Word Segmentation and Ambiguity in English and Chinese NLP & IR

by

School of Computer, Engineering and Mathematics,
Faculty of Science and Engineering

August 10, 2011

A thesis presented to the
Flinders University of South Australia
in total fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Computer Science

Adelaide, South Australia, 2012
© (Jin Hu Huang, 2012)
CONTENTS

Abstract ... ix
Certification .. xii
Acknowledgements .. xiii
Preface ... xv

1. Introduction ... 1
 1.1 Context Sensitive Spelling Correction 1
 1.2 Chinese Pinyin Input ... 2
 1.3 Chinese Segmentation 6
 1.4 Chinese Information Retrieval (IR) 9
 1.5 Thesis Contribution ... 10
 1.6 Thesis Organization 13

Part I Word Disambiguation for English Spelling Checking and Chinese Pinyin Input 15

2. Machine Learning for Context Sensitive Spelling Checking 16
 2.1 Introduction .. 16
 2.2 Confused Words .. 17
 2.3 Context-sensitive Spelling Correction 18
 2.4 Experiment and Result 21
 2.5 Interface ... 29
 2.6 Conclusion and Future Work 30
 2.7 Reflections ... 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Statistical N-gram Language Modeling</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Statistical Language Modeling</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>N-Gram Markov Language Models</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Smoothing Methods</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Add One Smoothing</td>
<td>37</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Interpolation Smoothing</td>
<td>38</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Absolute Discounting</td>
<td>38</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Good-Turing Discounting</td>
<td>38</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Katz Back-off Smoothing</td>
<td>39</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Witten-Bell Smoothing</td>
<td>39</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Kneser-Ney Smoothing</td>
<td>40</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Modified Kneser-Ney Smoothing</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>Compression-based Adaptive Approach for Chinese Pinyin Input</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Statistical Language Modelling</td>
<td>44</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Pinyin-to-Character Conversion</td>
<td>45</td>
</tr>
<tr>
<td>4.2.2</td>
<td>SLM Evaluation</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Compression Theory</td>
<td>46</td>
</tr>
<tr>
<td>4.4</td>
<td>Adaptive Modelling</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Prediction by Partial Matching</td>
<td>48</td>
</tr>
<tr>
<td>4.6</td>
<td>Experiment and Result</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Conclusion</td>
<td>54</td>
</tr>
<tr>
<td>5.</td>
<td>Error-driven Adaptive Language Modeling for Pinyin-to-Character Conversion</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>LM Adaption Methods</td>
<td>56</td>
</tr>
<tr>
<td>5.2.1</td>
<td>MAP Methods</td>
<td>56</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Discriminative Training Methods</td>
<td>57</td>
</tr>
<tr>
<td>5.3</td>
<td>Error-driven Adaption</td>
<td>58</td>
</tr>
<tr>
<td>5.4</td>
<td>Experiment and Result</td>
<td>61</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>65</td>
</tr>
</tbody>
</table>
Part II Chinese Word Segmentation and Classification

6. Chinese Words and Chinese Word Segmentation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>6.2 The Definition of Chinese Word</td>
<td>67</td>
</tr>
<tr>
<td>6.3 Chinese Word Segmentation</td>
<td>70</td>
</tr>
<tr>
<td>6.3.1 Segmentation Ambiguity</td>
<td>70</td>
</tr>
<tr>
<td>6.3.2 Unknown Words</td>
<td>71</td>
</tr>
<tr>
<td>6.4 Segmentation Standards</td>
<td>72</td>
</tr>
<tr>
<td>6.5 Current Research Work</td>
<td>73</td>
</tr>
<tr>
<td>6.6 Conclusion</td>
<td>76</td>
</tr>
</tbody>
</table>

7. Chinese Word Segmentation Based on Contextual Entropy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>78</td>
</tr>
<tr>
<td>7.2 Contextual Entropy</td>
<td>79</td>
</tr>
<tr>
<td>7.3 Algorithm</td>
<td>80</td>
</tr>
<tr>
<td>7.3.1 Contextual Entropy</td>
<td>80</td>
</tr>
<tr>
<td>7.3.2 Mutual Information</td>
<td>82</td>
</tr>
<tr>
<td>7.4 Experiment Results</td>
<td>83</td>
</tr>
<tr>
<td>7.5 Conclusion</td>
<td>90</td>
</tr>
<tr>
<td>7.6 Reflections</td>
<td>90</td>
</tr>
</tbody>
</table>

