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Abstract

Despite a general recognition of the importance of complex systems, there is a dearth of

general models capable of describing their dynamics. This is attributed to a complexity

scale; the models are attempting to describe systems at different parts of the scale and are

hence not compatible. We require new models capable of describing complex behaviour

at different points of the complexity scale. This work identifies, and proceeds to examine

systems at the high end of the complexity scale, those which have not to date been well

understood by our current modelling methodology. It is shown that many such models

exhibit what might be termed contextual dependency, and that it is precisely this feature

which is not well understood by our current modelling methodology. A particular problem

is discussed; our apparent inability to generate systems which display high end complex-

ity, exhibited by for example the general failure of strong ALife. A new model, Process

Physics, that has been developed at Flinders University is discussed, and arguments are

presented that it exhibits high end complexity. The features of this model that lead to its

displaying such behaviour are discussed, and the generalisation of this model to a broader

range of complex systems is attempted.

Themes: contextuality and complexity; reductive failure; Process Physics; quantum the-

ories as models of complexity

i



I certify that this thesis does not incorporate without acknowledg-

ment any material previously submitted for a degree or diploma in

any university; and that to the best of my knowledge and belief it

does not contain any material previously published or written by

another person except where due reference is made in the text.

Kirsty Kitto

ii



Acknowledgements

This work has involved a long, very interesting, but often rather torturous journey. What

began as an examination of the quantum measurement problem quickly increased in scope

to the foundations of quantum mechanics, then again to fundamental physics in general,

before shifting its emphasis to complex systems. Before long even biology, ecology, eco-

nomics and artificial life came into the scope of this project. As such, this work could

not have been possible without the assistance of a large number of people from a wide

range of fields, whose conversations, criticisms, witticisms and creativity has challenged

and extended my knowledge.

A special thanks to my supervisor, Reg Cahill, without whose guidance and support

this project would have been inconceivable and probably not allowed. His ideas have

shaped more than my approach to physics.

The final thesis itself could not have been possible without the assistance of people from

a variety of disciplines and fields; I would like to especially acknowledge discussions with,

and often assistance from Daniel Kortschak, Susan Gunner, and Peter Wood. Also my

family and friends for their patience and support.

Finally, I would like to acknowledge the internet. Without the dramatic explosion of

readily accessible ideas, theories, articles, preprints and tutorials that it provides, work

such as this, at the boundaries of many substantially different disciplines would be difficult

if not impossible; our theories are now in a position to evolve to new levels of complexity

thanks to the creation of this vital resource. May it always remain free.

iii





Contents

Abstract i

Declaration ii

Acknowledgements iii

Chapter 1 Reductionism at its Limits 1

1.1 The Scientific Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Reductive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Contextual Complexity in Biological Systems . . . . . . . . . . . . 10

1.2.2 Defying Reduction — Very Complex Systems . . . . . . . . . . . . 12

1.2.3 Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.4 Complexity and Postmodernism . . . . . . . . . . . . . . . . . . . 16

1.3 Contextuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Complexity and Contextuality . . . . . . . . . . . . . . . . . . . . 17

1.4 Object Based Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 The Complexity Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 High End Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Objectivity: Contextuality, Subjectivity and Observer Dependence . . . . 24

Chapter 2 An Example System: Artificial Life 27

2.1 ALife, Complexity and Emergence . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Insufficient Complexity . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 The Complexity of Development . . . . . . . . . . . . . . . . . . . 31

2.1.3 Measures of ALife Complexity . . . . . . . . . . . . . . . . . . . . 32

2.1.4 ALife: Simulations versus Emergence . . . . . . . . . . . . . . . . . 37

2.2 Hierarchical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.1 Hyperstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 The Ansatz for Dynamical Hierarchies (ADH) . . . . . . . . . . . . 43

2.3 Towards the Generation of Interesting Emergent Behaviour . . . . . . . . 46

Chapter 3 Hierarchical Systems 47

v



3.1 Hierarchical Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 The Alphabet of a Hierarchy . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Dynamical Rates and Strength of Interaction . . . . . . . . . . . . 50

3.1.4 Nearly-Decomposable Systems . . . . . . . . . . . . . . . . . . . . 50

3.1.5 Scalar and Specification Hierarchies . . . . . . . . . . . . . . . . . 53

3.1.6 Structural and Control Hierarchies . . . . . . . . . . . . . . . . . . 56

3.1.7 Dynamical Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.8 Downward Causation . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.9 The Context of a Hierarchy . . . . . . . . . . . . . . . . . . . . . . 59

3.1.10 Evolutionary Transitions . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Theories of Hierarchical Behaviour . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Hierarchies and Open Dissipative Systems . . . . . . . . . . . . . . 63

3.2.2 Hierarchies and Emergence . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Towards the Dynamical Generation of Emergent Hierarchical Structure . 65

Chapter 4 An Example System: Process Physics 67

4.1 Modelling Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 The Process Model of Fundamental Physics . . . . . . . . . . . . . 69

4.2 A Hierarchical Analysis of the System . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Near-decomposability . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Baas hierarchy structure . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 The Historical Roots of Process Physics . . . . . . . . . . . . . . . . . . . 77

4.3.1 The Nature of Quantum Theories . . . . . . . . . . . . . . . . . . . 77

4.3.2 The Global Colour Model (GCM) and the Functional Integral Cal-

culus (FIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 The Derivation of the Iterator Equation . . . . . . . . . . . . . . . 87

Chapter 5 Generalising Quantum Theories 90

5.1 Bell’s Theorem and Contextuality . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 The Assumptions Behind Classical Ontologies . . . . . . . . . . . . 92

5.1.2 Bell’s Theorem and Nonlocality . . . . . . . . . . . . . . . . . . . . 96

5.1.3 Nonlocality and Relativity . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.4 Contextuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.5 The Relationship Between Nonlocality and Contextuality . . . . . 106

5.1.6 The Meaning of Nonlocal and Contextual Behaviour . . . . . . . . 107

5.1.7 Observers in Quantum Theory . . . . . . . . . . . . . . . . . . . . 111

5.2 Contextuality is Generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



5.3.1 Symmetry and Conservation Laws . . . . . . . . . . . . . . . . . . 123

5.3.2 Symmetry and Interaction . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.3 Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.4 Goldstone’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.5 Action Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Symmetry is Generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.2 Self-Organised Criticality and NG-modes . . . . . . . . . . . . . . 140

5.4.3 Biological Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.4 Arts, Crafts and Aesthetics . . . . . . . . . . . . . . . . . . . . . . 143

5.4.5 A Generalised Model of Emergent Behaviour? . . . . . . . . . . . . 143

5.5 The Structure of the Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Modelling Quantum Behaviour . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6.1 Quantum State Diffusion and Spontaneous Localisation Theories . 145

5.6.2 Towards an Operational and Realistic Framework . . . . . . . . . . 153

Chapter 6 Quantum Field Theoretic Descriptions of Emergent Phenomena 156

6.1 Generating Complex Emergent Behaviour . . . . . . . . . . . . . . . . . . 156

6.1.1 Generating Interaction among Emergent Phenomena . . . . . . . . 157

6.1.2 Generating Hierarchical Behaviour . . . . . . . . . . . . . . . . . . 157

6.2 The Recursive Gauge Principle (RGP) . . . . . . . . . . . . . . . . . . . . 158

6.3 An Example System — Solitons in Cellular Automata . . . . . . . . . . . 161

6.4 Emergent Behaviour in Process Physics . . . . . . . . . . . . . . . . . . . 165

6.4.1 QSD in Process Physics . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4.2 The Structure of Space, Time and Matter . . . . . . . . . . . . . . 169

6.4.3 Nambu–Goldstone Modes . . . . . . . . . . . . . . . . . . . . . . . 170

6.4.4 Relativity in Process Physics . . . . . . . . . . . . . . . . . . . . . 171

6.4.5 Gravity in Process Physics . . . . . . . . . . . . . . . . . . . . . . 175

6.4.6 Thermodynamics in Process Physics . . . . . . . . . . . . . . . . . 177

6.4.7 Observational Emergence in Process Physics . . . . . . . . . . . . 178

6.5 Proof of Concept — Sympatric Speciation . . . . . . . . . . . . . . . . . . 179

6.6 Further Work — Biological Development . . . . . . . . . . . . . . . . . . . 184

Chapter 7 Conclusions: An Emergent Methodology 186

7.1 Defining Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.2 Defining Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2.1 Modelling the Contexts of Emergent Behaviour . . . . . . . . . . . 188

7.2.2 Moving Beyond an Object-Based Methodology . . . . . . . . . . . 189

7.2.3 Reductive Paradigms? . . . . . . . . . . . . . . . . . . . . . . . . . 191

vii



7.3 Contextuality and Observer Dependence . . . . . . . . . . . . . . . . . . . 191

7.4 In Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Appendix A Notation 193

A.1 Observational Emergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.3 Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.4 Process Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.4.1 Low level relational model . . . . . . . . . . . . . . . . . . . . . . . 194

A.4.2 Quantum Homotopic Field Theory (QHFT) . . . . . . . . . . . . . 194

A.4.3 Gravity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.4.4 Model of Sympatric Speciation . . . . . . . . . . . . . . . . . . . . 195

A.5 Abbreviations used in the text . . . . . . . . . . . . . . . . . . . . . . . . 195
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Chapter 1

Reductionism at its Limits

. . . what is proved by impossibility proofs is a lack of imagination.

Bell, p998, [60]

Reductive analysis has proven remarkably effective throughout the history of science.

However, a number of systems which we seek to understand appear to be defying this

analytic technique. Often, these systems have been designated complex, but our present

understanding of complexity is mediocre at best. This chapter will briefly examine some

of these issues and propose that the systems most consistently defying our techniques are

those that exhibit contextual behaviour. It will be proposed that complexity should be

thought of in terms of a scale; while a number of systems have been extensively studied and

are now well understood under the rubric of complex systems theory, there are more that

have defied such an analysis, and intuitively, many of these seem more complex. While

contextual systems will often be seen to lie at the high end of the proposed complexity

scale, such contextuality need not imply that these phenomena can only be understood

in a subjective sense. Indeed, there are a number of well-defined systems which exhibit

contextual behaviour but which can still be meaningfully analysed. An example of such

analysis is provided by the quantum systems which will be discussed in sections 4.3.1 and

chapter 5.

Before we can start to understand complexity, we must understand its origins. Specif-

ically, the traditional reductionistic analysis which is almost equated with the scientific

method.

1.1 The Scientific Method

Man is always reductionist in his mechanistic explanations. Indeed, when

we say that we have explained a phenomenon we ordinarily mean that we have

shown the phenomenon to be the consequence of interactions among system

components.

O’Neill et al., p61, [310]

Reductive analysis, the technique of breaking an apparently complex problem into

smaller, more manageable pieces, reduction and then combining the solutions obtained

from these smaller problems into a larger solution which represents the original system,
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synthesis has been remarkably successful in science. In fact, the common conception of

science is almost synonymous with reduction, leading to the often mentioned distinction

between the so-called ‘hard’ and ‘soft’ sciences. It might be said that a field falls into the

hard or soft categorisation depending upon whether or not it is amenable to reductive

analysis [364]. Thus fields such as sociology, anthropology, biology etc. which examine

systems that are not so amenable to the reductive approach are often classified as soft,

somehow less scientific, than those such as physics and chemistry, a distinction which is

not useful and can lead to some rather controversial debates.1

Despite its importance in the field of science, the concept of reduction is fraught with

misunderstanding and many conflicting definitions [42]. It is often conflated with other

related concepts such as atomism [432], materialism [293, 443], physicalism [343, 168],

microreductionism [312] etc. Also, the tendency towards a form of eliminative reduction

[127, 360], often termed ‘nothing butism’ [42], or ‘greedy reductionism’ [147], where a

reduced theory is seen as nothing but its set of reducing concepts has led to a general

mistrust of reductive analysis in certain areas of study and a resurgence of concepts like

holism. Often, this mistrust is taken to extremes, reduction being equated in a rather

slippery way with a general distrust of science [147, 341], frequently without a proper

definition, or usage of the term:

Attempts to explain behavior in mechanistic terms are commonly denounced

as “reductionist” or “determinist”. The denouncers rarely know exactly what

they mean by those words, but everyone knows they refer to something bad.

Pinker, p10, [341]

This thesis will not weigh into this debate, rather the emphasis shall be shifted towards

those areas where reductive analysis might be seen to be consistently failing. First how-

ever, we require a more specific understanding of what this work is referring to when it

uses the term reductive analysis.

1.1.1 Reductive Analysis

Science stands today on something of a divide. For two centuries it has

been exploring systems that are either intrinsically simple or that are capable

of being analyzed into simple components. The fact that such a dogma as ‘vary

the factors one at a time’ could be accepted for a century, shows that scien-

tists were largely concerned in investigating such systems as allowed (by) this

method; for this method is fundamentally impossible in the complex systems.

Ashby, p5, [36]

1Consider for example the Sokal affair, where the physicist Alan Sokal wrote, and managed to publish
an essentially nonsensical article in the field of social sciences [409, 408, 146]. It might be asked whether
similar situations do not (admittedly unintentionally) arise in the more traditional hard sciences, the
process of peer review is becoming more and more difficult to fairly implement, as the field of knowledge
fragments and expands.
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Physics provides a paradigmatic example of reductive analysis. Traditionally, physical

analysis involves a process whereby the universe is broken into a system to be studied, and

it’s environment, which is everything else, i.e. that part of the universe not considered

interesting for the current study. Within a certain set of stated2 assumptions, the system

is then considered to be isolated from the environment which means that it may now be

studied as an independent entity. Given this separation, a theory may then be constructed

tested and developed according to some scientific method [344, 253]. It is important

to realize that this separation has normally included the identification of any relevant

measuring apparati as also separate from the system under study. There is an often

unstated assumption associated with this separation that measurement does not in any

way affect in any way the results of the measurement itself, although it may change the

results of any new measurements that are performed after the earlier one. While the

measuring apparatus cannot be considered as separate from the system (and therefore

part of the environment) it is not quite part of the system itself. This has often led to the

identification of such apparatus as forming a third form of component, between system

and environment [191].

Almost every field of physics has risen with the application of some form of this

method. Consider for example the field of Mechanics, which involves a set of objects

identified as primitive, the dynamics of which is governed by a set of well understood

laws, or regularities. Often, such a complicated system can be understood in terms of its

constituents, consider for example statistical mechanics. Another example can be found in

the Theories of Relativity, which describe the way in which a particular frame of reference

can impact upon our observations, allowing us to separate the description of a systems

internal dynamics from its motion with respect to an observer.

After this brief introduction, we are now in a position to more fully define the concept

of reductive analysis, and to separate it from the associated concept of reductionism.

This shall be done with reference to the concept of a modelling relation which was defined

by Rosen [363, 364]. Consider a natural system N which is modelled by some formal

system F . This relationship of modelling is represented in figure 1.1, where arrow 2

depicts the process of encoding the natural system into the formalism, and arrow 4 the

process of decoding, or predicting the behaviour of the system based upon the predictions

of the formalism. Thus, if the model is adequate, then the causal behaviour of the

system N which is represented by 1, should be equivalent in some sense to first encoding

its behaviour into the model, then inferring its behaviour according to relation 3 and

2It must be acknowledged that there are a number of situations where assumptions are either not
explicitly stated or hidden (i.e. not even identified as an assumption), a situation which often leads to
furious debate, apparent mysteries and unexplainable behaviour etc. The so-called mysterious nature of
quantum systems provides a notable example of this phenomenon. With its high number of competing
interpretations, and the large amount of debate surrounding these, it is often the case that those supporting
different interpretations appear to be talking past rather than to each other.

3
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Figure 1.1: Rosen’s modelling relation [364]; an explanation appears in the text.

decoding the subsequent predictions of the model back into such a form that they might

be compared with the behaviour of the natural system. With reference to the modelling

relation, reductionism is the belief that all systems can be so formalised without loss, and

that there is a largest model which can effectively describe all natural systems. According

to the current dogma, the largest model would be something like the Grand Unified

Theory (GUT) of physics. Reductive analysis on the other hand need not presuppose a

largest model, merely that there exists some model not necessarily commensurable with

any other model, for all natural systems. Thus reductive analysis is prevalent in physics,

where different theories and models, not necessarily commensurable, are used to describe

different aspects of the physical world. For example, general relativity describes the way

in which our models of physical systems change under motion, and quantum theory is

seen as describing the very small, but these two theories while very accurate individually

do not combine well; they do not appear to be commensurable, but the systems involved

have shown themselves amenable to reductive analysis. Strong Reductionism requires

that some larger model must exist, capable of obtaining the predictions of both relativity

and quantum theory, as well as those of fields such as biology, anthropology and sociology.

However, such a model may not exist.

We can formalise Rosen’s Modelling Relation more fully making it simple to extend

to a definition of complexity. Given a modelling relation describing some system, we can

define the equivalence of two different descriptions of that system as follows:

Mathematically, we say that the two mappings, fg and fg′ , are equivalent,

or similar, or conjugate, if there exist appropriate transformations

α : E → E, β : P → P, (1.1)

such that the diagram commutes; that is if

4
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E

E P

Pfg′

α

fg

β

β[fg(e)] = fg′ [α(e)]. (1.2)

Robert Rosen, p185, [361]

A system is defined by Rosen as complex if it has more than one inequivalent description,

i.e. if it is impossible to find a mapping from one description to the other. Thus, according

to Rosen, complex systems cannot be described by one formalism or model alone. If this

is indeed the case, then it will have a profound impact upon ideas such as reductionism,

which would a priori be shown to be false. Even reductive explanations of reality would

be seen to be weakened, as no one explanation would be sufficient to the description of

complex systems in general. This work will adopt the position that high end complexity

cannot in fact be modelled by single descriptions, and that more tools are required in

order that we might extend our understanding of such systems. First however, we shall

continue our discussion of areas where reductive analysis has been perceived as more

successful.

The similarities between physical and economic models have been attracting interest

from physicists, and an increasing number of techniques from physics have been shown

to have applications in economic theory [42, 415, 417]. Empirical approaches have been

particularly useful at increasing our understanding of economic systems, but as our data

and our modelling of such systems increase dramatically, there is a general lack of firm

theoretical foundations in this field [417].

The theory of microeconomics rose in the wake of the successes of physical theory,

and shares much with the field of physics [417]; again a number of isolated components

are identified, each behaving in some well defined way. Unlike physics, there is no sense

of direct interaction in microeconomic theory, a fact that simplifies these systems further

still. Microeconomics can perhaps be most closely identified with statistical mechanics,

there are many components, each assumed to be following an isolated dynamics which is

dictated by the behaviour of all components.

In traditional microeconomic analysis the economy is understood as a set of con-

stituent firms which produce commodities and households which consume them. Firms

seek to maximise profit through the production of commodities chosen from a production

possibility set which is the collection of all possible production plans listing the quantities

of parts, raw material and finished products. Households on the other hand choose to

buy commodities from a consumption possibility set, within the constraints of a budget.

The preference orders of different households are often described by a utility function, an
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analytic function which each household tries to maximise:

Given a household’s options (the consumption possibility set), constraint

(its budget), and objective (its utility function), its equilibrium state is obtained

by finding the affordable commodity bundle with the highest utility value.

Auyang, p111, [42]

The invisible hand theory [226] gives an approximate method for solving the ‘many-body’

problem of finding the equilibrium state of the economy in which maximal satisfaction is

obtained for all participants through the fixing of prices and quantities of commodities.

However, this model of economics is almost absurdly simplistic, it treats all human ac-

tivities as falling into either production or consumption, satisfaction is obtained purely

through consumption, the rationality of individuals is defined solely in terms of their

ability to optimise their utility and profit [42]. It is assumed that individuals have per-

fect knowledge of the qualities, and prices of all commodities, both in the present as

well as in the future. There is no interaction between households, factors such as envy,

imitation, and rivalry do not enter into this model, and yet our economy is apparently

driven by them (in fact the very concept of advertising is founded upon concepts such

as these [246]). The behaviours of firms and households are assumed to be occurring in

a passive environment, unaffected by their decisions in any way. Thus concepts such as

environmental sustainability, or quality of life etc. are very difficult to incorporate into

this model. Indeed, many of the current problems confronting humanity arise from the

simplistic nature of this model.

Thus, economics does not provide the simple system that traditional results and anal-

ysis appear to suggest.

One recent paper points to three varying levels of complexity in financial markets [79],

with lower level phenomena better described by standard reductive analysis than higher,

emergent behaviour.

1. Price time series data of a financial assets is nontrivial. Both short range and long

range memories exist for this stochastic data; high frequency data analyses show that

correlation times among data can be as short as a few minutes in highly traded stocks

and indicies (in accordance with the efficient market hypothesis); however, nonlinear

functions of return (such as the absolute value) are often correlated over much longer

than a trading day (there are often power law correlations up to approximately 20

trading days). In addition to this odd signature, the behaviour of time series data is

only asymptotically stable. Indeed the volatility of stock returns is itself stochastic.

2. Cross correlation between the time evolution of a set of financial entities is a well

observed phenomena [111]. Understanding this cross correlation can help improve

economic forecasting as each individual time series carries information about much

more than just the stock itself; in particular it often reveals information about the
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trade sector of the stock. So, not only are price time series in a financial mar-

ket complex individually, they are also complex with respect to their synchronous

interaction with other time series.

3. Collective behaviour exhibited by financial systems during extreme market events

provides a third tier of complex behaviour. Typical and extreme days reveal statis-

tically different ensemble return distributions, specifically, the shape of the distribu-

tion changes during extreme events such as crashes or rallies. Statistical regularities

pertaining to this change of shape can be detected after very long time intervals (up

to 10 years).

Thus, the modelling of financial markets exhibits a similar amenability to reductive anal-

ysis, but resistance to reductionism. In particular, the interaction between the differing

levels of complexity is not at all understood; how does one level of relatively simple but

complicated time series data lead to extreme collective phenomena? In order to answer

this question it will be necessary to develop our understanding of complex emergent be-

haviour, a key aim of this work.

1.2 Complex Systems

A complex system cannot be reduced to a collection of its basic constituents,

not because the system is not constituted by them, but because too much of the

relational information gets lost in the process.

Cilliers, p10, [128]

The delineation made by reductive analysis, between system and environment is rea-

sonable if the two are well separated, i.e. do not interact in a way that significantly affects

the dynamics of the system. Such a clear separation between system and environment was

easy to find in classical physical systems, such as mechanical and thermodynamic ones,

where this technique yielded a rich set of very accurate results. However, this separation

has never been quite so straightforward for all systems, a problem which often leads to

the designation of these systems as complex.

For example, O’Neill et al. examine a number of examples from ecology in their

attempt to understand the hierarchical3 nature of ecological systems [310]. They under-

stand an ecosystem as something that cannot be simply synthesised from a number of

components, but must be analysed in addition to those components; ecosystems are not

merely a backdrop to a number of different animal and plant species but often a system

themselves.

Ecosystems are not simply spatially disjunct groupings of taxa (e.g., the

plant community). Ecosystems cannot be arbitrarily assigned to a preconceived

3Hierarchical systems fall very regularly into the general categorisation of complex behaviour. They
will be discussed in chapter 3.
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spatiotemporal framework (e.g., the climatic climax). Ecosystems cannot be

conceptualized simply as functional entities or simply as collections of species.

Instead, ecosystems must be viewed as systems in their own right.

O’Neill et al., p 37, [310]

Thus, there is a very real sense in which ecosystems are not separable and could therefore

be identified as complex in some sense.

Complex systems can have a number of different characteristics:

• They might consist of a large number of components (e.g. the large number of

components inherent in economic models), but this is not enough (e.g. statistical

mechanics is not normally considered complex).

• They often have components that exhibit a large number of different interactions

(e.g. the interactions that occur during a process of biological development, see

section 2.1.2). Interactions are generally nonlinear in these systems; small causes

can have large effects, and vice versa. Also, both positive and negative feedback

often occurs in these interactions, which often leads to effects disproportionate from

their causes.

• Complex systems are generally open, that is, not separable from their environment.

Often an observer has to make a choice as to where a boundary occurs.

• They generally operate far from equilibrium, which means that their survival often

requires that energy must consistently flow both into and out of them (e.g. biological

systems must constantly acquire food and excrete waste).

• The components of complex systems are themselves sometimes complex in some

manner (e.g. organisms, themselves capable of complex behaviour, consist of a large

number of different organs, and systems which themselves engage in identifiably

complex behaviour, and may often consist of components that have largely defied

reductive analysis).

However despite the general agreement on what characteristics should be exhibited by

complex systems, complexity itself is very difficult to define [222, 128, 163].

It is common to identify complex behaviour with models such as Power Laws, Fractals

and Bifurcations [383], The Renormalization Group [233, 460], Self-Organized criticality

[48], Randomness [250, 264, 119], Catastrophe Theory [433], Dissipative Theory [346],

Synergetics [208] etc.4, however, it is likely that such simple identifications are premature.

This is because it is possible to identify two broad groups of researchers investigat-

ing complex systems, those that equate the above systems with complex behaviour and

4Perhaps the most valuable complexity resource is the Hypertext Bibliography of Measures of Com-

plexity, created by Bruce Edmond’s which while no longer maintained by him, and therefore missing
references from later than 1997, contains a vast, fully crossreferenced list of articles that cover the many
different ideas surrounding complex systems that had been proposed to that date. This, and a number of
other resources are available at http://bruce.edmonds.name. Of particular use is Edmonds’ thesis which
explores the conception and measurement of complexity [163].
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feel that further analysis of apparently more complex systems will yield to the same or

similar analysis [275, 208], and those that feel there is some element missing from such

analysis, that complexity might consist of more than just randomness, dissipation and

self-organization [364, 116, 163, 128]:

A complicated system is composed of a large number of interacting compo-

nents. Importantly, the properties of such a system can be accurately predicted

from a knowledge of the properties of each of its components and a complete

enumeration of their interactions. In other words, a complicated system is

exactly the sum of its parts. Complex, on the other hand, is a term reserved

for systems that display properties that are not predictable from a complete

description of their components, and that are generally considered to be qual-

itatively different from the sum of their parts. A spaceship is extraordinarily

complicated, but is not complex. The degree to which cells, individually or as

differentiated collections called higher organisms, are simply more complicated

than even spaceships, and the degree to which they are actually complex, is

perhaps the most important theoretical issue facing biology today.

Nature Biotechnology Editorial, p511, [162]

This second group of researchers do not generally consider the systems described by

the above theories as truly complex, or at least not very complex. As suggested above,

systems of this form are sometimes identified as complicated rather than complex [365],

a distinction that is possibly worth making, but our terminology cannot realistically be

changed at this point in time given the weight of already existing literature. In any case,

such a dipolar distinction between the systems is perhaps not the best resolution to this

problem; it appears reasonable to suggest that there is a scale of complex behaviour,

with simple behaviour gradually giving way to the more and more complex. This concept

will arise throughout this chapter, as more concepts become available to the discussion, at

present however, we can identify a number of concepts that might be used in the definition

of such a scale:

• number of components

• form of interaction between components

• separation of components

• separation between system and environment

• contextual dependency upon experimental arrangements, and environmental sce-

narios

• dependence upon an observer.

These different concepts, and probably a number of others, will have different effects on the

overall perceived complexity of a system. However, some of the potentially most important

symptoms of complexity are also the least well understood. For example contextuality, or
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observer dependence, is prevalent in those systems that are generally perceived as ‘very’

complex. The coming sections of this chapter will develop this theme in more detail.

Firstly, it must be pointed out that even in the original bastion of reductive analysis,

physics, the distinction between a system and it’s environment is no longer a simple one to

make. With the discovery of quantum systems, physicists are now also having to develop

an understanding of contextual behaviour. The contextuality of quantum systems will be

discussed in detail in section 5.1. In this section we shall instead consider a different set

of examples, specifically, the ways in which contextuality manifests in biological systems.

1.2.1 Contextual Complexity in Biological Systems

A deep reason for the difficulty in devising causal information from DNA

messages is that the same “words” have different meanings in different contexts

and multiple functions in a given context, as in any complex language.

Lewontin, p152, [263]

Biological systems are notoriously complex; they are often very difficult to resolve

into components that are independent of one another, and they are also highly dependent

upon environmental conditions (both biotic and abiotic). Thus, the traditional scientific

aim of separating a system of interest from its surrounds is often not possible in biological

systems. This form of dependency might be termed contextual, and in order to understand

it both the genotype and the phenotype must be considered. The genotype of an organism

is its genetic content, (e.g. it’s DNA for living organisms, a Bit sequence for Artificial

creatures), while an individuals phenotype arises from the interaction of the genotype

with an environment during the process of development.

Phenotypic Plasticity

The developmental dependence upon the environment can have rather profound conse-

quences. For example, it is well known in the biological community that organisms with

the same genotype may, if placed in a different environment, reveal significantly different

phenotypes, to the extent that they may even be identified as different species. This

phenomena is known as phenotypic plasticity:

. . . the ability of a single genotype to produce more than one alternative

form of morphology, physiological state, and/or behavior in response to envi-

ronmental conditions.

West–Eberhard, p249, [452]

This phenomenon amounts to a situation where evolutionarily important characters do not

have to be ‘genetic’ (immune to environmental effects). Thus, this phenomenon reinforces

an often cited (but perhaps not truly recognized) fact that the phenotype is a product of

interaction between the genotype and the environment. Phenotypic plasticity forces us
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to accept that the phenotype depends in a very strong way upon the environment that

surrounds it; a different environment can result in a vastly different organism.

We might understand this phenomenon as a contextual dependence of the developing

organism upon the environment that it finds itself in.

Fitness

Fitness is not a characteristic that can be ascribed solely to an organism, it must be con-

sidered within an environment. Fitness landscapes map the fitness of the phenotypes of

different organisms. It is well accepted that fitness landscapes can change quite dramati-

cally depending upon the environment in which the organisms are found [406, 407, 83, 284].

For example, while it is beneficial that a persons skin colour be darker in colour in regions

of high UV exposure, and consequent risk of melanoma, it is less beneficial to have the

same skin tone in regions where skin pigmentation reduces the efficiency of vitamin D

production (which is light-dependent).

Cloning

Animal cloning [304, 437] is perhaps one of the most interesting examples of contextual

dependency in biology. It illustrates a number of key systemic interdependencies in bi-

ological systems. Firstly, cloning dramatically illustrates the fact that DNA alone will

not replicate or form an organism, it must be placed in a cell. Also, the DNA cannot be

placed in any cell, it must be placed in the correct form of cell in order to begin replica-

tion. Thus, it is not possible to separate genetic content from its surrounds and retain

any meaningful sense of a functional system; DNA is contextually dependent upon not

just the environment, but also the cell in which it finds itself, which can be considered a

level of environment in itself.

We are left with an uneasy feeling that if contextuality is similarly prevalent in other

fields, then the usual separation between system and environment may be futile; perhaps

reductive analysis, while very successful historically, is not in fact the way to proceed

in our attempts to extend our understanding of physical reality. This problem, while

relatively new to physics is by no means new in other fields. This section will now discuss

a number of perceived ‘hard problems’; questions from fields that have consistently defied

reductive analysis. Each shows a remarkably similar tendency to resist a separation into

system and environment.
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1.2.2 Defying Reduction — Very Complex Systems

. . . there is a sense in which complex systems are far more generic than

simple, context-independent ones. Moreover, analysis and synthesis are not

simple rote operations, nor are they in any sense inverses of one another.

In short, the entire identification of context-independence with objectivity is

itself far too special and cannot be retained in its present form as a foundation

for physics itself.

Rosen, p36, [365]

This thesis shall not attempt to define complexity. Instead this work will look at a

number of example systems which have thus far defied reductive analysis and are, most

likely, on the high end of any complexity scale that might be identified. An attempt will be

made to to develop new modelling techniques capable of dealing with these highly complex

systems. It is hoped that in the attempt to construct such a technique, our understanding

of such systems will be furthered. As an introduction, this section will briefly touch upon

some of the current grand problems of analysis, which could in the above framework be

identified as very complex systems, and which have thus far defied reductive analysis,

pointing to the way in which they have stymied attempts to understand, and to model

their behaviour.

The Foundations of Mathematics is a problem that has been resolved, but the im-

plications of that resolution are still controversial [361, 118].

In the wake of the dramatic expansion of mathematics that occurred in the nine-

teenth century, due to the solution of many longstanding problems, and the asso-

ciated development of a number of new techniques, it became generally accepted

that mathematics should not concern itself with the validity of its axioms, as had

been the case since the time of the ancient Greeks, but attempt to derive theo-

rems from some given set of axioms. With this change in the perceived role of

mathematics came a general concern over whether a given set of axioms could be

shown to be consistent, and complete [295]. A complete and consistent formali-

sation was attempted by Russell and Whitehead in their Principia Mathematica,

but ultimately was shown to be impossible by Gödel in two theorems published in

1931. To achieve this, Gödel constructed a metalanguage which formally represents

theorems within a mathematical system, and then used this language to ask ques-

tions of the mathematical system itself about the provability of theorems that can

be stated within the system. He showed that not all questions that can be stated

within the system can be answered using the language of the system itself; if the

system is powerful enough (complete) to ask such questions then it will necessarily

be inconsistent [295, 219, 120]. But this result did not remain in the realms of math-

ematics alone. Alan Turing quickly proved an equivalent assertion about computer
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programs, which states that there is no systematic way of testing a program and its

data to say whether or not the program will ever halt when processing that data

[439]. Gregory Chaitin has examined this problem from an information-theoretic

perspective and found explicit examples of simple arithmetic propositions whose

truth or falsity will never be known by following the deductive rules of any system

of logical inference [120, 122, 119]. Casti has summarised these results eloquently:

Essentially, what Chaitin’s results show is that such mathematical

questions are simply too complex for us.

The theorems of Gödel, Turing and Chaitin are limitations on our

ability to know in the world of mathematics.

Casti, p12, [117]

However, it is possible that rather than an essential limitation, such results provide

us with an opportunity.

Rosen has shed light upon the implications of Gödel’s theorem by discussing it with

reference to the above discussed modelling relation [362, 364]. He claims that Gödel’s

theorem implies that Number Theory is more complex than any of its formalisms.

This is an interesting, and very suggestive result, implying that the mystery sur-

rounding the foundations of mathematics stems from our insistence that we can

analyse it reductively. With new understandings of complexity, it is possible that

we would gain more insight into this problem.

The Origins of Life Problem or the problem of explaining the emergence of life from

physical entities has proven to be similarly intractable. There is a long and distin-

guished line of researchers who have attempted to shed light on this problem, ranging

from Aristotle’s concept of abiogenesis, to the more recent formulation pioneered by

Pasteur, modern physicists [382], and more [221, 225, 86, 281, 238, 239, 364, 404, 53],

and yet it must be admitted that little progress has been made about how life might

arise from a physical world. Generally, the modern explanations for the early origin

of ‘living’ structures from ‘nonliving’ generally fall into gene-first hypotheses (pos-

tulating the early appearance of nucleic acids), metabolism-first (postulating the

evolution of biochemical reactions and pathways first), and hybrid explanations,5

but each of these proposals falls prey to a number of strong criticisms [238], and no

one explanation has been generally accepted.

Most recently, this problem has arisen in the field of Artificial Life, or ALife, which

is

. . . the study of man-made systems that exhibit behaviors character-

istic of natural living systems. It complements the traditional biological

sciences concerned with the analysis of living organisms by attempting to

5See Kauffman [238] for a review of these theories as well as a list of references.
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synthesise life-like behaviors within computers and other artificial media.

By extending the empirical foundation upon which biology is based be-

yond the carbon-chain life that has evolved on Earth, Artificial Life can

contribute to theoretical biology by locating life-as-we-know-it within the

larger picture of life-as-it-could-be.

Langton, p1, [259]

However, this field has not tended to be as successful as might have been hoped

at its inception. In chapter 2 this problem will be examined in some detail, it will

be argued that this is due to a lack of complexity in the models of ALife; hidden

reductionistic assumptions are colouring our models and leading to their general

failure.

The Origins of Consciousness or the question of how conscious thought can arise in

living systems, faces similar problems to the origins of life problem. It is closely

associated with the mind-body problem which is concerned with the question of

whether mental phenomena are equivalent to physical phenomena, and if not, with

the question of how the two should be related. The modern form of this problem

was first formulated by Rene Descartes [149] who proposed that the essence of the

physical is spatial extension, and that minds are substances that are not extended in

space, and therefore not physical. Descartes suggested that these two fundamentally

different substances interacted in the pineal gland, something that we now know

to be wrong, however, the idea of Cartesian Dualism remains despite its by now

well known difficulties. Different solutions to the mind-body problem have been

proposed, in the form of monism, parallelism, epiphenomenalism, functionalism etc.,

but each has been rightly criticised by the proponents of other explanations. A good

introduction to these issues is the collection of classical and contemporary articles

edited by Dennett [123]. Materialism is at present the most popular resolution to

the mind-body problem; according to this monistic view, only material (physical)

entities exist. This theory owes its popularity to the perceived successes of physical

theory in its explanation of much of the behaviour that we see around us. Thus

the standard materialistic view is tightly bound to physical theory; if, for example,

physics is shown to be inadequate in some way then materialistic explanations will

be seen to have suffered a setback. This argument might be reversed however, the

fact that no one explanation of the origins of mind has been forthcoming might

suggest that indeed this is a complex problem and will not be resolved by recourse

to reductive techniques.

The Emergence of Language and the possibility of meaning or representation, forms

the basis of another set of unsolved problems [322, 404, 248, 166, 112, 272, 67, 338,

306], but is made particularly difficult due to the lack of data:
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Language does not fossilize — for all that it was one of the great tran-

sitions in evolution, the advent of language has left no obvious equivalent

to fossil teeth and bones, and seems inaccessible to enquiry. But it is not

hard to imagine the emergence of a set of signals to label objects, the com-

binatorial nature of which allowed an infinite repertoire of sentences to be

constructed from a finite set of words. An essential part of the process

must have been the acknowledgement of a set of rules to combine words

in such a way as to make sentences meaningful. These rules are the syn-

tax that we all easily learn as children, but students of language evolution

have a tough time explaining its origins.

Solé, p289, [410]

Although there is a general consensus that the emergence of language has biological

features [404], finding those features remains a problem. As can be seen from the

above references, a number of different theories have been proposed but these are

hampered by this lack of data, and the general lack of a theory of language makes

these problems even more evident. It is likely that many of these problems are

closely related to the origin of mind or consciousness, since one of the key differences

between humans and apes is due to their language processing abilities in the cortex

[339]. Thus, it is likely that we will not be able to understand one set of problems

without an understanding of the other; two high end complex problems are therefore

likely to form part of the same problem, and neither have been solved by reductive

analysis.

The continuing failure of reductionistic techniques to resolve these problems, despite the

fact that some of them have existed for centuries suggests that our methodology may be

flawed. We are left with the feeling that some of the most important problems in science

are resistant to our main form of analysis — How are we to proceed? Perhaps reductive

analysis can be saved by recourse to the concept of emergence.

1.2.3 Emergence

Emergence refers to the arising of novel and coherent structures, patterns,

and properties during the process of self-organization in complex systems.

Emergent phenomena are conceptualized as occurring on the macro level, in

contrast to the micro-level components and processes out of which they arise.

Goldstein, p49, [194]

Emergence is a concept with a history in both science and philosophy, which is gradu-

ally gaining popularity in the field of complex systems theory [2, 290, 327, 245, 220, 363,

77, 78, 43, 252, 412, 51]. However, as can be seen from a brief reading of any selection

of papers on the field (starting with the above list), the concept is far from well defined.

(See [141] for a good review of the concept as well as a listing of many of its different
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characterisations.) This plethora of different definitions and understandings of emergence

does not rule out its usefulness as a concept, indeed if complex behaviour does fall into

a scale and is exhibited by a wide range of systems then there is every reason to believe

that the associated emergent behaviour will also display similar characteristics. Some of

the different definitions of emergence will be discussed in this work as they become appro-

priate, and a new mode of emergence will be proposed in section 6.1. We shall return to

this concept in section 7.1, when the ideas developed throughout this work will be placed

into a larger context.

1.2.4 Complexity and Postmodernism

This section will conclude with a brief discussion of postmodernism, a field yet to be well

understood which, I believe, has many ramifications for the field of complex systems.

Postmodernism is usually defined with respect to it’s antecedent, modernism. Whereas

modernism sought to place all knowledge and culture within one unifying description,

postmodern arguments are usually seen as claiming such a metadiscourse to be impossible

to a greater or lesser extent:

I will use the term modern to designate any science that legitimates it-

self with reference to a metadiscourse of this kind making explicit appeal to

some grand narrative, such as the dialectics of the Spirit, the hermeneutics of

meaning, the emancipation of the rational or working subject, or the creation

of wealth. [Postmodernism is in this light an] incredulity towards metanarra-

tives.

Lyotard, pp23–24, [271]

Thus, according to postmodernism, different narratives will be necessary in different sit-

uations, or contexts, and there is no such thing as the unified theory or metanarrative.

But this is just what was claimed about complex systems in the discussion of Rosen’s

definition of complexity in section 1.1.1. It is likely that postmodernism arose from initial

conflicts between our reductive techniques and complex systems, a situation made even

more likely when we consider the historical roots of postmodernism in linguistics [148]

and sociology [271, 227]. Postmodernism is what results when we continue blindly in our

attempts to analyse complexity using our standard techniques; it actually points to the

missing contextuality and complexity in our models of the world. Thus in contrast to the

largely negative, or incomprehensible role that postmodernist theories are often seen to

play by workers in more traditional fields of research [408, 386], they can instead be seen

as pointing to the very flaws in our current methodology when we attempt to understand

complex systems.

Paul Cilliers in a very interesting work examining complexity and postmodernism

argues along similar lines that:
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. . . the proliferation of discourses and meaning described in postmodern theory

is not created by wilful and disruptive theorists, but that it is an inescapable

effect of the complexities of our linguistic and social spaces.

Paul Cilliers, p113, [128]

These theories, rather than disrupting or destroying scientific discourse, point to an op-

portunity. The targets of their incredulity, static meanings, or grand metanarratives, are

very similar to concepts such as objective knowledge, or systems that can be perfectly

reduced to their constituents for the sake of analysis i.e. postmodernism rejects reduc-

tionistic explanations in a very similar manner to proponents of observer driven models

of complexity such as Rosen (more details of this class of model will be provided in sec-

tion 1.5.1). Different narratives become necessary when a contextually dependent complex

system is under examination, but there is still a possibility that these different narratives

can be sensibly compared, and judged in some way as to their respective validity. While

it is likely that any attempt to do this will attract the ire of many postmodernists, it is

possible that a number of other workers in the field will be interested in the possibility

that their theories might be used in a more positive light.

1.3 Contextuality

Formally, a context means that a logical value associated with a given

proposition depends on a history of the system. In particular, the order in

which questions are asked is not irrelevant.

Aerts et al., p1, [25]

A contextual system is one which depends in some way upon the behaviour of factors

generally considered external to it. These may include the environment of the system, its

history, its spatial or timewise extended components, the process of measuring the system,

the way in which the system is examined etc. Many of these contextual dependencies will

be discussed throughout this work, in particular sections 5.1 and 5.2 will more formally

define this concept, taking quantum contextuality as the basis of this definition. For now

we shall briefly examine the relationship between contextuality and complexity.

1.3.1 Complexity and Contextuality

Contextual matters are traditionally treated only in the “Material and

Methods” sections of the primary experimental literature. They are not the

matter sought for inclusion in textbooks, and are felt to be almost a physical

embarrassment or even an impediment to the knowledge we seek for addition

to the compendium.

Salthe, p85, [376]

Reductive methods have worked very well in scientific endeavors for centuries, prob-

lems only appear to be arising as we seek to apply them to systems which exhibit high
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end complexity. Often, it is not possible to consider such systems as fully separable from

their environment; the context in which we find a system will affect what we see. This

contextual dependency may take a large variety of different forms, some of which have

been discussed in this chapter: it may arise from the impossibility of separating a system

from its environment as often occurs in biological systems: it might emerge in some sense

spontaneously from the interaction of a large number of components (as in economics)

where it becomes impossible to consider an individual as separate in any meaningful sense

from the other individuals in the system: it might be that a system cannot be considered

separately from past interactions and measurements, a series of frozen accidents might

have profoundly contributed to the system as it is found in its present state (e.g. biologi-

cal and quantum systems): the level at which a system is examined may influence what is

seen as occurs in ecological systems: the response of a system to some input may depend

upon other co-occurring inputs as often happens in genetic systems etc. Systems which

exhibit such contextual dependencies are generally referred to as complex.

Such contextual dependencies will not be resolved or understood through simple re-

fining of our current reductive techniques, they are not small problems which can be

ignored or approximated away, rather they require new techniques of analysis. Concepts

such as contextuality, complexity and emergence are intimately connected, they must be

understood in unison. This work seeks to develop our understanding along these lines.

Although it must be admitted that none of these concepts have been defined in this chap-

ter, it is hoped that their nature has been illustrated somewhat in this discussion. Their

status will be clarified more fully throughout the next four chapters.

1.4 Object Based Modelling

Our understanding of the world is object based; we see chairs, aeroplanes, trees, dogs etc.

and form theories, models and predictions about their behaviour. We are often even right

in our predictions. It is this object based methodology which has tended to form the

basis of our reductive understanding of the world. The general idea has been that if it

is possible to understand an aeroplane as composed of engines, seats wings, wiring etc.

then it seems reasonable to expect that other aspects of the world could be understood in

a similar manner. However, we have already seen that there are reasons to suspect that

object based models cannot apply to all physical systems.

Even without admitting that phenomena such as complexity and contextuality are

disrupting our theories we can find other reasons why object based methodologies are

coming to the end of their general usefulness. Consider for example the infinite regress that

is being faced by physicists attempting to define the fundamental objects of the Universe.

Over a period of centuries our understanding of the world in terms of the substances

we see around us has been refined, first to the atomic level, then atoms themselves were

explained in terms of nuclei and electrons, and nuclei are now understood as emergent
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structures formed from quarks and gluons [279]. At present, a number of models of

these ‘fundamental objects’ have been proposed, including preons [279, 160], strings [387],

branes [300] and loops [368], but we might ask even at this point what the constituents

of these new objects will be. Something is obviously wrong with our methodology. This

problem becomes particularly evident when we consider the nature of quarks. Considered

simplistically, a nucleus is composed of three quarks undergoing a very complicated set

of interactions in what is termed a colour singlet state (see section 4.3.1 for more details

about QCD). Although quarks appear to be obvious contenders for the role of parts of

a nucleon, the colour confinement hypothesis [336], suggests that they do not make sense

individually, and no individual quarks have ever been discovered in nature. There is

therefore a sense in which, while a quark is a reasonable modelling tool, it is a far more

complex phenomenon individually than a nucleon. Thus, while it makes sense to talk

about an electron and a proton, and experiments can be performed with these objects,

the same cannot be said about quarks; as objects quarks exist tenuously at best. It is

most likely that they are more real in our modelling then they are in reality.

This example should cause us to pause in our relentless pursuit of objects. A number

of other problems with object based modelling will be discussed throughout this work, but

this initial problem presents its own difficulty; how are we to construct non-object based

models? Our entire modelling apparatus consists of identifying objects and their interac-

tions, our mathematical apparatus mirrors this, if object based models are insufficient in

an exploration of reality then we are left in something of a dilemma.

However, one possible resolution presents itself in the form of contextuality. A con-

textual system is difficult to separate into component objects, strange dependencies arise

among objects which are disproportionate to their spatial separation and also to their ap-

parent strength. With formalisms that properly incorporate contextuality we might start

to develop methodologies which are not so object based. This search for an understanding

of contextuality and less object-based models will form a major theme of this thesis.

1.5 The Complexity Scale

Simplicity may have a unified form, but complexity has many varieties.

. . .Concrete complex systems spread across a whole spectrum of complexity.

For systems on the high-complexity end of the spectrum, such as brains or

persons, our current sciences offer catalogues of facts but no comprehensive

theory.

Auyang, p9, [42]

While simple behaviour is relatively straightforward to define there is a wide range of

complex behaviour. Starting from simple reductive systems, it seems possible to define a

complexity scale, which moves from simple systems such as Newtonian mechanics, through

chaotic systems, fractals and power laws, into problems such as network theories and
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language acquisition, and finally up to observer driven models of high end complexity.

The proposed scale will not be justified here; it is not something that can be justified

at present, however, it seems likely that such a scale can be constructed and that such

a concept will be useful in the field of complex systems. An initial proposed ordering is

illustrated in figure 1.2, which it must be stressed includes many overlaps, and is only

a preliminary suggestion. Similar scale-type proposals have been made by other authors

[126, 42], but never with any actual suggestion of how such a scale might look. It seems

likely that before a proper understanding of any such possible scales of complexity can

be obtained it will be necessary to develop new modes of analysis capable of exploring

the behaviour of high end complexity. With this in mind we shall now turn to some

proposed models of what might be considered observer dependent, or contextual, high

end complexity.

1.5.1 High End Complexity

Although such an identification is likely to be controversial, this thesis will adopt the

stance that at least one aspect of high end complexity that can be identified is some sort

of observer dependence, or contextuality of the systems exhibiting such complex behaviour.

This section will explore some of the definitions of complexity which have been proposed

along these lines.

We have already briefly discussed Rosen’s definition of complexity, which falls very

clearly into this category, in section 1.1. A number of researchers have pointed to similar

observer dependence, or contextuality of complex behaviour, which shall be designated

hereon as observer driven. Consider for example:

Pattee’s Epistemic Cut [325, 324, 319] which separates the object, the system under

study, from the subject, the thing that is interacting with (e.g. measuring) the

object:

The epistemic cut or the distinction between subject and object is nor-

mally associated with highly evolved subjects with brains and their models

of the outside world, as in the case of measurement. . . .The cut itself is

an epistemic necessity, not an ontological condition. That is, we must

make a sharp cut, a disjunction, just in order to speak of knowledge as

being “about” something or “standing for” whatever it refers to. What is

going on ontologically at the cut . . . is a very complex process. . . . in order

to perform a measurement, the subject must have control of the construc-

tion of the measuring device. Only the subject side of the cut can measure

or control.

Pattee, p15, [325]

Thus, Pattee claims that an epistemic cut is necessary, and is necessarily outside of

the bounds of standard reductive analysis in the attempt to understand any system
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Figure 1.2: A proposed complexity scale. In this framework there are not simple and
complex systems, rather all systems are understood as belonging to the scale, but some
are ‘more complex’ than others. At the right end of the scale we see those systems and
problems which might be understood as exhibiting high end complexity.
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that involves a situation of measurement or control. In order to understand complex

emergent behaviour, Pattee claims that we must be able to understand and to im-

plement an epistemic cut in our models, and yet the process of this implementation

remains a mystery. More details of this concept will be provided in section 2.1.4.

Casti built upon the conceptions of complexity forwarded by Rosen and Pattee. However,

in addition to their claims, he made the stronger claim that complexity can be

measured in some way; it is related to the number of inequivalent descriptions that

an observer can generate for a system of interest [116]. This definition of complexity

makes explicit reference to the observer; complexity only makes sense with reference

to an observer, it is not a property inherent in any system itself. However, such a

definition is rather difficult to implement [163].

Edmonds has formulated a syntactic definition of complexity [163] based upon inequiv-

alent descriptions:

Complexity is that property of a model which makes it difficult to for-

mulate its overall behaviour in a given language, even when given reason-

ably complete information about its atomic components and their inter-

relations.

Edmonds, p72, [163]

He defends this definition through a comprehensive examination of a number of al-

ternative ideas surrounding complexity, such as patterns, size measures such as the

number of components, size of the rule set, or the size of the minimal description

in some language, processing time, or computational complexity, ignorance, vari-

ety, surprise, and improbability, the midpoint between order and disorder, logical

strength, and irreducibility, claiming that these are concepts “that are frequently

conflated with complexity, but which are, at best, very weak models of it.” p57,

[163]. With an acceptance of a complexity scale, such concepts can be seen to lie

somewhere in between simplicity and complexity, explaining the weakness of such

models as exemplars of complexity as well as their more complex nature when com-

pared to simple reductive systems.

Complexity defined with respect to an observer, while not immediately appealing to the

majority of researchers in complex systems does sidestep a number of issues that have

plagued the general drive to find a definition of complexity.

• Complexity often seems only to make sense with respect to some level of description.

For example, a process termed coarse graining, or the examination of a system on

a larger scale [42], often turns an apparently complex system into a far simpler one

[376]. A number of researchers have emphasised this point:

Depending on the spatiotemporal scale or window through which one

is viewing the world, a forest stand may appear (1) as a dynamic entity
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in its own right, (2) as a constant (i.e., nondynamic) background within

which an organism operates, or (3) as inconsequential noise in major ge-

omorphological processes. Thus, it becomes impossible to designate the

components of the ecosystem. The designations will change as the spa-

tiotemporal scale changes.

O’Neill et al., p83, [310]

• As the above quotation emphasises, the time frame over which a system is examined

can profoundly influence its classification as complex or simple. Organisation is often

identified as resulting from this difference in processing rate [400, 310].

