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Abstract 

 

This thesis focuses on humid tropical deforestation in one of the most important coca 

growing regions in central Bolivia, Chapare. On the one hand, the cultivation of coca 

leaves which is the source of cocaine paste, their processing and narcotrafficking are 

global, social and legal issues that lead to violence, corruption, and instability in 

foreign policy frameworks. On the other hand, their cultivation has local 

environmental and economic repercussions that are not always negative. 

The project is grounded in geospatial science and the methodology comprises of 

three main sections: image pre-processing, land-use and land-cover classification 

aimed at forest/non-forest mapping, and the generation of forest and non-forest 

statistics for individual farms in four communities in Chapare.  Landsat 4 & 5 (TM) 

(2011) and Landsat 8 (OLI) satellite (2015 and 2016) image data were used. Pre-

processing steps covered verification of geometric and radiometric parameters, 

image mosaicking and, for the 2015 data, pan sharpening. Thus, the images were 

classified using unsupervised classification to map major land-use and land-cover 

types from 2015 imagery. These were verified with reference to field data collected in 

2015 that was made available to this research project. Forest and non-forest 

classification was carried out for the 2011, 2015 and 2016 image data. All geospatial 

analyses were done in ERDAS Imagine 2015 and ArcGIS version 10.4. 

The results of the three classified images for 2011, 2015 and 2016 shows overall 

accuracies of 84.51%, 87.84% and 98.42% respectively. Comparing the four 

different communities investigated in detail in the study area, the areas in the 

Community I and Community II shows regrowth of forest areas while areas in 

Community IV shows increased rate of deforestation. Community I with an average 
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of 20 ha of land parcels and a standard deviation of 3 hectares has a current 

average regrowth rate of 204.73 ha/year which is 2 ha/year per farm at the end of 

the study period in 2016. Community II with mix grazing and farming land parcels 

indicated by its size of 50 ha (50 hectare land parcels are meant for pastures) have a 

regrowth of 786 ha/year which is 8.46 ha/year per farm in 2016. Community III and 

IV has a clearance rate of 25.18 ha/year which is 0.42 ha/year per farm and 79.56 

ha/year which 1.99 ha/year per farm.  

However, there is 50% decrease in deforestation rate for the communities mapped in 

detail compared to statistics generated for the 1980s and 1990s. This is indicative of 

the Bolivian government’s pro-coca policies and legislation since they were first 

elected in 2006, and their increasing influence since c. 2000. The quantitative data 

reaffirms the hypothesis that weak anti-coca polices lead to less deforestation in 

Chapare. 

A key recommendation arising from the use of pan-sharpening technique used in this 

study shows improvement of the quality of the image and its spatial resolution in the 

2015 classification discriminating individual forest degradation needs to explored. 

That is recommended as an advantage that must be employed on newly available 

sources of high spatial resolution imagery, to more accurately map and monitor 

fluctuations in the rates of deforestation in different communities and different 

farmers in each community under policies that either promote or discourage coca 

cultivation in future researches.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Deforestation and Land-use 

 

Deforestation is the clearing of the forest and its conversion to other land-uses 

according to Luca et al., (2016), who also define it as a land-use trade-off between 

conservation and land development for economic profit. Deforestation has taken 

place throughout the world for millennia (Millington and Jepson, 2008). Tropical 

forests across the globe have been under pressure since the 1950s, whereas 

deforestation and forest degradation was commonplace in the industrialized 

countries up to in the twentieth century (Palo and Lehto, 2012).  

The UN Food and Agricultural Organisation (FAO) was established to take stock of 

global forest resources. Globally, deforestation currently occurs at a rate of 13 million 

hectares per year (FAO, 2005a), but the rate varies from year to year and place to 

place. Much of the forest being lost currently in countries in the three tropical humid 

forest blocks on either side of the Equator—an archipelago of countries extending 

from South Asia to island nations in the Pacific, the central African forest block, and 

Mesoamerica to the Amazon Basin–due to economic development  (Ehrhardt-

Martinez et al., 2002) and urbanisation including rapid population growth (Redo et 

al., 2012). Countries encompassed by these areas generally experience high levels 

of poverty which is an under-laying pressure causing deforestation as people rely on 

forests and their land resources to alleviate privation. Nearly 600 million people 

around the world depend on forest for their livelihood, of which 200 million are 

indigenous people (Byron and Arnold, 1999; Chao, 2012). However, commercial 

interests are also significant deforesters, e.g., timber extraction globally, plantation 
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(e.g. oil palm in Indonesia and Malaysia) and other commercial agriculture (e.g., soy 

in Brazil), mining and oil extraction. 

Reflecting on the causes of deforestation, some land clearance is inevitable because 

of social and sustainable economic development. However, the rate at which this is 

occurring , its` causes and  whether it  can be avoided is a current issue at the 

forefront of academic and  policy debates (Palo and Lehto, 2012). There is an 

implicit relationship between deforestation and post-deforestation land uses. Large-

scale deforestation, whatever the purpose, can have severe impacts on socio-

economic factors such as a decline in local timber supplies, soil erosion, flooding, 

decreased agricultural productivity, loss of cultural values and hunting grounds, loss 

of biodiversity and a reduced capacity to sequester carbon (Peter et al., 2015, 

Sandro et al., 2015). Others argue that these costs need to be offset by the benefits 

in terms of economic development, sustainability and development; e.g., Babin 

(2004) wrote about the research, management and development perspectives of 

forests and land-use in tropical countries that is occurring at a faster rate for the sake 

of sustainable development.  

There is global pressure to arrest deforestation and this has brought together global 

environment organisations such as UNE (United Nation Environment), WEO (World 

Environment Organisation), and GEO (Global Environment Organisation) e.t.c to 

agree on common principles. This pressure led the United Nation to address 

deforestation at the Conference on Environment and Development (UNCED) in Rio 

de Janeiro in 1992 (Nations, 1992, Grubb, 1993). However, from the developing 

countries' perspective, government need to initiate development and food security: 

agricultural sustainability is key to the latter but to achieve development goals much 

forest is being converted to produce oil palms and cocoa amongst the many 
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plantations crops. Therefore, there continues to be an ongoing link between 

deforestation and land-use. It is estimated that approximately one fifth of the world’s 

tropical forest was destroyed over the 30 years from 1970-2000 and that it all will be 

gone by the end of the 21st century (IPCC, 2000). 

There are hundreds of research studies on deforestation in the context of land-use 

and land-cover change in developing countries. Therefore, the meta-analysis of the 

research articles up to c. 2000 that was published in the seminal Geist & Lambin 

(2001) paper is an important introduction to key themes, particularly the distinction 

between local drivers and underlying causes (See Figure 1.1-1) which operate at 

national and global scales. More of it is elaborated as driving factors in section 2.3.  

 

Figure 1.1-1 Factors seen as the underlying causes of deforestation (based on Geist & 

Lambin, 2001) 



  

4 
 

Research since then has incorporated new themes (Basiron, 2007, Chao, 2012, 

Gibbs et al., 2010, Luca et al., 2016, Zimmerer, 2013, Hameleers et al., 2016) such 

as food and water security, deforestation in the framework of global climate change, 

and reprised old themes such as soil degradation (Young, 2009), while 

simultaneously deepening understanding of deforestation using Geist & Lambin’s 

(2002) drivers-and-causes framework. Government policies and regulations are key 

causes of deforestation, e.g., the role of government policies that encourage the 

illegal timber trade leading to increasing deforestation (Meyfroidt and Lambin, 2009). 

However, policies are, perhaps, the least understood major cause of forest loss. 

 

1.2 Focus of this study 

 

The focus of this study is in one area of the Amazon Basin tropical forest block 

indicated in Section 2.2. It is, therefore an example of what is occurring in one part of 

the tropics. It is a detailed case study, which looks at land-use activities in relation to 

forest dynamics and driving factors with an emphasis on policy drivers. National 

deforestation rates in selected tropical countries including most Amazon countries 

are presented in Figure 1.2-1. Although, the data may arguably be from 2000 to 

2005, and the accuracy of data from some may be disputed (Keenan et al., 2015), it 

illustrates the dimensions of pressing major environmental problem of global 

proportions. It is expected to continue at that rate provided with a rapid decline in 

forest areas in tropical developing countries as predicted (Ehrhardt-Martinez et al., 

2002) .  
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Figure 1.2-1 Deforestation rates of tropical developing countries from 2000 – 2005 
(Source: Mongabay.com) 

 

In 1980 the rate of tropical deforestation was estimated to be 11 million ha/year. By 

2005 this had increased to 12 million ha/year and 80% of the deforestation 

incorporated in the current global deforestation rate was occurring in the tropics 

(FAO, 2005b). Bolivia, a tropical country with extensive lowland tropical and sub-

tropical forests has the seventh largest contemporary deforestation rate of 430, 000 

ha/year (Andersen et al., 2016). The land use in lowland Bolivia is like many other 

tropical countries that are rapidly converting forest through “slash and burn” to i) 

farmland, ii) grazing, iii) other forms of economic development` such as roads, 

plantations, and iv) settlements and infrastructure. Chapare, in the Department of 

Cochabamba and Santa Cruz  have been extensively deforested in the last 30 years 

because of agriculture and forestry policies that encourages extensive agricultural 

activities (Andersson and Gibson, 2007). Deforestation in Santa Cruz, which are 

known for various forms of commercial agriculture such as banana and soya, can be 

liked to neoliberal agricultural and trade polices (Redo et al., 2011). In Chapare, a 
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chief crop is coca and cocaine frontier, the link is between deforestation and 

narcotics policies. Much of the deforestation in these two areas of Bolivia are linked 

to government policies that focuses on the eradication of coca. 

Coca production has a particular place in understanding the links between society, 

agricultural production and forest dynamics in contemporary Bolivia. Around 200 

million people consume illicit drugs daily (Ware, 2007) and all the cocaine consumed 

comes from Bolivia, Colombia and Peru. Many studies on coca cultivation and its 

trade have been carried out in Bolivia (Marcy, 2010, Steinberg et al., 2004) and in 

neighbouring countries, but very few have analysed this trade as a driving factor in 

deforestation.  

 

1.2.1 Agriculture and natural resources policy 

 

Agricultural and natural resources policies are linked to deforestation through 

decisions made in developing countries about their contemporary attempts to 

achieve sustainability in areas like agriculture, rural development and biodiversity 

conservation. For example, Malaysia’s oil palm industry is focusing on achieving 

universally accepted agricultural standards (Basiron, 2007) and the Round Table of 

Sustainable Oil Palm is a global effort with the same objectives (Schouten and 

Glasbergen, 2011). That is to minimise the rate of deforestation while maximising the 

use of agricultural land and its sustainability. In Latin America recent research has 

been carried out in ten countries aimed at developing policies that promote 

sustainable farming while simultaneously stimulating rural economies (Elsner, 2016). 

This was done by encouraging local economic growth that is socially inclusive and 

promoting regrowth and protecting biodiversity. 



  

7 
 

The importance of the agricultural sector in Bolivia is underlined by the fact that it 

accounts for 15% of the nation’s GNP (Hameleers et al., 2016). Agricultural land 

uses are estimated to be close to 2.5 million hectares in total; of which local farmers 

growing agro-industrial crops use more than half (1.4 million hectares). Land-use 

change is most dynamic in the new agricultural areas where forest being is 

converted to agriculture, e.g., the conversion of the eastern lowland forests to soy 

grown in large mechanised farms (Redo et al., 2012), and by peasant farms in 

colonization zones (Bradley and Millington, 2008a, Peter et al., 2015, Redo et al., 

2012, Redo, 2012, Killeen et al., 2007). 

Some other tropical developing countries have implemented macroeconomic 

policies, often with the intention of paying off international debts and loans from 

financial institutions like World Bank (Victor et al., 1995), that unintentionally has 

impact on deforestation. These policies often marginalize the agriculture sectors by 

favouring the industrial sectors. That is done so by prioritising on developing various 

industries like livestock and commercial plantations together with other infrastructure 

industries while no or less emphasis being placed on forest and its biodiversity. 

Focusing more on the area of this study,  cash crops like cocoa, banana, citrus and 

coca are very important to the Bolivian agricultural economy  (Crabtree and Chaplin, 

2013).  Previous studies have focused on Bolivia as an example of how agricultural 

technology has encouraged deforestation (Angelsen and Kaimowitz, 2001, Kuiper 

and Hudak, 2000, Morales, 1991), but they have failed to quantify how much forest 

disappeared over time as well as identifying other driving factors such as pro-coca 

policies, advance agricultural equipments, market price, food security and population 

growth. 
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1.3 Aims and objectives 

 

The research in this thesis has the overall aim of examining policy drivers on tropical 

deforestation (Geist and Lambin, 2001) using a case study from Bolivia.  

From previous work by Bradley (2005) highlighted that the impact of international 

and national narcotics policies influencing clearance of humid tropical forest like the 

one in the study does affects the environment, economy and social aspects of land 

use management.  It will achieve this by examining recent forest dynamics in 

Chapare, Bolivia; an area where international and national narcotics policies have 

been very furiously debated, sometimes resulting in political unrest since the 1970s 

and where policies have swung between strongly enforced anti-coca and cocaine 

policies to positive encouragement to cultivate coca. Specifically, the project will 

address the following objectives: 

a) To map forest and other non-forest land covers for 2011, 2015 and 2016 for the 

study area.  

b) To test the hypothesis (Bradley and Millington, 2008a) that deforestation rates 

are significantly less under conditions where coca is encouraged than under 

well-enforced anti-coca policies. 

 

1.4 The research in a wider context 

 

The narrow aim of the study is to address issues of deforestation rate in Bolivia and 

the cultivation of coca, production of, and trade in cocaine. It addresses three factors 

that form the basis of human communities and societal cohesion: economics, society 

and culture, and the environment (Marcy, 2010). They co-exist together where as 
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one have to be marginalized for the sake of other in which the environment is always 

at the losing end. Looking at the issue from a global perspective, the actions around 

cultivating drug plants, processing them and narcotrafficking leads to conflict, 

violence, corruption, and instability in foreign policy frameworks (Steinberg et al., 

2004).  

 

1.4.1 Environmental impacts 

 

This research examines links between coca farming and the cultivation of substitute 

crops, and rates of deforestation. It will quantify the pressure being put to the 

environment by coca cultivation under different policy regimes and could be a key 

input to future policy-making and planning. Coca cultivation and cocaine processing 

pose environmental problems from cultivation right through to the process of 

producing cocaine. The process of producing cocaine involves many harmful acids 

and other chemicals, which are disposed in river systems and into groundwater 

aquifers. The environmental effects of coca farming are mainly related to the loss of 

habitat, native flora and fauna species and the water pollution (Sandro et al., 2015, 

Peter et al., 2015). In a study of coca cultivation in Peru it was noted that when forest 

had been cleared, there was a decline in water quality (Steinberg et al., 2004). 

Another observation been made with regard to montane rainforest biodiversity in 

Colombia (Dávalos et al., 2011). Similar observations have been made in Peru 

(Young, 2009), and coca cultivation has been blamed as the main cause of 

deforestation, and loss of biodiversity, in Colombia by other researchers (Álvarez, 

2007, Dávalos et al., 2009, Dávalos and Bejarano, 2008), and it is argued that this 

will be the case for Peru and Bolivia (Dávalos and Bejarano, 2008).  
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1.4.2 Economic impacts 

 

Coca and other illicit drug plants attract growers to cultivate them because of their 

market demand and high prices. The global market for the illicit drug cocaine 

increased dramatically around the world in the 1970s (though there was a well-

established illegal trade from the 1950s onwards in Bolivia – (Millington, in press) 

and (Gootenberg, 2008). The two main coca growing countries in the 1950s  – 

Bolivia and Peru – responded to the global market stimulus simultaneously 

(Steinberg et al., 2004, Bradley and Millington, 2008a), while Colombia became the 

main producer two decades later (UNODC, 2016a).  

At the local scale the economic stimulus from coca and cocaine complicated land 

cover changes that were driving tropical deforestation (Bradley and Millington, 

2008a). Colonist farmers saw coca as an income-generating crop requiring less 

labour compared to other crops and livestock farming. It also boosted local economy 

in the region because of the high prices paid by drug smugglers and some basic 

processing of coca leaf was done in areas where coca was grown.  

Soares (2011) noted that coca, oil and other forms of agriculture make up 25 % of 

Bolivia’s GDP, but his statement needs to be dissected. While the oil industry and 

agricultural enterprises pay taxes, the illicit commerce in coca and cocaine does not 

benefit national revenue streams. As a consequence of this, the Bolivian government 

developed policies that would enable farmers to grow crops that would generate 

taxable revenue while simultaneously marginalizing the coca trade. This is also an 

intentional move to eradicate coca (Bradley and Millington, 2008a). Though the 

introduction of alternative crops is not solely an economic issue. The major push for 

these policies in the 1980s and 1990s came from international anti-narcotics policies 
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which came into force under the globally recognized Single Convention on Narcotic 

Drugs in 1961 (UNODC, 1961) 

 

1.4.3 Political and social impacts 

 

Drug use and narcotrafficking are related social and political problems of global 

proportions (Ware, 2007, Soares, 2011). In terms of botanical drugs like cocaine, 

heroin and marijuana, social problems occur in the countries where they are grown, 

as there is always a nascent drug sub-culture, and amongst consumers elsewhere. 

In the case of cocaine, the main consumers in 2014 were the USA; Argentina, Brazil 

and Chile; Australia; and most western European countries, especially the UK, 

Ireland, Belgium and Spain (UNODC, 2016a). According to the latest World Drug 

Report, 247 million people used drugs, of which 29 million suffered from medical 

disorders related to drug use. In 2014 alone, the agency reported an estimated of 

207,400 drug-related deaths (UNODC, 2016a).  

Locally, there are other less important consumers in the region apart from selling it to 

drug syndicates and these have changed over time. A further social issue that re-

appears from time-to-time is that chewing coca leaf is a social and medical problem, 

but this has never gained much traction for long and in Bolivia. However, currently 

chewing is considered part of the national heritage of Bolivia as well as its medicinal 

uses and other social interactions and religious ceremonies.   

Over time, there has been an increase violence and social disturbances related to 

the coca and cocaine trade that has increased crime rates (which have prompted 

various law-and-order and alternative pathway initiatives) and the disintegration of 

cultural lifestyle; i.e., normal socialising activities such as sports and entertainment 
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that promote population mobility and provide places where money can be spent. This 

has occurred in all three Andean coca growing countries (Sorrell, 2010). The Bolivian 

Vice Minister of Social Defence was quoted in 2006 as saying “ We decided to leave 

machine guns, bullets and bombs,”(Farthing and Ledebur, 2014). That was a strong 

statement because it meant an end to the violence associated with the 

implementation of anti-narcotics policies in Bolivia. In any society, there is always 

social problems that needs to be taken into consideration in any decision-making.  

 

1.5 Thesis Structure 

 

This thesis has seven chapters in total. Chapter 1 provides and introduction and 

elaborates on the aim of this study. The chapter also outlines the aim and objective 

of this study with anticipated impacts. Previous research, which is pertinent to the 

topic, is reviewed in Chapter 2. In addition to this, Chapter 2 has a section that 

introduces Chapare—the study area. It covers briefly major areas and aspect of the 

study area in setting the scene for readers. This major areas and aspects includes 

geology, climate deforestation and policies that are combined to nurture 

deforestation in the study area. The methods are introduced in Chapter 3 and the 

results are presented in Chapter 4. The methods involve remote sensing skills and 

geospatial techniques to derive Land Use and Land Cover Classification (LULCC) 

maps for analysis. The method starts from image downloads and pre-processing to 

final LULCC. The results and findings are discussed in Chapter 5 and 6 that 

compare, argue and validate the aim and objectives of this thesis, all in the context 

of remote sensing. Chapter 5 covers the image analysis discussion, while chapter six 

elaborate on LULCC and policies. Both chapters deliberate to the extent that the 
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research questions posed in the first chapter have been answered. Chapter 7 

provides a conclusion and recommendation for future research. Much of the 

recommended future research was based on keeping to finer resolution and this can 

be a transition moving from a course to finer resolution. 
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CHAPTER 2 

2 : DEFORESTATION AND ITS DRIVERS INCLUDING COCA IN CHAPARE 

 

This chapter provides background material on coca and cocaine in South America. It 

also introduces the study area in Bolivia—Chapare–and discusses drivers of 

deforestation. Drivers of deforestation can be the direct cause or influence driving 

the forest areas into other land use. Like most tropical countries, humid tropical 

deforestation occurs through various policies change for the sake of sustainable 

development and standard of living.   

2.1 Coca and cocaine 

 

Coca is the common name given to two species of shrubs from the pan-tropical 

family of trees and shrubs Erythroxlylaceae. The two species, E. coca and E. 

novogranatense (both of which have two varieties), that have historically been grown 

to produce leaves for chewing and, since the early 20th Century to produce cocaine, 

are native to north western South America (Bradley, 2005). Although coca leaves are 

a home remedy, a locally used stimulant through habitual chewing herb and an 

infusion that can be drunk like tea, its recreational product is psychoactive drug, 

cocaine, which is very addictive. The traditional domestic and illegal cocaine trades 

mean that coca has been a cash crop for centuries, but its rise to the recreational 

drug of choice in the 1970s boosted its economic significance both in producer 

countries like Bolivia and globally.  

Unlike many other cash crops, where when demand increases the price of the cash 

crop increases, coca prices do not obey normal supply and demand rules because 
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the international market is imperfect in international terms. This is because of factors 

around the international prohibition on cocaine which has been in force since the 

Single Convention on Narcotic Drugs, 1961 (UNODC, 1972) . Coca cultivated to 

supply the domestic chewing markets is not illegal, but it has been almost impossible 

for the authorities in Bolivia and Peru, where large numbers of people chew coca leaf 

on a daily basis, to differentiate between coca being grown for chewing and cocaine 

production.  

Illegal coca cultivation for illegal cocaine production is seen as the major driver that 

has stimulate cultivation in the coca producing regions in South America (Soares, 

2011, Steinberg et al., 2004, Ware, 2007, Sorrell, 2010), and since 2004 the UN 

Office of Drugs and Crime has monitored coca cultivation in Bolivia, Colombia and 

Peru providing annual reports (e.g., the latest survey for Bolivia: UNODC, (2016b)).  

The trade routes (more often called narcotrafficking routes) for cocaine smuggling 

from South America to the rest of the world are of course not known until drugs are 

interdicted, and are known only to complicated secretive network of gangs and 

money launders. In the context of this research the study area - Chapare (Section 

2.2) - is a major source of coca leaf for the global cocaine trade at the present time, 

and has been since the 1950s (Millington, in press). 

Psychoactive plants have always played important roles in local ethnical 

communities in developing countries (Steinberg et al., 2004). Local indigenous 

communities tend to use these plants to elevate them to a different consciousness 

level to fight demons and for healing purposes. Coca is no exception in Bolivia and 

much historical and cultural significance is attached to this aspect. So much so that 

coca and coca chewing in Bolivia is often talked about in terms of national heritage. 
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Legal coca chewing and arguments around heritage provide a kind of blanket cover 

under which the illegal cocaine trade is hidden.  

2.2 Chapare 

 

This section introduces the background of the study area, Chapare, in terms of its 

locality, climate and agricultural aspects.  

2.2.1 Location and administrative divisions 

 

The study area extends for approximately 300 km from Isinota to Entre Rios and 

occupies the low hills in the south to the inundated lowland swamplands up in the 

north. The figure taken from Bradley and Millington (2008) clearly outlines the study 

area (Figure 2.2-1). Moreover, the study area covers the southernmost fringes of 

Beni Department, central Cochabamba Department and the extreme west of Santa 

Cruz Department (See Figure 2.2-1). Departments are the primary administrative 

division in Bolivia. Each department is subdivided into provincias1, each of which has 

its own capital, which is administered by an alcalde2 and municipal council. The 

study area comprises three provincias and a number of smaller subdivisions called 

municipos or municipalities (Table 2.2-1 below) 

 

 

 

                                                
1Provincia is the Latin word for province which is an administrative division forming a state or 
country. 
2AlcaldeordinaR, is the traditional Spanish municipal magistrate, who had 
both judicial and administrative functions over the town and they are elected annually 

https://en.wikipedia.org/wiki/Alcalde
https://en.wikipedia.org/wiki/Judicial
https://en.wikipedia.org/wiki/Administration_(government)
https://en.wikipedia.org/wiki/Municipal_council


  

17 
 

Table 2.2-1: Cochabamba Department: provinces with municipalities in the Chapare 

lowlands at the 2012 census (from Millington, in press) 

 

Province [1] Municipalities [2[ 
predominantly in the 
Cochabamba yungas, cordillera 
or high valleys 
 

Municipalities 
predominantly in 
the Chapare 
lowlands 
 

Chapare Sacaba Villa Tunari 
 Colomi  

Tiraque Tiraque Shinaota 
Carrasco Totora Chimoré 
 Pocona Entre Rs 
 Pojo Puerto Villarroel 

 

 

 

Figure 2.2-1 – Bolivia: location extending south-east from Isinota to Entre Rs and 
shaded relief outlining the low hills to swamplands up north: (Source – Bradley & 
Millington, 2008) 
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2.2.2 Geology 

 

Bolivia can be approximately divided into two main regions. The high mountainous 

Andes to the west, which includes the high-level desert known as the Altiplano, and 

the lowlands to the east, which are mainly seasonally flooded floodplains of rivers 

that ultimately drain into the Amazon. Thus, between Andes and Amazon Basin is a 

narrow zone, approximately 100 km wide, where elevations change from > 4000 

m.a.s.l to around 200 m.a.s.l. These are the forest eastern slopes of the Andes, and 

at the foot the Andes at the margin of the Amazon Basin there are a number of 

colonization zones, including Chapare, where the Bolivia Government has 

undertaken planned settlement since the 1920s (Fifer, 1967, Millington, in press).The 

terrain in Chapare mainly comprises floodplains of major rivers like the Sécure, 

Isiboro, Chapare, Chimoré, Sajta, Ichoa and Ichilo. However, close to the Andes 

there is a hilly zone of dissected alluvial fans and in the extreme northwest and 

southeast of the study area there are low fold mountain ranges where natural gas 

deposits are exploited.   

2.2.3 Climate 

 

The climate in Bolivia is strongly influenced by the location of the topography of the 

country. The northern part of the country is located in the tropics, while it is sub-

tropical in the south. In the Andes and Atilplano, a cold arid climate prevails. In the 

Köppen-Gieger climate classification system Chapare is classified as Am in the north 

and Aw in the south (Peel et al., 2007) (Figure 2.2-3 below). An Am climate is a wet 

monsoonal regime, and Aw is tropical savannah climate. The Aw climate only 

represented in the southeast of Chapare. The area experiences a wet season from 
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November to May, with a drier season from June to October. Mean annual rainfall in 

Chapare varies from approximately 6500 mm in central Chapare between Villa 

Tunari and Chimoré, with the lowest rainfall total occurring in the southeast on the 

border between Cochabamba and Santa Cruz Departments. Andrew Bradley (2005) 

in his thesis gave the amount of precipitation with an average annual amount of 

rainfall calculated from 20 years of rainfall data (Figure 2.2-2) 

 

Figure 2.2-2 Figure of table taken from Bradley (2005) outlining average annual rainfall 
in the study area collected in a peRd of 20 years. 

 

Figure 2.2-3 Köppen-Geiger climate classification for Bolivia. (Source: Derived 
from World Koppen Classification.svg, Wikimedia Commons Licence) 
 

  

https://commons.wikimedia.org/wiki/File:World_Koppen_Classification_(with_authors).svg
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The vast resource-rich  tropical areas of South America ideal for agricultural activities 

(Gibbs et al., 2010) and this is no exception in Chapare. The whole of the lowlands 

of Bolivia, including the study area, have been devoted to either subsistence 

agriculture or cash crop farming. The cash crop farming in Chapare mainly involves 

banana, citrus, pineapple and palmetto (Crabtree and Chaplin, 2013). Banana and 

citrus are the greatest crops by area, but cash returns to farmers from coca far 

outweigh the next most profitable crop, which is palmetto (Bradley, 2005). Perhaps 

the major agricultural land use in Chapare is improved pasture for cattle rearing. In 

addition to these commercial crops, subsistence crops such as rice, maize and 

cassava are grown. 

Most families in the region live under poverty line and depend on a mix of rain-fed 

subsistence farming and either rain-fed commercial crops or livestock (Kuiper and 

Hudak, 2000). The cultivated area per farm size is less than five hectares in the 20 

ha land parcels allocated to each farmer. While early settlers in Chapare, in the 

1950s, were encouraged to produce rice for the Bolivia domestic market, they soon 

developed commercial ventures through citrus and coca. This situation continued 

throughout the 1960s, but when cocaine became the international drug of choice 

during the 1970s, farmers began to convert more land to coca production to be able 

to meet the demand from local cocaine paste processing ‘factories’ as a result of 

national and international reaction. There have been a number of anti-narcotic policy 

responses to the coca and cocaine trade in Bolivia. These will be further discussed 

in this thesis, as they are the driver of forest change that is being investigated 

(Sections 2.3 and 2.4). However, in terms of agriculture, these policies often 

encouraged farmers to grow alternative crops, such as banana and pineapple, to 
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alleviate stagnating local economic growth when coca was eradicated (Morales, 

1991).  