8. Unsupervised Chinese Word Segmentation and Classification

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>92</td>
</tr>
<tr>
<td>8.2 Word Classification</td>
<td>93</td>
</tr>
<tr>
<td>8.3 Experiments and Future Work</td>
<td>96</td>
</tr>
<tr>
<td>8.4 Conclusion</td>
<td>99</td>
</tr>
<tr>
<td>8.5 Reflections</td>
<td>100</td>
</tr>
</tbody>
</table>

Part III Chinese Information Retrieval

9. Using Suffix Arrays to Compute Statistical Information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Suffix Trees</td>
<td>102</td>
</tr>
<tr>
<td>9.2 Suffix Arrays</td>
<td>104</td>
</tr>
<tr>
<td>9.3 Computing Term Frequency and Document Frequency</td>
<td>109</td>
</tr>
<tr>
<td>9.4 Conclusion</td>
<td>112</td>
</tr>
</tbody>
</table>
10. N-gram based Approach for Chinese Information Retrieval 113
 10.1 Introduction ... 113
 10.2 Chinese Information Retrieval .. 114
 10.2.1 Single-character-based (Uni-gram) Indexing 114
 10.2.2 Multi-character-based (N-grams) Indexing 115
 10.2.3 Word-based Indexing ... 115
 10.2.4 Previous Works ... 116
 10.3 Retrieval Models ... 121
 10.3.1 Vector Space Model .. 121
 10.3.2 Term Weighing ... 122
 10.3.3 Query and Document Similarity ... 123
 10.3.4 Evaluation .. 123
 10.4 Experimental Setup .. 126
 10.4.1 TREC Data .. 126
 10.4.2 Measuring Retrieval Performance 127
 10.5 Experiments and Discussion .. 127
 10.5.1 Using Dictionary-based Approach 127
 10.5.2 Statistical Segmentation Approach 128
 10.5.3 Using Different N-grams ... 131
 10.5.4 Word Extraction .. 136
 10.5.5 Removing Stop Words .. 142
 10.6 Discussion .. 145
 10.7 Conclusion .. 147

11. Conclusions .. 149
 11.1 Thesis Review .. 149
 11.2 Future Work .. 151

Appendix .. 153

A. The Appendix: Tables for TREC 5 & 6 Chinese Information Retrieval Results .. 154

B. The Appendix: Examples of TREC 5 & 6 Chinese Queries 162

Bibliography ... 188
LIST OF FIGURES

1.1 Number of Homonyms for Each Pinyin .. 4

5.1 Perplexity compare between static and adaptive model on Modern Novel ... 62

5.2 Perplexity compare between static and adaptive model on Martial Arts Novel ... 63

5.3 Perplexity compare between static and adaptive model on People’s Daily 96 ... 64

7.1 Contextual Entropy and Mutual Information for “The two world wars happened this century had brought great disasters to human being including China.” ... 80

