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Personal preface:

Abstract:

The end of the 20" Century saw, in Australia, the beginning of Forensic DNA profiling for use
in criminal investigations and Court proceedings. Compared to modern abilities, DNA
profiling, when first introduced, had low sensitivity and low powers of discrimination. The
type of forensic samples that could be targeted were typically body fluids (such as semen, saliva
or blood) that had abundant (at least by today’s standards) amounts of DNA available. The
laboratory hardware and the profiling systems improved with time and became more sensitive,
were able to produce informative results quicker, at less cost and with greater discrimination
power. These improvements encouraged the forensic community to branch out from the
standard body fluid samples and by the late 1990s forensic samples were being taken from
what was termed ‘touch DNA’, tiny amounts of DNA left behind on a surface, not from a body
fluid, but simply from being transferred when the item was touched. These new samples,
coupled with the continually increasing sensitivity of DNA profiling, meant that the DNA
profiles became more complex, in terms of the number of contributors and the quality and
amount of DNA template.

While a substantial level of resources had been expended on the improvement to the ability to
generate a DNA profile, a disproportionately small amount of effort had been put into how best
to interpret the results. Starting at the turn of the 21% century, a series of methods were
developed that could be used to interpret DNA profile. There were two main branches of
interpretation methods that formed, which are commonly referred to as the Likelihood Ratio
(LR) method (also called the Bayesian method), which dominated in Europe and Australia, and
the inclusion probability method (also called the Random Man Not Excluded, or the frequentist
method), which dominated in the USA. In the forensic field today the LR method is generally
accepted as the superior method and so is the focus of this thesis.

All LR methods have the same foundation, that is, they seek the ratio of the probability of the
observed DNA profile (or multiple profiles) given two competing propositions, which typically
align with a prosecution stance and a defence stance. The probabilities are assigned for each
proposition by taking a weighted sum of all genotype probabilities that apply under that
proposition. The simplest form of the Likelihood Ratio method is known as the binary
approach, which weights the genotype probabilities with either a 1 or a 0, i.e. they are either
included in the sum or they are not. The binary method typically relies on a subjective
assessment of the DNA profile by an analyst, who would be utilising a system of rules and
threshold for interpretation. There are many shortcomings of such a system, such as; the very
restricted pool of profiles to which it could be applied, the inconsistent application between
analysts and the waste of much of the information within the DNA profile (i.e. the intensity of
each piece of information and its molecular size).

A more elegant approach to weighting the genotypes within the LR approach was termed the
‘semi-continuous method’. This method weights the genotypes using probabilities associated
with events that occur during the process of generating the DNA profile. The semi-continuous
method expanded the types of profiles for which a statistical weighting could be applied and
was also able to be applied in a more consistent manner. Semi-continuous systems still did not
utilise much information from the DNA profile other than the presence or absence of
information and so in that regard still had a limited discrimination powers.
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This thesis is a compilation of publications that extend the semi-continuous methods of
developing a LR to what has been termed ‘fully-continuous’. This is achieved by the use of a
much greater level of information from DNA profiles. In order to utilise peaks heights, models
have been developed that describe aspects of DNA profile behaviour, that ultimately lead to
the patterns of peak intensity seen in a profile. These include models and parameters for stutter,
degradation, saturation, peak height variability within and between regions, drop-out and drop-
in. For complex DNA profile data, the numbers of combinations that these different parameters
can take exceeds the computational ability that would allow an exact solution based on
Maximum Likelihood and so a stochastic process using Markov Chain Monte Carlo is
developed. The creation of a fully continuous DNA profile interpretation model and a
stochastic implementation was trialled of a range of DNA profiles that vary in number of
contributors, DNA amounts and degradation levels that might typically be encountered in a
Forensic Laboratory.

In addition to the models and systems that allow the deconvolution of complex, mixed DNA
profiles, this thesis describes extensions to the LR theory that were developed that allowed a
statistical weighting to be provided for the comparison of any reference to virtually any DNA
profile. The behaviour of the LR was examined in depth by observing trends in the magnitude
of the LR in problems created that varied important factors over a range of plausible values.
These trends were aligned with theoretical expectations to judge the performance of the fully
continuous system. The system was also extended so that a LR based method could be used to
search a database of DNA profiles for either a potential contributor, or a potential relative of a
contributor to an unresolvable DNA profile (something that had previously not been possible
in the forensic community in Australia).

Methods were developed for calibrating the system to specific laboratories performance so that
it provided evidential strengths that were appropriate for the type of data being produced by
that specific laboratory. As this concept of expert system calibration, and the concept of a fully
continuous system based on a stochastic process, was relatively new in the field of Forensic
Biology, some time was spent on validating its performance and instructing others on how they
could validate the performance of the system. Validation of the developed fully continuous
system was aligned with published guidelines on validation, produced by international advisory
bodies on DNA profile interpretation.

A discussion on how the models for deconvolution and LR development could be extended to
apply to new situations is provided. Specifically, the deconvolution of DNA profiling data
derived from the Y-chromosome (called Y-STR profiling) is shown and the extension of both
deconvolution and LR development to consider a range of contributors within the one analysis
is given.

To conclude the thesis the work on DNA profile evaluation is placed into a wider case context.
This includes a study into the interpretation of the raw electrophoretic data that makes up the
DNA profile (and preceding the DNA profile evaluation) and a study into how the support for
an individual’s presence or absence from a DNA sample can be considered in conjunction with
other case and sample information in order to help address queries of questioned activity.
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Chapter 1: Introduction

In the years leading up to 2009, the standard method of DNA profile interpretation around
Australia involved an analyst (experienced in viewing electropherograms) using their
experience-based understanding of DNA profile behaviour to pass judgement on whether an
individual of interest could be a contributor of DNA to a sample. Typically, one of three
possible opinions would be reached; either the person being compared could be excluded as a
contributor, or they could not be excluded as a possible contributor or the complexity was such
that no opinion was given. This final opinion was commonly called ‘inconclusive’, as in ‘it is
inconclusive as to whether the person could have contributed to the profile’, noting that it is in
fact always inconclusive as to whether someone contributed to a DNA profile, hence the reason
for carrying out an interpretation in the first place. If a person was not excluded as a possible
contributor to the DNA profile, then sometimes it was possible to provide a statistical weighting
to the opinion. In order for this to occur, the DNA profile had to meet a number of highly
conservative rules (referred to as thresholds in the parlance of forensic science) that attempted
to mitigate against any possible misinterpretation or overstating of evidential strength. The
desire in forensic science is to always bias opinions in favour of falsely stating that a DNA
donor is not a contributor of DNA to the sample rather falsely stating that a non-donor is a
contributor of DNA to the sample. This desire saw the cultivation of thresholds that were highly
wasteful of information in the DNA profile, even when calculating a numerical evidential
weight.

The issues with this manual method of interpretation can be grouped into three main categories:

1) The process of applying threshold is binary, i.e. based on the use of a threshold, an
event is either deemed possible or impossible. In a DNA profile, an example of this
occurs when considering whether two peaks could come from a common donor.
Ideally, they should be similar in height but will have been affected by the random
variations of peak height, inherent in the process of generating a DNA profile. If a
‘balance threshold’ were applied it would mean that the possibility that they could
be paired was absolute (the probability being assigned as 1) and would remain so
for a range of possible peak height values until at some point one peak height
(relative to the other) falls below the threshold at which point the pairing becomes
impossible (and is assigned a probability of 0). This phenomenon has been
described in the forensic community as ‘falling off the cliff’, where a change in the
smallest increment of some measure leads to a diametrically opposing opinion. This
is a consequence of applying any threshold and tends to yield a very poor
description of reality close to the threshold values. In forensic science, the fact that
opposing views could come from a tiny change in situation was exploited by
lawyers and the Court as a claimed demonstration of ‘untrustworthiness’ or
‘unreliability’.

2) Due to the logic difficulties associated with thresholds, and the desire for
conservativeness the threshold used meant that much data within the DNA profile
was wasted. Apart from it being typical to use only the presence or absence of peaks
in a LR calculation (and not utilising their heights other than the initial, manual,
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pre-calculation process of exclusion or non-exclusion) it was also typical to ignore
entire blocks of information (termed ‘loci’ in a DNA profile and referring to one of
the regions of the DNA targeted by a DNA profiling system) or use approximations
under the belief that they were always conservative.

3) Because the initial assessment of exclusion or non-exclusion was largely experience
based analysts in different laboratories, or different analysts within the same
laboratory, or even the same analyst at different times, would come to different
conclusions on the same profile. Even when initially trained in the same manner, if
one analyst happened to come across an aggressive defence in court that challenged
their opinion of non-exclusion, then they would be more likely to shy away from a
non-exclusion opinion in the future. The forensic community tried to rectify the
situation via a system of thresholds, but found they had to have a balance: Too
simple and the system would not be applicable to many profiles and following the
rules would find an analyst in areas of undefendable logic-traps. Too complex and
they could not be applied in a consistent manner, rendering pointless the very reason
they were created.

In 2009 one forensic laboratory in Australia came to the realisation that the manner in which
they had been applying their system of thresholds was not acting conservatively in the way
they intended. In very short time they altered the manner in which they were carrying out their
evidence evaluations and reissued reports to the courts in a number of cases. Many other factors
came into play, however the outcome was that the courts lost faith in the results they were
given and the biology section of the forensic laboratory was temporarily shut down pending a
review. In late 2009 a ‘crisis meeting” was held with attending representatives from each
forensic biology laboratory around Australia and New Zealand to address the issue. Coming
out of the crisis meeting were two main points:

1) Laboratories realised how differently they were evaluating DNA profile evidence.
This was most clearly demonstrated when an exercise was conducted whereby a
series of DNA profiles were sent around to each laboratory for assessment, and the
results later compared and contrasted.

2) Laboratories realised the need for an Australia-New Zealand statistical specialist
working group (Stats SWG) with the overarching remit of standardisation and
education. The formation of this group in 2010 saw John Buckleton as chair and
Duncan Taylor as vice chair (who then become chair of the group in 2012, until
2014)

The formation of the Stats SWG was one of the biggest positive moves made towards DNA
evidence evaluation for many years in Australia, as it allowed free discussion of ideas and
concepts between laboratories. While, in the short term a more standardised threshold-based
system was settled on (elements of which are still refer to today), in the longer term the group
agreed that the best outcome would be to move from threshold-based systems altogether. Work
was started on a system of DNA evidence interpretation that replaced rules with models, and
threshold with distributions. Under the guidance of two forensic organisations (Forensic
Science SA and the Institute of Environmental Science and Research in New Zealand) and the
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National Institute of Forensic Science in Australia (headed at that time by Alastair Ross), work
was started on developing a system that could interpret mixed DNA profiles originating from
two individuals, taking only the most fundamental of profile aspects into account, with the
potential that it could later extend to more complex problems. Over the next year formulae
were derived, and systems developed that could address the issue and eventually a system based
on Markov Chain Monte Carlo was developed. The mathematics was derived in generality, so
that there was no limit to the profile complexity that could be analysed (save perhaps computing
power, time and peoples comfort levels). By 2011, a basic working system had been developed
that passed an initial trial, by testing a series of mixed DNA profiles produced for validation.
By mid-2012 STRmix™ was introduced into active casework in South Australia and New
Zealand, with the rest of Australia coming on board over the following few years.

Chapter 1 provides a brief introduction to the basics of DNA profiling (section 1.1) and
interpretation (section 1.2), which is included so that this thesis can be read as a closed piece
of work, even for those who are unfamiliar with the general topic. Section 1.3 provides some
content on the continuous system of DNA profile interpretation that is the core of the thesis.

Chapter 2 elaborates on the models that describe DNA profile behaviour. Once defined (and
tested) these models can then be combined into a complete system used to describe,
probabilistically, observed DNA profiles, and more importantly assess the potential
contribution of nominated individuals to evidence profiles.

Chapter 3 describes the statistic used to evaluate DNA evidence, the likelihood ratio (LR).
Within the LR there is a vast array of topics that are considered; the way propositions are
formulated, the parameters within the LR model that contribute to uncertainty, the
consideration of complexities such as the presence of related individuals in a DNA profile, and
the exchange between considering a single component of a mixture to the entire mixture. Many
of these topics were highlighted during the development and testing of STRmix™ and required
the development and derivation of mathematical descriptions and solutions.

As STRmix™ uses models that describe DNA profile behaviour, it became apparent that the
system would need to be calibrated to each laboratory process to which it was applied. Chapter
4 discusses the calibration of a complex MCMC system to the functioning of a laboratory.

Chapter 5 presents a series of works that were required to test the functioning of the MCMC
system against theoretical expectations, in an effort to demonstrate its ability to provide
appropriate evidential strength when evaluating individuals’ potential contribution to a mixed
DNA profile.
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Chapter 6 demonstrates the extent to which STRmix™ has been successful in achieving
consistency between analysts and laboratories.

Chapter 7 and 8 present work focussed on the future directions of the system of DNA evidence
evaluation (chapter 7) and then efforts to improve the data being produced prior to the use of
STRmix™ and after STRmix™ (chapter 8).

Chapter 9 provides information on the impact that this work has had on the forensic
community, mainly from its use in the DNA analysis software STRmix™
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1.1 An introduction to DNA profiling

One of the most commonly used forensic science disciplines is forensic biology. Typically,
when a criminal case is submitted to a forensic biology institution, it is done so with the aim of
identifying whose DNA is present on an item, which can be used as evidence that someone has
(or has not) been in contact with an item of probative interest in the case. In order to carry out
the task of identifying DNA on an exhibit, the exhibit is examined, and samples are taken from
areas of interest (e.g. the handle of a weapon to identify who may have handled it, the collar of
a t-shirt to identify who may have worn it, or an intimate swab taken from a victim to identify
who may have been in contact with them). The sample then has cellular material broken open
to release DNA (a process known as DNA extraction), the DNA is quantified and then targeted
segments of the DNA are copied millions of times, with each fragment having a fluorescent
tag attached, in a process known as polymerase chain reaction (PCR). The amplified DNA
fragments are separated according to size using a capillary of acrylamide gel, and then detected
by excitation of the fluorescent tags and detection by a charged couple device camera. The
greater the number of DNA strands that were present in the initial sample, the more amplified
PCR fragments will be produced and the greater the detected fluorescent signal. The resulting
graph of fluorescence over time is referred to as a DNA profile.

Figure 1 shows a DNA profile from a single individual, created using a commercially available
PCR kit called GlobalFiler™ (Thermofisher). GlobalFiler™ targets 24 regions of human DNA,
two of which are associated with determining the sex of an individual and 22 of which are
highly mutable short tandem repeats (STRs) that are used for individualisation.
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Fig. 1. A DNA profile shown in the form of an electropherogram (epg)

The horizontal axis represents the molecular weight of the PCR amplified fragment, expressed
in base pairs. The signal is divided into six horizontal panels, which represent the six types of
fluorescent tag used during the PCR process (6-FAM, VIC, NED, TAZ, LIZ and SID). The
vertical axis is measured in relative fluorescent units (rfu) and represents the amount of starting
DNA in the sample.

Once the fluorescent signal has been captured from the capillary electrophoresis instrument it
must be interpreted before the information can be evaluated in respect to a criminal matter. The
interpretation consists of designating areas of fluorescence on the DNA profile into categories.
Some of these categories are useful in the evaluation as they represent information about the
DNA that was present on the originally sampled exhibit. Other types of fluorescence are
artefactual and arise as a consequence of producing the DNA profile. The main types of
fluorescent signal that are classified are:
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e Baseline — The level of background noise present in DNA profiles produces by the
capillary electrophoresis instrument. Baseline is not used in DNA evidence evaluations.

e Allele — The peaks that represent the STR fragments that have been amplified during
the PCR process. Alleles are used in all evidence evaluations.

e Stutter — Artefacts produced during the PCR process, stutters are replication errors that
lead to small peaks that appear around the ‘parent’ allele. Stutters can be of different
types commonly named in relation to the position relative to the parent peak i.e. ‘back
stutter’ (one STR unit less than the parent), ‘forward stutter’ (one STR unit greater than
the parent) or ‘half-stutter’ (half a STR unit less than the parent). Stutters are used in
some evidence evaluations (depending on the sophistication of the model being used
for evaluation).

e Pull-up — Artefacts due to the overlap of the distribution of wavelength emitted by each
of the fluorophores used in commercial profiling kits. When many fragments labelled
with a specific fluorophore are detected by the CCD camera a high intensity peak is
produced in the corresponding dye lane. Lower intensity peaks are seen in dye lanes
that correspond to fluorophores with similar excitation wavelengths. Pull-up is not used
in DNA evidence evaluations

Once a DNA profile has been generated in the laboratory and processed to remove any
unwanted artefactual signal, it can be used for evaluation. Evaluation is the name given to the
comparison of the evidence profile to reference DNA profiles, to determine whether the donor
of the reference could also be a donor of DNA to the evidence. The weight of evidence that is
calculated to carry out this task is a likelihood ratio, which is explained in many places
throughout this thesis, and which is introduced in more detail in section 1.2.
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1.2 The evaluation of DNA profile data using the likelihood ratio

The standard method of modern DNA profile evaluation is the use of a likelihood ratio (LR).
The LR considers the probability of obtaining the observed data (O) given two competing
propositions which align with the prosecution (called Hp) and defence (called Hd). The LR is
then:

~_ PO Hp)
Pr(O| Hd)

In order to evaluate this expression, a series of nuisance parameters must be considered. The
parameter that has the longest recognition are the genotypes of the contributors to the DNA
profile (call the set of genotypes that could describe the profile S, and there are J of them to
consider). The LR is then stratified across genotype sets:

ZJ:Pr(O|Sj)Pr(Sj|Hp)
LR =12
> Pr(0|S;)Pr(S, | Hd)

j=1

where the term Pr(O|S;) is the probability of obtaining the observed data if genotype set ‘j’

describes the genotypes of the underlying contributors (and are often referred to as weights)
and Pr(S; [ Hx) is the probability of that genotype set, given the proposition (and the

genotypes of the contributors specified within it). The great challenge to the forensic
community in DNA profile evaluation is the ability to assign values to the weights. This point
(and more detail on LRs) is discussed in detail in various chapters of the thesis.

Prior to the advent of modern software systems that can be used to analyse DNA profile data
(these will be discussed in depth during the thesis) the method of DNA profile interpretation
and evaluation was a threshold-based system. The use of threshold was mentioned the
introduction as assigning the values of the weights in the LR as 0 or 1. It is worth briefly
describing the threshold-based system of DNA profile interpretation because:

e It sets the scene that led to the development of probability-based DNA profile
interpretation systems (discussed throughout this thesis)

e The probability-based DNA profile interpretation systems utilise models that remove
the need for these thresholds

e Once the thresholds have been applied to the DNA profile, the resulting ‘filtered’
information is then used in the likelihood ratio evaluation

Figure 1.2.1a shows two regions of a DNA profile that an analyst may wish to interpret. Say
that the analyst has decided that the profile originates from two individuals and wants to
‘interpret’ the various genotypes that could give rise to this combination of peaks. This would
typically occur by the application of a series of thresholds to screen out potential
combinations of the allele as impossible (more accurately, improbable to the point that they
were going to be discounted as possible genotype combinations). Panel b in Figure 1.2.1
shows the application of a peak balance threshold. In this example, consider that the analyst
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wishes to interpret the genotype of the major contributor. To this end the two tallest peaks at
each locus are considered as potentially pairing, and belonging to the major DNA donor. If
their height is within a predefined threshold of acceptable balance this would be an allowed
pairing and the analyst could then continue to apply additional thresholds. If they fall outside
the balance threshold, then the analyst would abandon the genotype set being considered.
Panel 1.2.1c shows the application of a dropout threshold (in blue) and a stutter threshold (in
green). In later chapters in this thesis these terms will be explained and modelled in great
detail and so that work is not repeated here. It will suffice to say that both dropout and stutter
are properties of DNA profiles, for which some behaviour is expected and for which
thresholds have (in the past) been set. Again the analyst would consider the genotype and the
combinations of dropout or stutter that the genotype being considered would require in the
observed data in order to make a decision as to whether this genotype could reasonably
describe the observed data, and again this may eliminate the genotype set from consideration.
The final threshold shown in Figure 1.2.1 id panel d which applies a mixture proportion
threshold (in essence the purpose of this threshold is to ensure that the larger peaks at one
region would align with the larger peak at another region, as expected by DNA amounts
being contributor specific and constant across regions). Again this may eliminate or allow
genotype sets through the interpretation.

At the conclusion of the process the analyst would left with genotype sets that passed all the
threshold-based rules, and if there were only one of these then it would be possible to
interpret that component of the profile distinctly from any other. This process of threshold-
based interpretation was very wasteful of information, difficult to apply consistently and
would often lead to situations where no statistical calculation could be conducted (as too
many genotype sets were considered as possible).

a) DNA profile

| |
JUL JUAA
R
b) Application of peak
H% | balance threshold (red)
AJ UU L JUM:::::::::::::};:
S AT

c) Application of dropout
threshold (blue) and stutter

.............. e TR -
LT T et

Page 15 of 344



d) Application of mixture
proportion threshold

H% . (yellow)

i Jl s
JUW\ .............. ? H
Figure 1.2.1: Example of a threshold-based system of DNA profile interpretation

i

As understanding of DNA profile behaviour and interpretation methods grew over the years,
it became possible to apply models to profile data, rather than thresholds. For example,
instead of applying a balance threshold, a shift was made to a sliding scale of probability i.e.
this level of imbalance is only seen in X% of paired peaks. These models then were refined
and eventually used in probabilistic genotype interpretation systems. It is the transition from
the manual, threshold-based systems of DNA profile interpretation to the computerised
application of statistical models to assign values to the weights in the LR that is the core of
this thesis and whose aspects are described in detail in the chapters that follow.
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1.3: The fully continuous Bayesian interpretation method

Book chapter: ‘Chapter 9: The Continuous Model’, written by Duncan Taylor, Jo-Anne
Bright and John Buckleton. From the book ‘Forensic DNA Evidence Interpretation’
Second edition. Edited by John Buckleton, Jo-Anne Bright, Duncan Taylor. CRC Press.
2016. — Book cited 291 times

Statement of novelty: This chapter is a new chapter, not present in the original edition
of the book. The majority of material in this chapter is new, or summarises work carried
out either solely or in conjunction with colleagues. It has been written in a manner that
is generally more accessible to individuals who are new to the field of forensic statistics
than the original description in the scientific papers from which they derive.

My contribution: My contributor was as main author. | initiated the writing of this
chapter and contributed a majority of the work within.

Research Design / Data Collection / Writing and Editing = NA / NA / 60%

Additional comments: This chapter is a gentle introduction to the idea of fully
continuous interpretation systems and briefly summaries many points in other works |
present within my thesis.
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The Continuous Model

Duncan Taylor, Jo-Anne Bright, and John S. Buckleton
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Introduction

The key point of difference of a continuous model’*'-7# is that it considers the peak heights
as a continuous variable. This chapter describes the biological models and statistics behind
STRmix™, one such continuous model.

Let the genotype of person i be G,. The genotype of the person of interest is Gp. To form the
likelihood ratio (LR) we consider two propositions H, and H,, chosen to align with the pros-
ecution and the defence, respectively. We consider a mixture assigned as coming from two
people although the principle is quite general. The two propositions H, therefore each define one
or many sets of two genotypes G; and G, as the proposed contributors. These may or may not
include the person of interest (POI). Typically the PO is included in all sets under H,, but not
under H,. There may or may not be genotypes from other persons known or reasonably assumed
to be part of the mixture.

We seek

- P(GC | HpnGSxI)
P(Ge|Hy,Gs, I)

For simplicity we drop the background information I from the conditioning henceforth
and use p for a probability density and Pr for a probability. It is convenient from here on to
consider terms of the type p(Gc|S,Gp). Let H, specify the sets of pairs of genotypes S, k=1 ... M,
then

M
P(Ge | HuGs)= Y. p(Ge |S1,Gs)Pr(Se | HGs)
k=1

The binary model assigns the terms p(G|S;,Gp) the value 0 or 1 depending on whether the crime
profile is deemed possible or impossible if it originated from the genotypes specified by S;.

If one sample is run multiple times the results will not always be the same. Both the abso-
lute and relative peak heights may vary within and between loci.!'#7#> What the binary model
is doing is assigning the values 0 and 1 based on very reasonable methods that approximate
the relative values of p(G¢|S;,Gp). In essence p(G|S;.G,) is assigned as 0 if it is thought that this
probability density is very small relative to the other probability densities. It is assigned a value
of 1 if it is thought that this value is relatively large. As such it is an approximation.

This method has served well for a number of years and in a great many cases. However all
approximations suffer from some loss of information.

A fully continuous model for DNA interpretation is one which assigns a value to the prob-
ability density p(G,|S;.Gp) based on treating the peak heights as a continuous variable.

Such models may require some preprocessing, say of stutter peaks, or may be fully auto-
mated. These methods have the potential to handle any type of non-concordance and may assess
any number of replicates without heuristic preprocessing and the consequent loss of informa-
tion. Continuous methods are likely to require models for the variability in peak heights and
potentially stutter.
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Introduction

Many of the qualitative or subjective decisions that the scientist has traditionally handled -
such as the designation of peaks as alleles, the allocation of stutters and possible allelic
combinations — may be removed. Instead the model takes the quantitative information from the
electropherogram (epg), such as peak heights, and uses this information to calculate the prob-
ability of the peak heights given all possible genotype combinations.

Praofile Information

As described in this book the DNA profile evidence is typically assessed in the framework of an
LR. LRs have the general form

D wiee(si|H,)
__ZIw]Pr(S} |Hy)

where w, is a weight for a set of explanatory genotypes (S,). In Chapter 8 we showed how the
weights can be a list of ones or zeros in a binary system or dropout and drop-in probabilities in
a semi-continuous system. Both these systems summarize the DNA profile data in some way.
In the case of a binary system the summary comes in the form of interpretational thresholds.
Peaks are summarized by grouping them into binary categories of either passing or failing a
threshold-based test. For example, a dropout threshold (ST) will group single-peaked loci either
as originating from a homozygote or potentially having a dropped-out partner peak. Semi-
continuous systems summarize the data in that they use the DNA profile to develop probabili-
ties for dropout or drop-in that are applied to all peaks and all posited contributing genotypes.
Semi-continuous systems may also have a secondary system for screening out potential contrib-
uting genotypes based on stutter or heterozygote balance (Hb) thresholds.

The more correct and relevant information a system is able to make use of, the better its
ability will be to differentiate true from false donors.”¢ Figure 9.1 shows diagrammatically
that as more information is provided to a DNA profile analysis system (either with more
DNA, more polymerase chain reaction [PCR] replicates, simpler profiles or more information
about assumed contributors) the ability to distinguish true from false hypotheses is increased.

LR

LA
Favouring
inclusion Increasing
information,
e.g. more PCRs,
less contributors,
£ more knowns
o
£
a
& Neutral
=]
g
k]
a Increasing
information,
e.g. more PCRs,
less contributors,
more knowns
Favouring
exclusion

Increasing information (e.g. more DNA)

Figure 9.1 Demonstration of the effect that information has on the ability to distinguish true from
false hypotheses.
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This same thinking can apply to the system being used to interpret a DNA profile, i.e. the
more relevant information that is provided, the better the system will be able to distinguish true
from false hypotheses. In simple terms true contributors will have more support for their inclu-
sion to a profile and non-contributors will be excluded more often or with more strength. This
situation then leads to the question, what information exists within a DNA profile?

On face value the observable data are as follows:

® Peak heights
®  Molecular weights
®  Allelic designations (which broadly represent underlying DNA sequences)

However there is further information that can be provided to an interpretation system that is
not directly obtained from the DNA profile:

® How peak heights are related to template DNA amount

® How DNA profiles degrade

®  How loci amplify at differing efficiencies

® How peak heights have a level of variability

® Information about the generation of artefacts during PCR (i.e. stuttering or drop-in)
®  How replicate amplifications of the sample extract behave

All of these are termed models. There is a further class of information that could be described
as calibration data. This will typically be specific for a set of laboratory hardware and a method
of profile generation:

®  How much a specific allele and locus combination is expected to stutter
®  How much peak heights are expected to vary (both allelic and stutter)
e How much peak height balance is expected between loci

®  How much drop-in is expected

® When a capillary electrophoresis instrument is expected to reach fluorescent
saturation

® Below what level a laboratory is not prepared to read information (typically referred
to as a baseline or analytical threshold)

It is apparent that both the list of models and the calibration data list is typically the type
of information learnt by analysts that interpret DNA profiles. Their knowledge of these DNA
profile behaviours and laboratory performances has classically been used in their assessment of
DNA profiles prior to interpretation in an analytical system.

The final set of data that could be provided to a DNA interpretation system would relate to
specifics of a DNA profile being analyzed. We term these the unknowables as in reality their true
value can never be known:

® The number of contributors to a profile (N)

e DNA amounts of each contributor (t,)

e The degradation of each contributor (d,)

® The amplification efficiency of each locus (A')

® Replicate amplification strength (R))

® Thelevel of peak height variability within the sample
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There are two points to note here. First there is typically a model that describes the behaviour
of each of the unknowables. Second again in classic DNA profile interpretation an analyst would
be trialling different combination of these factors (perhaps unknowingly) in their assessment of
potential contributing genotypes.

Continuous DNA profile analysis systems seek to make use of all the observable data using mod-
els and calibration data and even the unknowable information in order to deconvolute a profile
into a list of genotype sets (S, a set of N individual genotypes) each with an associated weight that
in general terms describes how well the observed data is described by that particular genotype set.

STRmix

"There are at least four implementations of the continuous approach of which we are aware 10111743747
For a good summary of the programmes and their abilities we direct the reader to Ref. 462. While it
would clearly be more balanced to discuss the various continuous approaches available at this time,
we are unable to do justice to three of them due to a lack of in-depth understanding and in some
cases suggestions of potential litigation. We therefore concentrate on the one with which we are most
familiar.

STRmix uses standard mathematics and a model for peak and stutter height. Total allelic
product modelling assumes a degradation curve that is exponential but allows each contributor
to a mixture to have different curves. Individual loci are allowed a limited liberty to be above or
below this curve. The total allelic product is split into stutter and allelic peaks using allele-specific
stutter ratios developed from empirical data. The contribution to a peak from different allelic or
stutter sources is assumed to be additive. The variability about the expected peak height is mod-
elled on empirical data and the relative variance is large for small peaks and small for large peaks.
This variance is allowed some limited flexibility within the system so that it can adapt slightly for
good or bad profiles. Independence is assumed across peaks at a locus and between loci.

The model for the peak and stutter heights and other assumptions results in a probability
density for the profile given a set of input parameters for such things as template and degrada-
tion. These input parameters are unknown.

To deal with these unknown inputs STRmix uses Markov chain Monte Carlo (MCMC) and
the Metropolis-Hastings algorithm. These terms will be unfamiliar to most forensic biologists
but appear to be teachable. MCMC is close to a ‘hot and cold’ game.

It is likely that continuous methods will supersede all other methods. At this stage we suspect
that STRmix has a slightly higher false exclusion rate than the semi-continuous models and a
much lower false inclusion rate. The false exclusions for STRmix are usually caused by unusual
PCR behaviour.

The software has improved the number of interpretable volume crime cases in New Zealand
by 17%.

Mass Parameters

We may consider the evidence of the crime stain G, to consist of a vector of observed peak
heights O made up of a number of individual observed peak heights O, for allele a at locus ! for
replicate r. Let there be R replicates and L loci.

To describe these observed peaks we must consider various values for the unknown param-
eters. We introduce parameters to describe the true template level. Experience and empirical
studies suggest that the height of peaks from a single contributor are approximately constant
across the profile but generally have a downtrend with increasing molecular weight. Given this
general downtrend individual loci may still be above or below the trend. In addition the slope
of the downtrend trend may vary from one contributor to another. The product from the ampli-
fication of an allele is dominated by correct copies at the allelic position and back stutter at
one repeat shorter than the allele. There are a number of other more minor products ignored

281

K24158_Book.indb 281 24/1115 5:28 pm

Page 22 of 344



Forensic DNA Evidence Interpretation

in this treatment. We term the sum of the allelic and back stutter product total allelic product.
We require a term for the true but unknown template level available at a locus for amplification.
This is a function of the input DNA and any degradation or inhibition effects. Since template is
described by weight, usually in picograms, we coin the term mass to subsume the concepts of
template, degradation, inhibition and any other effect that determines the expected total allelic
product at a locus.

Hence the mass of an allele at a locus is modelled as a function of various parameters which
we collectively term the mass parameters. These are as follows:

1. A constant t,, for each of the n contributors that may usefully be thought of as template
amount.

2. A constant d,, which models the decay with respect to molecular weight (m) of tem-
plate for each of the contributors to genotype set S;. This may usefully be thought of as
a measure of degradation.

3. Alocus offset at each locus, A/, to allow for the observed amplification levels of each
locus.

4. A replicate multiplier R. This effectively scales all peaks up or down between
replicates.

We write the mass variables {d,: n =1, ..., N} and {t,: n =1, ..., N} as D and T, respectively,
{Ak1=1,..,L}as Aand {R;: n=1, ..., R} as R. The variables D, A, R and T are written collec-
tively as M.

Template
The heights (or areas) of the peaks within the epg are approximately proportional to the amount
of undegraded template DNA.”8-75! Therefore when building a picture of an expected profile
the amount of DNA for each contributor will directly relate to the peak heights of contributors.
We show this empirically by calculating the average peak height for GlobalFiler™ (Thermo Fisher
Scientific, Waltham, MA) profiles generated using varying amounts of DNA (Figure 9.2).

As expected there exists some stochastic variation in average peak heights; however a clear
linear relationship can be seen between input DNA and fluorescence.

Average peak height (rfu)

T

300 400 500 600 700 800 900 1000
Amount of DNA added to PCR (pg)

Figure 9.2 Average peak height for GlobalFiler profiles produced on a 3130x/ with varying amount
of input DNA.
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It is also expected that peak heights are additive; i.e. if there are multiple sources of a single
allele, the height of that allele will equal the sum of the individual expected heights from each
source. This is termed stacking in the United States. This additivity is assumed to hold true
whether the sources are all allelic or whether they are a combination of stutter and allele.

Degradation

The heights (or areas) of the peaks within the epg are approximately proportional to the amount
of undegraded template DNA.74¢-75! However this relationship is affected by a number of system-
atic factors. Notable among these factors is the molecular weight (m,) of an allele, a.

A typical epg has a downward trend with increasing molecular weight. This is variously
described as the degradation slope or the ‘ski slope’.72%752753 The term degradation slope alludes
to a suggested cause, degradation of the DNA. There are many chemical, physical and bio-
logical insults which are believed to contribute to DNA degradation or inhibition of a profile.
Environmental factors such as humidity,”>* bacteria’ or other forces such as ultraviolet light
break down the DNA, destroying some fraction of the initial template.”> Although the cause of
the slope may not be known, we will refer to this ski slope effect as degradation to comport with
common usage. Of interest is that fresh buccal scrapes processed immediately show a degrada-
tion slope.

It is important to understand how degradation affects these models. The simplest model is
linear. That is, the expected peak height declines constantly with respect to molecular weight.
This can be demonstrated crudely by taking a paper epg and drawing a downward sloping
straight line across the apex of the heterozygote peaks from the lowest molecular weight locus to
the highest molecular weight locus.!?°

If the breakdown of the DNA strand was random with respect to location, then we would
expect that the observed height of peak a, O,, would be exponentially related to molecular
weight.”?8

Amplification Efficiency

When template DNA amount, degradation, fluorescence and peak height variation are taken
into account using the models described thus far, the variation in peak heights between loci is
still more variable than predicted. This additional variability arises from differences in ampli-
fication efficiencies between loci. These differences appear to vary with time and maybe even
sample to sample. They may be affected by, at least, co-extracted materials that affect the PCR
process. Imagine, initially, that we allow a locus-specific amplification efficiency, A' (LSAE),
at each locus. Consider the profile in Figure 9.3.

Figure 9.3 Profile showing expected heights at a whole profile level with the dashed line and the
adjustment made by locus-specific amplification efficiency if it were completely free to take any value.
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If we allow the A’ variables to be free, we will model the mass of template at each locus
according to the dotted lines in Figure 9.3. Look now at the heterozygotic loci. If one allele is
above the mass line then the other is always below. In fact if one is x rfu above then the other
is x rfu below. They are fully correlated. This is because the mass has been overfitted to the data.
How could we fit at the correct level, neither over nor underfitted?

Consider the question, how high is peak b? It would be helpful to know the height of peak a,
the partner allele of b from a heterozygote. Let us say peak a is height 400 rfu. It would make sense
to guess that peak b was also about 400 rfu. However further imagine that you were told that peak
a was a bit high relative to the true template at this locus. In fact the true template at this locus
suggests that peak a should be of height 350 rfu and in this case it must have varied upwards.
Given this knowledge, we would guess that peak b would be about 350 rfu. What this suggests is
that if we know the true template at a locus then the height of peak a is not further information
regarding the height of peak b. Another useful way to think of this is that the two peaks of a het-
erozygote should scatter around the true template and if one goes up that does not imply the other
one will. This gives us a diagnostic to find the true template. It is that value where the two peaks
of a heterozygote are uncorrelated when we consider their variation from this value.

To obtain this value we cannot allow the A’ values to be free. If we did they would overfit.

The continuous method with which we are most familiar is STRmix. We would write in
more generality if we knew better what the other implementations do. However it is very likely
that the principles are the same. The method applied in STRmix to find the true template at a
locus allows the A’ values some limited freedom to fit to the data. The amplification efficiency
at each locus is modelled by a lognormal distribution with a mean of zero and a fixed, but opti-
mized, variance determined from laboratory calibration data:

logm[%] ~N(0,0%)

where O{A'} is the observed amplification efficiency for locus L. Note that E{A} is the expected
amplification efficiencies, which we expect to be 1, giving log,, (A') ~N (O,Gi) where we have
just used A’ to signify the observed amplification efficiency for locus 1.

By applying this penalty (strictly a prior distribution) there is a pull back towards the mean.
'This acts against peak height variability like rubber bands pulling the expected heights for
the locus back towards the expected level for the whole profile (Figure 9.4 shows this process
diagrammatically).

Figure 9.4 Profile showing expected heights at a whole profile level with a dashed line, the influ-
ence of peak height variability (solid arrows) pushing the locus-specific expected height (dotted lines)
towards the observed heights and the effect of locus-specific amplification efficiency (A) (hollow
arrows) pulling the locus-specific expected heights back towards the whole profile-expected heights.
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Replicate Amplification Strength

Replicate amplification efficiencies are used in the calculation of total allelic product and scale
all peaks up or down relative to one another. This allows the inclusion of multiple PCR replicates
into a single analysis even if different amounts of template DNA have been added to the PCRs,
as long as they originate from the same DNA extract.

The simplest model for replicate amplification efficiencies makes the assumption that the
DNA profiles will contain the same individuals with the same degradation, the same relative
DNA amounts and the same locus amplification efficiencies.

Note that the replicate amplification terms should be scaled by their logs. In other words, if
two replicates were used in an analysis and one was four times the intensity of the other, then the
appropriate replicate amplification efficiencies (to prevent differences when considering the two
PCRs in different orders) would be 50% and 200% rather than 100% and 400%.

Generating Weights

In order to generate the weights we start with the observed evidence (0), which will be a number
of peaks at a number of alleles (a), across a number of loci (I) and replicate amplifications (r).
Individually each peak can be referred to by O} . We seek the following:

Pr(0|1)=Pr(0},...05|1)

where I is all the background information the system has about DNA profile behaviour and
laboratory calibration. From this point on we omit the I term but recognize that it is impor-
tant to the calculation. To progress this further we require information about the mass param-
eters. These of course are unknowable for a DNA profile and so it appears initially as though an
impasse has been reached. However in order to consider the effect of mass parameters on the
probability of the evidence we need not know their value, rather just the effect that each of the
mass parameters has on the probability of the observed data. This allows them to be consid-
ered ‘nuisance’ parameters and integrated over without ever knowing their true value. Box 9.1
explains the concept of integrating out a nuisance parameter.

BOX 9.1 INTEGRATING OUT A NUISANCE PARAMETER

Imagine that we were interested in the average foot size within a population of people.
However this information was not readily obtained by records and measuring foot size was
impractical. Records were however present for the distribution of height in the population
and additionally studies had been carried out on the link between foot size and height.

We define some terms:

F = foot size

H = height

We create a model linking foot size to height:

F=E[F|H=h]
We seek the average foot size. We could initially consider a simplified model where the
average height was calculated (4 ) and then calculate the foot size by the following:
F=E[F|H=h]

Doing this makes a number of simplifying assumptions about the distribution of
heights and the model linking foot size and height. If we wanted to take the distribution
heights into account (and use a model that better described reality) we could start splitting
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height into brackets, for example if it were split into two brackets around 150 cm, and take
the average of each bracket (h>1s0cm and heisoem):

F=E[F|H=hss0em |Pr(H>150 cm) + E[ F| H = hasaem |Pr(H <150 cm)

We could continue to break apart the height into ever smaller discrete brackets (/,), multi-
plying by the probability of obtaining an individual within that bracket and summing across

=Y B[F|H=h]pr(h)

Ultimately the discrete brackets are reduced to a point where they approximate a smooth
continuous distribution. This continuous equivalent is integration and expressed as follows:

F= J.E[F| H =hy |Pr(h)dh,

In words this is explained as the foot size integrated across the distribution of height.
It treats height as a nuisance parameter, as we aren't really interested in the height of
people but must consider it to calculate the value of interest, in this case foot size.

Each parameter (p) in the analysis can then be treated in this manner to obtain the following:

D
J....J-Pr(oil .0kl ...pD)HPr(pi | pisa...pn)dpy...dpo
pAl 3 i=1
where D is the number of parameters (or dimensionality) in the analysis. This rather daunting
formula is visually simplified by referring to all parameters as M (for mass parameters):

Jpr(o}_, .0k z | M)Pr(M)dM
M
We must now also recognize that genotype sets (S;) themselves are treated as nuisance
parameters within the LR calculation. That is, we don’t really care what their value takes; how-
ever we must consider them in order to calculate the probability of the evidence. If we add mass
parameters into the above equation we obtain the following:

Zpr(s,)_[pr(ow,s,)r’r(M)dM
i M

In theory it is possible to have different mass parameters for each hypothesis but, since the
only factors affecting their values are the genotypes, this is unnecessary. Hence they will cancel
out in numerator and denominator of the LR so that from the equation above:

W, oc IPr(O | M,S;)Pr(M)dM
M
We then obtain a term that looks very much like the denominator and numerator terms of the
LR at the beginning of this chapter. Note that there are no locus terms in this equation, and this is
because it is considering the whole profile at once. There are mathematical advantages to consider-
ing the data in this manner, but many disadvantages in the required computer power and compre-

hensibility of results. Some simplifying assumptions can be made to make the problem tractable:
Assumption I: Peak heights are assumed to be conditionally independent given §; and M:

Pr(0]8;,M)=Pr(0L;...0%|8;,M)= [ [] [r(0k ;. M)
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And considering the observed data across loci and treating mass parameters as a nuisance

the model becomes
w, = IHHHP:(O,’,, | S;,M)Pr(M)dM
M ! a r
Assumption 2: The weight across a profile is the product of the weights at each locus

5 2 1
wi_IIW}
(!

which gives

w, = HIHHPr(OL |S;.M)Pr(M)dM
I M a r

In other words the weight of a genotype set at a locus is the probability of obtaining the
observed data if that genotype set had given rise to it, integrating across all mass parameters.
The full profile weight is the product of the weights of the individual loci.

Even with modern computers it is prohibitively complicated to enumerate this complex mul-
tiple integral completely. In order to overcome this limitation the use of methods such as MCMC
is employed.

MCMC and Profile Building

DNA profile problems can be highly complex — so complex that even with modern computers it
would be impossible to test every possible combination of all parameters. Instead the computer can
use a process similar to a game of hot and cold with the DNA profile. This mathematical process is
called MCMC and allows the computation of complex problems with standard computers.

Figure 9.5 shows a diagrammatic representation of the hot and cold analogy of MCMC.
Imagine that each square on the board represents a possible answer to some problem. One pos-
sible way to find the best answer would be to start at the top left and work down each pos-
sible answer in each row and column and then at the end to choose the answer that gave the

Best C
answer

1A possible answer 1
O MCMC ‘chain’

1 Hot guess 7]

1 Neutral guess 7

1 Cold guess —

Figure 9.5 Diagrammatic representation of a Markov chain Monte Carlo process as a game of hot
and cold.
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Figure 9.6 Squares landed on (highlighted) in the hot and cold game shown in Figure 9.5.

best solution. Doing this would highlight the solutions that occupy the grey circle on the
diagram, but it would take some time as each possible solution would need to be assessed.

Now instead we are going to try and find the good solutions by playing hot and cold. A random
point on the board is chosen (in the example below this is near the top left) and the goodness of
fit calculated. Next a nearby square is randomly chosen and the goodness of fit calculated. If it is
better than the current position it will be adopted and we will ‘move’ the new position. If the posi-
tion is much worse than we would be very unlikely to move to it and if it is neutral, then there is a
chance we will move there some of the time.

Figure 9.5 shows a series of guesses, some hot, some neutral and some cold, and the eventual
path taken by the MCMC chain over the course of 10 moves.

Figure 9.6 shows the answer board, where we have highlighted all the possible solutions that
were considered in the journey from starting position to the best answers. It can be seen from
Figure 9.6 that only a very small percentage of all possible answers needed to be considered. This
is the power of MCMC, its ability to find good answers, or in MCMC parlance ‘good sample
space’, in problems that are very complex, without having to consider every combination of
every parameter value in the model.

MCMC Robot

MCMC Robot is available from http://web.uconn.edu/gogarten/bioinf/mcrobot.html or
as an application for Apple devices from https://itunes.apple.com/nz/app/mcmc-robot/
1d454055791?2mt=8. This is a useful teaching tool.

Figure 9.7 gives screen grabs from MCMC Robot. The black circles are a probability ‘hill’.
We can usefully think of this as a contour map. The starting position of the MCMC chain is
a blue dot.

In the second screen grab the starting position of the MCMC chain and the first 10 steps
are visible.

In the third grab the robot has taken 1000 steps.

In the last grab, in addition to the 1000 accepted steps, the failed steps have been added
(in purple).

At the end of these 1000 steps the robot is at the top of the hill and is wandering around. This
1000-step phase is the burn-in. These results are then discarded and the real count begins from the
position that was arrived at the end of burn-in. This is to get rid of the ‘bad’ steps early in the process.
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Figure 9.7 Four screen grabs from the MCMC Robot programme. (a) before any steps have been
taken, (b) after a small number of steps have been taken, (c) after many steps have been taken and
(d) after many steps have been taken and also showing rejected steps.

The Metropolis—Hastings Algorithm

'The basis of an MCMC chain is that it steps from one state to another in some sensible way so
that it will preferentially sample from the high probability density portion of the sample space.
In STRmix the stepping is done using the Metropolis—Hastings algorithm (MHA). MHA com-
pares two slates, the current state and the proposed state. The algorithm considers whether to
step to the proposed state or stay at the current state. If the proposed state has a higher probability
density the chain always steps. If it has a lower probability density it will step some of the time.

It is useful to think of the probability density as a landscape with a hill in it. The objective
is to find the top of the hill. The MHA always steps uphill if that is proposed. If the proposal is
downbhill it does this sometimes. After a while the chain will get to the top of the hill and then
wander around sometimes going a way down the slopes.

If the MCMC is sitting at iteration (y — 1) and the probability of this current state is Pr(y — 1),
the proposed state is y with probability Pr(y). The MHA will accept the proposed state if

Pr(y) 2 Pr(y — 1) or if a randomly chosen value from U[O,l] < PP(r(y )l)'
r(y—

Burn-In

When an MCMC starts it is guessing. Mass parameter values are chosen at random and it will be
accepting explanations of the observed data that have a very low probability. As the process con-
tinues the MCMC will start accepting more and more likely descriptions of the observed data
until it has reached an equilibrium state where a small distribution of values for mass param-
eters and a limited number of genotype sets are being regularly chosen in accordance with how
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Figure 9.8 Burn-in values for a two person mixture, £, on left and d, on right.

well they describe the observed data. The time between when the MCMC starts and when the
equilibrium state is reached is termed the burn-in phase. In essence it is the time when the
MCMC goes from complete randomness to some sensible position.

The first n steps in the MCMC chain are termed burn-in, where n is set by the user. These
steps are used to get the chain to a reasonable position and the data from these first n steps are
discarded. The real count is then started.

The penalty in the first 1/4 of the burn-in for peak heights is log(O/E) ~ N(0,0.04) and after
that it reverts instantly to

[ 2 132
log(O/E) ~ N(O. S Ak )

O E

The initial constant variance allows the MCMC to find the genotypes more quickly. Figure 9.8
shows two figures giving the ¢, and d, values for a two-person 2:1 mix using a short burn-in of
1000 steps.

Note the resolution of the template amounts for the two contributors. From this output we
can tell that the profile must have clearly distinguishable major and minor components. The
degradation values for both contributors are very low and do not show any resolution; this is fine.
Unlike template amounts the degradation values do not have influence over each other, i.e. just
because one degradation value increases does not mean that the other will decrease.

MCMC General

MCMC is a widely used technique outside forensic science and is considered mainstream. It has
been used in predicling weather, betling, computational biology, computational linguistics,
genetics, code breaking, engineering, physics, aeronautics, stock market and social science.

MCMC is based on a random number generation process. Typically a model will be proposed
to describe some data that contains a number of parameters of unknown value. The MCMC
trials numerous combinations of parameter values to describe the observed data and ultimately
generates posterior distributions for each parameter in the model.

The parameters in the model are the mass parameters (those that are integrated across as
nuisance parameters in the previous section). The information supplied by the user is the stutter
ratio, the number of contributors and some parameter priors. The data is the observed profile.
To picture how the MCMC works for DNA profile interpretation consider the process of build-
ing a picture of an expected profile from mass parameters and ultimately comparing it to the
observed profile data to calculate a likelihood.

In the following section we show an example of an expected profile being generated from a
sel of posited parameter values. Note that although the example shows this occurring in a step-
wise manner the actual calculations will often occur all together. This means that the order in
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Figure 9.9 An observed two locus profile. Locus 1 has alleles 8 to 13 and locus 2 alleles 19 to 28.

which the various components of the example below occur can easily be changed and would
be equally valid.

In Figure 9.9 is an example of an observed two locus profile being analyzed as a two person
mixture, Figure 9.10 shows how STRmix builds up an expected profile.

STRmix now has a complete two locus expected DNA profile that it can compare to an
observed profile (Figure 9.11).

Converting Mass Parameters to Peak Heights

The peaks in the early stages of Figure 9.10 (before stutter is taken into account) are the total
allelic product (7). This is the sum of the allele and the stutter peak. If there are additional
replicates they are allowed to scale up or down by a constant factor, R,. This allows the whole epg
to scale but requires the same relative mixture proportions and degradation. The final formula
for total allelic product is

1., =R A'te™™xl,

The terms R, A, t, and d,, are termed mass variables, M, as they are used to calculate the
mass, or total allelic product, of an allele. In the example shown in Figure 9.10 some genotypes
were heterozygote and other homozygote. For the homozygote the height is doubled for that
individual. This is termed dose, X, i.e. the count of allele a at locus ! in contributor n. X4, =1 for
a heterozygote with a and X, = 2 for a homozygote a. The degradation affects peak heights with
a dependence on their molecular weight. The term f| (m,', Lis a function of molecular weight and
can be as simple as f| (m,',)= m or can utilize an offset if the desired behaviour of the model is to
begin degradation at some minimum molecular weight.

The next step is to introduce stuttering. The back stutter ratio (N — 1 repeat), SR, is a func-
tion of the sequence (LUS). Hence, different alleles have slightly different stutter ratios. FS is
the forward stutter ratio (N + 1). T can be apportioned to stutter and allele using the following
equations where SR and FS are determined from a model:

Ton

El,,=SRO!, ElL.,=FSs0!, E,=—=2 _,
(a-1) Ra a {a+1) aYa an 1+SRL+FS,’,

where:
E{,_yyis the expected back stutter peak height of the ath allele at locus /
El,.y)is the expected forward stutter peak height of the ath allele at locus !

291

K24158_Book.indb 291 24/1115 5:30 pm

Page 32 of 344



Forensic DNA Evidence Interpretation

Transition state Final profile

Alocus is chosen at random, then a genotype at that locus. For the purpose of this example it will be assumed that the current profile being
assessed is [11,11]and [10,12] at locus one and [21,25] and [22,23] at locus two for [contributor 1] and [contributor 2]

3000
2500 4
(11,11]and [10,12] locus one 2000 4
[21,25) and [22,23] locus two
1500 4
1000 4
ik o AAA AAAA
At this point only genotypes have been chosen. DNA amounts and 0 FAWRW AW FAWAWAS s
therefore peak heights have not been incorporated yet 9 1011 12 13 19 20 21 22 23 24 25 26 27 28
(@
DNA amounts are chosen for each contributor giving the profile peak heights; in this pl bi 1 is a major
and contributor 2 is a minor contributor
25004
2000
15004
10004
Taking DNA amounts for each il these 500 A A A A
with the genotypes of each wntnbuwralmthe most basic and ] S e A
ideal expected DNA profile to be obtained 8 9 10111213 19 20 21 22 23 24 25 26 27 28
A degradation value is applied to each is on fragment size, so as molecular weight increases the amount of
degradation increases and the greater the vedunlon in peak height. In this example the major contributor degrades more than the minor
25004 259
2000 1 2000
1500 T sl & 1500
1000 I 1000 A A
wl wtp_ ¥ ol Adb) A
+ T—r— 0 LA A e A LA L ey
8910‘1\213 19102122232 15261725 8 9 101 1213 19 20 21 22 23 24 25 26 27 28
(b)

At this stage the heights of peaks are total allelic products. The effect of stutter is taken Into account, with each peak losing some of its height

3000 3000
2500 t 2500
2000 | 2000
1500 1500
1000 1 IA’ 1 ;A 1000
sood 9'n [lvn s UM sof gl g A g I
A A L A o S A AL
8 910111213 19 20 21 22 23 24 25 26 27 28 8 910111213 19 20 21 22 23 24 25 26 27 28
Locus-specific are into the profile. In this example the first locus has a high efficiency
and the second locus has a low efficiency
3000 3000
2500 § i 2500
2000 2000
1500 ~ 1500
1000 1000
<ol AJLA AN sof  AJLA s
Ak A A o LILA- bl s
8 91011213 1902 2B M0 9728 8 910111213 1920 21 22 23 24 25 26 27 28
(0

Figure 9.10 Example of building up an expected profile from mass parameters. (a) Choice of geno-
types, (b) Development of TAP, and (c) Development of allele and stutter heights.
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Figure 9.11 Two person mixture expected profile (black) built up from mass parameters overlaying
the observed profile (red).

E!, is the expected allelic peak height of the ath allele for the nth contributor at locus I
0O} is the observed height of the ath allele at locus !

Tan is the total allelic product of the ath allele for the nth contributor at locus /

SR! is the back stutter ratio of the ath allele at locus I

FS! is the forward stutter ratio of the ath allele at locus /

For the Markov chain we will need (O}, | S,,M), which is read as the probability density of
the peak at position a given that we know the genotypes and the true template at that allelic posi-
tion and the one upstream. The modelling above has given the expected heights given that we
know the genotypes and the true template at that allelic position. Empirical trials suggest that
the relative variance of small peaks is large and that of large peaks is small. The data fit the curve:

2
var[logm(%)]=%, where ¢? is an empirically determined constant. This indicates that the

variance of the log of observed over expected heights is inversely proportional to the expected
peak height. Most forensic biologists are more familiar with the standard deviation. This is the
square root of the variance and is modelled as N

JVE

Database Searches Using Continuous Systems

Traditionally, single source profiles or single contributor profiles which have been unambigu-
ously resolved from a mixture have been considered to reach this standard and be suitable
for entry into a crime sample database. Single source profiles are relatively simple to inter-
pret, with standard methods generally agreed on and accepted worldwide. Profiles from crime
scenes however are frequently compromised in quality. Stochastic events such as heterozy-
gote imbalance, allelic dropout, locus dropout and allelic drop-in can complicate interpreta-
tion.37120 In addition in many cases crime scene samples may be mixed where DNA from
more than one individual is present. Stutter, a by-product of the PCR process, can further
complicate profile interpretation whenever stutter peaks are of a similar height to the minor
allelic peaks in mixed DNA profiles.

Interpretation of these profiles using a continuous model may result in improved profile
information and therefore permit database entry. Unless the weight for any given genotype com-
bination is 1, assessing the ‘quality’ of a profile for its suitability for comparison to a database
is not straightforward. A guideline for database entry based on some assessment of the risks
of loading an incorrectly inferred profile may be employed where the genotype combination
of a contributor is ambiguous, such as w, > 0.99. If an individual’s profile cannot be reasonably
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Figure 9.12 Distribution of likelihood ratios (LRs) shown on a logarithmic scale, when considering
known non-contributing individuals as contributors to a complex three person mixed DNA profile.
Only values of LR > 1 are shown. Arrows show the LR for the three individuals known to make up
the mixture. The maximum value for the LR when comparing a known non-contributor was 20,348
(logyp (LRe) = 4.3).

inferred from a DNA mixture, regardless of the interpretation method, then it is unsuitable for
entry to a database using traditional database methods.

If there is no interpretable single profile from the mixture then a search of the mixture itself
should be performed. Comparison of profiles to profiles in a database, where there are multiple
possible genotype combinations at one or more loci for matching against known individuals,
can be undertaken using the output of a continuous method of interpretation with a modified
search algorithm using an LR framework.

Each of the individuals on a database can be considered a potential contributor in turn under
the following two hypotheses (or others if desired):

H,: Database individual and N - 1 unknown contributors
H; N unknown contributors

where N was the number of contributors under consideration. This will provide an LR for
each individual in the database, compared to the relevant mixture. A cut-off value is then
used to reduce the list to a manageable size and remove the most likely potential adventitious
matches.

Figure 9.12 shows the results of considering 57,612 individuals as potential contributors to a
complex three-person Identifiler® (Thermo Fisher Scientific) profile. Of these 57,612 individuals,
3 were known contributors and 57,609 were known non-contributors.

Of the 57,612 individuals, 4000 gave an LR in favour of H, and as Figure 9.12 shows the major-
ity of these were below an LR of 100. In contrast the known contributors gave LRs of greater than
400,000 and were clearly distinguishable from the non-contributors.

Continuous LRs in Practice

Artificial two and three person mixed DNA profiles with known contributors were amplified
with an Applied Biosystems NGM SElect™ multiplex (Invitrogen, Carlsbad, CA) and separated
on an Applied Biosystems 3130x! capillary electrophoresis instrument.
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The LR was calculated for each contributor to each of the four two-person and six three-
person mixed DNA profiles using both a binary method and the continuous method of inter-
pretation discussed in this paper. The hypotheses considered are as follows:

H,: The DNA came {rom P, and unknown people up to the number of contributors.
H;: 'The DNA came from all unknown people.

LRg was calculated in MS Excel following the ‘F model’ as described in Kelly et al.”>

Table 9.1 shows the LR produced from the continuous method as described above and
implemented through Java software and a binary method for the same set of mixtures of known
source calculated in Excel following the F model described in Kelly et al.”>* Profiles were of
reasonable quality to allow assessment by the binary method. Table 9.1 shows the information
gain by using a continuous system. In the two person scenarios where the individual profiles
can be well resolved the information obtained from the two methods are similar. For three
person mixtures, the results of the two systems diverged. LR, was markedly lower or unable to
be determined for three person mixtures, whereas LR continued to produce LRs consistently
much greater than 1.

Table 9.1 shows a mild increase in LRs when using the continuous system for simpler two
person mixtures, but the real strength comes when three person mixtures are considered. The
wastefulness of the binary system is highlighted when complex profiles are analyzed based only
on the presence or absence of peaks and do not make use of their height.

There has been a view that peak heights are of limited value at low template. To investigate
this concept a cut-down version of STRmix (STRmix™™ lite) that ignored heights was tested
against the full STRmix version. The full version outperformed STRmix lite in a limited trial
both for true and false donors even at very low template (see Figure 9.13 and Table 9.2).

Table 9.1 Likelihood Ratio Results of Continuous vs Binary Method for
Assessing Two-and Three-Person Profiles

Mixed DNA Profiles from Two Contributors

Person 1 Person 2 Person 1 Person 2
6.15¢ 11015 3125611018 172/ 10 3.8x 10
1.9 x10% 6.4 x 101? 9.5¢ 1017 1.9 x 1019
2.4 x10"° 4.9 x 101° 2.1 x 1018 9.6 x 108
3.0:x 10 123 X110 4.0 x 10 1:3541020
Mixed DNA Profiles from Three Contributors

Person 1 Person 2 Person 3 Person 1 Person 2 Person 3
20 x 108 |1 4.7 x 101 | 3i8x:10%3 NC 226 1.39 x 108
9119 1078 F4:2 5103 2.8 1013 NC 3 14,261
8.4 x 1019  4.7x10! 6.0x 108 57 <1 331

45 < 1028 B5.7501 0121 57520 1 01% <1 <1 846

9:6 510788 B 20510204 Bl 511 (20 NC 65 317

77 <1080 B3 T019 [B15254 23 356 NC

NC, non-concordance (and therefore a statistic was not calculated).
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Figure 9.13 Log,o(LR) for STRmix™ lite and STRmix™ v2.3. The diagonal dashed line is x = .
Circles represent values that were derived from greater than 50 pg of total input DNA and crosses
those less than 50 pg.

Table 9.2 Results of H, True Tests for a Four-Person

0.25:0.25:0.25:0.

5 Mix at 50 pg Total Input Template

[ [ smRmix™v2.3 | sTRmix™ Lite

Number of Simulations

H, True LR

Hy True p(‘lin’)
LR=0
LR>1
Average LR

LR, likelihood ratio.
Note: Average peak height for the profile was 89 rfu.

12,000,000
374,104
3,000,000
99.958%
0.0173%
1.005

10,000,000
207

11,947
94.491%
0.0472%
1.078

In this trial three of the four contributors were input as knowns. The LRs for both STRmix
v2.3 and STRmix lite would be lower if there were fewer knowns. However, for the trial shown
the effect is higher LRs for true donors and lower ones for false donors.

Comparison with H

uman Interpretations

A continuous model for DNA interpretations should produce results that are intuitively correct
to a trained scientist. We would therefore expect to see a relationship between LR and human

interpretations.
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Figure 9.14 Comparison of likelihood ratios (LRs) produced using a continuous system with human
interpretation. The line at O represents neutrality, i.e. the probability of obtaining the profile is the
same under propositions of exclusion or inclusion. Results above the O line favour inclusion and
results below the line favour exclusion. When LR, = O (when G, did not feature in the Markov chain
Monte Carlo at any point) the result has been plotted at the bottom of the graph against the y-axis
label ‘LR, = 0"

To test this concept, previously reported casework Profiler Plus® profiles were reanalyzed using
the continuous model described. Epgs were analyzed using the continuous model. The samples in
this study resulted in 39, 274, 207 and 50 comparisons to single source, two, three and four person
mixed profiles, respectively. LR, produced by the model were compared with the human interpreta-
tion for the same result (Figure 9.14). The propositions considered were as follows:

H,: 'The DNA came from the POI and unknown people up to the number of contributors.
H; The DNA came from all unknown people.

Human interpretations were sorted into three categories: not excluded, inconclusive and
excluded.

Inspection of the graph shows a broad alignment of human- and model-based interpretation
except that on average human interpretations were more conservative.

Use on Profiles of Varying Quality

Specificity and sensitivity are not trivial to define when we talk of a software system for DNA
profile interpretation. In Ref. 756 (appendix 4) Taylor and Buckleton clone a drop model and
show that STRmix extracts useful and correct information from very low level DNA results
beyond what would be expected by systems not using peak height (any of the drop models).

To answer the question of sensitivity most directly we suggest that the work described in
Ref. 746 and reproduced below in Figures 9.15 through 9.19 might be useful. The LR distribu-
tions for H, true and H, true are very well separated at high template for two person mixtures.
As the number of contributors increases and the template lowers the two distributions converge
on log(LR) = 0. This is the correct result. What it means is that the performance of the software
is most dependent on the sample (see Box 9.2). At high template, STRmix correctly and reliably
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BOX9.2 PERFORMANCE OF STRmix ON VOLUME CRIME

The Institute of Environmental Science and Research Limited (New Zealand) adopted the
continuous interpretation software STRmix™ in August 2012. Since then they have been
using it for the interpretation of mixtures and the calculation of likelihood ratios for all
casework. Within the plot below are the success rates for a number of different sample
types submitted for analysis to volume crime team. Success was defined as the ability to
obtain a profile suitable for entry to the New Zealand DNA Profile Databank.

The plot shows data for two financial years. The only change in process between the
2011-2012 and 2012-2013 financial years was the introduction of STRmix. The improve-
ment in loading rates is attributable to STRmix’s ability to interpret more profiles
(data provided by Sarah Scott).
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gives a high LR for true contributors and a low LR for false contributors. At low template or high
contributor number, STRmix correctly and reliably reports that the analysis of the sample tends
towards uninformative or inconclusive.

Figure 9.20 has been reproduced for Identifiler Plus™ data (courtesy of Erie County
Department of Public Safety, Erie County, NY). The laboratory generated 22 four-person
mixed DNA profiles. Ten of the profiles were in the approximate proportions of 4:3:2:1. The
amount of DNA corresponding to the smallest contributor ranged from 100 pg to 0.625 pg.
Twelve of the profiles were in equal proportions (1:1:1:1), where the amount of DNA from each
contributor ranged from 400 pg to 1.25 pg. Three and two contributor profiles were prepared
similarly. These profiles represent the ‘worst’ types of profiles likely to be encountered by the
laboratory. Each profile was interpreted in STRmix and compared to the four known contribu-
tors and 200 known non-contributors. The non-contributors were generated artificially using a
Caucasian allele frequency database.>® A plot of the log(LR) versus DNA per contributor (pg)
for each dataset is provided in Figure 9.20. The per-contributor amount for H, true contributors
was taken as the average of the known contributors.

Inspection of Figure 9.20 shows the separation of the LR distributions for H, and H, true
propositions is less for Identifiler Plus profiles than for GlobalFiler profiles. Identifiler Plus has
six fewer loci used within the LR calculation which explains the lower discrimination.
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Figure 9.15 Likelihood ratios produced for two person mixtures, with LOWESS lines and polygons
showing coverage of scatterplot points.
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Figure 9.16 Likelihood ratios produced for three person mixtures, with LOWESS lines and poly-
gons showing coverage of scatterplot points.

Results from Bille et al.° are given in Figure 9.21 below for a number of trials on true donors.
The broad conclusion is that a continuous approach gives better performance for true donors
across a range of mixture ratios and template.

Diagnostics for Continuous Systems

Ground truth comparisons should produce a large LR when the prosecution proposition is
true and a low one when the defence proposition is true. Any results in the opposite direction
should have a detectable cause, such as very poor PCR amplification of the known contributors.
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Figure 9.17 Likelihood ratios produced for four person mixtures, with LOWESS lines and polygons
showing coverage of scatterplot points.
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Figure 9.18 Likelihood ratios produced for four person mixtures using three replicate amplifica-
tions, with LOWESS lines and polygons showing coverage of scatterplot points.

Equally, occasionally a false contributor may give a high LR. This is termed an adventitious
match. Such tests give little guidance as to whether the LR is too large or not large enough but
sensible limits may be placed. For example, a two person mix cannot exceed the expected result
that would have occurred if it was fully resolvable.

A large number of mixtures where the ground truth is known have been run in STRmix and
published in peer-reviewed journals. H, true trials are comparisons to the known contributor
to a profile. H, true trials are comparisons to known non-contributors (i.e. individuals who have
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Figure 9.19 Likelihood ratios produced for four person mixtures using three replicate amplifica-
tions and assuming three out of the four known contributors in each analysis, with LOWESS lines
and polygons showing coverage of scatterplot points.
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Figure 9.20 Likelihood ratios produced for four, three and two person mixtures from Erie County,
PA, NY.

not contributed DNA to the profile). We expect high LRs for the true contributors and low LRs
for the false ones.”6.757
Turin showed that the average LR for the H, true tests should be 1 (quoted in Good?*).
Following from this we can state: “The probability (p) of observing a likelihood ratio of LRy,
or larger from an unrelated non-donor is less than 1 in LRy,
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Summary of log of the match statistic for 1:1 mixtures
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Figure 9.21 A summary of some comparisons. (From Bille, TW., et al.: Comparison of the perfor-
mance of different models for the interpretation of low level mixed DNA profiles. Electrophoresis. 2014.
35(21-22). 3125-3133. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

This gives a frequentist-sounding interpretation to the LR but is actually a statement that
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follows from the laws of probability.

Below we reproduce some examples of these principles generated from in vitro profiles and
STRmix. The false donors were simulated using the product rule.

Other published ground truth known tests include the following:
1. GlobalFiler: 264 H, true; 17,406 H, true”
2. Identifiler: 57 H‘, true; 1,902,524 H, true’’
3. Identifiler: 54 H, true; 54,000 H, true’®

4. Varying multiplexes: 21 H, true; 123,230,000 H, true’ (results appear in Table 9.3)
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Table 9.3 Results of Comparisons of Simulated Random References

Number of Average

Number of H, True with AT H, True
Contributors LR=0 LR LR(s)

4 12,000,000 11,994,959 1.0046 374,104 3,000,000
2 4 10,000 0 0.977 9 44
3 4 120,000 0 0.927 4 29
7/ 56
5 34
6 49
4 1 80,000,000 79,998,779 1.001 312,325 6,666,666
B 1 100,000 99,618 1.022 215 262
6 2 10,000,000 9,898,155 1.017 £ Silay
12:557 78,125
7 3 1,000,000 922,585 0.906 234,738 >1,000,000
2,530 17,241
43 2,262
8 1 10,000,000 9,999,960 0.872 218,070 250,000
9 1 10,000,000 9,274,620 1.003 14 14

LR, likelihood ratio.
Note: Multiple results, where shown, are due to multiple unknown contributors under H,.

Gelman-Rubin Convergence Diagnostic R

This statistic gives an indication of whether the chains have converged. It compares the within-
chain variance (W) and between-chain variance (B) for M chains each of n measurements. This
means that more than one chain must be run in order to use this method. To visualize the effect
imagine that the chains have each chosen one corner of the space. Then the between-chain variance
might be high and the within-chain low. This is a symptom of non-convergence. If the chains are all
intertwined across similar space then the within- and between-chain variances are similar:

R=f1- l(l s ﬁ)
n w
If we set the between-chain variance, B, approximately equal to the within-chain variance,
W, we can see that R tends to 1. If R>1.2 (approximately) then the chains may not have properly

converged. In practice, the performance of the Gelman-Rubin Convergence Diagnostic is not
to the expected level.

Effective Sample Size
The successive states from an MCMC chain are correlated.

If you were to look at each set of adjacent points compared to the mean, they would be
correlated (both above or both below): A, both above; B, both below; C, changed.

If the points in Figure 9.22 were independent then we would expect equal numbers of
As and Bs and twice as many Cs. If they are correlated then As and Bs will outnumber Cs.
Figure 9.22 shows 15 As, 19 Bs and 5 Cs; therefore the points in this MCMC separated by one
iteration are correlated.
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The next step tries points that are separated by two iterations, as shown in Figure 9.23.

Figure 9.23 shows 6 As, 8 Bs and 5 Cs and the data are therefore still correlated. This process
continues until the correlation is 0. This is called the correlation at lag k. Figure 9.24 shows the
correlation for a real STRmix calculation at lag 0 to 25,000. In this example the correlation is not
0 until examining values are separated by approximately 8000 iterations.

ACCAAAAACSB|B|BIC/A|A/JAIAIAAAAACBBBBBBB|/B/BBBBBBBB

A \ /_/\/\

T

Figure 9.22 Tracking of a Markov chain Monte Carlo property over a number of iterations.
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Figure 9.23 Tracking of a Markov chain Monte Carlo property over a number of iterations, looking
at pairs of values separated by two iterations.
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Figure 9.24 Correlation at lag k for an STRmix™ calculation.
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Once we know how correlated the data are, we can determine how many independent sam-
ples the MCMC has run for. This is called the effective sample size (ESS) of the MCMC. We can
then use the effective sample size and the weights to calculate the effective count, i.e. the number
of independent counts that genotype set S; was the focus of the MCMC.

Getting the Number of Contributors Wrong

STRmix requires the assignment of a number of contributors (hereafter N) that have donated
to those alleles showing peaks above the selected analytical threshold (AT). However
N is never known with certainty. It may be useful to start the thought process from first
principles.

Y PH(E|N=n,H,)Pr(N =n| H,)

LR=-2 9.1)
Y Pr(E|N =m, Hy)P(N =m| H,)

We remind ourselves that what is behind the bar is assumed to be true and what is in front of
the bar is unknown. This informs us that we do not determine N from E, the evidence. The ratio-
nale for our current process is that we assume Pr(N = n|H,) = Pr(N = m|H,) = constant for all
n and m. This assumption may be motivated by the observation that the information in H, and
H, seldom informs N strongly. Hence

Y Pr(E|N=n,H,)

IR=———— 92)
) Pr(E|N =m,H,)

There is no need for the distributions of m and n to be the same in the numerator and denom-
inator. However we are cognizant both of the reality of and perception of bias and of fitting the
profile to the POL. So, initially at least, we will constrain n to equal m. This is also a current
technical limitation of STRmix up to v2.3.

ZP:(E|N=n,H,)

) R — ©.3)
ZPr(E|N=n,H,,)

The summation in the denominator is usually dominated by one term. This term is when n
is the number that best explains the profile. Given the constraints above, this should also return
on average not only the best approximation to Equation 9.2 but one that is fair and reasonable
to the defence.

Assigning N. Recall before we start that N is unknown and unknowable. We have plausibly
added to confusion by suggesting that N should be determined. A much better word would be
assigned. In most cases an N that optimizes Pr(E|N = n,H,) is obvious. It is only rarely to the
advantage of the defence to posit an additional unknown beyond that required to explain the
profile. These situations tend to occur for high order mixtures and are discussed later. Recall
that we seek to maximize Pr(E|N = n,H,), not minimize the LR. The LR can always be minimized
to at least 1 if that was the goal.
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For STRmix, E is composed of those peaks above AT. Therefore we seek a reasonable maxi-
mization of Pr(E|N = n,H,) where E is confined to those peaks above AT. This is usually obtained
by the minimum N that is needed to explain E and would usefully consider peak heights and
balances. We will term this assigned number Nf.

What Happens If We ‘Add One'?
In our experience if N is set to one larger than Ni;; one of a number of things happens:

1. STRmix splits the smallest contributor.

2. STRmix adds a trace that is scattered widely among genotypes including dropped
alleles.

Behaviour 1 tends to happen if there is no evidence in E to suggest another contributor (termed
situation I). Behaviour 2 tends to happen if there is some evidence in E to suggest a trace contribu-
tor (termed situation 2). However we are unable to guarantee that this list is completely exhaustive.

Where uncertainty exists in the number of contributors a routine policy of the ‘addition of
one’ is not recommended. It is advised that replication by PCR of the profile is attempted to
help inform the decision. The addition of one when there is little or no evidence in E to do so
increases the risk of adventitious hits.”>””5¢ This effect is highly undesirable.

What about Sub-Threshold Peaks?
Imagine that situation 1 holds but that there are considerable indications of an additional con-
tributor below AT. We will term this E, ;. First it is essential to note that modern multiplexes
show a range of artefacts, including but not limited to forward stutter, double backward stutter
and for SE33 -2bp stutter. All of these may appear in the sub-threshold region if a large allelic
peak is present.

Four potential policies come to mind:

1. Rework (re-PCR) the profile in order to help confirm the number of contributors.
2. ‘Add one’.

3. Lower the AT.

4. Deem the profile uninterpretable after checking for exclusionary potential.

In all cases where sub-threshold peaks suggest uncertainty in the number of contributors,
replication should be the first option. Of the other options STRmix is likely to cope best with
the third policy. This will allow STRmix to ‘see’ the same information as the operator is using.

To implement this approach it is necessary that validation and especially investigation of the
drop-in parameters have been done to at least as low as the AT will be lowered.

The risks of the ‘add one’ option were discussed above.

When Is Pr(EIN = n,H,) Maximized?
It is relatively easy to find the N that maximizes Pr(E|N = n,H,) if peak heights are ignored;
however this is not useful for continuous systems that use height information. STRmix itself does
not provide access to this information and minimizing the LR across N does not achieve this.
We can construct profiles where an N = 4 mixture looks exactly like an N = 3 mixture and
NIST 13 case 5 is one of these.”s® In such a case it is the lower N not the higher that optimizes
Pr(E|N = n,H,). The choice of an N that is lower than the true (but unknown) runs an increased
risk of false exclusion, not false inclusion.
We do not have experience of a situation where an N greater than that needed would opti-
mize Pr(E|N = n,H,); however it is not clear to us how we would have known that such a situ-
ation had occurred. It seems likely to us that the safest policy is to set N to the lowest number

306

K24158_Book.indb 306 24/1115 5:30 pm

Page 47 of 344



Continuous LRs in Practice

that effectively explains the profile when considering peak heights. We accept the subjectivity
inherent in this statement. It is possible that for very high order mixtures this assessment is very
difficult. These profiles may be uninterpretable with current technology.

What If the POI Does Not Fit for the Assigned N under Pr(EIN = n,H,)?
It is possible that under N5, the POI is excluded but under N#; +1he or she is not. To examine
this it is helpful to go back to Equation 9.2:

2?:(E|N=n,H,)

ER = ly————————
2Pr(E|N=m,H,,)
m

In the case described it is likely that the best approximation to Equation 9.2 is achieved by

_ Pr(E|N=NEg, +1,H,)
Pr(E|N=Nf;,,Hj)

Versions of STRmix up to v2.3 cannot implement this and it is unlikely that

_ Pr(E|N=Np, +1,H,)
Pr(E|N =Nj,+1,Hy)

is a fair and reasonable assessment.

Empirical Trials

The effect of the uncertainty in the number of contributors has been reported for a number of
profiles with N and N + 1 assumed contributors, where N is the known number of contribu-
tors.””7%8 The inclusion of an additional contributor beyond that present in the profile most
often had the effect of lowering the LR for trace contributors within the profile. STRmix most
often adds the additional (unseen) profile at trace levels which interacts with the known trace
contribution, diffusing the genotype weights and lowering the LR. There was no significant
effect on the LR of the major or minor contributor within the profiles.

Addition of One Contributor

A selection of one, two and three person mixtures was interpreted as two, three and four person
profiles, respectively. The LR was calculated for both the known contributors and 200 known
non-contributors. A summary of the LRs assuming the correct and one additional contributor
is given in Table 9.4.

Most of the time the LRs for the known contributors were affected very little. The four largest
changes downwards are shown in bold. This means that the wrong assumption leads to a lower
LR. The five largest changes upwards are shown in red. In these cases the wrong assumption
leads to a larger LR.

For the 200 or more known non-contributors the distribution of LRs is given in Figures 9.25
through 9.27.

Subtraction of One Contributor

A two contributor profile was adjusted by artificially adding a third contributor. The third con-
tributor was constructed as a child of the two known contributors and therefore shared alleles
at all loci. In this way it was possible to confuse the true number of contributors. The child was
added in the varying average heights 50 rfu, 100 rfu and 200 rfu. At higher amounts the evi-
dence of a third contributor would be clear. Each artificially constructed three person profile

307

K24158_Book.indb 307 24/1115 5:30 pm

Page 48 of 344



Forensic DNA Evidence Interpretation

Table 9.4 Summary of the Likelihood Ratio for Profiles Assuming the Correct and
One Additional Contributor

Likelihood Ratio

Known Ground
Truth

Single-source
samples

Assumed Number of Contributors

4.19 x 102
4.19 x 10%°
2,65 x 10
2.65 x 10
6.81 x 10%°

Two-person mixtures

Three-person mixtures

K24158_Book.indb 308

4.19 x 1020
4.19 x 10%°
2.65 x 10
2.65 x 10%
6.81 x 10%?
631> 1I0A
2inlx 1gie
6.31 x 10%?
Zinlex1i0ie
3.98 x 10?2
2.00 x 10%®
3.98 x 1022
7.94 x 10
3.98 x 10
Zanixal 02
3.98 x 1022
3.16 x 10°
3.98 x 107
7.94 x 10%°
3.98 x 102
6.31 x 1013

308

5.01 x 10"/
25151078
7.94 x 10'¢
2.51 x 1016
3.98 x 1072
1.58 x 10%?
3.98 x 1022
3.98 x 104
3.98 x 107
1.00 x 10°
3.98 x 1022
7.94 x 10
3:98 xiloze
6.31 x 10%°
3.98 x 102
5.01 x 108
977> 1032
3.09 x 10
537 %1012
4.79 x 10'?
1.86 x 102
5.01 x 10'?
2.75x 103
2.34 x 10%
1.86 x 10°
26.3

1.05 x 1013
2175 X102
5.89 x 102
2.24 x 1013
2.09 x 102
2.40 x 102
2.24 x 103
2.34 x 10%
7.24 x 102
15.8
(Continued)
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Table 9.4 (Continued) Summary of the Likelihood Ratio for Profiles Assuming the Correct

and One Additional Contributor

Likelihood Ratio

Known cround Assumed Number of Contributors

2.34 x 10

6.17

2.69 x 103
2.34 x 10
7.94 x 10°
4.79 x 10°
3.63 x 10%3
6.76 x 10"
4.79 x 10°
6.61 x 10%?
1.74 x 10°
5.13x 108
3.09x 103
9.77 x 10°
2.51 x 10%°
2.57 x 10"
245

2.34 x 10%*
4.57

5125 5103
2.34 x 10
4.37 x 10°
1.12 x 10%°
1517:X51015
5.13 x 10?2
5.62 x 10°
2.51 x 1073
4.07 x 10°
3.09x 10"
9.12 x 10"
9.33 x 107
2.51 % 102
3.55 x 10"
60.3

Note: Bold text represents the four largest downward changes; red text represents the five largest

upward changes.

Count

log(LR)

Figure 9.25 Distribution of adventitious link likelihood ratios for single source profiles interpreted

as two person mixtures.
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Count

3 2 2 3
log(LR)

Figure 9.26 Distribution of adventitious link likelihood ratios for two person mixtures interpreted
as three person mixtures.
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Figure 9.27 Distribution of adventitious link likelihood ratios for three person mixtures assuming
three (a) and four (b) contributors.

was interpreted assuming two contributors and compared with the three known contributors
and 200 non-contributors.

The LR of the two contributors was not affected in any of the trials. For all trials 216 known
non-donors all returned LR = 0.

THO1 9.3,10

In some circumstances where 9.3 and 10 at THOI are present in the same mixture one can end
up as an unresolved shoulder on the other. In some circumstances this will cause a false exclu-
sion. The diagnostic is LRy, = 0 and LR > 1 elsewhere. The recommended action is to check for
exclusionary potential at THO1 and if none exists to exclude the locus. We have no instances of
it occurring but by analogy this problem is likely for all 0.1 and 0.3 variants at tetra allelic repeat
loci, 0.1 and 0.4 at penta allelic repeat loci, and 0.1 and 0.2 at triallelic repeat loci.

Very Significantly Overloaded Samples

STRmix has a function for overloaded profiles. This function allows the examination of some
overloaded profiles. However in some circumstances false exclusions eventuate. This has
occurred for very significantly overloaded profiles of the order of 3 ng amplified. It is highly
preferable to avoid significantly overloaded profiles.
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Triallelic Loci

STRmix has no modelling currently for triallelic loci. If a reference is triallelic (either type
I or II) and is present in significant proportion, a false exclusion is possible. The diagnostic is
LR = 0 for the triallelic locus and LR > 1 elsewhere. The recommended action is to check for
exclusionary potential at the triallelic locus and if none exists to exclude the locus. The action
should appear in the report.

Use and Acceptance of Continuous Systems in Courts
The Frye standard’' arises from the case Frye v United States, 293 F. 1013 (D.C. Cir. 1923) in
which the court gave the following opinion:

Just when a scientific principle or discovery crosses the line between the experimental and demonstrable
stages is difficult to define. Somewhere in this twilight zone the evidential force of the principle must be
recognized, and while the courts will go a long way in admitting experimental testimony deduced from
a well-recognized scientific principle or discovery, the thing from which the deduction is made must
be sufficiently established to have gained general acceptance in the particular field in which it belongs.

This passage emphasizes that the deduction must proceed from a well-recognized scientific prin-
ciple or discovery. Moving to software this would appear to mean that the software must implement
accepted scientific principles. We would not read this as meaning that the software itself must be
in prevalent use but that the principles upon which it is based must be generally accepted. This is
thoroughly sensible. Obviously when any software first appears it will be in limited use but it may
be very soundly programmed from well-accepted principles. The court clearly envisages that the
standard is that the principles are sound, not some sort of vote about how often the software is used.

Any developer should outline the principles upon which the software is based and ensure that
these meet the standard. We outline these for the STRmix software in Table 9.5.

Agreement in science proceeds by the peer-reviewed literature. We have surveyed the litera-
ture using the Scopus online search tool. We searched for the keywords ‘forensic and DNA and
interpretation’ for the time period from 2012 to January 2015 and obtained 150 references. These
were scored as being for the use of probabilistic genotyping, against or irrelevant. We obtained
39 references for, 1 against’¢* and 110 that were not relevant. A key phrase from the one scored as
against probabilistic genotyping was, “The variance of heterozygote balance was more expanded
in two person mixtures than in one-person samples. Therefore it is not suitable to use allelic peak
heights/areas for estimating the genotypes of the contributors such as the quantitative analysis’.

Table 9.5 Evidence of Acceptance for Some Principles Underlying the STRmix™ Software
(P | EidercootAcoapane

Markov chain Monte Carlo This is very standard mathematics employed in many areas of
science. Searching the term Markov chain Monte Carlo in
Scopus returns more than 22,000 records. Scopus is an
online bibliographic database containing abstracts and
citations for 20,000 peer-reviewed academic journal articles.

Stutter and peak heights and the ~ Studies of stutter and allele peak heights are now quite

variance about them can be numerous and have appeared in the peer-reviewed
predicted from empirical models literature,120.762,763
The probability of a multilocus For STRmix the model follows Balding and Nichols.358
genotype can be estimated from This model is based on published literature and appears
allele probabilities and the as NRC || Recommendation 4.2. It is the most
coancestry coefficient conservative of the methods in common forensic use.3%°
3n
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The right to confront adverse witnesses is ancient. It appears in the Acts of the Apostles 25:16,
when Roman governor Porcius Festus states when discussing the proper treatment of Paul:
‘T answered them that it is not the custom of the Romans to hand over any man before the
accused meets his accusers face to face, and has an opportunity to make his defense against the
charges’ (New American Standard 1977). It is also cited in Shakespeare’s Richard II: “Then call
them to our presence; face to face, And frowning brow to brow, ourselves will hear The accuser
and the accused freely speak’.

The European Court of Human Rights, Article 6(3), provides that ‘everyone charged with
a criminal offence’ has the right to ‘examine or have examined witnesses against him’. This
basically means that the accused, or his or her lawyer, should have a chance to put questions
to adverse witnesses. The Sixth Amendment to the Constitution of the United States provides
that a person accused of a crime has the right to confront a witness against him or her in a crimi-
nal action. This includes the right to be present at the trial as well as the right to cross-examine
the prosecution’s witnesses. It is therefore essential that the witness can represent the evidence
and meet the needs of cross-examination. No analyst can be expected to understand the math-
ematics and computer programme to the extent that they could recreate the system, except the
developers themselves. However it is an expectation that analysts at least understand the work-
ings of any system they use to be able to understand and explain the results.

In R v Noll (R v Noll [1999] 3 VR 704) the witness acknowledged that although his evidence
was based on accepted scientific theory he himself could not describe that theory. At appeal it
was submitted that this meant the witness was incapable of giving the DNA evidence and should
have been excluded. The court found that although the witness was unable to explain the techni-
cal aspects of the theory, he was entitled to rely on other expert opinion. Addressing this issue
specifically Justice Ormiston explains:

Professional people in the guise of experts can no longer be polymaths; they must, in this modern
era, rely on others to provide much of their acquired expertise. Their particular talent is that they
know where to go to acquire that knowledge in a reliable form.

It has yet to be established in either the scientific or legal frames what level of comprehension
is required of a witness giving testimony based on probabilistic methods, However it is clear that
this must at least meet minimum levels that ensure that inappropriate testimony is not given.
In this document we will attempt to progress the establishment of such standards.

Of note, the International Society for Forensic Genetics (ISFG) 2012 Guidelines recom-
mend probabilistic methods. In the United States, both the Scientific Working Group on DNA
Analysis Methods and the Organization of Scientific Area Committees DNA Analysis 2 sub-
committee are working on guidelines for assessing probabilistic genotyping software tools.
In addition a considerable number of modern probabilistic genotyping software programmes
have been or are being developed by researchers or academics, often with very strong math-
ematical or Staﬁstical backgrounds.llﬂ,l(la.l10.ll!.686.693.725.742.743‘747

Open Source

Open source software (OSS) is computer software with its source code made available with a
license in which the copyright holder provides the rights to study, change and distribute the
software to anyone and for any purpose.”

In the forensic DNA field several programmes involved in the interpretation of DNA are
open source. This is supported by the ISFG. There are however clear pros and cons to this
approach. The goal of OSS was, in part, to invite collaborative development. We are aware of
only one attempt at this and that was the development of Lab Retriever'® from LikeLTD,0%114.462

* Wikipedia.
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This initiative did not meaningfully improve LikeLTD except in the area of interface at the cost
of introducing two new errors into the software.’

Both Lab Retriever and LikeLTD maintain a variant population genetic model regrettably
introduced by Balding and Buckleton.!'* We lament the addition of another variant in the foren-
sic field as it further fragments practice.

Balding reports that the reprogramming of LikeLTD into Lab Retriever did result in a num-
ber of minor bugs being noticed in the original software and this is clearly beneficial. Only one
of these affected the math. Balding reports that it did not affect any casework. However with
open source it is difficult to know exactly who has used the software in which cases and therefore
hard to inform them of a bug in previously used versions. LikeLTD maintains a mailing list and
Lab Retriever reports bugs on their website.

Collaborative development is easy to achieve without recourse to OSS. In the STRmix
instance Professor James Curran has proposed many useful additions or amendments to the
code that have improved runtime performance greatly. In fact a great many scientific collabora-
tions proceed every day without the use of open source.

Probably the primary perceived benefit was openness. The placement of the code in the public
domain allowed open scrutiny of the code. In our own work we have never discovered a bug by
examination of the code. This has always occurred either by examination of intermediate results in
the process or observation of an aberrant result in testing. The two bugs described for Lab Retriever
were discovered by the authors, not from the code but by repeating simple calculations.

There have been applications, unsuccessful to date, by defence to access code from closed
source software.t A summary of known applications is provided below.

1. A request for the source code of the Office of the Chief Medical Examiner’s (OCME,
New York) Forensic Statistical Tool (FST) was denied by New York County Supreme
Court Justice Carruthers in his May 2, 2012 decision in People v William Rodriquez,
Indictment No. 5471/2009. The court declined to sign a judicial subpoena duces tecum
compelling the OCME to produce the source code of the FST.

2. Kings County Supreme Court Justice Dwyer similarly denied a request by defence
to compel the OCME to disclose FST’s source code in People v Collins, Indictment
No. 8077/2010 and People v Peaks, Indictment No. 7689/2010.

3. In Commonwealth of Virginia v Brady, an oral decision on July 26, 2013, Honourable W.
Allan Sharrett denied the request for True Allele’s source code, ruling that ‘validation
studies are the best tests of the reliability of source codes. In this case validation studies
have been performed, and they have been performed with positive results. [The valida-
tion studies] have shown, in fact, that it has been proven to be reliable’.

4. In Commonwealth of Pennsylvania v Foley, an appellate court ruled in February 2012
that the True Allele methodology was not novel (testimony at trial provided by
Dr Mark Perlin) and further rejected the defendant’s claim for the source code -
‘scientists can validate the reliability of a computerized process even if the “source
code” underlying that process is not available to the public’.

5. Defence attorneys invoked the Confrontation Clause in support of their argument
that the FST source code is necessary to confront witnesses at trial. However, in New
York State it is firmly established that evidence representing DNA testing procedures
and results is non-testimonial in nature. See People v Brown, 2009 NY Slip OP 8475
(NY 2009), People v Freycinet 2008 NY Slip OP 5776 (NY 2008), People v Rawlins,
2008 NY Slip Op 1420 (NY 2008).

* These errors were reported in the document ‘Release notes for version 2.2.1" in the notes in the section titled ‘Version
1.2.4 released May 18, 2014’ at http://scieg.org/lab_retriever.html.
* We gratefully acknowledge that much of this was provided by Melissa Mourges.
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We suspect that a request for the code is not intended to obtain the code but rather to get a
refusal, which can in itself be used as evidence. STRmix is looking at ways to disclose the code
and still mitigate the commercial risk.

Suppliers of commercial code are reticent to risk disclosure. What realistic testing could some-
one do with the code other than compile it and run it? However there is a real risk of commercial
damage. It is clear that defence should have meaningful access to a method for checking software.
Would not an executable version be better? In fact an executable version that outputs intermedi-
ate values and access to the formulae is much more useful, in our opinion, than the code. We note
the risk of variants of OSS proliferating and fragmenting the community. We already have Lab
Retriever and LikeLTD as differing variants evolving separately from the same origin and intro-
ducing errors. Chris Steele makes the perfectly valid point that fragmentation has actually occurred
without any assistance from OSS. There are now quite a number of independently created software
packages. He goes on to argue, rationally, that this might lead to useful natural selection.

Ranked Lists of Weights: A Courtroom Discussion

9,10 38.30%
8,9 24.66%
9.9 13.94%
i7:9) 6.67%
8,10 5.36%
10,10 5.23%
8,8 2.35%
7,10 1.29%
7,8 1.01%
Q9 0.67%
Q,10 0.19%
7,7 0.13%
Q8 0.11%
Q,7 0.10%

STRmix can give a ranked list of the weights for different genotype combinations. A hypo-
thetical one is given above. We discuss here an argument we have met with in Australia: “The
POI is a 10,10 and he is not even in the top five possibilities’. We assume that this comment is
made to suggest that the weight of evidence should be downgraded. The weight for 10,10 in this
list is 0.0523. This will appear in the numerator of the LR for this locus. The smaller it is, the
lower the LR for this locus. The evidential weight is being downgraded for this locus by the use
of this term in the numerator. There is no need for any further adjustment. We assume that
the comment about the placement in the list either arises from misunderstanding or the wish to
create misunderstanding.

As a technical point the weight is the probability of the evidence given the genotype, not the
probability of the genotype given the evidence. It is incorrect to call the 9,10 in this list the most
probable genotype. If a description is needed, the best one is that the 9,10 is the genotype with
the highest likelihood.

314

K24158_Book.indb 314 24/1115 5:30 pm

Page 55 of 344



1.3 — clarifications
Point 1:

In the formula provided in the book chapter (chapter page 278) that reads:

_ P(Ge [H,,Gs 1)
P(Ge | Hy. G, 1)

Gc refers to the crime scene profile (Genotype of Crime-scene). Gc is therefore a set of
observed peaks with sizes and heights that are treated as random variables. It is true that the we
may consider Pr(Gc), and typically the binary or semi-continuous methods will assign a
probability. However, continuous systems may (and often do) exploit the fact that the
parameters in both the numerator and denominator of the LR can be a ratio of densities, rather
than strictly probabilities. Therefore, the initial term | the LR equation on chapter page 278 is
specified as a density. In later LR equations on page 305 to 307, the similar terms used in the
LR equation are given as probabilities. This is because if there is a difference in the number of
contributors then the priors between the two terms are different and probabilities must again
be used rather than densities.

Point 2:

On page 286 and 287 three are a number of integral formula (for example):

jPr(o IM,S,) Pr(M)dM

which should be formally written without the subscript under the integral term, for example
correcting the above formula:

[pO.M[s))dM

Point 3:

The terms Pr(N =n|H,) specify the prior belief by the party (prosecution or defence) that the

number of contributors, N, takes any specific value, n, prior to seeing the profile. Typical
practise in forensic genetics is to assign a probability of 1 to the N taking one value of n (for
both Hp and Hd so that Pr(N =n|H_)=Pr(N =n|H,;)) and 0 to all others. This removes the
need for the summation across number of contributors altogether and the LR given in 9.1
simplifies to:

R - Pr(E|N =n,Hp)
Pr(E|N =n,Hd)

And the explicit reference to number of contributors in the formula is dropped as the
propositions are expected to possess this information (i.e. they are in the form, ‘The DNA has
originated from the POI and 2 other people’ hence requiring that N = 3), so that the standard
LR formula is.
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~_ Pr(E[Hp)
Pr(E [ Hd)

In this section of the text we now consider a situation where the propositions need not specify
a specific number of contributors, i.e. they can take the form ‘The POI is (not) a contributor of
DNA to the sample’. We can then consider two possible treatments of the problem, either a
single value for N is chosen, but can be different between the two parties so that

Pr(N=n|H_ ) LPr(N=n|H,). We could them write the LR as:

R Pr(E|N =n,Hp)
Pr(E|N =m, Hd)

neZ meZ"

Where n and m are used to specify that the two numbers can (but need not necessarily) be
different. An alternative is to consider a range of values for N. Again, there is no need for the
range being considered to be the same for the two parties i.e. prosecution may state the DNA
has originated from 1 to 2 people and the defence may specify it has originated from 1 to 3. |
agree with the examiner that in a formal sense there is no difference between equations 9.2 and
9.3. The change in summation indices was more to visually explain to a non-mathematical
audience the assumptions being made within the formula itself. A formula more formally
expressed would have been:

D Pr(E|N =n,Hp)Pr(N =n|Hp)

R= neZ"
D Pr(E|N =n,Hd)Pr(N =n| Hd)

Where the difference in ranges would be handled by the Pr(N =n|H,) terms, e.g. if a uniform
prior was used for Pr(N =n|H,) then the example described above would be handled by
considering:

1/2 ne {1, 2}
Pr(N =n|Hp)=
0 otherwise
1/3 ne {1, 2,3}
Pr(N =n|Hd)=
0 otherwise

Due to software limitations, when a range can be specified for N, it is usual that the same range
must be used for both parties.

There may be some instances where the case scenario being put forward could inform this
probability, i.e. For the DNA profile produced from an intimate swab taken as part of a sexual
assault where the victim has had no recent previous sexual contact with anyone, there may be
more probability placed on N = 1or 2 (i.e. the victim, or victim and suspect, respectively). In
the case of a swab of drug paraphernalia taken from the scene of a share house, there may be
more probability placed on higher values for N. However, given difficulties in translating these
situations into numerical values, it is often the case that equal probabilities are used for all
values of N within the range n (where n is the set of contributor numbers being considered):
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Pr(N:n|Hp):Pr(N:n|Hd):i for all n

|
So that the LR is given by:

> Pr(E[N =n,Hp)

LR = L0 neZ'
> Pr(E[N =n,Hd)

nen

As per eq (9.3).
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Chapter 2: Models in the fully continuous interpretation system

The first task when creating a system that can be used to analyse DNA profiles is to describe
how DNA profiles look and behave in the language of mathematics. During the development
of STRmMix™, before any programming, the most important features of DNA profiles, and how
they could be described in real world terms, were determined i.e. the amount of template DNA,
the level of DNA degradation and the efficiency with which the DNA profiling process
occurred. There is little ability to short-cut this modelling the process, i.e. if peak height
information is to be used in the analysis then it is a necessity to mathematically describe enough
behavioural properties of DNA that the majority of peak fluorescence can be described. The
assumption that is then made, is that any difference between the peak heights that are expected
(from the models) and those that are observed (in the profile) is due to some system of
stochastic peak height behaviour, which is then modelled using a peak height variability model.

The sub-sections in this chapter comprise the publications that explain different models used
to describe DNA profile behaviour. The final publication in the chapter brings the models
together into an MCMC based system and applies them to forensic problems. People most
directly associate this last publication with the software STRmix™ as it is the heart of how the
program works.

The various models used in STRmix™, or any DNA interpretation system, are usually grouped
into categories; biological models and statistical models and it is worth briefly explaining how
the two differ. The starting premise is that events occur in nature that are unable to be directly
observed. Inferences are made that they have occurred because the effect of the event is seen
in the DNA profiles that are produced. For example, it can be seen that peak heights tend to
decrease across a DNA profile as molecular weight increases and so it is stated that degradation
has been ‘seen’. Of course, no degradation has been seen directly occurring (i.e. an analyst has
not looked down a microscope and seen strands of DNA breaking apart before their eyes, or
even cast their gaze over the wreckage of some DNA fragments, surmising it must have once
been whole) but rather what is seen is the manifestation of the degradation in the particular
type of data that has been generated. The mathematical process used to link the real-world
event of degradation to the way it manifests itself on the EPG is considered a biological model.
There is therefore a biological model that exists for every aspect of an EPG being described.
Having biological models for various real-world events, there may be a desire to ask questions
of the data, ‘How much DNA is there from each contributor?’, ‘Could Mr X be a contributor
to this profile?’, Is this profile from 2 or 3 contributors?’, or ‘Is this small peak an allele or
an artefact?’. These questions are not describing a biological event, but rather seeking some
information. In order to translate the DNA profile data that has been obtained into answers for
these questions requires the use of statistical models. For example, a statistical LR model is
used to address questions of support for nominated individuals being donors to a DNA mixture.
The statistical model of MCMC is used to glimpse at the posterior distribution of various
parameters of interest, such as the amount of DNA each contributor has provided, or the
goodness of fit of various genotypes in describing the peaks observed. As is often the case in
science there are models within models and the picture can become complex as one seeks finer

Page 59 of 344



and finer resolution, however dichotomising models into two types assists in the understanding
of the whole picture.

Some of the papers in this chapter repeat material from the book chapter in the first chapter.
The information has been supplied in the reverse order to how it was created. First came the
more comprehensive mathematical descriptions, given in the papers in this chapter, and
afterwards a gentler version produced for publication in DNA Evidence Interpretation.
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2.1: The need to develop models to describe DNA profile behaviour

Start with the obvious trend that as more DNA is added to a system, then the resulting height
of peaks on an EPG will be greater. Also, that when individuals possess the same alleles that a
combination of their DNA result in a relative summation of their individual peaks to a single,
indecomposable, larger version in the mixture. These concepts were already so well recognised
prior to the development of STRmix™ that there was no ability to publish work in the area.