2.3 Deforestation and its Driving factors 

 

Geist and Lambin (2001, 2002) carried out seminal research that introduced a 

drivers-approach to humid tropical deforestation based on a metadata analysis of 

their studies (Figure 2.3-1). This is a similar approach used in this research and 

frames the discussion in the remainder of this chapter. Gibbs et al.(2010) also state 

some of the driving factors strongly pointing out conversion of forest to agricultural 

lands. 

 

Figure 2.3-1; Land use dynamics identifying deforestation drivers for humid tropical 

forest ranging from demographic on the left to cultural factors on the right including 

the land cover conversions at the top. (Source: Geist and Lambin, 2001) 
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2.3.1 Demographic factors, infrastructure development and 
agricultural expansion 

 

According to Geist and Lambin (2001) demographic factors are underlying causes of 

tropical deforestation (Figure 2.3-1). The main factors are population growth and 

migration. Once people move into an area like Chapare, where the initial 

demographic factor was migration from the Bolivian highland farms (agricultural 

expansion) and infrastructure development is necessary to support these people. 

Agricultural expansion and infrastructure are proximate causes of deforestation 

(Figure 2.3-1). Of course, once settlement occurred in Chapare, the population grew 

through normal reproduction processes, but also migrants continued to have arrived. 

This way of expansion of communities in areas of settlement and farming is 

commonplace throughout most tropical developing countries (Dimobe et al., 2015).  

Most rural colonists in tropical agricultural communities depend on balance 

subsistence agricultural farming as one of their main food sources with an element of 

commercial cash cropping: this is the case in Chapare. People moving into new 

areas to cultivate often clear large amounts of primary forest initially to grow food 

crops that they can consume and sell on the domestic market before moving into 

other commercial crops. In Chapare the initial crop for most settlers was rice (Weil, 

1983). The conversion of forest to farmland accounts for most forest area lost in 

most parts of the tropics if only proximate causes are considered, and it the most 

important proximate cause being cited in 96 studies analysed by Geist and Lambin 

(2002) (Figure 2.3-1). Settlers in Chapare also used timber from forest clearance to 

build their houses. In doing so they destroyed  habitat for native flora and fauna 

(Crabtree and Chaplin, 2013): though habitat loss in a biological sense is not the 

main focus of this research. 
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The expansion of infrastructure accounts for a smaller area of forest loss than the 

expansion of agriculture, and is the second-most important proximate cause of 

deforestation being implicit in 72 case studies that Geist and Lambin (2001) 

reviewed (Figure 2.3-1). Infrastructure development in Chapare involves the 

expansion of the main road and feeder road network and the establishment on towns 

of 2000-5000 people that provides services to the dispersed farming communities. 

The main towns from west to east are Isinota, Eterasama, Villa Tunari, Shinaota, 

Chimoré, Ivigarzama, Puerto Villaroel and Entre Rios. The push to increase the road 

network has been considered the main cause of deforestation in parts of Chapare by 

Gils and Ugon (2006) 

More recently, the possibility of extending the road network in the northwest of the 

study area has caused uprisings amongst the indigenous people over the Isiboro-

Sécure Indigenous Territory and National Park (TIPNIS). If this occurs it will 

concentrate significantly to the rate of deforestation in TIPNIS (Crabtree and Chaplin, 

2013), and part of Chapare that has already seen settlement along access lines cuts 

into the primary forest for oil and gas exploration. 

2.3.2 Food Security 

 

Food security is another important factor to consider in understanding how 

agriculture develops and can be considered to encompass the proximate cause of 

agricultural expansion and two underlying causes, economic factors and political and 

institutional factors (Figure 2.3-1). Food security has become a key global issue with 

a greater visibility than when the research papers that Geist and Lambin (2002) 

analysis were carried out. This is a particular issue where there is not enough money 

to sustain dietary needs because of families living below the poverty line, and people 
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depend entirely on farming. This is widespread in Bolivia (Devere et al., 2017) where 

it is related to indigenous land rights in Bolivia because of political land reforms in the 

1950s.  

The combination of proximate causes and underlying drivers that food security 

implies leads to agricultural expansion but also demographic growth, which in turn 

increases demand for agricultural produce. The linkages outlined above are also 

indirect as they increase global agricultural flows (Morales, 1991, Millington and 

Jepson, 2008, Kuiper and Hudak, 2000, Devere et al., 2017, Angelsen and 

Kaimowitz, 2001, Hellin, 2013, Dimobe et al., 2015). The population is still expanding 

and this is putting pressure for farmers to self-sustain themselves as well as 

encouraging the communities to develop sources of external income. Hellin (2013) 

stated that, there is a need for the promotion of agricultural products including coca 

in the area, as it exposes farmers to new challenges and opportunities.  

2.3.3 Increased technology 

 

Technological change is an underlying driver of deforestation (Geist and Lambin, 

2001, Geist and Lambin, 2002) that has contributed towards much of the 

deforestation that has happened in the second half of the 20th Century. In the 1960s 

and 1970s, that was mainly limited advances in agricultural equipment, fertilisers and 

agrochemicals. This now includes further advances in these areas and GMOs. 

Technological advances have had two main impacts: reduced labour inputs and 

increased crop yields. Such technologies included chain saws for felling trees and 

tractors for ploughing fields.  

Furthermore, because of the availability of new technologies, farming household see 

the opportunity for increasing their living standard (Angelsen and Kaimowitz, 2001). 
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They have shown how soybeans have taken large parts of the Amazon Basin in both 

Brazil and Bolivia. This is, in part, because it takes less labour, improved technology 

to control weeds and market prices that allowed to grow soybeans than coffee, 

banana or other crops. An example from the area studied are banana farms where 

complete infrastructure have been installed by farm cooperatives and banana fruits 

cut in the field are transported to washing and packing facilities using a network 

aerial rails along which bunches of bananas are pulled (Appendix 2.1) resulting in 

less labour. 

2.3.4 Agricultural market prices 

 

There is evidence that patterns of farming and the crops grown can change with 

fluctuations in farm gate prices. This can be seen as a catalyst to either encourage 

or discourage farmers from growing certain crops and it plays an import role in 

farmers deciding which crop to grow commercially (Perez-Verdin et al., 2009). These 

researchers concluded that deforestation rates and economic marginality index are 

proportional, and more poor famers convert more forest areas to farmland mainly 

because of the opportunity to earn more money. That is probably true for coca in the 

region where people turn to it to earn more money with less labour input compared 

to other crops (Bradley, 2005).  

2.3.5 Policies and legislation 

 

Policy issues that drive deforestation are consider underlying drivers by Geist and 

Lambin (2001, 2002). Policies and legislation to enable large haciendas to be 

subdivides into smallholder production systems under lease agreements were 

introduced in the 1950s in Bolivia with the Agrarian Reform of 1952 (Hellin, 2013). 
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That is through agriculture innovative systems that includes infrastructure and 

organisational improvements to produce land estates in manageable sizes.  

That led to former miners and farmers from the impoverished highlands to settle in 

Chapare. These regulations, along with the formation of the National Colonization 

Institute in 1963 led to forest being allocated and cleared for farming and settlement 

in colonization zones in Bolivia, like Chapare. Another example of a policy that led to 

changes in deforestation rates in Bolivia was the introduction of the New Economic 

Policy in 1985 (NEP) which promoted improved farming techniques in a political 

framework that would improve economic performance and stabilise markets. Thus, it 

consisted of an “orthodox program relying on fiscal policies” (Morales, 1991).  

The introduction of agricultural reforms in countries like Bolivia was underpinned by 

the perception that tropical forests were seen as suitable areas for farmland and 

major shifts in replacing forests with agriculture occurred from the 1950s onwards in 

South America, and elsewhere in the tropics (Gibbs et al., 2010) for sustainability 

and development. This shift came about at time when there was limited 

environmental regulation. It was clearly a global trend in agricultural reforms which is 

one of the factor that drives forest clearance and the conversion to agricultural land. 

It applies in Chapare, but because the main crop in this area was also illegal, 

another important policy dimension comes into play. That is anti-narcotics policies, 

often promoted and funded by the United States. These provide an unusual policy 

framework, and one that is explored in this research. It is explained in more detail in 

the following section below. 
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2.4 Anti-coca policies 

 

Growing and harvesting coca leaves became a lucrative farming enterprise 

compared to other agricultural crops in parts of Bolivia and Peru as far back as 

1950s (Walsh, 2004).  However, the high demand globally for cocaine since the 

1970s created an acceleration on the flows of cocaine paste from Bolivia and Peru—

the two main producers–mainly to North America and Western Europe. Much of this 

cocaine was routed through Colombia, but during the 1980s, Colombia started to 

cultivate coca and became the major producer (UNODC, 2016). Bolivia has 

fluctuated between being the second and third largest coca-producing country in the 

21st (UNODC, 2016), alternating its ranking behind Colombia with Peru. In Bolivia, 

Chapare became the main coca producing area in the mid-1960s (Millington, in 

press) and continues to be so half a century later.  

The rise of coca cultivation, cocaine processing and narcotrafficking saw the launch 

of a war on drugs in Latin America targeting coca cultivation as part of a raft of 

measures. That led to airborne fumigation exercises in Columbia (LeoGrande, 2005), 

while in Bolivia ground based activities included forcing farmers to pull up bushes 

and spraying with herbicides.  

The first signs of policies and legislation focussed on coca and cocaine was the 

establishment of UN Commission of Enquiry into the Coca Leaf in the 1950s which 

investigated the social and health implications of coca leaf chewing in 1950, but was 

thinly veiled initiative by the international community led by the USA to get its teeth 

into cocaine smuggling into cities of the east coast of the USA. The Single 

Convention on Narcotic Drugs that was passed by most countries of the world in 



  

28 
 

1961 stipulated the ban on coca leaves grown for the drug trade which was growing 

in response to an increasing demand for coca and cocaine trafficking in 1960.   

Whilst embassy officials noted a rise in arrests by Bolivian authorities for running 

cocaine processing factories and drug smuggling in the 1960s, it was not until the 

1970s that anti-narcotics policies begun to be developed in Bolivia, at the behest of 

the US Government and supported by them with funds and logistical support. The 

adoption of externally driven and funded policies by Bolivia has a chequered history. 

This enabled Blanco (2008) to divide the six decades from 1960 into five periods of 

policy effort in Chapare (Table 2.4-1). 

This is somewhat generalised and suggests that the 1960s through to 2003 that the 

anti-narcotics policies prevailed in Chapare and since a pro-coca regime has been in 

place. Bradley and Millington (2008b) show that during the 1980s and 1990s, when 

many anti-coca policies that targeted Chapare were being developed and launched 

in Bolivia (Table 2.4-2) they were not always enforced. This enabled them to identify 

anti-coca and pro-coca periods in these two decades. 

A key element of successive anti-coca policies were initiatives to introduce 

alternative crops (Sturm and Smith, 1993). These were usually combined effort from 

Bolivian government and US government to replace coca with crops like banana, 

palmetto and pineapple; and later black pepper and passion fruit that either had 

external markets (e.g., bananas) or could be processed and exported. This had little 

impact on the overall levels of coca leaf production because of the vast areas of 

forest, which could be cleared at the peripheries of Chapare. As the numbers of 

settlers increased during the 1970s, 1980s and 1990s, and more land was cleared at 

the margins, so the focus of coca cultivation generally shifted from the centre to the 
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Table 2.4-1 Retrospective and situation of Chapare with respect to coca cultivation. Based on a tabular representation of Blanco’s 

(2008, p 41, 43) research. (Translator: Andrew Millington) 

 

 

 

Demographic, 
administrative and coca 

responses 

Colonization programs in 
lowland tropics. 

Migration to Villa 
Tunari*. 

 Population growth and 
migration to Villa Tunari 

 Tiraque, Chimoré, Entre 
Rs and Puerto Villaroel 

created 

 Coca cultivation increased, 
mainly in Villa Tunari 

 
C 
H 
A 
N 
G  
E 
 

O 
F 
 

V 
I 
S 
I 
O 
N 

Increase in coca cultivation 
and leaf sales. 

Attitude to /legal status 
of coca cultivation 

Commitment to 
eradicate coca 

cultivation and the habit 
of ‘aculico’ 

From the beginning of 1998 
voluntary eradication 

programs under Law 1008 
and alternative 

development programs. 
 
 

Forced coca eradication 
and alternative 

development programs 

Proposed  revision and 
modification of Law 1008 

Decriminalization of 
cultivation coca leaf 

surpluses 

Main presidential 
administrations** 

Paz Estenssoro,  Banzer 
 
 

Paz Zamora  Banzer, Sanchez de 
Lozada 

Mesa  Morales 

 

Overarching  
vision 

Eradication of coca 
cultivation 

 Eradication of coca 
cultivation 

 Eradication of coca 
cultivation 

 Conciliatory government  Support for coca 
cultivation 

 

*Places refer to municipos, rather than urban centres. ** There have been 10 other presidential administrations and 8 military administrations between 1960 and 2012

1960 1976 1992 2003 2005 2012 
16 years 16 years 11 years 2 years 7 years 
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margins of Chapare. This coincided with a ramping up of US government imposed 

programs, strategies and anti-narcotics policies between the 1980s and the 1990s as 

part of the “War on Drug” (Xie, 2011).   The “War on Drugs” enabled the US gain 

momentum from other countries and international organisations to help halt the 

cultivation of coca leaves in the region, as well as other drugs elsewhere around the 

world. 

Table 2.4-2 Main periods during which anti-narcotics policies were introduce with 

military action to enforce eradication of coca (Source: Bradley & Millington, 2008b) 

Year(s) Policy 
instrument 

Enforcement action 

1981 Law 18265 
Law 18741 

Option of compensation to farmers in forfeiting their coca plots, 
otherwise forced removal of coca crop when discovered 

1986 Operation 
blast furnace 

Military operation unit selecting localized hotspot areas to 
destabilize local economies based on coca. 

1986–1989 Plan Trienial Intense military action to eradicate coca, which was 
abandoned after 12 months because of a civil unrest relating 
to this exercise. 

1988 Law 1008 Legalization of 12 000 ha of coca for cultural purposes—
mainly in the Yungas of La Paz. Coca bushes in excess in the 
remaining areas to be removed within 8 years. 

1998–2003 Plan Dignidad Five-year plan to remove all illegal coca—this target was 
claimed to be met in 2000. 

 

 

This included more than trying to control production. According to UNODC (2004) 

there was a major drive in rehabilitating drug-related criminals by the United Nations 

Office of Drug and Crime, through a project called PREDEM to try and tackle 

demand reduction. The overall aim remains to generate public policy and strategies 

to reduce drug demand (UNODC, 2015). A major player in this effort globally has 

been European Union (EU), who through a range of coca-related programs in the 

region generally, with specific projects in Chapare aimed at developing agro-

industries based on alternative crops. A key piece of legislation that is relevant to 

restricting coca in Bolivia was Law 1008. This law, which was passed in 1998, 
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demarcated how much coca a household could grow, one cato3 per household, and 

designated areas in which ‘traditional’ cultivation for leaves for chewing as legal 

cultivation areas. In all other parts of Bolivia coca cultivation was declared illegal, this 

included Chapare. 

Amazingly, Human Rights Watch and the UN High Commission for Refugees 

(UNHCR) has monitored the violations of human rights issues, which have been an 

outcome of imposing anti-coca policies. Xie (2011)  reported that in 2011, almost 

35,000 families who depended on coca as a source of income were forced into 

poverty when their coca fields were destroyed and no economic alternatives offered 

(Law 1008). 

The situation with respect to coca in Bolivia, and Chapare in particular, began to 

change with Evo Morales’ Movement to Socialism (MAS) started to wield influence in 

the early 2000s (Table 2.4-1). MAS is a Spanish acronym where 'a' means 'to' in 

Spanish. When Morales become president in 2006, there is a major shift in policies 

which went under the mantra “Coca si, Cocaine non” giving coca farmers flexibility in 

growing coca plants but still limiting it to one cato per family (Farthing and Ledebur, 

2014, Dangl, 2010). Specific policies recognised traditional uses of coca leaves in 

2009. In 2017 Morales announced the expansion of the area of legal cultivation 

(BBC, 2017) .Coca farmers are closely monitored to meet the international 

obligations of not supporting the use of cocaine. Thus in 2013, there is 50,000 

registered growers using well over 1.2 million acres of land. While UN uses satellite 

and surveillance to monitor coca growing in the study area, work is in place to 

register and monitor them electronically (Farthing and Ledebur, 2014).  

                                                
3 One cato is approximately 1,600 square meters and thus one cato of coca was estimated to earn 
around 70 to 100 dollars per month.  
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2.4.1 Alternative Farming and Deforestation 

 

Alternative crops and farming methods were introduced in Chapare to encourage 

farmers to grow other cash crops apart from coca as one of the measures to reduce 

coca cultivation. The US government and the Bolivian government started promoting 

the establishment of alternative cropping system in 1975 shortly before the Coca and 

Controlled Substances Regulation Law (Law 1008 of 1998) came into effect (Sturm 

and Smith, 1993). The farmers were given technical assistance, in terms of aid and 

infrastructure that was fully funded by US AID. The main Bolivian organisation 

tasked to deliver this program was the Bolivian Institute of Agricultural Technology 

(IBTA). The major alternative crops cultivated in the study area were banana, 

palmetto, pineapple, black pepper and passion fruit (Table 2.4-3) 

Table 2.4-3 Duration for the project and its aim to be used as anti-narcotics policy 

targeting coca. (Source; Bradley & Millington (2008b). CDRP = Cochabamba Regional 

Development Program; CORDEP = Chapare Regional Development Program; 

CONCADE = Counter Narcotics consolidation of Alternative Development Program. 

Years Projects Aims 

1984-1987 CDRP 
Alternative crop were researched and introduced. Creation 
of micro regions centred around the coca growing areas. 

1987-1990 
CDRP 
(amended) 

Crop substitution, research, and development into 40 
years substitute crops in Chapare 

1991-1999 CORDEP 
Marketing and subsidizing of few specific coca alternative 
crops such as palm hearts, banana, and pineapples. 

1999-2004 CONCADE 

Support for Plan Dignidad, aimed at encouraging 
alternatives and stabilize alternative markets to coca 
bushes as they were eradicated. 

 

Therefore, the crop mix in Chapare changed considerably as these were added to 

citrus, cassava, rice and livestock rearing. Coca was retained in the crop mix in 

many communities, illegally by this time. In 2002 the Bolivian Government 

announced the eradication of coca in Chapare (Bradley and Millington, 2008a),. That 

has drawn interest from other researchers who have looked at the coca policy arena 
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in Bolivia, thus (Elsner, 2016) states that “is one of the first Latin American county to 

implement economic adjustment programs in the farming sector” 

However, farmers growing alternative crops to meet the international demand were 

faced with a number of problems. The market prices from their products fluctuated, 

when subsides provided by USAID depleted and the crops were often uneconomic. 

They required more labour and large areas of land to respond to the market as well 

as meeting their household needs. Thus farmers formed cooperatives to address 

those issues to try and stabilise prices to provide for local economic security and to 

have a voice at a political level (Ofstehage, 2012). Farmers’ income from those 

alternative-farming crops still do not match with what coca had to offer: hence, coca 

remained part of the crop mix. 

Bradley and Millington (2008b) examined forest clearance rates from forest and non-

forest maps of farms in three communities in Chapare during the 1980s and 1990s. 

These were calibrated by interviews with farmers (Bradley 2005). Their finding was 

that when anti-coca policies were in force and alternative crops were actively 

promoted and supported financially deforestation rates were 0.9-1.1 ha/year per 

farm, whilst when policies were weakly enforced deforestation rates were much 

lower 0-0.4 ha/ year per farm.  Their analysis did not include the strongly pro-coca 

vision that has been in place since 2003 (Table 2.4-1) and this research takes the 

opportunity to see if, after a decade of more of pro-coca policies and legislation, their 

hypothesis is correct. If it is, it would be expected that deforestation rates would be 

very low in the communities studied by Bradley and Millington (2008a) and forest 

cover would have stabilised or possibly even increased.  
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CHAPTER 3 

3 : METHODOLODY 

 

This chapter outlines what has been done in a sequential process. It also justifies 

why certain processes were chosen and how they were used. The chapter has three 

main sections grouped around the major steps in the work: image pre-processing, 

land-use and land-cover classification aimed at forest/non-forest mapping, and the 

generation of forest/non-forest statistics for individual communities.  

The data collection and analysis is focussed on remote sensing, and various remote 

sensing techniques were applied and are outlined in the sections on pre-processing 

of imagery and land-cover and land-cover classification and mapping. This project 

used ERDAS Imagine 2015 and ArcGIS Version 10.4.1 software. There are various 

software packages for image processing and GIS, however the two were chosen 

because they are applied widely in the many areas of remote sensing and land-cover 

classification and are available in the institution where the study was conducted.  

The image data used were from the USGS (United States Geological Survey); this 

elaborated on further in Section 3.1. These data were acquired at no cost, which is 

an advantage.  

The study focuses on a time series of images to detect and map land-cover changes 

and therefore, it uses of similar images in terms of the satellite-sensor series—

Landsat–from 2011, 2015 and 2016 images. No cloud free imagery was available 

from 2012 or 2013, and Landsat data from 2014 for this area has already been 

analysed at Flinders University by Morgan (2015). Images between 1996 and 2003 

were analysed by Bradley (2005), this was updated to 2006 (Bradley and Millington 

2008a, 2008b), and CBERS imagery was investigated from 2007-2009 because of 
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the problems with the series of Landsat satellite-sensors (Millington et al., 2009).This 

project therefore fills gaps and updates a time series of data for Chapare. Ground 

observations of land use and land cover, which were made available for this thesis 

for accuracy assessment purposes, were collected by Professor Andrew Millington in 

2015. Much of what was done methodologically is summarised in Figure 2.4-1. 

 

Figure 2.4-1; Flow chart of the methods used in this study from the image pre-
processing of the images to forest/non-forest mapping and analysis. 
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3.1 Image pre-processing 

3.1.1 Image downloads and image quality 

 

The images were downloaded from the USGS through the LansatLook portal 

(https://landsatlook.usgs.gov/viewer.html). USGS is a scientific agency of the United 

States government, which focuses on studying the Earth’s natural resources and 

natural hazards. One of the data sources it provides are images from the Landsat 

series of satellites. This series was designed to map and monitor earth resources for 

research and educational purposes. The first satellite, now known as Landsat 1, was 

launched in 1972. Its original name was the ‘Earth Resource Technology Satellite 1’. 

The latest satellite in the series—Landsat 8–was launched in 2013 and is still in orbit. 

It is the longest series of remote sensing satellites and therefore has the longest 

archive of medium spatial resolution multispectral data. These characteristics make 

Landsat image data the clear choice for historical land-use and land-cover change 

studies. According to the USGS (2017) in the first three months of 2017, the biggest 

use of Landsat data (24.2%) was for land-use and land-cover change research. The 

sensors on board Landsat satellites have changed over time, but since the 1980s, 

channels have covered the visible, near infrared, short wave infrared and thermal 

infrared parts of the electromagnetic spectrum. The images used in this study were 

from Landsat 5 Thematic Mapper (TM) and Landsat 8 (ETM+ OLI). The images have 

a 30-m spatial resolution and are projected onto the WGS datum. The Enhanced 

Thematic Mapper sensors have two spectral bands not found on the Thematic 

Mapper, deep ultra-blue visible (0.43µm – 0.45µm) and a short wave infrared cirrus 

band (1.36µm – 1.38µm), as well as including a panchromatic (0.5µm – 0.6µm) 

band. The cirrus band was designed for cloud cover studies because it can detect 
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cirrus cloud formation in the short wave infrared wavelength (Makarau et al., 2016). 

The data were downloaded as 8-bit quantized radiance data.  Table 3.1-1 specifies 

the details of the Landsat satellites and sensors used.  

Table 3.1-1 Tables outlining the bands for Landsat4-5 & Landsat 8 (OLI) (Source; 

https://landsat.usgs.gov) 

Landsat 4-5 Thematic Mapper ™ 

  
Bands Wavelength Spatial resolution 

 
 (µm)  (m) 

Band 1 –Visible Blue 0.45-0.52 30 

Band 2 – Visible Green 0.52-0.60 30 

Band 3 –Visible Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5  - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 

The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi). 

Landsat 4 and 5 orbit height = 705.3 km 

Repeat interval = 16 days 

   
Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

Bands Wavelength Resolution 

  (µm)  (m) 

Band 1 – Visible Ultra Blue (coastal/aerosol) 0.43 - 0.45 30 

Band 2 –Visible Blue 0.45 - 0.51 30 

Band 3 –Visible Green 0.53 - 0.59 30 

Band 4 –Visible Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.57 - 1.65 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.11 - 2.29 30 

Band 8 - Panchromatic 0.50 - 0.68 15 

Band 9 - Cirrus 1.36 - 1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30) 

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30) 

The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi). 

Landsat 8 orbit height = 705 km 

Repeat interval = 16 days 

 

The improved features of Landsat 8 OLI, including its aerosol bands, have greatly 

improved the quality and features in coastal studies (Finkl, 2016, Finkl and 

Makowski, 2014). However, the focus of this study on land-cover mapping in humid 
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tropical forested environments was proven with Landsat TM and ETM+ (Foody et al., 

2010, Hyde et al., 2006, Sobrino et al., 2004). 

The images downloaded for this research had (i) less than 10 percent of cloud cover 

and, (ii) given that four images were required to create a mosaic that covered all of 

Chapare, a limit of no more than two months apart was set to avoid issues related to 

regrowth after crops had been harvested or new land cleared. These images were 

mostly acquired during the May and October dry season, the best images in terms of 

cloud cover and spectral contrast were from August and September. For a humid 

tropical country, the ability to obtain cloud-free satellite scenes involves an element 

of luck and the option to revert to radar data did not have to be exercised. Table 3.1.-

2 presents a list of the images acquired with their dates of acquisition and cloud 

cover statistics. 

All the images acquired had been geometrically and radiometrically corrected by the 

USGS. Radiometric correction involves corrective measures to compensate for the 

errors and distortions due to sun’s azimuth, atmospheric conditions, aerosols in the 

atmosphere and changes in sensor response. Geometric correction relates to 

geometric distortion of the image and the projection of the image. Good GIS practice 

suggest that all data must be verified for geo-rectification and that has been done, 

and this is essential when changes in boundaries, e.g., forest/non-forest boundaries, 

are being analysed. Thus, the images were correctly geometrically and ready for use 

as follows, images acquired in row 233 are projected to WGS 84 UTM Zone 19S 

while those on rows 232 and 231 images are projected on WGS 84 UTM Zone 20S. 
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Table 3.1-2 ; Images used in this research project 

2016 
      

Scene ID Sensor Path Row Cloud Scene Date 

    
Cover time (GMT) 

 LC83230722016168LGN00 OLI 232 072 8% 14:22:32 16-Jun 

LC83230712016168LGN00 OLI 232 071 0% 14:22:08 16-Jun 

LC83210722016305LGN00 OLI 231 072 2% 14:17:00 31-Oct 

LC82320722016200LGN00 OLI 232 072 16% 14:22:48 18-Jul 

LC82320722016216LGN00 OLI 232 072 16% 14:22:51 3-Aug 

       2015 
      Scene ID Sensor Path Row Cloud Scene Date 

    
Cover time (GMT) 

 LC82320722015293LGN00 OLI 232 072 0% 14:22:29 20-Oct 

LC82320712015293LGN00 OLI 232 071 6% 14:22:53 20-Oct 

LC82330712015316LGN00 OLI 233 071 3% 14:16:27 12-Nov 

LC82310722015238LGN00 OLI 231 072 15% 14:28:43 26-Aug 

       2011 
      

Scene ID Sensor Path Row Cloud Scene Date 

    
Cover time (GMT) 

 
LT52330712011193CUB01 TM 233 071 3% 14:17:49 12-Jul 

LT52320712011218CUB01 TM 232 071 0% 14:11:23 6-Aug 

LT52320722011218CUB01 TM 232 072 6% 14:11:47 6-Aug 

LT52310722011259CUB01 TM 231 072 0% 14:05:11 16-Sep 

 

The radiometric and geometric correction was done prior to the image data being 

downloaded through the LandsatLook portal. This is because they are from a 

relatively new source of atmospherically corrected imagery for land-change detection 

and environmental monitoring—the Surface Reflectance Calibrated Image Archive` 

(USGS, 2015a, Feng et al., 2013, Vuolo et al., 2015). This is part of the Landsat 

Surface Reflectance Climate Data Record (Landsat CDR), which is part of the 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) ((Vuolo et 

al., 2015). 

