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Abstract

Restructuring of power systems, along with the integration of renewable energy resources in
electricity networks, have transformed traditional power electricity distribution systems (EDSs)
into new active distribution systems (ADSs). In addition, the rapid advancement of technology
has enabled the bulk utilization of renewable generation units and battery energy storage (BES)
systems in EDSs. The next step in this trend is the employment of electric vehicles (EV) and the
coordinated integration of these vehicles into EDS which is investigated in this thesis.

Following contributions are presented in this thesis to achieve the objectives in section 1.2:

Contribution 1: A novel directly solvable set of power flow equations

A new directly solvable power flow problem has been proposed for EDS, introducing a
connectivity matrix in line with a new indexing of load flow equations. The new power flow
model is developed generally and is capable to be added to any EDS study as the constraints of
the model. This means, the power flow calculation does not need to be conducted separately.
Therefore, the need of load flow calculation methodologies, such as Newton—Raphson method
(NR) and forward backward sweep-based method (FBS), as well as optimization approaches,
such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), is eliminated as the
proposed model characterizes both load flow and energy management constraints in a single and
unified model. This provides users the opportunity of solving the problem with commercial
optimization packages, i.e., CPLEX, GAMS, etc., in a single shot with no need to develop further
optimization approaches involving iterative procedures and load flow calculations. Note that, the

employed modified load flow equations in line with the connectivity matrix can be used in any
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other EDS study, concerning load flow calculation, as the constraints of the model.

Contribution 2: A general multi-objective energy management model for inverter-based
integration of RES, and BES system

The proposed directly solvable power flow problem is used to build up a multi-objective
energy management model for RES-BES-equipped distribution systems. The first objective of the
model minimizes total EDS power losses, and the second objective minimizes the voltage
deviations of each bus over time. These objective functions are optimized being subject to load
flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The
proposed energy management model enables both active and reactive power controllability of
RES and BES systems. New continuous variables are defined for RES and BES representing
active and reactive power share of these systems during the operation. Accordingly, BES can
absorb active or reactive power in each time slot and inject it back to the network as active or
reactive power in another time slot.

Contribution 3: Integration of EV loading into the energy management model and
investigating the effects of EV charging on EDS voltage and power loss

Electric vehicle activity is modelled by probability distribution functions. The EV’s dynamic
energy balance is modelled based on EV connections and the model is merged into the energy
management model.

Contribution 4: The new robust optimization model to characterize uncertainties of RESs
employing block coordinate decent method

An adaptive robust optimization (ARO) approach is implemented to deal with the
uncertainties of load in operating EDS through the proposed energy management model.

Uncertain parameters are characterized by bounded intervals in polyhedral uncertainty sets. The
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ARO model is a tri-level min-max-min problem which is not directly solvable. Therefore, a
decomposition methodology is employed to recast the min-max-min ARO problem into two
problems including a master problem and a sub-problem. A column-and-constraints (C&C)
generation methodology is used to iteratively solve the decomposed problem through primal
cutting planes. Two main decisions are made in ARO, namely "here-and-now" decisions, which
are obtained before any uncertainty realizations, and "wait-and-see” decisions, which are
obtained after the realization of uncertain parameters. Several binary variables such as BES
charging/discharging status must be obtained after uncertainty realizations in the sub-problem to
be able to compensate the effects of uncertain load/price as recourse decisions. However, this is
not possible by conventional dual-based robust models as considering these binary variables
results in a mixed-integer sub-problem and the dual of a mixed-integer model is generally weak,
non-tractable and complicated. Therefore, instead of using duality theory in solving the sub-
problem, Block Coordinate Descent (BCD) method is used in the proposed model.

In terms of solution methodology, BCD method is used in the robust approach to iteratively
solve the inner bi-level max-min sub-problem by means of Taylor series instead of transforming
it into a single-level max problem by duality theory in conventional ARO models. BCD
technique was originally devised to deal with single-level problems. By extending the application
of the BCD technique to solve the two-level max-min sub-problem (resulted from the C&C
generation technique), it is possible to avoid duality theory in solving the sub-problem.

Therefore, the associated limitation in considering binary variables in the sub-problem is
eliminated. In fact, mixed-integer models (even non-linear models) can be solved in the sub-
problem through the proposed BCD robust model. As a result, uncertainty-dependent binary

variables such as BES charging/discharging statuses can be obtained after uncertainty realization
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in the sub-problem as recourse decisions, resulting in more system flexibility in compensating the
uncertainty effects of load. Moreover, the linearization of the dualized inner problem is avoided
as the Lagrange multipliers are eliminated in this methodology. Thus, the case-sensitivity of the
proposed model reduces as it does not reflect dual variables.

The structure of the thesis is given below:

After presenting an introduction to the objectives and scope of the research in the first chapter,
the second chapter aims to present a review of recent advancements in both operation and
planning of electric vehicle charging stations (EVCSs) in EDSs. In this respect, the conducted
review provides supportive insights on the state-of-the-art operation and planning of electric
vehicle charging stations in EDSs by introducing the recent trends, methodologies, and novelties
in this field of study. The literature has been presented considering both qualitative and
quantitative aspects. Since, the focus of this thesis is on the operation of EVCSs, after presenting
the literature on operation and planning aspects of these systems, a more detailed operation-based
review is conducted on the employment of CSs in electricity distribution system to highlight their
associated effects on EDSs.

In the third chapter, a new directly solvable and non-iterative load flow model is proposed to
assist with EDS operation at the presence of EV loading, renewable energy sources (RESs) and
BES. In particular, a connectivity matrix is introduced to characterize the configuration of EDS
and provide a feasible general representation of load flow equations. This enables the proposed
modified load flow equations to be mergeable in any type of EDS study as constraints. This way,
the power flow model in Chapter 3 is employed and accordingly merged into the proposed
energy management model which is presented and discussed in Chapter 4. In chapter 3, first he

IEEE 33-bus electricity distribution system is employed to evaluate the effectiveness of the
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proposed general power flow model. Results are also compared to other power flow solutions
such as forward backward Swipe-based method.

The energy management model in Chapter 4 first integrates the employment of inverter-based
RES and BES in the operation of power electricity distribution system. the energy management
model is evaluated through the same system incorporating BES and RES to illustrate the
effectiveness of the proposed energy management model in Chapter 4.

Then, EV loading patterns is added to the model in Chapter 5 to investigate the effects of EV
charging patterns on the operation of active EDSs at the presence of RES and BES systems. To
do so, the EV load, formed by EV charging patterns, is modelled by probability density
functions.

The uncertainty of RES in distribution system is modelled through robust optimization (RO)
in Chapter 6. The uncertainties are modelled by polyhedral uncertainty sets. Moreover, the
conventional dual-based RO model is replaced with a new proposed RO model which employs
block coordinate decent (BCD) technique instead of duality in solving the RO model. As a result,
the obtained solutions are more realistic and robust as binary wait-and-see variables can be
obtained as recourse decisions after uncertainty realizations which was not applicable in previous
dual-based RO models. Moreover, linearization of the dualized inner problem is also avoided as
Lagrange multipliers are eliminated. The effects of EV charging patterns, however, is
investigated on a relatively smaller, but real-world, system which is the distribution system of a
suburb in Adelaide, Australia. The results for operation of EVs are given in this chapter and
different comparisons are conducted. Note that, the BCD robust model is also conducted on the
last case study to characterize the uncertainties of RES generation in the model.

Finally, Chapter 7 presents a summary of the conducted research in this thesis along with
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future research plans.
Further studies and application conducted by the proposed robust and BCD robust
optimization models in this thesis are presented in Chapter 8 for interested readers. In chapter 8,

two studies are presented. These studies are among the published studies.

Keywords:

Adaptive robust, block coordinate decent method, Connectivity matrix, directly solvable load
flow, electricity distribution system, non-linear programing, plug-in electric vehicles, Power loss
minimization, robust optimization, storage system, uncertainty, voltage stability, voltage

deviation.
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1.Introduction

Problem Description

Environmental concerns such as global warming and fossil fuel limitations have been of
considerable importance for energy provision sector in 21st century [1]. The transport sector
plays one of the main roles in air pollution resulting in road transport electrification, whereby
employing electric vehicles (EVs) seems to be a reasonable alternative, compared to combustion
vehicles [2]. To supply the upcoming wave of electricity requirements by EVs, further energy
alternatives such as renewable energy sources (RESs) should be integrated into electricity
distribution system (EDS). In today's energy sector RESs, such as solar photovoltaic (PV) and
wind turbine (WT), as well as battery energy systems (BESs) have been remarkably highlighted
in practice. A simple schematic representation of a modern EDS with these elements is given as

Fig. 1-1 [3]. CS refers to charging station.
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Fig. 1-1. A sample schematic representation of a sustainable EDS
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The employment of RESs increments the quality and flexibility of EDS in supplying EVs on
one hand, and facilitates meeting the global requirement of air pollution improvement and carbon
emission reduction, on the other hand [4]. However, RES generation along with the customers'
emerging proactive role has introduced several challenges such as energy imbalance, flickers,
reverse power flow, and voltage rise in EDSs [5]. EVs with vehicle-to-grid (V2G) functions can
be regarded as ideal assets to level the generation and consumption of electricity throughout the
EDS by coordinately integrating into the system [6]. However, EV integration into the EDS must
be implemented based on reasonable operational decisions considering system's constraints such
as line congestion, voltage deviations, etc.

Although, a proper operation-based energy management model can successfully provide a
promising operational status for distribution system operators, the volatile nature of RESs still
poses a noticeable effect on the optimal operation of distribution systems in practice. In fact,
ignoring the forecast uncertainties associated with RES and EDS's load can result in non-optimal
or even infeasible energy management solutions, while, considering these uncertainties along
with the arbitrage abilities of V2G technology through EV charging can significantly improve the

distribution system efficiency and its energy management [7].

Research Questions

Research questions are added as the required tools to solve the problem.

1) A new EDS energy management model is required to model the interactions between
RESs, BESs, and EDS in the network as a whole while considering the inverter-based
operation of these systems, as in the modern EDS operation, inverters can play a

noticeable role in providing reactive power support to the network.
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2) A new robust optimization model is required to first cope with the associated problems
with scenario-based models, and also be applicable when characterizing binary decision
variables after uncertainty realizations which is not applicable through conventional dual-

based RO models.

Research objectives and scope

This research investigates the optimal energy management of electricity distribution systems
at the presence of EVs, by which the overall system power loss, energy cost, and renewable
energy curtailments are minimized.

In particular, the aims are:

1. Providing an efficient energy management for electricity distribution system by coordinated
integration of RES and BES systems at the presence of EVs. Using the arbitrage ability of BES
charging/discharging as well as reactive power controllability of RESs, the system operator (SO)
would be able to maintain the distribution system operational constraints such as voltage and
frequency tolerance. In fact, the analysis of this thesis is finally conducted to investigate the
effects of EV employment of EDS voltage and power loss.

2. Maximizing/Minimizing the integration/curtailment of renewable energy sources (RESS) in
electricity distribution system. This would be based on voltage deviations due to the sudden
increase in volatile RES generation. The arbitrage ability of BES technology is also used for this
purpose.

3. The overall system costs is minimized considering the upstream market energy prices, the
arbitrage anility of BES technology, and the energy management model which handles the

integration of renewables into electricity distribution system at the presence of EV charging
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pattern.

4. Providing immunized solutions against the uncertainties associated with RES generation
through a novel robust optimization approach. Unlike previous uncertainty characterizations
models, the novel robust model in this research is capable to provide more practical results for

system operation.

Dataset

The IEEE 33 bus system is considered as the test systems in the case studies which have been
used in numerous studies. Moreover, a realistic 6 bus system in Adelaide, Australia, is used as the

final case study under uncertainty. More detailed data set is presented in the body of this thesis.

Thesis organization

The organization of this thesis is as follows:

In Chapter 2, the background of the study is presented. The novel directly solvable EDS power
flow model is given in Chapter 3. Chapter 4 is dedicated to the general multi-objective energy
management model. The EV load model in EDS energy management model is presented in
Chapter 5. The BCD robust model is introduced and discussed in Chapter 6. The thesis is
concluded in Chapter 7. Chapter 8 represents further conducted studies at the time of this thesis

that relate to the novel BCD robust model.
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2.Literature  Review, Knowledge  Gap,
Motivations, and Contributions

This chapter presents the literature review divided into three parts including:

1) Literature review on EDS energy management as a whole at the presence of RESs, BESs,
and EVs.

2) Literature review on uncertainty modelling approaches in electricity distribution system, in
which probabilistic, stochastic, and robust models are reviewed and the advantages and
disadvantages of each are counted.

3) Literature review on EVCS integration into electricity distribution system, in which we
review the important undertaken steps in characterizing EVCS to enhance the existing EDS
energy management solutions.

Finally, the knowledge gap, forming the main motivations behind this study, are presented.

The contribution of this chapter is presented in the following accepted published research
article which was not online at the time of submitting this thesis:

M. Aghamohamadi, A. Mahmoudi, John K. Ward, M. H. Haque, ""Review on the State-of-the-art

Operation and Planning of Electric Vehicle Charging Stations in Electricity Distribution Systems,"
2021 IEEE Energy Conversion Congress and Exposition (ECCE), Toronto, Canada, 2021.

The student has investigated the reviewed studies. Analysis and interpretation of the reviewed
papers has been done by him and the co-authors. A draft of the paper was prepared by the
student. Revisions and comments were provided by the co-authors so as to contribute to the
interpretation.

The literature review is as follows:
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2.1. EDS Management at the Presence of EVs, BESs, and RESs

The optimal operation of distribution system at the presence of EVCSs was presented by [8] to
enhance the reliability of the distribution system. However, EDS constraints such as
voltage/current tolerance weren’t considered in the study of [8]. Authors in [9] present a model to
mitigate a huge number of EVSs' charging patterns in which the EDS constraints are ignored,
similar to [8]. This is a disadvantage as the main idea behind coordinated EV charging in EDS is
to charge EVs when the system is not under pressure (off-peak hours) and use V2G technology
when the system needs support (peak hours) [10]. In [11] a smart charging strategy was proposed
for optimal integration of electric vehicles into electricity distribution system through V2G
technology. The study of [11] showed that, the small energy trade between a single EV through
V2G would not be considerable compared to the EDS energy trade scale. Therefore, the EVs
support for distribution system is effective if an EV aggregator or an EVCS operator acts on
behalf of EVs. A two layered charging strategy for a parking lot equipped with EV charging
points was proposed in [12] considering realistic vehicular mobility and parking patterns.
However, the effects of EV charging patterns on EDS were ignored. This becomes vital when
EDS is under peak load or configuration-based stress according to which, the reliability
constraints of the system may be jeopardized. Authors in [13] investigated the effects of different
EV penetration levels on EDS reliability and operational constraints such as voltage deviation
limitations and power losses. However, the study of [13] ignored the reactive power throughout
the distribution system. In fact, most of the studies presented in the literature have investigated
the effects of EV charging patterns on EDS through real power exchange only. In [14], a
charging pricing methodology was proposed for EV charging to enhance the voltage profile in

EDS, characterizing the EVCS's income and EV owners' response to price signals. However, the
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study of [14] ignores the reactive power in its model. This issue also exists in the study of [15]
where the real power demand of EVs is controlled through a balanced charging strategy by which
both EV owners and system operator can achieve maximum benefits. A two layer energy
management model was proposed in [16] to prevent overloading in EDS transformers by
controlling EVs real power during charging. It deserves mentioning that, the studies [8, 11-13],
similar to studies [14-16], only managed the real power of EVs in their models. However, EVs
can also be used to inject/absorb reactive power to/from the grid with the help of their on-board
bidirectional battery chargers [17]. Moreover, the inverters in EVCSs can also be employed in
providing reactive power and voltage stability for the upstream network.

The correlation between wind energy generation and EV integration was considered through
EDS reconfiguration to reduce power losses in [18]. Although RES has been considered in the
study of [18], it diIEDS't characterize neither V2G nor BES in the energy management model. A
summary of the above literature review, on EV, BES, and RES integration into EDS energy
management, is presented by Table 2-1. Accordingly, a comprehensive energy management model
is required to model all these elements at the same time while acknowledging the active/reactive

power trade in the system, which forms the first motivation of this thesis.

A\



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

Table 2-1. Approaches in EV integration into EDS energy management

Reference No. | EDS constraints | RES integration | BES integration | V2G technology
[6] v v x v
[8] X v X X
[9] X X X v

[11] v x x v
[12] % X X v
[13] v X X v
[14] v X X %
[15] v X % X
[16] v X X v
[17] v X X %
[19] v v % X
[20] v X X %
[18] v v X X

2.2. EDS uncertainty modeling

Partial study has focused on characterizing RES forecast uncertainties in distribution systems,

so far. In [21], an energy management model was proposed for EDS to reduce prediction error for

photovoltaic generation using feature mapping-based kernel function. The study of [21], in fact,

did not optimize the energy management model based on uncertainties, as it aims to only reduce

errors of RES generation, while these errors may change in practice. In other words, it provided

more accuracy in terms of input RES generation prediction and the energy management model

was solved as a deterministic problem (no uncertainty characterization was conducted). In [22]

and [23], the uncertainties associated with renewable energy sources were modelled by

probability density functions formed by Monte Carlo simulation. Such density function for solar
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radiation is given by Fig. 2-1 [23].
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Fig. 2-1. Solar irradiance histogram and its estimated pdf [23]

The scenario-based models of [22, 23] are subject to non-tractability which is due to the high
required number of scenarios, especially, when several uncertain parameters are considered and a
proper level of feasibility against different realizations of uncertain parameters is required. To
obtain more tractable solutions, Stochastic Optimization (SP) was employed in [24] to
characterize the uncertainties of renewable energy sources in distribution system. SP was also
employed in [25] in a multi-objective economical/environmental operation of distribution system
to model the uncertainties of wind generation over time. Similar SP models were also proposed in
[26-29]. Despite the advantages of the aforementioned SP models of [24-29], they face the lack
of tractability which is due to the required full distributional knowledge of uncertain parameters,
which may not be easily available [7]. For example, in [29], the required scenarios for load,
electricity price, wind power, and PV power are given in Fig. 2-2 parts A, B, C, and D,
respectively, illustrating the huge required input data for scenario-based and stochastic models.

Moreover, if the uncertain parameters deviate from the considered scenarios, the performance of
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SP cannot be guaranteed against the uncertainties. This issue is also true for probabilistic models

in [22, 23].
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Fig. 2-2. The uncertainty scenarios employed by [29]

To cope with the aforementioned problems in probabilistic and stochastic models, robust
optimization (RO) has been recently employed in the energy management of distribution system
to characterize the uncertainties of load and renewables. RO considers the worst-case realization
of uncertainties instead of modeling them through various scenarios in SP, resulting in a tractable
problem with a moderate computational burden. A comparison between scenario-based model
and RO is provided in Fig. 2-3 which shows the difference in SP and RO in terms of
characterizing the uncertainties of electrical energy [29]. Fig. 2-3A represents both the forecast
value and the actual realization in real world. To model the forecast uncertainties scenarios are
generated as forecast values which is presented by Fig. 2-3B. However, in RO models,

polyhedral bounded intervals are used instead of scenarios i.e., Fig. 2-3C.
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Fig. 2-3. Comparison between SP and RO models [29]

In [30], a robust optimal power flow (OPF) was proposed, characterizing the uncertainty of

RESs in the distribution system. In [31] a data-adaptive robust optimization is proposed for

economic dispatch of active distribution systems to characterize the uncertainties of RES.

However, no BES was considered in the model of [30, 31], while the arbitrage ability of BES can

significantly improve the renewables integration into distribution system. The data-adaptive

model in [31] is conducted to reduce the conservativeness of RO which is due to the

consideration of worst-case realization of uncertain parameters. However, it is subject to an

extensive mathematical burden, which is due to the consideration of different uncertainty

scenarios in solving the problem, while this can be achieved by examining the robust solutions

(after solving the RO model) against trial scenarios. The forecast uncertainties associated with

RES were modeled through RO in [32, 33] in which the tri-level min-max-min problem was
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solved through the column-and-constraint generation (C&CG) methodology presented by [34],
while, duality theory and linearization techniques (such as big-M technique) were used to recast
the inner bi-level max-min problem into a single-level max problem. Despite the advantages of
[30, 32, 33], they are subject to an extensive mathematical/computational burden which is due to
the employment of decomposition methodology, duality theory, and big-M transformation
technique when solving the RO problem. Moreover, the use of duality theory limits the
application area of RO in terms of characterizing mixed-integer models in the second-stage
problem (the inner max-min problem). This is due to the fact that, dual of a mixed-integer model
is generally week, non-tractable and complicated [35]. This issue becomes more important when
binary variables such as BES charging/discharging status need to be obtained after uncertainty
realizations in the second-stage problem. Due to this limitation, the BES charging/discharging
status, which is controlled by binary variables in [32, 33], was modelled in the first-stage problem
with no uncertainty characterization, while, BES can optimally contribute to reduce the impact of
uncertain production on the system by absorbing/injecting power in cases of surplus/deficit of
renewable generation. Therefore, BES charging/discharging status should be adjusted in the
second-stage problem in the face of uncertainties rather than the first-stage problem, which is

solved prior to uncertainties. This conclusion forms the second motivation of this study.

A comparison between the reviewed studies [22] - [33] is given by Table 2-2.

A



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

Table 2-2. Comparison between uncertainty approaches

Uncertainty modeling approach Considered uncertainty source

Reference No. Probabilistic Stochastic Robust | load RES Price
[22] v v v X
[23] v 4 v X
[24] v v v X
[25] v v v X
[26] v v v X
[27] v v v X
[28] v v v x
[29] v v v v
[30] v x v X
[31] v x v x
[32] v v v X
[33] v x v X

2.3. EVCS Operation and Planning in EDS

Considering the environmental concerns associated with internal combustion engine (ICE)
vehicles in recent years, a significant increase has been observed in transportation electrification.
One of the trending approaches in this field is the EV employment which is a green alternative
for ICE vehicles and can result in reducing CO2 emissions, air pollutions, greenhouse gases, etc.
Although, EVs are environment friendly, these assets can pose noticeable effects on the planning
and operation of EDS. This is because each EV can be considered as three apartment units in
terms of electricity consumption, which is a serious issue for EDS given the considerable number

of EVs in today's transportation system. In particular, the new escalating electricity demand by
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EVs may result in serious EDS technical problems such as supply imbalance, unwanted
harmonics, energy shortage, and voltage/frequency deviations. Despite the operational
disadvantages associated with non-coordinated charging of EVs, these vehicles can become
useful assets to EDS as many recent EVs are equipped with VV2G technology which enables the
energy trade from EVs to EDS [36]. This provides further operational flexibility and support for
EDS if EVs are coordinately integrated. In this context, EV charging stations (EVCS) play a
crucial role as they are responsible for the coordinated integration of a considerable number of
EVs in EDS operation at a time [37]. EVCSs can level the load curve through peak shaving or
valley filling and, accordingly, enhance the stability and performance of the EDS. EVCSs can
also provide support for EDS when concerned by coordinating intermittent renewable energies,
such as wind farm (WF) and Photovoltaic (PV) systems [38]. Considering the crucial role of
EVCSs in EDS, however, inappropriate siting and sizing of EV charging stations could have
negative effects on EDS [39]. This is important as EVCSs are not the only elements in EDS as
many variables forming RESs, large-scale battery energy storages (BESs) are included in the
conducted operation/planning models [40]. Although, there have been partial review studies on
EV integration into EDS [41], no study has focused on the planning and operation of EV
charging stations in EDS, while, these systems are about to be broadly installed in electricity
distribution system in the coming years. Therefore, there is an urgent need for a proper summary
on the operation and planning of EVCSs and their associated impacts on EDS to better reflect the
pros and cons associated with these assets. The current section reviews the state-of-the-art
operation and planning of electric vehicle charging stations as well as their associated impacts on
electricity distribution system. The recent studies are introduced considering both qualitative and

guantitative aspects. Study areas in operation/planning of EVCSs are introduced in Section 2.
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Studies focusing on the operation of EVCSs in EDS include five subsections concerning energy
management, market participation, EDS support, renewable energy system (RES) integration,
and demand response (DR) programs. Studies focusing on the planning of EVCSs include EVCS
planning considering EDS operational constraints, EDS reinforcements, traffic and transportation
constraints, coupled traffic-electric network constraints, and RES reinforcements in EDS. In
Section 3, pros and cons of the reviewed studies are introduced. A quantitative study is also
conducted in Section 4 on the current literature. Finally, highlights, observations, and possible
future studies are presented in Conclusion Section.

Electric vehicle charging stations are considered as hot load points in EDS, if working in a
high percentage of their capacity [42]. Therefore, operation of EVCSs and their interaction with
upstream EDS can become challenging, considering the dramatic increase in EV employment in
the last and the coming years. Uncontrolled and unregulated charging of EVs can also result in an
unexpected peak load at a specific time, which may exceed the capacity of the distribution grid
[43]. Generally, there are two main solutions to meet the required electricity consumption by
EVCSs and avoid operational issues such as loss of load, voltage/frequency imbalance in EDS.
The first solution is the optimal operation of EVCS's and their interaction with EDS and other
elements such as RESs and BESs systems in order to meet the required electricity by EVs while
using the capacity of EDS [44]. The second solution is the EDS enforcement which requires an
optimal planning to increase the capacity of EDS with different alternatives [45].

Optimal Operation of EVCSs in Distribution System

In the recent years, there has been a considerable focus on optimal operation and integration of
EVCSs and each study has investigated these solutions through different perspectives. In the

current review, five main important aspects of EVCS operation are presented and discussed as
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follows:

Energy management: The rapid increasing demand of EVs has significantly reformed the net

electricity consumption pattern in EDS among different sectors, i.e., residential, commercial,
industrial, etc. This accordingly changes the power flow profiles and voltage/frequency status in
EDS. Some studies have focused on the energy management of EVCSs equipped with RES
and/or BES systems to maximize their benefits through optimal interactions with upstream EDS.
To more realistically reflect the EVCS electricity demand, [46] presented a mathematical model
for EV charging patterns in a rapid EVCS. The study also provided a forecast on EV arrival rates
and the EVCS's demand. Despite their extra demand, EVCSs can provide remarkable
opportunities for improving EDS energy management and grid support if coordinately operated
[47]. In [48] a fuzzy-based control methodology was proposed for coordinated integration of EVs
in a EVCS through V2G, while, dynamic load profile was employed to evaluate the effectiveness
of the model in peak shaving and valley filling. Authors of [48] extended their work in [49], for
real-time support of distribution system considering possible energy dispatch approaches at
substation level. In [50] a systematic co-modeling and simulation framework was proposed to
investigate the impacts of PEV charging facilities on the electric distribution system and
transportation system. Six more references will be added in the full version of the paper.

RES integration: Several studies have investigated the effectiveness of EVCSs in

maximizing RES integration in EDS. In [51] a rule-based energy management strategy was
proposed for Photovoltaic-assisted EVCSs to participate in upstream network ancillary services.
An adaptive EVCS charging energy management model was introduced in [52] for optimal
operation and reconfiguration of EDSs with high penetration of PVs. Integration of PV system

was also considered in the proposed model of [36] to assist with EV charging patterns regarding
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energy prices, V2G interactions, and reserve market dynamics. In recent years, many EVCSs
have become equipped with PV systems to assist with EV charging patterns. In [43] an energy
management for a solar-powered EVCS was introduced to optimally support the EDS network.
Three more references will be added in the full version of the paper.

EDS support: Considering the availability of V2G technology in EVs, EVCSs can play the
role of an interface between a group of EVs and EDS to provide support for upstream network.
This support can result in voltage/frequency stabilization, power loss minimization, reliability
improvement, etc. [53]. A considerable number of studies have been investigating the possible
EDS supporting opportunities by optimal operation of EVCSs, considering V2G availability. In
[54] an operation managing strategy was proposed to reduce the cost of EV charging while
providing technical support for upstream distribution system through V2G aggregators. The study
of [43] proposes an efficient energy management approach for residential PV systems to power
EVs while employing the V2G technology to mitigate the PV penetration impacts and allow the
growth of PV systems in power grids.