This problem has an added difficulty that arises when we consider our current

modelling paradigm. It is standard practice to model systems using differential

equations, but these generally only allow for constant time intervals [137]. The

behaviour exhibited by complex systems often occurs on a range of different faster

and slower timescales, and this is often lost in a modelling based upon differential

equations. This is a particularly relevant objection when we consider the interesting

behaviour that can be generated by examining systems using differing timescales,

such as was demonstrated by Turing [440]. It is likely that this characteristic can

be utilized in an attempt to generate systems that can display complex behaviour,

however, this possibility will not be examined in any detail in this work.

In addition to this problem of modelling, many researchers have emphasised the way

in which there appears to be a anticorrelation between the timescale over which an

interaction occurs, and it’s apparent strength [310], but there are few attempts to

deal with this behaviour in a consistent model. Consider for example the dynamics

of an ecosystem, which evolves over a timescale of centuries to millennia, where

perturbations such as an increase in carbon dioxide may take 100 or more years to

eventuate in changes that impact upon single organisms, which interact on a much

faster timescale, and often much more strongly. (After all, a murder is a very strong

interaction between two people over a potentially very short timescale, which often

draws a strong reaction from a community, but the gradual warming of the earth,

which has the potential to kill far more organisms, does not appear to impact upon

us so strongly, at least at present). Generally an interaction over an ecosystem is far

slower, and on the same timescale as organismic interactions, far weaker. A similar

pattern repeats as we compare the interactions between cells in the organisms to

interactions between the organisms themselves etc.

• As was discussed in section 1.4, it is often difficult to identify the objects that should

be taken as fundamental in the modelling of complex systems, depending upon the

behaviour of interest it is often necessary to make use of a different set of primitive

objects as well as dynamical equations [42].
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Observer driven definitions of complex behaviour sidestep these issues because different

observers will see different objects as fundamental depending upon their spatiotemporal

level of interest, and the dynamics that they extract from a model of a system will similarly

be dependent upon their viewpoint. However, it is necessary that some sort of systematic

connection between these different descriptions be possible, even if the connection does

not make two different models equivalent.

Despite this advantage, the observer driven approach has not tended to attract the

general attention that it deserves, especially in the field of physics. We might attribute

this lack of recognition to the perceived negative implications of such an approach. In the

general excitement created by the new techniques of ‘complex analysis’ there was a feeling

of optimism that it would be possible to describe increasingly complex systems without

a substantial rethink of the dominant modelling methodology. While these approaches

have yielded remarkable results, the problematic phenomena listed in section 1.2.2 suggest

that they will not be capable of answering all of the questions that arise in our attempts

to understand complexity. For now, we shall assume that some class of observer driven

theories will be necessary to understand high end complexity. More arguments will be

forwarded as this work progresses to convince the reader that this is indeed the case.

It is interesting to note that in addition to the observer driven theories mentioned

above, Edmonds identifies a number of other theories of complexity as special cases of his

definition, notable among these special cases are computational complexity, algorithmic

information complexity, and Shannon entropy. As these theories are very often identified

with complex systems, the ability of Edmonds definition to incorporate them is important

for its general acceptance. This also supports the identification of a complexity scale, as

the possibility of describing ‘less complex’ behaviour within a larger definition suggests

that such phenomena are at the lower end of the scale.

The focus, in the Edmonds definition upon the concept of modelling rather than upon

the system under study itself is important. If complexity can be defined as a difficulty

to formulate the behaviour of a system in the language of one model alone, then it is

remarkable that there are so few fundamentally different models of complex systems. A

major component of this thesis will consist of attempts to formulate new models which

emphasise the contextuality of high end complexity.

1.6 Objectivity: Contextuality, Subjectivity and Observer Dependence

It must be acknowledged that the way we look determines what we see, or

rather it co-determines the latter, in conjunction with what there is.

Kampis, p95, [236]

We might ask, at this point, how the concept of observer driven complexity affects

our understanding of systems in general; is the longstanding distinction between scientific

objectivity and subjective ‘interpretations’ to be lost? The contextuality exhibited by
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nonlocal quantum systems indicates a way in which this issue might start to be resolved

and will be discussed in section 5.1. For now we shall consider the implications of such

results in a more general sense.

Contextuality in general raises an issue that has not been well addressed in the physical

literature; the objectivity of our measurements can no longer be assumed. That is, the

experimental arrangement that is used to examine some system itself appears to influence

the results obtained. This is a profound result. Historically, one of the most basic tenets

of scientific methodology is that the apparatus of scientific experiments is measuring

some objective property of reality, it may do this in a destructive manner, or leave the

system in a relatively unchanged state, but the measurement itself was assumed to be

independent in some fundamental sense from the measurement result. This assumption

has a long history. Traditionally, the term measurement represents the process by which

humans carefully control and monitor a system in order to determine its state. There

is, associated with this, an expectation that the process of measurement does not affect

the results that are recorded. This assumption has been so strong that it has led to

a distinction between the so called ‘hard’ and ‘soft’ sciences. In fact, this distinction

can be attributed to the fact that traditionally, sciences such as mathematics, physics

and chemistry could be discussed objectively; the results of any experiments or analysis

in these fields did not depend upon the way in which they were acquired, or upon the

history of the system under analysis. Consider for example Newtonian mechanics, where

it is possible to measure the distance traversed by an object, and the time it took to go

that distance, without in any way affecting the object itself. In contrast, fields such as

sociology, biology and economics dealt with far more complex systems, many of which

had contextual dependencies in even the most simple cases considered. It might quite

reasonably be claimed that from the outset the concept of objectivity has been defined

with respect to one of the narrowest class of systems that we might wish to consider

scientifically.6

This problem has an even greater importance when we consider the ontology of physics;

the debate about the interpretation of quantum mechanics and the associated perceived

loss of realism as a viable philosophical stance in physics [305] arises because of this overly

restrictive notion of objectivity in science.

It is my contension that we can identify a notion of observer dependence, or contextu-

ality, without losing our ability to objectively analyse a system. This can be accomplished

if we define these notions more formally, something that we are not yet ready to attempt.

For now we can somewhat informally point to the differences7 between these notions:

6Rosen raised a similar point when he identified physical systems as forming a subset of biological ones
[364].

7Up until this point, observer dependence and subjectivity have been used interchangeably, we are now
in a position to identify a slight difference between these two concepts. This notion will be discussed more
in section 7.3.
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Contextuality refers to a dependency of a system upon some aspect of its environment.

In this work, I shall consider the environment to include anything not directly as-

sociated with the system itself; measuring apparatus, timescales, background noise,

etc. In a biological system the environment retains its standard meaning. In some

cases contextual dependency can be identified by finding a system that violates

Bell-type inequalities. This will be discussed in section 5.2.

Observer Dependence is a stronger term, encompassing contextuality but requiring

in addition that the contextual dependency occur with respect to measurement or

observation; a system with an observational dependence will be contextual, but not

all contextual systems will exhibit a direct observer dependence. An observer driven

theory of such systems suggests that more than one explanation or model will be

necessary to understand all of its behaviour.

Subjectivity is a stronger term again. A subjective description of a system cannot be

communicated in a meaningful (i.e. objective) sense.

Thus, a system could be dependent on an observer in a well defined manner, in which

case it would not be fair to identify it as subjective. If it was possible to formalise this

dependency in some sense, then the description of the observer dependency could itself be

communicated and a sense of objective description saved. We live in a contextual world,

how we look can determine what we see, but if we can communicate the way in which

this occurs, then we can hope to understand this contextuality.

The aim of this chapter has been to develop an understanding of the far-reaching

contextuality possessed by a number of systems that are generally recognised as complex.

A class of theories of high end complexity, which have been termed observer dependent,

has been identified which to some extent capture this contextual nature. However, these

theories are largely ignored in the complex systems area, perhaps because they are seen as

limiting the extent of our possible understanding. This is not so. Rather, I have argued

that such contextually dependent systems offer new opportunities for solving many of

the apparently unsolvable problems besetting the scientific methodology. We require new

techniques. A large part of this thesis will consist of an analysis of existing systems and

their associated analytical techniques, where I will argue that in fact we have already

incorporated to some extent the necessary contextual dependence into our modelling.

Some of our current reductive ideas will then be extended in an attempt to incorporate

contextuality more explicitly into our analytical methodology.
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Chapter 2

An Example System: Artificial Life

Having identified somewhat the characteristics of high end complexity, this chapter will

be devoted to a concrete example. Specifically, we shall look at the field of Artificial

Life (often shortened to ALife) and its general failure to realise emergent systems which

exhibit high end complexity.

Artificial Life is a diverse and sometimes disparate field, with a number of differing

goals, theories, models and proposed outcomes:

• There is a drive to understand concepts such as complexity and emergence as they

relate to the field.

• There are the attempts to generate emergent behavior in vitro, and a machinā1.

• Some models, such as Avida [262, 459], in addition to their primary role as a platform

for the investigation of digital life, are being used to investigate current theoretical

and evolutionary problems.

• Then, there is the attempt to achieve a living organism, what might be called Strong

ALife.

This diversity is indicative of a new vital field, with a number of promising avenues of

research, however, it also indicates what might be perceived as a lack of direction; there

are no obvious answers in the field, no well accepted theories that might be used to

guide research. These two perceptions are in essence compatible, a newly established

field will lack theories, which can acquire the status of dogma in a more developed field

of knowledge.

A sign of the developing maturity of the field is the formation of the so-called Grand

Challenges of Artificial Life which were identified during an open session during the 7th

international conference on ALife [54]. Similar to the list of mathematical challenges

proposed by Hilbert at the beginning of the 20th century [218], these identify the fourteen

major open problems in the field as perceived by researchers in the field. Separated into

three main categories, these problems are:

1Although the more usual term is in silico, a consideration of the root noun (L. silex) leaves us
wondering why researchers are trying to generate life in flint! This work will make use of a machinā,
except for places where those with little regard for language are being quoted.
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1. How does life arise from the nonliving?

(a) Generate a molecular proto-organism in vitro.

(b) Achieve the transition to life in an artificial chemistry a machinā.

(c) Determine whether fundamentally novel living organizations can exist.

(d) Simulate a unicellular organism over its entire lifecycle.

(e) Explain how rules and symbols are generated from physical dynamics in living

systems.

2. What are the potentials and limits of living systems?

(f) Determine what is inevitable in the open-ended evolution of life.

(g) Determine minimal conditions for evolutionary transitions from specific to

generic response systems.

(h) Create a formal framework for synthesizing dynamical hierarchies at all scales.

(i) Determine the predictability of evolutionary consequences of manipulating or-

ganisms and ecosystems.

(j) Develop a theory of information processing, information flow, and information

generation for evolving systems.

3. How is life related to mind, machines and culture?

(k) Demonstrate the emergence of intelligence and mind in an artificial living sys-

tem.

(l) Evaluate the influence of machines on the next major evolutionary transition

of life.

(m) Provide a quantitative model of the interplay between cultural and biological

evolution.

(n) Establish ethical principles for artificial life.

The article cited above discusses these problems in more detail, and contains a number

of relevant references for any interested readers.

Unmentioned in the above list, but closely associated with a number of them, one of

the most apparent problems in ALife is general the lack in complexity of the organisms

evolved artificially. This chapter will discuss these ‘lack of complexity’ problems in some

detail, it is believed that most of them are associated with the general problems besetting

the reductive method that were discussed in the previous chapter.

2.1 ALife, Complexity and Emergence

A fundamental limitation for computer life is that evolution can only reflect

the complexity of the artificial physical world in which organisms live. An

epistemic cut affords the potential for efficient implementation and open-ended

evolution, but in a simple world, efficient implementation will be limited and

life will also remain simple.

Pattee, [323]
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In order to achieve some form of artificial life, it will be necessary that our models

display some sort of emergent behaviour. However, two results within the field of ALife

suggest that this is not happening in a truly meaningful sense.

Firstly, it is widely accepted that ALife models do not display Open Ended Evolution

(OEE) [55, 56, 403], but very little research has been conducted into the reasons why this

might be the case. Rather, the tendency has been to construct ever more complicated

environments, or to throw out existing environments and to almost arbitrarily develop new

ones. Although there is often some explanation of the reasons behind this substitution

[262], there is very little general analysis of this failure. We shall discuss OEE in more

detail in section 2.1.3.

A second problem with ALife models their general failure to exhibit more than two

levels of hierarchical structure or dynamics [68]. Without the generation of new, more

complex levels there will be a highest level of complexity attainable, a point emphasised

by the Ansatz for Dynamical Hierarchies (ADH), which shall be discussed in section 2.2.2.

These two problems are clearly attributed importance in the grand challenges listed

above, being explicitly mentioned in challenges 6 and 8, and possibly impacting upon

a number of the other challenges. For example, an understanding of the generation of

rules and symbols from within the physical dynamics of living systems (challenge 5)

would provide a mechanism by which OEE might be generated, as well as simplifying

a mechanism by which the dynamical generation of higher levels of structure might be

attained.

2.1.1 Insufficient Complexity

I tried several self-organizing schemes using automata models . . . I even-

tually recognized a fundamental problem in all such rule-based self-organizing

schemes, namely, that in so far as the organizing depends on internal fixed

rules, the generated structures will have limited potential complexity, and in

so far as any novel organizing arises from the outside environment, the novel

structures have no possibility of reliable replication without a symbolic memory

that could reconstruct the novel organization.

Pattee, p10, [325] (italics added)

The organisms that ‘evolve’ in ALife simulations are not very complex, particularly

when we compare them to the obvious complexity exhibited by many of the organisms

found in nature. It is likely that this lack of complexity can be traced to the low complexity

of the simulations themselves:

• To date the true complexity of the biological environment has not been incorporated

into ALife simulations. For example, experiments using environments such as Avida

only tend to introduce environmental factors numbering in the tens, rather than

the thousands and more, dependencies of biological systems. Also, it is rare that
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simulations even attempt to model the feedback that occurs between developing

organisms and their environment.

• It is rare that both the phenotype and the genotype are incorporated into models.

Even when they are [140], the genotype/phenotype mapping used is simple, with

little or no contextual dependence upon the environment.

• The above point means that the phenomena of phenotypic complexity discussed in

section 1.2.1 are not exhibited by simulations.

• No situations resembling a dynamical ecosystem full of emergent new species adapt-

ing to new niches as they evolve have been realised; OEE is yet to be implemented.

It should be noted at this point that this problem is not evident in all fields of ALife. In

particular, the current drive to create some sort of ‘wet’ or in vitro artificial life [352],

where a number of physical components are combined in a ‘test tube’ is more likely

to actually generate complex emergent behaviour. This is due to the fact that the in

vitro approach has a well defined physics established in its behaviour; the physics of the

everyday world which has already implemented epistemic cuts in a number of well defined

ways. A similar point has also been taken up by Pattee:

Real and artificial life must have arisen and evolved in a nonliving milieu.

In real life we call this the physical world. If artificial life exists in a computer,

the computer milieu must define an artificial physics. . . . In other words, any

form of artificial life must be able to detect events and discover laws of its

artificial world.

Pattee, [323]

ALife must implement a sufficiently complex artificial physics before it can realise suffi-

ciently lifelike behaviour. Wet ALife is effectively bootstrapping life within a physics that

we already know is sufficiently complex to support life, namely our own, therefore it has

neatly sidestepped one of the major obstacles confronting a machinā ALife. Of course

this does not detract from the importance of a machinā methods, in order to understand

the full potential of life, we must attempt to understand it in all guises and there is no

reason to suspect that our physical world is the only one capable of supporting life, how-

ever, it is likely that more progress will be achieved by a sensible application of reductive

analysis when it might work, and this is one such case. This is one reason for the current

excitement surrounding wet ALife [352], but this field does not solve our problems. In

sidestepping the issues we have not gained any understanding, rather we are racing to

realise a phenomenon that we will still not understand.

Although models of phenomena are by necessity simpler than the phenomena them-

selves, the lack of simulation complexity in ALife is far more disturbing when considered

in the context of the attempt to actually generate life i.e. strong ALife. If it is unlikely

that high end complex behaviour will emerge from our current modelling technology, it
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is far less likely that this behaviour will resemble life in any meaningful sense. We need

to consider alternate technologies and models.

First however, we shall consider a specific example of real world complexity which has

not been implemented in any meaningful sense in ALife.

2.1.2 The Complexity of Development

The process of biological development is one of the most complex exhibited by natural

biological systems. It is also one of the least understood, and yet artificial models of

this process are simplistic at best. There are a number of morphogenic models such

as Dawkin’s tree growing program [145], but these models do not seem to capture the

true complexity of the coupling between the phenotype and the selective process. For

example the tree growing program requires that an observer choose the most ‘pleasing’

configuration at each time step. This lack of complexity might perhaps be attributed

to the problem that while the concept of phenotype is relatively easy to understand in

a biological context, consisting of readily identifiable characteristics such as eye colour

and height, in the field of Artificial Life, it is not a straightforward concept to identify.

Indeed many of the simpler simulations performed tend to focus upon the genotype of

the creatures evolved, with little consideration to how this might map to a phenotype

during the process of ontogeny (or development). This is unfortunate as the influence

of the environment upon an individual can be quite profound, consider the example

of phenotypic plasticity discussed in section 1.2.1 a phenomenon which has not been

reproduced in any ALife simulations known to the author. In ALife a genotype results in

only one phenotype. The contextuality of genotypic behaviour is not generally recognised.

Even the complexity of genotype-genotype reactions is rarely acknowledged in ALife.

Most complex organisms are diploid (i.e. having more than one copy of each bit of infor-

mation or strand of DNA), and yet artificial organisms are generally haploid (posessing

only a single strand of DNA). It is often claimed that the higher order phenomena of

evolution can be captured without this added complexity, but the continuing failure of

artificial environments to display phenomena such as OEE suggests that this might not

be the case.

It is my contention that the contextuality of actual biological systems is missing from

artificial life, and that this manifests itself in their consequent lack of complexity.
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2.1.3 Measures of ALife Complexity

The word information has been given different meanings by various writers

in the general field of information theory. It is likely that at least a number

of these will prove sufficiently useful in certain applications to deserve further

study and permanent recognition. It is hardly to be expected that a single

concept of information would satisfactorily account for the numerous possible

applications of this general field.

Shannon, p180, [388]

The problems encountered when attempting to define complexity generally crystallise

when an attempt is made to define the complexity of artificially evolved organisms, and

to compare this to biologically evolved ones. A wide range of different measures exist,

some of which are more useful than others.

Counting Arguments

Often, the complexity of a simulation is understood in terms of simple counting argu-

ments [351, 203]. For example, in the debate [351, 204, 350] surrounding the Ansatz for

Dynamical Hierarchies (discussed below in section 2.2.2) one of the key concepts used is

one of object complexity, which is apparently defined in those papers as a rule set; the

number of rules necessary to define the system. This is a simple counting argument of

complexity, and it is not particularly effective. Emergence is effectively ruled out from

such a notion unless it is explicitly incorporated into the modelling at a higher level. See

section 2.2.2 for an explicit discussion of some of the problems that can arise from such a

counting approach.

Information Theoretic Measures

The source and function of genetic information in organisms is different from

the source and function of information in physics.

Pattee, [323]

Because organisms are not energetically closed systems, there is no way to

deduce the direction, much less the rate, of evolution from classical thermo-

dynamic considerations. All estimates indicate that the amount of entropy,

measured in physical units, involved in the formation of a one-celled biological

organism is trivially small—about −10−11cal/degree. The “improbability” of

evolution has nothing to do with this quantity of entropy, which is produced

by every bacterial cell every generation. The irrelevance of quantity of infor-

mation, in this sense, to speed of evolution can also be seen from the fact that

exactly as much information is required to “copy” a cell through the reproduc-

tive process as to produce the first cell through evolution.

Simon, p192, [400]
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Most of the standard information theoretic measures of complexity have been used

to estimate the complexity exhibited by ALife models. Although Kolmogorovorian com-

plexity [250] or Algorithmic Information theory [122] is sometimes naively used, most

researchers accept that it is not an adequate measure of information in biological sys-

tems. This is because this theory sees random sequences as having maximum complexity;

by definition a random sequence can have no generating algorithm shorter than simply

listing the sequence. As Gell-Mann has pointed out [178], this contradicts the notion that

random sequences should contain no information.

Shannon entropy [389] is most commonly used to estimate the complexity of sim-

ulations [5, 6]. However, it falls prey to problems of identification; is the genotype or

the phenotype the relevant object to be measured? While it is quite straightforward to

measure the genotypic entropy, this may not in fact have very much meaning. Consider

for example the contextual aspects of DNA that were discussed in section 1.2.1; in fact

the genotype has very little meaning without a thourough consideration of the context

in which it is found. While this is not such an issue in ALife due to the generally non-

contextual nature of genotypic interactions, it is not going to remain so as the drive to

artificially implement more and more complex behaviour becomes more pronounced. On

the other hand, if a phenotypic analysis is attempted then isolation becomes an issue;

given that the phenotype is a consequence of the interaction between the genotype and

the environment, it seems likely that an accurate estimation of the complexity of a sim-

ulation could only be made with a proper incorporation of the environmental factors.

In such a case, the resultant measure would most likely approach the size of the entire

system of simulation, a somewhat unsatisfactory result.

A more interesting example is due to Adami [4], who attempts to move between these

problems. Adopting a common simplification of the genotype/phenotype map, he uses a

string to represent a phenotype. The information content of that string is given by the

difference between the maximal Shannon entropy of the string and the entropy given by

assuming that the string codes for some phenotype p:

I(g) = H(g)−H(g|p) = l − log32N (2.1)

where l is the length of the genotype in instructions, and N is the number of genotypes

that give rise to the phenotype p. Again, it seems reasonable to expect that as ALife

starts to approach the true complexity of biological organisms, the simplification of the

genotype/phenotype map used above will become even more unrealistic than it appears

at present.

The reason why such measures are even remotely useful in ALife is very closely related

to the failure of those models; if ALife simulations were even remotely as complex as

required then such straightforward applications of information theory, with its associated
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loss of structural and dynamical information would immediately appear nonsensical. One

example of this phenomenon is provided by the quotation from Simon appearing at the

beginning of this section; if our measures tell us that the same amount of information

is required to copy a cell as would be required to produce the first cell then intuition

suggests that the measure is in some sense unsatisfactory.

Open Ended Evolution (OEE)

Bedau and Packard, along with a number of coworkers, have proposed a number of statis-

tics which measure the evolutionary behaviour of various systems [55, 56]. These allow us

to make quantitative statements about the long term characteristics of evolving systems,

hence offering a way in which to classify them. The idea is to identify innovations that

make a difference to the evolutionary viability of species. Such innovations are the ones

that persist and get used by succeeding generations. Counters are attached to the spe-

cific components of a computational run, if the components are passed along during the

reproductive process then the associated counters are passed along also. These counters

are then used to define the activity counters for various species. The activity a at some

time t is defined as

a(t) =
∑

k≤t
∆i(k), (2.2)

where ∆i(t) is the activity increment for component i at time k, often defined with a

delta function:

∆i(t) =

{

1 if component i exists at t

0 otherwise
(2.3)

Various statistics are then proposed, based upon the activity counters. For example, an

obvious measure of the evolutionary behaviour of some system is obtained by counting the

number of innovative components that it has. In ecosystems this often involves identifying

the number of species in the system. This measure is termed diversity and denoted D(t),

where the t dependence is intended to specify the time dependence of diversity. Diversity

can be defined in terms of the activity counters as

D(t) = #{i : ai(t) > 0} (2.4)

where # denotes cardinality of the set. The total cumulative evolutionary activity Acum(t)

is the sum of the evolutionary activity of all components at some time t:

Acum(t) =
∑

i

ai(t). (2.5)

Diversity and Acum are then used to define:
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Mean Cumulative Activity Ācum , which is the cumulative evolutionary activity di-

vided by the diversity D(t)

Ācum(t) =
Acum(t)

D(t)
. (2.6)

This term is often referred to as the “mean activity”.

New Evolutionary Activity Anew sums the evolutionary activity per component with

values between a0 and a1, which define a strip through the component activity

distribution.

Anew(t) =
1

D(t)

∑

i,a0≤ai(t)≤a1

ai(t)→
1

D(t)

∫ a1

a0

C(t, a) da (2.7)

where, the component activity distribution,

C(t, a) =
∑

i

δ(a− ai(t)) (2.8)

is just a sum over Dirac delta functions, (equal to one when a = ai(t) and zero

otherwise), and therefore indicates the number of components with activity a at

time t. This measures the number of innovations with an activity value a in the

range a0 ≤ a ≤ a1, which are then considered the bounds at which activity values

can be interpreted as having a positive adaptive significance.

These statistics have been used to identify four distinct classes of behaviour exhib-

ited by evolving systems according to whether the above measures are unbounded2 and

positive3, their characteristics are listed in table 2.1

It has been determined that the fossil record and patent records both exhibit class 4

behaviour, but in contrast, analysis of a number of different ALife models has shown that

none of them exhibit this open ended behaviour [55, 56, 403]. A vital current problem is

to build an ALife model that exhibits Open Ended Evolution (OEE), which is defined as

behaviour in class 4.

2The function f(t) is unbounded iff

lim
t → ∞

„

sup(f(t))

t

«

> 0. (2.9)

3The function f(t) is positive iff

lim
t → ∞

 

R t

0
(f(t)dt

t

!

> 0. (2.10)
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Class D(t) Ācum(t) Anew(t) Description

1 bounded zero zero none
2 bounded unbounded none unbounded, uncreative
3 bounded bounded positive bounded, creative
4 unbounded positive positive unbounded, creative

Table 2.1: The different classes of evolutionary activity, OEE is exhibited by systems in
class 4, but no artificial systems have managed to realise such behaviour.

Hierarchical Complexity

One interesting attempt to understand complexity in ALife and biological complexity in

general is due to Nehaniv and Rhodes [302]. This work relates complexity to the number

of levels of hierarchy needed to build a computational model of, or to understand the

given biological system. Postulating five axioms:4

1. Bounded Emergence: Although complexity can increase via interaction, if this in-

teraction is one way the complexity is bounded.

2. Noninteraction: Complexity does not increase if one combines noninteracting com-

ponents.

3. Covering: A part or component of the system does not have complexity exceeding

that of the whole.

4. Constructibility: Every biological system can be emulated by a network of interact-

ing components which individually have low complexity.

5. Initial Condition: Certain simple systems have complexity zero.

They discover a complexity measure cpx : A → N satisfying these axioms which gives a

larger natural numberN for a more complex system. They also postulate that the measure

should be maximal in a final sixth axiom in order to achieve some sort of uniqueness to

the measure.

Within this definition, evolution is defined as open ended if it achieves unbounded

increase in complexity [301]:

We say that an evolutionary system E exhibits open-ended evolution if for

every integer N there exists a time t such that at time t the system includes

an entity e whose complexity is at least N , i.e. cpx(e) > N .

Nehaniv, p1, [301]

While this definition is interesting, it falls prey to the same problems that beset all object-

based techniques. Consider for example the covering axiom, while it might at first sight

appear to be a reasonable axiom, it is not something that we can expect all systems to

satisfy. In particular, if the part is inappropriately separated from the whole, then it is

4The original paper [302] is fully axiomatic, for the sake of clarity this discussion will be restricted to
the natural language description formulated by Nehaniv in [301].
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likely that it will appear to have far more complexity than the entire system. Quark colour

confinement (which was discussed in section 1.4) is an example of this phenomenon.

2.1.4 ALife: Simulations versus Emergence

. . . attempts to formalize mathematics produced only nongeneric simulacra

of mathematics. Moreover, there is no threshold of “enough” to permit the

replacement of the real thing by such a simulacrum and no (syntactic, or

predicative) way of pasting such simulacra together to recapture the real thing.

. . .

The study of such simulacra, precisely because they are simulacra, has come

to be prefaced by the adjective artificial.

. . .

Today, that history is being repeated under the rubric of artificial life.

Again, this finds its basis not so much in science but in mimesis, and the

search for enough mimics to cross a threshold into life through software alone.

Rosen, pp41–42, [365]

Pattee has raised a number of objections to the notion that emergent artificial lifeforms

are actually being created by ALife simulations. He claims that ALife, like the field of

artificial intelligence, is in danger of confusing the distinction between simulations and

realisations of life [324]. He distinguishes between three levels of emergence

1. A syntactic level of emergence which describes the new behaviour arising in systems

that exhibit phenomena such as symmetry-breaking and chaos [383], catastrophe

theory [433], dissipative structures [346], and fractals [276]. Pattee claims that

while these phenomena provide a good starting point in attempts to understand

the nature of emergence, their fundamentally predictable form of behaviour means

that they do not provide examples of true emergence in all of its complexity; these

processes do not show the creativity of truly emergent processes. He also asserts that

a number of biological phenomena which are commonly termed ‘frozen accidents’5

fall into this category; they are not emergent in any sort of a strong sense since

the frozen behaviour that emerges was simply one realised out of a set of possible

outcomes, and therefore should not be classified as new behaviour.

2. A semantic level of emergence which is associated with high-level symbolic activity,

where systems of symbols stand for some referent. Examples of this level include the

emergence of DNA as a symbolic representation for some primitive phenotype, and

the appearance of cognitive representative abilities, such as language, in primitive

societies. Pattee also points to commonly used mathematical techniques such as

5Such as the choice during evolution of four bases on the DNA sequence. There is no a priori reason
to believe that this was a dynamical necessity, it is more likely that it occurred accidentally during the
course of evolution. There are many other examples of this type, see [404] for a discussion of some of the
most important transitions of this type.
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estimation, extrapolation, averaging and induction for further examples. He sug-

gests that this semantic level operates on existing data structures which result from

completed measurements or observations; no fundamentally new measurements or

observations emerge at this level.

3. Measurement forms the basis of Pattee’s third order of emergence, which he claims

is the most important for evolution. A process exhibiting the full potential of

emergence will actively evolve new ways of interacting with its environment, that is,

new ways of measuring its surroundings. For example, a cell that evolves the ability

to construct a new enzyme is then capable of interacting with (or measuring) a new

aspect of its environment. As another example, consider an animal that discovers

a new source of food and then utilizes it, or the situation where in a population of

wild chimpanzees one animal learns to utilize a new tool and then teaches the rest

of her pack the same trick.

Pattee claims that it is the implementation of new representations and measurements

that must be understood in the search to generate new emergent behaviour:

Knowledge is potentially useful information about something. Information

is commonly represented by symbols. Symbols stand for or are about what is

represented. Knowledge may be about what we call reality, or it may be about

other knowledge. It is the implementation of “standing for” and “about” —

the process of executing the epistemic cut — that artificial life needs to explore.

Pattee, [323]

The importance of this form of emergence has also been noted by Baas in his examination

of emergence within the context of hyperstructures and hierarchies [43], which shall be

discussed in section 2.2.1. At present, we can note that in implementing an epistemic cut,

we must make explicit reference to some form of observer; the way in which knowledge

is represented will depend upon to whom it must be represented, and therefore, again we

see that the epistemic cut is in essence an observer driven theory. This means that if we

can incorporate a notion of measurement into our theories then there is hope to generate

a notion of observer driven complexity.

Thus, according to Pattee, the most relevant form of emergent dynamics in the field of

ALife is the one that leads to the creation of new processes of measurement; new ways in

which a system might interact with its environment or within its context. Unfortunately,

there is no theory of this process, and the inability of ALife simulations to display com-

plex emergent behaviour suggests that the two problems may be related. Our insistence

upon reduction as an analytic technique is likely to lie behind these problems; in applying

reductive analysis, hence separating a system from its environment we effectively freeze

our definitions of these concepts. In particular, the process of measurement, or the way
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some aspect of the environment interacts with the system is static in the usual reduc-

tive techniques; there is no room for new processes of measurement to emerge in our

methodology.

Pattee has proposed that an epistemic cut separates our knowledge from the thing that

it describes; description from construction, the observer from the system, the genotype

from the phenotype [323].6 Such a cut recognises the importance of describing the way

in which a world of physical systems might transform into biological evolving entities.

According to Pattee, life requires such an epistemic cut, that is, a separation between

symbols and the thing that they stand for (i.e. their referrent). He stresses that the

process by which this cut is implemented is generally a mystery.

Pattee goes on to examine the differences between a physical and a biological episte-

mology.

The important point is that physical epistemology is a highly evolved and

specialized form of the primitive description-construction process. The cogni-

tive role of physical epistemology appears to be far removed from the construc-

tive function of genes, but both define a fundamental epistemic cut. Great

discoveries have been made in physics without understanding the mechanisms

that actually implement the epistemic cut, because physics does not need to

study the epistemic cut itself. Measurement can simply be treated as an ir-

reducible primitive activity. That is why in most sciences the epistemic cut

appears sharp — we tend to ignore the details of constructing the measurement

devices and record only the results. The reality is that physical theory would

remain in a primitive state without complex measuring devices, and in fact

most of the financial resources in physics are spent on their construction.

Unlike physical theory, great discoveries in the evolution of natural and ar-

tificial life are closely related to understanding how the description-construction

process can be most efficiently implemented.

Pattee, [323]

Thus, Pattee draws a distinction between these two types of natural system. Physical

systems can often be understood without a proper model of the mechanisms that imple-

ment the cut, which explains the early successes of physics; we do not need to understand

our measuring devices in order to understand the systems described by physics. On the

other hand, in any attempt to understand the evolution of natural and artificial systems

it is necessary to examine the details of the cut. In particular, the implementation of the

epistemic cut where the symbolic information contained in the genotype is mapped to

a phenotype must be understood in an investigation of biological systems. ALife must

6Pattee traces this notion back to von Neumann’s discussion of the measurement problem in quantum
mechanics [446], a treatment which is not satisfactory. However, I feel that Pattee’s notion of an epistemic
cut is both reasonable, and useful, if founded on a theory that is less than satisfactory philosophically.
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attempt to understand the epistemic cut to the extent that it can actually implement it,

a far greater challenge than that faced by fields that rely upon physical modelling. We

might ask to what extent this has been achieved.

In Artificial Life, implementation is achieved via computation, but the available models

of computation are severely limited,7 centering solely around achieving outcomes faster

and faster. On the other hand, living organisms rely not just upon speed, but also upon

efficiency and reliability during their process of replication. These concepts are not often

investigated in ALife models, rather they are assumed to be a certain rate at the outset;

they form a part of the high level techniques rather than being incorporated into the

modelling at a fundamental level. They are not evolved. Perhaps the most problematic

aspect of this is the fact that no known ALife simulations evolve new measuring techniques

i.e. new ways of interacting with their environment. Instead, channels of measurement

interaction are generally incorporated into the lowest level objects, our reductive, object

based methodology has caught up with us again. This problem becomes particularly

apparent when an attempt is made to artificially build up new layers of hierarchical

structure.

2.2 Hierarchical Structure

Many complex systems exhibit hierarchical structure and dynamics.

For example we might consider an organism as made up of molecules, which are

combined in special ways as proteins, DNA and RNA, in cells, which in turn form organs.

The organism itself is part of a community or species, which may combine to form some

sort of social organisation etc. The concept of hierarchy is general, and many different

ideas and theories have been created in an attempt to incorporate it into our modelling,

some of which will be discussed in the next chapter, however, at present there are no

satisfactory general theories of this process.

This section will briefly discuss some of the results about hierarchies which have sprung

from ALife.

2.2.1 Hyperstructures

Baas has developed a theory of hyperstructures and emergence [43] in which a hierarchy is

considered to be a special case of a hyperstructure. First, Baas defines primitive objects

or entities, which are termed first-order structures. These are denoted S, and form a

family:

{S1
i }, i ∈ J is some index, finite or infinite, (2.11)

7This point has also been raised by Brooks in his plenary talk at the Eighth Interna-
tional conference on Artificial Life in Sydney. Video footage of this talk is available at
http://complexity.vub.ac.be/∼comdig/Alife8/Brooks.asf.
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where the superscript denotes that the structures are first-order in nature. It is reasonable

to expect that these structures would exhibit one or more first-order properties:

P = O1(Si) (2.12)

dependent upon the observational mechanisms O1 identified as relevant to the first-order

structures. Note that these observational mechanisms may or may not be dynamical in

nature. Subjecting the first-order structures to a family of interactions, Int, as allowed

by their first-order properties we may obtain new, second-order structures:

S2 = R(S1
i , O

1(Si), Int
1)i∈J (2.13)

where R stands for the result of the construction process. These second-order structures

may themselves be subjected to some set of observational mechanisms, O2 (which may be

equal, overlapping or disjoint from O1), which find a new set of second-order properties.

Baas uses these concepts to propose a definition of first-order emergence, where P is an

emergent property of S2 iff:

P ∈ O2(S2), but P /∈ O2(S1
i1) for all i1. (2.14)

These ideas can be naturally extended, with a family of second-order structures forming

{S2
i } which may then form (perhaps with the assistance of first-order structures) third-

order structures

S3 = R(S2
i2 , O

2, Int2), (2.15)

and so on, with an N-th order structure being represented generically by

SN = R(SN−1
iN−1 , O

N−1, IntN−1), iN−1 ∈ JN−1. (2.16)

Within this notion of hyperstructure, Baas understands a hierarchical system to be a

sequence of hierarchy levels X1, X2, . . . , XN and an ordering among the levels X1 3 X2 3
, · · · 3 XN (i.e. X1 contains X2. . . contains XN ). Thus according to Baas hierarchies are:

. . . special, but important cases of hyperstructures and occur in most tax-

onomic situations. The levels are described as mere aggregates without speci-

fying interactions and observation mechanisms. We should also keep in mind

that this gives a description of a hierarchy in existence — not of how it was

constructed or evolved — as hyperstructures do.

Baas [italics added], p529, [43]

Clearly, Baas is defining a very restricted sense of hierarchy, dynamically generated and

evolving hierarchies in the Baas understanding would fall into the hyperstructure category.
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For the sake of consistency with other literature on hierarchical behaviour, we shall not

adopt the Baas definition here, referring instead to hierarchies as the general phenomenon.

More clarification of the general concept of hierarchy will follow in section 3.1.

Is the Baas definition of emergence sufficient? ALife VIII saw the presentation of a

system that clearly pushed the boundary of what should be considered an interesting

hierarchical structure [158] and yet was claimed to be hierarchical in the Baas sense.

This system consists of a triangular lattice, with each cell either occupied or not

at some time step. The entire system is updated “simultaneously”8 at each time step.

This update process consists of a movement step followed by a step where the bonding

of adjoining triangles is considered. During the movement phase, if the uppermost and

leftmost triangle of some aggregate of triangles is selected to move into a neighbouring

lattice region, then the entire aggregate is considered to move in the same direction (i.e.

as a rigid body). If any movement of an aggregate would lead to the occupation of

an already occupied region then it is cancelled. After this movement step, a bonding

phase occurs; two separate but neighbouring triangles form a new bonded aggregate

with each other with some fixed probability b, and two bonded triangles dissociate with

probability d. The bonding/dissociating interactions between the primitive structures are

apparently the only ones that occur, with different aggregates forming and breaking up

during a run. The authors claim that emergent structures form in this system, and that

it creates a nested hierarchy in the Baas sense. Triangles can form larger triangles, which

can themselves form larger triangles etc. or they can instead form diamonds which form

larger structures etc. This serves to illustrate the essential vacuity of the Baas definition of

hierarchy; hierarchies are just nested structures, and this triangle structure forms just such

a system. Since hierarchies form a subcategory of the Baas definition of hyperstructure,

this system even forms some sort of hyperstructure, however, the claim of emergence

made by the authors is not necessarily correct. The major basis of this claim lies in a

notion of number; they claim that new properties emerge since a structure of 4 elements

will experience a notion of ‘move with 4 elements’ whereas one of 15 will experience ‘move

with 15’. But given that the bonding involved is a primitive association there is no real

reason to suppose that any new properties have evolved at all, and a proper consideration

of the Baas definition illustrates this; movement of 4 elements involves the movement of,

for example, 2 sets of 2 elements, and given the associative nature of the system, it seems

reasonable to simply add these low level properties to obtain the required component

number. However, there is a rather large amount of subjectivity in these alternative

8While the authors claim that updating is performed simultaneously, for the current system there must
be an order in which triangles will be examined and allowed to move or required to remain in the same
grid-point. This will lead to a time dependency for each update cycle, with those cells updated first
experiencing an advantage with respect to any cells updated after them — they will be favourably allowed
to move compared to those updated at a later point in time. We shall assume for the sake of discussion
that this update process works from left, upper to right, lower on the grid.
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definitions of the triangle system, the feeling arises that perhaps the Baas definition of

emergence is not as complete as might be hoped. An alternative definition of hierarchical

emergence may help to clarify these issues.

An Alternative Definition of Hierarchical Emergence

Groß and Lenaerts have presented a different definition of a dynamical hierarchy [203]

which effectively rules out the triangle system discussed above (section 2.2.1). In this

case a tentative definition of when a higher order object can be considered emergent in a

hierarchy is:

AB is an object of order N, if

• A, B are of order < N,

• A or B or both are of order N-1

• AB has a property that cannot be found at lower order objects

• At least one element of η or ω does not label an interaction in which

subcomponents of A or B are engaging.

Here A and B are some arbitrary agents η = {set of all indices that label active types of

input interactions between A and B}, and ω = {set of all indices that label active types

of output interactions between A and B}. Obviously this definition is only intended to

apply to the dynamical hierarchies that form in systems with well defined input and output

interfaces, but the triangle hierarchy proposed by Dorin and McCormak is just such a

system. This system does not display any emergent interactions from the combination of

the two lower order shapes. There is just a bonding interaction. Therefore, according to

the Groß-Leinarts definition, this system does not form any emergent structures above

order two and should not be considered as displaying emergent hierarchical behaviour.

While it is relatively easy to examine natural systems and see hierarchies everywhere,

an adequate model of these phenomena is not so easy to discover. The next chapter will

turn to a more in-depth examination of some existing theories of hierarchical systems,

showing that in general they have not captured the true complexity and associated emer-

gent behaviour of these systems. The remaining chapters will start to develop a new

theory of emergent, high end complexity.

2.2.2 The Ansatz for Dynamical Hierarchies (ADH)

ALife models do not tend to exhibit more than two levels of hierarchical development

[68]. Without the generation of new, more complex levels there will be a highest level

of complexity attainable, a point emphasised by the Ansatz for Dynamical Hierarchies

(ADH):
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Given an appropriate simulation framework, an appropriate increase of the

object complexity of the primitives is necessary and sufficient for the generation

of successively higher-order emergent properties through aggregation.

Rasmussen et al., p347, [351]

This statement has some rather profound consequences. It limits the overall complexity

that might be obtained from any system formed as part of a dynamical hierarchy and

thus violates what Rasmussen et al. call the ‘complex systems dogma’ which claims that

we can use simple rules and states to generate complex behaviour. If the ansatz is true

then our current ALife modelling methodology may not be able to produce dynamical

structures of unlimited complexity.

Before we can consider the truth or falsity of the ansatz, we must consider the core

concepts of simulation framework and object complexity that it utilises.

Object Complexity: This is the key term of the ansatz, specifying the complexity of

the individual objects in the hierarchy. It is important that we are able to define

the complexity of the objects contained in a hierarchy in order to make use of, or

even to test the ansatz. Unfortunately there is no formalised definition of object

complexity.

Simulation Framework: The above rather ad hoc definition of object complexity in

the ansatz is made possible by the requirement that the simulation framework be

given. A simulation framework is provided by the specification of the rule set of

the system. Thus the requirement that a simulation framework be given forces the

rule set of the system to be fully specified, and to remain constant, throughout an

application of the ansatz to some system or set of systems.

Perhaps the most interesting aspect of the ADH comes from the observation that the rule

set defining the simulation framework is commonly also used to define object complexity.

With this point in mind, we might rephrase the ansatz as:

Given an appropriate rule set, an appropriate increase of the rule set of the

primitives is necessary and sufficient for the generation of successively higher-

order emergent properties through aggregation.

This makes the ansatz appear to be rather trivial, a point independently raised by Ras-

mussen et al.:

The ansatz is in some sense trivial: Assume that we have a minimal rule

set that generates a particular dynamical hierarchy but only up to order N .

If we stay within this simulation framework, it is necessary to add new rules

to generate an additional order (N + 1) of emergence. How can the system

generate a new, higher level of behaviour unless something new is added to the

elements?

Rasmussen et al., pp367–368, [350]

44



It appears there is some sense in which the complexity of any system satisfying the ansatz

is built into the lowest level objects [203]. In an agent based model, this means that the

most complex objects are those defined as primitive objects, the available interactions are

effectively ‘used up’ as the zeroth order objects interact and form bonds with each other

to form new higher order objects. This appears to be rather counter-intuitive. In the

natural world, higher order objects often seem to have a higher complexity.

The ansatz has been subject to some debate [204, 350, 158]. One key point of dis-

agreement concerns the possibility of comparing the object complexity of two different

hierarchies. The simulation framework restriction reduces the applicability of the ansatz

rather dramatically, limiting the result to individual systems. No comparison between

different systems is allowed as they are automatically considered to be part of a different

simulation framework.

These problems suggest that the ansatz may be the result of some fundamental mis-

conception, which while apparently straightforward is in fact wrong. Our discussion from

section 1.4 suggests the nature of this assumption; in fact, the ADH is a reformulation

of the problems besetting our object based, reductive modelling methodologies. With

an insistence upon primitive objects, themselves relatively simple, we find that there is

no room in which new interactions or behaviour can emerge. Without new modelling

techniques capable of displaying complex forms of emergence it is to be expected that

there will be a limit to the amount of complexity that can arise in an artificial system.

We see that the ADH is symptomatic of the missing complexity of current ALife models.

The interactions of the standard agent based methodology provide a direct example of

this problem.

This problem, while less obvious in some of the other ALife environments, still exists.

Consider for example Avida [262, 459], one of the most comprehensively developed envi-

ronments. Avidans evolve within an environment that rewards them for their ability to

solve a set of defined problems, but the initial set of problems does not generally change,

or increase during this process. The possible interactions between Avidans and their en-

vironment is defined a priori with the specification of the set of possible problems, and as

these are solved no new possible interactions spring into being; the niches of the environ-

ment are used up one by one as Avidans evolve to fill them. Certainly, the environment

of individual Avidans is also affected by the (biotic) interactions between the Avidans

themselves, however, the (abiotic) environment of problems is not likely to be sufficiently

complex for either OEE behaviour to occur, or levels upon levels of hierarchical structure

to form. Attempts to increase the complexity of the simulation, such as the current drive

to introduce diploidy will certainly increase the amount of behaviour displayed by Avida,

but until a much higher amount of both biotic and abiotic interaction becomes possible

Avida will not display behaviour even approaching the complexity of the natural world.
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2.3 Towards the Generation of Interesting Emergent Behaviour

Can the emergence of real new properties in complex systems really be

explained? If the sciences of complexity offer important new insights, theories,

and methodologies for dealing with complex, higher-order phenomena (as we

think they do), and if the traditional view of explanation cannot account for

the explanatory strategies we find here, we should look for other accounts of

scientific explanation. Perhaps the very idea of scientific explanation as a

strictly deductive argument should be reinterpreted and explanations seen in

a more dynamic and context-dependent setting, eventually themselves being

emergent structures, “emergent explanations”.

Baas et al., [44]

The general failure of ALife models to exhibit high end complex behaviour is a direct

consequence of our reductive techniques of analysis. With the assumption that the com-

plex behaviour of systems of interest can be broken into a set of components and their

interactions comes the corollary that components interacting in some way can generate

complex emergent behaviour, but this is not necessarily the case. If, as was argued in the

previous chapter, high end complexity is not well understood by reductive analysis then

there is every reason to suspect that such a methodology will fail in the field of ALife. A

new class of theories, models and simulations is required. The next chapter will discuss

hierarchical systems in more detail, finding a similar general failure in our understanding

and modelling of dynamically emergent behaviour. Chapter 4 will turn to an examination

of a system that has been developed at Flinders University which shows signs of exhibiting

a more interesting class of emergent complex behaviour. The remainder of this work will

be devoted to discussing the reasons behind this success and attempting to generalise the

modelling to other systems.
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Chapter 3

Hierarchical Systems

In application to the architecture of complex systems, “hierarchy” simply

means a set of Chinese boxes of a particular kind. A set of Chinese boxes

usually consists of a box enclosing a second box, which, in turn, encloses a

third—the recursion continuing as long as the patience of the craftsman holds

out.

Simon, p5, [399]

Hierarchical structure appears to be a fundamental characteristic of complex systems.

This chapter will be devoted to an examination of hierarchies, as well as a number of

theories about their generation and behaviour. Many of the problems surrounding object

based, reductive methodologies, which have been discussed in the previous chapters arise

in new guises when we attempt to understand dynamically generated, evolving hierar-

chies. This chapter will examine these problems in some detail. In the next chapter the

discussion will turn to a system which has been developed at Flinders University which

appears to side step many of the issues that have been identified in these introductory

chapters, thus providing a candidate for a new modelling methodology.

The concept of hierarchy is by no means new to science [398, 310, 456, 320, 31, 376,

372]. Simon is responsible for some of the most widely known discussions of hierarchical

systems [400], particularly for his arguments as to why hierarchical structure is more

stable and therefore more likely to evolve than a flat structure with a similar number of

components. Simon considered two different watchmakers each attempting to assemble

complete watches consisting of 10000 components, but faced with a constant stream of

interruptions in the guise of phone calls occurring on average at the point where 150

components have been assembled. An interruption causes any set of components that

do not form a stable system to fall apart. In order to deal with this problem, the first

watchmaker develops an assembly procedure in which each watch is constructed from a

collection of 100 stable subassemblies (or modules) each consisting of 100 elements. None

of these stable modules will fall apart during a phone call. This modularity of assembly

allows the first watchmaker to finish his watch after answering around 11 phone calls,

however the second watchmaker has developed no such system and will almost never

finish a watch. The collection of modules involved in the more stable assembly procedure

47



forms what might be termed a second order hierarchy; where a watch consists of 100

stable modules each in turn composed of 100 components, thus forming two levels. From

this metaphor Simon suggests that “Among possible complex forms hierarchies are the

only ones that have time to evolve,” p197, [400].

Thus, hierarchies offer a potential time saving in the generation of complex behaviour

which makes the evolution of the complex structures that we see around us more likely;

complexity might be generated by the gradual building of stable modules which them-

selves gradually start to interact and produce more complex modules themselves etc. In

order for such a process to occur in an open ended way new modes of interaction must

be provided by modules at each level in a forming hierarchy, otherwise the existing pos-

sibilities for interactions between modules will gradually be used up, and the formation

of new structure halted. In such a case the ADH (see section 2.2.2) will apply and new

levels of complexity will only be achieved by adding to the complexity of the base objects.

However, the way in which such new modes of interaction might emerge is unclear, again

as a result of our object based modelling methodology (see section 1.4).

In addition to Simon, a number of other researchers have developed concepts relevant

to the description of hierarchies, both structurally and dynamically.

3.1 Hierarchical Concepts

A number of concepts are helpful in the identification, and description of hierarchies. In

this section we shall examine some of the more commonly used and foundational concepts

in hierarchical systems. The following section will briefly discuss some of the theories of

hierarchical systems.

3.1.1 The Alphabet of a Hierarchy

Hierarchical systems commonly have a set of foundational elements, or primitive objects,

often termed an alphabet, which forms a natural basis of the hierarchy. This set usually

consists of a smaller number of elements than any other level in the hierarchy. For ex-

ample, the Roman alphabet consists of (including punctuation) around 30 letters, and

yet at the next level up, we see that it can form a vast number of words, which can be

used in an almost infinite number of legal combinations, in many different languages.

The periodic table provides another example; under one hundred atoms can be used to

form innumerable molecules, and even these atoms can be explained in terms of their

constituent electrons, neutrons and protons etc. A similar phenomenon occurs in biology,

we know that a set of four nucleic acids can form around twenty amino acids which can

in turn form an enormous number of proteins. Simon has examined the importance of

alphabet in biology [399], making the observation that proteins are far too specific to

their functions in particular organisms to be satisfactorily exchanged between organisms.

Amino acids on the other hand, can come from many different sources and can be used
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(a) (b) (c)

Figure 3.1: The span of a hierarchy, (a) illustrates a system with a very high span, whereas
(b) illustrates one with a very low one. Although both systems could be regarded as hier-
archical in nature, consisting of components which themselves consist of subcomponents,
it is not usual to consider such structures hierarchical. In contrast, (c) illustrates a hier-
archical structure which contains a number of elements at all levels, each level consisting
of a moderate span.

in many different ways. We see a similar increase in flexibility for each of the hierar-

chical systems mentioned above as alphabetical components are used in the exchange of

resources. This greatly assists in the transfer of what we might term information from

one system to another — a necessity when we consider the openness of living systems.