10.1 Average Precision At Different Recall For Dictionary-based and Statistical Segmentation Approaches 129

10.2 Average Precision At X Documents Retrieved For Dictionary-based and Statistical Segmentation Approaches 130

10.3 Average Precision for 54 Queries Using 1-gram, 2-grams, 3-grams and 4-grams ... 134

10.4 The Impact of Extracted Words on 54 Queries .. 139

10.5 The Impact of Stop Words on 54 Queries .. 143
LIST OF TABLES

2.1 Diameter with occurrences, significance and probability - number of contexts (WSJ 87-89,91-92) ... 22

2.2 Relationship between probability and significance - number of contexts (WSJ 87-89,91-92) ... 23

2.3 False errors and coverage testing on test and validation corpora with no errors seeded but two real errors found 24

2.4 True errors detected (recall) and corrected when errors seeded randomly .. 25

2.5 Seeded errors of the confusion set of “from” and “form” (S,P≥95%) ... 25

2.6 False positive rate (FPR), true positive rate (TPR) and informedness when errors seeded ... 27

2.7 Spelling Errors Found in WSJ0801 and WSJ1231 ... 28

4.1 Compression models for the string “dealornodeal” 47

4.2 PPM model after processing the string dealornodeal 50

4.3 Compression results for different compression methods 52

4.4 Character Error Rates for Kneser-Ney, Static and Adaptive PPM 53

5.1 Witten-Bell smoothing model after processing the string dealornodeal 60

5.2 Comparing perplexity and CER using different smoothing methods on testing corpus .. 63

5.3 CER and percentage of data used for adaption 64

5.4 Testing on Xinhua 96 with different mixed models with adaption 65

6.1 Some differences between the segmentation standards 73

7.1 Validation results based on Recall, Precision and F-Measure for Eq. 7.1 7.2 7.3 7.4 ... 84

7.2 Validation results based on Recall, Precision and F-Measure for Eq. 7.5 7.6 7.7 7.8 ... 84

7.3 Validation results on Recall, Precision and F-measure according to Eq. 7.9 7.10 7.11 ... 85
7.4 Validation results based on Recall, Precision and F-Measure for Eq. 7.12 7.13 7.14 .. 86
7.5 Results based on Recall, Precision and F-Measure on testing corpus 86
7.6 Results based on Recall, Precision and F-Measure for the Longest Forward Match Method ... 89
9.1 Suffixes and suffix arrays before sorting 105
9.2 Suffixes and suffix arrays after sorting 106
9.3 Nontrivial classes for string “to_be_or_not_to_be” 108
10.1 Comparison of segmentation approaches in TREC 6 119
10.2 Term Weighting in the Smart system 123
10.3 Average Precision for Dictionary-based and Statistical Segmentation Approaches .. 129
10.4 Average Precision for Dictionary-based and Statistical Segmentation Approaches .. 130
10.5 Precision Recall and Average Precision For Different Length Of N-grams .. 132
10.6 Precision At X Documents and R-Precision For Different Length Of N-grams .. 132
10.7 Title and Description of the Query 6,7,29,34,51 133
10.8 The Impact of Word Extraction on TREC 138
10.9 Paired samples t-test on IR results of combining extracted words (df=53) ... 140
10.10 Improved Query Samples ... 140
10.11 Term Frequency and Document Frequency of Extracted Word and its Bi-grams ... 142
10.12 The Impact of Removal of “UN” and “Peace-keeping troops” on Queries 15 & 16 .. 146
A.1 Average Precision for 54 Queries Using 1,2,3,4-grams 154
A.2 The Impact of Extracted Words on 54 Queries 157
A.3 The Impact of Stop Words on 54 Queries 159
ABSTRACT

Statistical language learning is the problem of applying machine learning technique to extracting useful information from large corpus. It is important in both statistical natural language processing and information retrieval. In this thesis, we attempt to build some statistical language learning and modeling algorithms to solve some problems in both English and Chinese natural language processing. These problems include context sensitive spelling correction in English, adaptive language modeling for Chinese Pinyin input, Chinese word segmentation and classification, and Chinese information retrieval.

Context sensitive spelling correction is a word disambiguation process to identify the word-choice errors in text. It corrects real-word spelling errors made by users when another word was intended. We build large scale confused word sets based on keyboard adjacency. Then we collect the statistics based on the surrounding words using affix information and the most frequent functional words. We store the contexts significant enough to make a choice among the confused words and apply this contextual knowledge to detect and correct the real-word errors. In our experiments we explore the performance of auto-correction under conditions where significance and probability are set by the user. The technique we developed in this thesis can be used to resolve lexical ambiguity in the syntactic sense.

Chinese Pinyin-to-character conversion is another task of word disambiguation. Chinese character can’t be entered by keyboard directly. Pinyin is the phonetic transcription of Chinese characters using the Roman alphabet. The process of Pinyin-to-character conversion, similar to speech recognition, is to decode the sequence of Pinyin syllables into corresponding characters based on statistical
n-gram language models. The performance of Chinese Pinyin-to-Character conversion is severely affected when the characteristics of the training and conversion data differs. As natural language is highly variable and uncertain, it is impossible to build a complete and general language model to suit all the tasks. The traditional adaptive maximum a posteriori (MAP) models mix the task independent model with task dependent model using a mixture coefficient but we never can predict what style of language users have and what new domain will appear. We present a statistical error-driven adaptive n-gram language model to Pinyin-to-character conversion. This n-gram model can be incrementally adapted during Pinyin-to-Character converting time. We use a conversion error function to select what kind of data to adapt the model. The adaptive model significantly improves Pinyin-to-Character conversion rate.

