𝐵; ∀d ∈ Ξ𝐷;  ∀𝑐 ∈ Ξ𝐶  (4k) 

𝑃𝑚𝑖𝑛
ℎ ≤ 𝑃𝑑𝑡𝑐

ℎ ≤ 𝑃𝑚𝑎𝑥
ℎ ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶 (4l) 

𝑃𝑚𝑖𝑛
𝑛 ≤ 𝑃𝑑𝑡𝑐

𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶 (4m) 

−𝑃𝑚𝑎𝑥
𝑛 ≤ 𝑃𝑑𝑡𝑐

𝑛 ≤ −𝑃𝑚𝑖𝑛
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (4n) 

𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵 ≤ 𝑃𝑑𝑡𝑐

𝑐ℎ ≤ 𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇; ∀𝑐 ∈ Ξ𝐶  (4o) 

−𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵 ≤ 𝑃𝑑𝑡𝑐

𝑐ℎ ≤ −𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (4p) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵 ≤ 𝐸𝑑𝑡𝑐 ≤ 𝐸 

′ ∙ 𝐵; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇;  ∀𝑐 ∈ Ξ𝐶  (4q) 

In (4a), the NPV of investment/maintenance cost, i.e., 𝕊1 and 𝕊2 in (1a), is minimized over 

the optimal PV and battery sizing solutions as "here-and-now" decisions. The limitations of 

sizing variables, which were previously presented by (1o)-(1p), are given by (4b)-(4c). 

Constraints (4d)-(4q) represent the primal cuts submitted from the sub-problem. The subscript (c) 

and the superscript (c) in (4), indicate the associated "wait-and-see" variables and the fixed values 

of the uncertain parameters at iteration c of the column-and-constraint methodology, respectively. 
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Constraints (4e)-(4q) are the same as constraints (1b)-(1n) but, the forecast values of uncertain 

parameters (i.e., 𝐿̅𝑑𝑡 in (1b) and 𝑃̅𝑑𝑡 in (1e)) are replaced with the obtained worst-case realizations 

from the sub-problem at iteration c (i.e., 𝐿̃𝑑𝑡
𝑐  in (4e) and 𝑃̃𝑑𝑡

𝑐  in (4h)). In other words, at each 

iteration of column-and-constraint methodology, a set of primal cuts including the new obtained 

worst-case uncertainty realizations, are added to Master problem. The obtained PV and battery 

sizing variables in master problem (i.e., 𝐴 and 𝐵) are then sent to the sub-problem as fixed values 

to determine both "wait-and-see" decision variables and the new worst-case realization of 

uncertain parameters. 

B. Sub-problem 

The sub-problem is solved to determine the worst-case realization of uncertain parameters 

based on the given fixed values of sizing solutions obtained by the master problem. Since, the 

sizing variables in sub-problem are fixed on their obtained values in master problem, the terms 

𝕊1, and 𝕊2 of the deterministic objective function (1a) as well as the sizing constraints (1o)-(1p) 

are not included in the sub-problem. This is because, they have no impact on the sub-problem 

optimality as they are constant terms. Therefore, the sub-problem includes the term 𝕊3 of the 

deterministic objective function (1a), and the associated operation constraints (1b)-(1n) only. The 

sub-problem is given by (5). 

max
𝐿̃𝑑𝑡,𝑃̃𝑑𝑡,∈Ξ

𝑈𝑆
min

𝑃𝑑𝑡
𝑛 ,𝑃

𝑑𝑡
𝑑𝑚𝑝

,𝑃𝑑𝑡
𝑐 ,𝑃𝑑𝑡

𝑠 ,𝑃𝑑𝑡
𝑣 ,𝑃𝑑𝑡

𝑐ℎ,𝐸𝑑𝑡∈Ξ
𝐼𝐼
ΛII ≡ 𝑄𝑝𝑣 ∙ ∑ ∑ (𝑃𝑑𝑡

𝑛 ∙ 𝜋𝑑𝑡)𝑡∈𝛯𝑇𝑑∈𝛯𝐷
⏞                  

𝕊3

   (5a) 

s.t.  
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𝐿̃𝑑𝑡
 = 𝑃𝑑𝑡

ℎ + 𝑃𝑑𝑡
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝒾𝑑𝑡 ∈ ℝ (5b) 

𝑃𝑑𝑡
𝑠 = 𝑃𝑑𝑡

𝑣 + 𝑃𝑑𝑡
𝑐ℎ ∙ 𝜂𝑏;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝒿𝑑𝑡 ∈ ℝ (5c) 

𝑃𝑑𝑡
ℎ = 𝑃𝑑𝑡

𝑠 ∙ 𝜂𝑖𝑛𝑣 − 𝑃𝑑𝑡
𝑑𝑚𝑝;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝒽𝑑𝑡 ∈ ℝ (5d) 

𝑃𝑑𝑡
𝑣 = 𝐴𝑐 ∙ 𝑃̃𝑑𝑡

 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝒷𝑑𝑡 ∈ ℝ (5e) 