The images in this archive have been calibrated to surface reflectance by applying a 

model that uses physically based measurements of land surface properties. It 
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converts to top-of-atmosphere reflectance values before atmospheric effects are 

removed, thereby producing at-surface reflectance values (USGS, 2015b). Data are 

supplied in either a Universal Transverse Mercator (UTM) or Polar Stereographic 

(PS) format (Masek et al., 2006). Ross et al., (2017) have argued that these data are 

well suited to observing and analysing land-cover change because (i) Landsat image 

data have been used extensively in land-cover analyses, and (ii) these data are 

atmospherically-corrected and georectified significant amounts of image processing 

time and effort by researchers has been saved. The archive includes TM, ETM+ and 

OLI imagery at 30 m spatial resolution, MSS data are not included in the archive at 

the present time. Despite the fact that corrections have been done prior to the 

images being downloaded, they were checked before being processed further. 

 

3.1.2 Haze Correction 

 

Most satellite imagery acquired over tropical countries are not free of cloud cover 

and therefore it can cause the acquired imagery to have reduced contrast and can 

lead to land-cover misclassification. This is a result of atmospheric scattering and 

absorption in high humidity regions (Richards, 2012), thus it cannot be completely 

eradicated as argued earlier (Chavez, 1988). Thus, the images used required haze 

reduction to sharpen them. This correction was done by using the tasselled cap 

transformation in which the component that correlates with haze is transformed back 

into RGB space; this technique has been widely applied in studies focusing on crop 

development cycles (Dave, 1981). This is because when crops emerge, they tend to 

cast shadows over the ground but the soil still dominates reflectance values. Later, 

when they mature, they tend to cover the soil increasing NIR reflectance and then 

when they wilt and turn yellow NIR reflectance declines in a manner depicted by the 
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tasselled cap model itself (Richards, 2012). As the focus was on cropped and 

forested land, and because (i) the images in any single annual image can cover up 

to 13 weeks, and (ii) because cropping cycles vary slightly between years. Even 

though this technique is widely used in cropping cycle, it is commonly used in haze 

correction as stated earlier as it is a spectral transformation technique because of 

the low frequencies where haze is normally distributed (Hu et al., 2009).  

 

3.1.3 Sub-setting the area of study 

 

The Chapare colonization zone or area of interest (AOI) overlaps four different 

images (Table 3.1-2). Therefore, the specific areas on each image that make up the 

AOI had to be cut from the individual images before they could be mosaicked 

together to reduce larger image processing effort and to minimize variance in 

radiance over the ~500 x ~300 km combined of the four images that would distort 

results from information extraction algorithms. 

The ERDAS Image subset and chip tool was used to subset the component parts of 

the AOI from each image. The output file is continuous raster data, sometimes called 

non-discrete data. 

 

3.1.4 Mosaicking 

 

Mosaicking was done to stitch together the different components of the AOI from the 

four geo-referenced images. This was done separately for each of the ‘years’ (Table 

3.1-2). The input files for mosaicking are the output files from the subset and chip 

algorithm. The have the same projection and number of bands as the original images 

they were subset from originally.  
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The four images used to create the mosaic for any one year were acquired on 

different dates from the low rainfall season (Table 3.1-2). This is done by setting a 

low land cover change threshold for data downloading. Nonetheless, contrast 

between some images indicates differences in radiometric properties between dates 

and across the entire extent of the imagery. In addition, and despite the use of the 

tasselled cap transformation, there will be some areas in one image of a mosaic 

where crops may have been harvested but not in another image acquired at an 

earlier date; or where land preparation (cutting secondary regrowth and burning) has 

taken place in a later image but not in an earlier image. Overall, the land cover will 

still be agricultural and not regrowth forest. 

The radiometric issue in mosaicking was dealt with at his stage in the processing 

chain. The methods tested were i) colour balancing, ii) illumination correct and iii) 

histogram matching. All those methods tested to identify the best method that does 

not change the radiometric properties of pixels before they are classified. Illumination 

correction and histogram matching were used to accomplish this. Illumination 

correction was chosen because it increases illumination levels in dark (low 

reflectance) pixels, while simultaneously decreasing illumination in bright (high 

reflectance) pixels, using an image as a reference, to provide a uniform correction to 

the other three images as far as possible. 

Mosaicking uses an algorithm that stitches together images as well as correcting the 

colour and illumination levels. Various options are available for image mosaicking. 

The one used in this research was histogram matching. In this, a histogram of the 

image, which is unambiguously clear of cloud, was used to match to the other three 

images. It was used in this research because the images selected were a few 

months apart in their dates of acquisition and their radiance characteristics will have 
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some differences. Therefore, histogram matching was used to obtain uniformity in 

radiance over the entire stitched image mosaic. This does possibly introduce noise 

but it proved to produce a better output compared to the other options for mosaicking 

as compared. The other options compared were image dodging, illumination 

equalization, and colour balancing as stated. 

3.1.5 Sharpening 

 

Pan (panchromatic) sharpening is an image enhancement technique that improves 

the image quality from low- to a high- spatial resolution. With OLI data, it transforms 

and enhances an image created from the multispectral bands by merging the high 

spatial panchromatic band (Table 3.1-1) to create high spatial resolution colour 

bands reveal finer spatial detail. In doing so, it retains the radiometric quality from the 

30 m spatial resolution data while incorporating the spatial details of the 15 m 

panchromatic band. It was applied to 2015 image after mosaicking for the purpose of 

improving the definition of the pixel boundaries (Tarolli et al., 2014) so that small 

agricultural plots of, and possibly even coca plots classes, could be defined and 

mapped. 

Using pan sharpening does lead to a trade-off between the spectral resolution and 

the spatial resolution, with the image being resampled back to the spatial resolution 

of the panchromatic image (Richards, 2012). This is the reason why most recent 

commercial satellites like IKONOS, WolrdView2, WorldView3, SkySat1 provide three 

or more relatively coarse spatial resolution multispectral bands along with a finer 

spatial resolution panchromatic band.   

In the pan-sharpening algorithm in ERDAS Imagine, the panchromatic band is 

overlain on the multispectral image, and adjusts the saturation and brightness levels 
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to enhance the spatial resolution of the multispectral image. Pan sharpening was 

deemed essential to bring out the features and increase the resolution of the colour 

information before classification. 

3.2 Classification 

 

Land-use and land-cover classification generally relies on supervised classification 

or unsupervised classification techniques. Supervised classification is used when the 

user guides the image processing steps used in determining the land cover classes. 

In particular, the user decides on the following key steps, selecting training data and 

training the classification  algorithm  (Richards and Jia, 2006) and in deciding which 

technique, usually  maximum likelihood classification, minimum distance or 

parallelepiped classification, to use. Unsupervised classification differs from 

supervised classification in that training, which is not undertaken by the operator 

before the algorithm, which clusters image pixels into unknown but statistically 

defined classes, is applied. Nonetheless, the onus is on the user to identify the 

classes at the end of the classification. 

Unsupervised classification was used for all three images for two reasons as a result 

of the algorithm (tasselled cap) used in the classification.  

1. Consistency of methods, so that results are comparable like the statistics from 

Bradley, (2005) used in this research study. The image processing protocol 

used  (Bradley, 2005), was followed and modified by Dr. Danny Redo and Dr. 

Mlenge Mgendi when they analysed 2006, 2007 and 2008 data for this area at 

Texas A & M University. This protocol was followed again by Andrew Morgan 

in an undergraduate BAGIS thesis at Flinders when analysing 2014 imagery 

(Morgan, 2015) 
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2. As forest/non-forest maps were the ultimate product required for the 

community-scale quantitative analysis, robust land-use and land-cover 

classifications are perfectly adequate. Forest and non-forest classes can be 

derived by merging land-use and land-cover classes derived from 

unsupervised classification by references to the 400+ ground observations 

that were made in Chapare in 2003 by Andrew Bradley, 2007 by Danny Redo 

and, importantly for this thesis in 2015 by Andrew Millington.  

3.2.1 Unsupervised Classification 

 

The steps in the unsupervised classification process adopted for this research are 

outlined in Figure 3.2-1 and Figure 3.2-2.  

 

Figure 3.2-1 The flow diagram for the unsupervised classification for 2015 image 
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Figure 3.2-2 The flow diagram for the unsupervised classification for 2011& 2016 

images 

 

3.2.2 K-means and ISODATA 

 

In unsupervised classification, K-means is a technique in which a predetermined 

number of clusters is chosen for the pixels to be classified into classes. In this 

research project, the classification algorithm chosen was the Iterative Self-

Organising Data Analysis Technique (ISODATA) was used. K-means and ISODATA 

are part of the Unsupervised Classification tool in ERDAS Imagine and both were 

used in this study.  

Given a predetermined number of iterations (in this project this was set at 10), 

ISODATA splits and merges clusters of pixels based on the mean distance to the 

centre of each clusters of pixels vector until the maximum number of iterations or a 

percentage of the pixels of a specific cluster is reached (Jensen, 1996). It uses the 

minimum distance formula to determine which cluster a pixel is placed. Other 

thresholds set when using ISODATA in this research were a convergence threshold 

of 0.95 and a skip factor of 1. The convergence threshold was set at 95%, meaning 

only a maximum of 5% of pixels can be changed at any iteration 
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ISODATA clustering improves on K-means by carrying out a number of checks on 

the pixels at the end of each iteration, i.e., after they have been assigned to a class 

(Richards, 2012), it calculates the mean of each cluster that is distributed in n-

dimensional data space, where n is the number of bands input into the algorithm. It 

then recalculates new means and re-classifies each pixel according to the new 

means. In this way, it assigns each pixel to a possible class according to its 

relationship to the means of all the clusters, by recalculating means at each iteration 

new clusters can be created. For example, it can split as clusters of ‘forest’ pixels 

and bring out new clusters of ‘forest’ pixels based on reflectance thresholds 

calculated at an iteration, which are based on forest canopy properties. 

Recalculating means and re-clustering is important in areas where there are many 

potential land-use classes with overlapping spectral properties, e.g., in Chapare, an 

example would be overgrown citrus plantations and medium-height secondary forest, 

which would not be possible by forcing training classes defined by land-use 

observations in a supervised classification. This argument is supported by Finkl 

(2016), who discriminated mangrove forests from other forest vegetation using 

ISODATA, and (Garrison, 2010) who also used ISODATA to map forest 

environments from Quickbird data in Mesoamerica for later ground surveys. 

3.2.3 Re-coding Clusters into Classes 

 

Analysis of the clusters generated in an unsupervised classification is required to 

determine the relationships between different clusters and land uses and land covers 

occurring in an area being researched. In this project the cluster outputs of the 

ISODATA algorithm were re-coded with reference to the ground survey of land use 

conducted along eight transects (Appendix 3.1) in Chapare in August and 

September 2015. The major land cover classes identified in the field survey were: 
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forest (both lowland and mountain forest, high regrowth, medium regrowth, low 

regrowth, citrus, palmetto, banana, pasture, bare soil, water, and cultivation (small 

agricultural plots combined together).  

Re-coding was done for the 2015 imagery. The land use verification points recorded 

by GPS were re-projected to a UTM projection. This process has a number of steps 

that are illustrated in Figure 3.2-3. These steps are: 

1. Locations with unambiguous land-use and land-cover classes were selected 

from the field sheets (Appendix 3.2). 

2. GPS coordinates for the locations selected in [1] were converted to latitude 

and longitude coordinates in the correct WGS84 datum, because ERDAS 

Imagine uses the WGS84 coordinate system. 

3. These locations were studied in Google Earth along with the field sketch 

maps and field photos, and land parcels that could be used as reference data 

for re-coding were selected. 

4. Latitude and longitude coordinates of the land parcels identified in [3] were 

recorded. 

5. Each of the pixels identified in [3] were examined on the classified image and 

a land-use or land-cover class identification made (Appendix 3.3). This was 

repeated for other pixels. 

6. Once a land-use or land-cover class had been identified by reference to a 

number of known field locations, the pixels in that cluster were re-coded to 

form named land-use or land-cover class. This is done by using the recode 

tool from Raster GIS Toolkit in ERDAS Imagine. 

7. Once all the clusters had been named by reference to the field data, as 

outlined in Step 6. Classes were merged into forest and non- forest classes, 
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as well as a water and unclassified pixels classes to create a forest/non-forest 

raster image. 

 

Figure 3.2-3 Flow chart of the re-coding of clusters from ISODATA classification to 
forest and non-forest classes. 

 

Re-coding for 2011 and 2016 imagery was by reference to land-use and land-cover 

that were unlikely to have changed between 2011 and 2016. These included the 

Universidad Mayor San Simon Forest Reserve in eastern Chapare, montane forests 

in the Serrania des Mosotenes, and forest areas that were mapped in TIPNIS in 

2016 as these are still primary forest areas. Key non-forest areas that are known not 

to have changed were selected by reference to the 2003, 2007 and 2015 ground 

surveys, these included large pastures in eastern Chapare, pastures between 

Ivirgarzama and Vueltadero, and banana plantations north of Chimoré and in eastern 

Chapare. A flow chart illustrating this is provided in Figure 3.2-4. 
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Figure 3.2-4; Flow chart of the re-coding process applied to the 2011 and 2016 

unsupervised classifications. 

 

3.3 Forest and non-forest mapping 

 

Forest and non-forest mapping was carried out using ArcGIS after the re-coding of 

classes in ERDAS Imagine. This was done because for a proper mapping product 

basic information such as the projection coordinate system, direction and symbology 

needs to be shown for the users’ convenience. Skaloš and Engstová (2010) show 

how important this information is in mapping forest and stress that this information 

itself can portray a lot of information.  

The steps in creating the 2011, 2015 and 2016 forest and non-forest maps are as 

follows: 

1. The clusters are combined to create forest and non-forest raster data layers 

as described above. 

2. The raster images were projected to the correct WGS datum, as indicated 

above. 

3. After the raster images were projected, gridlines, co-ordinates, direction 

arrows, scale bars and legends were added. 

4. The maps from step [3] were saved and exported in pdf format and are 

presented in Chapter 4. 
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However, for the forest/non-forest maps for community-level analyses, additional 

tasks were undertaken prior to mapping.  

1. The forest/non-forest maps created in the steps above were overlaid with 

shape files of land-tenure grids for Communities I to III. These grids were 

made available to the researcher, as they are part of the archive of Chapare 

data currently held at Flinders University. A new grid was made for 

Community IV by drawing lines backwards from cleared areas, so that each 

farm comprised 20 ha, the standard for non-grazing land holdings in Chapare. 

2. The forest and non-forest classes for each community were clipped using the 

Extract by Mask tool in Spatial Analyst extension for ArcGIS. 

3. The shape files of the land parcel boundaries for each community were 

overlaid on the forest /non-forest maps. 

4. Steps [2] and [3] from the steps outlined above were repeated for the 

community-level maps.  

5. The maps were saved and exported as pdf files. 

These steps were repeated for each community starting from step 2. 

3.4 Determining the accuracy of classified images 

 

3.4.1 Use of field sample points for 2015 imagery 

 

Accuracy assessment was undertaken for the 2015 classified image using a 

selection of land-use survey points from those collected by Andrew Millington in 

2015, the details of which are provided in Appendix 3.4. The points selected for 

accuracy analysis were chosen by reference to the following criteria: 
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1. They had at least one unambiguous land use class on the field sketch map 

that could be confirmed by reference to the accompanying field photographs 

and/or Google Earth imagery from 2015. 

2. That there was a spread of points across Chapare, points were taken from all 

eight transects (Appendix 3.1) from IS transect in the north west to A6 

transect in the south east (Figures 3.4-1 to 3.4-4) 

Once a point that met the first criteria had been identified, the following procedure 

was followed: 

1. The map, field photographs and Google Earth imagery were consulted and as 

many areas of unambiguous land use were identified as possible close to that 

point.  

2. For each of the unambiguous areas of land use, the UTM coordinates were 

obtained from Google Earth. 

3. The UTM coordinates were converted to the WGS 84 datum and a point 

shape file created using ArcMap 10.4. 

4. The image of land-cover classes derived from the classified 2015 imagery 

were imported in ArcMap 10.4 

5. The Extract Multiple Values to Points in the Extraction tool in ArcMap 10.4 

was used to generate a new column in the attribute table of the points shape 

file, which contains the id values of land cover at the selected point. 

6. Another new column is added to the attribute table of the point shape file in 

preparation for the names of the land use or land cover classes after step 7. 

7. The two attribute tables were joined together using the id values in the 

classified imagery to the newly generated column when extracting points to 

values. 



  

53 
 

8. The land use or land cover class names were generated using the Field 

Calculator to convert id values to class names. 

9. The attribute table from Step 8 was exported to dBase file to build the 

confusion matrix for accuracy assessment. 

The sample points are illustrated in the following figures. Note that when examining 

these figures that the sample points may have more than one unambiguous land-use 

class associated with it. 

 

Figure 3.4-1; Sample points used in accuracy assessment in North West Chapare, in 

Territorio Indigena y Parque Nacional Isiboro Securé along the three IS transect 
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Figure 3.4-2; Sample points used in accuracy assessment in central Chapare, north of 

Chimoré between Río Chimoré and Río Coni along A1 transect (upper west of image) 

and along Senda 6, part of the A2 transect (east of image) 
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Figure 3.4-3; Sample points used in accuracy assessment in east central Chapare, 

along the Ivigarzama-Puerto Villaroel road (A4 transect), the Ivigarzama sector (A3 

transect) and north of Ruta Nacional 4, between Río Sajta and Entre Rios (A5 transect) 
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Figure 3.4-4; Sample points used in accuracy assessment along the A6 transect east 

of Río Ichoa, in eastern Chapare 
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3.4.2 Accuracy Assessment 

 

Accuracy assessment is a key element in proving the results from any form of 

classification (Agyemang et al., 2011) to the degree of which the results is correct. 

This is because accuracy assessment quantitatively verifies agreement between the 

remote sensing outputs and reference data (either ground verification, which is 

sometimes erroneously called ground truth), which nowadays often includes Google 

Earth imagery. The remote sensing output is the land-use and land-cover 

classification. Stehman and Czaplewski (1998)  state that, “accuracy assessment 

using statistically rigorous methods must be done before scientific decisions and 

polices are made” based on the remotely sensed data that has been analysed.  

The statistical techniques used for accuracy assessment depend on the nature and 

the type of study undertaken. Habitat modelling, for example, routinely uses 

Receiver Operator Characteristics (ROC) and Generalized Cross Validation (GCV) 

both are statistic model curves to measure the degree of correctness. Moreover, 

land cover classification employs techniques such as Pearson (R2) correlation 

coefficients, Kappa coefficients and Base Error matrices, which are also known as 

confusion matrices for accuracy assessments. The latter analyse the level of 

agreement between land class data derived from remote sensing analyses and 

reference data from ground observations or other imagery. The accuracy of 

individual classes, commission and omission errors, and overall accuracy are 

calculated. Accuracy of the 2015 unsupervised classified image was assessed using 

a Kappa co-efficient and a confusion matrix. Accuracy assessment for the 2011 and 

2016 classified image used the same method. However, as there was no 

simultaneous ground verification data, the original (downloaded) image was used. 
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This image was used to create random points for each of the major land-use and 

land-cover classes. These points were then compared to the classified image using 

ArcGIS to create a matrix table for their accuracy assessment similar to the steps 

employed for 2015 image.  

 

3.4.3 Computing statistics for accuracy assessments 
 

 

The statistics listed above were calculated from the confusion matrix for the 2015 

image to assess the accuracy of the predicted land-use and land-cover classes. The 

overall accuracy of the land-use classes in the AOI and for the forest and non-forest 

classes was calculated using Equation 3.4-1: 

Overall accuracy = correct prediction/ overall prediction  (Equation 3.4-1)    

The Kappa coefficient (K) was calculated using Equation 3.4-2:  

                                                                                            (Equation 3.4-1) 

Where, Po = observed agreement from the ground truth data, and Pe = expected 

agreement from the classification. After the Kappa co-efficient has been calculated a 

qualitative assessment of how good the classification is can be made by reference to 

the values in Table 3.4-1 (Alagu Raja et al., 2009). These statistics can be made 

more robust by checking the occurrence of any variable used with a predicted 

variable rather than using simple overall percentage agreement (Resler et al., 2014) 

in the study. 
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Table 3.4-1; Kappa values and characteristics (Source; Anand et al, 2009) 

Value Characteristics 

<0 No agreement 

0-0.2 Slight Agreement 

0.21-0.4 Fair Agreement 

0.41-0.6 Moderate Agreement 

0.61-0.8 Strong Agreement 

0.81-1 Perfect Agreement 
 

 

3.5 Community-level forest change analysis 

 

Testing Bradley and Millington’s (Bradley and Millington, 2008b) hypothesis requires 

forest and non-forest maps to be created for each farm or land parcel in communities 

and forest and non-forest area statistics for that year, and forest clearance rates 

between years to be calculated. 

Bradley and Millington (2008b) constructed shape files for three communities, which 

comprise 255 land parcels in total, from the original land parcel plans constructed by 

field surveyors as each community was established. The shape files from their study 

were made available for this research project.  

The three communities studied previously were in central and eastern Chapare, and 

it was decided to add a fourth community in this research in western Chapare where 

forest dynamics are different. The four communities names are not revealed 

because of the sensitivity of coca as illicit drug and agreement with parcel owners 

when data was collected (Bradley, 2005). However, according to Andrew Millington 

the original survey plans are no longer available under the MAS government. The 

fourth community is selected along the Isiboro transect to give evenly distributed 

results over the study area for a better summary of the changing deforestation rate 
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over the study region. A shape file for the new community was added using the 

editor tool in ArcMap, and it was created as follows: 

1. A new polygon file was created using ArcMap 10.4.1 

2. A base map (imagery with labels) was added as a new layer. 

3. The boundaries of each land parcel in the community was drawn in the 

correct projection for western Chapare (WGS 84 Zone 19S) using the Editor 

tool. 

4. These land parcels were saved and overlain on the community and the fit 

checked,  

5. The community was clipped from the forest/non-forest map for Chapare.  

The shape file was adjusted to fit the land use patterns using common points in the 

spatial adjustment tool. The shape file was then overlayed on the classified image as 

discussed in Section 3.3 when mapping forest and non-forest areas. The shape file 

and the multispectral image were geo-referenced in ArcMap. This was done for the 

four communities.  

 

3.5.1 Community-level statistics 

 

The formula below (Equation 3.5-1) was used to calculate rate of forest cover 

change for the four communities investigated in this study. The standardised method 

known as the Compound Interest Law, is applied in this study to calculate annual 

rates of deforestation (Puyravaud, 2003) 

𝑹 =
𝑨𝟏−𝑨𝟐

𝑻𝟐−𝑻𝟏
                                                                                               Equation 3.5-1 

 Where, A1 is forest area at time 1 (T1) and A2 is forest area at time 2 (T2) 
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CHAPTER 4 

4 : RESULTS 

 

This chapter provides the results from the methods outlined in Chapter 3 applied to 

the image data for Chapare. The pre-processing section mainly looks at the results 

of mosaicking and pan sharpening. This chapter shows the enhanced image after 

classification. The following two sections shows the maps land use and land cover 

classification (LULCC), and forest and non-forest areas. Those are then followed by 

the results of the accuracy assessment. The final section presents the community 

level forest, non-forest and forest clearance statistics and compares these to prior 

data (Bradley and Millington 2008, and unpublished data). 

 

4.1 Image Pre-Processing 

 

The images acquired in 2015 that were used in mosaicking are illustrated in Figure 

4.1-1. All the results in this section are illustrated with 2015 image data. The four 

scenes in this image are Landsat 8 images. That on the left is path 233, row 071 in 

the Landsat worldwide reference system (WRS), the middle top scene is path 232, 

row 71, the middle bottom scene is path 232, row 72 and the image on the right is 

from is on path 231, row 72. Figure 4.1-1 shows subsets of imagery (see table 3.1-2 

in Section 3.1.1) from each image rather than the entire images.  Mosaicking 

(Section 3.1.4) was also done for the 2011 and 2016 images using the imagery for 

the same WRS paths and rows. The subsets cut from each scene were stitched 

together to form a single raster image (Figure 4.1-2). The 2011 and 2016 scenes 

were treated in the same way including colour corrections within the mosaicking 

procedure to give a good colour contrast for classification.  
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Figure 4.1-1; 2015 images after sub-setting and before mosaicking. These images 

have been geo-rectified and radiometrically corrected. 

 

Figure 4.1-2; Histogram-matched 2015 image mosaic in which the radiance values 

have been corrected across the four scenes. 
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4.1.1 Normal and pan sharpened images 

 

The 2015 and 2016 images (Table 3.1-1 Landsat bands) have panchromatic bands 

that was used in pan sharpening the mosaicked images to increase image contrast. 

Figure 4.1-3 shows the normal and pan-sharpened image for a subset that includes 

Chimoré airport, features such as roads, urban areas and the airport’s runway are 

more distinct in the pan-sharpened image (Figure 4.1-3b) compared to the false 

colour composite (FCC) image that has not been pan sharpened (Figure 4.1-3a). For 

the FCC, band 2 was given the blue colour gun, band 5 was given the green and 

band 7 was given the red colour gun. 

 

Figure 4.1-3 ; a) False Colour Composite - FCC (Band 257) of Chimoré Airport, b) Pan-

sharpened image with FCC (band 257). The image is approximately 3 x 4 km. 

 

4.2 Land use and land cover classification 

 

Unsupervised classification (k-means and ISODATA, Section 3.2.2) were applied to 

the image mosaics to derive land use and land cover classes for the study area. This 

land use and land cover map for the study area for the 2015 are illustrated in Figure 
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4.2.1. The images for 2011 and 2016 focused on deriving the forest and non-forest 

classification areas rather than full LULCC classification. The 2015 image was 

utilised to derive full major LULCC because of the availability of field survey points 

before proceeding to obtain the forest and non-forest class. Most classes on this 

map are the main LULC (land use and land cover) classes recorded in the field from 

the August-September 2015 field survey (Appendix 3.2), which are based on the 

classes recorded in the 2003 and 2007 field surveys. However, during the 

unsupervised classification processes, thirty-six classes were identified during the 

unsupervised classification because of the variance of the colour shading over the 

entire image. The classes that were found after classification that were not recorded 

in the field survey were ‘mixed classes’, i.e. where two or more of the main LULC 

classes occur in the classified image under one ‘mixed class’. The classes in the 

legend are therefore a combination of main and ‘mixed’ LULC classes.   Whereas 

most of the forest classes are unambiguously assigned to one forest class or 

another, the grassland and cropping areas are not. This occurs because of the 

difficulties of separating the main LULC classes on the basis of their spectral 

properties alone. The main reasons this occurs in the classified image map are as 

follows: 

a) Some land uses have very similar spectral signatures in the parts of the 

electromagnetic spectrum sensed by Landsat ETM and OLI, e.g. i) the low 

shrubby regrowth have similar spectral signatures as pineapples and ii) 

medium growth have similar spectral signature as citrus; 

b) The small-scale mixed nature of farming often means many crops occurring 

over a small area and mixed pixels are frequent throughout the image. 
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c) Weeds and lianas infesting tree crop plantations and as these are only 

cleared once a year that can occur in different stages of growth and, 

therefore, with slightly different spectral properties. For example, the farmers 

do not attend to citrus plantations when the harvesting season is over allowing 

for weeds and regrowth. It can be classified as shrubs from a spatial 

perspective when the regrowth was recent or can be classified as forest 

regrowth when it’s bushy. 

 

The above reasons listed are further discussed in section 5.1.1 and section 5.1.2 in 

chapter 5 but not in full detailed, as this is not the focus of this study. The map shows 

that tropical mountain forest dominates the bottom part of the image from southeast 

to the north west of along the mountain ranges from Isiboro Sécure National Park to 

Carrasco National Park and further towards Amboro National Park. The mosaic of 

seasonally flooded forest and grassland are mapped in varying light blue colours in 

the middle part of the image, with forests and grasslands that are flooded for much of 

the year occurring in the north of the image. Most of the agricultural area and bare 

soil (varying orange shading in figure 4.2-1) can be identified in the eastern part of 

the image. The forest classes are in varying green colour, while pasture and wetland 

areas including agricultural classes are in blue and purple.  
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Figure 4.2-1; Classification of the different LULCC in the study area using the 2015 unsupervised classification method for the study 

area in Bolivia.
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4.3 Forest and Non-Forest Maps 

 

Forest and non-forest mapping was carried out using ArcGIS after the re-coding of 

classes for 2011, 2015 and 2016 mosaicked images. The steps in creating those 

forest and non-forest maps were given in Section 3.3. The forest and non-forest 

maps for each of the three years is presented below.  

In the 2011 forest and non-forest map (Figure 4.3-1), forest cover (green pixels) 

dominate the mountain ranges in the southern part of the study area, as it does in 

2015 and 2016 (Figures 4.3-2 and 4.3-3). An exception to this is in the lowlands 

along the Espiritu Santo and San Mateo valleys to the south west of Villa-Tunari, 

which are old areas of settlement that have recently witnessed a surge in people 

moving into the area to cultivate coca (Millington, in press) (Appendix 4.2 Note that 

this image is not included in the thesis because of confidentiality surrounding the 

village names as per social science normal practice).  These old and new areas of 

settlement were clearly indicated as non-forest (yellow pixels). The main non-forest 

areas (yellow pixels) are located in belt that runs from the southeast to the northwest 

of the map, this corresponds to the Chapare colonization zone (Chapter 2) to the 

west of UTM easting 340000 and the Yapacani colonization zone in Santa Cruz 

Department to the east of that coordinate (Millington, in press). Furthermore, in 

describing the images, there are also areas of non-forest pixels outside the area of 

settlement in the north of the image map interspersed with forest, some of which are 

quite large. These are areas of flooded grassland and floating vegetation around 

lakes, and seasonally flooded grasslands. The forests adjacent to and between them 

are seasonally flooded forests and woodlands. Blackwater lakes, i.e. lakes with low 

sediment loads, and rivers are mapped in blue in these images. The blue class also 

includes areas of deep shadow in the mountains ranges in the south of the image. 