Most Asian languages such as Chinese and Japanese are written without natural delimiters, so word segmentation is an essential first step in Asian language processing. Processing at higher levels will be impossible if there is no effective word segmentation. Chinese word segmentation is a basic research issue on Chinese language processing tasks such as information extraction, information retrieval, machine translation, text classification, automatic text summarization, speech recognition, text-to-speech, natural language understanding, and so on. This thesis presents a purely statistical approach to segment Chinese sequences into words based on contextual entropy on both sides of a bi-gram. It is used to capture the dependency with the left and right contexts in which a bi-gram occurs. Our approach tries to segment text by finding the word boundaries instead of the words. Although developed for Chinese it is language independent and easy to adapt to other languages, and it is particularly robust and effective for Chinese word segmentation.

Traditionally Chinese words are not regarded being inflected with respect to tense, case, person and number, this information is captured by separate words that attach as clitics rather than affixes. Telling the part-of-speech of a word is not straightforward. In this thesis we classify Chinese words according to the substitutability of linguistic entities from the same class. We merge words/classes
together based on contextual information and class overlapping.

Traditional information retrieval systems for European languages such as English use words as indexing units and thus cannot apply directly to Asian languages such as Chinese and Japanese due to lack of word delimiters. A preprocessing stage called segmentation has to be performed to determine the boundaries of words before traditional IR approaches based on words can be adapted to Chinese language. Different segmentation approaches, N-grams based or word based, have their own advantages and disadvantages. No conclusion has been reached among different researchers as to which segmentation approach is better or more appropriate for the purpose of IR even on standard Chinese TREC corpus. In this thesis we investigate the impact of these two segmentation approaches on Chinese information retrieval using standard Chinese TREC 5 & 6 corpus. We analyze why some approaches may work effectively in some queries but work poorly in other queries. This analysis is of theoretical and practical importance to Chinese information retrieval.
CERTIFICATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

As requested under Clause 14 of Appendix D of the Flinders University Research Higher Degree Student Information Manual I hereby agree to waive the conditions referred to in Clause 13(b) and (c), and thus

- Flinders University may lend this thesis to other institutions or individuals for the purpose of scholarly research;

- Flinders University may reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signed

Dated

Jin Hu Huang
ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor Prof. David Powers for bringing me into natural language processing research field. I thank him for his guidance, tolerance, patience, support and encouragement over the past 10 years.

I am grateful to the members of AI group and KDM group for their discussion, friendship and support. I would like to thank the school for the financial support to attend conference in Beijing and Singapore.

I thank my family for their eternal understanding, patience and most of all, support. An enormous thanks go to my wife, Li Ping, for her love and support. Going overseas, becoming a mother and being a student were tough, but she has done so well and even found a job in government. So many times I promised to her that I would take time to finish this year. Finally I will make it in 2011. I would like to thank my parents-in-law and sister-in-law, who came over from China for the tremendous help. Feel sorry to my lovely daughter and son, Lydia and Jurgen. Sometime they are my excuses not finishing on time.

Specially thanks to Mr Eric Robins who supported me to come to study at Flinders at beginning. I would also like to thank Mr Jurgen Kracht who provided accommodation for me. I really enjoyed staying with him and his two cats, Heihei and Mushi in early my study.

I would like to thank the members of Somerton Baptist Church and Flinders Overseas Christian Fellowship for their sharing, prayers and friendship. Specially Kenneth Lim, Barry Wee, Merrilyn Teague, Dahlis and Robert Willcock, John and Marrilyn.

Due to some personnel reasons, I studied part time since 2003 and intermitted my study several times during 2005-1010.
This work was carried out during the tenure of International Postgraduate Research Scholarship and Flinders University Research Scholarship, and also received support under an Australia Research Council Discovery grant in the early stages.

To my parents and wife!

Jin Hu Huang
July 2011
Adelaide.
Almost all the results presented in this thesis have already been published in national and international conferences.

Chapter 2 is based on (Huang & Powers 2001)

Chapter 4 is based on (Huang & Powers 2004)

Chapter 5 is based on (Huang & Powers 2011)

Chapter 7 is based on (Huang & Powers 2003)

Chapter 8 is based on (Huang & Powers 2002)

Chapter 10 is based on (Huang & Powers 2008)

information retrieval, in ‘International Conference on Intelligent Systems Design and Applications (ISDA)’.

Rather than including the published paper as is permitted under the PhD rules, I have sought to integrate the material into the thesis in a cohesive way whilst achieving a balance between chapter that stand alone and avoidance of redundancy in relation to literature review.