𝐸𝑑𝑡 = 𝐸𝑑(𝑡−1) + 𝑃𝑑𝑡
𝑐ℎ ∙ 𝜂𝑏 − 𝐸𝑙 ∙ 𝐵𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇: 𝒻𝑑𝑡

 ∈ ℝ  (5f) 

∑ 𝑃𝑑𝑡
𝑐ℎ

𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝐵𝑐 ∙ 𝑇;  ∀𝑑 ∈ Ξ𝐷 ∶ 𝓃𝑑
 ∈ ℝ  (5g) 

𝐸𝑑(𝑡=0) = 𝐸𝑖𝑛𝑡 ∙ 𝐵𝑐;  ∀d ∈ Ξ𝐷: ℊ𝑑𝑡
 ∈ ℝ  (5h) 

𝑃𝑚𝑖𝑛
ℎ ≤ 𝑃𝑑𝑡

ℎ ≤ 𝑃𝑚𝑎𝑥
ℎ ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝓀𝑑𝑡

𝑙𝑜 ≥ 0 ∶ 𝓀𝑑𝑡
𝑢𝑝 ≥ 0  (5i) 

𝑃𝑚𝑖𝑛
𝑛 ≤ 𝑃𝑑𝑡

𝑛 ≤ 𝑃𝑚𝑎𝑥
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ ℒ𝑑𝑡

𝑙𝑜 ≥ 0 ∶ ℒ𝑑𝑡
𝑢𝑝 ≥ 0  (5j) 

−𝑃𝑚𝑎𝑥
𝑛 ≤ 𝑃𝑑𝑡

𝑛 ≤ −𝑃𝑚𝑖𝑛
𝑛 ;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝓅𝑑𝑡

𝑢𝑝 ≥ 0  

∶ 𝓅𝑑𝑡
𝑙𝑜 ≥ 0 

(5k) 

𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵𝑐 ≤ 𝑃𝑑𝑡

𝑐ℎ ≤ 𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝓂𝑑𝑡

𝑙𝑜 ≥ 0 ∶ 𝓂𝑑𝑡
𝑢𝑝 ≥ 0  (5l) 

−𝑃𝑚𝑎𝑥
𝑐ℎ ∙ 𝐵𝑐 ≤ 𝑃𝑑𝑡

𝑐ℎ ≤ −𝑃𝑚𝑖𝑛
𝑐ℎ ∙ 𝐵𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 ∶ 𝓆𝑑𝑡

𝑢𝑝 ≥ 0 ∶ 𝓆𝑑𝑡
𝑙𝑜 ≥ 0  (5m) 

𝐸𝑚𝑖𝑛
′ ∙ 𝐵𝑐 ≤ 𝐸𝑑𝑡 ≤ 𝐸 

′ ∙ 𝐵𝑐;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇: ℓ𝑑𝑡
𝑙𝑜 ≥ 0 ∶ ℓ𝑑𝑡

𝑢𝑝
≥ 0  (5n) 
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(2a)-(2g) (5o) 

In (5a) the optimal grid integration of PV-battery system is determined through the objective 

function (5a) which includes the term 𝕊3 of the objective function (1a). The constraints (5b)-(5n) 

are similar to those of the deterministic model (1) but different in two ways including: 

1) The sizing decision variables (i.e., 𝐴 in (1e) and 𝐵 in (1f)-(1h) and (1l)-(1n)) are fixed on 

the obtained "here-and-now" solutions by master problem at iteration c of the column-and-

constraint methodology (i.e., 𝐴𝑐 in (5e) and 𝐵𝑐 in (5f)-(5h) and (5l)-(5n)).  

2) The forecast values (i.e., 𝐿̅𝑑𝑡 in (1b) and 𝑃̅𝑑𝑡 in (1e)) are replaced by the uncertain values 

(i.e., 𝐿̃𝑑𝑡
  in (4e) and 𝑃̃𝑑𝑡

  in (4h)) to be obtained in place of the worst-case realizations. The new 

introduced variables in (5) (i.e., Ξ𝑅 = {𝒾𝑑𝑡, 𝒽𝑑𝑡 , 𝒿𝑑𝑡, 𝒷𝑑𝑡, 𝒻𝑑𝑡
 , 𝓃𝑑𝑡

 , ℊ𝑑𝑡
 , 𝓀𝑑𝑡

𝑙𝑜 , 𝓀𝑑𝑡
𝑢𝑝

, ℒ𝑑𝑡
𝑙𝑜 , ℒ𝑑𝑡

𝑢𝑝
, 𝓅𝑑𝑡

𝑢𝑝
, 

𝓅𝑑𝑡
𝑙𝑜 , 𝓂𝑑𝑡

𝑙𝑜 , 𝓂𝑑𝑡
𝑢𝑝

, 𝓆𝑑𝑡
𝑢𝑝

, 𝓆𝑑𝑡
𝑙𝑜 , ℓ𝑑𝑡

𝑙𝑜 , ℓ𝑑𝑡
𝑢𝑝}), are the dual variables pertaining to constraints (5b)-(5n) 

which would be further used to develop the dual problem. Constraint (5o) also refers to the 

uncertainty sets presented by (2). Since, the proposed model in (5) is a bi-level max-min problem, 

it cannot be solved by off-the-shelf optimization packages. Therefore, duality theory is applied to 

recast the max-min problem into a single max problem. Accordingly, the sub-problem can be 

written as (6) which presents the dual form of (5). 