  

68 
 

This occurs because both water bodies that have little sediment and forested areas 

in deep shade have similar spectral signatures dominated by high absorption in the 

visible and near-to-middle infrared parts of the electromagnetic spectrum. 

 

Figure 4.3-1; Central Bolivia: Forest and non-forest map 2011 

 

The general pattern of forest and non-forest vegetation in 2011 is similar to that in 

the 2015 and 2016 forest and non-forest maps (Figures 4.3-2 and 4.3-3). The 2015 

map covers a larger area (cf. Section 4.1) and the equivalent area is in the lower part 

of the image map indicated. The forest and non-forests areas in the north of the 

2015 image map are extensions of the seasonally flooded land cover identified in 

Figures 4.2-1 and 4.3-2 and are not discussed further. The maximum cloud cover is 

15% covering areas in the mountain ranges and further east of the study image 

(Table 3.1-2). The water features in this image map mapped in blue, are more 
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extensive, and better defined than those in the 2011 map.  In the 2016 map (Figure 

4.3-3) is again similar to the 2011 and 2015 forest and non-forest maps.  

 

Figure 4.3-2; Central Bolivia: Forest and non-forest map 2015 with the area of interest 

indicated with black line boundary. 

 

The consistency in overall patterns of forested and non-forested areas over the six-

year period in which they were acquired is anticipated, and provides confidence in 

the classification and mapping procedures. Levels of confidence are augmented by 

the fact that these maps are similar to maps from the early 21st Century produced by 

Bradley (2005) and unpublished maps produced by Mlenge Mgendi in the archive of 

Chapare data I was given access too. 
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Figure 4.3-3; Central Bolivia: Forest and non-forest map 2016 

 

4.4 Accuracy Assessment 

 

4.4.1 LULC class accuracy (2015 classified image) 

 

The accuracy assessment of the 2015 LULCC class map (Figure 4.2-1) was 

undertaken by comparison with the land uses identified and mapped during the 2015 

field survey (Appendices 3.2 and 3.4), This is illustrated below using a confusion 

matrix (Table 4.4-1) in which the field observations (columns) are referenced to the 

mapped classes (rows).  Eleven individual classes were used in the analysis 

(Section 3.2.3) and the data for each of these is provided. The classes were broadly 

grouped into forest (forest, high regrowth and medium regrowth classes), non-forest 

(low regrowth, citrus, palmetto, banana, other cultivation, pasture and bare soil) and 
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water, which are shaded in green, orange and blue respectively. The pink classes 

show groups of misclassified pixels for forest classes classified as non-forest classes 

and vice-versa. Mainly it is the pasture and citrus, which is classified as forest, and 

medium regrowth as pasture. The reason for that is explained in section 5.1. 

Table 4.4-1; Confusion matrix table for 2015 image 

 
  Observed land use in field survey (Ground  verification data) 
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Forest 70 10 36 1 7 

 
2 

 
6 

  
132 

 

High 
regrowth 1 12 1 

 
1 

      
15 

 

Medium 
Regrowth 1   18 2 1 

      
22 

Predicted 
Low 
regrowth 

  
2 1 2   1   2   

 
8 

land-use and  Citrus 
   

  1       1   
 

2 

land cover Palmitto 
   

    2         
 

2 

 from 2015 Banana 
   

  1   3     0 
 

4 

classification Cultivation 
   

1     2   4   
 

7 

 
Pasture 4 2 10 3 3 3 15 1 47 1 

 
89 

 
Bare Soil 

  
2           6 17 

 
25 

 
Water 

          
5 5 

 
Total 76 24 69 8 16 5 23 1 66 18 5 311 

 

All five water classes that were predicted from the classification matched field 

observations, and no field observations of water were misclassified.  

The accuracies of the predicted classes and the overall map for 2015 are given in 

Table 4.4-2 below. The overall accuracy of the map is low at 56.6%. This is in line 

with previous analysis of accuracy assessments for Chapare when individual land 

cover classes are mapped and compared to known land use and land cover on the 

ground. The reason this low accuracy is achieved is that the wide range of accuracy 

levels of individual classes, which range from 0 and 6.25% for the other cultivation 

and citrus classes to 92.1% for forest. Forest classes generally have higher 
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accuracies than the non-forest classes, though these decrease with decreasing 

forest height and biomass (Table 4.4-2), which may in part reflect variations in field 

observations.  

Table 4.4-2; Accuracy Assessment for the 2015 land-use and land-cover classification 

2015 

 

    

Ground 
verification 
data 

 
Forest Accuracy 0.921053 92.10% 

 
High Regrowth Accuracy 0.5 50% 

Prediction 
Medium Regrowth 
Accuracy 0.26087 26.10% 

 
Low Regrowth Accuracy 0.125 12.50% 

 
Citrus Accuracy 0.0625 6.25% 

 
Palmetto Accuracy 0.4 40% 

 
Banana Accuracy 0.130435 13.04% 

 
Cultivation Accuracy 0 0% 

 
Pasture Accuracy 0.712121 71.21% 

 
Bare Soil Accuracy 0.944444 94.44% 

 
Water Accuracy 1 100% 

 
Overall Accuracy 0.565916 56.60% 

  

  
 

 

Observed agreement 0.57 0.57 

 
Expected agreement 0.21 0.21 

 
Kappa-Coefficient 0.45 0.45 

 

The non-forest classes generally have lower accuracies than forest classes, though 

pasture (71.21%) and palmetto (40.0%) are exceptions to this general rule-of-thumb. 

These lower accuracies are due to the issues outlined in Section 4.2. While these 

accuracies are unconvincing for detailed land-use and land-cover mapping, they do 

provide the basis for the more robust and more accurate forest and non-forest cover 

mapping which has been extensively applied in studies of forest dynamics (Shimada 

et al., 2014, Pekkarinen et al., 2009, Hansen et al., 2008) and is discussed in the 

next section. 
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4.4.1 Forest and non-forest map accuracies 

 

Accuracy assessment was carried out on the forest and non-forest classifications for 

2011, 2015 and 2016 is as shown in Table 4.4-3 using the confusion matrices for the 

respective years. In total 142 ground verification points were extracted (Section 

3.4.2) and used for the accuracy analysis of the 2011 map (Table 4.4-3). The overall 

accuracy was 84.5%; with the forest class having 98% accuracy, water 95.4% and 

the non-forest class at 70%. The kappa co-efficient of 0.75 indicates a strong 

agreement. 

 

Table 4.4-3Accuracy assessment for the 2011 forest and non-forest map. 

 
  Verification points 

    Forest Non-Forest Water 
Verification 

data 

 
Forest 49 20 1 70 

Prediction Non-Forest 1 50 0 51 

 
Water 0 0 21 21 

 
Total 50 70 22 142 

 
% 98 71.4285714 95.4545455 

 

 

  
    

 

Forest Accuracy 
 

0.98 98.00% 
 

 

Non-Forest 
 

0.7143 71.43% 
 

 

Water 
 

0.9545 95.50% 
 

 

Overall accuracy  
 

0.84507042 84.5% 
 

 

Observed agreement 
 

0.84507042 
  

 

Expected agreement 
 

0.373537 
  

 

Kappa-Coefficient 
 

0.75269158 
   

Table 4.4-4 summarises the accuracy assessment calculations for the 2015 forest 

and non-forest and reveals an overall accuracy of 87.84%, which is slightly higher 

than the 2011 map’s accuracy assessment. The number of ground verification data 

extracted totalled 329. The water class recorded 100% accuracy followed by forest 

at 88.2% and the non-forest class at 87.1%. The verification data in this analysis 

were collected along the eight transects along the study area in 2015 (Appendix 3.4). 
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The kappa co-efficient of 0.76 again shows strong agreement between predicted and 

observed land covers. 

Table 4.4-4; Accuracy assessment for forest and non-forest maps for 2015 

 
  Verification points 

    Forest Non-Forest Water 
Verification 

data 

 
Forest 149 20 0 169 

Prediction Non-Forest 20 135 0 155 

 
Water 0 0 5 5 

 
Total 169 155 5 329 

 
% 88.16568 87.09677419 100 

 
      

 

Forest Accuracy 
 

0.88165 88.20% 
 

 

Non-Forest 
 

0.87096 87.10% 
 

 

Water 
 

1 100.00% 
 

 

Overall accuracy  
 

0.878419453 87.84% 
 

 

Observed agreement 
 

0.878419453 
  

 

Expected agreement 
 

0.486054268 
  

 

Kappa-Coefficient 
 

0.763436994 
   

The 2016 forest and non-forest map has an overall accuracy assessment of 98.42%. 

This is a more accurate and a better performing classification than for the 2011 and 

2015 forest and non-forest classifications. In total 191 ground verification data points 

were extracted in ArcGIS from the original image. This is another set of verification 

points to test the accuracy while the other points were used to label classes after the 

unsupervised classification. Once again, the water class had 100% accuracy; both 

forest (98.67%) and non-forest class (97.44%) had very high accuracies. Not 

surprisingly, the kappa coefficient of 0.97 indicates perfect agreement (Table 4.4-5).  
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Table 4.4-5; Accuracy assessment for 2016 forest and non-forest map. 

 
  Verification points 

    Forest Non-Forest Water 
Verification 

data 

 
Forest 74 2 0 76 

Prediction Non-Forest 1 76 0 77 

 
Water 0 0 38 38 

 
Total 75 78 38 191 

 
% 98.6666667 97.43589744 100 

 

 

  
    

 

Forest Accuracy 
 

0.9867 98.67% 
 

 

Non-Forest 
 

0.9744 97.44% 
 

 

Water 
 

1 100.00% 
 

 

Overall accuracy  
 

0.984293194 98.42% 
 

 

Observed agreement 
 

0.984293194 
  

 

Expected agreement 
 

0.36046161 
  

 

Kappa-Coefficient 
 

0.975440401 
   

 

4.5 Community-level matrices 

 

Forest and non-forest maps from 2011, 2015 and 2016 for the three communities (I, 

II and III) examined in detail by Bradley (2005) and Bradley and Millington (2008) are 

presented below along with statistical summaries. A new community—Community 

IV–in TIPNIS is included in this thesis. 

4.5.1 Community I 

 

The forest and non-forest maps for Community I (Figures 4.5-1 to 4.5-3) are 

interesting as they show the western part of the community has high levels of forest 

cover while there is more clearance on the east. The distribution of forest and non-

forest areas indicates that the area has been extensively farmed and that it is likely 

that much regrowth had occurred. This theme will be returned too in the next 

chapter. Imagery from 1966, taken acquired only three years after the community 

was founded, will be shown and the history of this community discussed. None of the 
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other communities mapped has such a long history of settlement and cultivation.  

Like Community II and Community III, the land parcel owners have cleared forest 

backwards along their land parcels from a central access road. In 2015 (Figure 4.5-

2) and 2016 (Figure 4.5-3), there appears to be much forest regrowth compared to 

2011(Figure 4.5-1). Again, 2015 classification is not consistent because of reasons 

discussed in section 5.3. Summary statistics for Community I can be found in Table 

4.5-1. The average land parcel size is 19 ha with the standard deviation of 3 ha, 

which is close to that anticipated from a cultivation-based settlement with 20 ha land 

titles even accounting for variations such as those introduced for Community III. In 

this case, part of the explanation is that land parcels designated for houses and 

other buildings along the north-south road that passes through the community at 

approximately between UTM easting 271500 are much smaller. 

 

Figure 4.5-1; Community I forest and non-forest map for 2011 
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Figure 4.5-2; Community I forest and non-forest map for 2015 

 

Figure 4.5-3; Community I forest and non-forest map for 2016 



  

78 
 

These are the thin land parcels in the maps above and were not included in the 

statistics which are land parcels 32, 50, 51, 73, 79 and 91. These land parcels are 

not farmland, but rather roads and the village settlement. The list of the feature class 

ID (FID4) is given in Appendix 4.1 with full forest and non-forest statistics for 

individual land parcels. In addition, land parcels of different sizes were added to this 

community in an area known to community residents as the XXX5 after the original 

plan was surveyed. Thus, the land parcels with the lowest area is 12 ha (land parcel 

101) located to the west similar to the ones located to the east with approximately 13 

hectares each.  

Table 4.5-3 shows that there is some regrowth in 2015 and much more regrowth in 

2016. The forest cover increased from 946.8 ha in 2011 to 1176.12 ha in 2016. The 

clearance rate for those year were -90.03 ha/year, -6.15 ha/year and -204.73 ha/year 

respectively as given in Table 4.5-1. The combined statistics for the deforestation 

rate calculated from period when data was collected is given Appendix 6.1. 

 

 

 

 

 

 

 

 

 

                                                
4 FID- is the name used for shape files in ArcGIS indicating the feature classes quite similar to object 
id (OID) 
5 XXX- residential areas added recently to the community at the on the northeast section of the 
community map. The name is labelled as XXX because of confidentiality of the area due to coca 
trade.  
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Table 4.5-1; Forest and non-forest statistics for Community I 

 

Total area (ha) 1816 
   

 

Number of 
Farms (lease) 
including the 

villages 102 
   

 

Average (ha) 19 
   

 

Min (ha) 12 
   

 

Max (ha) 21 
   

 

Std dev 3 
   

 

  
    

Year 
Forest Cover 

(ha) 
Non-Forest 
cover(ha) 

Forest 
cover (%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

2011 946.80 868.95 52.14 47.86 -90.03 

2015 971.39 848.45 53.38 46.62 -6.15 

2016 1176.12 639.63 64.77 35.23 -204.73 
 

4.5.2 Community II 

 

The 2011 forest and non-forest map in Community I (Figure 4.5-4) shows that the 

forest areas are mainly restricted to the end of the parcel boundaries at relatively 

long distances from the central road where clearance started (Bradley, 2005). Most 

farmers live along the access road through the middle of the community and extend 

their cleared areas towards the end of their land parcels. Therefore, most of the non-

forest areas, which in this case are pasture, are in the middle of the community. 

There are a few patches of forest interspersed in the non-forest areas.  A similar 

pattern of land cover can be seen in Figures 4.5-5 and 4.5-6 for 2015 and 2016 

respectively. However, in 2015, there is less forest than in 2011 and 2016. There is a 

lot of forest signifying more regrowth from those three years compared from previous 

data further discussed in Section 5.4. Moreover, 2015 image shows few water 

bodies which can be caused by noise and its acquisition during the dry season.  

Table 4.5-2 shows the forest and non-forest class statistics for Community II in 2011, 

2015 and 2016.  The average size of each individual land parcels in Community II is 



  

80 
 

larger than others are as this was originally designated pasture (50 ha land titles) 

rather than cultivation (20 ha), thus with some smaller farms in Community II brings 

the average is around 34 ha. This also evident with a standard deviation of 15 ha 

with the minimum land parcel at 11 ha and maximum at 54 ha. 

The result shows much regrowth in 2011 and much more in 2016, when it was -

786.36 ha/year. That is to say, between 2015 and 2016, there has been additional 

786.36 ha of forest regrowth. There is evident in the 2015 maps of a clearance rate 

of 147.4 ha/ year, which increased the non-forest areas by two (2149.13 ha) 

compared to the other two years analysed (2011 and 2016). 

 

Figure 4.5-4; Community II forest and non-forest map for 2011 
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Figure 4.5-5; Community II forest and non-forest map for 2015 

 

Figure 4.5-6; Community II forest and non-forest map for 2016 
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Overall, the 2015 classification does not correspond well with the 2011 and 2016 

classification which is explored in the discussion section (Section 5.3) as it is 

impossible to have that much regrowth rate of -786.36 ha/year between 2015 and 

2016. However, comparing the overall trend, there is an increase in forest cover at 

the end of the study period. 

Table 4.5-2; Forest and non-forest statistics for Community II 

 

Total area (ha) 3199 
   

 

Number of Farms 
(lease) 93 

   

 

Average (ha) 34 
   

 

Min (ha) 11 
   

 

Max (ha) 54 
   

 

Std dev 15 
   

 
  

    
Year Forest Cover (ha) 

Non-Forest 
cover(ha) 

Forest 
cover (%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

2011 1658.07 1540.71 51.83 48.17 -26.46 

2015 1068.46 2149.13 33.21 66.79 147.40 

2016 1854.81 1343.97 57.98 42.02 -786.35 

 

4.5.3 Community III 

 

The forest and non-forest map in Community III shows the forest areas in the middle 

of the parcel boundaries and more forest cover on the northeast part of the 

community. The forest and non-forest areas shows that the area has been 

extensively farmed from both ends of the land parcels (Figure 4.5-7). Like 

Communities I and II, the land parcel owners or the farmers live along the access 

road through the middle and farm their land towards the end of their land parcels. 

That can also be seen in Figures 4.5-8 and 4.5-9 for 2015 and 2016 forest and non-

forest respectively. However, in 2015, the image is quite different from 2011 and 

2016 as previously identified in Community I. The 2015 image shows few water 

bodies which can be caused by noise and precipitation during the time the image 

was taken, as was the case in Communities I and II 



  

83 
 

 

Figure 4.5-7; Community III forest and non-forest map for 2011 

 

Figure 4.5-8; Community III forest and non-forest map for 2015 
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Figure 4.5-9; Community III forest and non-forest map for 2016 

 

The forest and non-forest statistical summary for Community III is provided in Table 

1.5-3. The average farm size is calculated as 20 ha. This supports the accuracy of 

the land tenure grid for this community because the INC land titles for Community III 

were 20 ha as it was planned as a cultivation-based farming settlement. Small 

variation arises because as farmers cut forest along their land parcels that were not 

able to accurately follow the INC survey lines and thus, the standard deviation is 2 

ha. The village centre is also mapped as a land parcel in the map (land parcel 34) 

but was omitted when calculating the average and standard deviation as it is not a 

farm land. 

The results in the Table 4.5-3 revealed regrowth in 2011 and clearance in 2015 and 

2016 with the clearance rate of 20.3 ha/year and 25.18 ha/year respectively. That is 

evident in their maps presented in 2011 having a forest cover of 631.17 ha which 
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decrease to 549.968 ha in 2015 and further decrease to 524.79 ha in 2016. Thus, a 

clearance of approximately 26 ha in one year is a notable drop in forest cover in the 

community. However, the forest and non-forest covers are more in line for all three 

years, but the 2015 map is quite different from 2011 and 2015. Again, the reason for 

that will be discussed in Section 5.3. 

 

Table 4.5-3 Forest and non-forest statistics for Community III 

 

Total area (ha) 1219 
   

 

Number of 
Farms (lease) 60 

   

 

Average (ha) 20 
   

 

Min (ha) 9 
   

 

Max (ha) 22 
   

 

Std dev 2 
   

 

  

    
Year 

Forest Cover 
(ha) 

Non-Forest 
cover(ha) Forest cover (%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

2011 631.17 587.43 51.79 48.21 -45.71 

2015 549.97 675.32 44.88 55.12 20.30 

2016 524.79 693.81 43.06 56.94 25.18 
 

 

4.5.4 Community IV 

 

The forest and non-forest map for Community IV shows most of the forested areas at 

the end of the two ‘rows’ of land parcels. An investigation of Google Earth imagery 

for this indicates that this is probably two communities, and that houses at the 

eastern end of these two ‘rows’ of land parcels. The settlement in TIPNIS, where 

Community IV is located, probably dates back to the 1980s and at this time would 

have probably have been illegal sensu stricto. The fact that is still exists along with 

other communities in this area suggests its status in probably now de facto legal, but 

not de jure legal. This makes detailed field investigation of this site awkward, though 

Professor Millington told me he has conducted ground surveys in TIPNIS twice. 
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Community land tenure maps may not have existed for the community when it was 

first settled, as was the case with Communities I to III. In any case, as noted earlier 

in the thesis, these maps are now highly restricted under the Morales administration 

because of disputes over land tenure. 

The pattern of the land clearance is from the east towards the west in both ‘rows’ of 

land parcels as can be seen on all three maps (Figures 4.5-10 to 4.5 -12). The three 

images reveal deforestation in the area. There was clearance from 2011 to 2016 

unlike the other three communities. 

Statistics for the forest and non-forest classes for Community IV are presented in 

Table 4.5-4. It is interesting to note that the mean land parcel size is slightly over 30 

ha. This may reflect the fact that these communities were probably settled illegally, 

as they do not fit the 20ha and 50ha cultivation and grazing-community guidelines 

that existed elsewhere is Chapare. 

 

Figure 4.5-10; Community IV: forest and non-forest map for 2011 
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Figure 4.5-11; Community IV: forest and non-forest map for 2015 

 

Figure 4.5-12; Community IV: forest and non-forest map for 2016 
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The land parcels vary between 19 and 50 ha (Appendix 4.1). In TIPNIS, grazing was 

and is common, but there is also much cultivation. The average parcel size of 33 ha 

possibly also confirms that there are two ‘rows’ of farms in this ‘community’. The 

parcel owners in the row to the east live in the middle while the parcel owners in the 

west rows lives along the western border. That is evident in the pattern of clearance 

from west to east as stated previously. 

The results in Table 4.5-4 also shows regrowth in 2015 and deforestation in 2016. 

The clearance rate for 2011 is not available because this community was mapped 

out in this study for the first time and cannot be referenced to past statistics. The 

forest cover decreased from 763.11 ha in 2011 to 717.84 ha in 2016. Thus, the 

clearance rate between 2015 and 2016 is 79.56 ha/year. 

 

Table 4.5-4; Forest and non-forest statistics for Community IV 

 

Total area (ha) 1295.82 
   

 

Number of Farms 
(lease) 40 

   

 

Average (ha) 33.0558231 
   

 

Min (ha) 19.2771 
   

 

Max (ha) 50.6714 
   

 

Std dev 6.28702723 
   

 

  
    

Year Forest Cover (ha) 
Non-Forest 
cover(ha) 

Forest 
cover (%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

2011 763.11 532.71 58.89 41.11 N/A 

2015 797.4 500.3555 61.44 38.56 -8.5725 

2016 717.84 577.98 55.40 44.60 79.56 
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CHAPTER 5 

5 : IMAGE AND CLASSIFICATION ANALYSIS 

This chapter discusses the issues that are related to the remote sensing, image 

processing and geospatial analysis elements of this thesis in the context of the 

integrity and plausibility of the results.  

5.1 Unsupervised classification over large areas 

 

When large study areas are considered, the application of classification methods to 

map land-use and land-cover classes can generate many errors from ground 

sampling to the methods employed in classification. Therefore, is it necessary to 

discuss the application of unsupervised classification in this research even though 

the kappa coefficients for the overall accuracy of the forest and non-forest rate maps 

rate the agreement between verification data sets and predicted data sets as strong 

to perfect (Table 5.1-1). 

Table 5.1-1; Summary of accuracy statistics for the 2011, 2015 and 2016 forest and 

non-forest maps 

Accuracy   Years   

  2011 2015 2016 

Forest Accuracy 98.00% 88.20% 98.67% 

Non-Forest 71.43% 87.10% 97.44% 

Water 95.50% 100.00% 100.00% 

Overall accuracy  84.50% 87.84% 98.42% 

Observed agreement 0.85 0.88 0.98 

Expected agreement 0.37 0.49 0.36 

Kappa coefficient 0.75 0.76 0.98 

Agreement ranking Strong Strong Perfect 

 

The forest class accuracies for 2011 and 2016 turned out to be close to 100% 

correct. While the results appear to be very good, they are higher than the accuracy 

for 2015. This is because both years lack true ground points compared to 2015. 
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Nonetheless, all three years have very high levels of accuracy for forest mapping.  In 

addition, the forest, non- forest and water are easily distinguished in the 

unsupervised classifications presented in the previous chapter. This is particularly 

important for the forest and non-forest classes.  

The results for the non-forest class accuracies are slightly more confusing than at 

first sight: increasing from a low 71.43% in 2011 to an impressive 97.44% in 2016. 

To a certain extent, the ground data collected at the end of the 2015 dry Austral 

winter and spring is almost as representative of 2016 as it is of 2015 given the slow 

nature of land-use change that Chapare now experiences; and because fields for the 

2016 wetter summer growing season were being prepared by September 2015. 

Nevertheless, this does not explain the lower non-forest accuracy in the 2015 map. 

Three of the individual LULC classes—forest, bare soils and urban, and pasture–had 

accuracy levels >70% in the 2015 classified image. Other forest and agricultural 

classes fell below 50% correct. The reason for this is explained in terms of pixel 

misclassification later in this Chapter. 

Returning to the application of classification over large areas, a non-parametric 

statistical approach in unsupervised classification is required in the absence of 

ground reference points. The process of using spectral signatures to statistically 

match pixels in a single image to form a land cover  class is the basis of this 

approach and has been used extensively (Richards, 2012). However, the risk of 

introducing inaccuracies in classification, increases when applying the n-dimensional 

quantitative envelope for spectral signatures obtained from one image to another 

image and this has been proven when classifying landscapes in Canada (Olthof et 

al., 2005). This problem persuaded Knorn et al. (2009) to adopt support machine 

vectors in what they termed chain processing to classify land use and land cover 
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over large areas. Other techniques to address these issues had been investigated by 

Chilar et al.(1998), Chilar (2000) and Pax-Lenney et al. (2001). In addition, over 

large areas it is unrealistic to expect all land-use and land-cover types to be found in 

all images that comprise the landscape. Therefore, if spectral signatures are only 

collected from one image, classes in other images may not be represented and 

classification errors will arise. Sometimes signatures collected in training sites in 

supervised classification, either in the field or from an image, may not be as accurate 

as the trainer expects because the context of the geographical location is also 

important, e.g., background soil conditions. The technique used by Chilar (2000) to 

overcome large area issues was adopted in this study. 

 

5.2 Misclassification of Pixels for specific class types 

 

Pixel misclassification is a well-known issue in classification that occurs because of a 

variety of reasons. The first of these is that different images are captured at slightly 

different times of the day between 1400 hrs and 1430 hrs local time and, more 

importantly, different dates even though they are from the same sensor. This can be 

particularly problematic in classification of multi-image mosaics as noted above.  

That is the reason why the colour correction and histogram matching is used when 

mosaicking the images for classification. Thus, land cover types with statistically 

similar reflectance values should be classified as the same land-cover class over the 

full extent of all the images in a mosaic: but that does not occur because techniques 

like colour correction and histogram matching cannot overcome large differences in 

pixel reflectance caused due to phenological (seasonal growing cycle) differences in 

land cover. That is why according to the confusion matrix some pixel known to be 
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citrus from the ground verification date were classified as forest, and palmetto and 

banana pixels can be classified as pasture (Figure 5.2-1).  

 

Figure 5.2-1 a) Google Earth image of a banana plantation near Bulo Bulo, which from 

a spatial view looks like pasture. b) The classified image of the same banana 

plantation which turns out as the pasture class given in both light green and grey 

colour. Bare soil areas also turn out in that image. 

 

The various forms of image classification are the preferred digital image analysis 

techniques for mapping land use and land cover types in that they all cluster pixels 

with statistically similar reflectance values. Focusing on the unsupervised 

classification used in this study, many of the land-use and land-cover classes were 

misclassified in the more detailed mapping carried out on the 2015 imagery: though 

this was not the case for the forest and non-forest classification maps. 

Misclassification in the case of the detailed mapping occurred because of the 

limitations of the classification method employed, particularly because of the iterative 

nature of the process and the fact that the algorithm is based on a polarimetry 

classifier (Xu et al., 2014). The spectral reflectance recorded by the sensor are 

polarized signals and classifiers involving those signals in unsupervised classification 

such as i) Maximum Likelihood, and ii) Parallelepiped are referred to as 'polarimetry 

classifiers'. 
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The other factors at play would have been noise in the imagery and the environment 

condition, i.e. wind, precipitation and dust particles as indicated by Al-Fares (2013). 

Image noise, which can be a function of illumination angle and azimuth, and 

atmospheric conditions, is known to affect image classification in agricultural areas 

(Blaschke, 2005): the non-forest areas in this study are probably affected by image 

noise. For example, there is much cloud cover in the lower south part of the study 

area in 2015. Though it is restricted to the mountains to the south, water vapor levels 

in the atmosphere over the lowlands are likely to be high and may not have been 

totally accounted for by the image correction algorithms applied by NASA (Section 

3.1) This accounts for the speckling all over the image that seems apparent in the 

community maps in the results. In the LULC cover image for 2015, this has probably 

led to water bodies with high sediment loads being classified as concrete (Figure 

4.1-3) right after the wet season between January and June (Figure 5.2-2).  I have 

used monthly rainfall data from the Climate Change Knowledge Portal (2017) which 

have data up to 2015 at the time of thesis writing to compared rainfall in 2011 and 

2015. 