Stutter, too, was well recognised. The standard method for obtaining the expected height of the
stutter was to regress the allelic designation (which is based on its molecular weight, or size)
against stutter ratio (using data from a large validation study) and then having obtained the
expected stutter ratio for the allele of interest, multiplying it by the parent peak height to obtain
the expected stutter peak height. This model was found to work well for some loci and
mediocrely for others. A simple linear regression model was implemented into the early version
of STRmix™, noting that a better system did exist. That better system is the subject of the
publication in section 2.2, which used the underlying sequence of the allele rather that its
absolute size. This was called the ‘LUS’ model, for Longest Uninterrupted Sequence. The
model was later refined even further to the ‘multi-LUS’ model, which is described in the paper
in section 2.5. The multi-LUS model has since been incorporated into STRmix™ and
validation work found that the statistic used to gauge how well the observed data is being
described, improved markedly with the change. While reporting the refinement of the stutter
model in the publication in section 2.5, we also took the opportunity to publish examples of
how different aspects of DNA profile behaviour could be validates. We had, by this point,
carried out these tasks a number of times when assisting laboratories with their validations, and
had developed a number of simple and standardised methods.

Another important feature of DNA profile behaviour is the manner in which DNA degrades.
In the most basic of descriptions, peaks get less intense as DNA fragment size increases.
Imagine DNA as a long, wet noodle, the longer the strand the more prone to breakage. The
simplest model to describe such a downward trend is linear, and this is indeed how degradation
was initially modelled. The linear description of degradation worked well for the DNA
profiling kits available at the time STRmix™ was first introduced. These were relatively simple
(by current standards) profiling kits that had a size range of the DNA fragments produced from
approximately 100 base pairs to 300 base pairs. In Australia and New Zealand in 2012 and
2013 (just after STRmix™ was introduced into active casework) there was an agreement by
the Biology Specialist Advisory Group (a group consisting of senior member of government
forensic biology laboratories around Australia and New Zealand) to increase the core number
of loci from 9 to 18. This meant the introduction of new DNA profiling systems that possessed
approximately double the number of regions (loci) examined. The DNA profile ‘real estate’ in
the simple profiling systems was already very highly utilised, and so the introduction of more
loci could only occur by two means, the addition of loci on a new dye channel or the extension
of the current dye channels out past 300bp. The new kits did both. The consequence of the
larger fragments was that the linear model of degradation was being extrapolated out to areas
that hadn’t previously been examined, and it was found lacking in some instances. Investigation
into degradation models found that as the molecular weight range increased, a better
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description of the degradation was achieved using an exponential distribution, something that
is shown in the publication in section 2.3. STRmix™ was updated shortly after the publication
to utilise the exponential degradation model.

These models of DNA profile behaviour, when combined, give the ability to describe what we
would expect an electropherogram to look like, if we knew the values of various real-world
parameters (such as DNA amount or level of degradation) values were. Of course, for evidence
samples these parameter values are never know, but having models to translate them from
parameter values to expected profiles allows a system to be developed that can be used to
interpret DNA profile data, and this is described in the paper in section 2.6.
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2.2: Stutter

Manuscript: Developing allelic and stutter peak height models for a continuous method of DNA
interpretation. JA Bright, D Taylor, JM Curran, JS Buckleton. (2013) Forensic Science
International: Genetics 7 (2), 296-304 — Cited 51 times

Statement of novelty: The idea of using the longest uninterrupted repeat had been previously
published. This paper extends those works by carrying out a much more in-depth modelling of
stutter ratio using the LUS system and provides an assessment of the model performance.

My contribution: I was a co-contributor to this work in the modelling and writing of the paper.

Research Design / Data Collection / Writing and Editing = 25% / 10% / 25%

Additional comments:
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1. Introduction

The forensic examination of biological evidence often produces
low level or mixed DNA profiles, which are regarded as complex
profiles. Traditional methods of interpretation are often described
as binary which describes the fact that the probability of the
evidence is assigned as 0 or 1 (hence binary) (see for example [1] at
7.3.3). These methods are being replaced by more advanced
interpretation methods such as continuous models [2,3]. In this
paper we describe a series of models that can be used to calculate
expected values for allele and stutter peak heights, and their ratio,
SR [2,3]. This is motivated by the difficulties traditional methods
have with the interpretation of complex profiles [4,5]. Complicat-
ing interpretation of any DNA profile is the occurrence of stutter, an
artefact of the PCR amplification of STR loci.

The earliest forms of the binary model considered alleles to be
present or absent. Methods were subsequently developed that used
heterozygous balance (Hb) to determine whether combinations of
genotypes were supported or not. The binary model assigns a value
of zero or one to the probability of the profile given the proposed
allelic combination (hence the term binary) depending on whether
the alleles could pair given Hb. The application of this model makes a
number of assumptions including that peak area/height (hereafter
height) is proportional to the quantity of template DNA and that the

* Corresponding author at: ESR Ltd, Private Bag 92021, Auckland 1142,
New Zealand. Tel.: +64 98153940; fax: +64 98496046.
E-mail address: Jo.bright@esr.cri.nz (J.-A. Bright).

1872-4973/($ - see front matter ©@ 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.fsigen.2012.11.013

height of ‘shared’ peaks between individuals is the sum of the peaks
from the contributing individuals. This is actually a rephrasing of the
assumption that the height of a peak is linearly related to the
quantity of DNA. Known shortcomings of the binary model [6,7]
have led to the development of new and improved models that factor
in the probability of drop-out [8-11]. Subsequently, fully continuous
interpretation models have been developed [3,12]. These models
take the quantitative information from the electropherogram (for
example peak heights) and use them to calculate the probability of
the peak heights given all the possible genotype combinations for
the individual contributors. This approach removes some of the
criticism regarding subjectivity [13,14] in profile analysis and
attempt to ensure consistency in DNA interpretation and reporting
across different laboratories. Well described probabilistic systems
give a detailed accounting of their respective methods. What
transpires inside a human expert’s mind can be far more opaque
than equations provided in peer-reviewed journals.

Continuous methods make assumptions about the underlying
behaviour of peak height, or of the variability in the ratio of the two
peaks of a heterozygote (Hb), and the ratio of allelic peak height to
stutter peak height (SR) to evaluate the probability of a set of peak
heights. These models may be developed from empirical data
external to the profile under interpretation, by a combination of
external data and the profile under consideration, or simply by the
profile under consideration. We would tend to favour the
combination approach.

In this paper we investigate the underlying behaviour of Hb and
SR. We also investigate the relationship between the heights of two
alleles of a heterozygote, and the allele and its stutter product. The
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aim is to build models to inform a continuous interpretation
system. Previous work has investigated the variability in Hb in
Applied Biosystems’ Identifiler™ [15] and MiniFiler™ [16]
multiplexes. The continuous model may work by means of
modelling the variability in Hb directly but more often works
with variability in peak heights themselves [2,3]. In single source
profiles, the variability in Hb reduces as the average peak height
(APH) at a locus increases.

The distribution of peak heights varies with the quantity of DNA
and is difficult to investigate directly. The investigation could be
undertaken by making consistent extractions and amplifications of
entirely equivalent templates. In this case we would expect the
height of each peak to vary about the same mean. The distribution
could be determined directly. However the consistent replication
of extraction and amplification template presents some experi-
mental challenges. We are incapable of standardising the template
to absolute precision. It is likely that the replicate peak heights
would vary about a mean that was also varying. This is because
template would vary and then the PCR process would add further
variance. Since the two alleles of a heterozygote are as close as we
can envisage to replicate extractions and amplifications of the
same template, the variation in (the logarithm of) Hb should be
twice that of (the logarithm of) peak height. This suggests that one
practical route into modelling the distribution of peak height is
through the distribution in Hb.

The variability in SR is routinely estimated by individual
laboratories as part of an internal validation of a new multiplex or
an analysis platform. Previous work has investigated the longest
uninterrupted sequence (LUS) as a predictor of stutter [17,18]. It
has been shown that alleles with large LUS values stutter more
than alleles with small LUS values and plausibly amplify less. For
any given LUS there will still be stutter peaks above or below
expectation. A larger than expected stutter is likely to be caused by
stutter events early in the PCR process. This would be expected to
lead to a smaller allelic peak. This allows us to define the following
hypothesis: If, for any given allele, the stutter peak is above
expectation given its LUS value, then we expect the peak height for
that allele to be below expectation. If this hypothesis were true,
then this would have implications for any continuous model that
sought to model stutter as well as allelic peaks independently.

Many laboratories are moving to the European Standard Set of
Loci (ESSoL). One of the multiplexes which include these loci is
Applied Biosystems' NGM SElect™. We report here an investiga-
tion into the variability of Hb and SR in this multiplex. We
acknowledge that the concepts are universal across many different
STR multiplexes. We have developed a biological model that can
easily be grasped by a forensic biologist that is intended for use
within any software implementing a continuous interpretation
method.

2. Method

289 single source DNA profiles were analysed using Applied
Biosystems' NGM SElect™ (Life Technologies, Carlsbad, CA)
multiplex. The samples were saliva stains on FTA® Elute card
(Whatman, Maidstone, England) and DNA was recovered off the
card using a simple elute method. Prior to amplification all samples
were quantified using Applied Biosystems’ Quantifiler™ (Life
Technologies, Carlsbad, CA) according to the manufacturer’s
instructions. A target of 1 ng of DNA was amplified using NGM
SElect™ following the manufacturer’s instructions in a 9700 silver
block thermal cycler. Amplified products were separated on an
Applied Biosystems' 3130xl Genetic Analyser (Life Technologies,
Carlsbad, CA) and data was analysed using Applied Biosystems’
GeneMapper™ ID version 3.2.1 (Life Technologies, Carlsbad, CA)
using a 25 RFU limit of detection threshold.

Loci where the alleles were separated by one repeat were
discarded because stutter is likely to interfere with the allele
height of the low molecular weight allele in an additive manner.
These have previously been referred to as stutter affected
heterozygotes. In total, 2323 heterozygous loci were identified as
being suitable for analysis.

Stutter ratio was defined as

700—-1
SR70_‘,

where O,_, refers to the observed height of the stutter peak, and O,
the parent peak.

LUS was defined as the longest stretch of basic repeat motifs
within the allele. The longest uninterrupted sequence (LUS) for
each allele was determined using the method of Brookes et al.[17].
LUS values were obtained by looking up the allele designation in
the short tandem repeat DNA internet database (STRBase) [19,20].
Where multiple values for LUS were available the average LUS
value across the reported variants observed was taken. §;ys was
defined as the difference in LUS values for the two alleles of a
heterozygote. Heterozygote balance (Hb) was calculated as

_ O

o

where Oy refers to the height of the high molecular weight allele
and O, the height of the low molecular weight allele. Statistical
analysis was undertaken using R [21] and MS EXCEL™,

Linear modelling was used to test the effect of various
explanatory variables on the expected values of SR and Hb. Having
chosen a model for the expected value we investigate models to
predict the variance about this expectation.

Hb

3. Results
3.1. Stutter

The following linear model was proposed to describe the
relationship between SR and the explanatory variables LUS and
locus, I:

SRi = Boy + P LUS; (1)

This was termed the stutter model. Linear modelling of stutter has
been reported previously [22,23]. The model described in this
paper was selected after exploratory analysis suggested a nil or
small effect of other potential explanatory variables. The plots of SR
versus LUS for individual NGM SElect™ loci are given in
Appendix 1. The interaction term allows a different slope of the
SR versus LUS line for each locus. The R? is 0.83 for the stutter
model. The improvement in fit of LUS over simple allele number is
demonstrated for the THO1 locus in Figs. 1 and 2 where Fig. 1 gives
SR versus repeat number (R*>=0.02) and Fig. 2 SR versus LUS
(R?=0.58). Of interest may be the 9.3 allele in THO1. This has the
structure [AATG]sATG|AATG]; and hence has a LUS of 6. Inspection
of Figs. 1 and 2 show that the 9.3 allele sits much better in the trend
when placed at an LUS of 6.

We would anticipate that log(SR) would be easier to model
because SR is a ratio. Given that the allelic peak height is much
bigger than the stutter peak height this effect should be minor.

There is good support for using a linear relationship to model
the behaviour of SR with respect to LUS (see Appendix 1). In
addition, SR is a standard concept for forensic biologists and so
avoiding the introduction of logarithmic scales will improve model
acceptance. A summary of the intercepts and slopes, using this
model, for every locus in the NGM SElect™ multiplex kit is given in
Appendix 2. D25S441 is very poorly described by this model.
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Fig. 1. A plot of stutter ratio versus allele repeat number for the THO1 locus.

A normal quantile-quantile (Q-Q) plot of the residuals from the
model versus theoretical quantiles from a normal distribution is
presented in Fig. 3.

The Q-Q plot suggests that the data is symmetric but with
heavier tails than the normal distribution. An assumption of
approximate normality is plausibly acceptable noting that there
are a great many data points in the central region.

The squared residuals were regressed against allele height in
order to investigate the factors affecting the variability of SR. There
is a significant effect of allele height on the variance of SR
(p=3.9x10 ') however, as the coefficient was small
(=7.5 x 1077), it will have little effect on the predicted variability
of SR.

Some alleles show markedly larger variation in SR compared
with the expectation. For example, at locus D2S441 the SR for
several values of LUS are not well described by the model (refer
Appendix 1). Closer inspection suggests that, in many cases, this
was caused by an allele that has a complex repeat structure
comprising of variant regions with differing LUS values. In another
example, for D21S11 30 the sequence has been variously typed as:

[TCTAJs [TCTGJs [TCTA]s TA [TCTA]s TCA [TCTAJ, TCCA TA
[TCTA]
[TCTAJs [TCTGJs [TCTA]s TA [TCTA]s TCA [TCTA]> TCCA TA
[TCTA]4
[TCTAs [TCTGJs [TCTAJs TA [TCTAJs TCA [TCTAJ> TCCA TA
[TCTA]L»
[TCTAJs [TCTG]s [TCTA}; TA [TCTA]s TCA [TCTAJ, TCCA TA
[TCTA]10

for different variants [19]. Since we will only know the molecular
weight and not the sequence when using typical casework electro-
pherograms we have used an average LUS. In this case we have used

°

SR
0.02 0.03 0.04 005
L L '

0.01
|

LUS

Fig. 2. A plot of stutter ratio versus LUS for the THO1 locus.

Normal Q-Q Plot

Sample Quantiles
-0.04 -002 0.00 0.02 0.04 0.06
1 L 1 1 1

-0.06

T T T
-2 0 2
Theoretical Quantiles

Fig. 3. A plot of the Q-Q plot from the full stutter model.

the average of 10, 11, 11 and 12. Since we have used an average and
the sample plausibly contains some of each sequence we expect to see
enhanced spread.

If there is indeed an effect of LUS, as observed here and
previously [17,18], then, using the D21S11 example given above
we would expect some variants in our set with LUS values of 10, 11
and 12. This would lead to distributions in the observed stutter
ratio that are centred around a higher value (for LUS = 12) and a
lower value (for LUS = 10) but all are plotted at LUS = 11. Hence a
wider spread. Such widening is a likely explanation for the heavy
tails observed in Fig. 3.

3.2. Heterozygote balance variability

The relationship between Hb and average peak height (APH)
was demonstrated for NGM SElect™ data in Fig. 4. The variation in
Hb decreases as APH increases. This funnel shape has been
observed in other multiplexes [15,16]. Direct comparison of the
distributions shows that there is less variation in Hb with NGM
SElect™ compared with that seen in the Identifiler™ and
MiniFiler™ multiplexes [15,24].

«®
= °

Log (Hb)
-0.1 00

-0.2

0.3

-04

T T T T
0 2000 4000 6000 8000
APH

Fig. 4. log(Hb) versus APH, 2323 heterozygote NGM SElect™ loci.
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Fig. 5. A plot of log(Hby) versus 8,us.

Itis known [17,18], and reinforced above, that alleles with large
LUS values stutter more. One would expect alleles with large LUS
values to have smaller allelic peaks [7] for a given template level.
Under this hypothesis, stuttering is one of the determinants of any
systematic effect on Hb, and it is the difference in LUS, §;ys, that
should be the explanatory variable for Hb. Since Hb is a ratio we
expect log(Hb) to be more amenable to modelling. This is
supported by previous work [15,16]. It is helpful to consider the
concept of the sum of the allelic and stutter peaks, termed total
allelic product (T) [7]. This is calculated, for the ath allele, as

Toa=04-1+0a (2)
We can now define Hbr in terms of total allelic product:

Ty

Hby = ' (3)
where Ty and T are the total allelic product values for the high and
low molecular weight alleles respectively. If stutter is the only
cause of variation in allelic peak height within the two peaks of a
heterozygote, then we expect the mean of log(Hby) to be zero, and
to have no relationship with §;ys or any other variable. In Fig. 5 we
give the plot of log(Hbr) versus 8,us. The regression line was forced
through the origin. There was a small but significant negative slope
to the regression line in Fig. 5 (slope = —0.0047). A plot of log(Hbr)
versus the difference in allele repeats (Sy) also has a small but
significant downwards slope (slope = —0.0053, data not shown).
We conclude from this that there is something other than just
stutter affecting allelic peak height for a given template level. This
is likely to be simply due to the reduced amplification efficiency of
the larger allele at a heterozygote locus. Of course template level is
the primary determinant of peak height but should have no effect
on expected Hby. After template the next largest effect appears to
be stutter ratio and this affects both Hb and peak heights, but
should not affect Hbr. Last there is something else which we, and
others, postulate is simply amplification efficiency. This affects
peak heights, Hb and Hbr. We are unable to determine from this
analysis whether the behaviour of this last effect, postulated as
relative amplification efficiency is better predicted by 8z or &iys
however both exhibit a small but significant effect on Hbr.

3.3. Modelling peak heights
In this section we model peak heights as opposed to the ratios

Hb, Hbr and SR. In order to develop a model for expected peak
height we need first to model the expected value for true mass at

each allelic position at a locus T),. We coin the term mass to
subsume considerations of template, degradation and locus
amplification effects. The ‘true’ mass of template DNA is not
known. We model mass based on our observations of the data and
understanding of the behaviour of DNA profiles. During modelling
of peak heights versus molecular weight for various multiplexes
we have observed that some are adequately explained with a linear
model whereas some require an exponential model. NGM SElect™
appears to be adequately modelled using the simpler linear model.

For L loci, N contributors and R replicates the height of an allele,
a, at locus I, for replicate r, from contributor n is modelled as:

T“mr = Alr(t" g d" X mf.)x"m (4)

where m!, is the molecular weight of allele a at locus I; A, (I=1.. L,
r=1...R)is the locus offset at locus I, replicate r; t, (n=1...N)is the
intercept of the line for mass versus molecular weight for
contributor n; d, (n=1...N) is the slope of the line for mass
versus molecular weight for contributor n; X!, is the count of allele
a at locus [ in contributor n. X}, = 1 for a heterozygote with allele a
and X!, = 2 for a homozygote a.

We refer to the variables A, t, and d collectively as the mass
variables M. Note that when considering one amplification of a
sample we can drop the ‘r’ subscripts, which we subsequently do so
for simplicity. The locus offset, A', allows different amplification
efficiencies for each locus. One A’ value may be set arbitrarily,
termed ‘fixed’ and the others allowed to vary, termed ‘free’. If A' is
allowed to be completely free it will tend to the midpoint of a
heterozygote for single source profiles and to a related position for
mixtures. This is unacceptable and would impose a large negative
correlation between the peak height residuals. Accordingly we set
the probability of each of the L — 1 free locus specific amplification
efficiency parameters A' for each of the L — 1 loci as N(ju, o)
where /1, is the simple arithmetic average of the A values and o4 is
a preset hypervariable. This allows a limited freedom to the A’
variables but penalises any single value that departs significantly
from the average. We set a uniform prior on jta.

3.4. Application of the model for mass and stutter
Mass at an allelic position at a locus can be apportioned to

stutter and allele using the following equations where SR is
determined from the model.

SRL(T}
E:n in = 1 :-(S%I!,) (5)
EI — TA’]V! (5)
1+ SR,
where £, , . is the expected stutter peak height of the ath allele for

the nth contributor at locus [; EL, is the expected allelic peak height
of the ath allele for the nth contributor at locus I

Mass was assigned for each allele for a subset of 100 samples
from the NGM SElect™ dataset. The subset included both
heterozygote and homozygote loci but all stutter affected
heterozygotes were removed. Mass variables A, t, and s, were
determined by a maximum likelihood method.

The stutter model (Eq. (1)) was used to calculate the expected
stutter ratio for each allele. Weusten and Herbergs [25] suggest
that the relative standard deviation on the numbers of chains
should be inversely proportional to the square root of the expected
number of DNA strands entering the amplification. This suggests
that the 95% standard error intervals on stutter ratio should have
the shape k/ m Fig. 6 is a plot of the logarithm of the ratio of
observed and expected heights are plotted against T!,.
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Fig. 6. A plot of log 0,.1/E,-; versus T}, for the stutter peaks. The dotted lines approximate +2 standard error intervals.

Subsequently the expected heights of the allele peaks were [26]. The dotted lines are +1.96(ca/\/EL,), where ¢ = 3.95 fitted by
calculated for each sample. The variance of the allele model is MLE. These approximate +2 standard error intervals are aimed at
examined in Fig. 7 where the logarithm of the ratio of observed and emphasising the shape of the model fitted to the data. Inspection of
expected heights are plotted against T!,. The x-axis has been these plots indicates that the models are a reasonable description of
truncated in Fig. 7 at 8000 RFU to avoid saturation effects. At allele the data, with few data points observed outside the intervals. The
heights above approximately 8000 RFU, the data points tend to rise variance is symmetric around mean = 0.

above the trend. These data points are likely to be affected by Recall that expected height is developed from the mass

saturation of the 3130 camera, where the relationship between variables, M. If the predicted T}, for each of the two alleles of a

amount of DNA and allele height is no longer linear. heterozygote using M is correct, then these two variables are

It has been suggested that the variance of the allele model conditionally independent given M. We could reasonably expect,

(Fig. 7)is inversely proportional to the expected peak height, c2/E!,, then, that given M the log O4/E, value for each allelic peak of a
0.5 -

Log(0,/E,)

0.5 . . ; ; v .
0 1000 2000 3000 4000 5000 6000 7000 8000
TI

an

Fig. 7. A plot of log O,/E, versus T!, for the allelic peaks. The dotted lines approximate +2 standard error intervals.
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Fig. 8. (a) log Oy/Ej, for the high molecular weight allele versus log O,/E, for the low
molecular weight allele for each heterozygote locus and (b) log O,/E, for the allelic
peak versus log 0,_,/E,-, for stutter peak.

heterozygote is uncorrelated. However we would still anticipate a
negative correlation between the log 0,/E, values for the allele and
log O,.1/E,- for the associated stutter peak.

The correlation between the observed and expected peak
heights at each heterozygote locus and between the observed and
expected peak heights of allele and stutter was investigated,
graphically (see Fig. 8a and b, respectively). The Pearson product-
moment correlation coefficient was calculated as —0.0795 for
log Oy/Ey,; for the HMW allele versus log O,/E; for the LMW allele
and 0.1157 for log O,4/E, allele versus log O,_1/E,_; stutter.

Unexpectedly the scatter plots in Fig. 8a and b indicate that
there is no detectable correlation between stutter and allele in this
biological model.

Assuming an approximate normal distribution, with a mean of
zero, a constant variance for the stutter model, and variance =
c2/E., for the allele model and variance = ¢2/E,, for the stutter
model then:

logO!

(a-1)n

IOgE{a )n

log0!,
lozE{:,, ~N(0,c2/E. )

~N(0,¢/E,,)

Plots to check for normality for the allele and stutter models
indicate that the assumption of normality is sustainable (data not
shown). Both tails of the distribution appear heavy. Additional
exploratory modelling of the data (data not shown) including
fitting a gamma distribution does not improve the fit.

4. Discussion

Previous publications have suggested that LUS is a better
explanatory variable for SR than allele designation. This is
confirmed for the NGM SElect™ multiplex. However one locus,
D2S441 is very poorly described by this model. One plausible
explanation is that the sequence data needs re-evaluation.

Weusten and Herbergs [25] have suggested that the 95%
standard error intervals on stutter ratio should have the shape
k/\/Th,. This equation was plotted as dotted lines in Fig. 6,
supporting the theory.

When considering the mean value of Hb we expect no effect of
template although template is thought to affect the variance about
this mean. Stutter ratio does have an effect on mean Hb especially
when the alleles differ significantly in LUS. SR alone however is not
the only factor in predicting mean Hb. This can be observed in
Fig. 5. Larger alleles amplify less efficiently. This is likely to be due
to an amplification effect with the longer lengths of DNA resulting
in lower peak heights.

The concept of mass (T) was introduced in order to model allele
heights and stutter heights. T was described by the molecular
weight of the allele and the three mass parameters; amplification
efficiency, intercept, and slope. In this research, mass parameters
were determined using maximum likelihood. More elegant
methods such as MCMC exist [27].

T!, and SR were combined to calculate expected heights for
stutter and allele. The approximate linearity of the investigative
plots showed an acceptable fit to the log normal distribution. Both
tails appear heavy which does not suggest that the gamma models
being considered by some commentators are a total solution
[2,28,29]. The correlation graphs, Fig. 8a and b, show no detectable
relationship between the expected heights of alleles and their
corresponding stutter, and the HMW and LMW alleles at a
heterozygous locus. This suggests that the independence model
may be sustainable.

We have described a model that can be used to predict expected
values and variances for SR but further give models for predicted
allele and stutter heights and the variances about these predic-
tions. We did not find a correlation between higher than expected
allele peak and lower than expected stutter peaks.
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Appendix 1. Stutter ratio versus LUS for individual NGM
SElect™ loci.
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Appendix 2. Summary of the stutter model SR; = o, + f1,LUS;.

Locus Intercept Slope

D10S1248 ~0.0576 0.0089
D12S391 -0.0571 0.0107
D16S539 -0.0502 0.0088
D18s51 —-0.0297 0.0066
D195433 -0.0302 0.0074
D1S1656 —-0.0699 0.0106
D21s11 -0.0079 0.0059
D2251045 -0.0881 0.0139
D2S1338 0.0073 0.0062
D25441 0.0004 0.0031
D3S1358 0.0455 0.0092
D8S1179 -0.0148 0.0062
FGA -0.0344 0.0066
SE33 0.0129 0.0041
THO1 ~0.0208 0.0052
VWA —0.0354 0.0078
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Selected profiles typed at the Promega PowerPlex 21 (PP21) loci were examined to
determine if a linear or exponential model best described the relationship between
peak height and molecular weight. There were fewer large departures from observed
and expected peak heights using the exponential model. The larger differences that
were observed were exclusively at the high molecular weight loci. We conclude that
the data supports the use of an exponential curve to model peak heights versus
molecular weight in PP21 profiles. We believe this observation will improve our
ability to model expected peak heights for use in DNA interpretation software.

Keywords: forensic DNA; PowerPlex 21; degradation

Introduction

In the interpretation of forensic DNA evidence a sample associated with a crime is
compared with genotype information from one or more persons. Typically, the sam-
ples will be amplified using commercially manufactured short tandem repeat (STR)
multiplexes that analyse many loci simultaneously, with subsequent polymerase
chain reaction (PCR) product generated on a capillary electrophoresis instrument.
The resulting DNA profile is an electropherogram (epg). The heights (or areas) of
the peaks within the epg are approximately proportional to the amount of unde-
graded template DNA' ™. However this relationship is affected by a number of sys-
tematic factors. Notable amongst these factors is the molecular weight (m,) of
allele, a.

A typical epg has a downward trend with increasing molecular weight. This is vari-
ously described as the degradation slope or the ‘ski slope®”’. The term degradation
slope alludes to a suggested cause, degradation of the DNA. There are many chemical,
physical and biological insults that are believed to contribute to DNA degradation or
inhibition of a profile. Environmental factors such as humidity®, bacteria’ or other
forces such as ultraviolet light break down the DNA, destroying some fraction of the
initial template’. Although the cause of the slope may not be known, we will refer to
this ski slope effect as degradation to comport with common usage.

The modelling of expected peak heights is important in the interpretation of forensic
mixtures. The authors have previously described a series of models that can be used to
calculate expected values for allele and stutter peak heights, and their ratio, SR'°.

*Corresponding author. Email: jo.bright@esr.cri.nz

© 2013 Australian Academy of Forensic Sciences
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Known shortcomings of the binary model'"'? have led to the development of new and
improved models that factor in the probability of dropout'*'°. Subsequently, fully
continuous interpretation models have been developed'”'®. These models take the quan-
titative information from the electropherogram (for example peak heights) and use them
to calculate the probability of the peak heights given all the possible genotype combina-
tions for the individual contributors. This approach removes some of the criticism
regarding subjectivity'>? in profile analysis and attempts to ensure consistency in
DNA interpretation and reporting across different laboratories.

It is important to understand how degradation affects these models. The simplest
model is linear. That is, the expected peak height declines constantly with respect to
molecular weight. This can be demonstrated crudely by taking a paper epg and drawing
a downward sloping straight line across the apex of the heterozygote peaks from the
lowest molecular weight locus to the highest molecular weight locus. A linear model
has previously been suggested by the current authors'’. Tvedebrink et al.>' have pro-
posed an exponential relationship when considering models for allelic dropout.

If the breakdown of the DNA strand was random with respect to location, then we
would expect that the observed height of peak a, O,, would be exponentially related to
molecular weight. In this work we investigate linear and exponential equations for mod-
elling degradation within single source Promega PowerPlex 21 profiles.

Methods

We analysed data from all Australian state and territory laboratories generated using the
Promega PowerPlex 21 multiplex as part of a large data analysis project to implement a
continuous model of DNA interpretation in Australasia.

Single source PowerPlex 21 (Promega Corporation, Madison, WI) DNA profiles
were submitted for analysis from eight laboratories, either as previously analysed out-
puts or as raw, unanalysed data files. All raw data were analysed using Applied Biosys-
tems’ GeneMapper ID v 3.2.1 with an analysis threshold of 30 relative fluorescent units
(rfu). Previously analysed data sets provided by the laboratories were analysed with a
maximum analysis threshold of 30 rfu, with some examples at thresholds below this.
All profiles were amplified at 30 cycles (as per the manufacturer’s recommendations).
Amplified products from two laboratories were separated using Applied Biosystem’s
3500 capillary electrophoresis instruments with the remaining laboratories using
Applied Biosystems 3130 instruments.

A total of 1295 profiles were available from single source samples prepared at
optimal conditions from pristine DNA. These profiles demonstrated a range of
degradation slopes despite being pristine DNA at optimal amplification conditions.
Fifty of the most degraded profiles were selected by taking those with the biggest
difference in the ratio of the peak heights at Penta D (a high molecular weight locus)
to D16S539 (a low molecular weight locus). These represent some of the profiles with
the steepest downward slopes, and thus would be described as degraded using
common terminology, whether caused by degradation or other phenomena such as
inhibition or preferential amplification. As such, these profiles are more likely to
provide the desired information on the nature of the relationship between peak height
and molecular weight.

One consequence of a linear model is that there exists the possibility that predicted
peak heights are negative. This is unreasonable. To avoid this possibility the linear
function was modified as shown in equation (1). We write the expected peak height as E,,.
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b= {Z/z, E,<Z)2 (1)

where Z is the analytical threshold.
The models of interest are linear,

E, = max(Z/2, t+d x m,) (2)
and exponential
E,=tx ™ (3)

where: ¢ is the intercept of the line or the constant of proportionality for expected height
vs. molecular weight; d is the slope of the line or exponent for expected height vs.
molecular weight.

The values for 7 and d for each model were determined using maximum likelihood
estimation in MS Excel. The exponential and linear models (equations (2) and (3)) were
then fitted for each profile by least squares in MS Excel.

Results and conclusions

Figure 1 shows a plot of log(O,/E],) versus molecular weight in base pairs using the
exponential and modified linear models. We can see that more extreme positive
departures from expectation occur at the high molecular weight end, approximately
350bp and above, and extreme negative departures occur in the mid-zone. This is
expected if we force a straight line on an exponential curve. The cluster of high x data
points at the right hand end of Figure 1 represent high molecular weight peaks that are
observed but which are predicted to be absent using the linear model. The exponential
fit reduces the number of these types of departure. The R? values are 0.82 and 0.86 for

20

« Linear
15 Exponential
1.0

log(0,/E,)

-1.0
-1.5
70 120 170 220 270 320 370 420
ml
Figure 1. A plot of log(O,/E,) versus m, in base pairs using the exponential and linear fitting.
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linear and exponential, respectively. The two models have the same number of free
variables and hence any reduction in R’ represents an improvement. We conclude that
this evidence supports the use of an exponential curve to model peak heights versus
molecular weight in PowerPlex 21 profiles.
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Some advanced methods for DNA profile interpretation require a probability for the event of dropout.
Methods have been suggested based on logistic regression. Two of these respectively use a proxy for
template that is constant across loci and one that is modelled using an exponential curve. Both of these
methods allow different modelling constants from each locus. A variant of the model using an
exponential curve is discussed. This variant constrains the constants to be the same for every locus. We
test these two methods and the variant by developing the constants (training) on one set of data and
testing them on another. This mimics the likely use in casework. We find that the new variant appears to
be the most useful in that it performs better than the other two options when trained on one data set and
used on another. The hypothesised reason for this is that locus to locus variation in amplification

efficiency varies with time, multimix batch, or from sample to sample.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In forensic DNA analysis, routine casework is often undertaken
using short tandem repeat (STR) loci amplified by the polymerase
chain reaction (PCR). If the sample is low level or degraded some
alleles from the true DNA donors may fail to produce a peak above
threshold in the resulting electropherogram (epg). This phenome-
non is termed allelic dropout or simply dropout.

Tvedebrink et al. and Gill et al. introduced the concept of
modelling the probability of dropout using logistic regression [1,2].
Logistic regression is a type of regression analysis that can be used
to predict the probability’ of a binary event, based on one or more
explanatory variables. In the context of a DNA profile the best
explanatory variable to predict the probability of dropout would be
the true, but unknown, template available at each locus for
amplification. This introduces the concept that the available
template at each locus differs.

Often epgs arising from casework exhibit a decrease in
allelic peak height as the molecular weight (w) of the alleles

* Corresponding author. Tel.: +64 9 8153 904; fax: +64 9 8496 046.
E-mail address: john.buckleton@esr.cri.nz (J. Buckleton).
' Actually the logarithm of the odds, but there is a simple transformation
between probability and log odds.

1872-4973/$ - see front matter © 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.fsigen.2013.07.001

increase. This is variously described as the degradation slope
or the ‘ski slope’ [3,4]. Effective modelling of degradation is
likely to provide the most effective explanatory variable for
dropout.

2. Method

In the following method section we test several plausible
models. Following Tvedebrink et al. [1,5,6] we could envisage that
H serves as a proxy for template pre-amplification and is thought
to be constant at every allelic position. We introduce the term
mass, and denote it H,, to subsume the concepts of template
number and degradation. Hence H, serves as the proxy at allelic
position a.

If the degradation of the DNA strand was random with respect
to location, then we would anticipate that the expected height of
peaka, E,, would be exponentially related to molecular weight, w,,
and to whether the peak was a heterozygote or homozygote. Let X,
be the count of allele a. X, = 1 for a heterozygote with a and X, = 2
for a homozygote a. The expected height, E,, of peak a is therefore
modelled as

Es = HaXq

Ha = age™™s
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A decreasing exponential relationship between allele height
and molecular weight was described by Tvedebrink et al. [2] in
relation to models for allelic dropout and has been confirmed at
least once empirically.

Experience in casework has also suggested that there is a locus
effect in addition to a general downward slope. As an example, in
one report three loci within the Identifiler™ mulitplex were
preferentially inhibited to varying extents in the presence of a
laboratory cleaning agent [3]. Multimix is produced in batches and
it is conceivable that the locus balance in one batch is different
from another. Equally inhibitors co-extracted with the sample
could affect certain loci more than others. The cameras used to
detect the fluorescence have been shown to differ in their response
to the different dyes used in detection and it is likely that the
camera response changes as the camera ages. Collectively these
factors suggest that loci may be above or below the trendline and
that whether a specific locus is above or below may change from
time to time or even sample to sample.

Models ignorant of such effects are likely to underperform.

We will discuss three models for the probability of dropout of a
single allele D, and of a homozygote, D, as

ellio+Bo)+(ln+By)In A
g =——————— Dy
1 + ellot+Bo)+(ln+py)InH
ellio+Po)+(ls+By)in2H

=———  (forlocusi)...T, model
1 + ellio+Bo)+liy+By)In2H ( ) .

ellio+Bo)+(li+By)In Ao

i (forlocusi)...T, model

"1 + ello+Bo)+(n+By)InHa

ePothilnfl,

g = —————— (forlocusi)...T, model
1 + ePot+BiInHa

There are currently two published logistic regression dropout
models.

The first model (T;), published by Tvedebrink et al. in 2009 [3],
uses an average of peak heights across a full profile, H, as a proxy
for mass. A logistic model was fitted allowing separate logistic
parameters fo and B, for each locus

Tvedebrink et al. [ 7] subsequently published a second model (T5)
that, correctly, models mass as an exponential function of molecular
weight, H,. This model also allows separate 8, and S for each locus.

Therefore in model T; one DNA proxy is used for all loci whereas
in T, the DNA proxy variable is locus-dependent.

However the question presents, do locus effects developed for
one set of ‘training’ data translate to a future set of data? This
question is more than academic. If multimix batches or even
samples differ in locus amplification efficiency then transportabil-
ity of the model to future profiles may be an issue. Accordingly it
may be advantageous to consider a model that incorporates the
concept of degradation but does not include a locus effect.

We depart from the much tidier terminology of Tvedebrink
etal.[1,3] by the use of D, for Pr(D) for a heterozygote with allele a
and D,, for a homozygote aa to align with our other work.

Tvedebrink et al. [1] initially used a function of InH as the
explanatory variable (T, model). For the exponential model
Tvedebrink et al. [3] utilised InH, (T, model). In this work a
model using InH, is trialled without a locus effect (T, model).

The constants in the above models are developed from
empirical data by logistical regression. In T, and T, the values,
lip and I;, vary across loci. In T, one B, and one S, are applied to all
loci. Note that in model T, the subscript a could be dropped as the
dropout probabilities apply to the entire profile and are not allele
specific, however we retain them here for consistency.

In practical application it is likely that the constants will be
developed on one set of data (termed the training set here) and
then applied to casework. In order to assess the suitability of the
models when used in this way we develop the constants on the
training set and then apply them to a different set of data termed
the test set.

The three models described (T,, T and T,) were applied to the
datasets outlined below.

Case files were examined and data collated for profiles
suggesting a single contributor where the circumstances allowed
a reasonable inference about the source. The case file dates varied
from November 2009 to May 2012. The DNA samples had been
extracted using DNA IQ™ (Promega Corporation) method for
saliva, bloodstains and trace samples. All samples were quantified
using Applied Biosystems Quantifiler™ human DNA detection
system (Life Technologies, Carlsbad CA) and 1.5 ng of DNA was
targeted for Applied Biosystems Identifiler™ (Life Technologies,
Carlsbad CA) amplification on a 9700 thermal cycler (Applied
Biosystems) with a silver block. Amplified DNA was analysed using
a3130xI capillary electrophoresis instrument and DNA profile data
was analysed using GeneMapper™ ID software (Applied Biosys-
tems). These data, total 213, were split into three equal parts and
termed Iy, I and I5.

120 single source profiles of pristine DNA of known origin from
blood and semen stains were obtained. Samples were analysed as
for the sets above. This dataset was termed l4.

Pristine DNA from buccal swabs collected from 10 volunteers
were extracted using DNA IQ™ (Promega) as per the manufac-
turer’s directions. Extracted DNA was quantified twice using
Applied Biosystems Quantifiler™ human DNA detection system
(Life Technologies, Carlsbad CA) and an average taken. Varying
quantities of DNA (1 ng, 500 pg, 250 pg, 100 pg, 75 pg, 50 pg, 10 pg,
5 pg and 1pg) were amplified using Promega’s PowerPlex" 21
System in 12.5 pL reactions on a 9700 thermal cycler (Applied
Biosystems) with a silver block. Amplified DNA was analysed using
a3130xI capillary electrophoresis instrument and DNA profile data
was analysed using GeneMapper™ ID software (Applied Biosys-
tems). This produced 70 data termed set P.

There is some interest in the total number of free variables. This
arises because a significant factor when considering the future
performance of a model is whether overfitting has occurred on the
training set. Overfitting occurs when there are sufficient free
parameters to allow fitting to some aspects of training set that do
not appear in future test sets or casework. T; allows separate
logistic parameters By and B, for each locus giving a total of 2I
parameters for I loci. There is one covariate, the proxy for template,
H extracted from each profile. Plausibly total parameters are 2[ + n.
T, allows separate S, and B; for each locus. There are two
covariates per profile: the two parameters of the exponential
curve. Plausibly total parameters are 2I+2n. For our proposed
model T, there are 2n + 2 free parameters.

H and H, values were both obtained using least squares fitting.
For the methods T, and T the [;o values were constrained to within
a factor of two of the average. This avoided them moving to
unreasonable values. For the various sets, one was chosen to train
the approach which was then tested against the others. The
threshold for dropout was set at 50 RFU. Peaks above this were
deemed present and those below this deemed absent.

3. Results

We use the mean log(likelihood) per profile to score each of the
models. The model which yields highest mean log(likelihood) is
regarded as the preferred model. Therefore, if on average one
model yields higher log(likelihood) values than the other models,
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Table 1

Mean log(likelihood) for different combinations of model and training sets 1, ..., 14
and I} and 1. The set used for training the parameters is marked - T. The highest
value in each row is marked in bold.

Data set Method applied
T T2 T
L-T -0.20 -0.20 -0.34
Iz -3.84 —3.66 —2.00
I3 ~4.51 ~4.06 -2.03
Iy ~2.79 —261 —0.98
I —~0.46 -045 —-0.42
L-T -1.31 -1.30 -1.77
I3 221 -2.16 -1.91
I -1.17 -1.14 -1.08
I —0.46 -043 —0.35
I -1.64 -1.74 -1.82
-T -1.79 =171 -191
Is -1.29 -1.26 -1.02
L -0.44 0.44 -0.34
I ~2.02 ~2.00 -1.98
Iz -2.61 -2.39 -2.02
14T —0.82 —0.82 097
Table 2

Mean log(likelihood) for different splits of model and training sets for the
PowerPlex" 21 set. Set P was pristine DNA. Five different 35:35 splits of the same
data were trialled with one half used to train and one to test the approaches. The set
used for training the parameters is marked - T. The highest value in each row is
marked in bold.

Method applied

T T, T
T -1.6 -1.7 -22
-32 ~33 3.8
T -1.7 -18 -2.8
-33 -34 -32
¥ 5 -22 -23 -29
=26 27 3.1
F -1.6 -1.7 -24
-3.5 -36 -3.6
T -2.6 -27 -3.6
-2.1 -2.1 24

then we would regard this as evidence of superior performance.
The results are given in Tables 1 and 2.

4. Discussion

In almost all tests performed on the Identifiler™ sets method T,
or T, produced the highest mean log(likelihood) in the training set

and T}, produced the highest mean log(likelihood) in the test sets.
The mean in the training set was always higher than in the test sets
regardless of model used. We interpret this as meaning that a locus
effect does exist but that this changes either batch to batch of
mutlimix, or profile to profile, or over time by ageing of the camera
or other laboratory changes such as cleaning agents. This means
that a set of [;y and [;; values developed on one dataset, say during
validation, is not necessarily transportable to new profiles
developed subsequently.

For the PowerPlex™ 21 data T, regularly gave the highest mean
log(likelihood) in the training and test sets (Table 1). We interpret
this as meaning that pristine source data is too good to show the
expected degradation effect and therefore not suitable to train
these logistic models.

Of the three methods studied T, trained on casework data is
narrowly the best for immediate use in casework due to its
portability since it produced the highest log(likelihood) in test sets
more often. However, we conclude that further development is
required in the application of locus specific effects and it is likely
that these locus effects will vary from profile to profile or time to
time.
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suggest that the aspects investigated here are fundamental to introducing any multiplex in the modern
interpretation environment.
© 2015 Elsevier Ireland Ltd. All rights reserved.
1. Introduction These multiplexes are now applied to a wider range of samples
including complex multi-person mixtures.
In response to requests from the forensic community, In parallel there is an overdue reappraisal of profile interpreta-
commercial companies are generating larger, more sensitive, tion methodology. Aspects of this reappraisal include
and more discriminating STR multiplexes. For example in 2010, the
CODIS Core Loci Working Group was formed to investigate the 1. The need for a quantitative understanding of allele and stutter
expansion of the minimum load criteria to CODIS from 13 STR loci. peak heights and their variability,
One of the aims was to balance the total number of loci 2. Aninterest in reassessing the utility of smaller peaks below the
recommended with the level of discrimination offered in order often used analytical threshold,
to reduce the likelihood of adventitious matches and in anticipa- 3. A need to understand not just the occurrence of peak drop-in
tion of more transnational sharing of DNA profile information [1]. but also the height distribution of such peaks, and
The gender determining locus Amelogenin, 18 autosomal STRs and 4. A need to understand the limitations of the multiplex-
one Y STR are the new minimum recommended STR marker set interpretation strategy pair implemented.
with another three autosomal STRs strongly recommended [1,2]. In
Europe a core of 15 STRs has been designated as the European In this paper we will outline a scheme for the validation of a
Standard Set [3]. multiplex that is suitable for use with modern interpretation

strategies such as the semi and fully continuous systems being
implemented in many parts of the forensic community. We
* Corresponding author at: Forensic Science South Australia, 21 Divett Place, emphasize that it is the multiplex-interpretation method couplet

Adelaide, SA 5000, Australia. Fax: +61 8 8226 7777. that requires validation. Hence slightly different suggestions might
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).
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1872-4973/© 2015 Elsevier Ireland Ltd. All rights reserved.
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result for the same multiplex with a semi-continuous model than
with a continuous model. We differentiate between developmen-
tal validation and internal validation. Developmental validation in
this paper means actions we suggest should be undertaken by the
software developer to ensure that the software is suitable for use
on a certain multiplex.

The aspects we suggest should be studied are:

. Noise,

. Stutter ratio and variability,

. Peak height variability both at and between loci,
Drop-out,

. Drop-in, and

. Saturation of the capillary electrophoresis (CE) camera.

DU A WN -

We illustrate this scheme using the GlobalFiler™ and Mini-
Filer™ multiplexes. The GlobalFiler™ multiplex (Life Technolo-
gies, Carlsbad CA) amplifies 22 STRs, the gender marker
Amelogenin plus an additional Y-indel locus [4]. The MiniFiler™
multiplex amplifies 8 autosomal STRs plus Amelogenin.

We finish the paper with sections regarding training and
general legal acceptance of continuous and probabilistic DNA
interpretation systems. While neither of these topics relates
directly to kit validation within the laboratory (or at the computer)
they remain an important part of any validation and are required
before any pairing of software, expert and profiling kit can be
introduced and defended in court.

2. Results
2.1. Analytical threshold

The change to probabilistic systems invites a reappraisal of our
approach to setting the analytical threshold (AT). This is because
modern systems can manage low level peaks better.

Two interpretation strategies are available:

1. A threshold (AT) based approach and
2. Systems that deal with potential noise at the interpretation
stage and require no AT.

A peak in the electropherogram (epg) may be allelic, a PCR by-
product, artefactual such as pull-up, or electronic noise. Back
stutter is almost unavoidable and we can assume that almost every
allelic peak has an associated back stutter peak. Forward stutter
and double back stutter are also produced by the PCR process, but
in smaller amounts. Since back stutter, forward stutter and double
back stutter are allelic products they do not differ from a true allelic
peak in any way and cannot be differentiated by visual examina-
tion. These are not the only artefactual PCR products. For example
there is a —2 base pair stutter-like product at SE33 which is a
complex locus with largely tetranucleotide repeats.

Discussions of the position of the AT usually concentrate on the
electronic noise and it is suggested that the AT should not be used
to manage artefacts. For example SWGDAM |5] states:

. the analytical threshold should be established based on
signal-to-noise considerations (i.e., distinguishing potential
allelic peaks from background). The analytical threshold should
not be established for purposes of avoiding artifact labeling as
such may result in the potential loss of allelic data.

Valid efforts have been made to model electronic noise and we
give a feel of these types of efforts in Appendix 1. These approaches
usually consider the probability of a peak of height O, if it is
electronic noise, Pr(O4|electronic noise). They suggest selecting an
AT at some point when Pr(O,|electronic noise) is expected to be

small. We embrace the validity of the sentiment about not using an
AT to manage artefacts but in a brutally pragmatic sense it is
necessary to consider the downstream effects of the position of the
AT. This needs a lot more than a consideration of Pr(Og4lelectronic
noise) and we suggest that electronic noise is the least difficult of
the factors needing consideration. At the time of writing none of
the probabilistic systems specifically model forward and double
backward stutter. The semi-continuous systems do not model back
stutter whereas the continuous ones do.

Consider initially a threshold based approach. Peaks above the
AT are often examined manually for morphology. At this stage dye
blobs, pull-up and electronic spikes will be removed. Any peak
above the AT that passes manual inspection is passed to the
interpretation phase. Lowering the AT will detect more allelic
peaks but will also pass more artefactual peaks for manual
inspection. The total utility of a lowering of the AT is therefore the
sum of these effects and depends crucially on how significant the
consequences of passing such peaks are. In turn, this depends on
how they are treated at the interpretation phase.

In previous binary systems the passing of false peaks had a very
significant negative effect (negative utility) on the interpretation.
Hence, historically, ATs were set high. The modern systems have a
greater resilience to false peaks and hence the utility function is
changed. More specifically there is now less risk associated with
lower ATs as long as the models within the system for DNA profile
behaviors (such as drop-in) are set up accordingly.

The semi-continuous models in widespread use (LRmix [6], Lab
Retriever, LikeLTD [7], FST [8] and LiRa [9]) do not utilise peak
heights directly in the software. Some interaction of peak height
data and semi-continuous systems does exist, for example expert
intervention allows for the manual extraction of a clear major [10]
and Lab Retriever utilizes peak height in forming the probability of
drop-out (D) parameter. All three of these systems currently
function with a threshold based strategy and peaks in stutter
positions are either removed or dealt with as ambiguous (either
partly allelic or totally stutter). Any peaks that are above the AT and
passed to the software must be explained as allelic, ambiguous or
as drop-in. Peaks dealt with using the drop-in function would
include true drop-ins, that is, unreproducible allelic peaks that
appear in the profile, and non-allelic peaks not treated as
ambiguous. To emphasize that the software should be run by an
expert (following Gill and Haned [6]) we will refer to the software-
expert pair (SEP). The effect of dropping the AT would be more true
allelic peaks detected which has a strongly positive utility.
However there will also be more peaks needing manual removal,
treatment as ambiguous or drop-in, or which may cause the
scientists to artificially increase the assigned number of contrib-
utors. These have a negative utility. The net effect is unstudied.

The continuous software programmes in current use (STRmix™
[11] and TrueAllele [12]) can treat noise peaks directly; modelling
the probability of these peaks if they arise from a contributor (as
allelic or stutter) or if they do not arise from a contributor
(encompassing noise or drop-in).

If a drop-in function is used for semi-continuous SEP or
STRmix™ the AT value does not need to be set as conservatively as
with traditional interpretation methods. The setting of an AT will
affect both the probability of drop-out and drop-in. We direct the
reader to [13] who explore this idea.

If forward stutter and double back stutter are not manually
removed or treated as ambiguous then the drop-in function will
now be used to model true drop-ins but also other peaks that pass
AT and manual inspection. The drop-in rate will therefore need to
be higher than if it was simply modelling drop-in. When used in
this way the drop-in rate cannot be set from empirical negative
control data but needs to be set from positive samples with known
ground truths. In doing this there would be a dependence of profile
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Fig. 1. Observed SR - the predicted SR (O-E) vs allele for the SE33 locus. LUS model (top) multi-sequence model (bottom).

intensity on drop-in (both in the validation data being used to
determine drop-in rate, and in the evidential data that is later
analyzed) that would be ignored.

It is therefore advantageous for the semi-continuous SEP and
STRmix™ to manually remove forward and double back stutter
until it can be modeled appropriately. We discuss forward stutter
in a later section but at this stage cannot add to the discussion on
double back stutter.

2.2. Back stutter ratio (SR)

Stutter ratio is quantified by calculating the ratio of the
observed height of the stutter peak (O, _) to the observed height of
the allelic peak (0,). Stutter has been extensively modelled in the
literature and was initially reported that the longest uninterrupted
repeat sequence (LUS) was the best indicator of stutter ratio [ 14-
17].

SE33 stutter ratios are poorly explained by a model based on
LUS'. This locus has some alleles with two or three long sequences.
The locus SE33 better fits a model where all repeat sequences are
considered as contributing to stuttering but only after subtraction
of a factor, x, of repeats. We term this the multi-sequence model.
When considering the multi-sequence model we fit the equation:

SR =mY_max(l; - x,0) (1a)

where m and x are constants set by least squares. The residuals

when applying the model specified in Eq. (1a) (and later (1b)) are

' We thank Shawn Montpetit and Melissa Strong of the San Diego Police
Department for bringing this to our attention.

normal distributed. [; is the length of sequence i. The original LUS
model was SR =ml; + c where m and c were constants and [, was the
length of the longest uninterrupted sequence. By constraining the
multi-sequence model in this way the number of free variables in
the two models is the same and hence a direct comparison can be
made. We demonstrate this comparison with 205 GlobalFiler™
profiles. For some alleles there are up to four known sequences in
STRbase. For these we have simply averaged the sequences given.
The effect of this is a broadening of the distributions about the
predicted SR.

In Fig. 1 is shown a plot of the observed SR minus the predicted
SR (O — E) by either the LUS model (top) or by the multi-sequence
model (bottom) versus allele designation for the SE33 locus.

The term x in the multi-sequence model can be interpreted as
the number of repeats before stuttering begins. For SE33 this was
x=5.83, as determined by maximum likelihood estimation (MLE).
We will term this the lag. For SE33 this means that the short
sequences contribute nothing to stuttering and that only
sequences longer than 6 repeats contribute at all. For SE33 the
average error in estimation of SR was 8.7 x 10~ for the LUS model
and 4.4 x 10~ for the multi-sequence model.

However the first dataset we examined appeared to be the best
one for this model. In other datasets we have found it necessary to
modify the multi-sequence model to

SR= mZmax(h —-x,0)+c where c is a constant. (1b)
1

Using this amendment the multi-sequence model can therefore

completely replace the LUS model for all loci studied to date. We

provide as supplementary material an Excel spreadsheet that

demonstrates (with instructions) the application of this model to

SE33 data.
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The multi-sequence theory has a better intuitive feel, to us, than
the LUS theory. However if it has validity it should be able to
explain SR at least as well as LUS for the other loci. The formula for
the LUS model can be rewritten into the same form as the multi-
sequence modelSR = m(l; + ) where c is typically negative. It will
return the same result as the multi-sequence result whenever
there is only one sequence per allele longer than —(c/m) (note that
when c is positive this term will be negative, meaning that any
length sequence will contribute to the stutter). For the simple
repeat loci there is no difference between allele, LUS and a multi-
sequence approach.

If we consider a locus such as THO1, there is one common allele,
the 9.3, which has a sequence interruption. The sequence contains
a stretch of 6 repeat units and one incomplete unit of 3 bp. Hence a
9.3 allele has a LUS of 6. The multi-sequence model returns x = 3.32.
This means that the first 3 repeat sequences contribute nothing to
the modelled SR. Hence, for THO1, there is no difference between
the LUS and the multi-sequence models. This is also true for FGA
where no secondary sequence exceeds the value for x of 4.80. For
VWA and D21S11 some secondary and tertiary sequences are of a
moderate length. For these two loci the multi-sequence model
showed a reduction in the average error in estimation of 17% and
5% respectively compared with the LUS model. This is consistent
with the small effect of secondary and tertiary sequences above the
lags of x=3.46 and 4.66 respectively.

For the internal validation of a new multiplex we recommend
that mean and variability of SR should be determined for a range of
genotypes (an arbitrary number that has, in the author's
experience, been adequate is 100). Single source samples are
acceptable and should vary in template. Epgs should be analysed to
very low peak height values, say 10 RFU, regardless what AT is to be
used in this SEP. Ignore loci where the high molecular weight allele
can stutter onto the low molecular weight allele (i.e. stutter
affected heterozygous genotypes).

SR should be fitted to Zmax(h—x.O) to confirm the

1
relationship and inform the model for each locus. Least squares
fitting appears to perform well.

For SEPs using semi-continuous systems, peaks in stutter
positions are currently designated as allelic, stutter or ambiguous.
This is based on a stutter threshold. At the time of writing two
threshold structures are in use. These are:

1. One threshold value for SR across all loci, or
2. A separate threshold value for SR for each locus.

Peaks above this threshold are deemed to be allelic. Peaks
below this threshold are deemed to be stutter if there is no minor
contributor approximately equal to their height in the profile or if
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all minor allelic peaks have been seen at this locus. If a peak is
neither designated allelic nor stutter then it is called ambiguous.

Thresholds for stutter are typically determined as the maxi-
mum stutter ratio found in some set of data. However the data
presented above show that this maximum will be most affected by
alleles with high LUS values and low peak heights. For SEPs using
this approach the experiments described above are not essential
and represent an almost academic exercise to check that the
multiplex is behaving as expected. Current threshold based
approaches to stutter designation in use in the semi-continuous
SEP are not aligned with the empirical observations and it is very
hard to see how to improve them without a significant increase in
the complexity of currently manual functions. The most probable
impact of these inefficiencies is that a small amount of information
present in the profile is unused in a fraction of cases.

The situation for the continuous SEPs is very different. These
have the capability to utilise this information directly. Therefore, at
least for STRmix™, these experiments or equivalents provide
direct empirical information for use in the software.

2.3. Forward stutter ratio

Forward stutter ratio (FSR) is quantified by calculating the ratio
of the observed height of the forward stutter peak (Og+1) to the
observed height of the allelic peak (Og).

_Voml
= _Oa

In most multiplexes forward stutter is observed rarely at
autosomal loci with the exception of the one autosomal
trinucleotide repeat marker in common use, D2251045. Using
standard casework and validation samples, explanatory variables
previously used to predict back stutter height such as parent allele
height (0,), locus and the longest uninterrupted sequence (LUS)
were found unsuitable for predicting the height of forward stutter
peaks for all tetra and pentanucleotide repeats [ 18]. This result was
surprising given the known mechanism of stutter generation and
the anecdotal observations of forward stutter being observed
commonly for parent peaks that had high peak heights (suggesting
that there is indeed some dependence of forward stutter on parent
peak height).

It is hypothesised here that forward stutter peak height does
depend on parent peak height, however in [18], only the highest
few percent of all forward stutter peaks were seen and this caused
dependencies to be hidden. Fig. 2 shows that from all applicable
forward stutter positions only a few percent had forward stutters
observed (shown as the black, ‘Original work’ line). It was surmised
that this was due to an AT of 30 RFU being applied to the original
data analysis. To explore this idea a set of 55 single sourced, but

FSR

——New work

—Original work

20000 25000 30000 35000

Parent Peak height (rfu)

Fig. 2. Graph showing the percentage of parent peaks where forward stutter was observed (for genotypes where observation was possible i.e. not masked by other alleles or
back stutter) for the original work carried out in [18] and current new work shown in this paper.
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highly over saturated, GlobalFiler™ 3130xI generated profiles
were analysed down to the level of 10 RFU. This lead to observed
forward stutter peaks in more than 50% of instances (Fig. 2 shown
as the grey, ‘New work’ line). In order to determine forward stutter
ratio (FSR) the height of the parent peak had to be estimated, as
observed parent peak heights could not be reliable upon due to
oversaturation (see the saturation Section 2.6). The observed
height of the back stutter (O, ;) and the stutter ratio for that allele

and locus (SRL) were used to calculate the expected parent peak
height (Ea) (Eq. (2)).

0 SR! x 0,
BSR = 2ol _ 209 * Fail,
Eq Oa—l

Consequently the parent peak height in Fig. 2 extends to
35,000 RFU while the 3130xI instrument saturates well below this
intensity. The residuals when applying the model specified in
Eq. (2) are normal distributed.

When the second allele of a heterozygous pair was one repeat
unit different from the first allele, then the observed back stutter
peak height of the first allele was used to determine expected
parent peak height of the second allele. All instances where back
stutter and forward stutter overlapped were omitted from the
study. When a forward stutter was not observed then a value of
5 RFU (half the AT) was used.

Observed forward stutter peak height was regressed using R
[19] with only expected parent peak height as a variable (forcing
the intercept through the origin) and dependence was observed
(p <2 x 107", for the FSR being dependent on parent peak height).
The regression was extended to include individual locus effects
using the formula:

QOa-
Egi1 = ﬁiEa = ﬂi(s‘;z::)

(2)

where a separate f; term is present for each locus. The majority of
loci showed a significant difference from each other and so locus is
also a dependant variable for forward stutter peak heights. The
values of B; can be used to determine the FSR for each locus. The
FSR and the standard errors from the regression are given below in
Table 1, note that YSTR locus DYS391 has been omitted from the
calculations, as has D22S1045 due to its strong correlation
between LUS and FSR.

Table 1
regression results of forward stutter.
Locus FSR Std. error
CSF1PO 0.0062 0.001763
D10S1248 0.0128 0.001734
D125391 0.0029 0.001539
D135317 0.0046 0.001458
D165539 0.0059 0.001536
D18S51 0.0045 0.001521
D195433 0.0019 0.001739
D1S1656 0.0052 0.001533
D21s11 0.0072 0.001539
D251338 0.0016 0.001756
D2S441 0.0055 0.001695
D3S1358 0.0042 0.001624
D5S818 0.0077 0.001565
D75820 0.0020 0.001518
D8S1179 0.0054 0.001524
FGA 0.0030 0.001566
SE33 0.0059 0.001575
THO1 0.0006 0.001613
TPOX 0.0007 0.001422
VWA 0.0033 0.000599

D3S1358
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Forward stutter ratio

Fig. 3. Distribution of FSR for D3S1358 (grey) with a fitted gamma curve (black).

Note that it is likely that other factors will have an effect on
forward stuttering such as the laboratory process, hardware or
profiling system used.

2.3.1. Modelling forward stutter to inform threshold approaches

At time of writing we are aware of no SEP that directly models
forward stutter peak heights. Therefore the requirement is to
establish guidance on whether peaks in forward stutter positions
are allelic. Due to the very low nature of forward stutter there is an
inherent difficulty in accurate estimation. Many instances of
forward stutter observed in these data were less than 30 RFU even
for the oversaturated profiles examined. At this level the signal is
mixed with the noise associated with the instrument. It is also in
the range where small artefacts such as dye blobs, spikes, pull-up
peaks or other exotic stutters (double back stutter, stutter-like
artefacts etc.) from other alleles can all have large relative effects
on peak height. Furthermore using back stutter peak heights to
determine expected parent peak heights, which are then used to
calculate the FSR, adds uncertainty to the estimation as there is
stochastic variability in the back stutter process.

Compounding these difficulties is the fact that in standard
validation studies or casework only those instances of forward
stutter that are in the upper range are seen. This makes forward
stutter modelling a difficult task.

Using the oversaturated data the distribution of FSR looks to
have a long positive tail. This suggests that it could be modelled
using a gamma distribution such as shown in Fig. 3 for D3S1358. In
Fig. 3 the grey data shows the observations of FSR for D351358

Table 2
Gamma distributions fitted to FSR (shape and scale parameters rounded to four
decimal places) and descriptive statistics of interest.

Gamma Mode Mean 95th 99.9th quantile
parameters quantile
D3S1358  5.6254, 0.0008 0.0038 0.0046 0.0081 0.0129
VWA 2.0089, 0.0018 0.0018 0.0036 0.0084 0.0164
D16S539  11.5371, 0.0006 0.0065 0.0071 0.0109 0.0154
CSFIPO  4.9010, 0.0013 0.0049 0.0062 0.0114 0.0185
TPOX 1.7981, 0.0005 0.0004 0.001 0.0024 0.0048
D8S1179  7.4452, 0.0008 0.0055 0.0063 0.0105 0.0159
D21s11 71822, 0.0011 0.0069 0.008 0.0134 0.0203
D18S51 3.1202, 0.0014 0.003 0.0044 0.0092 0.0162
D25441  11.5938,0.0006  0.0061 0.0066 0.0101 0.0143
D195433  1.7754, 0.0009 0.0007 0.0016 0.004 0.0081
THO1 1.6952, 0.0008 0.0005 0.0013 0.0032 0.0065
FGA 3.2343, 0.0015 0.0032 0.0047 0.0097 0.017
D55818  13.1417, 0.0006 0.0073 0.0079 0.0118 0.0163
D13S317  1.3800, 0.0028 0.0011 0.0039 0.0105 0.0222
D75820  2.8112, 0.0013 0.0023 0.0036 0.0077 0.0138
SE33 3.7885, 0.0016 0.0045 0.006 0.0119 0.0202
D10S1248 5.6862, 0.0016 0.0074 0.009 0.0159 0.0252
D1S1656  4.9322, 0.0012 0.0049 0.0061 0.0112 0.0181
D12S391  1.3165, 0.0014 0.0004 0.0018 0.005 0.0107
D251338  1.5725, 0.0005 0.0003 0.0008 0.002 0.0041
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(with some smoothing applied for visual clarity) and the black line
shows the gamma distribution fitted by MLE. It is worth noting that
using non-oversaturated data only the part of the distribution to
the right of approximately 0.007 would be seen.

The distributions of FSR for each locus are given in Table 2 along
with the mode, mean, 95th and 99.9th quantiles. These quantiles
could be used by other laboratories using the same CE equipment
and chemistry to inform their thresholds. For other combinations
of CE and chemistry it is likely that these values are inappropriate.

2.3.2. Modelling forward stutter preparatory for probabilistic systems
Using the ratios from Table 1 and expected parent peak heights
the expected forward stutter peak heights were calculated.
Following the model of [11] we plot logio(Oa+1/Ea+1) against
the expected forward stutter peak height (Fig. 4). The lower dashed
line seen in Fig. 4 corresponds with the lower limit at which
forward stutter peaks could be unobserved in the profiles using a
AT of 10 RFU. Taking into account that the AT restricts the lower
values that 10g10(Oq+1/Eq+1) can take (particularly noticeable for
lower expected peak heights) the same relationship as described in
[11] for allelic peaks appears to exist for forward stutter peaks:

0 (o
lo "—‘) ~ N(O.—)
Eio (an Eqi1
Using a value of ¢?=2 the bounds shown in Fig. 4 cover 95% of the
data.

2.3.3. Validation suggestions

Given the current lack of probabilistic systems incorporating a
forward stutter model, the modelling described above is excessive
for laboratories currently implementing probabilistic software. All
that is required to handle these peaks is to set some sensible
threshold above which a peak will be considered allelic. A sensible
value for the data shown in Table 2 might be 2% of parent peak
height, which would eliminate most instances of forward stutter at
most loci. For D22S1045 a simple threshold would also be a
sensible way forward although use of LUS as a predictor may be
envisaged for the future. For peaks below this value a laboratory
has three options:

1. Treat as ambiguous,

2. Leave in and use the drop-in function as a proxy to model the
peak,

3. Remove the peak.

We are perfectly comfortable with the removal of the peak in
this way and any suggestion of bias should be ameliorated by the

log,,(O/E)

0 50 100 150 200
Expected forward stutter peak height
Fig. 4. Log(O[E) for forward stutter based on expected parent peak height showing

95% coverage using the model from [11] (dotted lines). The lower dashed line
represents the limit at which data could be observed using an AT of 10RFU.

use of a preset threshold. We recognize this as an interim
suggestion pending the implementation of effective forward
stutter models.

In order to remove forward stutter peaks, some threshold is
required and as stated previously the results in Table 2 may only
apply to similar laboratory systems to that which was used to
generate the data. It has also been stated that when only the upper
tail of the forward stutter distribution is observed, modelling is
complex and risks not revealing any dependencies. We suggest
that to develop a threshold from standard validation data that a
single, profile-wide, forward stutter threshold is used. The
following information will be needed:

A -The proportion of applicable sites (locus and allele positions
where forward stutter is not masked) where forward stutter was
observed,

B - The proportion desired to be used as a cut-off for screening
out forward stutter peaks, and

N - The number of observations of forward stutter.

When these values are known then FSR should be calculated for
each N and listed in ascending order. The cut-off to be used is then
the N(A—1+B)/Ath value in the list. For example if 500 observa-
tions of forward stutter are observed out of 5000 possible sites,
then A=0.1. The 500 observation as converted to FSR and listed in
ascending order. If a cut-off is desired that removes 95% of all
forward stutters then it should be set at the value of the:

500(0.1 — 1 +0.95)/0.1 = 250th

value in the list. This very simple method makes the assumption
that FSR are uniformly distributed above the AT, which is not true
but as an approximation serves to produce a sensible cut-off value.
More elegant modelling to produce a cut-off is possible but is more
complex.

2.4. Peak height variability

Directly after the first use of fluorescence based STR profiling
came the realisation that peak heights in DNA profiles are not
reproducible. Partner peaks of heterozygous pairs appear at
different heights (referred to as the heterozygous balance Hb or
peak height ratio PHR), re-amplifications from the same DNA
extract produce profiles with peaks that differ in height from each
other, or fail to appear at all (referred to as drop-out).

For validation of a SEP we recommend analyzing a large set of
single source samples of varying template. Ignore loci where the
difference between the low and high molecular weight alleles is
less than 2 repeat units (potential stutter affected heterozygotes).
This is so that there is no overlap between the allele, stutters or
forward stutters of a heterozygote pair. We introduce the concept
here of total allelic product (TAP) [16] which describes the total
amount of fluorescence expected from some number of strands of
template DNA. During the PCR process replication errors occur that
lead to stutter (either above and/or below the parent allele). Stutter
strands also have had fluorescence incorporated, which would
otherwise have been incorporated into the allelic peak. As
expected by the TAP theory, it has been shown that higher than
expected stutters are associated with a lower than expected allelic
peaks [16]. We use the following terminology:

O, - observed parent allele peak height.

041 - observed stutter peak height.

Ogq+1 — observed forward stutter peak height.

Opymw — observed TAP of the high molecular weight allele.

Opmw — observed TAP of the low molecular weight allele.

Noting that for the two terms above O¢ri/r ymw =041+ 0a+ 0q
+1. We can then use Oymw and Opyw to calculate Hbrpp = 220 [20-

23] and APHyyp = 2ovOus We note that this resolution of detail is
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Fig. 5. Observed log;o(Hb) data with 95% expected Hb boundaries from analysis of
peak height variability

unlikely to substantially affect practical observations of empirical
data, and for simplicity we retain the Hb and APH nomenclature. A
plot of log(Hb) v APH is shown for the GlobalFiler™ data (grey
points) in Fig. 5.

As might be expected from the nature of sampling variation,
DNA extract sampling variation will have its largest relative effect
on peak heights when the number of starting molecules of DNA is
low. This effect has been shown in numerous graphs of Hb,
measured over a range of average peak heights (APH) [16,22].

The peak height variability can be used to estimate the level of
expected Hb in a dataset, as long as profiles within the dataset are
not significantly affected by degradation (which will significantly
affect the observed Hb variability, but not the peak height
variability as long as degradation is included in the profile
modelling). Taking advantage of the fact that a heterozygous peak
pair comprises two peaks, each with height variability, the
expected 95% bounds on expected Hb can be calculated.

The expected variance in log(Hb) informs the behaviour of the
variance of the individual peaks and vice versa. Since the variance
of a sum is the sum of the variances then:

E{var(log(Hb)]} = E{V“r[log (EE%)] }

= E{var{log(Eymw) — log(Ermw)]}
= E{var[log(Eumw)] + var(log(Ermw))

—2 covar(log(Eumw ), log(Ermw)]}

We assume that given a set of mass parameters (see [11] for the
mass parameters considered in the STRmix™ model) the expected
peak heights of two peaks of a heterozygous pair are independent
and hence covar[log(Exmw), 10g(Eimw)]=0. We also assume that
the two peaks of a heterozygous pair will have approximately the
same variance so that var[log(Exmw)| = var[log(Epmw)] = var{log(E)]
meaning that:

E{var[log(Hb)|} = 2 x E{var[log(E)|}

i.e. the variance of log(Hb) is expected to be twice the variance of
the log of the individual peaks making it up. The advantage of
developing peak height variability as opposed to simply measuring
the variability in Hb is that applying a Hb ‘interpretation rule’ to
mixed DNA profiles quickly becomes problematic when shared
peaks are present, whereas peak height variability can still readily
be applied. There are different models for peak height variability
modelling [9,11,24], but we demonstrate the idea using the model
in line with [11] in which we model the observed and expected

peak heights by:

log (%) ~ N(O.%) (3)

Using this model and the proof above, the bounds on Hb expected
from a peak height variance constant of ¢2 can then be determined
by:

tm/% (4)

Where « is the critical value that determines the quantile of the
bounds. We draw in Fig. 5 the 95% bounds (& = 1.96) and adjust c2
value to 6.1 so that exactly 95% of the log(Hb) data is covered by
these bounds. Note that APH in Fig. 5 is equivalent to E in Equation
3 for the purposes of graphing the bounds and log(Hb) together in
Fig. 5.

The expected peak height variance for this data is 6.1/E. The
process we have gone through here is the reverse of how it is
carried out in STRmix™, where peak height variability is
determined directly from the data and then checked against Hb
secondarily. Doing so provides a distribution for c2, for which the
mean is 6.4 (data not shown).

2.5. Drop-in

Negative control samples are samples prepared with all the
reagents and plasticware used for a case sample but with no actual
case material added. These samples do occasionally show peaks,
especially when using enhanced sensitivity methods. These peaks
appear mainly as single peaks per control or less often two or three.
Even more rarely a significant part of a profile appears [25]. It has
been theorized that two mechanisms are in operation:

1. Tiny fragments of extraneous DNA, or
2. A full cell or a large part of a cell

is introduced into the PCR from the laboratory environment or
consumables used [26].

The occasional peaks are referred to as drop-in. The more
complete profiles are referred to as contamination. The frequency
of detection of drop-in peaks increases as the sensitivity of the DNA
testing method increases.

There are few published studies of the heights of drop-in alleles.
Recently a model for drop-in peak heights was suggested [27]. This
suggested that the height of a drop-in peak should follow a gamma
distribution and the number of drop-ins modelled with a Poisson
distribution, both of which are estimated from negative controls.
The gamma distribution can have a very wide range of shapes
depending on the parameters and hence can be used to explain
many observed distributions.

The experimental design used to inform the drop-in model
should be matched to the way that drop-in will be applied in
casework. This should consider any AT used. What is required is
data from a large number of positive observations, say 100, from
negative controls, such as suggested in [27]. These should be
analyzed to very low heights, say 10 RFU, regardless of what value
is used for the AT in casework. The height of each peak should be
recorded as well as the number of peaks per control. In order for
the peaks to be considered drop-in they should not be reproducible
on subsequent PCR of the same DNA extract.

For the semi-continuous models it is the rate of drop-in that is
required. However the continuous models require both the rate
and the peak height. The same experimental design can be used for
either SEP but for the continuous models the data need to retain
height information.
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Table 3

Count of negative controls with 0-10 observed alleles.
Number of peaks per control 0 1 2
Count of controls with this number of peaks 325 101 24

w
[N
v
o
~
©
©
3

Too few drop-in events were observed using GlobalFiler™ at
29 PCR cycles to demonstrate the gamma modelling, so we provide
data generated using Life Technologies MiniFiler™ amplification
kit performed at 30 PCR cycles to illustrate the approach taken.
N=467 negative control samples for the MiniFiler™ multiplex
were read to 10 RFU using GeneMapper ID-X. In Table 3 are shown
the observed counts of peaks per negative control.

The controls with high peak counts (to the right hand end of
Table 3) would be considered contamination. Those to the left hand
end would be described as drop-in. An arbitrary cut off between
these two mechanisms, ¢ is often set.

For the data in Table 3,¢ could be set at 2 or 3. This distinction is
arbitrary but does have some scientific basis. We note that there is
no “conservative” side to Pr(C) for all cases. It will vary for different
cases. Hence it is not safe to err deliberately upwards or
downwards.

In Fig. 6 is shown the observed number of peaks per profile (as a
relative occurrence). This is overlayed with a Poisson distribution.
The Poisson distribution is the expected distribution if the peaks
were appearing independently as separate “drop-in” events. Also
shown is a horizontal line that represents a constant contamina-
tion rate. The two lines cross at 3 peaks per negative control. This
sets the definition of contamination at the point when the drop-in
peaks no longer fit an independence model. For the demonstration
set and setting ¢=3, those samples with 4 or more peaks were
removed lowering N to 458 and giving x=173 drop-in events.

If it is assumed that each drop-in observation is an independent
event i.e. the probability of two drop-in events occurring is the
product of each one occurring individually, then we need only a
single drop-in probability, Pr(C). This can be calculated using data
collated from the monitoring of negative controls samples tested
within the laboratory by:

X
PO =Fx1

Where x is the number of observed drop-in peaks above the level to
be used for the AT (amended by S if positive samples are used), N is
the number of profiles examined and Lis the number of loci. For the
data in Table 3 using AT=10RFU this is:

173
458 x 8

For the semi-continuous SEPs we would suggest that:

Pr(C) = = 0.046

1. The counts per negative control should be recorded,

I X Observed
0.1 J =—Poisson

g ----Contamination
2 oo <
g X X
£ o001 | X X
g l
S 00001 }
|
] 0.00001 ‘
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Number of peaks per control

Fig. 6. A plot of the observed and expected number of peaks per profile (as relative
occurrence), the Poisson distribution fitted to this data and the contamination rate,

2. This should be plotted against a Poisson distribution and & set,
3. x is then recalculated at the chosen AT and Pr(C) should be
calculated.

For the continuous models it is necessary to consider the height
of the drop-in peaks as well. In Fig. 7 is given the smoothed
probability density of the observed distribution of drop-in peak
heights overlaid with a gamma distribution fitted by MLE and
scaled for the probability “missing” below 10 RFU.

2.6. Saturation

There is a well-recognised relationship between the amount of
DNA that has been added to a PCR reaction (template) and the level
of fluorescence of the peaks on the epg. The relationship has been
shown to be approximately linear over a wide range of input DNA.
Beyond this point the amount of fluorescence that is being
produced by the excitation of the amplicon fluorophores is beyond
the levels that can be detected by the charge coupled device (CCD)
camera of an electrophoresis instrument. The CCD camera has
become ‘saturated’ by input signal. This is a phenomenon more
associated with the camera rather than the multiplex but we
suggest that it should be validated for each multiplex and SEP.

To calculate the saturation point the relationship between
stutter and parent peak heights can be used. As the amount of DNA
added to a PCR reaction increases the heights of both the allele and
its stutter will increase proportionally. The allelic peak, being much
more intense than the stutter peak, will reach the saturation point
before the stutter peak. From this point on the observed stutter
ratio will diverge from its expected value.

Using the observed stutter peak height (O, 1) and the stutter

ratio for that allele and locus (SR{,). the expected parent peak
height (E,) can be calculated by:
= oa-l

E
‘SRl

And compared with the observed parent peak height (0,). This
analysis was carried out for the GlobalFiler™ dataset analysed on a
3130xl and can be seen in Fig. 8.
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Fig.7. Gammadistribution fitted to the observed MiniFiler'™ (30 cycle, AT = 10 RFU)
drop-in data.
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Fig. 8. Observed allele peak height compared to expected allele peak height based
on its stutter peak RFU.

A deviation from the line of equality in Fig. 8 can be seen
between the observed and expected peak heights around
7000 RFU. This means that a peak observed at 7000RFU does
not indicate the level of input DNA other than to suggest it is above
some level that corresponds with the saturation point. Note that
we desire a saturation level that sits immediately below the point
at which observed peak heights plateau rather than an average
value, as the point of the saturation level is that any peaks heights
above it do not necessarily represent input DNA.

A further point of note from Fig. 8 is that the saturation does not
appear to be a gradual process, rather one that occurs suddenly at a
particular point. Therefore an appropriate model for fluorescence
may be:

E __{f(M) f(M) <s
¢ s otherwise

Where s is the saturation point and f{M) is some function of mass
parameters that predicts peak height.

2.7. Drop-out

The method used to model the probability of drop-out Pr(D) can
vary significantly depending on the implementation of the drop-
out model in an interpretation system. At writing there is quite a
diversity of implementations. There are two main variants of drop-
out modelling; that which treats drop-out as an extreme form of
imbalance and that which treats drop-out events with their own
model.

2.7.1. Drop-out considered as an extreme peak height imbalance
Drop-out can be considered an extreme form of imbalance
where a peak has fallen below the AT [28]. This implies two things:

—

. The model for peak balance should be able to be extended to
handle drop-out events without the need for a separate drop-
out model, and

2. The probability of drop-out will depend on the AT, cycle number,

template, and amplification efficiency at that locus.

For a given AT, multiplex and cycle number, the primary
determinant of drop-out is template. For a profile showing a typical
degradation curve [29] we would expect a low probability of drop-
out at the low molecular weight end and a higher one at the high
molecular weight end in line with a reduction in intact template. In
addition some loci amplify above or below the general amplifica-
tion efficiency trend across all loci in the profile and this effect is

not constant over time [30]. STRmix™ uses an extension of Eq. (3),
which considered that the observed peak height for a dropped out
allele has a uniform prior distribution between 0 and the AT. This is
explained fully in [11] and we reproduce the operative formula
below:

AT
Pr(0 < ATIE) = / Pr(0 = i|E)Pr(0 = i)di
i=0

2
where Pr(O =i|E) ~ N (OEE—)

and Pr(O = i) ~ U(0,AT)

Note that this method also works for instances when E < AT.

2.7.2. Specific drop-out probability models

LRmix and LikeLTD do not use validation data to inform Pr(D),
instead they use the number of observed alleles or maximum
likelihood estimation respectively. Lab Retriever uses a variant of
the logistic regression method of Tvedebrink et al. [31] without
consideration of degradation. The Lab Retriever formula (LRF) is

Pr(D) = “""—”‘Hn(whereﬁ is a proxy for template and ¢ and S, are
14efof

determined by MLE from training data) and differs from
Tvedebrink's first version in that it does not use Ln(H). Tvedebrink
went on to refine this version to incorporate the effects of
degradation [30-32]. The Forensic Statistical Tool developed by the
Office of the Chief Medical Examiner of the City of New York uses a
system based on quantification estimate [8]. Recently investiga-
tions into drop-out modelling have included DNA amounts, PCR
cycle number and capillary electrophoresis injection time as
dependent variables in a drop-out probability model [33].

2.7.3. Comparing models to observations

It has been suggested from theoretical studies [34] that
variability is introduced early in the process when an aliquot is
taken from the extract. In the extract the cells are ruptured and the
aliquot may take a varying number of template DNA molecules.
The observed fraction of dropped alleles is expected to be the result
of these processes and stochastic variation. We will term the
observed fraction of dropped alleles as the drop-out frequency for
that profile. This can be observed.

There are a number of methods that can be employed to observe
drop-out, which rely on the height of surviving peaks in a
heterozygous pair or in a profile. We demonstrate examination of
these models using nine low level GlobalFiler™ profiles. Quantifi-
cation estimates for these profiles indicated the total input
template ranged from 50 to 210 pg. The profiles showed only
modest degradation slopes. The profiles were read down to 10 RFU
which allowed the examination of Pr(D) for thresholds at 10,
30 and 50 RFU. Since Lab Retriever uses the average peak height
from the profile to create the template proxy we split the nine
profiles into a set of four and a set of five. One set was used to train
the logistic model which was then trialled on the other set. The
training and test sets were then reversed and the process repeated.
The results are shown in Fig. 9 below.

In the same study where the LRF was trialled we also trialled,
Pr(D) = %and Pr(D) = % where Q was the quantifica-
tion estimate. These two variants using the quantification estimate
were both highly ineffective at modelling Pr(D).
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Fig. 9. A plot of expected drop-out probabilities using the Lab Retriever formula
(LRF) and Tvedebrink’s 1st model (T1) formulae for thirteen low level GlobalFiler'™
mixtures at a threshold 30 RFU vs the observed drop-out probabilities, plotted
against APH. The observed line is hand drawn to the data (not shown).

When examining the STRmix™ model we cannot compare with
the observed drop-out in a profile as we did for LRFand T1 in Fig. 9.
This is because STRmix™ has a drop-out probability for each allele.
In addition STRmix™ does not have one value even for each allele,
rather it integrates the probability of the profile across varying Pr
(D). In Fig. 10 we give an approximation to the mean Pr(D) for
STRmix™ vs the moving average of the observed drop-out at the
template proxies (this can be thought of as the expected peak
height of the allele).

To our eye both drop-out approximations shown in Fig. 9 and
the STRmix™ approximation shown in Fig. 10 appears to fit
expected to observed data well.

2.7.4. Using drop-out models to develop thresholds

In many instances drop-out probability models will be required
to develop thresholds to determine when the probability of drop-
out is sufficiently improbable that the expert is willing to round it
down to zero. This threshold is often termed the homozygous
threshold, drop-out threshold or stochastic threshold and is used
to determine when a single peak at a locus represents (with the
desired confidence) a homozygous genotype. One method for
setting a drop-out threshold was givenin [35]. Using the STRmix™
method the value of E can be chosen to equate to that point at
which the cumulative normal distribution equals the desired Pr(D)
value.

Other methodologies may require separate modelling of drop-
out events in order to develop a homozygous threshold as the

©  Observed

Modeled

_a®

0 50 100 150 200 250
template proxy (rfu)

Fig. 10. A plot of expected and observed drop-out probabilities (at 30 RFU) vs a
template proxy using an approximation to the STRmix'™ algorithm for thirteen low
level GlobalFiler™ mixtures.
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models that incorporate Pr(D) into their probabilistic systems are
not manipulable in the same manner.

3. Training for continuous interpretation systems

Many authorizing bodies and courts are not only interested in
the validity of the software but whether they can be confident that
it is competently applied. To this end the provision of training and
competence testing is vital. Admissibility hearings tend to focus on
the reliability and acceptance of the method, and by extension the
individual software programs used for the semi and fully
continuous probabilistic software options. However, it is impera-
tive to note that to have a successful SEP in use for forensic
casework requires not only a validated software tool, but a fully
trained and competent expert that uses the chosen software.

When discussing training for expert testimony we could start
with rule 702 of the Federal Rules of Evidence governing
admissibility of expert testimony in the US. This rule allows
expert opinion evidence if:

A witness who is qualified as an expert by knowledge, skill,
experience, training, or education may testify in the form of an
opinion or otherwise if:

a) the expert's scientific, technical, or other specialized knowledge
will help the trier of fact to understand the evidence or to
determine a fact in issue;

b) the testimony is based on sufficient facts or data;

¢) the testimony is the product of reliable principles and methods;
and

d) the expert has reliably applied the principles and methods to
the facts of the case.

We draw from this rule that it is the witness, not the software,
that is qualified by the court as an expert.

The right to confront adverse witnesses is ancient. It appears in
the Acts of the Apostles 25:16, when Roman governor Porcius
Festus states when discussing the proper treatment of Paul: “It is
not the manner of the Romans to deliver any man up to die before
the accused has met his accusers face-to-face, and has been given a
chance to defend himself against the charges.” It is also cited in
Shakespeare’s Richard II: “Then call them to our presence; face to
face, And frowning brow to brow, ourselves will hear The accuser
and the accused freely speak.”

The European Court of Human Rights, Article 6(3), provides that
‘everyone charged with a criminal offence’ has the right to
‘examine or have examined witnesses against him’. This basically
means that the accused, or his lawyer, should have a chance to put
questions to adverse witnesses. The Sixth Amendment to the
Constitution of the United States of America provides that a person
accused of a crime has the right to confront a witness against him
or her in a criminal action. This includes the right to be present at
the trial as well as the right to cross-examine the prosecution’s
witnesses. It is therefore essential that the witness can represent
the evidence and meet the needs of cross examination.

It is accepted that no analyst is required to understand the
mathematics and computer program to the extent that they could
recreate the system, except the developers themselves. However it
is an expectation that analysts at least understand the workings of
any system they use to be able to understand and explain the
results.

This idea was demonstrated during the trial in R v Noll (R v Noll
(1999) 3 VR 704) when the witness acknowledged that although
his evidence was based on accepted scientific theory, he himself
could not describe that theory. During an appeal it was submitted
that this meant the witness was incapable of giving the DNA
evidence and should have been excluded. The court found that

Page 94 of 344



16 D. Taylor et al./ Forensic Science International: Genetics 20 (2016) 6-19

Table 4
Evidence of acceptance for some principles underlying the STRmix"™ software.

Principle

Evidence of acceptance

Monte Carlo Markov Chain

This is very standard statistical method employed in many areas of science. Searching the term

“Monte Carlo Markov Chain" in Scopus returns more than 22,000 records. Scopus is an online
bibliographic database containing abstracts and citations for 20,000 peer-reviewed academic

Jjournals’ articles.

Studies of stutter and allele peak heights and now quite numerous and have appeared in the peer
reviewed literature [14,16,38].

For STRmix™ the model follows Balding and Nichols [39]. This model is based on published
literature and appears as NRC Il recommendation 4.2. It is the most conservative of the methods in

Stutter and peak heights and the variance about them can be
predicted from empirical models

The probability of a multilocus genotype can be estimated from
allele probabilities and the coancestry coefficient.

common forensic use [40].

although the witness was unable to explain the technical aspects of

the theory, he was entitled to rely on other expert opinion.

Addressing this issue specifically Ormiston ] explains:
“Professional people in the guise of experts can no longer be
polymaths; they must, in this modern era, rely on others to
provide much of their acquired expertise. Their particular talent
is that they know where to go to acquire that knowledge in a
reliable form.”

As yet there is no simple definition of the level of technical
knowledge required for an analyst to be considered competent to
use an interpretational system. We outline our own opinion” here
considering STRmix™ on what we consider essential to effectively
represent the evidence.

e Likelihood ratios

e Choosing propositions suitable for the case and the hierarchy of
propositions

e MCMC and the Metropolis-Hastings algorithm

e Peak and stutter height models

e Balding and Nichols formulae

« Limits and uncertainties of an LR produced with STRmix™

« Diagnosing poor performance.

STRmix™ is LR based and we would suggest that understanding
of likelihood ratios is an essential first step. The switch to
likelihood ratios from, say, exclusion probabilities may be one of
the more challenging aspects of the training. Training in this
should cover how to tailor propositions to the case in question and
how to recognise when there is a shift in the position in the
hierarchy of propositions. There should be training on the
prosecutor’s fallacy [36] and methods to avoid making this error.

Training should be undertaken on written report wording and
on verbal testimony. Moot court is appropriate and should be
robust. In verbal testimony a balance must be maintained between
understanding and thoroughness. Hence an ability to use lay terms
is essential. The witness should also be tested on the ability to
recognise his own limitations and to explain this at the appropriate
time in testimony.

Because the LR is based on competing propositions, the wording
of the findings must clearly state what propositions were used in
performing the LR calculation. Again, because no two cases in
forensics are exactly the same, the training should focus on how to
clearly convey the findings rather than some pre-set determination
of which set of propositions would be a lab wide “default LR" and
boiler plate type reporting statements.

LRs are often given at the sub-source level but court questioning
often progresses seamlessly to the activity level. The witness

“ Much of the following list and commentary is influenced by experience at the
Defense Forensic Science Center (DFSC) who have recently implemented a
probabilistic approach. The views expressed here those of the authors and not
official policy of the Departments of Defense or Army.

should be able to recognize a shift in level of the hierarchy of
propositions and to adjust testimony appropriately. She should
also be able to explain the transition in lay terms.

For the purposes of representing STRmix™ assisted LRs the
witness should be able to explain MCMC and the Metropolis—
Hastings algorithm in lay terms. Analogies to hill mapping may be
appropriate. Training should cover Monte Carlo variability and its
implications for testimony. An ability to explain the underlying
peak and stutter heights models is essential but this is usually well
within the existing knowledge of many experienced analysts.

Continuous approaches all have in common the ability to use
the entire profile, resulting in very few times where a questioned
sample is inherently not suitable for a statistical calculation. This
has required a re-think of the definitions of inclusion, exclusion
and inconclusive. The ability of the software to produce a number
does not absolve the expert from the duty of recognizing when the
software should be used at all nor whether it has run optimally. It is
therefore essential that training on the limitations of the method is
given and received.

4. General acceptance of continuous interpretation systems

We consider here the general acceptance of the subject of
probabilistic genotyping. Most jurisdictions have rules governing
the introduction of new scientific concepts. In the US this is
governed variously by the Frye and Daubert standards. In this
section we discuss only one part of that standard, often termed
general acceptance. The Frye standard [37] arises from the case
Frye v. United States, 293 F. 1013 (D.C. Cir. 1923) in which the court
gave the opinion:

Just when a scientific principle or discovery crosses the line

between the experimental and demonstrable stages is difficult

to define. Somewhere in this twilight zone the evidential force
of the principle must be recognized, and while the courts will go

a long way in admitting experimental testimony deduced from

a well-recognized scientific principle or discovery, the thing

from which the deduction is made must be sufficiently

established to have gained general acceptance in the particular
field in which it belongs.

This emphasizes that the deduction must proceed from a well-
recognized scientific principle or discovery. Moving to software
this would appear to mean that the software must implement
accepted scientific principles. We would not read this as meaning
that the software itself must be in prevalent use but that the
principles upon which it is based must be generally accepted. This
is thoroughly sensible. Obviously when any software first appears
it will be in limited use but it may be very soundly programmed
from well accepted principles. The court clearly envisages that the
standard is that the principles are sound, not some sort of vote
about how often the software is used. Having said that, it is clear
that training must explain the correct use of the software in a
manner that is appropriate to the expert's role in using the
software. If an end user must participate in an admissibility
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hearing, this may require a greater depth of training than is needed
for testimony on the use and results.

Since this is a paper on validation this suggests that any
developer should outline the principles upon which the software is
based and ensure that these meet the standard.

We outline these for the STRmix™ software as an example in
Table 4.

Agreement in science proceeds by the peer reviewed literature.
We have surveyed the literature using the Scopus online search
tool. We searched for the key words “forensic and DNA and
interpretation” 2012-present and obtained 150 references. These
were scored as pro the use of probabilistic genotyping; anti or
irrelevant. We obtained 39 pro; 1 anti [41]; and 110 that were not
relevant. A key phrase from the one scored as anti was: “The
variance of heterozygote balance was more expanded in two-
person mixtures than in one person samples. Therefore; it is not
suitable to use allelic peak heights/areas for estimating the
genotypes of the contributors such as the quantitative analysis.”

Of note, the ISFG 2012 Guidelines recommend probabilistic
methods. In the US, both the Scientific Working Group on DNA
Analysis Methods (SWGDAM) and the Organization of Scientific
Area Committees (OSAC) DNA Analysis 2 sub-committee are
working on guidelines for assessing probabilistic genotyping
software tools. In addition, a considerable number of modern
probabilistic genotyping software programs are developed or
being developed by researchers or academics often with very
strong mathematical or statistical backgrounds [6,8,9,11,12,24,42—
45].

5. Conclusion

Forensic laboratories are moving from binary, threshold based
systems towards semi-continuous and fully continuous alterna-
tives. A necessary prerequisite of this transition is the development
of models that describe DNA profiles behaviours. Currently a
number of models exist and are implemented in different ways
that suit the particular interpretation system being used. Perhaps
this will always be the case, or perhaps there will be convergence
to a common system of models that prove superior to all others.
Regardless of which direction the future takes, work is required to
develop, refine and test potential models. We emphasise the
necessity of a fit between the validation of a multiplex and the
intended interpretation methodology.

We provide in this work some approaches to modelling for a
number of aspects of DNA profile behaviour. Some of these ideas
are already in use in active casework.

Some modelling given here still provides thresholds (e.g.
analytical threshold), which would ideally (but not yet practically)
be completely removed from continuous DNA profile interpreta-
tions. Models continually improve and often the improvement of
one aspect of a model will reveal a path to further improvements or
refinements elsewhere. These improvements should not be viewed
as evidence that the previously used model is unreliable. The
nature of science is one of continual improvement, with each
model being tested and, if found to perform ‘better’ in some
desirable way, implemented into active use. At this point the new
model becomes the best practise available at the time. Any
argument which seeks to nullify all previous work purely because
better models are developed is an argument against ever providing
any results and only works to generate disincentives for progress
and improvement.
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Appendix 1. An approach to the calculation of the AT
1. An approach to the calculation of the AT

GeneMapper™ ID-X baselines were measured by noting all
fluorescence (i.e. the RFU value) every 5bp between 70 bp and
460 bp in all dye lanes for 5 GlobalFiler™ profiles where template
values ranged from Opg (negative controls) to those produced
using 500 pg of target DNA. This was carried out on two different
3130xI capillary electrophoresis instruments. Where a reading
point corresponded to a peak (whether artefactual or allelic) then
this point was considered missing data. Artefactual peaks removed
at analysis included back and forward stutter peaks, pull-up and
those within known dye blob positions. This resulted in
4063 measured values.

The average and standard deviation (sd) of these data were
calculated for each template, dye colour, and for each of the two
capillary electrophoresis machines. These averages and sd were
regressed against dye color, template, and machine using multiple
regression in EXCEL. The results are shown in Table Al.

The regression analysis suggests small but significant effects of
color and machine on both the mean and standard deviation (sd) of
noise. There also appears to be an effect of template on sd. This
regression assumes normality of baseline fluorescence and as we
show later a gamma distribution appears to explain the data
equally well. We therefore consider how the choice of distribution
may affect the size of the calculated AT thresholds.

In Table A2 are given the predicted values of the mean +10sd
and 0.99999 quantile of the gamma distribution for the two
different machines, for the different dye colors, at 10 and 500 pg
template values. The value of the mean +10sd has been suggested
as one way to calculate the AT [46]. The data in Table 2 under the
gamma distribution 0.99999 quantile have been developed by
fitting a gamma distribution to the data using maximum likelihood
estimation, (MLE). The parameters of the gamma were allowed to
vary with template.

Looking at the values of the mean +10sd columns in Table A2 it
is possible to pick one AT value to encompass both machines and
all colors and most templates. This could be 30RFU or even lower
values could be considered. No actual data in our demonstration
set exceed this value. The maximum observed was 14 RFU.

Modelling baseline in this manner assumes normality of the
noise, and this has been suggested as approximately true [47]. In

Table A1
The results of the regression analysis.
Mean Standard deviation
Coefficients p-Value Coefficients p-Value
Intercept 136 8.5E-16 129 8.7E-22
Blue 035 1.9E-02 0.08 4.4E-01
Green 139 4.2E-13 0.47 1.3E-05
Orange 0.73 6.3E-06 on 2.7E-01
Purple 0.96 2.2E-08 0.37 3.7E-04
Red 0.68 2.0E-05 0.12 2.3E-01
Yellow was used as the benchmark hence its coefficient is 0.00
Machine Y 5.0E-08 0.25 4.7E-05
Template (pg) 0.0002 3.9E-01 0.0011 9.1E-10
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Table A2
Mean +10SD and the Gamma distribution 0.99999 quantile for two different machines, for the different colours, at 10 and 500 pg template.
Machine Colour 10pg 500 pg
Mean + 10sd Gamma 0.99999 quantile Mean + 10sd Gamma 0.99999 quantile
1 Blue 19 17 24 17
Green 24 19 29 26
Orange 19 15 25 15
Purple 22 16 27 20
Red 19 20 25 22
Yellow 18 19 23 19
2 Blue 16 15 21 15
Green 21 20 26 19
Orange 16 13 22 15
Purple 19 15 24 16
Red 16 15 22 19
Yellow 14 14 20 15
likely to be interested in the positive tail. On these data the gamma

0.30 slightly overestimates the density at the positive tail whereas the

= = Observed normal slightly underestimates it.

0.25 s Nial The OSIRIS™ [48] software uses a different baselining
§ 0.20 TR algorithm. Osiris™ displays rfu on a scale that can be negative
g asit sets an rfu level of zero as the average of the baseline. In Fig. A2
::, 0.15 we give the distribution of peak heights of noise peaks in five
g positive samples. In these five samples there were 25 regions above
£ 010 10 RFU with the largest being 21 RFU. At least some of these had
§_ 05 acceptable morphology.

ot This demonstrates the factors that we have identified need
0.00 - examination during validation. Specifically, the baseline noise

height (RFU)

Fig. Al. Observed peak heights of noise peaks on two 3130xl machines using
GeneMapper™ ID-X software with a normal and a gamma distribution overlaid.

Fig. A1 we give a plot of the observed data across all colors,
template amounts, and machines. The observed line in Fig. AT was
constructed by drawing a line through the observed proportions of
baseline fluorescence that occurred in each 1rfu bracket. Also in
this graph is the best fit normal distribution. Our data show a very
slight positive skew as evidenced by the small departures of the
observed from the best fit normal distribution. We have
investigated whether a gamma distribution might fit better. The
best fit gamma is also shown in Fig. A1 and subjectively looks to be
a similar fit to the normal except that it has the advantage of being
bounded by 0 and hence has no density at negative values. We are

——Blue

——Green
Yellow

———Red

25 20 15 10 5 0 5 10 15 20 25
Peak height (RFU)

Fig. A2. Observed RFU level of baseline noise data points using Osiris™ software on
one 3130x! machine in five positive Identifiler Plus samples. The colours are the
Identifiler Plus dye colours.

should be examined for every color, each machine in use, and over
template ranges. The differences observed in this dataset were in
many cases statistically significant but small. It would be
reasonable when setting an AT to either have:

1. One AT for all machines, colors and templates, or
2. Different values for each machine and color, plausibly set near
the optimal template value.

When setting an AT, the impact on time spent at CE data
analysis may well be a necessary practical consideration. For very
low ATs it is likely additional time will be spent manually removing
bad morphology peaks. As stated in the main text, electronic noise
is only one part of a larger problem.

Appendix A. Suppl

ary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.fsigen.2015
.09.011.
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2.5 — Clarification
Regarding the dropout model:

Observed peak heights are indicated as O. When a peak has not been observed above a
threshold (called an analytical threshold and designated as AT) then this is called a ‘dropout’.

We consider that O in this instance can take any value up to AT, [O|O < AT|~U(0,AT). O
is a random variable that has a log-normal distribution:

0~ LN (flogm(E), CEJ

Where & =1In(10) is used to transform between logs in base 10 and base e. The probability of
dropout is therefore obtained by:

Pr(O<AT|E)=AfT p(o|E)do

0

In practice this can be achieved by summation over steps in O of 1rfu:

AT-1
Pr(O<AT|E)= > p(0+05|E)Pr(o0<O<o0+1)

0=0

Note that we apply a transformation from modelling O directly to modelling log,, (gj by:

0 c?
| — |~ N|0,=—
. (2)+(a)

The integral required to calculate the probability of dropout using the transformed variable, to
provide equivalent dropout probability to the untransformed variable, is:

AT 2 'Og“’[?j 2
Pr(O < AT [E)= [ LN (0|§Ioglo(E),§2 CEjdo: [~ (olo,%jdo

0
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2.6: Putting all the models together in a Bayesian framework for profile deconvolution using
Markov Chain Monte Carlo

Manuscript: The interpretation of single source and mixed DNA profiles. D Taylor, JA Bright,
J Buckleton. (2013) Forensic Science International: Genetics 7 (5), 516-528 — Cited 75 times

Statement of novelty: This paper describes the combination of modelling elements from the
previous papers in this chapter. The method described in based on a Markov Chain Monte
Carlo and the paper explains how the use of this method ultimately translates to a likelihood
ratio (being the standard evidential weight used in forensic biology).