Market participation: Several studies have focused on the market participation concepts,

such as bidding strategy, relying on the arbitrage ability of EVCS (due to V2G technology). In
fact, EVCSs can be considered as prosumers with the ability of absorbing/injecting power
from/to the upstream EDS in different time periods to maximize their daily benefit and meet the
EV charging patterns at the same time [44]. In [55] the optimal model of an EV route has been
proposed based on upstream market pricing, in particular time-of-use (TOU) pricing, to
minimize the total distribution costs of the EV route while satisfying operating constraints. A
learnable Parthenon-genetic algorithm with integration of expert knowledge about EV charging

station and customer selection was developed to solve the model in [55]. An online pricing
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scheme for EV charging was proposed in [56] with the application in EVSCs. According to the
model. A myopic charging station was considered in the model of [56] illustrating that there
exists a pricing mechanism which jointly maximizes the social welfare and the profit of the
charging station when the charging station knows the utilities of the users. A price incentive-
based charging navigation strategy has been proposed for optimal charging/discharging
management of EVs in EVCSs in [57]. The study considered the price variations and the spatial-
temporal influence of EVs' charging decision, especially the simultaneous charging requests.
Four more studies will be introduced in the final version of the paper.

Demand response: EV load distribution is skewed toward the stations located in the hotspot

areas, instigating longer queues and waiting times, particularly during afternoon peak traffic
hours. This can result in major challenges such as the increase of peak load and
voltage/frequency instability. These cross effects have motivated researchers to conduct a series
of studies to exploit the potential of EVCSs in demand response, especially in peak periods. In
[58] a new dynamic pricing has been proposed to reduce the overlaps between residential loads
and EVCSs load through EV load shifting in peak periods. The study results in dynamic prices to
motivate EV owners to select EVCSs with lower prices which levels the distribution system's
load. The ability of EVCSs in active participation in demand response provision has been shown
in [59]. In the conducted study, an EV queuing model is employed to form the EV parameters
associated with charging patterns. The model is then used for smart load control of EVCS to
maximize the DR participation. The study of [59] shows a significant potential of EVCSs in DR
provision by comparing the results with uncontrolled EV charging. DR participation of EV
owners towards time-of-use tariff was considered in the optimal planning of EVCSs in [60]. The

proposed model involved distribution system manager (DSM) benefit maximization derived from
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the appropriate use of EVCS for charging and discharging vehicle batteries, reliability
improvement and supplying network's load demand at peak times. Two more studies will be
added to this section in the final version.

Optimal Planning of EVCSs in Distribution System

Regarding the considerable operational effects of EVCSs on EDS, it is important to investigate
the expansion planning of these systems [38]. A considerable number of studies have been
focusing on optimal sitting and sizing EVCSs in EDS. According to the conducted review, these
studies have investigated the planning problem of EVCSs considering the following concerns:

EDS reinforcement: The considerable increase in electric vehicles' employment counts as a

load growth for EDS which results in EDS reinforcement. This has motivated several researchers
to come up with solutions for joint planning of EDS and EVCSs. In [61] a robust mixed-integer
model was proposed for multistage joint expansion planning of EDS and EVCSs, regarding the
uncertainties of EDS and EV loads. The construction of substations, EVCSs, lines, and
distributed generations (DGs) were determined through each stage of the planning horizon.
Authors of [62] also proposed a joint planning of EVCSs and EDS with the objective of
minimizing the investment and operation costs while capturing maximum traffic flow in the
selected residential area. Similar studies associated with joint planning of EDS and EVCSs are
also given by [63, 64].

RES, BES and DG reinforcement: Prominent features of RESs and DGs has been proven as

an appropriate alternative for compensating relevant problems of EVCS installation. In [65]
simultaneous optimal planning of EVCSs and DGs was presented to address the
financial/technical/environmental challenges associated with EV charging patterns. The model

was solved for the IEEE 33-bus system through a genetic algorithm, illustrating the effects of
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EVCS installation in the presence/absence of DGs on total costs, reliability, loss, voltage profile,
and emission. In the study of [66], authors have considered the time-varying nature of DG
generation and load consumption (instead of the static values in previous literature) in optimal
planning of EVCSs, DGs, and BESs in distribution system. A similar study was conducted in
[67] for joint planning of RES, BES, and EVCSs. However, in the model of [67] the necessary
charging demand of EVs was modeled based on travel patterns which makes it more realistic than
other EV load modeling models. Moreover, scenario generation was employed to simulate the
uncertainties associated with RES. To achieve more practical solutions, stochastic programing
was employed in [68] to model uncertainties associated with EV charging patterns in the joint
planning of EVCSs, RES, and BES.

EDS operation constraints: Considering the dynamic nature of EDS and its sensitivity to

load deviation in different load points, it is essential to reasonably locate and install the EVCSs
throughout the EDS. Several studies in literature have focused on this problem in which EDS
operational constraints such as voltage/frequency deviation as well as EDS reliability constraints
are taken into consideration. In [69] an optimal planning model has been proposed for EVCSs
considering the constraints of EDS. The study considers the voltage profile improvement as the
benchmark, while, a combination of particle swarm optimization algorithm and genetic algorithm
was used to solve the planning model. Power loss minimization is another important aspect to be
considered in EDS operation and planning of EVCSs. In [38] EVCS planning was conducted
considering both voltage profile improvement and power loss minimization as operating
constraints, while the objective function was to minimize the total cost associated with EV
charging stations to be planned. Two more references will be added to this section in the final

version of the paper.
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Transportation and traffic constraints: A practical perspective in the planning of EVCSs in

distribution system is the consideration of traffic constraints. This is due to the fact that, EV
changings are strongly dependent on EV travel patterns and the distribution of population in the
area. A EVCS planning model capturing traffic and EV location parameters was proposed in [70]
to maximize the EVCS service. The study was conducted on the IEEE 33-bus EDS joint with a
25-node traffic network system. In [71] the traffic demand and battery data as well as the
distribution of EVs were modelled by Monte Carlo simulation. The data was then used for
optimal siting and sizing stand-alone EVCSs on highway networks.

Coupled traffic-EDS constraints: EVCSs couple future transportation systems and power

systems. That is, EV driving and charging behavior will influence the two networks
simultaneously. To achieve more realistic and practical EVCS planning solutions, the cross-
effects between EDS and traffic network was considered in [72] and [73]. In [74] the EVCS's
benefits was maximized through optimal sitting and sizing of the system considering changes in
time, location and capacity. The model integrated electricity distribution system constraint, the
user constraint and the traffic flow captured constraint. In addition to operational aspects of EDS
and traffic network, the expansion of these system was considered in the optimal planning of
EVCSs in [75]. In fact, the study of [75] conducted a simultaneous planning model including
sites and sizes of new EVCSs, charging spots, traffic network lanes, and EDS lines. A similar
study was also presented by [76] employing parking lots as an innovative solutions to achieve

sustainable development in terms of EVCS planning.

2.4. Quantitative Evaluation of the Literature

In this section the conducted studies on optimal planning and operation of EVCSs are
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analyzed on a quantitative basis. The reviewed studies in Section 3 are illustratively given by

Fig. 2-4.

Energy management g s sy g EDS support Considering RES, BES, Considering EDS

[10], [11], [12], [13], [14] [17], (18], [7] and DG reinforcement reinforcement
[29], [30], [31], [32] [25], [26], [27], [28]
<__>
[15], [16], [1]. [7] (8], [19], [20], [21] constraints constraints

[33], [3] [34], [35]

Demand response g s Considering EDS and
. . -
traffic constraints

[22], [23], [24]
[36], [37], [38], [39], [40]
Fig. 2-4. Categories of the reviewed studies in planning and operation of EVCSs (references in this

figure are based on the paper: M. Aghamohamadi, A. Mahmoudi, John K. Ward, M. H. Haque, "Review
on the State-of-the-art Operation and Planning of Electric Vehicle Charging Stations in Electricity
Distribution Systems," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Toronto,
Canada, 2021.)

Fig. 2-5A shows the distribution of the reviewed studies over years starting from 2012, while,
Fig. 2-5B shows the total number of the reviewed studies. According to Fig. 2-5A, number of the
conducted studies in both operation and planning of EVCSs have significantly increased over
years, especially after 2017. This is due to the increasing pattern of EV employment in cities and
facing challenges in operation and planning of EVCSs in recent years. As it is seen in Fig. 2-5B,
there has been more interest in the operation of EVCS in electricity distribution system, i.e., 33
studies, compared to the planning of these systems, i.e., 25 studies. This is reasonable as the main
challenge in recent years has been the integration of EVs into electricity network, while the
number of EVs has not been considerable in many countries in the world. However, it is expected
to face more EVCS planning studies in future which will be in line with the upcoming wave of

EV employment.
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Fig. 2-5. Annual (A) and total (B) number of reviewed studies, concerning EVCS operation and

planning between 2012-2020

2.5. Knowledge Gap and Motivations of this Study

According to the conducted review, following knowledge gaps are presented:

3) A new EDS energy management model is required to model the interactions between

4)

based RO models.

RESs, BESs, and EDS in the network as a whole while considering the inverter-based
operation of these systems, as in the modern EDS operation, inverters can play a
noticeable role in providing reactive power support to the network.

A new robust optimization model is required to first cope with the associated problems
with scenario-based models, and also be applicable when characterizing binary decision

variables after uncertainty realizations which is not applicable through conventional dual-
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5) And finally a proper exploration is required to investigate the effects of EVs on EDS
voltage and power losses under the uncertainty of EDS load, to provide more realistic

solutions for EDS energy management.

2.6. Contributions of this study

Following contributions are presented in this thesis to achieve the objectives in section 1.2:

Contribution 1: A novel directly solvable set of power flow equations

A new directly solvable power flow problem has been proposed for EDS, introducing a
connectivity matrix in line with a new indexing of load flow equations. The new power flow
model is developed generally and is capable to be added to any EDS study as the constraints of
the model. This means, the power flow calculation does not need to be conducted separately.
Therefore, the need of load flow calculation methodologies, such as Newton—Raphson method
(NR) and forward backward sweep-based method (FBS), as well as optimization approaches,
such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), is eliminated as the
proposed model characterizes both load flow and energy management constraints in a single and
unified model. This provides users the opportunity of solving the problem with commercial
optimization packages, i.e., CPLEX, GAMS, etc., in a single shot with no need to develop further
optimization approaches involving iterative procedures and load flow calculations. Note that, the
employed modified load flow equations in line with the connectivity matrix can be used in any
other EDS study, concerning load flow calculation, as the constraints of the model.

Contribution 2: A general multi-objective energy management model for inverter-based
integration of RES, and BES system

The proposed directly solvable power flow problem is used to build up a multi-objective
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energy management model for RES-BES-equipped distribution systems. The first objective of the
model minimizes total EDS power losses, and the second objective minimizes the voltage
deviations of each bus over time. These objective functions are optimized being subject to load
flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The
proposed energy management model enables both active and reactive power controllability of
RES and BES systems. New continuous variables are defined for RES and BES representing
active and reactive power share of these systems during the operation. Accordingly, BES can
absorb active or reactive power in each time slot and inject it back to the network as active or
reactive power in another time slot.

Contribution 3: Integration of EV loading into the energy management model and
investigating the effects of EV charging on EDS voltage and power loss

Electric vehicle activity is modelled by probability distribution functions. The EV’s dynamic
energy balance is modelled based on EV connections and the model is merged into the energy
management model.

Contribution 4: The new robust optimization model to characterize uncertainties of RESs
employing block coordinate decent method

An adaptive robust optimization (ARO) approach is implemented to deal with the
uncertainties of load in operating EDS through the proposed energy management model.
Uncertain parameters are characterized by bounded intervals in polyhedral uncertainty sets. The
ARO model is a tri-level min-max-min problem which is not directly solvable. Therefore, a
decomposition methodology is employed to recast the min-max-min ARO problem into two
problems including a master problem and a sub-problem. A column-and-constraints (C&C)

generation methodology is used to iteratively solve the decomposed problem through primal
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cutting planes. Two main decisions are made in ARO, namely "here-and-now" decisions, which
are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are
obtained after the realization of uncertain parameters. Several binary variables such as BES
charging/discharging status must be obtained after uncertainty realizations in the sub-problem to
be able to compensate the effects of uncertain load/price as recourse decisions. However, this is
not possible by conventional dual-based robust models as considering these binary variables
results in a mixed-integer sub-problem and the dual of a mixed-integer model is generally weak,
non-tractable and complicated. Therefore, instead of using duality theory in solving the sub-
problem, Block Coordinate Descent (BCD) method is used in the proposed model.

In terms of solution methodology, BCD method is used in the robust approach to iteratively
solve the inner bi-level max-min sub-problem by means of Taylor series instead of transforming
it into a single-level max problem by duality theory in conventional ARO models. BCD
technique was originally devised to deal with single-level problems. By extending the application
of the BCD technique to solve the two-level max-min sub-problem (resulted from the C&C
generation technique), it is possible to avoid duality theory in solving the sub-problem.

Therefore, the associated limitation in considering binary variables in the sub-problem is
eliminated. In fact, mixed-integer models (even non-linear models) can be solved in the sub-
problem through the proposed BCD robust model. As a result, uncertainty-dependent binary
variables such as BES charging/discharging statuses can be obtained after uncertainty realization
in the sub-problem as recourse decisions, resulting in more system flexibility in compensating the
uncertainty effects of load. Moreover, the linearization of the dualized inner problem is avoided
as the Lagrange multipliers are eliminated in this methodology. Thus, the case-sensitivity of the

proposed model reduces as it does not reflect dual variables.
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2.7. Conclusion

This chapter presented a comprehensive review on the employment of EVs as well as different
aspects considered in operation and planning of EVCSs in EDS. Contributions of the thesis were
introduced and the aim of the research were developed. The rest of this thesis presents each
contribution and the methodology used to achieve it.

In the next chapter a directly solvable power flow model is developed to use in the energy

management model.
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3.Proposed General and Directly-solvable EDS
Power Flow Equations to Solve Power Flow
Problem

This chapter presents a new directly solvable and non-iterative load flow model which is
developed using a new bus indexing procedure. A connectivity matrix is also introduced to
characterize the configuration of EDS and provide a feasible general representation of load flow
equations. This enables the proposed modified load flow equations to be mergeable in any type of
EDS study as the constraints of the model. Moreover, unlike previous iterative models, it can be
solved directly through off-the-shelf optimization packages in a single shot with no need to
further iterative optimization procedures such as metaheuristic methods. This results in a
moderate mathematical and programing burden.

The contribution of this chapter is presented in the following published research article [77]:

M. Aghamohamadi, M. H. Haque, A. Mahmoudi and J. K. Ward, ""A Novel Directly-solvable
Non-iterative Load Flow Model for Radial Distribution System Studies," 2020 IEEE International
Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020, pp. 1-6, doi:
10.1109/PEDES49360.2020.9379828.

A Novel Directly-solvable Non-iterative Load Flow Model for Radial Distribution
System Studies

Publisher: IEEE B POF

Mehrdad Aghamohamadi ; Mohammed H. Hague ; Amin Mahmoudi; John K. Ward ~ All Authors

o @ < © a

Text Views

The student has developed the conceptualization. He designed the optimization model.
Analysis and interpretation of research data has been done by him and the co-authors. A draft of

the paper was prepared by the student. Revisions and comments were provided by the co-authors
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S0 as to contribute to the interpretation.

NOMENCLATURE (for Chapter 3)

ilj Index of bus number

P;;/Q;; Active/Reactive power flow

L;j/Lj; Indicator for branch existence between buses i and j
El=) Set of indices i/}

PP%1Q10% Active/Reactive power loss in each branch

PLIQ} Active/Reactive load at each bus

Qij Reactive power flow through each branch

Q{}/Q}’j Shunt capacitors' reactive power in r configuration
V; Voltage of bus i

Tijlxi; Resistance/Reactance of each branch

Bf‘j/Bf’j Shunt susceptance at sending/receiving end

3.1. Introduction

The solution of load flow problem is very important for operation, planning, expansion, and
management of electricity distribution systems (EDSs). The load flow solution of EDS is usually
obtained by various methods, such as Newton-Raphson [78], Gauss-Seidel [79], and forward-

backward sweep-based (FBS) methods [80]. In [81], a power flow analysis for droop-based
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islanded microgrids was conducted using current injection-based Newton-Raphson (NR) method.
An extended fast decoupled NR method was used in [82] for EDS reconfiguration. Although, NR
is suitable for transmission system, it may have a poor convergence pattern for some radial EDSs
having high R/X ratios of branches [83]. Moreover, the need of partial derivative of equations
makes NR a time-consuming method in terms of both mathematical and programing burden. In
[84], Gauss-Seidel (GS) method was employed for voltage stability in EDS. It was also used for
EDS loadability analysis in [85]. However, GS method is generally complex, and has poor
convergence pattern. In fact, computational time of GS method increases as the number of

buses/branches increases. This issue becomes even more vital for larger EDSs [84].

To overcome the aforementioned issues, FBS method was employed in [86] to integrate open
unified power quality conditioners for EDS loss minimization. However, the model of [86]
utilizes particle swarm optimization (PSO) to determine planning solutions as they need to be
fixed in the FBS method to determine EDS load flow solutions. In fact, in each iteration of
particle swarm optimization in [86], FBS is conducted to determine EDS load flow based on the
given planning solutions by PSO. In [87] genetic algorithm (GA) was used to minimize EDS
power losses and voltage deviations by optimal integration of distributed generations and electric
vehicles, where EDS load flow was conducted in each iteration of GA. Harmony search
algorithm (HSA) was used in [88] to optimize the EDS reconfiguration and the placement of
distributed generation units in EDS. Some of these models have been also employed for planning

and operation of renewables and battery systems [89].

Although, the aforementioned load flow calculation methods are able to do the job, they need

to be conjointly combined with other optimization algorithms such as GA, PSO, HSA, to be able
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to optimize the required objective function and the related constraints in EDS studies. This is due
to the fact that, existing EDS load flow methods only calculate the load flow and bus voltages
and they are not mergeable into the main model to maintain the objective function throughout the
network. In fact, it's the optimization engine that determines the EDS optimal planning or energy

management solutions [90] while these solutions are fixed in the load flow calculation problem.

The combination of metaheuristic optimization algorithms (or any other optimization
approach) with EDS load flow calculation brings additional mathematical and programming
burden to the model. Moreover, the computation time of the optimization may easily increase for
complex models as it involves two procedures, i.e., optimization algorithm and load flow
calculation in each iteration of the optimization procedure. Therefore, further load flow models
are required with the ability of being directly solvable with no need to iterative and time-
consuming procedures, while, being easily mergeable in different EDS operational/planning

models to avoid the use of external optimization engines such as GA, PSO, etc.

To do so, a new EDS connectivity matrix in line with a new indexing of load flow equations
have been used to develop a modified load flow model which can be solved directly without
using iterative methods such as NR and FBS in EDS studies. Moreover, it can be merged into any
other EDS study as the constraints of the model, considering the general structure of the proposed
model. In fact, the need of optimization approaches, such as GA and PSO, is eliminated as the
proposed model characterizes both load flow and the required constraints (depending on the
application) in a unified model. This has been illustratively shown by Fig. 3-1. This provides
users the opportunity of solving the problem with commercial optimization packages, i.e.,

CPLEX, GAMS, etc., in a single shot solving process with no need to develop further
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optimization approaches involving iterative procedures and load flow calculations. As it is seen
in Fig 3-1, in the proposed model, the need of optimization engines is eliminated as a single-shot
solvable unified problem is developed for both power flow and optimization. Note that, Capacitor

banks and voltage regulators are not included in the power flow model.

Conventional Proposed
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Objective
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engines such as
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MATLAB / GAMS

I
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I
An EDS study |
I
I
I
I

Obtained variables || Objective oSt(i)::]/?zdagzn
are sent to load flow [ function en pines such as
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load flow
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Solved by load | Given the obtained
Load flow flow calculation variables as fixed
methods such as values, load flow is
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Load flow fop
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calculation
load flow model

conducted
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Fig. 3-1. Comparison between the conventional and the proposed EDS power flow models

3.2. The Proposed Modified EDS Load Flow Equations

Fig. 3-2 shows the configuration of a simplified 6-bus distribution system as an example,
considering the active power flow only, for the sake of simplicity (no load is considered). This
configuration is only employed to numerically introduce the new indexing used in this study.

Bus 1 Py, Bus 2 Pys Bus 3 Ps, Bus 4

I _— _— —_—

Bus 5 Bus 6
P;5 P3¢

_— —_—

Fig. 3-2. Configuration of a simplified 6-bus EDS

P;j is the power flow through the branch connecting the sending-end bus i to the receiving-end

bus j. For the considered system in Fig. 3-2, the relation between actual active power flow is
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expressed as (1a)-(1b).
Py; = Py3 + Pys; (1a)
Py3 = P34 + P3g; (1b)
As it is seen in (1a)-(1b), two indexes are needed to generally model the power flow
considering both sending and receiving ends. Therefore, it is possible to have different values for
[ and j in one equation (e.g., Pi—1j—, and P,_, j—3 in (1a)) which is not feasible in a general
parametric representation of load flow equations. This is due to the fact that, each bus plays the
role of a sending-end and a receiving-end at the same time. In fact, each bus is counted by i if it
is a sending-end and is counted by j if it is a receiving-end. To cope with the mentioned
infeasibility and avoid ambiguity, alias sets are employed for bus numbering in this study. Alias
is an alternate name for a member or a shared member in a set which is used to improve the
readability of an outline by descriptive names [91]. Accordingly, power flow equations in (1a)-

(1b) can be rewritten as (1c)-(1d), respectively, where the value of j is equal at both sides of the

equations.
Pi—1j=2 = Pj=3i=3 + Pj=3,i=s; (1c)
Pipj-3 = Pi=3i=4 + Pj=3=¢; (1d)

However, (1c)-(1d) still do not meet the requirements of a general representation to be feasible
for all buses and branches of the system which is due to the different values of i in either sides of
the equation. In order to cope with this issue, a new connectivity matrix L is proposed to
represent the configuration of the EDS system. Each element of matrix L, represents the existence
of a branch connecting bus i to bus j (L;; = 1 if a branch exists and L;; = 0 otherwise). Elements

of matrix L alongside alias sets are further employed to develop the new modified load flow
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equations. Regarding the fact that, i and j are alias indexes in alias sets Z’ and 2/, respectively,

the connectivity matrix can be either presented by (1e) or (1f) in the following:

(L1 Llj Lin

L=|n, - L:}-,- . Ll (16)
[ Lnq L;lj Lnn
[L14 l:li Lin

L= L;.1 L:{-i - L{:n; (1f)
—L;u L;u' Lun
where, 1<i<n; ,1<j<mn (19)

Therefore, the load flow equations for the 6-bus EDS in Fig. 3-2 can be rewritten as (1h) in the

following:

Z (PULU):Z Pji'le';VjEE]; (1h)
iezl ies!

The values of i and j cannot be the same as there is no branch connecting bus i/j to bus i/j.
Therefore, i # j. Therefore, P,y is used instead of P;;. Although n can have any other value,

but it should not be bigger than 1 because of the existence of sequential bus numbers in a radial

system, i.e., P;, P, 3, P34, €tc. Note that, n = 1 is still true for other variables. For example,

P23 is defined as P;_; ((j=z2)+1)- HOwever, if n = 2 the problem would be infeasible for P, , as
itis defined as P;_y ((j=0y+2), While, j cannot be zero (note that i and j are alias indices and don't

have to be the same). Therefore, the general and feasible parametric representation of load flow

equations can be expressed by (1i):

Z, HI(Pi(j+1) ‘Ligsn) = 2 L PgroiLganis VI € g, (1i)
LEE LEE
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This new presentation provides a general structure of the load flow problem that can be
extended to any low voltage distribution system. This is due to the fact that, the new indices as
well as the new connection matrix formulates any distribution system in a general way.

Fig. 3-3 illustrates the considered well-known = configuration of each branch of distribution
system connecting bus i to bus j in the EDS energy management model as per the notations in
nomenclature.

TU configuration of each distribution branch

| |
I I
Vo,V . . v V, v
Vi i | LI Py+iQy  Py+iQy o, x; i | 7
e ol = AT | et
I 08 : : Y |
| i : : : ij +“ | R :
| — | —> |
a - H ploss H Qloss H b - ~.
| Yi T ij i Yi T SV |

Fig. 3-3. Considered m configuration for each branch, connecting bus i to bus j

A general representation for active and reactive power flow equations as well as bus voltage is
given by (2) for a single period of time, derived from the m configuration in Fig. 3-3 and the
proposed general representation of power flow equations in (1) (which can be developed for both

active and reactive power flows).
l . —
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In (2), the active power flow equation is given by (2a) for the branch connecting bus i to bus j,
if such a branch exists, i.e., L;; = 1. In a similar way, (2b) represents the reactive power flow
equation for each branch of EDS system. Voltage of each EDS bus is given by equation (2c)
which is the modified version of voltage magnitude equation presented by [92]. Active and
reactive power losses for each branch are given by (2d) and (2e), respectively. Equation (2f),
represents the reactive power flow encountering shunt reactive losses at the sending end of each
branch which is given by (2g), according to the considered m configuration. Equation (2h) also
represents the shunt reactive losses at the receiving end of each branch, i.e., Qf’j. The above
presented EDS load flow equations are further employed to build-up the proposed unified EDS

energy management model.
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3.3. Validating the Proposed EDS Power Flow Model

The proposed modified load flow equations in (2) are employed to calculate EDS load flow
for 33-bus systems. The input data of 33-bus system is available in [93]. The single-line diagram

of the system is shown in Fig. 3-4.

©
- T
[

Fig. 3-4. IEEE 33-bus system, considered as the case study

Four scenarios or load levels (50%, 75%, 100%, and 125% of nominal load as scenario 1 to 4,
respectively) are considered to evaluate the performance of the proposed model in
underload/overload circumstances. These scenarios are considered for comparing the results
obtained by the proposed model with that of the FBS load flow method. Fig. 3-5 shows the
employed load levels for each bus of the system for scenarios 1, 2, and 4 (scenario 3 is the 100%
similar to the IEEE 33-bus data set). Simulations are conducted using GAMS software package.
Voltage magnitude at slack bus is 12.66 kV which is considered as the base value, while, the base

value for power is 100 KVA. The obtained voltage magnitude of each bus is shown by Fig. 3-6
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for scenarios 1-4. As it is seen in Fig. 3-6, the voltage values obtained by the proposed model are
the same as that obtained by FBS for all load level scenarios.

Active load (Sc. 1) mActive load (Sc. 2) ®Active load (Sc. 3) mActive load (Sc. 4)
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Fig. 3-5. Active (A) and reactive (B) load levels for scenarios 1-4
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Fig. 3-6. VVoltage magnitude comparison for IEEE 33-bus system

In addition to voltage magnitude, the active and reactive power flow through each branch of
the system is compared with the FBS model in Fig. 3-7 and Fig. 3-8, respectively. Note that, the
power flow solutions are reported for the nominal load level which is scenario 3 in this study. As
shown in Fig. 3-7 and Fig. 3-8, the load flow results, obtained by proposed model, are exactly the

same as the FBS results for both active and reactive power which validates the optimality of the
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obtained solutions by the proposed load flow in this paper.

m Proposed model (Sc. 3) mFBS method (Sc.3)
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Fig. 3-7. Active power flow comparison for 33-bus system
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Fig. 3-8. Reactive power flow comparison for 33-bus system

The total power loss in the system obtained by the proposed model are compared with that of
the FBS method in Table | for all scenarios. As it is seen in Table I, the obtained values by the
FBS method and the proposed model are the same for all scenarios. The similarity of the obtained
results was also observed for other load levels in scenarios 1, 2, and 4 in the simulations.

Table 3-1. Active and reactive power loss comparison for all scenarios

Scenario No. Scenario No. Scenario No. Scenario No.
1 2 3 4
Power type [KW]/[KVAR] | Active | Reactive | Active | Reactive | Active | Reactive | Active | Reactive
Proposed model 47.07 31.35 |109.75 | 73.13 | 202.67 | 135.14 | 329.85 | 220.08
FBS method 47.06 31.34 | 109.75 | 73.13 | 202.67 | 135.14 | 329.85 | 220.08
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3.4. Conclusion

This chapter presented a directly solvable EDS load flow problem by introducing a new bus
indexing model alongside a connectivity matrix to characterize the EDS configuration. The
proposed model is directly solvable through off-the-shelf optimization packages in a single shot
(it has been directly solved by GAMS software package in this study). Moreover, it is generally
developed to be mergeable into any EDS studies involving load flow calculation, i.e., loss
minimization, reconfiguration, planning, etc., as the constraints of the model. The ability of the
proposed model in being directly solvable with no iterative optimization technique, eliminated
the need of iterative optimization methods such as NR, GS, and FBS. The results obtained by the
proposed load flow model were compared to those of the FBS method. Comparison of results
indicated that the proposed model maintained the same outcome as FBS method, which shows its

optimality in achieving expected active/reactive power flow and bus voltages.

