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Abstract

Neurons are the building blocks of the nervous system, and the computations they perform underlie our

thoughts, emotions and behaviour. The thesis begins in vivo in the mouse binocular visual cortex. This

system provides a convenient setting for studying how di�erent inputs are combined in single neurons. We

investigate the mechanisms underlying sublinear summation of visual information in pyramidal neurons of

the binocular visual cortex and reveal the critical role of balanced excitation and inhibition. Our methods

involve use of the somatic voltage-clamp technique. However, we show that distortions due to poor space-

clamp a�ect the estimation of excitatory and inhibitory conductances. We therefore next use numerical

simulations in silico to determine how space-clamp errors a�ect the measurement of combined excitatory

and inhibitory inputs, including the estimated temporal relationship between excitation and inhibition. We

also explore how the somatic or dendritic location of inhibition a�ects neuronal output. These simulations

show that the site and nature of excitatory synaptic input to a neuron play a fundamental role in how

inhibition modulates the input-output relationship. These �ndings motivated the development of a two-

photon microscope to allow arbitrary activation of distributed synaptic inputs in three-dimensions with

high temporal precision. Such a tool provides unprecedented �exibility in dissecting how synaptic inputs are

processed in single neurons, but can also be extended to explore network properties including connectivity.

Finally the thesis arrives back where it began, in vivo, where we develop a behavioural paradigm involving

operant conditioning of single neuron activity recorded in vivo using two-photon microscopy. This system

will enable the future study of the mechanisms underlying synaptic plasticity and neuroprosthetic learning

in vivo, as well as help to understand how single neurons contribute to behaviour.
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Chapter 1

Introduction

This thesis focuses on the types of computations performed in single neurons with a strong emphasis on

the role of dendrites. As we shall see, dendrites are indispensable for neuronal function and hence we

devote much of the thesis to studying how dendrites operate as well as developing tools for investigating

information processing in dendrites and single neurons. In this Introduction we will review the properties of

dendrites and how they relate to the computations performed by neurons. We �rst provide a brief historical

account of research on dendrites, followed by a discussion of the various anatomical and physiological

features of dendrites that contribute to their function. Since the neocortex is responsible for higher level

brain functions, we focus much of our attention to cortical pyramidal neurons but we will also draw

on informative examples from other neuron types as necessary. For authoritative reviews on dendritic

properties and physiology, we refer the reader to [Sjöström et al., 2008, Stuart et al., 2008, Stuart and

Spruston, 2015].

1.1 Literature review

The Neuron Doctrine, originally formulated by Ramon Y Cajal, hypothesised that the neuron forms the

fundamental unit of the nervous system, and that information �ows from the dendrites as the input site,

through the soma and towards the axon, which delivers the output to other neurons. Decades earlier,

Golgi had developed the silver stain which permitted the visualisation of individual neurons under a light

microscope [Golgi, 1873]. The staining technique was especially remarkable given that only a small frac-

tion of neurons are stained at random and in their entirety. This revolutionary development paved the

way for Cajal to undertake his heroic cataloguing of neurons in the central nervous system, a monumental

contribution to neuroanatomy which was later acknowledged by the Nobel Prize in Physiology or Medicine

in 1906. During the course of his valiant work, Cajal produced many detailed drawings of dendrites and
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Chapter 1. Introduction Literature review

while a description of dendritic physiology largely eluded him, his extensive descriptions of dendritic struc-

ture provided much inspiration for future generations of neuroscientists striving to understand dendritic

function. Despite Cajal's groundbreaking work on the anatomy of dendrites, many decades passed before

signi�cant inroads in dendritic physiology were made.

Initially, limitations in experimental technique hindered the ability to obtain electrical recordings from

dendrites. As a result early work on understanding the physiology of dendrites was based on theoretical

approaches. By applying cable theory to dendrites, work by Wilfred Rall laid out the mathematical

framework for understanding signal propagation in passive dendrites [Rall, 1959, Rall et al., 1995]. While

the dogma at the time was that dendrites were passive and did not possess the mechanisms to support

active conduction of electrical signals, direct micro-electrode recordings from dendrites of Purkinje cells

[Fujita, 1968, Llinás et al., 1968, Llinás and Hess, 1976], hippocampal neurons [Wong and Prince,

1978, Wong et al., 1979] and neocortical cells [Houchin, 1973] revealed active electrical events occurring

in the dendrites and provided the evidence necessary to shift the prevailing thought.

Our current understanding of dendritic physiology has since evolved and has been punctuated by a series of

key technical advances dating from the early 1990s. The breakthrough in dendritic physiology, building on

the pioneering work of Erwin Neher and Bert Sakmann over a decade earlier [Sakmann and Neher, 1984]

was the ability to obtain patch-clamp recordings from visually identi�ed dendrites of neurons in brain slices

[Stuart et al., 1993, Stuart et al., 1994]. This technical feat led to an explosion in the �eld of dendritic

physiology research, allowing exploration of hitherto largely unchartered domains of dendritic function

such as ion channel density [Migliore and Shepherd, 2002], dendritic excitability, synaptic integration and

plasticity [Sjöström et al., 2008], to name a few.

More recently, optical approaches for studying dendrites have risen to the fore. Developments in imag-

ing techniques, notably two-photon microscopy [Svoboda and Yasuda, 2006] o�er the ability to observe

�ne dendritic structures and estimate electrical activity in regions inaccessible to patch electrodes such

as spines and thin, distal dendrites in vivo. Most recently, the optogenetics revolution has witnessed a

great expansion in the number of tools available for manipulating neural activity [Yizhar et al., 2011].

The combination of light and genetics allows targeting of light-sensitive opsin proteins to genetically

de�ned subpopulations of neurons, and achieves selective activation or inactivation of those neurons with

millisecond precision. The use of optogenetic manipulations has contributed signi�cantly to our under-

standing of dendritic physiology, by enabling manipulation of the circuit elements involved in producing
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and regulating dendritic signals [Lovett-Barron et al., 2012, Palmer et al., 2012b]. Combinations of these

techniques have also emerged. For example, two-photon targeted patch recordings from neurons in vivo

[Komai et al., 2006, Margrie et al., 2003] extends the advantages a�orded by patch-clamp recordings

to in vivo settings and also allows electroporation of DNA in single, identi�ed neurons [Kitamura et al.,

2008]. With closed-loop integration of genetically encoded reporters of neural activity and optogenetics

[Hochbaum et al., 2014], all-optical electrophysiology is rapidly becoming feasible and may soon supercede

conventional electrophysiology [Scanziani and Häusser, 2009].

Dendritic morphology and passive properties

Most neurons consist of a soma, axon, and dendrites. Dendritic morphology is highly variable and even

among pyramidal neurons, there is heterogeneity in branching structure depending on location e.g. layer

2/3 versus layer 5 cortical pyramidal neurons, hippocampal CA1 versus CA3 pyramidal neurons (Figure

1.1). Dendrites are thin, relative to the cell body, and signi�cantly increase surface area while occupying

a small volume. It is thought that this enables neurons to receive more inputs, and indeed, the dendritic

membrane is where the majority of postsynaptic inputs arrive [Gray, 1959]. While the dendritic tree can

be very elaborate, it only receives synaptic inputs locally. In contrast, axons can travel long distances to

synapse in the opposite hemisphere, and in the case of cortical inputs to motor neurons that innervate

distal limbs can be over a metre in length.

Alongside morphology, the passive biophysical properties of dendrites are the greatest factors that shape

electrical signals in the dendrites. At the most elemental descriptive level, the plasma membrane acts as

an insulative barrier to current �ow across the membrane. Accordingly, the membrane has capacitance

and resistance. Furthermore, axial current �ows within dendrites also experience a resistance as a result

of dendrites being tubes and the presence cytosolic components. The combined e�ect of resistive and

capacitive elements produces �ltering e�ects that sculpt synaptic responses and signal propagation within

dendrites, forming the basis of the Rall model. Contributions of the model include a description of action

potential propagation including branch-point failures, characterisation of the impact of synaptic inputs at

di�erent locations along a dendrite, as well predictions as to the electrical properties of spines.

3
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Introduction/Figures/spruston08-fig1a.png

Figure 1.1: Heterogeneity of pyramidal neuron structure. Examples of structures of pyramidal neu-
rons from di�erent cortical areas are shown. Dendritic morphology exhibits notable di�erences between
the pyramidal neurons shown. Compared to layer 2/3 pyramidal neurons, layer 5 pyramidal neurons have
longer apical dendrites and fewer oblique apical dendrites. Branching of the apical dendrites of hippocam-
pal CA3 pyramidal neurons occurs closer to the soma compared to CA1 pyramidal neurons. Adapted
from [Spruston, 2008].
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Ion channels in dendrites

The large surface area of the dendritic membrane also accommodates an array of ion channels. Through

interactions with the passive membrane properties, ion channels play an integral role in shaping the

membrane potential changes that occur and how they propagate throughout dendrites. Following the

�rst demonstration that dendrites contained voltage-gated Na+ channels that supported active back-

propagation of action potentials [Stuart et al., 1994], many other classes of dendritic ion channels have

been described. This work indicates that dendritic ion channels show cell-type speci�c expression, as well

as dendrite speci�c distributions [Migliore and Shepherd, 2002, Lai and Jan, 2006, Vacher et al., 2008]

and contribute to a variety of dynamic phenomena. For instance, apart from supporting action potential

back-propagation, dendritic Na+ channels also enable dendritic action potential initiation [Stuart et al.,

1997a, Golding and Spruston, 1998, Gasparini et al., 2004] and can amplify synaptic responses [Magee

and Johnston, 1995, Stuart and Häusser, 2001].

Voltage-gated Ca2+ channels are another group of ion channels found in dendrites and are comprised

of several subtypes, so-called L-, N-, P/Q-, R-, and T-types, which are distinguished by their voltage-

dependent properties and dendritic distributions. Like Na+ channels, Ca2+ channels typically enhance den-

dritic excitability and di�erent dendritic Ca2+ channels make various contributions to neuronal function.

Dendritic T-type channels for example are involved in burst �ring [Magee and Carruth, 1999, Williams and

Stuart, 1999] and synaptic plasticity [Isomura et al., 2002] in pyramidal neurons. Since these channels

have a low threshold for activation, they are also thought to amplify synaptic responses [Markram and

Sakmann, 1994, Magee et al., 1995]. The high-voltage activated Ca2+ channels (L-, N-, P/Q-, and R-

type) play similar roles in ampli�cation of synaptic responses [Schiller et al., 1997, Sabatini and Svoboda,

2000] and action potential burst �ring [Womack and Khodakhah, 2004], while also contributing to the

generation of dendritic spikes [Schiller et al., 1997, Larkum et al., 1999b, Pérez-Garci et al., 2013]. Under

some circumstances, Ca2+ channels may also serve as a calcium source for dendritic transmitter release

[Simmons et al., 1995], synaptic plasticity [Yasuda et al., 2003, Froemke et al., 2005] and modulation of

other Ca2+-dependent mechanisms such as Ca2+-activated K+ channels [Faber and Sah, 2003].

Potassium channels are the largest and most diverse group of ion channels, with over 100 subunits

of distinct K+ channels identi�ed [Coetzee et al., 1999]. The vast array of K+ channels have been

divided into four families according to their genetic homology, structure and function: voltage-gated K+

channels, Ca2+-activated K+ channels, inward recti�er K+ channels, and leak K+ channels [Coetzee et al.,

1999]. The e�ect of dendritic K+ channels on dendritic excitability has been well-studied for a number of
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channel subtypes [Yuan and Chen, 2006]. Since the K+ current has a hyperpolarising e�ect on membrane

potential, K+ channels have an inhibitory action on dendritic excitability, which depends on the individual

properties of the channels. The A-type K+ channel (reviewed in [Jerng et al., 2004]), for example,

produces a number of interesting e�ects on dendritic signals related to the activation and inactivation

kinetics of the channel. The current, which is normally inactivated at rest, shows rapid subthreshold

activation, relatively rapid development of inactivation as well as rapid recovery from inactivation at

hyperpolarised membrane potentials. Owing to these properties, the current enhances attenuation of the

back-propagating action potential and increases the threshold for dendritic spike generation under resting

conditions [Ho�man et al., 1997, Gasparini et al., 2004]. However, pairing a back-propagating action

potential with excitatory synaptic input reduces the attenuation of the back-propagating action potential,

since the excitatory input leads to rapid inactivation of the A-type current [Magee and Johnston, 1997].