max
𝐿̃𝑗𝑡,𝐶̃𝑖𝑡∈Ξ

𝑈𝑆,𝒾𝑑𝑡,…,ℓ𝑑𝑡
𝑢𝑝

∈Ξ𝑅
 ΛII ≡ ∑ ∑ 𝒾𝑑𝑡 ∙ 𝐿̃𝑑𝑡

 
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞            
T1

+ ∑ ∑ 𝒷𝑑𝑡 ∙ 𝑃̃𝑑𝑡
 

𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ∙ 𝐴𝑐⏞                
T2

+

∑ ∑ 𝒻𝑑𝑡
 ∙ 𝐸𝑙 ∙ 𝐵𝑐

𝑡∈𝛯𝑇𝑑∈𝛯𝐷
⏞                

T3

+ ∑ 𝓃𝑑
 ∙ 𝐸𝑙 ∙ 𝐵𝑐 ∙ 𝑇𝑑∈𝛯𝐷

⏞              
T4

+ ∑ ∑ ℊ𝑑𝑡
 ∙ 𝐸𝑖𝑛𝑡 ∙ 𝐵𝑐

𝑡∈𝛯𝑇𝑑∈𝛯𝐷
⏞                

T5

−

(6a) 
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∑ ∑ 𝓀𝑑𝑡
𝑙𝑜 ∙ 𝑃𝑚𝑖𝑛

ℎ
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T6

+ ∑ ∑ 𝓀𝑑𝑡
𝑢𝑝 ∙ 𝑃𝑚𝑎𝑥

ℎ
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T7

− ∑ ∑ ℒ𝑑𝑡
𝑙𝑜 ∙ 𝑃𝑚𝑖𝑛

𝑛
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T8

+

∑ ∑ ℒ𝑑𝑡
𝑢𝑝 ∙ 𝑃𝑚𝑎𝑥

𝑛
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T9

+ ∑ ∑ 𝓅𝑑𝑡
𝑢𝑝 ∙ 𝑃𝑚𝑎𝑥

𝑛
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T10

− ∑ ∑ 𝓅𝑑𝑡
𝑙𝑜 ∙ 𝑃𝑚𝑖𝑛

𝑛
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞              
T11

−

∑ ∑ 𝓂𝑑𝑡
𝑙𝑜 ∙ 𝑃𝑚𝑖𝑛

𝑐ℎ ∙ 𝐵𝑐
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                  
T12

+ ∑ ∑ 𝓂𝑑𝑡
𝑢𝑝 ∙ 𝑃𝑚𝑎𝑥

𝑐ℎ ∙ 𝐵𝑐
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                  
T13

−

∑ ∑ 𝓆𝑑𝑡
𝑢𝑝 ∙ 𝑃𝑚𝑎𝑥

𝑐ℎ ∙ 𝐵𝑐
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                  
T14

+ ∑ ∑ 𝓆𝑑𝑡
𝑙𝑜 ∙ 𝑃𝑚𝑖𝑛

𝑐ℎ ∙ 𝐵𝑐
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                
T15

−

∑ ∑ ℓ𝑑𝑡
𝑙𝑜 ∙ 𝐸𝑚𝑖𝑛

′ ∙ 𝐵𝑐
𝑡∈𝛯𝑇𝑑∈𝛯𝐷

⏞                
T16

+ ∑ ∑ ℓ𝑑𝑡
𝑢𝑝

∙ 𝐵𝑐 ∙ 𝐸 
′

𝑡∈𝛯𝑇𝑑∈𝛯𝐷
⏞                

T17

  

s.t.  