3.1.2 Span

A hierarchy is divided into a number of components, or subsystems, each of which may

themselves be subdivided. The way in which this subdivision occurs can vary and plays

a part in whether or not the system is considered hierarchical. Consider for example

two different situations, one of a solid crystal (the structure of which is illustrated in

figure 3.1(a)) and the other a set of Russian dolls (figure 3.1(b)). A crystal consists of a

number of atoms, each of which consists of protons, neutrons and electrons. At the crystal

level, there can be almost any number of constituent atoms; at this level, the crystal may

have a very large span. Alternatively, we might consider the Russian dolls, one inside

the other etc. which has a very shallow span, each component itself contains only one

element, and hence it would not normally be considered as forming a hierarchy.1 While

such systems could be considered hierarchical, each consisting of subsystems embedded

within a system, we would not generally choose to do so. Instead, we tend to consider

systems which have a reasonable number of levels, each containing a moderate span,

hierarchical. Consider for example the traditional structure of a company, where at each

level of control, a number of of subordinates report to a higher ranking superior.

1Despite Simon’s obvious identification as Russian dolls as forming a hierarchical structure in the
quotation at the beginning of this chapter.

49



3.1.3 Dynamical Rates and Strength of Interaction

There is a correlation between hierarchical levels, their dynamical rates, and the strength

at which their components interact [310, 376]. Components at a lower level in a hierarchy

tend to experience stronger interactions on a faster timescale than those at a higher level.

Some authors actually prefer differences in rate as a definition of hierarchical structure,

with the relevant components of some hierarchy being identified with reference to rates

associated with them:

. . . tangible boundaries are only a special case of boundaries defined on a

strict rate criterion. Consider, for example, a thermistor moved about in the

body of a homeothermic mammal. We can use the temperature as an indica-

tor of the rates at which metabolic processes are occurring. As we move the

thermistor from the core out to the skin, the rate processes change gradually.

At the surface of the skin, there is a rapid change in temperature (i.e., a steep

gradient in the rate processes). We can use this gradient to define the surface

of the organism.

. . .

If we maintain that components in an ecological system must be tangible in

their own right, we have difficulty solving some functional problems of interest

in ecosystem analysis. But, if we use differences in rate as our criterion, then

we can include both tangible and intangible components.

O’Neill et al., pp88–89, [310]

This is an interesting response to the problems with object based modelling that were

discussed in section 1.4.

3.1.4 Nearly-Decomposable Systems

A nearly-decomposable system is one for which only aggregate properties of the parts

(or modules) are relevant to the description of how those parts interact [400]. If such

behaviour is evident, then it becomes possible to identify as modules those components

that are largely independent of the other parts of the system, and to examine both their

short-run behaviour (intermodule), and their long-run (intramodule) behaviour. This

will become clearer with an example provided by Simon [400], who considers the thermal

behaviour of a building where outside walls provide perfect thermal insulation from the

external environment. Inside, the building is divided into rooms whose walls are good, but

not perfect insulators, with each room being divided into cubicles by partitions that are

poor insulators. Inside each cubicle is a thermometer. Supposing that initially there is a

high variation in temperature from cubicle to cubicle, room to room, what can we surmise

about the temperature variations of the different parts of this system during the next few

days? After a number of hours, we will find that the temperature variations between

cubicles are minimal, but that cubicles in different rooms vary in their temperature.
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A1 A2

A3 A4

A5 A6

Figure 3.2: An example of a nearly-decomposable system. A building contains a set
of rooms, denoted alphabetically, and cubicles within those rooms, denoted numerically.
The thermal transfer between the rooms and cubicles is described in the text.

Eventually, the system will reach an equilibrium with the temperature differences from

room to room, and cubicle to cubicle, having become minimal. We construct a matrix

representation of its dynamics as follows. Describing the process in which the system

comes to equilibrium using a standard set of heat flow equations, we would denote the

i-th cubicle i and the j-th cubicle j, with the rate of heat flow between these two cubicles,

rij . Referring to figure 3.2 as an example, we see that if the two cubicles are separated

only by a partition then the heat transfer coefficient rij will be large, if the two cubicles

are not in the same room, and are not in two adjoining rooms then rij will be zero.

Finally, if i and j are not in the same room, but are in rooms that adjoin each other then

rij will be small, but non zero. Representing the pattern of heat flow coefficients in a

matrix, we see that the system takes a nearly block diagonal form, with a set of matrices

with large entries on the diagonal. For the model system illustrated in figure 3.2 we get

a matrix of the following form:2

A1 A2 A3 A4 A5 A6 B1 B2 C1 C2 C3

A1 − 1 1 1 0 0 0 0 0 0 0

A2 1 − 1 1 0 0 .1 0 0 0 0

A3 1 1 − 1 1 1 0 0 0 0 0

A4 1 1 1 − 1 1 .05 .05 0 0 0

A5 0 0 1 1 − 1 0 0 0 0 0

A6 0 0 1 1 1 − 0 .1 0 0 0

B1 0 .1 0 .05 0 0 − 1 .1 .05 0

B2 0 0 0 .05 0 .1 1 − 0 .05 .1

C1 0 0 0 0 0 0 .1 .05 − 1 0

C2 0 0 0 0 0 0 .05 .05 1 − 1

C3 0 0 0 0 0 0 0 .1 0 1 −

(3.1)

2The numbers used in this equation are intended to represent some form of percentage of heat flow,
their actual values are not relevant, rather their relative sizes.
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We thus see a concrete way in which a near-decomposable system can be identified, if it

can be represented in matrix form.3 As Simon has pointed out, if there exists some small

number ε, as the upper bound for the off-diagonal elements, then a matrix that can be

written in this manner represents a nearly-decomposable system. Thus, the concept of

nearly-decomposable systems is nearly equivalent with a well understood mathematical

concept; block diagonal systems. Within this definition, the modules of the system are

clearly identifiable as those subsystems that are responsible for the submatrices weakly

interacting via the off-diagonal components. While this definition is far clearer than the

earlier (and more widely discussed in the literature) concept of aggregate properties, its

somewhat limited scope of application makes it inadequate (block diagonal representations

cannot always be identified in hierarchical structures). We might consider it as indicating

a direction in which future work on a theory of hierarchies might proceed, but it will be

necessary to consider some alternative representations and definitions of both modularity

and near-decomposability in order to develop such a theory.

We might consider a second example. In Simon’s watchmaker metaphor, the subcom-

ponents used in the assembly of the watch only interact with each other via the process

of assembly, once they are assembled. Prior to the process of assembly each component

has a separate existence, and once the submodules of the watch are assembled they too

have a separate, stable existence. This is a very simple form of interaction. Very few

hierarchical systems exhibit such a level by level independence. Consider for example the

subcomponents of a biological hierarchy, with DNA, cells, tissues, organs, organisms, and

even communities and species forming ecosystems. Only at the descriptive level of the

organisms in the hierarchy do we arrive at a sense of components with some sort of stable

existence, and yet not even these components can function in isolation. We might ask

if the modules in the watchmaker example are perhaps more separable than Simon sup-

poses. This problem is highlighted if we return to the definition of a near-decomposable

system as one for which only aggregate properties of the parts (or modules) are rele-

vant to the description of how those parts interact. Here we see an interesting contrast

between the cubicle example and the watchmaker example. In Simon’s heat transfer

example the warmth of a room in the short run depends only upon the warmth of the

individual cubicles but not of the adjoining rooms, and in the long run the warmth of a

room depends upon the aggregate warmth of all rooms. Such behaviour is not exhibited

by Simon’s watchmaker example. By his own definition the watches do not appear to be

near-decomposable.

Watson has raised similar concerns, claiming that the watchmaker example is in fact

3Not all hierarchical systems have an obvious representation in matrix form, the system discussed
above is very simple, with only one form of interaction. Consider as a counter-example an attempt to
represent the hierarchical interactions occurring in the human body, something which is not likely to be
possible, and would be difficult to interpret if it were.
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a fully decomposable, rather than a near-decomposable system [447, 448]. He claims that

“the problem of finding the correct assembly for each module is entirely separable from the

configuration of every other module,” p85, [448]. Thus, the organisation of the watches

is entirely separable. We see here one of the principle problems with near-decomposable

systems; they are very difficult to correctly identify. Simon himself seems to make a

mistake in formulating his watchmaker example. Watson has provided a formalism that

highlights this, and makes the identification of nearly-decomposable systems simpler, at

least within a certain subset of behaviour. He defines a measure that makes it possible to

extract quantitative information about the independence of a module given some property

of interest [447]. The measure works as follows, given some set of possible configurations

C for a module in some system of interest, we might be interested in finding out which

ones are the most stable. Denoting the number of configurations satisfying the property

as C ′, a set of relationships between these two numbers exists:

If C ′ = C, the system is non-decomposable.

If C ′ < C, the system is decomposable.

If C > C ′ = 1, a special case of decomposable behaviour occurs, the configuration of

interest C ′ is always the same regardless of the number of configurations of the

system itself, it is separable.

If 1 < C ′ < C, the system is decomposable but not separable, it exhibits modular

interdependency.

This is an interesting classification, which exhibits the usefulness of the concept, cer-

tainly it helps to understand the idea of near-decomposability, as a concept occurring

where C ′ . C. However, it must be asked whether the necessary configurations can be

identified in any realistic setting. While Watson’s definition is interesting, and clarifies

the status of separability as opposed near-decomposability it appears to be more of a

toy definition, suitable for the investigation of very special cases, rather than real world

near-decomposability. All of the systems he examines using this concept are essentially

toy models. It is likely that more realistic systems will have a number of relevant config-

urations, all interacting within the system in a highly nontrivial manner.

3.1.5 Scalar and Specification Hierarchies

Salthe has intensively investigated hierarchies over the years and developed a number of

what might be termed epistemological theories about their formation [376, 371, 372, 373,

374, 375]. Of particular interest, he claims that any natural system can be analysed from

the point of view of both a scalar hierarchy, and a specification hierarchy, with different

understandings of the system resulting from each perspective [372].

Scalar hierarchies [376] are extensional. In this understanding of a system, com-

plexity results from the structure of the system, in the form of dynamical changes in

constraint relations between levels. Each level is represented in the structural form
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[higher level [lower level]], that is, the more specialised structures appear further to the

outside of the representation as in e.g. [organism [cell [macromolecule]]]. This struc-

ture describes a relationship of parts and wholes. Salthe has quite reasonably claimed

that three adjacent levels of description, a triadic system, are necessary and sufficient

for the description of a nontrivial scalar hierarchy [376]. He points to the necessity that

a adequate description of complex behaviour consist of the system, its environment and

its components, and that the constraints between these levels must be well understood.

According to Salthe, scalar hierarchies also exhibit different rates of interaction (as was

discussed in section 3.1.3), and grow by interpolating new levels between existing ones (as

in the growth of a organism from a fertilised egg). The different rates of interaction imply

that the constraints are indirect, the dynamics between levels are effectively ‘screened off’

by the differing time scales.

In contrast, specification hierarchies involve an intensional understanding of complex-

ity, with higher levels in the hierarchy forming a more specialised role. Such a representa-

tion is found in the common description of the sciences as forming specialised, emergent

descriptions of more specific phenomena [371]. Thus, the lower level descriptions are seen

to encompass (and apply at least in principle) to the higher levels e.g. {physical the-

ory {chemical theory {biological theory {social theory {etc.}}}}}. This representation

generalises as {lower level {higher level}}, with the more internal levels representing the

increasing specialisation of the system of interest. Instead of the parts and wholes of

scalar hierarchies, specification hierarchies describe classes and subclasses at the different

levels of the hierarchy. New levels are added at the top of specification hierarchies, as

more organised behaviour evolves, it becomes possible to add new constraints and elicit

new behaviour from the system. Interestingly, what is true at the most general level of

a specification hierarchy continues to be true at the more specialised level, which means

that these hierarchies have a transitive form; biological systems must still satisfy the laws

of physics. However, this is not the case with scalar hierarchies, parts and wholes do not

all share the ‘most general’ characteristic; an organism is not a macromolecule, rather it

is made from collections of them organised in some form.

More details of these two different representations can be found in Salthe’s more recent

book [372], where general rules for each form of hierarchy are defined, and [371], which

examines specification hierarchies in some detail. The differences according to Salthe

between the two forms of hierarchy are summarised in table 3.1 which can be found in

[371].

As Salthe himself points out, “any natural system could be analyzed from either scalar

or specification standpoints.” p36 [372], which suggests that, while each framework can

prove useful in different settings as a different mode of analysis, there is a deeper onto-

logical significance that causes this appearance of hierarchical structure around us; such
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Scalar Hierarchy Specification Hierarchy

Parts nested within wholes
Nested classes representing emergent
orders

System of extensive constraint rela-
tions

System of semiotic/logical orders par-
allels system of intensive constraint
relations

Higher and lower levels based on scale Inner and outer integrative levels
based on degree of specification

Essentially synchronic Diachronic in spirit, implying develop-
mental emergence of innermost levels

Process, events Canonical sequence of development
from general to specific

Constitutive relationships across lev-
els non-transitive, transitive perturba-
tions cause disruptions

Change epigenetic, always irreversible

Intensity of transitive perturbations
between levels drops off with distance
between levels

Relationship between levels fully
transitive

System description requires minimally
three levels

System description essentially two
leveled

Unbounded top and bottom Truncated at both ends

Objective Subjective relation of observer to in-
nermost levels

Table 3.1: The differences between a scalar and a specification hierarchy as defined by
Salthe.
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structures actually exist.4 This work is concerned more with the ontology of the natural

world, that is, with questions of the form: how can complex hierarchical structures arise?

rather than questions of how best to model particular structures. While Salthe’s work

certainly sheds much light on the nature of such structures it is felt that this is something

of a blind alley. Consider for example an attempt to describe an organism hierarchically.

Either of Salthe’s frameworks can be utilised effectively in understand the system; a spec-

ification approach describing the physical dynamics of its atoms, their chemical reactions

and the resulting biological processes is possible, but so is a scalar approach, where the

organism is described as consisting of organs, cells and macromolecules. This work adopts

the stance that this is due to the actual hierarchical nature of the organism, and attempts

to understand how this structure could dynamically evolve. Similar approaches can be

taken for all natural systems, rather than getting ‘bogged down’ in the classification of

such systems we must attempt to understand their dynamical nature.

We shall return to this point shortly, but should first look at another set of classifica-

tions which has largely been developed by Pattee.

3.1.6 Structural and Control Hierarchies

Structural hierarchies are those that can be identified by the imposition of a set of part-

whole relationships upon some system; they arise from a partial ordering of some system

which makes it identifiable as a hierarchy. This is an essentially static separation, the

modules and submodules formed by this imposition do not interact in a dynamical way to

form new structures. The structure of the hierarchy is identified as part of an externally

imposed organisational technique rather than as part of a natural process. In Simon’s

Chinese boxes example, quoted at the beginning of this chapter, we can identify a set

of boxes, each one placed within the other in a partial ordering (the property of being

inside); the boxes form a structural hierarchy.

A more interesting example can be found in an examination of the physical structure

and formation of matter, which as has already been described, claims that matter is com-

posed of a number of different molecules in a variety of different arrangements, which are

in turn formed from a set of atoms, each made up from a number of different elementary

particles, as well as composite particles themselves formed from differing combinations of

quarks and gluons.

Pattee has noted that at each level of a structural hierarchy we often use a set of

approximations

4While it is philosophically impossible to assert that a world exists ‘out there’ [369], it is highly likely
that such a realistic stance is correct, and as such, it seems fair to suppose that hierarchical structures
actually exist in that world. As a physics thesis, this work shall not enter into such a debate, rather we
work from the hypothesis a physical world exists ‘out there’, even if it is not necessarily independent of
our actions (i.e. complete objectivity is lost).
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. . . that one particle is typical or representative of the collection, that the

fast motions one level down are averaged out, and that the slow motions one

level up are constant. . . .The simplicity and solvability of most physical equa-

tions depend on making these approximations.

Pattee, p77, [320]

Such a situation is well exemplified by statistical mechanics, ecological hierarchies, biolog-

ical hierarchies etc. In fact, it is a reapplication of the principle, discussed in section 3.1.3,

that the rate of interaction between hierarchical components at a lower level is often faster

than that at a high level. Pattee notes that this approximate treatment of the dynam-

ics amounts to what Simon calls near-decomposability, and that it is usually possible to

ignore the interface between levels in such a structural hierarchy.5 He then identifies a

subset of hierarchies that do not have this property, control hierarchies, in which upper

levels of the hierarchy have an authority relation over the elements in the lower levels

[320].

In control hierarchies these approximations are not appropriate, instead, Pattee claims

that it is not possible to ignore the specifics of the lower levels due to the dynamic

constraints exerted by the upper levels upon their dynamics. He points to the development

of multicellular organisms as an example, where

. . . the cells do not simply aggregate to form the individual, as atoms ag-

gregate to form crystals. There are chemical messages from the collections

of cells that constrain the detailed genetic expression of individual cells that

make up the collection. Although each cell began as an autonomous, “typical”

unit with its own rules of replication and growth, in the collection each cell

finds additional selective rules imposed on it by the collection, which causes its

differentiation.

Pattee, p77, [320]

He notes from this, that the interesting problem of understanding hierarchical control

consists of explaining how this new extraordinary authority arises in ordinary molecules.

With this problem we find that instead of being satisfied with a set of theories describing

each hierarchical level, we must now pay more attention to the way in which the interface

between these levels behaves.

3.1.7 Dynamical Hierarchies

Both structural and control hierarchies provide a snapshot of the behaviour of some system

at some given point in time. As such, theories of these phenomena do not attempt to

describe the way in which such systems arise, rather their dynamics and constraints given

5Clearly, the notions of structural and scalar hierarchies are essentially identical.
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their existence. A dynamical description of the way in which a hierarchy arises offers a

possibility to develop an understanding of the interface between hierarchical levels.

An example will help to clarify these concepts. Consider the current developmental

understanding of the way in which an insect grows dynamically from the complex in-

teractions of an initially small number of elements whose interactions relay and expand

upon small asymmetries within the egg cell (oocyte). Within the Drosophila melanogaster

(vinegar fly) oocyte, and subsequently the embryo, four genetic cascades (i.e. processes

which act in a dynamical way to generate a hierarchy of positional information) act to

subdivide the embryonic anlage into specific tissue and organ progenitor regions. Initi-

ation of the cascades results directly from the mechanics of oocyte production and the

asymmetries involved in this process, together with the laying down of only four gene

products in a spatially defined manner. These define anterior (head), posterior (tail),

terminal (distance in from the anterior and posterior ends) and dorso-ventral (back-front)

position within the oocyte and subsequent embryo. Through gene regulatory interactions

between members of genetic cascades, the four initial products help establish tight local-

isations of regulatory molecules which specify cell identities. Strong interactions within

and weaker interactions between cascades thus result directly in the specification of tissue

types and subsequent organogenic development leading to a complete functioning body.

The above considerations are dynamical, they describe the process by which the hierarchi-

cal structure of an organism composed of organs etc. arises. Once it has formed, we may

examine the body of the fly and determine that it is composed of a set of organs, in turn

composed of cells and subcomponents, such an examination is structural — we are im-

posing a set of part-whole relationships upon the system and examining their form. Also,

in this particular case the regulatory interactions and their cascades of genetic responses

might be considered to form a control hierarchy. The system itself can be examined in

any one of these three different modes, but with a key difference. The dynamical mode

provides an indication of the way in which the system is generated and hence the interac-

tions between different stages of the process of development and with this the hierarchical

interfaces of the system. In contrast, the structural modes of examination tend to focus

upon existing systems, and then a set of disjointed theories are used to explain the origin

of the components of the system.

There is no exact definition of a dynamical hierarchy [261], or of hierarchical structure

in general. However, there are a number of well-accepted concepts associated with hierar-

chy (such as those discussed in the present section), and the extension to dynamical should

not be too difficult; a dynamical hierarchy is simply one that arises spontaneously from

an apparently simple structure, and evolves in time according to some set of principles.

In contrast to the essentially static hierarchical systems proposed by Pattee, the scalar

and specification hierarchies discussed in section 3.1.5 can encompass the notion of con-

straint deployment, and it it is consequently expected that these notions are far more
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closely aligned to the concept of dynamical hierarchy. However, as discussed in that sec-

tion, it is believed that some form of more ontologically committed theory of hierarchical

growth is necessary. Once such a theory exists, it will be interesting to compare it with

the concepts developed by Salthe.

3.1.8 Downward Causation

In contrast to the reductionistic claim that the behaviour of higher levels in a hierarchy

can be explained entirely with reference to the dynamics of the lowest level elements,

downward causation claims that the upper levels of some hierarchical structures can di-

rectly affect the dynamics of the lowest level elements [109, 110, 33, 71, 167]. Many

different forms of downward causation have been identified [167], depending upon how

strongly their proponent rejects reductionism. Even in its weakest form downward causa-

tion implies that the higher level is conceived as an organizational level, it characterises

the pattern or structure or form into which the constituents are arranged. Therefore,

downward causation directly suggests that causes can propagate both up and down in a

hierarchical structure. Concrete examples of this phenomenon will be discussed in the

next section.

3.1.9 The Context of a Hierarchy

. . . every event, every statement about such an event, requires, in particu-

lar, other events at a higher level of organization, another statement referring

to a higher level of organization, to make it complete or to frame it — to give

it a context that will allow us to understand it or to judge its truth.

Salthe, pviii, [376]

Hierarchical systems provide an intrinsic context for their lower level components.

Consider for example the hierarchical structure presented by a human body. Each of us is

composed of body wide systems (such as circulatory, nervous, and immune), themselves

composed of organs which are made from cells, which can again be thought of as com-

posed of subunits. The body provides a context for all of these components; a person

experiencing an attack of HIV AIDS and therefore a compromised immune system, will

gradually experience a wide range of problems associated with different systems, organs

etc. Similarly, an ecosystem provides a context for all of the plants, animals, bacteria etc.

that comprise it. The health of the ecosystem can profoundly affect the associated health

of its member organisms; consider the current problems besetting the world’s oceans, such

as the problems currently being experienced by coral reefs which have been bleaching and

dyeing due to increased oceanic temperatures, and the associated loss of fish species as

they lose the niches provided by the coral. Conversely, keystone species are those upon

which ecosystems depend more than might be expected from their relative abundance
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[314]; if they are lost, then all species associated with that ecosystem are very much in

danger of extinction.

Thus, the lower levels of a hierarchical system can be strongly affected by the upper

ones (their context), and can in turn affect those upper levels in a feedback-type situation.

If we consider the examples of contextual complexity that have been discussed so far in

this work then the contextual interdependency between levels of a hierarchy is made

stronger still:

Phenotypic plasticity provides a good example of the fact that it is possible to repre-

sent contextual systems hierarchically. Simplistically, the environment can be seen

to contain the resultant phenotype, which itself contains the genes that were rele-

vant to the realisation of the phenotype. However, the causal relationships between

the components of the hierarchy are much more interesting. Clearly, the pheno-

type depends upon the genotype, but it also depends upon the environment; we

see examples of both upward and downward causation respectively. There is also

a feedback relationship between the phenotype and the environment, as the phe-

notype contributes to the biotic component of the environment which can cause a

change in the context of all phenotypes over time.

Fitness applies to an organism within the context of an environment, hence fitness can

be represented by a 2-tier hierarchical structure. Since fitness itself is set by both

biotic and abiotic factors, we see that relationships again take both upward and

downward forms in the hierarchical structure.

Cloning exhibits the same hierarchical contextuality; DNA is placed within a cell, but

again we see causal relationships extending both up and down through this hierarchy.

If the DNA is placed in the wrong form of cell then the system will not be viable,

but in the appropriate cell type the DNA will strongly affect the organism that is

obtained.

Similar considerations can be applied to all apparently contextual systems, at the very

least a two tier hierarchical structure can be created with the context containing the

system of interest. One interesting point arises from consideration of the above examples,

in each case there is both upward and downward causation at work, that is there is an

inherent feedback in the creation of the context itself which depends partly upon the

lower level components of the system. Not all hierarchical systems have this level of

complexity in their relationships. For example, the control hierarchy of an army is very

much top down, in principle no causal mechanisms can propagate from the soldiers up to

the general.6 This control structure is far simpler than the examples considered above,

and would not normally be considered contextual. Is it possible that as with complexity,

there is some sort of hierarchy scale?

6Although this is not always the case in practice, consider reviews, mutinies etc.

60



At present, it seems likely that hierarchies provide a way in which we might start to

understand contextual systems, if we can understand the hierarchical structures them-

selves. However, given our poor general theoretical understanding of hierarchical systems

is perhaps more likely that an understanding of contextuality will be developed concur-

rently with our understanding of hierarchical systems.

3.1.10 Evolutionary Transitions

In biological evolution we see a number of situations that appear to challenge the Dar-

winian explanation of evolution as consisting of the gradual accumulation of small changes.

Consider for example the origin of eukaryotic from the original prokaryotic cellular struc-

ture. Prokaryotic cells have a relatively simple internal structure; a cell wall that encloses

a plasma membrane which itself encloses a cytoplasmic compartment that contains DNA,

RNA, proteins and a number of small molecules. In contrast, eukaryotic cells have a far

more complex structure. By definition they consist of a nucleus which contains most of

the cell’s DNA enclosed by a membrane, this membrane keeps the DNA separate from the

cytoplasm (the rest of the cell) where most of the metabolic reactions of the cell occur.

The cytoplasm contains a number of structures, or organelles such as the chloroplasts and

mitochondria.

A number of authors have drawn attention to the gradual increase of complexity

that accompanies evolution [404, 405, 216, 438, 429, 337, 138], pointing to a concept of

evolutionary transitions, where more complex behaviour, function or structure emerges

during an evolutionary process.

Maynard Smith and Szathmáry have extended the general concept of evolutionary

transitions to the stronger one of major transitions [404, 405], which are defined as events

where previously reproductively independent entities get organized during a transition

into an encompassing system which can only replicate as a whole. Within this framework

they consider problems such as the origin of chromosomes, eukaryotes, sex, multicellular

organisms and social groups, explaining each as a major evolutionary transition. If com-

plexity is defined with respect to the independence that is lost during the transition, then

a major increase in the complexity of the system occurs at each one of these transitions.

Returning to the example of the evolution of eukaryote from prokaryotes, this transition

involves the union of a number of previously free entities into a new whole. The originally

independent ancestors of chloroplasts and mitochondria at some point became incapable

of replication outside of their host cells, as they are today.

The concept of major evolutionary transitions is analogous to hierarchy formation; a

set of simpler entities are interacting in some way to create new higher-level complexes.

And indeed, after a transition, originally independent components will have formed a

nearly-decomposable system (see section 3.1.4) due to their new found reproductive de-

pendence. Thus, major evolutionary transitions provide a very interesting mechanism
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by which concepts such as near decomposability might be created; before the transition

the components of interest are separate, however, after the transition has occurred they

cannot be so simply analysed. Unfortunately the analysis of these transitions is in gen-

eral very specific, and has not been generalised. While this concept will undoubtedly

remain useful, it requires more work to become a theory of hierarchical development and

behaviour.

3.2 Theories of Hierarchical Behaviour

Although many different theories have been proposed which have some relevance to the

generation of, or the explanation of the behaviour resulting from hierarchical structure

[270, 356, 320], few have any general applicability. This section will consider some of the

most relevant theories that have caught the attention of the author. By no means are the

theories discussed here the only ones relevant to hierarchies, many different resources can

be found by means of a thourough literature search.

Pattee has been instrumental in developing the idea of constraints in hierarchies [321].

A constraint is a forcible limitation of freedom, thus, the way in which an upper level of a

hierarchy affects the behaviour of its sublevel can be understood as just such a constraint.

Pattee claims that a hierarchical constraint requires an alternative description from the

lower level elements that it governs; the same concept can be seen in many physical models.

For example the move to statistical mechanics from a standard mechanical description

involves the application of a constraint:

. . . the physicist’s idea of constraint is not a microscopic concept. The

forces of constraint to a physicist are unavoidably associated with a new hier-

archical level of description. Whenever a physicist adds an equation of con-

straint to the equations of motion, he is really writing in two languages at the

same time. . . . forces of constraint are not the detailed forces of individual

particles, but forces from collections of particles or in some cases from single

units averaged over time.

Pattee, pp85–86, [321]

This is very closely related to the idea of downward causation that was discussed in

section 3.1.8, however, Pattee himself points out that the way in which constraints arise

is not understood (even in physics) [321]. Thus, while constraints and downward causation

are definitely appropriate concepts for the discussion and modelling of hierarchies, more

work must be carried out before they can be understood in a general theory. Again we

note that this is a very similar concept to that provided by Rosen; in adding an equation

of constraint and writing in two languages we are effectively ruling out the possibility of

describing some system using one model alone. We may not have made explicit reference

to the higher level model but it exists, and is necessary for a proper description of the

dynamics of the system.
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Collier has claimed that there must be a relation between the levels of a dynamical

hierarchy which is both transitive and asymmetric [134], however, his definition is too

general; according to his definition any two hierarchies with the same relational structure

are identical even if they are dynamically distinct. This leaves a suspicion that in fact

Collier is talking about a structural hierarchy as was discussed in section 3.1.6. It would

be preferable to incorporate the dynamical evolution of a hierarchy into its very definition.

The Renormalisation Group (RG) is often used in the description of allegedly complex

hierarchical structure [415]. Low level constituents of the hierarchy are progressively

grouped (normally spatially), their collective behaviour is set to one value for the new

cell, and then the lattice of behaviour is shrunk down to the original size. This procedure

can be repeated for as many scales of behaviour as can be identified, however, at each level

the structural information between levels is lost, and this is precisely the characteristic

in which we are interested in our attempt to understand complex hierarchical structures.

It is unlikely that the RG can be applied in any situation but scale free networks, which

generally consist of the same elements (e.g. avalanches) at all levels. Therefore, despite

the current interest in this technique, it is unlikely to be of interest in our search for a

theory of complex hierarchical behaviour. Some of the more likely candidates for such a

theory will now be discussed.

3.2.1 Hierarchies and Open Dissipative Systems

O’Neill et al. have presented the case that

. . . all complex systems, including ecosystems, appear to be hierarchically

structured as a natural consequence of evolutionary processes operating on

thermodynamically open, dissipative systems.

O’Neill et al., p101, [310]

As has been shown by the work of Onsager [311] and Prigogine [347, 348], dissipa-

tive systems satisfy the minimum dissipation principle which claims that at steady state

the entropy production of a dissipative system is a local minimum; this state can be

maintained by a smaller input of energy than neighbouring states. This local decrease

of entropy production has been recognised as essential for the existence of living systems

[382, 291, 444] which require a constant flow of energy to maintain their high level of

internal order.

O’Neill et al. claim that the process of increase in organization necessary to eventually

generate living structures requires a constant creation of quasi-stable structures which can

in turn be used as building blocks for higher levels of organization. They point to the

concept of stratified stability introduced by Bronowski [85] as an example of this behaviour,

which is really a process of hierarchy generation. This generation of hierarchical structure

can be understood within the minimum dissipation principle. During the process of

evolution, if a new structure emerges which utilizes its constituents more efficiently, then
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it is likely that it would replace its competitors, thus increasing the total energy dissipation

of the system. Each new more structured and therefore more complex state, in its turn

would have made the system vulnerable to new fluctuations which as new structures are

developed to take advantage of them lead to the generation of new fluctuation induced

instabilities. This is the fluctuation-dissipation sequence proposed by Prigogine et al.

[347, 348], a process of feedback which, it has been suggested, is necessary for the eventual

generation of life.

3.2.2 Hierarchies and Emergence

A number of researchers have drawn a connection between the concepts of hierarchy and

emergence, and developed theories of complexity and emergence based upon the concept of

hierarchy [376, 43, 302], but none of these develop understanding of the actual generation

of hierarchical structure. The question of how levels of structure might spontaneously

emerge is a largely unanswered one. We shall return to this in section 6.1, where a new

methodology will be proposed which, it will be claimed, is more capable of dynamically

generating such emergent structure.

Hyperstructures

The Baas definition of a hyperstructure [43] has already been discussed in section 2.2.1.

Despite the difficulties in the application of the Baas definition of hierarchy (which forms

a subcategory of hyperstructure) that were mentioned in that section, the hyperstructure

concept remains one of the most comprehensive theories of hierarchies/hyperstructures

developed to date.

Baas has defined two conceptions of emergence with respect to his formalism (which

was discussed in section 2.2.1):

Deducible, or Computational Emergence occurs for systems for which there is a

deducible or computational process or theory which determines the emergent prop-

erties P ∈ Obs2(S2) from the first order set (S1
i , O

1(Si), Int
1).

Observational Emergence occurs when the emergent properties P of a system cannot

be deduced computationally.

This is a very useful specification, if some property is computationally emergent then it

is possible to reduce it to the lower level description, however, observational emergence

gives rise to a new description, one that is not reducible. This is very similar to Pattee’s

notion of constraint as leading to a new level of description discussed above, and the

Rosen definition and other observer driven definitions of complex systems as those that

need more than one description that was discussed in sections 1.1 and 1.5.1. A system

which exhibits observational emergence will display high end complexity.
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Hierarchical Information Systems and Cohesion

In a recent paper [134], Collier has introduced the concept of a Hierarchical Dynamical

Information System, which he claims is of interest for the study of how functional infor-

mation might be embodied physically within some system. This concept is a culmination

of a number of years of research [135, 136].

Fundamental to these systems is a concept of cohesion [135, 134]. This is defined as

the closure of the causal relations among the dynamical parts of a system that determines

its resistance to fluctuations (both internal and external) which might cause it to lose its

integrity. If objects are cohesive then they are to a certain extent causally bound, which

in turn means that they will act in a coherent manner. However, cohesion is not constant,

neither in a given object over its lifetime (no object is indestructible) nor between different

objects; a rock is probably considered more cohesive than a swarm of bees, but both are

considered objects by Collier et al. due to the causal interactions that give rise to their

organic unity [135]. Objects might in turn exhibit cohesive properties i.e. properties that

are insensitive to fluctuations and therefore stable to a certain extent. For example, a

kite does not disintegrate despite its constant bombardment by air molecules and might

therefore be considered a cohesive object. The lift of a kite which results from the net

effect of these molecules hitting the kite on both sides, can be considered a cohesive

property of the kite. The effects of the individual molecules are averaged by the cohesive

forces that hold the kite together. Collier argues that the insensitivity of cohesive objects

to fluctuations makes a reductive explanation of the effect inappropriate. This is because

such a reduction would have to include information that was irrelevant to the object that

was being explained (the individual trajectories of the particles striking the kite do not

add to the description of the kite in any way). While Collier acknowledges that these

irrelevant factors might be avoided by reducing the emergent object or property (i.e. the

lift of the kite) to some set of lower level objects, he claims that such a reduction is guilty

of either a category error (making the lift an abstract object, which it is not), or else

makes use of an equivalent property that exists only at the level that is currently being

reduced [135]. With the emergence of coherent properties, the possibility of a new level of

objects arises, and thus a hierarchical model of a number of phenomena starts to appear.

Clearly the cohesion of the objects within a hierarchy is important. Objects must

have some sort of stability with respect to their surrounding environment. This cohesion

of objects is closely related to their near-decomposability; the very concept emerges from

this same partial insensitivity to environmental fluctuations. We can conclude that the

two concepts are closely related, if not essentially equivalent.

3.3 Towards the Dynamical Generation of Emergent Hierarchical Structure

The concepts of emergence and hierarchy have been generally accepted as important, and

many researchers have attempted in some way to clarify, and to provide theories about
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them. However, the problem of dynamically generating emergent hierarchical structures,

and understanding their evolution in time, is eluding our current models and theories.

How can such behaviour be understood?

At this point, a set of closely related concepts has presented itself, all of which will

prove useful in the analysis and generation of complex emergent behaviour. Firstly, we

have seen the dangers of adopting an entirely reductive, or object driven approach; in

doing so it is likely that we sacrifice our ability to generate new emergent interactions

between the subcomponents of some system of interest. In attempting to move beyond

this object driven methodology, concepts such as context, observational emergence and

observer driven complexity appear to be systematically occurring. Many different re-

searchers seem to be utilising such concepts, even if they are not explicitly recognising

this fact. This will become more apparent throughout this work. Complex systems of-

ten appear to exhibit hierarchical structure, and those at the high end of the complexity

scale appear to exhibit some sort of contextual hierarchical structure, with interdependent

relationships working both upward and downward through the hierarchy.

The next chapter will turn to the examination of a system which has been developed

at Flinders University which appears to generate emergent hierarchical behaviour. The

modelling of this system does not fall into the category of traditional reductive techniques,

which suggests that this model may in fact be a realisation of the new modelling technology

that we appear to require. The remainder of this work will be devoted to developing this

new technology in such a way that it can be more generally applied.
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Chapter 4

An Example System: Process Physics

The preceding chapters have shown that complex emergent behaviour is very difficult to

model and to generate. It has been argued that the most complex emergent behaviour is

intrinsically contextual, and that the lack of this property in models of emergent behaviour

such as ALife simulations has led to the simplistic nature of the generated behaviour.

This chapter will examine a system that has been developed at Flinders University

which, it will be claimed, shows good indications of exhibiting a more interesting variety

of emergent phenomena. This system forms the basis of a set of theories which will be

discussed in this work, all of which fall into a new modelling methodology, termed Process

Physics, which seeks to replace the standard object driven, reductive methodologies of

traditional physics with a more dynamic set of models capable of exhibiting phenomena

such as observational emergence and high end complexity. It is expected that Process

Physics will explain more phenomena than can be understood by the traditional physical

methodology, and in fact, a number of unexplained phenomena have been incorporated

into the Process Physics modelling (see section 6.4.5). The remainder of this work will be

devoted to an examination of the reasons behind the success of the simple relational model

presented in this section, and its generalisation to a new theory of emergent behaviour

which falls into the Process Physics methodology.

4.1 Modelling Reality

There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced

by something even more bizarrely inexplicable.

There is another theory which states that this has already happened.

Adams, p130, [7]

As was discussed in section 1.1, since the time of Newton the aim of physics has been

to capture a context free, formal model of reality. That is, we aim to describe the Uni-

verse in terms that are independent of an observer. This method has been remarkably

successful, yielding rich results, many of which have been experimentally verified to a high

level of accuracy. However, there are strong arguments suggesting that such a research

paradigm may be fundamentally flawed. One example of this problem is provided by
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Gödel’s theorem [295], which as was discussed in section 1.5.1, suggests that this reduc-

tionistic programme, if it were complex enough to result in an adequate description of the

Universe, must lead to a mathematical model which is either incomplete or inconsistent.

While the potential impact of this result in the field of physics is still being debated [118],

Chaitin has extended this result, showing that Gödel’s unprovable truths are essentially

random in character — they are incompressible [119, 120, 121]. This result has new ram-

ifications for physics — can these random, incompressible truths be captured by physical

models?

Even if these foundational issues are not considered important, a number of apparently

unsolvable problems have begun to emerge in the field of physics during the last century.

For example, a successful theory of quantum gravity has yet to be discovered. Our model

of time as a simple one-dimensional manifold has led to some very well known problems

such as the missing arrow of time and the inadequate description of the present moment

effect [345]. Even the interpretation of quantum mechanics remains mysterious, with a

number of competing alternative interpretations [87, 150, 191, 309, 328] each leading to

a profoundly different understanding of reality.

Section 1.4 discussed the way in which the very methodology of the modelling used

in fundamental physics is also problematic. Our description of reality has been steadily

increasing in its detail, from atoms to protons, electrons and neutrons to the current

family of ‘fundamental particles’; quarks, leptons, mesons etc. However this progression

of theories has yet to end. A number of new contenders for the fundamental entities of

physics are starting to emerge; strings [387], loops [368] and preons [279]. Is fundamental

physics heading towards a regress?1 At some stage an explanation of how a particle can

be understood as truly fundamental must be proposed, but in postulating a particle as

fundamental we have lost our ability to explain that particle. A new methodology is

required.

The traditional methodology of the physicist has been identified as object based,

it centres around some set of fundamental objects and then attempts to describe their

dynamics. One of the most widely cited counterexamples to this methodology arises in the

dispute between Leibniz and Newton. It is usually claimed, in the spacetime or physics

oriented literature, that Leibniz attempted to construct a relational model of space but

encountered insurmountable problems in this attempt. This claim is somewhat simplistic;

it is generally agreed in the philosophical literature that Leibniz was constructing a theory

of relations, but that this does not constitute a relational theory [41]. However, this

spacetime interpretation of Leibniz is very suggestive (if somewhat naive), and formed an

invaluable starting point to the research conducted at Flinders University, leading to the

question of whether there might be some way in which to construct a successful relational

1This problem has been independently recognised by a number of different researchers, such as Wheeler
[453].
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Figure 4.1: (a) Nodes i and j are considered connected if they have a non-zero B value.
Arrows indicate the sign of the Bij value. (b) Self-links are considered internal to a node
so Bii = 0.

model of the Universe. A subtle bootstrap mechanism has been proposed to solve the

above problem of object driven methodologies. In this section we shall first construct

the new relational model, and then discuss the bootstrap mechanism, and finally the

hierarchical characteristics of the system.

4.1.1 The Process Model of Fundamental Physics

Considering a set of N nodes, we assume that they are connected in some way, with a

connection strength between node i and node j given by the real value Bij (see figure 4.1).

We shall represent a set of these relational values as a square antisymmetric2 matrix B.

Notice that while the pitfalls of object driven methodologies have been explicitly recog-

nised above, we are still driven to talk in terms of nodes. It is very difficult to leave

an object methodology behind. As discussed above however, any system positing such

a priori objects cannot be considered fundamental when modelling the Universe, as the

explanation of these objects must lie outside the system being modelled. A solution to

this dilemma arises if we recognise that the nodes can in turn be defined for the purposes

of the model as a system of nodes, connected with weaker Bij values.3 It becomes appar-

ent that all nodes can be thought of as composed of collections of nodes in turn, and in

particular that the start up nodes can be viewed as names for subnetworks of relations.

This result is ensured if the constructed system exhibits self-organised criticality (SOC),

which enforces a fractal structure on the system [48, 47]. Thus, the dissipative nature

of this system suggests that it has a hierarchical structure, in line with the discussion of

section 3.2.1. This supposed structure will be investigated more fully in the next section.

The SOC requirement is intrinsically linked with a new processing notion of time in

this system. This is because the relational fractal structure is generated by a noisy non-

linear iterative map displaying SOC behaviour. Thus in attempting to construct a model

2Antisymmetry ensures that Bii = 0 thus avoiding explicit node self connection. The internal structure
of nodes will be incorporated shortly.

3B is assumed to be a very large (→ ∞) matrix.
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that does not postulate a priori fundamental objects, we find the need to introduce a

time-like process. In contrast, standard physics with it’s use of a priori objects is linked

with the standard geometrical model of time and the associated problems mentioned

above.

The particular map used was suggested by the Global Colour Model of quark physics

[97]. Details of the history of this map will be discussed in section 4.3, but for now we

note that stripping away the space time and quantum number indices [94], and adding

a noise term suggested by the stochastic quantisation procedure of Parisi and Wu [316]

leads to the following iterative process [108]

Bij → Bij − α(B +B−1)ij + ωij , (4.1)

where

i, j = 1, 2 . . . , N and N →∞. (4.2)

α is an arbitrary parameter which tunes the behaviour of the system; too large and the

system over-connects too rapidly, too small and the rate of connection is drowned out

by the noise term (see [247] for more details about the behaviour of this term), The

term ωij represents an additive noise term, which provides a sense of openness in the

system. At each iteration, the noise term creates new Bij links, incorporating a sense

of innovation and contingency into the system. The noise term, when used iteratively

in equation (4.1) is responsible for the notion of time that arises in the model. The

dynamics are irreversible, with one particular past, which can be recorded as a history,

but not relived. Future states of the system cannot be known, however certain sets of

ensemble predictions can be made. In this sense a processing notion of time is captured by

the system, with a markedly different ontology from the static four dimensional spacetime

of standard physics.4 This leads to the identification of this system and any associated

modelling techniques as Process Physics.

The nonlinear matrix inversion term also performs a critical role in the system. It

causes separate structures brought into existence by the noise term to link up, modelling

a process of self-assembly. It is interesting to examine the dynamics of this process in

detail.

The system can be started with B ≈ 0 which represents the absence of any significant

relational information. Under successive iterations of equation (4.1) the B matrix assumes

a sparse structure that can be organised into a block diagonal form.

Assuming that the large ωij arise with fixed but very small probability p, the geom-

etry of the structures formed can be revealed by studying the probability distribution

of minimal spanning graphs with Dk nodes and k links from an arbitrary node i where

4For the purposes of the following chapters, we note that this modelling of time is far more appropriate
in the context of living systems, providing a sense of contingency and dynamism.
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Figure 4.2: A N = 8 spanning tree for a random graph (not shown) with L = 3. The
distance distribution Dk is indicated for node i.

D0 ≡ 1 (see figure 4.2). This probability distribution is given by [297]

P[D,L,N ] ∝ pD1

D1!D2! . . .DL!

L−1∏

i=1

(q
Pi=1

j=0Dj )Di+1(1− qDi)Di+1 (4.3)

where q = 1 − p, N is the number of nodes and L is the maximum depth from node i.

The most likely pattern can be found by numerically maximising P[D,L,N ] for fixed N

with respect to L and Dk. This procedure has been performed [108], and the following

results are from that analysis.

Figure 4.3 shows the set of Dk (distance distribution) values obtained from one of

these numerical experiments, where the log of the probability of a large noise value is set

at log10 p = −6, and the number of nodes is fixed at N = 5000. Also shown in the figure

is a curve

Dk ∝ sind−1 (πk/L) . (4.4)

with best fit to the data when L = 40 and when the dimensionality of the fit, d = 3.16.

This same curve is obtained from the surface area of a n-dimensional sphere. Figure 4.4

shows the range in d for fixed N = 5000 and varying p values. We see that for p below

some critical value log10 p < −5, d ≈ 3.

This indicates that the connected nodes have a natural embedding in a S3 hypersphere,

which is very suggestive of the 3-dimensionality of space. Thus this model goes some way

towards predicting the observed three dimensional structure of space, as an emergent

phenomenon, a feature that is usually assumed in physics. Notice that the nodes are not

exactly embeddable (which would require d = 3), there is a proportion of extra links.

This is a key observation which forms the basis of a theory of matter as a quantum foam

that will be discussed in section 6.4.5.

While they are not the only structures generated by the system, their maximum
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likelihood makes these structures the most common. Splitting the large B matrix into

its constituent independent submatrices Bsub we realise that each is almost singular

(det(Btree) ≈ 0) but that the noise term ensures extra Bij terms which lead to a small

valued determinant. Upon inversion of the B matrix, this small valued determinant im-

plies that the next iterative step of the system will lead to new large valued Bij entries

(depending upon the specific ωij noise terms). Hence tree structures are sticky, at each

iteration cross-links form between the structures which act to join them, and to produce

larger structures. This behaviour has been examined in detail in a recent PhD thesis

[247].

Thus, under the influence of the iterator (4.1) the system can be seen to ‘grow’ with a

steady increase in relational structure. As the tree structures stick together, they become

less easily embeddable in a S3 structure. This phenomenon can be seen in figure 4.4,

where beyond the critical value of d ≈ 3 the dimension of the structures quickly becomes

very high; they are no longer embeddable in S3 and should instead be thought as defects

in the system. These defect graphs gradually lose the ability to form new links, which tend

to form only at the level of leaves, thus, they become unable to sustain themselves and

eventually they fade away from the system, or ‘die’. However, the system itself generally

grows faster than it loses structures (see [247] for more details of these dynamics). The

openness of the system provided by the noise term is essential here, as otherwise the

system could be seen as violating the 2nd law of thermodynamics.

The nonlinear term is self-referencing; all elements of B are required in order to

compute the next value of each Bij element from the previous iteration. Thus, this term

can be seen to incorporate a weak notion of internal self-observation into the system. In

particular, any node has the capacity to profoundly affect the rest of the system if it

randomly receives a large ωij value at the next iteration of the map. Thus the system

is in a sense holistic; the fact that one node is not ‘close’ to another does not mean

that it cannot be affected strongly by it. This leads to a very strong form of contextual

behaviour in the system, no one element can be considered as isolated, in fact, at the

next iterative step it may become strongly linked to a node which was previously not

considered important to its dynamics. The noise term ωij limits this self-referencing of

the system, providing the system with a sense of innovation.

As mentioned above, there is every reason to suspect that this system displays some

sort of hierarchical structure. This was initially shown to be the case in [243], but a more

in-depth understanding of the hierarchical nature of this system has since been obtained.

The next section will start to analyse this idea from a number of the different viewpoints

developed in chapter 3.
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4.2 A Hierarchical Analysis of the System

There is a sense of emergence in this system. Structures appear to be forming which

are not explicitly present in either the update equation (4.1) or the original very simple

relational structure of nodes and connections. An examination of this claim within the

framework of hierarchy theory helps to clarify, in less technical terms than were used in

the previous sections, this aspect of the behaviour of the system.

4.2.1 Near-decomposability

The first characteristic of this system relevant to a hierarchical analysis is the block diag-

onal form of the matrix of Bij values, that arises under the update equation (4.1). This

form also arose in equation (3.1), which occurred during the examination of Simon’s un-

derstanding of near-decomposable systems performed in section 3.1.4. Thus, it is possible

to form an understanding of this system as nearly-decomposable. This result makes sense.

If nodes are seen as themselves made up of structures of nodes, then clearly some sort of

hierarchical system has been created.

At this point we start to see that Simon’s analysis is not particularly helpful beyond

its ability to identify structures that have a nearly-decomposable nature and are therefore

to some extent hierarchical. No understanding of the dynamics of the structure has been

gained, merely an indication of that structure.

4.2.2 Baas hierarchy structure

An alternative view of hierarchies proposed by Baas, was discussed in section 2.2.1. It

is possible to understand the Process Physics model as forming at least a 2nd order

hyperstructure in the Baas sense.

Recall that this framework depends fundamentally upon the notion of observation

used in the identification of new, higher order structures [43]. Thus, in order to register

the emergence of new structures or entities within a system it is necessary to identify

a mechanism capable of observing those entities, which often takes the form of their

context. Given that this system is aimed at modelling the Universe, we might ask what

its context could be. How could an observational mechanism external to the Universe

be identified? Such a mechanism can be found through the adoption of what might be

regarded as an external perspective. The majority of analytical tools appear to be of an

external nature, but this does not imply that an entity exists external to the Universe,

merely that these external modes of analysis are simpler to implement. This point has

been recognised by a number of different researchers [236, 235, 442, 441], many of whom

claim that it is necessary to develop internal perspectives in order to understand complex

phenomena such as the mind and life. The term endophysics [366, 169, 236] has been

coined to refer to the study of systems which have enclosed observers in them. Such a

view is participatory, how we look determines what we see, thus this idea bears many

similarities with the necessity of accounting for context in complex systems. Through
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a proper treatment of context we loose much of the confusion that often surrounds an

examination of the Universe; an observer of the Universe can exist within that Universe.

To construct a Baas hierarchy, we consider the original nodes used in the construction

of the relational structure to be a very simple family of N first-order structures Ξ1 =

{Ξ1
r : r = 1, 2, . . . N},5 where the first-order observational mechanism O1 is defined as

membership in the set Ξ1 . Now, under the influence of equation (4.1) which we consider

to be an update functional R, we find that these nodes join up, forming a second order

structure:

Ξ2 = R(Ξ1
i , O

1, Bij) i, j = 1, 2, . . . , N (4.5)

where Bij is the connection strength between nodes and Ξ1
j designates the structure that

appears in the B matrix in the previous sections. The family of second order structures

consists of the maximum likelihood structures discussed above that are embeddable in the

three-dimensional hypersphere (ES3), along with a variety of other defect structures that

have not as yet been classified. However, considering the space-type structures alone, we

can define the property of being embeddable in S3, (ES3) as a second order observationally

emergent property,

PE
S3 ∈ O2(Ξ2). (4.6)

That is, this property is not present in the simple set of nodes that we started with,

PE
S3 /∈ O2(Ξ1). (4.7)

Only under the influence of the update functional (4.1) did this extra aspect of the

behaviour of the nodes become apparent. This property is claimed to be observationally

emergent since external techniques must be utilised in order to extract the notion of

S3 embeddability, and it is only approximate at best, due to the influence of the defect

structures.

The analysis of the remaining structure of this system is very complex and only in

the preliminary stages, but it is expected that stable patterns identifiable as third order

structures will emerge in the system. The full theory of this process is currently under

development, but the general argument can be sketched out. More detail will be provided

in section 6.4 when a higher level model, a Quantum Homotopic Field Theory (QHFT)

of the simple iterative system discussed above will be introduced.

We can somewhat artificially classify the structures in the system as being either

exactly embeddable in S3 (the ES3 structures), or non-embeddable structures which we

will term defects (D). It is expected that the system contains stable defects, which we

shall term Topological Defects (TD). The stability of these structures will be structural,

5Note the change in notation, with Ξ describing the structures instead of Baas’ original S which was
used in section 3.2.2, but will not be used here in order to avoid confusion with the hypersphere notation.
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and constitutes a new third order observation mechanism within the system O3. Thus

it is expected that the stable TD’s will form a set of K new emergent structures Ξ3 =

{Ξ3
v : v = 1, 2, . . .K} within the system. Equation (4.1) ensures a constant updating

of their components — rather like the units of an organism which are being constantly

regenerated. These TD’s (if rigorously identified) would be third order structures in the

hierarchy. That is

PTD ∈ O3(Ξ3
v), and PTD /∈ O3(Ξ2

r) (4.8)

because their emergent stability within the system is defined by their structural stability,

i.e. it constitutes a new observation mechanism. It is expected that TD’s made up of

aggregations of ES3 structures will occur in this system, not themselves having the ES3

property.