Thus, the action of the A-type current in gating back-propagating action potentials provides a mechanism

for coincidence detection and may have signi�cant consequences for synaptic plasticity [Watanabe et al.,

2002].

Another subset of K+ channels, the Ca2+-activated K+ channels, are widely distributed throughout

the central nervous system and are typi�ed by their activation following increases in cytosolic calcium

[Faber and Sah, 2003]. These channels are responsible for the prolonged after-hyperpolarisation (AHP)

observable in many neurons following action potentials as a consequence of the calcium in�ux via voltage-

gated Ca2+ channels that are activated during spiking. Three subfamilies of Ca2+-activated K+ channels

have been identi�ed according to their biophysical and pharmacological properties; small-conductance

(SK), large-conductance (BK), and intermediate-conductance (IK) Ca2+-activated K+ channels [Sah,

1996, Vergara et al., 1998, Faber and Sah, 2003]. Pharmacological manipulations have revealed that

BK and SK channels underlie di�erent components of the AHP [Sah, 1996, Vogalis et al., 2003]. Of the

Ca2+-activated K+ channels, SK channels in particular have been implicated in dendritic signalling and

plasticity [Kim and Ho�man, 2008]. These channels are involved in hippocampal synaptic plasticity [Blank

et al., 2003, Hammond et al., 2006], and pharmacological blockade enhances both neural excitability and

LTP induction [Stackman et al., 2002, Tzounopoulos and Stackman, 2003]. In the dendrites of pyramidal

neurons, SK channels are localised to dendritic spines, where they interact with NMDA receptors and

voltage-gated Ca2+ channels to regulate dendritic integration [Cai et al., 2004], synaptic excitability

[Ngo-Anh et al., 2005, Faber, 2010] and plasticity [Lin et al., 2008, Faber, 2010, Ohtsuki et al., 2012].

6
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The hyperpolarisation-activated cation current (Ih) is a mixed Na+ and K+ current also found in dendrites.

The current is encoded by the hyperpolarisation-activated cyclic nucleotide-gated channel gene family

(HCN1-HCN4) [Ludwig et al., 1998, Santoro and Tibbs, 1999] and underlies many functions in neurons

[Robinson and Siegelbaum, 2003, Biel et al., 2009]. The presence of Ih can be detected by a characteristic

�sag� in the voltage response to a constant hyperpolarising current step (as a depolarising current becomes

activated with hyperpolarisation). Both patch-clamp [Magee, 1998, Williams and Stuart, 2000, Berger

et al., 2001, Kole et al., 2006, Harnett et al., 2015] and immunogold labelling [Lörincz et al., 2002, Notomi

and Shigemoto, 2004] studies have demonstrated that Ih density increases along the apical dendrites of

hippocampal CA1 and layer 5 neocortical pyramidal neurons. Since the current is activated at rest, Ih

a�ects resting membrane potential, input resistance and consequently membrane time constant. The

distance-dependent expression of Ih also normalises the e�ective input resistance along the length of the

apical dendrite of cortical layer 5 pyramidal neurons [Williams and Stuart, 2002]. The current a�ects

synaptic integration, by shortening the width of excitatory postsynaptic events [Magee, 1998] and inhibits

generation of distal dendritic calcium spikes [Tsay et al., 2007]. Upregulation of the channel with the

anticonvulsant lamotrigine also decreases dendritic excitability [Poolos et al., 2002]. Lastly, dendritic Ih

enforces temporal �delity of dendritic coincidence detection [Berger et al., 2003, Migliore et al., 2004]

as well as enhancing timing precision of action potential output [Kole et al., 2006].

7
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Active dendrites

The ion channels described in the previous section that are present in dendritic compartments enable

dendrites to elicit various phenomena. In this section we will discuss two well-known behaviours supported

by dendritic ion channels, namely action potential back-propagation and dendritic spikes.

Action potential back-propagation Action potentials are initiated in the axon, before propagating

back into the soma and invading the dendritic tree [Stuart et al., 1994, Kole et al., 2008]. The e�cacy

of action potential back-propagation into the dendritic tree can be assessed by simultaneously recording

from the soma and a dendritic location and di�ers markedly among the various neuronal types [Stuart

et al., 1997b, Häusser et al., 2000, Waters et al., 2005]. At one extreme, back-propagation in cerebellar

Purkinje cells is weak and largely passive [Llinás and Sugimori, 1980, Stuart et al., 1994]. At the

other, action potentials in dopaminergic substantia nigra neurons [Häusser et al., 1995] and hippocampal

interneurons [Martina et al., 2000] actively back-propagate with minimal attenuation. In between these

extremes, back-propagation is active but decremental, as in the apical dendrites of layer 5 pyramidal cells

[Larkum et al., 2001, Stuart and Häusser, 2001] and hippocampal CA1 pyramidal cells [Andreasen and

Lambert, 1995, Magee and Johnston, 1995, Spruston et al., 1995].

The extent and reliability of action potential back-propagation depends on a number of factors. Several

active conductances distributed throughout the dendritic tree greatly in�uence back-propagation [Migliore

and Shepherd, 2002]. The density of Na+ channels is strongly related to the degree of back-propagation.

As shown by single-channel recordings, cerebellar Purkinje dendrites have a low density of Na+ channels

[Stuart and Häusser, 1994], while pyramidal dendrites have intermediate densities of the channel [Stuart

et al., 1994]. This corresponds to the extent of back-propagation in these neurons; back-propagation is

more reliable in pyramidal neurons than in Purkinje neurons. K+ channels also play an important role.

A-type K+ channels act to limit the extent of back-propagation in hippocampal CA1 [Ho�man et al.,

1997] and neocortical layer 5 pyramidal neurons, whereas pharmacological inactivation of these channels

enhances back-propagation [Bekkers, 2000, Korngreen and Sakmann, 2000]. Similar results have also

been reported in interneurons [Goldberg et al., 2003].

8
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Aside from voltage-gated conductances, dendritic morphology and branching also have a signi�cant

impact on action potential back-propagation. For instance, dendritic patch recordings have shown a

tendency for back-propagation failure at branch points in hippocampal CA1 pyramidal dendrites [Spruston

et al., 1995]. Computer simulations have shown that the impact of morphology can be profound, such

that even with the same pro�le of ion channels, di�erent dendritic morphologies can produce markedly

varying back-propagation [Vetter et al., 2001]. Furthermore, interactions between morphology and ion

channels can also modulate back-propagation. For example, varying ion channel densities in the dendrites

of Purkinje neurons has little e�ect on back-propagation reliability while ion channel density has much

greater in�uence on back-propagation in layer 5 pyramidal neurons [Vetter et al., 2001]. Other numerical

simulations have even suggested a role for dendritic spines in enhancing back-propagation in layer 5

pyramidal neurons, by recruiting high densities of Na+ channels clustered in spines [Tsay and Yuste,

2002].

As to the role of back-propagation, several ideas have been put forward. Since the back-propagating action

potential provides a depolarisation to the dendritic tree following an axo-somatic spike, it may serve as a

relatively global signal that the neuron has been brought to threshold. This has important implications

in synaptic plasticity, particularly for spike-timing dependent plasticity (STDP) where timing-dependent

interactions between synaptic inputs and the back-propagating spike determines the sign and magnitude

of the changes in synaptic e�cacy [Bi and Poo, 1998, Linden, 1999]. In layer 5 cortical pyramidal neurons,

the back-propagating action potential also enables coupling of the two spike initiation zones in the axo-

somatic and apical dendritic regions. We elaborate on this interesting feature in the following section on

dendritic spikes. Observations that the back-propagating action potential can trigger neurotransmitter

release from the dendrites reveal another role for back-propagation [Ludwig et al., 2002, Kuczewski

et al., 2008], which we will not discuss further here (for a review on dendritic neurotransmitter release,

see [Ludwig and Pittman, 2003]).
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Dendritic spikes Dendrites are also capable of generating all-or-nothing events similar to somatic action

potentials. These events propagate forward from the dendrites to the soma and have attracted signi�cant

interest since they can be generated independently of axonal action potentials. The factors that in�uence

forward propagation of dendritic spikes are related to those that a�ect action potential back-propagation,

although forward propagation of dendritic spikes is typically less reliable than back-propagation of somatic

action potentials [Golding and Spruston, 1998, Mehta, 2004]. We will discuss three types of dendritic

spikes that have been described extensively, namely calcium, NMDA and sodium spikes.

Regenerative calcium spikes in layer 5 pyramidal neurons are initiated near the main apical bifurcation and

contribute to burst �ring in these neurons. These calcium action potentials are mediated by voltage-gated

Ca2+ channels and can be evoked by intense distal synaptic stimulation (corresponding to upper layer 2

and layer 1 inputs) [Schiller et al., 1997]. Calcium electrogenesis in the distal apical and basal dendrites

can also be generated by a burst of back-propagating action potentials [Larkum et al., 1999a, Kampa and

Stuart, 2006]. Furthermore, the combination of subthreshold synaptic input in the distal apical dendrite

together with a single back-propagating axosomatic action potential leads to a large calcium spike in the

distal dendrite and subsequent burst �ring [Larkum et al., 1999b]. Taken together, these results suggest

multiple roles for calcium spikes in pyramidal neurons, including coincidence detection of synaptic input,

ampli�cation of distal dendritic inputs, and coupling of signals in the distal dendrites with the soma.

The second type of dendritic spike, the NMDA spike, is generated by activation of the NMDA subtype of

glutamate receptor (NMDARs), and occurs in the thin, basal [Schiller et al., 2000, Nevian et al., 2007],

oblique [Polsky et al., 2004] and apical tuft [Larkum et al., 2009] dendrites of pyramidal neurons that

are densely innervated by glutamatergic inputs. Synchronous activation of nearby (10-50) glutamatergic

synapses can trigger an NMDA spike, which is characterised by a large, local depolarisation (40-50 mV)

of extended duration (up to several hundred milliseconds). NMDA spikes initiated in the proximal basal

dendrites can also also produce a sustained depolarisation in the soma resembling a cortical Up state

[Milojkovic et al., 2005b].

Simultaneous somatic and dendritic patch recordings from the primary apical dendrites of layer 5 pyramidal

neurons and hippocampal CA1 pyramidal neurons have demonstrated the existence of fast dendritic spikes

in vitro mediated by voltage-gated Na+ channels [Stuart et al., 1997a, Golding and Spruston, 1998].

Similar dendritic spikes have also been recorded in vivo [Kamondi et al., 1998]. Although dendritic

sodium spikes propagate to the soma with variable reliability, they can in�uence axonal action potential

10



Literature review Chapter 1. Introduction

initiation [Stuart et al., 1997a, Golding and Spruston, 1998, Gasparini et al., 2004]. There is also evidence

for their existence in basal dendrites of cortical pyramidal neurons [Milojkovic et al., 2005a, Nevian et al.,

2007].

From our brief survey of dendritic spikes, several features shared between the di�erent dendritic spikes

are apparent. Firstly, dendritic spikes are all-or-nothing events that enable coincidence detection of

multiple synaptic inputs. Activation of synapses close together in time and location on the dendritic

tree favours generation of a dendritic spike. This in turn may enable temporally precise integration of

synaptic inputs [Ariav et al., 2003]. Secondly, distal inputs that normally do not propagate to the soma

can modify neuronal output when they contribute to generation of a dendritic spike. This provides a

means to gate inputs and speci�c stimuli [Helmchen et al., 1999], or selectively couple the somatic and

dendritic domains [Larkum et al., 1999b]. Thirdly, dendritic spikes can be evoked in the absence of

axonal action potentials and back-propagation. An important consequence is that dendritic spikes alone

can trigger synaptic plasticity, since the large local depolarisation can generate su�cient calcium entry

to drive plasticity [Golding et al., 2002, Gambino et al., 2014]. In short, these examples demonstrate the

compartmentalised nature of dendritic integration and encapsulate the view that dendrites themselves

serve as discrete computational units.