My contribution: | was the main author of the paper and equally responsible for theory and
mathematics that the work is based on. | was the sole individual who programmed the software
for simulations and analyses carried out.

Research Design / Data Collection / Writing and Editing = 45% / 60% / 55%

Additional comments:
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1. Introduction
1.1. The likelihood ratio

A summary of notation used within this paper is provided in
Appendix A. In forensic DNA work when a probative DNA profile is
obtained from an evidentiary item it is normal to provide some
assessment of the weight of evidence. This is commonly achieved
by the presentation of a numerical statistic which is sometimes
accompanied by an explanation in words. Two calculations are
frequently used by the forensic community. These are the
likelihood ratio (LR) and the combined probability of inclusion
(CPI), also referred to as Random Man Not Excluded or RMNE. More
recently a variant of the exclusion probability, termed the random
match probability, has been adopted by many laboratories. We
adopt an LR approach here.

Traditionally, the DNA profile is in the form of an electrophero-
gram (EPG). The EPG is usually pre-processed using a set of
heuristics [1], such as limit of detection or analysis thresholds.

As a general principle ignoring information that can be properly
evaluated tends to weaken the evidence for a true hypothesis and
will more often include a false hypothesis. Information, even
relevant information, that cannot be properly evaluated may not

* Corresponding author. Tel.: +64 9 8153 904; fax: +64 9 8496 046.
E-mail address: john.buckleton@esr.cri.nz (J. Buckleton).

1872-4973/($ - see front matter @ 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.fsigen.2013.05.011

have these effects and may simply add a random element to the
analysis. Relevant information that can be effectively evaluated
should not be ignored. In the LR framework including relevant and
properly evaluated information tends to increase the LRs if H; is
true and decrease the LRs if H; is true.

Certainly the first part of this principle has been elegantly
reinforced by Perlin et al. [2] in their experiments with the
continuous approach that makes efficient use of the information. In
Section 6 we present a trial that supports Perlin et al.’s conclusion
but also explores the second part of the prediction of this principle,
that the use of more information should produce lower LRs when
H, is true.

1.2. Lack of forward movement in DNA interpretation

Alternatives to the binary model were experimented with in the
late 1990s [3-6]. Two options were tabled:

1. The fully continuous model, and

2. A model that is partially continuous based on allowing a
probability for dropout and drop-in (hereafter the “drop
model”) [7].

These methods make assumptions about the variability of peak
height, and the ratio of stutter peak height to allelic peak height
(usually termed stutter ratio and given the symbol 7 here since SR
may look like a multiplication of S and R).
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Neither of these models saw any large-scale deployment
throughout the early 2000s. This has come in for justifiable criticism
[8-10]. However there has been a new and highly welcome forward
movement in the late 2000s driven by the creation of continuous
software (TrueAllele™), developed by Perlin et al. [2], and efforts
from Balding and Buckleton [11], Haned and Gill [12] and Rudin and
Lohmueller [13]. This has seen these techniques pass through the
court process in both the UK and the US. TrueAllele™ results have
been reported in over 75 criminal cases. However progress is still
partial [ 14] with only a few laboratories worldwide implementing or
investigating fully continuous methods.

The barriers that had hindered this movement included the
initial lack of validated software, the (realistic) fear of complexity,
realistic implications of using ‘black box' technology and the
perceived costs, either for off the shelf software or internal
research and development costs. The lack of widespread accep-
tance of the need for change is serious and has potentially delayed
research in this area. We discuss these barriers briefly and provide
plausible solutions.

Validated software applying the drop model was reported in
2007 [15] but was not made available either commercially or as
freeware. Perlin et al. has reported a validated and commercially
available software, TrueAllele™ [2], that has proceeded through the
court process in the US and UK. More recently Haned and Gill [12]
have developed open source software. These software clearly go a
long way to solving the first barrier; the availability of software. In
2004 Buckleton et al. stated “Once reliable continuous methods
become available the binary method will have to be viewed as
“second best” and will become obsolete™ [16]. This prediction has
yet to be fully fulfilled and it is important for the forensic
community to consider why this is so.

A fully continuous method employs standard statistical theory
to utilise as much available quantitative information as possible
within a DNA profile. As more analysis parameters are incorporat-
ed the model increases in complexity and becomes more
computationally demanding. Without an understanding of the
underlying mathematics, the risk is that these systems become
‘black boxes’ whose workings are not understood by or, if
intellectual property is concerned, are not accessible to the user.
Presentation of any statistical analysis in court becomes problem-
atic. The solution is the development of comprehensible models
within the reach of the average forensic scientist coupled with
upskilling and support for those forensic scientists. The goal is that
a forensic biologist may effectively represent the evidence in court.

In this paper we describe the development of a fully continuous
method for the relatively quick interpretation of low level and
mixed STR DNA profiles that utilises peak height information from
the DNA profile. We investigate reproducibility and speed and
compare the outputs with binary methods.

Using a continuous system to analyse DNA profiles has the
additional advantage that the analysis results (by necessity) in a
sampling from the posterior distribution of each parameter
included in the model. This allows the scientist additional points
of review, as they can scrutinise properties of the DNA profile
against the results of the analysis.

We identify the requirements for a continuous model as
availability, short run time, comprehensibility and rigour.

2. Method
2.1. Mathematics

We may consider the evidence of the crime stain G to consist of
a vector of observed peak heights O made up of a number of

individual observed peak heights O}, for allele a at locus [ for
replicate r. Let there be R replicates and L loci.

To form the likelihood ratio we consider two hypotheses H; and
H> chosen to align with those expected for the prosecution and the
defence respectively. The person of interest (POI) is assumed to be
present under H, but not under H. The assumption of the POI (or a
number of POIs) donating under H; requires that all the sets
defined under H; contain the genotype(s) of the POI. The sets
defined under H, may or may not contain a genotype correspond-
ing to the POL Refer to Appendix B for further detail.

We seek the likelihood ratio (across all loci) LR = Pr(Gc|Hq)/
Pr(Gc|H,). Let H,, specify the J sets of N genotypes {S;:j=1, ..., J}
then

J
Pr(Ge|Hm) = > _Pr(Gc|S)Pr(S|Hm).
j=1

j=

Introducing the genotype combinations S; and noting that once
the sets S; under each hypothesis are specified the hypotheses
themselves are not required:

LR — 32 Pr(Ge|Sj)Pr(S;|Hy) )

> Pr(GelS; ) Pr(S;Hz)

where LR stands for the continuous LR and we make the point that
the number of sets under H; may be very different from those
under H, by using different subscripts. It is helpful to write
Pr(Gc|S;) = wj which may be usefully thought of as a goodness of fit
of the data (G¢) to the genotype set S;. Peak information from
multiple replicates may be utilised in the generation of weightings
for a genotype set.

¥, WiPr(S;Hy)

LRe = 5~
X wyPr(S; )

(2)

More typically in most forensic calculations S, _, specified by
H,, will contain the S, _; sets specified by H; and may contain
additional genotype sets. As the weight is independent of the
hypothesis given the genotype set, Eq. (2) may be evaluated as long
as we have a complete set of weights for all required genotype sets,
S;j and Sj.

A method in common usage, the binary model, assigns the
terms w; the value 0 or 1 depending on whether the crime profile is
deemed impossible or possible if it originated from the genotypes
specified. As such it makes partial use of the information present in
the peak height information.

Since the probabilities Pr(Sj|Hn,), which represent genotype
frequencies or probabilities, have been discussed extensively and
there are accepted methods it would be sufficient and beneficial to
solve for w; and wy. We assert that this is beneficial because these
fits of the data to the genotype set may be visualised by
experienced forensic biologists and benchmarked against their
judgement. This, we suggest, is a key to comprehensibility, a view
we believe we share with Perlin et al. [2].

We introduce parameters to describe the true template level.
Experience and empirical studies suggest that the height of peaks
from a single contributor are approximately constant across the
profile but generally have a downtrend with increasing molecular
weight. Given this general downtrend individual loci may still be
above or below the trend. In addition, the slope of the downtrend
trend may vary from one contributor to another. The product from
the amplification of an allele is dominated by correct copies at the
allelic position and backstutter at one repeat shorter than the
allele. There are a number of other more minor products ignored in
this treatment. We term the sum of the allelic and backstutter
product as total allelic product. We require a term for the true but
unknown template level available at a locus for amplification. This
is a function of the input DNA and any degradation or inhibition
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effects. Since template is described by weight, usually in
picograms, we coin the term mass to subsume the concepts of
template, degradation, inhibition and any other effect that
determines the expected total allelic product at a locus.

Hence, the mass of an allele at a locus is modelled as a function
of various parameters which we collectively term the mass
parameters. These are:

—

. A constant t,, for each of the n contributors that may usefully be
thought of as template amount.

. A constant d,, which models the decay with respect to molecular
weight (m) in template for each of the contributors to genotype
set S;. This may usefully be thought of as a measure of
degradation.

. A locus offset at each locus, A' to allow for the observed
amplification levels of each locus. We set A’ = 1.00 for one locus
selected to be that locus with the largest total fluorescence. Note
that individual A' values may exceed 1.00 if that locus is above
the general degradation trend.

4. A replicate multiplier R,. This effectively scales all peaks up or

down between replicates. We set Ry = 1.00.

N

w

The total allelic product, T!,, for an allele, g, at locus I, from
contributor n in replicate r is modelled as:
T, = AR tyedmaxl (3)

anr

where m!, is the molecular weight of allele a at locus I and X!, is the
count of allele a at locus [ in contributor n. The terms t, and d,
collectively model an exponential decay of amplifiable template.
All degradation values are constrained to be negative. X!, = 1 fora
heterozygote with a and X!, = 2 for a homozygote a. The total
allelic product from an allele is split between backstutter and
allelic peak. We model stutter ratio 7, for allele a at locus I using a
simplified model which assumes stutter height to be linearly
proportional to allele height. The height of the allelic and stutter
peaks formed from allele a are therefore:

1
S Tcmr
anr =717 ”!z

17l
El _ Talonr

(a=T)nr — 1+
a

where a — 1 signifies the stutter product.

The contributions from each contributor allele and stutter are
then summed to produce a vector of expected peak heights, E,
given a set of mass parameters. The variance for the logarithm of a
combined allelic and stutter peak is assumed to follow the same
form as an allelic peak of the same height as the sum.

We write the mass variables, {d, : n=1,...,N},{t,:n=1,...,N}
as D and T respectively, {A' : = 1....L} asAand {R,:n =1,...R}
as R. The variables D, A, R and T are written collectively as M. Note
that A for one locus and R, for one replicate are fixed to 1.

We seek the integral across these nuisance parameters:
wj = [, Pr(0}; ...04|S;, M)Pr(M)dM. We assume w; as the prod-
uct across loci of the weights at a locus w; = [, w'l and the weight
at alocus as the probability of the peak heights across all replicates
given the mass: w/ = [, Pr(0}, ... O};|S;, M)dM. We constrain d,, to
be negative but otherwise use uninformative priors, Pr(t,) and
Pr(d,) for each of the N contributors, and the R — 1 priors, Pr(R;).
The probability of each of the L — 1 locus specific amplification
efficiency (A') parameters for each of the L — 1 loci is modelled as
N(14, 04) Where j14is the simple arithmetic average of the A’ values
and oy is a preset hypervariable. This allows a limited freedom to
the A variables but penalises any single value that departs
significantly from the average. We use an uninformative prior on

JLa. Since we set one A' term at 1.00 and there is a penalty for
deviation from the average these collectively work to keep the A'
values close to each other and to 1. This treatment models the mass
at each locus as generally flat or downwards with respect to
molecular weight and correlated across loci. Each locus is
permitted some limited freedom to deviate from the trend.

We have attempted to keep the number of free variables
describing mass low. In total we have 2N+R free variables
describing DNA mass. For example, for one replicate of a two
person mixture this is 5. We suggest that, if we model mass
correctly then the difference between observed and expected T},
(total allelic product) for the alleles contributing to a profile are
uncorrelated. We further suggest that this is diagnostic, if the
difference between observed and expected T!,, values are found to
be uncorrelated then we have modelled mass correctly.

Assumption 1. Peak heights are assumed to be conditionally
independent given S; and M:

Pr(0}, ... O4lS; M) = [ T Pr(0L,IS;. M)

Our model is therefore w; = /HHHPr(Oﬂ,r]Sj,M)Pr(M)dM
i 1A

(4)

Assumption 1is unlikely to be true, most obviously a larger than
expected stutter peak is expected to be associated with a smaller
than expected allelic peak. However data analysis suggests that the
correlation is small or non-existent [17].

At steady state a Markov Chain using the Metropolis-Hastings
algorithm is expected to spend time on a genotype set proportional
to the probability of the profile given that genotype set. We obtain
the weights w/ of each genotype set Si, at each locus I as the
fraction of MCMC iterations involving Sj..

In taking the weight across all loci as the product of the weights
at each locus we have made a fairly standard assumption of
independence of weightings between genotype sets of different
loci, which is unlikely to be exactly true, and we investigate in
Section 3. This decision was made because the weights at a locus
can be directly visualised, but multi-locus weights quickly become
incomprehensible to an analyst.

Assumption 2. The weight across a profile is the product of the
weights at each locus

which gives:
w; = l:[/l:[l:[Pr(Of,,[Sj.M)Pr(M)dM (5)
M

as an approximation for Eq. (4). Because of the way we run the
MCMC chain the variation in M is small and therefore the error in
the substitution above is expected to be small. We discuss the
performance of this, and other, approximations in Section 3.

For each trial of the current state and a proposed state, one or
other of these states is accepted. This is often termed an iteration
using the analogy of a Markov Chain as a random walk. However
the actual action may be to move or stay still. We monitor how
extensively the space has been searched and how efficient mixing
has been and terminate the chain after a predetermined number of
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Fig. 1. A network diagram showing the functioning of the continuous model
described here. Squares represent fixed quantities that are not optimised by the
MCMC. The dashed box surrounds separate processes.

moves to new states, an approximate measure of how extensively
the space has been explored.

2.2. Practical implementation of the mathematics

The applied model is represented as a network diagram in Fig. 1.
The number of contributors N is assigned by the analyst after an
assessment is made of the DNA profile. There is no mathematical
need to constrain the number of contributors, N, but we add a
practical constraint that N=1-4.

The probability of obtaining the observed profile(s) given the
mass parameters is calculated by considering the ratio of observed
(0!,) and expected peak heights following a model suggested by
empirical data [17]. If a peak has been observed (i.e. 0!, >Z, where
Z is the analytical threshold) we model log(0!,/E.,) as normally
distributed with mean 0 and variance ¢?/E.,:

Pr(Of|Eg,) = Pr[log(%)] where Iog(%") ~N<O. ;Tz) )

ar

When the expected peak is not observed, we calculate
J£_ Pr(x)Pr(log(x/EL,)dA where log(x/E.,) is modelled as nor-
mally distributed with mean 0 and variance ¢?/E}

V4
Pr(0), <Z|E,) /pr(A>Pr[log(E,i)]dx
F ar

2
where log (%) ~N (O. ET")

The variance is modelled as inversely proportional to the
expected peak height. This model is informed from empirical
studies separate from this paper [17,18]. We typically train the two
external parameters on validation data usually a set of ten single
source genotypes at ten dilutions down to levels were dropout
occurs. The software is in casework use in Western Australia, South
Australia, New South Wales, Queensland, Victoria and New
Zealand (using Applied Biosystems' Profiler Plus”, Identifiler™,
MiniFiler™, SGMPlus™ (at 34 cycles) multiplexes and Promega’s
PowerPlex™ 21 multiplex) and under trial in the remaining
Australasian jurisdictions (using Promega’s PowerPlex™ 21 multi-
plex and Applied Biosystems’ 3130 and 3500 capillary electropho-
resis instruments). For labs using the same multiplex and the 3130
instrument differences in the parameters were small. This suggests
that minor changes in protocol may not require full revalidation.
Equation (7) models the probability of dropout. Since we allow, but
do not require, a threshold it is necessary to model the probability
of a peak anywhere below the threshold. Dropout probabilities are
applied to each expected, but unobserved, peak that is specified by
the ‘catch all’ allele ‘Q’. In doing so we make the approximation that
multiple Q alleles are not the same. We depart from the logistical
regression approach given by Tvedebrink et al. [19,20] but obtain a
consistency with our other modelling in this paper.

The profile is pre-processed into a vector of peaks, compiled
from peaks observed in evidence profile replicates. Peak data are
edited in two ways.

First, any peak below an optional analytical threshold is deemed
unobserved. This step is mathematically unnecessary and poten-
tially counterproductive but comports with user requirements.
Artefacts such as pull-up and peaks in forward stutter positions,
but not in backstutter positions, are removed manually prior to
interpretation. The removal of artefacts in allelic positions, such as
potential forward stutter, leads to a weakness in our approach. At
this stage this is unavoidable until we develop a probabilistic
model for forward stutter.

The ‘catch all’ allele, Q, (or multiple Q alleles if required) is also
included in this vector and represents all alleles not present in the
observed EPG(s). This facilitates treatment of dropout for each
locus. An exhaustive set of genotype combinations corresponding
to the N contributors specified prior to processing is compiled
using the vector of alleles.

If a contributor is assumed to be of a known genotype, say the
complainant, under all H, hypotheses the genotype of this
contributor is fixed in the genotype sets. For some proposed
genotype sets drop-in may be necessary to explain the observed
EPG(s). At this stage we have a flexible but arbitrary model for the
probability of the height of a drop in peak. Drop-in events are
assigned probabilities based on the formula e~ where o and B
are constants. If f=0 then the probability of a drop-in event
(regardless of height, O) is a constant «. Otherwise the values can
be set to o =f to assign probabilities based on observed peak
height.

The complete list of genotype sets quickly increases in length
with number of contributors and profile complexity. For a locus in
which ‘a’ alleles have been detected there are (a+ 1)?" genotype
sets initially considered. This is ‘a’ alleles plus a wildcard for
dropout that can occupy each of the two allelic positions of each
contributor. This is usefully reduced to a set of reasonable
genotype vectors using three heuristics:

1) A pre-defined amount of allowable drop-in per locus, and
2) A pre-defined maximum stutter ratio, and
3) Removal of duplicated profiles.

After this screening process a list of | reasonable genotype sets is
obtained.
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We then implement component wise MCMC using the
Metropolis-Hastings algorithm.

A vector of values for M is chosen from the range of possible
values which is updated during the chain. The range of each element
in T (the template of each contributor) is initially constrained by 0
and the amount of DNA required to explain the highest observed
peak. A is initially constrained to be between 0.95 and 1.00 and R is
similarly constrained to a window of width 0.05.

Since many of our priors are currently uninformative and only
relative probabilities are required for the Metropolis-Hastings
algorithm we may drop them from the calculation.

w; = [T T1a I1; Pr(0k|S}, M)Pr(A) is calculated for iteration 1,
hereafter called Pr(1), by comparing expected peak heights to
observed peak heights in each of the R replicates, where S; is the
genotype set j that is currently chosen for locus 1.

With each MCMC step one side of the range of the elements
within § and T are reduced by a predefined percentage of the
current range, down to a minimum window, again set by a
predefined value. The range for elements in A starts as 0.95-1.00,
with each A’ chosen at random from within this range. The locus
with the greatest observed total peak height (sum of peak heights
for all observed peaks) is anchored to A' = 1.00 and the window for
all other loci (maintaining the 0.05 window) are moved down or up
if MCMC accepts contain locus specific amplification efficiency (A")
values at the extreme 0.01 of the range. The starting mid-point of
the range of R is determined by the total peak height observed over
a profile divided by the total peak height of the first replicate. This
will set Ry = 1 and for the entirety of the MCMC is fixed as 1. Again
the R, window for other replicates slides in the direction of a value
in the extreme 0.01 of the range with each MCMC step.

For each new proposed state a locus [ is chosen at random and a
genotype set for that locus S‘j is chosen from the pre-processed list
of reasonable genotypes. A vector of values for M is chosen from
the reduced range. The genotype and parameter vectors in
iteration y move if Pr(y) > Pr(y — 1) or if a randomly chosen value
from U[0.1] < Pr(y)/Pr(y — 1).

As explained above, for each iteration of the MCMC chain,
elements of M, and a genotype set (S;) that differs at one locus [ are
chosen.

For the state of the MCMC after each step, a tally of the number
of times S; has featured is incremented. The tallies of the Sﬂ are
normalised at each locus for analyst comprehension (this step is
mathematically unnecessary) and interpreted as the weights of
that genotype set at that locus w’)

An expected peak height E, is generated using the model based
on that described in Section 2.1.

We currently implement a simplified stutter model that models
stutter ratio as linear with respect to the allelic designation rather
than longest uninterrupted sequence (LUS) [21,22]. This was
chosen because:

—_

. There are some alleles where it seems likely that we currently
have a wrong value for LUS, and

2. We have no LUS value for many rare alleles, and

3. We are uncertain whether currently available LUS data derived

from largely African American and Caucasian samples translates

simply to Maori, Polynesian and Australian Aboriginal samples

because specific sequence data is not available.

Expected peak heights are assumed to be additive when there
are multiple contributions to a peak, whether from multiple alleles
or a combination of alleles and stutter.

Empirical data suggests that the variance in a stutter peak in a
model based on LUS follows a different pattern to an allelic peak
[17]. In general, stutter peaks show less relative variance than

allelic peaks. Since we have not yet implemented a LUS based
model it is inappropriate to apply this variance and a larger
variance is required and applied. We currently implement the
same variance for a stutter peak as for an allelic peak. This defers,
temporarily, the problem of solving the correct variance for a
combined peak.

It has proven necessary to apply a correction for overamplified
profiles. At high 0/, the observed peak is smaller than predicted by
Eqg. (3). This is expected as the linear relationship between peak
height and DNA template only exists over a certain range. The
correction can be specified by the user in the form of a saturation
cap. Above this cap peak heights are considered qualitatively.
Where there is a large peak observed above the saturation cap, all
expected peak heights above this level are given identical
probabilities when compared to the observed height.

2.3. Calculation of an LR

2.3.1. Point estimate

A point estimate for the LR is assigned using equation 2 with
weights w; and w; provided from Eq. (5). Note that if Sj=S; then
w; =wy. Pr(S5j|H;) and Pr(S;|H,) are developed using the population
genetic model described in Balding and Nichols [23] and assuming
all reference profiles are involved in the conditioning. € values are
input by the user. Allele probabilities are assigned as (x; + 1/k)/
(Nq+ 1) where x; is the number of observations of allele i in a
database, N, is the number of alleles in that database and k is the
number of allele designations with non-zero observations in the
database. This is consistent with our later offering for assessing
sampling uncertainty.

2.3.2. Sampling variation

We offer the highest posterior density (HPD) method for
accounting for sampling variation [24-26]. The HPD method
(sometimes referred to as Bayesian credible intervals) uses a
Dirichlet distribution to describe the frequencies of alleles in a
database. The Dirichlet distribution is a multivariate probability
density function which describes the probability of obtaining a set
of allele frequencies given the allele count obtained from a
database. The general form of a Dirichlet distribution is:

k
flon...an) =— Hx;’" referred to as a Dirichlet
Hl‘ta,-w =1

i=1
(erq ... ) distribution where «; is the frequency of allele i, x; is the
count of allele i from the database and k is the number of alleles at
the locus with non-zero count.

We utilise a 1/k prior distribution, i.e. a Dirichlet (1/k, 1/k, ..., 1/
k) distribution to produce a Dirichlet (x; + 1/k, x + 1/k, ..., Xk + 1/k)
posterior density. To calculate an exact credible interval would
require the derivation of a probability density function for each
likelihood ratio formula based on the Dirichlet distributions. This is
difficult even for simple equations and so a Monte Carlo simulation
method can be used that generates sets of allele frequencies (or
vectors of allele frequencies) from a Dirichlet probability density
function and then use these allele frequencies to generate
likelihood ratios.

A fast method to sample a random vector fi...f, from the k-
dimensional Dirichlet distribution with parameters (... ) is to
draw k independent random samples g;..gx from gamma
distributions each with density Gamma(c;, 1) =gf'“'e & /T (aj)
and then set f; = g;/ Z'j,, g (so that the sum of all f; frequencies
is1).

Gamma number generation was carried out using the GS and
GD algorithms of Ahrens and Dieter [27,28]. We recognise credible
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arguments that assessing uncertainty from sampling is unhelpful.
Of the many valid arguments we have heard the one of greatest
impact on us is that it may give the false impression that all
uncertainty has been assessed.

We have implemented these methodologies in Java and have
created software to examine the continuous approach to DNA
profile interpretation. We suggest that the posterior distribution
may be used to inform an assignment of the LR. If, say, the lower
bound, is taken then if should be borne in mind that a statement
that the LR is greater than this bound 0.99 of the time is only true if
the only source of uncertainty is the sampling uncertainty. [t may
be better to accept that there are a great many sources of
uncertainty and to assign the LR at this (or some other bound) as a
subjective judgement of a fair and reasonable approach.

3. Tests of assumption 2 and non-thinning

The component wise MCMC chain varies one locus of the
genotype at a time. This increases the MCMC mixing after burn-in
by avoiding examining very unlikely genotypes too often. In
addition we have assumed wy = 1L wg (assumption 2). We have
tested this assumption and the component wise approach on three
mixtures described as a mixture of two contributors both of good
template (strong/strong), one good and one low template (strong/
weak) and both low template (weak/weak). We trialled the
proposed approximation termed unthinned product, against our
gold standard attempt at the optimal solution. The gold standard
was set as the thinned result of the full multilocus acceptances fora
considerably extended MCMC chain thinned to record the accepted
state after every 10th step. We plot logw; for a random sample of
200 of the accepted genotypes. In Fig. 2 below we give the results.

The minimum possible value for the gold standard log
weighting is —5.3 and occurs when there is one acceptance for
this multilocus genotype. Since there is only one acceptance this
value is poorly determined. It is certainly possible that the
unthinned product is actually a better estimate of these low
weightings. At the high weighting end, the top right of each
graphic, the correlation between gold standard and unthinned
product is good. The correlation in weightings produced by Eq. (4)
(gold standard) and Eq. (5) (product of locus weightings) provides
an empirical justification for making assumption 2.

4. Reproducibility

An issue with using a stochastic system like MCMC is that the
results of no two analyses will be completely the same. This is an
issue that is relatively new to forensic science although this is a
feature of both TrueAllele and LikeLTD [29]. Up until this point

forensic science has always had the luxury of, at least theoretically,
completely reproducible results. This variation has troubled users.

Increasing the number of MCMC steps ameliorates but does not
remove the variation. There is, however, an associated runtime
cost. Hence a trade-off between reproducibility and runtime must
be struck.

In the LR the numerator is the weighted sum of the probability
of the data given fewer genotype sets than the denominator. In
many cases the numerator may have only one term. Since the
denominator is the weighted sum across the probability of many
genotype sets it has a stability to variation in the weights. However
the numerator is more sensitive and this effect is at its greatest
when the weight for the numerator genotype set(s) is low.

To demonstrate reproducibility, a two person mixture was
analysed 10 times under our standard running conditions. Average
runtime for each of these analyses was 25 min on a standard
desktop computer, however improvements since the time this
experiment was run has seen the runtimes for the same problem
drop to 2 min.

Contributor 1 produced an average LR of 4.27 x 10" with a
standard deviation of 2.7% of the mean. Contributor 2 produced an
average LR of 4.6 x 10" with a standard deviation of 2.9% of the
mean. Likelihood ratios obtained from separate runs were highly
reproducible. It is expected that the most variation in results would
be seen when the likelihood ratio at one or more loci strongly
favoured exclusion, due to poor fit of the observed data to the
proposed contributors.

5. Validation experiments

Although the method described here was necessarily pro-
grammed as software we emphasise validation of the method as
opposed to validation of the software. Indeed the software has
been tested against by hand calculations but of more general
interest would be the validity of the approach.

The method produces an LR. No true LR is available and many
would argue no such thing exists. It is therefore not possible to
examine the results against some true answer. The only practical
tests that can be done are:

1. Examination of interpretations of mixtures of known contribu-
tors (ground truth) and
2. Comparisons against other methods and/or human judgement.

Neither of these is trivial. Ground truth comparisons should
produce a large LR when a true contributor is tested and a low one
when a false one is tested. However it is also reasonable that
occasionally a known contributor could give a low LR especially
when the profile is low template. Equally occasionally a false
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Fig. 2. A plot of the log weightings for the gold standard and the unthinned product for the strong/strong, strong/weak and weak/weak mixtures. The diagonal line represents

the points at which the log weighting and gold standard weighting are equal.
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contributor may give a high LR. This is termed an adventitious
match. Such tests give little guidance as to whether the LR is too
large or not large enough. Early versions of the model were beta
tested by a number of users often using a set of two and three
person mixtures where the ground truth was known. In the vast
majority of trials undertaken a subjectively judged fair and
reasonable LR resulted. All counter examples were examined
and corrective action taken if necessary.
In Appendix C we give the results of 127 trials where H, is true.
The expected result is a large LR and this occurred in all cases.
Comparisons were also undertaken against the binary model of
Kelly et al. [30]. The method of Kelly et al. [30] is known to be
wasteful of information hence it is not obvious what the expected
result is. In all cases inspection of the results suggested that the LR
assigned by the method was fair and reasonable (see Appendix C).
Comparisons against human judgement were undertaken as
part of a formal trial (see Appendix C). All cases of counterintuitive
results have been examined and corrective action taken if needed.
We hope that the method, to some extent at least, puts out
diagnostics that allow an operator to “validate” the specific result.
The weights for each genotype set are an intuitive thing that
experienced operators can check. We would suggest that any
strongly counterintuitive result warrants investigation and would
strongly counsel against reporting results from any software
without some form of human check.

6. Limitations of the system

We acknowledge some limitations of the proposed method. In
broad terms the method described here is standard mathematics
coupled with a model for peak height and the variability in peak
height. The limitations arise in some cases from conscious choice
and in others from the current state of model development.

The most obvious limitation we are aware occurs when a large
artefact is allowed through the manual EPG review process. Peaks
present in the EPG must be accounted for in the model by some
biological phenomenon. An artefact peak on the EPG will be
considered as an allele, or a drop-in, both of which can
substantially shift the distribution of probability across genotype
sets.

Currently the user must specify the number of contributors to a
mixture prior to analysis and this number must be the same in both
the numerator and denominator. For the future, we can envisage a
system where the number of contributors is treated as an unknown
nuisance parameter and integrated out and we intend to
experiment with this.

We have implemented a stutter model which we know to be
suboptimal as it uses allele designation rather that longest
uninterrupted sequence of repeats. In extensive trials there
appears to be little consequence of this however we do intend
to update the model in future revisions.

We use a catch-all allele designation ‘Q’ for all alleles that have
not been observed in G¢ replicates. We consider separate Q's for
each dropped allele in the genotype set, each with their own
dropout probability and E.,,. The use of the Q designation shortens
the runtime as it reduces the number of alleles under consideration
by the MCMC, however represents a small loss of accuracy. All
alleles being considered under a Q designation will be given an
average allele molecular weight for that locus and Q alleles that
overlap are not summed. The choice to do this was based on user
requirements.

7. Conclusion

Our ability to generate DNA profile has far outreached our ability
to interpret them. Binary methods of DNA interpretations, which

rely on a rule and threshold based system have been pushed to their
limits, and it seems that the next step for DNA profile interpretation
is to move to continuous systems. Continuous systems can utilise all
the currently observed information within a DNA profile.

The superiority of continuous systems has been acknowledged
for over a decade but implementation has lagged. We have
speculated on the causes and highlight the lack of validated
software, cost, runtime but perhaps most significantly a concern
about black boxes and the inability of analysts to effectively
represent the evidence in court. The acknowledged success of the
TrueAllele™ software in casework and court has begun to erode
these barriers but uptake would still represent a minority of
casework.

We report here a synergy of mathematics and biological
modelling specifically designed to ameliorate the black box aspect
of continuous models. Teaching of MCMC methods and the use of
the software to forensic biologists has been successful with
participants having positive reactions. Run times and reproduc-
ibility are acceptable.

It is difficult to test such systems for the accuracy of the LR
produced. The correct answer is unknown and in many cases
unknowable. We resist the temptation to state that big numbers are
good.

We have judged the results against the known input contributors.
We score a result as good if it produced a large LR for a correct
hypothesis and a low LR for a false hypothesis. Further each genotype
combination may be examined with regard to the weighting
assigned. Combinations with high weight subjectively provide the
best explanation of the data with impressive regularity as seen in
trial comparing results of human assessments with those of the
continuous model outlined in this paper. Against this criterion,
which we acknowledge as subjective, results are outstanding.
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Appendix A. A summary of nomenclature used within this
paper

o a the allele

e a — 1 signifies the stutter product for allele a

e A the mass variable for locus amplification efficiency,

A= L.‘..L} - locus offset at locus L.

e ¢ a constant in'modelling the variance in peak height

e D the mass variable for degradation, {d,:n=1,..N} -
degradation in template vs. molecular weight for contributor n

« E the vector of expected peak heights

e EL, =T! /(1+7)) the contribution of contributor n to the
expected height of the allelic peaks at locus | formed from allele a
in replicate r
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® Ely 4y = 7h(Th,)/(1+ 7,) the contribution of contributor n to
expected height of the stutter peaks at locus [ formed from allele
a where a — 1 signifies the stutter product in replicate r

e Gc the evidence of the crime stain across all R replicates

« H,, hypotheses, H; and H, hypotheses chosen to align with the
prosecution and the defence, respectively

e J the number of contributors with j representing a specific
contributor

o L the number of loci with [ representing a specific locus

e LR¢ the continuous LR

o LRy the binary LR

e LUS the longest uninterrupted sequence within an allele

e M is the mass variables D, A, R and T collectively

o m, is the molecular weight of allele a at locus [

e N number of contributors with n representing a specific
contributor

« O the vector of observed peak heights

o 0!, the observed peak height for allele a at locus I for replicate r

o P the probability of observed data given mass parameters

« Qacatch-all allele to cover all possibilities outside a specified set

e R number of replicates with r representing a specific replicate

o R the mass variable for replicate amplification, {R, : r=1, .., R} is
a multiplier applied to replicate r. We constrain R, = 1

S the N contributor genotype set j

« S; the genotypes of known contributors under both H, and H,

« S, genotype of the person of interest (a known contributor under
H, only)

S, the genotypes of unknown individuals in S; required under H,,

o T the mass variable for template DNA, {t, : n =1, ..., N} - template
DNA for contributor n

o L = AR tyedn mix!

o X!, is the count of allele a at locus [ in contributor n. X!, = 1 fora
heterozygote with a and X!, = 2 for a homozygote a

o 7}, stutter ratio for allele a at locus [

o V the variance variables ¢ and 0%

o V the vector of all variance values V,, given the expected peak
heights, E, and the variance constant, ¢

e Vg, Variance of peak a in replicate r

« w; the weight for genotype set j, w; = Pr(G[S;)

. w’] the weight for genotype set j at locus [

e Z analytical threshold below which peaks are deemed unob-
served

o o7 hyper-parameter for variance of A

e /14 hyper-parameter for mean of A

« 7 Metropolis—-Hastings acceptance/rejection algorithm for mass
parameters

Appendix B. Derivation of LR and use of MCMC to determine
weightings

The LR seeks to calculate:

_ Pr(ElH,)

LR =
Pr(E|Hz)

H, and H, specify sets of genotypes for consideration. Including
genotype sets in the LR by the law of ‘extending the conservation’
gives:

1R — i PreEIS)Pr(S;|H:)
22 Pr(E|S)Pr(S;|Hz)
Note:

o The Pr(E|S;) does not depend on the hypothesis and so the
hypotheses can be removed from the conditioned terms. This is

because the hypothesis denotes genotypes sets, so both are not
required.

e We have not discriminated between genotype sets in the
numerator and denominator. This is because the terms (E|S;)
are independent of hypothesis and it is terms of the form
Pr(Sj|H,») that are conditional on the hypotheses.

e This can be shown by transforming S; to S, (for unknown
genotype set u) and conditioning on Sy (the genotypes of known
contributors under Hy,,) where $;1 S, = & and S, U S, =S;.

_ 2oy Pr(EIS;)Pr(SulSk.. Hy)Pr(Sg.|H1)

LR =
2w Pr(E|S;)Pr(SulS. H2)Pr(S|H2)

Note that Sy # Sy as the known contributors under H; may differ
from those known under H,.

We can split Sy- further into S, (the known contributors under H;,
but not under H,) and S (the known contributors that are known
under both H, and H-):

3 u Pr(E|S;)Pr(SulSk. Sp, H1)Pr(S|Sp. H1)Pr(Sp|H1)

LR =
> Pr(E|S;)Pr(SulSi, H2)Pr(S|Hz)

Now removing independent terms:

LR — ZuPr(EISPr(SulSi. Sp. HyPr(SOPr(Sy|H1)
5. PrEIS Pr(SISc. H2)Pr(Si)

And cancelling Pr(S;) terms:

IR — > Pr(E|S;)Pr(Su|Si,Sp, H1)Pr(Sp|Hy)
> Pr(E|S;)Pr(Su|Sy, H2)

Finally if the genotype of the person of interest is a known under
H; then Pr(Sp|H;) =1 giving:

1R = ZuPrEIS)Pr(SulSe.Sy. Hy)

> u Pr(E|S;)Pr(SulSk. Hz)

Note that when there are no known contributors under both H,
and H, then S; can be an empty set Sy=¢ and under this
circumstance S;=S,. Similarly if the genotypes in S, describe
genotypes for all contributors then S, = meaning that Pr(S,|S,
Spv H1) = Pr(& |Sk, Spy Hi) =1 and Sj=S,.

To this equation we can consider a number of parameters that are
used to describe a DNA profile, we have termed these mass parameters
(M) and includes a template DNA amount for each contributor, a
degradation level for each contributor, a locus amplification efficiency
for each locus and a replicate amplification efficiency foreach replicate.
Including these nuisance parameters in the LR gives:

-~ >y Pr(E|S;,M)Pr(Sy|Sy, Sp. Hy )Pr(M)

IR = == PriEIS,, M)Pr(SulSc, o) PrOM) ®

This gives the exact form of the LR if we knew what all the mass
parameter point values were. We do not know these values but can
integrate across all possible values to give:

1R — 1 S Pr(EIS; M)PI(Su[Sy. Sy, Hy)Pr(M)dM
Tyt Sou P(E[S;, M)PI(S,[Sy., Hy)Pr(M)dM

which is the form of the LR given in the body of the paperin Eq. (2).
This integral (which, if M was expanded out into individual
parameters, is actually a multidimensional integral) is a problem
that can be assessed using MCMC.

From Eq. (8) a MCMC analysis could be run separately
for numerator and denominator. Each would choose values for
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M and the acceptance/rejection probability would be calculated
by:

3= Pr(E|Sj, M)Pr(Sy|Sk. Sp. Hy)Pr(M)  and
22y Pr(EISj; M)Pr(Sy[Sy, Hz )Pr(M)

for Hy and H- chains respectively.

To do this would mean that for every comparison to a person of
interest in a case, an additional MCMC analysis would be required,
which has associated time and computer resource costs. There would
also be a between chain comparison requirement that would
necessitate the calculation of the marginal probabilities of each chain.

To overcome this, we use MCMC to assess a single probability that
does not take the two competing hypotheses into account. We instead
assess:

Pr(E|H)

where H in this instance is simply that the profile has originated
from ‘n' contributors of which k' have genotypes S if this is
appropriate (k < n). We substitute H for N=n:

PrEIN = n,S;)Pr(N = n)Pr(Sy)

Due to our assumption on the number of contributors
Pr(N = n) = 1. Also, since S is a set of assumed contributors, Pr(S;) = 1.

We introduce 3 which includes M and the possible genotypes of
contributors as nuisance parameters. For convenience we also drop
the N =nand Sy as the genotype sets included in J are restricted to ‘n’
contributor scenarios where S; C S;.

Pr(E|3)Pr(3)

We also note that including genotype sets as a variable in the
MCMC means that only one genotype set is the focus of the MCMC at
any time and acceptance/rejection probabilities are based on the
below formula (where the genotype set in current focus S; has been
split from 3 purely to remind the reader of their presence):

Pr(E|S;, M)Pr(S;)Pr(M) Noting that : Pr(S;)Pr(M) = Pr(S;, M)

Having a single genotype set as the focus of the MCMC and
calculating the acceptance/rejection probability on a single genotype
set, decreases the acceptance rate, however offsets this by being able
to complete an iteration with much less calculation. In fact the time
increase due to a lower acceptance rate is less than the speedup due to
quicker calculation time as there can be multiple genotype sets that
have similarly high posterior probabilities. The MCMC used to assess
this probability takes samples from the posterior distributions of all
parameters in the model:

E|3)Pr(3
priaip) — LEPE)

where f(E) is the marginalisation constant. As this is constant for
the fixed dimension problems being discussed it will cancel out on
all terms within the LR calculation and the above formula can be
displayed as the familiar relationship:

Pr(3|E) x f(E|3)Pr(3)

Again expanding 3 and concentrating on genotype set gives the
posterior probability:

Pr(S;|E.M) o f(E|S;,M)Pr(S;)Pr(M)

The right hand side of the above equation (likelihood multiplied by
prior) corresponds to the probability we wish to assess in Eq. (8), and
so the posterior probabilities calculated by the MCMC can be used.

We make one further modification during the MCMC. We bias the
genotype set prior by [Pr(S;)] " i.e. the inverse of the genotype set
prior probability. This has the effect that the posterior probability is
biased by the same factor. This adjustment is allowed as the biased
prior for each genotype set is constant and can be corrected for post
MCMC. In effect we have taken samples from:

Pr(S;|E, M)
Pr(s;)

For each S; within the model. The choice to do this has the
advantage that allele frequencies, and hence a population, does not
need to be specified in order for deconvolution to be carried out. The
population, or indeed multiple populations, of interest can be chosen
at a later time when an LR is required.

As before we can expand genotype set based on genotypes of
known Sy and unknown S, contributors. In this instance we do not
have S, as we are assessing equation Z, which has only one hypothesis.
So for H, in Eq. (8) we can substitute:

Pr(E|S;, M)Pr(S,|Sx. H)Pr(M) = Pr(S;|E,M)
And for H, in Eq. (8):

when S,€S;

Pr(S;|E.M)
0 otherwise

Pr(E|S;,M)Pr(Sy|S.Sp.H1)Pr(M) = {

Remembering that each S; is a set of ‘n’ single person genotypes
and S, is a set of ‘p’ genotypes of the known contributors under H;
(p < n) so that S, is a subset of each ;.

We correct for the bias introduced into the posterior during the
MCMC by multiplying each of the j posterior elements by Pr(S;) within
the LR.

The posterior Pr(Sj|E, M) enumerated from the MCMC is a
distribution. We use the mean of this distribution in the LR. The
mean can be determined directly from the posterior distribution.
Alternatively, because genotype sets can take only discrete, unor-
dered values the posterior probability for genotype set j can be
determine by residence time of genotype set j as the focus of the
MCMC. In fact the residence time of S; in the MCMC will be directly
related to its probability as this is what the Metropolis-Hastings
acceptance/rejection criteria are based on.

Appendix C. Validation experiments

Testing the model when H, is true

Experiment 1: 127 artificially constructed mixtures were created
from two contributors of known genotype. The mixtures were
amplified following the manufacturer’s recommended protocols with
Applied Biosystems' Identifiler™ multiplex (Life Technologies, Carls-
bad,CA)onanApplied Biosystem’s 9700 thermal cycler. Amplified DNA
was separated on an Applied Biosystem’s 3130 capillary electrophore-
sis instrument. Resulting DNA profiles were analysed using Applied
Biosystem's GeneMapper ID v3.2. The target total template was varied
from 100 to 500 pg and the ratio of contributors was varied from 1:1 to
5:1. An LR was calculated for the hypotheses:

H;: the DNA came from P; and an unknown person.

Hy: the DNA came from two unknown people.

P, was taken as the minor contributor but note that the minor
contributor may be half the DNAin a 1:1 mixture. In Fig. 3 we give the
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Fig. 3. A plot of LR vs template of the minor contributor for the ground truth H, true.
The lowest template for the minor was 16.7 pg.

LR plotted against template of the minor contributor. LRs varied from
10® to the maximum possible 10?* and showed an increasing trend
with increasing template. The highest values occurred for 2 or 3:1
mixtures at good template and the lowest values for mixtures of any
ratio where the minor template was low. All the mixtures constructed
to be 1:1 gave values in the range 10'2-10'* and represent the lower
plateau of values in Fig. 3.
Fig. 3 demonstrates two phenomenons, which we would expect
from a continuous system:
1) As the amount of template DNA decreases the LR decreases.
2) As the ability to resolve peaks as belonging to the major or
minor contributor is lost the weightings for a number of
genotype sets become equal. This ‘spreading’ of probability
lowers the LR as probability is being shifted away from the
genotype sets making up Hj.

It is worth noting that even at the lowest DNA amount of 16.7 pg,
the continuous method as described in this paper produced a LR in the
tens of billions.

Experiment 2: Artificial three- and two-person mixed DNA profiles
with known contributors were amplified following the manufacturer’s
recommended protocols with Applied Biosystems' NGM SElect™

multiplex (Life technologies, Carlsbad, CA) on an Applied Biosystem'’s
9700 (silver block) thermal cycler. Amplified DNA was separated on an
Applied Biosystem's 3130x! capillary electrophoresis instrument.
Resulting DNA profiles were analysed using Applied Biosystem’s
GeneMapper ID v3.2.1.

The likelihood ratio was calculated for each contributor to each of
the four two-person and six three-person mixed DNA profiles using
both a binary method and the continuous method of interpretation
discussed in this paper. The hypotheses considered are:

Hj: the DNA came from P; and unknown people up to the number
of contributors.

H,: the DNA came from all unknown people.

LRg was calculated in MS EXCEL following the ‘F model’ as
described in Kelly et al. [30].

Table 1 shows the likelihood ratio produced from the continuous
method as described above and implemented through Java
software, and a binary method for the same set of mixtures of
known source calculated in MS EXCEL following the ‘F model’
described in Kelly et al. [30]. Profiles were of reasonable quality to
allow assessment by the binary method. Table 1 shows the
information gain by using a continuous system. In the two person
scenarios where the individual profiles can be well resolved the
information obtained from the two methods are similar. For three
person mixtures, the results of the two systems diverged. LR was
markedly lower or unable to be determined for three person
mixtures, whereas LR¢ continued to produce LRs consistently much
greater than one.

The EPG for one of the three-person mixtures summarised in
Table 1 (example six) in Fig. 4 below. For both the continuous and
binary models the assumption of three contributors is made. This
assumption is supported by inspection of Fig. 3.

Worked locus example

The workings for both LRs for the locus VWA are summarised in
detail below for the hypotheses:

H;: POI, and two unknown individuals.

H,: three unknown individuals.
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Fig. 4. EPG of three contributor mixed DNA profile.
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Table 1

LR results of continuous versus binary method for assessing two and three person
profiles, where NC stands for non-concordance (and therefore a statistic was not
calculated).

Continuous Binary

Mixed DNA profiles from two contributors

Person 1 Person 2 Person 1 Person 2
6.12E+15 3.16E+16 1.24E+16 3.81E+15
1.88E+19 6.37E+19 9.50E+17 1.93E+19
2.44E+19 4.87E+19 2.08E+18 9.61E+18
3.02E+17 1.25E+20 4.04E+14 1.25E+20

Continuous Binary

Mixed DNA profiles from three contributors
Person 1 Person 2 Person 3 Person 1 Person 2 Person 3
2.72E+08 4.69E+11 3.79E+13 NC 226 1.39E+6
9.10E+08 4.17E+11 2.83E+13 NC 3 14,261
8.43E+19 4.73E+11 5.96E+18 57 <1 331
4.52E+12 5.73E+12 7.20E+14 <1 <1 846
9.62E+07 1.24E+20 1.07E+20 NC 65 317
7.68E+18 3.12E+19 1,254 23 356 NC

The reference DNA profiles of the three known contributors are:

Locus POI, PO, PO,
D1051248 15,15 13,15 12,15
VWA 16,17 17,18 14,16
D165539 1313 11,12 9,10
D251338 18,20 19,23 2023
D8S1179 13,14 13,13 12,13
D21S11 322322 30,30 28,31
D18S51 16,18 15,19 12,15
D2251045 15,16 11,14 11,16
D195433 14,14 14,15 14,15
THO1 793 893 793
FGA 2023 23,24 24,26
D25441 1,11 10,14 14,15
D351358 15,18 14,15 15,16
D151656 15.3,17.3 18.3,18.3 13,16
D125391 1823 18,20 18,19
SE33 16,26.2 19,292 17,25.2

Allele frequencies were obtained from data analysis of an
Australian Caucasian sub population (N = 2082, data not published)
with the relevant allele frequencies for VWA below:

Allele Allele frequency
14 0.1146
15 0.1071
16 0.2044
17 0.2726
18 0.2090

Continuous model of interpretation

After 50,000 MCMC accepts (10,000 of which were burn-in) the
following weights (w;) for each of the different genotype sets (S,)
using the models described above, were obtained for the one locus:

Su Gey Go Go wi

S 16,18 17,17 14,14 0.00045
Sz 16,18 1717 14,15 0.00017
S3 16,18 17,17 14,16 0.00008
Sa 16,18 17,17 14,17 0.00002
Ss 16,18 17,17 14,18 0.00054
Se 18,18 17,17 14,16 0.00005
Sz 16,16 17,18 14,14 0.00218
Ss 16,16 17,18 Q14 0.00010
So 16,16 17,18 14,15 0.00207
Sio 16,16 1718 14,16 0.00511

Sn 16,16 17,18 14,17 0.02030
Siz 16,16 1718 14,18 0.00279
Si3 16,17 1718 14,14 0.19300
Sia 16,17 17,18 Q14 0.00368
Sis 16,17 17,18 14,15 0.15800
Si6 16,17 17,18 14,16 0.28700
S17 16,17 17,18 14,17 0.21000
Sis 16,17 1718 14,18 0.11400
Sia 17,17 17,18 14,16 0.00016

Pr(E|H,) = 3.87 x 1073 Pr(E|H;) = 4.7 x 107*LRc = 8.24

The mixture proportions determined by the software for the three
individuals were 0.26, 0.70 and 0.04 for POl;, POl,, and POI3,
respectively.

The weightings list may be compared with human judgementas a
diagnostic to check whether the software has operated reasonably.
Note that set S; has received the highest weighting and visual
inspection of the EPG suggests that this is reasonable. It is also the set
that corresponds to the three known contributors.

Binary model of interpretation

LRy was calculated in MS EXCEL following the ‘F model’ as
described in Kelly et al. [30]. The allelic vector for VWA was
determined to be: 14,16,17,17,18,F.

Pr(E|Hy) = 24Pr(14,16.17(14,16,16,17,17,18)
24(0+ (1 —6) x 0.1146) x (20 + (1 — 0) x 0.2044)
x (20 + (1 — ) x 0.2726)
(1+56)(1+660)(1+76)
=0.1669

Pr(E|H,) = 360Pr(14,16,17,17,18|14,16,16,17,17,18)x
360(0 + (1 —0) x 0.1146) x (20 + (1 — 6) x 0.2044)
_ (20+(1-6) x 0.2726) x (30 + (1 - 6) x 0.2726)
T % (0+(1—0) x0.2090)
(1+50)(1 + 60)(1 + 70)(1 + 89)(1 + 96)
=0.1345

LRs = 1.24

Summary of binary versus continuous profile interpretation
A summary of the calculated LR for all loci following the methods
described above for the mixture in Fig. 4 is below:

Locus LRg LR¢
D10S1248 0.97 469
VWA 1.24 8.21
D16S539 0.45 5.32
D251338 227 31.22
D8S1179 0.51 7.79
D21S11 0.94 9.98
D18S51 3.85 52.08
D2251045 432 59.18
D195433 0.92 A7
THO1 0.97 1331
FGA 139 21.14
D25441 0.65 4.84
D351358 0.93 13.22
D151656 5.55 106.14
D125391 1.42 2134
SE33 6.23 69.53
Overall LR 356 3.12E+19

Experiment 3: Testing the model when the POI is not a donor
Of equal importance is the functioning of the model when the POI
is not a donor. In the vast majority of scenarios where POI is not a
donor of DNA to the sample, the LR is less than one. Fig. 5 shows the
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Fig. 5. Distribution of likelihood ratios (shown on a logarithmic scale) when
considering known non-contributing individuals as contributors to a complex three
person mixed DNA profile. Only values of LR > 1 are shown. Arrows show the LR for
the three individuals, known to make up the mixture. The maximum value for the
LR when comparing a known non-contributor was 12,896 (log,o(LRc) = 4.1).
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Fig. 6. Comparison of LRs produced using a continuous system to human
interpretation. The line at 0 represents neutrality i.e. the probability of obtaining
the profile is the same under hypotheses of exclusion or inclusion. Results above the
zero line favour inclusion and results below the line favour exclusion. When LR¢ = 0
(when Gp did not feature in the MCMC at any point) the result has been plotted at
the bottom of the graph against the ‘LRc= 0" y-axis label.

results of considering 57,612 individuals as potential contributors to a
complex 3 person Identifiler™ profile. Of these 57,612 individuals,
three were known contributors and 57,609 were known non-
contributors.

Of the 57,612 individuals, only 1168 gave a LR in favour of H; and
as Fig. 5 shows the majority of these were below a LR of 100. In
contrast the known contributors gave LRs of greater than 700,000, and
were clearly distinguishable from the non-contributors.

Trials against human interpretation

A continuous model for DNA interpretations should produce
results that are intuitively correct to a trained scientist. We would
therefore expect to see a relationship between LRc and human
interpretations.

To test this, previously reported casework Profiler Plus™ profiles
were reanalysed using the continuous model described. Samples
were amplified following the manufacturer's recommended protocols
(except that PCR volume was halved to be 25 wL) with Applied
Biosystems' Profiler Plus" multiplex (Life technologies, Carlsbad, CA)
on an Applied Biosystem's 9700 (silver block) thermal cycler.
Amplified DNA was separated on an Applied Biosystem’s 3130xI

capillary electrophoresis instrument. Resulting DNA profiles were
analysed using Applied Biosystem's GeneMapper ID v3.2.1. EPGs were
analysed using the continuous model with 50 000 accepts (of which
the first 10 000 were burn-in). The samples in this study resulted in
39,274,207, and 50 comparisons to single source, two, three and four
person mixed profiles, respectively. LRc produced by the model were
compared to the human interpretation for the same result (Fig. 6). The
hypotheses considered are:

H;: the DNA came from POI and unknown people up to the number
of contributors.

H,: the DNA came from all unknown people.

Human interpretations were sorted into three categories; “not
excluded”, “inconclusive” or “excluded”.

Inspection of the graph shows a broad alignment of human and
model based interpretation except that on average human inter-
pretations were more conservative.
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2.6 — clarification
Point 1: Formal description of the LR:

| provide a formal description of the LR below (however, | will use O instead of Gc, which is
consistent with later works):

We seek the likelihood ratio (across all loci):
~_ Pr(O] Hp)
Pr(O| Hd)

Let there be J different genotype sets (S) of N contributors that can be considered
{s;:j=1..3}, sothat:

J

> Pr(0|S;, Hp) Pr(S; | Hp)

oy

—

LR=
D Pr(O|S;,Hd)Pr(S; | Hd)

j=L

Noting that once genotype sets are specified the probability of the observed data is no longer
dependant on the hypothesis:

iPr(O|Sj)Pr(Sj | Hp)
LR =-L=
D Pr(O|S;)Pr(S; | Hd)

=1

Note that J can be very large. For each locus, where there are ‘a’ possible allele a contributor

a(a+l)
2

can possess different genotypes (obtained by the number of pairwise comparisons

between a elements plus a homozygous genotypes). An N person mixture at L loci will possess

LN
{a(%ﬂﬂ possible genotypes sets, so if we take a modern multiplex that possesses

approximately 20 loci, each with approximately 15 alleles J > 10'2*. Many of these will not
contribute to either one or both of the sums in the LR because:

1. Pr(O]S;) =0, if the probability of the observed data is so low given genotype set j that

it is approximately O i.e. the genotype set requires so much peak height variability,
drop-in, drop-out or other improbable DNA profile events.
2. Pr(S;|H) =0, if the proposition requires the contribution of DNA from an individual

whose genotype is not represented in set j.
It may be useful to think of the sum across j in the LR to be across all genotype sets where:

Pr(O[S,)Pr(S,|H) >0

However, it needs to be realised that the number of non-zero elements that would apply to the
numerator and denominator could (and usually would) be different due to the second condition
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above being unique to each proposition. It therefore may be useful to think of J as the number
of genotype sets for which Pr(O|S;) >0, so that the sum is over the same number of genotype

sets in numerator and denominator but may still possess some zero elements due to the second
condition above.

Each genotype set Sj contains N elements (genotypes) Sj:{le,...,NG}, where a left

superscript is used to denote a contributor position. Also note the shift from S (to denote a set)
to G (to denote a genotype). When a genotype set is conditional on a proposition, it can be

broken down by S;|Hp ={S, ;,,,.S,.S, } , where:

u, jiHp?

e Sk are the set of known contributors (under both Hp and Hd) to the sample

e Sp are the set of persons of interest that are contributors under Hp but not Hd and

e SujiHp are the set unknown individuals from the population so that [S, ;| +|S,| +‘Sp‘ =N
. Note that this term still requires a reference to the genotype set j, as (unlike the known

contributors or persons of interest) the genotypes of unknown individuals change with
changing j.

Note that Sp does not apply to Hd (i.e S;|Hd = {Su,j|Hd ,Sk}). Due to this, Su,j is therefore also

different under Hp and Hd. I identify this difference by specifying SujjHp and Su,jiHd for Hp and
Hd respectively. Note that both Sk and Su,jiHp can be empty sets, however Sp and Su jjHda must

contain at least one element in a forensic evaluation. Also note that S, ,,, = {Su'”Hp,Sp} . This

gives LR:

J
Zpr(0|sj) Pr(S
LR ==
Zpr(o |S;)Pr(S, Sy | Hd)
j=1

S¢»S, | Hp)

u, jiHp?

If we then consider that we have the reference information for the individuals in Sp and Sk then:

J
D Pr(O]S,)Pr(S, jjup:Si:S, 154+ S, HP)Pr(S,.S )
j=1
LR ==
D Pr(O[S;)Pr(S, jua:Sk IS¢ S, HA) Pr(S,.S,)

=t

The probability of the genotypes of individuals in Sp and Sk is independent of proposition and
so cancels in the numerator and denominator of the LR. Additionally, under Hp individuals in

Sp and Sk are known to contribute, so that Pr(S S¢S, 1S4,S,,Hp)=Pr(S 1S;S,, Hp)
,as Pr(S,,S, |S,,S,,Hp) =1, giving LR:

u,jlHp? u, jlHp
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J

D Pr(O|S;)Pr(S, jup |Si: S, Hp)

J
J

D _Pr(O|S;)Pr(S, juq IS¢, S,, Hd)

j=1
=t

LR =

Point 2: Equation 8 on paper page 523

This equation should read (in line with the previous clarification point):

J

D Pr(O[S;,M)Pr(S
LR ==

D Pr(O]S;,M)Pr(S, ;s 1S, S, Hd)

=

|Sk’sp’ Hp)

u, jiHp

Point 3: Appendix B

| provide a replacement to appendix B below (but have replace E, which was used to denote
evidence, with O, used to denote observed data in order to be more consistent with later works):

The LR seeks to calculate:
n_ PrO]H,)
Pr(O|H,)

where Hy and H> specify two propositions, typically those of prosecution and defence. We can
consider a number of nuisance variables required to evaluate the probabilities in the LR. The
most commonly considered variable within forensic genetics is the genotype sets that the
contributors could possess. These will specify which alleles are expected to be present or absent
from the profile, but not their expected heights. Introducing genotype sets (Sj) in the LR gives:

2. Pr(OIS;)Pr(S; [ H,)

RzZPr(O|Sj)Pr(Sj|H2)

Note:

e The Pr(O[S;) does not depend on the hypothesis and so they are removed from the
conditioned terms. This is because the hypothesis denotes genotypes sets, so both are
not required.

e We have not discriminated between genotype sets in the numerator and denominator.
This is because the probabilities Pr(O|S;) are independent of hypothesis.

We now consider parameters that are used to describe the peak height data in a DNA profile.
They include:
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e Template DNA amount for each contributor (n), which has prior t, ~U [O,T] (where
T represents the upper limit on template amount before a DNA profile will no longer
be analysed and is termed a saturation level). Let T be the set of N template values.

e Degradation for each contributor, which has prior d, ~U [O, D] (where D represents a
level of degradation above which profiles will generally be considered too low quality
and will not be analysed). Let D be the set of N degradation values.

e A PCR replicate efficiency term for each PCR replicate (y), which has prior
R, ~U[0,0] (note that in practise, if an analysis was carried out and a replicate
amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be
considered that one of the replicates is likely to have been the subject of an

amplification error and should not be included in the analysis). Let R be the set of Y
replicate amplification efficiency values.

e Anamplification efficiency term for each locus (1), which has prior A' ~ LN (0,5202)

(where & =1In(10) is used to transform between logs in base 10 and base e and & is

determined by laboratory calibration). Let A be the set of L locus amplification
efficiency values.
e A peak height variability parameter for each fluorescence type (i), which has prior

¢' ~T(a',B') (which is determined by laboratory calibration). Let C be the set of |
peak height variability values.

Let M = {T,A, R, D,C} , Which we term mass parameters. Including these nuisance parameters
in the LR gives:

[>"p(O1s;,M)Pr(S; |, H,) Pr(M)dM

LR = -

: [>p(0]S;,M)Pr(S; |,H,) Pr(M)dM

Which is the form of the LR given in the body of the paper in equation (2). This integral, if M
was expanded out into individual parameters, is high dimensionality a multidimensional
integral with 2N + L +Y + | dimensions.

Due to the high dimensionality of the integration required, numerical Monte Carlo integration
is infeasible. We instead use Markov Chain Monte Carlo (MCMC). MCMC sets up a posterior
distribution as its limiting distribution. We use the Metropolis-Hastings algorithm so that after
sufficient run time the Markov chains are sampling from the joint posterior distribution.

The integral could be evaluated separately for the numerator and denominator of the LR. It is
expected that the posterior distribution for parameters within M would be similar between the
integrals. The main difference would be that different individuals are specified in the
propositions and so the prior probabilities for genotype sets will differ i.e. typically the
prosecution proposition specifies additional contributors of DNA as known individuals and so
it is expected that a larger number of genotype set prior probabilities would be zero (those that
did not contain the genotypes of the specified individuals).
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To do this would mean that for every comparison to a person of interest in a case, a separate
integration would be required, which has associated time and computer resource costs. To
overcome this, we use MCMC to evaluate the integral that does not take the two competing
hypotheses into account. We do so by considering only genotype sets that satisfy conditions
that the profile has originated from N contributors, the genotypes of some of which are fixed
(those agreed to be contributors under both propositions). We therefore evaluate the integral:

jz p(O|S;, M) Pr(M)dM

The process for a single MCMC iteration is:
e Draw values for parameters within M by random walk
e Randomly choose a genotype set at one randomly chosen locus (leaving genotype set
at all other loci unchanged) by choosing from any of the available genotype sets with

equal probability, i.e. choose I, where | € [1, L]. Let there be J' genotypes at locus | then
choose j' so that j' €[1,J']

e Evaluate p(O|S;, M)Pr(M)

e Accept or reject proposed parameters by Metropolis-Hasting algorithm

Note that only one genotype set is proposed within an iteration of the MCMC algorithm (as
opposed to calculate the sum across all genotype sets at each iteration). Doing so decreases the
acceptance rate, however this is offset by being able to complete an iteration with much less
calculation. We found that the time increase due to a lower acceptance rate is less than the
speedup due to quicker calculation time as there can be multiple genotype sets that have
similarly high posterior probabilities.

Genotype sets can take only discrete, unordered values. The mean posterior probability for
genotype set j can be determine by residence time of genotype set j as during the MCMC. The
residence time of S;j in the MCMC will be directly related to its probability as this is what the
Metropolis Hastings acceptance/rejection criteria are based on. In other words, residence time
for genotype set |, rj:

r, o< [ p(O]S;, M) Pr(M)dM

Note that by choosing genotype sets uniformly across all available sets we use proposed
distribution g(x) that has been weighted compared to the target distribution 7z(x) for a

genotype set j at locus | by:

_a(x) _ (Jl'J
7(x) Pr(S;|H)

for each S} within the model. The choice to do this has the advantage that allele frequencies,

and hence a population, does not need to be specified in the MCMC. The population, or indeed
multiple populations, of interest can be chosen at a later time when an LR is required.

We correct for the bias introduced into the by multiplying each of the J posterior elements by
the weight above within the LR to recover:
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=

(y jfz p(O|[S;, M)Pr(S;|,H,) Pr(M)dM
LR = J

(”JZ p(O1S;, M)Pr(S;|, H,) Pr(M)dM

iPr(Sj | Hp)j p(O[S;,M)Pr(M)dM

iPY(S,- | Hd)j p(O1S;,M)Pr(M)dM
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Chapter 3: The likelihood ratio

Even when manual systems of DNA profile interpretation were in use, the dominant form of
reporting DNA profiling results in Australia was the LR. In fact, all but one laboratory in the
years prior to 2012 (when STRmix™ was adopted) used this form of evaluation. Within the
framework of reporting the strength of DNA evidence in LR form there are numerous topics
of discussion that range from almost philosophical, to biological to outright mathematical. The
publications within this chapter touch on a few of these topics, namely; the formation of
propositions under which the findings will be considered, the numerical calculation of the LR
for complex mixtures, the consideration of relatives of a person of interest and the sensitivity
of the LR to prior distributions of parameters within the biological and statistical models.

There were different motivations that lead to many of these works and they are given
throughout the chapter as it progresses.
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3.1: The formulation of propositions

The LR requires the formation of two competing scenarios (called hypotheses or propositions
within Forensic Biology circles) for the evidence. In the early years of DNA profiling,
proposition formation was generally a relatively straightforward task as the DNA profiles that
were considered for a numerical evaluation were restricted to such high quality and low
complexity that the appropriate propositions to use were obvious. For example (and putting
aside single source profiles, where the choice of propositions is completely obvious at sub-
source level) a typical scenario where a DNA profile of sufficient quality was obtained would
be an intimate swab from the victim of an alleged rape. The mixture obtained could be
explained by the victim and suspect and was intense enough that it could be safely assumed all
data was present (i.e. no dropout could have occurred). The propositions would then be:

1) The DNA came from the victim and suspect
2) The DNA came from the victim and an unknown male

The advent of STRmix™ meant that many more complex profiles could be evaluated, which
brought with it the question of what propositions were appropriate. For example, imagine the
same scenario as previously described however there is a single additional weak allele in the
profile that indicated a third contributor. Further imagine that the victim’s boyfriend (with
whom she is sexually active) possesses this allele (along with approximately 30% of the
population). Should the propositions now be:

1) The DNA came from the victim, boyfriend and suspect
2) The DNA came from the victim, boyfriend and an unknown male

It may be believed that there is insufficient information in this third, weak minor component to
assume the boyfriend. Extend the scenario to one where four weak peaks were present that
matched the boyfriend, or eight, or 16, etc Common questions that arise in proposition setting
are: ‘At what arbitrary point is enough to assume?”” and ‘should the profile itself even be used
to determine propositions?’ Leading philosophy on the topic suggests that propositions cannot
be findings-lead. Instead, propositions should be set on case circumstances. However, if a
decision has been made, based on case circumstances alone, to assume the presence of the
boyfriend, and a DNA profile is received that shows no sign of a contribution of DNA by him,
can the propositions be changed at this point?

Such vacillations made it appear as though the forensic biology community was still destined
to be plagued by subjective and inconsistent choices of propositions, some of which would no
doubt be based on largely arbitrary threshold-based decision.

An increasingly paced influx of such questions lead to the work presented in this section. This
paper outlines the existing ‘rules’ of evidence evaluation and builds on them in light of the
new-found ability to evaluate complex DNA profiles.

Page 121 of 344



Manuscript: Helping formulate propositions in forensic DNA analysis. J Buckleton, JA
Bright, D Taylor, I Evett, T Hicks, G Jackson, JM Curran. (2014) Science & Justice 54
(4), 258-261 — Cited 7 times

Statement of novelty: The work builds on previous philosophical recommendations on
proposition development for use in LRs. In particular, it provides insights on how to
formulate propositions in complex situations

My contribution: | was a roughly equal co-contributor to the theorising and writing of
the paper.

Research Design / Data Collection / Writing and Editing = 15%/ NA / 15%

Additional comments:

Page 122 of 344



Science and Justice 54 (2014) 258-261

Contents lists available at ScienceDirect >
. . SCIENCEeN |
Science and Justice
journal homepage: www.elsevier.com/locate/scijus o =1

Helping formulate propositions in forensic DNA analysis

-

John Buckleton **, Jo-Anne Bright °, Duncan Taylor ¢, lan Evett ¢, Tacha Hicks €,
Graham Jackson "8, James M. Curran ®

* ESR Ltd., Private Bag 92021 Auckland, New Zealand

Y Department of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand

© Forensic Science South Australia, 21 Divett Place, SA 5000, Australia

4 Principal Forensic Services Ltd., London, UK

© University of Lausanne, Institut de police scientifique et Fondation pour la formation continue
" ‘Advance Forensic Science’, St. Andrews, Fife, UK

# School of Contemporary Sciences, University of Abertay Dundee, Bell Street, Dundee DD1 THG, UK

Dorigny,

ARTICLE INFO ABSTRACT
Article history: The Bayesian paradigm is the preferred approach to evidence interpretation. It requires the evaluation of the
Received 20 May 2013 probability of the evidence under at least two propositions. The value of the findings (i.e., our LR) will depend

Received in revised form 23 December 2013

on these propositions and the case information, so it is crucial to identify which propositions are useful for the
Accepted 18 February 2014

case at hand. Previously, a number of principles have been advanced and largely accepted for the evaluation of
evidence. In the evaluation of traces involving DNA mixtures there may be more than two propositions possible.

g{:ggsbN A interpretation We apply these principles to some exemplar situations. We also show that in some cases, when there are no clear
Mixtures propositions or no defendant, a forensic scientist may be able to generate explanations to account for observa-
Propositions tions. In that case, the scientist plays a role of investigator, rather than evaluator. We believe that it is helpful
Investigation for the scientist to distinguish those two roles.

Evaluation © 2014 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Role

1. Introduction given the observations, there is a danger that in doing so the jury

will be misled.

3) The ratio of the probability of the observations given the prosecution
proposition to the probability of the observations given the defence
proposition, which is known as the likelihood ratio, provides the
most appropriate foundation for assisting the court in establishing
the weight of the findings.

Jackson et al. [ 1] have shown that a forensic scientist may have two
roles: investigator or evaluator. For evaluation, a number of principles
have been advanced and largely accepted [2-5]. More recently Berger
et al. [6] offered the three principles for the interpretation of forensic ev-
idence given below which comprise an extension of the earlier work by

Brettand Welr]<k It is crucial that close attention is given to the formulation of

1) To form an evaluative opinion from a set of observations, it is neces-
sary for the forensic scientist to consider those observations in the
light of propositions and forensically relevant case information.
The propositions should represent the positions of the different
participants in the legal process. In a criminal trial, the propositions
will represent the positions of prosecution and defence, respectively.

2) Itis necessary for the scientist to consider the probability of the obser-
vations given each of the stated propositions. Not only is it not appro-
priate for the scientist to consider the probability of the proposition

* Corresponding author at: ESR, Private Bag 92021, Auckland 1142, New Zealand.

Tel.: 4+6498153904.
E-mail address: john.buckleton@esr.cri.nz (J. Buckleton).

http://dx.doi.org/10.1016/j.5cijus.2014.02.007

propositions.

We are motivated in writing this paper by a complex murder case
which we amend to conceal the actual origin but retain the salient
features. We consider the murder of 4 related people. A bloodstain
was recovered associated with the accused that could be explained as
a mixture of all 4 deceased. However 27 people from the pedigree
were sampled by the authorities and given as reference samples.
Taken individually, 7 of these cannot be excluded from the mixture.
We are aware of a policy [7-11] that takes each of the 27 reference
samples individually and forms an LR from the hypotheses:

H1. The DNA comes from person m and 3 unknown persons.

H2. The DNA comes from 4 unknown persons.

1355-0306/© 2014 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
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This produced 27 likelihood ratios of which 7 were greater than 1.
This was not unexpected given the number of potentially related people
contributing DNA to the evidence sample.

Several of the 7 non-excluded people were overseas and not plausi-
ble donors to the mixed bloodstain. We would suggest that they should
not have ever been considered.

Our goal is to discuss proposition formation in mixed DNA casework,
and to differentiate the processes we follow depending on our roles (i.e.,
investigator or evaluator). Although we mainly focus on DNA and
source level propositions, many of the principles involved, we believe
are general to all transfer evidence.

2. Importance of the framework of circumstances and propositions

Before discussing propositions themselves we would like to under-
line the importance of both case information and propositions: proposi-
tions emanate from the case information given by both parties. They
summarise both points of views and reflect the issues facing the court.
On this topic (i.e., case information), we would like to underline that
we do not consider information such as prior conviction, motive,
presence of other types of evidence, or a confession as relevant forensic
information: these are only the concern of the Court and forensic
scientists should not be given this type of information. Forensically rel-
evant case circumstances provide the information that will help in
assigning probabilities for the observations; for example the delay
between the offence and the seizure of the shoes (in a footwear case),
or if a person suspected of having broken a window has activities that
may lead to the transfer of broken glass, or in a DNA case information
that will help formulate the appropriate alternative, determine the
number(s) of contributors, and select the relevant population.

Returning to the case that motivated this paper we would suggest
that the prosecution may sensibly allege that the blood is a mixture of
the 4 deceased. The remaining 23 reference samples from the pedigree,
whether excluded or not, are irrelevant and this is true whether or not
they were in the country at the relevant time. The defence cannot
reasonably concede that the blood is from any of the deceased. Nor is
it particularly credible that the blood is a mixture of other relatives of
the deceased either in or out of country. The case circumstances,
therefore, virtually dictate the form of the propositions in this example.

Next we discuss the concept of the hierarchy of propositions [12,13].
Propositions were initially classified into three levels: offence, activity,
or source. The top of the hierarchy is taken to be the offence level
where the issue is one of guilt or innocence. An example of this could
be ‘the suspect raped the victim’ or ‘Mr. G murdered the victim' or
‘Mr. S stole the car’. It is often held that this level of proposition is for
the courts to consider and above the level at which a forensic scientist
would usually operate. This is not strictly correct. Scientists can assess
the value of their findings given offence propositions, as long as they
use specialised knowledge and add value. Of course, scientists will not
evaluate the probability of the propositions themselves, nor should
they for any propositions, even sub-source.

An example of activity level propositions would be: ‘the suspect had
intercourse with the victim versus they only had social contact’. This dif-
fers from the offence level in that it talks about an activity (intercourse)
without taking into account issues of the intent of the perpetrator
(rape) or the consent of the complainant. The case circumstances
would give information on the alleged activities, time lapse, and what
is meant by social contact.

The first level in the hierarchy is taken to be the source level. At this
level we consider questions of the type: ‘did this semen come from Mr,
A or did it come from an unknown person?’ Considerations at this level
do not directly relate to activity, in this example ‘intercourse’, which
would involve issues such as when the specimen was taken, drainage,
and contamination.

In the light of the sensitivity of DNA methods that now allows
analysis of samples that cannot be detected with the naked eye (i.e.,

trace DNA), it has become necessary to add another level below the
source level. This has been termed “sub-source” and has arisen because
it is not always possible to infer from what body fluid the DNA has come
[14]. For instance when considering the source level proposition ‘the
semen came from the suspect’, the equivalent sub-source, or sub-level
1, proposition would be ‘the DNA came from the suspect’ and would
not necessarily imply that the DNA came from semen. It could, alterna-
tively, have come from saliva or epithelial cells.

The further down the hierarchy the scientist operates the more the
responsibility for interpreting the evidence is transferred to the court
or to other experts. It is therefore important that, if the assessment of
the results demands forensic knowledge (e.g., factors such as transfer,
persistence, presence of material for reasons unconnected to the alleged
offence), forensic scientists help the Court to the best of their abilities
and that they explain clearly what the results mean. Consequently, we
would expect that forensic scientists help assess activity level
propositions, if the above factors have a significant impact on the under-
standing of the alleged activities and require expert knowledge.

This led to the formalisation of an additional requirement for inter-
pretation. Whilst not strictly a principle as given above we number it
in the same sequence:

4) Due attention must be paid to the position in the hierarchy of prop-
ositions that can be considered. This information must be effectively
conveyed to the court to avoid the risk that an evaluation at one level
is translated uncritically and without modification to evaluation at a
higher level.

We cannot over-emphasise the importance of this. A DNA match
may inform decisions about the source of the DNA, but decisions
about an activity, say sexual intercourse versus social contacts, involve
additional considerations beyond the DNA profile.

3. Mixed DNA profiles

Consider a case where the laboratory receives a trace (labelled
‘Forensic specimen’), as well as DNA samples from the victim and the
person of interest. No case information is given. The profile derived
from the trace shows 3 or 4 alleles for several loci. From these results
we can infer that the profile is a mixture and that it comes from at
least two persons.

Without any information on the trace or the circumstances, the profile
may be a mixture of the victim, V, and the person of interest, P. Plausible
hypotheses could be:

H1. The DNA came from V and P.
H2. The DNA came from V and an unknown person U;.
H3. The DNA came from an unknown person U, and P.

H4. The DNA came from two unknown persons U, and U,,

Are there any principles which may be applied to guide the choice of
which pair of propositions should be used?

The key point here is to identify the issue that the Court wants to
solve and to do so, one needs case information from both points of
view. It is likely that the prosecution have formed their hypothesis
and this is often known to the forensic scientist. It is unlikely that the
defence will have formed their hypothesis and there is no requirement
for them to do so. Under these circumstances we would offer the follow-
ing as guidelines:

5) The prosecution proposition should be set to align with the
prosecution’s allegation and the case information.

6) There is no requirement for the defence to set or disclose their prop-
osition. The forensic scientist should select a reasonable proposition
consistent with defence's view (and again case information). If
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this proves to be a poor choice subsequently, the findings should be
re-assessed.

Recommendations 5 and 6 are consistent with the earlier recom-
mendations of the DNA Commission of the ISFG (their recommendation
5 and appendix C) [4] and with the approaches outlined in Gill and
Haned [15]. However we would suggest that they are not universally
applied [7-11,16] and it may be necessary to reemphasise them. It
may also be necessary to mention again the importance of case informa-
tion (given by both parties) for helping to determine the number of
contributors as this will impact on how the propositions are formulated.
The sub-source proposition most beneficial to the defendant is likely to
be the one that concedes the maximum number of known contributors
consistent with the mixture not including the accused, minimising the
difference in the number of known contributors between the prosecu-
tion and defence propositions. The addition of unknown contributors
to the defence proposition is most unlikely to increase the probability
of the findings given this proposition unless it substantially improves
the fit to the evidence.

If we apply these principles and guidelines to the hypothetical two
person mixture described above, then we need to consider the circum-
stances of the case. Imagine that the sample is a vaginal swab taken from
the complainant, C. Then, it seems a reasonable assumption that the
DNA components matching C have indeed come from her. That assump-
tion should be stated in the scientist's report and is rightfully open to
challenge down the line. Therefore the propositions ‘The DNA came
from C and P' and ‘The DNA came from C and an unknown person’ are
perfectly reasonable.

Next, imagine that the DNA sample was taken from a shirt belonging
to the person of interest, P. Again it seems a reasonable assumption that
the DNA components matching P have indeed come from the person of
interest. Therefore the propositions ‘The DNA came from C and P’ and
the DNA came from an unknown person (U,) and P’ are perfectly
reasonable.

Last, let us consider that the sample is from an object, for example a
cloth, neither associated with the complainant nor the person of inter-
est. If we apply guideline 5 then it seems likely the prosecution will
assert that the DNA is from C and P. However, in considering guideline
6, exoneration could follow if any of the propositions:

H2. The DNA came from C and an unknown person U,
H3. The DNA came from an unknown person U, and P.

H4. The DNA came from two unknown persons U; and U, were true.

The defence therefore have a right to any of H,...H, if the case
information suggests that this is sensible. Gill and Haned [15] suggest
exploring all these options and we concur.

Papers, such as this one, often emphasise consultation with the
prosecution and defence. This is a lofty ideal that is seldom achieved
in practice, It assumes both willingness and an ability on the part of all
parties to consult in a constructive manner. In our experience the issues
discussed in this paper are not universally understood by forensic
scientists and seldom considered at all by lawyers. The reality is that
the scientist is often left to form the propositions from the case informa-
tion with little support from either prosecution or defence.

4. Complex situations: investigation or evaluation?

We are aware that the scientist may be presented with what
amounts to a trawl. A profile is developed that may be from N individ-
uals. M persons of interest are offered with the suggestion that they
may have been involved in some combination. This is the situation
which motivated this paper, discussed in the introduction. However it
could also apply to any mixture tested against a database.

A very useful differentiation is made regarding the role of the foren-
sicexaminer at different parts of the criminal justice process. This draws
a distinction between the investigative and evaluative stages [1,17]. At
the investigative stage a scientist may be asked to offer an opinion to ad-
vance an inquiry. At this point a lot more liberty may be afforded by the
scientist and a rigorous application of the principles of interpretation is
not required although of course sensible scientific statements should be
adhered to. The evaluative stage describes the situation when a scientist
is required to assist a court of law by providing an evaluative opinion
with regard to the assistance that a set of scientific observations might
provide in addressing matters that the court is deliberating. Then the
scientist's evaluation should be governed by a set of logical principles.

To help address investigative issues, an examiner generally offers
opinions in the form of explanations or, if prior information and expert
knowledge is taken into account, in the form of posterior probabilities
for explanations.

To help address evaluative issues, an examiner would address a pair
of clearly stated propositions and consider the probability of the find-
ings given each of the propositions. The opinion expressed would reflect
the ratio of those two probabilities (the likelihood ratio).

There are limitations to both investigative and evaluative opinions and
these should be made clear at the outset. Of interest in this circumstance,
likelihood ratios require, firstly, consideration of propositions that are
based on the case circumstances and the competing allegations and, sec-
ondly, reliable and valid assignment of probabilities for the observations.

The very complex situations described above sit much more easily at
the investigative phase and more awkwardly at the evaluative phase.

If there are M persons of interest, to a N contributor profile, then
there are many pairs of hypotheses that could be considered. For com-
plex profiles with many persons of interest the number of proposition
pairs could number in the hundreds or thousands. This is clearly too
many for an exhaustive exploration of likelihood ratios. A strategy in
current use and described above, tries each of the M persons of interest
in turn in H; with the remaining N-1 contributors as unknown. H, is set
as N unknown contributors. Since there are M persons of interest M LRs
will be produced and plausibly reported. We will term this the search
strategy but we suggest that it sits more comfortably as part of an inves-
tigative phase.

When faced with very complex situations we have often found it
useful to attempt to remind ourselves of the principles of evidence
interpretation before even trying to apply them. One principle is that
the addition of any relevant and correct information, on average,
improves the power of the LR to help differentiate the two hypotheses.

We suggest that information known, or reasonably assumed, to be
correct should be included in proposition setting. This will include any
situation where someone's DNA can be reasonably thought to be
present on an item, such as an intimate swab, item of clothing, owned
object or object that has known to be handled by an individual.

The question then remains as to what to do when there are multiple
individuals for comparison to a profile when no-one can be reliably
assumed to have contributed DNA to the sample. Our preference is to
ignore the uncertain information that the other persons of interest
may be contributors and we believe that no choice is left other than
allow the search strategy. This is perfectly acceptable at the investiga-
tive phase. The reporting of propositions and LRs in this manner is also
sustainable at the evaluative stage in that it is an honest report of the
propositions and consequent LR. However we would advocate an addi-
tional check if LRs greater than 1 are produced for two or more individ-
uals. We point out that it is possible to produce LRs greater than 1 for
more than N persons of interest for an N person mixture. Such a situa-
tion risks ridicule without careful explanation by the scientist. In
addition some combinations of the individuals with LRs greater than 1
may be incompatible. We suggest that a report could indicate:

1. Which combinations were compatible with the mixture and whether
additional contributors were needed to explain the mixture, and
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2. Report that some combinations of persons of interest may be incom-
patible but that checking is impractical, and
3. Indicate that the list of combinations is not meant to be exhaustive.

The alignment of this information with the investigative stage and
poor alignment with the evaluative stage would, we hope, be apparent
from this information. Further the report could

4. Suggest in this investigative report, that information is needed to
properly inform the propositions.

5. Conclusion

The principles and guidelines given above have proven useful in
casework applications in guiding the selection of propositions. Princi-
ples 1 through 6 have been published and are largely accepted but
have not been applied universally. We would suggest that these princi-
ples should be incorporated into all casework and that an essential first
phase of all interpretation is a thoughtful formation of relevant proposi-
tions taking into consideration case information (both from prosecution
and defence when possible).

One should also distinguish the evaluation and investigation phase
(for example when there are multiple possible suspects as illustrated
above). In the former, scientists assess their findings given propositions
and the framework of circumstances, in the latter one can explore mul-
tiple pairs of propositions and suggest explanations for the findings.
Here, however, as in all investigations, these are only leads and as
such can be misleading. When case information will have been gathered
from the defence (perspective), then these findings will need to be for-
mally evaluated.
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3.2: A new level in the hierarchy of propositions brought about by continuous DNA profile
interpretation

It became apparent from the work on proposition setting that there was something missing from
the current picture. This was magnified as STRmix™ was being programming and references
were being compared to complex mixtures (particularly when there was some support for them
being any one of multiple contributors in the mixture). The logic went like this:

1) A reference profile is to be compared to a mixed evidence profile

2) There is a priori no reason to restrict comparisons to any particular component of the
mixture

3) The more complex the mixture the more ways of comparing references to it and the
more chance for them to ‘match’

4) The LRs for these different ways of comparing the same evidence and reference
profiles, using the same propositions, were different (except for the most contrived of
circumstances)

This raises two problems. First, there are multiple LRs for the comparison of reference and
evidence profiles, using the same propositions. Second, it is not clear which is the ‘right’ LR?
Very early versions of STRmix™ simply reported the biggest of the multiple LRs obtained,
however given the propositions were asking about an individual’s potential contribution of
DNA to the DNA profile as a whole (not specifying a component of it) and that in many
instances the POl was excluded from being a contributor to other components of the mixture,
there appeared to be information that was not being utilised.

The multiple mixture component situation is similar to the multi-testing problem associated
with genetic tests for dependencies between loci. Simply put, the more tests that are carried
out, the more likely it is that an association will be found, just by chance.

The effect being seen was the result of a previously unrecognised level in the hierarchy of
propositions, one that sat below the lowest level then recognised. A description of the new,
lower, hierarchical position and the mathematical process of moving from this level, up to the
next (and in the process considering the comparison of the reference to all components of the
DNA mixture) is given in the paper in this section of the thesis.
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Hierarchy of propositions

A commonly used idea in forensic fields is known as the ‘hierarchy of propositions’. DNA analysts
commonly report at the sub-source level in the hierarchy. This means that they simply comment on the
probability of the evidence for the given propositions that consider contributors that lead to a DNA
profile and not on the source of specific biological components, not the activity that led to the transfer or
the offence that is reported to have occurred. However DNA analysts also commonly report at a level
even lower than the sub-source level. In this ‘sub-sub-source’ level only reference comparisons to
components of a mixture are reported. The difference between the sub-source level and sub-sub-source
level is the difference between comparing an individual to a mixture as a whole, or comparing them to
only one component of a mixture. This idea has been expressed in the past as the ‘two trace’ problem or
the ‘factor of two’ problem. With the advent of expert systems that can provide a measure of weight of
evidence in the form of a likelihood ratio (LR) for any mixture, resolvable or not, the distinction between
these two levels becomes more important. In this paper we explore how the LR can be constructed to
report correctly at the sub-source level, by taking contributor orders and genotype set orders into
account. We include worked examples of the LR calculation to help explain this confusing issue.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Previous literature has explored the classic two-trace transfer
problem and explained that if multiple offenders are being
considered then the propositions and therefore the resulting
likelihood ratio (LR) need to consider this (Evett, 1987; Triggs
and Buckleton, 2003; Triggs, 2004; Meester and Sjerps, 2003;
Gittelson et al., 2012, 2013). The specific example considered is one
where two stains and two offenders exist. If there are two relevant
evidence DNA profiles suggesting two offenders, and one profile
matches the only person of interest (POI) in the case then the LR
has a factor of two in the denominator, which would not be there
if only one DNA profile had been obtained. This has coined the
term for this idea the ‘factor of two’ issue.

Given an observed crime stain (0) an LR can be calculated
considering two competing propositions, H; and H,

Pr(O|H,)

IR=Froim,)

In the event that a single stain may be considered to comprise a
clear major and minor component it may be thought of as two

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia. Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j,jtbi.2014.08.021
0022-5193/Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

stains (Buckleton et al., 2004). However in general this is not
possible and it should be thought of as one stain composed from
two contributors. Owing to the fact that the components of a
mixture can be fully or partially unresolved the work we present
here differs from the classic two-trace problem, which deals with
completely separate evidence electropherograms.

Regardless of whether the components of the mixture are
resolvable we can consider the propositions:

H,: the POI is one of the two persons in the mixture.
H,: two unknown people are in the mixture.

We will term this proposition pair 1 (PP;) and their use leads to
LRpp;. If the POI genotype (Gp) matches the major component
(G of the observed stain and the genotype of the major
contributor is unambiguous then the LR simplifies to

1
= —e (1)
9 pr(ngajar)

However, typically in forensic laboratories the LR that is
reported is

1
~ Pr(GMoer)
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By not including the factor of two, the propositions being
considered are

Hy: the POI is the donor of the major portion of DNA in the
mixture.

H,: an unknown person is the donor of the major portion of
DNA in the mixture.

We will term this proposition pair 2 (PP,, leading to LRpp).
Often the use of PP, is not a conscious decision of the scientists,
but rather an unrealised consequence of not including the factor of
two in the calculation. We suggest the use of PP, is often not
appropriate because it places responsibility on the jury to recog-
nise the factor of two issue, which without specific attention
drawn to that fact by the scientist, is unlikely to occur.

We have regularly lectured the use of LRs to audiences often
unaccustomed to them. We would always use the PP; set. The
audience often expresses surprise or even dismay at the factor of
two. We diagnose this to arise from a mix of unfamiliarity with the
literature on the factor of two, a history of use of PP, and concern at
the apparently conflicting result. Even to the authors there appeared
to be two different but equally valid approaches. For us, and we hope
the readers, these views may be reconciled by considering the
hierarchy of propositions (Cook et al.,, 1998a, 1998b; Berger et al,
2011; Evett et al., 2002, 2000; Jackson et al., 2006).

Propositions are classified into four levels: offence, activity,
source, and sub-source. The top of the hierarchy is taken to be the
offence level where the issue is one of guilt or innocence. An
example of this could be ‘Mr. Smith raped Ms. Doe’ versus ‘Mr.
Smith had consensual sex with Ms. Doe.' The next level is taken to
be the activity level. An example of this could be ‘Mr. Smith had
sexual intercourse with Ms. Doe’ versus ‘Mr. Smith had only social
interaction with Ms. Doe.’ The next level in the hierarchy is the
source level. At this level we consider propositions of the type ‘The
semen came from Mr. Smith’ versus ‘The semen came from some
unknown person’. The last level is termed sub-source. This arises
when it is uncertain from what body fluid the DNA may have
come. For instance, if one has recovered ‘trace DNA', the sub-
source propositions could be ‘the DNA came from the suspect’
versus ‘the DNA came from someone else’.

To reconcile the different results using PP; and PP, we note that
PP, is at sub-source level and PP, is something even lower. We
term this sub-sub-source. We need to note that PP, propositions
do not consider the entire DNA profile but only part of the DNA
profile. Note that our intention is not to legitimise the intentional
or unintentional use of the PP, propositions by identifying them as
belonging to a ‘sub-sub-source’ level proposition category.

Buckleton et al. (2004, p. 255) had foreshadowed this distinc-
tion and made the same recommendation.

When a mixture is unresolved the POI's genotype appears as
both contributor one and contributor two with equal weight, then
LRppy = LRpp;. This will be true for any system of interpretation that
weights different genotype sets equally, such as the combined
probability of inclusion (CPI) and the unconstrained combinatorial.
It is generally recognised that systems that do not weight genotypes
sets are wasteful of profile information (Perlin and Sinelnikov, 2009;
Cowell et al., 2007; Evett et al., 1998; Gill et al., 1998). For many
mixtures, depending on the level of resolution of their contributors,
we will demonstrate that LRpp; < LRpp;. In the circumstance where
LRppy = LRpp; it does not signify a shift in propositions being
considered. All that has occurred is that the likelihood ratios
considering either hypotheses are numerically equal.

Typically DNA profiling systems will target multiple regions,
with currently available commercial multiplexes providing over 20
loci. The discrimination power of a DNA profile from such a system
can be around 30 orders of magnitude. In such circumstances a

difference of a factor of two makes no practical difference. We will
show in this work that for more complex situations the difference
can be larger and in one case we have worked on it was close to
20. Even at these levels this factor has little practical impact on the
evidential strength of a large LR. For low level and partial profiles
the relative importance of a change in LRs may be larger but it is
unlikely the full factor will be needed since this occurs when there
is a clear separation in heights between the contributors. Even so,
a situation can be envisaged where the difference between LRpp;
and LRpp; is from the hundreds to the tens, which may convey
different evidential strengths to some people. The motivation for
this work is not necessarily that it will have a large impact on
justice outcomes, but rather to provide a framework for the
calculation of an LR given propositions at different levels in the
hierarchy. We demonstrate what factors will influence the size of
the difference between LRpp; and LRpp, and when the effects will
be at their greatest, so that this information can be used to
generate approximations should a laboratory wish to apply them.

The complexity in generating LRs appropriately at the sub-
source level and a general lack of understanding the difference
between PPy and PP, within practising forensic scientists means
LRpp; is not widely considered if a major contributor can be
resolved. Indeed even the mathematical solution we provide in
this paper is likely to be beyond the reasonable expectation of
‘by-hand’ calculations and will require specifically designed com-
puter software in order to implement.

There is a general move from binary systems to continuous
systems in the interpretation of evidence. Binary systems assign
either the value zero or one to the probability of the observed profile
given a postulated set of genotypes, S; (bolded to signify that it
contains a set of multiple genotypes). Semi-continuous systems such
as likeLTD (Balding, 2013; Balding and Buckleton, 2009), Lab Retrie-
ver (Lohmueller and Rudin, 2013) and LRmix (Haned, 2011) assign
probabilities to posed genotype sets that are built up from a set of
probabilities associated with drop-in, drop-out and stutter. Some
semi-continuous systems have features that enable users to apply
different probabilities to contributors in a mixture (such as the major
and minor contributors) and hence introduce contributor order,
which requires a careful consideration of proposition formation.
Continuous DNA interpretation systems such as STRmix™ (Taylor
et al, 2013) and True Allele™ (Perlin et al, 2011) can provide a
likelihood (hereafter referred to as a weight) for the observed crime
stain given proposed genotype sets that could explain it. Following
the nomenclature of Taylor et al. (2013) we define these likelihoods
as p(0|S;) ~wj, and note that they definitely introduce contributor
order into calculations. These likelihoods are seldom zero. This
provides both the motivation and a means to account for the number
of unknown contributors to the evidence profile. The motivation
arises from the fact that a non-zero weight is a possible outcome for
genotype sets with the POI aligned with either the contributor one
genotype or the contributor two genotype.

We describe the methodology in this paper.

2. Findings

Deconvolution is a process which resolves an ‘N’ person profile
into ‘' genotype sets (Sj j—1.) that each comprise ‘N’ single person
genotypes. Hence a certain set, say, S; would have N genotypes G,
Gs,...,Gy where the order of the genotypes assigns them to a
specific contributor in the N person mixture.

For each genotype set, the likelihood p(01S;) is calculated. To
present these densities in a manner that is more familiar with
non-statisticians the probability densities for all genotype sets are
normalised within each locus. This is true of the data we present in
examples, when weights are referred to. In such a system, the
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order of genotypes is important. Each element in the ordered set
has associated with it a set of variables that collectively describe
template at each allelic position. Some of these variables are
contributor dependent and so pass a dependence on contributor
order along to genotype sets.

There is a second ordering that we need to consider. If we
consider that the set S; specifies an order of genotypes that has
been tested against an electropherogram then known and
unknown contributors may be aligned with this set, also in
different orders. We call the first ordering ‘genotype order’ and
the second ‘contributor order’. Contributor orders () describe the
arrangements that individuals can be compared to a list of
genotype sets. For a single contributor profile there is a single
position with which the POI can be compared and so only one
contributor order exists, ;. For a two person profile there are two
contributor orders €; and C; i.e. in contributor order one (C;) the
POl is compared with the genotypes in position one and the
unknown (U; for ‘unknown 1') is compared to the genotypes in
position two {C; : (POl Uy)}. The order is reversed in contributor
order two {C; : (U;,POI)}. For three person profile there are six
orders  {Cy : (POLU;,Uy),C; : (POLU,,Uy), €3 :(Uy,POLU,),
C4:(Uy, Uy, POI), Cs: (U, POLUy), Cg: (U, Uy, PO, and for an
‘N’ person profile there are N! contributor orders {C;:i=1...,N!}.
We use the nomenclature of Taylor et al. (2013) by stating the
continuous model LR as

ZWjPI’(SﬂH])

T
LRe = S Prs; 1) @
-

where Pr(Sj|H;) is the likelihood that N persons have the geno-
types specified in S; given H;.

Following Taylor et al. (2013) we introduce the knowledge we
have of the genotypes of the known contributor(s) and POI(s):

PI(Sj|H,) = Pr(S;1Si. Sp, H)Pr(Sic. SplH:)

where Sp is the genotype(s) of the POI (known contributor(s) under
H; but not H), Sk is the genotype(s) of known contributors that are
assumed to be present under both H; and H,. We can then
decompose the S; into Sp, Sk and the genotype(s) of unknown
contributors, Sy, so that

Pr(S;|Si.Sp. H1) = Pr(Sul.S,,. Sk|Sk.Sp.Hy)
and
PI‘(SJJ|S“,SP. Hy)= Pr(SU"-sk|sk-sva2)

We define:

1 {Sp<=S;} and {Sk<S;}

. 3
0 otherwise @

Pr(Sk|Sk.Hy)Pr(Sp|Sp, Hy) = {
i.e. when the genotypes of known contributors and POIs are present
in the genotype set the corresponding probability is assigned as
one, and is not based on allele probabilities. If the genotypes of the
known contributors or POIs are not in the genotype set then they
are given probability of 0 for that proposition. This means that in
Eq. (2)

Pr(Sy|Sk.Sp.H Sp<=S;} and{Sk < S
Pr(S; Hy) = (SulSk.Sp.Hy) {Sp }} {Sk =5;} i
0 otherwise
Similarly
Pr(SulSk.H1) Sk =Sy
Pr(S;/|Hy) = 4 ab
Cra { 0 otherwise (b)

i.e. if the genotypes of the known contributors are present in the
genotype set then the probability of the whole set is equal to the

genotype probabilities of the unaccounted for genotypes (based on
allele probabilities).

Note that S; is an ordered set. This means that Sp, Sk and Sy
align with positions in the set. For an N person mixture there are
N! alignments (contributor orders) of Sp, S and Sy to consider that
may fulfil the condition {Sp = §;}and{Sk =S;}.

Example 1. Simple two person mixture

It may be worthwhile considering an example at this point.
Consider what may be the simplest mixed DNA profile, one that
can be explained as coming from two persons reasonably assumed
to be the two offenders. We initially consider only one locus.

The single accused (POI) has genotype G,=[13,14] (note we
switch from S to G terminology and unbold here to indicate that a
single contributor’s genotype is being considered). We consider
the propositions:

H,: the DNA is a mixture of the POI and an unknown.
H,: the DNA is a mixture of two unknowns.

As is well understood, the genotypes that can make up the
peaks seen in Fig. 1 are

S, [13,14]:[16,17]
S, [13,16]:[14,17]
S5 [13,17]:[14,16)

S4 [14,16]:[13,17]
Ss [14,17]:[13,16]
Se [16,17]:[13,14]

We assume that the parameters suggest that the contributor in
the first position, Py, in the ordered set has more template than the
person in the second position, P,. It is to be expected that the
weight of set one is close to one (w; ~ 1) and the others approach
zero, either due to heterozygote imbalances (for S, to Ss) or an
incompatibility of mixture proportions (for Sg, recall we select one
of the two redundant solutions). Remembering that weights are
normalised, a single genotype with w=1 is simply stating that
there is only one genotype set that reasonably explains the
observed data. Although we have shown only one locus, real
applications will be at many loci. Py and P, retain their order across
loci. We indicate the single person genotype at contributor
position P, in the genotype set S; with a left superscript, so
15,=[13,14], 5,=[16,17], 'S,=[13,16] etc.

Note that there are no known contributors in this example (i.e.
contributors that are assumed to b e present in both H; and H>) so
Sk = @. Looking at the genotype sets described above, under H, the
POI can occupy either Py or P, as the genotype G,=[13,14] is
present in both P, ('S,) and P, (°Sg).

3000 q
2500
2000

1500

Peak height

1000 4

0+
10 11 12 13 14 15 16 17 18 19 20

Allele

Fig. 1. Example of an electropherogram showing a single locus of a two person
mixture.
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This suggests that
S W;PK(S;|Gp, H1) =1 x Pr(S1|Gp, H1)+0 x Pr(Sg|Gp, Hy) = Pr(S1IGp, Hy)
i

End of Example 1.

Eqs. (2)-(4) apply at the whole-profile level, i.e. weights are full
profile weights and genotype sets are the sets across all loci. It is
uncommon to have such whole-profile information and much
more common to consider evidence at the locus level. Including
locus information in Eq. (2)

[1ZwiPr(SjIH,)
LT ©°

o=t
T1 Zw. Pr(SjriHa)
iy
where [ specifies a locus.
To consider contributor orders using data at an individual locus
level a dependency of genotype sets on contributor order must be
introduced. The LR given in Eq. (2) then becomes

i

PR SWIPK(S]IC;, H)Pr(Cy)

LRpp1 = lh; z
Z TIZw,PrSpICi Ho)Pr(Ci)
i= j'

(5)

There is no need to specify a contributor order for weights as
they apply to multi-contributor genotype sets regardless of which
order the known contributors are being considered (i.e. in
Examples 1, wl~1 regardless of whether €; or ¢, is being
considered). If we consider equal priors for each contributor order
then the Pr(c;) can be dropped from Eq. (5) to give

N!
3 [ ZwiPrsjici, Hy)
LRppy i M (6)

N
X [1 ZwhPr(SjICi. Ha)
)

i=11

To ensure that contributor order is maintained between loci,
Eq. (4a) becomes
| ol I _ngl _n'l
PrS! . Hy) = Pr(S,ISi. Sy CisH1) {S,="S{} and {si ="s}}
0 otherwise
(7a)

To be included as a non-zero term the known contributors and
POI must not only be present in S} (as specified in Eq. (4a)) but also
be present in the positions dictated by the specified contributor
order across all loci. If there are multiple POIs or known con-
tributors, all of their genotypes must be present in the genotype
sets at the positions dictated by the contributor order.