𝒾𝑑𝑡 + ℒ𝑑𝑡
𝑙𝑜 + ℒ𝑑𝑡

𝑢𝑝
+ 𝓅𝑑𝑡

𝑢𝑝
+ 𝓅𝑑𝑡

𝑙𝑜 ≤ 𝑄𝑝𝑣 ∙ 𝜋𝑑𝑡;  ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (6b) 

𝒾𝑑𝑡 − 𝒽𝑑𝑡 + 𝓀𝑑𝑡
𝑙𝑜 + 𝓀𝑑𝑡

𝑢𝑝 ≤ 0; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (6c) 

𝜂𝑖𝑛𝑣 ∙ 𝒽𝑑𝑡 − 𝒿𝑑𝑡 ≤ 0; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (6d) 

𝒿𝑑𝑡 + 𝒷𝑑𝑡 ≤ 0; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (6e) 

𝜂𝑏 ∙ 𝒿𝑑𝑡 + 𝜂𝑏 ∙ 𝒻𝑑𝑡
 + 𝓃𝑑

 + 𝓂𝑑𝑡
𝑙𝑜 + 𝓂𝑑𝑡

𝑢𝑝 + 𝓆𝑑𝑡
𝑢𝑝 + 𝓆𝑑𝑡

𝑙𝑜 ≤ 0; ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (6f) 

𝒻𝑑(𝑡−1)
 − 𝒻𝑑𝑡

 + ℊ𝑑(𝑡=0)
 + ℓ𝑑𝑡

𝑙𝑜 + ℓ𝑑𝑡
𝑢𝑝 ≤ 0; ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇  (6g) 

(2a)-(2g) (6h) 

Since, in duality theory the objective function of the dual problem is formed with constraints 

of the main problem (5), (6a) represents the objective function of the dual problem pertaining to 
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dual variables introduced among constraints (5b)-(5n). The associated dual constraints, pertaining 

to primal variables in (5), are presented by (6b)-(6g). These constraints are obtained based on 

duality theory. The constant value at the right-hand side of each dual constraint pertains to the 

coefficient of each variable in the objective function of the principal problem (5). Constraint (6h) 

represents the polyhedral uncertainty sets and the uncertainty budget for PV generation and load. 

As seen from the dual problem, the products of 𝒾𝑑𝑡 ∙ 𝐿̃𝑑𝑡
  in T1, and 𝒷𝑑𝑡 ∙ 𝑃̃𝑑𝑡

  in T2 make the 

sub-problem bilinear. Since, (6a) maximizes the objective function over the uncertain parameters, 

the solution of the sub-problem is on the extreme points of the polyhedral uncertainty sets. 

Therefore, axillary binary variables along with Big-M transformation technique are employed to 

1) search the corners of polyhedrons, and 2) linearize the sub-problem by replacing the products 

of 𝒾𝑑𝑡 ∙ 𝐿̃𝑑𝑡
 , and 𝒷𝑑𝑡 ∙ 𝑃̃𝑑𝑡

  by linear terms as follows: 

𝐿̃𝑑𝑡 = 𝐿̅𝑑𝑡 + 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ ∙ W𝑑𝑡

+ ;  ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇 (7a) 

𝑃̃𝑑𝑡
 = 𝑃̅𝑑𝑡 − 𝑃̂𝑑𝑡

𝑑𝑒𝑣− ∙ W𝑑𝑡
− ;  ∀𝑑 ∈ Ξ𝐷; ∀𝑡 ∈ Ξ𝑇 (7b) 

where,  

∑ ∑ (W𝑑𝑡
+ + W𝑑𝑡

− )𝑑∈Ω𝑑𝑡∈𝛯𝑇 ≤ Ψ𝑢  (7c) 

∀W𝑑𝑡
+ , ∀W𝑑𝑡

− ∈ {0,1}  (7d) 

In fact, (7a) and (7b) represent (2a) and (2b), respectively, considering 𝐿𝑑𝑡
𝑑𝑒𝑣+ = 𝐿̂𝑑𝑡

𝑑𝑒𝑣+ and 

𝑃𝑑𝑡
𝑑𝑒𝑣− = 𝑃̂𝑑𝑡

𝑑𝑒𝑣−. Therefore, the uncertainty budget Ψ𝑢 would be determined by (7c). 

Accordingly, the terms T1, and T2 can be represented as (8) in which 𝐿̃𝑑𝑡
  and 𝑃̃𝑑𝑡

  are replaced 
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with 𝐿̅𝑑𝑡 + 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ ∙ W𝑑𝑡

+  and 𝑃̅𝑑𝑡 − 𝑃̂𝑑𝑡
𝑑𝑒𝑣− ∙ W𝑑𝑡

− , respectively.  

T1 = ∑ ∑ (𝐿̅𝑑𝑡 ∙ 𝒾𝑑𝑡 + 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ ∙ W𝑑𝑡

+ ∙ 𝒾𝑑𝑡)𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;  (8a) 

T2 = ∑ ∑ (𝑃̅𝑑𝑡 ∙ 𝒷𝑑𝑡 ∙ 𝐴
𝑐 − 𝑃̂𝑑𝑡

𝑑𝑒𝑣− ∙ W𝑑𝑡
− ∙ 𝒷𝑑𝑡 ∙ 𝐴

𝑐)𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;  (8b) 

As seen in (8), the right-hand side of T1 and T2 includes the products of W𝑑𝑡
+ ∙ 𝒾𝑑𝑡, and W𝑑𝑡

− ∙

𝒷𝑑𝑡, respectively. According to Big-M transformation technique, these nonlinearities are recast 

into linear terms as follows: 