Dendritic physiology in vivo

While in vitro brain slice studies have contributed enormously to our understanding of dendritic physiology,

it is unclear which of the diverse phenomena observed in vitro also occur in vivo, in particular, during awake

behaviour. Although in vivo recordings of dendritic spikes have dated back to almost half a century ago

[Llinás et al., 1968], the relative lack of in vivo recordings of dendritic activity is in part due to the di�culty

of obtaining direct electrical access to dendrites in vivo compared to in vitro. Despite this, in vivo studies

of dendritic signalling have been accumulating in recent times, in part due to developments in two-photon

microscopy [Komai et al., 2006]. Two key di�erences exist between in vitro and in vivo preparations which

potentially have profound implications on the nature of dendritic signalling. Firstly, spontaneous activity

in slices under normal incubation conditions is typically rare, although certain modi�cations aimed at

better replicating in vivo conditions have been reported to reproduce in vivo-like activity [Sanchez-Vives

and McCormick, 2000, Shu et al., 2003b]. The presence of spontaneous synaptic activity is thought

to modify dendritic signalling [Destexhe et al., 2003] through both presynaptic [Shu et al., 2006, Kole

et al., 2007b] and postsynaptic mechanisms [Waters et al., 2003]. Secondly, the vast neuromodulatory

drive present in the intact brain is virtually entirely absent in slice preparations since most long-range
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connections are severed during the slicing procedure. These include processes from monoaminergic and

cholinergic neurons in the brainstem and basal forebrain that project throughout the brain. Thus, the

subcortical neuromodulatory nuclei involved in attention and arousal no longer provide modulatory input

in brain slices, which may otherwise be involved in regulating neuronal and dendritic excitability [Seamans

and Yang, 2004, Gulledge and Stuart, 2005]. Importantly, much of the early work in vivo took place

under anaesthetised conditions, but the advent of head-�xation has since enabled awake behaviours to

be studied (see [Schwarz et al., 2010] for a review of head-�xed behaviour in rats).

Earlier recordings of dendritic activity in vivo, performed by Kamondi et al. (1998, Buzsaki lab), suggested

that dendritic spikes were enhanced during synchronous population activity. In this study, dendritic events

were observed by combining sharp electrode recordings from the apical dendrites of hippocampal area

CA1 pyramidal neurons with extracellular local �eld potential (LFP) recordings during sharp-wave ripple

(SWR) activity. SWRs comprise of synchronous discharges in area CA3 that propagate to area CA1 via

the Schae�er colaterals, which in turn arrive on the proximal apical dendrites of CA1 pyramidal neurons

[Buzsáki et al., 1983]. In the study by Kamondi et al., both fast and slow dendritic events were observed,

presumably sodium spikes and calcium spikes, respectively, consistent with what has been observed in

vitro [Golding and Spruston, 1998, Golding et al., 1999].

Back-propagating action potentials have also been investigated in vivo. A recent study [Waters et al.,

2003] reported that the apical dendrites of layer 2/3 pyramidal neurons contained Na+ channels that

supported active back-propagation of action potentials both in vitro and in vivo. Furthermore, supralinear

calcium events in the tuft region could be initiated by pairing a somatic action potential with local

synaptic input. A subsequent study by the same group investigated action potential back-propagation

during neocortical Up and Down states in vivo [Waters and Helmchen, 2004]. Using whole-cell recordings

combined with two-photon imaging of calcium activity in layer 2/3 pyramidal neurons, this study revealed

not only that back-propagation was maintained in vivo, it was in fact enhanced during neocortical Up

states, as re�ected by augmented dendritic calcium in�ux when action potentials occurred during Up

states. This contrasts with the notion that during Up states the local input resistance of the dendrites is

reduced due to synaptic bombardment, which would increase attenuation of the back-propagating action

potential [Destexhe et al., 2003]. Extracellular recordings and current source density analysis have also

shown action potential back-propagation in neocortical pyramidal neurons is robust and relatively uniform

across di�erent brain states [Bereshpolova et al., 2007].
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The impact of supralinear dendritic events on representation of sensory inputs, perception and behaviour

has also been explored. Several in vivo patch-clamp recording studies have directly implicated a role

for supralinear dendritic activity in sensory coding. In the rat barrel cortex for example, it has been

shown that NMDA spikes in the dendrites of layer 4 spiny stellate cells contribute to angular tuning of

these neurons [Lavzin et al., 2012]. Similarly, NMDA spikes in apical dendrites of layer 2/3 pyramidal

neurons in the mouse primary visual cortex enhance orientation tuning [Smith et al., 2013]. Two-photon

imaging during an active sensing behaviour [Xu et al., 2012] have corroborated these �ndings of nonlinear

dendritic integration in vivo. Since supralinear dendritic activity is highly voltage-dependent, injection of

hyperpolarising current into the recorded neuron is often used to con�rm the presence of dendritic spikes

in vivo [Lavzin et al., 2012, Smith et al., 2013]. In the case of NMDA spikes, hyperpolarisation acts

to maintain the magnesium block of the receptor, preventing initiation of the spike. For calcium spikes,

hyperpolarisation reduces the voltage-dependent activation of calcium channels. With this in mind,

another study obtained patch-clamp recordings from hippocampal CA1 cells during navigatory behaviour

and characterised the place-�eld tuning of subthreshold and spiking activity [Lee et al., 2012a]. Place-

�eld spiking in neurons was abolished with hyperpolarising current injection. However, and remarkably,

depolarisation of silent cells gave rise to a spatially-tuned subthreshold response along with place-�eld

spiking. This result not only strongly hints at the involvement of voltage-dependent dendritic mechanisms

in the generation of place-�elds, which in many ways is analogous to tuning in the sensory cortices, but

also gives much greater importance to intracellular mechanisms, speci�cally dendritic, over synaptic

connectivity in the determination of spatial tuning in the hippocampus. These studies along with others

[Murayama and Larkum, 2009, Xu et al., 2012, Palmer et al., 2014] implicate the involvement of active

dendritic events in a wide range of activities in vivo and tenuously establish their relevance in producing

behaviour.

Synaptic modulation of dendritic excitability

One of the most in�uential factors involved in the modulation of dendritic excitability is synaptic input

provided by inhibitory interneurons (reviewed in [Palmer et al., 2012a]). GABAergic neurotransmission

can evoke fast inhibition via GABAA receptor-mediated anionic conductances (Cl� and HCO�
3 ) and slow

inhibition via G protein-coupled GABAB receptors that open inwardly rectifying K+ (GIRK) channels

[Lüscher et al., 1997]. Despite only comprising a minority of cells in the cortex, inhibitory interneurons

demonstrate an exquisite ability to �nely tune the output of cortical pyramidal neurons. This ability

in part stems from their morphological, molecular, physiological and synaptic diversity [Markram et al.,

2004], and indeed such diversity has presented various challenges in developing a systematic nomenclature
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for interneurons [Ascoli et al., 2008, DeFelipe et al., 2013]. The vast majority of neocortical inhibitory

interneurons can be classi�ed as one of three types, depending on the molecular markers they express,

namely parvalbumin, somatostatin or the serotonin receptor 5HT3a [Rudy et al., 2011]. Interneurons

in these classes show class-speci�c connectivity to other neurons and are di�erentially active during

behaviour [Kepecs and Fishell, 2014]. Even within a molecular class, di�erent interneuron subtypes may

exist that are distinguished from one another by how they modulate activity in their post-synaptic targets.

For example, parvalbumin-expressing interneurons include basket cell and chandelier cell subtypes. Basket

cells innervate the soma and proximal dendrites of pyramidal neurons while chandelier cells target the axon

initial segment [Somogyi et al., 1998], and such di�erential targeting provides a potential mechanism for

independently regulating the integration of inputs and production of spikes in pyramidal neurons. While

describing interneuron diversity in detail extends beyond the scope of this thesis, we will revisit how this

diversity in�uences dendritic integration in later chapters of this thesis.

Individual neurons in the cortex receive barrages of synaptic inputs from hundreds and thousands of

other neurons, involving inhibitory neurons working in concert with excitatory neurons. A feature of this

synaptic drive is that excitatory input is balanced by inhibitory input, such that temporal �uctuations in

excitation are closely matched by �uctuations in inhibition [Haider et al., 2006, Shu et al., 2003b]. The

resulting high conductance state of neurons in the cortex impacts on dendritic excitability and neuronal

integration by modifying input resistance [Destexhe et al., 2003] (but see also [Waters and Helmchen,

2004]) and introducing membrane potential variability with consequences on the temporal precision of

neuronal output [Shadlen and Newsome, 1998]. Many studies that have contributed to these �ndings

have relied on the voltage-clamp technique to dissect the excitatory and inhibitory components of synaptic

input in the cortex [Borg-Graham et al., 1998, Shu et al., 2003b, Wehr and Zador, 2003, Haider et al.,

2006]. Despite being one of the only methods available for directly measuring synaptic conductances,

the utility of the method is limited by space-clamp errors [Spruston et al., 1993], which are compounded

by branching dendritic morphology. These issues will be explored in further detail throughout this thesis.

14



Literature review Chapter 1. Introduction

Spines

A review of dendritic integration would be incomplete without a discussion on spines. Here we will

provide only a brief overview of spine physiology and some results relevant to dendritic information

processing. For authoritative reviews on the structure and function of dendritic spines, we refer the

reader to [Hering and Sheng, 2001, Nimchinsky et al., 2002, Rochefort and Konnerth, 2012]. Dendritic

spines are small membrane protrusions on dendrites that form the post-synaptic component of the vast

majority of excitatory synapses in the brain. Spines come in di�erent shapes and sizes, and have been

classi�ed as stubby, thin, or mushroom based on their morphology [Peters and Kaiserman-Abramof,

1970] (Figure 1.2), with di�erent spine morphologies found along the same dendrite [Harris and Stevens,

1988, Harris and Stevens, 1989]. Spines are dynamic structures [Bhatt et al., 2009] and can undergo

rapid morphological changes observable on the timescale of minutes to hours in activity-dependent and

activity-independent manners [Maletic-Savatic et al., 1999, Engert and Bonhoe�er, 1999, Toni et al.,

1999, Matsuzaki et al., 2004, Lang et al., 2004, Zhou et al., 2004, Nägerl et al., 2004, Bastrikova et al.,

2008, Yasumatsu et al., 2008]. On the other hand, spines also show remarkable stability in vivo, and can

persist for months and even up to the lifetime of animals [Holtmaat et al., 2005, Zuo et al., 2005, Yang

et al., 2009, Xu et al., 2009, Hofer et al., 2009]. For these reasons, dendritic spines are thought to be a

key structural substrate for learning and long-term memory storage [Holtmaat and Svoboda, 2009, Kasai

et al., 2010].

Introduction/Figures/yuste04b-fig2.png

Figure 1.2: Spines have a variety of morphologies. Classi�cation of spines as `stubby', `thin' or `mush-
room' is based on their structural appearance [Peters and Kaiserman-Abramof, 1970]. Adapted from
[Yuste and Bonhoe�er, 2004].

Many interesting properties of spines arise from their peculiar morphology, which enables compartmental-

isation of chemical and electrical signals. The spine head is separated from the dendrite by a thin neck,

and owing to this geometry, spines readily isolate biochemical signals and in particular, act as calcium

compartments [Svoboda et al., 1996, Yuste et al., 2000]. The calcium dynamics in spines, aided by

biochemical compartmentalisation, is thought to be an important driver of input-speci�c and activity-

dependent synaptic plasticity [Nevian and Sakmann, 2006, Higley and Sabatini, 2008]. Early studies

established that changes in calcium in the spine heads were not necessarily coupled to the calcium dy-
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namics in the dendritic shafts, thus demonstrating the isolation of biochemical signals to individual spines

[Guthrie et al., 1991, Müller and Connor, 1991]. Increases in spine calcium can be induced by subthresh-

old synaptic stimulation and back-propagating action potentials initiated in the axo-somatic region [Yuste

and Denk, 1995, Koester and Sakmann, 1998]. Several sources of calcium have also been elucidated,

including calcium in�ux through voltage-gated Ca2+ channels [Yuste and Denk, 1995, Majewska et al.,

2000] and NMDA-receptors [Yuste et al., 1999, Mainen et al., 1999, Kovalchuk et al., 2000], as well as

calcium release from intracellular stores [Takechi et al., 1998, Emptage et al., 1999, Wang et al., 2000].

These studies, together, paint a complex picture of the various players involved in shaping calcium signals

in spines.

The geometric con�guration that allows biochemical compartmentalisation in spines also shapes electrical

signals. The spine neck has a high resistance relative to the dendritic shaft and consequently �lters

membrane potential changes such that voltage changes in the spine head are attenuated when they reach

the shaft, whereas voltage changes in the shaft are virtually un�ltered as they invade the spine head [Araya

et al., 2006, Palmer and Stuart, 2009]. Owing to the high impedance of the spine neck, depolarising

synaptic inputs within the spine head are passively ampli�ed to membrane potentials signi�cantly higher

than what would be reached by those inputs occurring on the dendritic shaft, leading to activation of

nonlinear voltage-gated conductances which in turn promotes cooperativity of synaptic inputs in spines

[Harnett et al., 2012]. Some of the ion channels found in spines include voltage-gated Ca2+ channels

[Sabatini and Svoboda, 2000, Jones and Stuart, 2013], voltage-gated Na+ channels [Araya et al., 2007],

Ca2+-activated K+ channels [Ngo-Anh et al., 2005, Bloodgood and Sabatini, 2007, Jones and Stuart,

2013] as well as NMDA-receptors [Ngo-Anh et al., 2005, Bloodgood and Sabatini, 2007].