Considering locus and contributor order Eq. (4b) becomes

Pr(SLISk.Ci,H2) Sk ="5]

Pr(Sj|C;. Hy) = { - (7b)
0 otherwise

Example 2. The difference between LRpp; and LRpp2

We consider the scenario stated in Example 1 more generally
now under three situations; where the profile is fully resolvable,
partially resolvable, and unresolvable. For each situation the same
six possible genotype sets are considered but this time given
weights to reflect the scenario (see Table 1).

Under H, we have two unknown contributors, Gy; and Gug.
The probability of the observed mixture given the ordered set

Table 1
Weights for genotype sets under three scenarios (note the weights sum to one for
each scenario by design).

Genotype set  Genotype set ~ Weights (w;)
0] (8
's; 2s; Fully Partially Unresolved
resolved resolved

1 [13.14] [1617] 1 059 0.167

2 [13,16] [1417] O 010 0.167

3 [13.17] [14.16] 0 0.10 0.167

4 [14,16] [1317] 0 0.10 0.167

5 [1417] [1316] 0 010 0.167

6 [16,17] [1314] 0O 001 0.167

Gu1=[13,14]; Guy2=[16,17] is equivalent to the probability of the
observed mixture given the ordered set Gy, =[13,14]; Gy;=[16,17].
This leads us to the concept of degeneracy in the ordering of the
unknowns. If N unknown individuals are being considered under
H, as the source of DNA of an N person mixture then N! equal
probabilities will be summed in the denominator of LRpp;. This
degeneracy simplifies Eq. (6) to

N!
i=1
LRppy =4
N![;[ zl‘,wj(.Pr(S!'de )
j

[1 ZwiPr(sj|ci. Hy)
I J

As we are considering only a single locus the locus term can
also be dropped from the equation. The two contributor orders in
our example of two person mixture (Fig. 1) give

w, Pr(S7|Gp, Hy) +wgsPr(Sg|Gp. Hy )
LRppy =

6
2y wijr(S].|Gp, Hy)
r=1

Example 1 showed Pr(S;|Gp,H,) = Pr(S|Gp, Hy), which we call
Pr($;|H;) giving
wy +Wwg)Pr(S1|Gp, H
LRpp1=( 1 6)Pr(S1/Gp, Hy)
2 ‘EI wj-Pr(Sjv|Gp.H2)
T

which can be related to LRpp, by
w; Pr(S4|Gp,Hy) LR,
LRopy = 61 (S1/Gp, H,y _ LRepa
R Y wj'Pr(S}.|Gp.H2)
=1

where

2

(O S S 8
(1+4(ws/w1)) &)

Fully resolvable:

wi=1 and wg=0 giving R=2 and LRpp; =LRpp; /2, which if
enumerated would give the LR in Eq. (1).

Unresolved:

Wy =Wg giving R=1 and LRpp; = LRpp;.

FPartially resolved:

w;=0.59 and wg=0.01 giving R=1.97 and LRppy = LRpp2/1.97,
which shows the difference that the choice of propositions will
have on the resulting LR when there is partial resolution of the two
contributor components.
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For the example given in Fig. 1 the level of resolution, and
its effect it will have on R (Eq. (8)) can be seen in Fig. 2.
End of Example 2.

Example 3. Multiple loci
Imagine two loci, both with four peaks as in Example 1, (Fig. 3).
We start again from

¥ [T EwjPrsjici.Hy)

Rppy=2t1Jd
e N'TT ij’,.Pr(Sj'qHz)

g7
In Example 2 we showed that when G} =[13,14] and considering
only the first locus:
[Ripi = Pr(8;/Gp,Hy)
2y wp Pr(S.|Gp Hy)

S=1

Now consider two scenarios for locus 2 as seen in Fig. 3:

1) G,2,=[13.l4], In this example the POI contains the major
alleles at loci 1 and 2, and is therefore expected to yield a
LR > 1 when considering both loci.

2) G2=[16,17]. In this example then the POI contains the major
alleles at locus 1 and the minor alleles at allele 2, and so
would be expected to have LR=0 when considering
both loci.

Scenario 1

We showed in Example 2 that YN ,]'],Z,w Pr(S'!r, Hy)=

w} +ws)Pr(S'lC Hy), but this was considering only one locus.

We now consider two loci with information provided at a locus

by locus level, and so contributor order must be maintained

across loci. In €; only one genotype set fulfils S' "S' from

2.00 7.,
1.75

1.50 4

LRppy/LRpp;

1.00 1
0 1

Unresolved
W= W

Resolved
wi=1
we0 Ratio (wg/w))
Fig. 2. Difference that the choice of propositions will have on the reported LR using
the example seen in Fig. 1, considering level of resolution in P; and P,.

1500

Peak height

1000

Eq. (7a), and that is genotype set one, as S, = 'S} Similarly for

locus 2 the only genotype set that fulfils sh="sl is again

genotype set one, S, ='S. In C, the genotype sets that fulfil

S’ "s; at loci 1 and 2 are St and SZ respectively. Therefore
,7 I]'[,Z:,w Pr(Sj|C,,H|) can be calculated by

WIPK(S} |Gy, H)WIPr(SIG). Hy)+ WL Pr(S§ |Gy, Hy )WEPK(SE|G2, Hy)
Simplifying as in Example 2 yields

= (wWjw? +wiwd)Pr(S}]|G). H1)Pr(S3|GL. Hh)

And so

w w2+w6w2 )Pr(S11Gy. H1)Pr(S3|G3, Hy)
LRpp1 =

NI z WLPK(S}Gy, Hz)
4 j';]

_ Wiw3Pr(S]IGy H)Pr(STIG) . H1) _ LRppy

6
RI] X WLPK(S}IG,, Ha)
j=1

where when considering two loci:
2

T

We make the simplifying assumption for this example that the
product of the weights for a genotype set across all loci (T]}_ 1wj’-)
is approximately equal to the average weight (WJ) raised to the
~(W))" giving

power of the number of loci, [T}_,
2

R__..__._.
l+(1,,z-;l)

2.00

1.75:

1.50 4

LR ppy/ LR pp,

1.25 1

1.00

0
Resolved
wi=1
W= 0

Unresolved
Ratio (w,/w))
Fig. 4. The effect that different propositions will have on the reported LR using the

example seen in Fig. 1, considering the level of resolution in P; and P, and multiple
loci (L).

500 /\ A
l I\
15 16 17

0
0 11 12 13 M

20 11 12 13 14 15 16 17 18 19 20

Allele

Fig. 3. Example of an electropherogram showing two loci of a two person mixture.

Page 133 of 344



D. Taylor et al. / Journal of Theoretical Biology 363 (2014) 300-306 305

Fig. 2 can be reproduced, this time considering multiple loci
(Fig. 4). The range for R is always from 1 to 2 for this two person
mixture example, but the rate at which it decreases varies with
number of loci.

Scenario 2

Carrying out the same process, ¥ | H,ij]'.Pr(sjm,-.H,) can be
calculated by

W] Pr(S]IGy. H)WEPr(SZ|G2. Hy) +WEPK(S| Gy . H WA Pr(S%|G5. Hy)

= (W} W} +Ww3)Pr(S} |Gy H1)Pr(S31G. Hy)

For a fully resolved profile we know wg;~0 and so
(WiwZ+wiw?)=0 and LRpp; =0 as expected.

End of Example 3.

Assuming contributors to a DNA profile (i.e. nominating indi-
viduals in Sk) has the effect of reducing the number of effective
contributor orders. For example if a four person mixture was
analysed with three contributors being assumed under H; and H,,
this would leave a single unaccounted contributor position to
which POIs could be compared. Thinking of this in the N! space,
there would be 23 contributor orders that would result in a
probability of 0 under H; and H, and one that would result in a
non-zero value (assuming the POI was not excluded). The 23 zero
probabilities would mean LRpp; has the same value that it would if
it were considered as having only a single contributor order. In the
mathematical form the above example is saying

24

]']Zw}Pr(S'}[C,.H,)«}— > nZw]’.Pr(Sj'[Ci,H,)

I i=21j

LRpp1 = =

rll ij',.Pr(Sj'.m..Hz )+ zz 1'] zw}.Pr(s]'.|c,-.H2>
i =20

IIIZWJI'P“S}WI‘H‘”D

_ J
]']Ew}.Pr(Sj.lCl.thLO
[
];IZWJ’.Pr(S}lcl.H,J

. J

[T ZWLPRS)ICr.Ha)
iy

3. Conclusion

We have reworked the familiar ‘factor of two’ phenomenon in a
context amenable to use in continuous models. Unlike the classic
‘factor of two' phenomenon, which deals with discreet and
separate evidence electropherograms, the phenomenon in the
context of components of a single mixed profile can be partially
or completely unresolved. This leads to the requirement of a
different treatment for the issue. The examples given are simple,
but very specific. In general the effect that the different proposi-
tions will have on the calculated LR depends on:

® the number of contributors to the evidence;

® the number and genotypes of the POI(s) and known
contributors;

the level of resolution in the contributor components in the
evidence profile;

the specific weights of the genotype sets; and

the number of loci being considered.

We discuss propositions at the sub-sub-source level and the
sub-source level. All comparisons must eventually be placed at the

offence level. This means that the propositions considered here are
subordinate to the source, activity and finally offence levels. This
last set of propositions, the offence level ones, are usually left for
the court but it is important to consider that there are many
considerations between the sub-source propositions and the full
context of the case. Bayes networks have been demonstrated to be
of significant use in developing these considerations (Gittelson
et al., 2012, 2013).

An analyst that reports an LR considering the evidence at the sub-
source level compares genotypes and unknowns to all contributor
positions within a profile and so considers the propositions:

H;: The POI is one of the individuals in the mixture.
H>: Unknown people make up the mixture.

When contributor order is not considered (typically the max-
imum LR value that is produced out of the N! contributor
alignments) the LR reports at the sub-sub-source level as it
considers the propositions:

Hy: The POI is the donor of a specific portion of DNA in the

mixture.

H>: An unknown person is the donor of the specific portion of

DNA in the mixture.

Eq. (6) has been derived and can be used to calculate an LR,
using locus by locus data, at the sub-source level, taking into
account the level of resolution between contributors within the
mixture.

In many instances the difference between LRpp; and LRpp; would
have no practical impact at an offence level. Despite this fact we
believe that if given the ability to calculate an LR using the most
statistically correct theory, analysts are obliged to do so. At the very
least, an analyst should have the knowledge of the magnitude of the
effect on the LR that their assumptions have, so that an appropriate
adjustment can be made. We suggest that the appropriate set of
propositions for use in LR calculations is PPy, but recognise that this
can be technically difficult. We suggest that scientists have the
following options (listed in order of preference):

(a) Calculate and report LRs at the sub-source level using PP;.

(b) Use a simplified approach and simply divide the LR for an N
person profile by N!.

(c) Calculate and report LRs at the sub-sub-source level, but
outline in reports what the propositions are that they are
actually using and the limitations of this approach.

This is very close to the option list given by Champod and
Buckleton in Buckleton et al. (2004, pp. 255). Note that option
(a) does not require that the same number of contributors be
chosen in Hy; and H, whereas options (b) and (c) do. In many
instances this will not pose a problem beyond what many forensic
laboratories currently face with limitations in the software being
used. For laboratories that wish to carry out calculations that
consider a different number of contributors in each proposition
then a modification can be made to preference (b) which increases
complexity, but also versatility:

If U is the number of unknown individuals in H; and U, is the
number of unknowns in H, then the LR at the sub-sub-source
level can be multiplied by U;!/U,! to obtain the LR at the sub-
source level.

Note that this modified option (b) can still be used when the
number of contributors between the two propositions is the same.

As propositions are considered at higher levels in the hierarchy
of propositions there are additional factors that must be considered,
which may dominate the LR. Source level propositions link an
individual to a biological source and so consideration of laboratory
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contamination and error rates become important. If contamination
or error rates are high then this will dominate the LR. Even at the
sub-source level, consideration of typing errors can be taken into
account when calculating the LR; we direct the reader to Balding
(2005) for a mathematical treatment of typing errors.
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3.2 — Clarification
Point 1: clarification on the contributor order nomenclature using a multi-locus example

Consider a system that yields a posterior distribution for each parameter that is used to describe
a DNA profile. When presented with a DNA profile that has DNA contributed in unequal
amounts, then the posterior distributions relating to amount of DNA will be different for each
contributor. Consider the following example of a DNA profile at two loci:

[ LOCUS 1 | LOCUS 2 |

|
AA “A

We can see that at each locus there are high peaks and low peaks, and we might suggest that
there is a major contributor and a minor contributor of DNA to this sample. We would expect
that a contributor dependant template parameter would have a distribution with a higher mean
for the major contributor then the minor contributor. Consider that in this example the peak
heights between the two contributors are divergent enough that the probability of a high peak
partnering with a low peak is effectively 0. Also, consider that the heights of all peaks are such
that we are satisfied we are seeing all contributor peaks (i.e. there has been no dropout of any
of the contributor’s alleles). Under these conditions, at locus 1, we would have acceptable
genotypes:

[A,B] and [C,D]

And for locus 2 we have
[EF], [E,G], [F,G] and [G,G]

Note that some of these genotypes would correspond to the major contributor and others to the
minor contributor, but I have not specified any order in the sets given. Also note that template
DNA amount acts across loci, i.e. the major contributor at one locus, must also be the major
contributor at another locus (at this stage ignoring situations where degradation has acted to
different degrees on the two contributors so that the major at low molecular weight loci could
become the minor at high molecular weight loci). Considering multi-locus genotypes, we
would therefore not expect a donor of DNA to the sample to have:

[A,B] & [E,F]

But could have:

[AB] & [E,G]

It is useful to separate the genotypes that each contributor could have. The table below provides

this information for the profile above:
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Contributor 1 genotypes Contributor 2 genotypes
Locus 1 [C,D] [A,B]
Locus 2 [E,F] [E,G], [F,G] and [G,G]

In the table above the ordering is that contributor 1 is the major contributor and contributor 2
is the minor contributor, although this is not important (i.e. | could have just as readily switched
the genotypes for the two contributors as long as | maintained the same sets of genotypes at
both loci for each contributor).

This introduces the concept of an order in genotype sets. Consider J sets of N genotypes at
locus I, S = {lG: NG;} . In the example, there is one genotype set at locus 1:

s:={[c.0}[A.B]

and three at locus 2:

s ={[E.F][EG]
s; = {[E,F] [F.G]}
s; = {[E.F][c.G])

The order of genotypes in the set is given by convention that position 1 is the major and position
2 is the minor. These genotype sets have associated with them posterior distributions for
parameters.

Consider now that we wish to compare a POl who has genotype [A,B] at locus 1 and [F,G] at
locus 2. We could compare them to the mixed DNA profile using propositions:

Hp: The POI is contributor 1 and an unknown is contributor 2
Hd: Both contributors are unknowns

As [A,B] does not appear in the list of genotypes for set position 1, and [F,G] does not appear
in the genotypes for set position 2 and so the LR calculated using the above propositions would
be 0. However, an LR calculated using the propositions:

Hp: The POl is contributor 2 and an unknown is contributor 1
Hd: Both contributors are unknowns
The we would expect some support for the inclusion of the POI as a donor to the mixture.

So, we find that not only is the order of genotypes in genotype sets important, but also the
contributor positions to which references are compared. We term this latter the contributor
order. We signify contributor order by C,, ., where N is the total number of contributors to the

evidence DNA profile and c is the contributor order. For a single contributor profile there is a
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single position with which the POI can be compared and so only one contributor order exists,
C,,, where {(CL1 (POl = 1G)} and 1 use = to signify a comparison between a person from the

proposition (typically POI or an unknown) and a genotype set position. For a two-person profile
there are two contributor orders C,,and C, , . In the first 2-person contributor order (C,,) the

POI is compared with the genotypes in position one and the unknown (Uz for ‘unknown 1°) is
compared to the genotypes in position two {Cz,l :(POlI='G,U, = 2G)} . The order is reversed

in contributor order two {Cz,z :(U,="G,POl = 2G)}. Note that the genotype set position

always corresponds to the position that the elements of the contributor order are presented.
From this point forward, | drop the explicit statement of genotype set position. For three person

profile there are six orders {<C3,1 :(POI U, Uz)}, {C,,:(POLU,, U, )}, {(C3,3 :(U,POLU, )}

, {(C314:(U1,U2,POI)}, {(Csvs:(Uz,POI,Ul)} and {(Csye:(Uz,Ul,POI)}. For an N person
profile there are N! contributor orders.
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3.3: Treating parameters in the LR as distributions using highest posterior density

When STRmix™ was introduced into forensic laboratories, the forensic community grappled
with the introduction of a new source of variability within the generation of the LR, namely
the variability due to using a stochastic process such as MCMC. The legal community also had
difficulty with the idea that each analysis (even of the same DNA profile) would produce a
different result. For too long had ‘reproducibility’ been synonymous with ‘reliability’. In fact,
the reproducibility of DNA results had never really existed. Every step of generating a DNA
profile (the amount of DNA sampled from an item, the amount of DNA recovered from the
sample, the functioning of the PCR and the functioning of the electrophoresis) is subject to
stochastic variation. Even the previous methods of LR calculation only gave the same answer
due to the assumptions and simplifications of the models. There was never any guarantee that
the LRs from these early systems were producing accurate values, and users were mistaking
the precision with accuracy. For those readers that are familiar with stochastic systems and
random number generation, imagine absolute reproducibility could be forced withinan MCMC
system by supplying the same random number seed. All would agree that doing this should not
be viewed as an improvement. Setting the seed will not have improved accuracy or reliability
and only achieved reproducibility artificially. Introducing a continuous DNA interpretation
system did not introduce more uncertainty into the LR assignment, merely removed the illusion
of stability that the simple systems portrayed.

A natural question arising from the use of MCMC was “how much could the LR vary from run
MCMC to run?” and “what factors will cause it to vary?”. For some time, the forensic
community had been accustomed to the idea of accounting for sampling variation in allele
frequencies by providing a confidence (or credible) interval on the LR. These allele frequencies
are used to calculate the rarity of a DNA profile, and are based on survey of a population, which
are finite and so subject to random variation depending on who happened to be included in the
survey. The method for producing such a credible interval is described in the publication in
section 2.6 using the highest posterior density (HPD). The variability in the LR produced by
STRmix™ lead to a body of work that included additional factors (additional to allele sampling
variation) in the HPD credible interval. Specifically, a method was devised to take into account
the amount of variability expected from the stochasticity of MCMC by using a resampling
method based on the effective sample size of the analysis. This work is described in the
publication in section 3.3.

In the work on LR variability, the genetic model was also extended to include the possibility
that the true offender (if not the suspect) may be a relative of the suspect. This had been
considered in the past, but not for the complex, mixture based, LR calculations that were being
performed in STRmix™. The inclusion of relatives as alternate DNA donors produced a
‘unified’ LR, which is also reported in the publication in section 3.3 and takes steps towards
the full Bayesian approach spoken about in chapter 1. To achieve this latter task required that
mathematics be developed that allowed the consideration of relatives of a suspect contributing
DNA to a complex mixture. This work is described in the publication in section 3.4.
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Atypical assessment of the strength of forensic DNA evidence is based on a population genetic model and
estimated allele frequencies determined from a population database. Some experts provide a confidence
or credible interval which takes into account the sampling variation inherent in deriving these estimates
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MCMC Population database sampling uncertainty represents only one of the sources of uncertainty that
HPD affects estimation of the strength of DNA evidence. There are other uncertainties which can potentially
have a much larger effect on the statistic such as, those inherent in the value of F;, the weights given to
genotype combinations in a continuous interpretation model, and the composition of the relevant
population. In this paper we model the effect of each of these sources of uncertainty on a likelihood ratio
(LR) calculation and demonstrate how changes in the distribution of these parameters affect the reported
value. In addition, we illustrate the impact the different approaches of accounting for sampling
uncertainties has on the LR for a four person mixture.
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1. Introduction

The likelihood ratio is the recommended statistic for the
calculation of the weight of forensic DNA evidence [ 1]. It is the ratio
of the probability of the observed evidence DNA profile (0) given
each of two competing hypotheses, H; and H,.

Traditional methods of DNA profile interpretation are described
as binary. In a binary interpretation system weights of zero or one
are used to either exclude or include genotype sets respectively.
The weights represent a relative assignment of the probability
density of the observed profile if it is from the proposed genotype
combination. Hereafter we will refer to a probability density as a
probability for simplicity and because the difference, although
important, is not required here.

This assignment of relative probability is often guided by a set of
heuristics that may include heterozygous balance, dropout, and
mixture proportion [2]. A continuous interpretation model uses the
quantitative information from an electropherogram such as peak
heights, to calculate the probability of the peak heights given all

* Corresponding author. Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

possible genotype set combinations, S;. A weight, w;, can be defined
as the normalised probability density of the observed evidence data
(0) given the proposed genotype set combination, Pr(0O|S;).
Weight is a relatively new term for a concept that has been in
use in DNA profile interpretation for some time. The variation in
these weights assigned using a binary method of interpretation is
difficult to quantify, as any variation will be from the differences
arising in the interpretations between two, or more, analysts.
Advances in research along with access to increased computer
resource, have given practicing forensic scientists access to
software which generate and apply continuous (as opposed to
binary) weights. These weights are often estimated by Markov
chain Monte Carlo (MCMC) methods [3-5] utilising peak height
information and models of DNA profile behaviours. Continuous
methods allow weights to be assigned any value between zero and
one. In the frequentist paradigm, the weights are regarded as
having a fixed, but unknown value. A reasonable frequentist
procedure looks to use the data to provide an estimate of the
weights along with the associated uncertainty in the estimates. In
the Bayesian school of thought, the weights are regarded as
random, with their behaviour described by a statistical distribu-
tion. Under either framework it is typical to only use the average
weights when calculating the LR. However, in reality the weights

1872-4973/$ - see front matter. Crown Copyright © 2014 Published by Elsevier Ireland Ltd. All rights reserved.
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are unknown, and it is useful to consider the effect of this
uncertainty on the resulting LR calculations.

Some forensic practitioners calculate a credible interval (CI)
or confidence interval that accounts for the sampling variation
inherentin allele frequency estimation from a sample of a population
of interest; namely a population database. Not all commentators
believe that an assessment of sampling error is necessary. Brenner
[6] makes explicit his doubts about the usefulness of assessing
sampling uncertainty with the following challenge:

“Will someone tell me, please, what rational difference it ever
can make to know the confidence limits in addition to knowing
the best point estimate? Specifically, can you give premises
under which, for a fixed point estimate, the decision to convict
or not to convict would depend on the size of the confidence
interval?”

There is a lot of substance to Brenner’s challenge. However
these comments may not have taken full account of the cross
examination process where any uncertainty or doubt is often
explored at length. An analyst who has prepared for such a cross
examination will likely be of more assistance to the court than one
who chooses to answer “would it make any difference?”
Furthermore, and perhaps more importantly, in our experience
it is an accepted practice in adversarial systems that all reasonable
uncertainty is conceded to the defendant.

Commenting on statistical evidence in general, rather than DNA
in particular, Good stated [7]:

“The court expects us to provide both an average based on our
sample and some measure of the accuracy of our average.”

Almost any measurement in science has an associated measure
of uncertainty. Well prepared lawyers correctly investigate this
avenue of questioning. In our experience, this typically has been
approached by asking a question along the lines: “Is your database
of 180 individuals big enough?”

Is there any reason why DNA evidence should be exempt from
this line of questioning? The position advocating a consideration of
sampling uncertainty is also taken by many authors [8-14]. In
most cases, even with the inclusion of an estimate of sampling
uncertainty, the final answer is not vastly different to the point or
‘best’ estimate.

One method for calculating a Cl is the highest posterior density
(HPD) [14-16]. The HPD method allows the calculation of interval
bounds and uses a Dirichlet distribution to describe the variation in
allele frequencies estimated from a population database. The HPD
interval bounds are evaluated using a Monte Carlo method. In this
method a large random sample is taken from the posterior
distribution of the LR and the empirical sample quantiles are used
as estimates of the bounds.

Whilst the HPD method has been applied to forensic LR
calculations with respect to the variability inherent in allele
frequency estimates, it can also readily account for the variance of
other parameters impacting on the LR, namely Fs (commonly
called theta, or the coancestry coefficient), genotype set weights
and population composition. We will investigate the effect of each
of these factors of uncertainty on the LR distribution. There are
other sources of uncertainty which we do not investigate in this
work but should still be recognised, such as the number of
contributors, the biological models underpinning the statistic and
the potential for errors in the generation of the observed data.

The uncertainty in selecting an appropriate value of F has long
been recognised. It is the authors’ experience that a commonly
used approach to this has been to assign a value believed to be at
the top end of the plausible range.

Another matter of significant importance is the presence of
relatives as potential alternative donor(s) of the DNA. [17]

Traditionally, this matter is subsumed in the formation of the
propositions being considered e.g.: The DNA profile has originated
from an unrelated individual from a certain population. A less
common approach is to produce two (or more) LRs; one
considering the proposition that the donor is unrelated to the
person of interest (POI) and one for the proposition that the donor
is a relative of the POL

A potential solution has been known for some time and is
termed the ‘unifying formula’ [18-20]:

Pr(O|H;)

IR= =
> Pr(O|H;)Pr(H;|Hq)

(1)

where typically i is the ith person (related or unrelated) under
consideration. H; is then the proposition that the ith person is the
source of the DNA and H, is the proposition that the POI is the
source of the DNA. In practice, this unifying formula cannot be
implemented as when taken to its extreme a different hypothesis is
generated for everyone on Earth. Hence i ranges from zero up to the
size of the global population, i.e., encompassing every individual in
every population. A plausible simplification is to change the
meaning of i, firstly to be considered within one population at a
time and secondly to be a relationship group, for example
individuals whose relationship to the POI is unrelated, parent,
child, sibling, cousin, etc. We term this method the ‘unified
method'. Making the described simplification, the prior may be
assigned as the probability of someone in the population being
related to the POI with relationship type i. These proportions can be
reasonably estimated by making assumptions about population
and family structure (see appendix A). Alternatively there may be
additional evidence that informs the prior that, say, a brother is the
donor of the profile.

A second method that could be used to account for population
composition is to generate LRs for each relationship in the
proportions that those relationships exist within the population, as
estimated from available census data. We term this second method
the ‘picking method’. The picking method will likely produce an LR
distribution over a wider range of values than the unifying method,
with a heavy left tail attributed to relatives.

Whilst much is known about the effect of allele frequency
variation on the LR distribution the combined effect of these
additional sources of uncertainty has not previously been
investigated. In this paper we report the effect of each of these
sources of uncertainty on a likelihood ratio (LR) calculation and
demonstrate how these sources would affect a reported value. The
incorporation of these factors into the LR allows the scientist to
report a Cl using statements such as “I am 99% sure that the true LR is
greater than X", or “the LR is above X with 99% probability”. It also
removes the need to stipulate that the alternative donor is
unrelated when forming the propositions.

Statisticians, and other scientists, commonly use sensitivity
analyses to understand how the behaviour of a system, or a model,
changes with respect to changes in the inputs. In the forensic DNA
interpretation context, parameters are varied over a plausible
range and a number of LRs are produced. A statement is then made
based on these different numbers. The similarity of this approach
to the one described, we hope, will become obvious.

2. Method

A single source AmpFISTR™ ProfilerPlus™ profile with an
unambiguous genotype (w;=1) at all loci except one was
artificially created to minimise the number of variables. The one
ambiguous locus had a single peak at a height where dropout,
although unlikely, was permitted. At this the locus the designation
was a, Q where the Q allele could be any allele other than a.
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Empirical distributions of the logarithm base 10 of the LR,
log1o(LR), distributions were generated from 10,000 HPD itera-
tions, drawing from prior distributions of the parameter of interest
in each analysis. The log;o(LR) distributions are used for plotting
Figures. LR values are calculated using the sub-population model of
[21] using propositions:

H,: The POI is the source of the DNA.

H»: Someone other than the POI is the source of the DNA.

0.08 0.1

0.06

2.1. Considering only one factor at a time

Throughout this paper we explore the effects of each factor of
variation on the LR, holding all other factors constant. To hold allele
frequencies constant (in the assessment of all factors of
uncertainty other than allele frequency) the database size was
inflated to 1 billion (again artificially in the calculation) to
effectively remove allele frequency variation. To hold F, constant
we use point values in LR calculations that correspond to the mean
of the Beta distribution being used to model F; distribution. To J _—
hold weights constant we use point values of 0.995 and 0.005 for

0.04

0.02

the locus which is not completely resolved. In the case of
population composition, when we wish to remove the effect of i T  — = i
population composition on the LR we consider all members of the 2 ; E
population as unrelated. I i
75 - ° ?
3. Results
. s 10
3.1. Allele frequencies x
] °
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Allele probabilities were modelled with a Dirichlet distribution 3 65 i
[14] and evaluated by resampling allele counts from gamma B
distributions and renormalising at each iteration as described in
Taylor et al. [3]. Allele frequency estimates from a pan-Australian 6.0 |
Caucasian database [22] were used for all simulations. The size of
the database was artificially changed to the values of 50, 100, 500,
1000 and 10,000 people and the LR distribution plotted for each 55 8
database size Fig. 1. o
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b(1,1000) b(1.5,500) b(1.5,200) b(1.5,75)
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Fig. 2. Log,o(LR) distributions using four different Fy; distributions (shown above
9.5 - 8 the boxplot categories).
E 3.2. Fy
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H ﬁ The probability that a pair of alleles one taken from each of two
i v people in the population are identical by descent, IBD, will be
85 - : different for each pair of two individuals. Hence Fy within a
H ﬁ population may be usefully thought of as having a distribution.
x H v ] This distributions is likely to be asymmetrical, positively skewed,
- N : i d is constrained to lie between zero and one. The Beta family of
8.0 —— : s an y
g - i distributions have these properties, and so were selected to model
: i '= the behaviour of Fg. Typical values of F used for forensic LR
7.5 - T calculations tend to range between 0 and 5% [23]. We test a

I number of Fg distributions representing differing levels of co-
_'— ancestry. Fig. 2 shows the distribution of LRs and the Fg
distribution used in the calculation.
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g 3.3. Genotype set weights
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ne50 =100 =500 =1000  n=10,000 The weights, w;, for the genotype set combinations, Sj, were

calculated using MCMC as described in Taylor et al. [3]. These w;
database size values correspond to counts of MCMC iterations where the

Fig. 1. Log;o(LR) distributions calculated using differing database sizes. speaﬁed genotype set has been the focus of the MCMC. If the
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analysis was repeated, then these counts would be slightly
different but would make up approximately the same proportion
of total iterations. The variability in counts that make up the
weights can be modelled using a gamma distribution as they are
likely to be asymmetrical and the counts exist over the range (0, X)
where X is the number of iterations in the MCMC. A low weight
indicates that the specified genotype was the focus of the MCMC
less often (attracted a low proportion of the total iterations) and
therefore the relative run-to-run variation is expected to be
greater.

It is recognised that successive MCMC iterations are not
independent samples from the posterior. The effective sample size
(corresponding to the number of independent MCMC iterations)
was calculated using the package coda [24] in R [25]. The effective
sample size (ESS) was then used to generate effective counts (EC)
from the genotype set weights. The EC values were drawn from a
gamma distribution I" (EC, 1) and normalised back into weights for
use in the LR in each Monte Carlo iteration of the HPD calculation.

The variation in w; will not only depend on the size of w; but also
on the total number of iterations the MCMC has been allowed to run.
An obvious solution to difficulties caused by weight variation is to
run each MCMC analysis for an extended number of iterations,
making the EC solarge that the MCMC run-to-run variation becomes
insignificant. This approach may be impractical within a case-
working forensiclaboratory, where limited computation power may
be expected and rapid case turnaround times are required. We test a
number of weights with a fixed ESS of 100,000 (Fig. 3) and a number
of ESS values with a fixed weight of 0.01 (Fig. 4).

3.4. Fraction of population related to the person of interest

The fraction of population related to the POI was taken into
account using two different methods. We refer to the first method
as the ‘picking method’, and the second as the ‘unified method’
[26]. The fraction of total population related to the POl was
assigned using a number of simplifying assumptions about
population behaviour that allow numbers of relatives of the POI
in a population of size P to be directly related to the average
number of children (n) had by couples within the population. Two
populations were created, one with a high fraction of relatives and
one with a low fraction. We place the details of this approximation

e 4
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Fig. 3. Log;o(LR) distributions using ESS of 100,000 and different weights.

—8—
H - —
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=

Logi(LR)
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ESS

Fig. 4. Log,o(LR) distributions using a weight of 0.01 and differing ESS values.

in Appendix A. These fractions are used as the priors in Eq. (1)
which models the situation of no additional information pointing
towards or away from any particular relative.

3.5. Picking method

Using the proportion of the total population that the specified
relationship comprises, an LR was calculated which considers
either a related or unrelated person to the POl in H; i.e:

_ Pr(O|H,)

IR = o)

(2)

For I Monte Carlo iterations there will be I x r; LRs considering a
person as the source of DNA in H; who has a relationship i to the
POIL. Where r; is the proportion of the population with relationship
i. Note that in Eq. (2) the LR is considering only one type of
relationship of the true donor to the POI in the denominator,
whereas in Eq. (1) the LR stratified the denominator across all
possible relationships.

The picking method represents a discreet equivalent of the
continuous methods of accounting for uncertainty outlined in the
paper, i.e. a relationship type is drawn from a discreet prior
distribution of relationship types and then the LR is calculated
given that chosen relationship. To the authors’ knowledge this
method of accounting for a population’s relatedness to a POI has
not previously been explored.

3.6. Unified method

Again using the proportion of the total population that the
specified relationship comprises, an LR was calculated weighted by
the relationship types.

— iy
LR’(ziLR,-

Where LR; is the LR considering a relative of type i as the source of
DNA in H,.

Fig. 5 shows two LR distributions for two different population
structures. The first represents a large population size (1 million)
where the number of children per family is low (2) and the second
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Fig. 5. Log;o(LR) distributions produced considering related or unrelated individuals (to the POI) as the source of DNA for two different population compositions.

represents a small population size (500) where the number of
children per family is much higher (4). In fig. 5 the position of the
vertical lines on the x-axis represents several LR values that can be
obtained by considering someone other than the POI as the source
of the DNA (related or unrelated). The height of the vertical lines
represents the proportion of the population that would generate
that LR, with the exact number given.

3.7. All uncertainty

Two extremes were considered for each parameter. These
extremes represented a low and a high variance for that parameter,
so that the range of effects on the LR distribution could be
observed. Two ethnic groups were chosen to use as examples:
Australian Caucasian [22] and Australian Aboriginal [27]. Assigned
Fs: values for these populations are 0.01 and 0.05 respectively [28-
31], representing their markedly different levels of co-ancestry. A
Beta distribution was fitted to the Fs values using maximum
likelihood estimation. The estimated parameters for the Beta
distributions are: Beta(0.98, 567.2) for the Caucasian population
(low variation scenario), and Beta(0.3, 32.7) for the Aboriginal
population (high variation scenario). Using these values, the
associated distributions have respective means at 0.0017 and
0.0090, which are markedly lower than the conservative values of
0.01 and 0.05 typically in use.

The low variation scenario had the following properties:

e A large database size (N = 18,116 individuals [22]).
« Alow level of co-ancestry where the range of plausible Fy values
is low (equivalent to an Australian Caucasian population).

Log o (LR) distribution considering all uncertainty
low variation scenario

01 2 3 4 5 6 7 & 9

7 10 11 12 13 14 15
log,, (LR)

e A POI reference that matched at all unambiguous loci and was
homozygous at the ambiguous locus.
o A large population size with few relatives in it.

The high variation scenario had the following properties:

e A small database size (N = 50, using frequencies from [22] but
with N artificially changed in the calculation).

o A higher level of co-ancestry where the range of plausible Fg,
values is high (equivalent to an Australian Aboriginal popula-
tion).

o A POI reference that matched at all unambiguous loci and was
heterozygous at the ambiguous locus.

o A small population size with many relatives in it.

The distribution of LRs for each scenario is shown in Fig. 6.
Fig. 7 shows the same scenarios as seen in Fig. 6, but using the
unifying method for familial relationships.

3.8. Example

To demonstrate the effect of accounting for multiple sources of
uncertainty within the LR, an artificially constructed four person
mixture was analysed under two scenarios; firstly with only
sampling variation taken into account and then with all variation
sources included. The artificial profile had one major and three
roughly equal minor contributors. In this example, a POI reference
profile corresponding to one of the minor contributors was
compared to the mixed profile to generate a LR distribution. The
LR distribution generated under the first scenario (as per current

Log, LR) distribution considering all uncertainty
high variation scenario

0 1 2 3 4 5 6 7 8 9

7 10 11 12 13 14 15
log,, (LR)

Fig. 6. Logo(LR) distributions of the low and high variation scenarios using the picking method for familial relationships.
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Log, (LR) distribution all uncertainty
low variation scenario

2 3 4 5 6 7 8 9
log,,(LR)

10 11 12 13 14 15

Log ,,(LR) distribution all uncertainty
high variation scenario

01 23 4 5 6 % %9
log 1o(LR)

10 11 12 13 14 15

Fig. 7. Log;o(LR) distributions of the low and high variation scenarios using the unifying method for familial relationships.

forensic practice) was compared to the distribution created under
the second scenario. The following properties were chosen to
reflect a real casework situation:

o A South Australian Aboriginal allele frequency database, N = 325
individuals [27]

e An F,, distribution of Beta(0.3, 32.7) to correspond to an
Australian Aboriginal population

e A population size of P=26,000 [32] with n=3 children per
couple

o The unifying method to account for relatives of the POI in the
population

e H;: The mixture represents DNA from the POI and three
unknown individuals, H>: The mixture represents DNA from
four unknown individuals

* An MCMC effective sample size of 772

The comparison of the two analyses can be seen in Fig. 8.

Inspection of Fig. 8B shows that including all uncertainty in the
estimation of the LR pushes the lower end of the distribution below
zero, into the range where the alternate hypothesis is supported.
Note that the effect of the Fy on the LR distribution is more
prominent given the accumulative effect that Fi has across
genotype probabilities that contain three or four unknowns. The
result is that whilst the LR distribution in Fig. 8B is more negatively
skewed, its mode is pushed to the right of where it was in 8 A. Note
that a graph similar to Fig. 8B has not been produced using the
picking method to account for population relatedness to the POI.
The reason for this is that given the population size and average
number of children per family, the number relatives of the POI
expected in the population is small, and there would be no visual

(A) Logyq (LR) distribution considering allele uncertainty only 4
person mixture

3 2 -1 0 1
log, (LR

(and very little numerical) difference to the Figure already
produced. The reported LR taking into account all uncertainty
parameters (Fig. 8B) will be either above or below 1 depending on
whether the point estimate or a Cl is chosen. The exact reportable
values for the results seen in Figs. 6, 7 and 8 can be seen below in
Table 1.

4. Discussion and conclusions

Our work shows that any of the sources of variation outlined in
this study could dominate the total variation in the LR distribution
under the right circumstances. For example, uncertainty in
genotype weight distributions can dominate the LR variation if
one or more weights for relevant genotype sets are low, or are in
combination with inadequate MCMC iterations and the calculation
performed uses a large population database. However if the
weights are high for relevant loci and the MCMC is run for many
iterations, but a small population database is used then the allele
frequency distribution will dominate as the LR variation. In most
cases some combination within the ranges tested in this study will
be present. In combination, all factors of uncertainty will interact
to produce an LR distribution that is wider than if any individual
component is considered in isolation.

Although many sources of variation will exhibit interactions,
some interactions of interest are worth mentioning with regards to
Fq. Consideration of the Balding and Nichols [21] sub-population
formula suggests the Fg variation will have a more pronounced
effect on the LR distribution as more unknowns are considered in
the genotype probabilities. It is also expected that F;, distribution
will have a larger effect on LR distribution when considering rare
genotypes due to the application of F;, in the sub-population

(B) Log, {LR) distribution all uncertainty 4 person mixture

3 2 -1 0 1 2 3 4
log,, (LR)

Fig. 8. Logo(LR) distributions accounting for (A) allele frequency variation only (using mean F;, value) and (B) all variation parameters.

Page 146 of 344



62 D. Taylor et al./ Forensic Science International: Genetics 11 (2014) 56-63

Table 1

Reportable LR values showing point estimate, 99% 1-sided credible interval (CI)
considering only allele frequency variation (using mean F,, values) and the same CI
considering all variation parameters.

Single source profile Low variation High variation

scenario scenario
Point estimate 3.03 x 10" 7.79 x 107
Cl allele frequency variation 2.70 x 10'° 1.47 x 107
only
CI all uncertainty (picking 1.70 x 10'° 5.13 x 10°
method)
Cl all uncertainty (unifying 3.69 x 10 2.00 x 10°
method)
Four person mixture Artificial crime sample
Point estimate 28.69
Cl allele frequency variation only 19.95
CI all uncertainty (unifying method) 0.19

formula. This has the consequence that the LR distribution
resulting from small database size can be partially masked by a
wide Fg, distribution.

Either method of accounting for population composition gives
comparable results when considering a 99%, one-sided CI.
However the picking method has several disadvantages. When
population size is large in comparison to the number of relatives
expected (so that the chance of picking a relative is less than the
inverse of the number of HPD iterations) then often the picking
method will not ever choose a relative and so the population
composition has no effect on the LR distribution. In addition, there
is no easy way to generate an LR point estimate using the picking
method as the distributions can be multimodal.

It is typical in forensic laboratories to report an LR point
estimate and a credible interval that takes allele frequency
variation into account. Carrying out such a calculation can give
the false impression that all uncertainty has been taken account of,
and this may invite false statements or conclusions. In reality allele
frequency variation is only one source of variation, and may not
even be the greatest source of total variation within the LR. A
reported LR probability interval which takes all sources of
uncertainty into account can be similar in magnitude to the
allele-frequency-only-LR if the other sources of variation are low
(an order of magnitude as seen in the low variation scenario in
Table 1). However, if other sources of variation are high, then the
difference between the reported LR when taking only allele
frequency and all sources of variation into account can be
significant. In the high variation scenario this difference was four
orders of magnitude. As seen in the four person example this
difference amounted to a reduction in the reported LR of over two
orders of magnitude, but perhaps more interestingly in this
example, the 99% CI and the point estimate were on opposite sides
of the neutrality line, LR=1.

The use of MCMC methods to determine weightings, and
Monte Carlo resampling to carry out the HPD calculations
provide a powerful and flexible tool for assessing sources of
uncertainty. The risk of using such a system is that the
mathematics and general concepts are less transparent to an
average user. Detailed training in the concepts of MCMC and HPD
are required to avoid a ‘black box’ system. In addition, the
transition to an MCMC based system requires a more complex
plan for validation than simpler methods, which previously
could be assessed with comparison to relatively simple hand
calculations in many cases. Despite these complexities, we feel
that the system described within this paper, coupled with
appropriate training, would provide a powerful addition to a
forensic laboratory’s ability to interrogate EPG data.

The question remains, given that we can evaluate all these
uncertainties within the LR calculations, what value should be
reported to a courtroom? There are advocates that argue the most
relevant figure to provide is the point estimate [6]. However, in our
experience the court often concerns itself with exploring potential
sources of uncertainty. If the decision is made to report a CI (or at
least to calculate one for reference if required) then it would be
difficult to justify only considering one aspect of total variation
(i.e. allele frequency estimate, as is currently prevalent practice)
and not others if an available method exists to reasonably do so. It
is the personal view of the authors that a statistical evaluation of
evidence should concede reasonable doubt and uncertainty to the
defendant and so a reported value should be some lower quantile
(e.g. 95 or 99%) of the LR distribution in criminal matters, but we
respect alternative decisions. For civil matters there is often no
side to which it is obvious to concede doubt and so a point
estimate (mode or 50% quantile) may be the more appropriate
figure to report.
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Appendix A

Proportions used for fraction of population related to POIL.
The simplifying assumptions used to generate the relatives
proportions are:

o There are three generations persisting in the population present
in equal proportions.

e Generation 1 is the youngest and has no children.

e Generation 2 is the middle and has both children and parents
surviving.

o Generation 3 is the oldest and has no surviving parents.

o There is only one union between two families i.e., there are no
instances of two siblings from one family bearing children with
two siblings from another family.

o Couples form from within their own generation.

« There are no instances of inbreeding closer than or equal to the
first cousin level.

o Each family has the same structure and number of children.

o There are no instances of early death.

Table 2
Fraction of individuals in a population with known relationship.

Relationship type, i The fraction of the population with

relationship i, r;

Low relatedness High relatedness

population population
Unrelated 1 0.999987 0.90000
Siblings 2 0.000001 0.00600
Children 3 1.33E-06 0.00600
Parents 4 1.33E-06 0.00533
Unclefauntie 5 1.33E-06 0.00267
Niece/nephew 6 1.33E-06 0.00800
Grandparents 7 1.33E-06 0.01600
Grandchildren 8 1.33E-06 0.00267
First cousins 9 0.000004 0.04800
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Using these assumptions the number of individuals of each
relationship type to the POl were calculated for two populations; a
large population with a low number of children per family and a
small population with high numbers of children per family as seen
in Table 2.
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3.4: Extending the use of the LR for complex situations

Most ideas develop from simple beginnings. In this vane, the very early versions of STRmix™
had limited functionality compared to the abilities in current versions of the software. Early on
the two main functions of the program were to deconvolute a DNA profile into a list of potential
contributing genotypes, with associated weights (that represented a goodness-of-fit for each
genotype in describing the profile) and secondly to calculate an LR when the deconvolution
results were compared to a reference DNA profile. A relatively straight forward extension of
this second function was that if an LR can be calculated for the comparison of a reference to a
mixed DNA profile, then there was no reason that it couldn’t do so for 10, or 100 or 1 million
references, one at a time, in an automated fashion. All that was needed was for those reference
DNA profiles to be listed in a file somewhere that STRmix™ could access. What has just been
described is a variant on a very common practise in forensic biology known as database
searching. This is the process of searching a database (local or national) for matching copies
of an evidence DNA profile that has been generated from an unsolved crime. Equally, database
searching can be carried out by searching the reference of a known individual to determine
whether they are associated with any evidence profiles from currently unsolved crimes. The
standard practise, pre-STRmix™, was that only DNA profiles originating from a single
individual (or a manually interpreted single contributor’s profile from a mixture) could be
searched against a database in a simple process of matching arrays of numbers. With
STRmix™ the additional ability was obtained to assign an LR to each member in the database,
considering them as a potential contributor of DNA to an unresolvable DNA mixture. Then,
rather than having a match/no-match criteria for identifying people in the database a sliding
scale of support for them being a DNA donor is generated.

This opened a vast number of DNA profiles, from unsolved crimes, to database searching that
previously could not be used to assist with the solving of the crime. So successful was the idea
that the New Zealand forensic laboratory (ESR) had the process programmed into their
laboratory information management system so that the searches could be conducted in an
automated manner on a day to day basis, without the need for exporting and importing data
from STRmix™., ESR has shown great success with this feature. At Forensic Science SA the
process of ‘mixture searching” was introduced in 2016, which sees unresolvable, mixed DNA
profiles able to be searched against the state database. There have been instances of three
contributors to a single DNA mixture all being identified in the one search. Anecdotal
information also suggests that other Australian state laboratories are using the feature to great
success. On a national stage database searching and matching still only occurs using single
contributor profiles and a simple comparison of numerical allele values. Perhaps in the future
a probabilistic approach could be implemented, which would have enormous benefits.

Questions of performance and reliability arose from using the database searching functionality.
One of these was the question of how commonly individuals would yield support for being a
contributor of DNA to a DNA profile, when in fact they were not DNA donors. In forensic
biology, this is commonly referred to as ‘adventitious matching’, although the term comes from
many years ago when comparison outcomes were more binary (i.e. a profile would either match
or not match another) and the term ‘matching’ doesn’t sit so well in a continuous world and a
suggestion has been to relabel the phenomenon as obtaining ‘misleading LRs’. Regardless, the
term is common enough that it is still used today. The first paper in this section describes the
functionality of database searching in a continuous manner (such as used by STRmix™) and

Page 149 of 344



partially addresses the issues of adventitious matching. The topic is explored in more depth in
chapter 5, where some publications are provided that are specifically focussed on the point.

The second paper in this section demonstrates the mathematics required to consider the support
the LR provides to a nominated individual being a contributor of DNA to a mixture, if the
alternative that must be considered is that it is one of their relatives (as opposed to a ‘random’
person from the population). This work came about for two reasons. Firstly, with the advent of
DNA profiling kits that tested 20 or more DNA locations the LR being generated, when
considering the alternate DNA source as being an unrelated person from the population, were
in the range of 10%° to 10%°. The defence community started to shift the questioning to ask ‘what
if the person who committed the crime was the sibling/parent/cousin/etc of the accused?’.
There is a common defence stance in forensic biology known as ‘the brothers defence’ where
the defendant is legitimately claiming it is their sibling who is the real perpetrator of the crime.
What was being asked in court was not exactly this scenario, as there was no reason for any
particular relative to be considered an alternate offender, rather it was a series of what-if
questions. What the defence community was actually asking for (although they didn’t realise
it) was for some way to consider that a proportion of the population would be related to the
defendant and any one of them had, a priori, an equal probability of being the alternate offender
as any one unrelated person. They were referring to the ‘unified LR’, which was mentioned
earlier in this chapter.

As a bi-product of this work all the tools required to carry out another common forensic activity
known as familial searching were present. Rather than searching a database for a specific
person’s profile, familial searching looks for any potential relatives of that person. In a
‘unrelated’ LR the probability of obtaining the evidence is calculated given the two
propositions:

1) The DNA came from the POI and others
2) The DNA came from people other than the POI, all unrelated

And for the relatives LRs the probability of obtaining the evidence is calculated given:

3) The DNA came from the POI and others
4) The DNA came from people other than the POI, one of who was related to the POI

Then a familial search is just the probability of the evidence given propositions 4 and 2 from
above. In a similar manner to regular database searching, STRmix™ could then (and eventually
was) programmed to carry out familial searches on complex unresolvable mixtures. The
mathematics required for the consideration of relatives, and the manner in which it can be used
to carry out familial searches is given in the second paper in this chapter.

Due to the complexity and public sensitivities surrounding familial searching it is not carried
out with the same regularity as standard database searching. A number of laboratories that do
carry out familial searching, do not wish this to be publicly advertised. In South Australia,
FSSA has been carrying out familial searches since 2008 and started using STRmix™ to do S0
in 2013. All familial searches have only been carried out on single sourced evidence profiles,
and one of the searches conducted at FSSA has led to an arrest in SA. The only exception to
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this is one familial search carried out in SA on a two-person mixed DNA profile from an old
bone sample of an unidentified deceased child, in the hope that their relative may be in the
database. The search itself went fine, but did not identify a relative. A relative of the child was
eventually found, although not through familial searching, but rather good police work.
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Manuscript: Searching mixed DNA profiles directly against profile databases. JA
Bright, D Taylor, J Curran, J Buckleton. (2014) Forensic Science International: Genetics
9, 102-110 — Cited 18 times

Statement of novelty: Until this point it was generally believed that only single source profiles
could effectively be searched against a database. This work presents the means by which
STRmix™ can be used to compare complex and unresolvable mixtures to a database of
potential contributors.

My contribution: | was a part contributor to the theory and contributor to the writing of the
manuscript.

Research Design / Data Collection / Writing and Editing = 20% / 0% / 10%

Additional comments: While not a main contributor of work to this paper, | have included it
in my thesis for a few reasons:

1) The mathematics for calculating the LR for the comparison of a reference to a complex
mixture had not routinely been expanded to do this en masse for an array of references
in a database. This feature was programmed by me and implemented in STRmix™
software in 2012. The paper below (while I was not dominant in its construction), used
this feature and is the only published demonstration of the power of the technique

2) The paper highlights one of the important points of impact that STRmix™ has
provided to the forensic community. Mixture searching is now routinely carried out
by many forensic laboratories and has resulted in numerous examples of intelligence
being provided to police that would have otherwise been missed. I go into this in more
detail in chapter 9. | feel it is therefore important to include this work in the thesis as
the published demonstration of the technique.
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DNA databases have revolutionised forensic science. They are a powerful investigative tool as they have
the potential to identify persons of interest in criminal investigations. Routinely, a DNA profile generated
from a crime sample could only be searched for in a database of individuals if the stain was from single
contributor (single source) or if a contributor could unambiguously be determined from a mixed DNA
profile. This meant that a significant number of samples were unsuitable for database searching. The

ge}’w‘”fdsE)NA advent of continuous methods for the interpretation of DNA profiles offers an advanced way to draw
D‘:’;:z‘:e inferential power from the considerable investment made in DNA databases. Using these methods, each

profile on the database may be considered a possible contributor to a mixture and a likelihood ratio (LR)
can be formed. Those profiles which produce a sufficiently large LR can serve as an investigative lead.

In this paper empirical studies are described to determine what constitutes a large LR. We investigate
the effect on a database search of complex mixed DNA profiles with contributors in equal proportions
with dropout as a consideration, and also the effect of an incorrect assignment of the number of
contributors to a profile. In addition, we give, as a demonstration of the method, the results using two
crime samples that were previously unsuitable for database comparison. We show that effective
management of the selection of samples for searching and the interpretation of the output can be highly

Continuous models
Likelihood ratio

informative.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

DNA databases can be powerful tools in the identification of
individuals of interest during a criminal investigation. Typically,
DNA databases consist of two sub databases; one containing
profiles from known individuals who have either volunteered or
been compelled to provide a sample (the database) and the other is
adatabase of profiles collected from samples associated with crime
scenes [ 1] (the crime sample database). The records in the separate
databases can be compared to each other to link individuals with
crime scenes. This comparison process typically takes a crime
scene profile and compares it to each database sample in turn.
Often a count is made of concordant and non-concordant alleles. A
wild card designation may be included in the crime sample profile
or more rarely in the database profile. The wildcard is deemed to be
concordant with any allele. Most search algorithms are set up to
compare two alleles per locus from the crime sample profile with
the two alleles per locus from the database profiles. This approach

* Corresponding author at: Institute of Environmental Science and Research
Limited, Private Bag 92021, Auckland 1142, New Zealand. Tel.: +64 9 815 3940;
fax: +64 9 849 6046.

E-mail address: Jo.bright@esr.cri.nz (J.-A. Bright).

1872-4973/$ - see front matter @ 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.fsigen.2013.12.001

restricts profiles suitable for searching to single source profiles or a
single source component inferred, either completely or partially,
from a mixed DNA profile. Attempts to extend the utility of
databases have included searching against a reduced list of
genotypes created from a mixture [2].

This investigative intelligence is provided to investigators to
assess in conjunction with the wider case information.

If both the crime sample profile and the database profile are
full multilocus profiles then the chance of an adventitious match
is small. Adventitious matches are more likely with low level,
partial or mixed profiles. Many databases now include profiles
from superseded multiplexes which may have as few as six loci
scored. Adventitious matches, although expected, can reduce the
credibility of the databank operation or even the forensic use of
DNA. As an example, the discovery of a number of partial
matches in the Arizona database led to considerable discussion
including some adverse comment even though these partial
matches occurred at approximately the expected rate (see
Mueller [3])

The quality of the database can be ensured by legislation such as
restricting the type of sample, setting a minimum number of alleles
required for database entry, by mandatory participation in quality
assurance programmes (as in the USA), and by participation in
external audits and proficiency tests [4].
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Whilst it is relatively easy to meet a very high standard for
reference or individual profiles, the profiles from crime scenes are
frequently compromised in quality.

The likelihood ratio (LR) is generally accepted as the most
powerful and relevant statistic for the calculation of the weight of
the DNA evidence [5]. It is the ratio of the probability of the
observed crime stain (O) given each of two competing hypotheses,
H; and H,, and given all the available information, I. Mathemati-
cally, we express this as:

_ Pr(O|H,. 1)

R Pr(O|H,.I)

Typically database search algorithms do not calculate an LR but
simply report the number of concordant and non-concordant
alleles. However LR based approaches have proven useful in
familial searching [6,7]. For unresolvable or low level mixtures the
use of an LR confers considerable advantages as we demonstrate in
this paper.

Stochastic events such as heterozygote imbalance, allelic
dropout, locus dropout, and allelic drop in can complicate
interpretation [8-10]. The uncertainty in the numbers of con-
tributors and stutter, a by-product of the PCR process, can further
complicate profile interpretation whenever stutter peaks are of a
similar height to the minor allelic peaks in mixed DNA profiles.

The number of contributors to a mixed DNA profile is never
known with absolute certainty. It may be easily determined if the
number of alleles is known. It is the step of inferring how many
alleles are present from the peaks that is the source of uncertainty.
Some peaks are not allelic (for example artefacts or stutter peaks)
and some represent contributions from two or more alleles from
the same or different individuals superimposed. Some alleles may
not have produced a peak due to dropout. At high sensitivity it is
possible that some peaks are formed by alleles from the laboratory
environment, termed drop-in. Information from replicate ampli-
fications and in certain situations Y STR analysis can be helpful in
providing a reasonable estimate of the number of contributors.
Statistical methods such as maximum likelihood [11] or Bayesian
networks [12] are more statistically sound, and can compensate for
artefacts such as stutter, and dropout.

The suggestion that there is a correct number of contributors for
every profile would seem self-evidently true but overlooks the fact
that this number is inherently unknown and thatit is conditioned on
what is known about the profile. It should be noted that there is no
reason for the number of contributors to be the same under the
hypotheses H, and H,. However, proposing an unreasonable number
ofcontributors underthe defence hypothesis and holding the number
under the prosecution hypothesis at a reasonable assignment will
increase the LR, favouring the prosecution hypothesis [13].

Complications in profile interpretation have led to a recent push
for forensic laboratories to introduce improved models for DNA
interpretation. This is motivated by the difficulties traditional
methods have with the interpretation of complex profiles [14,15].
The traditional methods of interpretation are described as binary
which describes the fact that the probability of the genotype
combination under consideration is assigned as zero or one (hence
binary) [ 16]. Following Kelly et al. [17] we denote the genotype of
the observed crime stain as O, and the genotypes of proposed
donors as G; for donor i. For an N donor mixture there are N
proposed genotypes, G; for each proposed combination. The jth set
of N genotypes is denoted S;. Binary models assign the values zero
or one to the unknown probability Pr(0|S;) based on heuristics
such as heterozygote balance and mixture proportion, the
reasonable values of which are informed by empirical data.
Essentially, Pr(O|S;j) is assigned a value of zero if the genotype
combination falls outside of these heuristics. Pr(0|S;) is assigned a
value of one if it falls within. These binary methods are slowly

being replaced by more advanced interpretation methods, such as
the semi-continuous models likeLTD and LRmix and continuous
models which can take into account stochastic events. STRmix
[18,19], TrueAllele [20] and the model described by Puch-Solis
et al. [21], are examples of software that employ a continuous
model for DNA profile interpretation.

A continuous model uses the quantitative information from an
electropherogram (epg) to calculate the probability of the peak
heights given all possible genotype combinations, assigning a
value or weight (w;) to the normalised probability Pr(0O|S;).
Continuous models can remove some of the qualitative thresholds
such as heterozygote balance and may remove some of the
subjective decisions required within a binary model. A discussion
of the merits of the different interpretation models can be found in
Kelly et al. [17].

STRmix assigns a relative weighting to the probability of the epg
given each possible genotype combination at a locus. The weights
across all combinations at that locus sum to one. Therefore, a single
unambiguous genotype combination at any locus would be
assigned a weighting of one.

Good quality single source DNA profiles, where stochastic effects
are notanissue, are likely to result in a profile of sufficient quality for
entry to a crime sample database regardless of the interpretation
method used. However mixed profiles, or single source profiles
subject to stochastic effects, may not result in a profile suitable for
entry to a database using traditional binary methods. Interpretation
of these profiles using a continuous model may result in improved
profile information and therefore permit database entry. Unless the
weight for any given genotype combination is one, assessing the
‘quality’ of a profile for its suitability for comparison to a database is
not straightforward. A guideline for database entry based on some
assessment of the risks of loading an incorrectly inferred profile may
be employed where the genotype combination of a contributor is
ambiguous, such as w; > 0.99. If an individual's profile cannot be
reasonably inferred from a DNA mixture, regardless of the
interpretation method, then it is unsuitable for entry to a database
using traditional database methods.

The number of contributors to a mixed DNA profile (N) cannot
be known with certainty. It may be the case that the same
electropherogram can be interpreted as having come from several
different numbers of contributors. Assigning the probable numbers
of contributors to a mixed DNA profile is more complicated with
low level profiles. Uncertainty is increased when peaks are close to
the limit of detection or there are additional peaks just below the
analytical threshold. These cases might invoke the addition of a
contributor to a profile. Overestimating the number of contributors
to a profile has the potential to generate an LR that favours
inclusion of known non-contributors, whereas underestimating
the number of contributors has the potential to generate an LR that
favours exclusion of a known contributor. Neither of these
outcomes is desirable.

The number of contributors must be specified when using
current likelihood ratio implementations for profile interpretation
[22]. Direct comparison of mixed DNA profiles, where there are
multiple possible genotype combinations at one or more loci, to
profiles of individuals within a database, can be undertaken using
the output of a continuous method of interpretation with a
modified search algorithm using a likelihood ratio framework.

In this paper, a method for database entry and comparison to
the New Zealand DNA Profile Databank (DPD)' of previously

' The NZ DPD was established in 1996 [23] and comprises DNA profiles amplified
using the Second Generation Multiplex (SGM, Forensic Science Services, UK), and
Applied Biosystems' SGMPlus™ and Identifiler™ multiplexes (Life Technologies,
Carlsbad CA). As at April 2013 the DPD comprised 8860 SGM profiles, 65,568
SGMPlus™ profiles and 69,543 Identifiler™ profiles.
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unsuitable mixed DNA profiles is described. We examine the
efficacy of the method using artificially prepared low level, mixed
DNA profiles where the individual contributor profiles are known.
We also report the results of two case examples.

2. Method

Database profiles were blood samples or saliva stains on FTA™
Classic or Elute card (Whatman, Maidstone, England). The method
for processing is described in Bright et al. [24].

Eight artificial mixed DNA profiles were prepared by amplifying
extracted DNA from three known sources with the approximate
mixture proportions of 10:5:1 (referred to as major:minor:trace) in
varying contributor orders. DNA from the eight prepared mixtures
and two case examples was extracted using Promega’s DNA IQ™
magnetic bead extraction chemistry (Madison, WI) and quantified
using Applied Biosystems Quantifiler™ real time PCR quantitation
kit (Life Technologies). A target of 1.5 ng of DNA was amplified
using Applied Biosystems’ Identifiler™ multiplex (Life Technolo-
gies, Carlsbad CA) on an Applied Biosystems 9700 thermal cycler
with a silver block as per manufacturer's recommendations [25].
Amplified products were separated on an Applied Biosystems’
3130x! Genetic Analyser and data was analysed using Applied
Biosystems’ GeneMapper™ ID version 3.2.1 using a 50 relative
fluorescent unit (rfu) analytical threshold. Prior to interpretation,
the heights of all peaks within the epg of the eight artificial
mixtures were halved in order to mimic low level profiles or
further modified as described in each experimental method below.
Peaks that subsequently fell below 50 rfu were removed prior to
interpretation.

In addition, an artificial two person mixture was created by
combining the alleles from two known individuals in the
proportion 1:1. In one replicate, the peaks were set to a height
where dropout would not be a consideration (called ‘two person
without drop’) and in another replicate the peaks were lowered to
a height where dropout was very likely (‘two person with
dropout’). An artificial three person mixed DNA profile was
created in a similar fashion with three known DNA profiles in the
proportion 1:1:1. Peaks heights were adjusted where dropout was
not a consideration (‘three person without dropout’) and where
dropout was expected (‘three person with dropout’).

All profiles were interpreted using STRmix [26].

2.1. Experiment 1 - testing the effect of the number of contributors in
the same mixture proportions

Four artificial mixed DNA profiles (one two- and one three-
contributor mixture with and without dropout) were interpreted
assuming the known number of contributors. The profiles were
compared with 145,470 profiles on the NZ DPD plus the profiles of
the known contributors. An LR was calculated using the continuous
method (LR¢) described in Taylor et al. [ 18] for each profile from the
DPD and the known contributors. Each of the individuals on the
database and the known contributors were considered as a
potential contributor in turn under the following two hypotheses:

H;. Database individual and N — 1 unknown contributors.

H,. N unknown contributors.

where N is the number of contributors under consideration. As this
search is undertaken during the investigative phase, no subpopu-
lation correction was used and the product rule was calculated. An
important benefit is reduced computational effort when searching.

A population database comprising allele frequencies of the four
major subpopulations within NZ in their approximate proportions
as determined in the 2006 NZ Census was used to generate the LR.

The LR for all known contributors and all adventitious matches
(known non-contributors) was recorded.

2.2. Experiment 2 - testing the effect of overestimating the number of
contributors

Eight mixed profiles consisting of DNA from known contribu-
tors were interpreted as originating from both three (correct) and
four (incorrect) contributors. The profiles were compared with
145,470 profiles on the NZ DPD plus the three profiles of the known
contributors and an LR calculated as described in experiment 1
above. Each of the individuals on the database and the three known
contributors were considered as a potential contributor as in
experiment 1.

The LRs for all known contributors and all adventitious matches
(known non-contributors) were recorded. This experiment allows
a determination of the LRs for the known contributors and known
non-contributors. In addition we examine the effect of an incorrect
assignment of the number of contributors in the interpretation. It
examines the behaviour of the process if the number of
contributors is wrongly assessed as one more than the true
number.

2.3. Experiment 3 - testing the effect of low level profiles

The eight profiles were further reduced in rfu scale to 10% of the
original heights and stochastic effects introduced by the random
addition of rfu. This was designed to mimic extremely low level
profiles. After reduction in height, all peaks were below 800 rfu
with the majority under 400 rfu. All profiles appeared as having
only two contributors based on allele count. The profiles were
interpreted assuming both two and three contributors. In order to
manage run times a ‘high risk’ database was created by pooling all
profiles where the LR from experiment 2 was above 100. Within
the high risk database were 595 Identifiler, 742 SGMPlus and 92
SGM profiles. The proportions of the different multiplexes within
the new high risk profile database were approximately the same as
the original database. Each of the individuals on the new high risk
database (N=1429) and the three known contributors were
considered as a potential contributor and the LR¢ calculated as
described for experiment 1 above.

2.4. Experiment 4 - testing the effect of underestimating the number
of contributors

A four donor profile was artificially constructed from the 50%
reduced known three person mixture (Profile 1) used in experi-
ment 2 by adding a fourth contributor in such a way that allele
count would not indicate the presence of the fourth contributor.
The fourth contributor was added at the same height as the known
trace third contributor. Three additional alleles were added to the
profile. Where the fourth contributor shared alleles with the
known three contributors or had peaks in stutter positions these
peak heights were also increased proportionally. Each of the
individuals on the original database (N =145,470) and the four
known contributors were considered as a potential contributors
and the LR calculated as described for experiment 1 above.

3. Results
3.1. Experiment 1

The artificial two person profile without dropout resulted in an
LRc value above zero for only the two known contributors within

the database. There were no adventitious matches to known non-
contributors.
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The two known contributors to the two person profile with
dropout resulted in the highest LR¢ values. 2801 individuals within
the database also provided adventitious links to this artificial
mixed DNA profile, with LRc values above zero. The highest
observed LR for an adventitious match was 93,665. The counts of
the log(LRc) values for all matches are provided as a summary in
Fig. 1A.

The three person artificial profile both without and with
dropout matched the three known contributors with the highest
LRcas expected. The LR¢ values for all adventitious matches (N = 16
for no dropout and N=111,638 for dropout) above zero are
summarised Fig. 1B and C for no dropout and with dropout,

Panel A

Count
a
3

10 l l

11-109 8 -7 6 5 4 3 -2 -1 01 2 3 4 5 6 7 8 9 1011 12
Log(LR)

Panel B

Count

Log(LR)
Panel C
2500
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1500
£
3
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500
0 - - .
14-13-12-11-10 9 -8 7 6 5 4 -3 22 -1 0 1 2 3 4 5 6 7 8
Log(LR)

Fig. 1. Summary of counts of log(LR¢) values for all adventitious matches for the two
person profile with dropout (A), three person profile without dropout (B) and three
person profile with dropout (C). The log(LR¢) of the known contributors is indicated
by arrows.

respectively. The highest observed LR¢ for an adventitious match
was 5189 for the three person profile without dropout and 15,141
for the three person profile with dropout.

3.2. Experiment 2

A representative epg from one of the eight artificial mixed DNA
profiles (Profile 1) is given within the supplementary material. The
LRc values for all adventitious matches are summarised in Table 1.
The incorrect assignment of a fourth contributor to the interpre-
tation generates many more possible genotype combinations and
results in a large increase in the number of low grade adventitious
links (LR¢ < 1000). There was no trend observed which could be
attributed to the number of contributors for adventitious links
with LRc > 1000. The highest observed LR for an adventitious
match with either N =3 (correct) or N = 4 (incorrect) was 114,000
(Profile 3, interpreted incorrectly as a four person mixture).

The LR for each of the known contributors considered individu-
ally as potential contributors to the artificial mixtures under H; is
given in Table 2. Interpretation of the profile incorrectly assuming
four contributors had little impact on the LRc where the known
individual was a major contributor. For minor contributors however,
interpretation of the profile assuming four contributors had the effect
of reducing the LR, in some cases up to three orders of magnitude,
when compared to the LR¢ calculated using the true number of
contributors. As expected, comparison to the interpretation assum-
ing three contributors resulted in the highest LRs for all profiles.

3.3. Experiment 3

A representative epg from one of the eight artificial mixed DNA
profiles (Profile 1) reduced in scale by 90% is given in Fig. 2,
supplementary material. The LRc values for all adventitious
matches are summarised as counts in Table 3. As in experiment
2, the assumption of more contributors to the profile results in
many more possible genotype combinations. Fewer adventitious
matches were observed when an assumption of two contributors
was made. The adventitious match with the highest LR (730,000)
occurred when Profile 8 was interpreted as a three person mixture.
More adventitious matches with high LR values (in the order of
10°) were obtained for the extreme low level profiles compared to
experiment 2.

The LR¢ for each of the known contributors to the 90% scaled
mixtures is given in Table 4. The scaling of the profiles downwards
by 90% resulted in the complete dropout of the trace contributor to
each profile (highlighted in Table 4). As expected, the LR values for
the known contributors are lower than the original comparison
(Table 2) because of the increased uncertainty in the profile
interpretation. As in experiment 2, comparison to the known
contributors resulted in the highest LRc values for all profiles.

3.4. Experiment 4

The artificially constructed four person mixture interpreted
incorrectly as a three contributor profile linked to the three known
‘major’ contributors with LRs of 1.5x 10", 1.1 x10° and
4.9 x 10", These LRs are in within one order of magnitude of
the original profile interpretation results in Table 2 indicating that
the introduction of a trace contributor to a profile has little effect
on the interpretation of the major profiles. The LR¢ for the highest
adventitious match was 4260.

The profile, when interpreted correctly as a four contributor
profile, linked to the three known ‘major’ contributors with LRs of
55x 10", 6.5x10° and 1.3 x 10" The additional fourth
contributor matched to the corresponding database profile with
LRc of 11.6.
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Fig. 2. Epg of mixed DNA profile from a semen stain from Case 1.

Case 1. A mixed DNA profile was obtained from a semen stainon a
carpet at the scene of an alleged sexual assault involving two male
offenders. DNA from most likely two contributors was detected,
present in approximately equal proportions. The epg is shown in
Fig. 2. The profile was interpreted assuming two contributors and
searched against the DPD using a LR threshold of one million (10°).
The threshold was determined by rounding upwards the LR from
the highest observed adventitious match in experiment 3. Each of
the individuals on the database was considered as a potential
contributor in turn under the following two hypotheses:

H;. Database individual under consideration and one unknown
contributor.

Table 5
Profiles of the two matching individuals and LR¢ for Case 1.

Hz. Two unknown contributors.

The crime profile was linked to two individuals. The profiles of
the two individuals are in Table 5. Direct comparison of the
individual profiles to the crime profile reveals a potential non-
concordance with Contributor 2 at D18S51. On close inspection of
the epg in Fig. 2 a peak in the 17 allele bin is visible below the
analytical threshold. Despite this non-concordance and the large
imbalance at D21S11, we note that these two contributors fully
explain the complete profile.

Case 2. A low level mixed DNA profile was obtained from cellular

material recovered from a shoe that was located in car at the scene

Table 6
Profile of the matching individual and LR for Case 2.

Locus Contributor 1 Contributor 2 Locus Contributor 1
D8 11,14 13,13 D8 14,14
D21 30, 32.2 29,332 D21 30, 30
D7 13,14 9,11 D7 -

CSF 11,12 11,11 CSF =

D3 15,18 16, 16 D3 15,17
THO1 8,93 6,9 THO1 7,93
D13 11,11 9,12 D13 =

D16 10,13 911 D16 9,12

D2 18,24 20,23 D2 16, 23
D19 15.2,15.2 13,14 D19 13,14
VWA 17,18 16,17 VWA 14,19
TPOX 9 11 8,9 TPOX =

D18 14,15 12,17 D18 15,17
D5 10,13 10,13 D5 =

FGA 24,26 18,24 FGA 24,26
LR¢ 49x10" 93 %107 LRc 9.1x10°
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Fig. 3. Epg of the mixed DNA profile from a shoe insole from Case 2.

of an aggravated burglary. The epg of one of the replicate ampli-
fications is shown in Fig. 3. The profile was interpreted assuming
three contributors based on the minimum peak count, and sup-
ported by sub-threshold peak information. Each of the individuals
on the database was considered as a potential contributor in turn
under the following two hypotheses:

H,. Database individual under consideration and two unknown
contributor, and

H,. Three unknown contributors.

The profile linked to one individual profiled using the SGMPlus
multiplex on the DPD. The DNA profile of that individual and the
corresponding LR¢ is in Table 6.

4. Conclusion
Direct searching of unresolved mixtures against databases of

known individuals has been shown to be feasible as an
investigative technique with the use of a suitable LR threshold

Table 7

to filter out low grade adventitious links. For this dataset, an
appropriate LR threshold of approximately 1 million would ensure
the risk of reporting an adventitious match is mitigated when
interpreting extreme low level profiles (the majority of peaks less
than 400 rfu and all peaks below 800 rfu). Complex DNA profiles
with different contributors in the same proportions resulted in the
highest LR values when the known contributors were considered
individually as potential contributors under H,, even when
dropout was a consideration. The choice of a threshold is
undertaken as part of a risk assessment. Setting the threshold
too low risks increasing the chance of obtaining an adventitious
match whereas setting the threshold too high risks missing true,
legitimate matches. Table 7 shows the rate of adventitious matches
(false positives) and incorrect non-matches (false negatives) that
arise from using different LR cut off values using data from Tables 1
and 2.

Regardless of where the search threshold is set there will
always be the possibility of false positive and false negative results.
There is a limited capability to identify a true contributor if they are
a trace contributor to a complex mixture without also flagging a
large number of false positive links. This is also true if there is
substantial dropout of an individual's alleles or if a minor
contributor’s alleles are masked by a major contributor’s alleles

Numbers of false negative and false positive results obtained in experiment 2 using different LR cut off values.

LR cut off Considered a 3 person mix Considered a 4 person mix
Number of false positives Number of false negatives Number of false positives Number of false negatives

108 0 4 0 7
10° 0 0 1 6
10* 11 0 7 6
10* 153 0 56 1
10? 1039 0 1071 0
10' 3929 0 23457 0
1 9069 0 204,718 0
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within a mixed DNA profile. This information can be used to help
form guidelines in order to limit the numbers of mixed DNA
profiles searched against a database to those that have the greatest
potential to provide strong investigative leads.

The assumption of additional contributors to a profile beyond
those suggested by allele count alone tended to lower the LR for
the true minor and major contributors and increase the number of
low grade adventitious links, where 1 < LR-< 1000. A match
against the database is unlikely for a trace contributor that has very
few alleles either present above the analytical threshold and
present in non-masked allele positions. This is the expected
outcome.

The assumption of additional contributors also resulted in
significantly increased computational effort.

The multiplex used to determine the genotype for the known
database profile did not appear to have an effect on whether an
adventitious link was made. This was evident from the make-up of
the high risk profile database where the profile multiplexes were in
the same appropriate proportions of the original database.

Two case examples are described where profiles that were
considered previously unsuitable for database comparison were
interpreted and searched against the NZ DPD with a LR threshold
of 1 million. Both cases resulted in links to individuals with high
LRc values. It is worth cautioning the reader that, as with any links
resulting from a database search, their primary purpose in
investigative only and further scrutiny is warranted.

This work reinforces the power of DNA databases as
investigative tools and demonstrates the ability to directly
search mixed DNA profiles using a LR framework without the
need to identify a single contributor profile. Even using fully
continuous methods of interpretation an individual's profile
may not be able to be reasonably inferred from a complex DNA
mixture. This would make the profile unsuitable for entry to a
database using traditional database search methods. The
searching method proposed in this paper allows real time
searching of complex mixed DNA profiles. Using an LR strategy is
a more powerful method than counting matching alleles, for
example, and allows phenomena such as drop in and dropout to
be taken into account. The functionality is available on the NZ
DPD where average search times are 10 min against a database
of over 145,000 profiles.
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1. Introduction

The introduction of new forensic DNA profiling kits has resulted
in improved discrimination power from an increased number of
loci and an increase in sensitivity due to improvements in kit
chemistry [1,2]. Methods of evaluating DNA profiles have also
benefitted from recent improvements, allowing the interpretation
of many more profiles and the generation of an evidential weight,
in the form of a likelihood ratio (LR), for the comparison of evidence
to reference profiles [3-6]. The LR considers the probability of the
evidence under two propositions aligned to the prosecution and
defence cases, respectively. Often the proposition considered for
the defence is that the DNA profile has originated from other
unrelated individuals.

Whilst such an LR addresses the question most often asked by
the court, the issue of relatives does arise and is plausibly not given
the attention it deserves [7]. Specifically, it may be of interest
whether a relative of the nominated person of interest (POI) was a
contributor to the DNA sample rather than the POI themselves [8].
There are many situations where a reference sample of relatives
may not be available and so the question of their contribution

* Corresponding author. Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2014.08.015

cannot be answered biologically, by direct comparison to the
crime profiles.

We investigate here the consideration of relatives as an
alternative source of DNA in mixed DNA profiles. In particular
we take into account the effect of profile complexity, contributor
order, coancestry (Fst), and alleles that are identical by decent
(IBD) on the calculation.

We present a general formula that can be used to calculate an LR
considering relatives and use this general formula on a worked
example.

2. General mathematics

Consider a profile originating from n individuals. A nominated
POI contains all the necessary alleles so that they explain one
component of the mixture. The prosecution asserts that the DNA
profile originated from the POl and n—1 other, unrelated
individuals. The defence assert that the POl is not a contributor
and instead the DNA sample has originated from n other
individuals, one of whom is related to the POI. The propositions
that are being considered in the calculation of the LR are:

H,: the DNA sample originated from the POl and n—1 other,
unrelated individuals.

Hg: the DNA sample originated from a relative of the POI and
n — 1 other, unrelated individuals.

1872-4973/Crown Copyright © 2014 Published by Elsevier Ireland Ltd. All rights reserved.
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In this work we make the simplification that we consider LRs
where there is only one person of interest. This simplification is not
required mathematically, however the consideration of alternate
propositions that involve combinations of relatives becomes
complex. Considering problems of this type could prove challeng-
ing to the courts, as there is no clear indication as to what the
alternative proposition is.

Starting generally, we consider some observed peak data (0):

_ P(O|H))
LR = PO, )

The DNA profile is analysed at each locus and a list of j genotype
sets (S;) are obtained that could explain the observed peaks (0),
each with an associated weight (w;) which relates to the
probability density of O if §; was the genotype set that gave rise
to it, i.e. p(0|S;) xwj, so that Eq. (1) becomes:

_ XjwiPr(S;lH )

IR==F——"———
> wiPr(Sy|Hy)

(2)

where j is the number of genotype sets being considered under H,
and j' is the number of genotype sets being considered under H.
The LR is therefore the weighted sum of genotype sets applicable
under each proposition.

We present in Eq. (3)a general formula for the LR that considers
arelative as an alternative source of DNA to the POl in a mixed DNA
sample. Eq. (3) does not consider sub-population effects. A
complete derivation of Eq. (3) in generality is given in appendix
1, which includes a sub-population effect.

. 32 2. jWiPr(Su,|Ci.Hp)
DI wijr(GR’, |G,.C,~.Hd)Pr(Su), |Ci,Hyq)

LR (3)

Eq.(3)introduces some new terms. G signifies the genotype of a
single contributor, with the right subscript indicating the person
referred to. Using this nomenclature we designate G, as the
genotype of the POI and GR]., as the genotype of the individual
related to the POl As the genotype being considered for the
relative changes depending on the genotype set being considered
it also has a sub-sub script j’. In Eq. (3) we also introduce
contributor order (C). Contributor order takes into account the
fact that we do not nominate a specific component of the mixture
to compare to the POI in the propositions, i.e. if a POl was being
compared to a two person mixture with a major and minor
component then they could be compared to either component of
the mixture because a priori there is no reason to choose one over
the other. Consider the example where the POl is the source of the
major component. If an LR was then presented that ignored the
fact that the POl was excluded as the minor contributor then thisis
not providing a result for the comparison of the POI to the profile,
but rather only a single component of it. When considering
relatives as alternative sources of DNA then contributor order is
equally important, and arguably more intuitive. If considering a
relative of a POI to the same two person mixture as described
above there is no need to restrict the consideration of the relative
to the same component of the mixture that matched the POI.

The probabilities of genotypes of unknown contributors, Sy, are
calculated in the standard manner as published by Balding and
Nichols in 1994 [10] using the sampling formula. The probability of
Gg,, with genotype Gg, = [ay.a,], given Gp, with genotype
Gp = |as,a4), can be calculated using a single standard formula,
making use of indicator terms, « (an explanation follows shortly):

Pr(Z
Pr(G, Gy, Ci Ha) = c2Pr(Zs) + - (i, +1aPe,)

+aoPr(Zo) pg, P, (4)

Table 1

Probability that two individuals with a given relationship share 0, 1 or 2 IBD alleles.
Relationship Pr(Zo) Pr(Zy) Pr(Z;)
Unrelated 1 0 0
Full-sibling Y % Ya
Half-sibling ¥ % 0
Parent/Child 0 1 0
First cousin % Y 0

Eq.(4)includes probabilities that either both, one or none of the
alleles between the Gg, and G, are identical by decent (IBD) with
Pr(Z,), Pr(Z,), and Pr(Z,) respectively. Values of Pr(Z,) are available
from many sources for commonly considered relationships and we
provide a reproduction of that information in Table 1 [10,11].

InEq. (4) we also use indicator terms, &, which allow the use of
asingle formula. These terms take into account the genotypes of Gp
and GRj, and their ability to possess 0, 1 or 2 IBD alleles. Table 2
shows the values that the indicator terms will take for different
combinations of Gp and GR/"

2.1. Example

We now introduce a visual representation of one locus of a two
person mixed DNA profile in Fig. 1, to aid explanations.

The genotype sets and weights associated with this DNA profile
are given in Table 2. As we are taking contributor order into
account we use a left superscript to signify contributor position.

The person if interest has genotype [13,14] for this locus. We
initially consider the propositions:

H,: the DNA sample originated from the POI and n — 1 other,
unrelated individuals.

Hg;: the DNA sample originated from n individuals, unrelated to
the POL

We first calculate p(O|H)) by calculating Z,ijjPr(Suj |Ci,Hp)

from Eq. (3). For a two person mixture there are two contributor
orders, meaning:

P(O|Hp) = > w;Pr(Sy,|C1, Hp) + Y w;Pr(Sy,|C2. Hp)
7 J

=0.55 x 2pyg P17 +0.05 x 2 pyg py7

Table 2
Value for indicator terms in Eq. (4) given genotypes GR), = [ay.a;) and Gp = [a3.a,).
Indicator term Value Condition
o 1 a; =a; and a; = a4
0 a) #a;3 Or a; #0as
aa 1 a) =a; Or a, =0y
0 a; #a; and a; #a,
a 1 ay =a; Or Gy =y
0 a, #a; and a; #£ay
oy 1 ay = ay
2 a; #a;
Weights for genotype sets under for Fig. 1.
Set () Genotype set Weight
(S5)
g, 26, (w))
1 [13,14] [16,17] 055
2 [13,16] [14,17] 0.10
3 [13,17] [14,16] 0.10
4 [14,16] [13,17] 0.10
5 [14,17] [13,16] 0.10
6 [16,17] [13,14] 0.05
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10 11 12 13 14 15

Allele

Fig. 1. Example electropherogram showing a single locus of a two person mixture.

Where the first term considers the POI in contributor position
1 and the second term in contributor position 2. Simplification
provides:

P(O|Hp) = 1.2 x pys P17

Using standard formulation:

35" wiPr(Sy,|Ci.Han)
i

=Y W;Pr(Sy,[Ci,Har) + Y W;Pr(Su,|C2, Har)
i i

p(O|Hygy) =

Expanding Table 2 to incorporate calculation elements provides
the results seen in Table 3.
Therefore:

> wiPr(Sy,[Ci,Ha1) + > WiPr(Su,|Ca. Hg1) = 8 P13 Pra Prs P17
i i

So that the LR is:

POHp)  12xpigpiy _ 3
P(OHa1)  8py3P1aPisPi7 20P13P1g

Now we consider the proposition:

Hgz: the DNA sample originated from a sibling of the POI and
n—1 other, unrelated individuals

From Eq. (3) we wish to calculate Z,—Zj,w,Pr(GRJ, |Gp.Ci.Ha2)
Pr(Suj,|C,~.Hdz) where we have removed independent terms as a

LR =

261
Table 3
Elements of calculation of p(O|Hy).
Set (j) Genotype set (S;) ~ Weight  Pr(Sy|Ci.Hgi)  Pr(Sy,|Ca.Ha)
G, 2G, (wy)
1 [13,14]  [1617] 0.55 4p13PuaPisPi7 4Pi3PraPis P17
2 [13,16] [14,17] 0.10 4p13PuaPisPr7 4P13P1aPis P17
3 [1317] [1416] 0.10 4pP13P1aPisP7 4AP1i3PiaPis Py
4 (1416] [13,17] 0.10 4p13PuPisPr; 4Pi3PrsPis Py
5 [1417] [13,16] 0.10 4p13P1aPisPr7 4P13P1aPisPa7
6 [1617] [13,14] 0.05 4p13P1aPrisPr7 4P13P1aPisPa7

result of ignoring substructure. We also wish to use Eq. (4) to
calculate the LR. We expand Table 3 to include elements of Egs. (3)
and (4) and display them in Table 4. We wish to calculate:

3> wyPr(Gg, |Gy, Ci, Hg)Pr(Sy, [Ci, Ha)
[

These terms can be obtained by summing the multiplied
element from Table 4 so that:

> wyPr(Gg, |Gy, Ci, Hy)Pr(Gy,, |Ci, Ha)
T

1.1 1
0.6|7+7(P13+ P1a) +‘—12P|3 P14]+

1 1
02 ZPH + —2P13 PM] +

0.2 +

!
+
]

1
4P13 5 2P|4P13 +

4P14+ 2P13P14
=[2p16 P17
3

1
0.2 4P13+ 2P|4P1
0.2

0.6

32 P13 Pm]
and the LR can be calculated by:

12
3+5(P13 + P1a) +20p13 Py

By substituting values p;3 = 0.003 and p;4 = 0.1217 (values for
D3S1358 from [ 12]) we obtain LR, ~ 410.8 and LR, ~ 3.3, showing
a considerable decrease from LR; to LR,, when considering a close
relative as the alternate source of DNA rather than an unrelated
individual.

P(OlHy)

LR, =
27 POHy)

Table 4
Elements of calculation of p(OHy ).
Set (j) Genotype set (S;) Weight (w;) [0 (GRJ, =1G)) C, (G"r =2Gy) Pr(Zp) Pr(Z,a) Pr(Zg) Pr(Z;)
G %G @ Qiq @ @ o Qg Aip a
1 [13.14]  [1617] 055 2 1 1 1 2 0 0 0 1% Y % %
) [1316]  [1417]  0.10 2 1 0 0 2 0 1 0 A Y % Y
3 [1317]  [1416]  0.10 2 1 0 0 2 0 1 0 % % % %
4 [1416]  [1317]  0.10 2 0 1 0 2 1 0 0 v Y v Y
> [14,17] [13,16] 0.10 2 0 1 0 2 1 0 0 Ya Ya Ya Ya
6 [1617)  [13,14]  0.05 2 0 0 0 3 1 1 1 Y% % v Y
set (j) Genotype set Weight Pr(Gy, [Gp.C1. Hez) Pr(Gy,IC1. Hez) Pr(Gy,|C2. Hiz) Pr(Gr, |Gp, C2. Hiz)
(Sp) (wy) ie. Gr, = 'G; i.e. Gu =2G; ie. Gy, = 'G; i.e. GRf 2G;
,GJ ZGI
1 [13,14] [16.17] 0.55 F+5(Pi+ Pra) +32P13Pus 2pis P17 2p13Pua 12Pis P17
2 [13.16] [1417) 0.10 1P +2P13 Pis 2p1spi7 2p13Pis P+ Rpupy
3 [13,17] [14,16] 0.10 P+ Rpipy 2pisbie 2pi3pyy 1pis +12P1apis
4 [14,16] [13,17] 0.10 %Pm +%2P|4P15 2pi3piz7 2p1apis %Pn +%2P13P|7
5 [14.17] [13,16] 0.10 P +12pupiy 2pi3pis 2papi7 P16 +32P13Pis
6 [1617] [13.14] 0.05 2pi6P17 2pi3Pia 2pis Py 34413 + Pra) + P13 Prs
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2.2. Familial searches

With a reasonably straightforward extension of the formula
given in Section 2 a search of a complex mixture against a database
can be carried out (as described in [13]), but seeking to weigh the
proposition that a relative of the person in the database is a
contributor to the mixture.

Consider an LR calculation where the defence proposition
suggests an individual unrelated to the POl is the alternate source
of DNA, so for an n person mixture we consider:

Hp: the DNA sample originated from the POI and n — 1 other,
unrelated individuals.

Hg;: the DNA sample originated from n individuals, unrelated to
the POL.

We have described in this work the calculation of a set of
propositions that instead considers a relative of the POI as an
alternate source of DNA:

Hp: the DNA sample originated from the POl and n — 1 other,
unrelated individuals.

Hg: the DNA sample originated from a relative of the POI and
n — 1 other, unrelated individuals.

By considering Hy2 against Hy; the LR can be used in the same way
that familial searches have been performed for single source
profiles. Unlike standard familial searches, using the methodology
described here allows such a search to be carried out against
complex and unresolvable mixtures from which no single con-
tributor's genotype can be unambiguously assigned.

3. Conclusion

The consideration of the possibility that a relative is a donor to a
DNA stain has been shown previously to be of importance when
considering single source stains [7]. Relatedness is likely to have a
similar effect when considering an unresolvable mixture. The
implementation of this consideration for mixtures does not require
any new concepts. All that is required is a careful consideration of
IBD states, coancestry, and contributor order. Noting that no new
concepts are involved the combination is complex and tedious to
apply. We have implemented this as a module in the STRmix™
software.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found,
in the online version, at doi:10.1016/j.fsigen.2014.08.015.

Appendix C. Derivation of the LR formula

If references from individuals who are relevant to the case
have been profiled we introduce them as Sy for known
contributors (assumed to be present in the DNA profile by all
parties) and S, for the genotype sets of the POIs being postulated

as contributors under one proposition but not all (typically in
forensic contexts this will be a POI considered a contributor
under H,, but not in Hy). By adding in genotype sets and weights
to the LR Eq. (2) becomes:

2 WiPr(S;|Sy. Sp. Hp)Pr(Sk.Sp|Hp)

LR =
325 WiPr(Sy|Sk,Sp. Ha)Pr(Sk. S p|Hq)

The probabilities of genotypes for the known contributors Sp
and Sy are equal under both proposition so that:

3 WiPK(S;(Sk.S p. Hp)

IR=F——ra e
ij erPl'(Sj‘ |Sk,Sp,Ha)

Following Taylor et al. [9] we now introduce contributor order
(C). Also, in addition to the known contributors (Sk) and the POIs
(Sp), the genotype sets (S;) can be further broken down into the
genotypes of:

o Individuals related to the POI (SRJ) and

¢ Unknown contributors (Sy) that must be present in the mixture
to explain O not accounted for by known contributors or POIs
in the specified number of contributors.

This gives:

Pr(S;Sk.Sp.Hp) = Pr(Su,.S;.Sp.Sk|Sk-Sp.Ci.Hp) and
Pr(S;(S.Sp. Hy) = Pr(Su,, Sk, St|Sk: Sp. Ci. Hy)

which leads to the LR:

Y5, W,Pr(Su,.Sg,. Sp. SklSk.Sp. Ci. Hp)Pr(Cy)

LR =
3> ;W;Pr(Su, .Sk, .SklSk. Sp. Ci. Ho)Pr(C))

(A1)

We can now make some simplifications to Eq. (A1), noting:

o We are only considering individuals unrelated to the POI as the
other source of DNA in H), so Pr(S,,l|H,,) =@.

« We assume it is reasonable to assign equal probabilities for all
contributor orders, i.e. Pr(C;) = Pr(C;).

« The probability of the genotypes of known contributors and POIs
given their own genotype is 1 i.e. Pr(SplS,.Ci.H,) =1 and
Pr(Si|S.Ci,Hy) = 1. Note that depending on contributor order
these values may be 0 i.e. if the known contributors or POls are
compared to contributor positions where they cannot explain the
observed genotype. For simplicity we make the assumption that
the list of genotype sets includes only those that S, and S; can
be compared to contributor positions where they can explain the
observed genotype and this leads to a different number of
genotype sets being considered under the two propositions,
which we distinguish as j and j".

Using these assumptions and the third law of probability
changes Eq. (Al) to:
B 30,52 WiPr(Su, |Sp. S Ci.Hp)

5515 Wi Pr(Sk, [Su, .Sp. Sk. Ci. Ha)Pr(Su, [Sp.Sk. Ci. Ha)

LR (A2)

Note that we could have split Pr(Sul,.SR,,|Sk‘S,,.C,-.Hd) by
Pr(SuJ, |SRI,.S,,.C,».Hd)Pr(S,;},ls,,.C,».Hd). which would be as valid
as the break up shown in Eq. (3), however doing so would make
the calculation more complex as it invokes the consideration of
alleles that are IBD between Sg, and S, in the calculation of
Pr(Suj, |Sk,,.Sp.Ci, Hy). This will be explained more fully later on.
Eq. (A2) 1s the general formula for considering a relative as an
alternative source of DNA to a profile that can be applied to DNA
profiles of any complexity.
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We also here note the restricted set of problems we are
considering as outlined in Section 2.1, i.e. only those where a single
POI is being compared and a single relative in Hy is being
considered. In line with the restriction we no longer bold Sg and S,
and change to Gg and G, to signify they are single genotypes rather
than possible vectors containing multiple elements.

C.1. Adding a population genetic model

We start by considering the various elements of Eq. (A2) and
explaining their meaning.

Pr(SullcpASkA Ci.Hyp) - The probability of the unknown individ-
uals’, unrelated to the POI, having genotypes that correspond to a
specific order of mixture components as designated by contributor
order i. This probability is conditioned on having seen the alleles in
Gp and Sy. Considering that there is one questioned contributor
and K known contributors in an n person mixture we can consider
individual genotypes (again using G to signify a single individual's
genotype) of unknowns by:

Pr(Sy;|Gp. Sk, Ci,Hp) = Pr('Gy, ..., -k ‘GU‘|G,,.S,,‘C,-.H,,)

= Pr(*Gy,[*Gy,, -,"*~'Gu,, G p, Sk, Ci, Ha)
X ... X PE("K-1Gy |G, S, €1, Hy)

Where a left superscript designates a single contributor genotype’s
position within the set.

Pr(Gg ISu,, .Gp.Sk. Ci. Hy) - The probability of a relative of the POI
having genotype Gy that corresponds to a specific order of mixture
components as designated by contributor order i.

Pr(SuJ, |Gp.Sk. Ci.Hy) - This is the same as Pr(Sy, |G .Sk, Ci. Hp),
although given Hy there is no consideration that tl"le POl is one of
the genotypes. This leads to:

PT(SUI[GP.Sk.Ci.Hd) = Pl'(lcuf|2(;uj,,‘..4" "GUJ,.G,,.S,,.C;‘H,,) Miais
x Pr("*Gy, |G p, Sk, Ci. Hp)

In the calculation of the probability of G consideration must be
given to whether there are 0, 1 or 2 alleles that are IBD with the
POI. Mathematically these can be considered by:

2
Pr(Gg,Su, . Gp.Sk. Ci-Ha) = > Pr(Gg,Su, . G p. Sks Zx. Ci. H)Pr(Zs)
x=0
(A3)

A further consideration is the evaluation of the probability thata
single allele is IBD. Under this scenario either allele in Gz, may be IBD
sowe split Pr(Z; ) into Pr(Z,,) and Pr(Z,), each with proi)abilityof'/i.

There are a number of genotype-specific scenarios that can
now be considered, for example whilst for siblings Pr(Z,) = 4, if the
siblings do not have matching alleles then clearly the probability
that both are IBD is 0. This fact is taken into account already in
Eq. (A3), ie. if GRj, #Gp then PI‘(GR‘_, ISUI-Gvak~ZZ~Ci~Hd) =0.
However, to allow an automated calculation of
2, Pr(Gr ., 1Su . Gp. Sk, Zy, Ci, Hy)Pr(Zy) using a single equation
we extend Eq. (A3) with the addition of an indicator term, c:

2
Pr(G, |Su, . Gp.Sk. C.Hg) = > Pr(Gr, |y, . Gp.Sk. Z. Ci. Ha)axPr(Zy)

x=0

Defining genotypes Gg, = [a1,az2] and Gp = [a3,a4], and using
standard nomenclature so that a; < a, and a3 < a4. The indicator
terms can be defined by:

-

ay =a3Na; =as
otherwise

- 1 ay=a3Ua; =a4
14=1.0 otherwise

i = 1 a;=a3Ua =04
=0 otherwise

— 1 a=a
0= 10 otherwise

Where «, simply accounts for the heterozygosity of GRJ,,. It is
important here to remember that GRJ, is dependent on contributor
order, and so the indicator terms will change depending on the
contributor order being assessed. Using the Balding and Nichols
sampling formula:

PT(GRI, |Su,.Gp.S|‘.C,'.Hd) =ayPr(Z;)
+¢¥19P|'(Zl) {X19+ (1 —o)Pa‘} a1aPr(Zy) {X29+ (1 —G)Paz}
2 1+(ny—1)0 2 1+(n—1)0
[x16+ (1= 0)py, | [x260 + (1 6) by,
[T+ (ny —1)0)[1 +m6)

+aoPr(Zg) (A4)

For contributor order i and genotype set j only, where:

e x; is the count of allele a; seen previously in G, and other
unrelated individuals

* X, is the count of allele a; seen previously in G, other unrelated
individuals and a; ofG,;F ,when a,; ofGRi, is not IBD with an allele
possessed by G,

e 1 is the number of alleles seen in total

® g, is allele probability for allele a,

® g, is allele probability for allele a,

o 0 is the coancestry coefficient (Fst).
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Supplementary material: Below is an expanded version of the LR> calculation.

We wish to calculate:

ZZWJ' Pr(Gy | SUi' G, G Hy) Pr(SUj' |Ci,Hy)
T

Which for the two person scenario in question can be expanded to:

D W, Pr(GL Gy ,G,,C; Hy,) PGy [Ty Hy,) + D Wi Pr(Ge |Gy Gy, C,  Hy,) PGy, | C,, Hy,)
Ik Ik

These terms can be obtained by summing the multiplied element from table 3 so that:

ZZWFPNGRIGWJGpﬂ%JHM)PKGWJ(aJﬂw)=055[%+%(Q3+pm)+%2pmpM]2pmpn]+

0.10[4 pys +42P13Pss ] [2P1 Pir ] +0.10[4 py; + 425 Py ] [2Pus Prg | +0.10[% g + 4 2Py, D6 |[2P15 Py | +
0.10[% p; +42p, Py |[2P1sPss | +0.05[4 2P Py |[2 P13 Pus ]

and

ZWJ" Pr(Gyg |Guj.’Gpvczv Hy2) Pr(Guj. |C; Hyz) =0.55[52p,e Py, ][2PisPye ] +

0.10[4 p,; +42p,, Py |[2P13Py6 ] +0.10[4 Py + 42Dy, Pis [[2PisPyy |+ 0.20[4 Py + 4215 Py |[2 P14 Pis | +
0-10[Z p16+%2p13p16][2p14p17 +0'O5[Z+Z P + p14)+22p13p14:|[2p16p17]

Therefore:

0.6[%+%( Pis + Pra) +%2p13p14:|+
2[4 Py +$2P1sPy ]+
P+ 32PiPu ]+
%%+2m%]
4 Pus +32Pu Pys ] +
1
;

2P, p14]

zzwj' Pr(GR |Guj,vavCi’Hd)Pr(Guj, |Ci’ Hd) :[2p16p17]
i

and the LR can be calculated by:
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R, - 1.2% Py Py
0.60[ 4 +4(Pig+ Pug)+§ 2P Pug | +0.20[4 Py +4 2P Py |+
(2P P17 ]10.20[% oy +52P1s Py | +0.20[ 5 Pig + 52y, Pis | +
0.20[% i ++2p,, ;] +0.60[2 2y, ]

1.2
LR, =
0.30+0.50p,, +0.50p,, +2 P, Py,

12

LR, =
3+5( p13 + p14)+20 p13p14
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Chapter 4: Calibrating the model to specific laboratory performance

STRmix™ incorporates models that are used to describe DNA profile behaviour. These include
models for stochastic events such as peak height variability and inter-locus balances. When
two different processes are used to generate DNA profiles, the profiles will naturally exhibit
different behaviours (as in they will still be described by the same models, but the parameter
values within the models will vary). There are two ways of dealing with this fact:

1) Have these aspects of uncertainty as models within the MCMC, whose parameter values
are guided from the data being analysed
2) Carry out calibration testing and fix some parameters for the type of data being analysed

STRmix™ uses the second of these methods. There are other fully continuous systems in
existence that work by the first. Anecdotal feedback is that the runtime is greatly increased and
often there is not enough information in the data provided to inform some parameters, meaning
the results produced are not always intuitive.