T1 = ∑ ∑ (𝐿̅𝑑𝑡 ∙ 𝒾𝑑𝑡 + 𝐿̂𝑑𝑡
𝑑𝑒𝑣+ ∙ 𝑑𝑡

+ )𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;  (9a) 

T2 = ∑ ∑ (𝑃̅𝑑𝑡 ∙ 𝒷𝑑𝑡 ∙ 𝐴
𝑐 − 𝑃̂𝑑𝑡

𝑑𝑒𝑣− ∙ 𝑑𝑡
− ∙ 𝐴𝑐)𝑡∈𝛯𝑇𝑑∈𝛯𝐷 ;  (9b) 

where, 

−𝕄1 ∙ W𝑑𝑡
+ ≤ 𝑑𝑡

+ ≤ 𝕄1 ∙ W𝑑𝑡
+ ;    ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9c) 

𝒾𝑑𝑡 − 𝕄1 ∙ (1 − W𝑑𝑡
+ ) ≤ 𝑑𝑡

+ ≤ 𝒾𝑑𝑡 + 𝕄1 ∙ (1 − W𝑑𝑡
+ );   ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9d) 

−𝕄2 ∙ W𝑑𝑡
− ≤ 𝑑𝑡

− ≤ 𝕄2 ∙ W𝑑𝑡
− ;    ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9e) 

𝒷𝑑𝑡 − 𝕄2 ∙ (1 − W𝑑𝑡
− ) ≤ 𝑑𝑡

− ≤ 𝒷𝑑𝑡 + 𝕄2 ∙ (1 − W𝑑𝑡
− );    ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇  (9f) 

𝕄1 ≥ |𝒾𝑑𝑡|,𝕄2 ≥ |𝒷𝑑𝑡|;   ∀𝑑 ∈ Ξ𝐷;  ∀𝑡 ∈ Ξ𝑇 (9g) 

According to (9), the terms T1, and T2 in (9a)-(9b), function as the same as (8). Therefore, the 

sub-problem can be finally written as follows: 
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max
𝐿̃𝑗𝑡,𝐶̃𝑖𝑡∈Ξ

𝑈𝑆,𝒾𝑑𝑡,…,ℓ𝑑𝑡
𝑢𝑝

∈Ξ𝑅
 ΛII ≡ T1 + T2 + ⋯+ T17  (10a) 

s.t.   

(7a)-(7d), (8), and (9); (10b) 

The sub-problem (10) is solved to obtain the worst-case realization of uncertain PV generation 

and load while minimizing the objective function over PV-battery operational variables as "wait-

and-see" decisions. The obtained solutions are sent to the master problem as primal cuts in which 

the uncertain parameters are fixed on their worst-case realization. 

C. Algorithm 

The proposed iterative approach is presented as Table I. 

TABLE I. The proposed algorithm to solve the decomposition methodology 

1) Initialization: 

i) Set the iteration counter 𝑐 to 1. 

ii) Set the forecasted parameters 𝐿̅𝑑𝑡, and 𝑃̅𝑑𝑡
  as the worst-case realization of uncertain 

parameters in master problem. 

iii) Set the value of sub-problem (i.e., ΛII) to +∞. 

2) Solution of master problem 

Solve the master problem (4) to obtain the value of master problem (i.e., ΛI) and the sizing 

variables 𝐴 and 𝐵. 

3) Solution of sub-problem 

Solve the sub-problem (10) for the given sizing variables obtained by master problem (i.e., 

𝐴𝑐, and 𝐵𝑐) to obtain the worst-case realization of uncertain parameters (i.e., 𝐿̃𝑑𝑡, and 𝑃̃𝑑𝑡
 ) as 
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well as the value of sub-problem ΛII. 

4) Parameters update 

i) Update the iteration counter 𝑐 → 𝑐 + 1. 

ii) Update the worst-case realization of uncertain parameters to 𝐿̃𝑑𝑡
𝑐 , and 𝑃̃𝑑𝑡

𝑐 , obtained by 

the sub-problem at previous iteration. 

5) Solution of master problem with primal cuts 

Solve the master problem (4) to obtain sizing variables 𝐴 and 𝐵 as well as the value of 

master problem ΛI for the given worst-case realization of uncertain parameters through primal 

cutting planes. 

6) Convergence check  

If the convergence criteria is satisfied (i.e., (ΛII − ΛI) ΛII⁄ ≤ 𝜀), the algorithm is terminated; 

otherwise, go to step 3. 