Thus there is a sense of non-computational, or rather observational emergence (as

defined by Baas, see section 3.2.2) in this system. More than one mode of analysis is

required in order to understand its behaviour. This suggests that this system is truly

exhibiting some sort of high end complex behaviour. We shall return to this claim at the

end of this work in section 7.2.

So far a third order hyperstructure has been identified (but not rigorously at the third

order).

nodes > S3 +D
︸ ︷︷ ︸

O2(Ξ2)

> stable TD
︸ ︷︷ ︸

O3(Ξ3)

> . . . (4.9)

It is expected that more structure will emerge from the system. This is because the

identified stable structures of this model have a deep connection with the more standard

object driven methodologies of particle physics which will be discussed section 4.3. In [91]

a link from the QHFT to the theory of preons6 was discovered, and therefore it appears

that these systems can recover much of the behaviour of the Standard Model.

The system presented is rather minimal when compared to the complex task of mod-

elling living systems. This is to be expected. While a surprising amount of structure

appears to emerge from this system, the lack of objects in the model plays a key role in

limiting the storable information of the system. For example, consider biological mod-

elling where complex information can be stored in DNA molecules and their enveloping

cells. This provides an a priori fundamental set of information the interactions of which

must be incorporated into any model. It also allows for the creation of extremely complex

structures, as the system can use this prestored information to generate new structures.

We expect that with a strong argument for the stability of the TD’s the Process Physics

system may become capable of storing such complex information, and hence generating

a very rich set of structures undergoing complex interactions. This is clearly a prior-

6Preons are one of the proposed replacement ‘fundamental particles’ which in bound states form quarks
[279, 160].
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ity for future research, however, the transition to stored information is no simple one,

a point explicitly recognised by Pattee in his discussion of the need to understand the

implementation of the epistemic cut in such theories (discussed in section 1.5.1).

Finally, we recall the ADH discussed in section 2.2.2. While the system presented

here appears to be very minimal, with very simple first order structures, the update

equation (4.1), being derived from Quantum Chromodynamics presumably has a large

amount of intrinsic information. In addition to this, it appears that the information

originally stripped away from equation (4.1),7 is in some sense re-emerging within this

dynamical system. This behaviour is presumably not allowed by the ADH, as a number

of higher-order properties are emerging from this system without a complex set of object

primitives. Thus we see that the ADH is in fact flawed as was claimed in section 2.2.2.

This Process Physics system appears to be providing a direct counterexample, and it does

so through a shift in emphasis from the standard reductive, object driven methodologies

to a more open, contextual, processing system of relations.

4.3 The Historical Roots of Process Physics

The fact that this very minimal system exhibits both observational emergence and a

contextually dependent hierarchical structure suggests that it may have some sort of

fundamental characteristic that could be used in a more general modelling of emergent

behaviour. In order to fully explore this possibility we will look at the historical roots of

the model.

As mentioned in section 4.1 the map used to update the Process Physics system was

suggested by the Global Colour Model (GCM) of quark physics [90, 97, 205]. This model

uses the functional integral method, and approximates low energy hadronic behaviour

from the underlying quark-gluon quantum field theory. In this section we shall briefly

discuss the fundamental nature of quantum theories before looking at the way in which

an equation from the GCM led to the development of Process Physics. Chapter 5 will

discuss the structure of quantum theories in more detail, arguing that they can be applied

to a more general set of systems than is assumed to be the case at present.

4.3.1 The Nature of Quantum Theories

All quantum theories have the same fundamental structure, which is illustrated in fig-

ure 4.5. In order to implement some quantum theory of a system, the following set of

three steps is followed:

1. First, a map from a classical state space, S to a complex number C is found. This

map is often written in the form of the symbol ψ.

7The Minkowski measure of space-time, and the quantum number indices.
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i = H
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C

Figure 4.5: The fundamental structure of any quantum theory involves a map ψ from
a state space to a complex number, which evolves according to some time evolution
equation.

2. Depending upon the system under examination some time evolution equation is

chosen from a set of possibilities including the Schrödinger equation, the Klein-

Gordon equation, the Dirac equation etc. each of which map to another set of

complex numbers.

3. Steps 1 and 2 are mathematically well defined and understood, however, complex

numbers are not revealed when a measurement is performed on a quantum system.

Instead, the system is found to be in some classical state which is closely related

to the configuration of the experiment performed (see section 1.3). The dynamics

of this process are not understood, and there are a number of competing theories

of quantum measurement, each of which lead to a different interpretation of quan-

tum mechanics [63]. Mathematically, this process is carried out by mapping the

inner product of ψ at the point of time in which we are interested to some sort of

probability space from which a set of predictions about the system are obtained.

Only a few example theories with this structure follow, but all quantum theories can be

placed within this general framework.

Non-Relativistic Quantum Mechanics

The simplest example of this general structure is standard (non-relativistic) quantum

theory. It consists of a mapping ψ from space and time coordinates (t, x1, x2, x3) = (x)

to the complex numbers, ψ(x) → c ∈ C. The time evolution of this system is given by
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the Schrödinger equation

i~
dψ

dt
= Hψ (4.10)

Usually, a requirement is added that the time evolution of the relevant field (represented

by ψ) is norm preserving,
d

dt
||ψ|| = 0 (4.11)

which amounts to the requirement that no creation or annihilation of matter occurs. This

occurs if H is a hermitian operator, H = H†, which means that the time evolution of the

system will be unitary.

The act of measuring the action of some physical observable O represented by the

operator Ô upon the system is predicted by calculating the expectation value:

〈ψ(x)|Ô|ψ(x)〉 =

∫

dxψ†(x)Ôψ(x)

=
∑

j

|cj |2oj , (4.12)

where the oj are the real eigenvalues of the (hermitian) operators Ô such that Ôψj = ojψj ,

where ψ has been expanded in terms of the complete set of states ψj weighted by the

values cj ; ψ =
∑

j cjψj . The interpretation of equation (4.12) usually states that |cj |2 is

the probability that a measurement of O will give an eigenvalue oj .

Quantum Field Theory — The Functional Integral approach

Quantum field theory unifies quantum theory with special relativity. It is one of the most

successful theories in physics, yielding results that are accurate to better than one part

in one million. In chapter 5 we shall discuss some of the key features of quantum field

theories in more depth, for now we shall be content with a brief discussion of the structure

of quantum field theory as it arises in the functional integral method [234, 336, 193].

The functional integral method is a widely used technique for constructing quantum

field theories. It consists of the familiar quantum mapping, but the domain of the map

ψ has changed from the simple space and time coordinates of quantum theory to that of

a set of fields φ over these same space and time coordinates. Again the function maps

to the complex numbers; ψ(φ(x)) = ψ[φ] → c ∈ C, and an equation in the Schrödinger

form can be used to find the time evolution of the fields, although this is rarely done. A

correlation function G is calculated to find the relevant information that will be compared

with experimental outcomes. For example,

G(x1,x2) = 〈ψ0, φ̂(x1)φ̂(x2)ψ0〉, (4.13)
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φ (x )1 φ (x )2

Figure 4.6: A two point correlation function, calculated between two fields φ(x1), and
φ(x2).

where ψ0 is the vacuum state8 which describes what is termed a two point correlation

function between the spacetime points x1 and x2. It describes the way in which an event

at point x1 affects an event at x2 and vice versa. The operators φ̂(x1)φ̂(x2) play a similar

role to the operator Ô in quantum mechanics, in this case they describe a perturbation

of the system at the positions x1 and x2. Correlation functions can be represented using

Feynman diagrams along with a set of associated rules [234] which simplifies the calcula-

tional procedure, but this is in no way representative of reality. For example the two point

correlator in equation (4.13) is represented by figure 4.6 which simplifies the extraction of

the correlation functions. Despite the usefulness of this calculational tool, it is important

not to make the mistake of thinking that these images describe localised particles inter-

acting like billiard balls. The objects of quantum field theories are fields spread over all

of space, partaking in highly complex interactions [41].

Thus, the fundamental structure of quantum field theory is the same as that of quan-

tum mechanics. Despite this equivalence of structure, the process of calculating the

different values of G is far more complex due to the intricate set of interactions involved

between the different fields.

In order to calculate the value of G for the desired correlation function, the functional

integral method makes use of what is termed the generating function, which is, in the

Euclidean metric

Z =

∫

Dφe−S[φ]. (4.14)

Dφ indicates an integration over all of the possible fields φ, in which we are interested,

and S[φ] is a classical action which is generated from taking the relevant Lagrangian9

describing those fields and integrating it over time, or more usually, the Lagrangian density

L is integrated over all spacetime:

S[φ] =

∫

dtL[φ] =

∫

d4xL(φ, ∂µφ). (4.15)

8Which will be discussed in more detail in section 5.5.
9The Lagrangian describes the difference between the kinetic and potential energies of the fields.

All realistic Lagrangians satisfy a conservation law of some type. Noether’s theorem links conservation
laws with symmetries. It states that if the Lagrangian is invariant under some set of transformations
of spacetime and field variables that can be expressed by a finite parameter then there is a conserved
quantity associated with that symmetry [41, 234, 336, 81]. We shall discuss the importance of the concept
of symmetry in more detail in section 5.3.
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Figure 4.7: (a) A three point correlation function for the field φ, described by the correla-

tor G(x1,x2,x3) =
R

Dφφ(x1)φ(x2)φ(x3)e−S[φ]
R

Dφe−S[φ] and a (b) four point correlation function with

the associated correlator G(x1,x2,x3,x4) =
R

Dφφ(x1)φ(x2)φ(x3)φ(x4)e−S[φ]
R

Dφe−S[φ] .

The generating function is then used to determine the relevant correlation function.

For example the two point correlator of equation (4.13) using the following identity:

G(x1,x2) = 〈ψ0|φ(x1)φ(x2)|ψ0〉 (4.16)

=

∫
Dφφ(x1)φ(x2)e

−S[φ]

∫
Dφe−S[φ]

. (4.17)

This relation can be generalised by either increasing the fields of interest (in the action),

or by increasing the number of points of interest on the top line of equation (4.16), giving

more interesting three point, four point etc. correlation functions (see figure 4.7).

Depending upon the field theory to be constructed, the fields of interest, as well as

the Lagrangian describing their dynamics change.
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Quantum Electrodynamics (QED) is the theory of photons and electrons. The be-

haviour of these fields is described by the Lagrangian density:

L = ψ̄(x) (iγµ∂µ −m)ψ(x)− 1

4
FµνF

µν − gψ̄γµψAµ (4.18)

where

ψ̄(x) is the antielectron (positron) field

ψ(x) is the electron field

Aµ(x) is the electromagnetic vector potential,

representing the photon field.

Fµν is the electromagnetic field tensor,

= ∂µAν − ∂νAµ.
g is the electron charge.

γµ is the set of Dirac matrices,

satisfying the Lorentz group U(1).

The term −gψ̄γµψAµ comes from fixing the gauge (i.e. the localizing the symme-

try group). This makes the Lagrangian gauge invariant, or invariant under local

transformations. However it has an important physical consequence of coupling the

electron fields with the photon fields. Thus the requirement for gauge invariance

is what makes interaction between the different fields of QED possible. In fact,

this is so for all gauge theories, see section 5.3 for a more detailed discussion of the

importance of, and connection between, symmetry, invariance and interaction.
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Quantum Chromodynamics (QCD) describes the interactions between quarks and

gluons. It is defined by the quantization of six quark fields satisfying a SU(3) flavour

symmetry, and eight gluon fields satisfying a SU(3) colour symmetry. The dynamics

of these fields is given by the Lagrangian density (in the Euclidean metric):

L =
1

4
FαβF

αβ+
1

2ξ
(∂µA

a
µ)

2+q̄

(

γµ(∂µ − ig
λa

2
Aaµ) +M

)

q (4.19)

where

q̄(x) is the set of 6 antiquark fields

q(x) is the set of 6 quark fields

Aaµ(x) is the set of 8 gluon fields

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

describes the self-interaction of the gluons

wherefabcare the structure constants,

and g is the colour charge.

M is the free mass term for each quark,

γµ are the Dirac matrices,

λa

2 are the eight SU(3) colour generators in the Gell–Mann representation.

We immediately see that QCD is a far more complicated theory than QED. It

contains far more fields each obeying a far more complicated symmetry group. Even

the dynamics of the Lagrangian itself is more complex. Note the self-interaction term

in the gluon dynamics, a term that leads to one of the main differences between the

two theories.

Generally, given some action that describes the classical dynamics of a set of fields in which

we are interested, it is in principle possible to quantize those dynamics and then extract

correlation information for some set of time and spatial coordinates, using equations such

as (4.13). However, this is not usually a simple process. This is because of the infinitely

long expansion characterised by the exponential term in equation (4.14), and hence the

correlation functions. While some of these series converge (e.g. QED, and QFD10) not all

do (e.g. QCD) which means that there is no immediate guarantee that the higher order

terms will not contribute to the generating function in a non-trivial way. At this point

the concept of symmetry comes into its own, where principles such as gauge invariance

are used to guarantee that the system is well behaved [279].

We have not discussed QED or QCD in any great detail, the reader is referred to

10Quantum Flavour Dynamics, the theory of the electroweak interaction.
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any good book on the subject for further details, see for example [234, 279, 336, 450].

For now, we shall move onto discuss a model of QCD which formed the original basis of

the iterator equation (4.1). With the understanding of the history of Process Physics so

provided, we shall then move in chapter 6 to a more detailed discussion of some general

characteristics of quantum theories which, it will be argued, can be used in the discussion

of high end complexity.

4.3.2 The Global Colour Model (GCM) and the Functional Integral Calculus (FIC)

The Global Colour Model (GCM) [97, 205] is a low energy approximation to QCD which

describes the behaviour of hadrons.11 At low energy (or long wavelength) we observe

only those degrees of freedom associated with hadron behaviour; individual quarks and

gluons are not directly observable. This suggests that a reasonable approximation to low

energy behaviour could be achieved by choosing a set of variables which reflect only the

behaviour that we can observe in an experimental setting. This choice of new variables is

not arbitrary, it is achieved using what are termed Functional Integral Calculus techniques

[96, 90, 95] which change variables in a dynamically determined way. In fact, these

techniques amount to analogues of the various tricks used in ordinary integral calculus.

This process changes the variables of the QCD generating functional as follows:

Z =

∫

Dq̄DqDAexp (−SQCD[A, q̄, q]) (4.20)

≈
∫

Dq̄DqDAexp (−SGCM [A, q̄, q]) (GCM) (4.21)

=

∫

DBDDDD∗exp (−Sbl[B, D,D∗]) (bilocal fields) (4.22)

=

∫

DN̄DN . . .DπDρDω..exp
(
−Shad[N̄ ,N, .., π, ρ, ω, ..]

)
(4.23)

This process has been termed action sequencing [94]. In section 5.3.5 this concept will be

examined generally, in particular the term will be broadened to signify any application

of dynamically determined variable changes in the extraction of high level, or emergent,

behaviour from a low level model. Thus we might consider FIC as the first documented

implementation of action sequencing.

The details of this procedure are very complicated, for the purposes of illustration,

we shall briefly consider the change of variables that takes the GCM action to one that

describes bilocal fields.12

The GCM action is an approximation of QCD [97]:

SGCM [A, q̄, q] =

∫

d4x

(

q̄(−γ∂ +M+ iAaµ
λa

2
γµ)q +

1

2
AaµD

−1
µν (i∂)Aaν

)

(4.24)

11Hadrons (i.e. nucleons) are bound states of quarks.
12A simplified bilocal action will be the starting point for the extraction of equation (4.1).
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where the new symbol Dµν is the effective quark-quark coupling correlator which can

be determined from experimental data. First, an integration over the gluon fields is

implemented, leaving the action dependent upon quark behaviour only. This procedure

results in a generating functional describing the quark fields (which follow a Grassman

algebra):

Z =

∫

Dq̄Dqexp (−S [q̄, q]) (4.25)

where the action is now in the form

S[q̄, q] =

∫

d4xd4y

(

q̄(x) (γ∂x +M) δ4(x− y)q(y)− 1

2
q̄(x)

λa

2
γµq(x)D

ab
µν q̄(y)

λb

2
γνq(y)

)

.

(4.26)

From this action, it is in principle possible to perform a direct integration over the Grass-

man variables (q̄ and q) in order to extract the quark correlation functions etc., however

this integration is difficult. Instead the quark variables, q̄q are paired. This pairing of the

variables removes their Grassman nature; the quark pairs attain the status of ordinary

numbers which makes the integration far simpler to perform. Definitionally q̄q pairs are

bosons, therefore this process is referred to as bosonisation.

The quartic term in equation (4.26) is reorganized, making use of appropriate Fierz

identities [95],13 to obtain a new action term:

S[q̄, q] =

∫

d4xd4y

[

q̄(x)γ∂δ4(x− y)q(y)− 1

2
q̄(x)

M θ
m

2
q(y)D(x− y)q̄(y)M

θ
m

2
q(x)

− 1

2
q̄(x)

Mφ
d

2
q̄(y)cTD(x− y)q(y)cTM

φ
d

2
q(x)

]

, (4.27)

where q̄(y)M θ
mq(x) describes 1c bilocal q̄q fields with flavour 1f or 8f generated by the

flavour terms in M θ
m, and that q(y)cTMφ

d q(x) are 3̄c bilocal qq fields with flavour 3̄f or

6f generated by terms in Mφ
d . Making use of these relationships to perform a FIC change

of variables results in the generating functional

Z =

∫

Dq̄DqDBDDDD∗ exp

(∫ [

− q̄(x)(γ∂ +M)δ4(x− y)q(y)

− B
θ(x, y)Bθ(y, x)
2D(x− y) − Dφ(x, y)Dφ(x, y)∗

2D(x− y) − q̄(x)M
θ
m

2
q(y)Bθ(x, y)

− 1

2
q̄(x)

Mφ
d

2
q̄(y)cTDφ(x, y)∗ − 1

2
Dθ(x, y)q(y)cT

M θ
d

2
q(x)

]

(4.28)

where Bθ(x, y) = Bθ(y, x)∗ are hermitean bilocal fields (which will be discussed somewhat

in section 5.3.5), B(x, y) = B(x, y)M
θ
m

2 , and the Dφ, Dθ are the associated higher level

13See either of [205, 97] for the full details of this process.
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diquark fields. Now an integration over quark fields is performed to complete the FIC

change of variables to bilocal meson and diquark fields,

Z[η̄, η] =

∫

DBDDDD∗(DetF−1[B, D, D̄])
1
2 exp

(∫

−B
θ(x, y)Bθ(y, x)
2D(x− y)

−
∫
Dφ(x, y)Dφ(x, y)∗

2D(x− y) . (4.29)

Finally the determinant identity DetF−1 = (Det(G−1))2Det(1+D̄GTDG) proved in [95],

is used which results in the bilocal action:

Sbl[B,D
∗, D] = −TrLn

(
G[B]−1

)
+

1

2
TrLn

(
1 + D̄G[B]TDG[B]

)

+

∫
Bθ(x, y)Bθ(y, x)

2D(x− y) −
∫
Dθ(x, y)Dθ†(x, y)

2D(x− y) . (4.30)

At the end of the complete action sequencing process the following hadronic action

has been derived (to low order),

Shad[N̄ ,N, . . . , π, ρ, ω, . . . ] =
∫

d4xTr
{

N̄
(

γ.∂ +m0 + ∆m0 −m0

√
2iγ5π

aT a + . . .
)

N
}

+

∫

d4x

[
f2
π

2
[(∂µπ)2 +m2

ππ
2] +

f2
ρ

2
[−ρµ(−∂2)ρµ + (∂µρµ)

2 +m2
ρρ

2
µ]

+
f2
ω

2
[ρ→ ω]− fρf2

πgρππρµ.π × ∂µπ − ifωf3
πεµνστωµ∂νπ.∂σπ × ∂τπ

− ifωfρfπGωρπεµνστωµ∂νρσ.∂τπ

+
λi

80π2
εµνστTr (π.F∂µπ.F∂νπ.F∂σπ.F∂τπ.F ) + . . .

]

. (4.31)

this equation is reproduced here for the sake of completeness, for this reason we shall not

list the new notation used in this action, details can be found in the review article [97] or

PhD thesis [205].

However, even without the details of the notation, when we compare this expression

to that of the QCD action discussed above we see a vast difference in the complexity

of the two equations. Equation (4.31), which is is only a low order expansion suggests

that there is a very rich set of behaviour evident in the behaviour of the nucleon; it is an

extremely complex system, but its description is well approximated by this theory. Thus,

some very complicated emergent behaviour has been extracted using this technique. Is

it possible that this technique could be generalised in some way? We shall explore this

possibility in more detail in section 5.3.5.
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4.3.3 The Derivation of the Iterator Equation

The richness of the behaviour exhibited by this model of hadrons led to the hypothesis

that it may be possible to regain much or the dynamics of this model, if it had not been

already incorporated into the model axiomatically. This derivation takes as its starting

point an action that was derived for a bilocal field theory in an early GCM paper [96]14

S[B] = −TrLn
[

/∂δ(x− y) +
M θ

2
B(x− y)

]

+

∫

d4xd4y
B(x, y)B(y, x)

2g2D(x− y) . (4.32)

Setting any variables that are deemed irrelevant equal to 1, and dropping the gluon

interaction term D(x − y) and setting the variables of the B terms in the integral term

as equivalent (i.e. assuming no significant interaction between the fields at this level of

the description) results in a simpler action:

S[B] = TrLn [1 +B] +

∫

d4xd4yB(x, y)2. (4.33)

Now, making a transition to a lattice representation in place of the continuous represen-

tation above, we obtain

S[B] = B2 + TrLn [1 +B] . (4.34)

The next step makes use of stochastic quantization, we shall briefly outline this procedure

and then continue with our derivation of equation (4.1).

Stochastic Quantization

The stochastic quantisation procedure of Parisi and Wu [316, 199] provides the final step

in the derivation of (4.1). This procedure is based upon the observation that the quantum

correlation functions G obtained from equation (4.16) can be obtained in the following

alternative manner.15

1. Introduce a 5th time τ in addition to the usual 4 space-time points xµ. Postulate

that the dynamics of the field φ in this extra time τ is given by the Langevin

equation:
∂φ(x, τ)

∂τ
= −δS[φ]

δφ
+ η(x, τ), (4.35)

14This paper was an early attempt at using FIC to bosonize QCD but made use of a less appropriate
change of variables than the later work utilizing this technique. The change of variables used here was
to 1c and 8c bilocal q̄q variables which worked well in the extraction of meson observables but was less
physical, due to the 8c fields which are repulsive for for q̄q states. The later work was based upon 1c

meson variables coupled with 3̄c and 3c diquark variables [90]. The less physical equation was used as a
basis for the derivation because it is slightly simpler than its equivalent in the later work (equation (4.32))
but still results in rich behaviour.

15For the sake of simplicity the following review of stochastic quantization shall examine situations in
which we are interested in the dynamics of only one simple field φ, the reader is referred to the references
for information regarding more complicated scenarios.
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where η is a Gaussian random variable satisfying,16

〈η(x, τ)〉η = 0, (4.36)

〈η(x, τ)η(x′, τ ′)〉η = 2δ(x− x′)δ(τ − τ ′), (4.37)

〈η · · · η〉η = 0. (4.38)

2. Next the stochastic average of all fields φn satisfying equation (4.35) is evaluated:

〈φη(x1, τ1)φη(x2, τ2) · · ·φη(xl, τl)〉η. (4.39)

3. Finally we set τ1 = τ2 = · · · = τl in equation (4.39), and take the limit τ1 → ∞.

Parisi and Wu proved perturbatively that this limit of the average is equal to the

correlation function of the field of interest, i.e. a l-point correlation can be defined:

lim
τ1→∞

〈φη(x1, τ1)φη(x2, τ1) · · ·φη(xl, τ1)〉η =

∫
Dφ φ(x1)φ(x2) . . . φ(xl)e

−S[φ]

∫
Dφe−S[φ]

.

(4.40)

We make use of this procedure to derive equation (4.1), substituting the action in equa-

tion (4.32) into the Langevin equation (4.35) to obtain

∂B(xµ, τ)

∂τ
= −δS[B]

δB
+ η(xµ, τ). (4.41)

So under the external time τ parameter, and changing the symbol η to ω, an equivalent

noise term which operates over the matrix representation of the B field will update:

Bij −→ Bij −
δS[Bij ]

δBij
+ ωij . (4.42)

Referencing the action in equation (4.34), we make use of the calculus identities δB2 →
B and δlnB → B−1 to obtain the desired equation (4.1).

It is worth emphasising that the use of the stochastic quantization procedure in this

process suggests that a system emergent from this equation should exhibit quantum be-

haviour in the limit of sufficient numerical experiments that run for a long enough time.

Note also that the derivation is not exact, (extraction might perhaps be a more appro-

priate choice of term) the iterative equation (4.1) is not computationally equivalent to

the Bilocal action 4.22 in the GCM, rather there is almost a sense of observation in the

derivation itself; we choose which variables to consider relevant and which to ignore.

It is remarkable that despite the dramatic loss of structure that has been achieved

in this derivation, much richness of behaviour is retained. In this case, it appears that

a set of key characteristics are behind this behaviour, namely the nonlinear aspect of

16Angled brackets are intended to denote connected averages with respect to the variable η
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the equation, its grossly ‘nonlocal’ and holistic form, as well as the noise that drives its

behaviour. Most important perhaps is the structure of the general equation, it is close

enough to the bilocal action that it incorporates its key physical properties in some way.

It is expected that there will be a class of equations all of which exhibit behaviour of this

form, but at this point in time (4.1) is the only one known.
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Chapter 5

Generalising Quantum Theories

This chapter will begin with a short summary of the arguments presented so far:

• Chapter one briefly examined the state of the technique of reductive analysis as it

is generally applied to what might be termed ‘complex systems’. It postulated a

scale of complexity, defined in terms of the success of reduction in the analysis of the

system under consideration, and discussed a number of highly complex systems that

have so far defied such an analysis. The contextual dependence of these systems

upon their environment was identified as one of the contributing factors to this

failure, as was an insistence upon object based methods.

• Chapter two discussed a specific example of this failure, the attempt to create some

form of artificial life. It was claimed that the failure of work performed within the

field of ALife to generate complex emergent behaviour is due to the general lack of

complexity of the simulations themselves.

• Complex systems often manifest in a hierarchical form, and yet ALife simulations

do not exhibit emergent hierarchical behaviour, therefore, chapter three turned to

an examination of hierarchical systems, concepts and theories. These are often an

aspect of complexity which is poorly understood and not well modelled by present

day techniques. A number of ideas that have been developed in order to discuss

these systems, but theoretically this field is not well developed. In particular, the

dynamical generation and evolution of emergent hierarchical structures appears to

be a problem that has eluded theoretical understanding.

• Chapter four started to discuss a new modelling methodology, Process Physics,

which displays some very interesting emergent behaviour. The origins of this method-

ology lie with an example system that is characterised dynamically by equation (4.1).

Although the analysis of this system is still in its early stages, and is both compu-

tationally and analytically very difficult, there are a number of promising results

already suggesting that this system is capable of dynamically generating the emer-

gent hierarchical structures missing in our current modelling of complex systems.

The origins of this system were examined in an attempt to understand the charac-

teristics that are contributing to this emergent behaviour. Its historical connection

with the Global Color Model, a model of QCD which generates hadronic behaviour
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was discussed. This historical basis, as well as the fact that stochastic quantisa-

tion was used in the extraction of (4.1), suggests that even though the system is

not obviously quantum mechanical, the roots of its interesting emergent behaviour

might lie in its quantum background. The suspicion arises that quantum models

are perhaps more general than has traditionally been assumed to be the case.

Thus, we have reached a turning point in this thesis. Having clarified some of the reasons

why complex emergent systems have not been well modelled to date, and also having

identified one model that appears capable of exhibiting complex emergent behaviour, we

are now in a position to start a more detailed examination of the reasons behind the

success of this model, and to extend its general methodology to other systems.

This chapter will examine quantum models. Since there is a strong connection between

quantum models and the iterative system discussed in section 4.1, it is possible that

quantum theories are more generally applicable than has generally been assumed to be

the case; that they may be well equipped to deal with high end complexity. Some key

characteristics of these theories will be discussed in more detail with the objective of

extracting a description of a general class of complex behaviour.

5.1 Bell’s Theorem and Contextuality

In view of the locality theorems as well as their violation by the modern

experimental results, which were not available when the orthodox interpretation

of quantum mechanics was invented, some physicists conclude triumphantly:

Bohr was right!, while others will claim with the same enthusiasm, Bohr was

wrong! Both these opinions make sense, depending on what aspect of the debate

one wishes to favor.

Laloë, p672, [255]

The essential difference between quantum and classical systems is one of contextuality:

• classical systems can generally be completely separated from their environment

whereas quantum systems cannot,

• the behaviour of classical systems during measurement does not depend upon the

measurement setting; there are elements of reality that can be objectively measured,

but this is not necessarily the case with quantum systems.

Much of the so-called mystery surrounding quantum behaviour [395, 202, 430, 397, 267]

stems from an inappropriate expectation that classical concepts will apply just as readily

in the quantum world. This section will examine some of the core differences between

classical and quantum behaviour.

91



5.1.1 The Assumptions Behind Classical Ontologies

That so much follows from such apparently innocent assumptions leads us

to question their innocence.

Bell, [58], p8 in [64]

A number of assumptions always lie behind any theory that we formulate. Often these

assumptions are hidden, and we do not even identify their existence until a new, unex-

plainable phenomenon mandates their extension or even replacement. This was indeed

the case with the classical mechanics of Newton which was so successful that a number

of the assumptions of that theory acquired the status of in-controvertable truths about

the nature of reality. With the discovery of quantum mechanical systems it became nec-

essary to rethink many of these assumptions. Yet, it is likely that in the case of the

nonlocal phenomena exhibited by entangled quantum systems this process of rethinking

and reanalysis has not yet been carried far enough.

Elements of reality

Inherent within our understanding of classical systems is the notion of pre-existing ele-

ments of reality. This aspect is even reflected by the terminology used; measurements

measure the status of a system, they do not influence the result of the measurement

itself.1 When looking at a classical system, measurements reveal a pre-existing reality.

This idea was so fundamental to physics that it was unquestioned, acquiring the status of

an assumption about the nature of all physical systems. The status of this notion can be

seen within the debate that emerged surrounding the completeness of quantum mechanics

as a physical theory.

This debate started with the now famous EPR (Einstein, Podolsky and Rosen) paper

[164], which provides a good illustration of this assumption. EPR considered a gedanken-

experiment, involving a quantum state entangled over position/momentum variables. In-

stead of making use of these continuous variables, most discussions of the EPR argument

now make use of the discrete spin variables first introduced by Bohm [75], a conceptual

simplification which makes the experiment easier to treat mathematically. The modified

experiment is illustrated in figure 5.1. Consider a molecule of total spin-0 which is allowed

to decay, ejecting two atoms of opposite spin- 1
2 . These are then allowed to separate far

enough apart that they might be considered to have ceased their interaction i.e. they

are spacelike separated. If each atom is sent through a Stern–Gerlach magnet, then de-

pending upon the spin of that atom, it will travel up or down to one of the two detectors

illustrated on each side of the figure.

EPR explicitly formulated a number of assumptions about the nature of reality that

had until the invention of quantum mechanics been uncontested, and then used the above

1Although they may influence the state of the system that would be found were another measurement
performed after the initial measurement.
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Figure 5.1: The EPR experiment. Two entangled spin- 1
2 atoms separate, and then prop-

agate through two Stern–Gerlach polarizers, oriented in the directions â and b̂, chosen by
the experimentalists Alice and Bob respectively. Depending upon which detector records
a ‘click’, Alice and Bob can make statements about the spin of their particle, and because
of entanglement, the associated spin of their partners particle. Each experimentalist is
positioned at a spacelike separated distance.

experimental scenario to show that these assumptions led to an apparent contradiction if

quantum mechanics was considered to be a fundamental theory.

First, EPR defined a well accepted notion of realism with the introduction of what

they termed an element of physical reality:2

If, without in any way disturbing a system, we can predict with certainty (i.e.,

with probability equal to unity) the value of a physical quantity, then there

exists an element of physical reality corresponding to this physical quantity.

and they made an explicit assumption about the completeness of a physical theory:

every element of the physical reality must have a counterpart in the physical

theory.

EPR suggested that the success of a physical theory should depend upon this complete-

ness, as well as its correctness; a successful theory should not predict phenomena that do

not occur. Both of these assumptions were made as a result of the successes of classical

theory; a theory so successful that the assumptions at its base were specified in the EPR

2It is important to realize that EPR considered the following conditions to be necessary but not
sufficient definitions of realism and completeness.
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paper as those that must be satisfied by any physical theory before it can be considered

satisfactory.

These assumptions allowed EPR to formulate, in terms of the experiment in figure 5.1,

the following argument.

Suppose the experimentalist on the left hand side (call her Alice) decided to measure

the the spin in the ẑ direction, σz. She would orient the polarizer in the ẑ direction, and

then wait for one of the two detectors to register a reading, perhaps she measures spin

up. Now, because of the original correlation between the two atoms, Alice would be able

to say that if the experimentalist on the right hand side (traditionally called Bob) were

to measure σz also, then he would record an opposite value to Alice, in this case spin

down. Bob does not even need to actually carry out this measurement. Alice can reason

counterfactually [57, 424] about the effect of Bob making measurements as follows. Since

the two particles are no longer interacting, and Alice knows the value of the spin in the

ẑ direction, then according to the EPR definition she is able to claim that there is an

element of reality corresponding to Bob’s particle on the right hand side of the experiment

in the ẑ direction. EPR reasoned that this element of reality must have existed before

Alice’s measurement took place, since the two particles are no longer interacting; the

process of measurement could not have affected the particle on Bob’s side in any way due

to the spatial separation of the two arms of the experiment; Alice was simply finding the

value of a pre-existing element of reality. This means that were Alice to choose to re-orient

her polarizer and obtain a reading in a different arbitrary direction, then she would know

more about the system than is permitted by quantum mechanics. For example, she could

know the spin of Bob’s particles in both the x̂ and the ẑ directions, something which is not

permitted in quantum mechanics due to the uncertainty relation. EPR concluded that

the wavefunction does not describe all of physical reality, and postulated the existence of

hidden variables which would be understood and described by the new, complete theory.

Separability

The EPR argument makes use of another assumption, that of separability.

If two parts of a classical system interact and then separate, then a measurement

performed upon one part at a later point in time will not affect the other part of the

system. The two parts are entirely separable after their interaction. While their behaviour

might be correlated due to the interaction, any subsequent interactions will not affect the

distant member of the pair. In fact this behaviour is so accepted that one set of classical

theories, statistical mechanics and thermodynamics, is founded upon it.

As a simple example, consider two billiard balls, one red and one white, which collide

and then move away from each other. If the white ball collides with a black ball at a

later point in time, this will not affect the behaviour of the red ball as it moves around

the billiard table. The two balls, after their brief interaction have separated.
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This separability of classical systems has a mathematical form. Their state space is

generally a Euclidean phase space which represents all possible momentum and position

information. A classical system with N point particles will have a state space of size

6N .3 In addition, classically there is no difference between the state space and the list

of possible measurement outcomes; if a configuration is listed in a state space, then it

will be possible to find the system in that configuration under a measurement. This is

not so with quantum theories, a state space that consists of just the system itself, and

ignores the states of the relevant measurement apparatus, does not provide a sufficient

description of quantum systems. The separable aspect of classical systems makes their

description simpler; allowing us to make approximations that simplify it. For example,

when describing a system of many components, separability allows us to treat only the

interactions of current interest, neglecting others as not relevant.

This notion of separability features heavily in the EPR argument but was not em-

phasised in the original paper. Bohr highlighted the problems with this assumption of

separability in his response to EPR [76]. Pointing to what he claimed were a number

of mistakes in the EPR argument, Bohr claimed that it was impossible to consider the

orientation of the measurement apparatus in isolation from the system being analysed.

Thus, Bohr pointed to what might now be termed the contextuality of quantum systems,

but did not analyze this feature of quantum systems in any detail. For a number of

years the general response to EPR fell into one of following two categories. The majority

of physicists accepted Bohr’s reply. They generally acknowledged that while the debate

surrounding the EPR argument was philosophically important, it was not particularly

testable. However, a small but significant minority of researchers remained dissatisfied.

While a number of attempts were made to show that hidden variable interpretations of

quantum mechanics were not possible [446, 231, 192], these did not completely rule out

simple hidden variable interpretations [58, 287]. It was not until almost 30 years later

that the EPR argument was suitably developed, by John Bell, into a new form which

moved the discussion of hidden variables, locality and separability out of philosophy and

into a situation where experimental predictions could be formulated.

Bell explicitly represented EPR’s hidden variables with a parameter λ, and introduced

a mathematical identity to represent the separability assumption that the result of mea-

suring the spin in some direction â, in Alice’s region A should not depend on the setting

of the analyser at Bob’s region B and vice versa. Thus Bell assumed that the expectation

value P , of the outcomes of the experiments in the two spatially separated regions should

be factorisable, that is,

P (â, b̂) =

∫

dλ ρ(λ) A(â, λ)B(b̂, λ). (5.1)

3Each particle can be completely represented at a given point in time by 3 space coordinates and 3
momentum coordinates.
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Where ρ(λ) is the probability distribution of the hidden variables λ, A(â, λ) represents

the result of a measurement at A where the analyser is set to measure the â component of

the spin of the atom at A and similarly for B(b̂, λ). This factorization condition amounts

to an explicit representation of the separability of Alice and Bob’s experiment. Bell used

this condition in an analysis of the EPR experimental arrangement, and obtained what

is now termed Bell’s inequality, which is a condition that must be satisfied by any system

satisfying (5.1), i.e. any separable system. He then showed that the expectation value

for the EPR experiment obtained from a quantum mechanical calculation does not fall

within the bounds set by his inequality.

5.1.2 Bell’s Theorem and Nonlocality4

Bell’s theorem defines a relationship between the statistical outcomes of three individual

experimental arrangements. Experiments are again conducted by our two experimental-

ists Alice and Bob (recall figure 5.1), but considering any possible orientation rather than

just the mutually perpendicular ones necessary for the application of the uncertainty re-

lation in EPR-type arguments. In the first experiment, Alice orients her analyzer along

direction â, Bob lines his up along b̂, and together they obtain an outcome OEXP(â, b̂)

(say Alice obtains a click in detector DA1 and Bob finds that DB1 clicks). In the next

experiment, Alice leaves her analyzer oriented along the same direction, Bob rotates his

analyzer to a new direction ĉ and they find the value for OEXP(â, ĉ). In the last ex-

periment, Alice rotates her analyzer along b̂ and they measure OEXP(b̂, ĉ). This set of

experiments is repeated many times, and a statistical description of the results obtained,

giving the expectation values PEXP(â, b̂), PEXP(â, ĉ) and PEXP(b̂, ĉ).

Bell’s theorem is a restriction on the theoretical expectation values that can be exhib-

ited by any hidden variable theories satisfying the separability assumption (5.1) for this

scenario:

|PHV(â, b̂)− PHV(â, ĉ)| ≤ 1 + PHV(b̂, ĉ). (5.2)

There are numerous variations of this basic theorem,5 this section will discuss first

the proof of Bell’s theorem itself, and then conclude with a short summary of the current

status of experimental tests of Bell-type inequalities, as well as some more recently derived

Bell-type theorems. We shall see that a number of limits have been placed upon the form

that can be taken by any physical hidden-variable type theory.

4In what follows we shall avoid confusion by explicitly specifying expectation values with a subscript.
This will identify between hidden variable (HV), quantum mechanical (QM) and experimentally observed
(EXP) values.

5An excellent modern review of both the history and current experimental status of Bell-type inequal-
ities, as well as their consequences for many interpretations of quantum mechanics is provided by the
review article [255].
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Proof of Bell’s theorem

Expressing the responses of Alice’s analyser by

A =

{

+1 if Alice’s analyser determines ‘spin up’

−1 if Alice’s analyser determines ‘spin down’
(5.3)

and similarly, the responses of Bill’s analyser by

B =

{

+1 if Bill’s analyser determines ‘spin up’

−1 if Bill’s analyser determines ‘spin down’.
(5.4)

The assumption made by EPR that Alice’s measurements cannot affect the outcomes of

measurements performed by Bob, that of locality is mathematically expressible in terms

of the results A and B as

A = A(â, λ) and not A = A(â, b̂, λ)

B = B(â, λ) and not B = B(â, b̂, λ),
(5.5)

that is, Alice’s result has no dependency upon results in Bob’s area, and vice versa.

If ρ(λ) is the normalised probability distribution of the hidden variable, λ, that is

∫

ρ(λ)dλ = 1, (5.6)

then our ignorance about the actual values taken by the hidden variables forces us to

integrate over all possible λ’s,

PHV(â, b̂) =

∫

dλρ(λ)A(â, λ)B(b̂, λ). (5.7)

In the EPR scenario, when the two analysers are parallel Alice and Bob will receive

opposite readings

A(â, λ) = −B(â, λ). (5.8)

This allows us to consider three arbitrary orientations of the analysers, â, b̂ and ĉ, and to

write down the relationship

PHV(â, b̂)− PHV(â, ĉ) =

∫ [

A(â, λ)B(b̂, λ)−A(â, λ)B(ĉ, λ)
]

ρ(λ)dλ (5.9)

= −
∫ [

A(â, λ)A(b̂, λ)−A(â, λ)A(ĉ, λ)
]

ρ(λ)dλ (5.10)

using (5.8) in the substitution. Now, since from (5.3) and (5.4) the results A and B can

only be ±1,
[

A(b̂, λ)
]2

= 1. (5.11)
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Which makes it possible to factor (5.10),

PHV(â, b̂)− PHV(â, ĉ) =

∫

A(â, λ)A(b̂, λ)
[

1−A(b̂, λ)A(ĉ, λ)
]

ρ(λ)dλ. (5.12)

Finally, we note that the outcome of any of the above two measurements can be only ±1,

therefore in particular the factor A(â, λ)A(b̂, λ) ≤ +1, which allows it to be dropped from

equation (5.12), giving

|PHV(â, b̂)− PHV(â, ĉ)| ≤
∣
∣
∣
∣

∫ [

1−A(b̂, λ)A(ĉ, λ)
]

ρ(λ)

∣
∣
∣
∣
dλ. (5.13)

Now, applying the normalisation condition (5.6), and making use of the EPR result (5.8)

leads to

|PHV(â, b̂)− PHV(â, ĉ)| ≤ 1 +

∫

A(b̂, λ)B(ĉ, λ)ρ(λ)dλ

≤ 1 + PHV (b̂, ĉ). (5.14)

Which, on comparison with (5.2), is seen to be Bell’s theorem.

It is important to realise that while they are closely associated concepts, locality and

separability are not quite the same. This was apparent in the above proof, where locality

is represented by condition (5.5) and separability by (5.1). Separability is the more general

condition. If a system is not separable then it exhibits a contextual dependency upon

some aspect of its environment (which may include measurement apparatus, other parts

of the official system, or even a part of the universe which was officially designated as not

of interest). Nonlocal systems form a subset of this aspect of inseparability; a nonlocal

system is one which exhibits nonseparable behaviour over spacelike distances.

Testing Bell’s inequality

The quantum mechanical prediction is simple to obtain [202] the result alone will be

reproduced here.

If two spin-1
2 particles are emitted from a source in a singlet spin state and propagate

in opposite directions, then the wavefunction of the entangled spin state is

|ψ〉 =
1√
2

(|+−〉 − | −+〉) . (5.15)

When they reach distant locations, they are then submitted to spin measurements, as per

the EPR arrangement in figure 5.1, with orientations pointing in the â and b̂ directions.

For an angle θ between the orientations of the polarisers in the two regions â and b̂,

quantum mechanics predicts that the probability for a double detection of results +1,+1

or −1,−1 is

PQM++ = PQM−−
= sin2 θ (5.16)
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while the probability of two opposite results is

PQM+−
= PQM−+ = cos2 θ. (5.17)

Early tests of Bell-type inequalities were hampered by the search for a suitable source

of entangled particles. Many were inadequate due to the high energies of the entangled

states that were used (e.g. rather than using photons one experiment used gamma rays),

which were not efficiently transmitted through the polarisers being used at the time.

It was necessary to correct the results obtained using the very quantum theory that

the experiments were intended to test [237, 257]. What are now termed the Aspect

experiments [39, 40, 38] are generally seen as the first direct tests of Bell-type inequalities.

These experiments made use of a new source, a calcium cascade, which emitted entan-

gled photons rather than the molecules discussed above [172]. Individual calcium atoms

were excited by lasers to an unstable state, which then decayed emitting two entangled

photons. The photons were then sent through what was in essence the same experimental

arrangement as illustrated in figure 5.1, (albeit with the necessary modifications to anal-

ysers and detectors in order to cater for photons) in a set of experiments that gradually

increased in their sophistication, in order to eliminate a series of local hidden variable

theories that made use of loopholes in the earlier experiments [255, 202].

Coincidence counters were used to ensure that counted photons were incident upon

a detector within a window of another photon hitting the opposite detector and were

therefore emitted by the source rather than being noisy random events, but this made

the arrangement of the experiment more complex. The first experiment [39] simplified

this problem through the use of a single-channel analyser i.e. only photons parallel to

the transmission axis of the analyser were counted, those that were perpendicular were

ignored. The second experiment [40] used a two-channel analyser which allowed for direct

comparison with the Bell inequalities. Finally, a loophole concerning the possibility that

signals at or below the speed of light were being sent between the analysers and/or source

was closed through the use of time-varying analysers [38].

In each experiment, very clear plots were obtained revealing that as the angles between

the analysers were varied, coincidence counts were found that were in very good agreement

with quantum mechanics, and in violation of the predictions of Bell’s theorem.6 These

results have been extended by a recent experiment [434] which has demonstrated violations

of Bell-type inequalities at distances of more than 10 kilometres.

Thus there is some sense in which quantum mechanical systems exhibit both nonsepa-

rable and nonlocal behaviour; it is not always possible to consider a spatially separated, but

entangled pair of photons to be separated. In particular, it is not appropriate to consider

6There are a number of very good introductions to these experimental results [202, 397, 430], as well
as the original papers themselves. This work will not rehash these details, rather, we shall move onto a
discussion of the implications of this result.
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two separate particles from an entangled state to have their own individual properties,

the context in which one particle is found can affect the other.

It is important to appreciate that hidden variable interpretations of quantum mechan-

ics are still possible (one such interpretation will be discussed in section 5.6.1), but that

the nature of such theories has been substantially changed by these results. Bell-type

inequalities and their violation by experiment have drastically altered our possibilities

when we attempt to understand the nature of physical reality.

There is one other group of Bell-type theorems which deserves mention; the Greenberger–

Horne–Zeilinger (GHZ) [201, 200] and Hardy [209, 210, 211] gedankenexperiments, which

demonstrate Bell-type results without the direct use of inequalities for entangled states

of three and two particles respectively. These two results hinge on the construction of

situations where instead of mathematical constraints on expectation values, individual

events are predicted by quantum mechanics which are impossible according to local re-

alism. The GHZ result is particularly strong, it obtains a direct contradiction between

quantum mechanics and local realism. If the contradictory case occurs then either one

or the other of the two theories will have been validated depending upon the outcome.

Neither of these experiments have been realised as yet, but experimental technology is

improving to the point where they will be in the near future [254, 268, 370], and very few

researchers doubt that quantum theory will provide the correct prediction.

5.1.3 Nonlocality and Relativity

The nonlocality of quantum mechanics poses potentially serious problems when considered

in conjunction with the theories of relativity but there is a wide range of views on this

subject.

Most researchers adopt a stance claiming that although nonlocality is a very real

phenomenon, it does not violate relativity in any meaningful sense. Usually, the claim

is made that it is impossible to use this phenomenon to send signals between Alice and

Bob [395, 394, 393, 283, 187, 179, 180, 202]. This is because while a subtle quantum

mechanism is linking their results, this mechanism does not allow either Alice or Bob to

control the results. Each experimentalist will record a series of perfectly random results

regardless of how they try to affect the outcomes of the other. Shimony coined the rather

notorious term passion at a distance [391], in contrast to the more straightforward and

unallowed by relativity, action at a distance, to describe this weaker sense of interaction

between entangled particles.

While this conclusion is not necessarily wrong, it is possibly premature. This point

has been taken up by Maudlin who has written a comprehensive work [283] examining

the implications that quantum non-locality may have on the theories of relativity. He

makes the pertinent observation that while relativity is generally understood as restrict-

ing something from going faster than light, there are many different candidates for what
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that something actually is. Maudlin identifies four general possibilities: Matter or energy,

Signals, Causal Processes, and Information, and discusses the way in which each inter-

acts with the phenomenon of quantum nonlocality. He finds that while the violation of

Bell’s inequality does not require neither superluminal matter or energy transport nor the

transmission of superluminal signals, the phenomenon of nonlocality requires superlumi-

nal effects behind both the causal processes and the transmission of information. Thus,

according to Maudlin there is room for a peaceful coexistence [393, 390] between quantum

mechanics and relativity. For example, a perfectly consistent theory could be constructed

if relativity was taken as forbidding superluminal signalling.

Maudlin also makes the observation that the most conservative interpretation of rel-

ativity, that theories must be Lorentz invariant, is compatible with every one of the

above four processes occurring faster than light. He undertakes a detailed examination

of Lorentz invariance, during which he finds that a number of different mechanisms are

available by which Lorentz invariant theories can consistently violate the Bell inequalities.

Specific examples of such theories include ones that entail explicit backwards causation

[143], hyperplane dependence [170, 185, 27, 153], even many minds interpretations [29, 28]

which maintain their Lorentz invariance by denying a violation of the Bell inequalities

occurs. Maudlin also shows that it is possible to formulate a Lorentz invariant and yet

nonlocal theory that makes use of a preferred reference frame undetectable by any means.

One of these, the Quantum State Diffusion (QSD) model [328], shall be discussed in sec-

tion 5.6.1. This model has been extended and applied within Process Physics in the high

level QHFT which will be discussed in section 6.4.1.

In a work spanning decades, Stapp has been attempting to prove that quantum theory

is nonlocal, rather than the more commonly accepted interpretation that any hidden

variable type replacement of quantum mechanics must be [418, 419, 420, 421, 422, 130,

131]. This attempt has more recently attained some notoriety as the nonlocal character

of quantum theory debate [423, 288, 424, 392, 425, 426, 396]. While opinion is still rather

divided over whether Stapp has achieved this goal, this debate has served to clarify both

terminology and concepts often used in debates about the meaning of quantum theory.

For example, the meaning of counterfactuals has been extensively debated in this series of

papers. The most recent formulation of this attempt has taken the form of the following

theorem:

Suppose a theory or model is compatible with the premises:

• Free Choices: This premise asserts that the choice made in each region

as to which experiment will be performed in that region can be treated as

a localized free variable.

• No Backward in Time Influence: This premise asserts that experimental

outcomes that have already occurred in an earlier region can be considered
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to be fixed and settled independently of which experiment will be chosen

and performed later in a region spacelike separated from the first.

• Validity of Predictions of quantum theory (QT): Certain predictions of

quantum theory in a Hardy-type experiment are valid.

Then this theory or model violates the following Locality Condition: The free

choice made in one region as to which measurement will be performed there

has, within the theory, no influence in a second region that is spacelike sepa-

rated from the first.

Stapp, p300, [426]

This is a very similar result to that obtained by Hardy himself [209], although it has

been directly criticised by Shimony [396]. The ongoing debate surrounding Stapp’s work

involves some very delicate distinctions between logical statements, and differing defini-

tions of vital concepts such as counterfactuals, and for this reason will not be discussed

here (consult the above references for details). Instead, we shall mention two different

approaches towards this debate, one stronger than the other, but both of which are in

keeping with the current work. Firstly, one could adopt the stance that Stapp has ad-

equately illustrated the nonlocal nature of quantum theory. A second, weaker claim is

also possible; while the nonlocality of quantum mechanics has not yet been proven, any

hidden variable theory wishing to reproduce the results of quantum theory must contain

nonlocal aspects. In the end, the above debate misses the point, there are nonlocal ele-

ments in the formalism of quantum mechanics, even if it is still possible to claim that at

a fundamental level, quantum systems are not nonlocal. Both the wave packet reduction

postulate, and the very state vector itself exhibit highly nonlocal properties; they extend

over all available states, and changes to both of them must occur in some instantaneous7

sense This point has also been expressed by Laloë:

. . . even if one can discuss whether or not quantum mechanics is local or

not at a fundamental level, it is perfectly clear that its formalism is not. . .

Laloë, p675, [255]

and by Goldstein:

. . . in recent years it has been common to find physicists. . . failing to appre-

ciate that what Bell demonstrated with his theorem was not the impossibility

of Bohmian mechanics, but rather a more radical implication — namely non-

locality — that is intrinsic to quantum theory itself.