In the net chapter, the power flow model in Chapter 3 will be used to develop the energy

management model.
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4.Proposed General Inverter-Based EDS
Energy Management Model at the Presence of
RES and BES

This chapter presents a directly solvable multi-objective energy management model for
electricity distribution system to minimize total power losses and bus voltage deviations by
employing the arbitrage ability of distributed battery energy storage systems and renewable
energy sources. The developed power flow equations in Chapter 3 are further employed to
characterize the power flow of BES and RES to develop the proposed energy management
model. Since the load flow equations are generally developed, they can be merged into the energy
management model as the operating constraints. Therefore, the energy management model can
also be directly solved in a single shot with off-the-shelf optimization packages and there is no
need to conduct iterative algorithms to separately solve the load flow and the optimization
problem. Both active/reactive shares of BES and RES are considered as variables of the model to
provide active/reactive support for EDS. IEEE 33-bus system is employed to evaluate the
effectiveness of the proposed model. The obtained results show significant improvement in both
system power losses and voltage deviations which is due to the active and reactive power

controllability of RES and BES systems.

NOMENCLATURE (for Chapter 4)

A. Indices

lji Index of EDS buses

t Index of operating time periods



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

B. Parameters

L;j Bus connection indicator (L;; = 1 if a branch connects bus i to bus j)

n Total number of buses

PjL Active load at bus j

Tij Resistance of the branch connecting bus i to bus j

Xij Series reactance of the branch connecting bus i to bus j

Y Shunt admittance at the sending end of the branch connecting bus i to bus j
Y) Shunt admittance at the receiving end of the branch connecting bus i to bus j
nj.hg Charging efficiency of battery located at bus j

nfs Discharging efficiency of battery located at bus j

Ef Steady-state energy loss of battery located at bus j

T Total operation time

ymin Minimum allowable voltage magnitude at bus j

ymax Maximum allowable voltage magnitude at bus j

L7 Maximum allowable current through the branch connecting bus i to bus j
5&’2{6 Maximum allowable charging apparent power for battery systems

sdis Maximum allowable discharging apparent power for battery systems
Enax Maximum allowable energy level for battery systems

C. Variables

Pij¢ Active power flow from bus i to bus j in hour ¢

Pil;’tss Active power loss in the branch connecting bus i to bus j in hour t

Q; it Reactive power flow from bus i to bus j in hour t

Ql.l]‘.’tss Reactive power loss on the branch connecting bus i to bus j in hour ¢t
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Shunt reactive power loss at receiving end of the branch connecting bus i to

Qe _

bus j in hour t
IViVie Voltage magnitude of bus i/j in hour t

Shunt reactive power loss at sending end of the branch connecting bus i to bus
Qije

j inhourt
Ej Energy level for battery connected to bus j in hour t
SJ_Cthg Apparent charging power for battery connected to bus j in hour t
5].‘%1'5 Apparent discharging power for battery connected to bus j in hour t
pjihg Active charging power for battery connected to bus j in hour ¢
Q}?thg Reactive charging power for battery connected to bus j in hour t
pjfgis Active discharging power for battery connected to bus j in hour t
Q;?tis Reactive discharging power for battery connected to bus j in hour ¢
PEY Active power generated by PV connected to bus j in hour t
Q}’t" Reactive power generated by PV connected to bus j in hour t
Pj‘Q’F Active power generated by WF connected to bus j in hour t
Q}”{F Reactive power generated by WF connected to bus j in hour ¢
Sj"t"T Total generated apparent power by WF connected to bus j in hour t
SﬁV Total generated apparent power by PV connected to bus j in hour t
Lije Current in the branch connecting bus i to bus j in hour t

Indicator for battery existence of bus j, i.e., 8; = 1 if a battery is connected to bus
B;

J» Bj = 0 otherwise
ajcthg Charging status indicator for battery connected to bus j in hour t

Ty
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ajfiis Discharging status indicator for battery connected to bus j in hour t
D. Sets

| EJE! Set of EDS buses

g7 Set of operation time

E. Vectors/Matrices

L Connectivity matrix

4.1. Background

Load flow methodologies become of importance when it comes to topics related to expansion,
operation, and management of EDSs. In particular, load flow calculation methodologies are
simultaneously employed with other optimization engines such as genetic algorithm (GA) and
particle swarm optimization (PSO) to determine the optimal solution of a given objective
function and the associated constraints, depending on the application, i.e., EDS loss
minimization, voltage control, sizing and sitting of BES systems, etc. EDS load flow calculation
is usually conducted by methodologies such as Newton-Raphson-based method [78], Gauss-
Seidel [79], forward-backward sweep-based methods [80], etc. In [81], a power flow analysis for
droop-based islanded microgrids was conducted using current injection-based Newton-Raphson
(NR) methodology. NR method was also employed to solve the EDS power flow for calculating
maximum loadability in [94]. An extended fast decoupled NR methodology was used in [82] for
EDS reconfiguration. Although, NR is suitable for transmission system, it may has a poor
convergence ratio for most radial EDSs which is due to their high R/X ratios of branches [83].
Moreover, the need of partial derivative of equations makes NR a time-consuming methodology

in terms of both mathematical and computational burden. In [84], Gauss-Seidel methodology was
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employed for voltage stability in EDS. It was also used for EDS loadability analysis in [85].
However, Gauss-Seidel methodology is generally complex, and its convergence may be long. In
fact, calculation time of Gauss-Seidel method increases almost proportionally with the number of
buses/branches. This issue becomes even more vital for larger EDSs [84]. To overcome the
aforementioned issues in conventional load flow algorithms, forward/backward sweep (FBS)
method was employed in [95] to integrate open unified power quality conditioners for EDS loss
minimization. The model of [95] utilizes particle swarm optimization (PSO) to determine
planning solutions as they need to be fixed in the FBS methodology to determine EDS load flow.
In fact, in each iteration of particle swarm optimization in [95], FBS is conducted to determine
EDS load flow based on the given planning solutions for open unified power quality conditioners
throughout EDS. In a similar way, particle swarm optimization was used in [96] as the
optimization engine to optimally integrate distributed generations into EDS and reduce power
losses and voltage deviations. FBS was used in [96] for EDS load flow calculations in each
iteration of particle swarm optimization. In [97] genetic algorithm (GA) was used to minimize
EDS power losses and voltage deviations by optimal integration of distributed generations and
electric vehicles, where FBS was used to calculate EDS load flow. Harmony search algorithm
(HSA) was used in [98] to optimize the EDS reconfiguration and the placement of distributed

generation units in EDS.

Although, the aforementioned load flow calculation methodologies are able to do the job, they
need to be conjointly combined with other optimization algorithms such as GA, PSO, HSA, etc.,
to be able to optimize the required objective function and the related constraints in EDS studies.

This is because, EDS load flow methodologies only calculate the load flow and bus voltages and

1¢



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

they are not able to characterize the optimal operation of BES and RES elements throughout the
network. In fact, it's the optimization engine that determines the EDS optimal planning or energy
management solutions [95-97] while these solutions are fixed in the load flow calculation
problem. The combination of metaheuristic optimization algorithms (or any other optimization
approach) with EDS load flow calculation brings additional mathematical and programming
burden to the model. Moreover, the computation time of the optimization may easily increase for
complex models as it involves two procedures, i.e., optimization algorithm and load flow

calculation in each iteration of the optimization.

In addition to the methodological aspects in solving EDS optimization problems,
characterizing technical features in modeling EDS elements, such as renewable energy sources
(RESS) and battery energy storage (BES) systems, is of high importance in distribution systems.
Recently, the role of BES systems has been magnified due to the employment of RES in today's
smart grid. BES can compensate the negative effects of RES volatile generation on electricity
distribution system's voltage stability and losses. Moreover, it offers distribution systems
different and unique applications such as peak shaving [99], loss reduction [100], congestion
management [101], and reliability enhancement [102]. In the study of [103] BES was used to
improve the RES integration into distribution system using dynamic programming algorithm.
However, the reactive power trade of RES and BES wasn't modeled in [103]. An energy
management model for radial EDS was proposed by [104] using Vanadium redox flow batteries
for load leveling and peak shaving. The study of [104] did not consider the reactive power
capability of BES, while in practice, converter elements are coupled with BES systems and can

provide reactive power trade for EDS. In a similar way, reactive capability of BES was ignored in
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the study of [105] where an energy management model was developed for peak shaving and
valley filling. In [106], an EDS energy management model was proposed to flatten network
voltage profile and reduce system losses/costs in which no BES reactive power trade was
considered, while, voltage profile in EDS is strongly dependent on reactive power flow
throughout the network. In the study of [107], a control strategy for distributed BESs was
developed to enhance the voltage profile on each bus of the EDS. However, BES reactive power
trade was not modeled in [107], while, inverter-based operation of BES systems offers flexibility
in absorbing or injecting active and/or reactive power. This practice is also applicable for RES
generation employing the available energy conversion technologies in today's distribution
systems. In [108], an EDS energy management model was developed to manage intermittent
renewable resources through optimal operation of BES systems. Although, BES reactive power
was considered in the study of [108], the controllability of RES reactive power was ignored. It
deserves mentioning that, both RES and BES systems are equipped with inverter elements being
able to control the active and reactive share of the generated power in each time slot of the
operation. However, this should be modeled accurately in EDS studies to capture its applicability

in practice.

4.2. Motivations

Relying on the literature, the motivations of this study are as follows:

1) In terms of solution methodology, further approaches for conducting EDS studies involving

load flow calculations, are required to:

a) directly solve the optimization model and its EDS load flow together in a single shot by off-
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the-shelf optimization packages, with no need to additional load flow calculations and iterative

optimization approaches such as PSO, GA, and HSA, and

b) be able to perform in different EDS applications, involving load flow calculations, i.e., loss

minimization, voltage control, sizing and sitting of BES systems, EDS reconfiguration, etc.

2) In terms of RES and BES modeling in distribution systems, further models should be
undertaken to enable the reactive controllability of these elements in real world electricity
distribution systems, considering the applicability of inverter-based operation, nowadays. In fact,
the practical potential of RES and BES cannot be fully exploited if the inverter-based operation

of these systems is ignored in EDS studies.

4.3. Contributions

Following contributions are presented to extend the existing body of the work:

1) A new directly solvable power flow problem has been proposed for EDS, introducing a
connectivity matrix in line with a new indexing of load flow equations. The modified load flow
equations are considered as constraints of the energy management model. Accordingly, the
optimal RES and BES operations are obtained based on feasible load flow solutions. Therefore,
the need of load flow calculation methodologies, such as NR and FBS, as well as optimization
approaches, such as GA and PSO, is eliminated as the proposed model characterizes both load
flow and energy management constraints in a single and unified model. This provides users the
opportunity of solving the problem with commercial optimization packages, i.e., CPLEX,
GAMS, etc., in a single shot with no need to develop further optimization approaches involving

iterative procedures and load flow calculations. Note that, the employed modified load flow
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equations in line with the connectivity matrix can be used in any other EDS study, concerning

load flow calculation, as the constraints of the model.

2) The proposed directly solvable power flow problem is used to build up a multi-objective
energy management model for RES-BES-equipped distribution systems. The first objective of the
model minimizes total EDS power losses and the second objective minimizes the voltage
deviations of each bus over time. These objective functions are optimized being subject to load
flow constraints, RES/BES optimal operation, and voltage/current tolerance of EDS. The
proposed energy management model enables both active and reactive power controllability of
RES and BES systems. RES generation is limited by its apparent power while the active/reactive
share of power is reasonably decided through the optimization model. This is also developed for
BES systems in both charging and discharging power trades. In fact, BES constraints including
dynamic energy balance constraint and end coupling constraint are modeled based on BES
apparent power trade, while, the active and reactive share of BES is modeled in EDS load flow
constraints. New continuous variables are defined for RES and BES representing active and
reactive power share of these systems during the operation. Accordingly, BES can absorb active
or reactive power in each time slot and inject it back to the network as active or reactive power in

another time slot.

4.4. Proposed Directly Solvable EDS Load Flow Model

A general representation for active and reactive power flow equations as well as bus voltage is
given by (2) for a single period of time, derived from the = configuration in Fig. 3-3 and the
proposed general representation of power flow equations in (1) in Chapter 3 (which can be

developed for both active and reactive power flows).
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In (2), the active power flow equation is given by (2a) for the branch connecting bus i to bus j,
if such a branch exists, i.e., L;; = 1. In a similar way, (2b) represents the reactive power flow
equation for each branch of EDS system. Voltage of each EDS bus is given by equation (2c)
which is the modified version of voltage magnitude equation presented by [92]. Active and
reactive power losses for each branch are given by (2d) and (2e), respectively. Equation (2f),
represents the reactive power flow encountering shunt reactive losses at the sending end of each

branch which is given by (2g), according to the considered = configuration. Equation (2h) also
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represents the shunt reactive losses at the receiving end of each branch, i.e., Qf’j. The above

presented EDS load flow equations are further employed to build-up the proposed unified EDS

energy management model.

4.5. Inverter-based Modeling of Battery Energy Storage System

In this study, BES is used to contribute in the energy management of EDS through optimal
charging/discharging cycles. Therefore, detailed insights into BES characteristics is necessary
and the need for an appropriate model arises accordingly. In the following discussion, BES is
modelled considering its practical limitations such as capacity, charging/discharging rates and
efficiencies, standby power losses over time, and both the active and reactive power
controllability through its inverter-based operation. Fig. 4-1 is a presentation of the dynamic
energy balance of BES during charging/discharging and standby modes. As illustrated by Fig.
4-1, BES absorbs E"9 during charging cycle. However, due to charging efficiency, resulting in
charging losses, i.e., E.;, the actual stored energy is E4. The stored energy level drops to EZ,
representing the available energy for BES discharging during standby mode, which is due to
standby losses of BES, i.e., Eg;. Finally, the BES discharged energy, is lower than the available
stored energy in BES, which is due to discharging efficiency of BES, resulting in discharging

losses, i.e., Ep;.
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Fig. 4-1. Dynamic energy balance in BES system

Accordingly, the multi-period dynamic energy balance of BES located at bus j is given by
(3a), which represents the stored energy level in BES considering the stored energy level in

previous time period, i.e., Ej_1), charging/discharging rates in the current time period, i.e.,

P{"|Ps, and the standby losses of BES, i.e., E.

chg pchg _
j [; t dis
nj

E =Ejq1+1n P —El vjeE;vtesT (3a)

The end-coupling constraint of BES is presented by (3b) making sure that the final and initial

energy levels of BES are similar.

1 .
zte”T (nf-hg - peho el pj‘-zls> =E-T; vj €& (3b)
£ J

Given the ability of inverters in generating internal reactive power, the share of active and
reactive power is controlled in both charging and discharging cycles of BES. In inverter-based

operation of BES, the inverter is responsible for absorbing/injecting reactive power from/to the
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grid while BES is responsible for absorbing/injecting active power from/to the grid [109]. The
BES active power is limited to its maximum allowable range which is dependent on the BES
capacity. Since, the charging/discharging active power of inverter is supplied by BES, the
internally generated reactive power in inverter is limited to its maximum allowable capacity
which is expressed by inverter's apparent power. Therefore, constraints (3c) and (3d) are

employed to express the relation between active and reactive power in inverter and BES. Note
that, the efficiency of inverter, i.e., n;*"?**, has been considered in (3c)-(3d) when inverting BES

active power to AC active power.
|Schg (Pchg mvBES) + vaBES ; V)€ 5.yt e 5T (3¢c)

|Sﬁis| (PdlS nv BES) + va BES . Vj € E];Vt € ET (3d)

According to the above BES-inverter model, the limitation of reactive power generation by
inverter is completely dynamic in each operational time period, as it is dependent on the inverter
capacity on one hand, and the BES charged/discharged active power on the other hand (as the
inverted active power uses a portion of inverter's capacity). Therefore, by limiting the inverter's
capacity, its reactive power generation is also limited to the allowable range, regarding the value

of inverted active power in each time slot.

4.6. Inverter-based Modeling of Renewable Energy Sources

The same as BES inverter-based integration, RESs are modeled by their active power while
the inverter is responsible for reactive power absorption/injection from/to the grid. Therefore, the

active power produced by RES is directly injected to grid through inverter while the reactive
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power is generated by the inverter. The apparent power of RES-inverter pack is given by

(4a)/(4b) for PV/WEF, while, it has been limited to converter's allowable capacity through (4c)-
(4d). Note that, the efficiency of PV/WF inverter, i.e., n/™"" /""", has been considered in

(4a)-(4b) as the PV/WF active power is injected to the grid through inverter.

|Sj’2 = (P} ”“’PV) + Q”“’PV ; VjeE,veesT (4a)
|S}’t" = (PYF-n™ WF) + Q" W% yie 5 vt e 5T (4b)
S < Sy vjeEvt e (4c)
S < SpF, vje B vt € T (4d)

The coupling and the energy interaction between BES/RES, inverter, and grid are given by

Fig. 4-2.

chg mv BES PChg +jQiTW,BES
p Y T

- It
BES connected I pis l—> .
to inverter A | s -5 £ joi BES‘

_ -
- Inverter Grid

RES connected e ?,-., P’ [B" GV VDR 17””’ RES 4 va PV /Q;?V.WF
to inverter [ ] 1 >
[ [ | ] B
ri
RES Inverter

Fig. 4-2. Representation of the BES and inverter coupling as well as their energy interaction with grid

4.7. Proposed EDS Energy Management Model

The considered system configuration for the EDS, equipped with RES and BES systems, is

\Al
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given by Fig. 4-3, which illustrates the location of these elements at the receiving end of each
branch as well as the power flow directions (injection/absorption of power for each element), as
per the nomenclature. In the following, each element of the considered EDS configuration in Fig.

4-3 is modelled and discussed.

1t configuration of a distribution branch

V; v V; , L v
i Jt Y Pye+jQye Pyr +JQye Ty X Jt
—_—— T AT |
I a 5 5 - =
Qut H H H szt ¥
| | — b <

a H H H
| i T PR T TR

¥ PPV PPV inv,PV -QinU,P[/
/ ! J / / 2] hg . ~inv,BES chg inv,BES

1 1
1 1
1 1
1 1
1 - a |
1 - - » EEE— |
1 o Y ) 1
| | — [T N |
1 WF . _inv,WF . ninv,WF - |
i P Be™ o )0 |
1 1
1

1 l Y \i :
1 1
1 1

Fig. 4-3. Considered mr configuration for each branch of EDS equipped with RES and BES systems

The modified load flow equations in (2) are employed to build-up the proposed EDS energy

management model, considering the general configuration of EDS branches in Fig. 4-3. The

proposed model is expressed through (5).

Multi-objective function:

_ . loss .,
pemy Y5 e
iezl jegl tezT
f2= minz Z |Vit —Vice-n|;
iezl tezT

O0.F.= (5a)
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S.t.

Power flow constraints including BES and RES active/reactive power:

,PV WF
Zie:l (Pi(j+1)t_PL(]+1)t PGrnye + (PGne ™™ ) + (PG e - mi™"")

chg d inv,BES
P(]+1)t + (P(]l-fl)t n; )) i(j+1)

(5b)
- Z.EH, P(irnic* Lrni; Vi€ ELVj €5, vt € BT
[ASKS)
! ! L b inv,PV _inv,PV
ZiE:I(Qi(j+1)t = Qijroe = Qe + Qigjene T (Q(]+1)t n;
inv,WF inv,WF inv,BE
+ (Q(j+1)t "N ) * Qe ) Li¢j+1)
(5¢)
- Z.EH, Qi+ L+ni; Vi€eELVje s vte 5"
[ASKS)
Pllﬁfss = |V |2 (Pl]t + Ql]t )r Vl E EI,Vj E E],Vt E ET (Sd)
Xij 2 T e .
Ql;;?tss = [V, |2 ’ (Pijt2 + Ql{jt ); Vi € .:I,V] ezl vteET (5e)
it
Ql]t Qijec + Ql]t' vie =l ,VjEE =l vt e BT (50
Qf =YVl vie s vje g/ vee & (50)
2
Qgt_Ybl ;ViEEl,VjEEJ,VtEET (5h)
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Voltage magnitude:

2
|V(j+1)t| = ZL_EEIWM2 'Li(j+1)

2 2
Tig+1)” + Xig+1) 2 A 2
+ E :.E_, (Pigsne” + Qigene )
lex

Vie|?

- Z . 2(rigg+nPigiene + XigrnQigene); Vi € E vt € 8T
lEE

VMt < V| <V vje B vee T
Current magnitude:

2 2
e Pije” + Qijie
el = [Vie|?

[lije| < 17%* - Lij; vie B, vje 8, vt e ET

ijs
Battery storage constraints:
(3a)-(3d)

ST < Sl vje s vt e

di inv,BES _ _ di —
Si° < Smax S VjEELVEEE

]Cthg +als<1; vje&;vtes"

; vieElvje sl vt e BT

(51)

(%))

(5k)

(5)

(5m)

(5n)

(50)

(5p)

Y



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

Ejt < Enax 'ﬁj; Vj € Ehvte&" (59)
RES constraints:
(4a)-(4d) (5r)

In the proposed energy management model, (5a) represents the two objectives of the study
including loss minimization, expressed by f;, and voltage deviation minimization, expressed by

f>. The multi-objective optimization model is solved employing goal programming approach.

Constraints (5b) and (5c) are the same as power flow equations (2b) and (2c), respectively, but

they are different in two ways, including:

1) They represent a multi-period power flow through EDS, rather than a single-period power

flow,

2) They include the power generation by PV and WF, i.e., PV +P/" + jQiF*, as well as

charging/discharging power of BES, i.e., I{j’ﬁ)t +ijfg I P + Q.

The active and reactive power losses on each branch of the system are given by (5d) and (5e),
respectively. Constraints (5f)-(5h) are the same as constraints (2f)-(2h), but in multi-period form.
Constraint (5i) is also the multi-period representation of bus voltage magnitude in (2c) which is
limited to its allowable operational ranges in (5j). Current magnitude of each branch connecting
bus i to bus j, is given by (5k) and is limited to its allowable operational ranges in (5I).
Constraints (5m)-(5g) model the BES system in the proposed energy management model. (5m)

refers to BES operation equations in (3a)-(3d). Constraint (5n)/(50) represents the maximum
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allowable charging/discharging power of BES installed on bus j. The maximum capacity of BES

is also limited to the its maximum value by (5p) if a BES is connected to bus j, i.e., ﬁjcthg =1.

Constraint (5g9) makes sure that the BES is operating in one mode at a time, i.e.,
charging/discharging. The apparent power of PV and WF is also modeled by equations (4a)-(4b)

which are encountered by (5r).

The proposed energy management model in (5) determines the optimal EDS energy

management solutions including:
e Active/Reactive power flow and current magnitude of each branch of the system,

e Voltage magnitude and its deviations in two consecutive time slots, for the whole

operation horizon,
e Active/Reactive power loss on each branch of the system,
e Charging, discharging, and steady state mode of BES systems,
e Reactive power generation by inverters connected to both BES and RES systems,

According to the proposed model, the above variables are determined in a way that the EDS
total power loss as well as voltage deviations are minimized. As it is seen from the mathematical
presentation in (5), the load flow equations are considered as constraints of the optimization
model and the model is solved directly through optimization softwares with no need to iterative

load flow calculations and metaheuristic optimization algorithms.
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4.8. Simulation results

To evaluate the effectiveness of the proposed model, an IEEE 33-bus system has been
considered for case study in this section. The data of the system is available at [93]. Voltage
magnitude at slack bus is 12.66 kV which is considered as the base value, while, the base value
for power is 100 kVA. The modified system includes five RESs and six BES systems in different
locations of the distribution system. The single-line diagram of the system is shown in Fig. 4-4.
The capacity of each BES system is 400 kWh. The generated power of RESs throughout the
network are given by Fig. 4-5 for the considered 24-hour operation in this study. The standard
active/reactive load of IEEE 33-bus system is used to generate a 24-h load pattern based on South

Australia's daily energy consumption pattern which has been taken from [110].

\-\-|  Wind farm (WF)

1|6 1|7 1|8 Solar photovoltaic (PV) system

Battery energy storage (BES) system

Fig. 4-4. Considered system for numerical simulations (modified IEEE 33 bus system)
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Fig. 4-5. Generated power by renewable energy sources in EDS, Legend from top to bottom referring

to renewables in Figure 4-4 as: B, E, A, C, D
The proposed multi-objective energy management model (5) is evaluated under two cases.
Case 1: considers the first objective function, which is EDS loss minimization, i.e., f; in (5a).

Case 2: considers both objectives including voltage deviations and loss minimization, i.e., f;

and f, in (5a).

The above cases have been studied through the energy management model, and the obtained

results are reported as follows:

The energy management model has been simulated on a 24-h basis. Therefore, there are 24
hourly voltage magnitudes for each bus of the system. Hourly voltage magnitudes have been
presented in Fig. 4-6 for both cases 1 and 2. As it is seen, the voltage magnitude of all buses in
case 1 follows the IEEE 33-bus voltage pattern with some deviations over time. As expected,
these deviations are reduced when case 2 is conducted, i.e., f, in (5a) is added to the
optimization. This reduction in voltage deviation over time is also highlighted with the reported

results in Fig. 4-7 which represents the 25%-75% range of voltage magnitudes for cases 1 and 2.
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Each box in Fig. 4-7 represents 24 hourly voltage magnitudes for each bus of the system, while,
the median of voltage magnitudes has been presented by red line. As it is seen in Fig. 10, the

deviations of hourly voltage magnitude have been reduced over time, i.e., the size of the boxes

has decreased.
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Fig. 4-6. Hourly voltage magnitude for each bus of IEEE 33-bus system for cases 1-2
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Fig. 4-7. Voltage magnitude (24-h basis) for each bus of the system for cases 1-3

Standard deviations of hourly voltage magnitudes for each bus of the system are also
compared in Fig. 4-8 for cases 1 and 2 to demonstrate the contribution of the second objective
function, i.e., voltage deviation minimization, in reducing the voltage deviations over time. As it

is seen, the standard deviation has considerably reduced on all buses of the system.
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Fig. 4-8. Standard deviation of hourly voltage magnitudes for each bus of the system

The hourly total power loss of EDS as well as the hourly load pattern is given by Fig. 4-9. As
it is seen, the EDS total power loss increases as the average load level increases in final hours of
the day, i.e., hours 18-24. For the same reason, the total power loss has reduced between hours 5-

16. The total EDS daily power loss is obtained as 2098 kW which is also shown by Fig. 4-10.
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Fig. 4-9. Hourly system power loss during the operating horizon

2500 4
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500 -

24-h power loss [KW]

o
l

Fig. 4-10. Total system power loss for a 24-h operation

To illustrate the effectiveness of the proposed energy management model in terms of reactive
power controllability, EDS is operated with and without this feature and the obtained results are
compared. Fig. 4-11 shows the hourly voltage deviations as well as EDS total losses for the
operation horizon (24 hours). As it is seen, hourly voltage deviations have reduced as the reactive
power controllability is conducted for RES only, BES only and both RES and BES. On the other
hand, EDS total power loss has also reduced as the reactive power controllability takes place.
This shows that, the inverter-based operation of RES and BES can significantly improve the EDS

optimal operation in terms of both voltage regulation and power loss minimization.
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Fig. 4-11. Effects of inverter-based operation of RESs and BESs on voltage deviation and total power

loss

According to the inverter-based operation of RESs, it is the active and reactive power of

PVs/WFs that contributes in power flow constraints (5b)-(5c), i.e., P(]+1)t’ (]+1)t' Q(}+1)t’
ij‘il)t, while, these active and reactive shares of RESs are also presented in (4a)-(4b), forming
the apparent power of PVs and WFs, i.e., S/, Si/". In the following, the optimal decisions on

the active/reactive power of RESs has been given by Fig. 14. As it is seen, no active power has
been injected to bus 2 the during the whole operation horizon. Most of the injected power to bus
10 is also reactive power. The share of active power, however, is considerably higher than the
share of reactive power at buses 5, 13, and 26. These decisions have been optimally made
regarding the load level at each bus, value of loss and voltage deviation which have been

minimized by the objective function, and the BES charging/discharging power.
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Fig. 4-12. Inverter-based operation of RESs (active/reactive share of the injected power)

There are six battery storage systems throughout the EDS (see Fig. 4-4). These battery systems
are operated according to the inverter-based model (3), according to which the BES can absorb

active power in a specific time period and inject it back to the grid as reactive power in another
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. . . . P . pdis
time period, and vice versa, i.e., thg is not necessarily equal to Q’;S :
jt Jjt

The charging/discharging energy as well as active/reactive support of BESs have been
presented by Fig. 4-13. As it is seen at the right-hand side of Fig. 4-13, BESs are mostly charged
approximately between hours 1-4 and 13-17. The charging pattern of BESs is mostly due to the
surplus of power produced by WFs during under-load hours, while, the stored power by BESs is
discharged when RES generation drops, i.e., hours 5-10 and 17-23. Another reason of this
discharge is the increase in average load during hours 17-22. The share of active and reactive
power of BESs in both charging and discharging modes is given at the right-hand side of Fig.