The standard implementation of STRmix™ in a forensic laboratory is to create a calibration
set of profiles (typically 100 or more) and run them through a calibration program that aligns
STRmix™ models to laboratory performance. If a laboratory has more than one workflow (i.e.
they have situations which mean that DNA samples may be profiled by one of multiple
different DNA profiling systems) then a calibration is required for each. When STRmix™ was
introduced questions arose as to how different the processes needed to be in order to justify a
new calibration set. These questions were initially quite prevalent as early versions of
STRmix™ had a peak height variability model that utilised a single constant, which aligned it
to the amount of variability seen in data produced by the laboratory. In 2014 (approximately 2
years after initial release of STRmix™) the peak height variability model was updated so that
the constant was now a parameter within the MCMC, that had a prior distribution, produced
from calibration. This new model architecture allowed the tolerance of the system to peak
imbalances to shift slightly (and in accordance with the expectations of data produced by the
laboratory) depending on the data being analysed. This largely addressed questions of whether
many calibration sets were required for micro-variations in laboratory process. As long as the
calibration set was created in a way that covered many of those micro-variants of laboratory
process then the prior distribution for peak height variability would be applicable for a wide
range of data produced and could be fine-tuned to the specific profiles as required during the
MCMC.

Still the question remained ‘How much difference requires recalibration?’. Examples may be:

e If laboratories had a piece of equipment changed

e From above, consideration of whether the new equipment was of the same model as the
old

e If their equipment was serviced

e If a component was replaced

These types of questions led to the work presented in this section. Also, within this work, the
component-wise MCMC process utilised in the calibration tool (called ‘Model Maker’ that
made up part of STRmix™) is described.
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are factors in generating the DNA profile that can contribute to the magnitude of variability observed,
most notably the number of PCR cycles. In this study we investigate a number of factors in the generation
of a DNA profile to determine which contribute to levels of peak height variability.
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1. Introduction

In forensic DNA analysis a DNA extract is amplified using
polymerase chain reaction (PCR), separated using capillary
electrophoresis and the resulting DNA products are detected using
fluorescence. The result is a trace of fluorescence against time
termed an electropherogram (epg). The largest peaks in the epg are
usually interpreted as signals from amplified DNA product. The
height of these peaks is approximately linearly proportional to the
starting number of DNA molecules, termed template [1,2].
However if replicate aliquots are taken from the same extract
the resulting peaks will not all be of the same height. We could
consider these peaks to be varying around a mean value and this
variability could be quantified by the variance.

There have been numerous studies of the variability of peak
heights in short tandem repeat (STR) profiles (for example see Refs.
[1,3]). The variability in peak heights has led to a variety of
interpretation guidelines that are used to accept or reject potential
genotypic explanations (or genotypes) for some observed data in
an epg. More recently the variability in peak heights has been
modelled with distributions for use in continuous interpretation
systems [4-7]. The question arises whether all DNA profiles

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia. Fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/.fsigen.2015.12.009
1872-4973/© 2015 Elsevier Ireland Ltd. All rights reserved.

produced within a laboratory have the same amount of peak height
variability. It may be that that the presence of factors such as DNA
amount, the presence of inhibitors, micro-variation in amplifica-
tion or electrophoretic conditions, means that all profiles are not
created equally with respect to the amount of peak height
variability present. There are also questions that arise regarding
larger scale differences that can cause peak height variability
between epgs such as those having been amplified using different
profiling kits, using different thermocycler instruments, or run on
different genetic analysers, either of the same or different models.

Classically peak height variability is measured by looking at
heterozygous balance (Hb) [3,8,9]. In this way the two peaks of a
heterozygous pair can act as an internal self-calibrated pair of
peaks for the template at each locus in each profile. Given that the
expected variance in log(Hb) is twice the expected variance of the
log of the expected individual peak heights at that locus (see Ref.
[10] for a proof) we can also use the latter to assess peak height
variability across a profile.

Allelic peaks are not the only peaks in an epg. Other peaks, often
termed artefactual peaks, are present. The largest and most
common artefact is backward stutter. These peaks would also vary
in height if replicate extracts were taken.

In the model of Taylor et al. [6] the height of each allele and
stutter peak is considered to vary about some expected value
modelled from the profile. If the expected value is obtained
correctly then the difference from expectation of each peak is
independent. The model used to compare an observed peak height
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(0) and an expected peak height (E) is given by:

04 c? :
logyo (—) ~N (0.—) for allelic peak a and

Eq E, :
Ous K U
logo{ & ~N{0.5- for stutter peak a — 1
a-1 a

where O, and Og-; are the observed height of the allele and stutter
peaks, respectively, and E, and E,_, are the expected height of the
allele and stutter peaks. ¢ and k? are random variables which are
determined based on empirical data and describe the variability
within a dataset. The values of ¢? and k? for a dataset are
determined per locus.

In this paper, we use a Markov chain Monte Carlo (MCMC)
system to analyse sets of laboratory data of known origin in order
to determine the distribution of peak height variability. This is
done for a number of datasets, which vary in the mechanical
aspects of profile generation, including multiplex used, the cycle
number, and the genetic analyser.

We also compare the distributions obtained from laboratory
data with data simulated with known values of ¢ and k* within the
peak height variability models. Doing so allows conclusions to be
drawn as to whether ¢? and k? act like fixed unknown values that
produce an observed distribution of peak height imbalances or
whether individual profiles possess differing levels of peak height
variability, whose distribution cannot be explained by fixed c? and
k? values (suggesting that we have not yet identified all
contributing factors to peak height variability). Any difference
has implications for interpretation guidelines, if they are based on
factors affected by peak height variability, such as heterozygous
balance or dropout.

2. Method

Methods are in four sections. The first section is a description of
the statistical process by which peak height variability is assessed.
The second section describes the experiments that investigate
factors that affect peak height variability. The third section
investigates whether profiles produced from a laboratory could
all have arisen from the same underlying peak variability or
whether micro-variations give rise to some data being more
variable than other. The fourth section investigates aspects such as
how the source of DNA or the complexity of the profile contributes
to peak height variability.

2.1. Section 1: The statistical model

An epg can be considered as a series of observed peaks, each
with an allelic designation, a height and a molecular weight.
Models have been developed that describe DNA profile behaviour,
for example models that link DNA amount and degradation [11] to
fluorescence, stuttering during PCR or locus amplification efficien-
cies [7]. Given these models, values for parameters within them
can be trialled, along with genotypes, to build up an expected
profile, comprising a number of expected peak heights of various
allelic designations at specific molecular weights. Any difference
between observed and expected heights must then be explained by
peak height variance models (which may include instances of
drop-out and drop-in). The difference between each individual
pairing of an observed and expected peak height can be modelled
by Eq. (1), which contains variable ¢, In Taylor et al. [6] the value of
¢? was set at a point value. However we now consider ¢® to be a
random variable within the model, which itself has a prior gamma
distribution that can be obtained from laboratory calibration data.

As described in Ref. [6], MCMC can be used to provide a weight
representing the probability density of the profile given a

postulated genotype set. Fig. 1 shows this diagrammatically. A
typical analysis would provide the evidence (in the form of DNA
profile(s)), utilise pre-defined models (for each of the parameters
being considered, such as degradation, template amounts, locus
amplification efficiencies, peak height variability, etc.) and use
MCMC to elucidate the weights (in this case a normalised posterior
probability density for a proposed genotype set). Although
mathematically unnecessary we normalise the weights at each
locus so that they range from zero (indicating that the observed
data cannot be obtained from the proposed genotype) to one
(indicating that it is certain the observed data came from the
proposed genotype). This is done so the weights can provide an
intuitively helpful diagnostic for analysts.

The same system shown in Fig. 1 can be used to inform an
analyst about parameters within the models, if provided with the
other points of the triangle. Instead of providing evidence profiles
and model parameters to elucidate the weights, the system can be
provided evidence profiles and weights (or more specifically the
known genotypes of individuals) to elucidate the parameter values
within the models (particularly variance variables ¢ and k?). Such
a system still requires some architecture for the biological models
being used (e.g. that given in Eq. (1)), however specifics, such as the
distribution of ¢? in the modelling of peak height variance, can be
determined. The simplest weights to provide are those for single
sourced profiles of known origin. In these cases weights will all be
one for the genotype that corresponds to the known source.

To determine the peak height variability for profiles generated
at a laboratory using a certain process requires multiple profiles so
that the range of peak height variabilities encountered is captured.
This is particularly true if we wish to consider the premise that
some profiles possess more variability in peak heights than others.
We analyse a dataset comprising multiple single sourced profiles,
representing a range of peak heights, and determine the
distributions of the peak height variability variables (k? for stutter
peaks and ¢? for allelic peaks) for the entire dataset simultaneously.
We refer to the distributions as hyper-distributions as they are
distributions for variables that are used in further distributions.
Eq. (1) shows how the log of the observed over the expected peak
heights are modelled using a normal distribution that uses c* and
k? variables within the variance. The variables ¢ and k? themselves
have prior distributions and can be thought of as distributions
within distributions. We therefore refer to the prior distributions
as hyper-distributions and the parameters for a hyper-distribution
as ‘hyper-parameters’. This is carried out using component-wise
MCMC by splitting the ‘mass’ parameters M (which we explain
below), and the variance variable hyper-distributions into different
components and varying them separately. The variance variables
are modelled by gamma distributions, I'(ay, 8,), where x is a
subscript used to highlight that the ¢? and k? hyper-distributions
have different hyper-parameters and the probability density

MCMC

Evidence Weights

Fig. 1. Diagrammatic representation of the MCMC process used in DNA profile
analysis.
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Table 1

Experimental datasets analysed for Section 2.
Dataset DNA profiling kit PCR cycles Electrophoretic instrument Thermocycler instrument Dataset size PCR volume
1 Profiler Plus™ 28 3130xI (instrument 2) 9700 (numerous) 342 25pL
2 Profiler Plus™ 28 3130xI (instrument 2) 9700 (instrument 5) 93 25plL
3 Profiler Plus™ 28 3130x] (instrument 2) 9700 (instrument 8) 47 25plL
4 Profiler Plus™ 26 3130xI (instrument 1) 9700 (numerous) 233 25pl
5 Profiler Plus™ 26 3130x1 (instrument 1) 9700 (instrument 6) 134 25pl
6 Profiler Plus™ 26 3130x1 (instrument 2) 9700 (instrument 6) 49 25l
7 GlobalFiler™ 29 3130x1 (instrument 1) 9700 (numerous) 338 25uL
8 PowerPlex 21™ 29 3130xI (instrument 1) 9700 (numerous) 70 125pL
9 PowerPlex 21™ 29 3130xI (instrument 1) 9700 (numerous) 89 25ul
10 GlobalFiler™ 29 3130xI (instrument 3) 9700 (numerous) 129 25pl
1 GlobalFiler™ 29 3500 9700 (numerous) 85 25l
12 Identifiler™ 28 3130xI (instrument 3) 9700 (numerous) 91 25plL
13 MiniFiler™ 30 3130xI (instrument 3) 9700 (numerous) 61 50 pL
14 SGMPlus™ 34 3130x] (instrument 3) 9700 (numerous) 106 50 pL

function at point i is given by:

File B *le-i/B
U= T

This distribution was chosen as it has properties that align with
the expectations of the variance variables i.e. bounded at the lower
end by zero, at the upper end by infinity, and likely to be
asymmetrical. The inverse proportionality of the stutter peak
height variance variable is based on observed parent peak height,
0,, rather than its own expected peak height.

The mass parameters are; a DNA amount and a degradation, for
each profile, and a locus amplification efficiency, for each locus in
each profile. Separate variance variable values are sampled for each
locus in each profile from the hyper-distributions as part of M.

The c? and k? gamma hyper-distributions parameters (cty and S,
for each of the two gamma hyper-distributions) are collectively
referred to as vector V. We also have an exponential hyper-
distribution for locus specific amplification efficiency within V,

Component 1 —Mass parameters (M)
varied for each profile individually

with probability density function:
fx)y=xre* i>0

Parameter values within V apply to all profiles collectively as a
group. The mass parameters for the C profiles in the dataset,
M ...Mc, are varied one at a time (separately from V and from
each other). The analysis is then carried out by repeating loops of:

1) Varying M, ... M while holding V constant
2) Varying V while holding M, ... M¢ constant

until all values within both vectors have converged (diagrammati-
cally seen in Fig. 2). The MCMC used is a random walk component-
wise MCMC using a Metropolis—-Hastings sampler. We use this as it
has previously been successfully used in DNA profile mixture
deconvolution by Curran [12] and has been shown more
extensively to perform well on a range of DNA profiles of varying

Component 2 — Variance parameters
(V) varied for all profiles together

A

Stutter and allele
variance constants and

LSAE v.

aince varied

Fig. 2. Component-wise nature of MCMC process to determine V.
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Allele variance variable hyper-distributions for datasets outlined in Table 1.
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Allelic variance variable distribution for pristine produced datasets and the same distributions shown for datasets simulated to align with mode of pristine results.

Set

Laboratory ¢* hyper-distribution

1

e Pristine

== Simulated

Pristine - I'(4.53,0.862) , mode 3.04, mean 3.9

Simulated - I'(4.672,0.987) , mode 3.62, mean 4.61
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Fig. 3. Peak height variance variable distribution for pristine DNA (Dataset 1) and casework evidence profiles produced under the same conditions.

quality and complexity [6,13].

The result is two gamma hyper-distributions that describe the
multiple individual locus/profile variance variables’ values for
stutter and allele peaks, and one exponential hyper-distribution
that describes the multiple individual locus/profile amplification
efficiencies and C lots of mass parameters, one for each profile.

2.2. Section 2

We calculate the stutter and allele hyper-distributions for a
number of datasets varying:

1) DNA profiling kit

2) Number of PCR cycles

3) Genetic analysers of different models

4) Different genetic analysers of the same model

5) Different thermocycler instruments of the same model
6) Different dataset size

7) Different PCR reaction volumes

Note that although it is already known that the number of PCR
cycles and different models of genetic analysers have an effect on
peak height variability, the method we outline provides a
quantification of these differences. Table 1 gives the breakdown
of datasets analysed.

2.3. Section 3

For this experiment we require datasets where all profiles have
the same known point value for ¢? and for k2 There is no way that

04 7
035 -
03 -

025 4

0.15 1

0.1 4

data can be produced under these conditions within a laboratory.
To overcome this limitation a program was written that simulates
profiles from a distribution with a known underlying peak height
variability and random DNA amounts, degradation values, and
locus amplification efficiencies using the same models as
described in Ref. [6]. Three datasets of the same sample size as
datasets 1, 5 and 7 were simulated to have variance variable values
that mimic the modes of the hyper-distributions for those dataset.
These datasets were chosen as they represent a range of ¢Z and k?
distributions encountered in standard casework.

If data that is produced in a laboratory has a range of peak
height variances then we would expect the density distribution of
the hyper-distributions to be spread over a larger range of ¢ values
than a dataset simulated to have that exact level of peak height
variability.

2.4. Section 4
In this section we address two common questions:

1) Is pristine DNA representative of DNA results obtained in typical
casework samples? We define ‘pristine’ data as laboratory data
from uninhibited and undegraded reference DNA.

2) Does the number of contributors to a DNA profile affect peak
height variability i.e. are mixtures more variable than single
source profiles?

To answer the first question, single source evidence profiles
obtained in casework at FSSA over a two week period were
compiled into a dataset (N=136) and analysed as described in

Mixtures

w— Single Source

Fig. 4. Peak height variance variable distribution for single source DNA (Dataset 7) and posterior mean values of ¢ for mixed DNA profiles produced under the same

conditions.
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Fig. 5. Relationship between PCR cycles and ¢%.

Section 1. These samples have been run under the same conditions
as dataset 1 in Table 1. These samples were chosen such that a
reasonable inference as to the true contributing genotype could be
made. If casework samples have greater peak height variability
than pristine samples then we would expect a shift in the density
distribution to higher values.

An experiment to answer the second question is more difficult
to design. We used the peak height variance variable distribution
for dataset 7as a prior distribution to analyse 93 mixed DNA
profiles produced under the same conditions (refer.Table 1)
allowing the variance variable to vary as a parameter throughout
the analysis. The 93 mixed DNA samples are those described in Ref.
[13]. All mixtures were analysed assuming all known contributors
to the DNA profile so that any peak height variability had to be
described by stochastic variation rather than ambiguity in the
genotypes of contributors. Note that there will still remain some
ambiguity as to the amount of DNA that each contributor, the level
of degradation that each contributor exhibits and the level of
amplification efficiency that exists at each locus. The effect of this
is discussed later.

If mixtures generally have a higher peak height variability than
single sourced profiles then we would expect the distribution of
the posterior mean values of ¢ for the 93 mixed GlobalFiler™
samples to have more mass at higher variance values than
expected from the prior alone.

3. Results
3.1. Section 2

The result of the datasets described in Table 1 are given in
Table 2. We show only the results of the allelic variable (c?) hyper-
distributions as they are most influential to an analyst's typical
interpretation of DNA profiles. Hyper-distributions for the stutter

variable (k%) and for the locus amplification efficiencies were
determined but are not shown.
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3.2. Section 3

Table 3 shows the allelic variance variable distributions for
selected datasets shown in Table 2 and the equivalent distributions
for datasets simulated to ¢ and k? values that align with the mean
of the ‘real’ datasets and a locus amplification efficiency variance
that aligns with the mean of the exponential hyper-distribution.

3.3. Section 4

Fig. 3 shows the peak height variance variable distributions for
dataset 1 (shown in black as ‘pristine’ data) and 136 single sourced
evidence profiles (shown as grey ‘evidence’ data) that ranged in
sample type and strength.

Fig. 4 shows the posterior distribution (in black) for the peak
height variance variable used (based on dataset 7) in the analysis of
93 mixed DNA profiles that have properties that align with dataset
7 (i.e. kit, cycle number, etc). The histogram in Fig. 4 shows the
means of the posterior value for ¢ for each of the analysed mixed
DNA samples.

4. Discussion

Multiple regression of the mean of the gamma distributions
produced in Section 2 suggests that the largest factor is PCR cycle
number. The increase in mean c? values appears exponential with
respect to cycle number (even with the noise present from other
variables), as seen in Fig. 5.

There was also an increase in mean ¢ (of approximately 3.6)
going from a reaction volume of 25 p.L to 12.5 p.L (although this is
based on only a single comparison between datasets 8 and 9). Kit
choice was also a significant factor, although there was insufficient
overlap with other variables to explore this adequately. A small
effect was present for electrophoresis instrument of the same
model and this was not significant on this test, but a much larger
effect was seen transitioning from 3130xI to 3500 (again based on

2 24 26 28 30

14 16 18 20

Fig. 6. Ratio of ¢ values from pristine and evidence profile shown in Fig. 3.
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only a single dataset comparison), which is expected given the
difference in fluorescence scaled used between the two instru-
ments.

We use the means of the ¢ distributions as a point of
comparison as it is difficult to directly compare distributions in
some way that allows a simple conclusion to be drawn such as
“process A exhibits higher peak height variability than process B". A
comparison of gamma distributions could tell us that they are
different, but not how they are different. For example if we look at
the results of pristine compared to casework DNA profiles shown in
Fig. 3, then it may be tempting to state that visually it appears
pristine DNA exhibits slightly lower peak height variability than
evidence profiles as the mode of the distribution is lower. This only
tells part of the story. Fig. 6 shows the ratio of the density of the two
gamma distributions from Fig. 3. Indeed we can see that at the
lower levels of ¢ the pristine data have higher density than
evidence data, but notice that this also occurs for high levels of ¢,
This may suggest that pristine data show a greater spread of profile
variances. Fig. 3 equally shows that evidence samples may have
slightly higher peak height variability than pristine profiles for the
majority of samples that will be encountered.

Areasonable argument could be made that the right hand tail of
Fig. 6 is not relevant as it is in an unrealistic peak height variability
space. Indeed the highest evidence profile ¢? value observed was
11.6 and the gamma curve beyond this is entirely extrapolation.
Our summaries of whether a difference exists are therefore based
on the comparison of means and the level of overlap between
credible intervals for the distributions.

The pristine laboratory data shows no excess of variability over
the profiles simulated from an exact point value for underlying
variance (see Section 3). This suggests that single values for the
variance variables for allele and stutter may suffice to model these
profiles.

There may be sporadic evidence DNA profiles that (perhaps due
to interactions between the PCR process and some foreign
material) have higher peak height variability than expected from
calibration data. We have been anecdotally informed that this is
the case by caseworking scientists, although did not view such an
occurrence within this study. In general we found that pristine
DNA has approximately the same peak height variability as
casework samples. This result is consistent with earlier work [ 14]
addressing the same issue. This indicates that there are no issues
validating systems using pristine DNA to develop and refine DNA
profile behaviour models.

Mixed DNA profiles are likely to be no more variable in peak
height (and perhaps less so) than single source DNA profiles. There
are two points to consider here:

1) Mixed DNA profiles have additional dimensions (in this case an
extra DNA amount and an extra degradation amount for each
contributor) that can vary to best explain the observed data, and
hence reduce the apparent peak height variability compared to
single sourced profiles.

2) The method of mixture analysis has a variance variable that is
the posterior mean across the whole profile, rather than a locus
at a time. The effect is an ‘averaging’ across the profile, which
may mask a single outlying high stochastic occurrence.

Even given these two points the results shown in Fig. 4 do not
indicate an increase in peak height variability in mixtures
compared to single source profiles.

Datasets 7 and 10 (Section 2) are equivalent in terms of the
factors noted in this study, but show some variation in the
distribution of the peak height variance variable. While these two
datasets were set-up and run using the same conditions they were
done so in different laboratories. The differences observed, whilst

not marked, suggest that there are factors not captured in this
study that could be having an effect on peak height variability.
Possibilities include CE laser sensitivity, CE capillary age, laborato-
ry plastic ware used, age of reagents, PCR setup conditions, or any
number of other variants. This suggests that ideal practice would
be for each laboratory to diagnose their own performance prior to
any analyses or interpretations.

5. Conclusion

Peak variability appears to increase with cycle number and with
reduced reaction volume. Additionally, profiling kits and CE
models have an effect on peak height variability. There may be a
small increase in variability for evidence DNA over pristine DNA,
although if this trend is present it is not significant in our findings.

There is no evidence for an increase in variability of mixed
samples over single source or that different CE or thermocycler
instruments of the same model have a noticeable effect on peak
height variability. However there must be other variables, not
examined in this work, that have an effect on peak height
variability.
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4 — Clarification
Explanation of the model, specifically framing it in the context of a hierarchical Bayesian
model

The model used in STRmix is one where we seek the likelihood of genotype sets, given the
observed data, jz p(OS;,M)Pr(S;|,H,;)Pr(M)dM . Within this integral the M term
i

represents parameters:

e Template DNA amount for each contributor (n), which has prior t, ~U[0,T] (where

T represents the upper limit on template amount before a DNA profile will no longer
be analysed and is termed a saturation level)

e Degradation for each contributor, which has prior d, ~U [O, D] (where D represents a

level of degradation above which profiles will generally be considered too low quality
and will not be analysed)
e A PCR replicate efficiency term for each PCR replicate (y), which has prior

R, ~U [0,:0] (note that in practise, if an analysis was carried out and a replicate

amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be
considered that one of the replicates is likely to have been the subject of an
amplification error and should not be included in the analysis)

e Anamplification efficiency term for each locus (1), which has prior A' ~ LN (0,5202)

(where & =1In(10) is used to transform between logs in base 10 and base e and & is
constant, determined by laboratory calibration)

e A peak height variability parameter for each fluorescence type (i), which has prior
¢' ~T (', B") (determined by laboratory calibration, which I discuss below)

Knowing the values of the parameters in M allows the calculation of Total Allelic Product (T),
the total amount of fluorescence expected resulting from an allele in a DNA extract, which will
ultimately get broken into components of fluorescence in an allelic position and its stutter
positions on the electropherogram (EPG). Calculation of T, for a combination of contributor,
kit, locus, replicate and allele, is achieved formulaically by:

—d,, (m}, —offset
T! :tnxA'nyxXr']xe ( )

a,ny
The X! term in equation 1 represents a ‘dose’ and takes values of 1 or 2. The dose considers
that if contributor n is homozygous for allele a at locus | (X! = 2), then the expected value for

T will be twice as high than if allele a was one in a heterozygous pair. The offset marks the
molecular weight at which degradation starts to be applied, i.e. at the offset (and technically
before it), degradation is not acting to reduce fluorescence. This offset is usually set to be the
lowest molecular weight peak observed in one or more electropherograms (or some value
below it). As the PCR occurs, some of the fluorescence that was destined for the allele will
shift to stutter positions on the EPG. There are a number of stutter types that can occur (back
stutter, forward stutter, half stutter, double stutter, etc.) and we will define the number of types

of stutter as I, the stutter ratio of stutter type i, for locus | for allele a as 7" and the position of
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stutter type i relative to the parent peak, a, as A'. We can now split the total allelic product into
components of, respectively, allele and stutter by:

I
El,i ___any Tany
any l+Z7r;'
and
l,i _ Talny aI

a+A',n,y 1+Zﬂ_;|
i

where i, indicates ‘not i’ and hence the allelic component. The total expected height of a peak
at a locus, replicate and kit combination is then the sum of the stutter and allelic components
of all individuals that fall on that allelic position:

E.,= Z El +ZZ aainy where a is chosen for each i so that a+A' =a'

a'n,y

Doing this for all contributors, alleles, loci, replicates and kits results in Y expected profiles,
each of which has an observed counterpart, for which each peak height can be compared. Let
E be the vector of expected peak heights. We assume independence of observed peak heights
given the expected peak heights (shown in other work) so that

pO[S;;M)=p©|E)=[ [T IPr(O.,|E:,). Differences between observed and
y | a
expected peak heights, Pf(oé,y | E;’y), are modelled by transforming the variable O;’y to

, Where:

log,,

log,, CE)ii ~N 0[1 ZPJ(;)2+Z{;( i)

! a+Aly

Where ' is the proportion of peak a that is stutter type i. The right-hand side of equation 5
signifies modelling using a normal distribution, in the form N[mean,variance]. Note that the ¢?
parameters (for either allele or stutter) in the variance term have a prior gamma distribution
modelled by:

N2 . .
() ~r(a".£)
Prior distributions for c? terms and & are determined using a hierarchical Bayes model, run
on a dataset of C single source DNA profiles. For these profiles a single genotype set (in this

case of one contributor a genotype set can be considered a genotype, G) exists for each locus
in each contributor and is provided to the analyses known information. The integral term from

earlier can then be more simply expressed as J'p(O,M)dM, where the genotype set

probability for each profile is a known constant value and omitted from the analysis.

We also include an additional parameter within M during the hierarchical Bayesian analysis,
which a value of & for each profile (whereas in standard DNA profile analysis a fixed value
for % is used).
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Let az(al,...,a'), ﬁ:(ﬂl,...,ﬁ') and V be the set of all variance hyper-parameters

V =(a,B,4). We seek posterior distributions for elements of V:

p(V,M|O) o p(O|M,V)p(M|V)p(V) Where:

R RECALE N

The gamma distribution was chosen as it has properties that align with the expectations of the
variance variables. It is bounded at the lower end by zero, at the upper end by infinity, and
likely to be asymmetrical. We model:

0%,0%,..,0% |0 ~Exp(A)

Th exponential distribution was chosen as it has properties that align with the expectations of

the o variables. We desire imbalance within the profile between loci to be described by other
parameters (namely template and degradation) preferentially to locus amplification efficiency.
In a pristine DNA sample, loci should all amplify approximately equally well. In practise there
will some locus amplification efficiency differences between loci due to extraneous chemicals
carried through the DNA extraction process that affect amplification (which some loci are more
sensitive to than others) and so some level of locus amplification efficiency variance is needed
but should be minimised. However, if too much variance is seen then this is an indication of a
poor DNA profile amplification and the profile should be considered unsuitable for analysis.

As stated, in the standard analysis of DNA profile data we do not have a o parameter. Instead
! is used. Within the hierarchical Bayesian analysis we trialled a

gamma model instead of an exponential model for o terms but found little difference in
outcome (data not shown) between the mean of the gamma distribution and the mean of the
exponential distribution and so chose the simpler distribution.

a constant value of %=1

The process for determining posterior distributions for variance terms is:

e For each of the C profiles, holding the values within V constant:
o Draw values for parameters for profile ¢ within Mc by random walk
o Evaluate p(O,|M,,V)Pr(M.,V)
o Accept or reject proposed parameters by Metropolis-Hasting algorithm
o Repeat X times
¢ Holding all values within M constant:
o Draw values for hyper-parameters within V by random walk
o Evaluate Pr(V)[ ] p(O, M., V)Pr(M, | V)

o Accept or reject proposed parameters by Metropolis-Hasting algorithm
o Repeat X times
e Repeat outer loops until converged
Values of X from 1 to 10000 were trialled but were found to make minimal difference to the
resulting posterior distributions (data not shown). Prior distributions for parameters within V
are:
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a~U [1.5,00]
p~U [0,00]

A~U [0,00]

The restriction on the lower bound value for « comes from a desire to limit the shape of the
gamma distribution to non-exponential curves. In practise, values for « are not obtained below
this level even when the restriction is not placed on the prior.
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Chapter 5: Testing the functioning of the models

Traditional methods of calculating a numerical value for the LR relied on models, simple
enough to have closed set formula that could be calculated exactly. Typical ‘validations’ of
software that implemented these models would then consist of calculating, by hand, a series of
LRs for different scenarios and showing that the software provided the same answer. For the
first time, with the introduction of STRmix™ forensic laboratories were faced with a stochastic
system that:

e produced a different answer each time it was run

e used formulae that were not closed sets (for the most part being complex multiple
integrals)

e produced numbers that couldn’t be reproduced by hand and

e was designed to analyse DNA profiles that were traditionally considered beyond the
ability of humans to interpret (prior to STRmix™ the general consensus amongst
Australian government forensic DNA laboratories was that a mixture of 3 people of
reasonable quality was the limit to interpretation. Now in 2017, with STRmix™
laboratories are analysing complex, low level, mixed DNA profiles originating from 5

people).
Questions arose from laboratories such as:

e How do | know if the system is giving the right answer?

e How can | check LRs that are too complex to replicate manually?

e How, as a human, do | assess a system designed to perform beyond my abilities of
assessment?

These questions were echoed in defence questions in a number of court challenges to the
STRmix™ methodology. The court questions tended to centre around themes of “how do you
know the system is reliable?’, or the blunter statement ‘I put it to you that you are doing nothing
but guessing’.

Up until this point the main body of work that had been published had not focussed on
validation, but rather defining, and testing models, and proposing extensions to LR
calculations. When questioned on reliability, the main body of published work to which the
forensic community could point was the validation section of the paper in section 2.6. A point
of interest arose from this work, and in particular Figure 6 (from the paper in section 2.6),
which showed the concordance between manual interpretations and the corresponding LR
when STRmix™ was used. The forensic community often showed this graph as an example of
how well the system was performing, with the vast majority of LRs being concordant with
human interpretation and how much better the system was able to make use of data with LRs
able to be provided for many more results than previously possible. The law community
expressed concern with the graph, citing the fact that there were some (very few) instances
where the continuous system gave contradicting results to the human interpretation and that it
was able to ‘make up’ numbers even for profiles that, by existing forensic standards, were
inconclusive. While the forensic community had moved to consider the continuous system the
new gold standard and, seeing the graph, realised how far the forensic biology community had

Page 184 of 344



come, the legal community still considered manual interpretations as the gold standard, and to
them this graph simply showed that the new system was unreliable.

These driving forces prompted several different bodies of work. One body of work focussed
on demonstrating how complex systems could be validated, not by scrutinising (or manually
reproducing) individual results, but rather by considering the trends in the LRs that were
expected over a range of problems with changing components. This work became the
publication given in section 5.1.

Another body of work considered how other diagnostics could demonstrate the reliability of
the LR. Theoretical expectations were derived for exceedance probabilities (the probability of
choosing an individual from the population, who had not contributed DNA, and them yielding
at least as much support for inclusion in the DNA mixture as the true donors) and average LR
size, based on work by Allan Turing. This lead to the publication in section 5.2.

By the time the manuscript in section 5.2 was published, there were a number of continuous or
semi-continuous DNA interpretation systems in existence (at present the count is
approximately eight) that were grouped under the title ‘probabilistic genotyping systems’.
There was growing popularity in forensic DNA laboratories around the world for these systems
and in response to the popularity, international advisory bodies started working on validation
guidelines for probabilistic genotyping systems. These included the European based
International Society of Forensic Genetics (ISFG) and the American based Scientific Working
Group for DNA Analysis Methods (SWGDAM). The suggestion from some members of these
groups was that that the Hd true tests (described in 5.2) should make up part of the
recommended validation. Ultimately it was decided within the group not to make this a
recommendation due to the impracticality of the size of the tests required. The argument went
as follows:

Modern DNA profiling systems produce DNA profiles with frequencies less than 1 in 10%°. In
order to properly test exceedance probabilities or average LRs from random draws of profiles
from the population would therefore require >10?° draws. No computer had the power or speed
to complete such a task in a time that would be acceptable.

In response to this limitation, although it was too late for inclusion in the recommendations
(which had already been published), work was carried out that demonstrated how importance
sampling could be applied to bias the choice of profile chosen and then adjust afterwards to
recover diagnostics of interest. This work led to the publication in section 5.3. Importance
sampling is now a feature available in STRmix™, if users wish to carry out such testing against
a deconvolution.

Around the same time, the opinion was voiced that when DNA profiles became weak or peak
heights became highly variable (as is the case in certain DNA profiling workflows), peak
heights presented no further information beyond the presence or absence of the peaks
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themselves. There was a relatively simple way in which this assertion could be tested.
STRmix™ was provided with the same set of very low level and complex DNA profiles twice,
once using its full capabilities and once in a modified version of the program that did not use
peak heights (and working in a way similar to a semi-continuous model). The ability of both
analyses to provide support for the contribution of the known donors of DNA was then
compared. This work drove the publication given at the end of this chapter that showed there
was still information in low-level peaks that could be utilised by a fully continuous DNA profile
interpretation system.
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Continuous DNA interpretation systems make use of more information from DNA profiles than analysts
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1. Introduction

Situations arise commonly in forensic DNA casework where an
analyst will need to make a choice whether a profile should be
interpreted. If so, further choices regarding appropriate assump-
tions and propositions will be needed. Ultimately these choices
will lead to the calculation of a statistical weighting, commonly a
likelihood ratio (LR), which answers some question of interest for
the analyst, police or court.

In order to make these choices, the analyst must use their
knowledge of the expected behaviour of the LR under different
circumstances. This would include the way it reacts to:

o Increasing DNA profile complexity, either through number of
contributors or profile quality, and

o Assumptions of contributors known or assumed to be present
under both propositions, and

o Replicate amplifications.

The theoretical behaviour of the LR has been known for some
time [1], although in many instances the behaviour has not been
able to be thoroughly demonstrated practically due to limitations
of the biological and mathematical models being used. Continuous

* Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au

http://dx.doi.org/10.1016/j.fsigen.2014.03.008

models utilise more information from DNA profiles than previous,
binary, models and so are able to demonstrate these LR behaviours.

The continuous system of Taylor [2] was used to demonstrate
some well understood behaviours of the LR, such as the effect of
increasing profile complexity, adding replicate amplifications and
assuming contributors to a profile. Also explored were behaviours
which have not previously been demonstrated practically. These
included the effect of adding incorrect information into the
calculation (i.e. when both propositions of the LR are false), and the
effect of adding irrelevant information to the calculation.

The results obtained provided a useful review of the behaviours
of the LR using empirically obtained data rather than mathematical
theory. It is hoped that the examples given in this work will inform
analysts required to make casework decisions.

2. Methods
2.1. Experimental setup

DNA was obtained from four individuals with informed consent
and used to construct all mixtures. PCR amplifications were carried
out using GlobalFiler (Life Technologies) as per manufacturer's
instructions.

Allele frequencies were derived from an in-house database
comprising 186 self-declared South Australian Caucasian individ-
uals (database validation not shown).

1872-4973Crown Copyright © 2014 Published by Elsevier Ireland Ltd. All rights reserved.
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Table 1
Mixture proportions and PCR setup.
Tubes Mixture proportions for contributor Total DNA
One Two Three Four added to PCR (pg)
1-3 0.50 0.50 400,200,50
4-6 0.33 0.67
7-9 0.20 0.80
10-11 0.17 0.83
13-15 0.09 091
16-18 0.33 033 0.33
19-21 0.50 033 0.17
22-26 0.25 0.25 0.25 0.25 400,200,50,20,10
27-31 0.40 0.30 0.20 0.10

The 186 individuals used for allele frequency generation and
the four individuals used to create the mixtures were compiled
into a 190 individual database for comparison to all constructed
mixtures.

Two, three and four person mixtures were constructed in
varying proportions and amplified with varying amounts of
template DNA as described in Table 1. Mixtures were prepared
from stock solution of each contributor, made up to known
concentration by quantification on an ABI PRISM™ 7500 Sequence
Detection System using Quantifiler™ Human DNA Quantification
Kit (Life Technologies). Stock solutions were quantified twice and
an average taken for the final value. Each experimental setup was
amplified in triplicate giving a total of 93 profiles.

Profiles were analysed using software STRmix which utilises
models described in [2-4] (exact software settings used are
available from the author on request). In all analyses the Y-indel
locus and DYS391 were ignored.

2.2. LR calculations and figures
LR calculations were performed using propositions as described

in each experiment below. For all calculations the product rule was
used (i.e. no co-ancestry coefficient) and the point estimate has

been given. This is not the recommended practice for criminal
casework but allows the other effects to express themselves.

LR calculations in the experiments listed below considered each
person on the 190 individual database as a potential contributor, or
person of interest (POI), to the mixed DNA profiles. In doing so
there are comparisons to all individuals who are known to have
contributed (when H; is true) to the DNA profile and the
remainder, who are known not to have contributed (when H, is
true).

Figs. 1-9 show the log;o (LR) produced for these comparisons.
The LRs produced from comparisons to known contributors are
signified by a blue point and those produced from comparisons to
known non-contributors are signified by a red point. A minimum
value for log; (LR) of —30 was used, and any LRs obtained that fell
below this were given the value of —30. The lines on figures were
produced from LOWESS [5,6] and are given only as a visual
indication of trends in the scattered results.

The polygons seen in some figures give a visual indication of the
spread of LRs. They are produced by connecting the maximum and
minimum values within each DNA amount bracket (as indicated on
the x-axis of figures) at the midpoint of that bracket (and hence
some points fall just outside the drawn polygon).

The amount of DNA contributed by each known contributor was
known from the experimental design. When comparing to non-
contributors, the choice of input DNA (for Figs. 1-9) was not
known as the non-contributor could align with any of the
contributors’ input DNA amounts. For known non-contributors
the amount of input DNA was assigned as the total amount of DNA
added to the PCR divided by the number of contributors. This was
likely to be an overestimation of input DNA amount for the non-
contributors as many of the LR values obtained would be when the
individuals are aligned with the smaller contributor in the profile.
Hence the red points on Figs. 1-9 have fewer DNA amount values
than the blue points. For example tube 8 in Table 1 has total DNA
amount of 200 pg and mixture proportions 0.2 and 0.8. When an LR
was calculated for the comparison to contributor 1 it was placed at
40 pg and for contributor 2 the LR was placed at 160 pg. For all
comparison to unknowns the LRs were placed at 100 pg, being the
average input DNA amount of contributors to the profile.

20
1

Logio(LR)
-10 0

-20

HI true
2 4 ° H2tme

20 50 100 200 500

DNA in PCR(pg)

Fig. 1. Experiment 1 - LRs produced for two person mixtures, with LOWESS lines and polygons showing coverage of scatterplot points. (For interpretation of the references to

color in the text, the reader is referred to the web version of the article.)
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Fig. 2. Experiment 1 - LRs produced for three person mixtures, with LOWESS lines and polygons showing coverage of scatterplot points. (For interpretation of the references to

color in the text, the reader is referred to the web version of the article.)

2.3. Experiment 1: standard deconvolutions

In experiment 1 all 93 profiles were individually analysed using
their correct number of contributors. LRs were calculated using
propositions for an N person mixture:

Hj. The POl and (N — 1) unknown individuals are the sources of
DNA

Ha. N unknown individuals are the sources of DNA

2.4. Experiment 2: the power of multiple PCRs

In experiment 2 the 10 sets of four person mixtures were
analysed using all three replicate PCRs in each analysis (as opposed
to Experiment 1 where they were analysed separately). The
propositions used were:

H;. The POI and 3 unknown individuals are the sources of DNA

H>. 4 unknown individuals are the sources of DNA

30
1

20
1

Logio(LR)

HI true

DNA in PCR(pg)

Fig. 3. Experiment 1 - LRs produced for four person mixtures, with LOWESS lines and polygons showing coverage of scatterplot points. (For interpretation of the references to

color in the text, the reader is referred to the web version of the article.)
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Fig. 4. LRs and LOWESS lines from Fig. 1 (N=2), 2 (N =3) and 3 (N = 4) overlayed. (For interpretation of the references to color in the text, the reader is referred to the web
version of the article.)

2.5. Experiment 3: adding correct information Where A, B and C were combinations of contributors 1, 2, 3 or 4
omitting one at a time. LRs were not produced for contributors who
In experiment 3 the 10 sets of three PCR four person mixtures were assumed to be present.
were analysed, this time assuming three out of the four known
contributors. Each combination of three individuals was assumed,
meaning from the 10 sets of PCRs, 40 analyses were carried out and
compared to POI using propositions:

2.6. Experiment 4: adding incorrect information

In experiment 4 the 10 sets of three PCR, four person mixtures
Hi. The POI, contributor A, contributor B and contributor Carethe ~ Were analysed, this time assuming an artificially constructed non-

sources of DNA contributor. The ‘fake’ references (fakeREF) were constructed so

that they might not be excluded from the mixtures by typical
H,. Contributor A, contributor B and contributor C and an un- human interpretation method. This was achieved by constructing
known individual are the sources of DNA the fakeREFs using genotypes randomly chosen from the four

Logio(LR)

DNA in PCR(pg)

Fig. 5. Experiment 2 - LRs produced for four person mixtures using three amplifications, with LOWESS lines and polygons showing coverage of scatterplot points. (For
interpretation of the references to color in the text, the reader is referred to the web version of the article.)
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Fig. 6. Experiment 3 - LRs produced for four person mixtures using three amplifications and assuming three out of the four known contributors in each analysis, with LOWESS
lines and polygons showing coverage of scatterplot points. (For interpretation of the references to color in the text, the reader is referred to the web version of the article.)

known contributors for each locus. A different fakeREF was
generated for each of the 10 analyses, assumed to be a contributor
and compared to POIs using propositions:

Hj. The fakeREF, POl and 2 unknown individuals are the sources of
DNA

H,. The fakeREF and 3 unknown individuals are the sources of DNA

2.7. Experiment 5: adding irrelevant information

In experiment 5 the 15 sets of three PCR, two person mixtures
were analysed as three person mixtures but assuming a randomly
chosen non-contributor from the searchable database (dbREF) was
a contributor. Doing this had the effect of adding an additional
contributor but effectively forcing their contribution to the profile
to be close to zero, hence the additional information was

g -
e 4
]
S
[— 3 pcr 314 assume
- ‘— 3PCR
S |— 1pcR
2 -
# — 1PCR
— 3PR
| spcR3Aasumed
S
3‘ -
HI true
8 4 © H2tme
T T T T T T T T T
1 2 s 10 2 s0 100 200 500

DNA in PCR(pg)

Fig. 7. LRs and LOWESS lines from Fig. 3 (1 PCR), 5 (3 PCR) and 6 (3 PCR 3/4 assumed ) overlayed. (For interpretation of the references to color in the text, the reader is referred

to the web version of the article.)
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30
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Logio(LR)

DNA in PCR(pg)

Fig. 8. Experiment 4 - LRs produced for four person mixtures using three amplifications and assuming an artificially constructed non-contributor in each analysis, with
LOWESS lines and polygons showing coverage of scatterplot points. (For interpretation of the references to color in the text, the reader is referred to the web version of the
article.)

< 4
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o —— imrclevent assumption
3 . =
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= imclevent assumption
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HI true
- H2 true
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DNA in PCR(pg)

Fig. 9. Experiment 5 - LRs produced for two person mixtures using three amplifications (no assumption) and analysed as three person mixtures and assuming a non-
contributor (irrelevant assumption), with LOWESS lines. (For interpretation of the references to color in the text, the reader is referred to the web version of the article.)

effectively irrelevant to the original calculations. LRs were o
calculated using propositions: H;. The POI and an unknown individuals are the sources of DNA

Ha. The dbREF, POI and an unknown individuals are the sources of ~ H2- 2 unknown individuals are the sources of DNA
DNA
3. Results and discussion
H,. The dbREF and 2 unknown individuals are the sources of DNA
The LRs produced were compared to those produced by Before examining the empirical results it is worth briefly re-
analysing the 15 sets of three PCR two person mixtures analysed examining the theory behind LR calculations, so that the results can
using the propositions: be compared to the expected behaviour.
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3.1. LR theory

The LR considers the probability of obtaining some evidence
given two competing propositions, H; and H.. When applied to
DNA profile evidence the LR is the ratio of two sums:

i > wiPr(S;|Hh)

=W, Pr(S; |Hy)
where, using the nomenclature of Taylor [2], w; is a weight for the
Jjth genotype set, Sj, being considered under the propositions. The
sums can be across a single element, if the genotype of the
contributors can be assigned unambiguously, or numerous
elements, and in a continuous system the weights can take any
non-negative value (note that in Taylor [2] weights are values
between 0 and 1 as they are normalised. Weights will be referred to
in the normalised form for the remainder of this work). This LR
construct can be used to consider how information utilised in an LR
calculation will affect its magnitude.

If the weights that correspond to genotypes sets considered in
H, are increased, relative to all possible genotype sets (commonly
in forensic calculations, those considered in H-) then the LR will
increase. These weights are increased when there is more certainty
about their corresponding genotype sets being the source of the
observed profile.

Consider the single locus, two person profile in Fig. 10, with
known sources (13,14) and (16,17). There are six possible
genotype sets that could explain the observed profile as shown
in Table 2.

Depending on peak heights, both absolute and relative to each
other, some of the genotype sets will be poor descriptions of the
observed profile. Normally DNA profiles being analysed are multi-
locus and the other loci will dictate contributor positions for major
or minor components to the profile (if they exist). Assume that
contributor position 1 is the major component and position 2 is the
minor component. If the peak heights in Fig. 10 are sufficiently

Table 2
Genotypes sets for profile seen in Fig. 10.

Set Weight Contributor genotype
Position 1 Position 2

1 wy (13,14) (16,17)
2 W (13,16) (14,17)
3 ws (1317) (14,16)
4 Wa (16,17) (13,14)
5 Ws (14.17) (13,16)
6 We (14,16) (13,17)

12 13 14 15 16 17

Fig. 10. Example EPG showing a single locus of a two person mixture.

intense enough that the imbalances between the 13 or 14 and the
16 or 17 are very unlikely then the weights would be w; = 1 and all
others equal to zero. In this situation all the genotypic probability
is distributed to the genotype set that corresponds to the known
contributors. If the known source (referred to in the propositions as
the POI) (13,14) was to be compared to this profile using
propositions:

H;. The POI and 1 unknown individual are the sources of DNA

Ha. 2 unknown individuals are the sources of DNA
Then the LR would be:

R W1 X 2P16P17 - 1
Wi X 2P13P14 X 2P16P17 2P13Pia

Now consider adding uncertainty into the scenario seen in
Fig. 10 by imagining that the peak heights were very close together
and low in intensity. Doing so results in a situation where
W) =Wy =...=Ws =W, so that the genotypic probability has
been distributed amongst six different genotype sets and hence
away from the genotype set of the true contributors compared to
the previous scenario. Using the same propositions as before the LR
would now be:

_ W x 2Dy P17
LR =
WX 2P13P1g X 2P1g P17 +--. +W X 2P1gP1g X 2P13 P17
W X 2Di6 P17 1

TBwx 4D13DP14 P16 P17 G 2P13D14

Being less certain about the genotypes of the contributors has
distributed the genotype probability away from the genotype set
corresponding to the known contributors and over a number of
other genotype sets. This has had the result that the LR has dropped
by a factor of 6. This is the Evett et al. [7] result.

Now consider the scenario as above with low level, equal peak
heights but assume that the known contributor 2, with genotype
(16,17), is present. Adding this information has the effect of
distributing the genotypic probability all back to genotype set 1 so
thatagain w,y = 1 and all others equal to zero. The LR in this instance
will again be:

1
" 2pi3bis

This is a demonstration that removing information from the
analysis decreases the expected LR for a true proposition and
adding correct information increases the expected LR for a true
proposition.

Assume now instead a non-contributor to the profile seen in
Fig. 10, an individual who is (13,16). In this instance all the weight
is on a single genotype set, but this time w, = 1, which means the
weight for the genotype set corresponding to the true contributor,
w; =0. The LR for comparison to known contributor 1 (13,14)
would be:

— 0 —
2p1abr7

And a similar result would be obtained for the comparison to
known contributor 2 (16,17).

Providing incorrect information to the LR, by assuming a non-
contributor is present, has led to the exclusion of the true
contributors.

LR

LR

3.2. Summary of findings

Continuous systems of DNA interpretation have allowed the
behaviour of LR calculations to be demonstrated using empirical
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data. Many of these behaviours are known in a theoretical sense,
however, the demonstration of them visually, and collected
together in one paper provides a useful reference for DNA analysts.
This work also demonstrates the magnitude of the effects that
different assumptions and propositions can have on the calculation
of an LR, something that would be difficult to portray from theory
alone. Also, although it is not the focus of this paper, the work
conducted demonstrates the power of continuous DNA interpre-
tation systems to analyse DNA profile data.

3.3. Experiment 1

As DNA profiles are generated from less DNA the LR produced
comparing known contributors trends down towards one and the
LR produced comparing known non-contributors trends upwards
towards one. This demonstrates that the ability for the LR to
distinguish between a true and a false proposition is reduced as
less correct and relevant information is provided to the calculation.
Less information can either be fewer peaks or lower intensity
peaks. Lower peak intensity is a reduction in information as there is
less certainty that the peak height is representative of the input
DNA amounts. These effects are demonstrated in all figures.

As DNA profiles become more complex, by increasing the
number of contributors from which they are generated, the LRs
trend towards one. Figs. 1-3 show LRs generated when comparing
individuals to two, three and four person mixtures respectively.
This is a further example of the point above, demonstrating a
reduction in information, this time per contributor. The informa-
tion reduction per contributor arises because as the number of
contributors increases, so too does the number of genotype sets
that can explain the observed data. The genotype set probability is
therefore distributed amongst more genotype sets in complex
profiles. Fig. 4 shows the effect of additional contributors on the LR,
reducing its ability to distinguish between true and false
propositions as N increases.

3.4. Experiment 2

As more replicate biological analyses are concurrently used the
LR generated for comparison to known contributors trends away
from one upwards and the LR generated for comparison to known
non-contributors trends away from one downwards. This is a
further example of providing more correct and relevant informa-
tion to the analyses. The effect is to have more certainty in the
peaks height's representation of input DNA amount and hence
distribute more probability to the weights associated with the true
contributor’s genotypes. Fig. 5 shows the effect of multiple PCRs,
particularly when compared to Fig. 3, which is the same data
analysed using individual replicates per analysis.

3.5. Experiment 3

As more known contributors are assumed to be present in a
mixed DNA profile, the LR generated for comparison to known
contributors trends away from one upwards and the LR generated
for comparison to known non-contributors trends away from one
downwards. Again this is an example of providing more correct
and relevant information to the analyses. Assuming true con-
tributors removes many of the otherwise possible genotype sets,
leaving a very restricted list of genotype sets that includes the
genotype set of the known contributor(s). Therefore the weights
are concentrated on true contributor’s genotype. Fig. 6 shows the
results of assuming correct information. Fig. 7 shows the effects of
providing incrementally more correct information to the LR, by
considering four person profiles individually, in triplicate and in
triplicate with the correct assumption of known contributors.

Also note that the ability of the LR to distinguish between true
and false propositions is improved more by the assumption of
known contributors than by the addition of replicate PCRs. The
reason for this can be explained by considering a profile originating
from equally contributing individuals. No number of replicate PCRs
is going to provide additional resolution to the genotypes of
contributors. However, providing one or more of the true
contributor’s profiles can dramatically reduce the number of
genotype sets able to sensibly describe the EPG(s), and hence
increase resolution of the remaining contributor(s) genotypes. This
effect was observed in Fig. 7.

3.6. Experiment 4

If a known non-contributor is assumed to be present in a
mixture then the effect on the LR can range from very little, to
complete exclusion of known contributors. This is an example of
providing incorrect information to analyses. The results in Fig. 8
show the dramatic effect that providing incorrect information to an
LR can have, particularly for comparisons to known contributors.
The reason for this dramatic and varied effect on the LR is that the
assumption of a non-contributor will reduce the number of
genotype sets the genotype probability is distributed across, but in
doing so it may force allelic pairings that distributes the probability
away from the genotype set that corresponds to the true
contributors.

3.7. Experiment 5

If a non-contributor is assumed to be present in an n person
mixture, and the mixture is analysed as originating from n+1
individuals then there is very little effect on the LR when
comparing known contributors. The addition of the contributor
allows the analyses to assign a near zero contribution for the
assumed individual and remaining contributor genotypes are
treated as though the assumed contributor was not present. Table
3 shows the mixture proportions assigned by the software to each
contributor during the analyses, compared with the known
mixture proportions. In the third set of proportions it can be seen
that, as expected, the proportion assigned to the wrongly assumed
contributor is very low.

This is an example of providing irrelevant information to
analyses. Fig. 9 shows the effect on the LR when irrelevant
information is provided. In Fig. 9 it can be seen that the effect on
the LR when adding irrelevant information is negligible at the
higher end of DNA contribution. At lower DNA contribution levels
there is a divergence between the two sets of results, with the
irrelevant assumption LOWESS line falling below the no assump-
tion LOWESS line. At these lower levels of input DNA the small
mixture proportion assigned to the assumed contributor is in the
same region as the known minor contributor (see tubes 13, 14 and
15 in Table 3). The effect is for the weights to be spread amongst a
larger number of genotypes sets as the assumed contributor can
account for some of minor peaks that they share, by chance, with
the known minor contributor. At these lower levels therefore
experiment 5 is no longer demonstrating irrelevant information as
it is having an effect, albeit small, on the weights.

3.7.1. The difference between reliable, reproducible and informative

Having presented and explained DNA interpretation to
scientists, lawyers and juries it has been the author’s experience
that the terms reliable, reproducible and informative often get
used incorrectly, and this can lead to the wrong conclusions being
drawn. The excerpt below is a transcript of a defence expert's
testimony who was challenging some LR results generated from
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Table 3
Mixture proportions (Mx) obtained in Experiment 5.
Tube DNAin Designed Mx Mx obtained
PCR Mx for obtained when
(pg) contributor when analysed
analysed asN=3
as N=2
One Two One Two One Two Three
(assumed)
1 400 050 0.50 050 050 049 049 0.02
2 200 0.50 050 050 050 049 049 0.02
3 50 0.50 050 050 050 046 047 0.07
4 400 033 067 032 068 031 065 0.04
5 200 033 067 031 069 030 067 003
6 50 033 067 041 059 048 049 0.03
7 400 020 080 017 083 0.16 082 0.02
8 200 020 080 020 080 019 078 0.03
9 50 0.20 080 021 079 0.18 076 0.06
10 400 017 083 016 084 015 083 0.02
11 200 017 083 019 084 0.16 082 0.02
12 50 0.17 083 008 092 012 082 0.06
13 400 009 091 006 094 007 090 0.03
14 200 0.09 091 008 092 0.07 009 003
15 50 009 091 004 096 0.04 090 0.06

low level data using the method in Taylor 2013 [2]. The specific use
of reliability referred to the lab hardware in this example:

...One cell has got 7 picograms of DNA inside it, so we are
looking at the results of about four cells worth of DNA. Now,
that is beyond the reliable capability of the (ed) amplification
kits.

Another example here shows a question from defence council
who has used the word ‘accuracy’ when ‘uninformative’ would be
better. He was referring to a graph that showed peak height
variability increasing as peak heights decrease:

Defence: The conclusion to draw is that as you get close to lower
peak height, then the accuracy of the STRmix program drops?

Witness: No, it's not what I would take from that. Within
STRmix - I'll step back. This sort of modelling shows that as
peak heights decrease, the variability increases, so if you were
to generate multiple profiles from the same DNA extract and
they contain low peak heights, the peak heights are going to be
quite variable at low levels and not so variable at high levels. So
we put models into STRmix. We tell it when you see low level
peaks they could be quite variable, when you see high level
peaks they're not going to be quite so variable. As STRmix is
analysing the profiles, it accounts for a lot of possible variability,
so it's going to give less strength to its predictions based on
increased variability. That's the advantage of having these sort
of models sitting behind STRmix.

The results from the work in this paper provide an opportunity
to discuss the differences between these terms and relate them to
practical results.

Reliable DNA results are those that can be trusted or used in an
interpretation, statistical analysis or calculation. The reliability of
DNA profiling results will depend on the quality assurance of a
laboratory and the processes used to track, examine and
biologically analyse an exhibit. The reliability of the statistical
analysis or calculation will depend on the biological and
mathematical models used.

Reproducibility is often used as part of dictionary definitions of
reliability. This causes problems for forensic scientists because
DNA profiles are not reproducible. Numerous works have studied
the causes [8] and results [3,9-11] of the differences between EPGs

produced from ‘identical’ duplicate analyses of the same DNA
sample. Continuous DNA interpretation methods [2,12] also have a
level of non-reproducibility as Markov Chain Monte Carlo systems
are based on random number generation and so the statistic
calculated differs each time they are run. The variation between
replicate biological analyses does not, however, make the results
unreliable as long as that variability is taken into account within
the biological and mathematical models used to interpret them.
Examples of statistical models that take high levels of non-
reproducibility into account are the construction of consensus
profiles for low template DNA analyses [13,14]. The reverse is also
true; a completely reproducible result may be unreliable if the
means in which it was generated are unreliable in some way.

Whether a result is informative relates to the outcome of the
calculation and is not dependent on reproducibility or reliability
(although hopefully any result obtained is done so reliably). In
Fig. 3 at a high DNA input amount, the LRs produced when H, was
true were separated from those produced when H, was true by
many orders of magnitude. As the input DNA amount was reduced
the LRs for both sets of data contracted around one, or log;o (LR) = 0.
This is the expected result, because as the calculation has less
information its power to distinguish between true and false
propositions is reduced. Therefore, at the lower end of input DNA
the results are considered uninformative, in that they do not
provide the analyst a result that informs them that one proposition
is supported over the other. Note that this does not mean that the
result is unreliable or inaccurate, in fact the opposite is true, it is
very reliably and accurately giving an uninformative LR of 1.

A second point that is commonly used, incorrectly, as an
example of unreliability is that at lower levels of input DNA there
are instances of LRs that falsely favour exclusion (blue points below
the zero line in figures) and LRs that falsely favour inclusion of non-
contributors (red points above the zero line in figures), commonly
called adventitious matches. Adventitious matching is a phenom-
enon that has been known for some time [15,16] and recently work
has been done using the method of Taylor 2013 [2] to investigate
the rates of adventitious matching for complex and low level
mixtures [17]. In fact the LR calculation is based on the premise
that unrelated people can exist that possess the same DNA profile,
purely by chance. So if an infinite number of non-contributors
could be compiled in a database and compared to the analyses of
mixtures in this paper, then the red points would range up to the
same level as the blue points (and in some instances above them).
Hence an overlap of LRs when H, is true and H, is true is not only an
expected result, and fundamentally required for the LR to function,
but is definitely not an indication of unreliability. It is the
magnitude of the LR that gives an indication of the likely chance of
adventitious matching having occurred.
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The performance of any model used to analyse DNA profile evidence should be tested using simulation,
large scale validation studies based on ground-truth cases, or alignment with trends predicted by theory.
We investigate a number of diagnostics to assess the performance of the model using Hy true tests. Of
particular focus in this work is the proportion of comparisons to non-contributors that yield a likelihood
ratio (LR) higher than or equal to the likelihood ratio of a known contributor (LRpoy), designated as p, and
the average LR for Hy true tests. Theory predicts that p should always be less than or equal to 1/LRpo; and
hence the observation of this in any particular case is of limited use. A better diagnostic is the average LR
for Hg true which should be near to 1. We test the performance of a continuous interpretation model on
nine DNA profiles of varying quality and complexity and verify the theoretical expectations.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Methods for evaluating DNA profiles have benefitted from
recent improvements in modelling and software [1-7] which have
enabled the generation of quantitative evidential weights from
profiles that would hitherto have been considered uninterpretable
[1,5,7.8]. There is a considerable need to evaluate the performance
of interpretation software, and to calibrate the evidential weights
that different packages produce. Doing so can be a difficult task,
particularly when the software is designed to analyse profiles that
require calculations beyond the reasonable ability of an analyst. In
these instances the performance of the system itself must be based
on simulation, large scale validation studies based on ground-truth
cases, or alignment with trends predicted by theory. It will often
require all three.

Recently the idea of performance tests on a per case basis has
been advanced [9]. The suggestion is that a great many profiles are
simulated and tested in the place of the person of interest (POI).
The fraction of those tests producing a likelihood ratio (LR) greater
than the LR for the POI (LRpo;) may be reported and it has been
suggested that this could be interpreted as a p-value. We would
prefer to avoid the mixing of terms from the Bayesian and
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frequentist methods and will call this fraction p but not interpret it
as a p-value, which would be more familiar if we were testing some
hypothesis. This value of p is relative to a simulation and a model
and care should be taken when moving this inference to a real
population.

LRs produced for non-contributors that support their presence
in a DNA sample have classically been referred to as ‘adventitious
matches’ [10]. This term uses binary interpretation terminology
and would perhaps better be referred to as ‘misleading LRs’ in a
continuous framework as a ‘match’ loses its meaning when no
single contributor’s genotype can be resolved.

There is a limit in the type of DNA profiles that can be assessed
by simulation because calibrating an LR of x requires simulation
that has many more than x elements. For a complete DNA profile in
a modern profiling system the value of x can be over 20 orders of
magnitude, which is well beyond the practical limits of any
standard computer.

Dorum et al. [ 11] outline a method to overcome this restriction.
The fraction of genotypes equalling or exceeding the LR is
calculated exactly and assuming between locus independence.

The assumption of no between locus effects [11], however
convenient, ignores the fact that the larger peaks at each locus are
more likely to come from the same contributor. This assumption
ignores valid information and would not be sustainable if some
aspect of the calculation invokes distinguishable contributor
orders (for an explanation of the contributor concept see [12]),
for example, using different drop-out probabilities for different
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contributors. It should therefore be considered a convenient but
inefficient assumption and should be avoided when testing any
advanced system that correctly treats between locus effects.

Correctly avoiding such assumptions means that testing any
large LR requires an unreasonably large number of simulations and
is unlikely to be achievable on a per case basis.

The tests simulating the situation where the POI is not a donor
are more appropriately called ‘Hq true’ tests rather than perfor-
mance tests. Good | 13] (quoting Turing) stated “the expected factor
for a wrong hypothesis in virtue of any experiment is 1.” The proof is
given in Good and reproduced here:

S p(e ) REH)
P(E;[H)

S P(Ei|H) = P(Ey UE2 U... UEq|H) = 1
i

where E; is the ith possible outcome, H and H are two propositions.
Placing this into the DNA context we write the evidence as the
crime stain genotype, Gs, which is fixed, and the potential donor's
genotype, G;, which is varied,

7y P(Gs. GilH)
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Paraphrasing this equation: the average LR for the Hy true tests
should be one. It is relatively easy to “see” this equation in action.
Consider a single source stain giving a full profile, G.. The
probability of G is 1 in a billion. The LR for a POI containing the
same alleles as G is 1 billion for the propositions

Hy: POl is the donor
Hg: an unknown person is the donor

It follows that if people were chosen at random (or simulated) we
would expect that 1 in every billion people would have the same
reference profile as the POI and yield an LR of 1 billion when
compared to the evidencee We would also expect that
999,999,999 out of 1 billion randomly chosen people would have
adifferent reference to the POland yield an LR of 0 when compared to
the evidence. The average LR of these 1 billion comparisons is then 1.

Consider now a more complex evidence profile and n simulated
reference profiles that are compared with it. From the theory above
we would expect the average LR of these n simulations to tend to
1 if the simulation and the model used to interpret the simulation
are the same.

n
lZLR,-::l
ns
i=1

where LR; is the LR generated from the i" simulation. We
emphasise that this experiment is testing the mixture interpreta-
tion portion of the software since the simulation is creating an
idealised population that is in Hardy-Weinberg and linkage
equilibrium.

We are interested in the proportion of n simulations that would
yield an LR greater than or equal to LRpo; which we term p. If we
order the simulations in increasing order of magnitude and let
LR,k be the first LR that equals or exceeds LRpo; then:

1" k-1 1 n
= ; LR,—+Hi;kLRi ~1

n—k-1

defining &= (1/m> " LR; gives

where § is non-negative.
Because LR;>LRpg; for all i from n-k to n we can say that

(]/")Z:I,n,kLR" = (k/n)LRpo; + £ and (k/n)LRpo;=1—8 — & where &

a/m> L, LRix1-3,

is also non-negative.

We define p=k/n, which is the proportion of simulations
producing an LR greater than or equal to LRpo. This is akin to
Dorum et al's p-value but we write p to emphasise that this is a
proportion from a simulated sample in our case.

We write the expected value of p as p and suggest that this
expectation is

. 1-8-¢
o A=0=g 1
P~ (1)

Which, as both § and & are non-negative values, provides the
inequality:

= 1
P< R )
&§=0 occurs when all profiles that do not align with that of the POI
yield an LR of O (i.e. when there are no ambiguity in potential
contributor genotypes) and £=0 (i.e. when i contains a single
element) occurs when the POl has a profile that yields the
maximum possible LR. If both § and ¢ are O then p = 1/LRpg;, which
represents the maximum value that p can ever take.

The derivation of Egs. (1) and (2) did not require any
assumption about the population and as such would allow a
statement of p, if desired, to be made in every case provided that
the software was producing the LR in a reasonable manner.

If the software is not producing the LR in a reasonable manner
then a p term from a simulation will not recover the situation
although it may alert us to the fact that the software is
underperforming. In any case the value will be relative to an
idealised population.

Verbalising Eq. (2): The probability of observing a likelihood ratio
of LRpo; or larger from an unrelated non-donor is less than or equal to
1in LRpo,

This gives a frequentist sounding interpretation to the LR but is
actually a statement that follows from the laws of probability. It
avoids the awkward interpretation of results of Hg true trials as a p-
value. This suggests that a more viable route to case specific
reinterpretations of the LR is to assess if the software is preforming
in a reasonable manner in large scale Hy true tests such as
advocated by Evett et al. in several forensic fields [14].

We extend Gill and Haned [9] here. If the software is accepted as
performing appropriately then Egs. (1) and (2) should apply in
each case. Our criteria would be that the average Hq true LR should
be close to 1 and that Eq.(2) should hold. If the average LR is greater
than 1 then the software is on average non-conservative relative to
the simulation. If it is less than 1 it is on average conservative.

It has been suggested that: “These tests are used to evaluate the LR
and provide an important indication that the reported statistic has
meaning on a per-case basis. Indeed, the argument can be taken
further since there is no reason why the performance test itself could
not be used instead of the LR statistic. But this debate is reserved to
future work.” [9] and we hope that the work carried out here is a
start to that debate.

If the LRpg; is 1000 but p=1 in a million then a suggested
inference has been that the LR is very robust [11,15] and probably
overly conservative. This would indeed lead to a value for p that is
much smaller than 1/LRpg;.

However, given Eq. (1), we would suggest that such a value for p
might instead suggest that § or ¢ or both are large and the LR is not
too small. It might suggest that § +&£=0.999 in the above example.
In fact, reflecting on Eq. (1) we suggest that it is not reasonable to
interpret the value of p numbers as supporting the robustness of
the LR.

We note here that hypotheses can be constructed so that Eq. (2)
will not hold. Consider a two person profile made up from G, and
G,. If we simulated random profiles, Gg, the propositions:
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Hpi: Gry and Gg; are the donors
Ha1: Two unknown persons, unrelated to Gg; or Ggo are the
donors

then the average LR from numerous simulated comparisons
(where Gy and Gg, are both simulated at every iteration) would
be 1. If, however, the following propositions were addressed:

Hpz: Gy and Gg, are the donors
Hgz: Two unknown persons, unrelated to G; or Gg; are the
donors

then the average LR from numerous simulated comparisons would
not equal 1. Again this can be ‘seen’ by considering a simple
example. Let the probability that a person from the relevant
population would be genotype G, be 1 in 1 million and let the
probability of genotype G, be 1 in 1000. The DNA of G, and G, are
combined to produce a mixed DNA profile with completely
resolvable components. Simulations are carried out randomly
generating DNA profiles and calculating an LR for H; and Hg,. On
average, in every 1000 simulations we would expect 999 simulated
profiles to differ from G, and so give an LR of 0 and 1 simulated
profile to be the same as G, and give an LR of 1 billion. The average
of these LRs is therefore 1 million.

The reason for the divergence from the expectations of Turing is
that this analysis does not address propositions that represent Hg
as the ground truth. Under H,,G; and Gg, are the donors. This is
clearly not reflective of the ground truth as Gg, is a simulated non-
donor to the profile. Under Hy, the donors are two unknown
individuals, unrelated to G; and Gg.. This also does not represent a
ground truth as in this instance G, has specifically been identified
as a non-contributor, which is not the case. For the expectations of
Turing to hold, all known contributors being considered in the
calculation must be present as donors in both Hj, and Hy, and all
simulated contributors must be present as donors in H, and as
non-donors in Hg.

For our two person example, acceptable sets of propositions for
Hgq are:

Hps: Gy and Gg, are the donors

Hgs: Gy and an unknown person, unrelated to Gg; are the donors

Hpa: G2 and Gy, are the donors

Hga: G, and an unknown person, unrelated to Gg; are the donors

Table 1

Hps: Ggy and an unknown are the donors

Hgs: Two unknown persons, unrelated to Gg; are the donors

Hp1: Ggy and Gg; are the donors

Ha1: Two unknown persons, unrelated to Gg; or Gg» are the
donors

We test the performance of the profile interpretation STRmix™
[16] against these criteria.

2. Method

Three constructed DNA samples were profiled using Global-
Filer™ (Thermo Fisher Scientific) as per manufacturer’s instruc-
tions and six constructed DNA samples were profiled using Profiler
Plus™ (Thermo Fisher Scientific) as per manufacturer's instruc-
tions, except at half the volume. DNA amounts and mixture
proportions are given in Table 1 for the constructed DNA samples.
Amplification fragments were resolved using the ABI PRISM™
3130x! Genetic Analyser and analysed in Genemapper™ ID-X or
Genemapper™ ID 3.2.1.

DNA profiles were analysed using STRmix™ version 2.3 (http://
strmix.esr.cri.nz). Following Gill and Haned [9] random DNA
profiles were generated in proportions according to expectation
from allele frequencies. This effectively simulates a population in
Hardy-Weinberg and linkage equilibrium. We emphasise that this
does not replicate a real population but rather an idealised one.
Hence this test does not validate the full software performance
either for STRmix™ or the previously reported work on LRmix [9].
It only calibrates that portion of the software separate from the
population genetic model.

These randomly generated DNA profiles were compared to the
mixed DNA profiles to generate LRs. All LRs were calculated using
Caucasian databases (either an in-house database for GlobalFiler
profiles or [17] for Profiler Plus calculations) and using the product
rule. By using the product rule to calculate LRs we align the method
used to simulate the profiles with the method used to interpret
them. Simulation using the product rule and interpreting using the
Balding and Nichols equations [18] creates an inconsistency and
hence it is very hard to predict the correct result. However for a
discrete system where § =¢=0 this discrepancy would force p <1/
LRpo; and the average LR for Hy true to be less than 1 inappropri-
ately.

Experimental setup, an asterisk (*) denotes a sample where loci containing STR information have been ignored. Instances where the value in the ‘STR loci’ column is less than
the number of autosomal STR loci in the kit, in the absence of an asterisk, indicates a partial evidence profile was obtained.

Experiment Profiling system Contributors STR loci Known contributor DNA amounts Propositions:
(pg) C=known contributor
U=unknown
RANDOM = simulated profile
1 GlobalFiler 4 21 13:13:13:13 Hp: C2+C3+C4+RANDOM
Hg: C2+C3+C4+U
2 GlobalFiler Bl 21 20:15:10:5 Hp: C1+C2+C3+RANDOM
Hg: C1+C2+C3+U
3: GlobalFiler 4 12 4:3:2:1 Hp: RANDOM +3U
Hg: 4U
4 Profiler Plus 1 6 20 Hp: RANDOM
Hg: U
5 Profiler Plus 1 3 10 H,: RANDOM
Hqg: U
6 Profiler Plus 2 6* 38:38 Hp: RANDOM +U
Hg:
7 Profiler Plus 3 9 100:100:100 H,: RANDOM +2U
Hq: 3U
8 Profiler Plus 1 4" 500 Hp: RANDOM
Hg: U
9 Profiler Plus 1 1" 500 H,: RANDOM
Hg: U
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Results of comparisons of simulated random references to profiles outlined in Table 1. Vertical axes for distributions show counts.

Experiment  Simulations Hy true log;o(LR) Number of Hy true with Average Hy true  Counter HptruelR  p,‘1in’
LR=0 LR number (s)
1 12,000,000 40 - 11,994,959 1.0046 Cs 3,74,104 3,000,000
140 -
120 4
100 4
80 4
60 4
40 4
20 4
0 oo arm
SOV 00T N0 A, \B by R gy i et
\?7r?anqo—rnmnnc
logo(LR)
2 10,000 500 0 0977 e 9 44
400
300 +
200
100
S=NNTNNTNAN—OR
g T S~
log,,(LR)
3 1,20,000 0 0.927 (& 4 29
G 7 56
G 5 34
G 6 49
4 80,000,000 gy - 922,585 1.001 G 312,325 6,666,666
600
400 4
200 l
0 +rrrer- T
TN O AN N X~
<+ F F nnn 888
log,o(LR)
5 100,000 350 - 99,618 1.022 G 215 262
300 4
250 4
200 4
150 4
100
50 4
-
N AT OO TSR T
IS I e oenoenen
log,o(LR)
6 10,000,000 9,898,155 1.017 G 278 4,163
G 12,557 78,125
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Table 2 (Continued)

Experiment  Simulations Hy true logo(LR) Number of Hy true with Average H; true  Counter Hptrue LR p,*1in’'
LR=0 LR number (s)
3500 -‘
3000 A
2500 -
2000 -
1500 -
1000 J‘
500 1
0
<
G
7 1,000,000 1000 1 922,585 0.906 & 234738  >1,000,000
0 (& 2,530 17.241
800 ‘ (o} 43 2,262
600 4
400 ‘
200 J‘
0
QRUT NSO T NS
SN~ OCTANOSAN T
S et T
log,((LR)
8 10,000,000 5 9,999,960 0.872 G 218,070 250,000
40 4
30
20
10
0 +rrrr BARASEEERRRSaRS aaney
A T N T Rl Al o
S T T VNN O OO
log,(LR)
9 10,000,000  gp0000 9,274,620 1.003 (3 14 14
700000 -
600000 -
500000
400000
300000
200000 -
100000
0 4+ T T T

log,,(LR)

By aligning the two we expect the average LR for Hq true to be
close to 1 and recognise explicitly that we are testing the mixture
interpretation and not the population genetic model. Table 1
shows the experimental setup and the propositions tested.

In order to make the problem tractable we have reduced the
number of loci and hence the LR in some cases (as indicated in
Table 1). Specific details regarding the STRmix™ settings used to
analyse the DNA profiles are available on request from the authors.

3. Results

LRs generated in the comparisons of randomly simulated
profiles to the evidence profiles were used to generate the
distributions seen in Table 2. Also shown in Table 2 is the average
Hg true LR value from all simulations, the LRs for the known
contributors and p expressed as ‘lin’ for each of the known
contributor’s LRs. The value of p has been given as ‘1 in’ for ease of
direct comparison to the LR values of known contributors, in the
check for adherence to Eq. (2). In short, for Eq. (2) to hold then 1/p

must be larger than or equal to the LR of the known contributoritis
being compared against.

We recognise that in some laboratories the number of unknown
contributors under H,, is increased if the person hypothesised as a
contributor is excluded. This was not done in our study.

Experiment 1. A complex four person profile constructed with
equal mixture proportions and assuming three of the four
known contributors. The H, true LR was 374,104 and from this
information the expectation was that the number of Hy true
LR=0 would be high. This is indeed what was observed. The
value of p was 1 in 3 million, which is almost an order of
magnitude below LRpo; and so Eq. (2) holds. The average Hq true
LR is 1.0046, which is very close to 1 as expected from theory.

Experiment 2. The experiment was similar in setup to
experiment 1, however the contributor proportions in the
mixture were unequal. Again three of the four known
contributors were assumed, with the unassumed contributor
being the minor contributor to the profile. An H, true LR of 9 was
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obtained which indicated that the amount of information in the
unassumed contributor position was low. This is backed up by
the fact that none of the simulated profiles gave an Hy true
LR=0. A profile setup in this manner is not subject to high
sampling variation in simulation numbers as it is not relying on
observing a very rare event. This meant the number of Hy true
simulations could be kept down to 10,000 and still show an
average Hq true LR of close to 1 (0.977). Again Eq. (2) holds with
1/p~44.

Experiment 3. This experiment investigates a low level four
person mixture where none of contributors are assumed. All H,,
true LRs were low and again there were no instances of Hy true
LR=0. The average Hq true LR was 0.927, and Eq. (2) held for all
H,, true LRs.

Experiment 4. This experiment investigated a single source
profile with six loci of which only one was able to be
unambiguously assigned as a heterozygote. All other loci
contained a single peak and had both heterozygote (drop-
out) and homozygote (non drop-out) genotypes assigned to
them with non-zero weight. The known contributor aligned
with the heterozygote (drop-out) genotype in three of the five
ambiguous loci. The limited number of different Hy true LRs
reflects the restricted number of genotypes that randomly
generated profiles can have that will not lead to an Hy true
LR=0. Again Eq. (2) held for this example and the average Hq
true LR was close to 1.

Experiment 5. This experiment contained three loci, all of
which contained a single, low level peak, that could be
explained by contribution of DNA from either heterozygote or
homozygote sources. This experiment is similar to experiment
4, just with fewer loci, and lower peak heights.

Experiment 6. This experiment examined a two person mixed
DNA profile. Three loci were ignored so that the number of
simulations could be kept down to 10 million. The individuals
who contributed were intended to be added in even amounts,
however one contributor (C;) was slightly less intense that the
other (C;) and this is reflected by the H, true LRs. Eq. (2) held
true and the average Hy true LR was close to 1. Because of the
level of discrimination in the profile there were a large number
of Hy true LR=0.

Experiment 7. This profile was generated from three individu-
als, who contained a lot of masking. Only two of the nine STR loci
exhibited more than four allelic peaks. The result was a range of
Hp, true LRs. Eq. (2) held true, with no observations of an Hy true
LR appearing above the H, true LR for C;. Again the average Hq
true LR was close to 1.

Experiment 8. This profile was a complete single source profile.
For the analyses only four loci were included so that simulations
could be kept to 10 million. In this instance we would expect 1/
p=LRpo; and indeed the two values were close. The slight
divergence of these two values is likely due to sampling
variation in the simulation process and this is reinforced by the
average Hy true LR value being slightly lower than the expected
value of 1. To further investigate that this was the case
experiment 9 was conducted. Note that being a strong single
source profile there is only one genotype that will yield a non-
zero LR. This genotype will always give the same LR (due to the
simplifications of the model we are using) and so only a single
bar is seen on the distribution of Hq true LRs for this sample. This
is also true of experiment 9.

Experiment 9. This profile was again a complete single source
profile, however only a single unambiguous locus was used for
simulation. The H,, true LR was 14 and as expected by theory in
this situation 1/p = 14 also. The average Hq4 true LR was very close
to one.

Table 2 shows that the Hy true log(LR) distributions can be
multi-modal. We believe that this may be due to ‘groups’ of
genotype sets that share certain properties e.g. levels of
homozygosity, number of drop-outs, number of drop-ins or certain
peak imbalances. The interaction that leads to these groupings is
likely to be complex and we have not attempted to investigate their
source as it is a side issue to the focus of this work.

4. Discussion

In all cases tested Eq. (2) held and the average Hg true value is
close to one. The fact that 1/p is larger than LRpo; does not provide
an indication that the LRs produced for POIs are robust, but rather
is an expected outcome from probability theory for complex
profiles. The closeness of the average of Hg true LRs to one is a
better indication of the robustness of the LR and even then we
reiterate that this is more an indication of the performance of the
models used to generate the LR than of the LR itself. Recall that this
test, as with the performance tests of Gill and Haned [9], are
relative to a population generated under the product rule
expectations. However no assumption of Hardy-Weinberg and
linkage equilibrium is made in deriving Eq. (2) and hence this
equation is expected to hold for real populations if the LR is
assigned appropriately.

If the work described here is correct then the idea that the result
of a performance test could replace the LR cannot be supported.
The probability, p, differs from 1/LRpo; because of the expected
properties of probability and does not add to the LR. We do not
suggest that the LR be replaced by this statement but rather
suggest that the LR is the most informative statistic possible.
Further we suggest that the probability p might be misleading if,
for example, the LR is 1000 and p=1 in a million. If the LR is a
reasonable assignment of the weight of evidence then the p term
may lead to an overestimation of the evidence in some triers of
fact.

The results of this work also go towards addressing a
misunderstanding that has arisen recently during defence expert
testimony. This questions the reliability of an LR, when it is derived
from low quantities of DNA. We provide two examples of defence
expert testimony as example [R v FULLER, District Court of South
Australia, August 2014]. We have added information enclosed in
square brackets, to which we assume the witness is referring, in
order to make the statements more comprehensible.

“We have an issue where we have got a little bit of DNA of someone
you might be really interested in, then the software, based on
validation work the laboratory has done, is very poor at measuring
that difference [between contributors and non-contributors]
because there is such a high level [of peak height variability]”

And later in the same trial:

“I say, based on what their published validation stuff says, the
spread [of heterozygous balance] when you get down low is so great
that it is impossible for the software to accurately assess it, or predict it
[supported genotypes] I should say.”

The findings of this study further demonstrate a point raised in
[16], whichis thatregardless of the strength or complexity of the DNA
data, as long as the models used to analyse the data are reliable, then
the LR produced will also be reliable. In that work, a number of
deliberately low level DNA profiles were chosen (both single source
and mixed) to demonstrate this concept. A low LR for the comparison
of a reference to such samples, which is the type of result commonly
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referred to as ‘unreliable’, is simply demonstrating the expected (and
desired) behaviour of LRs.

We recognise here that the reality of casework is that there is
generally a complexity ‘threshold’ where DNA profiles will not be
analysed. This threshold should not be taken as evidence of the
non-reliability of a model's performance, but rather a practical or
business decision made by the analyst.

It is a natural concern that is sometimes expressed by forensic
practitioners that, where profiles contain relatively small peaks,
with consequent appreciable levels of uncertainty in their
measurement and designation, then the LR from a continuous
calculation becomes increasingly unreliable. However, provided
the modelling assumptions have been adequately informed by
experimental data then the increased levels of uncertainty in low
level profiles lead to LR distributions that increasingly trend
towards one, adequately and coherently reflecting the decrease in
information content of such profiles. Experiments of the kind
reported in this paper are able to demonstrate this.

Rather than a reduction in reliability, the LR trending towards
one as the amount of information decreases, is a drop in the
informativeness of the result, i.e. the ability of the result to inform
us of some support for one proposition over another. In this
instance the probability that a randomly chosen non-donor could
yield the same (or higher) LR is increased, however the size of the
LR is still the best reflection of this fact. Somewhat counterintui-
tively it is the simplest of profiles (unambiguous and single
sourced) where the probability of a randomly chosen non-donor
giving the same (or higher) LR will most nearly approach 1/LRpoy,
and not the complex or low level profiles.

The adherence of results in this work to the concept “the
expected factor for a wrong hypothesis in virtue of any experiment is
1", even atlow levels, is yet another demonstration of the reliability
of the LR statistic for analysis of DNA profile evidence, when
generated with reliable models.
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5a — clarification
The specifications of the computer used to carry out the simulations in the previous paper are:

e Intel(R) Core(TM) i7-3940XM CPU@3.00GHz
e 32GBRAM
e 64-bit Windows 7 Ultimate
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Hy true testing is a way of assessing the performance of a model, or DNA profile interpretation system.
These tests involve simulating DNA profiles of non-donors to a DNA mixture and calculating a likelihood
ratio (LR) with one proposition postulating their contribution and the alternative postulating their non-
contribution. Following Turing it is possible to predict that “The average LR for the Hy true tests should be
one” [1]. This suggests a way of validating softwares. During discussions on the ISFG software validation

Keywords: guidelines [2] it was argued by some that this prediction had not been sufficiently examined
zNA profile experimentally to serve as a criterion for validation. More recently a high profile report [3] has
4 true

emphasised large scale empirical examination.

A limitation with Hy true tests, when non-donor profiles are generated at random (or in accordance
with expectation from allele frequencies), is that the number of tests required depends on the
discrimination power of the evidence profile. If the Hy true tests are to fully explore the genotype space
that yields non-zero LRs then the number of simulations required could be in the 10s of orders of
magnitude (well outside practical computing limits). We describe here the use of importance sampling,
which allows the simulation of rare events to occur more commonly than they would at random, and
then adjusting for this bias at the end of the simulation in order to recover all diagnostic values of interest.
Importance sampling, whilst having been employed by others for Hy true tests, is largely unknown in
forensic genetics. We take time in this paper to explain how importance sampling works, the advantages
of using it and its application to Hy true tests. We conclude by showing that employing an importance
sampling scheme brings H, true testing ability to all profiles, regardless of discrimination power.

© 2016 Elsevier Ireland Ltd. All rights reserved.

Likelihood ratios
Performance tests
Importance sampling

1. Introduction for a wrong hypothesis in virtue of any experiment is 1." Focussing

this to the problem at hand translates to “The average LR for the Hy

A recent publication [1] examined a method of simulation-
based performance testing of a model [4,5] used to evaluate DNA
profiling data. These tests involved simulating DNA profiles of non-
donors to a DNA mixture and calculating a likelihood ratio (LR)
with one proposition postulating their contribution and the
alternative postulating their non-contribution. Tests simulating
the situation where a person of interest (POI) is not a DNA donor
are more appropriately called ‘Hy true’ tests rather than perfor-
mance tests. Good [6] (quoting Turing) stated “the expected factor

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2016.12.004
1872-4973/© 2016 Elsevier Ireland Ltd. All rights reserved.

true tests should be one”. In [1] the truth of this lemma was
demonstrated by the use of Hy true tests on nine DNA profiles of
varying complexity and information content This suggests a way of
validating softwares by noting the average LR in a large number of
Hd true tests." During discussions on the ISFG software validation

! Note that adherence to this lemma is not the only test that a system would need
to pass in order to be considered valid. The adherence of a system to the lemma
follows from the laws of probability, hence while it will demonstrate that a
probability distribution has been formed on the genotypes it does not mean that the
probability distribution is sensible. Secondly, we do not know how systems will
behave that treat nuisance parameters in the model differently under Hp and Hd,
but it is quite probable that they will not adhere to the lemma. The implications of
this behaviour are beyond the scope of this article.
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guidelines [2] it was argued by some that this prediction had not
been sufficiently examined experimentally to serve as a criterion
for validation. More recently a high profile report [3] has
emphasised large scale empirical examination.

The discrimination power of the DNA profiles that can be tested
by standard sampling is limited. An LR of x requires simulation that
has many more than x elements. For a complete DNA profile in a
modern profiling system the value of x can be over 20 orders of
magnitude, which is well beyond the practical limits of any
standard computer using a naive simulator.

In the simulations carried out in [1] on profiles with highly
discriminating information the vast majority of LRs produced had a
value of zero. A situation can be imagined where a single source
DNA profile that had a profile frequency of 1 in 1 billion was
undergoing Hy true tests using propositions:

Hp The randomly simulated non-donor is the source of the DNA

Hgy An unknown individual is the source of the DNA

Within each block of one billion tests we would expect an LR of
one billion to be obtained once, and the rest of the simulations
would yield an LR of zero. Most observers would agree that this
seems like a large effort to obtain mostly zeros. A more efficient
system would simulate profiles that we knew were not going to
yield an LR of zero, and as long as we knew what proportion would
give zero (had we carried out the naive simulation) then we would
end up with the same total information as using a naive simulator.
The advantage, however, is a very much reduced requirement for
simulation. In the single source example described above, we
would only need to run one test that simulated the one profile that
gave an inclusionary LR and as long as we know that the frequency
of obtaining a non-zero LR was1 x 10 °, then we would have the
same information as before but at 1 billionth the computing cost.
This is the idea behind a technique known as ‘importance
sampling’.

This idea is not new to forensic biology. In a recent publication
describing the workings of continuous DNA interpretation
software [7], importance sampling was used to consider genotypes
that are included in an assessment of the probability of the
evidence. In [8] the authors demonstrate the workings of
importance sampling as applied to choosing genotypes to calculate
the proportion of LRs derived from mixtures above a chosen value.
Prior to this importance sampling was very nicely demonstrated in
[9] with application to calculating exceedance probabilities.
Despite these publications, the idea of importance sampling can
be difficult to understand for those who do not have a statistical
background. We attempt, in this work, to explain what importance
sampling is, with simple examples, and how it is beneficial when
using a sampling system to assign a probability for the occurrence
of rare events.

We demonstrate the application of importance sampling to Hy
true tests so that all profiles (of any discrimination capacity) are
within the realms of being practically demonstrated to adhere to
Turing's lemma [6]. This is an important ability to possess for
model validation, particularly with regards to highly sophisticated
DNA evidence interpretation systems.

2. Theory

Importance sampling biases the simulation process so that
some elements are chosen more often than at random, and then
readjusts for the bias after the simulation. The topic of importance
sampling often arises in situations where we want to estimate the
probability of a rare event. Importance sampling solves this
problem by sampling from an importance density and reweighting
the sampled observations accordingly. In general, if X is a random
variable with probability density functionp(x), and f(X) is some

function of X, then the expected value of f(X) is
EF0) = [ feop(dx

If h(x) is also a probability density function which is greater than or
equal to zero for the same range of values as p(x) (that is it lies
within the support of p(x)), then this integral can be rewritten as

e \P(X)
EF0] = [ Seofhtods
This statement is not very interesting in itself. After all it is
equivalent to multiplication by one. However, it is the “trick” which
underlies important sampling. If we take a large sample of size S
from the importance densityh(x), then this integral can be
approximated by

S
0] ~ 5w (%)
i=1

where w; = p(x;)/h(x;) are the importance weights. The idea behind
importance sampling is that the importance density h(x), can be
easier to sample from than the original density, p(x), and yields a
low-variance estimate of the desired expectation. The choice of
h(x) is somewhat arbitrary, but does dictate the efficiency of the
sampling scheme. The process of choosing a good importance
distribution is known as tuning and can often be very difficult. One
might think of this process over-sampling the events of interest,
and then down-weighting or biasing the sample values with
weights that reflect the relative probabilities of the events in the
importance and original densities. We provide a simple example of
importance sampling in Appendix A.

2.1. Application of importance sampling to Hq true tests

In the problem at hand we might regard X as the LR, and
f(X)=X. That is f is the identity. For each of the ‘y’ Hy true tests
carried out we calculate a weight, which we call a bias and denote
by. Here, b, reflects the size of the bias that leads to the choice in
test y. In words, the bias term is the ratio of the probability of the
choice using an unbiased method to the probability of that choice
had the biasing method been employed. An approximation of the
average LR (over the Y tests) that would have been obtained had a
naive simulator been used is then:

— i
IR = V;kaby 1

and the number of simulations (I) that this would have required
had a naive simulator been used can be approximated by (see
Appendix B for derivation):

SRy
=2 P
R (2)
In our single source example from earlier, imagine that we had
run one Hgy test. The probability of choosing the one genotype that
would give a non-zero LR using the biased method is one, and this
would yield an LR of one billion. The probability of choosing this
genotype given the unbiased method is 1 in one billion and so

IRy =1x10°% by =1x10"° andﬁ:%(] x10%) (1 x107%) =1.
The approximate number of iterations that this corresponds to
using a naive simulator is [ = ﬁ,‘i =1x10% This is exactly
aligned with our initial expectations, outlined in the introduction.
In many instances LR ~ 1, simplifying Eq. (2) to [ ~ ) "LR,.

y
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All that is left then is to set up the method of importance
sampling so that the bias terms can be calculated. We consider that
a system used to deconvolute a DNA profile will result in a list of
genotypes, each with an associated value (or weight as it is
commonly called). This value is the probability of the observed
data given a genotype set, and can either be generated from a
combination of discrete probabilities of drop-in or dropout in a
semi-continuous framework, or generated by integration across a
number of nuisance parameters that describe DNA profile features.
Table 1 shows the structure of an output from the deconvolution.

In Table 1 genotypes are denoted by a capital G, with left
superscript denoting the contributor position within the genotype
set, right superscript denoting the locus and right subscript

denoting the genotype set. A genotype set (S}) is then the vector of

genotypes in set j, Sj = {‘Gj‘ ..... NGJ‘.}. Note that for each locus
l(

ZWJ‘ = 1. Within the genotypes for any specific contributor there
j=1

can exist redundancies, i.e. imagine a two person profile with a
completely resolved major and an unresolved minor. The result
would be an output similar to Table 1 but the genotypes of
contributor 1 (who we designate as the major) would be fixed, i.e.
'Gi ='G, = "G}, and only the genotypes of contributor 2 (the
minor) would change. In order to calculate the choice bias of a
particular genotype we need to know the probability of choosing
specific genotypes and so the genotype set list in Table 1, needs to
be broken down by contributor as well as locus. For contributor n,
at locus I, we define "J'as the number of unique genotypes they can
possess. The weights, now broken down per locus and per

contributor, for a test genotype G'T. can be determined by:
]l
wh =3 {w "G=G0"G#G; 3)
j=1

Noting that now weights for each contributor at a locus will
Inyl _
sum to one, ZI:J "wi=1.
=

In our biasing of genotype choice, in order to remove all
instances of obtaining an LR of 0, we choose a contributor genotype
held within the deconvoluted list, with probability according to its
weight (i.e. a genotype with weight "w!. = 0.9 will be chosen with
probability 0.9). The probability of this choice has the following
elements:

a A probability of 1/N of choosing any of the N contributor
positions. Note that if M individuals have been assumed as
contributors to the profile then the choice would be amongst the
remaining, non-assumed, contributor positions and the proba-
bility would be (N — M) ™!

b A probability of H"w} of choosing the genotype for that

T
contributor, multiplied across all locus choices

A probability Hf (Q') thatis invoked to account for the genotype
i

chosen that possesses a dropout allele, denoted Q (and defined
as any allele other than those already able to be possessed by
that contributor at the locus in question from the deconvolution
list), multiplied across loci

Within the list of genotypes that a contributor can possess there
are three possibilities at a locus:

a The genotype specifies both alleles explicitly, in which case
f(Q') = 1, i.e. the bias in picking the genotype by the importance
sampler does not need to consider an allele frequency

b The genotype possesses one Q allele, which must be replaced
with an allele from the population from the available alleles (i.e.
any allele other than those already able to be possessed by that
contributor at the locus in question from the deconvolution list).

Ifallele A is chosen then f(Q') = 5‘9, where p), is the probability of
Q

choosing allele A at locus [, in other words, the bias in picking the
genotype by the importance sampler must take into account the
frequency of the allele chosen

The genotype possesses two Q alleles, in which case they must

(s}

both be replaced from the available alleles and f(Q') =
(m)z/(p{l)2 if the same allele, A, is chosen twice or f(Q) =

2
2phpl/ (pb) if two different alleles, A and B, are chosen. In this

scenario, the bias in picking the genotype by the importance
sampler must take into account the frequency of the genotype.

The unbiased probability of choosing the genotype is simply the
profile frequency (in our example calculated using assumption of
Hardy-Weinberg equilibrium), which we represent by f(P), and so
the bias term for a particular choice of non-donor profile is:

f(P) Wil i " nl
= e gl €Z:jeql... 4
=TT @) jez:je 1.1} @
i
Again, as a demonstration, consider the single source profile in
our running example, N=1, M=0. There are no dropouts and so

Hf(Q') =1, and as there is only one genotype to choose at each
I
locus, 'w} = 'wi = 'w} = 1and so [ ["w! = 1. The profile frequen-
i

cyis f(P) = 1 x 10"° and so the bias term is:

9
b= % =T 1072
1-0""1x1

as previously assigned when using intuition.

We need to extend the theory to calculate b in one additional
way, which cannot be demonstrated with the running single
source example. The method, as described above, makes the
assumption that the two contributors in a deconvolution cannot

&
Table 1
Structural representation of deconvolution output of a profile at locus 1, showing the J' genotype sets.
Genotype set (j) Genotype (G) of contributor 1 Genotype (G) of contributor N Weight (w)
! 6} ‘G "
2 G, NG, w,
d 1l N,
J G G W
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possess the same whole profile genotype i.e. once a contributor
position has been chosen, it is assumed that no choice of full profile
genotype is also able to be made in any other contributor. This is
often not the case. Image a two person profile, where both
contributors have donated equal amounts of DNA. The deconvo-
lution of the mixture will give rise to a list of genotype sets that
possess the same complement of genotypes for each contributor,
and with equal per-contributor weights. In other words, if one of
the two contributors was chosen, and a genotype chosen at each
locus from those available to that contributor, then using Eq. (4) to
calculate the bias would be a factor of two too low. The reason for
this is that the chance of that genotype being chosen using our
biased sampling method needs to take into account that the
genotype could have been chosen if either contributor 1 or
contributor 2 was the initial choice, and in Eq. (4), only the latter
(or only the former) is considered. This contributor ordering is the
same phenomenon that leads to the factor of N! required to elevate
sub-sub source level propositions to sub-source level propositions
in DNA profile evidence evaluation [10].

We define the choice of genotype at locus [ in contributor n as
the target genotype, C'T. which in contributor x has per-contributor
weight *w}. We seek the probability of choosing that genotype in
each of the N — M — 1 contributors that were not initially chosen.
To simplify this mathematically, consider the probability of
choosing a target genotype in any of the N — M contributors. Bias
can be calculated by:

b=I® wis@) B)

N-M

and the choice of genotypes is such that the reference profile
will not yield LR = 0 when compared to the evidence profile. In
practice this is achieved by choosing a random contributor and
then a genotype for that contributor at each locus (as described
initially), however the method of genotype choice is not required
for Eq. (5) when the requirement of LR > 0 is explicitly stated. Note
that in the example of an equal two-person profile with no
assumed contributors, Eq. (5) simplifies to:

X

f(P) i
b =F=wif(Q)
II

where x can be either contributor 1 or 2 as they are both equivalent.
3. Method

We carry out Hy true tests on profiles outlined in Table 2, using
the mathematics outlined in the theory section, and Eq. (5) to

Table 2
Experimental setup.

#  Contribs Profiling kit DNA of each Propositions:
contributor (pg) C=known contributor
U=unknown

RANDOM =simulated profile

1 1 GlobalFiler 400 Hp: RANDOM
Hd: U

2 2 Profiler Plus  910:90 Hp: RANDOM +U
Hd: 2U

3 2 GlobalFiler ~ 200:200 Hp: RANDOM +U
Hd: 2U

4 2 GlobalFiler ~ 45:5 Hp: RANDOM +U
Hd: 2U

5 3 GlobalFiler  100:67:33 Hp: RANDOM +2U
Hd: 3U

calculate b. All profiles were generated either using Profiler Plus™
or GlobalFiler™ (Thermo Fisher Scientific) as per manufacturer's
instructions (except that half volume PCR reactions were used for
Profiler Plus™). DNA amounts and mixture proportions are given
in Table 2 for the DNA samples. Amplification fragments were
resolved using the ABI PRISM™ 3130xl Genetic Analyser and
analysed in Genemapper " ID-X. DNA profiles were analysed using
STRmix™ [4,5,11] version 2.4.02 (http://strmix.esr.cri.nz).

4. Results

We present results in the same format as given in [1], which we
provide in Table 3. LRs generated in the comparisons of randomly
simulated profiles to the evidence profiles were used to generate
the distributions seen in Table 3. Also shown in Table 3 is the
average Hq true LR value from all simulations, the LRs for the known
contributors and p (the proportion of simulated non-donors that
yield LRs greater than the known donors) expressed as ‘1 in’ for
each of the known contributor’s LRs. p has been given as ‘1 in’ for
ease of direct comparison to the LR values of known contributors.
We give this value because, as provenin [ 1], 1/p must be larger than
or equal to the LR of the known contributor it is being compared
against.

Due to the biassed manner in which genotypes are chosen, the
distributions in Table 3 cannot simply be created by graphing a
histogram of LRs obtained. Doing so would lead to an inflated count
of the LR that corresponds to the genotype with the highest weight.
Instead for each LR deciban (one tenth of a banx — x + 0.1) the
height, H, of the histogram bars (the count shown on the vertical
axis in Table 3) are:

I
Hy—x+01 = X b;
ix<log,o(LR,)<x+0.1

for bracket x — x + 0.1, where Yis the number of iterations (actual)
for which the analysis was run and I is the extrapolated number of
iterations a naive simulator would have run to obtain an equivalent
result. Due to the large value I, the height of the bars in histograms
for commonly obtained LRs can hide other results. For example the
distribution shown for simulation 4 in Table 3 when graphed on a
log scale (as in Fig. 1) shows the counts of the distribution,
otherwise hidden from view by scale.

The values for p (the proportion of non-donors who would yield
a LR greater than or equal to that of the POI, LRpoy) can be recovered
by:
p= ! X Z b,

Y ELR > LRpo; '

5. Discussion

The number of simulations chosen in this demonstration (not
the approximated naive simulator number) was kept low
deliberately to show the power of importance sampling in
evaluating misleading LRs on highly discriminatory profiles. Table 3
shows that the number of simulations ranged from 1 to 10,000
even when discrimination power was over 25 orders of magnitude.
The main driver in requiring greater numbers of simulations is the
number of genotype sets resulting from the deconvolution that
have moderately sized weights. This is expected to be largest for
complex mixtures with roughly equally contributing donors.