Neuronal computation and behaviour

As we have seen, dendrites are endowed with an assortment of mechanisms that enable them to process

inputs in complex ways and produce a wide range of dynamic phenomena. Due to the intricacies of these

mechanisms, understanding the rules governing dendritic computation and untangling the contribution of

single neurons to information processing in networks is immensely challenging. Many common approaches

describe dendritic transformations in terms of abstract operations in order to simplify the interpretation.

To this end, by using a combination of passive properties and active mechanisms dendrites of layer 5

pyramidal neurons have been broadly described as performing a wide range of computations, such as low-

pass �ltering of voltage responses, logical operations with excitatory and inhibitory inputs, segregation

and ampli�cation of synaptic inputs, and coincidence detection of distal synaptic input with somatic
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action potentials [London and Häusser, 2005].

Given the compartmentalised and localised nature of synaptic integration in dendrites [Polsky et al.,

2004], including their ability to generate spikes, it is appropriate to view dendritic branches as the basic

computational unit of a neuron [Branco and Häusser, 2010]. The dendritic tree, being comprised of

many individual dendrites, can therefore be seen as a network of such units. In this vein, synaptic

integration in a pyramidal neuron model can be approximated by a two-layer neural network [Poirazi et al.,

2003], where incident synaptic inputs are integrated by dendrites in the �rst layer, and the summated

output of the �rst layer is then integrated by a single output unit in the second layer that then drives

�ring of the axon (Figure 1.3A). Furthermore, dendritic computations can be classi�ed as sublinear,

linear, supralinear, or a combination of these (e.g. sigmoidal), depending on the shape of the input-

output transformations performed by the dendrites. According to this abstraction, integration in separate

branches is independent of other branches and the combined output of the �rst layer is summed linearly.

Such an abstraction is consistent with experimental observations, by reproducing, for example, nonlinear

within-branch summation and linear between-branch summation (Figure 1.3B). One important feature

this feedforward model lacks however, is action potential back-propagation and interaction thereof with

dendritic nonlinearities [Larkum et al., 1999b].

Extending this framework of dendritic computation to deciphering the contribution of neurons to infor-

mation processing at the behavioural level is signi�cantly more di�cult, since behaviour typically involves

numerous neurons that interact with one another in complex ways. Thus the impact of dendritic in-

tegration in a single neuron on behaviour, let alone the impact of spiking in a single neuron, may not

be observable (although see [Brecht et al., 2004]). Nevertheless there are several instructive examples

that eloquently demonstrate how dendritic information processing may be relevant for guiding behaviour.

Below we choose two examples of this from the literature, and brie�y discuss directional selectivity in

retinal ganglion cells (RGCs) and sound localisation in mammals and birds.
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A

Introduction/Figures/poirazi03a-fig1a.png

B
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Figure 1.3: Two-stage dendritic integration in pyramidal neurons. (A) Modelling a pyramidal neuron as
a two-layer neural network. A schematic representing the mapping of synaptic inputs on thin terminal
dendrites (left) onto independent subunits of a two-layer neural network (right). The number of dendritic
subunits is denoted ni , for subunits indexed i , and the coupling weight of each subunit is denoted by
�i and represented by the size of the solid circles. The nonlinear dendritic input-output function is
denoted s(ni), and the somatic nonlinear input-output function is denoted g, which produces a �ring
rate output y . Adapted from [Poirazi et al., 2003]. (B) Within-branch summation is nonlinear and
between-branch summation is linear. Basal dendrites of a layer 5 pyramidal neuron were stimulated by
two electrodes to mimic synaptic input. Stimulation was delivered separately and then simultaneously,
and the somatic EPSP response was recorded. The expected peak EPSP was calculated by summing
the individual responses. The coloured circles demonstrate the strongly nonlinear response when the
same dendrite was stimulated twice, while the green diamonds show close to linear summation of inputs
delivered to di�erent branches. The dashed line indicates exact linear summation. Adapted from [Polsky
et al., 2004].
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Direction-selective RGCs are ganglion cells in the retina that respond to stimuli in the visual �eld that

move in a speci�c direction [Barlow et al., 1964, Barlow and Levick, 1965]. The direction in which the

spiking response is greatest is known as the �preferred direction�; the opposite direction, which produces

no response, is referred to as the �null direction�. Many lines of evidence including electrophysiological

and imaging studies indicate a role for both presynaptic and postsynaptic mechanisms in producing

direction selectivity (Figure 1.4A). A simple model for understanding the dendritic origin of direction

selectivity can be developed by delivering consecutive synaptic inputs along the length of a passive dendrite

[Rall, 1964]. An input sequence that begins proximally and ends distally will produce a smaller somatic

response compared to a sequence that begins distally and ends proximally. In the latter case, since

distal synaptic inputs are �ltered and delayed as they propagate towards the soma, the somatic response

from distal stimulation coincides with the response to proximal inputs, leading to stronger summation at

the soma. Others have suggested that asymmetries in excitatory and inhibitory inputs are responsible

for directional selectivity, whereby excitatory inputs are delivered ahead of inhibition in the preferred

direction, while inhibition interrupts excitation in the null direction [Taylor and Vaney, 2002]. More

recently, direct electrical recordings from the dendrites of direction-selective ganglion cells have also

revealed the involvement of active dendritic processing. Sodium-dependent dendritic spikes generated by

light bars moving in the preferred direction enable distal dendritic inputs to overcome severe dendritic

�ltering and in�uence somatic spiking [Sivyer and Williams, 2013]. While there is no consensus as to

the mechanisms underlying directional selectivity, the postsynaptic mechanisms described above are likely

to be involved and draw parallels with input sequence discrimination found in pyramidal neurons [Branco

et al., 2010] (Figure 1.4B). The ability to detect input sequences expands the repertoire of integrative

abilities of pyramidal neurons and may represent a widespread computational tool the brain employs.
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Figure 1.4: Directional selectivity and discrimination of input sequence mediated by dendrites. (A)
Dendritic spikes are generated in direction-selective retinal ganglion cells in response to moving visual
stimuli. Reconstructions of direction-selective ganglion cells showing the position of recording electrodes
and the preferred-direction movement of a light bar (yellow). The recorded dendritic subtree is coloured
in red. Voltage traces (right) show example simultaneous recordings from somatic (black) and dendritic
(red) electrodes. Traces are aligned to the peak of the somatic action potential. Dendritic spikes are
evoked and precede somatic action potentials when a moving light bar stimulus is presented on the
preferred side of the dendritic tree (positions 1 and 2). When the light bar is presented on the null side
(position 4), dendritic spikes are no longer observed before the somatic action potential. Adapted from
[Sivyer and Williams, 2013]. (B) Individual dendrites can discriminate the direction of synaptic input
patterns. A single dendrite of a layer 2/3 pyramidal neuron �lled with Alexa 594 dye is stimulated by two-
photon glutamate uncaging (top) and the somatic membrane potential response is recorded (bottom).
Uncaging locations along the dendrite are indicated by yellow dots. The uncaging locations are stimulated
either in a distal to proximal sequence (IN) or proximal to distal sequence (OUT) (middle). The IN
direction produces a larger membrane potential response at the soma compared to the OUT direction.
Adapted from [Branco et al., 2010].
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Another example of dendritic computation relevant to behaviour is sound localisation in mammals and

birds, which involves detection of di�erences in arrival time of sounds at the two ears. The neurons

involved in sound localisation respond only to very speci�c interaural time di�erences and have several

peculiar features that suggest a role for dendritic integration. These neurons have bipolar dendrites, with

each dendrite receiving inputs from one ear only [Stotler, 1953, Smith and Rubel, 1979]. Furthermore,

the dendritic length is inversely related to the preferred frequency of the neurons [Parks and Rubel,

1975, Smith and Rubel, 1979]. These neurons act as coincidence detectors, such that their �ring

is maximal when inputs onto both dendrites arrive simultaneously. In these neurons, segregation of

binaural inputs across the two dendrites enhances coincidence detection by reducing sublinear summation

that would occur if binaural inputs were colocalised to the same dendrite [Agmon-Snir et al., 1998].

Although likely to serve di�erent computational roles, coincidence detection mechanisms also exist in

cortical pyramidal neurons, such as burst �ring following pairing of back-propagating action potentials

with EPSPs in the distal apical dendrites [Larkum et al., 1999b, Stuart and Häusser, 2001] (Figure 1.5A).

Such a mechanism is likely to be at play in vivo in the generation of dendritic plateau potentials in layer 5

pyramidal neuron of the barrel cortex when vibrissal sensory input is coincident with activity in the primary

motor cortex [Xu et al., 2012] (Figure 1.5B). Thus coincidence detection enabled by dendrites appears

to be a ubiquitous computation that exists in many di�erent guises throughout the nervous system.
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Figure 1.5: Dendritic coincidence detection in vitro and during in vivo behaviour. (A) Temporal co-
incidence of a somatic action potential with an EPSP produces ampli�cation of the back-propagating
action potential. EPSPs were evoked at di�erent times relative to a somatic action potential. Dendritic
recording from distal apical dendrite of a layer 5 pyramidal neuron, 480 �m from the soma (top). The
amplitude of the peak dendritic response versus the time di�erence between the EPSP and onset of the
somatic action potential (bottom). Zero time denotes the time of the somatic action potential peak
and the smooth line is the �t with a skewed Gaussian. The peak dendritic response shows maximal
amplitude when the EPSP arrives in a short time window prior to initiation of the somatic action po-
tential. Adapted from [Stuart and Häusser, 2001] (B) Nonlinear dendritic integration of a sensory and
motor input during active whisking behaviour in mice. i. Head-�xed mice were trained to perform a
whisker-dependent object-localisation task under a two-photon microscope. Imaging was performed over
the super�cial barrel cortex, on distal dendrites of deep-layer neurons expressing GCaMP3 (top right).
Mice were required to actively whisk to locate a pole, and respond by licking (go) or withholding licking
(no go). High-speed videography enabled determination of the time when whisker-pole contacts occurred
(bottom). N.A., numerical aperture. ii. The �uorescence signals (reported as �F=F , bottom) re�ecting
changes in intracellular Ca2+ in the tuft branches (top and middle). iii. Fluorescence signals from trials
during which the whisker touched the pole. The sampling interval is denoted by the vertical blue bars.
iv. Imaging performed on a C2 barrel neuron showing averaged Ca2+ signals during C2 whisker touch
(Touch C2), touches from non-C2 whiskers (Touch non-C2) and no whisker touches. Large-amplitude
Ca2+ transients are preferentially generated during whisker touch events in neurons belonging to the
corresponding whisker barrel. Such responses were absent during passive whisker de�ection (data not
shown), suggesting a role for whisking during sensation in producing these regenerative dendritic Ca2+

events. Adapted from [Xu et al., 2012].
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Single neurons and network computation

Just as dendrites are the computational subunits of individual neurons, neurons are regarded as the basic

computational unit of the brain. As we have discussed previously, dendrites subserve many facets of

neuronal function by expanding the computational capabilities of individual neurons and enabling them

to engage in a range of behaviourally-relevant tasks [Lavzin et al., 2012, Xu et al., 2012, Smith et al.,

2013, Bittner et al., 2015]. The complexity of these tasks invites the question, what is the contribution of

individual neurons to the surrounding network activity or even behaviour [Wolfe et al., 2010]? Experimen-

tal evidence has demonstrated that a single cell can exert detectable e�ects on behaviour, from generation

of whisker de�ections [Brecht et al., 2004], sensory perception [Voigt et al., 2008, Houweling and Brecht,

2008, Doron et al., 2014], to modi�cation of brain state [Cheng-Yu et al., 2009]. Attempts to quantify

the in�uence of a single neuron's activity on the subsequent �ring of nearby neurons in vivo have also

revealed measurable e�ects. One study relying on existing anatomical data on neuron-neuron connectivity

used in vivo whole-cell patch clamp recordings to arrive at the estimate that a single additional spike in

an excitatory neuron causes 28 � 13 extra spikes among its postsynaptic targets [London et al., 2010].