Goldstein, [195]

7The Tittle et al. experiment [434] shows that instantaneous effects must occur over intervals of at
least 10km and very few researchers doubt that if cohesion can be maintained over longer distances then
the same results will be found.
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In aiming to extend the quantum formalism to the modelling of complex systems, we are

applying the formalism, and must accept that there is some sense in which that formalism

has nonlocal aspects, and, at the very least is in violation of the spirit of relativity, if not

its experimental predictions.

This is by no means an unusual conclusion, even if it is in the minority and rather

unpopular. Researchers such as Einstein with his notion of “spooky action at a distance”,

Bohm [73, 74], Bell [61], Hardy [209], Stapp [426] and Percival [332] have argued along

these lines to a greater or lesser extent. However, some [209, 332] have drawn the much

stronger conclusion that quantum mechanics implies a preferred reference frame (PRF),

and is therefore in direct contradiction with one of the most inbuilt assumptions of rela-

tivity, even if it does not violate the predictions of that theory. In section 6.4.4 this result

will be seen to spring naturally from a realistic interpretation of quantum mechanics which

models the simple iterative Process Physics map (4.1) as a quantum foam. There, one of

the often raised objections to realistic interpretations of quantum mechanics, that they

imply a PRF, will be seen in a different light, as a natural consequence of Process Physics

and explicable within that methodology.

5.1.4 Contextuality

The tacit assumption that a hidden-variables theory has to assign to an

observable A the same value whether A is measured as as part of the mutually

commuting set A,B,C, . . . or a second mutually commuting set A,L,M, . . .

even when some of the L,M, . . . fail to commute with some of the B,C, . . . ,

is called “noncontextuality”.

Mermin, p811, [287]

A contextual system is one that cannot be separated from its surroundings. These

might include the experimental arrangement itself, factors external to the apparatus (i.e.

the environment surrounding the system and experimental apparatus), the history of other

experiments performed upon the system, etc.. Such contextuality is often perceived as

negative, leading to the loss of realism, but this is a far stronger claim than is justified. As

was discussed above, contextual systems do not have pre-existing elements of reality. This

means that if such a system is examined under two different contexts then a very different

set of results may be obtained. Results are not merely discovering reality, there is a very

real sense in which they might be creating some aspect of that reality. Quantum systems

provide an example of this phenomenon, the different results obtained from different

experimental arrangements can even be conflicting; one set of variables may not coexist

with the other.

This quantum result has been demonstrated unequivocably in two independent proofs,

a discrete one due to Kochen and Specker [249], and a continuous argument made by Bell
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[58] one year earlier. (This work will therefore refer to the two general results as the Bell-

KS theorem.) These two papers followed in, and generalised, a tradition of proofs started

by von Neumann [446] who was broadly considered to have shown that hidden variable

theories were impossible, but who made an inappropriate and too restrictive assumption

about the additivity of expectation values in his proof [215, 58, 287], which over the years

was rectified in more general proofs [231, 192]. All Bell-KS-type theorems rely upon

showing that there exists a set of observables for which it is impossible to consistently

assign an eigenvalue. This is despite the fact that the sets of observables are commuting.

These proofs have historically involved “a moderately elaborate exercise in geometry”

p804 [287], which has led to disinterest on the side of the general physics community,

however, Mermin has discovered a number of simpler proofs, which “are so simple that

even those physicists who regard such efforts as pointless can grasp the argument with

negligible waste of time and mental energy.” p804, [287].

Mermin’s argument makes use of the Pauli matrices for two independent spin- 1
2 par-

ticles σ1
µ and σ2

ν , where ν and µ represent any of the three different coordinate axes x, y

and z. These matrices provide us with the well known set of relations:8

(σiµ)
2 = 1⇒ |σiµ|2 = ±1 (5.18)

[
σ1
µ, σ

2
ν

]
= 0 when µ ⊥ ν (5.19)

{σiµ, σiν} = 0 (5.20)

σixσ
i
y = iσiz (5.21)

for i = 1, 2. If we arrange the following set of nine observables in the following manner:

σ1
x σ2

x σ1
xσ

2
x

σ2
y σ1

y σ1
yσ

2
y (5.22)

σ1
xσ

2
y σ2

xσ
1
y σ1

zσ
2
z

then using the relations in (5.18)–(5.21) we can easily see that it is impossible to consis-

tently assign values to all nine of these observables at once:

(a) Firstly, we note that the observables of each of the three rows and columns are

mutually commuting. This is straightforward for the top two rows and first two

columns, and follows for the bottom row, and rightmost column because in every

case there is a pair of anticommutations. Thus for example, σ1
xσ

2
x − σ1

yσ
2
y = σ1

xσ
2
x −

σ1
xσ

2
x = 0 from a simple double application of the anticommutation relation (5.20).

8See any good quantum mechanics textbook for a more detailed discussion of the Pauli matrices, for
example [75], is a good source.

104



(b) It is also straightforward to show that the product of the three observables on the

right hand column is equal to −1:

σ1
xσ

2
xσ

1
yσ

2
yσ

1
zσ

2
z = σ1

xσ
1
yσ

2
xσ

2
yσ

1
zσ

2
z (5.23)

= iσ1
z iσ

2
zσ

1
zσ

2
z (5.24)

= −(σ1
z)

2(σ2
z)

2 (5.25)

= −1. (5.26)

(c) Similarly, the products of the observables in the other two columns and all three

rows is +1.

(d) Now, the values assigned to mutually commuting observables must satisfy any iden-

tities obeyed by the observables themselves, hence from (a) the product of the values

assigned to each row and the first two columns must be +1 (from (b)), while that

of the last column must be −1.

However (d) is impossible to satisfy, as the row identities require the product of all nine

values to be +1, while the column identities require that it be−1. We have a contradiction,

which means that the measurement of an observable depends upon other measurements

made simultaneously; observables are not independent even if they commute.

This means that the requirement for commuting sets of observables is not strong

enough to allow for a consistent assignment of eigenvalues. A direct result of this theorem

it that it is impossible to completely describe a quantum system independently of an

experimental arrangement. This result closely mirrors Bohr’s reply to the initial EPR

argument:

. . . the wording of the above mentioned criterion of physical reality proposed

by Einstein, Podolsky and Rosen contains an ambiguity as regards the expres-

sion ‘without in any way disturbing a system.” Of course there is in a case

like that considered no question of a mechanical disturbance of the system un-

der investigation during the last critical stage of the measuring procedure. But

even at this stage there is essentially the question of an influence of the very

conditions which define the possible types of predictions regarding the future

behavior of the system. Since these conditions constitute an inherent element

of the description of any phenomenon to which the term “physical reality” can

be properly attached, we see that the argumentation of the mentioned authors

does not justify their conclusion that quantum-mechanical description is es-

sentially incomplete. On the contrary this description, as appears from the

preceding discussion, may be characterised as a rational utilization of all pos-

sibilities of unambiguous interpretation of measurements, compatible with the

finite and uncontrollable interaction between the objects and the measuring in-
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struments in the field of quantum theory. In fact it is only the mutual exclusion

of any two experimental procedures, permitting the unambiguous definition of

complementary physical quantities which provides room for new physical laws,

the coexistence of which might at first sight appear irreconcilable with the ba-

sic principles of science. It is just this entirely new situation as regards the

description of physical phenomena, that the notion of complementarity aims

at characterizing.

Bohr, p700, [76]

Many researchers have found Bohr’s reply very difficult to comprehend. Indeed, Bell after

a direct quote of much of the above passage went on to say

I have very little idea what this means. I do not understand in what sense

the word ‘mechanical’ is used, in characterizing the disturbances which Bohr

does not contemplate, as distinct from those which he does. I do not know

what the italicized passage means — ‘an influence on the very conditions. . . ’.

Could it mean just that different experiments on the first system give different

kinds of information about the second? But this was just one of the main

points of EPR, who observed that one could learn either the position or the

momentum of the second system. And then I do not understand the final

reference to ‘uncontrollable interactions between measuring instruments and

objects’, it seems just to ignore the essential point of EPR that in the absence

of action at a distance, only the first system could be supposed disturbed by the

first measurement and yet definite predictions become possible for the second

system. Is Bohr just rejecting the premise — ‘no action at a distance’ —

rather than refuting the argument?

Bell, pp155–156, [64]

This is perhaps a little unfair of Bell, I think that Bohr was quite clearly pointing to

the contextuality of quantum systems; claiming that it was impossible to compare the

two experimental arrangements counterfactually, and that only one or the other might

be considered. But whereas Bohr’s reply was longwinded and difficult to understand,9

we now have a straightforward contradiction. The understanding of quantum systems

was advanced not by a insistence upon complementarity, but by a detailed analysis of

alternative theories.

5.1.5 The Relationship Between Nonlocality and Contextuality

The Bell–KS theorems establish that in a hidden-variables theory the values

assigned even to a set of mutually commuting observables must depend on

the manner in which they are measured — a fact that Bohr could have told

9Indeed much of the response consists of a rehashing of the earlier debate between himself and Einstein,
rather than a proper examination of the new result.
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us long ago (although he would have disapproved of the whole undertaking).

And Bell’s Theorem establishes that the value assigned to an observable must

depend on the complete experimental arrangement under which it is measured,

even when two arrangements differ only far from the region in which the value

is ascertained . . .

Mermin, p814, [287]

In the same paper as the above quotation [287], Mermin presents another alternative

proof of the Bell–KS theorem using ten observables of three particles in a state space

of eight or more dimensions. He shows that this system provides a direct link between

the Bell–KS theorem and the GHZ result [201] mentioned above. Thus, there is some

sort of an equivalence between the two theorems, in particular, they both demonstrate

that the assignment of pre-existing elements of reality to quantum mechanical systems is

impossible. However, Shimony points out that Bell’s inequality provides a stronger result

. . . one of these theories, that of Bohm, postulated a peculiar kind of non-

locality or action at a distance in order to recover the quantum mechani-

cal predictions concerning correlated, spatially separated systems. . .Bell asked

whether such nonlocality is a necessary condition for the recovery of the statis-

tical predictions of quantum mechanics. His positive answer to this question

is called ‘Bell’s Theorem’. . . .The factorisability condition is reasonable when

the two systems are separated by typical laboratory distances (a few metres),

and especially reasonable if the operations performed upon the two systems are

events with space-like separation. Bell concluded that no physically acceptable

contextual hidden variables theory could agree completely with the statistical

predictions of quantum mechanics. Since the experiments inspired by his work

overwhelmingly support quantum mechanics, it follows that no contextual hid-

den variables theory is viable unless it postulates a kind of nonlocality.

Shimony, p26, [394], (italics added)

Bell’s Theorem therefore forms a subset of the more general Bell-KS type theorems, and

both nonlocality and contextuality must be exhibited by any satisfactory hidden variables

theory. However, there is a very real sense in which both theorems are describing the same

phenomenon, that of contextuality. Nonlocality is simply contextuality over a distance.

5.1.6 The Meaning of Nonlocal and Contextual Behaviour

. . . in the absence of inefficiency, Bell’s inequalities can reliably be violated

only when the response of one of the particles depends (at least sometimes) on

the question asked its partner.

Maudlin, p182, [283]
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Nonlocality and contextuality provide two strong results illustrating the way in which

quantum behaviour violates what might be regarded as a traditional reductionistic stance.

In addition, these two results are intimately related, a nonlocal system will exhibit con-

textual behaviour.

The contextual dependence of quantum systems is strikingly similar to that discussed

in section 1.3. In fact, contextuality is a general phenomenon, exhibited by many different

‘classical’ systems, not all quantum mechanical. In section 5.2 we shall discuss a number of

systems for which it is possible to generate Bell-type inequalities, and to show that they are

violated in certain situations. However, while the modelling of quantum systems is quite

advanced, the contextual systems of other fields are traditionally not well understood.

This is the source of much of the confusion surrounding systems such as those discussed in

section 1.2.2; there are few clear, well established and general models of such phenomena.

However, if their contextuality can be shown to be similar to that of quantum systems,

then this might lead to the possibility of generalising the quantum description to a broader

class of contextual system. The success of quantum modelling thus might lead to more

successful models of contextuality, and hence complexity, in general. This proposal will

be persued throughout the remainder of this work. First however, we shall briefly discuss

some attempts that have been made to analyse the meaning of nonlocality in greater

detail, and to extract specific results about what the violations of Bell-type inequalities

might entail.

As was discussed in the previous section, nonlocality falls within a broad class of con-

textual behaviour. The dependence in Bell-type experiments upon both measurement

settings and upon previous experiments performed upon the entangled system at a space-

like distance reveals this contextuality explicitly. Often, attempts are made to separate

nonlocality into subsets of nonclassical phenomena, with an associated insistence upon

one or the other of these mechanisms as being the ones that led to the resultant behaviour.

For example, both Jarrett [230, 50] and Shimony [395] have attempted to analyse Bell’s

factorization condition (5.1) as a conjunction of two different physically significant prin-

ciples. Jarrett used the terms simple locality and completeness and Shimony Parameter

Independence (PI) and Outcome Independence (OI). We will follow Shimony’s terminol-

ogy in order to avoid overloading the already generally overused term locality, the two

conditions are mathematically equivalent even if they are given different interpretations

by the two authors.

PI is the condition stating that the result of a given measurement is statistically

independent of the setting of the distant detector. In order to understand this concept,

it is necessary to extend the notation used in section 5.1.1 in order to incorporate not

just the way in which the result of a measurement depends upon the direction of the

polarizer and upon some hidden variable, A(â, λ), but also the premeasurement states of

the two detectors before the measurement, DA and DB, as well as the orientation of the
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apparatus in the opposite region. For the EPR–type experiment illustrated in figure 5.1,

PI states that the expectation values found in region A, are equal to10

PA(A|â, DA, D
0
B, λ) =

∑

B

P (A,B|â, b̂, DA, DB, λ), (5.27)

where D0
B denotes that the device in region B performs no measurement. Similarly, the

expectation values in region B are, according to PI,

PB(B|b̂, D0
A, DB, λ) =

∑

A

P (A,B|â, b̂, DA, DB, λ). (5.28)

OI on the other hand, states that the probability of getting a result on one side of

the experiment is independent of the result on a distant wing if both this result and the

distant setting are given, that is

P (A,B|â, b̂, DA, DB, λ) =
∑

B′

P (A,B′|â, b̂, DA, DB, λ)×
∑

A′

P (A′, B|â, b̂, DA, DB, λ).

(5.29)

Jarrett defines OI as describing that the results of measurements other than some mea-

surement of interest, M , should provide no information that can be used to predict the

result of M which is not already contained in the state description of the system [50].

It is trivially possible to re-derive Bell’s factorization condition (5.1) from the combi-

nation of these two conditions:

P (A,B|â, b̂, DA, DB, λ)

=
∑

B′

P (A,B′|â, b̂, DA, DB, λ)×
∑

A′

P (A′, B|â, b̂, DA, DB, λ) (by outcome independence)

= PA(A|â, DA, D
0
Bλ)× PB(B|b̂, D0

A, DB, λ) (by parameter independence)

= PA(A|â, DA, λ)× PB(B|b̂, DB, λ), (5.30)

which is the familiar factorization condition.

Thus, the violation of Bell’s inequality might entail either a violation of PI or OI, or

both. In fact, Jarrett claims to prove that a violation of PI (simple locality in Jarrett’s

terminology) allows for the possibility of superluminal signals. He discards this outcome

claiming that it violates relativity, and thus concludes that the violation of Bell’s inequal-

ities is due to it’s lack of OI (or predictive completeness).

A number of questions can be raised about this procedure:

1. Can experiment tell which of the two conditions is violated?

2. Is the interpretation of these mathematical identities correct?

10Both Shimony and Jarrett use different notation across papers, the current choice of notation aims to
keep consistentency with the earlier discussion, as well as the common notation used by Bell and others.
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3. Is the physical significance attributed to PI and OI justified?

Firstly, we can say that experiment does not reveal one or the other condition as being

violated, and this problem is compounded by the fact that some theories that recover

quantum predictions violate PI, while others violate OI. For example a Bohmian pilot

wave type interpretation [73, 74] violates PI, but not OI, whereas standard quantum

mechanics violates OI but not PI, and the QSD spontaneous localisation model which

will be discussed in section 5.6.1 violates both of these conditions.

Given that there is no experimental proof that one or the other of these conditions

is important, we might now ask whether the splitting of the factorization condition that

was carried out to extract them is justified. It is likely that this is not the case, and that

factorization is the only relevant condition when it comes to describing such systems.

If this is the case then physical significance is being attributed to conditions which are

irrelevant to the phenomena that they are allegedly describing. Maudlin has discussed a

number of these questions [283]. He illustrates the arbitrary nature of the above separation

of the factorization condition by performing a different separation which he claims to be

equally valid. His first principle (P1):

PA(A|â, DA, λ) = PA(A,B|â, DA, λ) (5.31)

PB(B|b̂, DB, λ) = PB(A,B|b̂, DB, λ) (5.32)

can be interpreted as saying that the probability assigned to a given outcome on one side

is not changed if one knows the result, but not the setting of the apparatus on the other

side. This can then be coupled with a second principle (P2):

PA(A,B|â, DA, λ) = PA(A,B|â, b̂, DA, λ) (5.33)

PB(A,B|b̂, DB, λ) = PB(A,B|â, b̂, DB, λ) (5.34)

with which he associates the interpretation that the probability of a given result on one

side, assuming that the result on the other side is already known, does not change if one

also knows the setting of the distant analyser. Clearly these two conditions can be used

to derive the factorization condition (5.1), but different interpretations can be assigned

to them; Maudlin claims, I think correctly, that it is possible to call (P1) Outcome

Independence
′

(OI
′

) as it conditionalises on the distant outcome, and (P2) Parameter

Independence
′

(PI
′

) because of its conditionalisation on the distant setting.

It is apparent that a simple mathematical trick is being credited with more physical

significance than is appropriate.11 However, the fact that there are two forms of inequal-

11It should be pointed out that there is at least one other author who has performed this separation
of the factorization condition, Howard has attributed separability and locality respectively to PI and OI
[223, 224]. His arguments are less well known than those of Shimony and Jarrett and will not be discussed
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ity, the Bell-type and the Bell-KS type suggests that some sort of separation is justified.

Perhaps the biggest problem associated with finding such a separation is the general ten-

dency to ascribe a negative status to nonlocality and contextuality. Researchers have

sought to rectify this status through the identification of one violated characteristic as

being that behind the violations of these inequalities, hence generally the strange new

behaviour of quantum mechanics, and the other characteristic as relatively straightfor-

ward. Such a separation is probably not possible. Instead we can perceive factorisation

as a starting condition for contextual behaviour, with nonlocal behaviour being apparent

when the contextual system is spread over spacelike distances.

A contextual system will exhibit some sort of dependency upon other parts generally

seen as separate; hence it will defy, to some extent, reductionistic explanation.

A nonlocal system will exhibit contextual behaviour, some of which might be spread

over spacelike distances. Nonlocality forms a subset of the more general class of contextual

behaviour.

The Bell and Bell–KS-type inequalities thus provide us with an invaluable toolset

for the identification of contextual behaviour. It is possible that these conditions could

therefore be used in the identification of contextual, and hence high-end complex systems;

if a system violates Bell’s theorem, or shows signs of incompatible sets of observations

then it is contextual. We might ask if there are nonquantum systems that exhibit such

violations. In section 5.2 we shall find that this is in fact the case.

5.1.7 Observers in Quantum Theory

The contextuality of quantum systems has led many researchers to suggest that there is

an ‘observer dependence’ in their behaviour [173, 213, 367].

This idea began with researchers such as Bohr [76] and Heisenberg [213], but is per-

haps most famously attributed von Neumann [446]. He discovered that the unitary time

evolution of quantum mechanical systems represented by the Schrödinger equation (4.10)

do not behave properly under measurement. This phenomenon is simple to illustrate. If

we consider a simple superposition ψ = α| ↑〉+ β| ↓〉, where |α|2 + |β|2 = 1, and suppose

that this system is incident upon an experimental apparatus where a detector initially

represented by |ψ〉, ‘click’ only when a particle in the | ↑〉 state is incident upon it. Such

a detection event is represented by:

| ↑〉|d〉 → | ↑〉|dclick〉. (5.35)

Conversely, if a particle in a spin down state is incident upon the detector then there will

be no detection event:

| ↓〉|d〉 → | ↓〉|dmiss〉. (5.36)

here, they fall prey to the same criticism raised above. Maudlin has discussed Howard’s work along with
that of Shimony’s and Jarrett’s [283].
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This description is adequate when we simple consider pure states such as those above,

but a problem emerges if we return to the superposition state above. The Schrödinger

equation predicts an entangled state:

(

α| ↑〉+ β| ↓〉
)

|d〉 =⇒ α| ↑〉|dclick〉+ β| ↓〉|dmiss〉 = |ΦE〉, (5.37)

rather than what is actually observed. In fact, only one of the alternatives from equation

(5.37) are observed; the detector either clicks or does not, and if a number of experiments

are run where a state prepared in the same way is incident upon the same detector state,

then a trend will develop whereby a ‘click’ or a ‘miss’ is recorded with some probability

related to the constants in equation (5.37). This allows us to make the statement that

|ΦM 〉 =

{

| ↑〉|dclick〉 with probability |α|2 or

| ↓〉|dmiss〉 with probability |β|2.
(5.38)

Introducing a new state for some postulated observer
{

|O↑〉, |O↓〉
}

say, does not cause this

reduction from what is predicted by the Schrödinger equation (5.8) to what is actually

observed (5.38) does not help either, it leads to the new, even more entangled state

|ΦE〉 = α| ↑〉|dclick〉|O↑〉+ β| ↓〉|dmiss〉|O↓〉 (5.39)

where the same problem is still apparent. The (even more entangled) system is still in a

superposition of states, and such a state is not observed during the process of detection.

Thus, if only Schrödinger dynamics is applied to a system then an infinite regress results;

we can introduce as many extra states as we like but will never obtain the ‘collapse’ of

the correlated state into a final outcome. It is necessary to add an additional postulate in

order to accomplish the transition |ΦE〉 ⇒ |ΦM 〉. To terminate this regress, von Neumann

postulated what we now recognize as the familiar nonunitary reduction of the state vector,

which makes the outcomes independent of each other and thus breaks the superposition

[446]. This means that according to von Neumann, and the standard formulation of

quantum theory, there are two distinct stages to the evolution of the state vector.

1. The continuous, and well understood time evolution described by the Schrödinger

equation (4.10). This continuous evolution only leads to an entangled state, which

is not observable in reality, hence it is necessary to invoke the second stage process.

2. An abrupt and discontinuous jump or ‘collapse’ (sometimes referred to as the ‘re-

duction of the state vector’) caused by a measurement. The wave collapses into the

or case. For our simple example,

|ΦE〉 collapses
=⇒ |ΦM 〉 (5.40)
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Despite its place in the postulates of quantum mechanics, this rule is of a very ad-hoc

nature — what causes the collapse? Where does it occur? Von Neumann was very

concerned by these questions, and systematically examined a chain of measurement, (like

the one we have begun to construct above) broken up into small steps (representing

increasing levels of entanglement) from the quantum system right up to the mind of the

observer. He showed that we could break the chain with a ‘collapse’ at any stage of this

measurement chain, thus the collapse is to some extent arbitrary. A choice had to be

made as to where the collapse postulate should be applied, and this choice was in no

sense predicted by quantum mechanics. Von Neumann concluded that it was the mind of

the observer that caused the collapse of the wave function.

Thus, von Neumann adopted a form of observer created reality — observables cannot

exist until some sort of an observer is there to observe them. But where should we

draw the distinction between observers and the rest of the quantum world? What is an

observer? The Schrödinger cat [381], and its extension Wigner’s friend [457, 458] test

such interpretations, but this has not generally led to their rejection. Perhaps the most

concerning objection to such an interpretation is the status of observers in the theory;

they occupy a special place in the theory and hence, it cannot explain them. However,

despite these objections, the common naive interpretation of quantum mechanics adopted

by most physicists can be seen to fall in this category; quantum theory predicts the correct

behaviour, even if the formalism itself is inconsistent and prone to some interpretation

in its application. Where and when a measurement is seen to have occurred is normally

viewed as self-evident and the measurement rule can be applied, although this boundary

is becoming increasingly difficult to identify as experiment improves [66, 212]. Such a

naive interpretation may not remain satisfactory indefinitely.

However, the adoption of this naive interpretation is not necessary. Clearly, with an

understanding of the way in which the context of the experimental situation can affect

its outcome we might begin to extricate the observer from quantum systems; how the

observer chooses to orient experimental apparatus will affect what is seen, but dynami-

cally, the mechanism behind this lies in the interaction between the quantum system and

the apparatus itself. With the adoption of such an interpretation, it becomes necessary

to provide a dynamical mechanism behind this dependence of quantum systems upon

their context. A number of possibilities exist, such as Bohmian mechanics [73, 74, 72],

and theories that postulate additional variables [303]. Another possibility (which will be

discussed in some detail in this work) consists of the spontaneous localisation models.

These modify the Schrödinger equation with terms that dynamically drive the system

to localise when it undergoes interactions with ‘macroscopic’ systems of a suitable form

[188, 189, 190, 328, 183, 181, 154]. This interpretation of quantum mechanics will be

discussed more thoroughly in section 5.6.

Thus, although the reasons to prefer one interpretation of quantum mechanics to

113



another are largely a matter of philosophical taste, a properly dynamical model of mea-

surement starts to provide the required difference between subjectivity and contextuality

that was mentioned in section 1.6. An interpretation that places the contextuality of

quantum systems with the observer of the system is, in addition to being contextual,

adopting a stronger subjective description of reality. Dynamical theories of measurement

suggest that this may not necessary.

5.2 Contextuality is Generic

There is no living unit which can be considered ‘living’ without reference

to the external environment . . .Biologists should emphasise over and over that

‘living’ is unavoidably a total ecosystem property and not the property of an

isolated collection of macromolecules. It seems to me that the central question

of the origin of life is not, ‘Which comes first, DNA or proteins?’, but rather

‘What is the simplest possible ecosystem?’

Pattee, p219, [318]

The contextuality apparent in quantum systems is not restricted to them. As has

been discussed in section 1.3, there are a variety of systems not regarded as quantum

mechanical which exhibit strongly contextual behaviour. It is possible that many of the

lessons learned from the behaviour of quantum systems can be used in the analysis of this

broader class of systems. As was also discussed in section 1.3.1, many of these contextual

systems are generally considered to be complex. Is it possible that there might be a

connection between the two types of system? This is an interesting possibility because in

contrast to a number of complex systems, the analytical nature of quantum theory is well

developed. It may be possible to utilize some of these quantum results in the analysis of

complex systems. This section will investigate the notion that quantum theory is in fact

more widely applicable than is generally thought to be the case.

This claim has been most strongly developed by those associated with the CLEA12,

in particular Diederik Aerts. In early work [9] Aerts made use of a simple example to

illustrate that contextuality is not limited solely to quantum systems, but might also be

found in purely classical systems.

Aerts begins by assuming that four yes-no experiments α, β, γ, δ can be performed

upon a system of interest, and associating with each experiment µ a variable signifying

its outcome Xµ:

Xµ =

{

+1 if a yes answer is returned,

−1 if a no answer is returned.
(5.41)

He points out that it may be possible to combine experiments, obtaining answers to

both experiments at the same time. In this case he defines the coincidental outcomes as

12Centre Leo Apostel for Interdisciplinary Studies
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follows:13

Xµν =

{

+1 if the answers are correlated,

−1 if the answers are anticorrelated.
(5.42)

It is important to note that the coincidence experiment Xµν is a new experiment and

must be considered separate from the two individual experiments Xµ and Xν ; there is

no reason to suppose that there will be a correlation between Xµν and some legitimate

combination Xµ ⊕Xν . This amounts to a recognition of the possibly contextual nature

of the system.

In order to construct a Bell inequality, Aerts supposes that it is possible to perform

compatible coincidence experiments αβ, αγ, δβ and δγ on a system consisting of two

parts S1 and S2 which are localised in two different regions of space. Experiments α

and δ are performed on S1 and experiments β and γ are performed on S2, see figure 5.2.

Assuming that the system is separable (or noncontextal):

Xαβ = XαXβ (5.43)

Xαγ = XαXγ (5.44)

Xγβ = XγXβ (5.45)

Xδγ = XδXγ , (5.46)

the Bell inequality takes the following form [9]:

|Xαβ −Xαγ |+ |Xδβ +Xδγ | ≤ 2. (5.47)

Aerts then chooses the experimental apparatus illustrated in figure 5.2, and formulates

four specific experiments that can be performed upon this apparatus as follows:

Experiment α tests whether the volume of water contained in the vessels is more than

10 litres. The experiment is performed by siphoning off water from one of the vessels

into a reference vessel with volume of 10 litres. If the reference vessel overflows then

we answer yes, and if it does not overflow by the time that the first vessel is empty

then we answer no.

Experiment β tests whether the depth of the water in the reference vessels of interest

(defined by the observer) is more than 15cm. The experiment is performed by

placing a ruler vertically in the vessel, and reading off the height of the water on the

ruler. If the water is higher than 15cm then we answer yes, if not then we answer

no.

Experiment γ tests whether the water is drinkable. The experiment is performed by

taking a spoonful of water from the vessel and drinking it. After five minutes, if we

13The answers are correlated if they are of the form, {yes,yes} or {no,no}, and anticorrelated if they
are of the form, {yes,no} or {no,yes}.
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V1 V2

S1 S2

reference vesselreference vessel
connecting tube

siphonsiphon

Figure 5.2: A system consisting of two cubic vessels (which have sides of length 20cm and
can each hold 16 litres of water) connected via a tube (which can hold 16 litres) is filled
with 32 litres of water. Depending upon the experiments performed upon this system, it
can exhibit violations of Bell-type inequalities.

are feeling good then we answer yes, if we are ill then we answer no.

Experiment δ tests whether the water is transparent. The experiment is performed by

taking a spoonful of water and placing it in a glass which is then held against a

light source. If the light gets through the water then we answer yes, if not then we

answer no.

He then considers the experimental arrangement in figure 5.2, and shows that when

combined these experiments do not satisfy (5.47).

The coincidence experiment Xαβ returns a value −1, as the two experiments are

anticorrelated. That is, the siphoning of the water into the reference vessel for the purpose

of experiment α drops the water level in both V1 and V2
14. From the geometry of the

vessels, we ascertain that if there is more than 10 litres in V1 then there must be less than

15cm of water in each of the vessels when we measure the depth of the water; if experiment

α returns a yes then β must return a no. In a similar manner we can determine that it is

quite reasonable to find a situation where

• Xαγ = +1. That is, more than 10 litres of water gets emptied into the reference

vessel, and the water is drinkable.

• Xδβ = +1. That is, taking a spoonful of water to determine the transparency of

the water (which we take to be transparent) does not lead to the depth of the water

changing to less than 15cm.

• Xδγ = +1 That is, the water is both transparent and drinkable.

Given these outcomes we find that:

|Xαβ −Xαγ |+ |Xδβ +Xδγ | = +4 (5.48)

14By the same amount due to the tube connecting them.
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in clear violation of equation (5.47).

It is worth noting that this system is classical, and that there are no unknown factors

affecting the outcomes; the situation is entirely transparent. In particular there are no

hidden variables. We should consider the mechanism in the experiment that leads to

the violation of Bell’s inequality. This takes the form of the tube connecting the two

containers. This is almost self-evident, the two systems can no longer be regarded as

separated once the tube connects them, even if the vessels are spatially separated. While

this might appear obvious with the current arrangement, were the experiment to be

concealed inside a black box, with only the tops of the two vessels showing then the tube

would acquire the status of a hidden variable, and the mystery of the correlation obtained

from the boxes, a spooky status similar to that of quantum systems. This spookiness arises

because of the contextual dependency of one box upon the other; the two boxes cannot

be considered as separate. In the system of figure 5.2 this dependency is well-understood,

but this is not the case in quantum mechanics, and there is no reason to suppose that

the mechanism will be similar. We might conclude that it is the contextual dependence

of one box upon the other that drives the strange outcomes of quantum mechanics, not

the specific quantum mechanism itself.

With this realization comes the possibility that Bell-KS type inequalities are exposing

more than just quantum behaviour, they are exposing a more general form of contextual

behaviour.

This idea has been explored by a number of different researchers. It has been proven

that it is not always appropriate to utilize a Kolmogorovorian probability model to de-

scribe our lack of knowledge about some systems [3, 139, 206, 342, 349, 462], in particular

quantum systems. However, this impossibility becomes even more explicit in the case

of EPR-type correlations, the separation condition (5.1) used to derive Bell’s theorem

provides a necessary condition for the very existence of a classical (Kolmogorovorian)

probability model.

In a sequence of papers [21, 20], Aerts has examined the origin of quantum probabilities

in great detail. He has found that

. . . we obtain quantum-like probability structures, if the measurements needed

to test the properties of the system are such that:

1. The measurements are not just observations but provoke a real change of

the state of the system.

2. There exists a lack of knowledge on what precisely happens during the

measurement process.

Aerts, p2, [17]

The containers of water example discussed above clearly illustrates the way in which

classical measurements can lead to a real change of the system, termed an aspect of
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Figure 5.3: A quantum machine capable of exhibiting the random behaviour of a spin- 1
2

quantum entity.

creation by Aerts et al. [23], and the nonseperability of this scenario led to the violation

of Bell-type inequalities, but there was no lack of knowledge about what happens during

an act of measurement and therefore a probabilistic model was not necessary [21, 20].

A different example has been provided to illustrate the way in which lack of knowledge,

coupled with a process whereby measurement to some extent creates what is observed,

leads to quantum-type probabilities.

This scenario consists of a ‘quantum machine’ which provides a classical model of a

spin-1
2 quantum entity [20, 11, 22, 17]. Illustrated in figure 5.3, it consists of a point

particle which is free to move on the surface of a sphere of radius 1. Measuring the

position of this particle consists of stretching a piece of elastic inside the sphere between

two antipodal points [−u,+u] upon its surface, and then projecting the particle directly

onto the elastic. As soon as the particle hits the elastic, it sticks to it, and the elastic then

breaks randomly at some point in the interval [−u,+u]. A measurement then consists

of finding the particle at either of the points −u or +u, in much the same way that a

Stern–Gerlach analyser separates spin- 1
2 systems into two streams that go to two separate

detectors. In the case of this thought experiment, there is a lack of knowledge about where

the elastic breaks, which results in a quantum type probability as follows. If we decide

to perform a measurement in the û direction, upon a particle that starts at position v on

the unit sphere, then the probabilities for the transition of the particle to either u or −u
are given by:

P [v → u] =
1 + cos θ

2
= cos2

θ

2
= 1− P [v → −u] (5.49)

where θ is the angle between the unit vectors û and v̂ defined from the centre of the

sphere to the relevant points upon the surface. This is clearly the same probability as

that obtained for Stern-Gerlach measurement on spin- 1
2 quantum systems. This is to be

expected, as the quantum machine is simply an elaboration of the Bloch/Poincaré model
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of spin-1
2 quantum particles.

It is possible to extend this simple system to a two sphere linked system that exactly

mirrors the results of EPRB–type experiments [15], but this extension is carried out

by making an explicit connection between the two spheres, in the form of a rigid but

extensible rod that connects the two point particles, and leads to the correlation between

their results; similarly to the tube connecting the two vessels in figure 5.2, the rod makes

the nonseparability between the two spin- 1
2 mechanical entities explicit. It can be proved

that it is possible to construct a similar sphere model to mimic any arbitrary quantum

entity [133, 132].

The acts of creation framework suggests that quantum measurement is a process of

‘creation-discovery’; measurements do not simply record some elements of reality relevant

to a system, they actively influence what is seen. Thus, this framework has the potential

to describe contextual systems in general. The group at CLEA has been working towards

precisely this goal; they have been examining an interesting set of contextual processes,

all seen within the framework of context-driven actualization of potentials (CAP) where a

specific instance is actively chosen from a set of alternative scenarios. Consider some form

of entity in a state p(ti) at time ti. Under the influence of some context e(ti) (which may be

zero), the state will change to state p(ti+1) at time ti+1 if it is deterministic, or to one of the

set of new states {p1(ti+1), p2(ti+1) . . . , pn(ti+1), . . . } if it is nondeterministic. Depending

upon the system under consideration, different levels of contextual dependence will be

evident, classical Newtonian systems exhibit almost no contextuality, whereas quantum

systems usually show a far greater dependence upon their environment.

This framework has been used to unify the description of a number of different pro-

cesses in addition to quantum and classical evolution. Phenomena that have been de-

scribed within this framework include:

The determination of opinion where for example, a survey of whether people are

in favour of, or opposed to, nuclear energy can be significantly influenced by the

interviewer during the process of data acquisition [17]. This is because data is not

merely acquired, rather, it is often created during the process of surveying; opinions

are not necessarily passive, pre-existing elements of reality, they can be actively

created during collection.

The formation of concepts and creative thought provides an example of CAP sim-

ilar to that of the determination of opinion. In particular, this theory appears to be

able to cater for the guppy effect [313], where the concept of ‘guppy’, which is not

a good example of either the concept ‘pet’ or that of ‘fish’ singly, is actually very

typical of those concepts when combined [19, 174, 16, 175].

An alternative formulation for the democratic voting process has been proposed,

where the decision making process itself is not predetermined, but actualised as this
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becomes necessary [13].

A theory of cultural evolution is being developed, as a part of a drive towards a

generalised theory of all evolutive processes [176, 177].

A general theory of evolution has been proposed within this CAP framework, where

concepts such as fitness are explicitly recognised as being dependent upon both the

phenotype and the environment. This theory is in its early stages, but its explicit

recognition of the contextuality of biological systems is important, mirroring the

claims that were made in chapter 2 that the true complexity of biological evolution

could not be modelled by ALife without incorporating the true complexity of the

environment.

Clearly, the CAP framework is a very rich formulation, capable of describing in a unified

manner a wide variety of systems and processes traditionally thought to be complex, and

nonunifiable. In section 5.6.2 we shall discuss a proposal to unify quantum mechanics and

relativity that arises within this framework.

Thus, the work of the group at CLEA shows that contextuality occurs far more widely

than in just quantum systems, something that we have been led to suspect throughout

this work, but which has now been formalised in a number of interesting results. There

is at least one aspect of quantum behaviour that is more generic than is traditionally

thought to be the case. Quantum-type models can be used in attempts to understand

systems that exhibit a contextual dependence upon their environment.

Many of the systems examined by the group at CLEA fall into the previously discussed

framework of ‘complex systems’, and, as was discussed in section 1.5.1, a often occurring

notion of complexity concerns the necessity of using multiple descriptions to understand

one complex system. An alternative framework had been developed independently at

Flinders University, under the rubric of Process Physics, before the work at CLEA was

discovered and the connection between these two frameworks understood. This work uses

quantum field theory as its starting point, rather than quantum logic, and has already

been partially discussed in chapter 4. The next chapter will return to this set of theories,

and a number of similarities between the two different frameworks will become apparent.

For example, the emphasis upon aspects of creation in the CLEA framework is realised

in Process Physics by use of a spontaneous localisation approach where measurement

is understood to actively influence a system rather than just passively measure. This

same approach makes measurement a contextually dependent process in Process Physics;

spontaneous localisation offers a measurement mechanism which will serve to cause a

system to localise differently depending upon how it is measured. The CLEA framework

also appears to emphasise evolutive, process-driven models [176] where rather than the

static 4-dimensional model of the Universe suggested by relativity theory, the observers

of a system can be understood to be actively participating with its dynamics; different
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behaviour will result in a different Universe, i.e. different ‘runs’ could lead to a very

different reality. It might be suggested that similarities such as these will be necessary in

any set of theories that can describe high-end complexity; although the frameworks might

be different in their details, they share many key features, and each will have different

strengths and weaknesses. The remainder of this work will focus upon the Process Physics

framework. While it is expected that more interesting correlations can be drawn between

the two frameworks this will be reserved for future work.

5.3 Symmetry

Spaces that are symmetrical have a fundamental importance in modern

physics. Why is this? It might be thought that completely exact symmetry is

something that could arise only exceptionally, or perhaps just as some con-

venient approximation. . . .Yet, remarkably, according to the highly successful

physical theories of the 20th century, all physical interactions (including grav-

ity) act in accordance with an idea which, strictly speaking, depends crucially

upon certain physical structures possessing a symmetry that, at a fundamental

level of description, is indeed necessarily exact!

Penrose, p247, [326]

Symmetry plays a vital role in attempts to understand quantum behaviour, from the

simplest non-relativistic system to the most complex field-theoretic calculation of nu-

cleonic properties in QCD. In fact, symmetry has been applied in almost every area of

physical modelling, in normative, explanatory, classificatory and unificatory roles. Per-

haps the widest use of symmetry is that of the application of symmetry principles to

physical situations, phenomena and laws. There are a number of different symmetry

principles in physics, each of which have been utilized in different quantum field theories:

The Principle of Relativity asserts simply that:

The laws by which the states of physical systems undergo changes are

independent of whether these changes of states are referred to one or the

other of two coordinate systems moving relatively to each other in uniform

translational motion.

Einstein, [165]

Depending upon whether this principle is taken to be global or local in nature, this

principle turns into either The Principle of Special Relativity, or The Principle of

General Relativity respectively.

Permutation Symmetry was the first non-spatiotemporal symmetry introduced into

physics. It concerns the indistinguishability of ‘identical’ particles in some system.

This principle states that if an ensemble of particles is invariant under a permutation

of those particles then the permutations which merely exchange indistinguishable
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particles should not be counted; the exchanged state is in some sense symmetrical

to the original state.

CPT symmetry describes the conservation of dynamical laws under combined changes

of Charge conjugation, Parity15 and Time reversal. The laws governing gravity,

electromagnetism, and the strong interaction are invariant with respect to indepen-

dent changes of C, P and T, however, β-decay which occurs in the weak interaction

does not respect independent applications of these discrete reversals. The discrete

symmetries C, P and T are connected by the so-called CPT theorem [450], which

states that the combination of C, P, and T is a general symmetry of physical laws.

Gauge Symmetry describes the local versions of the various internal symmetries that

are associated with invariance under phase changes of quantum states. Such sym-

metries are usually described by the special unitary groups SU(N).

There are quantum theories that make use of each of these principles, even the Principle of

General Relativity which is well known to be in some sense incompatible with quantum

field theories is being used as a criterion of success (i.e. in a normative role) for any

extentions to these theories, particularly in the dream of unifying gravity with the strong,

weak and electromagnetic forces.

The standard notion of symmetry utilised in physics is that of a symmetry group.

Mathematically, a group G is an algebraic structure comprised of a set of elements gi

satisfying the following set of requirements:

composition is satisfied: gi, gj ∈ G⇒ gigj ∈ G (5.50)

composition is associative: (gigj)gk = gi(gjgk) (5.51)

there is an identity element: ∃I ∈ G st ∀g ∈ G, gI = g (5.52)

there is an inverse element: ∀g ∈ G, ∃g−1 ∈ G st gg−1 = g−1g = I (5.53)

Thus, a symmetry group induces a partition into equivalence classes, the different sym-

metrical arrangements of the system.

It is possible to classify each of the principles above into two general classes of sym-

metry16:

Space-time symmetries describe the behaviour of some field in space and time. These

are generally represented by the Lorentz and the Poincaré groups.

Internal symmetries mix particles among one another. These symmetries rotate fields

and particles in isotopic space, rather than real space-time. An example of such

an internal symmetry is the often used SU(3) group of QCD which describes the

mixing of three quark varieties.

15That is, spatial reflection.
16Supersymmetry can be described as the dream of finding a nontrivial combination of the relevant

space-time and internal symmetries of physics.
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It is worth noting that while internal symmetries are compact, space-time symmetries are

not, that is, the range of their parameters does not include the endpoints (e.g. massive

particles can only approach c) [234]. Both classes of symmetry can be either global or

local. Global symmetries are independent of space-time, whereas local symmetries vary

with each point in space and time. For example, Special Relativity is a global theory,

but General Relativity is local. A local internal symmetry has a very special status in

physics, it is defined as a gauge symmetry. These are particularly important in QFT a

point which will be discussed in section 5.3.2.

There are far more possible symmetry groups than those that are realised in physical

systems. We might ask what leads to a symmetry group being physically realised. In fact

there is a close connection between symmetries and conservation laws.

5.3.1 Symmetry and Conservation Laws

Transformations in physics are not arbitrary. They are generated by dy-

namical variables, through which symmetries are associated with conservation

laws.

Auyang, p35, [41]

There is a deep connection between exact symmetries and conservation laws, first

formalised by Noether [82, 81].

Given a system described by a set of fields φ = (φ1, . . . , φn), and their derivatives ∂µφ

we can define an Action describing the dynamics of those fields in terms of either the

Lagrangian L or the Lagrangian density L

S[φ] =

∫

dtL[φ(x)] =

∫

d4xL(φ(x), ∂µφ(x)). (5.54)

The principle of least action can be used to derive classical equations of motion as follows

0 = δS =

∫

d4x

(
δL
δφ
δφ+

δL
δ∂µφ

δ∂µφ

)

(5.55)

=

∫

d4x

[(
δL
δφ
− ∂µ

δL
δ∂µφ

)

δφ+ ∂µ

(
δL
δ∂µφ

δφ

)]

(5.56)

The last term vanishes at the endpoint of the integration, leaving the Euler–Lagrange

equations of motion:

∂µ

(
δL

δ(∂µφ)

)

− δL
δφ

= 0. (5.57)

These equations are intimately related to both symmetries and conservation laws as fol-

lows. If the fields φα vary globally with some small parameter δεα, then (5.55) can be
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rewritten:

δS =

∫

d4x

(

∂µ
δL

δ∂µφα
δφα +

δL
δ∂µφα

∂µδφ
α

)

(5.58)

=

∫

d4x∂µ

(
δL

δ∂µφα
δφα

)

(5.59)

a relationship that can be used to define the current:

Jµα =
δL

δ(∂µφβ)

δφβ
δεα

. (5.60)

If the action is invariant under this transformation of the field, then the current is con-

served,

∂µJ
µ
α = 0. (5.61)

Integrating this conservation relation over space:

0 =

∫

d3x∂µJ
µ
α (5.62)

=

∫

d3x∂0J
0
α +

∫

d3x∂iJ
i
α (5.63)

=
d

dt

∫

d3xJ0
α +

∫

dSiJ
i
α.

︸ ︷︷ ︸

surface term

(5.64)

Assuming that the fields appearing in the surface term vanish sufficiently rapidly far from

the area of interest, we can neglect the surface term. Defining the charge of this system

as

Qα ≡
∫

d3xJ0
α, (5.65)

allows us to determine that there is also a conserved charge

d

dt
Qα = 0, (5.66)

which corresponds to a conserved characteristic of this system. Thus, the symmetry of

the action under continuous transformations of the field implies the conservation of a

current, and hence a conservation principle.

Noether originally proved two theorems, the result above is a simplification of her

first result, which relates continuous global symmetries to conserved characteristics. Any

transformation that exhibits a global symmetry will have parameters that remain constant

regardless of their spacetime position. As an example, consider the principle of Special

Relativity, which is derived from such a global symmetry group; the ten parameters of

the Poincaré transformations of Special Relativity are position invariant. However, not
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all of the symmetries of physics have this global characteristic. In fact, the shift from

Special to General Relativity is accomplished by localising the Poincaré group, which

makes the parameters of the transformation vary with spatiotemporal position. When this

localisation is applied to an internal symmetry it is referred to as gauging the symmetry.

Noether’s more complicated second theorem indicates that there is an inherent under-

determination (i.e. more unknowns than independent equations of motion) in any theory

with a local symmetry. This result will not be discussed here, the paper by Brading and

Brown [82] contains an excellent summary of both of Noether’s results as well as their

implications.

5.3.2 Symmetry and Interaction

Local phase invariance is not possible for a free particle wave equation,

so in order to locally change the phase of a charged particle’s wave function

we need to introduce a field in which the particle moves. Or, in slightly less

physical terms, local phase invariance is possible only if we have an interacting

theory.

Morrison, p350, [292]

Local internal symmetries, gauge symmetries, are intimately linked with the concept

of interaction in physical theories. Through the application of gauge symmetry principles

what generally starts as two sets of noninteracting fields, a matter17 field and an interac-

tion18 field are coupled. Thus, there is a deep sense in which symmetry is fundamentally

linked with the concept of interaction.

Examples of this interdependence abound in physical systems. For example, the full

Lagrangian of QED, equation (4.18), is derived by properly incorporating the phase of the

electron wavefunction into the free electron Lagrangian density L = ψ̄(x)(iγµ∂µ−m)ψ(x).

This equation is invariant under the global transformation ψ(x) → ψ ′(x) = eiφψ(x) of

the space-time U(1) group, but is not when this transformation is localised i.e. φ = φ(x).

The local dependence of the Lagrangian upon the phase of the electron field is an experi-

mentally verified phenomenon. For example, if the electron field is propagated through a

double slit, then an interference pattern results, but this interference pattern is changed

if the phase of the electron field that propagates through one slit is changed. However,

a solenoid with a small current can be placed such that the original phase change is re-

versed, which results in the original interference pattern. This phenomenon is known as

the Aharanov-Bohm effect after its discoverers [26], and has been experimentally veri-

fied on a number of occasions. Thus the locality of the phase transformation must be

17That is, a spin 1
2
, or fermion field, e.g. electron and positrons in QED, quarks and antiquarks in

QCD.
18That is, a spin-1, or boson field e.g. photons in QED, gluons in QCD.
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incorporated into a description of the electron field when it is exposed to an electromag-

netic influence. However, in order to regain the invariance of the Lagrangian density

under local transformations of the phase φ it is necessary to incorporate not just an

electromagnetic term to the free electron Lagrangian density, but to add an extra term

−ψ̄(x)gγµAµ(x)ψ(x) to the free particle equation. This new term represents the interac-

tion between the electron field and the electromagnetic field (i.e. between electrons and

photons). Thus, properly localising the internal symmetry of this system results in an

interaction between its two primary fields.

A similar effect occurs whenever the internal symmetries of some quantum field theory

are localised. Auyang has discussed the logic of gauge field theories in her book [41]. She

claims that in all local field theories (which in her analysis includes classical theories such

as general relativity and electromagnetism) what starts as a free matter field is turned

into an interacting field system in three steps:

1. The localization of symmetry transformations. The localization of the parame-

ters involved in symmetry transformations (i.e. making them functions of their

spatiotemporal-temporal position) results in their localization to each point in the

matter field, the points in different positions undergo different phase transforma-

tions. Thus an individual state space is created for the local field, for each point in

space-time.

2. The enforcement of global invariance and the derivation of the term for reconcilia-

tion. It is required that the Lagrangian of the whole field is invariant under local

transformations. Ensuring that there is consistency between the now localized fields,

this process involves finding some term that preserves the global invariance that was

jeopardised in the previous step. Thus the different phase factors are reconciled at

their various points in the field.

3. The introduction of an interaction field. Local symmetry endows this extra term

with a full physical significance by interpreting it as a minimal coupling between the

phase of the matter field and the potential of the interaction field. This coupling

is universal (i.e. the same for any matter field with the same symmetry proper-

ties). The characteristics of this interaction field are then found by examining the

structure of the coupling term. At the end of this step, we have a fully interacting

matter/interaction field system.

Thus, according to Auyang, local symmetries are intimately related to the concept of

interaction in physical modelling. Through an understanding of the spatial dependence

of internal symmetries describing some set of phenomena, we also gain an understanding

of how such phenomena couple in a system. This spatial dependence can be regarded as

a weak form of contextual dependency in a field; the effect of the field changes depending

upon its location, and the location of other fields relevant to the system. Is it possible that
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there is a deep principle here that can be used to describe contextual complex systems in

general? We shall return to this question in chapter 6.

5.3.3 Symmetry Breaking

. . . in a situation characterized by an absolute symmetry, nothing definite

could exist, since absolute symmetry means total lack of differentiation. For

the presence of some structure, a lower symmetry than the absolute one is

needed: in this sense, symmetry breaking is essential for the existence of struc-

tured “things”.

Castellani, pp322–3 [115]

Exact conservation laws arise in the context of exact symmetries, a situation that

arises only if:

1. The Lagrangian density is invariant under the symmetry, δL = 0, and,

2. The physical vacuum, that is, the lowest energy state of the system, is invariant

under the same symmetry transformations.

If either one of these conditions is not satisfied, then an approximate conservation law

may still result. Many of the internal symmetries that arise in physical systems are of

this form.

The first case is relatively straightforward. If the Lagrangian density is imperfectly

symmetric, then it is often the case that any symmetry breaking term arising in the

Lagrangian density is small in some sense, which makes it possible to write the Lagrangian

density as

L = Lsymmetric + εLsymmetry breaking, (5.67)

and treat the arising situation as a perturbation on the symmetric term. This is precisely

the technique used in the view of the strong, electromagnetic and weak forces as a hier-

archy where the dominant interaction respects the largest group of symmetries. Consider

for example the situation where L = Lstrong + εLEM , where the strong-interaction is

isospin-invariant, but the electromagnetic term LEM , violates this symmetry. There is

no reason to expect that such a technique could not be used more generally, a point that

we shall return to in section 6.1.2.