 

V. RESULTS AND DISCUSSION  

A. Data Set 

Studies of this paper are conducted over a 24-year planning horizon as PV lifetime. The 

inverter/battery lifetime is 8 years. Since, the battery lifetime is in relation with the way of its 

operation, 8-year lifetime is considered based on 20% of total battery capacity as allowable 

charging/discharging rate in each hour [22]. The annual forecasted load data has been obtained 

from [23] and scaled for a household, illustrated by Fig. 4A. The annual forecasted PV generation 

for a PV panel with 100-Watt capacity (on North facing 30° tilted PV array solar insolation in 

Port Augusta,  South Australia) is given by Fig. 4B [24]. The cost of battery is $700/kWh and the 

cost of PV is $1500/kW [22]. These costs are based on Australian Dollar. The electricity price for 
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both buying and selling electricity is based on time-of-use (TOU) tariff with 27.90 and 42.90 

¢/kWh for off-peak (hours 21-07) and peak (hours 08-20), respectively [25]. 48 uncertain 

parameters, considering both PV generation and load, are counted in each 24-h daily operation of 

PV-battery system (some of these parameters are zero due to no PV generation during nights). In 

Table II, four cases with different uncertainty budgets (i.e., Ψ𝑢 ) and deviation ranges are 

considered. These cases become more conservative against uncertainties by increasing the values 

of Ψ𝑢 and deviation range of uncertain parameters. Since, no uncertainty has been realized in 

Case No. 1 (see Table II), it represents a deterministic model with no uncertainty realization. The 

simulations have been conducted on a laptop computer with 8 GB RAM and a core-i5 processor 

using CPLEX [26]. 

B. Numerical Results 

Table III shows the obtained objective function values, sizing solutions of PV and battery, 

investment/maintenance/operation costs, cost of electricity (CoE), number of primal cuts, and the 

computational burden for each case. Based on the obtained results, it can be pointed out that: 

1) The value of objective function increases as the robustness level (uncertainty budget Ψ𝑢 

and deviation range) increases, reflecting higher values of household load and lower values of PV 

generation. 

2) The capacity of PV-battery system does not follow a decreasing/increasing pattern as the 

robustness level increases. This is because, the optimality of objective function depends on both 

investment cost and the operation cost of PV-battery system. Therefore, in some cases (i.e., Case 

No. 3), it is more beneficial to reduce the PV-battery system capacity as the robustness level 
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increases. 

3) As the uncertainty budget and deviation range of uncertain parameters change, the feasible 

solution region of both master problem and sub-problem change accordingly. Therefore, the 

results of each case are obtained after different numbers of primal cuts and computation times. 

4) In cases No. 1 and 2, the energy trade cost has a negative value which is due to the greater 

PV-battery system capacities in these cases, resulting in higher benefits of exported electricity. In 

contrary, as the capacity of PV-battery system reduces in cases No. 3 and 4, the operation cost 

increases accordingly. 

The required cash flow for each case is presented by Fig. 5. As it is seen, the value of 

investment/maintenance/replacement cost depends on the capacity of PV-battery system which 

reaches its maximum value in Case No. 2 where the maximum PV-battery capacity is allocated.  

 

 

Fig. 4: Load and PV generation data 
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Fig. 5: System cash flow during the planning horizon for Case No. 1-4 

   

Fig. 6: Annual energy flow and annual payments/payoffs 
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TABLE II. Under study cases 

Cases No. 1 No. 2 No. 3 No. 4 

Ψ𝑢 0 16 32 48 

Deviation 0% 5% 10% 15% 

 

TABLE III. Obtained PV-battery sizing/operation results for each case 

Cases No. 1 No. 2 No. 3 No. 4 

Value of objective function 15028 16702 20107 21498 

PV capacity [kW] 4.9 5.5 4.6 5.5 

Battery Capacity [kWh] 6 8 4 5 

Investment cost [$] 11550 13850 9700 11750 

Annual maintenance cost [$] 577.5 692.5 485.0 587.5 

Annual energy trade cost [$] -179.7 -331.7 548.1 394.3 

CoE [$/kWh] 0.143 0.156 0.175 0.178 

Number of primal cuts 2 4 4 3 

Computation time (s) 164 373 296 252 

 

In Case No. 3, however, the value of these costs become lower than the other cases. This is 

because of the lower PV/battery capacity in this case (see Table III).  

Fig. 6A gives the annual imported/exported electricity as well as the annual PV generation and 

load for each case. It is seen that these values are dependent on system capacity. This is because, 

the higher/lower capacities of PV-battery system provide more/less ability in terms of exporting 

electricity to the grid. The annual load has been also increased from Case No. 1 to 4 as the 
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robustness level has increased in these cases. However, the PV generation is not following such a 

trend as it is correspondingly dependent on the obtained PV sizing solutions as described in Table 

III.  

The obtained payments/payoffs are given by Fig. 6B for each case. As it is seen, in higher 

capacities of PV and battery i.e., cases No. 1 and 2, the annual payment is negative which is  due 

to the higher benefits of exported electricity. Although, the value of exported electricity is lower 

than the imported electricity in these cases (see Fig. 6A), the electricity is mainly 

imported/exported in low/high price hours which is due to the storage ability in providing 

arbitrage between these hours. In cases No. 3 and 4, however, payments are positive. This means 

the benefits of exported electricity are lower than the payments which is due to the lower system 

capacity in these cases. 