In this study, the increase in local network activity was measured by an extracellular multichannel silicon

probe. A similar study investigated the e�ect of pyramidal neuron burst spiking on target excitatory and

inhibitory neurons estimated that each burst spiking event recruits approximately 14 pyramidal neurons

and 3-9 SOM interneurons within a radius of �100 �m [Kwan and Dan, 2012]. Collectively, these studies

indicate that the activity of individual neurons can signi�cantly modify the dynamics of the local network

and even generate a measurable behavioural response.

How have networks evolved to acquire such exquisite sensitivity to the activity of individual neurons? A

number of studies have revealed important insights as to how behavioural learning is e�ected at the single-

cell and even the single-spine level. Motor learning in mice leads to rapid formation of dendritic spines on

pyramidal neurons in the motor cortex [Xu et al., 2009], while spines, once formed, may persist for years,

suggesting a role in long-term memory storage [Yang et al., 2009]. In monkeys, a learning task involving a

repetitive motor behaviour induced formation of spines in clusters, mostly as neighbouring spine pairs [Fu

et al., 2012]. Neurons also show a remarkable ability to compartmentalise learning, with branch-speci�c

dendritic calcium spikes mediating long-term plasticity and segregation of di�erent learning experiences

to individual dendrites [Cichon and Gan, 2015]. While such studies hint that behavioural plasticity is

executed with remarkable precision within single neurons, a common feature of these studies is that there

are no constraints on the temporal structure of neural activity. This is in direct contrast to classical in

vitro STDP studies, for example, where the relative timing between a spike in the pre-synaptic neuron
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and a spike in the post-synaptic neuron is controlled with millisecond precision [Markram et al., 1997, Bi

and Poo, 1998]. Since the structure of neural activity is not constrained, the precise role of the activity

in driving plasticity is unclear.

Pathology

Although neuropathology is beyond the scope of this thesis, we conclude this chapter by providing a very

brief account of various pathologies involving changes to dendritic function to highlight the importance

of normal functioning dendrites. Pathological change to dendrites can occur in many ways, and can

feature alterations to dendritic structure, such as branching [Baloyannis, 2009], or alterations to dendritic

excitability, which is typically also associated with changes in ion channel function or expression [Poolos

and Johnston, 2012]. Given that spines are very delicate structures and play a central role in synaptic

integration as sites of excitatory synaptic inputs, it is not surprising that changes in spine number or

structure are also commonly observed in neurological disorders [Fiala et al., 2002, Blanpied and Ehlers,

2004, Penzes et al., 2011].

Some of the most well-studied syndromes with known dendritic pathologies are associated with mental

retardation; Down, Rett and fragile-X syndromes [Kaufmann and Moser, 2000]. Down syndrome, also

known as trisomy 21, is a genetic disorder associated with abnormal physical growth and intellectual

disability. Brain growth is also a�ected, with reductions in brain size and weight observed at the macro-

scopic level [Wisniewski, 1990], while at the microscopic level, reductions in spine densities in neurons

[Suetsugu and Mehraein, 1980, Takashima et al., 1981] and age-dependent abnormalities in dendritic

branching in various cortical areas have been documented [Becker et al., 1986, Schulz and Scholz, 1991].

Rett syndrome, another genetic disorder that almost exclusively a�ects young females, is characterised

by regression of language and motor skills, seizures, and development of stereotypical hand movements

[Hagberg et al., 1983]. Neurologically, the syndrome is associated with a low brain weight, reduced

dendritic branching, and a decrease in dendritic spines [Armstrong, 2005]. Fragile X syndrome is an in-

herited cause of intellectual disability that predominantly a�ects males and involves the Fragile X mental

retardation 1 (FMR1) gene on the X chromosome. Studies of Fragile X syndrome patients have provided

several observations of immature, long, and tortuous spines across di�erent cortical areas [Hinton et al.,

1991, Irwin et al., 2000, Irwin et al., 2001], pointing to a failure of normal spine maturation and/or

pruning during development. Dendritic channelopathies have also been implicated in Fragile X syndrome,

in particular dendritic HCN and BK channels, which play a role in producing sensory hyperexcitability in

Fmr1-/y mice [Zhang et al., 2014].
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The epilepsy disorders, which are characterised by a disturbance to the balance of excitatory and inhibitory

activity resulting in a hyperexcitable state, provide another instructive example of dendritic pathology.

This imbalance can arise in various ways, including alterations in (voltage-gated) ion channels and synaptic

transmission [Mulley et al., 2003, Heron et al., 2007], with pathologies involving dendrites in some cases

[Poolos and Johnston, 2012]. Various dendritic ion channels have been implicated in di�erent forms of

epilepsy. For example in absence epilepsy, it is thought that impaired dendritic HCN channels contribute

to enhanced neuronal excitability and burst �ring by amplifying dendritic calcium electrogenesis [Shah

et al., 2004, Strauss et al., 2004, Kole et al., 2007a]. Similarly, reduced availability of dendritic IA in

temporal lobe epilepsy leads to increased dendritic excitability in CA1 pyramidal neurons [Bernard et al.,

2004]. Altered GABAergic neurotransmission can also be involved. For example, in an experimental

model of temporal lobe epilepsy, dendritic GABAergic inhibition is impaired while somatic inhibition is

enhanced [Cossart et al., 2001, Wendling et al., 2002]. Structural derangements of dendrites have also

been noted in epilepsy, such as spine loss [Jiang et al., 1998, Swann et al., 2000] along with changes

in dendritic branching [Multani et al., 1994], although it is less clear if these changes are a cause or

consequence of epilepsy.

The examples above provide a small glimpse into how dendritic pathologies can contribute to altered

neurological function. The manifestations of these pathologies are varied and in many cases devastating to

those individuals a�ected, underscoring the importance of maintaining the integrity of dendritic structure

and function for ensuring the normal neurological status of the brain.
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1.2 Thesis outline

The purpose of this Introduction was to provide an overview of dendritic properties, and how they

contribute to the computational processes performed by neurons in vitro and in vivo. These issues are

central to the topic of this thesis, which is structured as follows. In Chapter 2 we summarise experiments

demonstrating sublinear dendritic integration in layer 2/3 pyramidal neurons of the binocular visual cortex,

and employ a reconstructed multi-compartment neuron model to explore the mechanisms underlying this

observation. In Chapters 3 and 4, we consider several issues that arise from Chapter 2. In Chapter 3 we

explore how voltage- and space-clamp errors a�ect the estimation of synaptic conductances in a simple

two-compartment neuron model. In Chapter 4, we investigate how the location of synaptic inhibition

a�ects neuronal integration and action potential generation. The focus of Chapter 5 is the description

of a novel method for 3D photo-stimulation with millisecond precision using two-photon microscopy

and its application for studying dendritic integration. Chapter 6 describes the development of a closed-

loop two-photon microscope system and demonstrates operant conditioning of single neuron activity,

allowing investigation of the population dynamics underlying behavioural learning. Finally, in Chapter 7,

we summarise the �ndings of the thesis and discuss their broader implications.
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Chapter 2

Sublinear binocular integration in layer

2/3 pyramidal neurons

2.1 Introduction

Neurons in the brain typically receive thousands of synaptic inputs, which are integrated in time and space

to generate an output signal. As most of these inputs are made on the dendritic tree, research over many

years has focused on understanding how the passive and active properties of dendrites in�uence synaptic

integration. A range of forms of synaptic integration have been described, from sublinear, as seen in

passive dendrites [Koch et al., 1983], to supralinear due to generation of dendritic spikes [Larkum et al.,

1999b, Losonczy and Magee, 2006, Schiller et al., 2000, Schiller et al., 1997, Stuart et al., 1997a]. More

subtle modi�cations of synaptic integration have also been described, due to activation of potassium,

HCN and persistent sodium channels [Ho�man et al., 1997, Magee and Johnston, 1995, Stuart and

Sakmann, 1995, Magee, 1999]. Evidence for these di�erent forms of synaptic integration is based largely

on experiments conducted in vitro. Much less is known about how neurons process synaptic inputs while

embedded in their network in vivo.

The cortex provides an ideal brain region where this issue can be addressed. Single neurons in sensory

cortical areas integrate inputs with de�ned spatial and temporal patterns depending on the characteris-

tics of the stimulus. These early computations are thought to be crucial to the processing of sensory

information. While there is emerging evidence that somatosensory stimulation can evoke active forms

of dendritic integration in vivo [Murayama et al., 2009, Xu et al., 2012, Lavzin et al., 2012, Palmer

et al., 2014], to what extent this can be generalised across di�erent sensory modalities is unclear. In

vitro work indicates that supralinear forms of synaptic integration require correlated activity clustered
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onto the same dendritic location or branch [Losonczy and Magee, 2006, Polsky et al., 2004]. In con-

trast, when inputs are dispersed onto di�erent branches or activated at di�erent times, linear or sublinear

forms of synaptic integration usually occur [Polsky et al., 2004, Cash and Yuste, 1998, Cash and Yuste,

1999]. It is only now becoming apparent how synaptic inputs, encoding speci�c sensory information,

are distributed at the dendritic level. Some evidence indicates that sensory information is processed by

dendrites in a dispersed manner [Chen et al., 2011, Varga et al., 2011], which is less likely to recruit

active dendritic processing, whereas other evidence supports clustered activation of synaptic inputs onto

the same dendrite [Kleindienst et al., 2011, Takahashi et al., 2012].

Here we use a combination of in vivo experiments and numerical simulations to examine the integration of

synaptic inputs in the binocular region of the primary visual cortex of the mouse. By de�nition, binocular

neurons encode information from the two eyes, providing a model system in which to study how two

de�ned sensory inputs are integrated at the single-cell level. In mice, it is thought that visual input from

the two eyes are separate until they converge in the binocular cortex [Coleman et al., 2009] (but see also

[Howarth et al., 2014]). Visual information from each eye passes from the retina along the retinogeniculate

projection to separate groups of neurons in the dorsal lateral geniculate nucleus (dLGN) of the thalamus.

These neurons then transmit the retinal input to layer 4 neurons in the primary visual cortex. Neurons in

the so-called binocular cortex respond to visual input to both eyes. Although extracellular recording has

provided a basic understanding of how simple and complex cells integrate binocular information [Ohzawa

and Freeman, 1986a, Ohzawa and Freeman, 1986b], this analysis is based exclusively on the �ring output

of neurons and therefore lacks information on the integration of the underlying synaptic responses. Using

whole-cell patch-clamp recording in vivo, in this Chapter we demonstrated that small synaptic inputs

from the two eyes are integrated linearly, whereas large inputs are integrated sublinearly [Longordo et al.,

2013]. Based on voltage-clamp data and compartmental modelling, we show that sublinear binocular

integration cannot be explained solely by nonlinear integration of excitatory inputs but requires balanced

recruitment of inhibition.
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2.2 Methods

In vivo physiology

The numerical simulations presented in this Chapter are based on experimental data obtained by Fabio

Longordo and Kaori Ikeda. Experimental procedures are detailed in [Longordo et al., 2013]. Brie�y, in

vivo whole-cell current-clamp and voltage-clamp recordings were obtained from layer 2/3 neurons in the

binocular region of C57BL/6 mice (8-10 weeks of age) during presentation of visual stimuli to each eye

separately or to both eyes together. Mice were maintained under urethane or iso�urane anaesthesia (0.5

to 1%) throughout the experiment. Visual stimuli were generated in MATLAB using the Psychophysics

Toolbox extension and consisted of sinusoidal gratings. A sliding median �lter of 10 ms width was ap-

plied to voltage traces to selectively remove action potentials while preserving the overall subthreshold

membrane potential dynamics. Currents evoked by the presentation of sinusoidal gratings were recorded

during somatic whole-cell voltage-clamp without compensation for series resistance at two holding poten-

tials. Excitatory and inhibitory conductances were estimated as previously described [Borg-Graham et al.,

1998, Cruikshank et al., 2007], after correction for the junction potential (�10 mV) and series resistance
and assuming reversal potentials for excitation and inhibition of 0 mV and �80 mV, respectively.