Spontaneous Symmetry Breaking

We do not have to look far for examples of spontaneous symmetry break-

ing. Consider a chair. The equations governing the atoms of the chair are

rotationally symmetric, but a solution of these equations, the actual chair, has

a definite orientation in space.

Weinberg, p163, [451]
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Figure 5.4: The potential m2φ2/2 + λφ4/4! for (a) µ2 > 0, and (b) µ2 < 0. The potential
in (c) corresponds to the ‘Mexican hat’ continuous set of minima that arises in the system
discussed in section 5.3.4.

If on the other hand, the Lagrangian is perfectly invariant under the action of some

symmetry, but the the dynamics determined by L give rise to a degenerate set of vacuum

states which are not invariant under the same symmetry then the system undergoes

Spontaneous Symmetry Breaking (SSB).19 We shall start with a simple example.

Consider the following Lagrangian density, describing a single self-interacting scalar

field φ:

L =
1

2
(∂µφ) (∂µφ)− V (φ). (5.68)

If the potential is an even functional of the field φ

V (φ) = V (−φ) (5.69)

then equation (5.68) is invariant under the parity transform φ = −φ. The specific poten-

tial

V (φ) =
1

2
m2φ2 +

1

4!
λφ4 (5.70)

is one such even functional, however, it has interesting properties depending upon the

value of the mass term m. If m2 = µ2 > 0, then the potential function illustrated in

figure 5.4(a) results. This function has a unique minimum, occurring at µ = 0, and the

associated lowest energy state of the system, defined as 〈φ〉0 = 〈0|S|0〉 and termed the

vacuum expectation value, uniquely occurs at this value. This situation is not so simple

if m2 = −µ2 < 0, a scenario illustrated in figure 5.4(b). Here we see that there are two

minima corresponding to this, occurring where δV
δφ = 0, a situation that arises when

〈φ〉0 = ±
√

6

λ
µ ≡ ±v (5.71)

19It is worth noting that both SSB and the approximate symmetry breaking of the Lagrangian discussed
above often combine in physical systems. For example, the Standard Model of elementary particle physics
involves both forms.
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Thus, when µ2 < 0, the lowest energy state is degenerate. Suppose that the system is

near one of the minima, +v say. It is likely that this state will be realised as the ground

state for this particular situation. We can therefore define a new shifted field, σ(x), in

terms of the physical situation:

σ(x) ≡ φ(x)− v. (5.72)

This corresponds to arbitrarily choosing one of the two possible vacuum states as the

realised lowest energy state. Using this new field, the minimum of the potential now

occurs when σ = 0. Taking this into account, and dropping the constant term, we find

that in terms of the new shifted field the Lagrangian density becomes

L =
1

2
(∂µσ)(∂µσ)− 1

2
(2µ2)σ2 −

√

λ

6
µσ3 − λ

4!
σ4 (5.73)

which has no obvious symmetry properties unless the relationships among the coefficients

are explicitly considered, the obvious parity symmetry of the original Lagrangian density

has been hidden; a situation that is referred to as spontaneous symmetry breaking (SSB).

5.3.4 Goldstone’s Theorem

Goldstone’s Theorem [196, 197, 279, 451] states that for every spontaneously broken

continuous symmetry exhibited by a theory, there must exist a massless particle associated

with it, termed a Nambu–Goldstone (NG) boson. This theorem has been used extensively

in the development of the Standard Model of Elementary Particle Physics [279], but also

has a wide range of applications in condensed matter, and solid state physics [37].

The system in the previous section, although it undergoes SSB, does not generate

NG-bosons due to the fact that the symmetry in question, the parity transform, is not

continuous. However, it is simple to make the leap to a system that does generate NG-

bosons. We consider a simple extension of the above model, that of a complex scalar

field φ(x) which can be written in terms of two real (Hermitian) fields σ(x) and π(x),

φ(x) = 1√
2
(σ + iπ). The dynamics of this field takes almost the same form as the above

example,

L = (∂µφ
∗∂µφ)− µ2|φ|2 − λ|φ|4 (5.74)

=
1

2
(∂µσ)(∂µσ) +

1

2
(∂µπ)(∂µπ)− V (σ2 + π2), (5.75)

where λ > 0 (since there is no lower bound on the energy otherwise), and,

V (σ2 + π2) =
µ2

2
(σ2 + π2) +

λ

4
(σ2 + π2)2. (5.76)

This Lagrangian density is invariant under the global phase transformation φ(x) →
eiαφ(x), and thus satisfies the U(1) symmetry group. Again, this system exhibits a unique
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vacuum expectation when µ2 > 0, which becomes degenerate if µ2 < 0. The potential

in this case takes the form of the Mexican hat illustrated in figure 5.4(c), V (σ2 + π2)

exhibits minima occurring around the circle (σ2 + π2) = v2 = −µ2

λ , one of which must

be chosen arbitrarily. Again, it becomes necessary to arbitrarily choose (via a change of

coordinates) one of this set of minima, as the one that gives rise to the physical vacuum

state, we choose

〈0|σ|0〉 = v, 〈0|π|0〉 = 0 (5.77)

as the arbitrary minimum value. Again, this results in a shifted field,

σ′(x) ≡ σ(x)− v (5.78)

which has a local minimum at zero, and a new Lagrangian density which hides the original

symmetry of the system

L =
1

2
(∂µσ)(∂µσ) +

1

2
(∂µπ)(∂µπ)− µ2σ′2 − λvσ′(σ′2 + π2) +

λ

4
(σ′2 + π2)2. (5.79)

This equation shows that the shifted field σ′, acquires a mass
√

2|µ|, but no terms contain

a π term with a µ term; the π field is massless and termed a Nambu–Goldstone boson, or

NG-mode.

Goldstone’s theorem holds for both global and local continuous internal spontaneously

broken symmetries. However, gauge (i.e. local) symmetries lead to an interesting extra

effect, called the Higgs mechanism [279] which serves to dispose of the surplus massless

NG modes through an interesting combination with initially massless gauge fields. This

mechanism will not be discussed here, instead we shall now relate the number of emergent

NG bosons to the number of broken generators of a given symmetry.

Consider a set of fields φi invariant under some representation of a group G, which has

N generators. The dynamics of this system are described by the now familiar Lagrangian

density:

L =
1

2
(∂µφ)(∂µφ)− V (φ) (5.80)

for some potential of the fields V (φ). Assuming that a nontrivial vacuum exists, it can

be found in the standard way by calculating the minimum of the potential:

δV

δφi

∣
∣
∣
∣
φ=v

= 0. (5.81)

As with the above cases, a minimum of the potential is arbitrarily chosen to occur at

some point vi on the minimum, that is

〈φi〉0 = 〈0|φi|0〉 = vi. (5.82)
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Thus the degeneracy of the vacuum can again be broken by arbitrarily singling out some

direction in the state space

〈φi〉0 =

















0

0
...

0

vM+1

...

vN

















= (vi) (5.83)

This arbitrarily chosen vacuum state is invariant under some subgroup, H ⊂ G, which has

M generators, L̄aij , which by construction leave the vacuum state vi unchanged, L̄aijvj = 0.

There are also the N −M remaining generators of the group G, for which L̃aijvj 6= 0, and

which do not therefore annihilate on the vacuum vi.

Taylor expanding the potential around the new shifted minimum φi = vi, up to second

order we obtain

V (φ) = V (v) +
1

2
(φ− v)i(φ− v)j

(
∂2

∂φi∂φj
V

)

v

+ . . . . (5.84)

The coefficient of the quadratic term is known as the mass matrix,

(
∂2

∂φi∂φj
V

)

v

≡M2
ij , (5.85)

this is a symmetric matrix whose eigenvalues give the masses of the relevant fields. The

eigenvalues cannot be less than the minimum value v.

Goldstone’s theorem implies that every continuous symmetry of the Lagrangian den-

sity which is not a symmetry of the vacuum solution 〈φ〉0 generates a zero eigenvalue of

the mass matrix (5.85).

A general continuous symmetry transformation takes the form

φa −→ φa − iθaLaφ (5.86)

where θa is a set of infinitesimal parameters, and Li ≡ iεijkxj∂k is a generator of the

fields φi. The potential V (φ) must be invariant under this transformation, V (φa) =

V (φa + θLaφ), which can be written

δV

δφi
δφi = −i δV

δφi
θaLaijφj = 0, (5.87)
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however, since the θa are arbitrary parameters, equation (5.87) decouples to N equations

δV

δφi
Laijφj = 0. (5.88)

Differentiating in order to discover the minimum value of this set of equations, we obtain

δ2V

δφiδφk
Laijφj +

δV

δφi
Laik = 0, (5.89)

which is simplified further upon substitution of the minimum of φ as the second term

vanishes ( δVδφi
= 0 here). We are left with

δ2V

δφiδφk

∣
∣
∣
∣
φ=v

Laijvj = 0 (5.90)

Inserting the mass matrix (5.85) into this relation we obtain a set of eigenvalue equations

governing the possible masses realised by modes satisfying these dynamics

(M2)ijL
a
jkvk = 0. (5.91)

If La is a generator of the subgroup H for which the vacuum is invariant (i.e. L̄aijvj = 0)

then this equation is trivially satisfied. However, when La is one of the N −M generators

which do not annihilate the vacuum (i.e. L̃aijvj = 0) a less trivial solution must be found.

Equation (5.91) asserts that for each of these generators, there must be a zero eigenvalue

of the M2 matrix. There are therefore N −M massless bosons in the theory, one for each

generator which does not annihilate the vacuum.

This result is very general, there is no reason to assume that it cannot be applied to

any set of fields exhibiting the necessary properties. A point that will be persued in the

next section, and then used in the following chapter, specifically in sections 6.4.3 and 6.5.

Implications of Goldstone’s Theorem

Goldstone’s theorem implies that (see the excellent review [89] for proofs of the following

statements):

• The NG-mode must be gapless, i.e. its energy must vanish in the limit that its

(three-) momentum vanishes.

• The NG-mode for any exact symmetry must completely decouple from all of its

interactions in the limit that its momentum vanishes. This is because in the zero-

momentum limit the NG-state literally is a symmetry transformation of the ground

state, and is therefore completely indistinguishable from the vacuum in this limit.

These properties particularly affect the low-energy behaviour of any system to which

Goldstone’s theorem applies. The first guarantees that the NG-mode must itself be one
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of the ‘light’ states of the theory, and so it must be included in any effective Lagrangian

analysis of this low energy behaviour; it provides a natural description of the system. The

second property ensures that the NG-mode must be weakly coupled in the low-energy

limit, and strongly limits the possible form its interactions can take.

These properties of gaplessness and low-energy decoupling can apply even if the spon-

taneously broken symmetry in question is really not an exact symmetry. If the symmetry-

breaking terms of the system’s Hamiltonian are small, then the symmetry may be regarded

as being approximate. In this case the violation of the gapless and decoupling proper-

ties can be treated perturbatively. The resulting pseudo-Goldstone modes for any such

approximate symmetry are then systematically light and weakly coupled at low energies,

instead of being strictly massless or exactly decoupled. An example of this, the pion, will

be discussed shortly in section 5.3.5.

NG-modes can be thought of as obtained from the ground state by performing a

general symmetry transformation, [89]

φ(x) = χ(x)eiθ(x) (5.92)

where both θ and χ are defined as real. Since this transformation involves a local transfor-

mation parameter θ, we find that although the Lagrangian vanishes when it is evaluated

at φ = v, the configuration veiθ(x) is only related to φ = v by the symmetry when θ is a

constant. This fact that θ parametrizes a symmetry direction only when it is restricted to

constant field configurations guarantees that any θ-dependence of L must involve at least

one derivative of θ, thereby dropping out of the problem in the limit of small derivatives

i.e. small momenta, or long wavelengths.

All of this suggests that θ would make a good representation for the NG-mode, since

this is precisely what a Goldstone mode is supposed to do: decouple from the problem in

the limit of small momenta. We are led to the suggestion of using polar coordinates in

order to better exhibit the NG-mode properties.

Thus, the masslessness of the NG-mode can be understood as follows. The NG-field

describes oscillations tangential to the potential, and hence encounters no resistance from

it, remaining massless. It can be thought of as free to move within this low energy state

without acquiring any extra mass, or energy. Thus it is a long wavelength mode. The

remaining fields are radial to to the lowest energy state of the potential and encounter

resistance from it hence they interfere with the potential and acquire mass.

It is possible to derive the relevant NG-modes purely on the grounds of the above

symmetry transformation (5.92), i.e. ignoring the details of the underlying model (the

following has been taken from [89], more details can be found there). This allows us

to extract a ‘most general’ Lagrangian form which will lead to the generation of NG-

modes. Given that a NG-mode emerges from the description, we can rewrite the symmetry

133



transformation in terms of the expected mode and the arbitrary choice of coordinate that

must be made, this gives the normalised symmetry transformation

χ = v +
1√
2
χ′ θ =

1

v
√

2
ϕ (5.93)

then the canonically normalised field ϕ becomes

ϕ→ ϕ
√

2vα (5.94)

under the general symmetry transformation θ → θ + α and, for simplicity, Poincaré

invariance. The most general Lagrangian which is invariant under this transformation is

an arbitrary function of the derivatives, ∂µφ of the field. An expansion in interactions of

successively higher dimension then gives:

Leff (ϕ) = −1

2
∂µϕ∂

µϕ− a

4v4
∂µϕ∂

µϕ∂νϕ∂
νϕ+ . . . (5.95)

where we have inserted a power of v as appropriate to ensure that the parameter a is

dimensionless. This accords with the expectation that it is the symmetry-breaking scale,

v, which sets the natural scale relative to which the low energy limit is to be taken.

5.3.5 Action Sequencing

Action sequencing provides a new example QFT modelling, which is to some extent

separate from that of standard QFT. It is effectively a high level model of QFT, and as

such should be treated somewhat separately from that modelling. The process by which

the hadronic action (4.31) is derived from QCD:

SQCD[A, q̄, q]→ SGCM [A, q̄, q]→ Sbl[B, D,D∗]→ Shad[N̄ ,N, .., π, ρ, ω, ..], (5.96)

is not exact, and results have only been obtained to low order, but there is a clear, well

defined methodology which allows for the extraction of very complex, high level behaviour

from QCD. As such, it illustrates a way in which an appropriate modelling of quantum

behaviour could be used to develop an understanding of complex behaviour in general.

This full process will not be discussed in detail here (see either the recent PhD thesis

[205], or review article [97] for more details about the actual process of extraction), instead,

this section will discuss the implications of a key intermediate step in this process, and

show its relationship with Goldstone’s theorem.

This step involves the determination of the dominant configuration taken by the sys-

tem of bilocal fields. This is found by minimising the bilocal action from equation (4.30)
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with respect to the relevant fields, B, D and D∗:

δSbl
δB =

δSbl
δD

=
δSbl
δD∗ = 0. (5.97)

The bilocal action has a minimum at D∗ = D = 0 and B 6= 0, which means that the

action only has to be minimised with respect to B:

δSbl[B, D,D∗]
δB(x, y)

= 0. (5.98)

The dominant configuration is given by (the details of the derivation can be found in

[205])

Bθ
CQ(x, y) = D(x− y)

[

Tr

(

G(x, y, [BCQ]
M θ
m

2

)

+ . . .

]

(5.99)

which takes the form of a Schwinger–Dyson equation (where the diquark and baryon parts

have been ignored). This is a nonlinear equation describing the extensive self-energy of

quarks due to dressing by gluons. Equation (5.99) has degenerate solutions which take

the form

G(q) = [iA(q)q.γ +M+B(q)]−1 . (5.100)

As was discussed in sections 5.3.3 and 5.3.4, the fact that equation (5.98) has nonzero

solutions implies that the potential of the bilocal action has a minimum away from zero;

the vacuum solution is therefore degenerate and symmetry breaking occurs. The relevant

symmetry in this case is the chiral symmetry of QCD.

According to the standard understanding of QCD, there are two quark fields, u and d,

which have relatively small masses. In the approximation that they are indeed massless,

the Lagrangian density of QCD becomes

L = −ūγµDµu− d̄γµDµd− · · · , (5.101)

where Dµφ = ∂µφ − iAµφ is the covariant derivative. This new Lagrangian density is

invariant under transformation

(

u

u

)

→ exp
(
iθV · t+ iγ5θ

A · t
)

(

u

u

)

, (5.102)

where θV and θA are independent real three-vectors and t is the three-vector of isospin

matrices

t1 =
1

2

(

0 1

−1 0

)

, t2 =
1

2

(

0 −i
i 0

)

, t3 =
1

2

(

1 0

0 −1

)

. (5.103)
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This Lie algebra can be written in terms of two SU(2) subalgebras, which act only on

the left and right-handed parts of the quark fields. However, since the u and d quarks do

have small nonzero masses, the SU(2) × SU(2) symmetry is not exact. Therefore there

must exist a massless NG-boson associated with this broken symmetry. This is indeed

the case, the NG-boson corresponds to the pion [451].

The same symmetry can also be directly obtained from (5.100) in the approxima-

tion that quark current masses, M → 0. Chiral symmetry is a global chiral symmetry,

UL(Nf ) × UR(Nf ), which occurs because of a Mexican hat configuration in the relevant

action [97]. As per Goldstone’s theorem the existence of this broken symmetry implies

emergent NG-bosons. In order to find their form, we must explore the degenerate vacuum

solutions in more detail. Equation (5.100) is specialised in the approximation M→ 0 to

the form [96]

G(q;V ) = [iA(q)q.γ + V B(q)]−1 = ζ†G(q;1)ζ†, (5.104)

where ζ =
√
V , V = exp (i

√
2γ5π

aF a) and {πa} are arbitrary real constants |π| ∈
[0, 2π]. The NG-bosons form homogeneous Riemann coordinates for the dominant config-

uration manifold, again, they are the fields that are directed tangentially to the minimum

of the potential. As occurred in section 5.3.4, they can be found by making an appropriate

choice of new fields adapted to this manifold, in place of some of the Bθ(x, y). In this

case, the angles {π} are chosen as new NG-mode field variables {π(x)} rather than the

simple coordinates above [357, 358]. Performing a derivative expansion in ∂µV (x), and

making use of the Dirac algebra results in a matrix

U(x) = exp
(

i
√

2πa(x)F a
)

(5.105)

where V (x) = PLU(x)† + PRU(x) = exp
(
i
√

2γ5π
a(x)F a

)
.

NG-modes are therefore intimately related to the structure of hadrons; not only do

they occur in the hadronic action (4.31), but they are essential to its derivation.

5.4 Symmetry is Generic

The concept of symmetry contains a concept for difference, another for

identity, and a third relating the two.

Auyang, p33, [41]

The concept of symmetry is one that has been theoretically utilized in the construc-

tion of models since the the time of the ancient Greeks. Symmetries occur somewhat

prolifically in natural systems. This section will discuss a number of fields which have

made use of concepts such as symmetry and symmetry breaking.
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5.4.1 Economics

Economics has always had a strong connection with mathematics, but it lacks the em-

phasis upon geometry which drove much of the work on symmetry in physics. Despite

this, there are a number of symmetry principles used in this field:

• It is possible in economics to pose questions about subspaces defined by a preference

relation, indifference curves, and their invariance. The collection of articles in [377],

and in particular the introduction by Sato and Ramachandran [378] has a good

introduction to the uses, as well as the development of, the techniques of symmetry

and conservation laws, or geometric methods in economics.

• The collective behaviour exhibited by stock time series data during extreme market

events [265, 79, 415], reveals a symmetry breaking event. The shape of the ensemble

return distribution changes from its symmetrical shape on typical trading days to

either a positive or negative skew depending upon whether the event is a rally or a

crash. This suggests that on extreme days the behaviour of the market cannot be

described in the same way as during normal trading days.

• Sornette and Malevergne have created a model of rational expectation bubbles which

is based upon the identification of the bubbles with alleged NG-modes of the fun-

damental rational pricing equation which emerge due to spontaneous breaking of

price-parity symmetry [413, 415]. We shall now examine this model in more detail.

Rational expectation (RE) bubbles were introduced by Blanchard and Watson [69, 70] in

an attempt to account for the empirical fact that observed prices can deviate significantly,

often for extended time periods from fundamental prices. The fundamental price, pf , of

a security can be thought of as the present value of all its future cash flows. Rational

expectation theory [294] bases this on two hypotheses; the rationality of agents (rational

expectation condition), and the ‘no-free lunch’ condition.

Under the rational expectation condition, the best estimate of the price of an asset

at a time t + 1, pt+1, can be obtained by conditionalising its expectation, E[pt+1], upon

all possible information accumulated up to time t, which is represented by the filtration

{Ft}:
E[pt+1|Ft]. (5.106)

The ‘no-free lunch’ condition imposes equality on the expected returns of every asset under

a given risk neutral probability measure Q. Combining these two conditions results in

the valuation for the price:

pt = δEQ[pt+1|Ft] + dt, ∀{pt}t≥0, (5.107)

where dt is some external dividend, and δ = 1
1+r is the discount factor. Equation (5.107)

expresses both the fact that something valuable today will be less valuable tomorrow due

137



to the action of the discount factor, and that any dividend that is paid out will decrease

the expected price tomorrow as this is incorporated into the new pricing of the asset.

The fundmental price is a well known forward solution to equation (5.107) [294, 413]:

pft =
+∞∑

i=0

δiEQ[dt+i|Ft]. (5.108)

Another solution of (5.107), in fact the general solution [198], can be found by adding an

arbitrary component Xt obeying an arbitrary martingale condition: Xt = δEQ[Xt+1|Ft],
to the fundamental price

pt = pft +Xt, (5.109)

an equation that nicely illustrates the way in which the valuation of an asset can deviate

from the fundamental price and still satisfy all of the conditions of rational expections

theory.

RE bubbles allow for just such a deviation, a rational bubble can arise when the

actual market price depends, for example, upon an expected rate of change in a stock

or asset. Blanchard’s model consists of bubbles, Xt, which exponentially grow (through

multiplication of the price by a factor at = ā > 0 with probability π) and then periodically

collapse to zero (at = 0 with probability 1− π), thus returning to the fundamental price.

This time dynamics of the bubbles are modelled by the iterative equation

Xt+1 = atXt + bt, (5.110)

where

at =

{

ā with probability π

0 with probability 1− π
(5.111)

and bt is an arbitrary constant. This equation allows for the creation new bubbles after

a collapse through the application of a nonzero bt term, and these can become very large

through successive multiplication of a nonzero at term. RE bubbles allow for a deviation

from the fundamental price while keeping it as a fundamental anchor point of modelling.

Sornette and Malevergne have observed that the component Xt in (5.109) plays a role

analogous to a Goldstone mode [413]. This work stems from Sornette’s identification of

a price parity symmetry:

p→ −p (5.112)

between the positive and negative prices that are associated with the rational expectation

condition [414, 415]. A positive or negative price quantifies our liking or disliking for some

commodity; we pay a positive price for a commodity that we like or desire, and a negative

price for those that we would rather not have. Consider for example a situation that arose

recently in Australian politics, when it was proposed that large amounts of money could

138



be made if the Australian government would store nuclear waste for other countries.20

Effectively Australia would be buying this waste for a negative price. (Conversely, Japan

say, would pay Australia money to store their nuclear waste for them.)

A company is made valuable in an economy by its earnings and subsequent dividend

payments. In the absence of dividends and speculation the price of a share is zero, as

its earnings are nil; no share is intrinsically more or less desirable [415]. However, in the

presence of earnings, and dividend payments this symmetry is broken, since a positive

dividend, and its associated capital gain makes a share desirable, leading it to develop a

positive price.

Sornette and Malevergne claim that the bubble terms Xt in equation (5.109) play a

role analogous to NG modes [413]. This is becauseXt acts to restore the broken symmetry;

bubble prices can wander up or down, and in the limit where the absolute value of bubble

prices become very large they will dominate over the fundamental price, which restores

the independence of the share with respect to dividend; the share price will depend only

infinitesimally on its dividends, and the largely random bubbles will dominate.

While this conclusion is certainly interesting, it is not actually correct. Of particular

concern is the nature of parity symmetries in general; they are not continuous but rather

discrete symmetries, and therefore the relevance of Goldstone’s theorem is debatable in

this case. In fact, the authors do not actually apply the techniques discussed in sec-

tion 5.3.4 and derive NG-modes, rather they present an analogy. In this case, the analogy

is flawed, NG-modes do not arise in a system without at least two fields, before such

modes can arise, the potential must exhibit some form of continuous minimum (consider

for example the Mexican hat in figure 5.4(c)). This is because NG modes must be free to

move within the low energy state.

However, this work leads us to suggest a hypothesis that NG-modes are more prevalent

than is traditionally assumed to be the case in physics. If a situation can be identified

where a continuous symmetry is broken then NG-modes will offer one possible description

of the system.

20The former Australian Prime Minister, Bob Hawke was recently quoted as saying “What Aus-
tralia should do, in my judgement, as an act of economic sanity and environmental responsibility, say
we will take the world’s nuclear waste.. . . If we were to do that we would have a source of income,”
http://www.abc.net.au/news/newsitems/200509/s1468931.htm
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5.4.2 Self-Organised Criticality and NG-modes

. . . the past decade has witnessed a clear acknowledgement that many nat-

ural phenomena must be described by power law statistics. . . .This has led

in particular to the concept of ‘self-organized criticality’ (SOC), according to

which certain dynamically driven spatially extended systems evolve sponta-

neously towards a critical globally stationary dynamical state with no charac-

teristic time or length scales.

Sornette et al., p2, [416]

The concept of self-organised criticality, (SOC), has gained wide recognition since its

proposal by Bak et al. [46, 47]. This work presented a cellular automata model of a

sandpile, where sand was slowly dropped onto a horizontal plane. Gradually, the piles of

sand at each position grow larger and larger, until they become unstable (i.e. too high)

with respect to their neighbours, this precipitates an avalanche, which itself might lead

to further avalanches as the sand on top of the original ‘pile’ cascades onto other piles

thus possibly increasing their height beyond the critical, unstable value. Similar SOC

models have been presented for earthquakes [45, 228], fractal growth [32, 49, 229], forest

fires [159, 129], etc. For more information about SOC, the reader is referred to any of the

general reviews on this subject, such as [232, 48]. A certain familiarity with the concept

will be assumed here.

Sornette et al. have presented a conceptual framework which bases emergent SOC

behaviour upon the recognition that it is actually an unfolding of the parameter space

representing an unstable dynamical critical point [416].

The authors consider an extension to the simple sandpile model [269], where the

simple plane of the sandpile is placed into a cylinder which rotates with angular velocity
dφ
dt , brought about by the constant application of a torque T , caused by a torsion spring

attached to the cylinder (see figure 5.5). Starting the as per figure 5.5(a) with the torsion

force at zero (T = 0), we can define the rotation angle θ = 0. The surface of the sand

is horizontal. Then, as per figure 5.5(b), starting to exert a torsion the cylinder rotates

by some angle θ, the plane of the sand is now at this angle, and the sand itself is now

subjected to the same torque. At some critical point θc, the torque on the sand exceeds

the friction holding it in place and a sand flow J starts, the magnitude of which increases

if T > Tc. This system exhibits what is termed a critical sliding transition, from repose

(J = 0 when T < Tc) to an active slide (J > 0 when T > Tc) the speed of which

corresponds to the average rotation of the cylinder at nonzero average angular velocity

〈dθdt 〉. Suppose that the angular velocity is brought to a vanishingly small positive value

(dθdt = 0+), then the response of the sandpile will be equivalent to that of the standard

sandpile model; the avalanches caused will satisfy a power law distribution.
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θ=0

θ>0

Figure 5.5: A modified SOC sandpile, sand in a cylinder is rotated at speed dφ
dt by the

constant application of a torsion force T .

The authors claim that SOC fundamentally relies upon the existence of such an under-

lying sliding critical point. The mapping of SOC onto unstable critical points is controlled

by driving the relevant order parameter at an infinitesimal value. This work does not ex-

plain the appearance of the corresponding unstable critical points, however, it does allow

for the unification of a number of separate theories and phenomena. In particular, the

authors claim that this framework clarifies a number of concepts associated with SOC,21

and is therefore a reasonable advance upon current understanding. Of particular interest

to the current discussion, this paper is claimed to clarify another work which draws a

very interesting connection has been drawn between self-organised criticality, (SOC), and

NG-modes [307]. Here, the claim is made by Obukhov that the phenomenon of SOC

arises as a natural property from NG-modes in a many-body degenerate state.

Since Goldstone modes are the long wavelength modes of the system, in this limit

they can be thought of as a homogeneous displacement, or rotation, of the the system of

interest, that is, a translational invariance.

Obukhov claims that for any ordered, or correlated many-body state, gapless modes

can be introduced which are associated with the translational invariance (i.e. degeneracy)

of the order parameter. He claims to show that even if the system has no such degeneracy

a more general system can be found which in the limit becomes the system of interest, and

for which appropriate NG-modes can be found. The nonlinear interaction of the Goldstone

modes causes the nontrivial critical exponents of SOC behaviour. Thus, Obukhov claims

that SOC stems from the interaction of NG gapless modes.

21Such as supercritical bifurcations, the slow driving rate commonly exhibited by SOC systems, the
renormalisation group analysis of SOC, the fact that these systems often evolve according to a diffusion
equation (on the large scale) which itself satisfies a global conservation law but sometimes exhibit diffusion
type behaviour without obeying a global conservation law, the existence of feedback mechanisms which
attract the dynamics onto a critical state etc. refer to the paper [416] for details.
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Instead, Sornette et al. claim that the avalanches are nothing but the NG fluctua-

tions attempting to restore the broken symmetry. They claim that instead the gapless

modes result from the underlying unstable critical point, stabilised by the special driv-

ing condition of the system under consideration. However, we have already seen in the

previous section that the understanding of NG-modes exhibited by these authors is of a

generic and undefined sense, and the same problem is exhibited by this paper; no spe-

cific applications of Goldstone’s theorem are presented, and the formalism necessary for

this presentation is not developed, instead NG-modes are identified by drawing a analogy

between the properties of NG-modes (discussed at the end of section 5.3.4) and those of

SOC systems. Again, without a proper understanding of the fields behind this system,

and their dynamics, these claims are problematic at best.

Despite this inadequacy, these arguments are very suggestive. It is likely that SOC

is closely related to NG-modes, as noted by the above authors, the scale free nature of

SOC behaviour means that it can occur over scales proportional to the system of interest,

and NG-modes have the same characteristic. However, until explicit models which clearly

show the link between these phenomena are presented these ideas will not be useful.

One possibility presents itself in the models of Process Physics. Clear connections

are made with both SOC and NG-modes in these models (see sections4.1.1 and 6.4.3).

However, no rigorous link has been found within this system between these two concepts.

This is a topic for future investigation.

5.4.3 Biological Modelling

Symmetry arguments are often found in biological models. For example, the body plans

of most multicellular organisms exhibit some form of symmetry, either radial or bilateral.

It is commonly accepted that symmetry provides a reasonable indicator of the fitness of

an organism, and this has even been linked with a tendency (across four taxa) for choice of

sexual partners to be affected by symmetry considerations; more symmetrical organisms

are chosen as sexual partners [289].

Biological development itself consists of a process whereby symmetries are gradually

broken in the creation of internal axes and the associated organ growth [315], yet very

few mathematical models of this process exist. There are however a number of models of

pattern formation which utilize symmetry techniques [440, 184, 274]. Some authors have

argued that the genetic code itself may be a product of symmetry breaking [34, 171].

Ecology encompasses a number of fields that benefit from symmetry techniques. For

example, arguments have been presented that symmetry breaking is linked with the cre-

ation of boundaries, or the severing of symmetrical structures [113], and sympatric spe-

ciation has been modelled as a symmetry breaking bifurcation [427, 428].

However, there are few formal models of symmetry considerations in the field of bi-

ology. This is not necessarily because they are impossible, and it is likely that more
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understanding could result from a more consistent attempt to discuss biological systems

in terms of symmetry driven models. In section 6.5 a new model of sympatric speciation

will be presented which makes use of NG-modes to dynamically link species formation to

niche formation.

5.4.4 Arts, Crafts and Aesthetics

Symmetry has played a strong role in a number of artistic considerations, for example,

architecture has often featured been dominated by highly symmetrical structures, patterns

used in Navajo and Oriental rugs, Chinese and Persian pottery, and quilting. Music

often features symmetry considerations, composers such as Bartók, Tenney and Reich

use symmetry as a constraint (in particular the arch form, which consists of the notes

ABCBA) [411], and Bach used symmetry concepts of permutation and invariance heavily

in his music [219].

This tendency towards symmetrical forms might be understood within the biological

preference for symmetrical mates discussed above, but it should be understood that often

a highly symmetrical piece of art is considered boring or too confusing. It is likely that

much could be learned about the brain with some formal investigations of how humans

relate to symmetrical structures [461, 463].

5.4.5 A Generalised Model of Emergent Behaviour?

Symmetry is a generally observable phenomenon across many apparently different sys-

tems, and symmetry breaking is already a widely applied concept in a number of areas,

although not well formalised outside of physics. Even the concept of NG-modes has been

developed for some systems, and used to explain (although not formally) emergent long

range collective behaviour. Especially interesting is the postulated connection between

NG-modes and SOC behaviour which was discussed above. Might it be possible to con-

struct a generalised model of emergence using these already well developed theories? We

shall return to this question in chapter 6, where I shall show that this is indeed the case.

5.5 The Structure of the Vacuum

. . . spontaneous symmetry breaking underscores the point that the vacuum

in QFT is not a formless nothingness but rather a state with an intricate

structure.

Earman, p341, [161]

The quantum vacuum, or ground state, is defined as the state with the lowest energy,

but this does not mean that it is empty, or featureless. Rather it is an inherent part of

the theory, playing a number of very important roles in different QFT’s.

Firstly, as was discussed in section 5.3.3, the vacuum plays an essential role in SSB.

The shape of the potential function is the instigating factor in this case; if its minimum
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occurs in more than one position then the ground state becomes degenerate, and symmetry

breaking occurs.

The vacuum also plays a role in procedures such as the dressing of bare properties. For

example, the mass parameters used in QFT Lagrangians22 are not physically observed,

they are separate idealised mass terms, hence termed bare. Only when the interaction

with the vacuum is taken into full account is a physical mass term extracted, i.e. dressed

[336]. In order to relate the parameters of QFT with physically observable quantities

the vacuum must be considered; it provides a sense of context, which is very poorly

understood in current modelling.

The vacuum acquires a particularly important status in QCD; Hadrons can be viewed

as collective excitations of the vacuum, so the properties of the ground state must be

taken into account when studying their properties [379]. However it is not a simple state

but rather a highly non-trivial state including both quark and gluon condensates; the

vacuum can be thought of as a very dense state of matter, composed of quarks and gauge

fields that are interacting in a very complex way. Thus, in order to give a full solution

of QCD, a full description of not just hadrons but the vacuum from which they emerge

must be provided. The most successful models of hadron structure all take account of

some form of vacuum structure in their calculations [97, 379, 298, 125, 124].

Thus the ground state is not “empty” or uninteresting, it is rather a key feature of

QFT’s. At the very least it is bubbling with quantum energy fluctuations, many of which

lead to observable phenomena [256, 80, 258, 214]. However, it is far more than that, it

provides a context to the objects of any QFT; a different potential, or different fields

obeying new symmetries can result in a system which exhibits vastly different dynamics.

This idea will form a theme in the remaining chapters of this work.

5.6 Modelling Quantum Behaviour

While QFT provides one modelling of a number of quantum phenomena, there are other

methodologies, particularly when one considers standard quantum theory. As this work

adopts the stance that quantum behaviour is ontological, epistemological interpretations

of quantum theory, or those that do not adequately describe the process of measurement

are rejected; if we are to apply quantum modelling to complex, contextual and emergent

systems then a consistent methodology must be adopted. This section shall discuss two

interesting quantum models, before the next chapter turns this discussion to a generali-

sation of complex, emergent, hierarchical behaviour within the framework of QFT.

22Such as (4.18) and (4.19).
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5.6.1 Quantum State Diffusion and Spontaneous Localisation Theories

A quantum measurement is an interaction between a quantum system and

its environment in which the state of the quantum system significantly influ-

ences a classical dynamical variable of the environment.

Percival, p72, [328]

An interesting family of theories has been proposed, which modify the Schrödinger

equation in such a way that systems become localised under certain conditions. In partic-

ular the process of measurement is incorporated into these theories. There are two general

formulations of these theories; The GRW theory that was developed by Ghirardi, Rimini

and Weber [183] which is based upon stochastic ‘quantum jumps’, and the quantum state

diffusion (QSD) theory that has been suggested by Gisin and Percival [333, 188, 189, 190],

which is based upon a process of continuous diffusion. Diósi has reformulated the GRW

jump theory as a diffusion theory [154], so these two approaches are essentially the same.

Both of these formulations have their origin in a computational technique that was

developed as an alternative way of solving the master equations that are often derived in

a description of quantum systems [207]. Master equations describe the time evolution of

every possible member of an ensemble of possible states that a system S can be found

in, and the (to some extent unknowable) interaction of each of these states with their

surroundings. As such, they can quickly become very complicated, and virtually useless

as computational tools for all but quite simple systems, if the attempt is made to solve

them directly.

One explicit generalized master equation is the Bloch Equation in Lindblad form (BE-

LF), [266], which describes the time evolution of a density matrix ρ = |ψ〉〈ψ| which is

in its reduced form, ρr, due to the tracing out of ‘irrelevant’ environmental factors (see

appendix C for a brief introduction to generalised master equations)

ρ̇r = − i
~

[H, ρr ] +
∑

j

(

LjρrL
†
j −

1

2
L†
jLjρr −

1

2
ρrL

†
jLj

)

, (5.113)

This equation represents the interaction of the smaller quantum system ρr, (evolving ac-

cording to a Hamiltonian H), with a set of ‘detectors’ the effects of which, are represented

by the Lindblad operators Lj [266]. However, the predictions obtained are statistical in

nature, phenomena such as the ‘click’ heard when an extended quantum system is incident

upon a detector cannot be obtained from this formalism. In order to describe individual

cases, this equation must be ‘unravelled’ into a noisy evolution equation.

145



The Quantum State Diffusion equation (QSD) is just such an unravelling of equa-

tion (5.113),

|dψ〉 = − i
~
|ψ〉dt− 1

2

∑

j

(L†
jLj + l∗j lj − 2l∗jLj)|ψ〉dt+

∑

j

(Lj − lj)|ψ〉dξj , (5.114)

which describes the differential evolution of the state vector |ψ〉. (See appendix C for the

derivation of this unravelling.) The lj are defined

lj ≡ 〈ψ|Lj |ψ〉. (5.115)

and the dξj are independent, complex differential random variables which represent a

complex normalized Wiener process,23 hence, if M represents a mean taken over the

relevant probability distribution,

M (Re (dξj) Re (dξk)) = M (Im (dξj) Im (dξk)) = δjkdt

M (Re(dξj)Im(dξk)) = 0 (5.116)

M(dξj) = 0.

This formalism should be compared with the ad-hoc expectation value that is invoked

in the standard formulation of quantum mechanics. The Lj in the QSD map have an

explicit physical significance; they are indicative of the way in which the individual Lind-

blad operators representing the environment act upon the state |ψ〉 and hence cannot

be arbitrarily chosen. In (5.114) they act upon the time evolution of the system in two

different ways. The first sum in equation (5.114) represents what could be termed the

‘drift’ of the state vector (if an analogy with Brownian motion is considered), while the

second sum represents random fluctuations of the state vector due to the interaction of

the (open) system with its environment. While the Hamiltonian term serves to delocalise

|ψ〉, dispersing it and entangling it with any states it comes into contact with (includ-

ing those represented by the Lindblad operators), the noise term serves to localise |ψ〉,
forcing it into one of the set of alternative channels [328]. The time evolution of |ψ〉 is

normalised under the dynamics of this equation due to the action of the drift term (which

is essentially chosen to respect this normalisation), hence this equation is unitary despite

the extra terms. This can be shown as follows:

23See appendix B for more details.
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Because we are using Itô calculus, differentials up to the second power must be eval-

uated, so calculating the norm involves finding

||〈ψ|ψ〉|| = M

∫

dx

(

|ψ〉† + d|ψ〉†
)(

|ψ〉+ d|ψ〉
)

(5.117)

=M

∫

dx |ψ〉†|ψ〉+M

∫

dx d|ψ〉†|ψ〉+M

∫

dx |ψ〉∗d|ψ〉+M

∫

dx d|ψ〉†d|ψ〉.

(5.118)

H is hermitian, dt2 = 0, and M(dξj) = M(dξ∗j ) = 0, so after an amount of straightforward

manipulation this reduces to

|||〈|ψ|ψ〉|| = M

∫

dx |ψ〉†|ψ〉+M

∫

dx |ψ〉†
∑

j

(

〈Lj〉L†
j −

1

2
LjL

†
j −

1

2
〈Lj〉〈L†

j〉
)

|ψ〉 dt+

M

∫

dx |ψ〉†
∑

j

(

〈L†
j〉Lj −

1

2
L†
jLj −

1

2
〈L†

j〉〈Lj〉
)

|ψ〉 dt+

M

∫

dx |ψ〉†
∑

j,k

(

L†
j − 〈L

†
j〉
)(

Lj − 〈Lj〉
)

|ψ〉 dt.← because M(dξjdξ
∗
k) = δj,kdt

(5.119)

Now, if L†
jLj = LjL

†
j , the three last terms in our equation cancel, and we are left with

conservation of the norm, i.e.

|||〈|ψ|ψ〉|| = M

∫

dx |ψ〉†|ψ〉 = 1 (5.120)

if ψ itself is normalised.

There are a number of advantages possessed by the QSD equation when it is compared

to the BE-LF. Firstly, and most unambiguously, there is a computational advantage, the

BE-LF deals with an (N × N)-dimensional matrix, as such it uses a large amount of

computer memory and has a relatively long computational time. The QSD equation

considers a (N × 1)-dimensional vector, so individual runs of this equation will take up

considerably less time and computer memory. However, to obtain an ensemble result, the

equation must be run a number of times, which makes it less computationally efficient if

the system being considered is very complex (i.e. ifN is large). There is also an ontological

advantage; while the BE-LF describes the behaviour of an entire ensemble of systems,

the QSD equation models the evolution of one single system, as such it can be used to

understand the dynamics of individual processes. This means that the QSD equation may

be able to describe the process of detection in a non-arbitrary manner. In particular, it

makes a realistic interpretation of the wave function possible. In this picture a quantum

system evolves according to (5.114), becoming entangled with ‘macroscopic’ objects and
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localising as a as a result of this interaction. Even the appearance of macroscopic objects

is understood within this picture, a quantum system which cannot feasibly be separated

from environmental interaction will localise when its time evolution is mapped using

(5.114).

Thus the QSD equation, rather than merely being a computational convenience, is

suggested as a possible foundation for a new theory — one which would be an extension

of quantum mechanics.

In order for equation (5.114) to provide a viable alternative interpretation of quantum

mechanics, it must be able to obtain the standard results of that theory. In particular, it

must be possible to derive the BE-LF (5.113) from the QSD equation (5.114). The next

section will show that this is indeed the case.

Derivation of ρ from the QSD equation

We are using stochastic calculus (see appendix B), so because of Itô’s theorem, differentials

must be calculated up to the second order, that is, to find ρ̇ we must evaluate

dρ = M (|dψ〉〈ψ|+ |ψ〉〈dψ|+ |dψ〉〈dψ|) . (5.121)

Substitution of equation (5.114) into each individual term of the Itô form (5.121) gives

M|dψ〉〈ψ|

= M



− i
~
H|ψ〉dt− 1

2

∑

j

(

L†
jLj + l∗j lj − 2l∗jLj

)

|ψ〉dt+
∑

j

(

Lj − lj
)

|ψ〉dξj



 〈ψ|

= − i
~
HM

(

|ψ〉〈ψ|
)

dt− 1

2

∑

j

(

LjL
†
j + l∗j lj − 2l∗jLj

)

M

(

|ψ〉〈ψ|
)

dt+
∑

j

(

Lj − lj
)

M

(

dξj |ψ〉〈ψ|
)

= − i
~
Hρdt− 1

2

∑

j

(

LjL
†
j + l∗j lj − 2l∗jLj

)

ρdt (5.122)

and since |dψ〉〈ψ| =
(

|ψ〉〈dψ|
)†

, we can immediately write

M|ψ〉〈dψ| = i

~
ρHdt− 1

2
ρ
∑

j

(

L†
jLj + ljl

∗
j − 2ljL

†
j

)

dt. (5.123)
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The last term of (5.121) evaluates to

M (|dψ〉〈dψ|)

=M



− i
~
H|ψ〉dt− 1

2

∑

j

(

L†
jLj + l∗j lj − 2l∗jLj

)

|ψ〉dt+
∑

j

(

Lj − lj
)

|ψ〉dξj





×
(

i

~
〈ψ|Hdt− 1

2
〈ψ|
∑

k

(

LkL
†
k + lkl

∗
k − 2lkL

†
k

)

dt+ 〈ψ|
∑

k

(

L†
k − l∗k

)

dξ∗k

)

=− i

~
HM

(

|ψ〉〈ψ|dξ∗
)
∑

j

(

L†
j − l∗j

)

dt+
i

~

∑

j

(

Lj − lj
)

M

(

|ψ〉〈ψ|dξj
)

Hdt

− 1

2

∑

j

(

L†
jLj + l∗j lj − 2l∗jLj

)

M

(

|ψ〉〈ψ|dξ∗j
)
∑

j

(

L†
j − l∗j

)

dt

+
∑

j

(

Lj − lj
)

M

(

|ψ〉〈ψ|dξj
)
∑

k

(

LkL
†
k + lkl

∗
k − 2lkL

†
k

)

dt

+
∑

j,k

(

Lj − lj
)

M

(

dξjdξ
∗
k|ψ〉〈ψ|

)(

L†
k − l∗k

)

+O(dt2)

= +
∑

j

(

Lj − lj
)

ρ
(

L†
j − l∗j

)

, (5.124)

where we have made use of the fact that M(dξj) = 0 from (5.116), and made the assump-

tion that dt is small, so dt2 → 0. We can now use these three results, together with the

Itô form (5.121), to find ρ̇:

ρ̇ =
dρ

dt

=
1

dt
M (|dψ〉〈ψ|+ |ψ〉〈dψ|+ |dψ〉〈dψ|)

= − i
~
Hρ− 1

2

∑

j

(

LjL
†
j + l∗j lj − 2l∗jLj

)

ρ+
i

~
ρH − 1

2
ρ
∑

j

(

L†
jLj + ljl

∗
j − 2ljL

†
j

)

+
∑

j

(

LjρL
†
j − ljρL

†
j − Ljl∗jρ+ ljl

∗
jρ
)

= − i
~
[H, ρ] +

∑

j

(

LjρL
†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLj

)

(5.125)

which is the Bloch equation in Lindblad form (5.113).

So the QSD equation can reproduce the ensemble results of quantum mechanics. Is

there a possibility that it might model detection?

Can the QSD equation model detection?

The following discussion is based upon the localization theorems discovered by Gisin and

Percival [189].
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Let |ψ〉 be the state vector of a system, where, for simplicity we shall set the Hamil-

tonian H = 0, and consider only a single environment operator L. In this case, the QSD

equation reduces to

|dψ〉 =

(

−1

2
L†L+ l∗L− 1

2
l∗l

)

|ψ〉dt+ (L− l) |ψ〉dξ. (5.126)

It is possible to divide the state vector into orthogonal subspaces or channels These

channels are labelled by their projectors Pk, defined such that

PkPl = PlPk = δklPl (5.127)
∑

k

Pk = 1. (5.128)

Defining the quantum expectation of the projector P

〈ψ|P |ψ〉 = 〈P 〉ψ = 〈P 〉 = p, (5.129)

which is the probability of the system represented by |ψ〉 being in the channel P , the

extent to which a state |ψ〉 is delocalised in the subspace of P or of its complementary

projector I − P can be measured by the QMS deviation24

(∆p)2 = 〈P 2〉 − 〈P 〉2 = 〈P 〉〈I − P 〉 = p(1− p) (5.130)

for a single channel projector25.

Now, the localisation of a system with respect to the channels P and I − P occurs

when the QMS deviation decreases with time [189]. From the QMS deviation (5.130) we

find that the system will localise if

Md (∆p)2 = Md
(
p− p2

)
= M (1− 2p) dp−M (dp)2 ≤ 0 (5.131)

Now, we make the assumption that L only operates in the subspace of the projector

P , so that

L = PL = LP = PLP. (5.132)

24The quantum mean square deviation, is essentially just a mean square deviation defined for quantum
operators.

25A single channel projector is similar to an or gate — it has one of two possible outcomes yes or no.
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We can use Itô calculus to find the value of dp

dp =d〈ψ|P |ψ〉
=〈ψ|P |dψ〉+ 〈dψ|P |ψ〉+ 〈dψ|P |dψ〉

=〈ψ|P
(

〈L†〉L− 1

2
L†L− 1

2
〈L†〉〈L〉

)

|ψ〉dt+ 〈ψ|P (L− 〈L〉) |ψ〉dξ

+ 〈ψ|
(

〈L〉L† − 1

2
LL† − 1

2
〈L〉〈L†〉

)

P |ψ〉dt+ 〈ψ|
(

L† − 〈L†〉
)

P |ψ〉dξ∗

+ 〈ψ|
(

〈L〉L† − 1

2
LL† − 1

2
〈L〉〈L†〉

)

P

(

〈L†〉L− 1

2
L†L− 1

2
〈L†〉〈L〉

)

|ψ〉dtdt

+ 〈ψ|
(

L† − 〈L†〉
)

P (L− 〈L〉) |ψ〉dξdξ∗

=

(

〈L†〉〈L〉 − 1

2
〈L†L〉 − 1

2
〈L†〉〈L〉P + 〈L〉〈L†〉 − 1

2
〈LL†〉 − 1

2
〈L〉〈L†〉P

)

dt

+ 〈ψ|P (L− 〈L〉) |ψ〉dξ + 〈ψ|
(

L† − 〈L†〉
)

P |ψ〉dξ∗ +
(

〈L†L〉 − 2〈L†〉〈L〉+ 〈L†〉〈L〉〈P 〉
)

dt

=〈ψ|L− 〈L〉P |ψ〉dξ + 〈ψ|L† − 〈L†〉P |ψ〉dξ∗

= (1− 〈P 〉) 〈L〉dξ + (1− 〈P 〉) 〈L†〉dξ∗. (5.133)

Now, since Itô processes are Markovian they are non-anticipating, hence

MXdξ = 0 (5.134)

for any X. Using this relation in (5.133) we immediately find that

M (1− 2p) dp = 0 (5.135)

and that

M (dp)2 =(1− 〈P 〉)2〈L〉2dt+ (1− 〈P 〉)2〈L†〉2dt

=(1− p)2dt
(

〈L〉2 + 〈L†〉2
)

= |〈L〉|2 (1− p)2 dt ≥ 0 (5.136)

So, referring to (5.131), we find that the system will localise into the channel P or its

complement I − P . It is straightforward to extend this formalism to more complicated

scenarios. Complex entangled states such as Schrödinger’s cat quickly resolve themselves

into one alive or dead cat in this formalism. Thus the QSD equation can model detection

processes. Because detection is a real process, physically incorporated into the QSD

equation, the contextuality of quantum systems is therefore directly and simply modelled

by this extension to the Schrödinger equation. A recent paper [182] examines the effect

of the modified dynamics upon perception.
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However, while even the likes of John Bell suggested that spontaneous localisation

theories are prime candidates for a new realistic interpretation of quantum mechanics

[59], there remain a number of problems with these theories [59, 255].

A regularly leveled criticism is that of the problem of ‘tails’ in the theory; collapse

of the wavefunction only ever occurs for all practical purposes [30]. Small terms always

remain in this formalism which can interfere and lead to quantum-type behaviour, al-

though this is very unlikely. These tails imply that if we are to adopt this proposal as

a replacement for standard quantum theory, then the notion of a definite state must be

replaced with a weaker concept of ‘almost collapsed’. It is even likely that experiments

can be devised to test these theories based upon this notion [182].

Another problem which presents itself is that of the ad hoc nature of these theories.

The above discussion made a somewhat arbitrary distinction between the system and

its surrounding environment; the system is modelled by the Hamiltonian term (which

was simplified still more by setting it to zero), and the environment is modelled using

the Lindblad operators. However, it has still obtained a reasonable result. To describe

detection in full it will be necessary to consider a more complex interaction, keeping the

Hamiltonian terms, and ultimately perhaps constructing an equation that does not make

ad-hoc distinctions at all, but models all of reality.

Percival has attempted to remove this arbitrary division [329, 330, 331, 334] with

the development of a modified theory of spontaneous localisation, named Primary State

Diffusion (PSD). Essentially Percival derives a new time evolution equation, which is

similar to the QSD equation but without the Schrödinger term. Thus the new operators

in Percival’s modified equation [330] represent the dynamics of the Schrödinger evolution

as well as their diffusion. While this theory is a start in the right direction, it is far from

completed, and appears in our framework to be rather arbitrary. The interested reader is

referred to the papers cited above.