 

Figure 5.2-2 Rainfall data in Bolivia between 2010-2011 and 2014-2015. (Source: 
Climate Change Knowledge Portal, 2017) 
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The classification of the agricultural areas is another area of concern for detailed 

land-use and land-cover mapping because of the size, shape and pattern of cropped 

areas in comparison to primary vegetation and secondary bush and tree growth. 

Even in semi-arid environments, with less vegetation cover, the spectral overlap 

between land cover types and the small areas of some cultivated fields compared to 

pixel size makes imagery susceptible to error in image classification. Susceptibility to 

this type of error is much greater in humid tropical environments with high LAI and 

fast rates of vegetative growth and the similar reflectance responses in the imagery 

for many land cover types results in misclassification (Todd and Hoffer, 1998, Huete 

et al., 1985). That can be restated as the heterogeneity in the vegetation and soil 

exposure. The low organic presence of cultivated topsoil in this region means that 

exposed soil reflectance is very similar to reflectance from the various fabrics of 

urban areas.  

Soil background reflectance influences pixel values when there is <100% ground 

cover and has much of the influence on, for example, NDVI (Pau et al., 2012). This 

applies to the imagery from Chapare as it was taken in the dry season, when 

vegetation is dormant, crops have been harvested and there is partial vegetation 

cover in areas under pineapple, maracuya (passion fruit), young trees crops, and 

pasture. Citrus orchards are an interesting case as they can be classified as a forest 

or bare soil. Citrus orchards are cleared of regrowth occasionally, in some cases 

once a year and in other cases not every year. Therefore occurrence of weeds, 

shrubby regrowth and lianas can easily produce 100% cover (with an LAI>1.0): such 

pixels will be easily confused with forest. Newly planted or recently cleaned citrus 

farm will reveal >70% soil depending if the trees are young or mature and how long it 

has been since clearance of regrowth: they are likely to classified as soil. Soil 
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moisture may also influence pixel spectral properties when there is only partial 

vegetation cover (Wang et al., 2007). 

Another factor that can affect pixel classification is the difference in the seasons in 

which imagery was acquired. This is because the season of the year may have a 

strong influence in the reflectance values, e.g. in the dry season when permanent 

vegetation is under stress even though it retains a high LAI. This also affects 

permanent pastures, which range from LAIs of approximately 1.0 during the growing 

season (assuming they are not overgrazed and it is not a growing season with 

relatively low rainfall totals) to almost bare soil in the dry season. Image resolution 

has a role as well because if the field sizes are less than the spatial resolution of the 

imagery mixed pixels can be created from stressed and low LAI elements in 

conjunction with high LAI elements (Al- Fares, 2013). 

A further factor that coincides with the illumination giving high reflectance or reduced 

reflectance is the topography of the area. The Chapare lowlands are, for the most 

part relatively flat; although there are small minor mountain ranges in the southeast 

and northwest extremes of the study area where over-illumination and shadow 

affects occur. These are mainly still forest. However, where tall primary or secondary 

forest occurs directly north and northeast of cleared areas or a low canopy of crops 

or early regrowth deep shadow areas exist, a problem also found in Bradley (2005), 

which does lead to misclassification of pixels, this occurs north of Bulo Bulo for 

example where primary forest is adjacent to pasture. 

Noise and errors can never be underestimated in classification as reiterated by 

Guerschman et al., (2009). Imagery acquired in the wet seasons always has cloud 

noise that influences results. Noise influences pixels values leading to land cover 
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classes being misclassified. Moreover, noise and errors can affect land cover 

classes whose pixel values are close together. Common examples are dry grass and 

grazing having similar pixel values. Again, the primary reason is the strong soil 

reflectance because of excessive grazing and dry grass reflectance with the noise, 

both class will be classified as a single land cover type. 

5.2.1 Misclassification of Pixels for Forest and Non-forest 

 

Pixel misclassification is low in the three forest and non-forest maps. The few pixels 

that are misclassified due most likely due to the noise, shadow and edge effects 

discussed above. Classification of areas known to have cloud cover pose a real 

challenge in image processing (Salberg, 2011). In some robust classification 

exercises carried out on a small area with cloud noise and missing pixels, statistical 

algorithms can be applied to predict their classes. It was not felt necessary to do that 

in this thesis. Nonetheless, there is some cloud noise in the mountains to the south 

of the images: but it does not affect the lowlands which were the focus of the 

research.  

Heterogeneity in the vegetation as discussed above affects the radiometry values. 

This is because the spatial resolution of Landsat TM image data (30m x30m) may 

lead to mixed pixels of different vegetation types and different spectral properties  

The shade effect also contributes to pixel misclassification. This can be due to 

differences is slope angle and aspect, but also can be due to shadows cast by tall 

vegetation as noted in the above section. This leads to the anisotropic reflectance 

(Colby and Keating, 1998), and would have been a significant issue if forests in the 

mountains to the south had been mapped in detail. There is not much of an edge 

effect in the forest and non-forest mapping. Thus, in the classification of forest areas, 
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all forest types (i.e., mountain forest, lowland forest, wetland forest and gallery forest 

with high illumination or shaded) were relatively simple to merge into one class. 

However, edge effects are noticeable is areas where there are roads and clearance 

adjacent to mature forest.  

5.3 Error Analysis 

 

From pre-processing to classification and mapping, steps were taken and check for, 

and avoid generating errors. The fact that the overall accuracy of the three forest and 

non-forest image maps is >80% accuracy is testament to the effectiveness of this. 

Nonetheless, error analysis can be undertaken to rank the accuracy of an 

assessment and examine where the errors were generated.  

The first step undertaken was to examine the GPS coordinates of the ground 

verification data (Appendices 3.2 and 3.4) in Google Earth to verify the locations 

were correct. This was done by comparing the Google Earth images to the sketch 

maps on the LULC recording sheets and looking of the ground photos. Thus, errors 

in the location of ground verification points were eliminated. Errors are also 

generated in pre-processing, but as these processes were done by the image 

provider, they cannot be checked and eliminated by the user.  

The application of the algorithms used to cluster pixels together into their respective 

land cover types also generates errors. These errors can be considered 

misclassification errors, and their causes have been dealt with in detail in the 

previous section. These factors were considered when distinguishing classes across 

the entire classification before recoding all classes in forest and non-forest classes in 

the 2015 image map. One of the simple techniques used as a preliminary guide to 

verify the classification of forest and non-forest was to generate a NDVI image of the 
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same area and then use the swipe tool in ERDAS Imagine too identify misclassified 

pixels. Normalized Difference Vegetation Index (NDVI) is a spectral index model that 

is used very widely in vegetation studies and can be applied to change detection. It 

is derived from the following formula given in Equation 5.3-1. 

RNIR – RVISRed / RNIR + RVISRed                                                                (Equation   5.3-1) 

Where R – reflectance and near infrared (NIR) and visible red (VISRed) wavelengths. 

NDVI values ranges from -1 to +1. NDVI values for healthy vegetation have NDVI 

values of values >0.2, while other vegetation types are >0. Negative values are 

usually <0. Thus, any ambiguous pixel can be picked out easily when swiping 

carefully through the two images. Ambiguous pixels found were correctly reclassified 

again.  

 

Figure 5.3-1NDVI image for the Chimoré Airport subset in black and white (left) with 

the classified image (Green = Forest areas, orange=non-forest & Blue = water. The 

swipe tool in ERDAS Imagine has been used to set the division between the NDVI and 

classified parts of the image. The darker areas in the NDVI image are forest areas. 

 

5.4 Comparison of the classified forest and non-forest 2015 image with 2011 

and 2016 images. 

 

The 2015 forest and non-forest maps are different from those derived for 2011 and 

2016. The differences can be tied down to one major factor, which are the 
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differences of the spatial resolution of the images used in the supervised 

classification that preceded forest and non-forest mapping. The base spatial 

resolution for the three sets of images was 30m (Table 3.1-1). However, pan 

sharpening was carried out on the 2015 image (Sections 3.1). During the process of 

image enhancement by pan sharpening, the resolution of the 2015 imagery was 

converted from 30m to 15m, because the pan-sharpening algorithm uses a 

panchromatic 15m spatial resolution band to enhance the images. Tarolli et al. 

(2014) show that pan sharpening leads to improved definition of the pixel edges 

whether it be remote sensing, medical imaging or forensic science. Therefore, the 

new enhanced image has a spatial resolution of 15x15 m with more clearly defined 

edges for forest and non-forest classes. Therefore, pan-sharpening in the 2015 

images discriminate and gives details of forest and non-forest class than 2011 and 

2016 forest and non-forest classes as further elaborated in Section 5.4-1. A recent 

study by Dorji and Fearns (2017) in investigating the impact of the spatial resolution 

of satellite remote sensing showed that class discrimination increased as spatial 

resolution decreased (i.e., pixel size became smaller). It is can be argued to as 

introduction of noise, however it outlines the shadow, roads, small streams, 

understory vegetation and reveal features that may not be a land cover class. 

5.4.1 Pixel resolution and LULCC discrimination 

 

The primary reason why the 2015 classification imagery looks so different to the 

2011 and 2016 classified images is due the spatial resolution. This is a common 

error, as stated above in the discrimination of classes, which pushes for 

classifications to include more spatial resolution data. This make sense because for 

a tree with a canopy size of 200 m2 in 900 m2 area of water will appear water in a 
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30x30 m pixel size but the tree would be revealed at 15 meter resolution. This was 

reiterated by Ming et al., (2011) in selecting appropriate spatial resolution for remote 

sensing applications.  It was known that in any spatial analysis, the need for 

choosing the scale and resolution is a necessary (Ming et al., 2011, Curran and 

Atkinson, 2002, Lázaro et al., 2013), to discriminate various classes more precisely 

(Dorji and Fearns, 2017). Higher spatial resolution imagery discriminates classes 

more accurately compared to coarser resolution imagery (Lázaro et al., 2013). This 

is supported by Singh et al. (2012) who showed that the higher the spatial resolution 

the better the accuracy for all classes. This was also revealed with this study where 

the Community IV land parcels for 2015 (Figure 5.3-1). Comparing it to the classified 

image, a fine spatial resolution FCC (R= Band 7, G = Band 5 and B = Band 2) 

correctly classified the forest and non-forest classes. The water class was also 

clearly discriminated and appears on the forest and non-forest map shown in Figure 

5.4-1. 

 

Figure 5.4-1; The land parcels for Community IV a) Reflectance image given in false 
colour (band 2-blue, band 5-green & band 7-red) b) The unsupervised forest and non-
forest classification (forest in green and non-forest in orange while blue indicates 
water class) 
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In this study, 2015 images were classified for different land uses in the study area 

because of the availability of the ground verification data while the 2011 and 2016 

images were classified for forest and non-forest areas only. Therefore using a 15m 

by 15m resolution clearly defines the different land use because a small field size of 

coca plot or a cassava plot on average is around the same size as the pixel size. 

Thus, (Curran and Atkinson, 2002) reiterated that scale and pixel size for any 

classification is important and stating that “…the length of a phenomena depends on 

the spatial resolution of our measurement”. Therefore, when using the higher 

resolution of the 2015 image, every class feature turned out well for we can see 

small clearance areas in forest areas clearly. This approach picked out degraded 

forest and newly cultivated areas rather than identifying each agricultural crop types. 

Unlike in the 2011 and 2016 images, just because 60% of the cover type is forest in 

a pixel size, the pixel was classified as a forest neglecting the 40% non-forest.  

These reveals and proved that heterogeneity in an image does affect the radiometry 

values with respect to the spatial resolution of the image as argued by Wang et al. 

(2007). Moreover, high spatial resolution data from a multispectral sensor can be 

used for digitising a base map (Unger et al., 2013) that also shows that it 

discriminate classes very well. From the 2011 and 2016 classified images in the 

respective communities, forest areas turned out to be homogenous which is mostly 

unlike areas of settlements. However, comparing the three images, they all have the 

same pattern of cultivation and regrowth, which shows the accuracy of the 

classification. Because of the above reason, 2015 images shows small areas in 

between forest areas that are non-forest. In addition, the water feature that shows up 

in 2015 image for the Community IV was not seen in the same community in 2011 
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and 2016 images. However, the accuracy assessments show that all images were 

classified better with better preference to 2011 and 2016 classification. 
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CHAPTER 6 

6 : DEFORESTATION RATES AND POLICY SHIFTS IN CHAPARE 

 

The aim of this chapter is to evaluate the deforestation in the communities studied in 

detail in relationship to the narcotics policies that have been implemented under 

different presidential regimes for this study period.  Specifically in this chapter the 

hypothesis put forward by Bradley and Millington (2008b) that deforestation rates are 

lower under pro-coca (or lax enforcement of anti-narcotics policies) is tested. To do 

this, the maps of Communities I, II and III that were created by Andrew Bradley 

(2005)  and Mlenge Mgendi (Texas A&M University) for 2008, which are not 

published yet, are used along the maps I have produced for 2011, 2015 and 2016. 

Those data combine were analysed to answer the key research questions presented 

in chapter one. That includes the deforestation rates and the policy drivers in the 

study region. 

6.1 Extending the statistical analysis of community metrics 
 

 

The fragmentation patterns of forests were analysed for four communities (I-IV); for I 

to III the analysis includes the data 1966, 1986, 1993, 1996, 2000 and 2008 

(Sections 6.1.1 to 6.1.4).  

These communities contain 11 to 54 ha land parcels which are generally long and 

narrow. The Instituto Nacional de Colonización that was founded in 1963 assigned 

each parcel to a colonist farmer. The communities were accessed by a dirt road 

through the centre (Communities I-III) or to one side (Community IV) of the 

community. In Communities II, III and IV colonists cleared land backwards from the 
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access road, first clearing forest to grow their first year’s crop and to get timber to 

build a house. In Community I and III houses were located along central roads and 

patches were cleared backwards from an east-west access road. In subsequent 

years, farmers cut further into the forest in their plots. Forest clearance patterns and 

rates reflected different land use and land management practices (Bradley, 2005, 

Bradley and Millington, 2008a). The communities were founded at different times: 

Community I was founded in the 1960s, Communities II and III in the 1980s (Bradley 

and Millington, 2008a) and Community IV was likely founded recently in the 1990s; 

even though colonisation parts of Chapare dates back to the start of the 20th Century 

(Millington, in press). The results of the analysis in the three communities is from 

1986 to 2016. The time span for Community IV only covers 2011 to 2016 at the 

present time. 

The communities comprise different numbers of farms with different sizes 

(Community I - 102 farms, Community II – 93, Community III – 60, and Community 

IV – 40). Communities I and III have a central location for a shop, market, school, 

and a football field. These facilities are elsewhere for Communities II and IV. The 

mean farm size for each community is different (Table 6.1-1).  

Table 6.1-1 Mean farm size for the communities sampled 

Community Farm size  

 Mean (ha) Standard deviation (ha) 

Community I 19 3 

Community II 34 15 

Community III 20 2 

Community IV 33 6 
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6.1.1 Community I Deforestation matrices 

 

The sections on deforestation metrics for Communities I, II and III have the same 

format. First, the deforestation metrics outlined by Bradley (2005) and Bradley and 

Millington (2008a) are summarised; then the metrics for 2000-2016 are presented 

and discussed.  

Community I had seen much forest clearance by 1986. The community was founded 

in 1963, meaning 23 years of clearance had taken place before the 1986 image was 

acquired. A Corona KH-4A acquired three years after the community was founded 

can be seen in Figure 6.1-1. Details of the Corona missions can be found in the book 

by Ruffner (1995). 

 .  

Figure 6.1-1 Corona KH-4A image acquired in 1986 in Community I (Source; Bradley 
and Millington, 2008) 

 

By 1986, 1198.35 ha of forest had been cleared leaving 617.36 ha. The net forest 

cover remained more-or-less same from 1986 to 1996 and there was some regrowth 
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between 1996 and 2000. By 2000, the forest cover in Community I was 44%. It can 

be argued that this was because much of the area was under citrus (Bradley 2005) a 

reasonably stable tree cover of mature citrus and remnant forest existed after 23 

years of settlement and farming.  

Between 2000 and 2016, there has been almost no further forest clearance, which 

has allowed secondary forest regrowth. The 2016 estimate of forest cover is 1176.52 

ha (Figure 6.1-2) which equates to a proportional forest cover of 64.77%. There is a 

slight increase (approximately 1%) in the forest cover from 2011 to 2015. That is the 

period of uncertainty for drug enforcement, demand reduction and alternative 

farming in line with the European drugs policy 2013-2020 (EU, 2014) putting 

pressure on Bolivian government on illicit drug cultivation. It was also stated that 

there was a 9 % decrease in coca cultivation in 2013 indicated by US Department of 

State (2015) in their 2015 report and that shows the slight decline in forest between 

2011 and 2015. Between 2014 and 2015, there is further increase (30%) in coca 

production in the area as reported by US State Department (2016) in 2016. 

Therefore, I argue that in Community I forest cover increased in 2016 because of this 

increase in coca cultivation. Thus, the entire period is within the period of influence of 

the Movement towards Socialism, which was codified when President Evo Morales 

Presidential Administration was elected in 2006: this is considered a pro-coca era in 

modern Bolivia politics (Table 2.4-1).  
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Figure 6.1-2 The graph of Community I showing the forest cover and clearance rate. 

 

The clearance rate was 119.83 ha/year from the start of settlement to 1986 and 

declined from 1986 to 2000. Between 1996 and 2000, forest loss was negative. In 

the period considered in this thesis, the deforestation rate from 2000-2008 was 

higher than 1996-2000, 30.56 ha/year, and since 2008 it has been negative allowing 

for much regrowth (Figure 6.1-2). 

The discussion of these trends is restricted to the period from 2000-2016, when 

there has generally been an increase in forest cover (from 44 % in 2000 to 64.77 % 

in 2016) which has been accompanied by a general decrease in forest clearance 

rate, to the extent that this is negative for a number of the inter-image periods under 

consideration. The clearance rates have varied from 30.56 ha/yr (0.31 ha/yr for 

individual farms) between 2000 and 2008 to -204.7 ha/yr (-2ha/yr for individual 

farms) between 2015 and 2016. While it is straightforward to ascribe the low 

deforestation rates and forest regeneration to the farmers in Community I being able 

to grow coca and therefore not needing to clear new forest areas for other crops, 
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three other factors need to be taken into account when considering the actual values 

for Community I: 

a) Citrus is a dominant crop in this community and mature citrus has a spectral 

signature which overlaps with forest (Section 4.5) which inflates forest cover 

percentages; 

b) The 2008 forest and non-forest map was derived from CBERS-2 imagery and 

the forest and non-forest classes may vary slightly to those derived from TM 

imagery; and 

c) A number of farms that existed in the southwest of the community in 2000 no 

longer exist (cf. maps of Community I in Section 4.5.1). This is because of 

major infrastructure construction in that location. That section was removed in 

2011 imagery to be consistent with 2015 and 2016 maps. 

 

6.1.2 Community II deforestation Matrices 

 

In Community II the area of forest cleared by 1986 amounted to 506.88 ha and by 

1992 it doubled to 1157 ha (Bradley, 2005). Despite the extensive clearance, it was 

estimated that only about a third of the forest in that community cleared had been 

cleared by this time because this was designated a cattle-rearing community with 

most of the land parcels being set at 50 ha, rather than 20 ha in cultivation 

communities like I and III. By 1996, an additional 447 ha of forest had been cleared 

which pushed the cleared area up to 49.86%. (Figure 6.1-2). Between 2000 and 

2016, there has been little clearance and the 2016 estimate for forest cover is 

1854.81 ha (figure 6.1-1) which equates to a proportional forest cover of 57.98 %. 
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There is drop in forest cover in 2015 relating to European Union applying pressure 

on Bolivian government as discussed in Section 6.1.2 

 

Figure 6.1-3The graph of Community II showing the forest cover and clearance rate. 

 

The discussion of these trends in clearance rates is again mainly restricted to the 

period from 2000-2016. However, it is notable that the forest clearance rates 

increase slightly between 2000 and 2008 but decreased between 2008 and 2016. 

Thus, given a steady increase in clearance rate between 1986 and 1996 as pastures 

expanded resulting in a decrease in forest cover. In 1986 the clearance rate was 

50.69 ha/year and had increased to around 57 ha/year by 2000. The continued 

growth in forest clearance rates up to 2000 is in contrast to Communities I and III 

and is likely due to the fact that alternative crops were not introduced here as part of 

anti-coca policies (as was the case in Communities I and III), which is related to the 

fact that this area is climatically-marginal for coca cultivation (Millington, in press). 

There has been an overall increase in forest cover (from 42.74 % in 2000 to 57.98% 
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in 2016) which has been accompanied by a general decrease in forest clearance 

rate, to the extent that this was negative for a number of the inter-image periods 

under consideration. The clearance rates have varied from 184.78 ha/yr (1.8 ha/yr 

for individual farms) between 2000 and 2008 to -786.35 ha/yr (-8 ha/yr for individual 

farms) between 2015 and 2016. As noted in the discussion of clearance rates in 

Community I, this entire period is within the pro-coca period of influence of the 

Movement towards Socialism: but again, other factors need to be taken into account 

when considering Community II: 

a) Pasture is the dominant form of non-forest land in this community. 

Deforestation rates are higher under pastoral communities than those reliant 

on crop cultivation (Kass and Somarriba, 1999, Armenteras et al., 2013);  

b) Coca is not an important crop in this community, and the influence of anti- and 

pro-coca policies on forest cover and clearance rates has probably been low; 

and 

c) The 2008 forest and non-forest map was derived from CBERS-2 imagery and 

the forest and non-forest classes may vary slightly to those derived from TM 

imagery. 

6.1.3 Community III deforestation matrices 

 

Bradley (2005) estimated that the forest cover in Community III had decreased by 

almost 60% between 1986 and 1993. That result can be considered valid because 

Community III was allocated to crop farming with land parcels of 20 ha. The forest 

cover further decreased between 1993 and 2000, when the cover was 19.08 % 

(Figure 6.1-4.). There has been significant regrowth since 2000 and there is now 

about 524.8 ha (43.06 %) of forest in the community. 
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Figure 6.1-4 The graph of Community III showing the forest cover and clearance rate. 

 

The discussion of these trends in clearance rates is again mainly restricted to the 

period from 2000-2016. There was a rapid decrease in the forest area from 1986 

(just three years after the community was founded) to 2000 (Figure 6.1-4). The 

clearance rate between 1983 and 1986, when the community was filling with settlers 

migrating to Chapare, was very high as forest was being cleared for timber to build 

houses and to sell as hardwood (which has a high market price (Crabtree and 

Chaplin, 2013)); and the first land cleared was planted to rain-fed rice as a 

subsistence staple food and a crop that had high demand in Bolivia. This was also a 

period of when eradication of coca were enforced. However, because it is close up in 

the foothills of the Andes, there is high probability of coca being grown there. Forest 

clearance rates increased markedly between 1986 and 1993 with 1161.09 ha of 

forest cover to 128.34 ha. That is a clearance rate of 133.36 ha/yr. In between 2000 

and 2011 there has been increase in forest regrowth in this community. That ties in 

with very low clearance rate, which is less than zero from 2000-2011; though since 
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then there has been a slight decrease in the forest cover and correspondingly slight 

increase in clearance rates. 

This was a community in which coca has been grown as part of the crop mix and is 

therefore likely to be influenced by shifts in, and levels of enforcement of, anti- and 

pro-coca policies like Community I and in contrast to Community II. Nonetheless, 

other factors need to be taken into account, the most pertinent of which is that 

CBERS imagery was used to create the 2008 forest and non-forest map. 

 

6.1.4 Community IV Deforestation Matrices 

 

The trends in forest cover and deforestation rates in Community IV were relatively 

steady between 2011 and 2016. The forest cover is above 50% although it may be 

starting to decrease in the 2016: 79 ha of forest were cleared between 2015 and 

2016 equating to a mean clearance rate per farm of 1.99 ha/year. This is low 

compared to the other three communities (Figure 6.1-5). This is one of the remotest 

communities in Chapare at the present time and in an area where successive 

UNODC coca monitoring reports have indicated high coca cultivation densities. 

Whilst research protocols do not allow the name of this community to be disclosed, I 

have been informed by my supervisor that it is impossible to reach this community 

from the centre of Chapare and return in the same day by road. Moreover, there are 

only a handful of communities that are less accessible that this one in the region. 

Coca is grown liberally in this and surrounding communities and Google Earth 

imagery shows many small clearing in adjacent forests throughout the community 

where it is highly probably that coca is being grown (UNODC, 2005, Dávalos and 

Bejarano, 2008, Dávalos et al., 2011, UNODC, 2016b) 
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Figure 6.1-5 Community IV showing the trend of deforestation rate and forest cover in 
Isiboro. 

 

6.2 The Driving factors of Deforestation in Bolivia 

 

Overall, it is clear from Section 6.1 that deforestation rates in the four communities 

studied in detail have been very low since 2000, and that they have declined 

compared to rates in the 1980s and 1990s in Communities I-III (details are provided 

in Appendix 6.1).  

Many factors are in play when considering deforestation, not just narcotics policies 

(Section 2.4). For example, market demand and prices stimulate farmers to cultivate 

certain types of agricultural crops, and even the farmers’ choices are not constant 

over entire region (Armenteras et al., 2013). This was also supported by recent 

research on tobacco as a dominant agricultural activity during the years under 

consideration in this study in Santa Cruz valleys to the south of Chapare that lies in 

between Isiboro and Carrasco National Parks (Noriega et al., 2013). In Chapare, it 

has been  estimated that about two hectares of land can generate an annual 

average profit of US$800 if coca is grown (UNODC, 2016a). Thus, because of the 

persistent poverty in rural Bolivia, it is unlikely that farmers would move away from 
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coca unless forced too. Bradley (2005) arrived at the same conclusion when 

considering the profit margins for coca and palmetto.  

The use of improved techniques in agriculture is not a major factor in this area, coca 

is a hand planted and harvested crop, and the high amounts of regrowth are 

reasonably evident that, mechanization is not a major component of most farming 

systems in Chapare. However, agrochemicals are integral to coca cultivation, though 

they are only applied by hand (fertilisers) or backpack sprayers (pesticides).  

There has been an improvement in food security and food productivity in Bolivia in 

the recent years (Salazar et al., 2016), who mention that people have some form of 

access to portable water and health services improving their livelihoods. This has put 

less stress on farmers to use the forest  (or cleared forest) to meet their dietary 

needs, and is a compounding factor in the decline in rate of deforestation compared 

to those outlined by Bradley and Millington (2008a). The others factors identified to 

be causing the deforestation in the study area would be population growth, 

demographic expansion, new settlements and infrastructure development 

(Armenteras et al., 2013). The issue of new settlements would explain why there was 

a sudden increase of deforestation in Community IV. That trend is not going to 

change and is common in other developing tropical countries around the globe.  

This leaves the following question. As there has been a decrease in deforestation 

rates since c. 2000 compared to the 1980s and 1990s, how far can that be explained 

in terms the policies and legislation around coca cultivation that were discussed in 

Chapter 2? The policy element could well be part of the  explanation of the recent 

clearance in Community IV because it is in a park and indigenous areas (Devere et 

al., 2017). More overtly related to coca, because Chapare is known to be a coca 



  

115 
 

source region. As a result, there are lots of policies and development programs 

relating to coca cultivation (Bradley and Millington, 2008a, Bradley and Millington, 

2008b, Elsner, 2016, Farthing and Ledebur, 2014, Marcy, 2010, Xie, 2011, Sorrell, 

2010). A number of authors (Sturm and Smith, 1993, Bradley and Millington, 2008a, 

Elsner, 2016, Ofstehage, 2012) have considered the alternative farming policies, 

which are part of the programs to reduce or eliminate the cultivation of coca. During 

the tenure of the MAS government led by the current president, Eva Morales, 

policies and regulatory systems have been changed allow increased legal coca 

cultivation for the first time since the 1950s-1970s when legislation was first mooted 

and approved. This has given farmers the confidence to grow more coca, to grow it 

openly and obviated the need to focus on alternative farming systems (Ofstehage, 

2012). Therefore, in terms of policies and the rate of deforestation this points 

towards a relationship existing between the deforestation rate and anti-narcotics 

polices that supports that hypothesised by Bradley and Millington (2008b) This is 

explored in the next section.  

6.3 Linking Deforestation rates and anti-narcotics policy. 

 

The 2011, 2015 and 2016 deforestation dynamics in the study area shows that there 

has been a slight increase in deforestation in one remote community (Table 6.3-1) 

and much regrowth in the other three communities.  

Table 6.3-1 Average clearance rates of the four communities in this study. 

     

Community 

Average Clearance 
rate (ha/annum) 

per farm 

Community I -2.2 

Community II -8.37 

Community III 0.39 

Community IV  1.99    
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Bradley and Millington (2008a) showed that under weakly enforced or no anti-

narcotics policies deforestation rates on farms in Communities I-III varied from 

negative values to 0.4 ha/year compared to higher rates (0.9-1.1 ha/year) when coca 

eradication programs were enforced effectively. When the rates in Table 6.3-1 are 

compared to these values, it can be seen that contemporary and post-2000 

deforestation rates in these communities are in the range predicted for weakly 

enforced or no anti-narcotics policies deforestation rates.  