Model

Computer simulations were performed using the NEURON simulation environment on a Linux desktop

computer running Ubuntu 12.04 LTS. A multicompartment model was obtained by reconstructing a

biocytin-�lled layer 2/3 pyramidal neuron. The reconstructed neuronal model consisted of 136 com-

partments, subdivided into a total of 1,021 segments. All dendritic branch diameters were scaled by

a factor of 1.3 to account for cell shrinkage. Speci�c membrane resistance (Rm), capacitance (Cm; 1

�F/cm2) and internal resistance (100 
 cm) were uniformly distributed throughout the model. Spines

were incorporated into the model by decreasing Rm and increasing Cm by a factor of 2 in distal dendritic

compartments (>40 �m from the soma). In current clamp simulations the resting membrane potential

was set to �70 mV and Rm to 8,000 
/cm2, giving an apparent membrane time constant (8 ms) and

input resistance (80 M
) similar to those observed for this cell at the resting membrane potential in

vivo. In voltage-clamp simulations the resting membrane potential was set to �52 mV to match hold-

ing currents recorded at hyperpolarised and depolarised potentials in these experiments, which used a

caesium-based internal solution. No voltage-gated ion channels were included in the model. The series

resistance of the somatic voltage-clamp `electrode' in voltage-clamp simulations was set to 35 M
 to

match the average series resistance in experimental voltage-clamp recordings.
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To simulate synaptic input excitatory and inhibitory inputs were placed on the soma and dendrites in

di�erent con�gurations. In models with only excitatory input, synapses were distributed on basal dendrites

in di�erent spatial con�gurations. In the dispersed con�guration, contralateral and ipsilateral inputs were

randomly distributed onto all dendritic branches. In the partitioned con�guration, contralateral and

ipsilateral inputs were distributed onto di�erent dendritic branches such that no single branch contained

both inputs. In the clustered con�guration, all contralateral and ipsilateral inputs were positioned on the

same, single dendritic branch. The number of synapses in the di�erent models was 500 (dispersed), 550

(partitioned) and 700 (concentrated), and their activation was varied at rates between 1 Hz (trough)

and 80 Hz (peak). Temporal correlations between synaptic inputs were introduced by using a common

Poisson input train to drive sets of 50 synapses. This was the highest temporal correlation possible

while still maintaining modulated responses similar to those seen experimentally. Common input trains

were either restricted to within the contralateral and ipsilateral pools (monocular correlation) or shared

between the pools (binocular correlation). In these simulations, the number and distribution of excitatory

synapses was identical to that in the dispersed con�guration.

In models with dendritic inhibition, 1000 excitatory and 300 inhibitory synapses were distributed randomly

throughout the basal dendrites, with the density of inputs on a selected segment proportional to its

surface area. Models with somatic inhibition contained 800 excitatory synapses distributed throughout

the basal dendrites plus 180 inhibitory synapses at the soma. Excitatory inputs representing contralateral

and ipsilateral inputs were sampled from the same pool (common pool model) or segregated into two

pools with 60% classi�ed as contralateral and 40% classi�ed as ipsilateral (segregated model). As seen

in the Results, there was essentially no di�erence between common pool and segregated models. The

conductance change at excitatory synapses had an exponential rise and decay of 0.2 and 2 ms, respectively,

a peak of 150 pS and a reversal potential of 0 mV. Using these parameters, the average unitary EPSP

amplitude at the soma during activation of inputs randomly distributed throughout basal dendrites was

0:164� 0:018 mV, consistent with previous experimental �ndings [Silver et al., 2003]. The conductance

change at inhibitory synapses had an exponential rise and decay of 0.2 and 10 ms, respectively, a peak of

150 pS and a reversal potential of �80 mV. In simulations with current-based synapses, `excitatory' inputs
had an amplitude of �2:8 pA, whereas `inhibitory' inputs had an amplitude of +1:1 pA in the models with

dendritic inhibition and +0:7 pA in models with somatic inhibition, with only excitatory inputs activated

at hyperpolarised potentials and only inhibitory inputs activated at depolarised potentials. To simulate

the response to drifting gratings, synapses were activated in a sinusoidal manner (2 Hz modulation) by

independent, nonhomogeneous Poisson processes to match experimentally recorded currents and voltages
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during visual input. In the common pool model, excitatory inputs were activated at rates between 0.54

(trough) and 27.54 Hz (peak) during contralateral input, between 0.36 and 18.36 Hz during ipsilateral

input, and between 0.9 and 45.9 Hz during binocular input. In the segregated pool model, the di�erent

sets of contralateral and ipsilateral synapses were activated at rates between 0.9 and 45.9 Hz. The

e�ective probability of release was 1.
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2.3 Results

Binocular synaptic inputs sum sublinearly

We �rst summarise the key experimental results relevant to the numerical simulations conducted, which

represent the candidate's main contribution to this study. Integration of binocular inputs was investigated

by performing in vivo whole-cell current-clamp recordings from layer 2/3 pyramidal neurons in primary

visual cortex of anaesthetised adult mice. Visual stimuli consisting of sinusoidal drifting gratings were

generated on a monitor and presented individually to each eye alone or to both eyes together using

computer-controlled motorised eye shutters (Figure 2.1A). To extract the underlying synaptic response,

voltage traces were median-�ltered to remove action potentials. Median-�ltered voltage responses were

averaged across trials, as well as over a single cycle of the visual stimulus, �tted with a sinusoidal function

and the peak (Vpeak), mean (Vmean), and amplitude of sinusoidal modulation (Vmodulation) quanti�ed

(Figure 2.1B). Inputs from the contralateral and ipsilateral eyes added linearly in cells where the expected

linear sum was small; however, they added sublinearly in cells where the expected linear sum was large

(Figure 2.1C,D). Overall, at the preferred orientation, we observed sublinear integration of binocular

synaptic inputs when the peak of the expected linear sum was larger than approximately 15 mV (Figure

2.1E), with the extent of sublinear integration increasing with the amplitude of the expected linear sum.

This was also the case when we pooled all the data across all grating directions (Figure 2.1F).

Modelling sublinear binocular integration

We �rst simulated binocular integration of synaptic inputs in a morphologically realistic model of a layer

2/3 pyramidal neuron to determine the extent with which nonlinear interactions between ipsilateral and

contralateral excitatory inputs alone contributes to sublinear integration of binocular inputs. As the extent

of sublinear summation depends on the relative location of synaptic inputs, we generated models with

di�erent spatial distributions of excitatory input: either dispersed randomly throughout the entire basal

dendritic tree, partitioned into di�erent basal dendritic regions or concentrated onto a single dendritic

branch (Figure 2.2A). As observed experimentally, small contralateral and ipsilateral responses summed

linearly, whereas larger responses summed sublinearly (Figure 2.2B,C). The extent of sublinear binocular

integration was greatest when contralateral and ipsilateral synapses were concentrated onto a single

dendritic branch; however, even in this extreme case, sublinear integration was substantially less than

that observed experimentally (Figure 2.2C).

32



Results Chapter 2. Sublinear binocular integration

Time (s)

0.2 0.40

0

10

20

30

S
y
n
a
p
ti
c
re
s
p
o
n
s
e
(m
V
)

Cell 1

Linear sum < 15 mV

Time (s)

0.2 0.40

Cell 2

Linear sum ~ 15 mV

Time (s)

0.2 0.40

Cell 3

Linear sum > 15 mV

Both
Linear sum

Vpeak linear sum (mV)

V
p
e
a
k
b
o
th
(m
V
)

0 10 20 30
0

10

20

30
Preferred
Non preferred

V
p
e
a
k
b
o
th
(m
V
)

Vpeak linear sum

*

0

10

20

30

0 10 20 30

**
** *

10 mV

0 0.2 0.4

Time (s)

Vmean

Vmodulation

Vpeak

Synaptic response

single-cycle average

20 mV

0.5 s
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Figure 2.1: Summation of binocular inputs at the preferred orientation. (A) Top: the experimental setup
during presentation of the same visual stimulus selectively to each eye alone or to both eyes together,
using eye shutters. Bottom: overlaid trials (n = 3) of membrane potential during baseline (grey bar,
top) and in response to drifting gratings at the preferred orientation (dotted bars, top) during stimulation
of the ipsilateral (left) or contralateral eye (middle) and both eyes together (right) with corresponding
colour-coded median-�ltered average responses. Dashed grey line indicates average membrane potential
during baseline. (B) Single-cycle average of a median-�ltered synaptic response (light green) �tted with
a sinusoidal function (black). The peak (Vpeak), mean (Vmean) and modulation component (Vmodulation)
are indicated. (C) Single-cycle synaptic response to stimulation of both eyes (light green) superimposed
with the linear sum of contralateral and ipsilateral responses (pink) for three cells with di�erent expected
linear sums. Data �tted with sinusoids (dark green and purple). (D) Vpeak of synaptic responses to
stimulation of both eyes at the preferred orientation at either the preferred or non-preferred direction
versus the corresponding expected linear sum (40 responses, n = 20 cells). Dashed diagonal line indicates
linear summation. (E) Same data as in D in 5-mV bins for the expected linear sum and expressed as an
average � s.e.m. (n = 20 cells; *P < 0:05, **P < 0:01, ***P < 0:001, two-way ANOVA, Bonferroni
post-test). (F) Pooled data during stimulation of both eyes together. Vm binned in 10-ms epochs; 12,000
time bins from 240 averaged responses to 12 stimulus directions in 20 simple cells. Small grey symbols
indicate individual data points. Large open symbols indicate average � s.e.m. after binning in 2.5 mV
increments. Dashed diagonal line indicates linear summation.
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Next, we tested the impact of temporal correlations between excitatory inputs. Temporal correlations

were made either within (monocular correlation) or between (binocular correlation) contralateral and ip-

silateral inputs by using the same Poisson input train to drive multiple sets of synapses in the dispersed

model (Figure 2.2D). We characterised the extent of these correlations by comparing the number of

activated excitatory inputs in di�erent time windows (Figure 2.2E). As expected, the introduction of

temporal correlations increased the proportion of synapses that were simultaneously activated; however,

the di�erence between uncorrelated and correlated models rapidly decayed when we considered corre-

lations over longer time windows, still relevant for nonlinear interactions (Figure 2.2E,F). As a result,

introduction of temporal correlations either within or between contralateral and ipsilateral inputs did not

appreciably a�ect the degree of sublinear integration of excitatory inputs (Figure 2.2G). Together, these

simulations reveal that nonlinear interactions between excitatory inputs alone are not su�cient to explain

the extent of sublinear binocular integration observed experimentally. This suggests that other factors

are likely to be involved in producing sublinear integration, such as inhibitory synaptic input.

The role of inhibition in sublinear binocular integration

Since excitatory input alone in our model could not produce the same degree of sublinear integration we

observed experimentally, we next investigated the role of synaptic inhibition. Summation of excitatory

and inhibitory postsynaptic currents (EPSCs and IPSCs) during binocular stimulation was investigated

using somatic whole-cell voltage-clamp recordings. EPSCs recorded at the predicted reversal potential

for inhibition (�80 mV) during stimulation of both eyes were orientation tuned (Figure 2.3A,B), con-

sistent with previous data in mice during monocular stimulation [Tan et al., 2011, Atallah et al., 2012].

Notably, EPSCs evoked by stimulation of both eyes together were similar in magnitude to the linear

sum of EPSCs evoked during stimulation of each eye alone (Figure 2.3C). Similarly, IPSCs recorded at

depolarized potentials during stimulation of both eyes together were well predicted by the linear sum of

IPSCs evoked by stimulation of each eye alone (Figure 2.3D). These data indicate that inhibitory and

excitatory conductance changes sum essentially linearly, arguing against the idea that sublinear integra-

tion of voltage responses during binocular stimulation is presynaptic, resulting from reduced excitation or

increased inhibition.
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Figure 2.2: Interactions between excitatory synapses alone cannot account for sublinear integration of
binocular inputs. (A) Dendritic location of contralateral (blue symbols) and ipsilateral (red symbols)
excitatory synapses on the basal dendrites of the layer 2/3 pyramidal neuron model. Synapses were
distributed in three di�erent spatial con�gurations. (B) Somatic current-clamp simulations of synaptic
responses during activation of contralateral and ipsilateral inputs together at di�erent intensities to
evoke responses of di�erent amplitude (linear sum <15 mV, �15 mV and >15 mV) for the di�erent
con�gurations. Corresponding expected linear sums are superimposed. (C) Simulated synaptic response
amplitude during activation of contralateral and ipsilateral inputs together plotted versus the linear sum
for the di�erent models together with experimental data (open symbols, from Figure 2.1F). (D) Raster
plots of uncorrelated (left) and correlated (right) spike trains driving contralateral (blue) and ipsilateral
(red) sets of synapses during binocular stimulation. Correlations were introduced by using common
Poisson trains to drive sets of 50 synapses. (E) Peristimulus time histograms (PSTHs) of the spike
trains shown in d averaged over six stimulation cycles for the indicated time windows for uncorrelated
(left) and binocularly correlated (right) inputs. (F) Cross-correlogram (1-ms bins) averaged across all
pairs of input spike trains for uncorrelated and binocularly correlated spike trains. (G) Simulated synaptic
response amplitude during activation of contralateral and ipsilateral sets of inputs in the dispersed model
versus the corresponding expected linear sums for the uncorrelated, monocularly correlated and binocularly
correlated models, together with the experimental data (open symbols, from Figure 2.1F). Orange, red
and green lines are essentially superimposed.
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The relationship between excitation and inhibition in single cells during binocular stimulation at the

preferred orientation was studied by estimating excitatory (ge) and inhibitory (gi) conductances using

published methods [Borg-Graham et al., 1998, Cruikshank et al., 2007]. This analysis revealed that ge

and gi in individual neurons increased in a proportional manner during stimulation of both eyes together

(Figure 2.3E; average correlation = 0:95 � 0:01, n = 9 cells; P < 0:01). The ratio of inhibition

to excitation (gi=ge), estimated from the slope of linear �ts to data from di�erent cells, indicated that

inhibition and excitation were recruited in a balanced manner, with an average ratio close to 1 (1:12�0:18;
n = 9). Consistent with this analysis, the average reversal potential of evoked synaptic currents during

binocular stimulation was approximately halfway between the predicted reversal potential for excitation

and inhibition (�45:8� 3:7 mV; n = 9). These data indicate that excitation and inhibition are recruited

in a balanced manner during binocular visual input.