A less mentioned problem is faced by all realistic interpretations of quantum me-

chanics; they imply a preferred positional reference frame (PRF), and therefore are in

disagreement with relativity which forbids such a phenomenon [283]. This is due to the

fact that realistic theories must adopt a realistic approach to measurement; the collapse

of the wavefunction must be a real physical process in a realistic interpretation, and hence

some explanation must be provided of the way in which a spatially separated, entangled

quantum system (such as an EPR state) collapses preferentially depending upon who

measures its state first (a concept which is forbidden by relativity). However, this is

not necessarily a testable contradiction, rather, it is more a contradiction of what might

be called the Einsteinian dogma. There is no immediate reason why there cannot be a

hidden PRF which exhibits actual Lorentzian length contraction and time dilation effects

[62]. In section 6.4.4 we shall return to this issue, with the understanding of the Universe

as a quantum foam provided by Process Physics, where a PRF in the form of the foam
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itself becomes necessary. Thus, a number of different arguments all seem to suggest that

that a PRF is a necessary consequence of a realistic, process driven understanding of the

Universe. A number of experimental results have been derived, all suggesting that such

a PRF does in fact exist.

For all of these reasons, the QHFT high level modelling of the simple iterative system

discussed in section 4.1.1 makes use of a QSD type addition to a standard time evolution

process modelling stable structures in that system. In this theory, the process of measure-

ment, or objectification results from the interplay between space and these emergent stable

structures; space and matter are phenomena emergent from the same underlying process,

and if matter becomes too delocalised then space acts to restore its locality, objectifying

the matter, and in some cases causing a measurement to occur. However, even though it

is possible to write such an equation, very little understanding results from such a step.

It is necessary to develop high level models based upon this equation and to extract pre-

dictions from them. Thus one model of the complex Universe is not enough. In order to

understand its full complexity we must create a number of models capable of examining

specific instances of its behaviour. These will not be deducibly relatable, rather they

will be observationally dependent upon one another; each theory being observationally

emergent from its lower level counterpart.

5.6.2 Towards an Operational and Realistic Framework

In a work that owes its roots to von Neumann and Birkhoff [445], Aerts and coworkers have

developed an operational, realistic generalisation of the quantum formalism that explicitly

takes the contextuality of quantum mechanical systems into account [8, 15, 10, 18, 24].

This section provides an abbreviated discussion of one of the more recent papers on the

subject [24].

The operational axiomatic approach describes a physical entity S, using

1. a set of states, Σ ⊂ p, q, r, . . . ,
2. a set of properties L ⊂ a, b, c, . . .
3. a relationship of ‘actuality’ between the states and the properties which expresses

that the property a ∈ L is actual if the entity is in state p ∈ Σ. This involves

introducing some function κ : L → P(Σ) which is such that κ(a) is the set of all

states of the entity S that make property a actual, called the Cartan map.

The triple (Σ,L, κ) is called a state property space, and is the basic mathematical structure

of this approach.

This space can be operationally founded by supposing that for each property a ∈ L
there is a yes/no experiment α that tests it. Then, a state p ∈ Σ is contained in κ(a) if

and only if the outcome for the yes/no experiment α is yes with certainty. On the other

hand, if p /∈ κ(a) then the outcome of experiment α can be either yes or no.
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Six axioms are then introduced which allow for the formulation of a link with either

classical or quantum mechanics: State Property Determination, Atomicity, Orthocomple-

mentation, Covering Law, Weak Modularity, and Plane Transitivity. The authors claim

that a theory which satisfies the six axioms can give rise to either a classical or a quantum

theory, or even a mixture of both. This is because the six axioms are satisfied by a set

of projection operators over either a classical state space, or a complex Hilbert space.

However, one form of system, that of a separated quantum system is shown to elude this

axiomatic description. Specifically, the axioms of covering law, and weak modularity fail

for entangled, spatially separated quantum systems.

The authors point out that this problem is also inherent in standard quantum me-

chanics. This is correct, it is one aspect of the quantum measurement problem revisited

in a new guise. There is no problem with the description of separated quantum systems

until an act of measurement occurs. As was discussed in section 5.1.4, if the entities

are entangled (and hence not separated in the standard sense — see section 5.1.1) then

inconsistent predictions can be obtained from the quantum formalism. Specifically, the

contextuality of these measurements must be taken into account. With a deeper under-

standing of the foundations underlying quantum theory, these problems could be avoided,

something that both the spontaneous localisation theories discussed above, and the oper-

ational approach discussed here are moving towards. While neither of these approaches

are fully implemented, they are both very promising, and share many aspects. The focus

in this work will centre upon spontaneous localisation theories as the QSD approach has

been incorporated into Process Physics (this will be discussed in section 6.4.1). However,

a number of interesting results have been obtained from the operational realistic approach

of Aerts and coworkers which have influenced the current work and so will now be dis-

cussed. A closer comparison of the two approaches is warranted, but will be left to the

future.

Firstly, the cause of quantum probabilities is clarified. Probability theory, as for-

malised originally by Kolmogorov [250] was originally aimed at describing uncertainty to

do with our lack of knowledge about some system. Quantum statistics are not associ-

ated with a lack of knowledge, their behaviour has been widely recognised as different

[3, 20, 17]. In some cases the probability distribution necessary to describe the behaviour

of a system can be decidedly non-Kolmogorovorian. For example, it has been shown

that in situations where one moves from a state of indecision to a decided state, and

where the change of state is context-dependent the probability distribution necessary to

describe the system is non-Kolmogorovian [14]. In fact, as there is no real separation

between the contextual systems examined by the group at CLEA and contextual systems

in general, it is likely that a large number of contextually dependent systems will not

satisfy Kolmogorovian statistics. If we adopt a model of the world where experimenters

are interacting with and controlling their world, and where a system exhibits some sort
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of contextual dependence upon their actions, it is possible to suggest that many different

forms of random behaviour (specifically distributions) might be found. Given that only

one concrete example of this phenomenon exists at present, which is reasonably well mod-

elled by the quantum formalism, we might ask if quantum-type models can be extended

beyond their traditional scope. As was discussed in section 5.2, the group at CLEA has

followed just such an approach, suggesting that phenomena such as decision making, con-

cept formation and voting can be modelled by some version of the quantum formalism.

Thus, the quantum formalism is far more widely applicable than is usually considered to

be the case.

Secondly, the group at CLEA does not believe that General Relativity is a good start-

ing point for the development of a more complete theory of all physical phenomena [24].

The apparent nonlocality of the wavefunction leads to a suggestion that quantum phe-

nomena are ‘not inside space’, even after the apparent localisation due to measurement.

They claim that

Reality is much bigger than those parts of it that are contained inside space.

Space should be interpreted as a structure that has emerged together with the

macroscopic material entities that have emerged from the microscopic quantum

entities, and it has emerged as ‘their’ space, meaning the ‘space’ in which these

macroscopic entities exist and interact, as an emergent structure.

Aerts et al., p21, [24]

and propose a new philosophical view of reality, creation discovery view [12], which holds

a lot of promise. This view involves a concept of potential happenings, which are aspects

of experience that might be acted upon, and actualised creations, or experiences which

are created, controlled, and acted upon by that participant. This is sometimes referred to

as potentialities and actualities [176], where a process of context-driven actualisation of

potential (CAP) has been used in the development of an interesting theory of evolution.

Thus, the group at CLEA appears to be formulating a very broad process oriented

approach which rejects the static spacetime structure of modern physics, where an ex-

perimentalist is merely a passive observer, rather than an active participant in reality.

There are therefore many similarities between the philosophy of Process Physics, and the

approach adopted by CLEA. However, while the focus at CLEA appears to centre upon

operational descriptions of phenomena, the emphasis of Process Physics is to achieve a

dynamical understanding of reality. For this reason, it is believed that emergent com-

plex behaviour fits more securely into the Process Physics approach, even though there is

work underway to develop dynamical models of evolution and morphogenesis within the

framework of CAP [25, 176].
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Chapter 6

Quantum Field Theoretic Descriptions of Emergent Phenomena

The last chapter has discussed a number of techniques used in the analysis of different

quantum theories, showing that the problems these theories solve are not specific to

physics alone. It seems that high end complexity shares characteristics with quantum

systems. In particular, quantum theories are well equipped to describe phenomena such

as contextuality, hidden symmetries and their associated NG modes, and hierarchical

levels of behaviour. This chapter will make these ideas explicit, discussing the way in

which each of these phenomena can be related, and understood within one overarching

methodology.

It is necessary to make the caveat at this point that despite a number of years of effort,

this work is still in its infancy. As more work is performed in this area it is expected that

it will be possible to generate more models within this new methodology.

6.1 Generating Complex Emergent Behaviour

QFT offers a new way in which the concept of emergent complexity might be understood,

and conceivably generated in other fields. If it is possible to identify a hidden symmetry

in a system then there is a very real sense in which the resultant NG-modes of behaviour

can be thought of as emergent.

Before the identification of a broken symmetry, the fields describing the behaviour of

a system are to some extent arbitrary, but after the identification of NG-modes, and the

redescription of the system in terms of those modes, the fields describing the system are

more intimately connected with its dynamics. While traditionally, the broken symme-

tries of physical systems are discovered within a system of interest, and therefore their

associated NG-modes cannot be thought of as emergent but rather discovered, there is

no reason why a symmetry could not be dynamically broken under the influence of some

time evolution equation. If this were case then the NG-modes would be the emergent re-

sult of that dynamical symmetry breaking (DSB), and the resultant NG-modes defined as

emergent. This provides us with a new theoretical basis for the discussion of dynamically

emergent behaviour. Such models already exist in physics, in fact, SSB was first intro-

duced in this DSB form. Consider for example the DSB models of BCS superconductivity

[52] and the Nambu and Jona-Lasino (NJL) [298, 299] models of fermion mass generation
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which posit, instead of ‘elementary’ Higgs bosons which eat up emergent NG-modes, a

vacuum condensate from which such particles emerge.

In the BCS theory, for example, the gauge invariance of electromagnetism is spon-

taneously broken in a dynamical manner by pairs of electrons that condense to form a

bound state in the ground state of a metal. In the NJL model an interaction term between

fermions is used to generate masses for chiral fermions by means of DSB mechanism in-

spired by the BCS theory. The ‘quasi-Higgs’ phenomena produced by these mechanisms

are not arbitrary correlates of a choice of dynamics, rather there is a sense in which they

are understood to dynamically emerge. The symmetry breaking of these systems is driven

by their underlying dynamics, through a consideration of the context (i.e. the conden-

sate) of the relevant fields [279, 240]. NG-modes that emerge from such a mechanism

are a clear contenders for emergent phenomena, for this reason we shall create a new

classification of emergent behaviour NG-emergence.

In addition to the above modelling of emergent behaviour, NG-emergence also offers

an avenue for the generation of complex emergent behaviour; with the correct choice of

dynamical model, emergent NG-modes could be generated. Such a model is presented in

section 6.5.

6.1.1 Generating Interaction among Emergent Phenomena

The relationship between gauge principles and interaction is another feature of QFT’s

which might be used1 to introduce interaction between the emergent NG-modes. After

the identification of such emergent NG-modes, their localisation to some coordinate frame

should serve to introduce interaction between them, thus, with an appropriate choice of

dynamics it is possible that a dynamically interacting emergent system might be created.

6.1.2 Generating Hierarchical Behaviour

The above process might be carried out more than once, which would lead to the genera-

tion of emergent hierarchical behaviour. We thus see a methodology that might be used

not only to understand, but to actually generate complex emergent behaviour.

It is worth noting that there are at least two different scenarios that could be utilized

in the generation of this desired complex hierarchical behaviour:

1. As was mentioned in section 5.3.3, the dynamics of a system might themselves

contain hierarchical information in the form of Lstrong+Lweak type modelling which

was discussed in section 5.3.3. In this case a hierarchical understanding of the system

can be developed, very similar to the hierarchical form of the Standard Model

of particle physics. Such a form of dynamics could be envisaged as important

in implementing a model of morphogenesis (see section 6.6) however there is an

artificial sense to such an understanding. In particular, such a model would not be

1Or rather abused when we consider the more customary use in physics.
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displaying emergent hierarchical behaviour, rather this behaviour would have to be

understood as being built into the model. For this reason, such a scenario, while

interesting for the purposes of modelling emergent hierarchical behaviour could not

truly be said to be generating emergent hierarchical behaviour in any interesting

sense.

2. The generative approach that is being proposed, where a system is chosen so that

emergent NG-modes result, which are then gauged in order to generate interac-

tion between them. With an interesting choice of dynamics this process might be

recursive to some number of levels, with the new fields themselves satisfying new

symmetries which are again degenerate and so on. The resultant hierarchical be-

haviour should be considered more genuinely emergent since it would have arisen

spontaneously from the dynamics of the model, rather than being ‘pre-programmed’

at the level of the Lagrangian.

With this in mind, we shall now formulate a principle which could be used to generate

complex emergent behaviour, exhibiting characteristics such as hierarchical structure and

contextual dependence upon its supposed environment.

6.2 The Recursive Gauge Principle (RGP)

Assume that we are interested in a system describable by a set of fields φ the dynamics

of which are given by some Action S. A dynamical sense of interaction between the

fields which respects this basic dynamic could be instantiated through an appropriate

application of local internal symmetry principles. This interaction, and its consequent

behaviour, form what should be considered as a set of second order phenomena. But it

is likely that these can be described by a set of fields themselves; the process can then be

repeated. As long as there is behaviour emergent from this process it would make sense

to apply it.

Obviously, the choice of fields will be important throughout this process. It will be im-

portant that this choice be dynamically driven, or the description will lapse into arbitrary

theorising. Action Sequencing, discussed in section 4.3, provides one such dynamically

driven method. In particular, in the GCM, the use of symmetry breaking techniques to

find the relevant modes of description (i.e. the NG-modes) suggests that there is a form

of NG-emergence arising in the system. NG-emergence thus provides one way in which

to dynamically determine which fields should be used in the description of such a system.

In order to model, and to generate complex emergent behaviour, a Recursive Gauge

Principle (RGP) will now be proposed,2 it consists of what might be seen as two steps

which might be recursively applied:

2This principle was first proposed in [244].
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Hadronic Local fields → S[N̄ ,N . . . π, ρ, ω . . . ]
↑

Bilocal fields → S[B, D̄,D]
↑

GCM → SGCM [A, q̄, q]
↑

QCD → S[A, q̄, q]

Figure 6.1: An illustration of the different descriptive levels and their dynamics repre-
sented as an action over the relevant fields, as is derived across levels in the Global Colour
Model (GCM). See section 4.3 for a more detailed discussion of some of the mathematical
apparatus involved, and the references therein for a full description of the model.

1. First, a new set of field variables ψ are identified which represent the new emergent

variables. These variables are dynamically determined from the behaviour of the

original system.

2. A new action Sψ is then derived from the original action Sφ. This derivation usually

consists of a number of intermediate steps, where the original fields φ are one by

one replaced and the effect upon the action investigated.

In its original application (the process of action sequencing discussed in section 4.3.2),

this process was used to consistently jump four descriptive levels, from QCD up to a very

accurate model of hadronic processes, thus it consistently describes the dynamics of what

might be considered a number of different hierarchical levels. This process also provides a

good understanding of interactions, both within levels where both the relevant fields and

the action describing their dynamics are specified, and across levels where, for example,

the way in which quark and gluon dynamics affect hadronic processes is specified. These

hierarchical aspects of the model are briefly sketched in figure 6.2, for more details see

section 4.3.

The context of a system of interest is modelled within this methodology through two

different mechanisms:

1. The form of Lagrangian chosen will to some extent reflect the environment of the

system. This is because Lagrangians typically incorporate a potential term which

often takes the form of the environment into account. For example, a Lagrangian

will take a different form in the case of a ball rolling down a hill compared to the case

in which it is subjected to a magnetic influence. An example of this phenomenon

will be discussed in section 6.5.

2. If mechanisms such as DSB are used then a condensate will become relevant to the

description of the system; its dynamics will not be isolatable from this condensate,

which may take a highly non-trivial form depending upon the system of interest.

Obviously, it will not be possible to use the same formalism in the description of
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every complex hierarchical system; an essentially new analysis must be undertaken for

each new system, but the same methodology should have applicability across a number

of different systems. However, it will be unlikely that one action will smoothly transform

across as many levels as occurs in QCD. Physics is perhaps the discipline most amenable

to mathematical analysis as the systems that it examines are among the most separable

and hence our traditional modes of analysis can be used more readily. The contextuality

of physical systems is arguably the weakest; most of them are well solved by a classical

reductive analysis, it was only at the boundaries of physics that it became necessary to

introduce the new quantum formalism. In contrast, biological systems for example are

inherently contextual, and as such, far less separable. However there are enough parallels

to make this avenue of investigation worthwhile. We can thus formulate a new principle,

or procedure that might be used to discover, and even to create, systems capable of

displaying complex emergent behaviour:

The Recursive Gauge Principle (RGP): Given a mathematical model which exhibits

some sort of first order emergence, new physically determined fields can be assigned

to the emergent objects of the theory. The dynamics of the new fields can then

be determined using some appropriate form of action sequencing. If we find any

symmetries in the configuration, as well as the dynamics of the fields, then we might

localise them, and use this to determine any extra interaction between the fields.

Finally, we examine the behaviour of the new system to determine if there is any

new emergent behaviour, repeating the above steps if this is the case.

This is obviously no small task. However, this procedure provides a framework which

offers a number of new avenues by which our theoretical understanding of emergent sys-

tems might be enhanced. The most difficult aspect of such a procedure is the identification

of the emergent objects within any model. This emergence will quite possibly have contex-

tual and observational characteristics which will add to the complication of the analysis,

however it will also add to the complexity of the final system and should not therefore be

ignored.

This principle is not expected to be capable of describing all forms of complex system,

rather it offers one technique of what is expected to be a new complex systems toolbox.

Of particular importance to the current work, the RGP offers a procedure by which

we might hope to actually generate complex emergent behaviour, an application that

would be particularly useful in fields such as ALife. If the RGP could be coupled with

a method that consistently creates emergent fields then the mathematical description so

obtained might be used to generate increasingly complex systems. It will be suggested

that NG-emergence provides just such a mechanism.

It should be pointed out that while the bulk of this work has been devoted to claiming

that our reductive techniques are failing, we now appear to be applying just such a
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technique and claiming that it can generate high end complexity. In fact, it can be

argued that the proposed techniques do not necessarily fall into the reductive paradigm

as presented in this work, and in fact depending on the system, a number of different

models are necessary to generate a complete understanding of its dynamics. We shall

return to this point in section 7.2.3 after the coming discussion of example applications

of these principles.

The remainder of this chapter will discuss a number of applications of these principles.

First, claims are often made that the dynamics of cellular automata exhibit emergence

and can be used in the generation of high end complexity. One of the most theoretically

well understood models will be discussed and while its dynamics is indeed interesting

and shows promise, it appears to be missing some vital ingredient which would allow for

a direct application of the RGP. In contrast, Process Physics offers the first example of

this phenomenon, and we shall return to a discussion of that system, showing that the

generated complex behaviour resulting from this system can in fact be understood in

terms of the RGP. We shall then turn to a new application of the principle, showing that

it can in fact be applied to systems which have thus far defied our reductive techniques,

thereby increasing our understanding of complex emergent behaviour.

6.3 An Example System — Solitons in Cellular Automata

One obvious candidate for a mathematical model exhibiting emergence is the soliton.

This is a solitary wave which results from a balance between nonlinearity and dispersion

in a well understood set of equations. Specifically, solitons preserve their shape and speed

in collision with one another, making them very stable emergent structures. Solitons

have been invoked to explain many emergent phenomena including: Jupiter’s long lived3

“giant red spot”, energy storage and transfer in proteins (the Davydov soliton), and, the

propagation of short laser pulses in optical fibres over long distances with negligible shape

change [88]. Even three dimensional spherical soliton-type solutions, light bullets, have

now been identified.4

Because of their stability, solitons make ideal candidates for the first order emergent

behaviour that we are searching for; the identification of a soliton allows for its behaviour

to be described by a dynamically determined set of fields, and the stability of solitons

during interactions suggests that it may even be possible to generate a high level action

describing their dynamics. Most importantly for the current discussion, there is a direct

way in which they are already being used in ALife; discrete soliton equations have already

been implemented in a number of cellular automata [282], including implementations of

3At ‘its’ timescale, obviously it should not be considered long lived compared with, say, the age of the
Universe (which is important at a higher hierarchical level).

4Strictly speaking, light bullets are not solitons, as they lose energy during collisions.
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the reasonably complex Fermi-Pasta-Ulam dynamics [114] which exhibit ‘particles’ at-

tracting, repelling, and bouncing off of each other.5 Often, the ‘particles’ come together

in what might be seen as an interaction, forming complex structures before separating

after a period of time. This model is particularly interesting with respect to the pro-

gramme outlined above as it exhibits all of the dynamics required in order to implement

the proposed method; stable structures which exhibit a number of interesting interactions

emerge from a simple set of rules. A dynamically driven change of variables is a feasible

goal. If such a substitution can be achieved, then the RGP might possibly be applied,

and more new interaction and emergent behaviour generated.

The question of how to model such structures is vital if they are to be posited in a

RGP-type modelling. One clue is provided by the work which suggests that a certain

limiting procedure can be used to recover a class of filter CA machines [401, 402] from

continuous differential equations [436]. These filter systems include the well-known parity

rule filter [317], and the following filter used in the limiting procedure itself. This is

defined as a two valued (0 and 1) CA, in 1 + 1 D (one space and one time dimension),

where the value of the jth cell at time t, is written as utj and defined

ut+1
j =

{

1 if utj = 0 and
∑j−1

i=−∞ uti >
∑j−1

i=−∞ ut+1
i

0 otherwise,
(6.1)

where utj = 0 for |j| >> 1. At time t, this rule results in a CA consisting of an infinite

sequence of 0’s and 1’s, which contains only a finite number of 1’s. If the above rule is a

bit arcane, the same CA results from applying the following procedure to find the state

of the CA at time t+ 1:

1. Move every 1 only once.

2. Exchange the leftmost 1 with its nearest right 0.

3. Exchange the next leftmost 1 from the remainder of the 1’s with its nearest right 0.

4. Repeat this procedure until all of the 1’s have been moved.

A very interesting aspect of this CA is the fact that every possible state consists entirely

of solitons; every sequence of 1’s is stable, even if the 1’s merge a later separation will

occur and the original sequences re-obtained. An example of this behaviour is shown in

figure 6.2, more discussion, and another example can be found in [436].

A limiting procedure describing the dynamics of this system has been found [436]

which starts from a well known nonlinear wave equation, the one dimensional Korteweg–

de Vries (KdV) equation,

∂

∂t
a(x, t) =

∂3

∂x3
a(x, t) + a(x, t)

∂

∂x
a(x, t) (6.2)

5See Pawel Siwak’s page on iterons (http://www.cie.put.poznan.pl/Tutorials/Iterons/index-main.html)
for an introduction to these models.
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(t) : · · · 011000001111100010010110000000000000000000 · · ·
(t+ 1) : · · · 000110000001111101001001100000000000000000 · · ·
(t+ 2) : · · · 000001100000000011111110011000000000000000 · · ·
(t+ 3) : · · · 000000011000000000000001100111111100000000 · · ·
(t+ 4) : · · · 000000000110000000000000011000000011111110 · · ·

...

Figure 6.2: An example of the time evolution of the filter type soliton described by
equation (6.1). Successive time steps are illustrated down the list.

which describes the amplitude a of a wave at a time and spatial location (x, t), and hence

can be considered a nonlinear equation describing the dynamics of the field a(x, t). The

KdV equation is well known for its general soliton solutions, is shown via the limiting

procedure to be somewhat equivalent to the above CA. The procedure starts by taking

the Lotka–Volterra (LV) equation (which is commonly used to describe the oscillations in

the density of a population),

d

dt
bj(t) = bj(t) [bj+1(t)− bj−1(t)] (6.3)

and showing that if we substitute

bj(t) = 1 + (1/6)ε2a
(
(j + 2t)ε, ε3t/3

)
(6.4)

into (6.3) then the KdV equation is regained when the limit ε → 0 is taken. Thus, the

LV equation is a well known discretization of the KdV equation.

To get from the LV equation to the CA requires a few intermediary steps. First,

the differential-difference form of the LV equation is a continuous limit of the following

difference-difference equation:

ct+1
j

ctj
=

1 + δctj−1

1 + δct+1
j+1

, (j, t ∈ Z), (6.5)

a fact which can be verified by setting ctj = bj(−δt) where δ → 0. Now, setting ctj =

exp(dtj) gives

dt+1
j − dtj = ln

(

1 + δexp(dtj−1)

1 + δ exp(dt+1
j+1)

)

, (6.6)
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introducing a positive parameter ε = −(lnδ)− 1 (i.e. δ = e−1/ε), we notice that if we set

dtj = etj/ε, then we can define the new function on some variable X as

F (X) ≡ lim
ε→+0

ε ln
(

1 + eX/ε
)

= max[0, X]. (6.7)

Using this relationship, equation (6.6) becomes, in the limit ε→ +0

et+1
j − etj = −F (et+1

j+1 − 1) + F (etj−1 − 1). (6.8)

Finally, defining a new variable f such that f−y+xx = exy , we obtain

f j+1
j+1 − f tj = −F (f tj+1 − 1) + F (f t+1

j − 1)

≡ −(∆j −∆t)F (f tj − 1), (6.9)

where ∆jX
t
j ≡ Xt

j+1, and ∆tX
t
j ≡ Xt+1

j − Xt
j . If the values of f tj are restricted to

integers, then equation (6.9) describes a filter type CA, but it is possible to show that the

particular CA described by this equation is essentially the same as the one described by

equation (6.1). To do this, we rewrite (6.1) as

ut+1
j = min

(

1− utj ,
j−1
∑

i=−∞
uti −

j−1
∑

i=−∞
ut+1
i

)

(6.10)

=

j−1
∑

i=−∞
uti −

j−1
∑

i=−∞
ut+1
i −max

(

0,

j−1
∑

i=−∞
uti −

j−1
∑

i=−∞
ut+1
i + utj − 1

)

(6.11)

finally with the introduction of Stj =
∑j−1

i=−∞ uti we obtain:

St+1
j+1 − Stj = −F (Stj+1 − St+1

j − 1), (6.12)

an equation that is equivalent to (6.9) if f tj = Stj+1 − St+1
j = (∆j −∆t)S

t
j .

Thus, the filter CA described by equation (6.9) is, in some sense, equivalent to the

relevant forms of the KdV and the LV equations. The route from the KdV equation to

the CA is illustrated in figure 6.3 which has been largely adapted from [436] (more details

about the limiting procedure can be found there). This same procedure has been used

to show similar equivalence relationships between CA systems and a number of other

physical systems, see the original paper [436] for details.

However, this jump in descriptive levels is not dynamically motivated, rather, a set of

almost arbitrary substitutions are carried out in the attempt to derive one set of equations

from the other. Thus, although this argument jumps a number of descriptive levels, we

cannot see this system as implementing the RGP in its present formulation, however,

there is a sense of emergence in this CA system, the solitonic behaviour is not specified,

164



Korteweg−de Vries: (6.2)

Discrete analogue of LV: (6.5) or (6.6)

Lotka Volterra: (6.3) 

Discrete equation (an extended CA): (6.7)

Cellular Automata: (6.1)

variable transformation

(nonanalytic) limiting proceedure

discretization

discretizationcontinuous limit

continuous limit

Figure 6.3: The route by which the filter CA can be derived from the KdV equation.
Note the apparent similarity to figure 6.2. More explanation appears in the text.

rather it emerges out of the rules of its implementation. This leads to the possibility that

we may be able to find a dynamically driven sequence of variable changes. This idea has

been examined, but has not as of yet yielded any direct results. One difficulty has been an

inability to find a least action type formalism which could be used in the extraction of NG-

modes. As NG-emergence is at present the only known method for extracting dynamically

driven emergent behaviour and hence utilising action sequencing type methods, the aim

of deriving such a dynamically driven modelling of such CA systems has been reserved

for future work.

6.4 Emergent Behaviour in Process Physics

Process Physics can be considered the first application of the principles developed in this

work, in fact, these principles were developed from an attempt to understand the emergent

behaviour exhibited by the systems that fall under the rubric of Process Physics. This

section will discuss the forms taken by the emergent behaviour of the simple low level

system, bringing the concepts developed in this work into sharp focus. The remainder of

this chapter will be devoted to finding extensions of this methodology into very complex

systems. We shall start by introducing in more detail the high level QHFT model that

was briefly mentioned in section 4.2.2.

The simple iterative network model that was discussed in section 4.1 is not easy to

analyse computationally. Instead a higher level model has been proposed, a Quantum

Homotopic Field Theory (QHFT) which describes the behaviour of the stable structures

which emerge in the low level system.
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π

Figure 6.4: A circle S1 that has been twisted and folded onto itself can be directly mapped
onto another circle. Similar mappings can be achieved in higher dimensions.

A nonanalytic (in the Baas sense) link between the two models has been proposed

by Cahill [91]. This makes use of the theory of nonlinear elastic deformations [308],

suggesting that if we relax a configuration of emergent S3 structures and their associated

topological defects, then there is a relationship between the energy obtained, and the

energy associated with Skyrmions, which are solitonic structures originally proposed as

models of nucleonic structure [278, 277, 186]. A Skyrmion (a form of topological soliton)

can be considered a mapping π : S3 → S3, where a particular winding number is in

this case taken to represent an integer number of ‘folds’ Z = ±1,±2, ..., which must be

achieved by stable topological defects (TD) not of an S3 form but embeddable under the

map to the basic S3 structures.6 For Skyrmions, the winding number is [278, 277]

Z =
1

24π2

∫
∑

εijkTr(∂iUU
−1∂jUU

−1∂kUU
−1) (6.13)

where U is an element of SU(2).

However, Skyrmionic models do not capture the true complexity of this system. In

particular they do not allow for the constant process of creation and decay that is observed

in the low level model as structures emerge, interlink and gradually disappear as they

become incapable of forming new links (or overlink, see the discussion at the end of

section 4.1).

In order to incorporate this extra behaviour, a more complex Quantum Homotopic

Field Theory (QHFT) has been proposed which represents the entire system of embeddings

with the symbol Ψ[t] = ψ[. . . , παβ , . . . ; t], where παβ represents one homotopic map π :

α→ β, which might be considered an extension of the Skyrme type embeddings discussed

above.

A homotopic map is defined in this work as one particular instance of a mapping from

within one homotopy group, which takes for example, a TD structure onto some other

structure (but most often a S3 hypersphere).

Homotopy groups are used in algebraic topology to classify topological spaces. They

classify into equivalence homotopy classes the many different ways to (continuously) map

6Consider as a low dimensional example a circle which is folded and looped over itself as depicted in
figure 6.4. In this work it is considered to be a TD with winding number 2.
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an n-dimensional sphere into some other given space. Two mappings are homotopic if

one can be continuously deformed into the other:

Homotopy: Two continuous maps f0 : X → Y , and f1 : X → Y between topological

spaces are said to be homotopic if there is a continuous map F : X × [0, 1] → Y

such that F (x, 0) = f0(x) and F (x, 1) = f1(x).

This is an ideal tool to be used in the QHFT since we are interested in understanding

how different structures emergent from the system can be embedded one into the other,

specifically how defects can be embedded into S3 structures. A homotopy group thus

provides a notion of equivalence between two embeddings of S3 and TD structures onto

similar such structures. While mappings of defects onto defects are not to be ignored,

they are most certainly very complex, and will not be discussed here. Indeed the straight-

forward homotopic theory of spheres is itself not totally understood, however, a number of

relevant results7 listing the stable mappings of spheres onto spheres exist [435, 353, 354].

Using the standard notation πm(X) to denote the set of homotopy classes of maps from

an m-dimensional sphere to the space X, the following results which are relevant to the

QHFT exist:

1. When m > 0, the set of all homotopic mappings πm(X) forms a group, called the

m-th homotopy group of the space X.

2. πk(S
k) = Z for any k ≥ 1.

That is, there is always an integer Z which can be thought of as a winding number

of a map from the k-sphere to itself, and any sphere of dimension greater than or

equal to one can be wrapped about a sphere of the same dimension Z times. (This

is the Hopf theorem [273].)

3. πm(Sk) = {0} whenever m < k.

{0} stands for the set of one element, so this result implies that there is only one

way in which some sphere of arbitrary dimension can be wrapped about a sphere of

a higher dimension.

4. Mapping a higher dimensional sphere onto a lower dimensional one is a very compli-

cated process, generally specific to the particular spheres of interest. If we consider

the ways in which higher dimensional spheres may be mapped onto three dimen-

sional ones, i.e. S3 structures (which would be a first approximation of the ways

in which TD structures can be mapped onto basic space structures represented by

S3) then there are a number of relevant results:

7For a more introductory account to homotopy groups and algebraic topology in gen-
eral see [273], the week 102 listing by Baez in This weeks finds in Mathematical Physics

(http://math.ucr.edu/home/baez/week102.html) contains a reasonably straightforward introduction
to these concepts as does the wikipedia entry on the topological properties of the 3-sphere
(http://en.wikipedia.org/wiki/3-sphere#Topological properties).
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k 0 1 2 3 4 5 6 7 8 9 10 . . .

πk(S
3) 0 0 0 Z Z/2 Z/2 Z/12 Z/2 Z/2 Z/3 Z/15 . . .

. . . 11 12 13 14 15 16

. . . Z/2 Z/2⊕ Z/2 Z/12⊕ Z/2 Z/84⊕ Z/2⊕ Z/2 Z/2⊕ Z/2 Z/6

Table 6.1: The homotopy groups of S3 (taken from [435]). The operator ⊕ represents
that the homotopy group is the direct sum (equivalently, Cartesian product) of the cyclic
groups of those orders.

(a) π4(S
3) = Z/2, where Z/2 is the group with two elements, usually written 0

and 1, with addition mod 2.

(b) π5(S
3) = Z/2.

(c) π6(S
3) = Z/12, where Z/12 gives a similar set of 12 elements.

Table 6.1 depicts the relevant groups up to S16.

Thus, while there are a number of mappings from high dimensional spheres to S3, this

number is not infinite which suggests that sets of stable embeddings might be taken to

represent some aspects of the ‘fundamental particles’ or structures of this theory. The

classification of these mappings and their possible consequences for the QHFT is a task

well beyond the scope of this work, and must wait upon other investigations. However, it

is possible to construct a general expression for the QHFT using these homotopy groups.

We denote individual maps from within these groups as παβ , and note for future work

that the set of all possible such maps is not infinite.

To construct the QHFT, we take as a configuration space all possible homotopic maps,

denoted Cπ, and describe the current state of the system as Ψ[t]. The time evolution of this

functional is then represented using a QSD-type extension to the Schrödinger equation:

Ψ[t+ ∆t] = Ψ[t]− iHΨ[t]∆t− 1

2

∑

j

(L†
jLj + l∗j lj − 2l∗jLj)Ψ[t]dt+

∑

j

(Lj − lj)Ψ[t]dξj

(6.14)

where the last two terms of equation (6.14) are those that were introduced during the

discussion of the QSD equation in section 5.6.1. We recall that the lj are defined

lj ≡ 〈Ψ|Lj |Ψ〉 =⇒ l∗j ≡ 〈Ψ|L†
j |Ψ〉, (6.15)

and the dξj are independent, complex differential random variables which represent a

complex normalized Wiener process (see appendix B.2 for a brief introduction), hence, if
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M represents a mean taken over the relevant probability distribution,

M (Re (dξj) Re (dξk)) = M (Im (dξj) Im (dξk)) = δjkdt

M (Re(dξj)Im(dξk)) = 0

M(dξj) = 0. (6.16)

The properties and behaviour of the QHFT, as well as the implications of this model

will now be discussed.

6.4.1 QSD in Process Physics

The above high level QHFT modelling (6.14) of the simple iterative system (4.1) contains

QSD-type terms. The Hamiltonian term acts in the standard quantum mechanical way, it

causes structures to diffuse, spreading throughout the system. Embeddings become fuzzy

under the influence of this term. In contrast, the QSD terms act to localise the system

when the spatial extension of the matter-type structures, SM , violates by an amount that

is deemed too high, the space-type structures, SS .

One pleasing aspect of this formalism concerns the problem of ‘tails’ in spontaneous

localisation models that was discussed in section 5.6.1. When a QSD-type model of

objectification is incorporated into Process Physics, tails are expected; any localisation

of SM within the SS , will of necessity never be complete, the embeddings of SM int SS

will always be fuzzy. Thus, within this new model, the spontaneous localisation theories

attain a new validity. This status is improved further by a consideration of the problem

of the Preferred Reference Frame (PRF) faced by realistic collapse theories. This will be

discussed in section 6.4.4.

6.4.2 The Structure of Space, Time and Matter

. . . the hidden measurement hypothesis has as a consequence that the ‘locus’

of a quantum entity is created by the position measurement itself and does

not exist before the measurement has been performed. Nonlocality has to be

interpreted as nonspatiality, and space cannot be seen as the theatre of all of

reality. Reality is much bigger than those parts of it that are contained inside

space. Space should be interpreted as a structure that has emerged together

with the macroscopic material entities that have emerged from the microscopic

quantum entities, and it has emerged as ‘their’ space, meaning the ‘space’ in

which these macroscopic entities exist and interact, as an emergent structure.

Aerts et al., p21, [24]

The understanding of Space, Time and Matter that results from both the low, and

the high level models used in Process Physics is very different from that of the current

understanding that is achieved by standard physics.
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First, the phenomena of both space and matter are seen to be patterns emergent

from the same underlying behaviour of the system; they are not two separate phenomena

that must be unified, rather they might be seen as two sides of the same coin. Matter

is understood in both systems as a more complex manifestation of the same behaviour

that gives rise to Space. Rather than the current understanding, which sees space as a

static four-dimensional manifold, time as a dimension of that manifold, and matter as

fields upon that manifold, Process Physics emphasises the dynamical aspect of reality.

The system must be understood in its holistic entirety, rather than from the standard ob-

ject based approach; space, time and matter are intimately connected in Process Physics.

Since both the high and the low level models postulate at the fundamental level a dynam-

ical update equation (respectively (6.14) and (4.1)) which is driven by a random term,

there is contingency built into the very basis of their resultant behaviour. The past can

be understood as an ordered history of what has already occurred, and the present is

understood as the system as it currently stands, the future on the other hand has not

yet occurred, it is contingent, depending on the historical context of the system. The

currently understood laws of physics are believed to emerge from the dynamics of these

systems, they are patterns of behaviour, rather than built in axioms.

Space and Matter are both understood in these models as manifestations of a quantum

foam [98, 454] in which structures are constantly being created, evolving, connecting with

other structure and then decaying. This foam is dynamic, its structures can shift relative

to one another. Of particular interest, any stable structures in the system will remain,

despite the constant churning of the foam, their relative positions shifting and rearranging

as the substrate in which they exist itself shifts and rearranges.

6.4.3 Nambu–Goldstone Modes

The concept of NG-emergence is present in this system. In section 4.3.3, the derivation of

the Process Physics iterator equation, (4.1), proceeds from a simple bilocal action (4.32).

The derivation of this action depends critically upon the concepts of symmetry breaking

and NG-modes, in fact, as was discussed in section 5.3.5 the extraction of the relevant

dynamically motivated bilocal fields depends upon finding the dominant configuration, or

constituent quark effect.

Thus, NG-modes play a critical role in the extraction of an appropriate iteration

equation (4.1) for the low level model. We might surmise that NG-emergence lies behind

the interesting behaviour exhibited by the low level model. The fact that many of the

relevant variables in this description are discarded in the extraction of (4.1), and yet a

sense of observational emergence appears to emerge from the system (see section 3.2.2),

suggests that if NG-emergence is indeed driving the emergent behaviour of the system then

it is a reasonably robust phenomena. This is to be expected. As it has been formulated

here NG-emergence requires only a dynamical breaking of a continuous symmetry so it
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should be a very generic phenomenon.

NG-modes exist in the QHFT by virtue of its use of the Skyrmion concept. The

Skyrme action

S =

∫

d4x

{
f2

2
Tr(∂µUU

1∂µUU1) +
1

32a2
Tr[∂µUU

1, ∂νUU1]2
}

(6.17)

when it is extended with the Wess–Zumino term in order to properly incorporate colour

actually contains NG-modes, specifically, the U fields

U(x) = exp[
2i

Fπ
λaπa(x)] (6.18)

contain eight NG-modes πa(x) in addition to the eight SU(3) generators λa [279]. This

provides a vital clue as to the eventual form of the QHFT; we expect that NG-modes will

play an important role in the dynamics of this theory.

6.4.4 Relativity in Process Physics

Embedding quantum theory into the Minkowski space-time is not an impos-

sible task, but all the available options demand some rather severe sacrifices.

. . . the common thread that runs through all of these proposals is that no results

are to be had at a low price. Indeed, the cost exacted by those theories which

retain Lorentz invariance is so high that one might rationally prefer to reject

Relativity as the ultimate account of space-time structure.

Maudlin, p220, [283]

Given the above understanding of Space and Matter as different components of a

quantum foam, a Lorentzian interpretation of the theories of relativity [62] appears to be

appropriate. In this interpretation, the phenomena of Lorentz contraction and time dila-

tion are considered to be real physical phenomena, resulting from an underlying dynamics

of objects as they move through a preferred reference frame (PRF). Process Physics offers

an insight into what that dynamics might be, namely the way in which the phenomena

of space and of matter actually interact within the quantum foam. If this is the case,

then a re-examination of the Michelson-Morley experiment (MM) is mandated, and was

performed [107]. The results of that paper will be discussed here.

The MM experiment is depicted in figure 6.5. It shows a standard MM apparatus

moving at speed v through the quantum foam. The two arms of the apparatus are

constructed to have the same lengths when they are physically parallel to each other,

and for convenience they are taken to have length L when at rest in the quantum foam.

Since the quantum foam is taken to describe both space and matter, it is likely that

different results would be obtained from MM experiments depending upon whether the

apparatus is in a vacuum or filled with a gas (such as air as was the case with the original
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Figure 6.5: Schematic diagrams of the Micheslon Interferometer, with beamsplit-
ter/mirror at A and mirrors at B and C, on equal length arms when parallel, from
A. D is a quantum detector (not drawn in (b)) that causes localisation of the photon
state by a collapse process. In (a) the interferometer is at rest in the quantum foam.
In (b) the interferometer is moving with speed v relative to the quantum foam in the
direction indicated. Interference fringes are observed at the quantum detector D. If the
interferometer is rotated in the plane through 90o, the roles of arms AC and AB are
interchanged, and during the rotation shifts of the fringes are seen in the case of absolute
motion, but only if the apparatus operates in a dielectric. By counting fringe changes the
speed v may be determined.

experiments). For this reason, the speed of photons sent into the apparatus will be taken

as dependent upon the medium inside the arms of the interferometer.

Lorentz contraction implies that the arm AB parallel to the direction of motion

through the quantum foam is shortened to

L‖ = L

√

1− v2

c2
. (6.19)

Individual photon states sent into the apparatus will then travel at speed V = c/n relative

to the quantum foam, where n is the refractive index of the gas and c is the speed of light,

in vacuum, relative to the quantum foam. Let the time taken for ψ1 to travel from A→ B

be tAB and that from B → A be tBA. In moving from the beamsplitter at A to B, the

photon state ψ1 must travel an extra distance because the mirror B travels a distance

vtAB in this time, thus the total distance that must be traversed is

V tAB = L‖ + vtAB. (6.20)

Similarly, on returning from B to A, the photon state ψ1 must travel the distance

V tBA = L‖ − vtBA. (6.21)
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Hence the total time tABA taken for ψ1 to travel from A→ B → A is given by

tABA = tAB + tBA =
L‖

V − v +
L‖

V + v
(6.22)

=
L‖(V + v) + L‖(V − v)

V 2 − v2
(6.23)

=
2L‖V

√

1− v2

c2

V 2 − v2
. (6.24)

Now, assuming that the time taken for the photon state ψ2 to travel from A→ C is tAC ,

but that the apparatus travels a distance vtAC in that time, we can use the Pythagoras

theorem:

(V tAC)2 = L2 + (vtAC)2 (6.25)

which gives

tAC =
L√

V 2 − v2
, (6.26)

and including the return trip (C → A, tCA = tAC , tACA = tAC + tCA) results in

tACA =
2L√

V 2 − v2
, (6.27)

giving finally for the time difference for the two arms

∆t =
2LV

√

1− v2

c2

V 2 − v2
− 2L√

V 2 − v2
. (6.28)

Now trivially ∆t = 0 if v = 0, but also ∆t = 0 when v 6= 0 but only if V = c. This

then would result in a null result on rotating the apparatus. Hence the null result of the

Michelson-Morley apparatus is only for the special case of photons travelling in vacuum

for which V = c, as confirmed by the modern vacuum interferometer experiment of Brillet

and Hall [84], which in-effect confirms (6.19). However if the apparatus is immersed in

a gas then V < c and a non-null effect is expected on rotating the apparatus, since now

∆t 6= 0. It is essential then, in analysing data, to correct for this refractive index effect.

Putting V = c/n in (6.28) we find, for v << V and when n ≈ 1+, that

∆t = L(n2 − 1)
v2

c3
+ ... (6.29)
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In contrast, if the data is analysed not using the Lorentz contraction (6.19), then, as was

obtained using the standard analysis, the estimated time difference is

∆t =
2LV

V 2 − v2
− 2L√

V 2 − v2
, (6.30)

which again for v << V and n ≈ 1+, gives

∆t = Ln3 v
2

c3
+ ... ≈ Lv

2

c3
(6.31)

The value of ∆t is deduced from analysing the fringe shifts, and then the speed vMM

(in previous Michelson-Morley analyses) has been extracted using (6.31), instead of the

correct form (6.29). However it is very easy to correct for this oversight. From (6.29) and

(6.31) we obtain a corrected speed of the apparatus through the quantum foam vQF ,

vQF =
vMM√
n2 − 1

. (6.32)

Note that for air at STP n = 1.00029, while for helium at STP n = 1.000036, and so the

correction factor of 1/
√
n2 − 1 can be large.

A number of results have been obtained from examining different experimental sce-

narios and applying this correction factor [91, 93], and results agree very well with all

experiments performed to date. In fact, a null result was not even obtained from the orig-

inal Michelson-Morley experiments, rather the extracted speed of the earth through the

preferred reference frame (PRF) was much smaller than expected and therefore existing

theories could not explain the result. With an application of the correction factor (6.32)

the original MM result becomes far more significant. The above references provide an

in depth analysis of these results, which will not be discussed here due to their general

complexity.

Rather than the static, passive PRF of Newtonian physics, the PRF of Process Physics

is dynamical and very active. It causes inappropriately extended matter to be localised,

its configuration changes as space flows and changes its relative dynamics, it can be

experimentally probed and understood, although the analysis of the quantum foam is

very difficult and still in its infancy. Thus the PRF in this understanding provides a

very active and dynamic context against which the behaviour of matter can start to be

understood; and in this theory, an understanding of one phenomenon cannot be achieved

without an associated understanding of the other. Thus, in moving beyond our object

based methodology in the low level model, and moving to an understanding of space and

time as parts of the same complex phenomenon (as well as accepting that a nonanalytic

understanding of that same model is as far as our methods can be pushed in the move

to the QHFT) we have lost much of the dogma surrounding the theories of relativity, but
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maintained many of their relevant results. We see how a limit to the speed of light emerges

dynamically as a limit upon the speed at which information can propagate against the

PRF, Lorentz contraction is understood as a real physical process, as is time dilation, and

even more of the phenomena of general relativity are seen to emerge with a new shift to

a higher still model of the QHFT.

6.4.5 Gravity in Process Physics

Section 4.1 discussed the manner in which, as the structures of the low level relational

model overlink, they become less active in the system, and eventually ‘die’ being replaced

by new, more active structures as they come into being. The structures which overlink

are precisely those with a higher dimensionality than the base level S3 hyperstructures,

but the matter-like TD structures are assumed to be stable, existing on top of the spatial

structure of the system, therefore it is space which is closely associated with the matter-

like TD structures which is most likely to overlink, and separate from the dynamics of

the system.

This idea has been incorporated into the quantum foam model, in which matter ef-

fectively acts as a ‘sink’, destroying the quantum foam as it flows into the matter. The

more matter, the more quickly these spatial structures are destroyed leaving more space

for new foam to move into vacated areas, and itself suffer the same fate; gravity is thus

understood to be caused by the inhomogeneous flow of the quantum foam towards matter

(itself part of the quantum foam).

However, so far there is no derivation of this flow physics postulated from the behaviour

of the quantum foam system to the QHFT, and again, we do not expect that such a

derivation would be exact, or computational, if it were found (recall the Baas definition

of observational emergence in section 3.2.2). Despite these difficulties of analysis, a high-

level classical theory has been based upon the expectation that gravity is caused by the

above inhomogeneous in-flow. Indeed, a number of old experimental results have been

found to support the supposition that this phenomenon exists [91], and new experiments

have been proposed [104, 106] which will test the predictions of this theory when compared

to General Relativity. This section will briefly discuss the main components of the theory,

an up to date review can be found in [93] and different aspects of its details can be found

in any of [100, 101, 102, 103, 104, 105, 106].

The theory is based upon asking how the gravitation acceleration, g changes dynam-

ically depending upon the position within the quantum foam at which the acceleration

is measured. This can be modelled using a fluid-type model, in fact, a similar model

has already been formulated which is consistent with General Relativity [241, 242, 280].

Given the fluid-type nature of the model, we can expect effects such as acceleration, vor-

ticity and turbulence, but the nature of the quantum foam i.e. the fact that space can

actually disappear as it overlinks implies that this system will have sink-like phenomena
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where space breaks down. This will occur in parts of the system which exhibit a higher

than normal rate of linking in the low level models, that is, places with a high density of

matter. In effect, space flows into massive objects, overlinks and disappears. This is the

phenomena of gravity.

The acceleration of one element of space is given by the Euler form

g ≡ ∂v

∂t
+ (v.O)v =

dv

dt
, (6.33)

where v(r, t) is a vector ‘flow’ field which to low order and neglecting vorticity,8 is modelled

by the equation
∂

∂t
(O.v) + O.((v.O)v) + C(v) = −4πGρ (6.35)

where

C(v) =
α

8
((trD)2 − tr(D2)) (6.36)

and

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

(6.37)

Note that tr(D) = Ov. The new theory of gravity thus involves two constants, which

cannot at present be derived, but must be fitted with experimental data:

1. Newtons gravitational constant G, which now is seen to essentially determine the

rate at which matter dissipates the quantum foam.

2. A new dimensionless ‘gravitational constant’, α, which determines the self-interaction

of the quantum foam, and turns out to be in remarkable agreement with the fine

structure constant [100].

Newton’s original explanation of the phenomena of gravity was also in terms of the

gravitational acceleration vector field g(r, t):

O.g = −4πGρ (6.38)

where ρ(r, t) is the matter density. However there is an alternative formulation [99, 92]

in terms of the above vector flow field v(r, t) which gives

5.
(
∂v

∂t
+ (v.5)v

)

= −4πGρ (6.39)

8A far more complicated equation has been derived for the case of vorticity [100]:

dDij

dt
+

δij

3
tr(D2) +

trD

2

„

Dij −
δij

3
trD

«

+
δij

3

α

8

`

(trD)2 − tr(D2)
´

+ (ΩD − DΩ)ij

= −4πGρ

 

δij

3
+

vi
Rv

j
R

2c2
+ . . .

!

, i, j = 1, 2, 3. (6.34)

see that paper for details.
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Note that for the case of the Solar system, with the mass concentrated in one object,

namely the Sun, C(v) = 0 and therefore the in-flow field (6.35) satisfies the original

Newtonian approximation for gravitational in-flow (6.39). However, this formulation is

by no means the most general. In any case which does not exhibit spherical symmetry,

the term C(v) = 0 becomes quite significant, a situation which can lead to profound

differences between the predictions of the two theories. It is interesting to note that all

of the original tests of both of the Newtonian and General Relativistic theories of gravity

were for the simpler spherically symmetric case, and those situations which do not meet

this criterion are in fact still in disagreement with experimental observations. The missing

mass of the Universe is just such a scenario, dark matter has essentially been proposed

because spiral galaxies do not behave as expected.

A number of results have been obtained from this new formulation of gravity:

• In this theory, black holes have a well defined physical dynamics; they arise in

situations where the gravitational inflow is extreme [103].

• The problems concerning dark matter find a particularly elegant solution in this

framework. This is because of the extra C(v) term in equation (6.35), which does

not exist in the Newtonian approximation of gravity (6.39).

• It has recently been shown [105] through a generalisation of the Schrödinger equa-

tion, that the gravitational acceleration of mass is equal to that of space, i.e.

g(mass) = g(space), which would be expected from the quantum foam perspec-

tive as it is space that is flowing, with matter essentially fixed to spatial structures.