4-13.
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Fig. 4-13. Inverter-based BES energy level and apparent charging/discharging power as well as

active/reactive share of BES power (right)

4.9. Conclusion

This chapter presented a new directly solvable energy management model for EDS to
minimize total power losses and bus voltage deviations by employing the arbitrage ability of
distributed battery energy storage systems and renewable energy sources. Two objectives were
considered in the model, including power loss minimization and voltage deviation minimization.
A new indexing for EDS buses was introduced which resulted in a general representation of EDS
power flow equations. These equations were then introduced as the constraints of the proposed
energy management model. Accordingly, the energy management model was able to be solved in
a single shot through GAMS solver package with no need to metaheuristic optimization methods.

The inverter-based operation (active and reactive power controllability) of RES and BES
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elements were also considered in the energy management model to enable a realistic operation of

these systems.

A comprehensive case study was conducted using the standard IEEE 33-bus system. The
optimality of the proposed power flow model was illustrated by comparing the obtained results
with those of the FBS method. The 33-bus system was further equipped by RES and BES
elements and the energy management model was conducted for a 24-h operation of the system.
According to the obtained numerical results, it was shown that the integration of RES and BES
elements can significantly reduce the EDS power loss and voltage deviations over time. This was
highlighted by investigating the effects of these elements on the standard deviation of voltage
magnitude over the 24-h operation horizon. It was also shown that the inverter-based operation of
RESs and BESs can play an important role in reducing system losses and smoothening the
voltage magnitudes as these two variables are strongly dependent on both the active and reactive

power flow in EDS.

The proposed model in this study can be employed by EDS operators to conduct day-ahead
EDS operations and evaluate the effects of inverter-based operation of RESs and BESs on the
system characteristics. The ability of the proposed model in being directly solved is another
contribution of this study which eliminated the need to iterative load flow calculation
methodologies as well as metaheuristic optimization techniques. The proposed inverter-based
operation in the energy management model can also be employed to integrate other elements

such as electric vehicle charging stations into electricity distribution system.

The energy management model in this chapter, will be used to investigate the effects of EV
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charging on distribution system. To do so, an EV model is developed in the next chapter.
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5. Load Modelling of EVs

This chapter presents a comprehensive investigation on the effects of EV employment of the

optimal operation of EDS. The developed energy management model in Chapter 4 is employed to
investigate the effects of EV employment on power loss and voltage deviations of EDS operation
at the presence of RES and BES systems. To do so, EV employment is modelled by probability
density functions throughout the EDS, considering different probability density functions. Two
types of EV charging is considered including fast and average speed charging. Different
scenarios are investigated to evaluate the EV load. The obtained load scenarios will be used in
Chapter 6 where the directly solvable energy management model is solved under uncertainty

through robust optimization. The effects of EV loading will be shown in Chapter 6 as well.

5.1. Charger type and EV brands considered in the load model

Combined Charging System inlet is considered as the charging system for EVs. The
Combined Charging System inlet is an industry-standard vehicle connector for convenient
charging of Plug-in Hybrid Electric Vehicles (PHEV) and Electric Vehicles. Type 2 inlets and

plugs support AC & DC Charging standards of Europe/Australia. This inlet is given by Fig. 5-1.

Fig. 5-1. Considered inlet for EVs
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The following vehicles in Table 5-1 are considered for fast and average charging patterns.

Table 5-1. Considered electric vehicles

Vehicle make and Vehicle view Battery | Charger | Driving | Charging | Charging

model Capacity Type Range time power

Hyundai Kona
Electric (slow
speed charging)

Type
64kWh $2/CCS 449 km 6 hours 9.4 kW

Nissan LEAF (fast

. a0kwh | TP | oa3km | 2hours | 17 kw
speed charging)

s2/CCS

5.2. Scenario No.1 of EV loading (100% fast charging EVs)

In this scenario 25 fast charging EVs are considered in an individual bus of the distribution
system. The distribution of the start of the charging time for these vehicles follows normal
distribution. However, the total value of the charging load on the bus is a summation of charging

power of EVs over time.
In the following, the EV charging load profile has been given by over 12 operating hours.
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Fig. 5-2. EV charging load profile for scenario No. 1 of EV loading (100% fast charging EVS)



https://www.carsales.com.au/editorial/details/hyundai-kona-electric-highlander-2020-review-127810/
https://www.carsales.com.au/editorial/details/hyundai-kona-electric-highlander-2020-review-127810/

A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

5.3. Scenario No.2 of EV loading (100% slow charging EVs)

In this scenario 25 slow charging EVs are considered in an individual bus of the distribution
system. The same as scenario No.1, the distribution of the start of the charging time for these
vehicles follows normal distribution. However, the total value of the charging load on the bus is a
summation of charging power of EVs over time.

In the following, the EV charging load profile has been given by Fig. 5-3 over 12 operating

hours.
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Fig. 5-3. EV charging load profile for scenario No. 2 of EV loading (100% slow charging EVS)

5.4. Scenario No.3 of EV loading (50% slow charging and 50% EVSs)

In this scenario 13 slow charging EVs as well as 13 fast charging EVs are considered in an
individual bus of the distribution system. The same as scenario No.1 and No.2, the distribution of
the start of the charging time for these vehicles follows normal distribution. However, the total
value of the charging load on the bus is a summation of charging power of EVs over time.

In the following, the EV charging load profile has been given by over 12 operating hours.

1
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Fig. 5-4. EV charging load profile for scenario No. 2 of EV loading (50% slow charging and 50% fast

charging EVs)

Note that, the above EV load models will be considered in the case study in Chapter 6, where
the robust optimization approach is conducted to characterize the uncertainties of load in the
energy management model which was presented in Chapter 4.

The EV model in this chapter will be used long side the energy management model in chapter

4, to investigate the effects of EV charging on distribution system.

y
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6.The Proposed BCD Robust Energy
Management model to Investigate the Effects
of EV Employment under Uncertainties of PV
and WT systems

This chapter presents a new robust energy management model as an extension to Chapter 4. In

Chapter 4, the new inverter-based directly solvable energy management model was introduced
for EDS. In this chapter, the associated uncertainties of renewables in EDS are considered into
account through robust optimization (RO). A new robust min-max-min optimization problem is
developed through a decomposition-based column-and-constraint generation technique. Block-
coordinate-descent (BCD) methodology is used to solve the inner max-min problem rather than
duality theory in conventional robust models. This enables a recourse-based characterization of
integer variables, such as BES charging/discharging status, which was not applicable in previous
robust models. A case study has been conducted for an EDS in Adelaide, South Australia
including 6 buses. The robust solutions are obtained for different scenarios of EV charging
pattern under uncertainty of renewables in EDS. The inverter-based operation of BES and RES

systems is also considered in the model.

6.1. Background and Motivation

To cope with the mentioned problems with SP and scenario-based models (as indicated in
Chapter 2), robust optimization (RO) has been employed in some recent studies to characterize
uncertainties [111]. The advantage of RO is that it models the uncertainties by worst-case
realization through bounded intervals, eliminating the need of scenario generation and

distributional knowledge of the uncertain parameters [34, 112]. Therefore, the obtained solutions

QA
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would be feasible as long as the uncertainty realizations are within the user-defined bounded
intervals, which makes it more reliable/practical than scenario-based and SP models in the

literature.

However, RO still faces some limitations in modelling uncertainties which is due to the use of
duality theory in solving it. In particular, duality theory is used in min-max-min RO problems to
transform the inner bi-level max-min problem into a solvable single-level max problem. A
Robust bidding strategy was proposed for a wind farm coupled with a storage system in [113].
However, binary variables, indicating buying/selling bids, were eliminated in the model to ease
the employment of duality theory. This results in export-only bidding which is not applicable in
practice. Duality theory was also employed in [114] to solve a robust model predictive control-
based bidding strategy for a wind-storage systems. However, the model of [114] was a single-
stage max-min problem only. Binary variables indicating BES charging/discharging status were
also eliminated in [115] to make it possible to conduct duality. Moreover, it was not possible to
consider both buying and feed-in-tariff for day ahead bids in [115] as no binary variable was used
to separate buying/selling status. This becomes important when the feed-in tariff is different than
the buying price. To be more realistic, the charging/discharging status of BES was modeled by
binary variables in [116]. However, the charging/discharging status of BES was characterized
before uncertainty realizations to be able to conduct duality theory with no binary variables
involved. Similar to [116], the charging/discharging status of BES was modeled before

uncertainty realizations in [117-119].

Note that, the mentioned RO studies in the literature have considered the uncertainties in their

models and their solutions have proven to be more efficient than the deterministic approaches.

919
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However, the BES charging/discharging binary variables have been eliminated or modeled in the
master problem. As a result, the worst-case realization of uncertainties is determined when these
variables are fixed in the sub-problem and therefore, these variables are not affecting the sub-
problem's objective function. In other words, these variables are obtained based on the primal
cuts, containing the worst-case realization of uncertainties in the master problem and have no
accountability in determining the worst-case realization itself. This means that, the sub-problem
is solved without considering the cross effects between Operation binary variables and

uncertainties. Therefore, the benefit of robust optimization has not been fully exploited.

6.2. Contributions

1) A robust optimization approach is proposed to solve the directly solved energy management
model in Chapter 4. To overcome the problems in scenario-based and SP models, a min-max-min
adaptive robust optimization is developed to characterize the uncertainties of renewables such as
PV and WT generation by polyhedral uncertainty sets instead of scenarios. The problem is solved
through a decomposition methodology and a column-and-constraint (C&C) generation technique
[34], recasting the tri-level problem into a first-stage min problem and a second-stage max-min

problem.

2) The proposed RO model employs Block Coordinate Descent (BCD) method [120], which
approximates the worst-case realization of uncertainties by means of Taylor series instead of
transforming the inner max-min problem into a single max problem by duality theory. BCD was
originally devised to deal with single-level problems. By extending the application of BCD
technique to solve the two-level max-min sub-problem (resulted from the C&C generation

technique), it is possible to avoid duality theory in solving the sub-problem. Since, dual of a



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

mixed-integer model is generally week, non-tractable and complicated [35], the extension of
BCD technique instead of duality theory eliminates the limitation in considering binary variables
in the max-min sub-problem. As a result, uncertainty-dependent binary variables such as BES
charging/discharging statuses can be obtained after uncertainty realization in the sub-problem as
recourse decisions, which was not applicable in previous dual-based RO models in the literature.
This results in more system flexibility in compensating the uncertainty effects such as PV/WT

shortage.

3) Since, no duality is conducted, BES status can be freely modeled with binary indicators.
This is the first application of min-max-min robust optimization in which binary variables are
modeled in the inner max-min problem. Note that, the proposed model in this study is called

"BCD robust", hereafter.

6.3. Two-stage Adaptive Robust Approach

In robust optimization, two main decisions are made including "here-and-now" decisions,
which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are
obtained after the realization of uncertain parameters. In this study, all operating variables in
EDS, i.e., power loss, voltage, power flow, etc., are considered as "here-and-now™ variables
which are obtained before uncertainty realizations (as a result of the finalized day ahead
operation of the system). Since, the uncertainties associated with PV/WT productions are realized
when scheduling BES and RES systems, the BES and RES active power as well as their inverter-
based relative power are considered as "wait-and-see™ decisions to compensate the effects of

uncertainties.
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The compact form of the proposed robust model is expressed through a tri-level min-max-min

optimization problem as (2).

Mingezi(A' - X + Maxgcgus Min, ez F',Y) (62)
s.t.

gl = {X € {0,1}"x | X > D} (6b)

EVS ={U e RVo | U = U + ydevt — ydev-} (6c)

g ={y e R | E(X,Y,0) > 0} (6d)

In (6a), the outer min problem minimizes the objective function over the sizing variables
which are obtained as "here-and-now" decisions. The expression A’ - X represents EDS power
flow variables. Therefore, outer min problem is subject to power flow equations in Chapter 4,
compactly expressed by (6b). The inner max problem maximizes the remaining term of the
objective function (expressed by F’,Y) over the worst-case realization of uncertain parameters,
while the inner min problem minimizes it over the BES/RES operation variables, considered as
"wait-and-see" decisions. Therefore, the inner max problem is subject to polyhedral uncertainty
sets, expressed by (6c), while, the inner min problem is subject to the BES/RES operation

constraints, presented by (6d).

6.4. Solution Methodology to Solve the Proposed Robust energy management
model

The tri-level optimization problem in (2a) cannot be solved directly. Therefore, a

decomposition methodology, by means of C&C technique [34], is employed to decompose the
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tri-level min-max-min problem to a single-level min problem and a bi-level max-min problem.
The single-level min problem is called "master problem™ and the bi-level max-min problem is
called "sub-problem”, hereafter. The proposed decomposition methodology is described through

the following steps:

Step 1) The master problem is solved to determine "here-and-now™ decision variables while

being subject to "here-and-now" constraints only. The compact form of master problem is given

by (6e)-(69).

ming.r Ay =A"-X+¥ (6e)

S.t.

Here-and-now constraints:

CX > D; X e {01}V« (67)

Primal cut constraints:

¥>F)Y; G-X+B'Y.+H-U°>K; c€EC (69)

In the above problem, (6e) presents the epigraph form of master problem which minimizes the
"here-and-now" terms of objective function, which are delivered from the sub-problem in
previous iteration of column-and-constraint methodology (if the first iteration, primal cuts are
replaced by constraints of the deterministic model). After achieving a solution in master-problem,
the obtained "here-and-now" variables, i.e., X are sent to the sub-problem as fixed values to

determine both "wait-and-see" decision variables, and the new worst-case realization of uncertain
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parameters including PV/WT generation.

Step 2) Given the obtained here-and-now variables, sub-problem is solved to determine
operation decision variables and worst-case realization of uncertain parameters. The vector of the

fixed "here-and-now" variables is shown by X¢ in the sub-problem which is given by (6h)-(6j).

Maxgczus Miny o F', Y (6h)

S.t.

Here-and-now constraints:

G-X+B-Y+H -U° >K; (61)

Uncertainty set constraints:

Uc=U + Udev+ _ Udev—; U¢ € RNo (6])

The objective function in (6h) minimizes the operating costs over "wait-and-see™ variables,
while, maximizing it over the worst-case realization of uncertainties. The obtained worst-case
realizations are then sent back to master problem as fixed values. In fact, in each iteration of the

decomposition methodology a new set of constraints (primal cuts) are added to master-problem.

Step 3) At the next iteration, master problem is solved, given the obtained worst-case
realization of uncertain parameters through primal cutting planes in previous iterations, in order
to find the new here-and-now decision variables to be sent to the sub-problem. The column-and-

constraint methodology iterates between master problem and sub-problem until the convergence
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criteria is satisfied (i.e., the value of master problem and sub-problem get sufficiently close).

Since, the inner max-min problem is a bi-level optimization model, it cannot be directly
solved. As indicated in the contributions, BCD technique is used to recast the bi-level max-min
problem into two single-level problems including a first-stage sub-problem, i.e., the inner min
problem, and a second-stage sub-problem, i.e., the inner max problem. Since, duality theory is
not used in the proposed robust model, it is possible to determine the binary variables in the sub-
problem as "wait-and-see” decisions. Therefore, despite the previous dual-based models, in
which BES charging/discharging status was obtained before uncertainty realization as "here-and-
now" variables, it is based on the worst-case realization of uncertainties and are treated as
recourse decisions (“wait-and-see™ decisions) in the BCD model. In the following sub-section,

the solving methodology for the sub-problem is described.

6.5. Block Coordinate Descent (BCD) Methodology to Solve the Sub-problem

The sub-problem is solved to determine "wait-and-see" variables at the presence of
uncertainties, and 2) the worst-case realization of uncertain parameters, given the fixed values of

here-and-now variables obtained by master problem.

Note that the standard application of the BCD method relies on the availability of an analytical
expression for the operating cost in terms of middle-level variables. In the absence of such an
expression in the max-min sub-problem, at each iteration of the proposed BCD method, the sub-
problem for operating/bidding variables is built upon the first-order Taylor series approximation
of the operating cost around the uncertainty realizations identified at the previous iteration.

Therefore, the max-min sub-problem in (6h) is recast into a first-stage and a second-stage sub-
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problem. The first-stage sub-problem is given as (6k)-(6m).

minY65u AII = F,, Y (6k)

PV-WT-BES operation constraints:

G-X‘+B-Y+H- U >K; (61)

Auxiliary constraints:

uce=U* : u=0; (6m)

Since, the here-and-now variables are fixed on their obtained values in master problem, the
power flow variables are not included in the first-stage sub-problem. Instead, it includes the BES
and RES operating constraints. Accordingly, the objective function (6k) minimizes the operating
costs over "wait-and-see" variables, while being subject to operating constraints and auxiliary
constraints representing the obtained worst-case realization of uncertainties by the second-stage

sub-problem in previous iteration of the BCD method , i.e., U~.

u is the vector of dual variables representing the sensitivity of objective function (6k) toward
uncertain parameters, including PV/WT production at each iteration z of the BCD method. These
dual variables are further employed to develop the first-order Taylor series in the second-stage

sub-problem only and no duality theory in conducted.

The second-stage sub-problem is built upon the first order Taylor series approximation of the
first-stage sub-problem over the uncertain parameters in previous iteration of BCD method, i.e.,

z — 1. Therefore, at iteration z of the BCD method, the second-stage sub-problem is cast as (6n)-
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(60).

maxgegus Ay = Ay + p- (U7 — U*H) (6n)

Uncertainty set constraints:

U? = ﬁ + Udev+ _ Udev—; U? € ]RNﬁ (60)

The second-stage sub-problem determines the worst-case realization of uncertain parameters
at each iteration z of the BCD method, by which the approximated objective function (6n) is
maximized. Constraint (60) expresses the deviation of uncertain parameters in positive and
negative directions. By solving the second-stage sub-problem, the worst-case realization of
uncertain parameters is determined to be sent to the first-stage sub-problem. The first-stage sub-
problem is solved given the fixed values of worst-case realizations in the second-stage sub-

problem.

This procedure continuous until the inner loop converges, i.e., the value of first-stage and
second-stage sub-problems become sufficiently close. Therefore, the methodology to solve the

min-max-min problem consists of two nested loops as follows:

Outer loop: The master problem communicates with the sub-problem through the outer loop,

conducting the C&C methodology,

Inner loop: The iterations between first-stage and second-stage sub-problems are directed

through the inner loop by means of BCD method.

Fig. 6-1. Outline of the proposed BCD robust methodology Fig. 6-1 gives the outline of the
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proposed methodology and the compact formulation of each problem. In Fig. 6-1, the outer loop

is shown by red lines and the inner loop is shown by blue lines.

/~ Master problem ™\

minger Aj=A4 -X+¥

Here and now constraints:

CX>=D; Xe{01}"x

Primal cut constraints:

¥>F,Y; G- X+B-Y,+H U >K; ce&’

A

Master problem is solved to determine here and now variables (forming
the objective function of master problem).

Worst-case realizations

—Yes of uncertainties

No—+

|Here and now variables are send to sub-problem

/~ Sub-problem \
/" First-stage sub-problem \

minyzn Ay = F,Y
BES and RES operation constraints:
»  G-X+B-Y+H-U° >K;
Auxiliary constraints:
Uc=U* : u=0;

First-stage sub-problem is solved to determine PV-WT-
BES operation constraints which should be obtained after
the worst-case realization of uncertainties provided by the
second-stage sub-problem in the previous iteration of the Yes

inner loop

7~ Second-stage sub-problem \

manEaUS AIII EAH + u- (UZ - UZ_I)
— Uncertainty set constraints:
U? =T + ydevt — ydev—. pyz ¢ RMo

Second-stage sub-problem is solved using first-order Taylor series of the
uncertainties to determine the worst-case realization of renewable
generation. The obtained worst-case realizations are then sent to the First-
stage sub-problem as fixed values

| Robust energy management solutions are obtained
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Fig. 6-1. Outline of the proposed BCD robust methodology

6.6. Numerical Study

The simulations in this section are conducted on a 6-bus real world EDS in Adelaide, South
Australia. Case study includes a PV and a WT system as well as a BES as indicated by Fig. 6-2.
The employed EVs are as indicated in Chapter 5. Voltage magnitude at slack bus is 12.66 kV
which is considered as the base value, while, the base value for power is 100 kVA. The obtained
load models in Chapter 5 are also used in the simulations in this chapter. The capacity of each
BES system is 400 kWh. The generated power of RESs throughout the network are given by Fig.
6-3 for the considered 12-hour operation in this study (as 24 hour operation requires more time to
solve, so for the sake of simplicity 12 hour operation is considred). The standard active/reactive
load of EDS system is used to generate a 12-h load pattern based on South Australia's daily
energy consumption pattern which has been taken from [110]. The uncertainty of PV and WT
system has taken into consideration through polyhedral uncertainty sets. The number of uncertain
PV and WT generation parameters is 24 including 12 uncertain parameters for each source in a
12-hour operation horizon. The considered deviation range of uncertainties is 10% in negative
direction for PV and WT generation to achieve the worst-case realization of uncertainties. The
10% deviation is just an indication of uncertainties. It can be biased based on any other case

study.
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Fig. 6-3. Generated power by PV and WT systems

Load of bus 4 and 6 have been given by Fig. 6-4, Fig. 6-5, and Fig. 6-6 with and without EV

charging patters for scenarios No.1, 2, and 3, respectively (see Chapter 5 for scenarios). As it is

seen, the load profile is smoother as the number of slow charging cars increases.

AR
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Fig. 6-4. Load of bus 4 and 6 with and without EV charging patterns — Scenario No.1 (100% fast

charging EVs)
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Fig. 6-6. Load of bus 4 and 6 with and without EV charging patterns — Scenario No.3 (50% slow
charging and 50% fast charging EVs)

In the following each scenario is considered for simulation which is based on the robust
optimization of the energy management model in Chapter 4, considering the EV charging
patterns in Chapter 5. However, a basic scenario is also conducted with no EV charging for
comparison purposes.

Considering scenario No.1 of EV charging patterns, the total hourly power loss of EDS is

obtained as Fig. 6-7.

0.04 B Total loss (Scenario 1)
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Fig. 6-7. Total hourly power loss of EDS for scenario No.1
As it is seen, the value of power loss has increased dramatically, compared to the “No EV”
scenario. This is due to the high increase in line current which has reached the maximum possible
line current in some lines. Moreover, the loss of each line follows the square of the current which
means small changes in current will result in high loss values on the line.
The value of voltage magnitude for each bus of the system has been given by Fig. 6-8. As it is

seen, the first bus has a higher voltage magnitude, and it reduces as we reach the last bus.
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However, the overall voltage deviation is not out of the allowable operating rate which is +5%.
The deviations of bus 6 of the system is more considerable as it involves bus load and EV

charging patterns which makes the voltage of this bus more dynamic compared to other buses.
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Fig. 6-8. Hourly voltage of each bus of EDS for scenario No.1

The BES optimal operation is given by Fig. 6-9 in which the BES energy level as well as
charging/discharging power is compared with the “no EV” scenario. As it is seen, the

performance of the battery in terms of discharging rate has changed in hours 6-10 where the EV

load increases dramatically (see Fig. 6-4).
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Fig. 6-9. BES performance in bus 3 for scenario No.1 compared to the base scenario (no EV)
The same set of data has been given for scenario No.2 which includes 100% of slow charging
EVs. As it is seen in Fig. 6-10, the power loss increased in the same way as scenario No.1. The
voltage behavior is also given by Fig. 6-11. As the same as scenario No.1, the voltage has dropped
a little at the first hour of the operation horizon and has increased in the last couple of hours in

buses 3-6.
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Fig. 6-10. Total hourly power loss of EDS for scenario No.2
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Fig. 6-11. Hourly voltage of each bus of EDS for scenario No.2
The BES operation including the energy level and the charging/discharging power in scenario
No.2 has been compared to “no EV” scenario in Fig. 6-12. As it is seen, the arbitrage ability of
BES has been used more in this scenario and it has been more charged/discharged in a higher
rate. The reason is that there is lower EV load in this scenario in some hours and therefore, the

BES can store more energy to discharge in required operating hours.
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Fig. 6-12. BES performance in bus 3 for scenario No.2 compared to the base scenario (no EV)

The complete set of results has been given by Fig. 6-13, Fig. 6-14, and Fig. 6-15 for scenario

YYo
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No.3 which includes 50% of fast charging EVs and 50% of slow charging EVs.
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Fig. 6-13. Total hourly power loss of EDS for scenario No.3
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Fig. 6-14. Hourly voltage of each bus of EDS for scenario No.3
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Fig. 6-15. BES performance in bus 3 for scenario No.3 compared to the base scenario (no EV)

The total loss of the system has been given by Fig. 6-16. As it is seen, the increase in fast
charging EV employment can significantly increase the EDS power loss as it involves more
sudden increasing load patterns over time. This is seen in the total loss of scenario No.1 which
has a considerably higher value compared to scenarios NO.2 and 3. This figure shows that the
matter of coordinate charging of EVs becomes more vital as the number of fast charging EVs

increases.
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Fig. 6-16. Total power loss of the system for each scenario

As it was shown in Chapter 4, the reactive power controllability of the energy management
model was useful for voltage control and reducing the deviations of the voltage over time.
However, the value of reactive power injected to the network, through inverters connecting PV
and WT to the grid, was limited to the total capacity of inverters according to equation (4) in
Chapter 4. Therefore, if reactive power is required, the inverter reasonably curtails a portion of
RES generation to enable some capacity for injecting reactive power to the network. However, if
more active power is required by the load, such as EV loads, the inverter reasonably injects more
reactive power as required by the load. This means at the presence of more reactive power
demand, the capacity of inverter becomes less for injecting reactive power. This has been shown
by Fig. 6-17 and Fig. 6-18 where the EV demand requires more active power and therefore, the
capacity of inverters for injecting reactive power becomes less than the base scenario where

inverters have enough capacity to inject more reactive power to network.
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Fig. 6-18. Injected reactive power from WT system

The increase in active power of PV and WT system is shown in Fig. 6-19 and Fig. 6-20. As it is
seen, the value of injected active power has reduced in the base scenario to inject more reactive
power which is due to the less demand of active power in base scenario (No EV demand in base
scenario). However, in all other scenarios all the active power of both PV and WT system has

been injected to the network as more active power is required at the presence of EVs.
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Fig. 6-19. Injected active power of PV to the grid
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Fig. 6-20. Injected active power of WT to the grid

6.7. Conclusion

This chapter presented an investigation on the effects of EV employment on distribution
system. In particular, the energy management of EDS was conducted based on the proposed
directly solvable energy management model at the presence of RES, BES, and EVs. As it was
shown the power loss of the system increased as the number of fast-charged EVs increases which

is because of the higher demand of these vehicles in a shorter period. Moreover, it was observed
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that the employment of EVs also affects the reactive power injection by RES and BES inverters.
As it was shown in the results, the value of injected active power reduced in the base scenario to
inject more reactive power which was due to the lower demand of active power in base scenario
(No EV demand in base scenario). However, in all other scenarios, all the active power of both
PV and WT system was injected to the network as more active power was required at the
presence of EVs.