As one would expect owing to space-clamp errors associated with voltage-clamping neurons with complex

dendritic trees [Williams and Mitchell, 2008], the real excitatory and inhibitory conductances required to

match the experimental data were substantially larger than that estimated from somatic voltage-clamp,

particularly in models with dendritic inhibition (Figure 2.4). For example, in the dendritic inhibition mod-

els, the real excitatory and inhibitory conductances (Figure 2.4B,F) were signi�cantly greater than the

corresponding measured conductances (Figure 2.4A,E). In contrast, in the somatic inhibition models,

the real inhibitory conductances were closely matched to the measured inhibitory conductances, while

the real excitatory conductances were again greater than the measured excitatory conductances (Figure

2.4C,D,G,H). There was essentially no di�erence between the common pool (Figure 2.4B,D) and segre-

gated models (Figure 2.4F,H) in terms of the amount of excitation and inhibition required to match the

experimental observations. Proportionally more inhibition was required to simulate the experimentally

recorded inhibitory-to-excitatory conductance ratio (gi=ge = 1:12) in models with dendritic inhibition

(gi=ge = 1:22 � 1:23, Figure 2.4B,F), whereas the opposite situation was observed in models with so-

matic inhibition (gi=ge = 0:92, Figure 2.4D,H). This is presumably because the impact of inhibition,

as recorded from the soma, is greater when the inhibition is located at the soma. These simulations

highlight issues with the interpretation of excitatory and inhibitory conductance estimates from somatic

voltage-clamp data in neurons with dendrites. We will explore this further in Chapter 3.
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Figure 2.3: Recruitment and summation of excitation and inhibition during binocular integration. (A)
EPSCs recorded at �80 mV in response to stimulation of both eyes with drifting gratings at six di�erent
orientations. (B) Normalized EPSC amplitude (� s.e.m.; averaged over the duration of the stimulus)
during stimulation of both eyes versus stimulus orientation (preferred orientation de�ned as 0�; n = 12

cells). Data �tted with a Gaussian. (C,D) Top: single-cycle EPSC (C; recorded at �80 mV) and IPSC
(D; recorded at +20 mV) in response to stimulation of both eyes at the preferred orientation together
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at 0.5 nS increments for ge and expressed as average � s.e.m. Coloured lines represent linear �ts to each
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Results Chapter 2. Sublinear binocular integration

Figure 2.4: Errors associated with somatic voltage clamp estimates of the inhibition to excitation ratio
(gi=ge) (A) Left: Estimate of excitatory (ge, green trace) and inhibitory (gi, orange trace) conductance
changes during a single cycle of binocular visual stimulation in the common-pool model with dendritic
inhibition. Right: Plot of gi versus ge estimated from voltage-clamp simulation in the common-pool
model with dendritic inhibition. Data �tted with a linear regression (light blue line, slope = 1.13). (B)
Left: The real ge (green trace) and gi (orange trace) used in the common-pool model with dendritic
inhibition during a single cycle of binocular visual stimulation. Right: Plot of real gi versus ge used in the
common-pool model with dendritic inhibition. Data �tted with a linear regression (light blue line, slope
= 1.22). (C) As for A, but for the common-pool model with somatic inhibition. Data �tted with a linear
regression (pink line, slope = 1.13). (D) As for B, but for the common-pool model with somatic inhibition.
Data �tted with a linear regression (pink line, slope = 0.92). (E) As for A, but for the segregated model
with dendritic inhibition. Data �tted with a linear regression (light blue line, slope = 1.13). (F) As for
B, but for the segregated model with dendritic inhibition. Data �tted with a linear regression (light blue
line, slope = 1.23). (G) As for C, but for the segregated model with somatic inhibition. Data �tted with
a linear regression (pink line, slope = 1.13). (H) As for D, but for the segregated model with somatic
inhibition. Data �tted with a linear regression (pink line, slope = 0.92).
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Chapter 2. Sublinear binocular integration Results

That EPSCs and IPSCs sum essentially linearly during binocular stimulation suggests that sublinear

integration of binocular synaptic potentials has a postsynaptic origin. To investigate this further, we

simulated visual responses in which contralateral and ipsilateral excitatory and inhibitory inputs were

recruited linearly in a balanced manner, to match our experimental observations (Figure 2.3E). We

envisaged two alternate scenarios. In one scenario, contralateral and ipsilateral inputs converged upstream

from layer 2/3, for example in layer 4 (Figure 2.5A, left). In the second scenario, separate contralateral

and ipsilateral inputs converged onto layer 2/3, but originated from layer 4 neurons with di�erent ocular

dominance (Figure 2.5A, middle) [Medini, 2011], whereas in the third scenario they arise via di�erent

thalamic or hemispheric pathways (Figure 2.5, right) [Restani et al., 2009]. We simulated these two

scenarios by sampling ipsilateral and contralateral excitatory inputs either from a common pool or from

two segregated pools of synapses distributed randomly onto basal dendrites (Figure 2.5B, top). Inhibition

was modelled by distributing inhibitory inputs randomly onto the basal dendrites or placed at the soma

(Figure 2.5B, bottom). We simulated our voltage-clamp data (Figure 2.3) using a realistic value of

the somatic series resistance (35 M
) and adjusted the resting membrane properties of the model to

match the average holding currents recorded at hyperpolarised and depolarised potentials. Excitatory

and inhibitory inputs were randomly activated by means of sinusoidally modulated independent Poisson

processes in a balanced manner. The number of activated excitatory and inhibitory synapses was adjusted

in the di�erent models so that the magnitude and ratio of inhibitory to excitatory synaptic conductances

estimated from these somatic voltage-clamp simulations was similar to that observed experimentally

(Figure 2.6; compare with Figure 2.3).

Linear recruitment of ipsilateral and contralateral excitatory inputs, separately or together in a balanced

manner with inhibition, generated excitatory and inhibitory currents that summed in a manner similar

to that observed experimentally (Figure 2.6A). Essentially no di�erence in voltage-clamp responses at

the soma was observed in models with common compared to segregated ipsilateral and contralateral

excitatory inputs (Figure 2.6A). These simulations predicted a small amount of sublinear summation

of excitatory and inhibitory currents during large responses, which was absent in models with current-

based synapses (Figure 2.6B), indicating that it results from poor voltage or space clamp. The capacity

of this linear recruitment model to accurately predict our voltage-clamp data further substantiates our

conclusion that sublinear integration of voltage responses arises postsynaptically and is not due to a

decrease in excitatory drive or an increase in inhibitory drive during large binocular responses.
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Chapter 2. Sublinear binocular integration Results

We next used these models to simulate voltage responses at the soma during stimulation of contralat-

eral and ipsilateral inputs alone or together. As in the simulations using only excitatory synapses, the

passive properties of the model were matched to those observed experimentally at the resting membrane

potential during current-clamp recordings. These simulations accurately predicted the extent of sublinear

integration of voltage responses observed experimentally during binocular stimulation (Figure 2.6C,D).

Notably, we were not able to distinguish between models with common or segregated ipsilateral and con-

tralateral input, indicating either model is valid. Furthermore, we could not distinguish between models

with somatic or dendritic inhibition.
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2.4 Discussion

Here we describe the integration of binocular synaptic inputs in layer 2/3 pyramidal neurons from mouse

primary visual cortex. The main experimental �nding is that small inputs from the two eyes are integrated

linearly, whereas large inputs are integrated sublinearly [Longordo et al., 2013]. Sublinear integration

depends solely on the amplitude of the incoming inputs and is not restricted to information encoding par-

ticular aspects of the visual stimulus, such as orientation, direction, contrast or binocular phase disparity.

Furthermore, sublinear binocular integration is not a result of network interactions upstream from layer

2/3 pyramidal neurons but occurs postsynaptically owing to nonlinear interactions between excitatory

and inhibitory inputs recruited in a balanced manner. These experimental �ndings formed the basis of

our numerical simulations.

Previous work in vitro has indicated that neurons can integrate inputs in sublinear, linear and supralinear

regimes [Larkum et al., 1999b, Losonczy and Magee, 2006, Polsky et al., 2004, Williams and Stuart,

2002, Cash and Yuste, 1999, Cash and Yuste, 1998, Branco and Häusser, 2011, Krueppel et al., 2011,

Enoki et al., 2002]. Synaptic inputs in these studies were activated using non-physiological stimuli under

arti�cial conditions. How the di�erent types of integration observed in these in vitro studies relate to

synaptic integration in vivo during encoding of physiologically relevant information is unclear. Integration

of binocular visual input in the visual cortex provides an ideal system for studying this issue. In mice,

as in higher mammals including humans, visual inputs from the two eyes terminate in distinct and well-

de�ned areas of the thalamus before passing on to primary visual cortex, where they converge onto

single neurons [Jaubert-Miazza et al., 2005, Muir-Robinson et al., 2002, Ziburkus and Guido, 2006]. By

presenting the two eyes with independently controlled visual stimuli, it is possible to see how distinct

aspects of visual information are integrated at the single-cell level. Under the experimental conditions

described in [Longordo et al., 2013], it was found that binocular inputs were integrated either linearly or

sublinearly even with small amplitude responses, but not supralinearly, suggesting that active dendritic

mechanisms are not recruited during binocular integration. Notably, sublinear integration of binocular

inputs depended exclusively on the amplitude of the incoming monocular responses and was not related

to speci�c aspects of the visual information. It therefore represents a general mode of integration in

these neurons that is likely to occur under a range of stimulus conditions. The linear and sublinear

modes of dendritic integration that we observed are consistent with data showing that integration of

visual information in layer 2/3 pyramidal neurons occurs by means of summation of distributed rather

than clustered inputs [Jia et al., 2010]. In contrast, more recent studies have demonstrated the existence
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of supralinear dendritic integration in layer 2/3 pyramidal neurons in vivo [Smith et al., 2013, Palmer

et al., 2014]. Dendritic NMDA receptor-mediated and Na+ spikes are generated in monocular layer 2/3

pyramidal neurons by visually-evoked synaptic inputs, which in turn enhance the orientation selectivity of

these neurons [Smith et al., 2013]. Similar dendritic NMDA spikes in the tufts of layer 2/3 pyramidal

neurons in vivo occur spontaneously and can be evoked by somatosensory stimulation [Palmer et al.,

2014]. Evidence also exists for supralinear dendritic integration of somatosensory information in the

dendrites of cortical layer 5 pyramidal [Murayama et al., 2009, Palmer et al., 2014, Xu et al., 2012]

and layer 4 spiny stellate neurons [Lavzin et al., 2012]. Our results along with previous studies indicate

that while sublinear and supralinear dendritic integration modes exist in vivo and may be widespread

phenomena in the cortex, it remains unclear the conditions under which di�erent integration modes are

utilised. While at the soma binocular integration was sublinear, it is possible that supralinear forms

of integration generated by dendritic spikes occur at dendritic locations during both monocular and/or

binocular synaptic input.