The classic method of carrying out Hy true tests is to simulate
profiles of non-donors for comparison to evidence DNA profiles. A
limitation with this classic method of testing is that the profiles of
the greatest importance (i.e. those which will give the highest LRs
favouring their inclusion to the profile) are usually chosen a very
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Table 3
Results of comparisons of simulated random references to profiles outlined in Table 1. Vertical axes for distributions show counts.
Experiment  Actual simulations Hy true log,o(LR) distribution Average H, true Contributor H, true [R  p, ‘1in’
(equivalent # naive LR number (s)
simulations)
1 1 1 1.000 G 145 % 10°® 1.45 x 10%
(1.45 x 10%)
0
O L e g oY Oy SO e U B X 00
SS =TSN XA
AR A
log,o(LR)
2 100 6.0E+03 097 G 529 % 10'"" 9.62 x 10"
(3.21x10") i G 106 x 10" 146 x 10"
S.0E+03
4.0E+03
3.0E+03
2.0E+03
1.0E+03
1.0E+00 e
el O 8 O M et N
NSRS = =i
log,o(LR)
3 1000 400000 112 G 654 x 10'6 4.34 x 10"
1
(1.12x 10%") B i G 122x 10" 935106
300000
250000
200000
150000
100000
50000
0
D6 G- o) S 00 o 0l O 00
e F oS ~NLAS S
—_—— e m = — = - A
log,o(LR)
4 10,000 1.2E+29 0965 G 897 x 10?7 7.55 x 10%
(8.18 x 10°) = G 242 700
1.OE+29
8.0E+28
6.0E+28
4.0E+28
2.0E+28
LOE+00 el
SY VNV XKD L0
fedvrgnsnanIg
log,y(LR)
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Table 3 (Continued)

79

Experiment  Actual simulations Hy true log;o(LR) distribution Average Hy true  Contributor Hptrue LR p, '1in’
(equivalent # naive LR number (s)
simulations)
5 10,000 4E+16 0.998 g- ¢ 2.40 x 10" 1.05 x 10*
3
T o
3E+16 e ’
2.5E+16
26+16
1.5E+16
1E+16
SE+15
1 el
QT%bl\QC'{ZFIOO?M
log,o(LR)
Appendix A. A simple example of importance sampling
1.0E+30
1.0E+27 We give, in this appendix, a simple example of importance
1.0E+24 sampling for readers not familiar with the technique. Our
1.0E+21 example is a problem involving a discrete probability distribu-
:gg::!; tion because the ideas are more easily demonstrated in the
I'0E+I2 discrete case. Importance sampling works equally well with
1'0E+09 discrete distributions as it does with continuous distributions.
I.OE+O6 The only difference is that the integral is replaced with a sum.
1:0E+03 H‘M That is, if f(x), p(x) and h(x) are all discrete probability functions,
e B then
NOCOTONOVOT® pX)
ne~coNT~NAANYT O
——— — — o~ = —_—
e Ef(X)) X%f(x) R

log,o(LR)

Fig. 1. LR distribution for simulation 4 when graphed on a log scale.

small proportion of the time. This makes Hq true tests of limited
value for most modern DNA profiling kits, where LRs for known
contributors can be 20 or more orders of magnitude. We have
shown here how importance sampling can be used to overcome
this problem, by biasing the choice of non-donor profiles and then
adjusting for that bias in the evaluation of results. Using an
importance sampling scheme it is still possible to recover all
parameters of interest (i.e. the average LR or the proportion of non-
donors that would yield a LR above a specific value). As the results
inTable 3 show, the same diagnostics can still be interrogated with
relatively low computation cost, and should hold true, specifically
that the average Hy true LR is approximately 1 and that p < LRy},
Using importance sampling should provide the capability to carry
out meaningful Hy true tests on almost all DNA profiles with
relatively little computational cost.
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where ()y is the set of all possible outcomes for the random

variable X (the sample space of X).

Imagine we are interested in estimating the probability of
observing eight or more heads in ten tosses of a fair coin
(fair = Pr(Heads) = 0.5 = Pr(Tails)). We can calculate this proba-
bility directly with the Binomial distribution. If X is a random
variable that represents the number of heads observed in ten

tosses of a fair coin, then

Pr(X>8) = Pr(X=8)+Pr(X=9)+Pr(X=10)

10 10
- 0.5%(1 - 0.5)% + 0.5°(1-0.5)"
8 9

+ ( 10)045“’(1 ~05)°

10

56
= J0ad= 0.0546875

If we wanted to calculate this value through simple Monte
Carlo simulation, then we might take a sample of say S = 10,000

from a Binomial distribution with
(X ~ Bin(n = 10, p = 0.5)), and calculate

S
Pr(X > 8) z%Zl(x,- >8)
i=1

n=10 and p=0.5

where I(x; > 8) is an indicator function which takes the value of
one when x; > 8 and is zero otherwise. If we were to do this using
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Fig. A2. S=100-1000 experiments using importance sampling (grey) and naive Monte Carlo (white) simulations to determine the probability of obtaining eight or more
heads in 10 coin tosses. The theoretical probability, based on a binomial distribution, is shown as a solid line at 0.0547.

an importance sampling approach, then we might choose

% x=28
h(x) = L a8

3

1

5 x=10

as our importance distribution. This is simply a discrete
distribution where the probabilities are in the same decreasing
order (but not the same magnitude) as the binomial distribution on
the values 8-10. Therefore, our importance weights in this
sampling scheme are

10
0.5%(1 — 0.5)?
A8/ = 00_ 9% . _3
172 - 1024 YT
10
0.5°(1-0.5)"
w(xi) = 9 30 -
e = 024 N
10
0.5'°(1-0.5)°
10 . S
1/6 © 1024 7T

and our estimator is
1 S
Pr(X > 8) ~ §'_Zl:w(x,-)

In this example we can easily derive both the variance of the
Monte Carlo estimator, and the variance of the importance
sampling estimator. We can consider the Monte Carlo estimation
as follows. We have a random variable X that follows a Binomial
distribution with parameters n =10 and p = 0.5. If we take a
sample of size S, from this distribution and compute for each
random variate Z; = I(X; > 8), then Z; follows a Bernoulli distribu-
tion with parameter p = Pr(X > 8) which we denote pg. Therefore,

because the Z;’s are independent, the variance of the Monte Carlo
estimator is

s s
Var [%ZZ i] = %ZVar[Z Al
i i

1
= EESPBH ~Psg)
ps(1 —pg)
S

If we think about the importance sampling estimator in the
same way, then we generate a sample of independent random
variates Y; with probability equal to the importance distribution
h(y). Therefore, we can firstly show that the importance sampling
estimator is an unbiased estimator of the probability interest,
because

1< [
E{EZW(Y.-J] = EE[ZW(Y.»]
i=1 i=1
= %S'W(E)PI'(Y = 8) +w(9)Pr(Y = 9) + w(10)Pr(Y = 10)]
_ PrX=8), , g PHX=9) L Pr(x=10)
Pr(Y=38) Pr(Y=9) Pr(Y=10)
= Pr(X =8)+Pr(X=9)+Pr(X = 10) = Pr(X > 8) = pg

Pr(Y =9) Pr(Y = 10)

The variance is derived in a similar manner:

13 1 2
Var [ng( Y; )] S—2Var [,Z_;W( Y;)]

1

]

= 35 Y W) -ps)’hw)
) y€{89,10}

= 1 > W) -pehe)
ye{89,10}

We can perhaps see, by inspection that the variance of the

2 We use Y; to recognize the difference in possible outcomes from the
importance distribution Y ¢ {8.9.10}, as opposed to the original distribution
X €{0.1....10}, therefore h(y) = h(x).
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importance sampling estimator is smaller than the variance of the
Monte Carlo estimator. However it becomes immediately obvious
when we evaluate the quantities numerically where we can show
that the importance sampling estimator is approximately 42-47
times less variable than the Monte Carlo estimator. The extension
of this is that the variance of the importance sampling estimator is
zero when w(y) = pg, ie. if we sample from the conditional
distribution of X given X > 8 then we would have a zero variance
estimator for pg. This is only possible if pg is known, and so has no
practical use, but demonstrates that importance sampling is likely
to work well when samples are drawn from a distribution that
looks like the conditional distribution.

Therefore, we can regard the importance sample as being a
sample of the weights which occur with probability defined by the
probability distribution. We can also demonstrate this empirically.
We repeated the two sampling Schemes 1000 times, using
S =10,000. This yields 1000 estimates of Pr(X > 8) from each
method, which in turn allow us to see how well these sampling
schemes estimate the quantity of interest, and how variable the
estimates are. The ratio of the variances of each set of 1000 is 41.2
which is very close to our theoretical estimate.

Fig. A2 demonstrates the value of importance sampling, namely
that (given a good importance distribution) it will often yield a
more precise (less variable) estimate of the quantity of interest
than that obtained by naive Monte Carlo sampling for an
equivalent sample size, or, alternatively it can give an estimate
of similar precision for a much smaller sample size. In this
example, a sample of size 250 yields estimates that are still less
variable than naive Monte Carlo estimates using a sample size of
10,000 (data not shown).

Appendix B. Derivation of Eq. (2)
We have in Eq. (1) that an approximation of the average LR (over

the Y tests) that would have been obtained had a naive simulator
been used is:

— 1
IR = -Yguzyb,
Had a naive estimator been used (and assuming the importance

sampler had been run for enough iterations that all the genotypes
that lead to LR >0 have been sampled) then all the iterations that

the naive simulator would have run, and have been skipped by the
importance sampler, would have yielded LR=0. We can then say
that the sum of the LRs obtained from the importance sampler, plus
all the zero LRs that would have been obtained (of which there
would be I - Y of them), divided by the total number of iterations
that the naive simulator would have run for (I) gives the average LR.
In an equation this is:

(I-Y)x0+Y LR,
g

1

Which, with some simplification and rearrangement gives
Eq. (2) from the text:

SLRy
=2

LR

IR =
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5b — Clarification
Further information on Appendix B

The effective sample size for importance sampling is the number of independent samples drawn
from the target distribution to obtain an estimator with the same variance as the importance
sampler.

A common method used to calculate ESS is given by:

Y
2
Wi
i=1

Consider a simple example, where a simple evidence DNA profile, originates from a single
contributor and the DNA profile of that contributor can be determined unambiguously (i.e.
there is only 1 genotype that sensibly describes the evidence profile). This genotype as a
population frequency of 1 in 1 million. A Monte Carlo simulation is run which randomly
chooses DNA profiles from the population and compares them to the evidence profile in order
to calculate an LR using propositions:

H1) The randomly drawn person is the source of the DNA
H2) Someone, unrelated to the randomly drawn individual, is the source of the DNA

We would expect that for every million iterations of the simulation we would obtain 999 999
profiles that were different to the evidence profile and so gave an LR =0, and 1 iteration would
sample a profile that matched the evidence profile and gave an LR of 1 million. Let the number
of LRs of non-zero that were obtained be Y (in this case Y = 1) and the LR obtained for iteration
y (yeY ) be LRy. Let the total number of iterations that the Monte Carlo simulation was run
for be I (Y e1). The number of zero LRs obtained is then (I — Y). The average LR can be
calculated by:

(1-Y)x0+ Y LR,

I
_ 0+1000000
1000000
=1

LR=

Now consider an importance sampling distribution of genotypes that contains only the
genotype that will give a non-zero LR, therefore in this example containing 1 genotype. The
weight associated with generating a sample, x, from this genotype from the proposal
distribution, q(x), rather than the target distribution, nt(x), is:
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Therefore, every iteration the importance sampler will choose the genotype that gives the non-
zero LR, with associated weight LR™. In this instance there is zero variance in the values
produced by the importance sampler and so matching of variances does not make sense to
calculate ESS. If we use the formula above, then for Y samples from the proposed distribution:

However, the analyst may wish to know how many iterations their importance sampling would
be equivalent to, had they sampled directly from the target distribution. Now go back to the
original derivation and consider the average LR obtained from the simulation using an

importance sampling scheme were LR . We consider that the importance sampler has run for
enough iterations that all non-zero genotypes have been sampled from and so as well as the
average LR we have Y (which is the number of importance samples taken) and the LRs at each
iteration. The target is to obtain a value of 1, so:

(1-Y)x0+> LR,

LR =

With rearrangement becomes:

LR,

| = yﬁ ~Y LR,

y

With the approximation coming from the fact that given adequate draws, the average LR should
be approximately 1. In the running example being used, we could consider Y importance
samples so that:

| => LR, =Y (1000000)
y

i.e. each single importance sample yields an average LR that would be expected to take 1
million samples from the target distribution in order to achieve.
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A set of low template mixed DNA profiles with known ground truths was examined using software that
utilised peak heights (STRmix™ V2.3) and an adapted version that did not use peak heights and
mimicked models based on a drop-out probability [1,2] (known as semi-continuous or ‘drop’ models)
(STRmix™ lite). The use of peak heights increased the LR when Hyp, was true in the vast majority of cases.
The effect was most notable at moderate template levels but was also present at quite low template
levels. There is no level at which we can say that height information is totally uninformative. Even at the
lowest levels the bulk of the data show some improvement from the inclusion of peak height

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Methods for evaluating DNA profiles have benefitted from
recent improvements in modelling and software [2-8]. This has
allowed the interpretation of many more profiles and the
generation of a corresponding relevant match statistic, namely a
likelihood ratio (LR) [3,7,9]. Previously Taylor [10] demonstrated
that the LR generated by a continuous model 3] trended towards 1
as the template was reduced or as the number of contributors
increased. This was true whether a true or false donor to the
mixture was considered.

The question has been legitimately asked whether there is a
point where the quantitative data present in peak height
information becomes no more informative than merely the
presence or absence of the peak.

There has been a view that profiles can be low template and that
it is these low template profiles where peak height is of limited or
no value. However for mixed DNA profiles it is likely that the
contributors will be present in different template amounts. Hence
each of, say, four contributors could be more or less low in template
level. In addition nearly all casework profiles have a downward
slope with respect to molecular weight. This is often termed a
degradation slope. What this means is that it may be simplistic to

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia. Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2014.11.001
1872-4973/© 2014 Elsevier Ireland Ltd. All rights reserved.

refer to profiles as high or low template. Many profiles will exhibit
arange of template estimates dependent on molecular weight. This
observation has been made previously [11]. What this means is
that the method used to interpret such profiles, which are
prevalent in casework, must be able to interpret information that
is very likely to range in template from high to low within the same
profile or contributing component to a mixture.

There are three lemmas that can be considered useful at this
point:

(1) Adding correct and relevant information to a calculation can
only increase the ability to distinguish between a true and false
proposition

(2) If the amount of information provided to a calculation is
decreased, at some point the ability to distinguish between true
and false propositions is entirely lost

(3) If a contributing profile can be determined unambiguously
then additional information (such as peak height data) will not
improve the ability of a calculation to distinguish between a
true and false proposition

The hypothesis we wish to consider is: At low template the
stochastic effects are such that the addition of peak height
information to a calculation provides negligible additional ability
to distinguish between true and false propositions.

Inline with lemma 3 there is little point trialling DNA profiles
whose contributing genotypes can be determined unambiguously,
as we know the addition of peak height information in these
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instances will have no effect. What is needed are a set of low
template mixed DNA profiles with ground truth known that have
been analysed with and without the use of peak height
information.

To this end we trial complex mixed DNA profiles with a range of
input DNA, where the mixture proportions and donor profiles were
known, to assess at what point peak height information no longer
benefits an LR calculation, and specifically the ability of the LR to
distinguish between known contributors (H, true) and known
non-contributors (Hq true).

2. Method

A range of four person mixtures produced in GlobalFiler
(Thermo Fisher Scientific), as per manufacturer's instructions.
Amplification fragments were resolved using the ABI PRISM™
3130x| Genetic Analyser and analysed in Genemapper" ID-X to
obtain peak height information for each profile. These mixtures are
samples 22-31 from [10], amplified in triplicate (note that there
are only two replicates of sample 23 rather than three). We
reproduce the relevant mixture information from [10] in Table 1.

As in [10] profiles were analysed down to 30 rfu.

STRmix™ version 2.3 (http://strmix.esr.crinz) was reconfi-
gured to ignore peak height information. A probability of dropout,
Pr(D), was required and was applied to each instance of a peak
dropout. 1 — Pr(D) was applied to each instance of non-dropout.
The value of Pr(D) was determined by including it as a parameter in
the model, which sampled from its posterior with a flat prior by the
Markov chain. This is effectively maximum likelihood estimation
for Pr(D) for every profile during its analysis. Note that a single
Pr(D) was applied across all contributors to the profile. This
reconfigured STRmix™ product was termed STRmix™ lite and
clones the performance of semi-continuous (‘drop’) models in a
manner that is as close as possible to the normal functioning of
STRmix. This was done, rather than using separate software, so that
all factors other than the one of interest (peak height) would
remain constant between the two experiments.

In both STRmix™ V2.3 and STRmix™ lite a uniform probability
for allelic drop-in of 0.0017 was used inline with laboratory
observations. To calculate LRs each combination of three
individuals was assumed for each four person mixed DNA profile,
meaning from the 29 profiles, 116 analyses were carried out and
compared to a POI using the propositions:

Hy: The POI, contributor A, contributor B and contributor C are
the sources of DNA
Hq: Contributor A, contributor B and contributor C and an
unknown individual are the sources of DNA
where POI, A, B and C were combinations of contributors Cy 4.
LRs were calculated using an in-house self-declared Caucasian
GlobalFiler database and using the product rule.

Table 1
Mixture proportions and PCR setup.

Tubes Mixture proportions for contributor Total DNA added
to PCR (pg)
G G Cs Ca
22 025 0.25 025 0.25 400
23 025 0.25 0.25 0.25 200
24 0.25 0.25 025 0.25 50
25 025 0.25 0.25 0.25 20
26 025 0.25 0.25 0.25 10
27 0.40 0.30 0.20 0.10 400
28 0.40 0.30 0.20 0.10 200
29 0.40 0.30 0.20 0.10 50
30 0.40 0.30 0.20 0.10 20
31 0.40 0.30 0.20 0.10 10

3. Results

In Fig. 1 we give the improvement in the log;o(LR) when peak
height data is included in the analysis and plot against the input
DNA of individual contributors. As input template level is not
directly available from an electropherogram we also give the
improvement against average allelic peak height of each profile.

Peaks below about 300 rfu are indicative of low template. Even
profiles where the average peak height is 300 rfu often have low
template components.

In Fig. 2 we plot the log of LR produced by STRmix™ lite vs the
log of LR produced by STRmix™ V2.3. This allows an investigation
of the benefit of peak heights for profiles that would produce a LR
below 10° if peak height was not used.

In Table 2 we provide the results of Hy true testing (for an
explanation of the Hy true test concept see Evett et al. [12] or Gill
and Haned [13]) for sample 24, assuming C,, C3 and C, in both
STRmix™ (left) and STRmix™ lite (right). Hq true tests are when
non-donors are compared to a profile in order to generate an LR. In
the propositions given in Section 2 we replace the POl with a DNA
profile that has been randomly simulated in accordance with
expectations from population allele frequencies. A large number of
Hy true tests can be performed in order to give a series of
‘diagnostics’ about the profile analysis and in particular the
performance of the models used to analyse the profile data. In
Table 2 we provide the following values:

Simulations: The number of randomly simulated profiles that
were compared to the evidence DNA profile

H, true LR: The value of the LR obtained when compared with
the known contributor

And for Hq true comparisons

p(‘1in’): pis the proportion of Hq true tests that yielded an LR at
least as big as the LR obtained from the known contributor.
Values give are the inverse of p so that they can be directly
compared to the size of the H,, true LR

LR = 0: The percentage of simulations that resulted in an LR of
zero being obtained

LR > 1: The percentage of simulations that resulted in an LR that
favoured the inclusion of the randomly simulated non-donor.
These have classically considered as ‘false inclusions’.
Average LR: The average value of all the Hy true LRs. Theory
predicts that this value should be one as explained in Good | 14]
(quoting Turing).

4. Discussion

The results presented in Fig. 2 demonstrate a strong advantage
in using peak height information down to very low levels. We see
that the log;o(LR)s with and without peak height information
converge towards 0 (LR=1) as the information in the profile
diminishes. Hence both approaches are correctly reporting that the
profile becomes uninformative at extremely low template.

Most (110/116) instances of including peak height information
yielded a higher LR when compared to known contributors. The
greatest effect can be seen for results at high LRs. These differences
are of less practical importance.

However for LRs less than one billion in STRmix™ lite (i.e. to the
left of the vertical line in Fig. 2) there is still significant increase in
LRs when peak height information is included. In many instances
this is four or five orders of magnitude. There is no level at which
we can say that height information is totally uninformative. Even
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Fig. 1. The log;(LR) increase obtained by including peak height information against input DNA (top) or average profile peak height (bottom).

Table 2
Results of Hy true tests for a four person 0.25:0.25:0.25:0.25 mix at 50 pg total input
template. Average peak height for the profile was 89 rfu.

32
30 o
. o
28 o
é% ’z(oo o
26 - % o
#° &
24 ®
o
2 9 4
o o
20

STRmix™ v2.3 STRmix™ lite

# Simulations 12,000,000 10,000,000
Hp true LR 374,104 207
Hq true

p(‘1in) 3,000,000 11,947

LR=0 99.958% 94.491%

R>1 0.0173% 0.0472%

Average LR 1.005 1.078

Log(LR) STRmix™ V2.3

6 8 10 12 14 16 18 20 22 24 26
log(LR) STRmix™ lite

at the lowest levels the bulk of the data are above the diagonal line.
From Fig. 2 the majority of data points indicate that for an LR of 10*
generated without using peak height information there is between
a 102 and 10* fold increase in LR when peak height information is
added.

Also vital is to consider what effect the inclusion of peak height
data may have on comparisons to known non-contributors, i.e.
when Hg is true. Inspection of Table 2 indicated markedly increased
Hgq true LRs above 1, if peak height is ignored. Also seen in Table 2,
when ignoring peak height information, are increased Hq true LRs
above the H, true LR (p in Table 2). These could be termed false

Fig. 2. logo(LR) for STRmix™ lite and STRmix™ V2.3. The diagonal dashed line is
x=y. Circles represent values that were derived from greater than 50 pg of total
input DNA, and crosses less than 50 pg.

inclusions or adventitious matches and should be minimised.
We therefore conclude from this work that at low template
DNA levels the inclusion of peak height information can have a
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very significant and beneficial impact on the LR produced from
comparisons to both known contributor and non-donors. In the
DNA profiles and LRs considered within this work a beneficial
impact was seen in most instances.
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Chapter 6: Placing the theoretical model into practise

By 2015, STRmix™ had been in use in most forensic labs around Australia and New Zealand
for one to three years. The forensic community decided to revisit the question that sparked all
this work off in the first place, i.e. are different laboratories and analysts getting consistent LRs
from the same evidence. The last time this had been attempted was during the ‘crisis’ meeting
of 2009 at which point it was clear that forensic biology laboratories had far to go to reach a
state of equal justice outcomes.

A study was set up whereby a series of profiles were sent to forensic laboratories around
Australia and New Zealand and they were asked to analyse and interpret the profiles
(comparing reference profiles that were provided as part of the study) and report the LR as they
would for a normal criminal case. The setup of this study and the findings make up the
publication in this section.

The study found a dramatic improvement in the consistency between labs compared to the 2009
attempt. The biggest source of variation was now the choice of number of contributors. This
then sparked another arm of work that is discussed in the next chapter.

Another source of variation that was identified from the study was whether the use of peak(s),
below the analytical (or detection) threshold should be considered when analysts pre-assessed
the DNA profile to determine the number of contributors. The use of STRmix™ generally
caused laboratories to drop their analytical threshold so that the additional, low level, peaks
could be used in evaluations. From this practise, it would have been expected that the presence
of these sub-threshold peaks to be more of an issue in the pre-STRmix™ days. On review, it
was found that the presence of sub-threshold peaks were indeed more prevalent pre-STRmix™,
however, did not have much impact because those profiles that contained data such as this were
almost always deemed unsuitable for interpretation (in fact the presence of sub threshold peaks
tended to be one of the decision point in making this determination). With STRmix™ providing
a means to evaluate so many more DNA profiles than before, the issue was brought to the
forefront. One option was to continue to consider DNA profiles that possessed sub-threshold
peaks as not suitable for interpretation, however conceptually it doesn’t sit well that a strong
and well resolved profile could be evaluated, but the presence of a small ‘blip’ in the baseline
could render it uninterpretable. The disconnect causing the issue existed between the
information the analyst was using to interpret the profile and the information being provided
to STRmix™., The solution developed to address the disconnect was to incorporate a way for
users to provide prior beliefs in the mixture proportions to STRmix™., This way, if a user saw
sub threshold peaks that indicated a very low-level contributor may be present, a prior mixture
proportion could be supplied that indicated a contributor had most of its mass at low levels
(near 0). This spawned an arm of work that lead to the second publication in this section, which
explores the prevalence, impact and solutions to sub-threshold data.
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Recently there has been a drive for standardisation of DNA profile interpretation within and between
different forensic laboratories. The continuous interpretation software STRmix™ has been adopted for
use by laboratories in Australia and New Zealand for profile interpretation. Within this paper we examine
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1. Introduction

The interpretation of forensic DNA profiles is complicated by
allelic dropout and drop-in, artefacts such as stutter and the
presence of DNA from more than one individual, termed mixed
DNA profiles [1]. There is significant variation across forensic
laboratories in the methods used for profile interpretation. In a
recent study of 107 laboratories (including US federal, state and
local and three international laboratories) approximately 30%
indicated that they use the cumulative probability of inclusion
(CPI), 56% used the random match probability (RMP) [2] and 14%
used a likelihood ratio (LR). This variation was also observed within
the 12 different participating laboratories/institutes within this
study, where prior to the availability of continuous statistical
methods, approximately 17% indicated they may have used a CPI/
random man not excluded (RMNE) method, depending on the
results, 41.5% used RMP and 41.5% used LR.

The LR has very significant advantages for the interpretation of
ambiguous profiles [3]. Ambiguous profiles include mixtures and
profiles where allelic dropout and drop-in are likely. The definition
of an LR is the probability of the DNA profiling evidence (E) given
two competing propositions. One typically aligns with the
prosecution point of view, Hp, and the other the defence, H, given

* Corresponding author. Tel.: +64 9 845 1726; fax: +64 9 849 6046.
E-mail address: Stuart.cooper@esr.cri.nz (S. Cooper).

http://dx.doi.org/10.1016/j.fsigen.2014.12.009
1872-4973/© 2015 Published by Elsevier Ireland Ltd.

all the relevant information, I:

~ Pr(E|H,.I)
~ PrEHgT)

Traditional methods of interpretation are often described as
binary, so called because the probability of the evidence given a
proposed genotype is assigned either as zero or one (see for
example [4]). Methods have been developed that use the ratio of
the peak heights (or peak areas) of the two alleles at a heterozygote
locus (heterozygous balance or peak height ratio), and mixture
proportions when considering mixed DNA profiles, to determine
whether combinations of genotypes were supported or not [5,6].In
2012, the editors of the Journal of Forensic Science International:
Genetics highlighted the need for more research in the area of DNA
profile interpretation and the creation of statistical software
packages to advance development and facilitate implementation of
the generally accepted standards in forensic genetics [7].

Known shortcomings of the binary model [8,9] have led to the
development of probabilistic models that factor in the probability
of dropout and drop-in [ 10-14]. Semi-continuous methods do not
explicitly use peak heights when generating possible genotype sets
and do not explicitly model artefacts such as stutter.

Recently, a number of fully continuous probabilistic methods
have been described that model allelic and/or stutter peaks within
a DNA profile [15-19]. Continuous methods evaluate the probabil-
ity of a set of peak heights given proposed genotype sets. These
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methods are designed to be used in expert systems to remove
much of the requirement for the subjective assignment of peaks as
alleles or stutter within evidence profiles. A further discussion of
the merits of the different interpretation models can be found in
Kelly et al. [20] and Steele and Balding [21].

A number of studies have investigated variability in DNA profile
interpretation both within a single laboratory and across
jurisdictional laboratories [22-25]. The authors highlight a high
degree of diversity in the interpretation methods used for mixed
DNA profiles. Furthermore, the interpretation was shown to be
highly subjective. In particular the findings of Dror and Hampikian
[22] reported in New Scientist under the title “Fallible DNA
evidence can mean prison or freedom” [23] have been used to
highlight the subjectivity in DNA evidence interpretation and some
would argue the bias inherent to certain methodologies. Recently
there has been a drive for standardisation in DNA profile
interpretation across different jurisdictions [26-29].

In 2012 STRmix™, an interpretation software that employs a
continuous model [17,30,31], was introduced into the Australian
and New Zealand forensic DNA laboratories for profile interpreta-
tion. STRmix™ can interpret a wide variety of DNA profiles, from
single source DNA rich samples to complex, low level mixtures
with multiple contributors. The model uses the quantitative
information from an electropherogram (epg), such as peak height
data and molecular weight, to calculate the probability of the peak
heights given all possible genotype combinations, assigning a
weight to each possible genotype set. The weights are determined
using Markov chain Monte Carlo (MCMC).

Continuous interpretation methods remove some thresholds,
such as heterozygote balance and stutter ratio (SR), and thus help
remove some elements of the subjective decision making required
within a binary model. Following the interpretation of the DNA
profiling data, STRmix™ can provide a statistical assessment in the
form of an LR from the comparison of a person of interest’s
reference DNA profile.

STRmix™ currently requires the analyst to assign the number
of contributors to the profile prior to analysis. An uncertain
number of contributors can be a source of variability in the LR
[32,33]. The MCMC is another source of variability [34]. The
implementation of the same software across different laboratories
has been shown to reduce but not necessarily eliminate the
variability between analysts analysing the same DNA profiling
results [35]. The present study was undertaken to assess the level
of standardisation in profile interpretation achieved by the
introduction of the continuous DNA interpretation model
STRmix™. Within this paper we investigate whether stand-
ardisation could be achieved by implementing the same probabi-
listic software within and between different laboratories. It is
worth highlighting that while standardisation may well help us to
achieve ‘the same’ answer this should not be at the expense of
achieving the ‘right answer".!

To evaluate whether there was a difference in inter and intra
laboratory variability, nine members of staff from the one
laboratory and eleven participants from international jurisdiction-
al laboratories or consultancies were invited to undertake
independent analysis of a number of mixed DNA profiles. We
describe the results of this collaborative study within this paper.

2. Methods

Twenty different participants were asked to undertake the
interpretation of DNA profiles from three casework scenarios. Nine

' One can debate whether there is a ‘right answer'. Please read this as the answer
most supported by current knowledge.

members of staff from one laboratory undertook independent
analysis in addition to eleven international participants. This
cohort included participants from Australia, New Zealand, the US,
Canada and the UK. The intra-laboratory participants were
assigned a random number between 1 and 9 with the remaining
participants assigned a number between 10 and 20. All participants
had previously undertaken a STRmix™ training course. We note
that this may homogenise opinions more than a random sample of
analysts.

The exercise involved the assessment of Identifiler™ DNA
profiles generated from three questioned samples. As the samples
were casework samples, the true number of contributors to each
sample was unknown. Relevant case circumstances, STRmix™
input files capturing both allelic and stutter peak height data and
reference DNA profiles were provided for comparison and
generation of an LR as required. All questioned sample epgs
(including zooms of the baseline) were supplied to participants.
Further details are provided in Appendix A. A summary of the
reference DNA profiles supplied for each case is provided in
Appendix B.

Samples were profiled using the Applied Biosystems' Identi-
filer™ (Life Technologies, CA) PCR amplification kit at 28 cycles
and separated by capillary electrophoresis using a 3130x!/ Genetic
Analyzer following the manufacturer's recommended settings.
Peak height data were captured using GeneMapper™
v3.2.1 applying a 50 rfu analytical threshold with no stutter filter
applied. Participants were asked to comment on whether, and if so
by what means, they would have provided any form of statistical
analysis in relation to these three case samples prior to
implementation of STRmix™ using the following scale:

a Too complex, no interpretation progressed.

b Potentially include or exclude a given reference, however no
statistic provided.

¢ Calculate a statistic.

d Other, please comment.

Participants were asked to review the questioned sample epgs,
determine the likely number of contributors and suitable
propositions given the information provided and undertake an
interpretation using STRmix™. Where appropriate LRs were
calculated assigning appropriate prosecution and defence prop-
ositions (Hp,Ha).

To restrict additional variation the STRmix™ parameters were
provided to the participants. Specific details of the STRmix™
settings are available upon request from the authors. These
settings were informed by empirical data relevant to the specific
laboratory protocols used to generate the DNA profiling results.
This included a zero drop-in rate for the standard profiling analysis
method employed. The participants were asked to use a Caucasian
allele frequency database which was also provided [36].

Participants were asked to undertake the analyses as they saw
fit and submit their findings once their interpretations were
complete. As a means of assessing each analysis the point estimate
LRs (i.e. with no sampling uncertainty undertaken) were selected
and these are displayed in Figs. 1-3. Submissions summarised by
the number of contributors assigned the propositions used to
undertake an LR and the point estimate LRs are provided in
Appendix C.

3. Results

Table 1 is a summary of the responses to the question: How
would you have dealt with the findings prior to the use of
STRmix™? A tally of the different institutes responses (n=12) is
given with comments below. We have considered participants
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Table 1
Summary of the different institutes responses (n=12) to how would they have dealt with these cases prior to having access to STRmix"™,
Sample Too complex, no interpretation Include or exclude references, no statistic given Calculate a statistic* Other
1 - - 12 =
2 b 49 6 _
3 8 38 1 -

@ The statistical method that would have been employed varied and included random man not excluded (RNME), random match probability (RMP), and likelihood ratio (LR).
b Aresponse from the laboratory with 9 participants indicated they may have gone on to include or exclude, but likely no statistic would have been provided given the low

peak heights.

© Participant 13 stated they would consider the major only and that the minor was unsuitable. They may step up to include or exclude for the major only. In this instance, as
the major contributor did not correspond with the person of interest (POI), then no statistic would have been undertaken. A statistic would have been undertaken if POI

corresponded with major.

9 Participant 12 stated they would likely just include or exclude, and give no statistic. However, could have provided a statistic if required.

1-9 as providing one joint response here. We consider the
responses for each case in turn.

3.1. Sample 1

All participants were confident to assign this profile as a two
person mixture, providing an LR using the following propositions:

Hp: The DNA originated from the complainant and an unknown
individual.

Hg: The DNA originated from two unknown individuals.

A summary of the LRs calculated for each analyst is given in
Fig. 1.

In addition, most participants (n=16) compared the profile to
the person of interest (POI) using the following propositions:

Hp: The DNA originated from the POl and an unknown
individual.

Hg: The DNA originated from two unknown individuals.

All comparisons resulted in an LR of 0; an exclusion. The
remaining four participants stated they would have excluded the
POI ‘by eye' based on the assumption of two contributors to
the mixture, so did not calculate an LR in STRmix™. A table of all
the LRs provided by the participants can be found in Appendix C.

3.2. Sample 2

The majority of participants (n=18) undertook at least one
STRmix™ analysis and provided an LR for a comparison to the POI
reference sample (refer Fig. 2). Participants 12 and 16 did not
undertake a STRmix"™ analysis of this mixture. Participants 12 and
16 stated they would re-amplify this sample in order to clarify the
number of contributors. Eleven participants assumed two con-
tributors and the remaining seven assumed three contributors to
the profile. All participants who calculated an LR used the following
propositions:

H,: The DNA originated from the POl and one (or two) unknown
individuals.

Hq: The DNA originated from two (or three) unknown
individuals.

Six of the participants carried out secondary STRmix™
analyses, such as increasing or decreasing the contributor number
by one, i.e. if they had assigned the profile as a two person mixture,
they also provided an LR for a three person mixture. A table of all
the LRs provided by the participants can be found in Appendix C.

3.3. Sample 3

Eighteen participants calculated an LR for this profile assuming
the presence of three contributors using the following propositions
(refer Fig. 3):

Hp: The DNA originated from the POl and two unknown
individuals.

Hg: The DNA originated from three unknown individuals.

Participants 14 and 20 did not undertake interpretation of this
mixture. Participant 14 stated they were not able to assign a likely
number of contributors. Participant 20 stated that this appeared to
be at least a four person mixture and therefore was not suitable for
analysis within their laboratory. Participant 17 used the results of
only one of the two replicates provided in order to carry out the
analysis following their laboratory protocol. This has resulted in a
reduction of the profile information available to the interpretation
and a lower comparative LR as a result.

Two of the participants who provided an LR for a three person
mixture also undertook an additional analysis and LR calculation
assuming four contributors. A table of all the LRs provided by the
participants can be found in Appendix C.

4. Conclusions

Sample 1 appears to demonstrate an example of a good quality
two person mixture, where the amount of DNA present from each
contributor is in approximately equal proportions. All participants
assumed the same number of contributors and the LRs provided
have a high degree of reproducibility (average log (LR)=10.36,
SD=0.02). As expected the LRs were not identical due to the Monte
Carlo aspect of the MCMC within STRmix™. This is a relatively new
source of variability within the forensic DNA analysis process,
although this has been highlighted by other groups [19,37].
Importantly the LRs are very similar and the variability is very
small compared to other sources of variability in forensic DNA
profiling including PCR as demonstrated by Bright et al. [38].

If we compare this highly reproducible set of LRs in Fig. 1 to
what would have theoretically been provided from the range of the
statistical methods used by participants prior to implementation
of STRmix™ (refer Table 1) then STRmix™ implementation can be
viewed as a positive step towards standardisation. To illustrate,
Participant 15 undertook a RMP calculation for Sample 1 inrelation
to the complainant, using an in-house program and provided a
value of 1in 2.23 x 109 (calculated per NRC Il recommendation 4.1,
6=0.01, using a Caucasian allele frequency database), an order of
magnitude smaller than the 20 match statistics provided in this
study. Although the practical consequence of a difference of one
order of magnitude given the relatively high LR is negligible. The
results of Sample 1 indicate that in certain circumstances it is
possible to achieve a high level of concordance both within and
between jurisdictional laboratories for the interpretation and
statistical assessment of the same DNA evidence.

An element of variation was observed in Sample 1 results when
it came to the consideration of the POI reference profile. This DNA
profile, whilst having all alleles represented within the mixed DNA
profile, could be readily excluded as a plausible contributor given
an assumption of two contributors. At this point two approaches to
interpretation were observed: either to progress an LR calculation
(LR=0) to underpin a conclusion of exclusion, or to make an
exclusionary statement without a supporting statistic. Whilst we
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could debate the theoretical purity versus pragmatism of these two
approaches, this is unlikely to translate into any discernible
difference to the strength of evidence provided to the court.

Further to the LRs submitted some participants provided
comments in relation to Sample 1. For example some discussed
that under the assumption of two contributors the POl was
excluded, however, the POI did share a significant number of alleles
in common with a true donor to this mixture and so, from an
intelligence point of view a relative of the POl may be a plausible
consideration for investigators. One participant suggested further
analysis, such as Y-STR profiling, to explore the number of male
contributors and potentially address whether a male relative of the
POI could be a consideration. From an exploratory point of view
two participants hypothesised increasing the number of contrib-
utors by one to facilitate some additional form of statistical
evaluation in relation to the POI. However, both these participants
and the authors of this paper advocate that an assessment of the
number of contributors be made in advance of sighting any
reference DNA samples that cannot be assumed as legitimate
contributors to the evidence, and where appropriate this
assumption is not affected by the subsequent provision of
reference DNA profiling information. A change in interpretation
strategy in order to obtain a favourable pre-determined outcome
(i.e.an inclusionary LR) must be avoided for a fair assessment of the
evidence. This concept of bias and sequential unmasking is
discussed in [22,39]. We would however, support a change in
the assigned number of contributors if, after initial interpretation,
a review of the output, including mixture proportions and
genotype combination weights, indicated that the original
assumption was incorrect. For transparency, we would promote
that all such interpretations remain on file for defence disclosure.
In addition, the receipt of additional relevant information, such as
the provision of a reference profile from a consenting partner in a
sexual assault case, could also change our assigned number of
contributors.

Sample 2 represents a mixture of DNA with an increased level of
ambiguity due to many components of the profile being detected
below the stochastic threshold, and with some indication of
additional information below the analytical threshold. These
results raised the issue of assigning an appropriate estimate of
the number of contributors to DNA profiling results. Overall most
participants were confident to assign a number of contributors and
undertake an LR. However, two participants were not.

It is worth highlighting that regardless of the number of
contributors assigned where an LR was calculated, all exceeded one
million. Hence all would fall at the extremely strong scientific
support level if using the verbal scale of support described by Evett
and Weir [40].

When interpreted as a two person mixture the LRs have a higher
degree of reproducibility (average log (LR)=14.28, SD=0.03) than
when interpreted as a three person mixture (average log
(LR)=8.92, SD=0.74).

Many participants acknowledged that the profile contained a
suggestion of the presence of a third contributor, predominantly
due to peaks observed in the epg below the analytical threshold. In
addition to the LRs, a number of participants also provided
comments about this case, such as: Is 50rfu a suitable analytical
threshold? Could more information be obtained by decreasing the
threshold? In this case the answer may well be yes. This analytical
threshold (AT) was the implemented threshold for the laboratory
who produced the crime profiles, and AT values are often set high
to be conservative. Lowering the AT is a risk assessment, balancing
the potential to yield more data with the increased risk for
inclusion of artefacts such as raised baseline, pull-up and capillary
carryover [41] in the profile.

Three participants undertook an exploratory mixture decon-
volution assuming a three person mixture. However, after a review
of the mixture proportions and genotype weightings assigned by
STRmix™ the participants questioned if these were what they had
anticipated when compared to their initial expectations based on
their review of the epg. When analysed as a two person mixture the
proportions and weights are more intuitive i.e. better reflected
what was observed in the epg. The comments suggested the
expectation prior to any STRmix™ analysis for this profile,
assuming it was a three person mixture, would be for a major:
minor:trace type profile. Generally speaking for those who ran this
as a three person mixture the mixture proportions suggested by
STRmix™ were closer to 1:1:1. This is a consequence of having
little or no data available for STRmix™ to use for the proposed
trace third contributor and forcing STRmix™ to spread the weights
between the available genotypes. The use of the STRmix™ outputs
to interrogate an analyst’s initial assessment of the DNA profiling
data is strongly recommended and may help inform or prompt
further testing as discussed next.

A number of participants proposed that a re-amplification of
this sample may have been beneficial to potentially obtain further
information about the minor component, and to better inform the
estimation of the number of contributors.

Assigning the number of contributors for Sample 2 is a point of
difference both within the same laboratory and between
laboratories. With the introduction of continuous models this
has become one of the most discussed aspects of mixture
interpretation and may be one area which requires further insight.
Nevertheless, the introduction of a continuous interpretation
model has facilitated a change in the type of sample from which an
LR can be provided. For this profile only six participants stated they
would have undertaken some form of statistical analysis prior to
STRmix™. This increased to 18 participants calculating some form
of LR statistic when provided with STRmix™.

Sample 3 represented a complex mixture of DNA where
replicate profiling results were provided. All participants who
undertook analysis (n=18) and provided an LR did so assuming this
was a three person mixture. The results illustrate an increased
degree of variation in the LRs when compared to Samples 1 and 2,
whichiis likely due to the complex nature of the results (average log
(LR)=11.21, SD=0.68 [omitting participant 17]).

Again, a number of participants provided comments in relation
to this profile. It became apparent from the feedback provided that
analysts value replicate amplification of complex DNA profiling
results such as Sample 3 because additional profiling information
increases their confidence and informs their estimate of the
number of contributors. As STRmix™ has the ability to consider
replicate profiles from the same DNA extract this is something we
advocate, wherever appropriate.

Interestingly, both participants who did not provide an LR for
Sample 3 stated that using their previous interpretation methods
they may have reported that the POI could not be excluded;
however, no statistic would (or could) have been provided.

Overall the results from participants 1 through 9 demonstrated
that in certain circumstances a level of standardisation can be
achieved within one laboratory. All participants from within the
one laboratory assumed three contributors and provided LRs
(average log (LR)=11.32, SD=0.74). As for Sample 2, assigning a
number of contributors again became the key point of difference
between laboratories.

Sample 3 also demonstrated that a continuous interpretation
model can increase the number of samples for which an
interpretation and statistical evaluation can be progressed from
1 participant indicating they would provide a statistic prior to
STRmix™ to 18 participants post STRmix™ access.
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5. Discussion

This study demonstrates that for mixed DNA profiling results
where the number of contributors is not ambiguous it is possible to
achieve a standardised, consistent approach to the interpretation
and statistical assessment of DNA evidence. This concept helps give
confidence to the criminal justice system that irrespective of where
and by whom a DNA profiling result is analysed a consistent
statistical assessment of the evidence can be achieved.

Both the study and on-going dialogue within the forensic
community continue to highlight that the confident estimation
and assignment of the number of contributors to DNA profiling
results are essential to our ability to effectively interpret DNA
profiles. This topic has been debated for some time and alternative
methods have been put forward to attempt to address such issues
[42,43]. We suggest that the ‘true’ number of contributors to any
questioned sample is always unknown. What we, as experienced
analysts can provide is a meaningful estimation of the number of
contributors which is well supported by the data and based on our
knowledge of DNA profile behaviour in order to facilitate an
interpretation. STRmix™ is a tool and as such may be used by an
analyst for exploratory examination of the number of contributors
and propositions. The subsequent choice of statistic to report
depends on laboratory policy and we have seen different
approaches including reporting the lowest or average LR. Where
possible, we would suggest limiting the number of different
statistics reported within a statement to ease comprehension. We
do agree however, that some profiles are simply too complex and
may never be able to be assigned a number of contributors with
any degree of certainty.

With the implementation of the same probabilistic software
there remains a level of subjectivity notably if there is a
requirement to assign a likely number of contributors. This is an
area which we advocate the need for further investigation.
However, a greatly improved degree of standardisation can be
achieved by implementation of the same probabilistic software
within and between laboratories.
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Appendix A. Case 1 (Sample 1)
Case 1 (Sample 1)

A knife was located, discarded in an alleyway in relation, to an
alleged assault. This was a separate and unrelated location to that
of the incident. However, it is believed to have been used during
the incident.

The knife was submitted to the laboratory for analysis. A sample
of the bloodstain located on the item had been submitted for DNA
analysis and had produced the mixed DNA profile attached.

Reference DNA samples were submitted from the complainant
and a person of interest (POI) in this matter.

The investigators wish to know — could any DNA present have
originated from the complainant?

Furthermore could any of the DNA present have originated from
the POI?

Case 2 (Sample 2)

A glove was located at the scene of a burglary. This does not
belong to the home owners and they have had no contact with the
item.

A sample from the inside of the glove had been submitted for
DNA analysis and had produced the DNA profile attached. A
reference DNA sample was submitted from a POl who denies
having any contact with the glove.

Investigators wish to know whether any DNA present on the
glove could have originated from the POL.

Case 3 (Sample 3)

A glass pipe seized in relation to a drugs related incident was
submitted to the laboratory for analysis.

A sample taken from the mouthpiece of the pipe had undergone
DNA profiling analysis and had produced the mixed DNA profile
attached.

As the profile was low level and complex, it was amplified twice.

A POI has come to light and a reference DNA sample has also
been provided for comparison.

Investigators wish to know whether any DNA present on the
pipe could have originated from the POl
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Case 1 - Questioned Sample 1
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Case 3 - Questioned Sample 3
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Appendix B.
Summary of the reference DNA profiles provided for Cases 1 through 3
Case 1
D8 D21 D7 CSF D3 THO1 D13 D16 D2 D19 VWA TPOX D18 Amel D5 FGA
Complainant 14,15 28,30 10,12 10,11 15,17 7,9 1mn 10,11 17, 22 13,132 17,17 8,11 13,19 XY 12,13 222,25
POI 14,14 28,28 12,12 10,10 16,16 7.8 9,11 9,10 22,22 13,14 17,17 811 13,15 XY m 1 23,25
Case 2
D8 D21 D7 CSF D3 THO1 D13 D16 D2 D19 VWA TPOX D18 Amel D5 FGA
POl 10,15 29,30 11,12 10,13 15,18 6,7 11,12 91 21,24 15.2,16.2 14,15 11,12 15,17 X, X 10,12 19, 24
Case 3
D8 D21 D7 CSF D3 THO1 D13 D16 D2 D19 VWA TPOX D18 Amel D5 FGA
POl 10,12 29, 30 8,10 11 14,14 6,9.3 8,12 12,12 20, 25 13,16 16,19 8.9 12,14 XY 1,12 21,24
Appendix C.
Case 1: Summary of LRs provided by participants (n=20)
Where POI, person of interest; U, unknown; NA, not applicable.
Participant number Number of contributors assigned Propositions LR (point estimate) Propositions LR (point estimate)
Hy/Ha Hp/Ha
1 2 C+U/U+U 7.65E+10 NA Not calculated. Excluded
if two person mixture
2 2 C+UjU+U 7.34E+10 POI+U/U+U 0
3 2 C+U/U+U 7.07E+10 POI+U/U+U 0
4 2 C+U/U+U 7.78E+10 POI+U/U+U 0
5 2 C+UfU+U 7.40E+10 POI+U/U+U 0
6 2 C+U/U+U 7.29E+10 POI+U/U+U 0
2 2 C+U/U+U 7.40E+10 POI+U/U+U 0
8 2 C+U/U+U 8.14E+10 POI+U/U+U 0
9 2 C+UjU+U 7.62E+10 NA Not calculated. Excluded
if two person mixture
10 2 C+U/U+U 7.80E+10 POI+U/U+U 0
1 2 C+U/U+U 7.06E+10 POI+U/U+U 0
12 2 C+U/U+U 7.58E+10 POI+U/U+U 0
13 2 C+U/U+U 7.83E+10 POI+U/U+U 0
14 2 C+UU+U 7.69E+10 POI+UJU+U 0
15 2 C+U/U+U 7.20E +10 POI+U/U+U 0
16 2 C+U/U+U 7.73E+ 10 POI+UfU+U 0
17 2 C+Ufu+U 771E+10 NA Not calculated. Excluded
if two person mixture
18 2 C+U/U+U 8.49E+10 NA Not calculated. Excluded
10K/50 K burnin/accepts if two person mixture
19 2 C+U/U+U 7.95E +10 POI+U/U+U
20 2 C+UfU+U 7.21E+10 POI+U/U+U 0
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Case 2: Summary of LRs provided by participants (n=20)

Where POI, person of interest; U, unknown; NA, not applicable.

Participant Number of contributors Propositions LR (point estimate) Additional analysis LR (point
number assigned Hp[Ha estimate)
1 2 POI+U/U+U 2.03E+14
2 2 POI+U/U+U 177E+14
3 2 POI+U[U+U 1.99E+14
4 3 POI+U+U/ 225E+09
u+Uu+U
5 2 POI+Uf/U+U 1.99E+14 Also analysed as a 3 person mixture: POI+U +U/ 4.19E+08
u+u+U
6 3 POI+U+U/ 1.09E+09 Also analysed as a 4 person mixture: POl+U+U+U| 6.24E+08
u+U+U U+U+U+U
7 2 POI+U/U+U 1.81E+14 Also analysed as a 3 person mixture: POI+U +U/ 127E+11
U+U+U
8 3 POI+U+U/ 2.36E+09
u+u+U
9 3 POI+U+U/ 7.46E+07
u+U+U
10 2 POI+U/U+U 1.88E+14 Also analysed as a 3 person mixture: POl+U+U/ 9.67E+08
U+U+U
1 2 POI+U[U+U 1.96E+14 Also analysed as a 3 person mixture: POI+U +U/ 3.82E+08
U+Uu+U
12 Unable to determine NA NA
13 3 POI+U+U/ 7A43E+07
u+uU+U
14 2 POI+U/U+U 1.65E+14
15 3 POI+U+U/ 112E+10 Also analysed as a 2 person mixture: POI+U/U+U  196E+14
u+uU+U
16 Inconclusive NA NA
17 POI+U/U+U 1.90E+14
18 2 POI+U/U+U 1.74E + 1410 K/50K burnin/
accepts
19 2 POI+U/U+U 2.09E+14 Also analysed omitting D18: POl +U/U+ U 457E+13
20 3 POI+U+U/ 7.69E+08
u+u+U
Case 3

Summary of LRs provided by participants (n=20).

Where POI, person of interest; U, unknown.

Participant number

Number of contributors

Propositions Hp/Hq

LR (point estimate)

Additional analysis

LR (point estimate)

proposed

1 £ POI+U+U/U+U+U 714E+11

2 3 POI+U+U/U+U+U 4.33E+10

3 3 POI+U+U[U+U+U LI14E+11

4 3 POI+U+U/U+U+U 2.93E+12

5 3 POI+U+U/U+U+U 1.06E+11

6 3 POI+U+U/U+U+U 6.16E+10

7 3 POI+U+U/U+U+U 437E+12

8 3 POI+U+U/U+U+U 4.49E+10

9 3 POI+U+U/U+U+U 6.31E+10

10 3 POI+U+U/U+U+U 6.80E+10

1 3 POI+U+U/U+U+U LI13E+11 Also analysed as a 4 person mixture: 1.04E +10
POI+U+U+U/U+U+U+U

12 3 POI+U+U/U+U+U 4.22E+10

13 3 POI+U+U/U+U+U 4.04E+10

14 Unable to determine NA NA

15 3 POI+U+U[U+U+U 1.88E+12 Also analysed as a 4 person mixture: 9.70E+09
POI+U+U+U/U+U+U+U

16 3 POI+U+U/U+U+U 6.66E+11

17 S POI+U+U/U+U+U 1.95E+08

18 3 POI+U+U/U+U+U 6.04E+10

19 3 POI+U+U/U+U+U 4.51E+10

20 Likely 4 NA NA
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The sensitivity and resolution of modern DNA profiling hardware is such that
forensic laboratories generate more data than they have resources to analyse. One
coping mechanism is to set a threshold, above the minimum required by instrument
noise, so that weak peaks are screened out. In binary interpretations of forensic pro-
files, the impact of this threshold (sometimes called an analytical threshold — AT)
was minimal as interpretations were often limited to a clear major component. With
the introduction of continuous typing systems, the interpretation of weak minor com-
ponents of mixed DNA profiles is possible and consequently the consideration of
peaks just above or just below the analytical threshold becomes relevant. We investi-
gate here the occurrence of low-level DNA profile information, specifically that
which falls below the analytical threshold. We investigate how it can be dealt with
and the consequences of each choice in the framework of continuous DNA profile
interpretation systems. Where appropriate we illustrate how these can be imple-
mented using the probabilistic interpretation software STRmix. We demonstrate a
feature of STRmix that allows the analyst to guide the software, using human obser-
vation that there is a low-level contributor present, through user-designated prior
distributions for contributor mixture proportions.

Keywords: DNA profile interpretation; sub-threshold; likelihood ratios; analytical
threshold

1. Introduction

The primary method for the analysis of a DNA sample is amplification by polymerase
chain reaction (PCR), which incorporates a flurophore. This is followed by separation
of the fragments by capillary electrophoresis. The output is a trace of fluorescence ver-
sus time that is referred to as an electropherogram (epg). Most laboratories set an ana-
lytical threshold (AT), above which peaks are labelled at analysis. The AT is often set
well above the level of electronic noise. Peaks in the epg may be artefactual or allelic.
Epg analysis software can recognise and filter some of the well-characterised artefacts,
but many still require the judgement of a human analyst. Many of these remaining arte-
factual peaks can be recognised by position or morphology. In binary interpretations,
the impact of these weak peaks was minimal as interpretations were often limited to
the interpretation of a clear major component. With the introduction of continuous
typing systems the interpretation of weak minor components of mixed DNA profiles is

*Corresponding author. Email: Duncan.Taylor@sa.gov.au

© 2015 Australian Academy of Forensic Sciences
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possible and consequently the consideration of peaks just above or just below analytical
threshold becomes important.

There have been numerous published methods that describe how the AT could be
determined. For a review the reader is referred to the work of Bregu et al.'. Some
recognise that there are different factors that affect the AT, such as dye colour, input
DNA amount or instrument'?. The ideal situation is that these factors are considered
on a sample by sample (and even locus by locus) basis and applied to the profile’.
However, in order to balance the laboratory’s sample processing capability with inter-
pretation needs, the laboratories may need to apply a single AT that applies to all pro-
files, or an AT that is based on dye label, and is set at a level designed to screen out
much low level artefactual fluorescence. Thus, it is of value to address the issue of
sub-AT information from a standpoint that continues to address the balance between
sample processing and interpretation. As such, the purpose of this work is to examine
the effects of using a sub-AT threshold signal on interpretation rather than investigating
methods to determine the AT. This work considers that no matter where the AT is set,
peaks will exist below it that appear allelic and may affect interpretation.

This work evaluates some options for analysts to deal with sub-threshold informa-
tion and the risks or benefits associated with each in the context of analysis within a
continuous DNA interpretation system. We introduce a novel method for dealing with
sub-threshold data implemented within the STRmix programme that allows the user to
specify a prior belief in mixture proportions.

Much of the discussion will be dominated by the topic of choosing a number of
contributors for analysis, which is where the sub-AT peaks will have their biggest
impact on interpretations.

There have been various works that look at the consequences of overestimation or
underestimation of the number of contributors*>. In general, the consequences of
underestimation are that known contributors are excluded due to the forced pairing of
peaks that in reality do not pair. The consequence of overestimation is more complex;
doing so can have very little effect on a major contributor to a DNA profile and a more
marked effect on a minor contributor. This is only true for continuous systems that take
peak heights into account. For a semicontinuous system the effect of overestimation
will have an effect on all contributors to a mixture as more genotype sets are consid-
ered for all contributors to the mixture (see Benschop et al.®). There is also a greater
number of non-contributors that are given relatively neutral likelihood ratios (LRs) as
the analysis is accounting for more potential dropout.

The Scientific Working Group on DNA Analysis methods (SWGDAM) guidelines
for the validation of probabilistic genotyping systems’ advise a study of over and
underestimation of contributor numbers (at 4.1.6.4) so that the impact of the
above-mentioned issues are known for the system being validated. There are methods
available that do not require a number of contributors to be assignedx; however, the
majority of current probabilistic software programmes do require a choice of number of
contributors.

This leads to the question of how, if at all, sub-threshold information should be
taken into account when making the choice of number of contributors. We consider
four broad categories for consideration:

(1) ignore the presence of sub-threshold peaks when interpreting DNA profiles;

(2) change the method by which data are generated (either by lower the AT or
carrying out replicate PCRs);
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(3) use informed priors on mixture proportion in a probabilistic system;
(4) do not interpret the DNA profile.

1.1. Ignore the presence of sub-threshold peaks when interpreting DNA profiles

To consider the performance and consequence of utilising sub-threshold information
when carrying out an interpretation we first start by considering the scope of the issue.
We do this in two ways; first via a simulation designed to give an indication of how
ignoring sub-threshold information will lead to an underestimate of the number of con-
tributors in the most high-risk situations and, secondly, a demonstration of the practical
consequences of ignoring sub-threshold data.

We first start by considering the probability that by ignoring sub-threshold informa-
tion, a low-level two-person mixture would be assigned as a single source profile. We
do this by simulating two contributors with low levels of DNA and different levels of
allele sharing and over various analytical thresholds. Twenty-one locus profiles were
simulated and the peak heights and AT are intended to be realistic for an Applied
Biosystems 3130 capillary electrophoresis (CE) system (Thermo Fisher Scientific, CA).
Details of this simulation are given in Appendix 1.

Simulation was chosen in this part of the study because it allows for control over
the experimental conditions and for a large number of experiments (for example,
Table 1 gives the results of 150,000 simulated mixtures).

Table 1 gives the number of simulations (out of 1000) of two low-level contributors
that when combined collectively gave a profile that looked like a single contributor.
Simple allele count per locus was used to assign the number of contributors. Use of
peak heights is likely to be superior but at such low-levels this is not likely make a
significant difference to the count’.

Inspection of Table 1 suggests that, under the trialled circumstances, there is a high
probability of the alleles from two individuals masquerading as a low-level single
source profile. The table also shows that this effect is likely to be reduced at lower AT.

This simulation informs the probability of assigning one donor if there are in fact two.
It is important not to confuse this with the probability that there are two if we assign one.
This latter probability is what we really want. To obtain this probability we need the prior
probabilities that there are one or two contributors in a profile. We are allowed to know
what type of sample it is and what analysis regime we have employed but we cannot use
profile information itself. We will use equal priors for this work, accepting that this was
an arbitrary choice. Making this choice will restrict the lower bound probability that a pro-
file is single source, given that it appears as single source to 0.5. Using these priors the
probabilities in Table 2 are obtained (details of the calculation appear in Appendix 2).

For the CE system that we are simulating here it is likely that peaks above 30 rfu
that have passed expert inspection are all allelic. This suggests that for an AT = 100 or
50 rfu there is a possible strategy of using peaks below the threshold to help improve
the assignment of the number of contributors.

These results suggest that ignoring sub-threshold peaks when interpreting low level
putatively mixed DNA profiles is likely to lead to underestimation of the number of
contributors and thereby has the potential to lead to incorrect interpretations. It is unli-
kely that a blanket rule to ignore such information would be sustainable. There may be
concern that these in silico mixtures ignore the effect of stutters. Any stutters mis-
assigned as allelic tends to increase the allele count and hence have no effect at all in
the direction of underestimation.
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Table 2. The probability that the peaks above AT are from a single source (S) given that they
look like a single source on simple allele count (AS), Pr(S|AS).

. 0.2 0.5
Masking
Mean peak height in range 10-50 rfu 10-100 rfu 10-50 rfu 10-100 rfu
AT (rfu) Pr(S]4S)
30 091 0.98 0.70 0.82
50 0.66 0.87 0.56 0.67
100 0.56 0.61 0.59 0.56

We do however look at a number of in vitro mixtures. A range of four person mix-
tures were amplified using GlobalFiler (Thermo Fisher Scientific, CA), as per the man-
ufacturer’s instructions. Amplification fragments were resolved using the ABI PRISM
3130x1 Genetic Analyser and analysed in GeneMapper ID-X to obtain peak height
information for each profile. These mixtures are samples 22 to 31 from Ref. 10, ampli-
fied in triplicate except for sample 23 where there were only two replicates, leading to
a total of 29 profiles. We reproduce the relevant mixture information from Ref. 10 in
Table 3.

Profiles were analysed using ATs of 30 rfu, 50 rfu and 100 rfu. While it is possible
to construct simpler mixtures that could be used in this experiment, we chose four-per-
son mixtures due to the high probability that the number of contributors can be under-
estimated, the higher probability that masking or dropout may occur and as an example
of profiles where the use of sub-AT information could have an important impact on the
interpretation. Later (in Table 4) we show how, for the data sets used, the number of
contributors could be underestimated over half the time.

Profiles were analysed using STRmix V2.3 which utilises models described in Refs
11—-13 (exact software settings used are available from the corresponding author on
request). In all analyses the Y-indel locus and DYS391 were ignored. A uniform proba-
bility for an allelic drop-in of 0.0017 was used (up to 75 rfu) for the 30 rfu and 50 rfu
AT and a drop-in probability of zero was used for the 100 rfu AT, in line with labora-
tory observations.

Two experiments were carried out to investigate the consequences of ignoring the
sub-threshold information when determining the number of contributors.

Table 3. Mixture proportions and PCR setup.

mixture ratios for contributor

Tubes C:C:C3:Cy Total DNA added to PCR (pg)
22 k| 400
23 200
24 50
25 20
26 10
27 4:3:2:1 400
28 200
29 50
30 20
31 10
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Table 4. Assigned number of contributors (based on peak count) are given showing the effect
that lowering AT or carrying out replicates has on the ability to determine the number of
contributors.

AT=10rfu AT=30rfu AT=50rfu AT =100 rfu

Template 1 3 1 3 1 3 1 3
(pg) ratio replicate PCR  PCR PCR PCR PCR PCR PCR PCR
400 1:2:1:1 4 4 4 4
1 4 4 -+ -+
2 -4 4 4 4
3 -+ 4 4 4
4:3:2:1 1 4 4 4 4 4 4 4 4
2 4 4 4 4
3 4 4 4 4
200 1:1:1:1 1 -+ 4 4 4 4 4 4 4
2 4 4 4 -+
4:3:2:1 1 -+ 4 4 4 4 4 3 3
2 4 4 4 3
3 4 4 4 3
50 I3 ¢ B 1 3 4 3 4 3 3 1 2
2 -+ 3 2 1
3 4 3 3 2
4:3:2:1 1 3 -+ 3 4 2 3 2 2
2 4 3 3 2
3 3 3 3 2
20 Lledsd 1 3 4 2 2 1 1 0 1
2 3 2 1 0
3 3 2 1 1
4:3:2:1 1 2 3 2 2 1 2 0 1
2 3 1 1 1
3 3 2 2 1
10 1:1:1:1 1 2 3 1 1 1 1 0 0
2 2 1 1 0
3 2 1 1 0
4:3:2:1 1 2 3 1 2 1 1 0 0
2 2 1 0 0
3 3 2 1 0

Experiment 1. Utilising sub-threshold information

First, the correct number of contributors was assigned to each profile during analysis
and the LRs were calculated using the propositions:

H,: The person of interest (POI) and three unknown individuals are the sources of
DNA.

H,: Four unknown individuals are the sources of DNA.

The POI was varied to be each of the four known contributors and 186 randomly
selected non-contributors. LRs were calculated using an in-house self-declared Cau-
casian GlobalFiler database and using the product rule. This amounts to 116 STRmix
analyses compared with known donors and 5394 comparisons to non-donors.

Experiment 2. Ignoring sub-threshold information

In this experiment, the number of contributors was chosen ignoring sub-threshold infor-
mation i.e. based purely on the number of detected peaks above the varying AT. Using
the chosen number of contributors, N, LRs were calculated using the propositions:
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H,: The POI and (N-1) unknown individuals are the sources of DNA.

H;: N unknown individuals are the sources of DNA.

The POI was varied to be each of the four known contributors and 186 randomly
selected non-contributors. LRs were calculated using an in-house self-declared Cau-
casian GlobalFiler database and using the product rule.

Figure 1 shows the log o(LR) produced for these comparisons. The LRs produced
from comparisons to known contributors are signified by a green point and those
produced from comparisons to known non-contributors are signified by a pink cross. A
minimum value for logo(LR) of —30 was used, and any LRs obtained that fell below
this were given the value of —30. The amount of DNA contributed by each known
contributor was known from the experimental design. When comparing to non-contrib-
utors, the choice of input DNA (for Figure 1) was not known as the non-contributor
could align with any of the contributors’ input DNA amounts. For known non-contribu-
tors the amount of input DNA was assigned as the total amount of DNA added to the
PCR divided by the number of contributors. Due to the amount of information present
in these graphs we also provide (as supplementary material) the same information but
displayed by plotting the log;o(LR) value when considering or ignoring sub-threshold
information against each other.

Figure 1 shows that underestimating the number of contributors can cause a
log o(LR) to become less than 0 (sometimes to minimum cap of the graphs) of a true
trace contributor in some cases (note the scattered green circles at low log(LR) for low
template). This is the expected outcome for underestimation®>. We have chosen profiles
that are most difficult to interpret due to complexity and high levels of dropout. In
addition, a detailed examination of peak heights will be of some but limited use since
the donor in dispute is trace and at the limits of the AT. In theory there should be a
greater ability to exclude using fewer contributors and this is visible in the results (note
the generally lower values for the crosses in the right-hand set of graphs in Figure 1).

This experiment looks at the consequences of underestimation of N and shows that
utilising sub-threshold information can partially mitigate the issue. However, use of
sub-threshold peaks should be tempered by the relative strength and amount of the
putative additional contributor. When assigning a number of contributors based on sub-
threshold information there is a risk that an overestimation can occur if any artefacts
are considered allelic. It should therefore be balanced by reference to the previously
published work®'* which showed that an increase in N beyond that required, can alter
the LR for a true trace contributor and mildly increase the risk of low grade LR greater
than one.

1.2. Change the method by which data are generated (either by lowering the AT or
carrying out replicate PCRs)

To investigate the extent to which generating additional data can assist in interpretation
we considered two possible strategies, first a lowering of the AT and second by generat-
ing additional PCR replicates. It has already been shown'® that providing additional,
relevant information into the analysis of DNA profile data increases the ability to dis-
tinguish a true from a false proposition. We also recognise that due to reasons of practi-
cality there is going to be a limit to which laboratories are willing to lower their AT,
and as stated in the introduction, no matter where this level is, there will always be
data that appear just below it. We show the effect of lowering the AT as a means to
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assist laboratories in their choice of AT, when they will inevitably have to weigh up
throughput considerations again data generation.

We analyse the 29 mixed DNA profiles outlined in Table 3 using four different AT
(10, 30, 50 and 100 rfu) and considering each of the three PCR replicates individually
or in combination in order to determine the number of contributors.

Table 4 shows the effect that lowering AT, using sub-threshold information, or car-
rying out replicates has on the ability to determine the number of contributors for the
data used in this study. For example, inspection of the 1:1:1:1 mixture results at 20 pg
individual DNA from Table 4 shows that at AT=50 rfu each of the three individual pro-
files (1 PCR) appeared to have originated from only one contributor based on allele
count. When the AT was reduced to 30 rfu the profiles appeared to have originated
from two contributors with more unmasked alleles observed for each contributor. At
10 rfu, when all three replicates are analysed together (3 PCR), the correct assignment
of four contributors is made.

1.2.1. Replication

Replication led to some improvement particularly at the fringes when significant por-
tions of the data are dropping out. This can be seen in Table 4 in the 50 pg samples
using an AT of 30 rfu, all six of these samples individually detected information that
could be described by three individuals, but were clearly four when taking multiple
replicates into account. The results in Table 4 also show that amplification can only
assist so much. Sticking with an AT of 30 rfu, any samples that were amplified with
10 pg or 20 pg of DNA remained describable by fewer than four individuals even with
three replicates. For these samples there is a need to consider what the correct answer
is. For example, if the peaks above AT come from three of the four contributors, the
‘correct” answer is probably nearer to three rather than four.

There is a resource cost associated with routine repeat amplifications that will need
to be considered in forensic laboratories.

1.2.2.  Lowering the AT

Comparing graphs vertically in Figure 1 shows very little noticeable improvement in the
ability to discriminate true from false donors. However comparing rows horizontally in
Table 4 suggests that lowering the AT or using sub-threshold information leads to
improved ability to assign the number of contributors. There is a cost in expert time in
using very low thresholds. Although no evidence is presented here we assume that at
very low thresholds even the most skilled experts will let through artefacts occasionally.

Swaminathan et al.'® created a continuous method for contributor number assignment
(called NOCIf) and compared this to maximum allele count and maximum likelihood
methods. When carrying out the maximum allele count method they found that allowing
the AT to shift to the point of baseline noise (19 to 52 rfu) performed worse at estimating
the number of contributors than having it fixed at a higher level above baseline noise
(50 rfu). While the text does not specifically comment on the reasons for this finding, it
may be due to low level artefacts, or stutters appearing above the ratio threshold used
being counted as allelic.
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Figure 2. Three loci of a mixed DNA profile with AT shown as a dashed line for 50 rfu and
dotted line for 20 rfu. Boxes show peak designation and height.

1.3. Use informed priors on mixture proportion in a probabilistic system

It is possible to provide the analytical system with information that a low level sub-
threshold contributor is believed to exist. Consider the mixed DNA profile shown in
Figure 2. The known sources of DNA are:

Contributor 1: D3:[15,17], vWA:[17,17], FGA:[21,23]

Contributor 2: D3:[17,18], vWA:[16,18], FGA:[19,19]

In this instance considering the AT as 50 rfu there appears to be a sub-threshold
contributor present; however, the detected information present in the profile can be
described by a single contributor. Peaks detected at 50 rfu are too weak to be paired
with complete certainty at D3 or designated as a homozygote at vVWA (using only a sin-
gle replicate), although their pairing would be the most supported combination. There
is therefore likely to be a mild impact of the presence of the sub-threshold peaks on
the detected peaks, i.e. the presence of the sub-threshold D3:18 means we would accept
a [15,18] or [17,18] pairing for the ‘major’ some proportion of the time with the 17 or
15 peaks (respectively) coming from a second contributor. The analyst may choose to
use the presence of the sub-threshold peaks to consider the profile as originating from
two individuals.

We demonstrate the power that providing information, even seemingly minor, can
have on the ability of continuous systems to interpret DNA profile data. Before
carrying out the experiment there are several predictions that can be made from theory.
Consider two LRs that could be calculated from these data.

Proposition pair 1

H,,;: Contributor 1 and an unknown individual are the sources of DNA.
H,;: Two unknown individuals are the sources of DNA.

Proposition pair 2

H,,>: Contributor 2 and an unknown individual are the sources of DNA.
H>: Two unknown individuals are the sources of DNA.
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Table 5. LRs produced for comparison to contributors to epg shown in Figure 2.

Uniform priors Using informed priors Uniform priors
AT = 50 rfu AT = 50 rfu AT =20 rfu
Contributor 1 LR 63 108 310
Contributor 2 0.097 0.24 6

If the profile is analysed as a two-person mixture with no guiding information from
the analyst even with no significant imbalances in the observed peaks then the analysis
will likely split the profile into two roughly equal contributors. Proposition pair 1 will
yield an LR that favours H),; as most of Contributor 1’s peaks are detected, but it will
be low as the genotype probability will be spread approximately evenly across a num-
ber of genotypes. Proposition pair 2 will yield an LR that will likely provide some sup-
port for H,, to the profile. The reason for this is that Contributor 2’s peaks are not
detected and so their presence would have to be explained with multiple dropouts. If
the system is supplied with some guiding information that there are two unevenly
contributing individuals then we would expect that more weight would be placed on
pairing the observed peaks for the major, which we would expect to translate to an LR
that provides more support for H,; in proposition pair 1. For contributor 2 to be the
minor contributor, their peaks have still dropped out; however, now the system is
expecting a low template contributor and will be more tolerant of dropout. We therefore
would expect the LR obtained from proposition pair 2 to be closer to one. Finally,
when reading to AT of 20 rfu then more information is given to the system. Informed
priors for mixture proportion are no longer required as the information being used to
interpret the profile is all being used in the analysis. We would expect a divergence of
mixture proportion to be obtained naturally from the data provided and that the LR
produced from either proposition pair will support the corresponding prosecution
proposition.

We now turn to results obtained in practice. The DNA profile in Figure 2 was anal-
ysed using STRmix V2.3.06 first using an AT of 50 rfu and providing the system with
no information beyond that it has originated from two individuals. Owing to the low
peak heights under these circumstances the mixture proportions obtained were
47%:53%.

Secondly the same analysis was carried out in STRmix but supplying mild prior
distributions for mixture proportions of N(0.75, 0.25) for contributor 1 and N(0.25,
0.25) for contributor 2. We use priors on the mixture proportion; however, we realise
that it is in fact the template DNA amount that these priors will be acting on. Priors for
mixture proportions are displayed for the ease of the user because doing so does not
need them to consider how other effects within the DNA profile such as degradation
and locus specific amplification efficiencies interact with the template to generate peak
heights. Mixture proportions will automatically scale with peak intensity and so the
user does not need to scale their priors for each similarly proportioned mixture. We also
recognise that Gaussian distributions extend beyond the interval [0,1] but only apply
them within this range.

The mean of the posterior for mixture proportions from the analysis were
85%:15%. The third analysis was for data using AT of 20 rfu, and not providing
informed priors for mixture proportion. This time the mean of the posterior for mixture
proportions from the analysis were 79%:21%. The LRs when comparing contributors to
the three analyses can be seen in Table 5. The trend of LRs fits what is expected by
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theory and demonstrates the point that even just supplying the information that the ana-
lyst has a prior belief in the mixture proportions based on sub-threshold data (without
supplying that specific data to the analysis system) aids in the analysis and produces a
result that is more intuitively aligned with the human assessment.

1.4. Do not interpret the DNA profile

At the laboratory at Forensic Science South Australia, an audit of samples received
over a one-month period revealed that 54% of samples fell into what is classically
called transfer or contact DNA and 34% of samples yielded a total DNA concentration
of less than 10 pg/uL. There would be many more that would possess less than this
level for individual contributors to mixed samples. These profiles are likely to suffer
from significant allelic dropout and be within the range where sub-threshold informa-
tion will be present.

A simple solution to the problems of interpreting epgs with sub-threshold peaks
might be to deem all such profiles as too complex; however, given the portion of pro-
files that this group would represent it is unlikely this would be a sustainable practice.
We do not mean this to be an excuse to interpret poor quality data, quite the contrary,
instead we mean this statement to highlight the need to determine what data can be
interpreted (which we hope we have started in this work).

The question must be asked whether certain profiles should be analysed. This is a
different question to whether a profile can be analysed. Taking a position of theoretical
purity, all data can be analysed as long as models exist to describe it. As the informa-
tion content of the data decreases, or the uncertainty surrounding the interpreted profile
increases, there will be an inevitable drop in the discriminating power the model will
provide using the data. This is the desired behaviour and correctly represents the
strength of the data. There is no limit to which this thinking can be applied. For exam-
ple, the models already exist that an analyst could obtain an epg that exhibits a single
weak peak of putative artefactual status and choose to analyse it, considering it may
originate from anywhere between one and five individuals. After what is likely to be
several hours of processing and analysis, utilising highly complex statistical, mathemat-
ical and biological theory and being provided with many pages of detailed output the
interpretation system would no doubt inform the analyst of what they already knew,
there is no information in the datum to discriminate true from false propositions.

Whether something should be analysed will depend on a number of factors, many
of which will not directly relate to the epg in question. Ultimately it will be a decision
made by the analyst that the potential discriminating power that epg could provide, in
the context of the case and laboratory environment, is worth the interpretation and
analysis time.

2. Interpretation of putative stutter peaks

When interpreting a DNA profile that has a major component and one or more minor
components that are in the same peak height range as stutter of the major, then some
assessment of the nature of small peaks in stutter positions will need to be made by the
analyst.

It is worth discussing the 2006 ISFG'® Recommendation 6, which states:

If the crime profile is a major/minor mixture, where minor alleles are the same size (height
or area) as stutters of major alleles, then stutters and minor alleles are indistinguishable.
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Under these circumstances alleles in stutter positions that do not support H, should be
included in the assessment.

It is the authors’ experience that this statement is sometimes taken as meaning ‘all
peaks in stutter positions must be treated as allelic’ as it has been used as such for
interpretational attack in court. We suggest that this is not the intent of the authors of
Ref. 16 when making this recommendation. In the same publication, the preceding sen-
tence gives an example of when the recommendation would have an effect, and states
that under those circumstances °...the probability of stutter must be considered...’.
Probabilistic systems take into account the ambiguous nature of peaks by calculating
the probability of that peak if it is purely stutter as opposed to it being partially allelic
(given a number of parameters dealing with intrinsic properties of the DNA profile
such as DNA amounts, degradation, genotype sets, etc.). Sometimes the choice of num-
ber of contributors will mean that the certain peaks within the profile will be considered
unambiguously as entirely stutter, however this is a perfectly acceptable outcome. To
consider all peaks in stutter positions as allelic would see an overestimation of the
number of contributors in a large proportion of samples and would be against the ethos
that each party is allowed its best explanation of the evidence.

This leaves the analyst with the task of making an assessment of the nature of
peaks in stutter positions as to their status. There is a risk here of either overestimating
or underestimating the number of contributors to the profile and we point the reader to
Refs 4 and 5 for the outcomes of either of these eventualities when using a continuous
system including examples of ambiguous stutter peaks. Our intention in this paper is
not to trial or recommend methods for dealing with ambiguous peaks in stutter posi-
tions and we do not do so. All we suggest is that the method used should take into
account known stutter values for alleles/loci and the profile should be considered holis-
tically, which may include an assessment of the presence of peaks below the AT.

3. Conclusion

Continuous systems (at least STRmix as trialled here) can overcome the issues of miss-
ing low-level data with minimal effects on the outcome of the analysis. The effects of
overestimation of the number of contributors may not be too severe as long as the sys-
tem has been reliably validated for this policy. This situation should not be used to
enable a reduction of valid quality practices such as replication and careful expert
inspection of profiles and cannot be assumed to be conservative. However, any system,
even one possessing the soundest theoretical basis, that cannot withstand the rigours of
practical use, is destined to remain nothing more than a nice idea. We have discussed
strategies to mitigate the effect of uncertainty in the number of trace contributors present
when sub-threshold information is present in a DNA profile. We support replication and
lowering the AT whenever practical. The use of sub-threshold data without lowering the
AT may be useful in some cases. The effects of mis-assignment of N in either direction
are relatively mild and restricted to LRs less than one when comparing known contribu-
tors and low LRs greater than one when comparing known non-contributors.

We believe that treating the number of contributors as an unknown nuisance vari-
able is the best long-term solution. An even better solution would be to combine the
treatment of number of contributors as a nuisance variable with an expert system that
utilises fluorescent signal directly and has models for different known artefacts. In such
a system all data would be treated probabilistically and the tyranny of thresholds would
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be completely abolished. We are not aware of any system that can perform at this level
and so can provide no examples of how it would perform.

Last, we suggest that some profiles are simply too complex and should not be inter-
preted. Ultimately it is the role of the scientist to assess each profile on its own merits
and the case context in order to determine if and how analysis will proceed.
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Appendix 1

Peaks for each of the two contributors were simulated from a lognormal distribution with mean x
and variance %. With probability 0.2 a peak was masked. Masking can be thought of as happen-
ing because a major contributor is present or because the two traces mask each other. The num-
ber of peaks per locus was counted and any profile that had only 0-2 peaks per locus was
checked to see that it did have contributions from each contributor. This is the number of profiles
out of the 1000 simulations appearing in Table 1.

Appendix 2
Let

S be the event that the peaks above AT come from a single source;

T be the event that the peaks above AT come from two sources;

AS be the event that the peaks above AT appear to come from a single source by simple
allele count.

Values for the mean 1 were drawn from either U[10,50 rfu] and U[10,100 rfu] for each of
the two contributors. Pr(4S]S) and Pr(4S|7) were calculated using the simulation described in
Appendix 1 (1000 simulations were used). Masking was set at 0.2 and 0.5.

The desired probability was obtained as:

B Pr(4S]S) Pr(S)
Pr(SI45) = Br(4575) Pr(S) + Pr(ASIT) Pr(T)

and assuming Pr(S) = Pr(7). These values appear in Table 2.
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Chapter 7: Extending the theory in the future

Chapter 7 considers how the theories of DNA profile deconvolution and evaluation presented
in this thesis can be extended into the future. There are two broad groups of such considerations.
First, are enhancements to the current models, either through refining the existing models (as
given in chapter 2, for example the refinement of the stutter model described in 2.6, to the LUS
stutter model described in 2.2, to the multi-LUS model described in 2.5), or modelling new
factors that affect DNA profile generation or behaviour. There is a trade-off with such
enhancements between the complexity of the model and the amount of peak height information
that is explained. If the model is simple then the subtleties of small deviations from expected
fluorescence will be unnoticed and their ability to distinguish between explanations lost,
because the effects of multiple real-world events are being described by a single model.
However, a simple enough model can be recreated by hand, understood by all, and run in
seconds.

If the model is complex then the subtleties of the multiple interacting real-world events will be
explained, and the ability to distinguish between competing explanations at its peak, however
there are associated costs. One is the cost of comprehensibility. A highly complex system will
be understood by less people (or just less understood by people), which has the disadvantages
of the acceptance first by the scientific community and second by the legal community. Also,
as a system becomes more complex it, by necessity, will take more computing power and
longer to run. Another potential issue is that as systems become more complex and the number
of interacting models increases, there is a tendency for systems to become too forgiving, i.e.
the values of parameters within the models can shift to positions that can describe nonsensical
data, rather than simply indicating that there is something wrong with the input. As an example,
there are certain chemicals that, when present in a PCR, will inhibit and retard the amplification
of DNA fragments, to different degrees for different targeted regions. The result is a DNA
profile that does not have the expected ‘ski-slope’ pattern with respect to molecular weight.
STRmix™ could be extended by adding ‘inhibition’ as a model within the system, that would
allow the peaks within the profile(s) to shift the tolerance of the system to extreme
amplification efficiencies. But the wider question is whether it is better to fix the biological
issue of PCR inhibition first, rather than attempting to deal with it statistically. A ‘good data
in’ ethos is one to which the forensic community fully subscribe and so models have not been
added that are designed to deal with clearly substandard data. A balance must be struck between
the benefits and drawback of refining models too far.

The second broad group of considerations is in the extension of the current theory to apply to
new situations. There are two areas where publications are provided in this thesis:

1) The extension of the theory to apply to Y-STR data
2) The extension of the theory to account for uncertainty in the number of contributors

While the theory of these two extensions has been explored and published, neither is yet in
active casework use. The reasons for this lack of application are quite different for the two
situations and are explained in the following sections.
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7.1 YSTR extension

In certain scenarios it is advantageous to target male DNA specifically (most commonly in rape
scenarios). The type of DNA (that is STRs) tested in Y-chromosome profiling is the same as
in autosomal profiling kits. Y-STR profiles also have very similar behaviours in that template,
degradation, stutters and amplification efficiencies should all occur in the same manner. This
was shown to be true in the publication in this section, where a deconvolution model was
adapted to deal with Y-STR data and performed to much the same high quality as on autosomal
data. The motivation behind the paper in this section was not directly to build a deconvolution
tool for Y-STR data, but rather an attempt to use the knowledge of DNA profile behaviour
obtained from developing STRmix™ to develop probabilistic interpretation guidelines for Y-
STR profiles. In other words, because no continuous system of DNA profile interpretation
exists for Y-STRs, laboratories are forced to develop threshold-based guidelines. These suffer
from all the drawbacks mentioned in the introduction. The paper in this section was an attempt
to address these issues (partially at least) using continuous theory.

The broader reason as to why no continuous interpretation exists for Y-STRS is what comes
after the deconvolution. Because the Y-chromosome is inherited from father to son in an
unaltered block (apart from when mutation occurs) the classic form of the LR that deals with
Y-STR data uses whole-profile haplotype frequencies. The problem with this is that modern
kits possess 20 or more loci and consequently an astronomical number of whole-profile
haplotype frequencies are required when dealing with mixed samples. So intractable is the
impasse that unless a locus-by-locus approach can be developed, which performs well under
the many imperfections present in human populations, complex mixtures of Y-STRs simply
cannot be evaluated. Work is ongoing to address this issue.
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Y-STR profiling makes up a small but important proportion of forensic DNA casework. Often Y-STR
profiles are used when autosomal profiling has failed to yield an informative result. Consequently Y-STR
profiles are often from the most challenging samples. In addition to these points, Y-STR loci are linked,
meaning that evaluation of haplotype probabilities are either based on overly simplified counting
methods or computationally costly genetic models, neither of which extend well to the evaluation of
mixed Y-STR data. For all of these reasons Y-STR data analysis has not seen the same advances as
autosomal STR data. We present here a probabilistic model for the interpretation of Y-STR data. Due to the
fact that probabilistic systems for Y-STR data are still some way from reaching active casework, we also
describe how data can be analysed in a continuous way to generate interpretational thresholds and

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The last few years has seen substantial advances in the ability
to interpret, analyse and evaluate autosomal STR data [1-7].
Limited advances have been made for the interpretation of Y
chromosome STR profiles, although some investigation into
stutter has appeared [8,9]. Y chromosome work makes up a
low proportion of casework and presents difficulties with the
evaluation of the data. The difficulties with the evaluation of Y-
STR data can be broken into two parts; firstly the lack of
probabilistic modelling that has been applied to Y-STR data and
secondly the difficulties associated with the evaluation of the
comparison of Y-STR reference profiles/s to an evidence profile.
We suspect that the difficulties in the latter are largely
responsible for the lack of work on the former. In this work we
deal with the probabilistic modelling of Y-STR data, for which
much can be borrowed from already existing autosomal models.

This work is broken into two sections. The first of these is the
deconvolution of a profile into its contributing haplotypes using
probabilistic theory. We borrow from autosomal models that take

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia. Fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2015.11.010
1872-4973/© 2015 Elsevier Ireland Ltd. All rights reserved.

into account factors that affect DNA profile behaviour such as
template DNA amount, degradation, and locus specific amplifica-
tion efficiencies. These models can be used to determine the
probability of the observed Y-STR profile given potential contrib-
uting haplotypes. In doing this, the models allow a ‘weight’ to be
given to each potential contributor haplotype set that acts as an
indication of how well the proposed haplotypes describe the
observed data. This then lends itself to development of interpre-
tational guidelines.

As there is currently no tool available that can be used to analyse
Y-STR data in the manner described within this paper the second
section describes how the continuous thinking can be applied to
assist in the creation of mixture interpretation guidelines and
thresholds such as a stochastic threshold (ST).

1.1. Deconvolution of Y-STR data

1.1.1. Building an expected profile

The deconvolution of autosomal STR data relies on a number of
models that are used to describe various properties of DNA profile
behaviour. Ultimately, given some parameters we wish to describe
the fluorescence observed in one or more electropherograms (epg).
In this work we follow the autosomal model of Ref. [1] in that we
consider the following ‘Mass’ parameters to describe observed
fluorescence:
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. Template amount, t,,, for each of the n contributors. Collectively
we refer to the vector of all template values as T.

. Degradation, d,, which models the decay with respect to
molecular weight (m) in template for each of the contributors.
We constrain degradation to be negative. Collectively we refer to
the vector of all degradation values as D.

. Amplification efficiency, A' to allow for the observed amplifica-

tion levels of each locus I Amplification efficiencies are

modelled by a normal distribution, log,o(A’) ~ N(0,0?). Collec-
tively we refer to the vector of all amplification efficiency values

as A.

A replicate amplification multiplier R,. This effectively scales all

peaks up or down between replicates r . We constrain

Zlog(Rr) =0. Collectively we refer to the vector of all
=

N

w

)

replication amplification multiplier values as R.

Together we consider D,A, R and T as the mass parameters, M.

The total allelic product, Tf,,,,, for an allele, a, at locus [, from
contributor n in replicate r is modelled as

sznr = A‘Rf["ed” xmf'xim (e)]

m, is the molecular weight of allele a at locus I. Notice that this is
the same formulation for total allelic product for autosomal STR
data as described in Ref. [1], except that ‘dose’ (a term designated
as X!, in Ref. [1], which took into account whether the individual
was heterozygous or homozygous for allele a) can only takes values
of 0 or 1 depending on whether contributor n contains allele a at
locus I. The model we present, at this stage, only considers data for
which the primer pair amplifies a single amplicon.

The total allelic product from an allele is split between back
stutter, forward stutter and allelic peak. We model back stutter

ratio, 7?:,. and forward stutter ratio, 7/, for allele a at locus [ using
models described in [10,11]. The height of the allelic and stutter
peaks formed from allele a are therefore:

T
Efpp =——20 (2a)
1+7,+ 7,
E, = 7,0 2b
(a-1)r — T qUgr ( )
E:avhr = ﬁﬂloilr (20)

where a — 1 signifies the back stutter product and a + 1 signifies the
forward stutter product. Note that we base the expected height of
stutter products on the observed parent peak height rather than
the expected parent peak height and so they do not possess a
contributor term.

Given the mass parameters the height of allelic peaks are
expected to be independent within and between loci. Stutter peaks
are dependent on their parent peak heights, but given this they are
also expected to be independent within and between loci. This
allows the deconvolution to occur in a locus by locus manner as
described in Ref. [1], rather than having to consider the entire
haplotype or haplotypic mixture as a whole entity. In this way then
the deconvolution of Y-STR data becomes very similar to that of
autosomal STR data, with the exception that, in our simplified
model, a single allele is always expected at each locus from each
contributor, rather than there being a possibility of one or two
alleles being donated.

Given a set of values for mass parameters, M, and a haplotype
for each of the n contributors then an expected profile (which we

call E, and is made up of all individual E!,,, terms) can be built by
summing the expected allelic peaks from the individual contrib-
utors and any back or forward stutters from alleles that differ by a
single repeat unit.

!
i _ =l ! = [
Egr = Ta1)Oinyr +7tm,”0(afllr + ZEimr
n

E=E},..E;

1.1.2. Peak height variability

There exists a level of peak height variability within STR DNA
profiles. We note that the expected peak heights (E) generated
from the mass parameters may be different from the observed
peak heights (0) in the epgs(s). In large part this is due to variation
in the sampling of DNA molecules in a DNA extract for inclusion in
PCR reaction [12]. As a base for modelling peak height variability
we follow Refs. [1,11]. We extend that theory here so that the
difference in an observed peak from its expected height Pr(0., |E.,)
is modelled by Eqs. (3a), (3b) and (3c¢). In these equations the terms

0!, and E!, on the left hand side of the equations refer to the peak
being examined and the “+1' or ‘~1' on the right hand side of the
equations signify peaks relative to the peak in question. Also note
that Eq. (3a) and (3b) are the same but we list both to assist in the
understanding of Eq. (3d).

2
log (%) ~ N(O.CT) for purely allelic peaks (3a)
Eﬂl‘ Eﬂf
ol c?
log( == | ~ N| 0,— |for purely forward stutter peaks. (3b)
1 T
Eﬂl’ Eﬂf

2
log (%) ~ N(O. ,k )for purely back stutter peaks and (3c)
Enr (a+1)r.

ar (a+1)r

1.2 (Al +F,)c?
log % ~N|o. gl"'k +M for composite peaks
E Eqr
(3d)

where Al S!and F, are allelic, back stutter proportion and
forward stutter proportions of the peak, so that Al +S} +F = 1.

The values of k* and ¢? in autosomal work have prior gamma
distributions and the point values for these terms is a parameter
within the model, so that the analysis can adjust to account for
profiles that are more or less variable than the ‘average variability’
(see Ref. [13] for work describing the nature of the k? and ¢? terms
and factors that affect their prior distribution).

For autosomal STR analysis the values of k? and ¢? have separate
prior distributions, I'(a1,81) and I'(«2,82), respectively, and are
independent parameters within the model. The work in Ref. [13]
describes how Markov Chain Monte Carlo (MCMC) can be used to
provide the peak height variability framework described above,
and profiles of known source to obtain the peak height variance
constant prior distributions. This works in part because there are
two allelic peaks expected at each heterozygous locus, and these
peaks act as intra-locus calibrators of each other's expected
heights. In the case of haplotypic markers, such a calibration does
not exist. The consequence within the MCMC of not having an
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intra-locus calibrator could be that a disproportionate amount of
peak height variability is assigned to either allelic or stutter peaks
(i.e. the model could explain all variability exists in allelic peak
heights and that stutter peaks have no peak height variability). To
counter this we restrict the evaluation of prior distributions of
variance constants to be equal, I"(cty,B1)=I"(@2,8)= (e, B). In
autosomal work this assumption is found to be approximately true
depending on the resolution of the stutter model in use (data not
shown).

As long as I'(«,) can be determined this now provides a means
to assess the differences between expected and observed peak
heights within Y-STR profiles.

1.1.3. Haplotypic weight

As mentioned in Section 1.1.1, with given mass parameters the
expected height of peaks within and between loci are independent.
We follow the work of Ref. [1] by describing the weight (w}) for a

proposed genotype set j at locus | (S]’-) as the probability of the
observed data given the genotype set and integrated across the
mass parameters:

W = / IZIHPr(Of,,\S}.M)Pr(M)dM “)
M

And that the weight for the entire profile haplotype is obtained
by multiplication of the weights at each locus:

v =TI (5)

which is an approximation for the integral that considers whole
profile weights as integrals across the whole profile, rather than
locus by locus. This approximation has been shown to be valid [1].

We use MCMC in the method described by Ref. [1] to evaluate
Eq.(4). In brief, we change all mass parameters and the genotype at
one randomly chosen locus within the MCMC at each iteration. The
acceptance or rejection of the proposed values is decided by the
Metropolis-Hastings algorithm and the weights for each genotype
set become the proportion of iterations that contain them.

1.2. Determining the peak height variability of Y-STR data

We use Yfiler™ Plus (Life Technologies, CA) as an example for
determining peak height variability. The following settings were
used:

e Saturation: 7000 rfu determined as per Section 3.7 of Ref. [10].

« Analytical threshold: 30 rfu determined as per appendix 1 of Ref.
[10].

o Back stutter ratio: regressions of allele vs back stutter ratios were
used in accordance with stutter ratio results obtained from Life
Technologies Yfiler™ Plus manual [ 14] chapter 5, Figs. 11-17. The
table of regression values used are given in Table 1.

« Forward stutter ratio: a profile-wide forward stutter ratio of 0.01
was used.

DNA from two male individuals was extracted twice using
Chelex (Bio-Rad Laboratories, CA) and twice using DNA IQ
(Promega Corporation, WI) and amplified at 500, 400, 100, 50,
20, 10, 5 and 1pg in triplicate, giving a total of 96 samples. All
samples containing saturated data or fewer than 10 data points
were excluded from the dataset, giving total of 67 samples. This
group of 67 samples were analysed using the method described in
Section 1 of Ref. [13]. The distribution for the peak height variance
constant (not shown) has mean of approximately 9 and a mode of
approximately 6. There is some arbitrariness as to choosing a point

Table 1
Back stutter ratio regression results.

Hocus In regression }ral = By + B,a value below are: o8
DYS576 0.0311, 0.0078
DYS3891 0.0700, 0.0100
DYS635 ~0.0922, 0.0078
DYS38911 0.1600, 0.0100
DYS627 0.0700, 0.0080
DYS460 ~0.0525, 0.0125
DYS458 0.0467, 0.0089
DYS19 ~0.1300, 0.0150
YGATAH4 —0.0860, 0.0140
DYS448 -0.0275, 0.0025
DYS391 —0.0400, 0.0100
DYS456 —0.0900, 0.0133
DYS390 —0.2167, 0.0133
DYS438 ~0.0200, 0.0057
DYS392 —0.0550, 0.0125
DYS518 —0.1220, 0.0080
DYS570 -0.0133, 0.0067
DYS437 -0.1000, 0.0100
DYS385 ~0.0400, 0.0100
DYS449 0.1300, 0.0100
DYS393 —0.0583, 0.0117
DYS439 ~0.0500, 0.0100
DYS481 0.0844, 0.0122
DYF387S1 —0.2280, 0.0090
DYS533 -0.0400, 0.0100

value from a distribution with which to develop thresholds, and an
argument could be made to choose either the mode or the mean, or
some other quantile. We have chosen the mean. This value can be
‘sanity checked' by comparison with stochastic effects seen in
observed data. This is carried out in a manner similar to that
described in Section 3.4 in Ref. [ 10], however instead of considering
heterozygous imbalance we graph log(O:,,/EL,) against Ef,, for
allelic peaks. The expected height for E!, is obtained by the
expected back stutter ratio and observed back stutter peak height:
O'a—l)r
g, = i ©)
”ﬂ

Doing so for the 96 samples in the Yfiler Plus dataset produces
the graph seen in Fig. 1, where the dotted lines represent the 95%
bounds on expected variability (see Ref. [ 10] for an explanation of
the origin of these bounds) and the dashed line represents the
approximate bound on the observed data based on an analytical
threshold of 30 rfu (approximate because it uses an average value

of 7[{‘1: 0.09, which is the average value for all peaks in the
dataset).
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Fig. 1. Observed peak height variability showing 95% bounds (dotted lines) and
bound on observed data (dashed line).
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Because of the bound on observations it is difficult to assess the

coverage of the expected 95% bounds on log(OL,/Ef,,). It would be
expected that 2.5% of data falls above the upper bound dotted line,
and should not be affected by the bound on observations. 1.5% of
observations seen in Fig. 1 fall above the upper bound 95% interval,
which represents a reasonable alignment with theoretical expect-
ations.

As described in Ref. [13] the distribution of locus amplification
efficiency variances over a number of samples can be modelled
during a component-wise MCMC using an exponential distribution
(termed in Ref. [13] as a hyper-distribution). Doing so for the
dataset described here produced an exponential distribution with
mean value 0.03. We then use this mean value as o2 in the locus
amplification efficiency model by logo (A') ~N(0,0.03).

2. Developing Y-STR guideli

from probabilistic assessment

Without access to probabilistic software that can apply a
continuous interpretation method to Y-STR profiles, laboratories
will require some rules or guidelines to assist with a ‘manual’
interpretation. Typically, such guidelines will include:

e An analytical threshold.

e A saturation threshold.

e A stochastic threshold (sometimes referred to as a dropout or
homozygote threshold).

e Mixture ratio/proportion guidelines.

The analytical threshold and saturation threshold for Y-STR
profiling systems can be determined in the same manner as for
autosomal STR systems.

2.1. Stochastic threshold (ST)

It is worth considering whether the term ‘stochastic/dropout/
homozygote threshold’ has meaning in the context of Y-STR
profiles. Classically for autosomal STR profiles this denotes a height
at which, if we see a single allelic peak, (and given the level of peak
height variability for that laboratory/process) we would have a
defined level of confidence that it does not possess a partner that
had fallen below the analytical threshold. In the context of Y-STR
data the same meaning cannot be ascribed as peaks within a locus
do not have partners (even loci that have apparent multiple alleles
are really amplifications of several different loci from the one
primer pair). For single source Y-STR data a ST is more useful to

0.0 4
-1.0 A

"a)l

distinguish an allele that has dropped out from a null allele. This by
necessity is based on the heights of allelic peaks at other loci. In
mixtures the consideration of dropouts (or distinguishing dropout
from null alleles) has consequences for haplotype interpretation.
Andersen et al. [15] consider dropout probabilities and locus
amplification efficiency in a model that includes the molecular
weight of the locus in question in order to consider whether
dropout or null allele is more likely. We use this same concept,
but apply our models for peak height variability and locus
amplification efficiency. We use the same probability of a null
allele, Pr(N)=0.0002 as used in Ref. [15].

Therefore we consider two events that could cause an apparent
dropout:

1) Underrepresentation of the allele during sampling the DNA
extract for PCR.
2) Poor amplification efficiency of the locus.

We seek two values; firstly, the probability of dropout, of a peak
with height E!,. (which we approximate as the average peak height
of allelic peaks in the profile for single source profiles), and
secondly, the point at which the probability that a peak has
dropped out becomes more likely than the probability that the
absence of an allele at that locus is due to the presence of a null
allele. Let the haplotype with dropout be S; and the haplotype with
a silent allele be S,. Formally the probability of the data given the

haplotype is /HHHPr(Oi,AS}.M)Pr(M)dM which we can ap-
o A e

proximate with Egs. (4) and (5). Let us imagine that the locus with
potential dropout is x then the probability of the data for each
haplotype is:

/HHHPr(OL,|S’,.M)Pr(M)dM for haplot type 1 and (7a)
M dT

Pr(N) x /HHHPr(OL,kS‘,.M)Pr(M)dM for haplot type 2 (7b)

mlFxa T

We simplify Eqs. (7a) and (7b) by considering that the mass
parameters template and degradation provide an expected height,
E*, before amplification efficiency has been considered. By doing
this we simplify the problem to consider just the locus where the
potential dropout/null has occurred. Therefore to calculate the

—Pr(O<Z|E*)
=== Pr(N)
------ Pr(O<Z|E)

=2
3
=
B
5
= 80
-9.0
-10.0 T T T
0 200 400 600 800 1000

Expected height £,

Fig. 2. Probability of dropout (solid line) for expected heightsEL, when Z=30rfu. The dashed line is Pr(N) (the silent allele probability) and the dotted line represents
the probability of dropout when amplification efficiency is not taken into account.
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probability of dropout, Pr(Of,, < Z) we consider the combination of
amplification efficiency and peak height variability that lead to
potential dropout. This is achieved by:

Pr(0l, <7) = /Pr(oﬁ,, < Z|E", AYPr(A')dA! ®)
A’

where E,, = E* x A' and

z
Pr(0l, < Z|E*,A") = /Pr(O)Pr[Iog(ES’-)]dO
6-0 “

In words, amplification efficiencies are considered that would
change the expected height from E* to Ef,, and then the probability
of dropout is considered for a peak at height Ef,,, integrated across
all values of amplification efficiency. Using these models the
probability given by Eq. (8) is dominated by peak height variability
at low expected heights and by amplification efficiencies at high
peak heights. Fig. 2 shows the results of applying equation 8 to
peak heights E, from Z (30 rfu) to 1000 rfu and using 0 = 0.03. The
model in Eq. (8) relies on having an expected peak heightofE;,. and
this can be approximated from the average allelic peak height
across a profile, or by application of a model that accounts for
degradation and molecular weight. Also shown in Fig. 2 is the
probability of dropout (as seen in Eq. (8)) without taking into
account locus amplification efficiency.