The observations of this chapter showed that the employment of EVs can significantly affect

the EDS total power loss, reactive power controllability, and voltage deviations.
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7.Conclusion

The aims and objectives of this thesis was to investigate the effects of EV employment of EDS
operation variables such as voltage and power loss. In order to do these following aims were
developed and introduced:

e Providing an efficient energy management for electricity distribution system by

coordinated integration of RES and BES systems at the presence of EVs.

e Maximizing/Minimizing the integration/curtailment of renewable energy sources (RESS)

in electricity distribution system.

e Minimizing the overall system cost.

e Providing immunized solutions against the uncertainties associated with RES generation.

To do so, following contributions were introduced:

e Contribution 1: A novel directly solvable set of power flow equations,

Contribution 2: A general multi-objective energy management model for inverter-based

integration of RES, and BES system,

Contribution 3: Integration of EV loading into the energy management model and

investigating the effects of EV charging on EDS voltage and power loss,

Contribution 4: A new robust optimization model to characterize uncertainties of RESs

employing block coordinate decent method.

In Chapter 3, the directly solvable power flow model was introduced. The new directly
solvable EDS power flow model did not need iterative metaheuristic algorithms to solve
the power flow which was the main reason to be able to merge into any type of EDS study

concerning power flow. The efficiency of the proposed power flow model was validated
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by comparing the obtained results to those of the FBS method.

In Chapter 4, the energy management model for EDS was developed based on the merged
power flow equations from Chapter 3. Moreover, the inverter-based operation of RES and
BES systems was enabled in the proposed energy management model to provide more
efficient solutions. It was shown that slow charging patterns can results in more smooth
EV load patterns and vise versa.

In Chapter 5, the EV loading patterns were modeled through probability density functions
to form a loading profile over 12 operating hours in EDS. This data was then used in
Chapter 6 where the BCD robust optimization approach was used to solve the proposed
energy management model at the presence of BES, RES, and EVs. Moreover, the
uncertainties of RESs were applied in the robust model. By extending the application of
BCD technique to solve the two-level max-min sub-problem (resulted from the C&C
generation technique), it was possible for the first time to characterize BES
charging/discharging status in the inner max-min problem to be obtained after uncertainty
realizations, resulting in more practical/realistic solutions. Note that, this feature was not

applicable in conventional dual-based robust models in the literature.

According to the observations further studies can be conducted on optimal integration of

EVCSs in EDS operation using the proposed energy management model.

YYY



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

8. Published Studies Employing the Proposed
Robust and BCD Robust Optimization
Models

8.1 Application No. 1
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Adaptive Robust Recourse-Based Bidding Strategy and Capacity Allocation
of PV-WT-BES Owning Prosumers Under Uncertainties
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Mehrdad Aghamohamadi ; Amin Mahmoudi ; Mohammed H. Haque All Authors
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Adaptive Robust Recourse-based Bidding Strategy and Capacity Allocation

of PV-WT-BES Owning Prosumers under Uncertainties

Abstract - This paper presents an adaptive robust co-optimization for capacity allocation and
bidding strategy of a prosumer equipped with photovoltaic system (PV), wind turbine (WT), and
battery energy storage (BES). The uncertainties of load and PV/WT productions are modeled
through controllable user-defined polyhedral uncertainty sets. The proposed co-optimization
determines the optimal capacity of PV-WT-BES, while, maximizing prosumer's benefit by 1)
optimal self-scheduling of PV-WT-BES, and 2) effective interactions with grid through optimal
buying/selling bids under uncertainties. In previous min-max-min robust models, it was not

possible to characterize bidding strategy binary variables as recourse decisions which was due to
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the use of duality theory in solving the inner max-min problem (duality theory is week and non-
tractable in the presence of binary variables). In this study, Block Coordinate Descent (BCD)
method is used to solve the inner max-min problem by means of Taylor series instead of
transforming it into a single-level max problem by duality theory. As a result, prosumer’s bidding
status (indicated by binary variables) can be successfully modeled as recourse decisions which
makes the obtained solutions more realistic and robust. Linearization of the dualized inner
problem is also avoided as Lagrange multipliers are eliminated. A post-event analysis is
developed to avoid over/under conservative solutions and to determine the optimal robust settings
of the model. A comprehensive case study is conducted for an industrial prosumer. To illustrate
the effectiveness of the proposed BCD robust model, its long-term performance is compared with
conventional dual-based models in the literature. Results show 10% long-term cost reductions

when using the proposed model under uncertainties.

Index Terms— Battery storage system, Block coordinate descent, Capacity optimization,

Prosumer, Robust optimization, Renewable energy.

NOMENCLATURE
A. Indices
c Index of iterations in C&C methodology.
dlt Index of day/hour.
n Index of BES replacements.
s Index of post-event trial scenarios.
z Index of iterations in BCD methodology.
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B. Parameters

Amax Maximum number of PV units.
Bax Maximum number of BES units.
crY Price of each PV unit.
cv Price of each WT unit.
chat Price of each BES unit with the capacity of E’'.
E! BES losses in each scheduling time step.
Eint Initial SOC for each BES unit.

i Minimum allowable energy for each BES unit.
E' Capacity of each BES unit.
Lai/Lge Forecasted/Uncertain load in hour t of day d.
LevE Deviations of Lg,.
poevt Maximum value of L%"*.
Lats Load in sth post-event trial scenario.
M Sufficiently large constant.
Ny Number of start-up variables in vector X.
Ny Number of uncertain parameters in vector U.
Ny Number of operation variables in vector Y.
PY.IPY, Forecasted/Uncertain generation for each PV unit.
Py, PV generation in sth post-event trial scenario.
PYIPY. Forecasted/Uncertain generation for each WT unit.
PY. WT generation in sth post-event trial scenario.

PuieE pwtert Deviations of PY,/PY,.
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D. Variables
A

AC

waevt

dev: devt

Maximum value of P}, i/Pc‘{’t
Minimum/Maximum allowable range of P}
Minimum/Maximum allowable range of PS#t.
Minimum/Maximum allowable range of P
Minimum/Maximum allowable range of P,
NPV coefficient for BES replacements.
NPV coefficient for annual values.
Number of scheduling time periods in each day.
Maximum number of WT units.
Maintenance cost as a percentage of CAPEX.
Electricity price in hour t of day d.

Efficiency of charge controller/inverter/converter.

Charging/discharging efficiency of BES.

Feed-in tariff price for electricity export to network.

Set of iterations in C&C methodology.
Set of days.
Set of "here-and-now"/"wait-and-see" variables.

Set of BES replacements/operational hours/uncertainties.
Integer variable indicating the number of PV units.

Fixed value of A in sub-problem at iteration c.

Integer variable indicating the number of BESs.
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E. Vectors/Matrices

Fixed value of B in sub-problem at iteration c.

Battery SOC in hour t of day d.

Imported electricity from network in hour t of day d.

Exported electricity to network in hour t of day d.

Inverter output power in hour t of day d.

Inverter input power in hour t of day d.

Generated electricity by WT units in hour t of day d.

Generated electricity by PV units in hour t of day d.

BES charging power in hour t of day d.

BES discharging power in hour t of day d.

Integer variable indicating the number of WT units.

Fixed value of W in sub-problem at iteration c.

Binary variable indicating energy importing/exporting status in hour t of day d.
Binary variable indicating charging/discharging status of BES in hour ¢t of day d.
Indicator for deviation of L ;.

Indicator for deviations of PY,/P},.

Axillary variables.

Value of master problem.

Value of first-stage sub-problem.
Value of second-stage sub-problem.
Auxiliary continuous variable.

Uncertainty budget.
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AF Coefficient matrices of objective function.

B,C,E,G,H/D,K Coefficient/requirement vectors.

U Vector of forecasted value of uncertain parameters.

ydevt/ydev- Vector of positive/negative deviation of U.

U Vector of uncertain parameters.

X/Y Vector of sizing/scheduling variables.

X°/Y, X/Y at iteration c of the C&C method.

Uc Worst-case realization of uncertain parameters in sub-problem to be send to master

problem as fixed values.
U+ Obtained worst-case realization of uncertain parameters in second-stage sub-problem.

u Vector of dual variables.

l. INTRODUCTION

A. problem description

Renewable energy sources (RESs) are boosting the evolution of energy systems worldwide
[121]. The huge share of solar photovoltaic systems (PVs) as well as small-scale wind turbine
(WT) employments have introduced some unexpected challenges such as energy imbalance, extra
costs, and out-of-bid penalty allocations for RES-based prosumers [122]. To cope, battery energy
storage (BES) systems have been employed by prosumers to a) provide more flexibility in market
participation, and b) avoid out-of-bid power trades with upstream network [123-125]. Although,
the integration of PV, WT and BES (PV-WT-BES) can provide a promising operational status,

the arbitrage ability of prosumers cannot be fully exploited if their bidding strategy is scheduled
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regardless of uncertainty realizations. This is because, the associated costs/benefits of the system
are considered in the long-term planning such as capacity allocation solutions. Therefore, if the
short-term schedule is obtained with no uncertainty characterization, the obtained capacity
allocation solutions would not be exact and practical and may result in extra costs for both short-
term and long-term performance of the system. Therefore, further studies are required to provide
realistic solutions for capacity allocation and bidding strategies of PV-WT-BES systems,
considering the cross effects between short-term and long-term planning of such a system. In
fact, the bidding strategies need to be modeled as recourse decisions after uncertainty realizations
to be practical [126]. However, this is not applicable in the current robust optimization
approaches as characterizing binary recourse variables (indicating buying/selling bids) is
impossible due to the use of duality theory in these approaches. This is because, dual of a mixed-
integer model is generally week, non-tractable and complicated [35]. Accordingly, the optimality
of PV-WT-BES sizing solutions becomes questionable as it depends on the benefits associated

with bidding strategy [127].

Therefore, further uncertainty modeling approaches are required to model prosumer's bidding
strategies as recourse decisions to be obtained after uncertainties, resulting in more practical and

realistic operation and capacity allocation solutions.

B. Background

Partial study has focused on characterizing uncertainties with sizing and bidding strategy of
PV-WT-BES owning prosumers. Uncertainties of PV/WT generation and load were modeled by

typical scenarios in [128]. Monte Carlo simulation was performed in [129] to model RES
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uncertainties through scenario generation. Uncertainties of wind production were captured by
probability density functions in [130]. However, scenario-based models [128, 129] and the
probabilistic model of [130] require a full distributional knowledge of uncertain parameters
which may not be easily available in practice [7]. To obtain more reliable solutions, optimal
sizing of a PV-battery system was modeled through stochastic programing (SP) in [131]. SP was
employed to model the uncertainties of solar radiation, wind, and load in BES sizing approach in
[132]. In [133] the bidding strategy of a virtual power plant was conducted under a considerable
number of uncertainty realization scenarios for electricity price and electric vehicle behavior
through SP. The uncertainty of electricity price was characterized through SP in [134]. Despite
the advantages of the aforementioned SP models, they are subject to a high computation time
which is due to the huge number of uncertainty scenarios. To cope, a backward scenario
reduction method was employed in [135] to decrease the computation time. Although, scenario
reduction can accelerate the computation time in SP but it faces the lack of tractability which is
due to the required distributional knowledge of uncertain scenarios, especially, when several
uncertain parameters are considered and a proper level of feasibility against different uncertainty
realizations is required (this may not be practical in practice) [136]. Moreover, if the uncertain
parameters deviate from scenarios, performance of SP cannot be guaranteed. This issue is also

true for Monte-Carlo and probabilistic methods.

To cope with the mentioned problems, robust optimization (RO) has been employed in some
recent studies to characterize uncertainties [111]. The advantage of RO is that RO models the
uncertainties by worst-case realization through bounded intervals, eliminating the need of

scenario generation and distributional knowledge of the uncertain parameters [34, 112].
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Therefore, the obtained solutions would be feasible as long as the uncertainty realizations are
within the user-defined bounded intervals, which makes it more reliable/practical than scenario-

based and SP models in the literature.

Motivations Proposing a co-optimization model for Benefits
Optimal capacity of PV-WT-BES system is dependent on simultaneous optimal capacity allocation and Thfh|0”9’t§em: Cap:‘%“)’ a;'LOCaIIOH_d:!C[;SIQ?ﬁ a':e ﬁbtlalneg_z?ﬁw on
optimal bidding strategy of the system under uncertainties bidding strategy of the PV-WT-BES system - € optimal cost-benerits associated with short-term bidding

L strategy under uncertainties
under uncertainties 9y

Scenario-based models require a full distributional knowledge . L . . .
of uncertainties which may not be applicable in practice I Conducting a min-max-min robust optimization No scenario generation is required and the obtained solutions are
model to characterize the uncertainties of load obtained with a lower computational time
> and PV/WT generation by their worst-case The obtained solutions are feasible as long as the uncertain

realization through polyhedral uncertainty sets g parameters are within the bounded intervals defined by polyhedral
I ’ instead of scenarios uncertainty sets

For large-scale models, SP is subject to a considerable
computational time and non-tractability in some cases

If uncertainties deviate from the considered uncertainty

scenarios, the solution becomes infeasible Contribution 1
The bidding strategy is a two-way energy trading scheme and is
The use of duality theory in conventio_nal_RO model_s results in Contributions 2 and 3 r obtained after uncertainty realizations as recourse decisions
Export-only or non-recourse bidding strategies L’ Employing BCD technique in solving sub- The proposed bidding strategy can consider different energy
The use of duality theory eliminates the possibility of _r’ problem instead of using duality theory LS prices for buying and selling bids while being obtained after
allocating different prices for buying and selling bids uncertainties

Fig. 1. Motivations, contributions, and benefits of the proposed model.

However, RO still faces some limitations in modelling uncertainties which is due to the use of
duality theory in solving it (duality theory is used in min-max-min RO problems to transform the
inner bi-level max-min problem into a solvable single-level max problem). A Robust bidding
strategy was proposed for a wind farm coupled with a storage system in [113]. However, binary
variables, indicating buying/selling bids, were eliminated in the model to ease the employment of
duality theory. This results in export-only bidding which is not applicable in practice. Duality
theory was also employed in [114] to solve a robust model predictive control-based bidding
strategy for a wind-storage systems. However, the model of [114] was a single-stage max-min
problem only. Bidding binary variables were also eliminated in [115] to make it possible to
conduct duality. Accordingly, it was not possible to consider both buying and feed-in-tariff for
day ahead bids in [115] as no binary variable was used to separate buying/selling status. This

becomes important when the feed-in tariff is different than the buying price. To be more realistic,
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the buying/selling status of bidding strategy was modeled by binary variables in [116]. However,
the buying/selling status was characterized before uncertainty realizations to be able to conduct
duality theory with no binary variables involved. Similar to [116], the buying/selling status of

prosumer was modeled before uncertainty realizations in [117-119].

Note that, the mentioned RO studies in the literature have considered the uncertainties in their
models and their solutions have proven to be more efficient than the deterministic approaches.
However, the bidding binary variables have been eliminated or modeled in the master problem.
As a result, the worst-case realization of uncertainties is determined when these variables are
fixed in the sub-problem and therefore, these variables are not affecting the sub-problem'’s
objective function. In other words, these variables are obtained based on the primal cuts,
containing the worst-case realization of uncertainties in the master problem and have no
accountability in determining the worst-case realization itself. This means that, the sub-problem
is solved without considering the cross effects between bidding strategy and uncertainties.

Therefore, the benefit of robust optimization has not been fully exploited.

C. Motivations

Ignoring the effects of uncertainties on bidding strategy, (determining buying/selling status
before uncertainty realizations but not as recourse decisions to be obtained after uncertainty
realization) is not realistic, as in practice, the bidding strategy should be modified when
uncertainties of renewables and load arise. This also affects the system sizing solution as it is
based on the benefits arisen from bidding strategies (Prosumer's benefit is directly dependent on

the optimality of the bidding strategy). Based on the literature therefore, there is a lack of
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viability in the existing robust bidding strategies which is due to the following reasons:

1) Probabilistic, Scenario-based, and SP models may become infeasible and non-tractable in

complex and large-scale cases.

2) In some RO studies, bidding binary variables were eliminated to enable the application of

duality theory. This results in export-only bidding and non-flexible feed-in tariff pricing.

3) Although, bidding binary variables were modeled in some recent RO studies, these
variables were characterized before uncertainty realizations so the duality could be conducted
with no binary variables involved. Therefore, the bidding solutions were obtained ignoring the

uncertainties.

D. Contributions

This paper is a continuation of an earlier work [137] in which duality theory was conducted to
solve the inner max-min problem. Regarding the three aforementioned drawbacks of employing
duality theory in the previous subsection (C. Motivations), the following contributions are

presented in the proposed model:

1) A robust sizing/scheduling co-optimization is proposed for a PV-WT-BES owning
prosumer which determines the optimal system capacity while maximizing the prosumer's
benefits by optimal scheduling of PV-WT-BES system and effective electricity buying/selling
bids. To overcome the problems in scenario-based and SP models, a min-max-min adaptive
robust optimization is developed to characterize the uncertainties of prosumer's load and PV/WT

generation by polyhedral uncertainty sets instead of scenarios. The problem is solved through a
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decomposition methodology and a column-and-constraint (C&C) generation technique [34],
recasting the tri-level problem into a first-stage min problem and a second-stage max-min
problem. Since the proposed RO model characterizes uncertainties by their worst-case
realization, there is no need to scenario generation nor the distributional knowledge of
uncertainty scenario. Therefore, the obtained RO solutions are feasible as long as the

uncertainties are within bounded intervals of polyhedral uncertainty sets.

TABLE I. Advantages of the proposed model compared to the literature

Reference No. Uncertainty Consideration | Recourse-based | Recourse-based | Scheduling Capacity
modelling approach of RES/BES BES operation | bidding strategy allocation
[9] Scenario-based PVIWT/BES | X x x 4
[10] Scenario-based PVIWT/BES | X x v 4
[11] Scenario-based WT/BES x x x v
[13] Sp PV/BES x x v v
[14] SP PV/WT/BES £ £ v 4
[15] SP PV/BES x v v x
[16] SP PV/WT/BES 4 £ v £
[17] Sp PV/IWT/BES | ¥ v v x
[18] Scenario-based PV/BES x x v x
[19] Dual-based RO WT x x v x
[20] Dual-based RO - x x v x
[22] Dual-based RO WT/BES x x 14 x
[23] Dual-based RO WT/BES x x 4 x
[24] Dual-based RO PV/BES x x 4 v
[25] Dual-based RO WT/BES £ £ 4 £
[26] Dual-based RO PV/BES x x v x
[27] Dual-based RO WT/BES x x v x
[28] Dual-based Affinely | PV/BES x x 4 x
RO
Proposed model | BCD robust PVIWT/BES | ¥ v 4 v

2) The proposed RO model employs Block Coordinate Descent (BCD) method [120], which

approximates the worst-case realization of uncertainties by means of Taylor series instead of
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transforming the inner max-min problem into a single max problem by duality theory. BCD was
originally devised to deal with single-level problems. By extending the application of BCD
technique to solve the two-level max-min sub-problem (resulted from the C&C generation
technique), it is possible to avoid duality theory in solving the sub-problem. Since, dual of a
mixed-integer model is generally week, non-tractable and complicated [35], the extension of
BCD technique instead of duality theory eliminates the limitation in considering binary variables
in the max-min sub-problem. As a result, uncertainty-dependent binary variables such as
buying/selling bids and BES charging/discharging statuses can be obtained after uncertainty
realization in the sub-problem as recourse decisions, which was not applicable in previous dual-
based RO models in the literature. This results in more system flexibility in compensating the

uncertainty effects such as PV/WT shortage or sudden increase in load.

3) Since, no duality is conducted, prosumer's power trading with upstream network can be
freely modeled with binary indicators, resulting in a two-way power trading scheme instead of an
export-only bidding strategy such as [113]. Followed with the same reason, it can model both
buying and selling bids with different buying and feed-in tariff prices. To the best of authors'
knowledge, this is the first application of min-max-min robust optimization in which binary
variables are modeled in the inner max-min problem. The motivations, contributions, and the
associated benefit with each contribution are summarized in Fig. 1. Note that, the proposed

model in this study is called "BCD robust", hereafter.

E. Validation

The following validations are conducted in order to demonstrate the effectiveness of the
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proposed BCD robust model:

1) The obtained BCD robust solutions are examined against a sufficiently large number of

uncertainty realizations through a post-event analysis.

2) Long-term performance of the optimal BCD robust solutions is compared to the solutions
obtained based on conventional dual-based robust models such as [116-119] in which bidding

strategy decisions are made prior to uncertainties.

F. Significance compared to the literature

The advantages of the proposed BCD robust co-optimization model are compared to the
previous models in the literature in Table 1. As it is seen, only some SP models, i.e., [15-17],
have considered recourse-based bidding and BES operation which is due to the fact that SP does
not involve duality in its solving methodology. However, no capacity allocation was considered
in these studies. Moreover, SP may become infeasible and non-tractable in complex and large-
scale cases (See Section I.A). In particular, the advantages of the proposed BCD robust co-

optimization model are as follows:

It considers the correlation between optimal bidding strategy of the system and its capacity

allocation, which is more practical than considering these problems individually,

There is no need to scenario generation techniques as robust optimization is used instead of SP

which characterizes uncertainties by their worst-case realization,

Due to the employment of BCD technique instead of duality theory in solving the inner max-

YYV
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min sub-problem, it is possible to model bidding variables as well as BES variables as recourse

decisions after uncertainty realization which is more realistic in practice.

Since there is no limitation in modelling recourse-based binary variables in the proposed BCD
model, it is also possible to have two-way bidding with different buying/selling prices, while,
these variables are obtained as recourse decision which was not possible in conventional dual-

based models.

1. DETERMINISTIC PV-WT-BES SIZING/OPERATION MODEL

Fig. 2 represents the configuration of PV-WT-BES system, its interactions with upstream
network, and the energy flow through each element, as per the notations in nomenclature. The
inverter in Fig. 2 is responsible for synchronizing the injected power to the network. The
objective of the deterministic model is to minimize system costs that includes capital
expenditures (CAPEX), operational & maintenance expenditures (OPEX), and energy costs. The

proposed deterministic model is formulated as (1).

! r Lae ~— Ly = Pl +Pii — P§*; vd € EP; ve € ET;
D — D —
mlli 4

t
h pou
Load pattern T Pie dt

35 W nmaeree
— ACIDC

chg s converter
Pdr T Pt
—
B —
Pdlc

B

Py, =W Py -n®"; vd € EP; vt € ET

A
\J

dt
@ DC/DC
Py, =A-Pj, -n; vd € EP; vt € ET converter

—

Fig. 2. Considered PV-WT-BES configuration and its energy flow.
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M1= NPV of System CAPEX
Min A-CPY + W - C¥ + Y,,ean B - CR% - Qb7 +

M2= NPV of maintenance costs

M3= NPV of energy costs

Y Q- (A-CPY+ W - C¥ + B~ CP%) + + Q%"  Tyezn Leesr (P} - Tae

S.t.

AC/DC Power flow constraints:

L =PI + P — PS*; vd € EP; vt € ET;

Pl = P5, -n"; vd € EP; vt € ET

P, = Py + PY, — P9 + Pgls; vd € 2P; vt € ET
PV/WT generation constraints:

Py, = A-Pj -n°; vd € EP; vt € ET
PY. =W - P} -n"; vd € EP; vt € ET

BES operational constraints:

h i 1
Eqr = Ed(t—l) + (Pdct 7 '77Chg - gtls 'ndis) - At

—E'-B; vd € EP; vt € =T

YiesT (P{fthg -n°hI — PG - nallis) =E'“B-T; vd € EP

(1a)

~ Pg6);

(1b)

(1c)

(1d)

(1e)

(1f)

(19)

(1h)
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Eqgt=0y = E™ - B; vd € EP

PEh . g9 < PP < P9 . g9, vd € EP; Ve € ET

min ~ Xat max " Xae

PdiS

min

M- x5 < oM < M- xS vd € EP; vt € BT

B-M-(1-x59) <af? <B+M-(1-x39);
vd € EP; vt € ET

—M - x4 < afls < M- x5 vd € EP; vt € ET

B-M-(1—x%)<alf <B+M-(1-x3);
vd € EP; vt € ET

tin'B<Egq <B-E';vd € EP; vt € ET

xS 4 x35 < 1; vd € EP; vt € ET
Upstream network interaction constraints:

pin . xt < pit < pin - x vd € EP; vt € ET

out
Pmin

dis dis di dis, =D. =T
'Oldt SPdt SPméfx'adt,VdE._‘ ,VtE._.

out out out out, =D, =T
'xdt SPdt SPmax'xdt,VdE-,VtEu

(1)

(1)

(1K)

(1)

(1m)

(1n)

(10)

(1p)

(10)

(1n

(1s)
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x4+ x9% < 1; vd € EP; vt € ET (1t)

Allowable sizing limitation constraints:

A < Apmaxs (1u)
B < Bpax; (1v)
W < Wiax (1W)

The objective function (1a) involves three terms M1, M2 and M3. Term M1 minimizes the
net present value (NPV) of CAPEX which includes the cost of PV-WT-BES installation and
replacement during the planning horizon. The inverter cost has been considered as a part of BES

cost, while, the charge controller and converter costs are considered as a part of PV and WT

costs, respectively.

-
-

Charging Standby Discharging
= Mode Mode Mode
X 1 ,Chg
Z ES(m )
) !
2l Ey
Ll
Q]i g Edl dis
E ‘ Q"
k \ 4 Ek
Begin End Begin End Time
Charging Charging Discharging Discharging

Fig. 3. Dynamic changes of state-of-charge (SOC) of BES

The NPV of annual OPEX, includes maintenance costs, i.e., M2, and energy cost, i.e., M3.

M2 represents a pre-determined percentage of PV-WT-BES installation cost, excluding
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replacement costs, while the annual energy costs including electricity buying/selling bids are
optimized through M3. In fact, M3 maximizes the annual benefits of PV-WT-BES through its

interactions with grid.

The objective function is subject to constraints (1b)-(1w). The power flow through the PV-
WT-BES system is expressed by constraints (1b)-(1f) (see Fig. 2). Accordingly, constraint (1b)
represents the AC power flow between inverter, load, and upstream grid. The power flow through
the inverter is modeled by (1c). The DC power flow between inverter, BES charging/discharging,
and PV-WT system is also given by constraint (1d). Note that the assumed configuration for PV
panels is parallel. Therefore, the total generated power is calculated by (1e), regarding the
number of installed PV panels (i.e., A) with the capacity of PY,. Constraint (1f) presents the
available power outputs for WT, considering the number of installed units (i.e., W) with the
capacity of PY;,. Constraints (1b), (1d) and (1e)-(1f) are shown in Fig. 2 along with the related

junction points.

The dynamic behavior of BES and its SOC has been illustrated in Fig. 3. As it is shown, the
charging and discharging status are subject to loss of energy, i.e., Et and E%, respectively,
which is due to the storage efficiency in charging/discharging mode. Moreover, each storage is
subject to steady-state mode losses. Accordingly, the dynamic energy balance for storage k
representing battery state-of-charge (SOC) is expressed by (1g). At the final operational time
period, BES must have the same SOC as the first time period which is known as end-coupling
constraint and is expressed by (1h). Note that, At in (1g) is 1 hour. Constraint (1i) indicates the

initial SOC of battery at the first operating period of each daily operation horizon which is
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provided at the last operation period of the previous day. The BES charging and discharging rates
are limited to the allowable ranges by constraints (1j) and (1k), respectively. Note that constraints
(1)) and (1K) represent the allowable charging and discharging rate of the entire battery bank.
Therefore, the number of BESs in the battery bank must be multiplied with the binary variables

x5M9 and x3!° to represent the maximum/minimum allowable ranges for the battery bank (PorS,

PEhd. pdis - pdis account for each individual BES). To avoid non-linearity (products of

x;’;g/xggs and B) big-M linearization technique is used to develop a linear model. Accordingly,
auxiliary constraints (11)-(10) illustrate the linear relationship between BES charging/discharging
rate and two other decisive variables including sizing variable B, as the available BES capacity,
and binary variables x(‘;?g and x4, indicating charging/discharging status of BES. Constraint
(1p) limits the BES SOC to its minimum/maximum values with regard to the number of installed
BESs (i.e., B) with the capacity of E’. The BES can either be charged, discharged, or out of
operation at a time, regarding constraint (1q). Constraint (1r)/(1s) represents the allowable range
of power trade through buying/selling bids by means of binary variables xJ¢/x3%. Constraint (1t)
ensures that the prosumer can either buy or sell electricity at each operation time-step. If xJ¢ +

x9*t = 0 means no energy trading is happened. Finally, the number of installed PV panels, WTs,

and BESs are limited to their allowable ranges by constraints (1u)-(1w).
I11.  BCD ROBUST PV-WT-BES SIZING/SCHEDULING MODEL

As seen from the proposed deterministic model, the uncertainties associated with prosumer's
load and PV/WT generation are ignored as they are substituted by their forecasts i.e., Lz, and

PY. /Py, in the deterministic model (1), respectively. Therefore, the obtained solutions from
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solving this deterministic model would not be feasible if the uncertain parameters deviate from
their forecasts. To have a reliable sizing/scheduling, these uncertainties have been characterized

through a BCD robust model in this section.