This confirms what would be predicted based on pro-coca policies on the back of the 

“Coca si, Cocaine non” mantra Evo Morales introduced when he became president 

in 2006. Under these policies farmers are allowed to grow coca on a limited scale 

and its production is  monitored so only the demand for chewing is met (Farthing and 

Ledebur, 2014, Dangl, 2010) Another major boost came in 2009 when coca leaf 

consumption was recognised as part of the Bolivian culture or national heritage. That 

meant that people could grow coca leaves for domestic use more easily and market 

them legally, thereby putting less stress on the forest to clear new fields for less 

profitable crops. These and other coca-related policies were one of the main reasons 

for voting in Evo Morales (who is also president of the coca grower’s federation) as 

president of Bolivia and was into direct contrast with the Banzer’s strong anti-

narcotics policies of the late 1990s.  

This included Law 18265 of 1986 that had the aim of compensating land parcel 

owners for forfeiting their coca plots (Bradley and Millington, 2008b). The policies of 

the governments during the 1980s and 1990s were “neoliberal capitalist reforms” 

with support from US that binds up with the US imposed-War on Drugs. The Bolivian 

Government offered compensation of US$2500, which was unfavourable in 

economic terms. The president, himself a union leader, coca farmer and trumpet 
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player from before he rose to power in 2006, focussed his campaign on the “ War on 

Drugs” (Xie, 2011) as a threat and invasion to the Andean culture (Farthing and 

Ledebur, 2014, Dangl, 2010). 

Thus, within the period up to 2011 from the time his government took power, was a 

time of much change in terms of changing crops, planting coca and allowing forest to 

regenerate. Significant regrowth can occur in humid tropical forests in five years, the 

period between Morales being elected and the acquisition of the of 2011 imagery (let 

alone the period from 2000 when Morales influence first began to be experienced in 

national politics. With that trend in policy and politics, the reduced rate of 

deforestation would clearly be evident by 2011 and will have continued subsequently 

as government (Section 2.4) has passed more pro-coca policies. Therefore, a direct 

correlation between the type and status of coca policies and deforestation rates. 

That is what the results of this research have shown and they correspond with 

research from Colombia that shows that illicit drug cultivation is not related to land 

clearance but rather to forest regrowth (Armenteras et al., 2013). 
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CHAPTER 7 

7 : CONCLUSION 

 

This chapter briefly concludes by returning to the two research objectives addressed 

in Section 1.3., and then proceeds by reviewing other important research findings 

and, finally, making recommendations as to how this research might be continued in 

the future. The emphasis is on geospatial aspects given that this research was done 

for a Masters in Geospatial Information Science. 

7.1 Research Aims 

 

It is important to reflect on the research objectives and see if this study covers what it 

is intended to cover. The aims of this study were two-fold (Section 1.3) and are 

restated here:  

c) To map forest and other non-forest land covers for 2011, 2015 and 2016 for the 

study area.  

d) To test the hypothesis (Bradley and Millington, 2008a) that deforestation rates 

are significantly less under conditions where coca is encouraged than under 

well-enforced anti-coca policies. 

Therefore, it is satisfying to point out that the two objectives of this research have 

been achieved. Chapters 4 and 5 illustrate and discuss forest and non-forest maps. 

In terms of the second aim, community-level statistics were derived from 2011, 2015 

and 2016 forest and non-forest maps (Chapter 4) and examined in the context of 

statistics that had been derived by others for 1986, 1993, 1996, 2000 and 2008 

image data.  The results are clear, the rates of deforestation have generally 

decreased since 2000 and there has been forest regrowth in the communities as 

farmers stop clearing land as they are encouraged to grow coca through a raft of 
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policies that the government had put in place since 2006. Though there are some 

issues, e.g. citrus orchards maturing and their tree cover being confused with forest 

regrowth, the evidence for low deforestation rates is strong. The additional analysis 

for a fourth community, which was newly chosen in this research, in a peripheral part 

of Chapare where coca cultivation is commonplace, confirmed low deforestation 

rates in circumstances where coca can be grown with impunity.  The evidence is 

incontrovertible, even accounting for errors, Bradley & Millington’s hypothesis holds 

true: deforestation rates are significantly under weak enforcement or encouragement 

of coca cultivation compared to the rates under well-enforced anti-coca policies. 

7.2 Other important research findings 

 

Other important findings from this research are briefly identified below. 

7.2.1 Deforestation rate and forest cover 

 

It is can be noted from the graphs of deforestation rates for the different communities 

from 1986 to 2016 (Section 6,1), that the curves of deforestation rates and forest 

cover mirror each other quite well despite the differences between Communities I, II 

and III. When there is a decrease in clearance rates, there is an increase in the 

forest cover. This indicates that the polices that influence forest clearance probably 

work is tandem in these three communities, and no doubt many of the other 600 or 

so rural communities in Chapare. It will be interesting to test this for Community IV, 

something I hope to be able to do in a publication once this thesis is completed.  

7.2.2 Driving forces of deforestation in Chapare 

 

Considering the findings of this research, it is hard not to conclude that shifts in anti-

narcotics policies are the major drivers in deforestation in Chapare in Bolivia, and 
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have been since anti-narcotics policies were introduced in the 1980s. This major 

policy driver can either encourage or discourage deforestation in the region. It is an 

underlying cause in Geist and Lambin’s framework and works to drive the rates of 

two proximate causes—agricultural expansion and infrastructure development, 

specifically extension of the feeder road network though it mainly works in tandem 

with proximate causes.  Of course, the ability to make a good living as a coca farmer 

had probably encouraged more migration to this colonisation zone that others in 

Bolivia, so population growth cannot be dismissed as a driver. Nonetheless, it can be 

argued that the Bolivian government’s attitude to coca cultivation before and after 

2000, and its ability and willingness to enforce anti-coca policies during the 1980s 

and 1990s, have been the main underlying cause of changes in deforestation rates 

in Chapare. 

7.2.3 Deforestation and coca trade 

 

The comparison to previous studies in Section 5.6, and the introduction of the “Coca 

si, Cocaine non” mantra accompanied by pro-coca policies and legislative measure 

has seen a lot of new cultivation in the area.  Since 2004, when it is has been 

monitored by the United Nations, there is a clear pattern of expansion into new, 

peripheral parts of Chapare where cultivation densities are high, e.g. compare coca 

cultivation density maps for Chapare between 2004 and 2015. Farmers have tended 

to farm more coca in more remote regions. Is the amount of coca leaf being 

produced in Chapare in excess of the national demand for chewing? According to 

internal regulation of coca cultivation within Chapare it is, but it is difficult to square 

that with what must be an obvious increase in production and rather low population 

growth rate in Bolivia. Quantification and discussion of this is beyond this thesis, but 

copious press reports from Latin America, North America and Europe would suggest 
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that a lot of cocaine paste is being sourced from Bolivia, and much of that is from 

Chapare. 

7.2.4 Pixel resolution and accuracy 

 

This study revealed that when using a pan-sharpened image with finer spatial 

resolution, land cover classes could be discriminated more accurately. Other 

researchers have made the same observation in the land science arena (Ming et al., 

2011, Lázaro et al., 2013, Masek et al., 2006, Feng et al., 2013). This is a key 

geospatial finding in the context of this study and though it does not negate the 

analysis of 30-m resolution forest and non-forest maps it does suggest that there 

more accurate maps can be made on a routine basis. This is further elaborated in 

the section below. 

7.3 Recommendations and future research 

 

Using different approaches or methods to an issue or validate a hypothesis is an 

important aspect of collective interpretation of an idea. A different method can be 

seen as an alternative way to tackle a problem. Therefore, while this study may 

seem accurate; however, a level of uncertainty still exists because the research has 

relied on geospatial analysis applied to land-use and land-cover data.  An important 

issue for future study is the extent to which the EKC6 effect actually reverses as 

opposed to simply slows down the rate of deforestation and related environmental 

degradation (Ehrhardt-Martinez et al., 2002).  

Much more could be done in terms of this by looking at the situation again in the 

future, e.g., when another 20 years of land cover data is available. That is a long-

term study plan in which new data can be added to the data already collected, i.e. 

                                                
6 EKC effect is the relationship between the pollution and income per household with respect to clean 
air. 
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Bradley (2005), Bradley and Millington (2008a) and this thesis and any publications 

that emerge from it. It is timely to say that future work should be done at finer spatial 

resolution satellite data, which is increasingly becoming available in global data set. 

As the analysis of the 2015 data showed in this research, this will help improve land-

use and forest regrowth classes to be identified. It would also allow other dimensions 

of the wider problem, like soil degradation, to be tied to this coca and cocaine 

production in this region (Dávalos et al., 2011).  

It is recommended that future iterations of this “study” move from 30 m resolution 

data with a period in which both 30 m and finer spatial resolution data are used so 

the 1986-2016 data set can be calibrated with a new finer resolution time series of 

data starting in 2015. That would lead to consistency with past data, while allow 

more accurate discrimination of land-use classes in the future (Ming et al., 2011, 

Lázaro et al., 2013, Masek et al., 2006, Feng et al., 2013).  

Furthermore, the use of fine spatial resolution to study the impacts of coca cultivation 

in the area is very important because of wider links between the cocaine trade’s 

effects on economy and environment require attention (Crabtree and Chaplin, 2013, 

Elsner, 2016, Dávalos et al., 2011). One satellite that would provide a very good 

spatial resolution is Quickbird (see figure 7.4-1, for basic information) because it’s 

very fine spatial resolution provides the possibility of identifying items such a tree 

crowns that are important in determining regrowth.  

 

Figure 7.3-1; Table showing the sensor on-board Quickbird with its high-pixel 

resolution of 2.44-2.88 meter which is seen ideal for LULCC classification in mapping 

out coca plots. 
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It is already used with other fine spatial resolution images and photographs that are 

mosaicked together by the coca monitoring teams to map coca areas (UNODC, 

2016): the focus is on the relationship between the characteristics of the real 

environmental conditions and the information using remote sensing (Schloderer et 

al., 2011). There are of course, alternatives to Quickbird and as these are becoming 

increasingly available and the costs of fine spatial resolution image data are falling, 

such data will be feasible for extending time series of forest cover data in the near 

future. 
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Appendix 2.1 Photos of banana Infrstructure in Bolivia 

 

a) The image showing the pullies to winch banana from the garden to decrease labour 

time and labour intensity 

 

b) The image showing the pullies to winch banana from the garden to decrease labour 

time and labour intensity 
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b) Banana arrives straight to the packing and storage facilities 

 

 

(Source of the image a,b&c; http://www.freshplaza.com/article/172706/Bolivian-

banana-producers-meet-requirements-to-export-to-Russia) 
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Appendix 3.1 The Transects Eight Transects where the field survey was done in 2015 
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Transect IS 

 

Transect A1 
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Transect A2 

 

Transect A3 
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Transect A4 

 

Transect A5 
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Transect A6 

 

 

Transect A8 
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Appendix 3.2:  Survey Point used for re-coding and renaming of land-cover classes in 2015 
Classification 
 
Data Collected in 2015 between August and September of 2015 with all coordinates given in UTM 
coordinates. 
 
 
Code = My code for field site 
Lat = latitude 
Long = longitude 
LULC = land use/land cover 
 
Unambiguous LULC classes on the ground are mainly: primary forest, mature secondary forest, 
pasture from low grass bare to deep grass (includes village football fields), bananas, pineapples, bare 
soil, sometimes palmetto (4 m high feathery palms planted as a plantation crop) 

 
 

Code Date Lat Long LULC Test Points /Classifications 

IS Southern Road (IS-50-60) 

IS-55 26 Au 0193532 8176144 Pasture Test point 

IS-56 26 Au 0193630 8175349 Medium regrowth, slope pasture Test point 

IS-57 26 Au 0193751 8175160 Pasture Used for land cover selection 

IS-58 26 Au 0194251 8173830 Pasture / Regrowth Test point 

IS-53 26 Au 0194962 8171749 Pasture/ regrowth/ forest Used for land cover selection 

IS-52 26 Au 0195392 8171146 Pasture Used for land cover selection 

IS-51 26 Au 0199036 8165141 Pasture Test point 

IS-61 26 Au 0211207 8156279 Pasture Test point 

IS-62 26 Au 0212691 8153609 School, pasture, baresoil, village Used for land cover selection 

IS-50 26 Au 0200899 8164612 Pasture Used for land cover selection 

IS central road (IS-100 to 121) 

IS-102 27 Au 0216347 8161246 Primary forest Test point 

IS-103 27 Au 0215237 8162798 Primary forest Used for land cover selection 

IS-104 27 Au 0214647 8165725 Primary forest Used for land cover selection 

IS-105 27 Au 0213842 8167959 Primary forest Test point 

IS-121 27 Au 0213775 8168105 Primary forest Used for land cover selection 

IS-107 27 Au 0209021 8170786 Pasture Used for land cover selection 

IS-108 27 Au 0206875 8171235 Regrowth forest Test point 

IS-118 27 Au 0206599 8172134 Primary forest Used for land cover selection 

IS-110 27 Au 0204650 8175739 Primary forest Used for land cover selection 

IS-111 27 Au 0202582 8176883 Primary forest Used for land cover selection 

IS-114 27 Au 0199025 8180148 Primary forest Used for land cover selection 

     Used for land cover selection 

IS-113 27 Au 0199032 8180584 pasture Test point 

IS-112 27 Au 0199048 8180767 Pasture Test point 

IS-116 27 Au 0203985 8176089 Primary forest Test point 

IS-117 27 Au 0205013 8175307 Regrowth Test point 

IS-100 27 Au 0217999 8158066 Grass (football field) Used for land cover selection 

IS East Road (IS-27 to 44) 

IS-27 28 Au 0222968 8168942 Primary forest Used for land cover selection 

IS-28 28 Au 0223238 8168682 Primary forest Test point 

IS-29 28 Au 0223818 8168062 High secondary forest Used for land cover selection 

IS-30 28 Au   High secondary forest Test point 

IS-31 28 Au 0224240 8167329 Grass (football field) Used for land cover selection 

IS-32 28 Au 0223969 8166846 Secondary regrowth forest Test point 

IS-33 28 Au 0223622 8166202 Regrowth forest Used for land cover selection 

IS-34 28 Au 0223405 8165802 Regrowth Test point 

IS-35 28 Au 0223883 8165201 High secondary forest (or Primary) Used for land cover selection 
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IS-36 28 Au 0224009 8164520 Regrowth / Forest Test point 

IS-38 28 Au 0223614 8163608 Regrowth Used for land cover selection 

IS-40 28 Au 0222998 8162901 Regrowth Test point 

IS-40 28 Au 0222478 8162538 Forest and regrowth Used for land cover selection 

IS-41 28 Au 0219916 8160665 Forest Used for land cover selection 

IS-43 28 Au 0219916 8160665 Regrowth Test point 

      

      

A1-Senda 3 and Chimore  (A1-1 to 39) 

      

A1-1 24 Sep 0266724 8116478 Citrus Used for land cover selection 

A1-2 24 Sep 0266940 8116749 Medium regrowth Used for land cover selection 

A1-3 24 Sep 0267306 8117940 Medium regrowth Used for land cover selection 

A1-4 24 Sep 0267495 8118323 Rubber plantation/Med regrowth Used for land cover selection 

A1-5 24 Sep 0267580 8118811 Forest/regrowth/grazing Used for land cover selection 

A1-6 24 Sep 0267276 8119004 Rubber/dense undergrowth of citrus Used for land cover selection 

A1-7 24 Sep 0267578 8119483 Medium regrowth Used for land cover selection 

A1-8 24 Sep 0267778 8119716 urban Used for land cover selection 

A1-9 24 Sep 0267726 8119804 Urban/ football field Used for land cover selection 

A1-10 24 Sep 0267772 8120097 Banana Used for land cover selection 

A1-11 24 Sep 0267761 8120703 Citrus/pamitto/grazed Used for land cover selection 

A1-12 24 Sep 0267754 8121123 banana Used for land cover selection 

A1-13 24 Sep 0267749 8121631 banana Used for land cover selection 

A1-14 24 Sep 0267730 8122496 Pamitto/high regrowth Used for land cover selection 

A1-15 24 Sep 0267732 8122732 Medium regrowth Used for land cover selection 

A1-16 24 Sep 0267727 8123846 pasture Used for land cover selection 

A1-16A 24 Sep 0267735 8124452 Medium to high regrowth Used for land cover selection 

A1-17 24 Sep 0268105 8125041 High regrowth / pasture Used for land cover selection 

A1-18 24 Sep     

A1-19 24 Sep     

A1-20 24 Sep 0269666 8125977 High / medium regrowth Used for land cover selection 

A1-20A 24 Sep 0268804 8125926 pasture Used for land cover selection 

A1-21 24 Sep 0267380 8126778 Medium regrowth Used for land cover selection 

A1-22 24 Sep 0267409 8127755 Pasture Used for land cover selection 

A1-23 24 Sep 0267429 8128145 Pasture/regrowth Used for land cover selection 

A1-24 24 Sep 0267830 8128195 Pasture/medium regrowth Used for land cover selection 

A1-25 24 Sep 0268453 8128199 Medium regrowth Used for land cover selection 

A1-26 24 Sep 0266978 8128231 Pasture/ medium to high regrowth Used for land cover selection 

A1-27 24 Sep 0266717 8127643 Pasture/ medium to high regrowth Used for land cover selection 

A1-28 24 Sep 0266825 8127951 Medium regrowth Used for land cover selection 

A1-29 24 Sep 0267372 8128397 High to medium regrowth Used for land cover selection 

A1-30 24 Sep 0267418 8128773 Citrus/ pasture Used for land cover selection 

A1-31 24 Sep 0267493 8131275 Citrus/ shrubby regrowth Used for land cover selection 

A1-32 24 Sep 0267526 8130562 Citrus Used for land cover selection 

A1-33 24 Sep 0267912 8132219 Medium regrowth/citrus Used for land cover selection 

A1-34 24 Sep 0267722 8133090 New banana plantation Used for land cover selection 

A1-35 24 Sep 0267997 8134004 Medium to tall regrowth Used for land cover selection 

A1-36 24 Sep 0268112 8134856 Citrus/medium regrowth Used for land cover selection 

A1-37 24 Sep 0269284 8135072 Mixed farming and regrowth Used for land cover selection 

A1-38 24 Sep 0267444 8135717 Banana/ forest Used for land cover selection 

A1-39 24Sep 0266757 8136021 Urban/ villages Used for land cover selection 

      

Mariposa (A2-1 to 15) 

A2-1 23 Se 0283076 8119262 Clearance for future housing. Used for land cover selection 

A2-1 23 Se 0283076 8119262 Pineapple Used for land cover selection 

A2-3 23 Se 0284616 8122606 Pasture Test point 

A2-4 23 Se 0286916 8124585 Medium regrowth/High regrowth Used for land cover selection 

A2-5 23 Se 0287343 8124957 Low to medium regrowth Used for land cover selection 

A2-6 23 Se 0287523 8126369 Tall forest regrowth/Mature secondary 
forest 

Used for land cover selection 
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A2-7 23 Se 0288898 8126316 Newly cleared field. Bare Soil Used for land cover selection 

A2-7A 23 Se 0287802 8125948 Tall forest regrowth or forest Test point 

A2-8 23 Se 0286914 8126080 Low to high regrowth Used for land cover selection 

A2-9 23 Se 0286342 8126097 Low to high regrowth Used for land cover selection 

A2-10 23 Se 0284791 8124185 Forest,cropping Used for land cover selection 

A2-11 23Se 0284111 8123596 Regrowth Cropping Used for land cover selection 

A2-12 23Se 0283544 8123111 Regrowth Used for land cover selection 

A2-14 23Se 0282964 8122558 Medium regrowth Used for land cover selection 

A2-15 23Se 0282941 8121601 Medium to high regrowth Used for land cover selection 

      

      

      

A3-1 2 Se 0300061 8112562 Pasture Used for land cover selection 

A3-2 2 Se 0299729 8111993 Pasture Used for land cover selection 

A3-3 2 Se 0298514 8110188 Pasture Used for land cover selection 

A3-4 2 Se 0298206 8109210 Pasture Used for land cover selection 

A3-4 2 Se 0298206 8109210 Bare soil? = recently burnt pasture Used for land cover selection 

A3-5 2 Se 0297673 8108394 Palmitto Used for land cover selection 

A3-11 2 Se 0297107 8104325 Palmitto Used for land cover selection 

A3-15 2 Se 0298931 8102407 Pasture Used for land cover selection 

A3-17 2 Se 0299886 8101411 Pasture Used for land cover selection 

A3-18 3 Se 0300522 8100838 Pasture Used for land cover selection 

A3-20  0300942 8100126 Pasture Used for land cover selection 

A3-21  0300566 8099618 Bananas Used for land cover selection 

A3-21 3 Se 0300566 8099618 Pasture Used for land cover selection 

A3-24 1 Se 0298594 8096983 Palmitto Used for land cover selection 

A3-24 1 Se 0298594 8096983 Bare field = recently burnt Used for land cover selection 

A3-25 1 Se 0298445 8096530 Citrus Used for land cover selection 

A3-26 1 Se 0298339 8096634 Citrus Used for land cover selection 

A3-26 1 Se 0298339 8096634 Palmitto Used for land cover selection 

A3-27 1 Se 0299168 0299168 Cassava = Yuca Used for land cover selection 

A3-27 1 Se 0299168 0299168 Citrus Used for land cover selection 

A3-27 1 Se 0299168 0299168 Palmitto Used for land cover selection 

A3-28 1 Se 0299668 8095341 Palmitto Used for land cover selection 

A3-29 1 Se 0300446 8094355 Palmitto Used for land cover selection 

A3-49 1 Se 0307191 8101501 Bananas Used for land cover selection 

A3-50 1 Se 0302522 8101941 Bananas Used for land cover selection 

A3-50 1 Se 0302522 8101941 Pasture Used for land cover selection 

A3-55 1 Se 0303703 8104306 Bananas Used for land cover selection 

A3-53 1 Se 0303014 8102981 Bananas Used for land cover selection 

A3-53 1 Se 0303014 8102981 CitrusA3-53 Used for land cover selection 

      

A6-19 28 Au 0348018 8095217 Pasture Used for land cover selection 

A6-20 28 Au 0348444 8095295 Pasture Test point 

A6-21 28 Au 0349210 8095349 Pasture Used for land cover selection 

A6-23 28 Au 0349639 8096668 Pasture Used for land cover selection 

A6-24 28 Au 0349720 8097557 Pasture Test point 

A6-26 28 Au 0351598 8098636 Mature gallery forest Used for land cover selection 

A6-28 28 Au 0352774 8099704 Cropped and bare fields (cassava and 
corn) 

Used for land cover selection 

A6-29 28 Au 0349125 8097912 Pasture Used for land cover selection 

A6-30 28 Au 0348899 8098058 Pasture Used for land cover selection 

A6-32 28 Au 0349075 8100548 Forest Test point 

A6-32 28 Au 0349075 8100548 Cropped and bare field (corn and coca) Used for land cover selection 

A6-22 29 Au 0349543 8095652 Pasture Used for land cover selection 

South of Bulobulo 

      

A6-34  29 Au 0351892 8093830 Urban Used for land cover selection 

A6-35 29 Au 0351849 8093341 Pasture Used for land cover selection 
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A6-37 29 Au 0351566 8090066 Forest Used for land cover selection 

A6-38 29 Au 0350758 8088709 Pasture Used for land cover selection 

A6-40A 29 Au 0348685 8087375 Forest Used for land cover selection 

A6-1 29 Au 0348323 8087154 Forest Used for land cover selection 

A6-5 29 Au 0349668 8086744 Forest Used for land cover selection 

A6-6 29 Au 0349030 8086439 Forest Used for land cover selection 

A6-6 29 Au 0349030 8086439 Pasture Used for land cover selection 

A6-3 29 Au 0348605 8086504 Pasture Used for land cover selection 

A6-2 29 Au 0348179 8086852 Pasture Used for land cover selection 

A6-7 29 Au 0347783 8086919 Pasture Used for land cover selection 

West of Rio blanco 

A6-16 31 Au 0344217 8095416 Pasture Test point 

A6-13 31 Au 0346013 8097994 Pasture Used for land cover selection 

A6-10 31 Au 0346339 8099350 Cleared field, new pineapple Used for land cover selection 

A6-9 31 Au 0346412 8099843 Pasture Test point 

A6-13A 31 Au 0345958 8097612 Pasture Used for land cover selection 

      

A6-50 31 Au 0341059 8094104 Pasture Used for land cover selection 

Vueltadero A3 and linking roads (A7-6 to 14 

      

A7-6 02 Sep 0300908 8113477 Grass/ low regrowth Used for land cover selection 

A7-7 02 Sep 0299108 8111324 Citrus/grass/pasture/mix shrubs Used for land cover selection 

A7-8 02 Sep 0298461 8110083 Grass bare soil, pasture Used for land cover selection 

A7-9 02 Sep     

A7-10 02 Sep 0299983 8107312 Palmetto/ pasture Used for land cover selection 

A7-11 02 Sep 0300874 8106882 Palmitto / forest Used for land cover selection 

A7-12 02 Sep 0297703 8108458 Mix cropping/ palm Used for land cover selection 

A7-13 02 Sep 0299009 8107442 pasture Used for land cover selection 

A7-14 02 Sep 0297900 8107753 Pasture Used for land cover selection 

A7-15 02 Sep 0295245 8105485 Pasture Used for land cover selection 

A7-16 02 Sep  0293606 8104191 Pasture Used for land cover selection 

A7-18 02 Sep 0290030 8098272 Palmitto Used for land cover selection 

A7-19 02 Sep 0289249 8095529 Regrowth/ palmetto Used for land cover selection 

      

A8 Monte Sanai roads and A5 (A5-1 to A517 are in all electronic copy. 
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Appendix 3.3: Flow chart of the unsupervised classification in detail. 

 

 

 

 

From the above flow chart as given in the report, the images below is illustrative of 

how it was done in 2011 image. 

- By running the unsupervised classification of pre-processed image, 36 

unknown classes were obtained. 

- The ground control survey points were given in Appendix 3.2.  An example of 

a ground sample points would be A6-24 seen below for the points selected in 

Bulobulo. 
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- Those points were cross-referenced with its ground survey photo (looking East, 

West, and North & South) and survey sheet as show below. 

Point A6-24 

 

 

Photo looking east 

 

 

 

 

 

  

Photo looking west 
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Photo looking north 

 

 

Photo looking south 

 

- After verification, the renaming of classes according to its location and later the 

recoding is was done. That was done on every points given in appendix 3.2 
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Appendix 3.4: Land-cover points used for the accuracy assessment in the 2015 

classified image. 