From the results seen in Fig. 2 an approximate value that could
be used for distinguishing dropout from a null allele could be
approximately 350 rfu. The probability of dropout line in Fig. 2
(using Eq. (8)) is that which would be used to consider the
probability of dropout if there were multiple allelic peaks present
in a profile. For example a 1:1 mixture where only a single peak is
present could be treated similarly to an autosomal profile when
deciding whether the risk that not all information has amplified
above the analytical threshold (AT) is negligible. A probability
cutoff value could be chosen, such as 0.001, and the corresponding
height used as a threshold (from the dotted line in Fig. 2 this would
be approximately 200 rfu).

2.2. Interpreting a major component

We will use the results of the probabilistic estimation of peak
height variability from Section 1.2 to address mixture proportion
guidelines.

Consider first a two person Y-STR profile, with L loci. The
individuals have contributed DNA in unequal amounts. We define
the proportion of contributor 1 as m; and of contributor 2 as ms.
These are unknown. To develop guidelines, which allow us to
assign the apparent major component to the major contributor
with some level of confidence we need to consider:

e Varied mixture proportions.

« Varied profile intensities.

o What probability do we accept for the incorrect assignment of a
major contributor.

There are L-d loci showing two peaks. d loci show one peak and
that is either because both peaks are the same allele, or one allele
has dropped, or one allele is silent.

Consider initially the loci showing two peaks. If we call the
larger peak at each two allele locus Ey and the smaller E,,, then we
could imagine that all L-d of the larger peaks are attributable to the
major and the remainder to the minor. Term this arrangement S;.
However there are many other potential arrangements. Consider
initially the swap of two peaks at one specific locus such that the

smaller peak is assigned to the major and the larger to the minor.
Term this arrangement S,.
The probability of any particular assignment, j, is estimated as

/HHHPr(OLJS}.M)Pr(M)dM. We require
M Lar

/HHHPNOL,\S’, M)Pr(M)dM
M 4 P
/HHHPr!OL,\S’Z.MlPrlMJdM
i @ T

where « is a likelihood ratio threshold we wish to apply. The
formulation above avoids assuming a known ratio, but is complex
to apply. We again make a simplifying assumption that the profile
ratio is known and available to be applied to the methodology
below. In practise this is likely to be average ratio observed across
the profile. There will be some increased uncertainty associated
with this practise.

We start with a mixture that possesses contributors in
proportions 2/3 and 1/3 (or 2:1 in ratio). Two peaks are observed
at 0, and O, where 0; ~2 x 0,. There is a possibility that O; has
been donated by the major contributor and O, by the minor. There
is also possibility that O, has been donated by the minor
contributor and O by the major, but peak height variability has
caused the apparent flip in relative peak heights. Possibility 1 is
going to be more likely than possibility two, as it is a better fit with
the mixture proportions, but the question for interpretation is
whether the alternative is so unlikely that it can be discounted.
This will depend on the absolute peak heights of 0, and 0.

If the profile is adhering to the mixture proportions then the
expected heights for the major (E;) and minor (E3) are:

>a

E, :%(01 +0y)and E, :%(o, +0y)

Therefore the probability of the observed data if O; is from the
major and O, is from the minor (denoted as haplotype set 1, S;) is:

P(OIE.S) = Pr[log(%‘-)] « Pr [log (.g_z”

2
B 0, 0,
=Pr [log (—§(01 +02))] x Pr {Iog (—5(01 " 02))]

where the probabilities are enumerated using Eq. (3a).
And the alternative where O if from the major and 0, is from
the minor (denoted as haplotype set 2, S;) is:

- 2 __0
p(O|E,S;) = Pr [IOE(?;(O, " 02))] x Pr [log(§(01 = Oz))]

Whether or not we are willing to interpret O, as the major then
is determined by the peak heights and the confidence we desire in
the assignment. Let us say our criterion was: 222U > . This
criterion requires the evidence to be « times more likely under S;
than under S.. This should not be confused with stating that S, is «
times more likely than S,.

Fig. 3 shows the value of 232U over a range of heights for 0,
and 0,, where we consider a 2:1 mixture and assume 0,=20,, a
3:1 mixture and assume 0;=30,, a 4:1 mixture and assume
0,=40, and a 5:1 mixture and assume O;=50,.

From Fig. 3 the thresholds on the height of the largest peak that
are suggested for the assignment of the largest peak as coming
from the major component for 2, 3, 4 or 5 to 1 mixtures (where
both peaks have been observed in approximately that configura-
tion) are 1022, 455, 304 and 234 rfu, respectively using a threshold
of «=1000.
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Fig. 3. Likelihood ratio considering the probability of the observed peaks if the higher peak is from the major contributor as opposed to the smaller peak being from the major

contributor.

We can also consider the situation where only a single peak has
been observed at a locus and we wish to know when it can be
assigned to the major with confidence. Again a formal treatment
would see the probability of the observed data considered in light
of the two competing scenarios:

S;: the major contributor is the source of the observed peak,

S,: the minor is the source of the observed peak with the major
having dropped out, and integrated across all mass parameters so
that assumptions regarding mixture proportions, DNA amount,
degradation and amplification efficiency are not required. Again
we make some simplifying assumptions in order to simply
determine a threshold for this data. If the single peak is height
0 and the mix proportions are m; and m, then we evaluate the
described scenario by:

— 1o fiog(2\]prol. < ziE ™
p(OIE.S;) = iPr[log(olﬂPr(On, <ZIE= m—lo.)
1 0;
- EPr [Iog (0_1)] and

P(OIE.S;) = Pr(0., < Z|E = ™0,)Pr [log(&ﬂ
my 0,

Note that under p(O|E,S;) we consider that either the minor has
dropped out (left part of the equation) or that it is masked under
the major (right part of the equation), each with equal prior
probability. Notice here that we simplify to the point that we are
not considering the impact that amplification efficiency may be
having on the locus, however this is likely to lead to a conservative

~
= Two peaks
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T &
2 21000 o
P y=2221.2x123
s S 800
25 \
= € 600 kS
Ss B
S 2 400
23
g 200
0
0 2 4 6 8 10 12
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Fig. 4. Relationships between the mixture ratio for two person mixtures and the threshold required for the higher peak to be

threshold (i.e. requiring higher fluorescence in order to interpret)
and so is justifiable. Using the above formulations the points at
which 2820 > 1000 is obtained for 2:1, 3:1 or 5:1 are 93, 60 or
40 rfu, respectively. The threshold of interpretation can be plotted
against the mixture ratios in order to obtain a relationship between
the two properties that allows thresholds to be considered for a
range of ratio. This can be seen in Fig. 4, where a power trend line
has been fitted to the data.

A similar approach can be used to consider more complex
mixtures just as long as all genotypic sets are considered that
include, dropout or masking when determining the likelihood
ratio. Without deriving in the same detail as above, we provide
some scenarios in Table 2 as examples for 3 person profiles. Note
that the first row considers the same imbalances as the two person
scenario above and so the thresholds are the same.

Although the same system of threshold determination could be
generated for profiles of any complexity, we suggest that the higher
order mixtures (for example greater than three males, or profiles
complicated in some other way such as differential degradation or
inhibition) may be out of the scope of manual interpretation and
better suited to analysis in probabilistic systems.

2.3. Interpreting a minor component

We consider here the situation where a single peak has been
observed at a locus in a profile where the two contributors are in
uneven proportions. Interpreting a minor component can be
treated in the same way as a major component, although the added
complexity that the minor peak could be masked under the major

One peak major
100 y= 181.03x:1:055

Peak height required for
interp (RFU)
W
(=]
X

0 2 4 6 8 10 12
Ratio (:1)

d to a major c
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Table 2

DNA profile examples and potential thresholds for assigning the larger peak to a major component of a 3 person mixture.

DNA Profile description Scenarios Value of x when E_g% ~ 1000
3 person profile with 3 peaks $;: major =[A], minors =[B] and [C] x:y=2:1-1022rfu
Oa=xrfu S,: major =[B] or [C], minors=[A] and [C] or [B] “ :1—455 rfu
Og=yrfu x:y=4:1-304rfu
Oc=yrfu x:y=5:1-234rfu

x>y
3 person profile with 2 peaks Sy: major =[A], minors =[A] and/or [B] and/or [Q] x:y=2:1-4500rfu
Op=xrfu S,: major=[B] or [Q], minors=[A] and [Q] and/or [B] x:y=3:1-738rfu
Og=yrfu x:y=4:1-389rfu
x>y x:y=5:1-274rfu
3 person profile with 1 peak S,: major =[A], minors=[A] and/or [Q] x:y=1:1-453 rfu
Op=xrfu S,: major =[Q], minors=[A] and possibly [Q] x:y=2:1-286rfu

11-227rfu
x:y=4:1-199rfu
x:y=5:1-182rfu

must be taken into account. There are two scenarios that we
consider:

1) Sy: the peak at height O is made up of two individuals donating
an A allele and its observed height is equal roughly to what is
expected. The numerator of the LR may be approximated by the
density of the normal distribution N(0, ¢?/0) using the mode of
the distribution for the variance

2) S,: the peak at height O is only from the major contributor and
the other peak, expected to have occurred as height O%} has
dropped out. This probability can be determined by Eq. (8).

Given an observed peak height O for allele A, we must consider
the point where the ratio of likelihoods 2224 exceeds some value
(). To be consistent with previous interpretations we will use a
value of @ = 1000. Define the proportion that the major contributor
is donating to the mixture as m; and the proportion from the minor
contributor is m, (where for a two person mixture m;=1-m,). In
this simplified treatment of the data we are not going to consider
the effects that amplification efficiency may have on the
interpretation and so are losing some power.

From Fig. 5, and using an LR threshold of 1000 (arbitrarily
chosen) it would be acceptable to designate the minor peak in a
mixture as masked by the major for 2, 3, 4 and 10 to 1 mixtures
when the height of the single observed peak was 270, 520, 1000
and 2340rfu, respectively. Again, the threshold of peak height
required for interpretation of a masked minor component can be
plotted against the mixture ratio as in Fig. 6.

5.0
45
4.0
35
3.0
25
2.0
1.5
1.0
0.5
0.0

—D:1
—3:1
—4:1
—10:1

1og,o[Pr(OIE,S))/Pr(O|E,S)]

0 500 1000 1500 2000 2500
Observed Peak height (O) rfu

Fig. 5. The probability of a single observed peak given the scenario that the minor is
masked under the major peak vs that the minor peak has dropped out for various
mixture proportions.

2.4. Variation in mixture proportions across a profile

The thresholds given above are developed using simplifying
assumptions. It is likely that there will be variability in the mixture
proportions across a profile and the question may be asked as to
whether the mixture proportion at any one locus deviates
sufficiently from a profile average that it casts doubt on the
interpretation, particularly for higher order mixtures. Consider a
locus, which has mixture proportions of m; and m, and a total
observed height (the sum of the peaks) of O;rfu. Peaks are
expected to be present at E;=0pn; and E; =07, rfu. We know
from Eq. 3a that Oym; will be observed at height O, for some
proportion of the time as given by equation:

0; = Orm; x 10*

where x is determined as the value of log(0,/E,) for which a
normal distribution N(0,c?/E;) is at the desired quantile. If we
consider both peaks together (and make the simplifying assump-
tion that the imbalance probability is apportioned evenly between
the two peaks) then we are interested in the point at which both
values of log(O/E), considered together, would reach the desired
quantile. To demonstrate this concept we have considered
mixtures with ratios of 1:1, 2:1 and 10:1. Fig. 7 shows the 95%
intervals on the mixture proportion variation that would be
expected for a 1:1 mixture.

Typically, interpretation thresholds that deal with allowable
variation in the relative contribution of contributors are based on
mixture proportions. Threshold such as |[D| <0.2 when average
peak height is greater than 300rfu have been suggested for
autosomal profiling systems [16]. That is, the mixture proportion of
any individual locus being interpreted must fall within 0.2 of the

One peak minor

g 0 237.27x _°
y=237.27x
2 52000 ///
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g & 1500 7
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i
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Fig. 6. Relationships between the mixture ratio for two person mixtures and the
threshold required for assigning a minor allele as masked by the major.
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Fig. 7. Variation expected in 1:1 mixture ratio for a range of peak intensities. Dashed lines show the 95% interval bounds.

profile-wide average value. We demonstrate the performance of a
mixture proportion (Mx) threshold of +0.2 on data that has
mixture ratios of 1:1, 2:1 and 10:1 (or mixture proportions of 0.5,
0.34, 0.09) in Fig. 8.

Note that in Fig. 8 for the 10:1 profile there is no lower bound on
the acceptable mixture proportion of the minor contributor. Also
from all three graphs in Fig. 8 it appears that the mixture
proportion threshold of + 0.2 covers most data that is above a
typically ‘stochastic range’. Another method that could be used
would be to determine at which peak intensity point the mixture
proportion reached 0.5, which for the 2:1 and 10:1 ratios would be
580 rfu and 164 rfu respectively. Whilst this second method may
allow more interpretation due to its increased flexibility it is also
more difficult to apply.

2.5. Determining peak height variability without continuous analysis
software

If a laboratory does not have access to computing systems that
can determine the peak height variability in the manner described
by Section 1.2 then an approximate value will need to be
determined using empirical observations. This can be done by

2000 4000

comparing the observed peak heights with the expected peak
heights (determined from the stutter peak heights and the stutter
ratio for that allele and locus combination) and adjusting the value
of ¢ until quantile bounds have their expected coverage. This is
basically retrofitting the variance constant to empirical observa-
tions as seen in Fig. 1. This can be done by:

(a) Determine the expected height for the allelic peak at locus [ in
Ola1yr
o

T

profile i, E, by E, =

a
(b) Graph log(%‘m) against EL, for allelic peaks

(c) Graphthe 95% upper bound by +Z \/7-?- where Zdetermines the
quantile

(d) Adjust ¢? until only 2.5% of the data falls above the upper 95%
bound

Doing the above for the dataset described in Section 1.2 gives a
value of ¢?=5.4, which is in the mode of the variance constant
distribution. This is lower than the value of ¢?=9, which is the
mean of the distribution that was used for thresholds. This

4000

0.5 05 0.5
T 0254 T 025 T 025
£ £ z
E E E
£ 0125 E 025 = oa2s
0.0625 0.0625 0.0625 |
0.03125 - 0.03125 - 0.03125 -

Height of most intense peak (rfu)

Height of most intense peak (rfu)

Height of most intense peak (rfu)

Fig. 8. Variation expected in 0.5 (left), 0.34 (middle) and 0.09 (right) mixture proportions, m, for a range of peak intensities. Data is shown only for the minor contributor
mixture proportion. Dashed lines show the 95% interval bounds. Solid lines show a value of +0.2 from the known mixture proportion.
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difference is likely to decrease as the dataset used to derive it
increases in size, at which point the manually derived value is
likely to converge to the continuously determined value.

The second aspect required for interpretation is an inter-locus
variance, o2, for the amplification efficiency model:

logo (A') ~N(0,0?) 9)
Determination of a value for o2 can be carried out by:

(a) Determining the average peak height for each of the I profiles,
E

(b) Calculate the amplification efficiency factor for each locus that
would be required for it to equal E;. For example if the observed
height of the allele at locus | in profile i is 05, then the

amplification efficiency is calculated by A! :%

1
(c) The likelihood of the dataset, L, is calculated by
L= HHPr(A,!). where Pr(Af) is modelled by Eq. (9)
i

(d) The value of o is varied to maximise L.

Carrying out this procedure for the dataset described in
Section 1.2 yields an amplification efficiency variance value of
02 =0.04, which is close to the value given in Section 1.2 of 62 =0.03.
The increased value for o> when using the method described above
is likely due to the fact that in the manual method above there is no
degradation term, therefore any differences in peak heights will
need to be accounted for by amplification efficiency. The continuous
model described in Section 1.2 does have a model for degradation
and hence the lower amplification efficiency variance. The
approximation of no degradation using the manual method is
likely to have a small impact on the value of o as long as the profiles
being considered do not exhibit marked degradation.

2.6. Assessing the interpretation models

In order to assess the performance of the suggested continuous
and binary interpretation models we generated mixed DNA
profiles from two, three and four male individuals in dilutions
as specified in Table 3. Mixed DNA samples were amplified in
triplicate as per manufacturer’s instructions to obtain a total of 90
Yfiler Plus profiles.

2.7. Probabilistic models

The method described in Ref. [1] and Section 1 of this paper
described the biological and statistic models used to analyse Y-STR
data in a fully continuous manner. Section 2 uses these continuous
models in order to develop interpretational thresholds than can be
applied in a manual fashion, or with the assistance of an Excel

Table 3
Mixtures constructed for analysis.

Tubes Mixture proportions for contributor ~ Total DNA added to PCR (pg)
One Two Three Four

1-4 0.50 0.50 500,200,50,20

5-8 0.33 0.67

9-12 017 0.83

13-15  0.09 0.91

16-18  0.02 0.98

19-21 033 0.33 0.33 500,200,50

22-24 0.50 0.33 0.17
25-27 0.25 0.25 0.25 0.25
28-30 0.40 0.30 0.20 0.10

spreadsheet in a relatively straightforward manner. Before
applying the thresholds to mixture data we must first show that
the continuous models on which they are based are indeed
functioning correctly. We apply the continuous methodology using
a modified version of STRmix™ (http://strmix.esr.crinz/) [1]
(which we refer to here as STRmixY, and is currently in a
developmental state) to carry out this function. It is impractical to
display all results for all mixtures analysed in this study and so in
Table 4 we show the results for the 1:1 mixture deconvolution,
displaying all haplotype combinations and weights generated by
the continuous method. The mixture, when generated, was in
reality slightly divergent from the target 1:1 and the continuous
interpretation picked this up, hence the weights in Table 4 are not
split evenly between contributor 1 and 2. A copy of the profile is
given in Fig. 9 and this divergence can be seen. In Table 4 the
genotype sets associated with the known contributors are bolded.
It can be seen in all but one instance the correct genotype set was
given the highest weight. In the one instance that the highest
weight was not given to the known genotypes set (in DYS448), the
weights correctly reflect the results obtained in the epg (Fig. 9).

Fig. 10 shows the target mixture proportions of the analysed
profiles and the mean of the posterior distribution for mixture
proportions obtained from deconvolution by STRmixY.

From these analyses the deconvolution of mixed Y-STR data can
proceed in the same fashion as for autosomal data. There are other
aspects of the continuous deconvolution of these samples, such as
the assessment of locus amplification efficiencies, allelic and
stutter peak height variability, degradation levels and a number of
analysis diagnostics that we do not show here for reasons of

Table 4

Weights for 500 pg 1:1 mixture PCR 1. Contributor 1 and 2 percentages are the
posterior mean mixture proportions from STRmixY. Bolded values indicate the
correct genotypic assignments.

Locus Contributor 1 Contributor 2 Weight
Genotype (59%) Genotype (41%)
DYS576 [16] n7 0914
[17] [16] 0.086
DYS3891 [12] [12] 1.000
DYS635 [21] [21] 1.000
DYS38911 [29] [28] 0.906
[28] [29] 0.094
DYS627 [19] 9] 1.000
DYS460 (1] [10] 0.926
[10] (1] 0.074
DYS458 [15] [15] 1.000
DYS19 [14] [14] 1.000
YGATAH4 [10] mj 0.923
1) [10] 0.077
DYS448 [RE]] [20] 0.753
[20] 9] 0.247
DYS391 [10] [10] 1.000
DYS456 [15] 4] 0.904
[14] 15] 0.096
DYS390 [23] [22] 0.916
[22] 23] 0.084
DYS438 [10] [10] 1.000
DYS392 mj mj 1.000
DYS518 [40] [39] 0.634
[39] [40] 0.366
DYS570 [18] [20] 0.926
[20] (18] 0.074
DYS437 [16] [16] 1.000
DYS449 [26] [28] 0.855
[28] [26] 0.145
DYS393 [13] [13] 1.000
DYS439 [ mj 1.000
DYS481 [27] [25] 0.922
[25] 27] 0.078
DYF38751 [38] 137] 0.917
137] [38] 0.083
DYS533 [11] [11] 1.000
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Fig. 9. epg for 500 pg 1:1 mixture PCR 1.

Page 264 of 344



32 D. Taylor et al./Forensic Science International: Genetics 21 (2016) 22-34

Ability of STRmixY to predict mixture proportions
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Fig. 10. Target mixture proportions compared with posterior mean mixture proportions from deconvolution.

brevity, but give further assurances that the continuous methods
and underlying models are describing the observed data well. From
the results of the probabilistic modelling we are confident to
proceed on to testing the manual interpretation thresholds based
on these models.

2.8. Threshold models

We now subject the two person profiles detailed in Table 3 to
the threshold based interpretation rules generated in Section 2. We
generate the average mixture ratio, M;, by

1. Averaging value of the log of highest observed peak divided by
the lowest observed peak at each locus to provide the apparent
mixture ratio at a locus, M/, and

{Zlogth

2. Taking 10 to the power of this value M, = 10 | . This can
then be converted to an average mixture proportion by,
M,

Mx 1M,

We then apply rules rigidly using Excel to all two person
mixtures. For the major component at a locus to be interpretable:
If there are two observed peaks:

1. The observed mixture ratio must be within +0.2 of Mx (as per

= —0.2 = +0.2
,',Mx—_gM’<Mx—_)and
1.2 - Mx

Section 2.4) (in terms of M <
r 0.8 - Mx

2. The peak height of the major peak must be greater than or equal

1223
to 2221.2 x M; (as per Fig. 4 left pane).

If there is one peak:
1055
3. Then it must be greater than or equal to 181.03 x M, (as

per Fig. 4 right pane).

Even given these three rules there is a requirement for an
additional rule that prevents interpretation of a major (or minor)
component in a mixture when the observed peak heights are too
close. We create this rule with consideration of the created and
observed ratios for the two person mixtures at different concen-
trations, as seen in Fig. 11.

Fig. 11 shows that there is overlap between individual locus
mixture ratios at all levels of input DNA and overlap of profile
averages when 50 pg or less is added to the PCR. As expected the
observed ratio for the more disparately prepared mixtures is much
less than the target ratios. This is because the expected peak
heights of the minor components are below the analytical
threshold, and so all observed values will be those that are
stochastically higher than expected. Given the results of Fig. 11 we
implement one additional interpretation threshold for interpreting
major components:

4, For a locus with two peaks the observed mixture ratio at that

locus must be greater than 2:1, i.e. Mr‘ >

Note that rule 4 is somewhat more arbitrarily chosen than the
other interpretational thresholds. The modelling of data to develop
this threshold is more complex because it involves the observed
average mixture ratio, the mixture ratio at the locus being
examined and the height of the peak involved. Multiple regression
could be performed to develop this rule, however we feel that it is
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Fig. 11. Target and apparent mixture ratios for two person mixtures at different total DNA amounts. Profile averages are given as black bars and individual locus values are

given as hollow circles.

likely to become overly cumbersome to apply in practise and so we

simply choose a value that should perform conservatively.

To interpret a minor component, thresholds 1, 2 and 4 apply, and

the modified rule 3 becomes:

5. If there is one peak present then it must be greater than or equal
to 237.27 x M, (as per Fig. 6).

The results of applying these rules to the two person profiles on
all non-duplicated loci (i.e. all loci excluding DYS385) are shown in
Table 5. The maximum number of loci at which a component could
be interpreted is therefore 24. The number of loci that can
potentially be interpreted will depend on the ratio (i.e. only single
peak loci can be interpreted from 1:1 mixtures) and the number of
loci where information is detected.

For the results in Table 5 all interpreted alleles for both major
and minor contributors were assigned correctly. The sample
asterisked in Table 5, possessed a genotypic assignment for major
and minor at a locus where the alleles of major and minor
contributors were different from each other. For the locus in
question the observed average mixture ratio was 1.5:1 and the
locus at which the interpretation was made possessed two alleles;
10at 891 rfuand 11 at 1976 rfu (locus DYS460 from Fig. 9). Applying
the thresholds 1-5 interpreted a major contributor at this locus as
having an 11 allele. All other loci interpreted for this profile
contained only a single peak (and so both contributors could be
interpreted as having this allele). While the above interpretation is
correct, in that one of the contributors has this allele, we highlight
it as the target mixture proportion for this profile was 1:1 and so
we expected that no component would have been interpreted at
this locus. It is worth noting that the highest weight given by the
continuous interpretation method to this sample (Table 4) for any
of the loci with two distinct alleles was 0.93, at locus DYS460 and
DYS570. In total 756 assignments were made of a major

contributor and 399 assignments of a minor contributor out of
the (54 x 24) 1296 potential assignments.

In a broader sense the results of the manual interpretation give
reassurance that the continuous models used to describe DNA
profile behaviour can be manipulated to generate binary thresh-
olds for use in manual profile interpretations. It is also worth
noting that the dataset to which these thresholds have been
applied is not the training set used to generate the thresholds in the
first place. This has been done so as to evaluate their use as they
will be applied in casework.

Table 5

The number of loci at which the major and minor contributor can be assigned for the
two person mixtures outlined in Table 3 (results of 3 PCRs combined). The
asterisked results are explained within the text.

Ratio DNA (pg)  Major loci Minor loci Loci with alleles detected
interpreted  interpreted
1:1 500 37* 37 72
2:1 38 38 72
5:1 70 70 92
10:1 72 63 72
50:1 72 16 72
1:1 200 36 36 72
2:1 36 36 72
5:1 63 49 72
10:1 70 24 72
50:1 72 20 72
1:1 50 32 3 72
2:1 33 4 72
5:1 36 0 72
10:1 36 1 7
50:1 28 2 72
131 20 9 0 62
2:1 3 0 54
5:1 13 0 52
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3. Conclusion

Y-STR data can be crucial to forensic investigations, particularly
when autosomal STR information has failed to yield an informative
result. The relatively low proportion of cases that utilise Y-STRs,
combined with difficulties in evaluating an LR, due to their mode of
inheritance, has meant that the advances seen in autosomal STR
analysis have not been mirrored for Y-STR data. This leaves many
laboratories with limited power to develop interpretation guide-
lines and calculate evidential weights for Y-STR data, particularly
for mixed profiles. In this work we develop methods that overcome
some of these limitations by suggesting ways that laboratories can
develop interpretational guidelines, based on the same probabi-
listic theory that has advanced autosomal interpretation. We
demonstrate the generation of interpretation guidelines based on
dropout, mixture proportion, peak balances and major/minor
component configuration and applied them to laboratory generat-
ed mixtures. The reason we demonstrate methods for generating
interpretational guidelines at all is due to the realisation that a
publically available probabilistic system for Y-STR data interpreta-
tion is unlikely in the short term. In the interim some methods for
manual interpretation are still required.

We also applied the probabilistic methods directly (without the
use of thresholds) to the same data. As has been demonstrated in a
number of works (for example see [1]) the application of
thresholds (which are typically designed to be conservative) is
wasteful of data and leads to only a fraction of the generated mixed
DNA profiles able to be used for calculation of an LR .

We note that we have not considered the effects of multiple PCR
replicates on the ability to manually interpret Y-STR mixtures in
this work. The use of multiple replicates will increase the
confidence of the analyst in their interpretation and hence could
be used to reduce the interpretational requirements (i.e. lower
peak heights for interpreting a major component).
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7.2 A variable number of contributors

As profiles become larger in the number of regions targeted and more sensitive, the
forensic community faces an ever-increasing problem of complexity. As complexity
increases, it becomes more and more onerous to assign a number of contributors to the
profile. In the context of assigning a probability to the observed data, given a defence
or prosecution proposition, the number of contributors is one of the few (if not the last)
nuisance parameter that users must still place all their belief in a single value derived
through manual interpretation. With new technology on the horizon (called massively
parallel sequencing, which is briefly explained later in the thesis) the number of loci
looks set to increase further, and be supplemented with the underlying DNA sequences,
adding yet further complexity. The forensic biology community will soon exist in a
world where the data is simply too complex for a human pre-assessment on any nuisance
parameters to meaningfully occur. Some argue that this point has already arrived. A
method is required to treat the number of contributors to a DNA profile as a nuisance
parameter that can be integrated over within the LR model. The development of treating
the number of contributors as a nuisance parameter was the theoretical drive for the
work published in this section of the thesis. There was also a very clear practical drive
for this work. As the use of STRmix™ increased around Australia and New Zealand
laboratories during 2012 to 2014, the number and types of DNA profiles being evaluated
increased greatly from the days of manual interpretation. The mathematics was
published in peer reviewed scientific journals and showed quite extensive testing and
validation (many of which are given in this thesis) and direct attack by defence or
defence experts on the evaluation of the DNA profile data became more and more
difficult. This caused the nature of defence arguments to shift to two areas:

1) Conceding the presence of DNA, but disputing the mechanism of transfer which
lead to its deposition on the item of interest (which is expanded on more in
chapter 8)

2) The initial assessment by the analyst of the number of contributors to the DNA
profile

Repeated criticisms in court of the choice of the number of contributors made by the
analyst was the practical drive for the work that lead to the publication in this chapter.

Despite the work being carried out several years ago, the mathematics for treating the
number of contributors as a nuisance parameter has not yet been introduced into active
casework. The reason for this lack of forward movement has largely been due to the
resistance of the STRmix™ developers to statistical methods that act as ‘black boxes’.
Since the initial introduction of STRmix™ to the forensic community is has always been
maintained that the conceptual functioning of the method is teachable, understandable
by the forensic community and defendable by them when challenged. While there is no
expectation that non-developing analysts using STRmix™ could derive all formulae in
use, they know well enough the concepts to understand how the system works and
importantly can identify when it has failed to work.

The mathematics behind the ability to choose a range of contributors is complex. The
analysis requires the comparison of different posterior samples spaces of differing
dimensions, and these must either be pitted against each other within an analysis (using
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systems such as Reversible Jump MCMC), or compared afterwards. The workings of
the calculation risks being black box if not properly implemented and taught. Much
thought is required regarding the teachable and diagnosable elements of the calculation
and various diagnostics that could indicate when an analysis has failed to work. This
thought process is ongoing.
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1. Introduction There are two recognised solutions to the problem, both of
which have their foundation in the idea that the number of
contributors is a nuisance variable and should be integrated out of
the LR calculation. This is not a commonly held view. Many forensic
biologists would consider the number of contributors to be
something that should be determined from the data and hence are
part of the output of the interpretation rather than a nuisance
parameter that we will sum or integrate out. Budowle et al. state
that “every effort should be made to provide the best estimate of
the number of contributors” [9]. This, and many other statements
of this type, gives voice to the commonly held, but incorrect, view
that the number of contributors to a profile is knowable and is an
important part of the output.

DNA profile interpretation has benefitted from recent improve-
ments that use semi-continuous (e.g. LRmix, LikeLTD, LabRetrei-
ver) [1-5] or fully continuous (e.g. STRmix™, TrueAllele) [6-8]
methods to interpret information within an electropherogram
(EPG). These methods are likelihood ratio (LR) based and currently
require that a number of contributors be assigned prior to analysis.
Although it is possible in each of these systems to analyse the same
profile under a number of different contributor options, the
question still remains how to make use of the information. This is
particularly true when the difference between two possible
contributor numbers means the difference between excluding a

person of interest (POI) as being a possible contributor, and
producing a statistic that favours their inclusion. Presenting both
options in a court of law places the decision with the court. If it is
not possible for an expert to make this assignment it may be
expecting a lot to ask the court to do so.

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia. Tel.: +61 8 8226 7700; fax: +61 8 8226 7777.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2014.08.014
1872-4973|® 2014 Elsevier Ireland Ltd. All rights reserved.

While other works have examined the issue of calculating LRs
where the number of contributors is either unknown or can be
bound in some sensible manner [10,11], the theory relies on having
probabilities for the numerator and denominator of the LR, which
simplifies the calculation. Commonly continuous systems, which
utilise at least peak height information, work with probability
densities. We explain here a Markov Chain Monte Carlo (MCMC)
method for weighing different numbers of contributors against
each other, and the practical consequences of including this
information in the LR. In doing so we demonstrate that a single
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exact number is not required, contrary to many currently held
views.

1.1. Mathematics of the LR

The evidence obtained consists of a number of peaks (0!, for
allele ‘a’ at locus ‘I in replicate ‘'), each with an associated height,
molecular weight and DNA sequence. Whether this information is
obtained from one or several replications of the same DNA sample
the result is a series of observed peaks, which together are refer to
as the observed data O.

We are interested in the probability of obtaining this observed
evidence and in particular the probability of obtaining it given
some competing propositions (or hypotheses), H; and H.. We use
Pr for probability and p for a probability density.

_ Pr(OJH)
Pr(OJH;)

In order to calculate these competing probabilities there are a
number of nuisance parameters that we must consider, namely:

« Thej genotype sets (S;) of contributors, each of which is made up
of n single person genotypes for an n person mixture.

e The mass parameter (M), which is the term used for the grouping
of parameters for template DNA amounts for each contributor
(t,), a degradation curve for each contributor (d,), a replicate
amplification efficiency for each replicated analysis (R;), ampli-
fication efficiencies for each locus (A'), and peak height variance
constants for stutters and alleles.

o The number of contributors N to a DNA profile. Note that here N
may signify one, or several possible numbers under consider-
ation.

For many years the nuisance parameter that has been most
concentrated is the genotype sets, which has been incorporated
into the LR by:

_ 22 p(OIS; H)Pr(Sj|Hy)

mw =
=, P(O[S;.. H;)Pr(S,|H2)

For many years simplifying assumptions have been made for
p(OlS;, Hy), often to the point where these values where considered
equal and simply removed from the equation, or designated as
zero, resulting in the removal of the entire genotype set from the LR
calculation. The likelihood, p(0|S; Hy), is independent of the
proposition because given a genotype set the likelihood will be the
same regardless of whether a POl is being hypothesised as a
contributor, i.e. p(0|S;, Hy) = p(0|S;). In order to assess p(0|S;) it is
helpful to introduce another set of nuisance parameters, the mass
parameters. Following Taylor et al. [6] we denote these mass
parameters M, and note p(O|S;) = [, p(0|S;.M)p(M)dM. We
term p(0|S;) as the ‘weight’ for genotype set j and give it the
nomenclature w;.

32 w;Pr(SjlHy)

IR==F——0—
-y WiPr(Sy|Hz)

(1)

Note the summations in the numerator and denominator of
Eq. (1) may contain different numbers of non-zero elements, which
we indicate by using summation indices of j and j. We use this
nomenclature throughout the remainder of the paper. To obtain
weights we use the system of [6], whereby an MCMC process steps
through different genotype sets from iteration to iteration. The
weights obtained are residence times of each genotype set as the
focus of the MCMC. In doing so we produce weights that sum to
one, and are proportional to p(0|S;). The value of p(0|S;) is a density
without its normalising constant, and we ask the reader to consider

them as densities rather than probabilities as this assists between
model comparisons discussed later in this paper. When consider-
ing the number of contributors, N, the weights must be considered
as spanning models (consideration of different numbers of
contributor). Note that Eq. (1) can still be thought of as having a
term for number of contributors, however as the number is fixed
for all components and there are no comparisons between models
of different numbers of contributor then the N term is omitted. To
obtain proportionality within and between models we note that
the weights are products of a term for within model comparisons
(which we will continue to use w;) and a term for between model
comparisons, which we term Z,. Introducing Z, into the LR gives:

3-nZnPr(Nn|Hy1) 3= ; w;Pr(S;|Ny, Hy)

LR =
Zm anPr(anIHE) er W}'/Pr(sj/[Nn'- H2)

(2)

where N, is a model specifying n contributors and we make explicit
that there is no mathematical connection between the number of
contributors under H,, n, and under H,, n'.

Details of the calculation and meaning of Z, and the derivation
of Eq. (2) are given in full in supplementary material 2 (note that
the full derivation is mathematically dense, and the majority of this
paper does not require an understanding to that depth).

This allows us to introduce the concept of dimensionality. There
are more variables (dimensions) in the vector M for increased
number of contributors. This means that the mass parameters are
now dependent on contributor numbers so that p(M,|N,) is a
probability density in multidimensional space. In MCMC parlance
we could term the number of contributors different models and
hence N=3 could be one model and N =4 another. There are a
number of known ways to compare different models, some of
which are within chain comparisons such as reversible jump
MCMC [12]. The method used in this study is a between chain
comparison by calculation of the marginal likelihoods.

1.2. The effect of propositions on the LR

1.2.1. The effect on genotype set weights

At this stage it is useful to discuss the propositions that are
being considered. In Eq. (2) there are only two terms that depend
on the propositions, Pr(Sj|N,, Hy) and Pr(N,|H,). The S; term can be
further decomposed into the genotypes of the known contributors
(assumed to be present in the DNA sample by all parties, S), the
genotype sets of the POIs being postulated as contributors under
one proposition but not all (typically in forensic contexts this will
be a POI considered a contributor under H; but not in H,, S,) and
the genotypes of all the other, unknown contributors (Sy) that
must be present in the mixture to explain the total number of
contributors to the profile that are not accounted for by known
contributors or POls. Using H; as an example, this gives:

Pr(Sj|Hy) = Pr(Su,|Sk.Sp. Hi)Pr(Sk,Sp|H1) where Pr(Sy,Sp|Hy) = 1

The proposition makes a difference here because out of all 4
possible combinations of n person genotypes that could describe O,
many of them will not contain the genotype of the POL In such a
situation there are no combinations of genotypes of unknowns that
can explain the data given Sy and S, and so Sy is an empty set
(SuJ = @) giving rise to Pr(SuJ |Sk.Sp.Hy) = 0. The remaining non-
zero elements of Pr(SuJ |Sk.Sp.Hi) are based on the rarity of the
required genetic components (alleles) in whatever population is of
interest.

Even though the same list of j genotype sets is considered under
H, and H,, with the same values of p(0|S;), we often write the sum
under H,; as having j non-zero elements and under H, having j’
non-zero elements. However because w; are not dependent on
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propositions, MCMC is able to be used to determine them based
purely on the observed data, O.

1.2.2. The effect on contributor number weights
Pr(N,|Hy) can be evaluated in one of two ways. If a proposition
specifies exactly n contributors then:

1 n«=n

Pr(Nn. |Hy) = {0 otherwise

If there is ambiguity in the number of contributors that the
propositions then a possible way forward is to consider all values
for N, equally likely:

Pr(Np.|Hy) = L
ns[I1x) = K
where there are K different numbers of contributors being
considered. However any values can be chosen for these
probabilities if information exists to guide the choice.

for all n*

1.2.3. The propositions themselves

Classically these propositions have always specified a number
of contributors. However to treat uncertainty in the number of
contributors, that number cannot be specified in the propositions.
To allow uncertainty in the number of contributors it is necessary
to consider propositions that do not specify an exact number of
contributors, such as ‘the POI is a contributor of DNA to this sample'
considered against ‘the sample has originated from people unrelated
to the POT'.

Alternatively propositions can include contributor numbers as
long as they encompass a range. In this instance the propositions
become ‘the POI and n to n' unrelated individuals are the sources of
DNA' considered against ‘(n + 1) to (n'+ 1) individuals, unrelated to
the POI, are the sources of DNA'. Both sets of hypotheses produce
equivalent LRs.

1.3. Dealing with a range of contributors

We discuss the two options for dealing with a range of
contributors within the LR. These are:

i. integrating the number of contributors out and
ii. assigning a number based on maximising pr(O|H,) for each H,.

which are explored in Sections 1.3.1 and 1.3.2 respectively.

1.3.1. Integrating out the number of contributors

This approach seeks to implement Eq. (2). We note that the
total number of contributors to the profile and the genotypes of
the unknown contributors to the profile are all nuisance variables.
This is not a new concept and was discussed by Buckleton et al.
[13] although given how obvious the equation is it is likely it was
considered much earlier. There has been minimal uptake in the
forensic community presumably due to a lack of software options
that are able to implement it, and the difficulty in assigning the
between model weights, Z,.

Under this scenario the number of contributors is not specified
under either propositions and rather a range is considered.
Although informative prior probabilities for the number of
contributors can be used it is more likely that an uninformative
prior will be used so that the Pr(N,|H,) terms in Eq. (2) cancel each
other out to give:

 Y0Za X WiPr(SjINn. Hy)

[R== =
Lmzm Lj/ W)',PF(Sj,IN,,,. HZ)

1.3.2. Using the most probable number of contributors for each
hypothesis (MPN)

This approach assigns the number of contributors (n) as that
choice that produces the maximum posterior probability for the
EPG, VnZy 32 ;WiPr(Sj|Nn,Hy) and v Zn 325 WjiPr(Sj|Nw. Ha).

Using this approach the number of contributors for each
competing hypotheses within the LR is assigned in such a way that
it optimises the posterior probability of the EPG for that
hypothesis. The number of contributors may be the same or
different for each hypothesis, however a single number is chosen
for each.

There are two competing forces that determine which choice of
contributors is most favourable for a given EPG. Firstly there is a
drive to minimise the number of unknown contributors under a
hypothesis as each additional unknown contributor incurs an
additional genotype probability in the calculation. This is true in
the calculation of Pr(O|H,, My, §;, N,;) and also in the calculation of
Z,. The number of imbalances or stochastic effects will drive an
increase in the number of contributors as the profile will be
described better with an additional contributor accounting for the
imbalances.

The effect of each of these two competing components will
dictate which choice of number of contributors produces the
greatest posterior probability for the EPG. The LR calculated will
ultimately be

R Zn 32 ;WjPr(Sj|Nn. Hy)
Zo >, W Pr(Sy Nor, F)

where n and n’ can be the same or different.

1.3.3. Choosing stratification or MPN

There are scenarios where a range may be more applicable than
an MPN estimate for the choice in number of contributors, or vice
versa. Note that the choice between stratification and MPN only
affects the Pr(N,|H) terms in Eq. (2) as outlined in Section 1.2.2.

Consider an intimate swab from a victim which has yielded a
DNA profile with peaks at heights which could be reasonably
explained by two contributors. The victim says she was raped by
one man and has not had recent consensual sex. The main
contributor to this profile corresponds with the victim, who is an
assumed contributor. There are a number of minor alleles present
all except one of which can be accounted for by the person of
interest. Under the assumption of two contributors (and ignoring
the possibility of drop-in for this scenario) the suspect would be
excluded as a contributor of DNA to this profile. This is the position
that defence may wish to take. The prosecution would take the
stance that the profile has originated from three individuals and so
would not exclude the suspect as a source of DNA. Under this
scenario the MPN estimated values for number of contributors is
arguably the better treatment of the profile.

Now consider a complex, low level DNA profile that has
originated from an item where no-one can be assumed to have
contributed DNA and there are several persons of interest for
comparison. The profile can be described as two person profile,
although there are indications that it may be from more than two,
such as sub-threshold peaks, imbalances or drop-ins/drop-outs.
Under this scenario, given the inability to reasonably assign a
number of contributors to the profile, stratifying across a number
of contributors is arguably the more appropriate choice.

1.4. The interaction of peak height variability and the number of
contributors

There are four sources of ambiguity in assigning the number of
contributors. These are:
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1. Contributors sharing alleles, known as ‘masking’
2. Artefactual peaks in allelic positions

3. Drop-out of alleles

4. Variability in peak heights

The masking of alleles has dominated considerations of the
number of contributors [13-17], probably incorrectly. It is a
common claim in court by defence experts the ‘true’ number of
contributors to a profile could be different from the number used in
statistical analyses. This of course misses the point that for
evidence samples the ‘true’ number of contributors can never be
known and is not required for LR calculations. It is also often
forgotten that defence and prosecution have every right to
nominate numbers of contributors in their own propositions,
but have no jurisdiction over the other party’s choice.

Our experience suggests that the interpretation of small peaks
in forward (a + 1) stutter positions, larger than expected peaks in
back stutter (a — 1) positions, and peaks imbalances are larger
sources of ambiguity. The drop-out of alleles and variability in
peaks heights are manifestations of the same underlying
phenomenon, that the peak height of an allele is not directly
related to the template available in the extract.

In current practice the assignment of a number of contributors
usually proceeds by assigning peaks as allelic or artefactual. There
may be ambiguity in the assignment of peaks as artefactual and
this arises most often when backstutter peaks are of a similar
height to some unambiguously allelic peaks. This uncertainty is
mentally “carried forward.” A putative minimum number of
contributors is then typically assigned as the maximum number of
allelic peaks divided by 2. If this is not a whole number the result is
rounded up. This putative number is then subjectively trialled
against the EPG for potential fit to peaks heights and the
ambiguously artefactual peaks.

Variation in peak heights has historically been treated using a
threshold of acceptance or rejection for the ratio of two peaks
from a heterozygote (Hb). Thresholds on Hb may be soft or hard.
Consider, for example, two peaks of height 2000 and 1000RFU.
The ratio of these is 2:1 and this ratio may be considered high if
the sample is from a single donor. This would suggest that the
inclusion of an additional contributor is warranted. This
mental process is informally considering the likelihood of the
observed data given a number of contributors. What is
commonly lacking in this consideration is the effect of the
genotype probabilities when adding a contributor. The prior
probability of the genotype sets drops dramatically in some
circumstances due to the multiplication of an additional profile
frequency in the prior. In Example 1 the difference between
likelihood and posterior probability (due to changes in prior
probabilities) is demonstrated.

Empirical studies suggest that the variance in peak height is
inversely proportional to the amount of template [18-21]. We
model the system’s tolerance to stochastic effects using a variance
constant term. See [6] for a full explanation of the model, but to
surmise the observed peak height (0) is compared to the expected
peak height (E) using the model:

) (05)

where ¢ is the variance constant. This variance constant is
not known with certainty and may vary between different
samplesand between models. We model the constant as having a
gamma distributed prior. This choice appears reasonable from
empirical data. However, following Balding [3] we allow the
profile under consideration to influence the value for this
constant.

Consider an apparently single source sample based on allele
count. When treated as a single source profile the difference in
peak heights within and between loci has to be treated as variance.
If the variance is low (an intolerant variance) then a low probability
will be produced for any imbalanced peaks. If the variance is high
(a tolerant variance) then the system will produce moderate
probabilities for imbalanced peaks.

We now consider the effect of adding a second contributor to a
potentially single source profile. Certain combinations for this
second contributor can improve the fit of the proposed genotypes
to the profile. This will have the biggest effect for an intolerant
variance and a lesser effect for a tolerant variance. We would
therefore expect that the addition of a second contributor would
improve the likelihood of the profile most when using an intolerant
variance, or when large imbalance exists within the profile. This is
also demonstrated in Example 1.

1.5. The effect of different EPGs will have on Z,,

1.5.1. If peak heights are high and balanced

The consideration of a number of contributors above the
minimum required to reasonably describe the profile will not
substantially improve the fit to the profile. In this instance the
additional unknown contributor is likely to be considered as a very
trace contributor in a probabilistic analysis.

This is contrary to many expectations that adding contributors
to only one proposition’s case is always detrimental to that case.
For a mathematical demonstration of this concept we point the
reader to Supplementary material 1. We provide a practical
demonstration in Example 2. Note that this almost independence
of the LR from the number of contributors is only true under the
specific circumstances that the POI can account for one of the
dominant contributors to the profile and that the addition of
contributors provides no improvement to the description of the
observed profile. When one or both of these is not the case the
effects of changing numbers of contributors can be dramatic, as
shown in Example 3 and Section 4.2.

1.5.2. If the peak heights are high and imbalanced

A choice of number of contributors that can account for the
imbalances in some reasonable manner will describe the observed
EPG much better than fewer contributors. In this instance the two
effects of genotype probability and profile fit will be acting against
one another and the weight will depend largely on the severity of the
imbalance and rarity of the alleles. Example 3 explores this concept.

1.5.3. If peak heights are low

The scenario will be similar to the balanced profile considered
above. The LR generated will depend on the balances within the
profile, the intensity of the peaks, and rarity of alleles.

Example 1. The effect of the model on Z,

Before we can assess a system’s ability to generate weights that
correspond to numbers of contributors we must ascertain how that
system should be set up. Consider a strong, balanced single source
profile (Fig. 1). We will interpret this as single source (correct) and
as a two person mixture (incorrect).

Changing the shape of the variance constant prior can make the
method more or less tolerant of stochastic effects. This has a direct
effect on the values of Z,, as imbalances that were acceptable given
a more tolerant system, become vastly less probable.

The gamma prior distribution for the variance has two
variables, shape and scale. Gamma distributions were chosen to
produce a narrow distribution about a desired mode. Modes tested

Page 274 of 344



D. Taylor et al./Forensic Science International: Genetics 13 (2014) 269-280

were 0.1, 0.5 and 5. The narrowness of the distribution means
the variance constant value will be very limited in how much the
profile in question can affect it. This allows the effect of the
variance and the number of contributors to be viewed with less
confounding of effects.

For all calculations of LRs or Z, values in this paper, allele
frequencies were used from an Australian, self-declared Caucasian
database [22].

Fig. 2 demonstrates that reducing the variance constant to very
low levels leads to a marked favouring of the addition of a
contributor to describe the profile. This is because at these levels
the system is highly intolerant of imbalances, and so the slight
differences between observed and expected peak heights are
explained by the presence of a trace second contributor. Note that

Locus1
2500

2000

1500

1000

500

273

in Fig. 2 the distributions are only the likelihood of the observed
data given the mass parameters within a model, they have not be
multiplied by priors that include the allele frequencies. This can be
seen by the distance between the modes of the distributions
compared to the ratio of Z, values being different by approximately
the frequency of a full profile (~10'?) when the variance constant
is less than 0.5. This difference between distributions Z, values is
not seen when the variance constant is 5. The reason for the
different behaviours can be explained by the ambiguity in the
genotypes of the second contributor and the role that has to play in
the calculation of Z,,.

Consider a profile originating from two individuals with a
locus that specifies a mixture proportion and a variance constant
that ‘locks’ that mixture proportion across the profile. For

Locus 2 Locus 3
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Fig. 1. Single source profile used for calculation.
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Variance prior distribution P(O|N,,M,,S,)distribution for n=1 (black) and n=2
4:4 (grey)
T(170,0.029586) — mode 5
0.96:0.04
tolerant
o 2 6 8 10 12 IVJ 16 18 20
T'(130,0.003876) — mode 0.5
0.96:0.04
o 2 6 8 10 2 14 16 18 20
T(100,0.00101) — mode 0.1
5.758x10™: 1-5.758x10™
intolerant
70 60 50 40 <30 20 10 0

Fig. 2. Graphs showing distribution of log,, [ p(O|N., My S ;)] on x-axis for profile seen in Fig. 1, when considered as originating from one (black) or two (grey) individuals.
Note that these distributions are log likelihoods only and do not include priors i.e. for mass parameters, number of contrbutors or genotype set probabilities. Also note that
these log likelihoods are produced by an MCMC process which steps through different genotype sets. The distributions produced have resulted from numerous genotype sets

being the focus of the MCMC at various iterations during its run.

example picture a locus with two peaks [A,B] where [A] is 1000rfu
and [B] is 250rfu. Imagine that the variance constant is small
enough that only two genotypic explanations of the data are
acceptable under N,, and that is the genotypes are [A,A]&[A,B]
with a mixture ratio of 0.6:0.4 or [A,A]&[B,B] with a mixture ratio
of 0.8:0.2. If the profile was considered as originating from a
single individual then the pairing of [A] and [B] will incur some
penalty as the peaks are imbalanced i.e. p(O|N,, M, Sj) > p(O|N;,
M,, Sj). This will be offset by the difference in Pr(S;|N,) within
Ju, 225 P(OINn, My.Sj) p(Mn|Ny) p(S;|Nn) used to generate Z,. Now
consider that this is the only indication of a second contributor in
the profile and we move on to the next locus, which is
homozygous and has single peak [C] at 2000rfu. At this locus
P(O|N,, M4, S;) = p(O|N3, M5, §;) as the additional contributor does
not increase the likelihood of the observed profile. The genotypes
of the potential contributor under N; is [C,C] and under N, is
[C,C]&[C,C]. There are no other acceptable genotype sets under N>
as the first locus has dictated that the minor contributor is
providing approximately 400 to 800rfu to [C] (based on the
mixture proportion of 0.4-0.2). At this level dropout is
sufficiently unlikely that it can be ignored. So in the calculation
of Z, p(M:|N1)p([C,C]) > p(M2|N2)p([C.C] & [C,C]) by approxi-
mately the frequency of a [C,C] genotype and the difference
between p(M;|N;) and p(Mz|N-) which is discussed later. This
trend will continue across all loci where there is no improvement
in fit from the addition of a contributor and the genotype sets are
restricted by the mixture proportions.

If the penalties incurred from imbalances outweigh the rarity of
an additional contributor’s profile then Z, > Z; as seen in Fig. 2 at
mode 0.1. As variance increases the imbalances are tolerated more
and the penalty is lower, however if the variance is still small
enough to restrict the genotype set then a point is reached where
%’%ﬁ%}’—; < %and this will resultinZ, < Z; as seen in Fig. 2
at mode 0.5.

Now consider the same situation, but this time at locus 1 the
peak height of peak [B] is 1010rfu (indicating some small level of
imbalance that could be explained by standard stochastic effects).
Imagine that at all loci the likelihood of the profile is not
substantially increased by the addition of a second contributor, i.e.
P(OIN;, My, Sj) ~ p(O|N2, M3, Sy) at all loci. Additionally the second
contributor is deemed to be providing very little template to the
observed profile. Using the second locus again, if we consider the
priors, and particularly the genotype probability prior then
30 P(Mi|N1)Pr(S;|Ny) = p(Mq|N1)Pr([C,C]), as there is still only
one genotype that can explain the observed profile. In the two
person scenario 3°; p(Mz|N2)Pr(S;|N2) is calculated by:

= p(M2|N){Pr([C,C|&[C, C]) + Pr([C.C|&[C,Q]) + Pr([C.Cl&[Q,Q)])}
~ p(Mz|N2)Pr([C,C])

And hence the difference between Z; and Z, will be based on the
difference between p(M;|N;) and p(Mz|N;). Under these circum-
stances Z; will be mildly favoured over Z, as p(M|N>) contains an
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extra template term and an extra degradation term (or dimension),
each with a prior. This result can be seen in Fig. 2 mode 5 where Z,
is mildly less than Z;, and demonstrates the theory that MCMC
systems favour simplistic models.

For the remainder of the paper a variance constant prior gamma
distribution of /71.62, 3.98) was used for alleles and /72.57, 3.57)
for stutter peaks. It is known that stutter and allele peaks have
different peak variance values [ 20]. These values were optimised to
Profiler Plus control data (analysis not shown).

Example 2. Considering different dimensions in H; and H,

We consider the results from Example 1 but this time consider
it as originating from one, two, three or four individuals. The
known source was used as the POI and was then compared with
the analysis at each stage using propositions:

Hy: POl +(n — 1) unknowns

H,: n unknowns

where n can be one, two or three and n’ can be one, two, three or
four and n is independent of n'. Table 1 shows 3~ ; w;Pr(Sj|Nn, H1),
Zj w;Pr(S;|Ny.Hz) and Z, for the four contributor scenarios.

Note a mild decrease in likelihoods as the number of
contributors increases, even without the Z, terms. This demon-
strates the ability of the continuous MCMC method to overcome
one of the problems associated with purely probabilistic systems
that work by maximum likelihood estimation, which is that an
increase in the number of contributors always increases likelihood
(see Section 5.1 of [23], who demonstrates this phenomenon).
Table 2 shows the log,o(LR) considering different combinations of
individuals in H, and H> when it is assumed that Z,=Z, . 1, i.e Z,
from Table 1 is not included in the LR calculation.

Table 3 is a repeat of Table 2, but this time including Z, in the LR
calculation.

Table 1
Probabilities densities of the observed profile in Fig. 1 given a varying number of
contributors and the Z, values associated with those numbers of contributors.

n 32 WiPr(SyINa. Hy) 35 WyPr(Sy|Nn. Hz) zZ,

1 6.76 x 10%* 1.87x 10" 0.8087

2 1.74 x 10% 4.8x 10" 0.0818

3 3.23 % 10%° 8.23 x 10° 0.0227

4 7.28 x 10" 2.01 x10° 0.0868
Table 2

logo(LR) considering differing number of contributors under H; and Ha.

Contributors under H,

1 2 3 4
Contributors under H, 1 10.6 11.6 12.6 12.8
2 9.2 10.3 11.3 115
3 8.0 9.1 10.1 10.3
4 7.7 8.8 9.8 10.0

Table 3
logo(LR) considering differing number of contributors under H; and H, and
including Z,,.

Contributors under H,

1 2 3 4
Contributors under H, 1 10.6 12.6 14.2 13.8
2 8.2 10.3 11.8 114
3 6.5 85 10.1 9.7
4 6.7 8.8 104 10.0

In this instance the change in LRs caused by including Z, is
slight. This is because the addition of contributors in the model
beyond one, does not significantly improve the description of the
observed peak heights. Additionally there is ambiguity in the
genotypes of the additional (unnecessary) contributors, such that
there are many possibilities, including complete dropout, that they
can take. The sum across these genotypic probabilities is high and
therefore has a small impact on Z,,. The results seen in Tables 2 and
3 demonstrate the theory shown in Section 1.5 that under the
tested circumstances the LR should remain reasonably constant
regardless of the addition of contributors under both or either one
of the propositions. It should also be noted that due to the slight
favouring of simpler (lower contributor) models, there is still no
advantage in artificially increasing the number of contributors to
one or both of the hypotheses as this will tend to drive the LR's
support away from the proposition with the greater number of
contributors.

If the number of contributors increases under both propositions
(moving down the diagonal of Tables 2 and 3), the LR decreases, but
not due to any loss of resolution in the ‘major’ contributor’s
genotype. Note that the LR for the two, three and four person
scenarios are approximately one half, one third and one quarter the
LR of the single source equivalent (note the log;o(LR) if you are
comparing 10'%6, 10'%3, 10! and 10'%). This is because the
propositions being considered do not nominate a specific contribu-
tor position for the POI (see [24] for a full explanation of the concept).

Example 3. Imbalanced peaks

We use again the profile given in Fig. 1, but introduce imbalance
at locus 1. The height of the second allele at locus 1 is artificially
adjusted intherange 40 to 1322rfu (its original height). The peak
heights assigned to peak 2 in locus 1 were 40, 250, 500, 750,
1000 and 1322rfu, which produced heterozygote balance Hb
values that fill the range between zero and one. The profile
was again analysed as either originating from one or two
contributors. Fig. 3 shows the ratios of the Z,/Z, across the
range of Hb and demonstrates the effects of the relationship
between p(OIN,, My, Sj)p(Mpn|N,) and Pr(Sj|N,) within
32; P(O|Ny. M. Sj) p(Mn|Ny)Pr(S;|Ny) as described in Example
1. At this point we omit the possibility of drop-in from the
calculationaswe are interested in showing only the effects of the
imbalance on the values of Z,:

There are a number of observations that can be made from
Fig. 3:

e Hb < 0.2—the severity of the imbalance means that two
contributors explains the profile sufficiently better to outweigh
the additional profile probability. At the most extreme Hb the
height of the less intense peak means that at other loci, when
considered as a two person mixture, the genotypes the second
contributor can take include complete dropout. This further adds
support to the two contributor model.

0.2 < Hb < 0.4—as Hb increase the imbalance penalty decreases,
and the genotype sets for the second contributor are constricted
by the mixture proportion, determined by the imbalance at locus
1. The additional contributor’s genotype frequency outweighs
the penalty from the imbalance at locus 1. This relationship
reaches the pinnacle at Hb = 0.35.

0.4 < Hb < 0.8—the penalty from the imbalance is still steadily
decreasing, however the difference between the two peaks
means that the optimal contribution of the additional contribu-
tor is becoming less. Consequently, moving along the x-axis from
Hb of 3.5-5.5 the genotype set weights are being spread over
more possible genotypes.
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Fig. 3. Improvement in model description obtained by an additional contributoras a
function of Hb, with Hb shown diagrammatically above.

¢ 0.8 < Hb—after this point the penalty from Hb is relatively minor.
The mixture proportion of the second contributor is optimised to
close to 0% and so there is complete ambiguity in their genotype.
The result is that Z; ~ Z,, with Z; only being slightly higher due to
the presence of an additional template and degradation prior
under N,.

We can consider how this might affect an LR calculated where
the comparison is to a POl who is homozygous at the first locus i.e.
the presence of the second peak at locus 1 needs to be described as
either artefactual (e.g. drop-in, which we are not considering) or a
second contributor for the POI to produce an LR > 0. The classical
treatment of this problem would be for the two competing
scenarios to nominate their number of contributors and then for
the LR to be calculated giving equal weight to the numbers of
contributors. Providing equal weight to either scenario could
substantially disadvantage the case where an additional contribu-
tor provides a better, or worse, explanation for the observed
profile. We show the effect of this in Fig. 4 by comparing the LRs
produced by assuming Z; = Z> (solid line) i.e. Z, effectively terms
are not included in the LR calculation, and by using the informed Z,
values (dashed line), from the results seen in Fig. 3.

We also include in Fig. 3, a comparison to systems that do not
take peak height into account. Under such a system each genotype
set weight is composed of fixed probabilities of dropout (which we
set to 0.05) and drop-in (which, to be consistent with other
systems being displayed, we set to 0). As peak height is not taken
into account then by definition changing the height of one of the
peaks should have no effect on the LR, hence the horizontal line
seen in Fig. 4.

30 4 == == Without Zn
25 wm\\'ith Zn
20 4 *eeeDiscounting peak height

Log,,(LR)

0.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
Hb at Locus 1

Fig. 4. LR with and without Z, and also discounting peak height information.

e When Hb < 0.2, the profile strongly supports N> and if this is not
taken into account the prosecution case is unfairly disadvan-
taged. Note that the LR is actually greater than the inverse of the
profile frequency as in this example we have forced H, to
consider only one contributor, which is a very poor description of
the observed profile, and this low genotype set weight is used in
the LR under H,.

In the range 0.2 < Hb < 0.8 the additional contributor model is
not supported by the data and omitting Z, terms disadvantages
the defence. A point worth noting is 0.4 < Hb < 0.5 where the
classic treatment favours inclusion of the POI slowly trending
downto LR = 1, (note that by random chance variation the MCMC
analysis has resulted in the dotted line dipping below the line of
equality at Hb = 0.54, but the general trend expected would be for
the LR to slowly to decrease to one as Hb increases to one) and
including the Z, values results in an LR favouring exclusion of the
POI, in some cases by many orders of magnitude.

When Hb > 0.8, then the profile can again be reasonably
considered single source, but this time not matching the POI
(atlocus one). The additional contributor in H, adds no further fit
to the observed profile. As Z; ~Z> and there is complete
redundancy in the additional contributor’s genotype then the
rarity of the single unknown’'s genotype in H; approximately
equals the rarity of the single unknown'’s genotype in H» and the
LR is driven towards one.

The difference in LR between the dotted line and solid line in
Fig. 4 therefore represents the information being lost when
assuming Z; = Z, in the LR calculation. Using informative weight-
ings for number of contributors rather than uninformative can
make a significant difference to the LR.

Most existing treatments of trans-contributor problems use
uninformative weights for contributor number, and so are not
appropriately assessing the two scenarios against each other. The
alternative is to require a human interpretation and some system
of conventional thresholds to ensure that the choice of number of
contributors under both propositions can reasonably describe the
observed EPG(s).

2. Validation of model
2.1. Variability in Z,,

The values for Z, are determined using the system described
from a MCMC system and so are subject to run to run variation. We
investigate the variability in Z, by running each of the analyses
used the generation of Fig. 3 five times. The average number of
post-burn-in iterations was 5.94 x 10° when considered a single
source profile and 2.18 x 10° when considered a two person
mixture. We carried out the same analyses as lead to Fig. 3 again in
Fig. 5 but with all values for log,y(Z>/Z, ) displayed, and the trend
line showing the average log,((Z,/Z,) value.

Fig. 5 shows that running the MCMC in the way described
produced estimates for Z,, values that span approximately three orders
of magnitude at the most variable Hb values. Note that the remainder
of Section 3.1 delves into the components that make up Z, in order to
identify the source of the variation seen in Fig. 5, and hence an
understandingof the contents of Supplementary material 2 is required.

Let the maximum likelihood value of posterior sample of the
MCMC p(O|Nn, Mp.Sj) p(Mn|Ny) = V m,.n p(0), which selects the
set of mass parameters that best describes the observed profile
under each number of contributors. Ideally this value would be
close to the maximum possible theoretical mode of the problem,
however as the mode can be very ‘pointy’ [25] it is not always
reached. Therefore the value of v m,» p(0) varies from run to run
by approximately one to three orders of magnitude. This value is
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Fig. 5. Fig. 3 reproduced 10 times to show reproducibility. The line intercepts the average value for each Hb bracket.

also directly proportional to the final Z, values as seen in (data not
shown). These results suggest that long runtimes may be necessary
in some instance for MCMC to get into the hyper-dimensional
sample space close to the theoretical maximum mode. Also, due to
the additional dimensions when considering a higher number of
contributors, reaching the theoretical mode is likely to take more
iterations as the model becomes more complex.

This suggests that much extended runtimes may still be
necessary in some instances despite our best efforts. This
significantly affects the practicality of the method if it is to be
used in a forensic casework setting where significant time
pressures commonly exist.

2.2. Test on complex data

The experiments shown in Example 3 indicate that a single
extreme imbalance, or a number of mild imbalances, can drive the

100 150

200

support for a higher number of contributors (Z, < Z,.,). However
in Example 3 the imbalance needed to be very large in order for a
higher number of contributors to be strongly favoured and in
reality this level of imbalance would give cause to a scientist to
choose that higher number unambiguously anyway via human
interpretation. We have therefore demonstrated the theory but
shown limited practical advantage. We turn now to a more
complex scenario. Fig. 6 shows a complex profile originating from
three individuals in proportions 0.17:0.42:0.42. This profile has
been constructed so that peak masking and dropout means that by
peak counting alone the mixture could be described by two
contributors with some imbalances, high stutter and mixture
proportion inconsistencies across the profile.

The MCMC analysis was run for 2 x 10 iterations under N, and
5.4 x 10° iterations under N3. The likelihood ratios calculated by
comparison to the known contributors are given in Table 4 when
using propositions:
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Fig. 6. Complex three person mixture masquerading as a two person mixture.
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Hy: POl +(n — 1) unknowns

H>: n unknowns

where n was two or three.

The values for Z, are Z3=0.94 and Z,=0.06 indicating
support for the three person scenario. To some analysts this
may not be as much support for N3 as expected, there are two
reasons for this. Firstly the addition of the third contributor
improves the fit to the observed data and consequently they
do not have complete redundancy in the genotypes which they
can take. This restricted genotype set prior probability
therefore has an effect on Z5:Z,. Secondly we allow the peak
variance constant to be optimised by the profile under N> model.
Therefore the poor fit to the observed data has increased the
variance constant and consequently become more tolerant of
imbalances. In effect this analysis is telling us that the
profile could be a poor fitting two person mixture with a high
peak height variability or a better fitting three person profile
with a lower peak height variability. Again the Z, values
appropriately weigh these scenarios against eachotherinthe LR
calculation.

We now calculate the LRs for known contributors using MPN for
number of contributors:

H,: The POI and (n — 1) unknowns are the sources of DNA

H,: n’ unknowns are the sources of DNA

(where n can be either 1 or 2 and n’ can be either 2 or 3)and
stratification across the range of contributors (2-3):

H,: The POl and 1 or 2 unknowns are the sources of DNA

H>: 2 or 3 unknowns are the sources of DNAand display the
results in Table 5.

Profiles that masquerade as lower order mixtures can strongly
favour their correct number of contributors as there will be
multiple loci with imbalances or deviations from consistent
mixture proportions across a profile. These combined effects can
strongly drive Z, towards the higher order scenario as seen in this
example.

The profile seen in Fig. 6 may not be immediately recognised as
a three person mixture, particularly if the DNA profiling system is
known to have high peak height variability. However, incorrectly
treating this profile as two person mixture excludes the known
contributors as seen in Table 4. When analysed under the correct
number of contributor all known contributors give much larger LRs
and none are excluded, as would be expected. However the
scientist cannot (and certainly should never) base their decision on
number of contributors purely so that comparison of the POIs in a
case yield an LR > 1. The analyst is left with a choice as to whether
the stochastic events within the profile provide enough evidence to

Table 4
Results from analysis of constructed three person mixture when analysed as n=2
and n=3.

LR under N2 LR under N3
POI 1 0 1.03 x 10°
POI 2 0 3.0x 10°
POI 3 0 2.6x10°

Table 5
Results from analysis of constructed three person mixture when considered as a
two to three person mixture.

MPN Stratified
POI 1 1.03 x 10° 1.03 % 10°
POI 2 3.0x10° 3.0x10°
POI 3 2.6x10° 2.6x10°

analyse it as a three person mixture, potentially overestimate the
number of contributors required and falsely include a non-
contributor. Or the analyst could surmise that the stochastic
events do not warrant a third contributor, and so analyse it as a two
person mixture and potentially falsely lower the LR or exclude true
contributors. In some forensic laboratories, current practise would
be for the analyst to analyse the profile as originating from three
people under H,; and two under H». The calculation of the LR would
then be carried out without any weight terms for the number of
contributors. Alternatively some laboratories would analyse the
profile as a two person mixture under both propositions and, then
analyse the profile as a three person mixture under both
propositions and report both LRs. Neither of these two options
appropriately weights the evidence. It is this instance that the Z,
values appropriately deal with the ambiguity in number of
contributors.

It can be seen in Table 5 that either the MPN or stratification
methods for dealing with ambiguous number of contributors
gives anappropriate statistical weighting to the evidence for each
known contributor, and is the same as the values given in Table 4
at the significance level show. The combination of Z3/Z, and w;
means that N is chosen using the MPN method for both H; and Ho,
hence the values being the same as in Table 4. In the stratification
method p(O|Ns3, Ms, S;) dominates the LR and so again at the
significance level show the values in Table 5 are the same as in
Table 4.

3. Conclusion

The advent of more sophisticated techniques of analysing DNA
profiles has led to informative statistical weighting being obtained
from a greater number of DNA profiles. Currently most systems of
DNA profile interpretation require that a number of contributors
be set prior to analysis. To do this the analyst must rely on their
knowledge of DNA profile behaviour and make assessments on
whether certain stochastic events are acceptable given a posited
number or contributors. The acceptability of stochastic events
requires rules and thresholds (even if values are not specified
exactly), which is thorn in the side of advocates of continuous DNA
interpretation systems that are designed to remove all such
thresholds.

We attempt here to extend the model of 6] so that a posterior
probability of a number of contributors to a model can be
obtained as part of the MCMC process being used to analyse the
profile. Obtaining these relative weights for profile dimension-
ality, Z,, allows the calculation of an LR where either different
numbers of contributors are posited under the two propositions,
or a range of contributors is desired using weights informed by
the data itself. This is an advance to the most common current
method of dealing with trans-contributor analyses, which is
either to:

(1) increase the number of contributors under both propositions or

(2) calculate the LR with a different numbers of contributors under
the different propositions, but not taking into account the
relative fits of these models to the observed profiles.

We have shown that both of these options can bias the result by
many orders of magnitude. The first is biased when the increase in
number of contributors is not required under one of the
propositions (typically H2) and the second can be biased when a
number of unlikely stochastic events are required to explain the
observed EPG(s) under a specific value of n.

Conceptually this work provides examples that show DNA
profile evidence can be analysed assuming different numbers of
contributors, and the results of these separate analyses can be
combined by stratification for each proposition, using a model
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weight, Z,. The generation of Z, will depend on how well each
model describes the observed data, but also encompasses the
additional profile frequencies required by the addition of
contributors. The balance of these two factors ultimately dictates
when one model is favoured over the other.

DNA profile analyses present some difficult challenges for
MCMC methods, which other applications do not, namely:

« Time pressures for active casework results, typically results are
desired with only minutes of runtime.

« Consistency of results between runs, especially challenging given
the point above as the typical solution to this is to run the MCMC
analysis for more iterations.

e A huge number of values that categorical parameters (genotype
sets per locus) can take.

e The process must be able to work on a range of profile
complexities using standard settings that do not require tuning
from profile to profile.

« The process cannot be a ‘black-box’ as biology analysts with a
wide variety of training (which usually does not include
mathematics or statistics) must be able to implement the
mathematics and explain the results in court.

Given these pressures we trial here calculating the Z, values by
calculation of the relative likelihood of one model over the other
given the data using the method of Weinberg [25,26] which
performs in an intuitively sensible manner given the tests we have
run. Given all criteria mentioned above the method has worked
well but we recognise the following issues:

(1) The process can require a number of MCMC iterations that may
be impractical in forensic laboratories if using a range of
contributors were to become a common event, rather than an
exception. There is evidence of substantial variation in the
results displayed in Fig. 5, although further investigation is
already underway is aimed at reducing this variability further
without requiring longer MCMC runs.

(2) The mathematics is approaching the complexity of a black-box.
However, the conceptual introduction of a weight for the
number of contributors is intuitively sensible and mathematics
may not need to be fully understood to present these results in
court. We have tried to structure the paper with this in mind,
allowing readers to digest the majority of the paper without the
need to refer to the complex mathematics in Supplementary
material 2. It is thought by the authors that a conceptual level
of understanding of what Z, represents would be sufficient for
almost any court challenge.

Another issue, although not relevant directly to the mathemat-
ics described in this paper, that will need to be addressed is one of
communicating DNA results to court. Courts in the authors’
countries have been used to scientists providing opinions on a
number of contributors to a profile. Using a range of contributors
indicates something which DNA statisticians have realised for
some time but not had the means to act on, which is that the
number of contributors to a DNA profile is not known and can
never be known for most forensic casework. Further, the number of
contributors does not need to be known to assess DNA evidence as
long as the ambiguity in this number can be accounted for
appropriately in the statistical model.

Acknowledgements

This work was supported in part by grant 2011-DN-BX-K541
from the US National Institute of Justice. Points of view in this

document are those of the authors and do not necessarily
represent the official position or policies of the U.S. Department
of Justice. We would like to thank Ian Evett (Principal Forensic
Services), Martin Weinberg (Department of Astronomy, Uni-
versity of Massachusetts)and Darfiana Nur (School of Computer
Science, Engineering and Mathematics, Flinders University) for
helpful discussions and contributions to this work. Finally we
would like to thank two anonymous reviewers, whose com-
ments improved this work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.fsigen.2014.08.014.

References

[1] P.Gill, J.P. Whitaker, C. Flaxman, N. Brown, ].S. Buckleton, An investigation of the
rigor of interpretation rules for STR's derived from less that 100 pg of DNA,
Forensic Sci. Int. 112 (2000) 17-40.

(2] D.J.Balding, ]. Buckleton, Interpreting low template DNA profiles, Forensic Sci. Int.:
Genet. 4 (2009) 1-10.

[3] D. Balding, Evaluation of mixed-source, low-template dna profiles in forensic
science, Proceedings of the National Academy of Sciences of USA. 110 (2013)
12241-12246.

[4] H. Haned, Forensim: an open-source initiative for the evaluation of statistical
methods in forensic genetics, Forensic Sci. Int.: Genet. 5 (2011) 265-268.

[5] K. Lohmueller, N. Rudin, Calculating the weight of evidence in low-template
forensic DNA casework, |. Forensic Sci. 58 (2013) 234-259,

[6] D. Taylor, J.-A. Bright, J. Buckleton, The interpretation of single source and mixed
DNA profiles, Forensic Sci. Int.: Genet. 7 (2013) 516-528.

[7] M.W. Perlin, A. Sinelnikov, An information gap in DNA evidence interpretation,
PLoS One 4 (2009) e8327.

[8] M.W. Perlin, M.M. Legler, C.E. Spencer, |.L. Smith, W.P. Allan, J.L. Belrose, et al.,
Validating TrueAllele" DNA mixture interpretation, ]. Forensic Sci. 56 (2011)
1430-1447.

[9] B. Budowle, AJ. Onorato, T.F. Callaghan, A.D. Manna, A.M. Gross, RA. Guerrieri,
et al., Mixture interpretation: defining the relevant features for guidelines for the
assessment of mixed dna profiles in forensic casework, ]. Forensic Sci. 54 (2009)
810-821.

[10] C. Brenner, R. Fimmers, M.P. Baur, Likelihood ratios for mixed stains when
the number of donors cannot be agreed, Int. ]. Legal Med. 109 (1996) 218~
219.

[11] S.L. Lauritzen, ]. Mortera, Bounding the number of contributors to mixed DNA
stains, Forensic Sci. Int. 130 (2002) 125-126.

[12] PJ. Green, Reversible Jump Markov Chin Monte Carlo Computation and Bayesian
Model determination, Biometrika 82 (1995) 711-732.

[13] J.S. Buckleton, J.M. Curran, P. Gill, Towards understanding the effect of
uncertainty in the number of contributors to DNA stains, FSI Genet. 1
(2007) 20-28.

[14] H. Haned, L. Pene, J.R. Lobry, A.B. Dufour, D. Pontier, Estimating the number of
contributors to forensic DNA mixtures: does maximum likelihood perform better
than maximum allele count? |. Forensic Sci. 56 (2011) 23-28.

[15] H. Haned, L. Péne, F. Sauvage, D. Pontier, The predictive value of the maximum
likelihood estimator of the number of contributors to a DNA mixture, Forensic Sci.
Int.: Genet. 5 (2011) 281-284.

[16] D.R. Paoletti, T.E. Doom, C.M. Krane, M.L. Raymer, D.E. Krane, Empirical analysis of
the STR profiles resulting from conceptual mixtures, |. Forensic Sci. 50 (2005)
1361-1366.

[17] T. Tvedebrink, Overdispersion in allelic counts and 6-correction in forensic
genetics, Forensic Sci. Int.: Genet. Suppl. Ser. 2 (2009) 455-457.

[18] J.-A. Bright, E. Huizing, L. Melia, J. Buckleton, Determination of the variables
affecting mixed MiniFiler(TM) DNA profiles, Forensic Sci. Int.: Genet. 5 (2011)
381-385.

[19] J.-A. Bright, K. McManus, S. Harbison, P. Gill, J. Buckleton, A comparison of
stochastic variation in mixed and unmixed casework and synthetic samples,
Forensic Sci. Int.: Genet. 6 (2012) 180-184.

[20] J.-A. Bright, D. Taylor, J.M. Curran, |.S. Buckleton, Developing allelic and stutter
peak height models for a continuous method of DNA interpretation, Forensic Sci.
Int.: Genet. 7 (2013) 296-304.

[21] J-A. Bright, J. Turkington, ]. Buckleton, Examination of the variability in mixed
DNA profile parameters for the Identifiler(TM) multiplex, Forensic Sci. Int.: Genet.
4(2009) 111-114.

[22] S.J. Walsh, ].S. Buckleton, Autosomal microsatellite allele frequencies for a na-
tionwide dataset from the Australian Caucasian sub-population, Forensic Sci. Int.
168 (2007) e47-e50.

[23] R.G. Cowell, T. Graversen, S.L. Lauritzen. Analysis of forensic DNA mixtures with
artefacts, areXiv:13024404v2 [statME], 2013.

Page 281 of 344



280 D. Taylor et al. / Forensic Science International: Genetics 13 (2014) 269-280

[24] D.A. Taylor, J.-A. Bright, ].S. Buckleton, The ‘factor of two' issue in mixed DNA
profiles, J. Theor. Biol. (2014), http://dx.doi.org/10.1016/j.jtbi.2014.08.021.

[25] M.D. Weinberg, I. Yoon, N. Katz, A remarkably simple and accurate method for
computing the Bayes Factor from a Markov chain Monte Carlo Simulation of
the posterior distribution in high dimension, areXiv:13013156v1 [astro-phIM],
14 January, 2013.

[26] M.D. Weinberg, Computing the Bayes factor from a Markov Chain Monte Carlo
Simulation of the posterior distribution, Bayesian Anal. 7 (2012) 737-770.

Glossary

a: allele
¢?: variance constant used in the modelling of deviations of elements in O from

elements in E, Iog(%k) ~N(0.F‘f—)

d: the distance chosen to encompass subset £2, around the mode of the entire
posterior MCMC sample £2

d"': the distance of mass parameter values in posterior sample y from those in
iteration y*

D,;: the dimensionality of model n
E: vector of expected peak intensities
H,: proposition x

K: the number of different models being examine i.e. the range of potential
contributor numbers

I: locus
LR: the likelihood ratio

M: mass parameters; template amount for each contributor, degradation for each
contributor, amplification efficiency for each locus, replicate amplification
strength per replicate, stutter peak height variance and allele peak height
variance

M,: mass parameters in model n

M”"): the set of mass parameter values that lead to the highest observed posterior
likelihood in the MCMC sample £2 for model n

M;j',’: the value for mass parameter i at MCMC iteration y for model n (note the ncan
be dropped when talking about values all within a model)

n: number of contributors
N,: model n

N: vector of all models under consideration

0: vector of observed peak intensities

P: the average value for a full profile genotype probability
r: replicate

R;: replicate amplification efficiency for replicate r

S;: genotype set j

RS: agenotype set that is present in non-zero weights 100% of the time for a specific
contributor position

Us: an unresolved genotype set, one where there are more than one possibility for a
specific contributor position

Sy H unknown, untyped contributor genotype set

Sp: contributor genotype(s) known under H, but not H;

Sy contributor genotypes known under both H; and H,

t': the value for the template amount for contributor n in posterior sample y
V: the hyperrectangle volume

w;: the weight for genotype set j

wja: the weight for genotype set j for model n

y*: theiteration that lead to the highest observed posterior likelihood in the MCMC
sample £2

Z,: a scalar for the weights in model n

I'(a,b): gamma distribution with shape of ‘a’ and a scale of ‘b’
£2: the entire posterior sample produced from the MCMC

1£2|: the number of individual samples in £2

£2,: a subset of the posterior sample

1824/ the number of individual samples in £2;

o, the vector of hyperrectangle edge lengths in iteration q of the algorithm
outlined in supplementary material 2 section “Identifying £2,"

ogp: the hyperrectangle edge length in iteration g for mass parameter p

V Ma.n P(0): the maximum likelihood of the posterior MCMC sample $2 considering
mass parameters M, and model N,,

vyt the maximum observed template parameter value for contributor n in the y
iterations of the posterior MCMC sample §2

Ayty’: the minimum observed template parameter value for contributor nin the y
iterations of the posterior MCMC sample £2
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Supplementary material 1

The LR corresponding to propositions where H, involves a POI who matches the resolved
major contributor is likely to be largely unaffected by the addition of an unnecessary

unknown contributor.

We demonstrate this by considering an n person profile, and examining the LR produced by
comparison of a POI to the observed profile (0). As the fit to the profile will not substantially

improve with increased numbers of contributors Z, ~ Z ., but also weights between models

will be the same (remembering that comparing between models means weights must be
considered as likelihoods rather than residence times, as they are in [6]) simplifying equation
2 to:

D> Px(S;1H,.N,)

R=L———
Y Px(S, |H,,N,)
:

If some contributors have completely resolved genotypes that persist whether the number of
contributors is n or n’ then, in general terms, the LR considering resolved (R) and unresolved
(U) contributors, as indicated by a left superscript, is:

Pr("S1H,,N,)> Pr("S, |*S,H,N,)
k

R:
Pr(*S| HZ,N"‘)ZPr(”Sk. I*S,H,,N,.)
=
In the circumstance where the POI matches the single resolved major contributor
Pr(“S|H,,N,)=1, giving:

> Pr("S, 1 °S,H,,N,)
k

R:
Pr("S1H,,N,)Y Pr("S, | *S ;H,,N,)
&
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If we make the approximation that an average single contributor genotype has probability P

then:
g
= k
= Py P
=

If the number of contributors under the two propositions is the same (i.e. n=n',k =k") then

the LR becomes:

If n’>n and the additional contributors are determined to add a very small contribution to

the profile (as they are not required to explain the observed data) then ZP""' = ZP"'"' =1,
k' k'

as the genotypes that the additional contributor can take includes complete dropout (we

designate a dropped out allele with ‘Q’) and cover all possibilities. This will again give:

N =

This suggests that the LR for a POI matching a single resolved major contributor is not
significantly affected by the addition of unknown contributors under both H; and H> or just

H, or just H,.
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Supplementary material 2

Al.1: Within model MCMC

We start first with a recap of the mathematics involved in within-model MCMC. We start
with the LR from section 1.1:

_Pr(01H)
Pr(O | H,)

Introducing mass parameters M and genotype set, S, and we obtain:

> [ pO1S,, M) p(M)Pr(S; | H )dM

LR=LH
> [ p©1S;. M)p(M)Pr(S, | H,)dM

I M

Note that we have dropped the Hy terms from all but the genotype set term, this is due to the
independence of the other terms from the propositions. This independence from propositions

allows the evaluation of the p(OISj,M)p(M) terms using MCMC and in particular the

relationship:

p(OIM,S,)p(M,S))
p(0)

p(M,SjIO)z

The analysis of O in the MCMC provides the posterior p(M,S;10) and we require
p(OIM,S,)p(M,S;) for use in the LR. The conversion of the p(M,S;10) to
p(OIM,S;)p(M,S;) can be achieved by multiplication by the marginal likelihood p(0).

This conversion is not carried out as within a model (single number of contributors) the
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marginal likelihood will cancel in numerator and denominator of the LR. We are therefore

taking advantage of the relationship p(M,S; 10) « p(O1M,S;)p(M,S;) .

Note that in [6] the residence time of each genotype set (S;) during the MCMC analysis is
used as the weight, rather than the absolute value of p(O1M,S;)p(M) within the LR. This
sum is a constant within a model and consistent in every term of the LR, so that, like p(0) it

cancels out and need not be enumerated. In effect using residence time has biased

p(OIM,S;)p(M) by Zp(OlM,Sj)p(M). This is fine within a model, but between
j

models the normalised values obtained using residence time must be adjusted back to

likelihoods by multiplication by z p(OIM,S;)p(M). For the remainder of the supplement
j

we do not mention this adjustment, as we assume the correction is made to the calculation to

recover the absolute value of p(O | M, S;) p(M,S;).

We now introduce the model, N into the LR as another nuisance parameter and subscript

dependent terms with the model term ‘n’:

sz p(O1S8; .M, .N,)p(M,IN,)P(N, | H)Pr(S, | H N, )dM,
N i Mm

LR=
ZZJ‘ p©18,.M,..N,)p(M, |N,)P(N,. | H,)Px(S, | H,,N,)dM,,,
N JM

We again note that the only terms that are dependent on the propositions are priors for
genotype sets and number of contributors. This again allows the evaluation of the remaining
terms in the LR using MCMC. From Bayes theorem the model choice can be included in

analysis of observed data by:
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p(O1M,.S,,N,)p(M,

n’Sj INn) .
pOIN,)

=p(M,.S,10,N,)

n’

For the LR we require p(O1M,,S;,N,)p(M,.S;|N,)Pr(N,), by use of the relationship:

p(N,10)p(0)

OIN )=
p( ) Pr(N,)
We obtain:
OlM_ S.,N M .S.IN )Pr(N
p( BRI n)p( A | n) r( ”):]](M”,SJIO,N")
p(N,10)p(0)

Again the MCMC provides posterior sample p(M,,S;10,N,) which we multiply by
p(N, 10) . Note that again the p(0) is omitted as now it is the probability of the observed

data across all models being considered and so again will cancel out in the numerator and
denominator of the LR. We again take advantage of proportionality, in this case

p(OIM,.S,.N,)p(M,.S;|N,)Pr(N,) < p(M,.S;10.N,)p(N, 10).

The task is then to calculate the individual Bayes factors, p(N,|0), for comparisons

between the K models.

A1.2: Defining the Bayes factor

We wish to consider K models, N ={N,,...,N,} to assess some observed data O. Each

model, N, , has a vector of mass parameters M, e R” where 2, is the dimensionality of

n
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the n™ model and n also serves as an indicator for the number of contributors, hence for

example model N, would be a model considering two contributors to the DNA sample.
Bayes theorem gives the posterior probability density for each model as:

Pr(N,)p(OIN,)

p(N,,IO) = p(O)

Pr(N,) is the prior probability of model n and p(0)is the unknown normalization
constant. The marginal likelihood for model n is:

p(OIN,) :j‘" Zp(OIN",M",SI.)p(M" IN,)Pr(S; IN, )M,
47

The posterior odds of any two models n,,n, €[1,K] are:

p(N,i0) _{Pr(N,,)}[p(o | N,,)}
p(N,10) | Pr(N,) || p(OIN,)

And is now independent of the normalisation p(Q) . In the absence of propositions we

choose the prior probability for all models to be equal, simplifying the above equation to:

p(N,I0) _ p(OIN,)
p(N,10)  pOIN,)

We concentrate now on the term p(O|N,), known as the Bayes factor, which requires the

calculation of the marginal likelihood for each model.

A1.3: Identifying the marginal likelihood
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There are a variety of approximations for calculation of the marginal likelihoods, and one
method commonly used (because of its simplicity) is the harmonic mean approximation

(HMA):

-1

1 & 1
P(OIN,)= @Z p(om)

Where Q is the MCMC sample of the posterior probability and |Q| is the number of samples

within it. The HMA has the limitations that it is known to be highly variable [25, 26] and

dominated by a few outlying low values for p(OIM, )[24]. This has led to the development

of the different methods of assessing marginal likelihoods that avoid these issues [23, 24].
MCMC analyses of DNA profiles have the additional complexity that the genotype set
represent a categorical parameter that, if consider as at the whole profile level, can contain an

immense number of possible values.

Weinberg [23] makes the point that the marginal likelihood for model n, P(OIN,), is defined

by:
p(OW,) [dY p(M,.S;10)= [Y p(OIN,.M,.S,)p(M,.S; N, )M,
Q i Q J

Where the reduced set of the posterior sample Qg € () is chosen to optimise the right hand
integral above and reduce variability. We define F(()) as the fraction of points in () relative

to Q:
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Q.
r(@)-R - fay pon.5, 10)
2,

J

Giving:

p(OW,)=F(Q)" Y p(O|N,.M,.S)p(M,.S,|N, XM,
Q, J

A1l.4: Identifying Q.

We identify the subset of the posterior sample using the algorithm in section 3.1 of Weinberg
2013 [23]. This algorithm is transcribed below, but with terminology altered to be consistent
with Taylor [6] . We consider a sample Q containing y individual samplings from the
posterior likelihood of an MCMC.

1) Select the parameter vector for model n, that corresponds to the maximum value of
the posterior probability in the MCMC sample, ‘>/ p(0). This corresponds to

individual sample y* and is vector M,(,"'s) . For simplicity we drop the model subscript

for the remainder of this algorithm.

2) Calculate the shape of the hyperrectangle from the parameter range of the entire

sample. If there are P parameters, M =M,,...,M, , then the hyperrectangle shape is
defined by the vector:

o, =(max{M }—min{M }.....max{M,} —min{M,}) and single element
Oy, :mwc{Mp}—min{M,,}

3) Compute the y distances from M“” by:
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( d(.\-))z :i( MO — M(-\'*‘))2 /o2

i gi
i=1

Where q is the iteration of this algorithm and starts at g=0

4) Sort the y distances in ascending order and choose the distance value d so that a
reasonable number of values have been chosen (e.g. > 10,000). The hyperrectangle
shape that encloses this subset has coordinates for each parameter, p:

=M I(,"'s) -0, pz-i_ and M, =M I(,'"*) - 0'(,,,3

p.min p.max

5) Increment g and recalculate the shape of the hyperrectangle from the variance for

each parameter p of the entire sample by:

8.4
2

O-J;IZZ(MS)_ M,(,“"*))' including values where all parameters are enclosed

i=l

within the previously defined hyperrectangle M 0 [M

min?

Mma.x]

6) Step 4 — 6 can be repeated until the shape of the hyperrectangle has converged,

however we do not do this

Note that the genotype set parameter S is categorical. For this parameter we sum across all

genotype sets and so they are not defined within the hyperrectangle.

The hyperrectangle now encloses the desired subset Q., which will contain the mass

parameters for iteration y*, girt by the other samples in Q around the mode.

A1.5: Calculating the marginal likelihood
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Weinberg found that JZp(OIN",M”,S].)p(M",SjIN")dM,, can be evaluated by
Q,

identifying an important region around a dominant mode of the MCMC posterior sample, and

using naive Monte Carlo integration.

Naive Monte Carlo integration is carried by:
1) Randomly sampling values for each of the parameters uniformly within the range
enveloped by the hyperrectangle Y’ times and recalculating the posterior likelihoods.

At each iteration of the MC we calculate

S;)Pr(S;IN,), using these parameter values (and

n’

Y POIN, M.S)pM, N
J

using the original problem specification with the same prior and likelihood functions).
2) Calculating the average of the posterior likelihoods and multiplying by the volume, V,

of the hyperrectangle

The hyperrectangle volume can be calculated by:

V = ]j (MII Jmax > Ml) amin )

The marginal likelihood is then calculated by:

V3 Q0 0
OIN,) = O0IN,, M" S ) p(M? N, P(S, IN
p(OW,) F(Q‘)Yggp( M. S)p(M,”IN,)P(S; IN,)

Note that we require genotype probabilities in the calculation of the marginal likelihood so
that models can be appropriately weighted against one another. Strictly the calculation should

be performed for each databases that is required for calculation of the LR, however it is
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expected that the choice of population will have very little effect on the weights as profiles

probabilities will generally be similar between populations.

Parameter vectors d (degradation) and ¢ (template) change dimensionality with number of
contributors. The hyperrectangle volume and F(€,) terms will adjust between models of

different dimensionality so that higher dimensional models are not unjustly penalized simply
for having more parameters. Appropriate priors must be chosen for d and ¢ when considering
multi-dimensional problems. This is something which is not so important for within
dimension problems where the uniform priors can be thought of as cancelling in an LR

calculation, hence never requiring actual enumeration.

For multi-dimensional problems we specify priors as given below, using template DNA

amount as an example.

Consider the prior for 7, as U[0,1], where 1 is the maximum value that template can take and
0 is the minimum value it can take. While the theoretical maximum value that template
amount can take is infinite, a more useful range can be chosen for each contributor that
encompasses some sensible range of values and depends on O. Whilst this restriction isn’t

actually placed on the MCMC during its run, the sensible range can be thought of as the

range of values visited by the MCMC during the analysis. So for template amount \/t:,"’ =il
and /\t:,~“’ =0. The hyperrectangle edge length for template then becomes the fraction of the

range [0,1] that is encompassed in Q.

A1.6: Shackling the hyperrectangle volume
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We make one modification to the above method for determining the shape and position of the
hyperrectangle, in order to minimise variability between runs without the need for
impractically large numbers of MCMC iterations. Initially the above described process is
carried out to determine the shape of the hyperrectangle. For all dimensional problems, other
than the highest dimension, each hyperrectangle edge length is fractionally (and in equal
relative proportions) changed so that all volumes between different dimensions are
approximately equal to the volume of the hyperrectangle in the highest dimension. The

F () then appropriately adjusts the marginal likelihood between dimensions.

A1.7: Definition of Z,

We then define the ‘weighting’ for model » as:

p(OIN,)

p(Nu |0) oc Zn B TVEY
> »(ON,)
So that in likelihood ratio calculations we have the intuitively pleasing (but mathematically

unnecessary) result that ZZ" =1.

A1.8: Incorporating Z, into the LR

Starting with the LR from section A1:

szp(o IS,.,M,.N,)p(M,|N,)P(N, | H)P(S,; | H,N,)dM,
N i M

LR=
sz pO1S,. M, .N,)p(M, |N,)P(N, | H)Pc(S, | H,,N,)dM,,
N oi'Mm

And rearrange to:

Page 12 of 13

Page 294 of 344



Y Px(N, |H)Y Pr(S; | H,,N,) [ p(Q1S,,M,,N,)p(M, | N,)aM,
N J M

R= -
> Pr(N,.|H,)> Pr(S, | H,,N,.) j pOI1S,.M,..N,)p(M,,|N,)dM,,
N J* M,

The term I pOI1S,,M,,N,)p(M, N, )dM, is now weight for genotype sets and spans
M,

different numbers of contributors, and can be denoted w,, . For conceptual ease w,, can be

thought of being the product of two weights, one within-model weight and one between-

model weight. Defining

w,=Zw,= I pOIM

Jn
M,

Sj,N”)p(M" IN,)dM, «< p(N, |0)p(M Sj |0,N,) we obtain:

n’ n?

> Z,P(N, |H)Y w,Pi(S, | H,,N,)
LR n j

- J
> Z,Pr(N, |H,)Y> w,Px(S, | H,,N,)
n' i

Which is Equation 2 from the text. As mentioned in section 1, j represents an exhaustive set
of genotype sets, which are then incorporated into the LR with the propositions to produce j

and j ' non-zero element.
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7.2 Clarification
Further description of the model in the paper supplementary

I have reused ‘k’ here as the summation index across unresolved contributors. This has caused
confusion. | rewrite the derivation for supplementary material below:

It is useful to start with the general formula for the LR, given in the main body of the text:

Zipr(msj, N =n)Pr(S; | Hp) Pr(N =n| Hp)

LR =-"1=
> > Pr(O[S;,N =n)Pr(S; | Hd)Pr(N =n| Hd)
n j=1

We then introduce a number of nuisance parameters, which we term mass parameters (M) that
we integrate over:

> Pr(N =n| Hp)iPr(Sj | Hp)j p(O[S;,N =n,M)Pr(M)dM
LR=-" =

ZPr(N =n| Hd)iPr(Sj | Hd)j pP(O|S;,N =n,M)Pr(M)dM

Let w; :.f p(O|[S;,N =n,M)Pr(M)dM , which we term a weight. When likelihood ratios are

calculated for a single number of contributors the weights are often displayed as normalised
values so that they are more easily assessed by analysts. Let the normalising constant be Z,,
where:

J
Z, =W,
j=1
So that the weights, normalised within a value of n, are:
w,=Zw,,
The LR can then be written as:

J
Zzn Pr(N =n| Hp)ij,n Pr(S; | Hp)
LR =" =

J
ZZn Pr(N=n| Hd)ZWj’n Pr(S; | Hd)
n j=1

For simplicity of the following example, consider that the population model used assumes the
probability of the genotype of a contributor is independent of the genotypes observed in other
contributors (often referred to as the ‘product’ or ‘Hardy-Weinberg’ model). This allows the
probability of a genotype set to be written as the products of the genotypes of the n individuals

that make up the set, S; = {1G,..., NG}, so that:

Pr(S; | Hp):ler(iGj | Hp)
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Again, for simplicity, consider a situation where the prosecution places all the probability on n
contributors so that, Pr(N=n|Hp)=1 and defence place all their probability on n’,

Pr(N =n'|Hd) =1. The LR is then:

J n .
znijvnH Pr('G, | Hp)

j=1 i=1

J

Z,. > W J[Pr('G, | Hd)
=1 i=1

n
i

LR =

Consider a situation where the DNA profile originates from x clearly resolved contributors,
and that there is no indication in the profile (by way of peak height imbalance, drop-ins or other
artefacts) of any more than x contributors of DNA. We can then split the genotype set
probabilities into the resolved contributors and the remaining contributors needed to make the
total up to n (under Hp) and »’ (under Hd):

[TPr(G; IH)=T]Pr('G;IH)] ] Pr('G,|H)

i=1 i=1 i=x+1

Note that the alignment of contributors between n and »”i.e. contributor 1 in the set defined by
Hp aligns with contributor 1 in the set defined by Hd, i.e. ‘Gj | Hp = iGj | Hd . Within the sum
across genotype sets the probabilities associated with the resolved contributors appear in every
genotype set with non-zero value:

n

iwj,nHPr(iGj |H) {ﬂpr(iej | H)}[Zjlwmﬁ Pr('G; | H)}

j=1 i=1 i=x+1

Now consider that in this scenario where only x individuals are required to explain the evidence
profile, that any additional contributors are assigned by the model to contribute approximately
0 fluorescence to the electropherogram. This has two consequences. Firstly, the weights
associated with any of the j genotype sets will be approximately equal (w; , *w;,, ;) so that:

j+L,n
J n . J n )
> w, [IPr(G; IH)=w,> J]Pr(G,H)
=1 i=x+1 j=1i=x+1

Secondly, the x + 1 to n (or ) contributors can possess any genotype at any locus. Therefore,
the sum across all J possible genotype sets must equal 1 (as this is a sum of probabilities of
genotype sets across all possible genotype sets that can exist):

iﬁpr(iejm)ﬂ

j=1li=x+1

So that the LR becomes:
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J X )
ZWWzHIPWG”Hm
LR ~ j=1 i=1

J X

Z,w, > TPr('G, | Hd)

=1 =1

i.e. the probabilities associated with additional genotype sets of any additional contributors that
are required to reasonably explain the profile have little to no impact on the LR.

Consider now that if there are only x completely resolved profiles (one for each contributor)
that could describe the evidence profile that J = 1.