In robust optimization, two main decisions are made including "here-and-now" decisions,
which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are
obtained after the realization of uncertain parameters. In this study, sizing variables including the
number of PV panels, WTs, and BES units i.e., A, B, and W, respectively, are considered as
"here-and-now" decisions which are obtained before uncertainty realizations. Since, the
uncertainties associated with load demand and PV/WT productions are realized when scheduling
PV-WT-BES system (after installation), the operation variables (i.e., all variables excluding

sizing variables A, B, and W) are considered as "wait-and-see" decisions.

The compact form of the proposed BCD robust model is expressed through a tri-level min-

max-min optimization problem as (2).

Minyczr(A’ - X + Maxgezus Miny ez F', Y) (22)
s.t.

gl = {X €{0,1}"x | CX = D} (2b)

EVS ={U eRVo | U =0+ Ut — ytev-} (2¢)

el ={y eR" | E(X,Y,0) = 0} (2d)

In (2a), the outer min problem minimizes the objective function over the sizing variables
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which are obtained as "here-and-now" decisions. The expression A" - X represents terms M1 and
M2 of the objective function (1a) containing sizing decision variables. Therefore, outer min
problem is subject to sizing constraints (1u)-(1w), compactly expressed by (2b). The inner max
problem maximizes the remaining term of the objective function (i.e., term M3 expressed by
F',Y) over the worst-case realization of uncertain parameters, while the inner min problem
minimizes it over the operation variables, considered as "wait-and-see" decisions. Therefore, the
inner max problem is subject to polyhedral uncertainty sets, expressed by (2c), while, the inner
min problem is subject to the operation constraints, presented by (2d). In fact, (2d) represents the

set of constraints (1b)-(1t).

A. Solution Methodology to Solve the Proposed Robust PV-WT-BES Sizing/Bidding

Problem

The tri-level optimization problem in (2a) cannot be solved directly. Therefore, a
decomposition methodology, by means of C&C technique [34], is employed to decompose the
tri-level min-max-min problem to a single-level min problem and a bi-level max-min problem.
The single-level min problem is called "master problem" and the bi-level max-min problem is
called "sub-problem”, hereafter. The proposed decomposition methodology is described through

the following steps:

Step 1) The master problem is solved to determine "here-and-now™ decision variables
including PV, WT, and BES sizing solutions while being subject to sizing constraints only.
Therefore, the objective function (3a) includes the terms M1, and M2 of the deterministic

objective function (1a). Therefore, the objective function (3a) includes the terms M1, and M2 of

Y¢éo
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the deterministic objective function (1a). It is also subject to constraints (1u)-(1w) including

sizing variables. The compact form of master problem is given by (3).

ming.r Ay =A"-X+¥ (3a)

S.t.

Sizing constraints:

CX > D; X €{0,1}Vx (3b)

Primal cut constraints:

¥>F,Y; G- X+B-Y,+H-U°>K; ceEC (3¢)

In the above problem, (3a) presents the epigraph form of master problem which minimizes the
"here-and-now" terms of objective function, i.e., , while, being subject to sizing constraints in
(3b) and primal cuts in (3c) which are delivered from the sub-problem in previous iteration of
column-and-constraint methodology (if the first iteration, primal cuts are replaced by constraints
of the deterministic model). After achieving a solution in master-problem, the obtained "here-
and-now" variables, i.e., X (representing A, B and W), are sent to the sub-problem as fixed values
to determine both "wait-and-see” decision variables, i.e., PV-WT-BES scheduling/bidding

variables, and the new worst-case realization of uncertain parameters.

Step 2) Given the obtained sizing decision variables, sub-problem is solved to determine
operation decision variables (including system scheduling and prosumer's bidding strategy) and

worst-case realization of uncertain parameters. The vector of the fixed "here-and-now" variables
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Is shown by X¢ in the sub-problem which is given by (4).

Maxgczus Miny o F', Y (4a)

S.t.

PV-WT-BES operation constraints:

G-X+B-Y+H -U° >K; (4b)

Uncertainty set constraints:

Ut = ﬁ + Udev+ _ Udev—; US € ]RNH (4C)

The objective function in (4a) minimizes the operating costs over "wait-and-see™ variables,
while, maximizing it over the worst-case realization of uncertainties. The obtained worst-case
realizations are then sent back to master problem as fixed values. In fact, in each iteration of the

decomposition methodology a new set of constraints (primal cuts) are added to master-problem.

Step 3) At the next iteration, master problem is solved, given the obtained worst-case
realization of uncertain parameters through primal cutting planes in previous iterations, in order
to find the new sizing decision variables to be sent to the sub-problem. The column-and-
constraint methodology iterates between master problem and sub-problem until the convergence

criteria is satisfied (i.e., the value of master problem and sub-problem get sufficiently close).

Since, the inner max-min problem is a bi-level optimization model, it cannot be directly

solved. As indicated in the contributions, BCD technique is used to recast the bi-level max-min



A BCD Robust directly Solvable Inverter-based Energy Management Model to Investigate the effects of Electric Vehicle
Employment on Distribution System

problem into two single-level problems including a first-stage sub-problem, i.e., the inner min
problem, and a second-stage sub-problem, i.e., the inner max problem. Since, duality theory is
not used in the proposed robust model, it is possible to determine the bidding binary variables in
the sub-problem as "wait-and-see" decisions. Therefore, despite the previous dual-based models,
in which bidding strategy was obtained before uncertainty realization as "here-and-now"
variables, the obtained bidding strategy solutions of the proposed BCD robust model are based on
the worst-case realization of uncertainties and are treated as recourse decisions (“wat-and-see"
decisions). In the following sub-section, the solving methodology for the sub-problem is

described.

B. Block Coordinate Descent (BCD) Methodology to solve the sub-problem

The sub-problem is solved to determine 1) the optimal PV-WT-BES operation variables as
"wait-and-see" decisions at the presence of uncertainties, and 2) the worst-case realization of
uncertain parameters, given the fixed values of sizing variables obtained by master problem. In
the conducted BCD methodology, the first-stage sub-problem is responsible for determining
"wait-and-see" decision variables, while the second-stage sub-problem determines the worst-case

realization of uncertain parameters.

Note that the standard application of the BCD method relies on the availability of an analytical
expression for the operating cost in terms of middle-level variables. In the absence of such an
expression in the max-min sub-problem, at each iteration of the proposed BCD method, the sub-
problem for operating/bidding variables is built upon the first-order Taylor series approximation

of the operating cost around the uncertainty realizations identified at the previous iteration.
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Therefore, the max-min sub-problem in (4) is recast into a first-stage and a second-stage sub-

problem. The first-stage sub-problem is given as (5).

minY65u AII = F,, Y (5a)

PV-WT-BES operation constraints:

G- X‘+B-Y+H U >K; (5b)

Auxiliary constraints:

uce=U* : u=0; (5¢)

Since, the sizing variables are fixed on their obtained values by master problem, the terms M1,
and M2 of the deterministic objective function (1a), as well as the sizing constraints (1u)-(1w)
are not included in the first-stage sub-problem. Instead, it includes the term M3 in (1a) and the
associated operation constraints (1b)-(1t). Accordingly, the objective function (5a) minimizes the
operating costs over "wait-and-see™ variables, while being subject to operating constraints in (5b)
and auxiliary constraints representing the obtained worst-case realization of uncertainties by the

second-stage sub-problem in previous iteration of the BCD method , i.e., U%.
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(~ Master problem
Mingeor Aj=A X +¥
Sizing constraints:
CX>D; Xe{0,1}"
Primal cut constraints:
¥>F)Y; G-X+B'Y,+H-U 2K; cez"

A

Master problem is solved to determine sizing variables 4, B, C by which
the termsM1 and M2 in objective function (1a) (forming the objective
function of master problem as (3a)) are minimized.

Worst-case realizations
—Ye @ No of uncertainties
; A

| Sizing variables are send to sub-problem
7/~ Sub-problem \

7~ First-stage sub-problem \

minyezn Ay = F,Y
PV-WT-BES operation constraints:
= G-X+B-Y+H U’ >K;
Auxiliary constraints:

Uuce=0* : pu=0;

First-stage sub-problem (4a)-(4w) is solved to determine
PV-WT-BES operation constraints which should be
obtained after the worst-case realization of uncertainties
provided by the second-stage sub-problem in the previous Yes

iteration of the inner loop

(~  Second-stage sub-problem

maxgezus Ay =Ay +p- (U7 - U
— Uncertainty set constraints:
U?=0 + ydev+ _ ydev—. pyz ¢ RNo

Second-stage sub-problem (5a)-(5h) is solved using first-order Taylor series
of the uncertainties to determine the worst-case realization of renewable
generation and load. The obtained worst-case realizations are then sent to the
First-stage sub-problem as fixed values

| Robust PV-WT-BES sizing/operation solutions are obtained |

Fig. 4. Outline of the proposed BCD robust methodology.

u is the vector of dual variables representing the sensitivity of objective function (5a) toward
uncertain parameters, including load demand and PV/WT production at each iteration z of the

BCD method. These dual variables are further employed to develop the first-order Taylor series
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in the second-stage sub-problem only and no duality theory in conducted.

The second-stage sub-problem is built upon the first order Taylor series approximation of the
first-stage sub-problem over the uncertain parameters in previous iteration of BCD method, i.e.,

z — 1. Therefore, at iteration z of the BCD method, the second-stage sub-problem is cast as (6).

maxgezus Ay = Ay + p- (U% = U*1) (6a)

Uncertainty set constraints:

U? = ﬁ + Udev+ _ Udev—; U? e ]RNH (Gb)

The second-stage sub-problem determines the worst-case realization of uncertain parameters
at each iteration z of the BCD method, by which the approximated objective function (6a) is
maximized. Constraint (6b) expresses the deviation of uncertain parameters in positive and
negative directions. By solving the second-stage sub-problem, the worst-case realization of
uncertain parameters is determined to be sent to the first-stage sub-problem. The first-stage sub-
problem is solved given the fixed values of worst-case realizations in the second-stage sub-

problem.

This procedure continuous until the inner loop converges, i.e., the value of first-stage and
second-stage sub-problems become sufficiently close. Therefore, the methodology to solve the

min-max-min problem consists of two nested loops as follows:

Outer loop: The master problem communicates with the sub-problem through the outer loop,

conducting the C&C methodology,

Yol
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Inner loop: The iterations between first-stage and second-stage sub-problems are directed

through the inner loop by means of BCD method.

Fig. 4 gives the outline of the proposed methodology and the compact formulation of each

problem. In Fig. 4, the outer loop is shown by red lines and the inner loop is shown by blue lines.
IV.  Extended Form of Master Problem and Sub-problem
A. Master Problem

The epigraph form of the master problem including primal cutting planes given by sub-

problem, can be written as (8).

MinA; = (A-CPY+ W - CY + Xpean B C24 - Q) +y - QS - (A-CPP + W -

(8a)
CY+B-Cl¥)+¥
s.t.
A < Aoy (8b)
B < Brax; (8c)
W < Wi (8d)
¥ 2> Q%% Ygesp ZtEET(Pé?C “Tae — Pate - 9)1 vc € EC (8e)
Le = P + PYl. — POut; vd € 25 vt € E7; ve € E€ (8f)
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Pl = P§. ™ — P, vd € EP; vt € ET; Ve € EC (89)

PSie = Plie + Pl — P9 + PJiS; vd € 2P; vt € E7; Ve € BC (8h)
Py, =A-PY -n; vd € EP; vt € ET; V¢ € BS (8i)
PY =W By -nn; vd € EP; vt € ET; Ve € EC (8j)

Eate = Eaqe-vye + (Pg -9 — P8is - =) - At —E'-B; vd € E%; vt € E7; Ve €

dtc ndis
(8Kk)
EC
chg . ch dis, 1 \_rl.p.T. =D, =C
Seeer (Pited "9 — Pgis - —5) = E'B-T; Vd € E; Ve € (81)
Eqgt=0)c = E™; vd € EP; vc € E€ (8m)
chg . _chg chg chg . _chg, =D, =T. =C
Poiv " Qare < Pre < Prax Qges VA EE”; VEEE"; VCEE (8n)
pdis . qdis < pdis < pdis . qdis. yq € 5P; vt € ET; vc € EC (80)
. +Chg chg . +Chg, =D. =T. =C
M- x;; Sag. <M-x;.; VAEE";, VEEE"; VcEE (8p)
. __ Chg chg . __ Chagy.
B-M-(1-x39)<a;,?<B+M-(1-x,9);
(89)
vd € EP; vt € ET; vc € EC
—M - x%5 < adS < M- x%5; vd € EP; vt € ET; Ve € B¢ (8r)
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B-M-(1- ) < ot < B+ M- (1- 2882,

)

(89)

vd € EP; vt € ET; vc € B¢
Ein'B<Eg.<B-E';vdezP; vt e ET; vc € E€ (8t)
xS+ xS < 1; vd € EP; vt € BT (8u)
P - xt < PR < B -xt; vd € EP; vt € ET; Ve € E€ (8v)
POUL . x QU < POt < POUL . xOUL; vd € EP; vt € ET; vc € EC (8w)
x+x9% < 1; vd € EP; vt € ET; vc € E€ (8x)

The objective function (8a) minimizes the NPV of CAPEX and maintenance costs by
determining the optimal PV-WT-BES sizing solutions as "here-and-now" decision variables i.e.,
A, B, W. The limitations of sizing variables are given by (8b)-(8d). Constraints (8e)-(8x)
represent the primal cuts submitted from the sub-problem. The subscript (c) and the superscript
(c) in (8), indicate the associated "wait-and-see" variables and the fixed values of the uncertain
parameters at iteration ¢ of the C&C methodology, respectively. Constraints (8f)-(8x) are
equivalent to constraints (1b)-(1t). However, the forecast values of uncertain parameters in (1)
(i.e., Ly, PY., PY.) are replaced with the obtained worst-case realizations from the sub-problem at

iteration ¢ (LS, PY;, P%°).
B. Sub-problem

In the following, both first and second-stage sub-problems are presented and discussed.

Yo¢
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1) First-stage Sub-problem

The first-stage sub-problem is given by (9).

Min Ay = Q% + Yyezp Yresr(Pat - Tae — Poit - 6) (99)
s.t.
Lge = PY + P' — PO, vd € EP; vt € ET,; (9b)
Pl = P§, -0 — PI™P: vd € EP; vt € ET; (9c)
P, = Py + PY, — P9 + P3iS; vd € EP; vt € 7 (9d)
PY, = A°- P}, -n°; vd € EP; vt € ET (%)
Py, =W¢-PY¥ -n" vd € EP; vt € ET (9f)
Ear = Eaq-n + (Pt 09 — P&l - ) - At — B'- B vd € EP; Ve € & (99)
Seezr (Pit? - n9 — PGS =) = Y- B¢ T; vd € P (sh)
Eqq=0) = E™; vd € EP (9i)
Pl aGd < P9 < P9 - afld; vd € EP; vt € ET (%)
piis . qdis < pdis < pdis . qdis; yq € EP; vt € ET (9K)
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M- x50 < aft? < M- x5 vd € EP; vt € ET @n
c chg chg c chg
B¢ —M-(1-x37)<ag? <B°+M-(1-x57)
(9m)
vd € EP; vt € ET
—M - x5 < alls <M - x3; vd € EP; vt € ET (9n)
B —M-(1—x3F)<adf <B°+M-(1-x3);
(90)
vd € EP; vt € ET
Epin "B <E4 <B°-E'; vd € EP; vt € ET (9p)
x5+ x85 < 1; vd € EP; vt € BT (9a)
Py - x4t < Pt < Pt - xit; vd € EP; vt € E7 (9r)
POuL . yout < pout < pout . yout, yg e =0; vt g E7 (95)
x4+ x% < 1; vd € EP; vt € ET (91
Lge = Ijgizt) : $qp Vd € EP; vt € ET (u)
By, =B : kg vd € EP; vt € ET (@v)
By =B¥?: y,; vd € EP; vt € BT (9w)

The objective function (9a) determines the

optimal annual energy costs including
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buying/selling bids as "wait-and-see" decisions. Constraints (9b)-(9t) are similar to those of the
deterministic model but different in two ways, including 1) sizing variables, i.e., A, B, and W, are
fixed on the obtained "here-and-now" solutions by master problem at iteration ¢ of the C&C
methodology, i.e., A, B¢, and W€, and 2) the forecast values of uncertain parameters, i.e., L,

PY., and PY,, are fixed on the worst-case realization of uncertain parameters obtained by the

=@ 2)

second-stage sub-problem at iteration z of the BCD method, i.e., Lfft), Pg; ", and 15;2( , by

constraints (9u)-(9w).

Dual variables #;;, #4:, and 4,4, in (9u)-(9w) represent the sensitivity of objective function
(9a) toward uncertain parameters, including load demand and PVV/WT production at each iteration

z of the BCD method.
2) Second-stage Sub-problem

The second-stage sub-problem is cast as (10).

_ ~ ~(z—1 ~.,(2)
Max Agfl) = Ag) + Ydesd DtesT ’ﬁdt(LEiZt) - ngzt )) + Yaezp LiesT Rat (Pgt -

(10a)
Pv(z 1)) + Yaezd LeesT Yat (Pdt(Z) Pdt(z 1))
s.t.
I = Ly + L%""; vd € EP; vt € ET (10b)
I = L4 — L% ; vd € EP; vt € ET (10¢)

YoV
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dev+

@ i .
Py, =P} +PY ;vdeEP; vteET

Py = pw _ pw™ . yq € =P; vt € T

0< Ldev+ < Ldev+ xdt+r vd € :D -

0< Ldev— Ldev— xdt, vd € 20 vt € 2T
pdev+ dev+ pdev+

0 < Pg, <P * Xt i vd € EP; vt e ET

0 < Pg; < i _'xgtv_;VdEED;VtEE

dev+ dev+

0 <Py < PO W™ vd € EP; vt € E
d . dev— d
0< Py <Py -xy’""; vd € EP; vt € BT
xkt+xlo <1; ; vdeEP; vt eET

dev+ vdev—

xb +xf, <1; ;vde€EP, vte&T

dev+ dev

x0T +x¥, <1; ;VdeEP; vteE

v+ vdev dev+

L+ L— pde
DtesT | Xdr +Xge +xqe  + Xgy + x + x

(10d)

(10e)

(10f)

(109)

(10h)

(10i)

(10j)

(10K)

(101)

(10m)

(10n)

(100)

(10p)

(10q)
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The objective function (10a) maximizes the operating cost under the worst-case realization of
uncertainties. Constraints (10b)-(10g), express the deviations of uncertain load and PV/WT
generation in positive and negative directions, respectively. The deviations of uncertain
parameters are limited to their allowable ranges through constraints (10h)-(10m). Constraints
(10n)-(10p) make sure that the uncertain parameters only deviate in positive or negative
directions. The total number of hourly deviations for all uncertain parameters is limited to the
user-defined uncertainty budget W in constraint (10g). ¥ = 0 represents a deterministic model as
no uncertain parameter is allowed to deviate. However, as the value of W increases, the
robustness of the solution increases. Accordingly, the highest value of W leads to the most robust

solution against the uncertain parameters.

V. Numerical Study

A. Data Set

Studies of this paper are conducted over a 20-year planning horizon, indicating PV/WT
lifetime, while the BES/inverter lifetime is estimated for 10 years [138]. The forecasted load data
has been obtained from [139] and scaled for an industrial prosumer, illustrated by Fig. 5A. The
forecasted PV generation for a PV panel with 1kW capacity on north facing 30° tilted using solar
insolation and ambient temperature at Port Augusta, South Australia, is given by Fig. 5B [140].
Note that, the considered configuration of PV array is parallel. This is because a) parallel
configuration of PV panels makes the maximum power point (MPP) tracking more efficient,
exact, and cheaper, and b) it has a more reliable performance under certain shading conditions

[141] (the use of either the conventional series configuration or the parallel configuration is
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highly dependent on both the application type and the climatic conditions). The WT generation is
also given by Fig. 5C for a WT with the capacity of 1kW at Port Augusta, South Australia
[140].The WT generation is also given by Fig. 5C for a WT with the capacity of 1kW at Port
Augusta, South Australia [140]. The wind turbine is considered as dynamic speed. The cost of
BES is $800/kWh [138], while, the cost of PV and WT is $1,300/kW and $2,800/kW,
respectively [142]. These costs are based on Australian Dollars. The maximum power range for
PV/WT, BES capacity, BES charging/discharging rate, and import/export bids are given by Table
I1. Note that the steady-state energy losses of each BES has been considered as %3 of the BES
capacity. Moreover, the characteristics of all BESs are the same. The electricity buying price is
considered as TOU tariff with 41.53 ¢/kWh for hours 07-20 and 27.01 ¢/kWh for other hours,
while, the feed-in tariff is 14 ¢/kWh in all times [143]. These prices are considered through smart
metering of buying/selling bids. Since the operation is conducted for 24 hours and in each hour
there are three uncertainty sources (accounting for hourly load, hourly PV generation, and hourly
WT generation), 72 uncertain parameters exist in the 24-h operation horizon, i.e., 3 X 24 = 72.
Some of the uncertain PV generation parameters are already zero during night hours. Four cases
with different uncertainty budgets (i.e., W) are considered in this study. These cases include Case
1, Case 2, Case 3, and Case 4. Each case is subject to 5%, 10%, 15%, and 20% deviation of
uncertain parameters, respectively. These cases also become more conservative against

uncertainties by increasing the values of W. The simulations were conducted using CPLEX [110].

AR
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Fig. 5. The considered load, PV generation, and WT generation data.
TABLE Il. Power ranges of the Studied PV-WT-BES system (Fig. 2)
Parameter Range [kW/h] Parameter Range [kW]
PV capacity 0 < P}, <500 BES discharging rate 40% of E'
WT capacity 0 < P}, <500 Imported power 0 < P <400
BES capacity 0 < E4z <500 Exported power 0 <P <50
BES Charging
40% of E' - -

rate

B. Robust Solutions

Tables 11l and IV show the obtained optimal values of objective function and capacity of

PV/WT/BES for each case toward different uncertainty budgets, respectively. According to the

reported results in Tables Il and 1V, it is pointed out that:

AR
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TABLE Ill. Total NPV of PV-WT-BES installation/operation costs (20 years)

Total installation/operation cost [$] over 20 years

v
Case 1 Case 2 Case 3 Case 4
0 4,032,492 4,032,492 4,032,492 4,032,492
24 4,298,258 4,586,364 4,891,449 5,240,414
48 4,350,143 4,685,701 5,041,602 5,489,975
72 4,365,654 4,722,127 5,104,865 5,548,492
TABLE IV. PV-WT-BES capacities for Cases 1-4 with 24-step size of W (units are based on kW)
Y Casel Case 2 Case 3 Case 4
PV WT BES PV WT BES PV WT BES PV WT BES
0 332 366 402 332 366 402 332 366 402 332 366 402
24 |328 397 482 284 424 500 223 452 500 218 454 500
48 | 354 402 431 377 443 466 390 486 480 324 500 354
72 | 362 400 412 399 439 433 435 481 441 408 500 322
. 1A Load consumption o 1 (A) WT Generation v 17(A) PV Generation
%‘ 0 5 wTime i 15 20 g 0 ) 5 loTime [ 15 20 é Oi(B) 5 loTime i 15 20
T e 5 Bmep® @ S . T T
e ?W —1“||||'—
z° 5 10 7ime ] 25 20 E “ 5 10, it 5 20 g2 5 10 e - 15 20

Fig. 6. Deviation indicators, deviation ranges, and worst-case realizations of uncertain parameters (for ¥ = 48 and

10% deviation based on post-event analysis).
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1) Since no uncertainty has been realized in for W =0, it represents a deterministic
sizing/scheduling model with no uncertainty realization, regardless of the associated deviation

ranges in each case. The deterministic results are shaded in Tables 11l and IV.

2) The value of objective function increases as the robustness level (both the uncertainty
budget W and deviation range) increases, reflecting higher values of load and lower values of

PV/WT generation.

3) The capacity of PV, WT, and BES does not follow a decreasing/increasing pattern as the
robustness level increases. This is because, the optimality of objective function depends on both
investment cost and the prosumer's operation costs. Therefore, in some cases, it is more

beneficial to reduce the system capacity as the robustness level increases.

C. Post-event Analysis

The obtained RO solutions become more immunized against uncertainties as the robustness
level increases. This feature is called "robustness worth" which means that the prosumer will face

minimum extra costs if uncertainties arise.

However, this immunization comes at a higher expense which is called "robustness cost™" (see
Table 111). Therefore, selecting a very high robustness level leads to over-conservative solutions
resulting in unnecessary robustness cost and impractical robustness worth, and vice versa. To

provide an optimal balance between robustness worth and cost, and to avoid over/under
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conservative RO solutions, a post-event analysis has been conducted in this study. According to
this analysis, the obtained RO solutions for each robustness level (uncertainty budget ¥ and
deviation range) are examined against a sufficiently large number of uncertainty realizations,
leading to unavoidable electricity shortage/surplus. The energy shortage, i.e., specified as load
shedding, and the energy surplus, i.e., specified as PV/WT curtailment, have been modeled by
additional free variables in the post-event analysis, while the obtained robust solutions are fixed.
Therefore, the mixed-integer linear model in (1) becomes a linear model, only characterizing load
shedding and PV/WT curtailment. The mathematical model of post-event analysis is given as (7).
Note that, only constraints associated with load shedding and PV/WT curtailment are considered
in post-event model and other constraints are eliminated as they are fixed on the obtained robust
solutions (they are constants and have no effect on the post-event value). The subscript (s) in (7),

indicates the associated variables in each trial scenario.

PE = Syezs Taeeo z( Ll ) (7a)
Total number of trial scenarios
where;
Lats = P+ P — PO + Y31 vd € EP; vt € ET; Vs € ES; (7b)
P, = Py + PY, — P9 + P35S + Y§%; vd € EP; vt € ET; Vs € ES (7¢)
PY, =A-PY.-n°; vd € EP; vt € ET; Vs € ES (7d)

PY. =W - B} -n°"; vd € EP; vt € ET; vs € ES (7e)
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VYR VYSL e R (7f)

The post-event value is obtained by (7a) in which the summation of the absolute value of load
shed and PV/WT curtailment, ie., Y3 and YS%, respectively, for each trial scenario is
normalized over the total number of trial scenarios. Since, the considered uncertainties include
load and PV/WT generation, only the energy flow constraints (1b) and (1d) as well as PV/WT
generation constraints (1e) and (1f) are considered in the post-event model. These constraints are
rewritten as (7b)-(7e) in which the load shedding variable Y and the PV/WT curtailment
variable Y5 are employed to provide feasibility. The type of these variables is indicated in (7f).
Problem (7) is solved for different robust setting as presented by Table 11l and the robust setting

resulting in the lowest post-event cost is considered as the optimal robust setting for the model.