 

 
Landcover points used for accuracy 
assessments    

IS Transect      

  Survey point cordinates  Landcover cordinates 

Names Date X Y Lancd over type X Y 

IS-56 26 Au 193593 8175339 Medium regrowth, slope pasture 193593 8175339 

IS-58 26 Au 194251 8173830 Pasture / Regrowth 194300 8173849 

IS-51 26 Au 199036 8165141 Pasture 200202 8165119 

IS-61 26 Au 211207 8156279 Pasture 209201 8157167 

IS-103 27 Au 215237 8162798 pasture 215208.33 8162798.48 
IS-103 27 Au 215237 8162798 Primary forest 215097 8162729 

IS-108 27 Au 206875 8171235 high regrowth 206882.74 8171393.56 

IS-108 27 Au 206875 8171235 Regrowth forest 207022.86 8171050.26 

IS-111 27 Au 202582 8176883 forest 202611.67 8177034.64 

IS-111 27 Au 202582 8176883 Primary forest 202293.84 8176772.98 

IS-113 27 Au 199032 8180584 pasture 198934.78 8180514.48 

IS-112 27 Au 199048 8180767 Pasture 198964.35 8180786.12 

IS-112 27 Au 199048 8180767 Football field 198923.35 8181115.23 

IS-116 27 Au 203985 8176089 Primary forest 203928.04 8176227.75 

IS-116 27 Au 203985 8176089 Primary forest 203877.18 8175980.16 

IS-117 27 Au 205013 8175307 Regrowth 204901.9 8175268.15 

IS-117 27 Au 205013 8175307 Medium regrowth 205139.7 8175464.43 

IS-28 28 Au 223238 8168682 Primary Forest 223261.87 8168714.94 

IS-28 28 Au 223238 8168682 Primary Forest 223518.31 8168478.42 

IS-28 28 Au 223238 8168682 Primary forest 223113.4 8168525.36 

IS-32 28 Au 223969 8166846 Regrowth 224097.15 8166841.69 

IS-32 28 Au 223969 8166846 Regrowth 223950.64 8167054.49 

IS-32 28 Au 223969 8166846 Secondary regrowth forest 
223827.57 8167015.73 

IS-34 28 Au 223405 8165802 forest 
223660.06 8165739.81 

IS-34 28 Au 223405 8165802 forest 
223483.62 8165698.03 

IS-34 28 Au 223405 8165802 Regrowth 
223289.57 8165835.16 

IS-36 28 Au 224009 8164520 Forest 223909.74 8164519.39 

IS-36 28 Au 224009 8164520 Regrowth / Forest 224091.37 8164575.93 

IS-38 28 Au 223614 8163608 Regrowth 223853 8163626.89 

IS-38 28 Au 223614 8163608 Regrowth 223388.46 8163797.14 

IS-40 28 Au 222998 8162901 forest 222658.57 8162285.98 

IS-40 28 Au 222998 8162901 Regrowth 222358.26 8162706.56 

IS-43 28 Au 219916 8160665 Regrowth 219741.69 8160800.09 

IS-43 28 Au 219916 8160665 Forest 219868.89 8160834.2 

IS-43 28 Au 219916 8160665 high regrowth 220110.6 8160556.49 

       
A1 
Transec
t       
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A1-40 24-Sep 268576 8133736 Medium regrowth 268646.22 8133717.71 

A1-40 24-Sep 268576 8133736 Medium regrowth 268519.78 8133691.28 

A1-41 24-Sep 269860 8133044 pasture 269816.18 8132994.59 

A1-41 24-Sep 269860 8133044 Medium regrowth 269621.64 8132980.23 

A1-41 24-Sep 269860 8133044 High Regrowth 269714.02 8133186.76 

A1-41 24-Sep 269860 8133044 low-high regrowth 269952.57 8132994.65 

A1-42 24-Sep 269047 8133025 regrowth 269030.93 8133072.29 

A1-42 24-Sep 269047 8133025 mix regrowth 269231.69 8133125.13 

A1-42 24-Sep 269047 8133025 low-medium regrowth 269164.68 8132949.05 

A1-43 24-Sep 270595 8133062 Pasture 270788.43 8133197.66 

A1-43 24-Sep 270595 8133062 Medium regrowth 270930.34 8133207.35 

A1-43 24-Sep 270595 8133062 fish pond 271066.41 8132986.96 

A1-45 24-Sep 275714 8134612 Citrus(overgrown) 275651.33 8134639.25 

A1-45 24-Sep 275714 8134612 Banana and regrowth 275823.83 8134621.73 

A1-45 24-Sep 275714 8134612 citrus and regrowth 275712.48 8134505.58 

A1-45A 25-Sep 276188 8134578 Grassland 276221.51 8134696.65 

A1-45A 25-Sep 276188 8134578 Grassland 276119.82 8134671.06 

A1-45A 25-Sep 276188 8134578 Citrus 276147.01 8134545.77 

A1-46 25-Sep 275647 8135155 High Regrowth 275589.51 8135194.8 

A1-46 25-Sep 275647 8135155 low-medium regrowth 275736.31 8135108.35 

A1-46 25-Sep 275647 8135155 regrowth 275719.68 8135128.79 

A1-48 25-Sep 276032 8133536 Banana 275955.57 8133534.13 

A1-48 25-Sep 276032 8133536 Medium regrowth 276052.1 8133459.46 

A1-48 25-Sep 276032 8133536 citrus 276023.56 8133626.27 

A1-48 25-Sep 276032 8133536 citrus & banana 276109.3 8133544.21 

A1-49 25-Sep 274626 8133358 Banana 274658.31 8133302.29 

A1-50 25-Sep 274438 8133118 Pasture 274345.37 8133123.24 

A1-50 25-Sep 274438 8133118 Medium regrowth 274293.55 8133068.93 

A1-50 25-Sep 274438 8133118 Medium regrowth 274440.77 8132951.22 

A1-51 25-Sep 274203 8133064 Medium regrowth 274290.58 8133065.67 

A1-51 25-Sep 274203 8133064 Pasture 274090.01 8133197.6 

A1-51 25-Sep 274203 8133064 Medium regrowth 274091.99 8133089.57 

A1-52 25-Sep 273675 8133315 gallery forest 273805.38 8133229.91 

A1-52 25-Sep 273675 8133315 Pasture 273628.89 8133264.97 

A1-52 25-Sep 273675 8133315 pasture 273832.76 8133390.55 

A1-52 25-Sep 273675 8133315 forest 273652.49 8133388.05 

A1-54 25-Sep 271377 8133076 regrowth 271381.42 8133015.18 

A1-54 25-Sep 271377 8133076 low-medium regrowth 271388.44 8133168.4 

A1-59 25-Sep 274480 8131739 gallery forest 274407.14 8131771.11 

A1-59 25-Sep 274480 8131739 gallery forest 274544.39 8131681.3 

A1-60 25-Sep 275050 8131685 Banana 274963.11 8131763.23 

A1-60 25-Sep 275050 8131685 Banana 275007.7 8131613.67 

A1-60 25-Sep 275050 8131685 High Regrowth 274942.66 8131601.65 

A1-61 25-Sep 275232 8131399 Regrowth 275235.04 8131540.84 

A1-61 25-Sep 275232 8131399 Banana and regrowth 275313.33 8131519.79 

A1-61 25-Sep 275232 8131399 pasture 275327.06 8131627.34 
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A1-62 25-Sep 275398 8131000 Medium Regrowth 275365.36 8131017.32 

A1-62A 25-Sep 275475 8030756 Banana and regrowth 275439.43 8130772.76 

A1-62A 25-Sep 275475 8030756 Banana 275478 8130699.68 

A1-62B 25-Sep 274183 8129279 Pasture 274190.86 8129260.59 

A1-62B 25-Sep 274183 8129279 pasture 274128.28 8129072.38 

A1-62B 25-Sep 274183 8129279 medium regrowth 274080.04 8129264.57 

A1-63 25-Sep 271380 8127805 Football field 271441.01 8127738.54 

A1-63 25-Sep 271380 8127805 pasture 271125.92 8127778.78 

A1-63 25-Sep 271380 8127805 Urban bare soil 271416.21 8128170.98 

A1-64 25-Sep 273494 8128343 Pasture 273511.75 8128229.65 

A1-64 25-Sep 273494 8128343 Medium regrowth 273650.23 8128398.5 

A1-64 25-Sep 273494 8128343 forest 273639.94 8128577.79 

A1-66 25-Sep 271401 8127031 pasture 271127.8 8126993.67 

A1-66 25-Sep 271401 8127031 pasture 271459.92 8127022.67 

A1-66 25-Sep 271401 8127031 Regrowth 271496.36 8127014.22 

A1-67 25-Sep 273876 8128827 Citrus 273828.4 8128845.87 

A1-67 25-Sep 273876 8128827 citrus and regrowth 273936.3 8128788.31 

A1-69 25-Sep 271428 8125625 Pasture 271329.33 8125656.6 

A1-69 25-Sep 271428 8125625 pasture 271513.38 8125448.1 

A1-70 25-Sep 271004 8119632 Urban 271004 8119632 

A1-73 25-Sep 271877 8128314 Medium regrowth 271816.14 8128407.23 

A1-73 25-Sep 271877 8128314 Medium regrowth 271700.73 8128260.73 

A1-75 25-Sep 272816 8128305 Medium regrowth 272804.06 8128267.58 

A1-75 25-Sep 272816 8128305 pasture 272767.27 8128459.39 

A1-75 25-Sep 272816 8128305 pasture 272616.74 8128181.16 

       

A2 Transect      

A2-16 25-Sep 292648 8117920 pasture 292743.87 8117886.98 

A2-16 25-Sep 292648 8117920 football field 292598.11 8117804.72 

A2-16 25-Sep 292648 8117920 pasture 292576.11 8117938.89 

A2-17 25-Sep 292665 8118615 pasture 292665 8118615 

A2-17 25-Sep 292665 8118615 pasture 292672.19 8118480.5 

A2-17 25-Sep 292665 8118615 pasture 292561.89 8118562.97 

A2-18 25-Sep 292592 8120166 Low regrowth 292508.41 8120148.64 

A2-18 25-Sep 292592 8120166 Low regrowth 292570.97 8120180.74 

A2-20 25-Sep 292390 8122159 Old pamitto and low regrowth 292361.93 8122161.81 

A2-20 25-Sep 292390 8122159 Old pamitto and low regrowth 292434.37 8122158.7 

A2-21 25-Sep 292372 8122364 Medium regrowth 292402.34 8122372.45 

A2-21 25-Sep 292372 8122364 pasture 292327.23 8122402.7 

A2-21 25-Sep 292372 8122364 Medium regrowth 292344.99 8122336.67 

A2-22 25-Sep 292114 8123299 Medium regrowth 292151.32 8123330.96 

A2-22 25-Sep 292114 8123299  Medium -High regrowth 292081.06 8123263.76 

A2-23 25-Sep 291868 8123638 Water logged grassland 291824.27 8123624.63 

A2-23 25-Sep 291868 8123638 medium regrowth 291792.98 8123706.19 

A2-23 25-Sep 291868 8123638 medium regrowth 291935.43 8123625.29 

A2-24 25-Sep 292498 8121126 Citrus 292517.31 8121139.63 
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A2-24 25-Sep 292498 8121126 Pasture 292468.53 8121189.48 

A2-24 25-Sep 292498 8121126 Medium regrowth 292474.08 8121095.92 

A2-25 25-Sep 293068 8121148 Medium regrowth 293065.03 8121194.02 

A2-25 25-Sep 293068 8121148 High regrowth 293064.92 8121102.98 

A2-26 25-Sep 293478 8121894 Medium regrowth 293446.63 8121896.33 

A2-26 25-Sep 293478 8121894 Medium regrowth 293502.19 8121855.52 

A2-27 25-Sep 293372 8121170 Medium regrowth 293372.42 8121200.64 

A2-27 25-Sep 293372 8121170 Medium regrowth 293375.75 8121144.54 

A2-28 25-Sep 292861 8118840 Pasture 292860.17 8118876.57 

A2-28 25-Sep 292861 8118840 Pasture 292894.22 8118806.89 

A2-29 25-Sep 293559 8118853 pasture 293553.56 8118883.13 

       

A3- Transect      

A3-48 1-Sep 301730 8101091 med-high regrowth 301695.32 8101018.63 

A3-48 1-Sep 301730 8101091 med-high regrowth 301544.36 8101142.46 

A3-49 1-Sep 302191 8101501 banana 301958 8101765 

A3-49 1-Sep 302191 8101501 banana 302260.76 8101403.96 

A3-50 1-Sep 302522 8101941 pasture 302472 8101983 

A3-50 1-Sep 302522 8101941 banana 302370.98 8102249.26 

A3-50 1-Sep 302522 8101941 banana 302859.46 8101861.91 

A3-50 1-Sep 302522 8101941 Banana 302593.3 8101984.31 

A3-55 1-Sep 303703 8104306 Banana 303741.53 8104332.73 

A3-55 1-Sep 303703 8104306 banana 303861.3 8104279.23 

A3-55 1-Sep 303703 8104306 banana 303529.21 8104118.51 

A3-55 1-Sep 303703 8104306 banana 303448.64 8104312.89 

A3-53 1-Sep 303014 8102981 Banana 303017.37 8102930.75 

A3-53 1-Sep 303014 8102981 banana 303362.99 8103026.53 

A3-53 1-Sep 303014 8102981 banana 302815.22 8103367.47 

A3-53 1-Sep 303014 8102981 Citrus and forest 302864.25 8102941.76 

A3-54 1-Sep 303509 8103766 banana 303371.79 8103871.1 

A3-54 1-Sep 303509 8103766 banana 303817.15 8103705.52 

A3-54 1-Sep 303509 8103766 banana 303132.19 8104071.05 

A3-54 1-Sep 303509 8103766 banana 303651.89 8103567.5 

A3-20 1-Sep 300942 8100126 Pasture 300891.78 8100162.66 

A3-20 1-Sep 300942 8100126 Urban 301100.59 8100311.14 

A3-20 1-Sep 300942 8100126 Football field/baresoil 300948.21 8100052.71 

A3-21 1-Sep 300566 8099618 Pasture 300612.3 8099568.36 

A3-21 1-Sep 300566 8099618 forest 300482.65 8099655.45 

A3-21 1-Sep 300566 8099618 pasture 300837.01 8099602.61 

A3-24 1-Sep 298591 8096918 Palmitto 298591 8096918 

A3-24 1-Sep 298591 8096918 med-high regrowth 298509.21 8096985.73 

A3-25 1-Sep 298310 8096594 Citrus 298310 8096593.94 

A3-25 1-Sep 298310 8096594 forest 298315.22 8096742.55 

A3-25 1-Sep 298310 8096594 pasture 298223.36 8096309.38 

A3-27 1-Sep 299168 8095826 palmitto 299336.33 8095696.1 

A3-28 1-Sep 299651 8095271 Palmitto 299651 8095271 
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A3-29 1-Sep 300446 8094355 Palmitto 300287.31 8094216.92 

A3-29 1-Sep 300446 8094355 Forest 300430.28 8093950.31 

A3-32 1-Sep 297046 8099555 Citrus 297045.65 8099554.8 

A3-33 1-Sep 296963 8099729 Citrus 296862.92 8099865.76 

A3-35 1-Sep 296013 8100643 regrowth 295920.74 8100676.47 

A3-35 1-Sep 296013 8100643 low regrowth 296024.34 8100719.99 

A3-36 1-Sep 295440 8101187 citrus 295457.7 8101210 

A3-36 1-Sep 295440 8101187 shrubs 295413.06 8101158.33 

A3-39 1-Sep 291396 8099954 regrowth 291295.3 8099754.03 

A3-40 1-Sep 291496 8099486 pasture 291506.33 8099630.77 

A3-41 1-Sep 291849 8099114 pasture 291814.17 8099122.68 

A3-41 1-Sep 291849 8099114 shrubs and trees 291846.72 8099232.03 

A3-43 1-Sep 294881 8096089 regrowth 294888.59 8096029.89 

A3-43 1-Sep 294881 8096089 forest regrowth 294953.05 8096084.67 

A3-44 1-Sep 294674 8096301 forest 294584.38 8096337.82 

A3-44 1-Sep 294674 8096301 forest 294677.54 8096374.48 

A3-47 1-Sep 292488 8098463 forest 292499.34 8098402.84 

A3-47 1-Sep 292488 8098463 Forest 292609.15 8098466.77 

       

A4 
Transec
t       

A4-9 2-Sep 305036 8118246 Forest/Regrowth 305234.32 8118348.24 

A4-9 2-Sep 305036 8118246 Young citrus 305116.62 8118209.65 

A4-8 2-Sep 305791.79 8126998.08 med-high regrowth 305355.62 8126976.26 

A4-8 2-Sep 305791.79 8126998.08 Forest/Regrowth 305720.13 8126870.26 

A4-5 2-Sep 306273 8135007 Pasture 306450.22 8134873.35 

A4-5 2-Sep 306273 8135007 Forest/Regrowth 305904.4 8135231.14 

A4-2 2-Sep 308941 8137378 football field 308731.71 8137350.21 

A4-2 2-Sep 308941 8137378 Urban 308941 8137378 

A4-1 2-Sep 309035 8137425 sand 309035 8137425 

A4-1 2-Sep 309035 8137425 river 309099.86 8137427.03 

A4-1 2-Sep 309035 8137425 Forest 309440.37 8137288.89 

       

A5 Transect      

A5-18 30-Aug 330099 8110343 pasture 330061.63 8110313.18 

A5-18 30-Aug 330099 8110343 forest 330169.1 8110584.14 

A5-19 30-Aug 329643 8110099 forest 329529.83 8110121.65 

A5-19 30-Aug 329643 8110099 forest 329766.6 8109998.38 

A5-20 30-Aug 329058 8109527 forest 328992.8 8109494.3 

A5-20 30-Aug 329058 8109527 forest 329073.96 8109611.31 

A5-21 30-Aug 328533.45 8109520.95 Forest 328512.52 8109601.02 

A5-21 30-Aug 328533.45 8109520.95 Forest 328562.44 8109470.96 

A5-27 30-Aug 320187 8104914 Citrus 320125.59 8104905.33 

A5-27 30-Aug 320187 8104914 maize 320182.41 8104849.72 

A5-27 30-Aug 320187 8104914 medium regrowth 320242.65 8104991.52 

A5-28 30-Aug 321262.57 8104110.65 Urban 321275.9 8104140.14 
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A5-28 30-Aug 321262.57 8104110.65 baresoil 321320.91 8104067.76 

A5-29 30-Aug 320199 8105140 citrus 320191.9 8105114.77 

A5-29 30-Aug 320199 8105140 medium regrowth 320273.37 8105130.22 

A5-31 30-Aug 321830 8105142 medium regrowth 321894.39 8105217.04 

A5-31 30-Aug 321830 8105142 medium regrowth 321827.87 8105248.86 

A5-31 30-Aug 321830 8105142 medium regrowth 321861.32 8105099.13 

A5-32 30-Aug 322013 8105547 medium regrowth 322055.28 8105543.15 

A5-32 30-Aug 322013 8105547 
medium regrowth(abandon 
pasture) 321991.9 8105578.65 

A5-33 30-Aug 322335 8106273 medium to high regrowth 322296.43 8106298.29 

A5-55 30-Aug 322100 8107147 medium regrowth 322136.82 8107172.99 

A5-55 30-Aug 322100 8107147 pasture 322037.39 8107137.65 

A5-36 30-Aug 321761 8108076 forest 321820.21 8108057.86 

A5-36 30-Aug 321761 8108076 forest 321720 8107916.92 

A5-36 30-Aug 321761 8108076 forest 321628.01 8107936.09 

A5-37 30-Aug 322051 8108583 medium regrowth 322049.87 8108653.38 

A5-37 30-Aug 322051 8108583 forest 322078.83 8108559.36 

A5-58 30-Aug 321892 8108781 regrowth 321916.36 8108805.81 

A5-58 30-Aug 321892 8108781 pasture 321891.31 8108763.26 

A5-59 30-Aug 321208 8109286 forest 321187.29 8109130.83 

A5-59 30-Aug 321208 8109286 pasture 321225.41 8109313.98 

A5-60 30-Aug 321175 8110165 pasture 321108.54 8110177.62 

A5-60 30-Aug 321175 8110165 pasture 321236.33 8110112.52 

A5-60A 30-Aug 321190 8111120 medium regrowth 321216.17 8111100.13 

A5-60A 30-Aug 321190 8111120 pasture 321131.52 8111081.67 

A5-62 30-Aug 321262.62 8112184.38 medium to high regrowth 321262.62 8112184.38 

A5-62 30-Aug 321262.62 8112184.38 medium to high regrowth 321330.42 8112192.54 

A5-61 30-Aug 321291.26 8112282.89 forest 321219.93 8112250.93 

A5-63 30-Aug 321293.66 8112431.5 forest 321332.44 8112434.88 

A5-63 30-Aug 321293.66 8112431.5 forest 321268.73 8112417.13 

A5-64 30-Aug 321178 8114159 Medium regrowth 321139.12 8114193.51 

A5-64 30-Aug 321178 8114159 low regrowth 321132.13 8114125.78 

A5-64 30-Aug 321178 8114159 medium regrowth 321221.87 8114170.76 

A5-65 30-Aug 321361 8114864 low to medium regrowth 321382.66 8114861.2 

A5-65 30-Aug 321361 8114864 low to medium regrowth 321328.73 8114859.08 

A5-66 30-Aug 321353 8115605 forest 321399.87 8115599.79 

A5-66 30-Aug 321353 8115605 forest 321324.28 8115648.96 

A5-66 30-Aug 321353 8115605 forest 321319.49 8115577.39 

A5-66 30-Aug 321353 8115605 citrus 321387.97 8115507.86 

A5-67 30-Aug 321330 8114645 medium regrowth 321370.31 8114637.1 

A5-67 30-Aug 321330 8114645 medium regrowth 321279.68 8114637.47 

A5-68 30-Aug 321983 8113521 medium to high regrowth 321944.31 8113525.79 

A5-68 30-Aug 321983 8113521 medium regrowth 322026.86 8113555.7 

A5-69 30-Aug 322195 8113320 baresoil 322256.63 8113369.97 

A5-70 30-Aug 322479 8113085 forest 322501.98 8113119.8 

A5-70 30-Aug 322479 8113085 forest 322451.06 8113073.68 

A5-71 30-Aug 322825 8112832 gallery forest 322988.82 8112791 
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A5-71 30-Aug 322825 8112832 gallery forest 322896.58 8112732.72 

A5-71 30-Aug 322825 8112832 grass 322885.55 8112796.81 

A5-72 30-Aug 323404 8112139  medium to high regrowth 323350.79 8112165.71 

A5-72 30-Aug 323404 8112139 medium to high regrowth 323407.16 8112084.27 

A5-72 30-Aug 323404 8112139 forest 323465.48 8112161.11 

A5-73 30-Aug 324510 8111685 gallery forest 324651.65 8111678.25 

A5-73 30-Aug 324510 8111685 school 324593.38 8111709.86 

A5-73 30-Aug 324510 8111685 forest 324642.36 8111578.79 

A5-73 30-Aug 324510 8111685 forest 324512.41 8111645.36 

A5-75 30-Aug 326406 8110666 forest 326443.34 8110702.04 

A5-75 30-Aug 326406 8110666 forest 326371.01 8110676.27 

A5-75 30-Aug 326406 8110666 forest 326442.44 8110609.61 

A5-76 30-Aug 325345 8111130 forest 325229.63 8111175.5 

A5-76 30-Aug 325345 8111130 bare soil 325392.1 8111218.89 

A5-76 30-Aug 325345 8111130 bare soil 325315.52 8111268.51 

A5-77 30-Aug 327565 8109712 helipad/baresoil 327586.85 8109776.34 

A5-77 30-Aug 327565 8109712 forest 327592.1 8109831.14 

A5-77 30-Aug 327565 8109712 forest 327500.71 8109765.82 

       

A6 Transect      

A6-55 31-Aug 33892 8086652 Pasture 338932.7 8086673.7 

A6-55 31-Aug 33892 8086652 forest 338903.1 8086623.21 

A6-54 31-Aug 339297 8086380 Medium regrowth 339281 8086374 

A6-54 31-Aug 339297 8086380 Forest 339195.42 8086458.41 

A6-57 31-Aug 339928 8090867 Medium regrowth 340015.68 8090790.81 

A6-57 31-Aug 339928 8090867 low regrowth/grassland 340045.29 8090856.01 

A6-56 31-Aug 338437 8086980 Pasture 338376.41 8086910.04 

A6-56 31-Aug 338437 8086980 Pasture 338579.51 8086936.99 

A6-62 31-Aug 341342 8094331 Palmitto 341318.26 8094388.49 

A6-62 31-Aug 341342 8094331 Pasture 341536.4 8094391.91 

A6-53 31-Aug 340401 8085087 Forest 340490.62 8085057.16 

A6-53 31-Aug 340401 8085087 Forest 340363.14 8085250.69 

A6-50 31-Aug 341055.09 8094071.63 Pasture 341055.09 8094071.63 

A6-50 31-Aug 341070.65 8094214.92 palmitto 341070.65 8094214.92 

A6-51 31-Aug 339752 8083570 water 339636.57 8083681.07 

A6-51 31-Aug 339752 8083570 Forest 339820.16 8083557.17 

A6-52 31-Aug 339520 8083180 Sand 339520 8083181 

A6-52 31-Aug 339520 8083180 water 339493.1 8083306.74 

A6-52 31-Aug 339520 8083180 forest 339357.03 8083679.54 

A6-52 31-Aug 339520 8083180 forest 339419.46 8083017.3 

A6-58 31-Aug 343063 8095572 pasture 343016.75 8095473.09 

A6-59 31-Aug 342996 8095207 Pasture 342992.33 8095292 

A6-59 31-Aug 342996 8095207 woodland/forest 343044.22 8095193.77 

A6-60 31-Aug 342714 8093677 Pasture 342698.17 8093713.23 

A6-61 31-Aug 341880 8094082 pasture 341948 8094130.98 

A6-61 31-Aug 341880 8094082 citrus 341963.59 8093968.56 
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A6-61 31-Aug 341880 8094082 Forest 342105.75 8094045.01 

       

A8 Transect      

A8-2 28-Aug 228300 8160584 med-high regrowth 228273.5 8160757.52 

A8-2 28-Aug 228300 8160584 med-high regrowth 228298.36 8160327.85 

A8-4 28-Aug 229033 8162087 medium regrowth  229406.53 8161924.78 

A8-4 28-Aug 229033 8162087 medium regrowth  228650.82 8161408.72 

A8-5 28-Aug 229780 8163092 forest 229703.83 8163300.15 

A8-5 28-Aug 229780 8163092 forest 229870.93 8162874.15 

A8-6 28-Aug 232237 8167117 medium regrowth  232047.51 8167192.8 

A8-6 28-Aug 232237 8167117 medium regrowth  232468.06 8166996.21 

A8-7 28-Aug 233356 8169029 forest 233686.52 8169313.74 

A8-7 28-Aug 233356 8169029 medium regrowth 233068.53 8169060.03 

A8-7 28-Aug 233356 8169029 pasture 233365.58 8168662.41 
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Appendix 4. 1: Forest and Non-forest cover for individual land parcels in the 

respective Communities in the study corresponding to their forest and non-

forest maps. 