It is interesting to note that even at this high level of description, with a number

of simplifying assumptions, this model still exhibits many of the criteria that have been

identified in this work with high-end complexity. The system that is extracted from this

theory is highly dynamic, and contextual; the local inflow and PRF experienced by an

individual depends in a gross manner upon the global nature of the system. Indeed, since

all elements of this system are moving relative to one another, it becomes impossible

to extract global information; local gravitational flows can be discussed, but only with

reference to some larger, almost fixed frame.

6.4.6 Thermodynamics in Process Physics

This work has not concentrated upon thermodynamic theories and conceptions of com-

plexity in any detail. In particular, the connections between open dissipative structures

operating far from equilibrium (often exhibiting some form of SOC behaviour), and the

theoretical constructs of Process Physics have not been discussed. This is due to the high

level nature of thermodynamic arguments; while it is expected that concepts such as the

second law of thermodynamics are important at this level, such behaviour is very much

expected to emerge from the lower level processing of the systems discussed in this work.

Indeed if such behaviour was not generated then this would be seen as a devastating
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failure of the theory. However, there is every reason to suppose that such behaviour does

in fact emerge from such a system. Indeed, one of the original motivating factors in the

development of Process Physics was the apparent contradiction between the second law

of thermodynamics, and the time reversible equations of motion that apply to classical

and quantum systems, a problem that is sometimes referred to (for its historical discov-

erer) as Loschmidt’s paradox. This problem has attracted considerable attention over

the decades, appearing particularly relevant in debates about the missing arrow of time,

and the apparent contradiction between the spacetime of physical theory and our biased

experience of the present moment alone [345]. While the fluctuation theorem [151], gives

one apparent solution to this paradox, this is achieved by assuming time reversal sym-

metry, rather than questioning the assumptions behind time reversal symmetry. Process

Physics provides another resolution, but this is achieved by taking the opposite stance;

time reversal symmetry is lost in Process Physics which assigns an ontological status only

to the present. In Process Physics, the past is effectively a history (that we can recall,

but not relive) while the future is yet to occur (we can attempt to predict it, but our

predictions may be wrong). This is reflected in the quantum equations of Process Physics

which lose their reversibility due to the actions of the noise terms. Thus, there need

be no conflict between these two sets of theories under the Process Physics framework.

Indeed, thermodynamics is expected to be derivable from the higher level QHFT once

this theory is more fully developed, a problem that is reserved for future work. With

a more adequate ontological picture of the way in which thermodynamic concepts arise,

this framework would then go some distance in explaining the importance of entropic

concepts in higher level systems, such as those arising in biology.

6.4.7 Observational Emergence in Process Physics

There are a number of different descriptions used in the discussion of the system of space,

time and matter that is represented by the term of Process Physics:

1. The simple iterative model of a network of connected nodes as is represented by

equation (4.1).

2. The QHFT which ignores much of the flux of the low level system, focussing only

upon modelling the dynamics of the stable structures that emerge from that system.

3. It is possible to extract both standard quantum and relativistic behaviour from this

system in the face of a number of simplifications and approximations.

4. Additionally, the modes of analysis used to extract concepts such as ‘stable struc-

ture’ from the low level system e.g. the argument utilising equation (4.3) which

leads to the identification of the S3 structures as most stable in the system, and

therefore presumably most prevalent.

Despite the fact that arguments can be presented linking the different models of this sys-

tem, there is no analytical link between these different modes of analysis. All modes are

178



necessary in order to develop a full understanding of this system. Thus, this system ap-

pears to satisfy the Baas conception of observational emergence discussed in section 3.2.2,

and in fact this was shown to be the case in section 4.2. This result is also reminiscent

of Rosen’s definition of complexity which was examined in section 1.1.1 and the observer

driven models of complexity discussed in section 1.5.1; if different models are necessary

to understand the behaviour of this system then we might conclude that it is displaying

complex behaviour, and possibly behaviour at the high end of the complexity scale (see

section 1.5).

6.5 Proof of Concept — Sympatric Speciation

Speciation, the process whereby an existing species splits into two or more new ones, pro-

vides an example of emergent behaviour requiring explanation. There are many different

definitions of a speciation event, and it is unlikely that the same mechanism will be be-

hind all events [285, 142]. This process is generally separated into two different categories

[285, 286, 355]:

Allopatric speciation occurs when some subpopulation of a single species becomes geo-

graphically isolated from the main population. Each population then evolves sepa-

rately under different environment conditions.

Sympatric speciation involves a situation where the original population remains in a

single geographical location, but for some reason the population splits into two

different subgroups which eventually form two different species.

While allopatric speciation simply involves standard evolutionary mechanisms (i.e. the

physical separation of populations allows for evolutionary drift which results in new re-

productive boundaries forming between originally compatible member organisms of the

two populations) coupled with natural selection, and is therefore well understood, this is

not so in the case of sympatric speciation.

Although a number of models exist (see [155, 152, 157, 251, 217, 427, 428] and the

references within for a good selection of models) the original mechanism underlying the

generation of new choice is not well understood. What leads to the generation of a viable

mutant?

A strong connection has been made between mating choice and speciation in the above

models:

In sexual populations with random mating, the continual production of

intermediate phenotypes from two incipient branches prevents evolutionary

branching. In contrast, when mating is assortative for the ecological char-

acters under study, evolutionary branching is possible in sexual populations

and can lead to speciation.

Dobeli et al., pS77, [156]
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which implies that after the appearance of a viable mutant, population models can be

used; once mating is assortative something like a species can already be considered to

have emerged. While it is likely that a different biological mechanism will lie behind each

appearance of a new viable mutant, and a biological understanding of the mechanism

generated for each individual case,9 our mathematical models of such a mechanism are not

at the same state of development.10 Throughout this work, we have seen that reductive

analysis cannot generally generate new behaviour, or in this case objects (i.e. new viable

phenotypes), how then can we generally model the emergence of such new mutants?

Specifically, if we are interested in generating OEE in ALife modelling, what kind of

formalism could lead to new, emergent species?

It is possible that the understanding of NG-emergent behaviour developed above can

be used to create a new model of sympatric speciation which can explain this initial

splitting of a species. The initial model will now be presented.

If we consider one species, then the phenotype of any organisms belonging to that

species satisfies a symmetry as follows. We define a new term, Species Equivalent (SE) to

express the fact that the phenotype of any organism belonging to the species is SE to that

of any other organism of that species. Species equivalence of a phenotype is defined in a

very broad sense for the purposes of the current model. For example, if we consider the

phenotypes of two humans we see that they are considered to belong to the one species,

and hence are SE, despite the fact that phenotypically they might have different eye,

hair and skin colour etc. For the purposes of the model, we discard this extra individual

specific information pspecific and consider just the species relevant portion pSR, of the

phenotype, where the total phenotype is defined as:

pT = (pSR, pspecific). (6.40)

Within the one species S, all genotypes give the same SR phenotype,

{g1, g2, . . . gN} → pSR, (6.41)

hence there is a sense of symmetry in this system. This can be represented mathematically

by extending the model to incorporate a sense of niche. Specifically, a niche is defined

9A number of biological arguments explaining this phenomenon in the case of specific examples exist
[380, 65].

10A notable exception to this is provided by Stewart and coworkers [427, 428] who proposes a model
of speciation within the framework of symmetric bifurcation theory (i.e. nonlinear dynamical systems
theory). This work is interesting, but does not incorporate the role of the gene, concentrating instead
upon a phenotypic description, and for this reason it is felt that the current model, while at present
less well developed, holds more promise for our long term mathematical understanding of such systems.
As the current model also works upon two levels of a hierarchy (genotype→phenotype) it is also felt to
be applicable to hierarchical systems in general, not just the present example system of speciation, a
possibility that will be pursued in future work.
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rather broadly in this model as a potential which represents all the relevant environmental

factors (or contexts) giving rise to one species. If niche is defined broadly enough then

there will only ever be one species in one niche (we will delay a discussion of this idea

until the end of this section). Thus, at this point the concepts of genotype, phenotype,

species and niche have been naturally incorporated into this model.

Now, if we represent an arbitrary system as a set of fields p = p1, . . . pN where N rep-

resents the number of species in the system then we might start to understand sympatric

speciation as a process which occurs when an environment, represented by a potential,

dynamically changes to a situation of degeneracy. In this situation, DSB might be un-

derstood to have occurred, and according to our discussion of section 6.1, NG-emergence

will be understood to have occurred. In this case, the description of the system in terms

of one phenotype will become inadequate, and a shift to the dynamically motivated NG-

modes required. The number of emergent modes will depend upon the number of broken

symmetries; the number of ways in which the environment can be understood to have

changed, generating new niches.

The representation of ecological models by a Lagrangian formulation is by no means

new. A paper by Webb [449] shows that an entire class of ecological models can be directly

represented as Actions through an appropriate application of Hamilton’s principle. For

example, the logistic growth equation representing the rate of change of the number n of

organisms of phenotype p:
dn

dt
= rn

(

1− n

k

)

(6.42)

where r and k are both constants, representing reproductive rate and carrying capacity

respectively, is obtained via Hamilton’s principle from the following action:

S =

∫

dt

[

1

2

(
ṅ

n

)2

+
1

2
r2
(

1− n

k

)2
]

(6.43)

which gives a potential function of

V (x) = −1

2
r2 (1− ex)2 (6.44)

if we introduce the variable x = ln(nk ) in order to directly represent equation (6.43) in

the form S =
∫
dt(1

2 ẋ
2 − V (x)). Equation (6.44) has the form represented in figure 6.6,

which we can see has no minimum and cannot be directly used in the proposed technique.

However, Webb has shown that a class of second order rate equations of the form

d

dt
production = environmental forces, (6.45)
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Figure 6.6: The potential function that leads directly to the logistic equation. Notice
that this function has no minimum, and will not therefore be used in the application of
NG-emergent behaviour.

where

production =
d

dt
biomass, (6.46)

can naturally result from the correct application Hamilton’s principle to ecological models.

Thus, it is possible to incorporate whichever environmental forces are considered relevant

to the model of interest and interesting behaviour up to at least the second order can

result from a direct application of Hamilton’s principle. Actions that lead to interesting

behaviour can then be utilised in a field theoretic model, describing the rate of production

of phenotypes within a specified niche. A broad range of actions are possible, and an

investigation into their varying characteristics has only been instigated at the present

moment of time, however, we know from our discussion of section 5.3.4, that the most

general low order, low energy Lagrangian which will generate NG-modes has the form of

(5.95). If models of this form are chosen then NG-modes will emerge from the system

under a correct choice of dynamically evolving potential and a clear model of sympatric

speciation will have been found.

We might very quickly construct a toy model of this phenomenon using the above ar-

guments. First we consider a system which has one phenotype field p, thus the symmetric

map (6.41) holds and construct a very simple Lagrangian describing its interaction in a

simple Mexican hat potential:

L = (∂µp
∗∂µp)− µ2p2 − λp4 (6.47)
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where we have written the Lagrangian in terms of the vector field p = (g1, g2, . . . ) which

represents the symmetrical phenotype in the state space of all possible genotypes, and

where

V (p2) =
µ2

2
(p2) +

1

4
(p2)2, (6.48)

where µ2 is a key indicator of the state of the environment. Recall from section 5.3.3

that µ2 > 0 results in a potential with a unique minimum, whereas µ2 < 0 results in the

Mexican hat potential illustrated in figure 5.4(c)). Assuming that under the influence of

some environmental factor µ2 → −µ2, the potential will become degenerate and symmetry

breaking occurs, we are left with a number of new phenotypes equivalent to the number

of broken symmetries, or genotypes which do not result in the same pSR as was previously

the case.

The discussion of Webb’s work above suggests that with a more advanced model, the

time dynamics of the new species might be extracted, and interesting high level behaviour

predicted. For the present we note that with this new understanding of the underlying

mechanism behind speciation (namely a change in a species niche) and the associated new

species, there is no reason why some of the more traditional preferential mating models

cannot now be utilised. However, an incorporation of this dynamics into the model is

expected to be possible, and will be pursued in future work.

It is interesting to consider some of the implications of the new modelling technique

for our understanding of ecological systems.

Firstly, according to this model a niche is defined as a unique set of resource plus local-

ity characteristics associated with some environment that leads to a particular species. In

this sense, the term guild [359] might perhaps be more accurately used, as this is defined

as a group of species that exploits the same class of environmental resources in a similar

way. For example the carrion eaters niche is occupied by the Tasmanian devil in Tasmania

(Aust.), jackals and wild dogs in Africa, and vultures in the Americas. However, as the

current purpose of this discussion is to identify a particular set of environmental factors

that are utilised by some species in a particular ecosystem, the term niche was chosen. In

the current usage, the occupation of a niche is precisely what leads to the identification

of a species.

Thus, in this model the concept of niche is definitionally linked with that of species.

Instead of the more traditional, object based approach which sees an abiotic landscape and

then places organisms upon it, this framework inextricably links species to environment;

they can no longer be separated, or decoupled in the model, which is a pleasing result

since this is also the case in reality. Thus, genotype, phenotype and environment must be

considered holistically in this model, something that we were led to believe was the case

in the earlier chapters of this work. A change in the behaviour of one can have profound

consequences for the rest of the system.
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Finally, although this modelling is very simple, it is expected that a large variety

of models can be obtained from it, through the utilisation of different fields and their

interactions, both with each other, and with the environment.

6.6 Further Work — Biological Development

A key future goal is to use the concepts developed in this work to create a model of

the process of biological development. This process can be understood as consisting of

two sub-processes, morphogenesis (the development of shape) and differentiation (the

creation of different cell fates depending upon spatial position). These processes lead to

the development (or growth) of an organism when understood in a dynamical sense. The

above model of speciation is precisely a model of differentiation (but for a species rather

than an organism) and hence is expected to be readily extensible to this process. The

process of morphogenesis can be modelled by Turing style rate differences [440], and hence

should be applicable if a set of hierarchically organised structures can be generated.

Such a model would place DNA firmly within the behaviour of a cell, and the cell

firmly within an organism in a manner similar to the previous section where an organism

from a species was placed within an environment. Thus we start to see a way in which

the hierarchical picture of biological systems that we have been searching for might start

to emerge.

Another result of such a model would be to throw new light upon the apparently

neverending debates about nature versus nurture [341]. This debate springs from an in-

appropriate emphasis upon either the environment of an organism or its genes as being

most important when asking questions about how a mature organism will behave. In

fact, both the organism and the environment must be considered in tandem before such

questions can be asked, recall that the phenotype is a product of the genotype and the

environment. The above modelling technique incorporates this combined nature of the

phenotype, but not in a way that is often expected. Since the influence of the environ-

ment upon a system is incorporated by such models through the use of quantum type

contextuality we must expect that the combined effect of genes and environment will not

be additive, but this should be expected when we consider the behaviour of biological

systems. A small change in the environment might lead to a very profound change in

the realised phenotype, and knocking out an apparently unimportant gene can have the

same large effect. Equally, apparently large changes can lead to no visible changes in the

phenotype. Despite the apparently straightforward nature of these assertions, it is still

very common to see claims that a developed organism is the result of some percentage

nature and the remaining nurture, a quantum model of morphogenesis would provide a

straightforward reason why such claims are nonsensical.

However, this model has been very difficult to develop. The complex interrelationships

involved, the manner in which they change in time, and the feedback involved are all very
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difficult concepts to treat mathematically. In particular, finding simple toy models is not

a simple task (consider for example the problem associated with finding a Lagrangian

describing the dynamics of cascade reactions resulting from the ‘reading’ of a strand of

DNA) and very little work has been performed along these lines by other researchers.

With the current understanding, we now see a way to progress our understanding of this

very important problem, something that will be pursued in future work.
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Chapter 7

Conclusions: An Emergent Methodology

This work has examined our current methodologies, finding that they generally lack the

ability to both understand and to generate interesting complex behaviour. Generally this

manifests itself in:

• A lack of contextual dependence.

• A lack of generated hierarchical structure.

• A lack of evolutive open ended behaviour.

• An insistence upon objects with predefined modes of interaction, which inhibits the

possibility of new emergent interaction.

Thus, the methodologies being used almost rule out phenomena such as observational

emergence and high-end complexity. This work has sought to extend our methodologies,

developing a less object-based modelling methodology which shows some promise in our

search for an understanding of high-end complexity, and in particular the aim to actually

generate such behaviour in fields such as ALife.

The Process Physics system introduced in sections 4.1 and 6.4 shows signs of gener-

ating high-end complexity and so has been examined with the intension of applying its

behaviour to a more general set of phenomena than fundamental physics, namely systems

which have thus far generally defied our reductive methodologies. Initial results suggest

that such an extension may be possible. This chapter will re-examine some of the key

ideas developed in this work, and specify the form of the new emergent methodology that

has been developed.

7.1 Defining Emergence

Emergence is not a phenomenon that is easy to define. This work has adopted the Baas

definition of observational emergence (discussed in section 3.2.2) as a criterion dividing in-

teresting (observational) emergence from that which is less so (computationally emergent

phenomena). This criterion can be used somewhat in the identification of where different

systems fall onto the complexity scale, but it will not be the only one. Baas himself

expects that it will be possible to further subdivide the categorisations of observational

versus deducible emergence [43]. Interestingly, Baas classifies Gödel’s result about the
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foundations of mathematics among observationally emergent systems, which is in agree-

ment with our discussion from section 1.2.2, as well as an early claim in Process Physics

that the limits of logic must be incorporated into our modelling of reality [98, 91]. Here we

see that this claim can be incorporated into the hypothesis that observational emergence

is a necessary condition for the generation of high end complexity; a system which does

not exhibit such behaviour will not display open ended behaviour with increasing levels

of complexity and modes of interaction. Instead it will generally fall prey to object based

modelling and to failures of emergence such as those exemplified by the ADH. Returnig

to the Rosen definition, we can re-express the same concept in yet another way; more

than one model is required for a complete understanding of a complex system.

7.2 Defining Complexity

It is perhaps unrealistic to expect a definition of complexity which lists characteristic

properties and their behaviour. This work has adopted the stance that complexity exhibits

a broad range of characteristics, in diverse phenomena, and that for this reason a scale is

more appropriate in the definition of complexity than a dividing line between the simple

and the complex. While much progress has been made in the identification and analysis

of systems at what might be identified as the low end of this scale, very few attempts

have been directed towards the generic modelling high-end complexity. This thesis has

attempted to achieve just such an extension to our understanding of these important

systems. Searching for the reasons behind the success of the models of Process Physics

has led to the claim that quantum theories are in fact far more widely applicable than

is traditionally thought to be the case, and that they show particular promise when it

comes to the modelling of high-end complexity. This is because:

• The nonseparable nature of these systems, i.e. their contextual nature, is a phe-

nomenon that has been well incorporated into quantum models of reality.

• The concepts of symmetry, and its associated spontaneous breaking, is well mod-

elled, and a framework exists by which new behaviour, or more appropriate descrip-

tions of the relevant behaviour can be extracted, namely Goldstone’s theorem, and

its extension to the concept of NG-emergence.

• The concept of observational emergence is well incorporated into QFTs via the

process of action sequencing, where dynamically driven changes of variables are

used to extract high-level behaviour from a system of interest. Not all of these

jumps need be computational, rather they must be driven by the dynamics of the

system, and can take observational forms. For example, approximations are used in

the GCM.

• QFT’s also have a hierarchical structure very similar to that of the low level model

and the QHFT in Process Physics (which is not surprising considering that all

of these theories are based upon similar formalism). Objects are not present in
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these theories in the same way as in more standard reductive models. Instead,

all components of the theories are interelated in a very complex way and cannot

realistically be considered in isolation. This will be discussed more in section 7.2.3.

Perhaps the most interesting aspect of current physical modelling is the way in which

a number of different theories must be used in order to discuss many of the systems of

interest to physics. Consider the Standard Model, which itself consists of a number of

subtheories, and has not at present been unified with General Relativity.

Process Physics itself consists of a number of different theories, and although there are

indications that these theories overlap in a hierarchical manner, they do not directly map

one onto the other. However, this non-deducible relationship among theories is not the

disadvantage it might seem, rather, if high-end complexity is to be understood as an in-

ability to understand its dynamics using one description alone, then there is every reason

to suppose that this framework can in fact be extended to systems exhibiting high-end

complexity. In particular, the observational emergence exhibited by the different theoret-

ical descriptions within Process Physics is very promising as it suggests that this system

provides a framework for generating such behaviour more generally. Thus, although this

work has not weighed into the debate surrounding the attempt to define complexity, a

significant new methodology has been provided which can be applied to a broad range of

systems.

7.2.1 Modelling the Contexts of Emergent Behaviour

The concept of individuals unencumbered by explicit relations is paramount

in ordinary language and scientific theories, for they stand as the subjects of

subject-predicate propositions. In actual discourse, however, the individuals

are always understood within certain situations or implicit relations, and the

contexts make them constituents rather than bare elements. The implicit re-

lations introduce a holistic sense that mitigates atomism by making the atoms

relatable.

Auyang, p47, [42]

A number of techniques capable of modelling the contextuality of complex systems

have been discussed in this work:

• The quantum formalism itself provides a direct link to contextuality, and as was

discussed in section 5.2, extends directly to other systems which are not generally

considered quantum mechanical, but can often be considered as complex.

• As discussed in section 5.5, a change in the potential function of a system can result

in vastly different dynamics. This is because the potential is intimately linked to

the vacuum, or ground state of a system.
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• NG-emergence can be linked with an environment by virtue of its dependence upon

the relevant potential of the system; as was shown in section 6.5 a change in the

system may strongly affect its emergent behaviour.

Of particular interest, in section 3.1.9, it was noticed that the possibility often arises

to discuss systems exhibiting high-end complexity in a hierarchical manner. In partic-

ular, the contextuality of such systems can often be modelled using a jump to a higher

hierarchical level. Consider for example the process of biological development that was

discussed in that section. The amazing contextuality exhibited by genetic regulatory

cascades as different reactions are turned on or off, is often well explained with a shift

to a cellular description, the apparent mystery of metabolic or cell biological reactions

becomes straightforward by jumping to a new hierarchical level. Some of the techniques

discussed in this work provide ways in which such a jump might be carried out in the

examination of such systems. For example, action sequencing provides just such a tool. If

two levels in a system of interest are describable using a least action formalism, then there

is every reason to believe that a jump in levels of description can be carried out. Just

such a jump was performed in section 6.5, there is every indication that this technique

can be widely applied.

7.2.2 Moving Beyond an Object-Based Methodology

Section 1.4 briefly discussed the problems that arise in an object-based methodology;

despite its many successes in the modelling of separable and non-contextual systems, the

extension of this methodology to complex and contextual systems remains problematic.

One of the reasons why the techniques presented here have proved more successful in the

modelling of high-end complexity than many of the standard techniques commonly used

is that they have largely moved beyond an object-based methodology.

• The low level model of Process Physics (4.1) models the time evolution (or process-

ing) of relationships, between objects which are themselves understood as sets of

relationships. Thus, the emphasis of this model has been shifted from objects to

the time evolution of relationships.

• The high level QHFT (6.14) the emphasis has again shifted from objects to re-

lationships, with the relevant variables constituting the mappings of TD and S3

structures into other such structures.

• In the Gravity Model discussed in section 6.4.5, phenomena such as acceleration

and gravitational attraction are understood not with reference to objects, but to

the flows of ‘space’. It is not objects that cause gravitational effects, they merely

ride along ‘on top of’ spatial flows.

• The Proposed Model of Sympatric Speciation sees species not as pre-defined objects,

but as phenomena that spontaneously emerge depending upon the context in which

a system finds itself, in this case the environment.
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Thus, each of the models discussed in this work utilise the same ‘trick’ in formulating

a theory that can model or generate emergent behaviour; although objects are used in

the modelling each model emphasises the relationships between the objects rather than

the objects themselves. In fact, it is all but impossible to leave object-based modelling

behind, our language and associated mathematical techniques are all based primarily

upon objects, even our minds have evolved to identify and to categorise objects and to

base our models of the world around us upon them [340].

In moving beyond the standard emphasis upon objects, these models move from a

static to a more dynamic approach; new behaviour can emerge from such a methodology,

something that is all but forbidden when an emphasis is placed upon existing structures.

For example, the agent based models in ALife traditionally use agents (or objects) which

have predefined modes of interaction, in such a system new channels of interaction are

all but forbidden by the very choice of model, something that is emphasised by the ADH

discussed in section 2.2.2.

Some of our phyical theories have already started to move beyond this object based

methodology, however, there is often a large amount of confusion surrounding these models

which can be thought of as arising from an invalid insistence upon object-based modelling

despite the fact that such modelling is often almost incompatible with the very nature

of the model. This phenomenon can be seen in the general insistence upon objects such

as particles in quantum experiments, and the associated mystery that is encountered

when one must define a trajectory followed by those particles. Adopting a less object-

based approach such as the spontaneous localisation theories discussed in section 5.6.1,

where the wavefunction gains an ontological status, but is contextually acted upon by the

environment in which it finds itself allows for a much clearer understanding of quantum

behaviour. When this understanding is placed within the broader set of models identified

as Process Physics a very consistent view of the Universe starts to emerge, although such

a picture is very different from that of standard physics. It is the claim of this work that

the less object-based, or more relational, models of Process Physics provide a better basis

for the understanding of high end complexity, although the Rosen-type understanding of

complex behaviour as requiring more than one model for a full description suggests that

standard physics will still provide a very appropriate view of some aspects of reality, just

not all of them. Indeed, the early failure of relational models of the Universe (such as that

proposed by Leibniz [260]) can be understood to arise from their very complexity, such

models are hard to build, and often harder still to understand, if a simpler object-based

model is available then it is likely to be preferable. However, we must be wary of the

overapplication of Occam’s razor; sometimes the simplest explanation is not the most

preferable, and in fact an inappropriate search for simplicity might rule out much of the

behaviour that we seek to understand. Such a problem is particularly relevant when we

start to consider the contexts of theories themselves A theory which at one level appears
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to be unnecessarily complicated might become remarkably simple when considered in a

larger context. It might also serve to simplify the description of a number of phenomena

which have always remained mysterious to simpler theories. Process Physics provides a

particularly good example of this phenomenon.

7.2.3 Reductive Paradigms?

It must be claimed that while chapter 1 claimed that reductive techniques are coming

to their limit, and cannot be expected to retain their general validity, the new proposed

methodology makes use of a number of techniques developed within what might be re-

garded as that same paradigm. This is not necessarily the case. The general failure to

find an object-based interpretation of quantum mechanics suggests that this theory is

already pushing beyond the boundary of reductive analysis.

Object-based modelling is in some sense synonymous with reductive analysis. Indeed,

it is very difficult adopt a reductive approach with less object-based methodologies. Con-

sider the use of the fields in QFT and the way in which an appropriate description at

the QFT level often precludes an understanding of these systems as individualistic group-

ings of particles interacting in some way, rather, QFT describes objects with reference

to their context, in this case the vacuum. If a reductive analysis is attempted, such as

the commonly used perturbation expansion, then ever increasing levels of interaction and

description start to emerge. An electron in QFT cannot be understood in this picture

without reference to a hierarchy of photons and electrons, themselves in some sense ‘in-

side’ the original electron. However, no sensible theorist believes that this reflects reality,

rather this might be seen as an example of a phenomenon where an insistence upon

object-based methodology leads to a rather bizarre result. With a proper recognition

of the holistic nature of QFT comes a more reasonable understanding of what the per-

turbation expansion implies, namely that the context of an electron must be properly

incorporated into models of its behaviour.

In a similar manner, many of the phenomena discussed in this work can only be

understood through the adoption of a less reductive methodology. We might begin to

suspect that in addition to a complexity scale, there is an associated scale of theories

with an ever decreasing number of reductive characteristics. This idea will be examined

in future work.

7.3 Contextuality and Observer Dependence

This work has discussed a number of ways in which contextuality can be incorporated into

our modelling without recourse to fully subjective models. With a proper understanding

of contextuality, many of the problems raised by the proponents of subjective theories of

the world [455, 144, 296, 431, 384, 385] become relatively insignificant; such subjective

interpretations become necessary only when context is not properly incorporated into our

methodology. With an insistence upon objective measurements and passive observers we
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effectively lose realism and are forced into such subjective theories in order to try and

recover an ability to explain contextual phenomena. If however, context is incorporated

into our methodology at the outset, then realism is maintained and our theories become

much richer, capable of describing more phenomena than is currently the case.

7.4 In Conclusion

Finally, it should be noted that within the set of theories denoted as Process Physics,

much of the physical universe is explained, but only through the adoption of a stance

that might be considered quite unpalatable to many physicists:

• A hierarchy of non-deducibly connected theories is necessary in order to model the

dynamics of the Universe at a fundamental level.

• Notions such as objectivity are lost, but realism is very much recovered, although

only through taking phenomena such as contextuality, nonlocality and observer-

driven phenomena very seriously in the modelling.

• A shift from the standard object-based, reductive methodology is necessary, which

often makes the modelling of any systems considered far more challenging.

The fact that this modelling methodology appears to make sense within the larger

context of complex systems, and to be extensible to such systems leaves me with the

belief that this added complexity in the fundamental modelling of the Universe is justified

with the added scope that might be achieved in what it can explain. Indeed, in adopting

a more complex initial set of models, many more phenomena appear to be justifiably

brought into the realms of physics,1 although at the price of so altering physics that it

may no longer be considered the same field.

1This leaves us feeling rather ironically that perhaps there was a broader reality to the ADH; if our
models are not sufficiently complex to begin with then they will not explain all that we seek to understand.
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Appendix A

Notation

This appendix lists the most important notation used throughout this work in an effort to

draw together the disparate list of symbols and equations into one ‘quick-reference’ guide.

Symbols are listed, along with a reference to their relevant appearances in the text.

A.1 Observational Emergence

This was introduced as a part of the Baas definition of emergence, in sections 2.2.1,

and 3.2.2.

Sn: nth-order structures equations (2.11),(2.13),(2.15),(2.16)

P = On(Sn): nth-order properties equations (2.12),(2.14)

Intn: nth-order properties equations (2.12),(2.16)

Second order emergent properties are then defined as P ∈ Obs2(S2) from the first order

set (S1
i , O

1(Si), Int
1). They are then classified as computable/deducible or observational

depending upon whether there is a computational procedure for obtaining the properties.

Note that a change of notation was used in section 4.2.2 (Sn → Ξn) to avoid confusion

with the hypersphere notation.

A.2 Quantum Mechanics

Quantum mechanical concepts are largely discussed in sections 4.3 and 5.1.

ψ: wave function(al) section 4.3.1

H: Hamiltonian equation (4.10)

〈ψ(x)|Ô|ψ(x)〉: quantum expectation value equation (4.12)

ρ̇r: reduced density matrix equation (5.113)

Lj : Lindblad operator equations (5.113),(5.114),(6.14)

lj : lj ≡ 〈ψ|Lj |ψ〉 equation (5.114)

M: Mean over a probability distribution (5.116)

P (â, b̂): expectation value equation (5.1)

dξj : stochastic noise term equations (5.114),(6.14)
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A.3 Quantum Field Theory

As per most modern physics texts, this work uses the Einstein convention to sum over

repeated Greek indicies. All equations are written in the Euclidean metric.

L[φ]: Lagrangian of the field φ equation (4.15)

L[φ]: Lagrangian Density of the field φ equation (4.15)

S[φ]: Action of the field φ equation (4.15)

G: correlation function equations (4.13),(4.16)

Z: generating function equation (4.14)

V (φ): potential function of the field φ sections 5.3.3 and 5.3.4

∫
Dφ is a functional integration, not an ordinary integral. It is an infinite product of

integrals, taken over all possible dφ.

A.4 Process Physics

A.4.1 Low level relational model

This model is discussed in chapter 4.

Bij : real valued matrix entry linking the node i to the node j equation (4.1)

ωij : additive noise term equation (4.1)

α: tuning parameter equation (4.1)

D: Defect equation (4.2.2)

TD: Topological Defect (stable defect) equation (4.2.2)

A.4.2 Quantum Homotopic Field Theory (QHFT)

This model is discussed in section 6.4.

Z: winding number equation (6.13)

παβ : homotopic map π : α→ β section 6.4

πm(X): the set of homotopy classes of maps from

an m-sphere onto the space X section 6.4

Ψ[t]: system of homotopic embeddings equation (6.14)

Lj : Lindblad operator equations (5.114),(6.14)

dξj : stochastic noise term equations (5.114),(6.14)

vQF : speed through the quantum foam equation (6.32)
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A.4.3 Gravity Model

This model is discussed in section 6.4.5.

v(r, t): vector flow field equation (6.35)

G: Newton’s gravitational constant equation (6.35)

α: quantum self-interaction ‘fine structure constant’ equation (6.36)

A.4.4 Model of Sympatric Speciation

This model is discussed in section 6.5.

pT : total phenotype equation (6.40)

pSR: species relevant portion of a phenotype equation (6.40)

pspecific: specific portion of a phenotype equation (6.40)

A.5 Abbreviations used in the text

This table lists abbreviations used in the text, together with the page numbers consiered

most relevant for definitions and explanations of the concepts involved.

ADH: Ansatz for Dynamical Hierarchies p43

ALife: Artificial Life p27

BE–LF: Bloch Equation in Lindblad form p145,p202

DSB: Dynamical Symmetry Breaking p156

EPR: Einstein Podolsky Rosen p92

GCM: Global Colour Model p77,p84

NG-mode: Nambu–Goldstone mode pp129–134,p156

OEE: Open Ended Evolution p34

PRF: Preferred Reference Frame p171

QCD: Quantum Chromodynamics p83

QED: Quantum Electrodynamics p82

QFT: Quantum Field Theory p79

QHFT: Quantum Homotopic Field Theory p165

QSD: Quantum State Diffusion p145

RGP: Recursive Gauge Principle p160

SE: Species Equivalent p180

SOC: Self Organised Criticality p69,p140

SSB: Spontaneous Symmetry Breaking p127
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Appendix B

Itô calculus — a brief summary

Our discussion of spontaneous localisation theories deals with stochastic processes. This

makes it necessary to use Itô calculus, the relevant elements of which shall be briefly

summarised in this appendix. More details can be found in [35].

B.1 The Markov property

Markov formulated the theory of stochastic processes in 1906. In his investigation of

connected experiments, Markov formulated the principle that the ‘future’ does not depend

upon the ‘past’ when we know the ‘present’. When we extend this principle to stochastic

processes we get the Markov property:

If the state of a system at a particular time tp (the present) is known, then

additional information regarding the behaviour of the system at times t < tp

(the past) has no effect on our knowledge of the probable development of the

system at time t > tp (in the future).

Essentially this property means that the system has no ‘memory’.

B.2 Wiener processes

Also called Brownian motion, a Wiener process is a continuous stochastic process that

has independent increments, distributed as Normal random variables. Formally, a Wiener

process
{

dξ(t), t ∈ [0,∞]
}

is a stochastic process if:

1. dξ has independent increments dξ(t)− dξ(s), s < t (i.e. it is Markovian).

2. The increment dξ(t)− dξ(s), 0 < s < t <∞, is Gaussian (Normal) with zero mean

and variance, σ2
t .

3. dξ(0) = 0 almost surely (or with probability one).

This definition quickly leads to the following multiplication rules for Wiener processes

[35]:

M (Re (dξj) Re (dξk)) = M (Im (dξj) Im (dξk)) = δjkdt (B.1)

M (Re(dξj)Im(dξk)) = 0 (B.2)

M(dξj) = 0 (B.3)
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where δij is a Kroneker delta.

B.3 Itô’s theorem

The Itô form discussed in the text arises from Itô’s lemma, differentials up to the second

order must be evaluated because of (B.1) :

Let U(t,X) be a continuous nonrandom function with continuous partial

derivatives ∂U
∂t ,

∂U
∂X and ∂2U

∂X2 . Suppose that X(t), t ∈ [0, T ] is a process with

stochastic differential

dX(t) = A(Xt)dt+B(Xt)dξ(t) (B.4)

and let Y (t) = U [t,X(t)]. Then the process Y (t) also has a differential on

[0, T ], given by

dY (t) =

{
∂

∂t
[U(t,X)] +

[
∂

∂X
U(t,X)

]

A(Xt) +
1

2

∂2

∂X2
U(t,Xt)[B(X)]2

}

dt

+
∂

∂X
U(t,Xt)B(Xt)dξ(t)

=
∂U

∂t
dt+

∂U

∂X
dX(t) +

1

2

∂2U

∂X2
[B(Xt)]

2dt (B.5)

where [B(Xt)]
2 ≡ (dXt)

2.
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Appendix C

Generalized Master Equations

C.1 Solution by Generalized Master Equations

Generalised master equations describe a system, S, which includes both a quantum system

under investigation, and the relevant detectors in interaction with a large and complex

environment, E . Together, the system and its environment form a closed and interacting

system, S ⊕ E . Projection operators serve as crude models of this possibly very complex

interaction. Choosing the right projection operators makes it possible to ignore the effects

of the environment, and consider the system alone.1

To find the time evolution of density operators we use the Schrödinger equation in

Dirac form, which gives

∂tρ =
∑

j

P (j)

[(

∂t|ψj〉
)

〈ψj |+ |ψj〉
(

∂t〈ψj |
)]

=
1

i~
(Hρ− ρH) (C.1)

or,

∂tρ = −i~ [H, ρ] ≡ −iLρ (C.2)

which is the quantum Liouville equation.2

We can write the Hamiltonian of the Liouvillian equation (C.2) in three separate parts,

one representing the system S, one the environment E and the last part representing the

interaction between these two systems

H = HS +HE +HS⊕E . (C.4)

1The following discussion can be found in Haake [207], who also considers subsystems of open systems
and some applications of this approach, for our discussion we need only consider a subsystem embedded
in a closed system.

2The origin of this name lies in classical statistical mechanics, where the time evolution of the Liouville
density f(q,p, t) satisfies

df

dt
=

∂f

∂t
+
X

k

„

∂f

∂qk

dqk

dt
−

∂f

∂pk

dpk

dt

«

≡
∂f

∂t
+ [f, H]PB = 0, (C.3)

which is reminiscent of (C.2). The quantum Liouville equation actually takes the form of an infinite series
expansion, some of the details of this expansion follow, but more details can be found in [335].
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Now, write the observables of the system S(E) in terms of the operators

S1, S2, . . . (E1, E2, . . . ) (C.5)

which act on the Hilbert space HS(HE). The Hilbert space HS⊕E of the component

systems can be written as a direct product

HS⊕E = HS ⊗HE . (C.6)

This means that if the interaction term in (C.4) is turned off then each of the systems, S
and E can be considered separately.

Now, the expectation value of the observables of the total combined system and its

surrounding environment, S ⊕ E , can be written

〈EiSj〉 = Tr{ρEiSj}, (C.7)

where Ei describes environmental operators and Sj relevant system ones.

We assume that only the expectation values of the system S are interesting. (The

accuracy of this assumption shall be discussed shortly.) That is, we are only interested in

〈S1S2 . . . Sn〉 = TrS1S2 . . . Snρ(t). (C.8)

Now, because the Hilbert space HS⊕E can be written as a direct product, we can carry

out the trace operation in two steps, i.e.

Tr = TrSTrE , (C.9)

which means that the expectation values of the observables of the system S can be written

in terms of a reduced density matrix, ρr, which describes only the open system S,

ρr ≡ TrEρ(t). (C.10)

This gives a new way of calculating the expectation value of the observables of the system

〈S1S2 . . . Sn〉 = TrSTrES1S2 . . . Snρ(t)

= TrSS1S2 . . . Snρr(t), (C.11)

suggesting that we can construct an equation of motion for system alone, using the re-

duced density matrix to eliminate the irrelevant parts (i.e. those connected with the

environment) from the Liouville equation (C.2). This is done by decomposing the full
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density matrix ρ(t) into two parts using the projector P :

ρ(t) = Pρ(t) + (1− P )ρ(t), (C.12)

where P is defined such that

P = PrefTrE , and (C.13)

TrEPref = 1 (C.14)

Pref is a parameter which may be chosen in an arbitrary manner such that it satisfies the

normalisation condition (C.14). It plays the role of a reference state of the environmental

system E . A good choice of Pref will lead to a more physically relevant description of the

system. We shall discuss this reference state in more detail shortly. Notice that because

of the definition

P 2 = PrefTrEPrefTrE

= PrefTrE

= P, (C.15)

and that

Pρ(t) = PrefTrEρ(t)

= Prefρr. (C.16)

So all of the information that is relevant to the system S, is represented by Pρ(t), while

the environment terms, and the interaction terms are given by (1− P )ρ(t).

Inserting the decomposition (C.12) into the Liouville equation (C.2) gives the formal

solution,

ρ̇ = −iL(Pρ(t) + (1− P )ρ(t)), (C.17)

from which two coupled equations can be obtained by acting on the left of (C.17) with P

and 1− P , to obtain the two coupled equations

P ρ̇(t) = −iPLPρ(t)− iPL(1− P )ρ(t) and, (C.18)

(1− P )ρ̇(t) = −i(1− P )LPρ(t)− i(1− P )L(1− P )ρ(t). (C.19)
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A solution of (C.19) which writes the environmental terms (1 − P )ρ(t) in terms of the

system terms Pρ(t) is:

(1−P )ρ(t) = exp[−i(1−P )Lt](1−P )ρ(0)− i
∫ t

0
dt′ exp[−i(1−P )Lt′](1−P )LPρ(t− t′).

(C.20)

This is simple to verify since (C.19):

(1− P )
d

dt
ρ(t) = − exp[−i(1− P )Lt′](1− P )LPρ(t− t′)

∣
∣t

′=t

t′=0

= exp[−i(1− P )Lt](1− P )LPρ(t). (C.21)

Substituting (C.20) into (C.18) gives

P ρ̇(t) = −iPLPρ(t)

− iPL
(

exp [−i(1− P )Lt] (1− P )ρ(0)− i
∫ t

0
dt′ exp[−i(1− P )Lt′](1− P )LPρ(t− t′)

)

= −iPrefTrELPrefρr(t)− iPrefTrEL exp [−i(1− P )Lt] (1− P )ρ(0)

− PrefTrEL
∫ t

0
dt′ exp[−i(1− P )Lt′](1− P )LPrefρr(t− t′)

= −iLeffρr(t) +

∫ t

0
dt′K(t′)ρ(t− t′) + I(t) (C.22)

which is the generalised master equation for the reduced density operator ρr(t). Thus, if

it is possible to solve the formal expressions

Leff ≡ TrELPrefρr(t) (C.23)

K(t′) ≡ −TrEL exp[−i(1− P )Lt′](1− P )LPref (C.24)

I(t) ≡ −iTrEL exp [−i(1− P )Lt] (1− P )ρ(0). (C.25)

then the master equation can be solved.

This evaluation involves a perturbation expansion of the exponential term exp[−i(1−
P )Lt] that arises in (C.23–4.23) in terms of the interaction Liouvillian LS⊕E . If the

interaction between the system and its surrounding environment is too strong, then these

expansions will not converge, and the theory will be useless. It is important that a good

choice of S and E is made such that this does not happen. Not much more can be said

without a specific example, for this the reader is referred to [207].

The reference state

Any choice of Pref which satisfies the normalisation condition (C.14) will satisfy the gener-

alised master equation (C.22). However, a reasonable description of the physical process

is only achieved with a good approximation of Pref. The formalism above does not tell us
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how to choose Pref, however, the influence of the environment upon the system expresses

itself in terms of a set of correlation functions TrEB1(t1)B2(t2) . . . Bn(tn)Pref, where the

Bi are the observables of the environment E , in the interaction Hamiltonian (see [207] for

more details). The state in which these correlation functions are to be evaluated is the

parameter Pref, which means that a physically well-motivated choice of Pref will ensure

that we get a good low-order approximation to the expansions of the Liouvillan terms

(C.23–4.23) in the master equation (C.22). Hence the selection of the reference state

should be based upon the physics of the system S ⊕ E .

C.2 A derivation of the Quantum State Diffusion equation

The quantum state diffusion equation (5.114) can be derived from the Bloch equation

in Lindblad form (BE-LF) (5.113). What follows is an expansion of the derivation from

[188].

Given a system with an N-dimensional state space, it is possible to express the density

operator ρ as a mean M over a distribution of normalized pure-state projection operators

ρ = M|ψ〉〈ψ|. (C.26)

We require differential equations for |ψ〉 such that

ρ̇ =
dρ

dt
(C.27)

is determined by some differential equation for ρ, in this case the Bloch equation in

Lindblad form [266]

ρ̇ = − i
~

[H, ρ ] +
∑

j

(

LjρL
†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLj

)

. (C.28)

Consider an open system described in the density matrix formulation by ρ, which

starts in a pure state (hence ρ is diagonal) at time t = 0. Because the system is open, it

will evolve in a non-deterministic fashion into a mixed state at time t = t′. However, there

are no deterministic equations which can describe this process. In fact the evolution is

highly probabilistic, which suggests that stochastic equations may be a more appropriate

way in which to model it. We shall seek one such stochastic equation.

A variation |dψ〉 in |ψ〉 over time step dt can be given by the Itô form

|dψ〉 = |v〉dt+
∑

j

|uj〉dξj (C.29)

where |v〉dt is a drift term and
∑

j |uj〉dξj is a term which represents the differential

stochastic fluctuations of the process. The dξj are the complex Wiener processes (5.116)
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from appendix B which are complex (because quantum mechanics is complex), with equal

and independent fluctuations in their real and imaginary parts. If we require that the

state vector remain normalized throughout the evolution then the random fluctuations in

the state must be orthogonal to the state,

i.e. 〈ψ|uj〉 = 0 (C.30)

a result that will often be used in what follows.

In Itô calculus, differentials up to the second power must be evaluated [35], which

means that the time evolution of the state |ψ〉 is

ρ̇ =
dρ

dt

= M
1

dt
(|ψ〉〈dψ|+ |dψ〉〈ψ|+ |dψ〉〈dψ|) . (C.31)

The means of |dψ〉 and |dψ〉〈dψ| can be calculated as follows:

M|dψ〉 = M



|v〉dt+
∑

j

|uj〉dξj





= |v〉dt+
∑

j

|uj〉Mdξj

= |v〉dt (C.32)

where we have used the mean properties of the Wiener processes (5.116), and

M|dψ〉〈dψ| = M





(

|v〉dt+
∑

j

|uj〉dξj
)(

〈v|dt+
∑

k

〈uk|dξ∗k

)



= M



|v〉〈v|dt2 +
∑

j

|uj〉〈v|dξjdt+
∑

k

|v〉〈uk|dtdξ∗k +
∑

j,k

|uj〉〈uk|dξjdξ∗k





= |v〉〈v|dt2 +
∑

j

|uj〉〈v|M(dξj)dt+
∑

k

|v〉〈uk|dtM(dξ∗k) +
∑

j,k

|uj〉〈uk|M(dξjdξk)

= 2
∑

j

|uj〉〈uj |dt (C.33)

again using (5.116), but also making the assumption that dt is small, and hence dt2 →
0. Substituting these results for the means, (C.32) and (C.33), into the time evolution
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equation for ρ, (C.31), gives

ρ̇ =



|ψ〉〈v|+ |v〉〈ψ|+ 2
∑

j

|uj〉〈uj |



 . (C.34)

Recalling equation (C.30) we know that the stochastic terms are determined by the com-

ponent of ρ̇ in the space orthogonal to ψ, that is

2
∑

j

|uj〉〈uj | =
(

I − ρψ
)

ρ̇
(

I − ρψ
)

=

(

I − |ψ〉〈ψ|
)


− i
~

[H, ρ ] +
∑

j

(

LjρL
†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLj

)




(

I − |ψ〉〈ψ|
)

=

(

I − |ψ〉〈ψ|
)(

− i
~

[H, ρ ]

)(

I − |ψ〉〈ψ|
)

+
(

I − |ψ〉〈ψ|
)∑

j

LjρL
†
j

(

I − |ψ〉〈ψ|
)

−
(

I − |ψ〉〈ψ|
)∑

j

1

2
L†
jLjρ

(

I − |ψ〉〈ψ|
)

−
(

I − |ψ〉〈ψ|
)∑

j

1

2
ρL†

jLj

(

I − ρ|ψ〉〈ψ|
)

=
∑

j

(

I − |ψ〉〈ψ|
)

Lj |ψ〉〈ψ|L†
j

(

I − |ψ〉〈ψ|
)

(C.35)

=
∑

j

(

Lj |ψ〉〈ψ|L†
j − |ψ〉〈ψ|Lj |ψ〉〈ψ|L

†
j

−Lj |ψ〉〈ψ|L†
j |ψ〉〈ψ|+ |ψ〉〈ψ|Lj |ψ〉〈ψ|L

†
j |ψ〉〈ψ|

)

=
∑

j

(

Lj |ψ〉〈ψ|L†
j − |ψ〉lj〈ψ|L

†
j − Lj |ψ〉〈ψ|l∗j + |ψ〉ljl∗j 〈ψ|

)

=
∑

j

((

Lj − lj
)

|ψ〉
)(

〈ψ|
(

L†
j − l∗j

))

, (C.36)

where lj ≡ 〈ψ|Lj |ψ〉 (C.37)

((C.35) becomes evident when we realise that all of the terms (except for the survivor) are

individually identical to zero upon expansion of ρ and multiplication of this term through

the other terms.) Thus, the stochastic terms are

|uj〉 = (Lj − lj) |ψ〉. (C.38)
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To find the drift terms, we multiply the time evolution of the density matrix equation

(C.34) through on the left by |ψ〉, which gives (using equation (C.30))

ρ̇|ψ〉 = |ψ〉〈v|ψ〉+ |v〉, (C.39)

or

|v〉 = ρ̇|ψ〉 − 〈v|ψ〉|ψ〉

= ρ̇|ψ〉 −
(

1

2
〈ψ|ρ̇|ψ〉+ ic

)

|ψ〉, (C.40)

where we have made use of the relation

〈ψ|ρ̇|ψ〉 = 〈ψ|ψ〉〈v|ψ〉+ 〈ψ|v〉〈ψ|ψ〉+
∑

j

〈ψ|uj〉〈uj |ψ〉

= 2Re〈ψ|v〉, (C.41)

and where ic is a nonphysical, imaginary phase change constant which is chosen by con-

vention in such a way that the usual Schrödinger equation is obtained in the absence of

interaction with the environment. In this case c is set equal to zero.

Now we substitute the BE-LF (C.28) for ρ̇ in (C.40) to find the drift term. First we

calculate,

ρ̇|ψ〉 =



− i
~

[H, ρ ] +
∑

j

(

LjρL
†
j −

1

2
L†
mLjρ−

1

2
ρL†

jLj

)


 |ψ〉

=

(

− i
~

(

HM|ψ〉〈ψ| −M|ψ〉〈ψ|H
)

+
∑

j

(

LjM|ψ〉〈ψ|L†
j −

1

2
L†
jLjM|ψ〉〈ψ| −

1

2
M|ψ〉〈ψ|L†

jLj

))

|ψ〉

= − i
~

(

HM|ψ〉 −M|ψ〉〈ψ|H|ψ〉
)

+
∑

j

(

LjM|ψ〉〈ψ|L†
j |ψ〉 −

1

2
L†
jLjM|ψ〉〈ψ|ψ〉 −

1

2
M|ψ〉〈ψ|L†

jLj |ψ〉
)

= − i
~

(

H|ψ〉 − |ψ〉〈ψ|H|ψ〉
)

+
∑

j

(

Lj |ψ〉l∗j −
1

2
L†
jLj |ψ〉 −

1

2
|ψ〉〈ψ|L†

jLj |ψ〉
)

(C.42)
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and secondly

〈ψ|ρ̇|ψ〉|ψ〉 = 〈ψ|



− i
~

[H, ρ ] +
∑

j

(

LjρL
†
j −

1

2
L†
jLjρ−

1

2
ρL†

jLj

)


 |ψ〉|ψ〉

= − i
~

(

〈ψ|HM|ψ〉〈ψ|ψ〉|ψ〉 − 〈ψ|M|ψ〉〈ψ|H|ψ〉|ψ〉
)

+
∑

j

(

〈ψ|L1M|ψ〉〈ψ|L†
j |ψ〉|ψ〉 −

1

2
〈ψ|L†

jLjM|ψ〉〈ψ|ψ〉|ψ〉 −
1

2
〈ψ|M|ψ〉〈ψ|LjL†

j |ψ〉|ψ〉
)

= −2i

~
〈ψ|H|ψ〉|ψ〉+

∑

j

(

ljl
∗
j |ψ〉 − 〈ψ|L†

jLj |ψ〉|ψ〉
)

. (C.43)

Substituting these results into (C.40) leads to a drift term

|v〉 = − i
~
H|ψ〉+ 1

2

∑

j

(

2l∗jLj − L†
jLj − l∗j lj

)

|ψ〉. (C.44)

Now, upon substitution of (C.38) and (C.44) into (C.29), we obtain the quantum state

diffusion equation

|dψ〉 = − i
~
|ψ〉dt− 1

2

∑

j

(L†
jLj + l∗j lj − 2l∗jLj)|ψ〉dt+

∑

j

(Lj − lj)|ψ〉dξj (C.45)
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