Zw,[JPr('G|Hp)
LR = i=1

Z,w, [ JPr('G|Hd)
i=1

The most common set of propositions considered in forensic genetics is that under the
prosecution proposition one POI is nominated as a potential source of DNA, and that this
person becomes an unknown in the defence proposition, i.e.:

Hp: The DNA originates from the POl and n - 1 unknown individuals
Hd: The DNA originates from »” unknown individuals

Assume that we are consider a situation where the POI is not excluded from the profile i.e. the
genotype of the POI (Geoi) aligns with one of the x resolved genotypes in the mixture (for
simplicity let us say this is when i = 1 in the formulation above). Incorporating knowledge of
the reference profile of the POI, and that fact that given Hp they are a contributor of DNA to
the sample, so that:

Pl‘(lG | Gpoin HP) =1

Yields an LR where the product over x contributors starts at element 2 in the numerator:

Zw, [ [Pr('G|Hp)
i=2

LR =~ -
Z,w, [ JPr('G | Hd)

i=1
If we consider that an average genotype probability is P then:

_ZWPT Zw,
zZw.P* Zw.P

LR

If the number of contributors is the same under Hp and Hd, n = »’, then the LR simplifies to:

lR=1
P
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If n # n’ then the LR will depend on P, but also the probability associated with the two models,
as given by the Z, and wy terms. Recall that Z,wn represents the integration of the observed data
over mass parameters:

Z,w,, =W, = [ p(O|S;,N =n,M)Pr(M)dMm
Within this integral the M term represents a number of parameters:

e Template DNA amount for each contributor (n), which has prior t, ~U [O,T] (where
T represents the upper limit on template amount before a DNA profile will no longer
be analysed and is termed a saturation level)

e Degradation for each contributor, which has prior d, ~U [0,D] (where D represents a
level of degradation above which profiles will generally be considered too low quality
and will not be analysed)

e A PCR replicate efficiency term for each PCR replicate (y), which has prior
R, ~U [O,oo] (note that in practise, if an analysis was carried out and a replicate
amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be

considered that one of the replicates is likely to have been the subject of an
amplification error and should not be included in the analysis)

e An amplification efficiency term for each locus (1), which has prior A' ~ LN (0,5202)

(where & =1In(10) is used to transform between logs in base 10 and base e and & is

determined by laboratory calibration)
e A peak height variability parameter for each fluorescence type (i), which has prior
c' ~ F(a‘,ﬂ‘) (which is determined by laboratory calibration)

As priors for template and degradation (and also replicate amplification efficacy, but I do not
include this parameter for reasons that will soon become apparent) are constants for all values
of these parameters they can be taken outside the integral term. Let M’ be the set of mass
parameters without template or degradation so that:

Zw,,=w,=(DT)" j P(O|S;,N =n,M)Pr(M’)dMm

For each contributor used to describe the evidence DNA profile, an additional template and
degradation term are required. However, when these additional contributors do not contribute
to the explanation of the profile then it is expected that:

jp(0|sj, N =n,M)Pr(M")dM zj p(O]S;,N =n+1M)Pr(M’)dM
And so the ratio of Z,wh is

Zw, (DT)’”jp(O|sj,N =n,M)Pr(M)dM
Z,W, (DT)" [p(O[S;,N =n’,M)Pr(M)dM -

DT)"™"

In the running example this gives an approximate LR of:
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x-1 ‘
~ ZW,P ~ i( DT )”*“

LR
Z.w.P* P

In summary, the addition of unnecessary contributor(s) will only affect the LR by the additional
prior probabilities incurred for template and degradation. There will therefore be a tendency to
favour simpler models under these conditions for that reason, rather than a commonly held
belief that the favouring of the simpler models would be due to smaller genotype set
probabilities (resulting from an additional genotype in each genotype set, from the additional
contributor).
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7.3: The next generation of profiling technology and the need for next generation modelling

It was mentioned earlier that new technology promises to provide more data and from more
STR regions. This technology is called Massively Parallel Sequencing (MPS), or sometimes
Next Generation Sequencing (NGS). MPS has the ability to sequence multiple regions of DNA
simultaneously, so that rather than just receiving size information (as is current DNA profiling)
underlying sequences are also obtained. This technology targets a suite of different DNA
markers that have different purposes. There are mutational markers (known as Single
Nucleotide Polymorphisms, SNPs) that can be used to provide probabilistic assignments of
physical features such as eye colour, hair colour, heights, age and appearance. There are also
SNPs that are targeted to provide probabilistic assignments to populations of origin. Both of
these marker types have strong investigative applications to unsolved crimes.

It is likely, however, that STRs will still be a main focus of identity based profiling for some
time to come. This due to the fact that there are decades of legacy data (in the millions of
profiles sitting in databases around the world) that require the same markers to be amplified if
they are to be searched against. To this end, there is already much work being done in the field
of sequencing STR markers using this type of new technology.

With STR data produced by MPS there will still be the need for probabilistic evaluation. While
the underlying sequence will provide more discrimination power, there will still be
unresolvable DNA mixtures to which individuals of interest will be compared. The new
technology will have some similarities in the modelling of STR data as current size-based STR
DNA profiling i.e. more DNA will lead to higher number of sequenced strands of that region
(called ‘coverage’ in the parlance of MPS and akin to fluorescence in current STRmix™
modelling) and the DNA will still be degraded to varying degrees depending on the
environment to which it has been exposed. There will also still be stutter and common alleles
and stutters will still stack to produce a single indistinguishable data point. Loci will likely also
amplify at different efficiencies.

However, new issues will arise. Sequencing errors will be a new factor to consider, and a model
will have to be created that relates fragments of similar sequence to the possibility that they all
arise from a common allele. There are also mechanics of the current MPS systems that appear
to normalise the amount of DNA from each region within the sequencing reactions, which will
affect the modelling of fluorescence currently employed. MPS techniques are also multi-step
PCR reactions and this may require different modelling of peak height variability. Currently,
there has not been enough work done to sufficiently model these factors and it is likely that it
will take some time (years) before the same level of understanding is obtained for MPS derived
STR profile behaviour as currently exists for current STR profile behaviour.

It is likely that as the studies are done and data starts to become available that models in existing
continuous DNA interpretation system such as STRmix™ can be adapted to handle the new
type of profiles.
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Chapter 8: Discussion. Where to from here?

Chapter 8 places the work that has been described in the thesis up to this point in a wider
context. The introduction of STRmix™ has largely addressed the biggest issue that forensic
biology had, namely the ability to evaluate the complex DNA profile evidence being
generated. There are (and always will be) a subset of results, or problem types, that cannot be
addressed, but these are now very much in the minority compared to a decade ago.

The adoption of STRmix™ has been generally well received, both with forensic laboratories
and by the legal community. The largest challenge faced by forensic analysts was the fear of
the unknown, specifically the apprehension that they would not be able to understand the
functioning of a complex statistical system (and therefore use and defend it). The biologists
in the forensic community has underestimated their abilities, they have eagerly embraced the
new knowledge and often provide insightful question or comments that direct further work
and investigation.

From the legal community, the apprehension took a number of forms:

e that they would not be able to understand DNA evidence now

o that (specifically defence) could not challenge, nor find sufficient experts to challenge
the new system

e that the testifying scientist could no longer be considered an expert

e of retrospective reanalysis of DNA results in old, closed cases

Each of these has been tested over the years via Court challenges. As a result of these
challenges the rules of evidence law and the admissibility of scientific evidence in Australia
have been changed in the High Court. In 2017, for the most part, the challenges have passed
from the judicial system in Australia, and the forensic community have come to tolerate and
embrace the new system of interpretation.

New issues have arisen in forensic biology, two areas being:

1) The interpretation of electrophoretic signal obtained prior to its evaluation as DNA
profile evidence (and subsequent analysis in STRmix™)

2) The placement of the DNA evidence results obtained by using STRmix™ into a wider
case context that is of interest to the court

Examples of each of these directions are given in the following two subsections of chapter 8.
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8.1: Dealing with data pre-processing

Prior to analysis in STRmix™, prior to interpreting the data in an EPG to determine the number
of contributors, someone (or more typically two independent people) have assigned each area
of raised fluorescence (a peak) on the EPG as either requiring labelling or not. If a peak is
representative of some modelled reason for the fluorescence, i.e. if it represents an allele
present in the DNA samples, or is a stutter of the allele (if stutter modelling is present in the
interpretation system) then the peak will be labelled. If it is a fluorescence caused by some
mechanism that is not modelled by the interpretation system, for example pull-up, then it
should not be labelled. During human interpretation of the EPG and the following STRmix™
analysis only the labelled information is considered. Whether the peak should be labelled will
depend on its size, shape and position within the EPG. This description demonstrates that the
process of labelling or unlabelling fluorescent data is:

a) Dependent on human judgement and so suffers from the same difficulties of any
threshold or judgement based system
b) Highly important as it directly affects the downstream processes

Adding to the disadvantages of the current system is the fact that it is time consuming for two
analysts to interpret EPGs, compare and resolve differences. Especially in modern hardware,
such as the 3500xI capillary electrophoresis instruments, the dynamic range of fluorescence
over which the instrument can function is so great that some peaks (from some contributors)
can be highly intense, while others very low. The highly intense peaks cause artefacts to the
DNA profile in the areas surrounding their position, both within the same dye lane and in other
dye lanes. The analyst trying to interpret the fluorescent data must then distinguish the low-
level artefacts from the low-level alleles.

A statistical tool that has come to recent popularity is artificial neural networks (ANN). Their
particular strength is in pattern recognition and they have been used to great effect in this area,
demonstrated by their ability to beat human in complex pattern recognition tasks as either part
of a professional occupation or at game play. ANN therefore seem to be the perfect solution to
the current problem of classifying fluorescence within an EPG. Further to this, ANNs work
best when supplied with vast amounts of training data, and so a workflow could be imagined
where a laboratory using ANNs to read DNA profiles, continually updates the training material
and hence continually improves on the system in use. Such a model will act as an automatic
updating system that works on a feedback loop to improve itself. This new area that lead to the
publication in this section of the thesis.

Even if the system performs exceptionally (and experience so far is that it does) there will be
challenges to its use. One of the early challenges will be the acceptance by the scientific and
legal community. ANNs represent the ultimate in ‘mysterious statistics’ in that they are
designed to take vast volume of data, teach themselves how to perform a task, often in ways
that humans will not understand. There will have to be careful implementation of ANNs in a
way that slowly integrates with current systems. This could be achieved in four stages:

1) Continue to use two individuals to read EPGs, but have the ANN as a tool that can
suggest that currently labelled peaks may be artefactual. They are then being used
simply as an assistant to the human reader, with the humans doing the ultimate decision
making. Such a system would already greatly improve efficiency in DNA profile
reading as it will make the reading process faster for the analysts, and is also likely to
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result in less differences between two reading analysts. There would be the additional
benefit of getting analysts used to the ANN and building some faith in their ability.

2) Stage 2 would occur once stage 1 had reached a point where analysts rarely overrode
the ANN suggestion and when they had become comfortable with the ANN. Stage 2
would involve removing one of the readers, so that there was one human read and one
ANN read that were compared. Again, this would further increase efficiency and
consistency. In this stage that ANN use could migrates from a suggestion tool to the
main peak detection and classification system.

3) Once stage 3 had progressed to the stage where the analysts were virtually never
overriding the ANN peak classification the human reader could be removed. This would
leave the ANN as the sole means of interpreting fluorescence on an electropherogram.
The EPG would them be passed to analysts in the usual manner for human
interpretation, prior to analysis in STRmix™

4) The final stage would require the integration of a few pieces of technology. Firstly, the
ANN would read and classify fluorescence, which in the fully Bayesian manner would
entail providing a probability for areas on the EPG being any one of the nominated
categories (allele, stutter, baseline, pull-up, etc). This raw data would then be passed
directly into a system like STRmix™ where the number of contributors would be
treated as a nuisance variable and may become a parameter in the model (not requiring
human pre-assessment). The deconvolution could then progress in an automated
fashion. The result would be that no human interaction would occur until the stage of
assessment of the STRmix™ analysis.

The result of the end of these four stages would be that instead of the analyst being handed a
series of DNA profiles to read, interpret and analyse, they would be handed the completed
package that they just needed to review. This would free up the analysts to consider the results
in a wider case context (the focus of the next section).

Such a system is some way off, and may never be fully realised. The new DNA profile
generation technology (as mentioned in section 7.3) is likely to drive the need for some level
of automation in the manner described above.
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Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday
criminal casework. Before the results of these electropherograms can be used they must be scrutinised by
analysts to determine what the identified data tells us about the underlying DNA sequences and what is
purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of
classification in the face of vast amounts of data is the use of artificial neural networks. These networks,
inspired by the workings of the human brain, have been increasingly successful in analysing large
datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images.
In this work we demonstrate the use of an artificial neural network which we train to ‘read’
electropherograms and show that it can generalise to unseen profiles.

© 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

A common task for any forensic DNA laboratory is the
generation of short tandem repeat (STR) DNA profiles. During
polymerase chain reaction (PCR) fluorescently tagged primers are
incorporated into copied DNA fragments. When run through a
polyacrylamide filled capillary, the DNA amplicons are separated
according to their molecular weight and ultimately passed through
a laser. At this point electrons in the fluorophores are excited by the
laser and, during de-excitation, emit light at particular
wavelengths (depending on the fluorophore used) which are
separated before being detected by a charge coupled device (CCD)
camera. Carrying out this process produces a graph of detected
light at several wavelengths over time (in seconds, or ‘scans’),
which we know as a DNA profile. Before these profiles can be used
in interpretations they must be scrutinised by analysts to
determine whether the information in the profile is representative
of some component of DNA in the extract used to generate it, or if it
is an artefactual product of the DNA profiling process. This task of
‘reading’ the electropherogram (EPG) can be time consuming and
often leads to subjective differences between analysts. There have
been a number of measures put in place to mitigate uncertainty in
reading. The two most common are:

* Corresponding author at: Forensic Science South Australia, 21 Divett Place,
Adelaide, SA 5000, Australia.
E-mail address: Duncan.Taylor@sa.gov.au (D. Taylor).

http://dx.doi.org/10.1016/j.fsigen.2016.07.013
1872-4973/® 2016 Elsevier Ireland Ltd. All rights reserved.

—

. An analytical threshold (sometimes called baseline, or detection
threshold) is employed, below which information will not be
labelled. This works as the greatest level of artefactual
fluorescence occurs at low intensities.

. A system of double reading is commonly employed, whereby
two analysts independently read the profile, and then compare
their interpretations. Any differences are then sorted out and a
consensus read is obtained. This helps to factor out reader
differences.

N

Both of these measures have some drawbacks. The first measure
requires a threshold be set at a value where the reading effort
required by the analyst is practical for a high throughput
laboratory. This is done at the expense of ‘losing’ any information
that has not reached the threshold, which provides the counter-
balance to the size of the set threshold.

The second measure doubles the level of resource required to
read profiles, and there is no guarantee of consistency across
different pairs of individuals.

1.1. Artefacts

The most common artefacts that are encountered in capillary
gel electrophoresis can be grouped into two categories; stutters
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Fig.1. Wavelengths of fluorophores used in the GlobalFiler™ PCR amplification kit (Life Tec
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the 6-FAM (blue) and NED (black) dye lanes. In the right hand electrophoretic graph the vertical axis designates intensity, in relative fluorescence units (RFU), and the
horizontal axis represents the fragment size, in base pairs (bp). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

and pull-up.' Stutter occurs when there is an error during DNA
replication of the STR during PCR. The result is that some copied
fragments possess a different number of repeats from their parent
template. Common stutters are one repeat shorter than their
parent (referred to a back stutter, n — 4 stutter, or just stutteras itis
the most commonly considered), one repeat longer (called plus
stutter, forward stutter, n+4 stutter or up stutter), two repeats
shorter (double back stutter or n—8 stutter) and half a repeat
shorter (half stutter, or n — 2 stutter).

Pull-up occurs due to the overlap of the distribution of
wavelength emitted by each of the fluorophores used in
commercial profiling kits. The effect is that when a large number
of fragments labelled with a specific fluorophore are detected by
the CCD camera a high intensity peak is produced in the
corresponding dye lane of the EPG and lower intensity peaks
are seen in dye lanes that correspond to fluorophores with similar
excitation wavelengths. This process is shown diagrammatically in
Fig. 1. Other than the presence of peaks at a similar molecular
weight, there are other features of pull-up peaks that can be used
to distinguish them from allelic peaks. Two features are that pull-
up peaks will not have any associated stutter peak, and the
morphological characteristics of pull-up peaks (which are com-
monly described as ‘spikey’) tend to differ from the smooth
Gaussian shape of allelic peaks.

It is the job of the analyst to recognise and remove artefacts
such as pull-up that have not automatically been identified by an
expert system. For stutters the situation is slightly different.
Stutters require removal in reference samples as it is only the

' There are a number of other artefacts that can be produced, such as dye-blobs,
spikes or incomplete adenylation which are less common and we will not expand on
these here.

alleles that are of interest for most applications. For evidence
samples the removal of stutter peaks will depend on the
downstream system being used to interpret the profile. If this
system is a continuous system (such as [1,2]) that utilises stutter
peak in the modelling then the analyst will desire them to remain
on the EPG. Otherwise they must be removed, and again there are
automated ways in which this removal is carried out in expert
systems, that identify most stutter peaks.

1.2. Expert EPG reading systems

There are two expert EPG reading systems that are in common
use to read STR profiles, Genemapper (Life Technologies) and
OSIRIS [3]. Both of these systems have some level of customisation
that can be employed to automatically detect and remove artefacts
in line with analysts’ needs. Despite this customisation ability
there remain a number of artefacts that still require manual
removal by an analyst before the EPG can be used in criminal
investigations. It is this manual removal of peaks that takes the
most time during reading, and is one of the driving forces to
increase analytical thresholds. In this paper we will discuss a novel
method that could be incorporated into an expert system that
utilises a technique known as artificial neural networks (ANN).
Fig. 2 shows the subject of the experiment, which is a reference
DNA profile that has been read in both Genemapper and OSIRIS. As
the DNA profile is quite intense we expect a level of pull-up
throughout the profile. In this work we will restrict the application
of the ANN to just the 6-FAM dye lane (the blue trace) as this will
demonstrate the power of the technique without overloading the
reader with data. To this end, Fig. 3 shows the 6-FAM (blue) dye
lane with peaks labelled as read in OSIRIS V2.5 (Fig. 3A),
Genemapper [D-X (Fig. 3B) and then a contraction of the y-axis
around the baseline to demonstrate the myriad of artefactual peaks
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Fig. 2. DNA profile that will be the subject of the demonstration in this paper. The vertical axis is in RFU and the horizontal axis is in bp.

present in the profile. For the reading of the profile shown in Fig. 3
by both softwares, stutter filters have been applied which remove
peaks deemed as stutter.

We note here that Fig. 3 is not meant as a comparison of
software performance. Both have some level of user custom-
isability and in particular OSIRIS has a number of advanced settings
that deal specifically with the detection and removal of pull-up.
These settings can be set to remove potential pull-up peak with
some ferocity when reading reference samples, as the EPG is
expected to possess only a limited number of high intensity peaks.
When dealing with evidence samples the settings of programs to
remove artefacts cannot be set at the same levels as the
presumption of a limited number of similarly sized peaks cannot
be made. In these instances a balance between correct artefact
removal and incorrect allele removal must be struck, with most
laboratories erring on the side of artefacts being labelled and

needing to be assessed and removed manually by an analyst (or
two).

Ideally an expert system would be able to use all the same
features as humans to distinguish artefact from allele, with the
advantages of:

« A consistent application of these features

e The ability to take numerous competing features into account
simultaneously

o The ability to apply features of finer resolution than afforded by
human ability

One potential avenue to achieve these goals is the use of ANN,
which has shown success in a similar task of calling electrophoretic
sequence data from either a summary of features obtained from
pre-processing of electrophoretic data [4], or more recently the
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Fig. 3. 6-FAM dye lane of EPG shown in Fig. 2 as read (without user intervention) by OSIRIS (A) and Genemapper (B) and then a contraction of the y-axis around the baseline
for the Genemapper read showing a typical analytical threshold of 30rfu (C). The vertical axis is in RFU and the horizontal axis is in bp.

training of electric current data produced from Nanopore
sequencers [5]. ANN have also been used to identify the bounds
of fluorescent bands in slab gel electrophoresis images [6].

1.3. Artificial neural networks

Artificial neural networks (ANNs) are a model of data
processing that is designed to work like a human brain. The
human brain possesses nearly 100 billion neurons [7], connected in
a complex network of synapses. An individual neuron will possess
a number of connections to other neurons and if the incoming
signals from those connected neurons are received in a particular
manner and strength then the neuron will activate, sending out
signals of its own. This process is modelled within an artificial
neural network, with the base unit of the model being called a
neuron as shown in Fig. 4.

X1
wi

x?WZ\)
SO
)

Xn

Fig. 4. A single neuron showing inputs (x), weights (w), bias (b) and output (f(z)).

In processing the inputs (x) the weighted (w) sum is added to
the bias (b):

n
z=b+ xw (1)
i=1
and the output is some function f(z) (called the activation
function), which can take a number of forms that perform in
different ways. Real neurons are characterized as “firing” when
some threshold of activation is reached, and information is often
reflected in the rate of firing or encoded in the pattern of firing, but
in common ANNs the activation function is typically a smoothed
threshold function or “sigmoid”.

In feedforward ANNs (FFNs) multiple neurons are used,
arranged in layers as shown in Fig. 5. Inputs values are passed
into a number of input neurons and after being propagated
forwards through the hidden layers (hidden as the values are
typically hidden, not being inputs or outputs) will result in a series
of values in output neurons. If a ‘softmax’ layer is used in the final
layer of an FFN then the output values are normalised and can be
interpreted as probabilities.

In FFN shown in Fig. 5 there are only five inputs, two hidden
layers and three outputs, but in practise learning neural networks
have been trained that possess millions of neurons and over 100
billion parameters [8]. An FFN is also known as a multi-layer
perceptron (MLP) and since a common supervised training method
involves back-propagation of errors (BP) an MLP trained this way is
called a back-propagation network.

Unlike classic regressions or modelling, a neural network is not
specifically programmed to carry out a task in a particular way or
using a specific model. Neural networks can carry out unsuper-
vised or supervised learning. Unsupervised networks are given
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Fig. 5. Artificial neural network showing an input layer, two hidden layers and an
output layer.

input data and seek to find patterns, or clusters containing
common features, whereas supervised learning involves providing
the neural network with a set of training data for which correct
responses (labels) are also given, so that it can learn important
features and generalise them for classification of unseen test data.
Deep learning typically uses unsupervised learning of features on
early layers and supervised learning of class labels in the later
layers. We will be concentrating on supervised learning alone as
this is the method we use for reading EPGs, but for the interested
reader we recommend investigating ImagetNet (http://image-net.
org) or Google DeepMind (https://deepmind.com) for an example
of the power of artificial neural networks to analyse and classify
data.

When supplied with training data the values are fed into input
nodes, propagated forward through the network and result in
values passed out of the output nodes, which are then compared to
the supplied labels. This is carried out for J training instances and
the cost for item j is determined by the loss (or cost) function:

LW.Blj) == y¥In|f(z9)| + (1 -y¥)In|1 - f(z0 2
D =—2gmuloah)] + (1 -y im-pll)) @

Eq. (2) shows the cross-entropy loss function, being one of a
number of loss functions that can be used. In (2), O signifies all the
neurons in the output layer, y? is the supplied response and f(zV)
is the corresponding output. The total loss (or cost) is then
obtained by averaging across all | input instances.

L(W,B) = }—ZL(W.BU)
j

Training of the neural network is achieved by changing values of
weights and biases to minimise the total loss through a process
called gradient descent. The levels to which the weights and biases
are changed depend on their contribution to the overall loss. This is
determined through a series of partial derivatives of cost with
respect to weight and biases (through intermediary ‘error’ values)
that use the chain rule to move from outputs backwards through
the network towards inputs in the aptly named process of back-
propagation. We don't go through the mathematics of back-
propagation as it is not required for conceptual understanding, but
there are numerous texts available that do so. An accessible and
comprehensive introduction to the topic is the free online textbook
by Michael Nielsen (http://neuralnetworksanddeeplearning.com).

The final point we wish to raise is one of overfitting the model to
the data. Neural networks can possess many parameters and the
possibility exists for them to overfit to the training data i.e. learning
aspects of that specific training data set rather than generalities or
patterns. There are a number of ways that have been developed to
avoid overfitting. One method, known as regularisation, adds a
term to the loss function that means smaller weights (and hence a
simpler model) is preferred. Another method is dropout, where for
each training set some randomly chosen neurons are dropped from
the network and the process of forward-propagation followed by
back-propagation carried out. This prevents overfitting by effec-
tively training over a series of different networks (working like an
average across them) during training.

The most important factor however is to ensure strict
separation of training and testing, including avoiding choosing
parameters based on repeated tests with the test data. Often
additional datasets called validation sets are used to allow for
techniques like early stopping (stop if it starts getting worse on the
validation set) or for tuning parameters. If there is not enough data
available to create all these datasets, then techniques like
bootstrapping or cross-validation are used that average over
multiple allocations of samples to the different datasets. For
example 10-fold cross-validation holds out 10% of the data for
testing and trains on the other 90%, for all 10 test folds, and
averaging over these results gives both a more reliable average
performance estimate as well as an estimate of variance and
opportunity to test significance [9,10]. In fact for our study, our first
system performed very well, and we only explored closely variants
of this system and did not find the need for cross-validation.

What remains to be divulged about neural networks is thus the
myriad of ways in which they can be configured and constructed to
best learn from the dataset being presented. Changes can be made
to every aspect of neural networks that we have described, from
the number of inputs and outputs, the number of hidden layers, the
number of nodes in each hidden layer, the connection types,
whether nodes are grouped into convolutional layers, the
activation function used, the loss function used, the method of
preventing overfitting, a series of complex network structure types
that possess timed feed-back loops, and many others. The breadth
of network types grows daily and for the interested reader Google
is an excellent resource of information with many websites
dedicated to ANN.

2. Method

The aim of this work was to demonstrate how an ANN could be
trained to recognise different aspects of an EPG. The categories we
chose were Baseline, Allele, Stutter, Pull-up and Forward Stutter.
Ideally the trained ANN would be able to examine the 6-FAM dye
lane in the EPG shown in Fig. 3 and classify each scan point as one
of these five categories. In order to classify a particular scan, more
than just the level of fluorescence of that 6-FAM scan point is
important. Also important would be:

e Whether there is an area of fluorescence one repeat unit
upstream in the 6-FAM lane

e Whether there is an area of fluorescence one repeat unit
downstream in the 6-FAM lane

e Whether there is an area of fluorescence at the same scan range
in other dye lanes

Therefore to classify each scan it was deemed that the input
data would be the scan in question and 100 scans in either
direction, in all dye lanes, which corresponds to approximately 8
base pairs (bp) in both directions under the conditions used to
generate the EPG. This information is presented diagrammatically
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Fig. 6. Data used as input to classify central scan point in the 6-FAM dye lane as
Baseline, Allele, Stutter, Pull-up or Forward Stutter.

in Fig. 6. The result is 201 scans in each of six dyes, leading to 1206
input neurons.

As there are five classification categories there are five output
neurons in the neural network. The terminal layer was a softmax
layer, meaning that the outputs could be interpreted as probabili-
ties.

The remaining structure of the hidden layers in the ANN is then
open for experimentation. For this demonstration, minimal
optimisation was carried out in this regard, and there may well
be ANN configurations that have higher correct classification rates,
are simpler and require less input data. We started with a ANN
similar to one that is known to produce good results recognising
handwritten digits from the MNIST dataset [ 11]. This dataset is a
common set used as a standard for neural network comparisons. It

reads in 28 x 28 pixel images of digits, and hence has 784 input
neurons, and classifies them into digit of 0-9, hence has nine
output neurons. This is similar in size to the problem we are
attempting. There are also similarities between the two datasets in
that adjacent inputs are correlated and so a successful ANN for the
MNIST classification task seemed like a logical starting point.

The ANN used in our study possessed one hidden layer of 100
neurons (as seen in Fig. 7). The cross-entropy loss function was
used and the activation function was the rectifier function:

f(z) = max(0,x) where x is the inputvalue

which is known to work well for sparse data [12]. To combat
overfitting dropout was employed with a rate of 0.2 for the input
layer and 0.5 for the hidden layers.

The training data supplied were scans 3000-9000 for two
reference profiles. Each scan within the 6-FAM dye lane was
manually designated as Baseline, Allele, Stutter, Pull-up or Forward
Stutter (shown in Fig. 8). No minimum level of signal was used at
which data was unlabelled (or perhaps simply labelled as baseline),
this means that some very minor perturbations of baseline signal
have been designated as pull-up or stutter as seen in Fig. 8. We note
that there is a level of subjectivity in this assignment, but the effect
is likely to be minimal (explored further later on in the paper). Data
before 3000 was not used as this is typically the zone where
primer-dimer and unincorporated dyes come off the capillary and
is an area of high signal that is ignored in EPG reading.

The result was 12,000 training sets of 1206 inputs. During
training the entire 12,000 batch was run through the ANN for 100
iterations of training (referred to as ‘epochs’ in neural network
parlance). The training process took five minutes using an Intel™
Core™ i7-3940XM CPU @ 3.00GHz with 32GB RAM, running
Windows 7 Ultimate.

Data was extracted from fsa files using the executable program
fsa2xml supplied with OSIRIS and then manipulated to a csv file
(with scan information listed in one column per dye format) using
a custom written java program (available from the author on
request). Raw scan data was scaled so that all values fell within the
range [—1,1] with the mode of the baseline being 0. This was

z)) - Bascline
fz;)—Allele
fiz;) - Stutter
fiz;) - Pull-up

Mzs) — Forward Stutter

Input layer
1206 neurons

1 hidden layer
100 neurons

Output layer
5 neurons

Fig. 7. ANN used in this study for classifying electrophoretic signal.
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Fig. 8. Two 6-FAM training data sets used to train the ANN showing scans and approximate intensity in relative fluorescent units (rfu) as produced on a 3130xI (Life
Technologies).

Table 1
Confusion matrix from trained ANN applied to 6-FAM dye data shown in Fig. 3. Rows rep ground truth resp and column are assigned classifications.
Baseline Allele Stutter Pull-up Forward Error rate (fraction)
Stutter
Baseline 4691 36 33 81 44 0.0397 (194/4885)
Allele 15 362 0 0 0 0.0398 (15/377)
Stutter 64 0 139 0 0 03153 (64/203)
Pull-up 97 0 9 333 7 02534 (113/446)
Forward Stutter 19 0 0 0 70 0.2135 (19/89)
Totals 4886 398 181 414 121 0.0675 (405/6000)
achieved for scan point i in dye d by: To construct the ANN and carry out the learning, software R[13]
i P was used with the H,0 addon (http://www.h2o0.ai/). All R code for
seantt _ SCaNrigingl — mode (sca"wiginnl) transforming data, creating training and test datasets and building
Mransform = 10 000 and training the ANN has been supplied as Supplementary
material.

where 10,000 is used as a divider because it is the theoretical
maximum level of fluorescence detectedable by the 3130xI

capillary gel electrophoresis instrument. 3. Results

On the training dataset the ANN was able to learn to correctly
classify approximately 98% of the 12,000 scans. When the model
Table2 e B was then applied to the test dataset the performance was slightly
Diagnostics for performance of ANN shown in Fig. 7. Total for recall and precision lower at approximately 93%, but still generally high (see confusion
are weighted averages. 0 z PP o aLELy. % SULg! any Ml (see conzusio)
matrix results in Table 1).

Baseline  Allele  Stutter  Pull-up  Forward  Total Table 2 shows the greatest level in confusion was assigning

Stutter scans into the Baseline classification. In many instances this will

Recall 0.96 091 077 0.80 0.58 0.93 have little practical effect i.e. whether a low intensity area of

Frecision 9.9 bso 068 073 079 0.93 fluorescence is low level pull-up or slightly raised baseline noise
F score 0.96 093 072 0.77 0.67 0.80 : . . : e

Geeore 096 093 073 077 0.67 0.80 will not affect reading as neither of these categories of data is going

Informedness  0.79 091 0.76 0.78 0.58 0.79 to be labelled during reading. When scans marked manually as
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Allele were assigned into the Baseline classification (and vice
versa) it was at the tails of the allelic fluorescence, where it drops
back to baseline levels. This is likely due to the relatively arbitrary
choice of where along this tailing curve we chose to switch from
classifying scans from Allele to Baseline and so is again of little
practical consequence. The highest percentage of misclassification
occurred with the Forward Stutter classification and this is likely a
product of relatively little training data (the dark blue category
shown in Fig. 8). It is likely that a larger training dataset would
alleviate this confusion.

To visually represent the classification of the trained ANN on the
6-FAM scans, barplots were produced for the probability of that
scan being each of the classifications and this is shown in Fig. 9.

Of particular note is the ability of the ANN to distinguish
between the five categories after training with only two example
profiles. The training data (whilst somewhat mundane to produce)
is virtually limitless and expanding the training set would no doubt
improve performance.

To assess the performance of the ANN we consider informed-
ness, a measure of the power of the model to predict outcomes
better than chance. Formally, informedness is a measure of how
informed a predictor is for the specified condition, and specifies
the probability that a prediction is informed in relation to the

condition (versus chance) [14,15]. The informedness of the ANN,
from the data in the confusion matrix (Table 1) was 0.79. Details of
the diagnostics are given in Table 2.

4. Discussion

There is real promise in implementing ANNs into expert EPG
reading systems. The data type, with clear features and patterns,
makes it ideal for processing in this manner. Fig. 8 shows that in
general, allelic data was correctly classified and there were no
instances where artefactual peaks were classified as allelic. If this
information was carried forward to an expert system such as
OSIRIS or Genemapper then the instruction to the software would
be to only label peaks that fall within the ranges classified as allelic
(or stutter if the downstream interpretation system required it).
This would avoid the multiple manual removals that are currently
required by an analyst (as seen in Fig. 3) and ultimately save many
hours of reading. The eventual goal would be to have an ANN that
had been trained sufficiently that no human intervention was
required at all, a goal that does not seem unrealistic given the many
diverse demonstrated achievements of ANNs.

The current study has a number of obvious areas of expansion
before it neared the goal of being used, unchecked, in an expert

Background

A 1A

|
|| |

Allele

A

L ut

Stutter

hoaad

R

A

Pull-up

]

Forward Stutter

. W)

Fig. 9. Classification probability (shaded bars) as determined by the trained ANN when applied to the test data. The vertical axis contracted to the baseline for the pull-up

category to show performance.
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system. The demonstration in this paper has chosen only a single
dye lane in arguably the simplest gel reading situation that could
have been chosen i.e. single source profiles of reasonable quality.
Further training and testing would initially need to include
references that are much weaker in intensity, or perhaps
complicated by issues such as incomplete peak resolution,
trisomies or complex stutter patterns. Not all loci possess STRs
that have a 4 bp repeat motif, some loci (such as Amelogenin and
Yindel) are not STR loci and so have no stutter, other loci have
repeat motifs of three or five bp. To account for these differences
may necessitate separately trained neural networks for each locus,
or a dataset that includes additional inputs that describe these
known features. Alternatively a larger set of classifications could be
used that classify the central scan of all dye lanes simultaneously
(but given the vast increase in classification categories this would
need a much larger training set). The next goal would then be to
apply the ANN model to complex mixed EPGs. It is these profiles
where the most time is currently spent by analysts interpreting the
fluorescent signals.

The demonstration in this paper uses a relatively (by ANN
standards) small training dataset, which could easily be expanded
by the addition of profiles that are produced routinely every day in
typical forensic laboratories. Each addition of training material will
take less time to prepare as the currently trained ANN can be used
to classify each scan in the next prospective training addition and
will likely automatically correctly classify the vast majority of
scans, only requiring minor modification by the analyst (most
likely when some new data feature is being added to the training
material). It may also be possible to reduce the number of inputs
from what has been used here. One potential reduction would be
the areas of outside approximately +10 scans in all dye lanes other
than the one being labelled (as the fluorescence in other dye lanes
is really only useful to identify pullup which occurs during the
same scans).

4.1. World without an analytical threshold

The analysis carried out in this work has been done so without
truncating the input data at any particular threshold. This brings
up the interesting possibility that if a ANN was used to classify
scans as allelic or artefactual that there would not need to be any
analytical threshold employed for interpretation. All data could be
assessed truly without thresholds. This is quite different to the
current ubiquitous methodology of implementing such a threshold
when reading electrophoretic data. The use of the outputs of a ANN
with a softmax layer could be used to probabilistically label peaks,
e.g. label any area of fluorescence which has a probability of greater
than 0.99 (for example) of being allelic. As allelic data reduces in
intensity, until it was eventually subsumed into the baseline noise,
the probability of it being allelic (according to the assignment of
the ANN) would drop until it fell below the probabilistic cutoff and
was no longer labelled. Peak morphology would also be taken into
account in this assessment as the ANN learnt higher level features
of what constitutes fluorescence from allelic fragments. In such a
world the classic definition of dropout would have to change as it is
commonly referred to as the probability of a peak, expected at
some intensity, falling below the analytical threshold. Instead it
may need to be defined as the probability of too few strands of DNA
being sampled from a DNA extract to produce fluorescence that
will be recognised as allelic. Better still, the probabilities associated
with all scans being allelic, baseline, stutter or pull-up could be fed
directly into an expert interpretation system, which would utilise
them when determining potential contributing genotypes. There is
much potential for expansion in this area.

5. Conclusion

Artificial neural networks are a tool that is becoming more and
more popular to find patterns in, and make predictions from, large
amounts of data. Electrophoretic signals that make up EPGs are a
perfect candidate for applying ANN to reduce the subjective and
laborious task of manually classifying data as allelic or artefactual.
In this work we have demonstrated a simple ANN that, when
trained on only two EPGs, was then able to identify areas of allelic
fluorescence completely in the next EPG it was given.

Much work is required to develop and train a ANN that could be
used routinely in active forensic casework; however the advan-
tages of pursuing such a system are great. Not only would it save
resources, it will allow access to data that is currently lost due to
the application of an analytical threshold. Although not shown
here it is also possible to probe the weights and biases of trained
ANN to determine which features of the inputs are the most
important in classifying data. It may well be that ANN could
identify and teach us about features of the data we are producing
that we could not see otherwise.
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8.2: Placing the statistical DNA profile evaluations within a wider case context

Over the years, that the questions being asked in court regarding DNA evidence have shifted
from “Whose DNA is this?” to “How did it get there?”. In the parlance of the hierarchy of
propositions (see section 3.2 for an explanation of this concept) the questions were activity
level rather than being source (or sub-source, or sub-sub-source) level. STRmix™ answers
questions at sub-source level and so there was a disconnect between the information being
provided and the questions being asked.

There is a common misunderstanding that if the questions are about activity that the sub-source
level work is no longer relevant, hence sweeping away the need for systems such as STRmix™,
This is not the case. Moving up through the hierarchy of propositions is like building house,
which must be based on solid foundations. STRmix™ has provided that foundation, and it is
only through the existence of software that can address the sub-source level propositions, that
it becomes possible to consider higher-level propositions.

There are a number of publications that explain the evaluation of forensic findings to help
address activity level propositions. These include biology-focussed publications. There is a
movement beginning within Australian forensic biology laboratories to develop the ability to
numerically assess findings considering activity level propositions to forensic biology in
Australia. This alone is a good driving force to conduct research in this area, although not the
motivation behind the published work provided below. The case involves an alleged attempted
abduction that occurred locally, and for which FSSA analysed key items from both the alleged
attacker and the alleged victim. There were no signs of DNA from either party on the other’s
clothing and the DNA analyst was called to testify. In these sorts of cases (i.e. cases where
there is no DNA support for the allegation) it is not unusual to still be called by the prosecutor,
who wishes to make the point that just because there was no DNA detected, it doesn’t mean
the activity didn’t take place. The line of reasoning is a rewording of the old adage “absence
of evidence is not evidence of absence”, but in reality, absence of evidence is indeed evidence
of absence (in that the lack of detected DNA will tend to support a scenario of non-contact over
contact), just not conclusive evidence. So too was the prosecutor’s intent in this case and the
defendant was ultimately convicted of the alleged crime (presumably based on non-DNA
evidence).

Later, on review of the results, it was deemed by the court of appeal that the DNA testimony
was misleading and the conviction was overturned. This caused some concern locally, as the
analyst had not misrepresented the DNA findings, and there were dozens of similar cases that
had been testified to in a similar manner. Work was conducted to put the DNA results in a
wider case context (in this particular case the DNA results showing an exclusionary result) by
carrying out a full activity level (and in the paper even went through an offense level) analysis
was performed. The aims in doing so were three-fold:

1) To show that the court of appeal had unfairly judged the testimony of the scientist and
that the issue was a wider misunderstanding of the levels in the hierarchy of
propositions.

2) To demonstrate how the data could be evaluated to help address the questions of
interest. In particular, it was hoped that this work could be a useful example to point to
when faced with the line of questioning “just because there was no DNA detected, it
doesn’t mean the activity didn’t take place”
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3) To promote the practise of considering DNA findings in a wider case context

Manuscript: The evaluation of exclusionary DNA results: a discussion of issues in R v.
Drummond. D Taylor. (2016) Law, Probability and Risk 15 (3), 175-197 — uncited

Statement of novelty: This work applies the laws of probability and utilises Bayesian
Networks to demonstrate the benefits of considering activity level propositions when
evaluating the DNA results in a wider case context. In particular, this work demonstrates the
importance of evaluating an exclusionary result.
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A recent appeal ruling by the Supreme Court of South Australia, based in large part on the significance
of the absence of an individual’s DNA on an item, has been successful in overturning a conviction. An
issue of interest to the court in the original trial was the probability that two people could struggle and
DNA not be detected on each other’s clothing. In the parlance of the hierarchy of propositions, the
question of interest to the court was about potential activities, however using the DNA results the expert
could only provide source level information and in the absence of DNA results such reporting is
meaningless. In this article the circumstances of the case, the evidence at trial and the expert reports
are examined to understand the circumstances that led to the initial conviction and subsequent success-
ful appeal. The main body of this article is dedicated to helping evaluate the DNA profiling results
considering competing posited activities to determine the value of the exclusionary evidence to the
questions posed in court. I demonstrate the application of Bayesian theory and relevant literature studies
on DNA transfer to assign a likelihood ratio, which in this case supported the defence version of events.

Keywords: Hierarchy of propositions; Drummond; activity; likelihood ratio; appeal; transfer; persistence.

1. Introduction

A recent appeal ruling by the Supreme Court of South Australia R v Drummond (2015) has overturned
an earlier conviction based in large part on the significance of the absence of an individual’s DNA on
an item. There are a number of important concepts that contribute to the discussion of this matter. I
explore here the circumstances of the case, the forensic evidence and the reasons behind the ultimate
quashing of the conviction. I also explore the value of the evidence using data from relevant published
studies and considering the questions posed about disputed activities during the trial.

There are a number of details of the case that I will omit from my explanation of the scenario. I will
concentrate only on those exhibits and results that relate to the subject of the appeal. There were other
exhibits seized and many aspects of evidence, both expert and eye witness, that I do not mention.
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1.1 The circumstances of the case

The prosecution case stated that the victim in this matter (T) was walking along Prospect Road on 24
November 2010 wearing a singlet top. It is alleged that a car pulled over, Drummond exited, grabbed T
by the arm and attempted to pull her into the vehicle. T struggled with Drummond, which included her
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hitting him in the chest and he abandoned his attempt to kidnap T and drove off. T noted the licence
plate of the vehicle.

T called police stating that she had been attacked and provided the licence plate. Shortly after police
attended the home of Drummond and seized his clothing that he had been wearing at the time in
question. The following day police seized as evidence the clothes worn by T.

Drummond stated that he was driving home along Prospect Road, but never stopped his vehicle.
There was an implication that T had not been attacked at all but this was not explored in any detail. The
main issue in court appeared to be the identity of T’s attacker.

1.2 The forensic results

At the forensic laboratory the tops of Drummond and T were examined and tapelifts taken from each.
From a tapelift of the singlet top of T a mixed DNA profile was obtained that could be explained by the
presence of Deoxyribonucleic acid (DNA) from three individuals. T’s alleles corresponded to the
major component of the mixture and Drummond was excluded as a minor contributor by the forensic
scientist. A male friend of T, who had previously hugged her that day, could account for the alleles of
one of the minor contributors. Y-STR profiling was conducted and a single sourced profile containing
the same alleles as T’s male friend was obtained. No sign of a second male was detected from Y-STR
analyses and so the conclusion was that the third component of the mixture from T°s top was female.'

From a tapelift of the top of Drummond a mixed DNA profile was obtained that could be explained
by the presence of DNA from two individuals. Drummond’s alleles corresponded to the major com-
ponent of the mixture and T was excluded as the minor contributor by the forensic scientist.

DNA extractions were carried out using DNA-IQ? (Promega). DNA profiling was carried out using
Profiler Plus ™ (Life Technologies) and interpretations were carried out manually (i.e. not assisted by
computer software) using the thresholds and guidelines appropriate in 2010 at Forensic Science SA
(FSSA).

1.3 Evidence at trial by the forensic scientist

Evidence was given at the trial on the absence of T’s reference in the profile obtained from the top of
Drummond and Drummond from the top of T. The questioning turned to the chance of an individual
not leaving detectable levels of DNA on another’s clothing from the above described set of circum-
stances. The scientist testified to the following facts (as given by Grey J in R v Drummond (2015)):

(1) The DNA samples from the clothing of the defendant excluded the complainant as a
contributor.

(2) The DNA samples from the clothing of the complainant excluded the defendant as a
contributor.
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! Another explanation for the findings could be that a male relative of T's friend was the source of the second minor
component and they would not have appeared as a separate male contributor on the Y-STR analysis. However, there was no
suggestion that a male relative of T's friend was involved and so it has not been considered.

2 DNA-IQ™ is a DNA extraction method that utilises the DNA adsorption properties of silica. Magnetic particles, coated in
silica, are applied to cellular material that has been broken open to release the DNA. The DNA (now adsorbed onto the particles)
is retained in the sample, while the undesired material is washed away. Heating releases the DNA from the particles, allowing it
to be used in DNA profiling.

3 Profiler Plus™ is a commercially available DNA profiling kit that targets 10 regions on the human genome, one of which is a
sex-determining marker.
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(3) The likelihood of DNA being left on a surface is dependent in part on the nature of the surface,
the nature of the contact with that surface and a person’s propensity to shed DNA.

(4) DNA is more likely to be left on a surface such as wood or fabric than a surface such as glass.

(5) DNA is more likely to be left on a surface where there has been prolonged or vigorous contact.

(6) A failure to obtain DNA from an item does not preclude the possibility that contact with that
item occurred.

(7) The DNA testing conducted on the clothing of the complainant and the defendant did not
preclude contact having taken place between the complainant and the defendant.

(8) A small study into the success of sampling at Forensic Science SA disclosed that DNA that may
be uploaded” on to the database is recovered in about 10% of cases. This study related to
samples where it was unknown whether DNA had in fact been left on each sample and, as a
result, was only a ‘sort of indication’® of how useful DNA samples are for uploading onto the
database.

No likelihood ratios (LR) were provided by the scientist for the comparison of Drummond or T to
the DNA profiles obtained from samples of their tops.

It was also brought up during the scientist’s testimony that results may also be consistent with the
prosecution version of events if Drummond had grabbed T by the arm and not contacted T’s top.°

At the conclusion of the trial Drummond was found guilty and sentenced to 5 years and 3 months
imprisonment.

1.4 The source of the 10% figure

It was the value of 10% in point 8 in the previous section and its understood meaning in the minds of
the jury that has been the cause of the appeal and so it is worth explaining the source of the value. The
figure mentioned by the forensic scientist came from the appendix of the report (included as a standard
appendix in all reports).”

The source of the 10% figure given in the appendix is from a study (Sly and Sifis, 2008) carried out
at FSSA in the no-suspect (database) section. This study examined ‘success rates’ (as defined by
obtaining a profile that could be loaded to the database, termed ‘uploadable’ profiles) for different
sample types falling under the umbrella of ‘contact DNA" using the methodologies current to FSSA in

* Profiles may be submitted (termed ‘uploaded”) to a national list of profiles generated as part of criminal casework. Various
criteria surround the suitability of a profile to be uploaded, but in the case of FSSA at the time the criterion was that a profile from
a single contributor could be determined from at least 6 regions, out of the 10 being tested.

> As described by the scientist in her oral testimony.

© Note that this is an explanation of the results once that they have been obtained (post hoc explanation). Importantly, one
cannot assign the value of the results given an explanation (see Evett et al., (2000); More on the hierarchy of propositions:
exploring the distinction between explanations and propositions. Science & Justice 40, 3 - 10). Indeed, one would then have to
assess the value of results given explanations which are themselves based on the results (this would be a circular argument). Thus
for the scientist to assess the value of the observations, propositions must be formulated before knowing the results of the
comparison.

7 The appendix stated:

Contact DNA — Contact DNA refers to biological material left on an object through a contact transfer (such as touching,
handling or wearing) and not via deposition of a biological fluid (such as blood, semen or saliva). Contact DNA samples usually
contain only small quantities of DNA and therefore analyses often do not give an informative profile. FSSA studies have found
that of the majority of commonly submitted contact DNA sample types, only about 10% yield an informative DNA profile.
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2008 (Chelex® based extraction (Walsh ez al., 1991) and using the Profiler Plus™ amplification kit).
Later in 2012 this data collation was repeated (Nguyen et al., 2012) for samples extracted using DNA-
1Q (the same extraction methodology as used for the samples in the R v. Drummond matter).

The 10% figure given in the appendix of the report was obtained as the approximate value of the
average of the success rate (obtaining an uploadable profile) of all samples in the 2008 study (actual
value is 12%, but was rounded to 10% for the report appendix).

1.5  The appeals

The two FSSA studies, the transcript of the trial and the DNA reports of the scientist were sent to two
independent experts hired by defence counsel. The following were raised by the experts:

(1) The more appropriate study to use was the 2012 study, which used the same extraction meth-
odology as the samples in the R v. Drummond matter (it is worth noting here that at the time of
the trial, in 2010, the 2012 study had not yet been conducted and so was unavailable to the
testifying scientist)

(2) The more appropriate value is that for clothing specifically as clothing was the item in question.
This would provide a success rate of 24% rather than 10%

(3) The case at hand did not have the primary purpose of obtaining a profile that could be loaded to
a database, the definition of success for the case at hand would be any sample that yielded a
profile with information that could be used for comparison to a reference. Referring to the 2012
FSSA study this corresponds to a value of 91%.

(4) Even then the values in the FSSA studies have no relevance because they are the product of
casework samples and hence do not represent controlled experiments where the circumstances
of deposition are known (a fact that the defence council brought up in cross examination of the
forensic scientist during the trial).

The defendant lodged an appeal in 2012, which was dismissed. In 2013, an application for permis-
sion to appeal a second time, based on the information above, was made R v. Drummond (2013) and
ultimately refused. The single judge determining the application rejected it for a number of reasons but
in large part because the figure of 10% was appropriately explained by the forensic scientist and had
only been used to support the scientist’s ultimate proposition that it is not guaranteed that contact will
result in a DNA being deposited. The defendant then appealed against the decision of the single judge.

In these appeals and applications the defence argument was that the 10% figure provided by the
scientist was confusing and misleading to the jury and that they would have been left with the
impression that there was only a 10% chance that Drummond’s DNA would have been detected
even if he had attacked T, whereas the true chance of detecting someone’s DNA under such circum-
stances may be substantially different from than this.

In 2013 legislation changed in South Australia to allow second appeals based on fresh and compel-
ling evidence (section 353A of the Criminal Law Consolidation Act 1935). This allowed the second
appeal to be lodged. In this instance the decision of two of the three judges was that the evidence given
by the forensic scientist was potentially misleading and the conviction should be overturned. In
September 2015 the charges against Drummond were withdrawn and the court set aside his conviction.
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8 Chelex” is a DNA extraction method whereby a chelating agent is added to a sample to bind molecules that break down
DNA. Once added, the solution is heated to break open cells and release DNA. The chelating agent and cellular material is then
compressed into a pellet by centrifugation, allowing the DNA in solution to be removed and used in DNA profiling.
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Now that the circumstances that led to the current state of affairs have been explained I will go
through various concepts and issues that explain the difficulties encountered in this case.

2. Evaluating the findings

2.1 The hierarchy of propositions

A well-accepted and described concept in forensic evidence is the hierarchy of propositions (Cook
et al., 1998). This concept describes the various levels at which questions can be posed leading to the
ultimate issue. The levels in the hierarchy are; offence, activity, source and sub-source. The scientist
evaluates the results given the proposition useful to the court, and the court evaluates the propositions
knowing the evidence. In Table 1 are examples of proposition pairs that can be considered in the R v.

TABLE 1 Propositions and examples that could be considered in the R v. Drummond case

Hierarchy Notation Proposition
Offence Offensery Drummond attempted to kidnap T
ofensegd] No attempt was made by anyone to kidnap T
Offense 2 A male other that Drummond attempted to kidnap T~
Activity Activitypp, T and Drummond struggled which included Drummond grabbing T’s arm
and T hitting Drummond’s chest”
s 1] No-one grabbed or struggled with T
AV 2 A male other than Drummond struggled with T which included them
grabbing T’s arm and T hitting them on the chest
Source* Sowrce tinl Drummond has contributed biological material (skin or sweat) to the top
of T
Source gy} Drummond has not contributed biological material (skin or sweat) to the
top of T
Sourcepynp T has contributed biological material (skin or sweat) to the top of
Drummond
St T has not contributed biological material (skin or sweat) to the top of
Drummond

Sub-source SubeSoueerryg Drummond has contributed DNA to the sample from the top of T
Sub-Sourceprq ] Drummond has not contributed DNA to the sample from the top of T
Sub-Sourcepy> T has contributed DNA to the sample from the top of Drummond
SubSowrezpydn T has not contributed DNA to the sample from the top of Drummond

*Although the main defence proposition during the trial aligns with Hd,, T will explore the effects of both
Hd; and Hd, in this article.

+While the activity as given in *““*Hp would be suspicious it does not in itself constitute a crime and hence
is not an offence level proposition.

+The propositions should be set by prosecution and defence and in this instance there was no indication that
propositions relating to the source of biological material were being considered by either party. I therefore
give the source level propositions as examples of propositions at this level, noting that they are not part of the
consideration of the case.

F+The propositions I have given are general with respect to the DNA profiling results to which they could be
applied. In a typical evaluation of DNA results the analyst would choose more defined propositions, specific
to each DNA profile obtained, for example the result from T’s top may be evaluated with sub-source level
propositions:

Sub-Sourcepy 1. The sources of DNA are T, T's friend and Drummond

Sub-Sourcety]: The sources of DNA are T, T’s friend and an unknown male
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Drummond case, specifically in relation to the clothing examined. Propositions are given in pairs that
correspond to the prosecution stance (Hp) and the defence stance (Hd).

In this instance the scientist excluded T from the DNA obtained from the sample of Drummond’s
top and Drummond from the DNA obtained from the sample of T’s top. Effectively the scientist
has made the decision that the probability of obtaining these results if any of **"““Hp1, **"““Hp2,
S""'s”“"“'le or S“"'s"""“HpZ is true, is zero and hence no LR was calculated, because it is therefore
also set to zero. In this matter the sub-source or source levels are the positions in the hierarchy that
the scientist is able to comment on, taking into account only the DNA profiling results. The
question posed by prosecution and defence however relate to the probability of obtaining these
results giving competing activities. In other words they were asking questions at the activity level,
which required the scientist to consider more than just the DNA profiles obtained, and consider in
addition the mere presence or absence and the quantity of detected DNA.

To help answer questions at the activity level the scientist requires information on the transfer of
biological material, specifically:

(1) The probability that biological material will be transferred by grabbing clothing
(2) The probability that biological material will be transferred by hitting clothing

Before considering the points above it is worth first exploring the various definitions of success that
have been suggested in this matter.

2.2 What is success?

Clearly the value of 10% as I have explained it in this article does not address any of the probabilities of
interest regarding transfer, given in the previous section. This fact was pointed out by both defence
exerts in their affidavits and was also explained by the forensic scientist during their testimony,
however if in the minds of the jurors this 10% related somehow to the activity level propositions
then it could constitute a potential miscarriage of justice.

As mentioned previously it was noted by defence experts the chance of transfer may be significantly
higher than 10% (up to 91%). This figure still does not inform us of the value that is required to assess
the findings with regard to activity level propositions. One of the major limitations with using the data
from FSSA studies is that many of the DNA profiles obtained from the clothing samples in the 2012
study are likely to be those of the owners, and deposited over a long period of contact with the garment.
The issues surrounding the use of data from either the 2008 or 2012 study to address the question of
interest was noted by both defence experts, who stated that they ... can have no relevance because
they are the product of casework samples ... " and hence are not carried out under controlled condi-
tions where the true nature of the contact is known. The Judges in the second appeal also noted the lack
of applicability of these findings when it was noted that ‘The figures given for the testing of clothing
relate to both DNA transferred to the clothing by the person wearing the clothing and DNA transferred
to the clothing by a person other than the wearer of the clothing’.

Now that we have identified which figures are not relevant to the question of interest to the court the
question remains what information is required to help address the activity level propositions.

Data is required that relates to the percentage of short, one-off grabs of cloth that yield the DNA profile
(or part thereof) of the grabber. We require the same sort of information relating to hitting rather than
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grabbing. Such data suggests that experiments carried out under controlled conditions are required, and
preferably using the same (or as close as possible) laboratory techniques as used in the case at hand.

2.3 The probabilities of interest

I turn now to the forensic literature in order to obtain the probabilities of interest in this matter. The
studies I will rely on do not replicate in every detail the circumstances of the alleged activities in R v.
Drummond, but do provide a solid foundation to assign the value of the evidence given competing
activity level propositions. Before obtaining these values a formal setting for using them must be
established and to do so requires some inevitable formula derivation.

We seek the ratio of the probability of the DNA evidence, E, given the competing propositions and
the relevant information / (note that in all equations following this one / is omitted from the formula for
ease of notation).

Pr(EIAfli\'il_\*Hp‘ ])

IR= L
Pr(E*“™™Hd, I)

I will decompose the evidence into parts, defining the results as:

Dp_.7—There was an absence of Drummond’s reference in the profile detected on T’s top

Dr_, p—There was an absence of T’s reference in the profile detected on Drummond’s top

Dy_,7—There was an absence of the unknown male’s reference in the profile detected on T’s top
(applicable when considering *““""Hd2)

Bro—The presence of background DNA on T’s top

Bpo—The presence of background DNA on Drummond’s top

I now consider two LRs, one for each of the two activity level proposition pairs:

Pr(Dp_.7, Dr—p, Bro, Bpo|* ™" Hp)
Pr(Dp—7.Dr—p. Bro, Bpo|*""™ Hd)
_ Pe(Dp_7. Dr—p|Bro, Boo, """ Hp)Pr(Bro, Bpo|* ™" Hp)
~ Pr(Dp—7, Dr—p|Bro, Bpo, "™ Hd)Pr(Bro, Bpol ™™ Hd)

1=

. = Pr(Dp—7, Dr—p, Bro, Bpol*™"Hp)
2= Pr(Dp—1,Dr—p, Du—t, Bro, Bpol*""™ Hd,)
_ Pu(D Do, Bon, M Hp)P(Bre, Bt )
Pr(Dp—7, Dr—p, Du—1, |Bro, Bpo, *“"""* Hd>)Pr(Bro, Bpol*“"™ Hd,)
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In LRI the defence proposition i.e. that T did not struggle with anyone, and had no contact with
Drummond during or before the alleged incident. In LR, the defence proposition is that T struggled
with an unknown male (not Drummond). Since the DNA on T’s top is accounted for by T, T’s male friend
and an unknown female individual, it can be concluded that if an unknown male offender has grabbed T’s
arm then there is an absence of their DNA detected in the mixed profile from T’s top (Dy_7).
In these instances the probability of obtaining background DNA on the clothes of T and Drummond
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are equal given either proposition, ie. Pr(Bro, Bpo|*™Hp) = Pr(Bro, Bpo|*""Hd) =
Pr(Bro. Bpo*™™Hd,). If we can also consider Dp_7, Dr—p and Dy_ 7 to be independent of Brg
and By, this gives:

i Pr(Dp_r, Dr_p ™™ Hp)
= Pr(Dp_1. Dr—pl*“™™Hd)

LR, = Pr(Dp_7.Dr—p |A“"'"""‘7l'{ p)
° Pr(Dp=7.Dr_p, Dy—7 "™ Hd,)

We can also break the evidential findings apart so that:

_ Pe(Dp=r|Dr=p, *“"™ Hp)Pr(Dr_p|"*""Hp)
= Pr(Dp—r|Dr=p. " Hd)Pr(Dr—p "™ Hd)

_ Pr(m |m‘ Aulivil_\‘Hp) Pr(m |A(‘li|‘il)'HI))
= Pr —DD,, = |DT-+ D DU~> = Aairil_\-Hdz)pr(DT_’ D |DU.¢ T Acliri,_\-Hdz) PI‘(DU.—, T |A(-tivilde2)

LR

In words, the numerator of the likelihood ratio is equal to the probability of an absence of
Drummond’s reference in the profile from T's top if they struggled and given that there was an
absence of T’s reference in the profile from Drummond’s top, multiplied by the probability of finding
an absence of T’s reference in the profile from Drummond’s top (again if they struggled). The
denominator is the same but considering the probability of the results in light of the defence propos-
ition that T did not struggle with Drummond or anyone else (LR;) or an unknown male which also
resulted in an absence of their DNA profile from T’s top (LR>).

I make the further assumption that under the prosecution proposition the probability of an absence of
Drummond’s reference in the profile from T’s top does not depend on whether there was an absence of
T’s reference in the profile from Drummond’s top. Note that there are potentially high order depen-
dencies that are not being taken into account when making this assumption, for example if there is an
absence of T’s reference in the profile from Drummond’s top then this might suggest that the struggle
was brief, which would then increase the chance of there being an absence of Drummond’s reference
in the profile from T’s top. I ignore this potential dependency as (if it indeed exists) it is likely to be
slight and doing so maximises the favour of the evidence for the defence (and hence could be described
as a conservative assumption). Under the defence propositions Dp_.7, Dr_.p and Dy_,7 are inde-
pendent because Drummond and T have not been in contact with each other.
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Therefore:
Pr(m IAcu'vir_va) Pr(m IAL'lil'i(\'Hp)
LR, = Activiry Activity
Pr(DD_,Tl ' H([)PT(DTM,D| Hd)
Pl’( m |A¢‘Ii\'il_\'Hp) Pr( m |AL'Ii|'it_\'Hp)
LR, =

Pr (DD—>T |A('Iivi1)'Hdz ) PI'(DT_, D |AL'If\’if}'H d2 ) PT(DU_, T |A('li\'i{\'Hd2)
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I now introduce terms for transfer:

Tp_.7—a transfer of biological material from Drummond to T.

Tp_ r—no transfer of biological material from Drummond to T.
Tr-, p—a transfer of biological material from T to Drummond.

Tr_ p—no transfer of biological material from T to Drummond.
Ty-.r—a transfer of biological material from an unknown male to T.
Ty_.7—no transfer of biological material from unknown male to T.

Consider how the introduction of these transfer events affects the elements of the two LRs being
developed. For example considering relevant transfer events to the first element of the numerator
Pr(Dp_7 """ Hp) yields:

Pr(Dp~r(To~r, " Hp)Pe(Tp=r "™ Hp)+Pr(Dp=7|Tp-1, "™ Hp)Pr(Tp- 7" Hp)
This formulation can be simplified by making the following assumptions:

e The probability of finding an absence of an individual’s reference in the profile from an item if no
DNA of the individual was transferred is one, i.e.Pr(Dy_y [Tx_y, *"H) = 1°.

e The probability of there being an absence of someone’s reference from a sample given that material
was transferred is zero, i.e. Pr(Dx_y|Ty_y, """ H) = 0%

e In other elements of the LRs we can make the simplifying assumption that the probability of no
transfer of DNA occurring between Drummond and T given the defence proposition (of no contact)
is 1, ie. Pr(Tp/r—7/p |Activity g a') =1 and therefore the probability of transfer is zero,
Pr(TD/T—>T/D |Az‘lil'i[\'Hd) =0.

Applying transfer events and the simplifications outlined above yields the LRs:

LRy = Pr(Tpr "™ Hp)Pr(Tr=p "™ Hp)

Pr( Tpst |A‘"'i"i""[-]];) Pr('m IArlivil_va)

LR, = —
2 Pr(TU_, T |Az‘m'llde2 )

There is one additional simplification that can be considered when evaluating LR2 and i.e. that the
probability of a transfer (or no transfer) of material from someone, whether it is Drummond or an
unknown male, given the scenario of a struggle is constant. Therefore Pr(7p 7" Hp) =
Pr(Ty7|*™™Hd,) and:

LRZ - Pr( TT—’D |A(‘li\'il_\‘Hp)
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? Note that this is a simplification, in reality the probability would be slightly less than 1 given that there is a chance of some of
the background alleles matching but due to the very small effect this would have on the LR I use 1.

'9This is also a simplification. In fact what we are assuming is that the probability of an absence of someone’s reference from a
DNA profile given that material was transferred, persisted on the item until sampling and recovered during laboratory analysis, is
zero. Due to difficulty in experimentally distinguishing these events they are commonly combined under the single ‘transfer’
event, as is the case here. I consider the effect of persistence separately later.
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We therefore need probabilities:

Pr(Tp—1|*"™ H p)—the probability of no transfer from Drummond to T in the manner described
by prosecution

Pr(77— p |V H p)—the probability of no transfer from T to Drummond in the manner described
by prosecution.

For the probability of transfer to fabric I use the result of Daly er al. (2013) where cloth samples were
held by volunteers for 60 s before sampling using tapelifts (the same sampling technique as using in the
samples taken for R v. Drummond) and extracted using Qiagen® QIAamp DNA mini kit."' Table 1 of
the Daly study shows that 53 out of 100 samples produced less than 0.01ng/pL of DNA and I will use
this as an approximate cut-off for obtaining DNA profile information for Profiler Plus™.'? There is no
distinction between holding and hitting, therefore 1 will assume Pr(Tp_7|*“"™Hp)=
Pr(m]""”"’i‘"H p) =0.53. Another study into the rate of DNA transfer to clothing in a simulated
struggle was carried out by Sethi et al. (Sethi et al., 2013). In this study ‘assailant’ volunteers were asked
to grab the arms, elbows and wrists of ‘victim’ volunteers for 15 s, while they struggled to free them-
selves. Three types of cloth were grabbed (cotton, polyester and a cotton/polyester blend) and sampled
after 12h and 7 days. DNA extraction was carried out on 0.5cm?” swatches of cut cloth using QIAamp
DNA micro kit. From the 27 samples tested at 12 h only three yielded a detectable amount of DNA."
This is approximately 11% of samples. I will use a transfer rate of 0.53 from the first study for two
reasons; The sample size in the Daly e al. (2013) study is much larger than the Sethi ez al. (2013) study
and the sampling technique is equivalent to that used in the R v. Drummond matter (i.e. tapelifts)."*

Applying a probability of non-transfer results in:

LRy = Pr(Tp_r "™ Hp)Pr(Tr—p "™ Hp) = (0.53)* = 0.28
LRZ = Pl'( T’r_,[)lA(-’iv”".Hp) =0:53

2.4  Consideration of DNA persistence

Note that I have not considered persistence of DNA in my evaluation. There is little data available on
the persistence of trace DNA. There are a number of factors that are likely to affect persistence, such as

' This is an extraction methodology whereby cells are broken open and DNA is adsorbed onto a silica membrane. Impurities
are washed through the membrane and the DNA is then eluted into a solution to be used in DNA profiling.

12 The Daly paper also goes on to produce DNA profiling results, but uses a different DNA profiling system to that in the R v.
Drummond matter and hence those results are less applicable than the quantification result. Only fabric samples that yielded
0.03 ng/pL were profiled in the Daly study due to the low probability of obtaining a useable (defined by the Daly et al. authors as
obtaining 6 alleles they could attribute to a single contributor) DNA profile. The quantification value if 0.0 Ing/uL was used as a
cut-off in this manuscript because a) it was the lowest quantification category recorded in the Daly study, and b) it is the author’s
experience with using Profiler Plus™ that DNA profiles would regularly not be obtained from less that this concentration of
DNA.

'3 Note that from a contact such as that in the Sethi study we would expect there to always be some transfer of DNA, however
in many instances the amount of DNA that has transferred and persisted until sampling will be below the limit of detection of the
system. Hence I refer to a lack of ‘detectable’ DNA rather than a lack of DNA.

'4 Note that I am not promoting the finding of the Daly ef al. (2013) study as generic result for all considerations of DNA
transfer from hand to cloth. It may be that case-specific circumstances will require the findings from different work, or that a
laboratory may need to carry out their own controlled experiments to better match the details of the alleged crime. In this case the
larger the probability of a DNA transfer, the more support the LR will ultimately provide to the defence proposition, and so the
findings from the Daly et al. (2013) study will yield an LR that provides more support to the defence proposition than the Sethi e
al. (2013) study. I discuss these aspects further in the ‘The reliability of activity level reporting” section.
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the surface type, the length of time and the conditions the item is exposed to during the time. The best
example of a DNA persistence study for contact DNA is the work by Raymond er al. (2009). In this
study known amounts of biological material were deposited on items and either kept outdoors or
indoors over the course of approximately 40 days. The amount of DNA recovered was examined at
daily intervals. While there is a high degree of variability in the amount of DNA that was detected, an
examination of the findings in their study show that very low (or even no detectable) levels of deg-
radation occur within the first few days (the timeframe that is relevant in the Drummond matter). Given
the circumstances of the case and the timeframe of sampling persistence is unlikely to have a major
influence on the size of the LR. Nevertheless it is a worthwhile exercise to investigate how DNA
persistence could be incorporated into the LR, and its potential effect.

I start with the formulae for LR, and LR,, prior to the implementation of the probabilities of transfer.
Retaining the previously justified assumptions:

L PI'{DX_.VL Tx_.y. Am"in‘H) =

o Pre(Tp/r—rp|* ™ Hd) = 1

° PI'(TD/T., T/DlAc!ivil_\'Hd) =0

and simplifications:

° Pl'( TD_)TlAL'IiviI_\'Hp) - PI’( TT—>D|AC“".”'VHP) - PI’( T'Aclirir_\,Hp)
° Pr(mr“""""’-“Hp) = Pr(mlAdivil_va) = Pr(E‘A('li\'il_\'Hp)

yields:

LR] = [Pl’(5| , T, A“’“’”“‘HP)P[‘(TIAC”.‘.”‘VH[?)+PI’(T|A(‘”‘."".H[))]2
LRZ — PI‘(E | L T, A(‘Ii\'ir_\'Hp) PI‘( TlAL‘!i\'iI_\'Hp)+Pr(TIA(‘Ii\'iI)'Hp)

I now consider persistence probabilities:

P—the DNA persisted on the clothing of Drummond and T in detectable levels.
P—the DNA did not persist on the clothing of Drummond and T in detectable levels.'?
Incorporating these into the LR gives:

2

Pr(D|, T, P, " Hp)Pr(T|P, ™ H p)Pr(P|Hp)+ F
1= PT(BI, T. F‘ A(‘Ii\'il_\‘Hp)Pr( Tlﬁv AL'li\'iI_\'Hp)Pr(p|Hp)+Pr(T|ACIi\'iI_\'Hp)

LR, = Pr(D|, T, P, Hp)Pr(T|P, A" Hp)Pr(P|Hp)+

Pl'(ﬁl, TP, Arli\'irpr)Pr( TIF, Arli\'irpr) PI'(FIHP)‘I-PT(T |A('li\'i{\‘Hp)
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Making the new simplifications that:

e The probability of finding an absence of an individual’s reference in the profile from an item if
DNA was transferred and persisted is zero, i.e. Pr(D|, T, P,*"""H) = 0

'S Again, I do not distinguish between persistence of Drummond’s DNA on T's top and T's DNA on Drummond’s top. In
some circumstances, for example where a marked difference in garment properties, such a distinction would be warranted.
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e The probability of finding an absence of an individual’s reference in the profile from an item if
DNA was transferred and didn’t persist is one, i.e. Pr(ﬁ |, T, P,Advivy ) =il

e The probability of a transfer occurring is independent of the probability that any transferred ma-
terial would persist i.e. Pr(T|P, *“™®H) = Pr(T|*"" [T )

gives:

2

LR, = [Pr(T|*™ Hp)Pr(P|Hp)+Pr(T """ Hp)]

LR, = Pr(T|*""™ Hp)Pr(P|Hp)+Pr(T|*"™ H p)

In words, the group of probabilistic terms that make up LR, and LR, can be thought of as considering
the absence of an individual’s DNA from an object given the prosecution proposition as either by the
fact that DNA was transferred but did not persist on the object or that the DNA was not transferred to
the object.

While I have derived these formulae using explanations in terms of DNA, they are typical of
well documented formula that deal with these same issues of transfer and persistence in non-DNA
evidence such as fibres (Champod and Taroni, 1992) or glass (Curran et al., 2000). In fact the
formulae for LR, yields that same formula from Hicks et al. (2016) by a simple nomenclature
definition, Pr(77_p[*"""Hp) = 1. A similar incorporation of the transfer and background prob-
abilities considering blood stains at crime scenes or on individuals is shown in Aitken and Taroni
(2004).

As mentioned previously, there is little information in the literature regarding the persistence of
contact DNA on clothing that can inform on a value to use for Pr(P). In the absence of such information
the effect of a range of values for Pr(P) (i.e. from 0 to 1) on the LRs can be considered, while holding
Pr(Tl""’“‘”-"Hp) = 0.53 constant (Fig. 1).

The vertical axis in Fig. 1 has been given as the LR. To represent the result as a level of support for
the defence activity level proposition compared to the prosecution activity level proposition the LR
values need to be inverted. As the probability that DNA persists becomes lower the value of the
evidence is driven neutrality. As it becomes more probable that DNA would persist, if it were
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0.0 +
0 0.2 0.4 0.6 0.8 1
Probabilty that DNA would persist on the top, Pr(P)

Fic. 1. LR over the range of persistence probability values.
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transferred, the support for the defence proposition over the prosecution proposition increases.
Conservatively the value for Pr(P), or Pr(ﬁ), in this matter could be chosen to maximize support
for the defence proposition, which would be Pr(P) = 1.

What has been carried out here is known as a sensitivity analysis with respect to DNA persist-
ence. In a sensitivity analysis the assigned value of probabilities are varied across a range of
sensible values they could take in order to assess the effect on the size of the LR. In this
way sensitivity analyses allow us to understand the limitations in the calculation due to the paucity
of data in a given study. In the analysis of evidence in R v Drummond I have now con-
sidered the effect that incorporating a probability of persistence in the calculation has on the
resulting LR.

Such a sensitivity analyses can be carried through to consider the effect of probability assignments
for more than factor on the LR. For example, if I wished to investigate the effects of both persistence
and transfer on the size of the LR then I would obtain graphs (now in three dimensions) as shown in
Fig. 2.

The graphs shown in Fig. 2 for LR, and LR, are very similar, and the keenly observant may notice a
slightly more gentle dip of values for LR, travelling towards the bottom right of the graphs. As the
probability of transfer and persistence both approach certainty together the support for the defence
proposition increases. At the extreme if transfer and persistence of DNA were certain then this would
also signify a certainty that the prosecution scenario could not have occurred. However, this dramatic
support for the defence proposition only occurs at the most extreme values of transfer and persistence;
for most values, even relatively high compared to literature findings, the support for the defence
propositions remains slight. Also note that the probability of an absence of observable transferred
DNA can never be higher given the prosecution proposition than given the defence proposition. The
absence of evidence in this case is indeed evidence for absence, contradictory to what the old adage
may suggest.

-0.
log;(LR,) logyo(LR,)
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Fic. 2. LR values, shown in logl0 scale when considering a range of assigned probabilities for transfer and persistence.
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2.5 The strength of the DNA findings

When asked the significance of the DNA results in the R v. Drummond matter it would be possible to
provide a statement considering either set of activity level propositions. I provide an example state-
ment below that takes both proposition pairs into account.

There is an absence of Drummond’s reference in the profile obtained from the tapelift of
the top of T. There is an absence of T’s reference in the profile obtained from the tapelift of
the top of Drummond. In the evaluation of the evidence I have considered two possible
propositions for these results;

e The prosecution proposition I have considered is that T and Drummond struggled which
included Drummond grabbing T’s arm and T hitting Drummond’s chest.

e The defence proposition I have considered is that T had no prior contact, direct or indirect,
with Drummond (and either did not struggle with anyone, or struggled with an unknown
male).

When I consider the probability that DNA would be transferred in such an encounter,
the DNA findings are in the order of 2 to 4 times more likely to have been obtained if the
defence proposition'® had occurred rather than prosecution proposition. This provides
slight (or weak or limited) support to the proposition that T had no prior contact, direct or
indirect, with Drummond (and either did not struggle with anyone, or struggled with an
unknown male), compared to the proposition that T and Drummond struggled.

The propositions were formed from the information available to me at the time. If this
information changes or if the defence or prosecution nominate alternative propositions
then I will need to re-valuate the findings.

3. Discussion
3.1 The reliability of activity level reporlingl7

On reading the calculations in this work the reader may be sceptical of the validity of the assumptions
that have been made and the applicability of the values obtained from scientific literature sources. A
common observation of activity level reporting is that there are too many variables to consider in the
evaluation of any particular case and that no controlled experiment could ever hope to recreate them
closely enough to be applicable. From the outset this appears to be a strong argument and indeed, as
can be seen from the calculations in this article, a number of simplifying assumptions need to be made
in order to make the problem tractable. There will be cases where the complexity or ambiguity
surrounding the alleged activities, or the general lack of relevant published data or personal knowledge
means that an activity level assessment should not be attempted. However when this is the case, it may
not be appropriate to fall back to source or sub-source level propositions. In a report by the European
Network of Forensic Institutes (Willis, 2015) on evaluative reporting they highlight this point by
stating ‘Source level propositions are adequate in cases where there is no risk that the court will
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16 Eilher Activity H(l| or Activity H(lz.

17 The term ‘activity level reporting” can imply that reports are made on the probabilities of activities having occurred. This is
not the case. We report the probability of findings given activity level propositions, we do not report on the probabilities of
activities themselves.
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misinterpret them in the context of the alleged activities in the case.”. As might be gleaned from this
statement (and from the fact that internationally agreed guidelines exist for activity level reporting) the
practise of activity level reporting is considered highly desirable within the forensic community. There
are two further points to be made here.

Firstly, it is the author’s experience that the results of DNA profiling or their interpretation are not
often challenged in court, increasingly so with the introduction of modern DNA profile interpretation
systems that have the ability to analyse highly complex DNA profiles and take much of the subjectivity
out of DNA profile interpretation. Instead, the interest of the court focuses on how the presence of an
individual’s DNA can be explained on an item through suggested activities (either innocent or
incriminating). If the scientist carries out an activity level assessment, as outlined in this article,
they will be fully aware of the assumptions being made, the limitations with the findings, the available
literature on the topic and the logical framework in which the problem sits. The scientist is in the best
position to help guide the court in assessing the value of the evidence given various posited activities. If
challenged on the source of their opinion a clear trail of reasoning is available for scrutiny.
Alternatively an activity level assessment might not be done on the grounds that there is too much
complexity to consider. Whether or not such an assessment has been carried out the questions in court
are still going to be asked, leaving the scientist only able to answer questions with statements such as
‘that is possible’ or ‘in my opinion that is unlikely’, but without specifically being able to show the
supporting evidence of that opinion. This has been raised previously by Champod (2013). Note that by
giving an answer such as ‘in my opinion that is unlikely’ the scientist has provided a comment on the
probability of the activity level propositions, but without elucidating a structured scientific reasoning
for the opinion with a transparent foundation. The scientist who considers activities in the evaluation of
all their evidence is one who will be better prepared to answer questions in court.

The second point to consider is that no amount of controlled experimental work will be able to
replicate the exact circumstances surrounding an alleged activity. For most alleged activities the exact
circumstances are simply not known (or indeed may not ever have occurred). Consider a simple
example relevant to the case at hand; it may be that controlled experiments to assign the probability
of transfer from hand to cloth during a struggle will simulate struggles that are too vigorous or apply
too much pressure compared to the alleged event and so overestimate the probabilities that biological
material will be transferred. Conversely it may also be that they are not vigorous enough compared to
the alleged event and underestimate the transfer probabilities. Either way the results obtained from the
controlled experiments (matched as closely as possible to what is known about the alleged activities)
will represent the best information available for the probabilities pertinent to the case. For any nu-
merical assessment of the evidence these results are required, and the only alternative, if they are not
available, is to provide an experience based estimate'® of what the scientist believes is the probabilistic
value. Again, having some data that can guide our beliefs on transfer is better than having none.

Notwithstanding the last two points, there are certain criteria that a controlled experiment should
meet. The controlled experiment being carried out (or the study from which the value is being taken)
needs to have some level of similarity with the alleged activities. There is no value in using data from
studies that are completely removed from the circumstances of the case, and at worst could result in the
scientist providing misleading evidence to the court. It is up to the scientist to make clear in their report
or testimony the assumptions they have made and any differences between the studies used as models
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'® This is when the scientist provides their best estimate for a probability without relying on any specific literature. Such
experience based estimates are sometimes referred to as ‘soft data’.
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for the alleged activity and the alleged activity itself. If this information is made clear then it is open for
the court to challenge these assumptions and studies and the effect they could have on the LR. This
leads to another aspect of assigning an LR, which I touched on in consideration of persistence of this
work, called sensitivity analyses.

It must be remembered that the court will use this evidence to update its prior beliefs of innocence or
guilt.' The LR I have calculated in the R v. Drummond matter provides slight support to the prop-
osition that T had no prior contact, direct or indirect, with Drummond (and T either did not struggle
with anyone, or struggled with an unknown male), compared to the proposition that T and Drummond
struggled and the court’s decision would likely be dominated by its prior beliefs accumulated through
other evidence. Nevertheless, the presentation of relatively weak or neutral evidence remains an
important finding to present. Even if providing completely neutral evidence the scientist has at least
informed the court that they must rely entirely on other evidence to support their beliefs of guilt or
innocence.

3.2  Can we comment on more than activities?

There are a number of considerations in the R v. Drummond matter which relate to issues that sit
separately from the disputed activities, such as:

e The relevance of the sample from T’s top to the alleged offence (i.e. whether it was grabbed)

e The number of offenders (i.e. whether there were zero or one offender)

e The possibility for innocent transfer to have occurred between Drummond and T prior to the
offence

Consideration of these facets of the evidence is generally thought to require offence level propos-
itions. Evett (1993) introduced terms &, a and r for the number of offenders, the possibility of innocent
transfer and the relevance of exhibits, respectively, and demonstrated their incorporation into a LR
equation that considers propositions:

e The suspect was one of the k offenders
e The suspect was not one of the k offenders

Whether the inclusion of these considerations by the scientist in their evaluation of the findings
helps the court or usurps its role is a matter of some debate. In his work Evett (1993) explains that
‘Unless the circumstances are very precisely defined, it may be that the appropriate probabilities for r
and a must be the province of the court’, and I will expand on this shortly.

A similar set of considerations was explained in Aitken ez al. (2003) who considered terms #, p, r and
b for:
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Transfer, persistence and recovery

Innocent acquisition

Relevance and

Innocent presence (commonly referred to as background).

' While this is unlikely to happen in a numerical sense, it is the general form of Bayes’ rule within which scientific evidence is
presented.
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Drummond attempted
tokindap T

Person who
attempted to
Kidnap T

Person who
grabbed T's arm
DNAfound on T's top
from offence

Previous innocent
contact between
Drummond and T

Person who
Thit

DNA found on
Drummond's top
from offence

DNA found on T's top

Fic. 3. Bayesian network considering the scenario at hand.
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Incorporation of multiple findings and case circumstance information can be complex, particularly
when doing so purely by formulaic derivation. A tool exists that displays these considerations graph-
ically, with arcs showing dependencies between the factors. This tool is called a Bayesian Network
(BN) and I direct the reader to the works of Taroni et al. (2014) for an excellent exploration of their
construction and use. BN have been used to assess findings in light of propositions at offence (Evett et
al., 2002), activity (Biedermann er al., 2009; Gittelson et al., 2012; Wieten et al., 2015) and more
recently source (Taylor et al., 2016, Wolff et al., 2015) and sub-source (Biedermann et al., 2012;
Dawid et al., 2006; Mortera, 2002) levels.

In Fig. 3 I show a BN that is designed to evaluate the findings in R v. Drummond given offence level
propositions. For reasons of brevity I do not describe the construction of the BN in great detail, nor do I
20 into the population of the conditional probabilities that underlie each node.”” For the interested
reader I can provide more information on request. Again for the sake of brevity I ask the reader to
accept that I have populated the nodes of the BN with appropriate probabilities regarding transfer and
persistence (which in this BN are combined into a single conditional probability), so that I can continue
directly on with the effects of considering relevance, innocent transfer and the number of offenders in
the evaluation of the findings.

I start with a brief description of the BN in Fig. 3. There are two ‘branches’ on the BN, which
ultimately meet in the nodes that relate to the results of the presence (or absence) of DNA. One branch
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20 A *node’ is shown graphically as an oval in Figure 3, and represents a random variable.
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considers the possibility that DNA was transferred through a struggle and the other branch considers
the means by which DNA could have come to be transferred between Drummond and T for innocent
means; in this case a previous contact. The node that aligns with the offence level propositions is the
parent of the struggle branch, and has an arc directly to the ‘Person who attempted to kidnap T node.
In this node I take into account that it could have been Drummond, and unknown male or no-one that
attempted to kidnap T (i.e. whether there were one or no offenders). This node then leads to the nodes
that relate to the expected transfers of DNA to the tops of Drummond and T. The final node of note is
one which considers the relevance of the trace taken from T's top. In particular the relevance of the
sample depends on the probability that the alleged offender contacted T’s top at all, or just her arm.
In the Bayesian Network (BN) construction I make the following assumptions:

e The absence of DNA from Drummond on T’s top and DNA from T on Drummond’s top is not
disputed.

e The probability of an absence of Drummond’s DNA from T’s top does not depend on whether there
was an absence of T’s DNA from Drummond’s top. The two are considered independent events.
Note t!;lat this is different from what is commonly referred to as cross-transfer (Aitken er al.,
2003).%!

e The background DNA on the top of T and Drummond are not relevant to the offence. Note that this
is the reason for the lack of nodes for the innocent presence of DNA (or background DNA).

¢ [have not considered the possibility of laboratory error in this evaluation. It is a common practise to
make the conservative assumption of a zero false negative rate with such an analysis (which is what
has been done here). Had some inclusionary findings been obtained there has been a number of
publications demonstrating the incorporation of the possibility of a false positive error, e.g. see
(Thompson et al., 2003).

There are three probabilities that underlie the nodes in the BN for which there could be a question of
whether they impinge on the role of the court, although possibly two of these could readily be accepted
as uncontroversial. The first of these is the probability of a previous contact between Drummond and T.
While in some trials, such information could be disputed and rely on eyewitness statements or alibis, in
the Drummond matter it was accepted by both parties that there had been no previous contact, either
direct or indirect between Drummond and T. The second probability to discuss is the relevance of the
trace from T’s top. It is difficult to assign a prior probability to the relevance of this trace and in the
absence of any other information (such as damage on the top, eye-witness testimony, or any level of
certainty on the part of T) I have assigned equal prior probabilities for the alleged offender either
grabbing T’s arm or her top. This probability assignment is also likely to be uncontroversial, as neither
party would seem to have strong view as to state of reality.

The final probability I wish to mention, and probably the most controversial, is whether any attempt
to kidnap T was made (i.e. whether there were zero or one offender). This probability is used in the
‘Person who attempted to kidnap T node and in the BN in Fig. 3 I have again used equal prior
probabilities for these states. These probability assignments are likely to be based on the submissions
put forward by prosecution and defence, the testimony of those involved and the believability of their
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2! [t is different as the two potential transfers result from two different activities. In fact the dependence between the two
activities has been considered due to the joint parental node ‘Person who attempted to kidnap T". Instantiation of one of the
activity nodes (‘Person who grabbed T’s arm’ or *Person who T hit’) sees the other activity node receive a probability of 1 on the
corresponding state. An example of cross transfer in the classic sense would be if, when considering the alleged hitting of
Drummond by T, samples from both Drummond’s top and T's hand had been taken and examined.
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____Relevance of trace from T's top
W 40,5914 offender grabbed top
| 4056 offender qrabbed arm

Fic. 4. BN seen in Fig. 3 with case specific information instantiated (marked with an asterisk).

testimony. As such it could well be argued that these probabilities are the province of the court and
should not be assigned by the scientist. Even attempts to lead jurors through a process of logical
Bayesian inference, using numerical values for similar considerations, have been the cause for appeals
in the past, see R. v D.J. Adams (1997). Nevertheless, for the purposes of demonstrating the use of BN
to help address the findings given offence level propositions I continue, arbitrarily using equal prior
probabilities.

Having populated the tables for each node within the BN the following information can be provided:

e No DNA from Drummond was present on the top of T.
e No DNA from T was present on the top of Drummond.
e There was no previous contact between Drummond and T.

Figure 4 shows the BN from Fig. 3, with this information provided (in BN parlance referred to as
instantiation). The instantiated information is shown in nodes marked with an asterisk in Figure 4, and
from the propagation of this information through the nodes in the BN the resulting posterior prob-
abilities for each state in the remaining nodes can be seen in green bars.

Note that the probabilities shown in the ‘Drummond attempted to kidnap T" node in Fig. 4 are
posterior probabilities as they are a combination of the prior information provided to the states within
this node and the information provided at other nodes propagated through the BN. In the BN I have
constructed, the two states that the ‘Drummond attempted to kidnap T" node can take are given equal

prior probabilities. The LR that is produced by the division of probabilities from Fig. 4 is %Z—sj‘%,

however as the priors are equal, Pr(Hp) = Pr(Hd), the LR is equal to the posterior probability ratio, i.e.
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Pr(Hp|E) _ Pr(E|Hp) . Pr(HplE) _ Pr(E|Hp) _ 314516 ~ : o za_
A = prEms: 10 this matter, smhes = sl = S5 ~(0.4588. Or if the propositions are in

Pr(E|Hd)
verted, PE) S 2.18.

The conclusion that could then be provided is:

Given the propositions that either:

e Drummond attempted to kidnap T.
e Drummond did not attempt to kidnap T.

Where it is claimed that during the alleged offence the right arm or shoulder of T was grabbed by the
offender and T hit the offender’s chest. I have considered that it may be the case that no attempt was
made to kidnap T. I have evaluated the probability of finding no DNA of T on Drummond’s top and no
DNA from Drummond on T’s top. The ratio of the probability of these findings giving each of the two
competing propositions has been assigned as approximately 0.5.

Given the information available to me, my view is that the findings are in the order of two times
more probable given that Drummond did not attempt to kidnap T as opposed to attempting to kidnap
her.

It can be seen that the LR assigned when considering offence level propositions in this matter is not
markedly different than that obtained when considering activity level propositions.

3.3 Carrying out research to help address disputed activities

I end this section with some thoughts about ongoing work in the area of activity level reporting. In
general the fewer assumptions that need to be made in the evaluation of the evidence, the closer it will
mirror the alleged activities (but the more complex it will become). One possibility when helping to
evaluate the findings considering activity level propositions would be to design and carry out experi-
ments that as closely match the circumstances of each alleged activity. In reality, time and resource
pressures will make such a policy unworkable for most practising forensic laboratories and so con-
trolled experiments must be designed that can be applied to multiple cases. I present some ideas for
doing so:

e If results are reported based on the interpretation of DNA profiles e.g. high level mixtures, dom-
inant contributions, more than an arbitrary minimum number of alleles present, etc., they will rely
on the specific functioning of the profiling kit used in the study and hence cannot be applied to other
situations that use different profiling kits. Instead, the results could be reported as an amount of
DNA of the person of interest present in a sample. This finding can still be calculated by using
information the DNA profile result (i.e. the relative height of peaks that correspond to that person),
but related back to the initial amount of DNA detected on the sample. Modern DNA profile analysis
software can provide estimates on the proportion of individuals within a mixture which facilitates
this approach. The report of a DNA amount is independent of the DNA profiling kit or process used
to generate the profile and so can be applied to a broader range of calculations.

e Due to the difficulties inherent in separating the aspects of transfer, persistence and recovery most
controlled experiments base their findings on the combined effects of all three. This makes each
experiment very specific to the case at hand and difficult to apply to any other. Where possible these
effects should be separated. For example, the scientist may be interested in the probability of
obtaining a DNA profile from blood as a result of a fist fight and after the garment has been
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washed. Rather than carrying out an experiment whereby people fist fight, wash their clothes and
then submit them for profiling the experiment could be broken up into three parts; a) the probability
and amount of blood transferred during fist fighting, b) the persistence of blood through washing
and c) the recovery of DNA from blood stains on garments. Some of these components could then
be applied in other scenarios, such as a stabbing where blood stained clothing was washed. While
this seems like an obvious example there are instances (particularly when dealing with trace DNA)
where separating transfer, persistence and recovery is difficult. Breaking experiments into modules
in this manner means that complex case scenarios can be constructed from series of smaller
experiments, minimizing the required additional work in each scenario.

e When possible carry out regression analyses on the data that relate the measured outcome (e.g.
such as DNA amount, mixture status, level of degradation, etc) to the variables tested in the study
(e.g. such as amount of starting DNA, length of exposure to some environmental condition,
length of contact, vigour of contact, etc). Firstly, it may be that one or more of the variables are
found to have no bearing on the final result. This finding provides important information upon
which scientists can base their assumptions. Alternatively if dependence is found then a regres-
sion analysis may allow extrapolation of the data to combinations of values of the existing
variables that were not included as part of the original study (keeping in mind that extrapolation
will be informative only so far, as the further out from the observed range the extrapolation
extends the wider the distribution of possible values will be in order to accommodate the lack of
information). Access to the results of regression analyses also allows linking of findings of
separate studies, i.e. you may be able to combine the results of a study on DNA transfer from
varying lengths of contact with a result on the DNA transfer from varying vigorousness of
contact by their regression results.

4. Conclusion

The testimony, the affidavits and the appeal judgements in the R v. Drummond case highlight import-
ant concepts when evaluating DNA profiling results, particularly exclusions. The case demonstrates
the importance of recognizing different levels in the hierarchy of propositions and the information
required to evaluate a LR at these levels. It also highlights the importance of choosing appropriate
statistics when supporting an argument as, even if properly explained, the chance that they are
misconstrued can lead to appeal.

Appropriate statistical treatment of the data shows the exclusionary DNA evidence can be evaluated
in light of activity level propositions. While the presence of someone’s DNA (or support for its
presence) is generally accepted in court within the framework of a case, the significance of the absence
of DNA is more difficult to comprehend. The results in this case show that the findings provide slight
support for the defence propositions (LR, =0.28 and LR, =0.53) compared to the prosecution ac-
count. Sensitivity analyses showed that for reasonable levels of persistence and transfer the strength of
the evidence in favour of the defence proposition remained slight. Even when taking offence level
considerations of relevance, number of offenders and innocent means of DNA transfer into account the
strength of the evidence still remained slight and in favour of defence.
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Chapter 9: Impact of the work described in this thesis

The significance of the work outlined in this thesis can be noted in two ways. The first of these
is the addition to the forensic biology statistics field in general, and particularly in the area of
probabilistic genotyping. Many of the works that have been presented in this thesis have
become the standard papers to cite when discussing aspects of probability-based DNA profile
interpretation. Evidence of this is that the paper in section 2.6 ‘The interpretation of single
source and mixed DNA profiles’ has been cited 123 times and the paper in section 2.2
‘Developing allelic and stutter peak height models for a continuous method of DNA
interpretation’ has been cited 89 times (as of February 2019). The publication of these methods
and models came quite early in the sub-field of continuous probabilistic genotype systems and
as such pioneered many of the ways that these systems should be developed, evaluated and
implemented. Evidence of this is the heavy referencing of these articles in probabilistic
genotyping validation and use guidelines published by the American advisory body SWGDAM
(Scientific Working Group on DNA Analysis Methods) and the European based group ISFG
(International Society of Forensic Genetics). The method of summarising and interpreting data
has become a standard method for probabilistic genotyping software assessment, for example
the scatter plots shown in the paper in section 5 ‘Using continuous DNA interpretation methods
to revisit likelihood ratio behaviour’ is now routinely used by numerous other groups in their
assessments. My involvement in the development of the methods and models associated with
the published works is outlined prior to each paper presented in this thesis. This work has most
often been carried out in collaborations with colleagues all around the world.

Perhaps the best way to show a tangible impact of the work presented in the publications of
this thesis is through their implementation in probabilistic genotyping software STRmix™,
The manner in which STRmix™ came to be developed, and my involvement in that process is
outlined in the various chapters of this thesis. To summarise; initially the mathematics and
modelling that was developed for DNA profile analysis (as presented in this thesis, particularly
chapter 1) was programmed by me (using the java programming language) into the software
STRmix™, I, John Buckleton and Jo-Ann Bright were then involved in providing training to
other laboratories (initially Australian, but then later overseas) on the use of this new method
of profile evaluation. The paradigm shift in the way that profiles were analysed, combined with
user feedback saw us refine and develop models for STRmix™, which were subsequently
published and implemented into code (again by myself). As STRmix™ has grown over the
years the need for dedicated (and professional) programmers became a requirement, and also
the need for dedicated support staff. As 0 2019 approximately 20 people are employed by the
STRmix™ company and we retain the services of professional programmers full-time for
development. | am still involved in programming, but this is now mainly to implement the
science and mathematics additions, while leaving aspects of programming that deal with the
interface, file manipulations, licensing and auditability to the professionals.

STRmix™ was introduced into active forensic biology casework in 2012 in Forensic Science
SA and ESR (the two laboratories of the co-developers of the software). Since then the software
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has become the standard to use on all Australian and New Zealand forensic laboratories and is
currently (as of February 2019) in approximately 60 forensic laboratories, spanning the United
States of America, Europe, Middle East and China. Figure 9.1 shows the rate of uptake of the

STRmix™ software over the past 7 years.
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Fig 9.1: Graph showing number of laboratories

using STRmix™
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The biggest uptake of STRmix™ has
been in the forensic biology laboratories
in the USA, where now over half of the
ANAB (standing for ANSI National
Accreditation Board, where ANSI stands
for American National Standards
Institute) are using STRmix™. This
includes the three federal laboratories
associated with the FBI, the US Army
and the Bureau of Alcohol, Tobacco,
Firearms and Explosives, who have all
since carried out and published their own
research using STRmix™,

STRmix™ is now used routinely in forensic biology and university research projects and cited
as a standard methods of DNA profile analysis by laboratories all around the world. | have
personally been invited to laboratories around Australia, Dublin, UK, Northern Ireland,
America and New Zealand and have been invited to present at workshops on this topic in
Poland, Japan, New Zealand and around Australia as part of forensic and legal conferences.

In the last four years the use of STRmMix™ has
reached a level of maturity in the USA that
(independent of the developers) a yearly
STRmix™ conference is held (see Fig 9.2) to
discuss aspects of the software, both
theoretical and practical.

Additionally, large biotechnology companies
host Webinar presentations on STRmix™
analysis and presentation of evidence in
court.

It is impossible to gauge the number of
casework samples that STRmix™ has been
used to analyse worldwide. At FSSA, since its
use was introduced in 2012, the number of
analysed samples is in the order of 20 000.
Given that FSSA is a relatively small
laboratory (by forensic biology laboratory
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standards) one could imagine that the Figure 9.2: flyer advertising the 2019 STRmix
worldwide figure would be in the hundreds of workshop
thousands.

These profile analyses have made up the contents of numerous reports, provided to Police,
Lawyers, Coroners, Private Investigators and Courts. The number of cases that have been
influenced by the results of profiles analysed in STRmix™ is unknowable. I have been
involved in testimony in Courts at the Magistrates, District and Supreme level for matters as
minor as vandalism and as major as cold-case Homicides. One well-known case of note (for
which I testified on the mathematics and modelling in STRmix™) is that of the murder of
Louise Belle in 1983 in South Australia, for which STRmix™ was used and played a part in
the conviction of Dieter Pfennig, over 30 years later in 2016.

Another case worth mentioning is that of Clinton Tuite, who was convicted in 2018 of a sexual
assault in 2007. This case is particularly worth mentioning due to the level of challenge against
many aspects of the evidence evaluation, including many aspects surrounding the development,
mathematics, validation, use and validity of STRmix™. This matter spanned over four years
in court starting in 2014 and due to the relatively new application of probabilistic genotyping
at the time, it involved numerous voire dires testing the admissibility of different aspects of
evidence. At its height the appeals reached the Court of Appeal, and the resulted in amendments
to the Australian laws of forensic expert evidence to account for the new type of evidence being
admitted into courts [2015 VSCA 148 - CLINTON TUITE V THE QUEEN].

As well as the significant contribution to court cases the models and methods within STRmix™
have been used for investigations, with the aim of identifying potential offenders. There are
two aspects in particular where this has been shown. The first relates to a process known as
‘mixture searching’ (outlined in the article in section 3.4 ‘Searching mixed DNA profiles
directly against profile databases’). This process of interrogating state or national databases for
potential contributors to complex mixtures has been implemented in laboratories to varying
degrees, from implementing the mathematics directly into the IT systems (as in ESR) or, mor
commonly, using the searching function in STRmix™. At FSSA, the capability to search mixed
DNA profiles over the years has (as of February 2019) resulted in investigative links being sent
to SA Police for over 100 cases (with many instances of multiple links in each case) that would
have otherwise never been possible to provide.

Page 342 of 344



i HOW DNA TURNS
CRIMINAL'S OWN FAMILY'S
AGAINST THEM

A specialised DNA search that can find
criminals via their relatives brought a
notorious Adelaide rapist to justice —
and signalled a new era in SA for the
evolving crimefighting weapon. Miles
Kemp reports

Figure 9.3: Promotion of a news article from
the Advertiser ‘Solving the impossible’
February 8, 2019 written by Miles Kemp.
Imagine is of the convicted offender Patrick
Perkins

There is talk of going back through no-
suspect cases examined prior to the
implementation of mixture-searching in a
large scale back-capture program, for which
untold amounts of investigative information
would be generated. The popularity of the
mixture searching tool has lead to the
development of separate software that is
specifically designed with automated
searching and auditing capabilities, so that
they can be carried out in en masse.

In a similar theme of investigative searching,
the mathematics outlines in the paper
‘Considering relatives when assessing the
evidential strength of mixed DNA profiles’
in section 3.4 has been implemented to allow
familial searching to be conducted. The use
of the familial search function in STRmix™
lead to Australia’s first conviction of an
offender identified through such a search in
South Awustralia (for the case of a serial
stranger rapist). The result was widely
publicised in the local media (Figure 9.3
shows a promo for a news article in the
Advertiser).

The final point to note is the impact that the use of the mathematics and modelling within
STRmix™ has impacted the general community. The level to which this has occurred is
difficult to gauge. There will have been immediate impacts to those directly related to criminal
investigations where STRmix™ has been used to analyse the DNA profile evidence. To the
people more broadly the impact is felt through the feeling of safer community through better
justice methods. The best way to demonstrate this is perhaps through the fact that there have
been numerous articles in various public areas of newspaper, television, public events, or
newsletters that speak to the improvement in DNA profile evaluation. Below | provide a
selection of newspaper headlines that directly relate to STRmix™, and the mathematics being
used therein, for the betterment of the community:

e MI Authorities Employ New DNA Analysis Software
e How DNA turns criminal’s own family against them

e STRmix™ Use Leads to Indiana Murder Conviction
e New software can do what no human could, helps state police analyze DNA evidence
e Montreal forensics lab approves STRmix™ use
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Crime-Busting Forensic Software STRmix™ Triumphs in U.S. Murder Trial
Houston-based Forensic Lab Approves Mixed DNA Profile Forensic Software
New Mexico Case Allows Expert Testimony, Affirms STRmix™ Reliability
DNA technology used to link convicted killer to another murder victim wasn’t available
in 2009

How new DNA technology led to Jupiter triple homicide arrests

Eight More Agencies, Including ATF, Will Use STRmix™

FL Murder Case Reaffirms Reliability of STRmix™

Lost shoe led to landmark DNA ruling - and now, nation's 1st guilty verdict
DNA breakthrough: North Adelaide rape suspect arrested

ESR technology being used to solve war crimes

‘Dream’ software boost power of DNA

Page 344 of 344