The optimal operational solutions, including grid interactions (import/export from/to the grid), 

PV generation, household load, and battery level have been illustrated by Fig. 7. These results are 

specified for two working sample days including 180th day, as a cloudy day sample, and 290th 

day, as a sunny day sample. Note that, these variables are obtained as wait-and-see decision 

variables which are determined considering the worst-case realization of uncertain parameters. 

As it is seen in Fig. 7, most of the consumed electricity by load is imported from the grid in day 

180 (in all cases), which is due to the lower values of PV generation in this cloudy day. In 

contrary, the produced electricity by PV has a higher value in day 290 and is mostly exported to 

the grid or stored by battery during daylight hours (in all cases). Since, peak load periods are after 

the daylight hours, the battery contributes in optimal system operation by providing arbitrage 

between these time periods. These results have been obtained considering the worst-case 
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realization of PV generation and load. 

To highlight the optimality of the obtained robust solutions in cases No. 2-4, the deterministic 

PV-battery sizing solution of Case No. 1 (a deterministic case with no uncertainty 

characterization) has been examined with the uncertainties in cases No. 2-4. In this examination, 

the sizing variables are fixed on the obtained deterministic sizing solutions in Case No. 1 (𝐴 = 

4.9 kW and 𝐵 = 6 kWh). According to the obtained results in Fig. 8A, the value of annual 

imported/exported electricity has increased/decreased due to the PV generation and load 

uncertainties in cases No. 2-4. This is because, the employed deterministic sizing decisions in 

case No. 1 are obtained with no uncertainty consideration. 

Although, the load and the capacity of PV are fixed in cases 2-4, the load/PV generation 

increases/reduces from Case No. 2 to Case No. 4. This is due to the uncertainty realization in 

these cases which becomes more robust (see Table II). Fig. 8B shows the increase of the 

objective function value in cases No. 2-4. CoE has also increased in each case compared to the 

obtained values in Table III. Therefore, the obtained operational results of cases No. 2-4 are not 

optimal when applying the deterministic sizing solutions of Case No. 1. 

C. Post-event Analysis 

According to the obtained results, the higher values of robustness level lead to more 

immunized PV-battery sizing/operation solutions which is considered as "robustness worth".  
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Fig. 7: Optimal system operation for days 180 and 290 

  

Fig. 8: Operational results of cases No. 2-4 using the capacity of case No. 1 
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Fig. 9: Post-event analysis results for different robustness levels 

However, it causes higher costs in both sizing and operational aspects, as shown in Table III in 

which the value of objective function increases as the robustness level rises. This imposed cost is 

considered as "robustness cost". To provide an optimal balance between the robustness worth and 

robustness cost, and to evaluate the long-run effectiveness of the proposed ARO model, a post-

event analysis has been conducted in this study. The aim of this analysis is to determine the 

optimal robust settings to avoid over/under design solutions. In this analysis, the sizing and 

operation solutions are fixed on the obtained values from solving the proposed ARO model for 

different robustness levels. These solutions are examined against 36500 uncertainty realizations 

of PV generation and load. A new variable models the required unserved/surplus power to 

stabilize the system when facing uncertainties in lower/higher robustness levels. The 

unserved/surplus power, pertaining to each robustness level, is then aggregated and scaled over 

the total number of uncertainty realizations. The robustness level leading to the lowest value of 

unserved/surplus power is selected as the optimum settings of the ARO model. The obtained 

results of the conducted post-event analysis are given by Fig. 9. As it is seen, the lowest value of 
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unserved/surplus power is 3.16 kW which occurs when 30 number of uncertain parameters 

deviate as 10% of their forecast values. Therefore, allocating these values as robustness level, 

results in the most effective and reliable sizing/operation solution. Moreover, in lower/higher 

values of robustness level the model is under/over conservative against the uncertainties, which 

results in higher values of unserved/surplus power accordingly (i.e., bottom left and top right of 

Fig. 9). 

D. Sensitivity Analysis 

In this section, a sensitivity analysis has been conducted to determine the annual cost-of-

electricity for different values of PV and battery prices. In this analysis, the price of PV varies 

from 1000 $/kW to 1700 $/kW (for a fixed battery price i.e., 700$/kWh), while, the battery price 

varies from 300 $/kWh to 1100 $/kWh (for a fixed PV price i.e., 1500$/kW). The current price of 

PV and battery has been pointed out in Fig. 10.  

Note that, the price of PV and battery are expected to decrease in future which has been also 

pointed out at Fig. 10. Based on the results, given by Fig. 10, CoE is highly sensitive to PV and 

battery price as expected. It has an increasing pattern as battery price increases in Fig. 10A. 