After solving the post-event model, these settings are obtained as ¥ = 48 with 10% deviation

of uncertain parameters. Fig. 6 provides information on the exact deviation indicators, i.e., xfi;—“

dev+ dev+ L . ~ ~ (2) ~ (@ .
x5, and x4, worst-case realizations, i.e., I, %, and P}, and deviation range of

devt

uncertain parameters, i.e., L9v* pre* and P regarding the optimal robust settings
obtained by post-event analysis. As it is seen in Fig. 6, row (A), the summation of all binary
indicators, is 48. The inner max problem has allocated each one of these 48 indicators to selected
parameters to deliver a worst-case event (24 for load, 16 for WT generation, and 8 for PV
generation). The 10% deviation range results in the worst-case realization of the selected
parameters which is given by row (B) in Fig. 6. The value of deviation is also illustrated by row

(C) in Fig. 6 for each uncertain parameter. As it is seen, the worst-case load has increased after

uncertainty realization, while, both PV and WT generations have reduced.
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Fig. 7. Results of the conducted post-event analysis (for ¥ = 48 and 10% deviation based on post-event

analysis).

The numerical results of the post-event analysis are given in Fig. 7 which indicates that the

lowest value of electricity shortage/surplus has occurred for W = 48 and 10% deviation.

Economical and Operational Solutions under the Obtained Optimal Robust Settings

The prosumer's cash-flow over the 20-year planning horizon is given by Fig. 8. The
installation cost accounts for 377/443 kW of PV/WT capacity and 466 kWh of BES capacity. The
BES itself is replaced each 10 years. The whole system is subject to annual maintenance and
operation costs which are obtained as $70,815 and $197,294 in the first year, respectively. The
total NPV cost of prosumer for a 20-year horizon with and without PV-WT-BES system is
compared in Fig. 9 for both deterministic model (Fig. 9A) and the BCD robust model (Fig. 9B).
The prosumer's total NPV cost before the PV-WT-BES installation is $7,679,709 which only
accounts for electricity importing cost as the prosumer has no capacity in exporting electricity.
However, this value has reduced after installing PV-WT-BES by $2,994,008 in Fig. 9A where no
uncertainty has been considered. This reduction in NPV cost of the system is due to the system's

ability in supplying load and providing upstream network interactions through buying/selling
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bids. Note that, the NPV cost of the system has also been reduced by $2,994,008 when

considering uncertainties which is shown in Fig. 9A. However, the NPV cost is higher than the

deterministic model which is due to the consideration of worst-case realization of uncertainties

(as mentioned in the post-event analysis, conservativeness comes at a higher costs). The annual

payments/payoffs of prosumer are also given in Fig. 9B. As it is seen, the annual payment has

considerably reduced from $834,522 to $124,560 for the deterministic model and $133,861 for

the BCD robust solutions. As expected, no payoff would be obtained before installation of PV-

WT-BES system, while, after installation, the annual payoff reaches $709,962 for deterministic

solution and $700,661 for the BCD robust solution.

3.0M
2.5M
2.0M
1.5M
1.0M
500.0k
0.0

Dollars [$]

Installation cost  [Jfllf Replacement cost

Maintenance cost

Year

Annual Oper. cost|

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 8. Cash flow for the PV-WT-BES installation/operation (for ¥ = 48 and 10% deviation based on post-event

analysis).

-

Before PV-WT-BES
After PV-WT-BES (deterministic)
After PV-WT-BES (BCD robust)

1.0M

(A) .800.0k

£ 600.0k
S 400.0k
200.0k

Annual payment

Q¥
s Q“b\/
&S

Annual payoff

Fig. 9. Total NPV cost in 20-years (A) and Annual payment/payoff (B) (for ¥ = 48 and 10% deviation based on
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post-event analysis).

The operational decisions, including import and export electricity, PV/WT generation, and
hourly load demand are presented by Fig. 10 for a random day. The maximum generated power
by PV/WT has been shown by blue and red lines in Fig. 10. These operational decisions are
obtained based on the energy availability and upstream network TOU price signals in each hour.
As seen in Fig. 10, the value of imported electricity is zero or very low between hours 7-20 which
are the high-priced hours under TOU rate. Instead, the produced energy by PV/WT is consumed
by prosumer during these hours. Also, BES is charged by the produced PV/WT to be discharged
during night. As expected, the imported electricity is approximately zero in hours 19-20 where
the BES has extensively discharged in these hours to contribute in the optimal operation of the

system. These operational decisions are made based on M3 in (1a), and constraints (1b)-(1t).
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Fig. 10. Hourly operational decisions for a random day (for ¥ = 48 and 10% deviation).

The hourly SOC of battery, i.e., SOC, and its charging/discharging rates for a random day are
given by Fig. 11 to illustrate the optimal 24-h scheduling solutions obtained from the proposed

BCD robust model.
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As mentioned in the introduction section, binary variables indicating buying/selling bids as
well as BES charging/discharging status have been obtained in the sub-problem after the

uncertainty realizations. These binary variables are given in Fig. 12 and Fig. 13.

6001 {T]s0cC of battery [JJill BES charged [l BES discharged |
= _
< 400
S
2 200
i 1
) minn 1l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

Fig. 11. State-of-charge (SOC) and charging/discharging rates for a random day (for ¥ = 48 and 10% deviation

based on post-event analysis).

[__1Buying bid I Selling bid

[

Binary indicator [0,1]

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

Fig. 12. Binary variables indicating prosumer's buying/selling bids

| BES charging I BES discharging

[EEN

Binary indicator [0,1]

o
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Time [h]

Fig. 13. Binary variables indicating BES charging/discharging status
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The energy balance between PV-WT-BES system, load, and grid is given in Fig. 14 by Sankey
diagram for both the deterministic and BCD robust models. As it is seen in Fig. 14, the value of
load has increased by 10% which is based on the obtained worst-case realization in Fig. 6B for
load consumption. Although, the capacity of the PV/WT system has increased in BCD robust
model the increase in generated power by PV/WT is not as much as the capacity growth. This is
due to the consideration of uncertainties in the robust model. For example, WT capacity has
increased by 17.3%, while the generated power by WT has only increased by 9.97%. The same
behavior is observed for PV system where its capacity has increased by 11.9%, while the
generated power has only increased by 5.8%. This is due to the negative deviations of PV/WT
generation when uncertainties are considered. These deviations, indicating the worst-case
realization of uncertain PV/WT generation, have been illustrated by black dots in Fig. 6B for

both PV and WT generation.

Deterministic model BCD Robust model
402 units 366 units 332 units | 466 units 443 units 377 units

b o mik ¥ Ea—g ﬁ-r |
b o o7 o T
|
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i zd “DZ (P + P + Pl = Lae = P + ) = 0] |
€z tez

|
o
=

I 1mport from gria: 447.2 Mwh B 1mport from grid: 480.4 MWh
T TS V Gen.: 457.0
EY G0 MW Load: 2.299.6 MWh EYCeniz 7.0{MWh Load: 2,529.6 MWh
Total: 2,511.0 MWh Total: 2,752.0 MWh
WT Gen.: 1,633.6 MWh WT Gen.: 1814.6 MWh
Export to grid: 90.2 MWh Export to grid: 87.8 MWh
System losses: 121.2 MWh System losses: 134.6 MWh

Fig. 14. Energy balance between PV-WT-BES system elements

D. Validation of the Obtained BCD Robust Results

To validate the effectiveness of the proposed model, the obtained BCD robust solutions are
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compared to the obtained results of conventional dual-based robust models such as [116-119] in
which the bidding strategy decisions are made prior to uncertainties (to ease the employment of
duality theory). Fig. 15 shows the results of this comparison for optimal robust settings ¥ = 48
and 10% deviation of uncertainties. As it is seen, the value of objective function has reduced by
$553,115 which is due to the ignorance of uncertainties in the conventional dual-based robust
model (ignoring uncertainties results in lower conservative bidding strategy). However, the
results of the post-event analysis show that the long-term performance of the BCD robust model
IS subject to a lower amount of post-event cost when facing different uncertainty realizations. In
particular, the post-event cost has been reduced by 10% when employing the proposed BCD
robust model which shows its long-term effectiveness in comparison to conventional dual-based

robust models.
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Fig. 15. Comparison results between the proposed BCD robust model and the conventional dual-based robust

models in the literature

VI. Conclusion

This paper presented a BCD robust co-optimization model for simultaneous capacity

allocation and bidding strategy of a PV-WT-BES owning prosumer, considering uncertainties of
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prosumer's load and PV/WT generations. The proposed model was solved using column-and-
constraint methodology through primal cutting planes. In terms of methodology, BCD method
was conducted to solve the inner max-min problem instead of using duality theory. The
conducted robust co-optimization as well as its solution methodology resulted in the following

benefits:

Since sizing solutions can affect the benefits associated with daily operation/bidding strategy
of the system, considering the uncertainty-dependent bidding strategy in the capacity allocation,
results in optimal benefits for both long-term (capacity-related) and short-term (operation-related)

perspectives.

By extending the application of BCD technique to solve the two-level max-min sub-problem
(resulted from the C&C generation technique), it was possible for the first time to characterize
prosumer's buying/selling bids in the inner max-min problem to be obtained after uncertainty
realizations, resulting in more practical/realistic solutions. Note that, this feature was not

applicable in conventional dual-based robust models in the literature.

Followed by point 2, it was also possible to consider different pricing schemes for buying bids

and feed-in tariffs as each were modelled by different binary variables.

Results for different robust settings were reported, illustrating the effects of uncertain
parameters on the value of objective function and the optimal capacity, illustrating the effects of

different conservativeness levels on the solutions.

To avoid over/under conservative solutions, the optimal robust settings were determined
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through the conducted post-event analysis, i.e., ¥ = 48 and 10% deviation on uncertain
parameters, by which the minimum electricity shortage/surplus is achieved in the long-term

performance.

Based on the optimal robust settings, the value of objective function over a 20-year horizon
was $4,685,701 and the capacities of PV, WT, and BES were obtained as 377, 443, and 466,

respectively.

Moreover, the BCD robust solutions were compared to the solutions obtained from solving the
conventional dual-based robust models such as [116-119]. For this comparison, dual-based RO
model was developed and solved for the case study by authors. This comparison illustrated that
the proposed model is subject to 10% reduction of post-event cost at the presence of uncertainties

which indicates more robustness against the uncertainties in practice.

This study can assist commercial/industrial prosumers by providing practical and financially

optimal sizing and bidding solutions when designing PV-WT-BES systems.
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Two-stage Robust Sizing and Operation Co-optimization for Residential PV-battery

Systems Considering the Uncertainty of PV Generation and Load

This study presents a two-stage adaptive robust optimization (ARO) for optimal sizing and
operation of residential solar-photovoltaic (PV) systems coupled with battery units. Uncertainties
of PV generation and load are modeled by user-defined bounded intervals through polyhedral
uncertainty sets. The proposed model determines the optimal size of PV-battery system while
minimizing operating costs under the worst-case realization of uncertainties. ARO model is
proposed as a tri-level min-max-min optimization problem. The outer min problem characterizes
sizing variables as "here-and-now" decisions to be obtained prior to uncertainty realization. The
inner max-min problem, however, determines the operation variables in place of "wait-and-see"
decisions to be obtained after uncertainty realization. An iterative decomposition methodology is
developed by means of column-and-constraint technique to recast the tri-level problem into a
single-level master problem (the outer min problem) and a bi-level sub-problem (the inner max-
min problem). Duality theory and Big-M linearization technique are used to transform the bi-
level sub-problem into a solvable single-level max problem. The immunization of the model

against uncertainties is justified by testing the obtained solutions against 36500 trial uncertainty
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scenarios in a post-event analysis. The proposed post-event analysis also determines the optimum

robustness level of the ARO model to avoid over/under conservative solutions.

Index Terms— PV-battery system, Renewable energy, Residential energy system, Robust

optimization, Solar photovoltaic.

NOMENCLATURE
A. Indices
c Index of iterations
d Index of day
n Index of battery replacements
t Index of hour

B. Parameters

Amax Maximum allowable number of PV panels
Bax Maximum allowable number of batteries
CcPY Price of PV panel with power generation P,
ch Price of battery with the capacity of E’

E' Capacity of battery

Elin Minimum energy level of battery

Et Initial energy level of battery in hour t = 0
E! Stand-by losses of battery

LTP? Lifetime of PV panels

LTP Lifetime of battery

Lge Forecast electric load in hour t of day d
Ldev+ Deviation of L, in positive direction

y Percentage of maintenance cost

M1, M2 Sufficiently large constants

Ny Number of sizing variables in vector X
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C. Sets
ED
EI
E”
EN
ER
ET
EUL
EUP
EUS
D. Variables
B

Number of uncertain parameters in vector U

Number of operation variables in vector Y

Forecasted power generation by each PV unit

Deviation of P, in negative direction
Maximum/minimum capacity of inverter unit
Maximum/Minimum allowable power trade
Maximum/minimum charging rate for battery

NPV coefficient for battery replacements

NPV coefficient for annual operation costs

Number of scheduling time periods in each day
Dualized terms of sub-problem objective function

Efficiency of inverter/battery

Uncertainty budget

Number of uncertain hourly loads/ PV generation

Auxiliary continuous variable

Price of electricity in hour t of day d

Set of days
Set of sizing (here-and-now) decision variables

Set of operation (wait-and-see) decision variables

Set of battery replacements during PV panels' lifetime

Set of dual variables

Set of hours at each day of the scheduling horizon
Polyhedral load uncertainty set

Polyhedral PV generation uncertainty set

Set of uncertain parameters

Number of PV panels with power generation P,

Number of batteries with the capacity of E’
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Eqt
Ly
P

dmp
F dt

ch
Pat

v
Pa;

Ay/Ay

Total installed battery capacity in hour t of day d
Uncertain load in hour t of day d

Purchased electricity from grid in hour t of day d
Dumped power in hour t of day d

Charging rate for each battery in hour t of day d
Total PV generation in hour t of day d

Inverter input in hour t of day d

Inverter output in hour t of day d

Uncertain generation of PV unit in hour t of day d
Auxiliary binary variables

Auxiliary dual variables

Obijective function value of master/sub-problem

E. Vectors and matrices

AF
C,E/D

U
U
Udev+ /Udev—

XY

Coefficient matrices of objective function
Coefficient/requirement vector

Forecast of uncertain parameters
Uncertain value of U

Positive/negative deviation of U

Vector of sizing/operation variables

l. INTRODUCTION

A. Problem Description

Solar photovoltaics (PVs) are boosting the evolution of energy systems worldwide.

Government of South Australia reports 880 MW installed PV through small-scale residential

systems by 2018 [1]. The application of PVs in both residential and industrial sectors has
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introduced several technical problems such as supply imbalance, reverse power flow, and
voltage/frequency deviations. To cope, batteries are becoming of interest for PV
owners/merchants to a) improve the integration of PVs into grid, and b) provide arbitrage

abilities for a more efficient energy management and market participation [2].

The economic benefit of a PV-battery system is directly dependent on its optimal operation
and interaction with upstream network, considering the value of load, PV generations and
network prices in each hour. Although, the integration of PV and batteries can provide a
promising operational status, unexpected uncertainties associated with PV generation and load
can significantly affect their optimal operation, resulting in additional costs. In fact, ignoring the
operational uncertainties can change the optimal long-term benefits considered in the cost-benefit
analysis when designing PV-battery systems which leads to over/under design solutions.
Moreover, the obtained solutions of deterministic studies such as [3-5] might be non-optimal or
even infeasible when the uncertain parameters deviate from their forecast values [6]. Therefore,
an accurate modeling of these uncertainties can lead to lower/higher operational costs/benefits for
PV-battery owners, on one hand, and avoid over/under design solutions for such system, on the

other hand.

B. Background and Motivation

Partial study has characterized the associated uncertainties with sizing of PVs and battery
units. In [7], the sizing problems were conducted based on scenario generation to model the
deviations of input data. In the sizing model presented in [8], Monte Carlo simulation was

conducted to generate scenarios for renewables uncertainties. Monte Carlo simulation was also
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performed in the battery sizing problem in [9] to model the uncertainties of PV generation. K-
means clustering method was used in [10] to simulate the uncertain PV generations. Uncertainties
were also modeled through probability density functions in [11-12]. The main drawback of the
mentioned studies [7-12] is the lack of tractability due to the huge number of required scenarios,
especially, when several uncertain parameters are considered, and a proper level of feasibility is
required against different realizations of uncertain parameters. To obtain more reliable solutions,
stochastic programing (SP) was performed in optimal sizing of a PV-battery system and a PV-
diesel-storage system in [13] and [14], respectively. Followed by [15] SP was employed to model
the uncertainties of solar radiation in optimal facility sizing of a microgrid. The application of SP
was extended for optimal battery sizing in an isolated microgrid, using probabilistic scenarios in
[16]. The study of [17] also characterized the uncertainties associated with battery capacity sizing
through stochastic programing. Despite the advantages of the SP models in literature, i.e., [13-
17], they face the lack of tractability which is due to the required full distributional knowledge of
uncertain parameters in stochastic programing, which may not be easily available in practice [6].
Moreover, if the uncertain parameters deviate from the simulated scenarios, the performance of
SP cannot be guaranteed against the uncertainty realizations. This issue is also true for the

scenario-based models in [7-12].

To cope with these limitations, robust optimization (RO), as a tractable and practical
methodology, was employed in different application areas. The uncertainties in RO are
characterized by bounded intervals within polyhedral uncertainty sets. Therefore, it eliminates the
need of scenario generation as it does not depend on distributional knowledge of the uncertain

parameters [18-20]. As a result, the obtained solutions would be feasible as long as the
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uncertainty realizations are within the bounded intervals, which makes it more reliable and
tractable than SP and scenario-based models in the literature. So far, no study has been conducted
to appropriately characterize the uncertainties associated with PV-battery sizing/operation

problem through robust optimization technique.

C. Contributions

Following contributions are presented in this paper to extend the existing body of work:

1) In this paper, both deterministic and adaptive robust optimization (ARO) models for sizing
and operation of PV-battery systems are proposed to a) cope with the aforementioned issues
associated with scenario-based models, and b) obtain reliable and tractable solutions for PV-
battery sizing/operation under different realizations of uncertain parameters. The proposed model

is generally developed to be applicable in other sectors such as industrial, commercial, etc.

2) Uncertainties associated with PV generation and load are considered in the ARO model.
The proposed model characterizes the sizing/operation variables in place of "here-and-
now"/"wait-and-see" decisions, which are independent/dependent on uncertainty realizations. The
robustness of PV-battery sizing/operation solution is measured via uncertainty budgets formed by
polyhedral uncertainty sets which limit the number of uncertain parameters pertaining to PV
generation and load. The proposed ARO sizing-operation model is a tri-level min-max-min
optimization problem, which is not solvable by off-the-shelf optimization packages. Therefore, a
decomposition methodology is developed to recast the tri-level min-max-min problem into a
single-level min problem and a bi-level max-min problem. The single-level min problem

characterizes the sizing variables as "wait-and-see" decisions, while, the PV-battery operational
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variables are determined by the bi-level max-min problem as "here-and-now" decisions. The
compact formulation of column-and-constraint technique in [21], is extended and adapted to
iteratively solve the decomposition methodology with primal cuts. Moreover, duality theory as
well as Big-M transformation technique are applied to recast the bi-level max-min problem into a

solvable single-level linear max problem.

3) Since, robust optimization determines the optimal solution based on the worst-case
realization of uncertain parameters, it may result in over conservative solutions. To avoid this, a
post-event analysis is developed to justify the immunization of the obtained results against
uncertainties and determine the optimal robust settings of the proposed PV-battery

sizing/operation model.

The Motivations and Contributions of this study are illustratively given by Fig. 1.

1. DETERMINISTIC PV-BATTERY SIZING/OPERATION MODEL

In this section, a deterministic sizing/operation optimization model is presented for a PV-

battery system.
Motivations Contributions Benefits
Optimal size of the systems needs to be Proposing a two-stage adaptive robust optimization for optimal Immunized solutions against uncertain
determined based on its optimal operation === sizing and operation of residential solar-photovoltaic systems === parameters including energy prices and
under uncertainties. coupled with battery units. load.
. . Proposing an uncertainty-aware operation by two-stage adaptive Feasible and practical solutions with a
Previous models are computationally L A - - 8
. S =P robust optimization to eliminate the need of scenario generation ==p- moderate computational and
extensive and non-feasible in some cases. . L .
and to be able to characterize recourse decisions. mathematical burden.

Robust optimization may result in over Conducting a post-event analysis which examines the obtained A proper robustness balance for the
conservative solutions. robust solutions against trial uncertainty scenarios. model to avoid extra costs.

Fig. 1: Motivations, contributions, and benefits of the conducted study
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Fig. 2 illustrates the considered configuration of the system and the power flow through each

element, as per the notations in nomenclature.

The objective function of the proposed PV-battery sizing/operation model (i.e., O.F.)
minimizes the investment costs, maintenance costs, and PV-battery system operating costs. The
proposed deterministic model is formulated as (1). In (1a), S1 models the PV-battery installation
cost including the capital expenditures and the net present value (NPV) of battery replacements.
Inverter investment/replacement cost has been also considered in this term as a constant. The
NPV of system maintenance cost is modeled by S2, which indicates a pre-identified percentage

of installation cost of PV-battery. S3 is the power trade cost between PV-battery system and grid.

S1 S2

O.F.=min A-CP" +Y,cenB-CL-Q5 +y-Qrv-(A-CP"+B-Ch_)) +

(1a)
S3
QPY - YgesD ZtEET(Pc?t *Tge)
Power flow constraints:
Lge = P% + P; vd € EP; vt € ET (1b)
PS5, = Py, — PSPt -nb; vd € EP; vt € ET (1c)
Pl = P§, -n™ — PI™; vd € EP; vt € ET (1d)

Operational constraints:

Py =A-Py; vd € EP; vt € ET (le)
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Eq = Eqqe—1) + PSY-nP —E'-B; vd € EP; vt € T (1f)
Yz PSP =E'-B-T; vd € EP (19)
Eq(t=0) = E™ - B; vd € EP (1h)

Allowable limitations:

P,?un < Pdt <Ph..;vd€eEP; vte&T (i)
P, < Pl <Pl Vd € EP; vt € ET (1))

—Pl <P} <—Pl.; Vd € EP; vt e ET (1K)

Pt B < PSP < Bt -B; vd € EP; vt € ET ¢t
—P&h,.-B < PSP < —PS" -B; vd € EP; vt € ET (1m)
Ejpin*B<E4 <E'-B;vd €2P; vt € T (1n)
A < Ana (10)
B < Bmax; (1p)

Note that, VP, VPS! € R. Therefore, positive values of P}, represent electricity buying from
the network, while the negative values illustrate electricity sold to the network. In a similar way,
ch

represents both battery charging and discharging rates by positive and negative values,

respectively. Constraints (1b)-(1c) give the power equality expressions on each junction of PV-
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battery system (see Fig. 2). In fact, (1b) shows the power flow between load, network, and
inverter output at the AC side of the system (after inverter), while, (1c) illustrates the power flow
between PV, battery, and inverter at the DC side of the system (before inverter). The power

conversion through the inverter is presented by (1d).

A Lyt Pc?t Meter
A== g
| Loxd AN h Pl |

Load pattern

| |
! |
| |
| d Inverter |
! P mp H '
| dt _ |
| |
. PV generation PV '
s ",
| Bty Pit T VA3
| [ ] — |
l |

Fig. 2: Residential PV-battery system configuration and its power flow

Constraint (1e) presents the available PV generations for the total number of installed PV
panels (i.e., A) with the capacity of P,,. The dynamic energy balance of battery is specified by
(1f). The end-coupling constraint is given by (1g), making sure that the total charging energy is
equal to the total discharging energy in battery, during the operation horizon. Therefore, the
initial and final battery levels are equal, providing enough battery level for the next 24-h
operation horizon. Constraint (1h) indicates the initial energy level of battery at the first time
period of the next 24-hour operation, which is provided at the previous 24-hour operation of the
system. Constraint (1i) limits the inverter capacity. The grid power trade and the battery charging
rate are limited to their allowable ranges in constraints (1j)-(1m). Constraint (1n) limits the
battery energy level with regard to the total number of installed batteries (i.e., B) with the

capacity of E’. The number of PV panels and battery units are limited to their allowable ranges
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through (10)-(1p), respectively. Note that, the values of A,,,, and B, are controlled by user
and are dependent on the available space for PV and battery installation, respectively. In the
proposed deterministic model, the uncertainties associated with PV generation and load are
ignored as they are substituted by their forecasts i.e., P;, and L, in (1), respectively. Therefore,
the obtained solutions of the proposed deterministic model would not be optimal if the uncertain

parameters deviate from their forecasts.
I11.  ADAPTIVE ROBUST PV-BATTERY SIZING/OPERATION
A. Uncertainty Set Realization

In this study, the uncertainties associated with PV generation and load are characterized

through bounded intervals within polyhedral uncertainty sets as presented by (2).

BVl ={L4 = Lg + L%"*;vd € EP; vt € ET} (2a)
EUP = {Py = Py, — P3"";vd € EP; vt € ET} (2b)
0 < L%Vt < [+, vd € EP; vt € ET (2c)
0 < PV~ < P%v~; vd € EP;vt e &T (2d)
D et (2¢)
Sreet Lacas [fikee| < W7 (2f)
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Y — gl 4 pp (20)

The uncertain parameters L , and P, in (2), can deviate from their forecast values L, and Py,
in both positive and negative directions. However, the worst-case of load uncertainty happens in
positive deviations and the worst-case of PV generation uncertainty happens in negative
directions (reduction/increase in load/PV is a beneficial uncertainty, not a worst-case). Therefore,
the negative deviations of load, and the positive deviations of PV generation are disregarded in
the uncertainty set realizations (2a)-(2b). These deviations are limited to their user-defined
allowable ranges through constraints (2c)-(2d). The parameters L%"* and PJ¢’~ are the
maximum allowable values of bounded intervals, representing the deviation range of uncertain
parameters. The number of uncertain parameters pertaining to PV generation and load are
determined by uncertainty budgets ¢, and W? in (2e) and (2f), respectively, while ¥* in (29)
represents the overall uncertainty budget. Since, robust optimization determines the solution
based on the worst-case realization of uncertain parameters, it selects the maximum allowable

value of deviation for each uncertain parameter. In fact, in the optimization we have L4+ =

dev+ gfv—
=1 and pder= = 1. The

L4ev* and P4eY~ = P4ev~. Therefore, in (2¢) and (2f) we have

Adev+

highest value for ¥* is equal to the total number of uncertain parameters. In this circumstances,
all uncertain parameters can deviate from their forecast values. Although, the value of W% is
determined by the user, in this paper we have developed a post-event analysis in Section V which

provides user the optimum value of ¥, L%+ and PJ¢v~.

B. Proposed Adaptive Robust Model
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In robust optimization, two main decisions are made including "here-and-now" decisions,
which are obtained before any uncertainty realizations, and "wait-and-see" decisions, which are
obtained after the realization of uncertain parameters. In this study, the PV-battery sizing
variables including the number of PV panels and battery units (i.e., A and B, respectively) are
considered as "here-and-now" decisions. This is because, the PV-battery system would be
installed before any uncertainty realizations associated with load, and PV generation during
system operation. However, uncertainties become of importance when operating PV-battery
system (after installation). Therefore, these operation variables are considered as "wait-and-see"

decisions and are obtained under uncertainty realizations.

The compact form of the proposed adaptive robust model is expressed through a tri-level min-

max-min optimization problem as (3).

minycz(A" - X + maxgegus ming o F',Y) (32)
s.t.

' ={x€{0,1,23,..}" | CX = D} (3b)

EVS ={U e RNV | U = U + ydevt — ydev-} (3c)

g ={y e R" | E(X,Y,0) > 0} (3d)

In (3a), the outer min problem minimizes the objective function over the sizing variables.
Accordingly, the outer min problem would be subject to the associated sizing constraints,

presented by (3b). The inner max problem maximizes the objective function F’, Y over the worst-
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case realization of uncertain parameters, while the inner min problem minimizes it over the

operation variables.