Community I- Land Parcels with forest and non-forest cover including its FID 

  2011   2015   2016   

FID_ 
Forest 

(ha) 
Non-forest 

(ha) 
Water 
(ha) 

Forest 
(ha) 

Non-forest 
(ha) 

Water 
(ha) 

Forest 
(ha) 

Non-forest 
(ha) 

Water 
(ha) 

Total area 
(ha) 

0 8.28 4.77 0 7.245 5.67 0 7.29 5.76 0 13.1503 

1 3.24 9.72 0 6.3225 6.6375 0 5.49 7.47 0 13.1006 

2 1.44 11.7 0 7.56 5.6925 0 6.84 6.3 0 13.3121 

3 1.17 11.97 0 3.105 10.26 0 1.62 11.52 0 13.1651 

4 1.62 11.16 0 4.8825 7.6725 0 8.55 4.23 0 12.9502 

5 2.25 12.24 0 7.8075 6.7725 0 4.86 9.63 0 14.3139 

6 4.23 12.33 0 4.7475 11.4975 0 4.77 11.79 0 16.4821 

7 7.92 9.72 0 9.405 8.055 0.0225 10.98 6.66 0 17.712 

9 6.39 13.59 0 7.9875 12.195 0 4.5 15.48 0 20.3817 

10 10.17 10.26 0 6.885 13.545 0 4.68 15.75 0 20.3486 

11 8.19 12.24 0 11.25 9.045 0 15.57 4.86 0 20.175 

12 11.88 8.01 0 12.105 8.2125 0 14.67 5.22 0 20.3415 

13 9.81 10.17 0 10.8675 9.1575 0 14.67 5.31 0 20.1152 

14 12.96 7.38 0 11.655 8.6625 0 18.99 1.35 0 20.2447 

15 4.95 10.89 0 5.625 9.855 0 6.93 8.91 0 15.8143 

16 8.91 11.52 0 12.0825 8.2575 0 13.32 7.11 0 20.5338 

17 16.2 3.15 0 13.725 6.48 0.045 18.45 0.81 0.09 20.197 

18 4.68 15.57 0 6.1875 14.58 0 6.84 13.41 0 20.4115 

19 5.22 7.29 0 6.345 5.5125 0 10.26 2.25 0 12.1104 

20 12.24 9.18 0 13.14 8.19 0 17.01 4.41 0 21.248 

21 14.58 6.03 0 10.3275 10.2375 0 13.05 7.56 0 20.4621 

22 5.58 14.31 0 9.7875 10.395 0 11.88 8.01 0 20.1593 

23 15.03 5.94 0 12.915 7.6725 0 18.27 2.7 0 20.4814 

24 12.06 8.73 0 10.6425 9.945 0.09 11.97 8.82 0 20.5559 

26 5.76 14.67 0 11.475 8.505 0 16.2 4.23 0 20.2171 

27 9.81 10.98 0 9.495 10.89 0.1125 13.14 7.65 0 20.4714 

28 6.93 13.5 0 9.6525 10.485 0.27 12.87 7.38 0.18 20.4384 

29 10.17 9.81 0 11.295 8.775 0.3825 18.54 0.9 0.54 20.4845 

30 6.93 14.04 0 10.8675 9.3375 0 14.76 6.21 0 20.324 

31 9.36 10.8 0 8.7525 11.655 0 10.71 9.45 0 20.4508 

33 9.63 10.53 0 11.8575 8.7525 0 13.14 7.02 0 20.5348 

34 14.31 6.48 0 11.9025 8.595 0 18.27 2.52 0 20.4036 

35 7.2 12.78 0 10.9575 9.27 0 16.83 3.15 0 20.3869 

36 8.64 12.33 0 12.0375 8.7075 0 15.03 5.94 0 20.7955 

37 12.24 6.66 0.99 10.2375 8.7075 0.9675 14.04 4.86 0.99 20.1295 

38 12.78 6.3 0.99 9.5175 8.7975 1.7325 12.51 6.3 1.26 20.1479 

39 7.38 13.41 0 7.92 12.6675 0 10.08 10.71 0 20.4876 

40 13.14 7.29 0 9.7875 9.3375 0.945 16.29 3.24 0.9 20.183 

41 7.2 13.59 0 9.4275 10.935 0 14.13 6.66 0 20.461 
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42 13.59 7.2 0 11.745 8.8875 0 15.3 5.49 0 20.5055 

43 7.65 12.51 0 9.7425 10.71 0 12.6 7.56 0 20.5099 

44 10.08 10.8 0 10.3725 10.26 0.0225 14.94 5.94 0 20.5826 

45 5.67 14.31 0 7.74 12.7575 0 7.29 12.69 0 20.5408 

46 12.69 8.01 0 10.665 10.035 0 12.24 8.46 0 20.6216 

47 11.25 8.64 0 12.7125 7.74 0 17.28 2.61 0 20.4594 

48 14.13 6.21 0 10.44 8.505 0.0225 12.33 8.01 0 19.0909 

49 14.4 4.59 0 12.8925 6.93 0 17.73 1.26 0 19.7637 

52 12.51 8.01 0 10.4625 9.4275 0.045 12.51 8.01 0 20.0753 

53 15.03 5.22 0 12.285 8.19 0.0675 15.39 4.86 0 20.1916 

54 10.98 9 0 10.3275 9.3375 0.5175 13.68 6.03 0.27 20.0126 

55 12.96 6.48 0 11.4975 8.1225 0.36 15.57 3.87 0 20.1317 

56 9.18 10.26 0 10.8225 8.685 0.405 13.41 5.49 0.54 20.0697 

57 16.11 3.33 0 13.4325 6.3225 0.2475 16.92 2.25 0.27 20.1532 

58 16.83 3.15 0 15.0075 4.995 0.045 18.09 1.89 0 20.0055 

59 11.52 8.46 0 14.0175 6.3675 0 16.92 3.06 0 20.0443 

60 10.71 9.81 0 10.62 9.8775 0.0225 13.86 6.66 0 20.4515 

61 15.57 4.86 0 14.58 5.6025 0 16.92 3.51 0 20.0801 

62 13.86 6.57 0 13.8825 5.985 0 18.27 2.16 0 20.0182 

63 12.6 7.74 0 12.7575 7.065 0.045 16.2 4.14 0 19.9963 

64 7.2 4.86 0 7.8075 4.1175 0 8.55 3.51 0 12.0809 

65 10.44 2.88 0 8.0775 4.0725 0 9.45 3.87 0 12.0366 

66 8.82 2.43 0 7.7625 4.4775 0 8.91 2.34 0 12.2232 

67 7.65 4.23 0 7.695 4.2975 0.0225 8.46 3.42 0 12.0339 

68 8.01 4.95 0 8.2125 4.3425 0 9.36 3.6 0 12.2013 

69 7.83 13.23 0 7.5375 13.0725 0 7.29 13.77 0 20.4848 

70 11.7 9.36 0 7.155 14.0625 0.2025 5.58 15.48 0 21.353 

71 12.33 8.46 0 12.015 8.55 0 15.12 5.67 0 20.4539 

72 9.81 10.98 0 9.5625 11.0925 0 12.69 8.1 0 20.5225 

74 13.77 7.02 0 12.8925 8.4375 0 16.56 4.23 0 21.1884 

75 7.56 12.87 0 8.4375 11.925 0 4.14 16.29 0 20.4074 

76 7.56 12.24 0 8.55 11.88 0.0225 11.34 8.46 0 20.4738 

77 4.32 15.93 0 6.9975 13.32 0.135 5.76 14.4 0.09 20.4956 

78 7.11 13.32 0 9.5625 11.0025 0.0225 9.54 10.89 0 20.6255 

80 8.19 12.42 0 10.62 9.8325 0 8.64 11.97 0 20.5702 

81 8.55 12.24 0 8.1225 12.2625 0 5.04 15.75 0 20.406 

82 6.3 13.23 0 9.09 10.53 0 12.33 7.2 0 19.6522 

83 8.64 12.6 0 9.3375 10.8675 0.045 6.12 15.03 0.09 20.3282 

84 7.38 12.15 0 10.125 9.405 0 13.95 5.58 0 19.3109 

85 5.58 13.95 0 9.225 10.7325 0 11.16 8.37 0 19.8971 

86 11.79 8.73 0 11.52 8.3925 0 16.2 4.32 0 20.0808 

87 14.13 6.57 0 10.0125 10.0125 0.1125 11.43 9.27 0 20.2219 

88 9.72 10.08 0 10.485 9.6075 0 7.56 12.24 0 19.9973 

89 15.39 4.05 0 13.095 7.3125 0 16.83 2.61 0 20.1543 

90 9.99 9.54 0 12.105 8.0775 0 15.03 4.5 0 20.0546 

92 16.65 4.05 0 11.1825 8.0325 0.0675 13.95 6.75 0 20.136 
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93 16.56 3.15 0 13.3875 6.5025 0.0675 17.37 2.34 0 19.9469 

94 11.88 7.83 0 11.61 8.055 0.225 14.4 5.31 0 20.0021 

95 12.06 7.38 0 13.1175 6.795 0.2025 14.31 5.13 0 20.0824 

96 16.38 3.6 0 13.8825 6.1875 0.09 15.75 4.14 0.09 20.0154 

97 9.99 9.99 0 11.925 8.145 0.045 13.5 6.48 0 19.9543 

98 6.57 5.67 0 6.39 5.67 0.045 8.1 4.14 0 12.0457 

99 8.82 2.25 0 7.9875 4.095 0.0225 10.26 0.81 0 12.1114 

100 10.44 2.88 0 8.3925 3.5775 0 12.42 0.9 0 12.1343 

101 10.62 1.62 0 9.18 2.9475 0 12.15 0.09 0 12.0513 

102 8.01 3.24 0 9.495 2.61 0 10.62 0.63 0 12.1657 

           

         Average(ha) 18.79 

         Min (ha) 12.03 

         Max (ha) 21.35 

         Std Dev 3.02 

 

 

Community II- Land Parcels with forest and non-forest cover including its FID 

   2011     2015     2016    

FID_ 
Forest 

(ha) 
Non-forest 

(ha) 
Water 
(ha) Forest (ha) 

Non-forest 
(ha) 

Water 
(ha) 

Forest 
(ha) 

Non-forest 
(ha) 

Water 
(ha) 

Total area 
(ha) 

0 5.04 19.35 1.71 6.075 16.9875 3.195 7.02 17.55 1.53 26.0953 

1 8.55 16.47 0 7.7625 16.5825 0.6075 11.07 13.5 0.45 24.7171 

2 21.33 4.59 0 11.88 14.6925 0.4275 24.57 1.35 0 26.8728 

3 18.99 10.26 0.36 11.88 16.2225 0.7875 17.64 11.88 0.09 28.7193 

4 10.26 14.76 0 7.0875 17.775 0.2025 10.08 14.94 0 24.9471 

5 12.33 18.81 0 8.1 23.7375 0.4725 13.32 17.82 0 32.0975 

6 6.03 14.58 0 5.4 15.3 0.045 10.62 9.99 0 20.676 

7 18.99 30.69 1.35 10.5525 38.8125 1.6425 13.05 36.9 1.08 50.7597 

8 8.55 16.92 0 8.4825 17.3925 0.1575 15.75 9.72 0 25.8429 

9 20.16 6.57 0 11.2275 14.8275 0.585 20.7 6.03 0 26.5517 

10 30.51 20.34 0 17.55 32.5125 0.945 23.13 27.54 0.18 50.7136 

11 14.13 12.15 0.72 10.1475 16.2675 1.1475 14.67 11.88 0.45 27.372 

12 37.26 12.24 0.54 18.8775 30.915 0.5175 19.98 29.97 0.09 49.9901 

13 9 18.45 0.9 6.4575 20.4975 1.2375 19.08 8.91 0.36 28.0671 

14 36.54 13.95 0 15.9525 32.4 1.935 40.23 10.17 0.09 50.0447 

15 12.42 15.57 0.45 6.7275 21.5775 0.7425 23.31 5.04 0.09 28.8214 

16 6.66 22.86 0 5.5125 23.805 0.3375 25.29 4.23 0 29.5499 

17 42.75 7.47 0 26.0775 23.85 1.035 42.75 7.47 0 50.6191 

18 9.09 21.15 0 4.2975 26.235 0.09 22.32 7.92 0 30.3968 

19 18.18 32.85 0 17.505 33.345 0.2025 20.97 30.06 0 50.7858 

20 15.93 15.03 0 10.4175 20.8575 0.045 25.11 5.85 0 31.1 

21 29.07 21.69 0 16.875 32.895 1.1475 25.56 25.2 0 50.6204 

22 9.9 21.06 0.18 8.2575 22.8375 0.27 18.81 12.33 0 31.2298 

23 30.42 20.07 0 19.62 29.8125 1.485 28.35 22.14 0 50.599 

24 14.13 15.39 0 10.44 19.1025 0.27 19.62 9.9 0 29.643 
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25 29.25 21.78 0 16.245 33.795 0.9 37.98 13.05 0 50.6347 

26 21.33 28.8 0 14.0175 36.585 0.2475 36.9 13.23 0 50.5911 

27 15.57 12.24 0 9.8775 17.73 0.405 15.57 12.24 0 27.8653 

28 24.12 27.18 0 10.575 40.1175 0.1125 23.85 27.45 0 50.5629 

29 10.89 15.03 0 9.315 17.01 0.09 18.72 7.2 0 26.253 

30 26.64 23.13 0 11.115 39.555 0.1125 34.74 15.03 0 50.4607 

31 14.22 10.53 0 7.695 16.4925 0.495 22.23 2.52 0 24.5431 

32 22.68 28.8 0 13.275 37.485 0.09 45.72 5.76 0 50.6157 

33 26.82 23.04 0 17.5725 33.0525 0.225 36.72 13.14 0 50.5695 

34 15.57 7.11 0 6.9525 15.7275 0.5175 19.8 2.88 0 23.0519 

35 30.69 20.52 0 18.0675 32.13 0.6075 29.07 22.14 0 50.4398 

36 10.26 10.44 0 5.625 14.7375 0.2025 11.61 9.09 0 20.4449 

37 21.96 28.08 0 14.265 35.64 0.945 31.32 18.72 0 50.5952 

38 18.99 32.04 0 9.4725 41.0175 0.315 26.1 24.93 0 50.4557 

39 7.56 11.43 0 2.1375 16.9425 0.36 5.13 13.86 0 19.3346 

40 20.52 29.97 0 12.33 38.475 0.2025 22.14 28.35 0 50.7581 

41 6.75 9.45 0 3.8025 11.97 0.135 5.58 10.62 0 15.7782 

42 28.98 21.96 0 20.5425 29.7675 0.7425 34.29 16.65 0 50.772 

43 5.04 10.35 0 2.8575 12.6 0.2025 9.27 6.12 0 15.6528 

44 25.83 25.83 0.09 19.0575 32.0625 0.4275 43.02 8.73 0 51.3379 

45 25.02 24.03 0 18.945 30.1275 0.5625 45.27 3.78 0 49.334 

46 9.63 7.02 0 6.7725 9.315 0.2475 12.69 3.96 0 16.2296 

47 8.64 7.47 0 5.3325 11.0475 0.5175 10.35 5.67 0.09 16.7548 

48 25.65 25.29 0 15.39 35.325 0.36 30.06 20.88 0 50.7649 

49 11.07 6.12 0 6.7275 10.8675 0.18 9 8.19 0 17.6805 

50 32.49 12.6 0 17.415 28.035 0.09 23.49 21.6 0 45.3128 

51 8.37 10.53 0 4.77 13.7925 0.27 3.6 15.3 0 18.7313 

52 29.52 20.16 0 24.3 25.38 0.18 38.88 10.8 0 49.5116 

53 5.22 14.22 0 2.88 16.3575 0.0675 7.38 12.06 0 19.1998 

54 34.38 17.19 0 26.55 25.5375 0.0675 31.77 19.8 0 51.8716 

55 5.13 12.42 0 2.475 15.255 0.27 6.21 11.34 0 17.8674 

56 25.11 24.84 0 18.45 30.915 0.2475 22.14 27.81 0 49.3717 

57 7.92 11.88 0 3.4875 15.57 0.2925 10.8 9 0 19.2876 

58 23.67 25.11 0 18.0225 30.6 0.18 18.63 30.15 0 48.4992 

59 14.76 4.86 0 7.1775 12.735 0.0675 12.51 7.11 0 19.8362 

60 26.46 21.96 0 17.6175 30.7575 0.18 19.08 29.34 0 48.3002 

61 11.7 7.02 0 4.59 14.0625 0.0675 9.81 8.91 0 18.6125 

62 19.98 28.8 0 17.01 32.31 0.0675 18.9 29.88 0 49.0959 

63 9.18 10.62 0 4.4775 15.345 0.405 8.73 11.07 0 20.1226 

64 12.51 34.02 0 11.25 34.9875 0.0225 11.16 35.37 0 46.0307 

65 8.82 9.27 0 5.13 12.96 0.36 10.71 7.29 0.09 18.3336 

66 20.25 29.34 0 19.1475 31.2525 0.1575 23.13 26.46 0 50.2163 

67 13.41 3.87 0 8.325 9.09 0.09 15.93 1.35 0 17.4219 

68 24.03 28.35 0 17.775 34.155 0.3375 19.98 32.4 0 52.0182 

69 15.66 3.51 0 12.2625 7.0425 0.0225 13.5 5.67 0 19.1491 

70 17.01 32.13 0 17.01 32.4675 0.135 14.76 34.38 0 49.3259 
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71 16.65 4.32 0 9.675 10.71 0.2925 15.48 5.49 0 20.6251 

72 28.53 25.56 0 24.03 29.8575 0.2025 29.34 24.75 0 53.7568 

73 7.11 10.17 0 4.0725 13.6575 0.0675 7.38 9.9 0 17.6766 

74 41.13 8.82 0 29.925 19.5525 0.225 41.13 8.73 0.09 49.4392 

75 9.81 7.02 0 3.42 13.4775 0.045 13.32 3.51 0 16.8149 

76 21.51 26.01 0 16.7625 30.51 0.405 24.12 23.4 0 47.4126 

77 5.13 11.34 0 3.1275 13.3875 0.135 8.37 8.1 0 16.594 

78 14.76 33.03 0 9.8775 37.98 0.5625 14.94 32.85 0 48.1189 

79 6.12 10.62 0 3.33 12.96 0.135 7.65 9.09 0 16.2914 

80 21.33 25.56 0.09 12.3525 33.9075 0.9 20.88 25.92 0.18 46.8509 

81 11.7 27.27 0 9.495 29.6325 0.315 10.71 28.17 0.09 39.2209 

82 11.7 10.08 0 6.5025 14.9625 0.3375 12.42 9.36 0 21.6919 

83 12.42 24.12 0 8.9775 27.4275 0.3375 12.15 24.39 0 36.5713 

84 19.8 15.48 0 13.8375 21.3075 0.2925 21.06 14.22 0 35.2114 

85 12.78 3.06 0 6.1875 9.6525 0.4275 9 6.84 0 16.1946 

86 25.83 9.63 0 16.56 18.4725 0.7425 29.97 5.49 0 35.6007 

87 24.21 7.83 0 13.2525 18.7425 0.2025 24.93 7.11 0 31.9521 

88 10.8 0.99 0 2.385 9.18 0.0225 2.52 9.27 0 11.5324 

89 28.08 6.3 0 16.8975 17.55 0.2025 28.44 5.94 0 34.4702 

90 29.52 3.69 0 21.3525 11.7 0.27 29.7 3.51 0 33.1228 

91 7.02 4.23 0 4.5 6.93 0.0225 5.58 5.67 0 11.3384 

92 7.56 3.24 0 4.185 6.48 0 6.21 4.59 0 10.614 

93 9.09 2.34 0 6.5025 5.1975 0.0225 8.28 3.15 0 11.6689 

           

         

Average 
(ha) 34.03 

         Min (ha) 10.61 

         Max (ha) 53.76 

         Std Dev 14.70 
 

 

Community III- Land Parcels with forest and non-forest cover including its FID 

   2011   2015     2016    

FID_ 
Forest 

(ha) 
Non-forest 

(ha) 
Forest 

(ha) 
Non-forest 

(ha) 
Water 
(ha) 

Forest 
(ha) 

Non-forest 
(ha) Water (ha) 

Total area 
(ha) 

0 9 10.8 5.7375 13.005 1.3725 4.05 15.21 0.54 20.0059 

1 9.18 11.16 8.7525 10.8225 0.6075 9.63 10.44 0.27 20.1396 

2 15.3 4.41 12.285 7.515 0 14.22 5.4 0.09 19.726 

3 17.01 2.43 12.2175 7.245 0.045 14.31 5.13 0 19.4174 

4 17.01 4.05 14.3775 6.7725 0.0675 14.04 7.02 0 21.1222 

5 7.65 12.6 7.3575 12.6225 0.18 8.01 12.24 0 20.1217 

6 10.08 9.54 12.69 7.335 0.0225 13.14 6.48 0 19.9032 

7 7.47 12.6 8.0775 11.9925 0.0225 9.18 10.89 0 20.0742 

8 8.46 12.15 12.5325 8.1675 0 13.59 7.02 0 20.5857 

9 11.7 8.37 8.28 11.8125 0 7.92 12.15 0 19.9459 

10 12.33 8.19 9.135 11.3625 0.0225 7.38 13.14 0 20.4975 
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11 12.42 8.28 7.7175 12.8475 0.135 6.12 14.58 0 20.6715 

12 9.45 10.8 9.5175 10.71 0.1125 7.11 13.14 0 20.2473 

13 9.27 10.98 9.8775 10.53 0.09 8.64 11.61 0 20.4378 

14 9.9 9.63 10.2825 9.54 0.09 9.72 9.81 0 19.7725 

15 8.46 10.44 7.9875 10.98 0 3.51 15.39 0 18.9337 

16 8.1 10.8 7.92 10.9125 0.1125 6.84 12.06 0 18.8449 

17 9.72 9.36 8.6175 10.08 0.045 6.93 12.15 0 18.6828 

18 10.35 8.37 7.8525 10.98 0.09 9.18 9.54 0 18.8622 

19 10.62 9.45 12.9825 7.065 0.09 16.02 4.05 0 20.0726 

20 8.73 11.16 11.1375 8.955 0.1125 12.24 7.65 0 20.0839 

21 11.79 9.54 10.1025 11.205 0.0225 9.99 11.34 0 21.2815 

22 10.44 9.54 7.92 12.0825 0 7.65 12.33 0 19.9031 

23 12.51 7.29 8.2575 11.3625 0.09 9.27 10.53 0 19.6576 

24 10.53 9.18 9.54 10.17 0.09 8.46 11.25 0 19.7039 

25 11.43 9.09 10.0575 10.3725 0.0675 9.63 10.89 0 20.4689 

26 15.03 5.58 11.7 9.135 0.045 10.98 9.63 0 20.7467 

27 13.77 6.93 10.2375 10.7325 0 9.9 10.8 0 20.8496 

28 13.32 6.75 9.9675 10.035 0 11.97 8.1 0 19.9824 

29 15.84 5.4 12.33 8.91 0.045 15.93 5.31 0 21.1596 

30 15.39 6.3 15.03 6.6375 0 15.3 6.39 0 21.654 

31 12.06 8.55 9.1575 11.4525 0.0225 9.27 11.34 0 20.4633 

32 14.04 5.76 11.0025 9.0225 0.045 13.95 5.85 0 20.0239 

33 3.42 3.96 5.22 4.3425 0 5.94 1.44 0 9.46057 

35 7.2 13.41 6.21 14.265 0 5.13 15.48 0 20.3829 

36 8.37 11.97 6.2775 14.3325 0 5.94 14.4 0 20.4797 

37 12.06 8.73 9.3375 11.43 0.1125 8.46 12.33 0 20.8259 

38 11.25 9.54 9.6525 11.115 0 8.91 11.88 0 20.6678 

39 9.36 10.89 9.6075 10.53 0.0675 7.92 12.24 0.09 20.1559 

40 6.66 14.04 6.345 13.9725 0.135 6.39 14.31 0 20.3946 

41 9.99 10.44 10.215 10.1925 0.0225 8.37 12.06 0 20.43 

42 7.92 11.79 7.38 12.5325 0.045 8.01 11.7 0 19.9174 

43 11.97 8.82 6.885 14.1525 0 6.39 14.4 0 20.9979 

44 11.97 8.55 5.6025 15.1425 0 3.87 16.65 0 20.7616 

45 13.41 7.2 4.9725 15.7725 0.0225 3.24 17.28 0.09 20.5477 

46 12.06 8.1 10.26 9.945 0.0225 10.08 10.08 0 20.1212 

47 11.7 8.46 9 11.205 0.1125 8.28 11.88 0 20.1489 

48 8.28 11.97 8.28 11.9025 0 5.58 14.67 0 20.1283 

49 8.28 12.69 7.2 13.6575 0.1125 4.5 16.47 0 20.9437 

50 7.2 13.14 6.39 14.175 0 2.43 17.91 0 20.5045 

51 5.94 14.31 5.4675 14.7375 0.09 1.26 18.99 0 20.31 

52 8.01 13.14 7.875 13.455 0.135 5.67 15.48 0 21.424 

53 9.09 9.9 7.9425 11.115 0.0675 8.55 10.44 0 19.0467 

54 9.81 11.07 9.9 11.025 0 11.16 9.72 0 20.856 

55 9.18 11.88 10.4625 10.5075 0 11.07 9.99 0 20.8868 

56 8.82 10.89 9.1575 10.62 0.045 9.9 9.81 0 19.7674 

57 5.22 5.85 7.3125 3.6225 0.2025 8.28 2.79 0 11.1087 
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58 7.38 12.6 6.4575 13.545 0.0675 4.32 15.66 0 19.9276 

59 9.9 9.27 8.3025 10.755 0.045 6.93 12.15 0.09 19.0402 

60 11.34 8.37 9.945 9.405 0.225 9.27 10.44 0 19.501 

61 6.75 12.24 6.3225 12.465 0.0675 4.68 14.31 0 18.8051 

          

        
Average 

(ha) 19.86 

        Min (ha) 9.46 

        Max (ha) 21.65 

        Std Dev 1.89 
 

 

Community IV- Land Parcels with forest and non-forest cover including its FID 

   2011   2015     2016  

FID_ 
Forest 

(ha) 
Non-forest 

(ha) 
Forest 

(ha) 
Non-forest 

(ha) 
Water 
(ha) 

Forest 
(ha) 

Non-forest 
(ha) 

Total area 
(ha) 

0 17.1 26.01 22.2075 21.15 0.225 10.8 32.31 43.6173 

1 19.89 20.07 23.6025 15.9075 0 18.9 21.06 39.4917 

2 21.69 8.37 19.26 11.16 0 20.07 9.99 30.4798 

3 19.53 12.87 17.775 15.1875 0.0675 17.19 15.21 32.995 

4 24.93 13.41 25.83 12.465 0 22.77 15.57 38.3215 

5 34.47 12.69 33.525 13.545 0.0225 33.3 13.86 47.0614 

6 28.98 22.41 31.095 19.4625 0.135 28.35 23.04 50.6714 

7 17.64 14.85 18.405 13.86 0.2475 15.48 17.01 32.5318 

8 19.35 17.46 20.9025 16.245 0 17.91 18.9 37.1748 

9 16.65 13.68 17.145 12.96 0.2025 14.4 15.93 30.2907 

10 18.99 14.4 22.7475 10.575 0 18.81 14.58 33.3814 

11 25.38 8.19 23.9625 9.36 0.36 21.33 12.24 33.6499 

12 24.21 16.47 26.01 14.805 0.045 24.21 16.47 40.7639 

13 17.64 14.13 18.2475 13.2075 0.315 16.11 15.66 31.8047 

14 19.98 16.56 20.565 15.5475 0 18.27 18.27 36.2053 

15 22.14 10.08 21.8475 10.5525 0.0225 20.79 11.43 32.3616 

16 25.11 8.46 23.175 10.7325 0.0225 22.77 10.8 33.8728 

17 11.7 17.01 15.12 13.0725 0.3825 10.44 18.27 28.5495 

18 19.62 13.59 21.4875 11.745 0 22.23 10.98 33.266 

19 21.87 13.41 22.3875 12.7125 0.2475 17.46 17.82 35.335 

20 21.42 10.89 22.8375 9.4725 0.0225 23.76 8.55 32.3129 

21 21.96 11.43 22.6575 10.755 0.135 21.51 11.88 33.5248 

22 16.83 18 20.7225 14.265 0.045 19.44 15.39 34.9533 

24 19.35 12.33 20.9925 10.5075 0.2475 19.8 11.88 31.7645 

25 13.59 20.7 22.05 11.8575 0 19.62 14.67 33.9924 

26 18.54 12.42 17.955 12.8475 0 15.39 15.57 30.7836 

27 15.48 13.05 15.435 13.1625 0.1575 11.25 17.28 28.5663 

28 19.71 16.11 23.4 12.7575 0.045 24.12 11.7 36.232 

30 16.02 12.24 17.145 10.485 0.36 16.29 11.97 28.017 

31 20.88 13.77 20.835 13.4325 0.225 17.46 17.19 34.6797 
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32 12.15 6.93 12.3075 6.975 0.0225 13.05 6.03 19.2771 

33 24.93 11.34 23.535 12.33 0.3375 22.77 13.5 36.1576 

34 21.87 10.53 20.4975 11.97 0 21.96 10.44 32.5129 

35 12.06 8.19 10.755 9.2025 0.405 9.27 10.98 20.297 

36 20.07 10.89 18.405 12.69 0.27 17.01 13.95 31.3272 

37 16.74 9.9 16.7175 9.675 0.09 15.3 11.34 26.5554 

38 13.5 10.8 15.0975 9.225 0.09 12.33 11.97 24.4056 

39 19.26 12.69 18.405 13.1175 0.3375 15.48 16.47 32.0024 

40 11.34 8.55 9.9675 9.945 0 9.81 10.08 19.9899 

         

       
Average 

(ha) 33.06 

       Min (ha) 19.28 

       Max (ha) 50.67 

       Std Dev 6.29 
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APPENDIX 6.1: COMBINE STATISTICS FOR DEFORESTION IN THE THREE 

COMMUNITIES IN THE STUDY 

 

Evaluation of lanscape metrics in the three communities including Andrew 
Bradley's statistics 

 

      Community I 

    

 

Total area (ha) 1816 Min (ha) 12 

 

 

Number of 
Farms (lease) 

102 Max (ha) 21 

 

 

Average lease 
(ha) 

19 Std dev 3 

 
Year 

Forest Cover 
(ha) 

Non-Forest 
cover(ha) 

Forest cover 
(%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

1986 617.355 1198.395 34 66 

 1993 617.355 1198.395 34 66 0 

1996 617.355 1198.395 34 66 0 

2000 798.93 1016.82 44 56 -45.39375 

2008 676.7 1241 37 68 30.5575 

2011 946.8 868.95 52.14 47.86 -90.03 

2015 971.393 848.453 53.38 46.62 -6.14825 

2016 1176.12 639.63 64.77 35.23 -204.727 

      

    
  

Community II 

 
  

 

Total area (ha) 3199 Min (ha) 11 

 

 

Number of 
Farms (lease) 93 

Max (ha) 54 

 

 

Average lease 
(ha) 34 

Std dev 15 

 
Year 

Forest Cover 
(ha) 

Non-Forest 
cover(ha) 

Forest cover 
(%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

1986 2691.9 506.88 84.15 15.85 

 1993 2041.78 1157 63.83 36.17 92.87 

1996 1594.78 1604 49.86 50.14 149.00 

2000 1367 1831.78 42.74 57.26 56.95 

2008 627.89 2565 19.63 80.37 184.78 

2011 1658.07 1540.71 51.83 48.17 -343.39 

2015 1068.46 2149.13 33.21 66.79 147.40 

2016 1854.81 1343.97 57.98 42.02 -786.35 

      

      Community III 

   

 

Total area (ha) 1219 Min (ha) 9 

 

 

Number of 
Farms (lease) 

60 Max (ha) 22 

 

 

Average lease 
(ha) 

20 Std dev 2 

 
Year 

Forest Cover 
(ha) 

Non-Forest 
cover(ha) 

Forest cover 
(%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

1986 1161.09 57.51 95.28 4.72 
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1993 232.47 986.13 19.08 80.92 132.66 

1996 232.47 986.13 19.08 80.92 0.00 

2000 128.34 1090.26 10.53 89.47 26.03 

2008 297 886.5 24.37 75.63 -42.17 

2011 631.17 587.43 51.79 48.21 -111.39 

2015 549.968 675.316 44.88 55.12 20.30 

2016 524.79 693.81 43.06 56.94 25.18 

      

      Community Four: 
Isiboro 

    

 

Total area (ha) 1295.82 
   

 

Number of 
Farms (lease) 40 

   

 

Average lease 
(ha) 31.6571 

   

      
Year 

Forest Cover 
(ha) 

Non-Forest 
cover(ha) 

Forest cover 
(%) 

Non-Forest 
cover (%) 

Clearance rate 
(ha/annum) 

2011 763.11 532.71 58.89 41.11 
 

2015 797.4 500.3555 61.44 38.56 -8.5725 

2016 717.84 577.98 55.40 44.60 79.56 

       