However, after 900 $/kWh as battery price, no battery is allocated as it is more beneficial to not 

to have a battery with that price. The value of CoE is also increasing as the PV price increases in 

Fig. 10B. Moreover, the battery capacity changes with PV price deviations. Therefore, in lower 

capacities of PV, it is not beneficial to have a high battery capacity. In a similar way, PV capacity 

depends on battery price changes as seen in Fig. 10A. This shows the cross effects between PV 

and battery prices and the allocated capacities for each element which is due to the operational 
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dependencies between these elements. 

E. Comparison with Previous Uncertainty Modelling Methods: 

In the following, the proposed model of this paper is qualitatively compared to stochastic 

models and single-stage robust models in the literature to highlight the advantages of the 

employed two-stage robust model in this study: 

F. Comparison with Stochastic Programming Models: 

Stochastic models and scenario-based models such as Monte Carlo simulation, use scenario 

generation techniques to simulate different possible deviations of uncertain parameters. 

Although, scenario-based approaches are more efficient than deterministic models, in which no 

uncertainty is considered, they are subject to a great number of scenarios to be considered in 

calculations, which may not be applicable in practice. Moreover, if an uncertain parameter 

deviates from the considered scenarios, the solution of the model would not be feasible. To 

remedy, the number of considered scenarios can be increased to have a more realistic 

presentation of the uncertainties. However, this may also result in a higher computation time and 

non-tractability in some cases, especially when several uncertain parameters need to be 

considered. 

On the contrary, the two-stage robust technique in this paper models the uncertainties through 

bounded intervals by means of polyhedral uncertainty sets instead of scenarios. In fact, it 

considers the extreme points of uncertainty sets as the worst-case realization of uncertainties. 

This approach provides user a more moderate computational burden which is due to the fact that, 
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it once calculates the solution based on the extreme points, instead of calculating numerous 

scenarios. Therefore, the robust solutions are feasible as long as the uncertainties are within the 

bounded intervals.  
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Fig. 10: Sensitivity analysis results 

Moreover, the need of full distributional knowledge of uncertain parameters is eliminated as 

no scenario generation is required.  

G. Comparison with single-stage robust optimization models: 

In planning models, some variables are not dependent on uncertainties. For example, the 

sizing solutions in planning models are independent of uncertainties while the operational 

variables are strongly dependent on uncertainties. This is due to the fact, the planning decisions 

are made prior to uncertainties (known as "here-and-now" variables), while, the system 

operational decisions are made at the presence of uncertainties (known as "wait-and-see" 

variables).  
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A single-stage robust model cannot model both "here-and-now" and "wait-and-see" variables 

as it is formulated as a max-min mathematical framework. More specifically, the outer max 

problem maximizes the objective function over the uncertain parameters, while, the inner min 

problem minimizes it over the decision variables (with no uncertainty related consideration of 

variables). Therefore, as long as all the variables are considered in the inner min problem as 

"here-and-now" decisions, no "wait-and-see" decision can be made prior to uncertainties in 

single-stage robust models.  

In two-stage min-max-min robust models, such as the presented model in this study, there is 

an additional outer min problem which characterizes "here-and-now" decisions by determining 

the optimal value of uncertainty non-dependent variables (planning variables in this study). 

Therefore, as a qualitative comparison, it is noted that the proposed two-stage min-max-min 

robust solution approach is capable to characterize both "here-and-now" and "wait-and-see" 

decision variables, while, a single-stage max-min robust model can only characterize "wait-and-

see" decision variables. To conclude, it is quite clear that the proposed sizing and operation co-

optimization model in this paper cannot be solved through a single-stage max-min robust model 

as it involves "here-and-now" decisions including sizing variables. 

VI. CONCLUSION 

This paper proposed an adaptive robust approach to optimal sizing and operation of residential 

PV-battery systems under uncertain PV generation and load. The objective was to determine the 

optimal and robust capacity of a residential PV-battery system while maximizing its payoffs by 

operating PV-battery system in a least-cost manner. The column-and-constraint technique was 
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employed to solve the proposed model through a decomposition methodology, recasting the tri-

level min-max-min problem into a single-level master problem and a bi-level sub-problem. 

Duality theory and Big-M transformation technique were applied to solve the sub-problem. 

Optimal sizing/operation solutions were obtained for four cases with different uncertainty budget 

and deviation range of uncertain parameters. According to numerical results, both the sizing and 

the operation solutions of PV-battery system became more conservative as the robustness level 

increased. Since, non-accurate values of robustness level may lead to non-optimal solutions, a 

post-event analysis was developed against different realizations of uncertain parameters to avoid 

over/under conservative solutions. The optimal robustness level was found as 30 for uncertainty 

budget with 10% deviation of uncertain parameters. These robust settings, therefore, lead to the 

lowest value of additional costs if the uncertainties arise, resulting in higher benefits for PV-

battery owner. The ARO model in this study assists renewable energy owners/merchants to 

appropriately design their PV-battery systems considering the volatile nature of PV generation 

and  their load. 
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