Master problem
mingezr A = A X+ 21

S.t.
PV-battery sizing constraints:
g ={xef0,1,23, ..} | cx > D} <

Primal cut constraints:
128" ={rer" | EX,Y,0) =0}

Yes

(~ Sub-problem

maXgezVs Minyezit Ay = F LY
S.t.
PV-battery operational and power flow constraints:
gl ={yeRr" | EX Y,U) > 0}
Uncertainty set constraints:
EUS — {ﬁ € RNU | ﬁ — ﬁ + Udev+ _ Udev—}
Duality| —
MaXgezUs yexl! Ay = (H -G ﬁ) ‘A thEOI‘y
S.t.
Dual constraints: <
E -A<A;

Uncertainty set constraints:

The robust sizing-operation solutions are obtained

Fig. 3: Outline of the conducted methodology

Accordingly, the inner max problem is subject to polyhedral uncertainty sets in (3c) while, the

inner min problem is subject to the operation constraints as (3d). The tri-level optimization
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problem in (3) cannot be solved by off-the-shelf optimization packages. Therefore, a
decomposition methodology is employed to decompose the tri-level min-max-min problem into a
single-level min problem and a bi-level max-min problem by means of column-and-constraint
technique [21]. The single-level min problem is called "master problem"” and the bi-level max-
min problem is called "sub-problem”, hereafter. The decomposition methodology is shown by

Fig. 3 and discussed through the following steps:

Step 1) The master problem is solved to obtain PV-battery sizing decisions. The obtained

results are then sent to the sub-problem as fixed values.

Step 2) Given the obtained sizing decision variables, sub-problem is solved to determine both
operation decision variables and the worst-case realization of uncertain parameters. These results

are sent to the master problem as primal cuts.

Step 3) At the next iteration master problem is solved, given the obtained worst-case
realization of uncertain parameters through primal cutting planes. In this step, the new sizing

decision variables are obtained and sent to the sub-problem.

The above methodology iterates between master problem and sub-problem until the
convergence criteria is satisfied (i.e., the values of master problem and sub-problem become

sufficiently close).

IV. EXTENDED FORM OF MASTER AND SUB-PROBLEM

A. Master Problem
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Master problem is solved to determine "here-and-now" decision variables including PV-
battery sizing solutions, while being subject to sizing constraints only. Therefore, the objective
function of the master problem includes the terms S1, and S2 of the deterministic objective
function (1a) (as the only terms that are dependent on sizing variables, determining "here-and-
now" decisions) and is subject to constraints (10)-(1p) (as the only dependent constraints on
sizing variables). The operational constraints (i.e., (1b)-(1n)) are also added to the master
problem through primal cutting planes provided by the sub-problem in each iteration of the
decomposition methodology using column-and-constraint technique. The epigraph form of the

master problem is presented as (4).

S1
A’BEEI’P‘;ltC’P‘liifer’Pf’ill;rcl’iagtc'Pgtc,P‘g?C,EdtcEEIIAI =(A-CPY"+ ), =NnB- Cﬁ . QTI{) + 4
S2 ( a)

y-Qrv-(A-Cr"+B-Cb_)) +¥

s.t.
A < Apgs; (4b)
B < Binax; (4c)

¥ > QP Ygezp XeesT(Pac " Tar) 5 VC € EC¢ (4d)

[ =Ph.+PL.; vd € EP; vt € ET; vc € E€ (4e)

Pgtcngtc'l'Pg?c'nb; VdEED; VtEET; vc e =€ (4f)
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Pl = P§. 0™ — PI™; vd € EP; vt € ET (49)
PY..=A-PS; vd € EP; vt € ET; vc € E€ (4h)
Eaee = Eqe-1ye + PSE -n? — E' - B; vd € EP; vt € ET; vc € E€ (4i)
YiesTPSh = E'-B-T; vd € EP; vc € E€ (4j)
Eqt=0y = E™ - B; vd € EP; vc € E€ (4K)
P <Pk <P, vdeEP; vteET; vc € EC (4l
Prin < Piic < Prax; Vd € EP; Vt € ET; Ve € B (4m)
—Pl <Pl <-Pl.;Vd€EP; vt e ET; VceE (4n)
Pt B < PSP <Pt -B; vd € EP;vt € ET;vc € E€ (40)
—pSh. B < PSh < —P" - B; vd € EP; vt € ET (4p)
Elin"B<Eg.<E 'B;VdezPl; vteET;, VceE (4q)

In (4a), the NPV of investment/maintenance cost, i.e., S1 and S2 in (1a), is minimized over
the optimal PV and battery sizing solutions as "here-and-now" decisions. The limitations of
sizing variables, which were previously presented by (10)-(1p), are given by (4b)-(4c).
Constraints (4d)-(4q) represent the primal cuts submitted from the sub-problem. The subscript (c)
and the superscript (c) in (4), indicate the associated "wait-and-see" variables and the fixed values

of the uncertain parameters at iteration c of the column-and-constraint methodology, respectively.
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Constraints (4e)-(4q) are the same as constraints (1b)-(1n) but, the forecast values of uncertain
parameters (i.e., Ly, in (1b) and P, in (1€)) are replaced with the obtained worst-case realizations
from the sub-problem at iteration ¢ (i.e., LS, in (4e) and P, in (4h)). In other words, at each
iteration of column-and-constraint methodology, a set of primal cuts including the new obtained
worst-case uncertainty realizations, are added to Master problem. The obtained PV and battery
sizing variables in master problem (i.e., A and B) are then sent to the sub-problem as fixed values
to determine both "wait-and-see™ decision variables and the new worst-case realization of

uncertain parameters.

B. Sub-problem

The sub-problem is solved to determine the worst-case realization of uncertain parameters
based on the given fixed values of sizing solutions obtained by the master problem. Since, the
sizing variables in sub-problem are fixed on their obtained values in master problem, the terms
§1, and S2 of the deterministic objective function (1a) as well as the sizing constraints (10)-(1p)
are not included in the sub-problem. This is because, they have no impact on the sub-problem
optimality as they are constant terms. Therefore, the sub-problem includes the term S3 of the
deterministic objective function (1a), and the associated operation constraints (1b)-(1n) only. The
sub-problem is given by (5).

S3

max min A = QPY - Ygesp Dpest(Pyy - Tay) (5a)

Lyt Py, €EUS pn pdmp pc ps pv pch =Il
dePdt PPy PGP PY PGt Edr€E

S.t.
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Ly =Pl +PL; vd € EP; vt € ET 1 44 € R

PS5, =PY +PSt-nb; vd € EP; vt € ET : j4, €R

Pl = PS5 -n™ — PI™; vd € BP; vt € ET : Ay ER
PY, =A°-P;; vd € EP; vt € ET : 44 €R

Eqe = Eqee-1y + PSP P —E'- B¢ vd € EP; ve € ET: 4, € R

Yiesr PSP = E'-B¢-T; vd € EP

Eqct=0y = E™ B vd € E: gy €R

tng ER

Pl <Pl <Ph;VdeEEP; vteET: g, >0: £, >0
Plin S Pl < Pray; VA €EP; Ve € BT 1 L, > 0:L50 >0

—Ply < PL<-P! :VdeED; vteE

mln'

’ﬂ9dt>0

Porn * B¢ < PGt

min

—Peh, -BS <Pt < —PSt B vdeEP; veeET i gl = 0:gl >0
EmmB<Edt<E, B¢; VdE:D,VtE:T{) >0:£Z?20

< P¢h. B¢ vd € EP; vt €

de>0

Elimll, >0:mp >0

(5b)

(5¢)

(5d)

(Se)

(5f)

(59)

(5h)

(5i)

(5)

(5k)

(5)

(5m)

(5n)
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(2a)-(29) (50)

In (5a) the optimal grid integration of PV-battery system is determined through the objective
function (5a) which includes the term S3 of the objective function (1a). The constraints (5b)-(5n)

are similar to those of the deterministic model (1) but different in two ways including:

1) The sizing decision variables (i.e., A in (1e) and B in (1f)-(1h) and (11)-(1n)) are fixed on
the obtained "here-and-now" solutions by master problem at iteration ¢ of the column-and-

constraint methodology (i.e., A€ in (5e) and B¢ in (5f)-(5h) and (51)-(5n)).

2) The forecast values (i.e., Ly, in (1b) and P, in (1€)) are replaced by the uncertain values
(i.e., Ly, in (4e) and P, in (4h)) to be obtained in place of the worst-case realizations. The new
introduced variables in (5) (i.e., R = {ig, Arae, Far» Caer Fav Maer Faer £, al, LG, LYV puP,
Py, m, mib, ail, gk, €45, €,F}), are the dual variables pertaining to constraints (5b)-(5n)
which would be further used to develop the dual problem. Constraint (50) also refers to the
uncertainty sets presented by (2). Since, the proposed model in (5) is a bi-level max-min problem,
it cannot be solved by off-the-shelf optimization packages. Therefore, duality theory is applied to

recast the max-min problem into a single max problem. Accordingly, the sub-problem can be

written as (6) which presents the dual form of (5).

T1 T2
= { T . D . AC
g A = Xaesp Xiest tar * Lar + Xaesp Xiezm Far - Py * A° +
joCit€EYS dgy,...b 5, EE
(6a)
T3 T4 Ts

Yaezp DrezT Fae " E' - B+ Xgezpny - EY - BT + ¥gesd DpesT G - EM - B —
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Té6 T7 T8
lo , ph up ., ph _ lo , pn
ZdEED ZtEET kdt Pmin + ZdEED ZtEET /"’dt Pmax ZdEED ZtEET [’dt Pmin +
T9 T10 T11

up up l
ZdEED ZtEET Ldt ! Pmnax + ZdEED ZtEET Par * Prgax - ZdEEJD ZtEE’T Wdot ) P;rllin -

T12 T13

lo ., pch . pc up . pch |, pc _
ZdEEDZtEEdet Pmin B +ZdE5DZtEEdet Pmax B

T14 T15

up . pch lo , pch , _
YdezD XeezT Ggp * Pmax " B¢ + Xaezd LeezT Gt * Prin - B€

T16 T17
lo . . RC Uupv . pc. g1
Yaezp DtesT Ly " Epin " B¢+ Xaezp Leezr £gp " BC - E

s.t.

dge + LG + L0 + pif + pl < QPY - myy; VA € EP; ve € ET (6b)
dge — Aar + RS + £E <0; vd € EP; ve € ET (6€)
N hge — jar < 0; Vd € EP; vt € ET (6d)
Far + b <0; vd € EP; vt € ET (6e)

NP Gar +1°  Fae + ng + M + mif +gub + gl < 0; vd € EP; ve € ET (6f)

Fac—1) — Far + Pace=0) T 28 + l’Zi’ <0; vd € EP;vt € ET (69)

(2a)-(29) (6h)

Since, in duality theory the objective function of the dual problem is formed with constraints

of the main problem (5), (6a) represents the objective function of the dual problem pertaining to
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dual variables introduced among constraints (5b)-(5n). The associated dual constraints, pertaining
to primal variables in (5), are presented by (6b)-(6g). These constraints are obtained based on
duality theory. The constant value at the right-hand side of each dual constraint pertains to the
coefficient of each variable in the objective function of the principal problem (5). Constraint (6h)

represents the polyhedral uncertainty sets and the uncertainty budget for PV generation and load.

As seen from the dual problem, the products of 44, - Ly, in T1, and &y, - P, in T2 make the
sub-problem bilinear. Since, (6a) maximizes the objective function over the uncertain parameters,
the solution of the sub-problem is on the extreme points of the polyhedral uncertainty sets.
Therefore, axillary binary variables along with Big-M transformation technique are employed to
1) search the corners of polyhedrons, and 2) linearize the sub-problem by replacing the products

of ige * Lge, and &4, - Py, by linear terms as follows:

Las = Lge + L9 - W3,; vd € EP; vt € ET (72)
Py =Py — P~ -Wyy; vd € EP;ve € ET (7b)
where,
YtesT Daead(Wge + Wgp) < W (7¢)
VYW, YW, € {0,1} (7d)

In fact, (7a) and (7b) represent (2a) and (2b), respectively, considering L4+ = [4¢* and
pgev— = pdev=  Therefore, the uncertainty budget W* would be determined by (7c).

Accordingly, the terms T1, and T2 can be represented as (8) in which L,, and P, are replaced
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with Ly, + L4+ - W1, and P, — P42V~ - W, respectively.
T1 = ZdesD ZtEET(Zdt “Agr + E%H ) Wo-li-t ) ’i'dt) ) (8a)
T2 = ZdEED ZtEET(th gt A — pgtev— "Wge " bar 'AC); (8b)

As seen in (8), the right-hand side of T1 and T2 includes the products of W, - 44, and W, -
b 4¢, respectively. According to Big-M transformation technique, these nonlinearities are recast

into linear terms as follows:

T1 = Xgezp ZtEET(Zdt “Agr + z\'?iiw ) k;t)F (99)
T2 = Ygesp ZtEET(pdt “bgen A° — A(gtev_ “Aat 'Ac)i (9b)
where,
—MI1-Wj, <Af <M1-Wj,; vdezP; vtezT (9c)
dgr —M1-(1=W}) <A Sdge +M1-(1-WJ,); vdezP; vteiT (9d)
—M2 Wi < Age S M2-Wy; Vd e€EP; veezT (%e)
bagr —M2-(1=Wg) <Ay S bge +M2-(1—-Wg); vd € EP; vee=ET (9f)
M1 > |ig|, M2 > |64|; vd € EP; vte€E" (99)

According to (9), the terms T1, and T2 in (9a)-(9b), function as the same as (8). Therefore, the

sub-problem can be finally written as follows:
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Lj¢.Cit€EUS igy,... L, €ER
s.t.
(7a)-(7d), (8), and (9); (10Db)

The sub-problem (10) is solved to obtain the worst-case realization of uncertain PV generation
and load while minimizing the objective function over PV-battery operational variables as "wait-
and-see™ decisions. The obtained solutions are sent to the master problem as primal cuts in which

the uncertain parameters are fixed on their worst-case realization.
C. Algorithm

The proposed iterative approach is presented as Table I.

TABLE I. The proposed algorithm to solve the decomposition methodology

1) Initialization:

I) Set the iteration counter c to 1.

ii) Set the forecasted parameters L., and P,, as the worst-case realization of uncertain
parameters in master problem.

iii) Set the value of sub-problem (i.e., Ay;) to +co.

2) Solution of master problem

Solve the master problem (4) to obtain the value of master problem (i.e., A;) and the sizing
variables A and B.

3) Solution of sub-problem

Solve the sub-problem (10) for the given sizing variables obtained by master problem (i.e.,

A, and B€) to obtain the worst-case realization of uncertain parameters (i.e., Lz, and P,,) as
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well as the value of sub-problem Ay;.

4) Parameters update

i) Update the iteration counter ¢ — ¢ + 1.

if) Update the worst-case realization of uncertain parameters to LS,, and PS,, obtained by
the sub-problem at previous iteration.

5) Solution of master problem with primal cuts

Solve the master problem (4) to obtain sizing variables A and B as well as the value of
master problem A; for the given worst-case realization of uncertain parameters through primal
cutting planes.

6) Convergence check

If the convergence criteria is satisfied (i.e., (A;; — Ay) /Ay < €), the algorithm is terminated;

otherwise, go to step 3.

V. RESULTS AND DISCUSSION

A. Data Set

Studies of this paper are conducted over a 24-year planning horizon as PV lifetime. The
inverter/battery lifetime is 8 years. Since, the battery lifetime is in relation with the way of its
operation, 8-year lifetime is considered based on 20% of total battery capacity as allowable
charging/discharging rate in each hour [22]. The annual forecasted load data has been obtained
from [23] and scaled for a household, illustrated by Fig. 4A. The annual forecasted PV generation
for a PV panel with 100-Watt capacity (on North facing 30° tilted PV array solar insolation in
Port Augusta, South Australia) is given by Fig. 4B [24]. The cost of battery is $700/kWh and the

cost of PV is $1500/kW [22]. These costs are based on Australian Dollar. The electricity price for
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both buying and selling electricity is based on time-of-use (TOU) tariff with 27.90 and 42.90
¢/kWh for off-peak (hours 21-07) and peak (hours 08-20), respectively [25]. 48 uncertain
parameters, considering both PV generation and load, are counted in each 24-h daily operation of
PV-battery system (some of these parameters are zero due to no PV generation during nights). In
Table Il, four cases with different uncertainty budgets (i.e., ¥*) and deviation ranges are
considered. These cases become more conservative against uncertainties by increasing the values
of W* and deviation range of uncertain parameters. Since, no uncertainty has been realized in
Case No. 1 (see Table 1), it represents a deterministic model with no uncertainty realization. The
simulations have been conducted on a laptop computer with 8 GB RAM and a core-i5 processor

using CPLEX [26].

B. Numerical Results

Table 11l shows the obtained objective function values, sizing solutions of PV and battery,
investment/maintenance/operation costs, cost of electricity (CoE), number of primal cuts, and the

computational burden for each case. Based on the obtained results, it can be pointed out that:

1) The value of objective function increases as the robustness level (uncertainty budget ¥*
and deviation range) increases, reflecting higher values of household load and lower values of PV

generation.

2) The capacity of PV-battery system does not follow a decreasing/increasing pattern as the
robustness level increases. This is because, the optimality of objective function depends on both
investment cost and the operation cost of PV-battery system. Therefore, in some cases (i.e., Case

No. 3), it is more beneficial to reduce the PV-battery system capacity as the robustness level



4) In cases No. 1 and 2, the energy trade cost has a negative value which is due to the greater
The required cash flow for each case is presented by Fig. 5. As it is seen, the value of
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3) As the uncertainty budget and deviation range of uncertain parameters change, the feasible
solution region of both master problem and sub-problem change accordingly. Therefore, the
results of each case are obtained after different numbers of primal cuts and computation times.
PV-battery system capacities in these cases, resulting in higher benefits of exported electricity. In
contrary, as the capacity of PV-battery system reduces in cases No. 3 and 4, the operation cost
investment/maintenance/replacement cost depends on the capacity of PV-battery system which
reaches its maximum value in Case No. 2 where the maximum PV-battery capacity is allocated.
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increases accordingly.
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TABLE II. Under study cases

Cases No. 1 No. 2 No. 3 No. 4
pu 0 16 32 48
Deviation 0% 5% 10% 15%

TABLE I11. Obtained PV-battery sizing/operation results for each case

Cases No. 1 No. 2 No. 3 No. 4
Value of objective function 15028 16702 20107 21498
PV capacity [kW] 4.9 5.5 4.6 5.5
Battery Capacity [KWh] 6 8 4 5
Investment cost [$] 11550 13850 9700 11750
Annual maintenance cost [$] 5775 692.5 485.0 587.5
Annual energy trade cost [$] -179.7 -331.7 548.1 394.3
CoE [$/kWh] 0.143 0.156 0.175 0.178
Number of primal cuts 2 4 4 3
Computation time (s) 164 373 296 252

In Case No. 3, however, the value of these costs become lower than the other cases. This is

because of the lower PV/battery capacity in this case (see Table IlI).

Fig. 6A gives the annual imported/exported electricity as well as the annual PV generation and
load for each case. It is seen that these values are dependent on system capacity. This is because,
the higher/lower capacities of PV-battery system provide more/less ability in terms of exporting

electricity to the grid. The annual load has been also increased from Case No. 1 to 4 as the
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robustness level has increased in these cases. However, the PV generation is not following such a
trend as it is correspondingly dependent on the obtained PV sizing solutions as described in Table

The obtained payments/payoffs are given by Fig. 6B for each case. As it is seen, in higher
capacities of PV and battery i.e., cases No. 1 and 2, the annual payment is negative which is due
to the higher benefits of exported electricity. Although, the value of exported electricity is lower
than the imported electricity in these cases (see Fig. 6A), the electricity is mainly
imported/exported in low/high price hours which is due to the storage ability in providing
arbitrage between these hours. In cases No. 3 and 4, however, payments are positive. This means
the benefits of exported electricity are lower than the payments which is due to the lower system

capacity in these cases.

The optimal operational solutions, including grid interactions (import/export from/to the grid),
PV generation, household load, and battery level have been illustrated by Fig. 7. These results are
specified for two working sample days including 180th day, as a cloudy day sample, and 290th
day, as a sunny day sample. Note that, these variables are obtained as wait-and-see decision
variables which are determined considering the worst-case realization of uncertain parameters.
As it is seen in Fig. 7, most of the consumed electricity by load is imported from the grid in day
180 (in all cases), which is due to the lower values of PV generation in this cloudy day. In
contrary, the produced electricity by PV has a higher value in day 290 and is mostly exported to
the grid or stored by battery during daylight hours (in all cases). Since, peak load periods are after
the daylight hours, the battery contributes in optimal system operation by providing arbitrage

between these time periods. These results have been obtained considering the worst-case
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realization of PV generation and load.

To highlight the optimality of the obtained robust solutions in cases No. 2-4, the deterministic
PV-battery sizing solution of Case No. 1 (a deterministic case with no uncertainty
characterization) has been examined with the uncertainties in cases No. 2-4. In this examination,
the sizing variables are fixed on the obtained deterministic sizing solutions in Case No. 1 (4 =
4.9 kW and B = 6 kWh). According to the obtained results in Fig. 8A, the value of annual
imported/exported electricity has increased/decreased due to the PV generation and load
uncertainties in cases No. 2-4. This is because, the employed deterministic sizing decisions in

case No. 1 are obtained with no uncertainty consideration.

Although, the load and the capacity of PV are fixed in cases 2-4, the load/PV generation
increases/reduces from Case No. 2 to Case No. 4. This is due to the uncertainty realization in
these cases which becomes more robust (see Table Il). Fig. 8B shows the increase of the
objective function value in cases No. 2-4. CoE has also increased in each case compared to the
obtained values in Table Ill. Therefore, the obtained operational results of cases No. 2-4 are not

optimal when applying the deterministic sizing solutions of Case No. 1.

C. Post-event Analysis

According to the obtained results, the higher values of robustness level lead to more

immunized PV-battery sizing/operation solutions which is considered as "robustness worth".
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Fig. 9: Post-event analysis results for different robustness levels

However, it causes higher costs in both sizing and operational aspects, as shown in Table 11l in
which the value of objective function increases as the robustness level rises. This imposed cost is
considered as "robustness cost”. To provide an optimal balance between the robustness worth and
robustness cost, and to evaluate the long-run effectiveness of the proposed ARO model, a post-
event analysis has been conducted in this study. The aim of this analysis is to determine the
optimal robust settings to avoid over/under design solutions. In this analysis, the sizing and
operation solutions are fixed on the obtained values from solving the proposed ARO model for
different robustness levels. These solutions are examined against 36500 uncertainty realizations
of PV generation and load. A new variable models the required unserved/surplus power to
stabilize the system when facing uncertainties in lower/higher robustness levels. The
unserved/surplus power, pertaining to each robustness level, is then aggregated and scaled over
the total number of uncertainty realizations. The robustness level leading to the lowest value of
unserved/surplus power is selected as the optimum settings of the ARO model. The obtained

results of the conducted post-event analysis are given by Fig. 9. As it is seen, the lowest value of
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unserved/surplus power is 3.16 kW which occurs when 30 number of uncertain parameters
deviate as 10% of their forecast values. Therefore, allocating these values as robustness level,
results in the most effective and reliable sizing/operation solution. Moreover, in lower/higher
values of robustness level the model is under/over conservative against the uncertainties, which
results in higher values of unserved/surplus power accordingly (i.e., bottom left and top right of

Fig. 9).

D. Sensitivity Analysis

In this section, a sensitivity analysis has been conducted to determine the annual cost-of-
electricity for different values of PV and battery prices. In this analysis, the price of PV varies
from 1000 $/kW to 1700 $/kW (for a fixed battery price i.e., 700$/kWh), while, the battery price
varies from 300 $/kWh to 1100 $/kWh (for a fixed PV price i.e., 1500$/kW). The current price of

PV and battery has been pointed out in Fig. 10.

Note that, the price of PV and battery are expected to decrease in future which has been also
pointed out at Fig. 10. Based on the results, given by Fig. 10, CoE is highly sensitive to PV and
battery price as expected. It has an increasing pattern as battery price increases in Fig. 10A.
However, after 900 $/kWh as battery price, no battery is allocated as it is more beneficial to not
to have a battery with that price. The value of CoE is also increasing as the PV price increases in
Fig. 10B. Moreover, the battery capacity changes with PV price deviations. Therefore, in lower
capacities of PV, it is not beneficial to have a high battery capacity. In a similar way, PV capacity
depends on battery price changes as seen in Fig. 10A. This shows the cross effects between PV

and battery prices and the allocated capacities for each element which is due to the operational
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dependencies between these elements.

E. Comparison with Previous Uncertainty Modelling Methods:

In the following, the proposed model of this paper is qualitatively compared to stochastic
models and single-stage robust models in the literature to highlight the advantages of the

employed two-stage robust model in this study:

F. Comparison with Stochastic Programming Models:

Stochastic models and scenario-based models such as Monte Carlo simulation, use scenario
generation techniques to simulate different possible deviations of uncertain parameters.
Although, scenario-based approaches are more efficient than deterministic models, in which no
uncertainty is considered, they are subject to a great number of scenarios to be considered in
calculations, which may not be applicable in practice. Moreover, if an uncertain parameter
deviates from the considered scenarios, the solution of the model would not be feasible. To
remedy, the number of considered scenarios can be increased to have a more realistic
presentation of the uncertainties. However, this may also result in a higher computation time and
non-tractability in some cases, especially when several uncertain parameters need to be

considered.

On the contrary, the two-stage robust technique in this paper models the uncertainties through
bounded intervals by means of polyhedral uncertainty sets instead of scenarios. In fact, it
considers the extreme points of uncertainty sets as the worst-case realization of uncertainties.

This approach provides user a more moderate computational burden which is due to the fact that,
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it once calculates the solution based on the extreme points, instead of calculating numerous

scenarios. Therefore, the robust solutions are feasible as long as the uncertainties are within the

bounded intervals.
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Fig. 10: Sensitivity analysis results

Moreover, the need of full distributional knowledge of uncertain parameters is eliminated as

no scenario generation is required.

G. Comparison with single-stage robust optimization models:

In planning models, some variables are not dependent on uncertainties. For example, the
sizing solutions in planning models are independent of uncertainties while the operational
variables are strongly dependent on uncertainties. This is due to the fact, the planning decisions
are made prior to uncertainties (known as "here-and-now" variables), while, the system
operational decisions are made at the presence of uncertainties (known as "wait-and-see”

variables).
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A single-stage robust model cannot model both "here-and-now" and "wait-and-see" variables
as it is formulated as a max-min mathematical framework. More specifically, the outer max
problem maximizes the objective function over the uncertain parameters, while, the inner min
problem minimizes it over the decision variables (with no uncertainty related consideration of
variables). Therefore, as long as all the variables are considered in the inner min problem as
"here-and-now" decisions, no "wait-and-see" decision can be made prior to uncertainties in

single-stage robust models.

In two-stage min-max-min robust models, such as the presented model in this study, there is
an additional outer min problem which characterizes "here-and-now" decisions by determining
the optimal value of uncertainty non-dependent variables (planning variables in this study).
Therefore, as a qualitative comparison, it is noted that the proposed two-stage min-max-min
robust solution approach is capable to characterize both "here-and-now" and "wait-and-see"
decision variables, while, a single-stage max-min robust model can only characterize "wait-and-
see" decision variables. To conclude, it is quite clear that the proposed sizing and operation co-
optimization model in this paper cannot be solved through a single-stage max-min robust model

as it involves "here-and-now" decisions including sizing variables.

VI. CONCLUSION

This paper proposed an adaptive robust approach to optimal sizing and operation of residential
PV-battery systems under uncertain PV generation and load. The objective was to determine the
optimal and robust capacity of a residential PV-battery system while maximizing its payoffs by

operating PV-battery system in a least-cost manner. The column-and-constraint technique was
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employed to solve the proposed model through a decomposition methodology, recasting the tri-
level min-max-min problem into a single-level master problem and a bi-level sub-problem.
Duality theory and Big-M transformation technique were applied to solve the sub-problem.
Optimal sizing/operation solutions were obtained for four cases with different uncertainty budget
and deviation range of uncertain parameters. According to numerical results, both the sizing and
the operation solutions of PV-battery system became more conservative as the robustness level
increased. Since, non-accurate values of robustness level may lead to non-optimal solutions, a
post-event analysis was developed against different realizations of uncertain parameters to avoid
over/under conservative solutions. The optimal robustness level was found as 30 for uncertainty
budget with 10% deviation of uncertain parameters. These robust settings, therefore, lead to the
lowest value of additional costs if the uncertainties arise, resulting in higher benefits for PV-
battery owner. The ARO model in this study assists renewable energy owners/merchants to
appropriately design their PV-battery systems considering the volatile nature of PV generation

and their load.
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