Although it is well documented that the convergence of the inputs from the two eyes �rst happens at

the level of the cortex [Jaubert-Miazza et al., 2005, Muir-Robinson et al., 2002, Ziburkus and Guido,

2006], whether this convergence happens at the level of layer 2/3 pyramidal neurons is not known.

Preprocessing of binocular input upstream of layer 2/3 pyramidal neurons could, in principle, explain the

observed sublinear integration. This could occur through a decrease in excitatory input from layer 4 during

strong binocular input, as a result of increased inhibition within layer 4. Alternatively, there could be an

increase in inhibitory input to layer 2/3 neurons during large binocular responses, as a result of enhanced

recruitment of feed-forward inhibition. The voltage-clamp data argue against these possibilities by showing

that during binocular integration both excitatory and inhibitory currents sum linearly (Figure 2.3C,D).

Furthermore, the voltage clamp data were well described by models using linear recruitment of excitatory

and inhibitory input (Figure 2.6A). The capacity of this `postsynaptic' model to accurately reproduce

the extent of sublinear binocular integration observed experimentally (Figure 2.6C,D) strengthens the

conclusion that sublinear integration is due to nonlinear interactions within layer 2/3 pyramidal neurons.

Notably, this mechanism depends exclusively on the number of activated inputs and not on their origin.

Indeed, our simulations showed that the extent of sublinear integration observed experimentally was

independent of whether binocular inputs were integrated upstream of layer 2/3 neurons (common pool

model) or arose through segregated ipsilateral and contralateral inputs (segregated model).

During binocular stimulation, inhibition was recruited in a proportional manner with excitation, with
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an inhibitory-to-excitatory conductance ratio close to 1. Models with only excitatory synapses could

not reproduce the extent of sublinear integration observed experimentally, even when we pushed these

models using extreme scenarios with all excitatory inputs concentrated on the same branch or activated

with high instantaneous temporal correlations. We conclude, therefore, that the recruitment of balanced

inhibition is an essential component of binocular sublinear integration. Addition of inhibition makes the

net reversal potential of the binocular response more hyperpolarized than with excitation alone. This

increases the impact of changes in membrane potential on the driving force for current �ow and thereby

enhances sublinear integration. Together with other data [Haider and McCormick, 2009, Yizhar et al.,

2011], these �ndings provide further evidence that balanced recruitment of excitation and inhibition is

critical for sensory processing. Moreover, our simulations show that postsynaptic sublinear integration is

a robust mechanism that, in comparison to supralinear dendritic computations, is not dependent on the

precise location of incoming excitatory and inhibitory inputs

Future directions One of the key observations in our study is that inhibition is critical for sublinear

integration of binocular inputs. Recent �ndings in mouse primary visual cortex have suggested that

distinct subclasses of cortical interneurons, targeting speci�c neuronal compartments, are responsible

for mediating di�erent transformations of the input/output relationship of pyramidal neurons [Atallah

et al., 2012, Lee et al., 2012b, Wilson et al., 2012]. Although our simulations do not allow us to

identify the location of inhibition recruited during binocular integration, the observed impact of binocular

sublinear integration on orientation tuning is very similar to that found during optogenetic activation of

parvalbumin-expressing interneurons [Atallah et al., 2012]. This may suggest that inhibition recruited

during binocular integration is largely somatic in origin. Future studies will be required to resolve the

speci�c interneuron subtypes recruited during binocular integration and the role of these neurons in depth

perception and stereopsis.
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Chapter 3

Voltage- and space-clamp errors in the

estimation of synaptic conductances

3.1 Introduction

Understanding the synaptic conductances driving action potential generation in neurons provides a win-

dow into the dynamics of the surrounding network. There are a number of challenges associated with

accurately estimating synaptic conductances using the voltage clamp technique. The majority of synaptic

inputs to neurons occur on their dendrites, distant from the typical somatic location of electrophysio-

logical recordings. Owing to a leaky membrane and �ltering e�ects, voltage changes do not propagate

with full �delity between the dendrites and the soma resulting in inadequate voltage- and space-clamp.

In an intact cortical network, inhibitory inputs are also dynamically balanced by excitatory inputs, which

means that inhibition and excitation need to be estimated concurrently. This presents further challenges

as the presence of additional conductances produces a shunting e�ect, not dissimilar from the e�ect of

increasing the leak conductance.

Despite these obstacles, the somatic voltage-clamp has become one of the most popular methods for

investigating the dynamics of synaptic responses both in vitro and in vivo [Borg-Graham et al., 1998, Shu

et al., 2003b, Wehr and Zador, 2003, Haider et al., 2006, Monier et al., 2008]. In comparison, there

is a relative scarcity of studies that have investigated the impact of poor voltage-control due to cable-

�ltering, or so-called space-clamp errors, on conductance estimates obtained. One in vitro study directly

measured the quality of dendritic voltage control obtained by somatic voltage clamp and reported that

50% of voltage control can be lost at distances as close as just 60 �m from the soma at room temperature

[Williams and Mitchell, 2008]. These errors are only expected to worsen in in vivo settings, owing to
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the lower quality of whole-cell recordings obtained and associated higher series resistance, as well as

the higher conductance state of neurons in an intact brain [Destexhe et al., 2003], which compounds

dendritic �ltering.

Given the widespread use of the voltage-clamp technique for dissecting the synaptic conductances un-

derlying cortical activity, we set out to clarify how voltage- and space-clamp errors a�ect the estimation

of coincident excitatory and inhibitory synaptic inputs.

Estimating synaptic conductances

Here we review two di�erent approaches for estimating synaptic conductances - the Borg-Graham method

[Borg-Graham et al., 1998] and a class of statistical methods [Pospischil et al., 2009]. Both approaches

begin with a biophysical description of the membrane potential dynamics of a single compartment, passive

neuron model

Im = C
dV

dt
+ gpas (V � Epas) + Isyn; (3.1.1)

where V is the membrane potential, C is the membrane capacitance, gpas is the leak conductance, Epas

is the leak reversal potential and Im is the total membrane current. The synaptic current, Isyn, is given

by Isyn = gsyn (V � Esyn), where gsyn and Esyn are the net conductance and net reversal potential of the

synaptic current, respectively. The synaptic conductance can be further decomposed into an excitatory

(ge) and an inhibitory (gi) component, such that

gsyn(t)(V � Esyn) = ge(t)(V � Ee) + gi(t)(V � Ei); (3.1.2)

gsyn(t) = ge(t) + gi(t); (3.1.3)

Esyn(t) =
ge(t)Ee + gi(t)Ei

ge(t) + gi(t)
: (3.1.4)

where Ee and Ei are the reversal potentials of the excitatory and inhibitory inputs, respectively.

Using these equations and given values for Ee and Ei, we can derive expressions for ge and gi as functions

of gsyn and Esyn

gi(t) =
gsyn(t)[Ee � Esyn(t)]

Ee � Ei

; (3.1.5)

ge(t) = gsyn(t)� gi(t): (3.1.6)
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The Borg-Graham method [Borg-Graham et al., 1998]

In voltage-clamp, the membrane potential is held at a constant voltage (Vhold), hence
dV
dt = 0. As a

result, the current through the electrode (Ihold) is given by

Ihold = Ipas + Isyn = gpas (Vhold � Epas) + gsyn (Vhold � Esyn) ; (3.1.7)

where Ipas = gpas (Vhold � Epas) and Isyn = gsyn (Vhold � Esyn) are the passive and synaptic contributions

to Ihold, respectively.

In the baseline state, where it is assumed there is no synaptic activity (Isyn = 0), the holding current is

made up entirely of the passive component

Ihold;rest = Ipas = gpasVhold � gpasEpas: (3.1.8)

Thus, gpas is the slope of the (Ihold;rest vs Vhold) relationship, which has a vertical intercept �gpasEpas.

That is, gpas and Epas are easily determined by the linear relationship between Ihold;rest and Vhold.

In the active state, when synapses are being stimulated, the holding current includes the synaptic com-

ponent as well

Ihold;act = Ipas + Isyn = (gpas + gsyn) Vhold � (gpasEpas + gsynEsyn) : (3.1.9)

Here, (gpas + gsyn) is the slope of the (Ihold;act vs Vhold) relationship, which has vertical intercept

� (gpasEpas + gsynEsyn). Since gpas was determined from the linear relation in Equation (3.1.8), gsyn

is obtained by subtracting gpas from the slope of Equation (3.1.9), and Esyn is subsequently calculated

from the vertical intercept of Equation (3.1.9). Once gsyn and Esyn are known, gi and ge are obtained

from Equations (3.1.5) and (3.1.6).

The Borg-Graham method has been used extensively to estimate the excitatory and inhibitory synaptic

conductances underlying spontaneous and evoked network activity both in vitro and in vivo, for example

during cortical Up and Down states [Shu et al., 2003b, Haider et al., 2006] and visual stimulation

[Anderson et al., 2000a, Longordo et al., 2013].
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Statistical methods [Pospischil et al., 2009]

Statistical methods in general (reviewed in [Pospischil et al., 2009]), take as their starting point Equation

(3.2.1) i.e. a cell in current-clamp con�guration. Then by making certain assumptions about the statistical

form of ge(t) and gi(t), it is possible to estimate the parameters of the statistical model from V (t).

For example, a classic statistical model used to describe variability in synaptic input that gives rise to

membrane potential �uctuations is the Ornstein-Uhlenbeck process (OUP; [Uhlenbeck and Ornstein,

1930])

dgfe;ig

dt
=

1

�fe;ig

[
gfe;ig(t)� gfe;ig;0

]
+

√
2�2

fe;ig

�fe;ig
�fe;ig(t); (3.1.10)

where ge;0 and gi;0 are the average conductances, �e and �i are time constants, �e and �i are the

standard deviation of the excitatory and inhibitory noise, and �e(t) and �i(t) are independent Gaussian

white noise processes with mean zero and standard deviation one [Destexhe et al., 2001]. The utility of

the OUP is in its simplicity, and the existence of numerical methods for solving the stochastic equations

[Gillespie, 1996]. For each conductance gfe;ig(t), there are three parameters, fgfe;ig;0; �fe;ig; �fe;igg.
Usually, the time constants �e and �i are taken to re�ect the decay of the synaptic conductances, and

hence are assumed to be known. Thus the unknown parameters are the mean and standard deviation

fgfe;ig;0; �fe;igg of the synaptic conductances.

One approach for estimating fgfe;ig;0; �fe;igg, the so-called VmD method [Rudolph et al., 2004], relies

on the observation that the probability density function of V , �(V ), can be approximated by a Gaussian

distribution characterised by two parameters, (V ; �V ) [Rudolph and Destexhe, 2003],

�(V ) � exp

[
�(V � V )2

2�2
V

]
: (3.1.11)

Furthermore, the parameters, (V ; �V ) can be expressed in terms of the synaptic conductance parameters

fgfe;ig;0; �fe;igg. However, there are four unknown parameters to be estimated (two each for excita-

tory and inhibitory conductances) and only two measurable quantities (V ; �V ). To render the solution

tractable, two di�erent distributions of V need to be considered, at two di�erent levels of constant

current injection.

An advantage of the VmDmethod over the Borg-Graham method is that in addition to providing estimates

for the mean conductances, fgfe;ig;0g, the VmD method also estimates the magnitude of the variability in

synaptic input, f�fe;igg. Unlike the VmD method described previously, which requires two voltage traces,
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the VmT approach ([Pospischil et al., 2007, Pospischil et al., 2008]) requires a single voltage trace to

estimate the four synaptic parameters fgfe;ig;0; �fe;igg. The way the VmT method achieves this is by

employing a maximum-likelihood estimation.

These statistical methods and other related approaches [Lansky et al., 2006, Lansky et al., 2010] require

relative stationarity of the statistical process (e.g. the plateau phase of an Up state) and so are not suited

for dissecting events which rapidly change (e.g. a Down to Up state transition or evoked responses).

Single-trial estimation

The Borg-Graham and the VmD methods described above require multiple trials to estimate both ex-

citatory and inhibitory conductances. In contrast, the VmT method is able to extract the statistical

parameters of the synaptic conductances in a single trial. However, the statistical methods typically

require relative stationarity of the synaptic inputs for robust estimation (on the order of 100's of ms).

Consequently, these approaches are unsuitable for studying the interplay between excitatory and inhibitory

conductances that occur on shorter time scales (i.e. millieseconds).

Several single trial methods have been proposed for resolving non-stationary synaptic conductances. One

approach is to oversample the membrane potential, allowing extraction of several variables (i.e. synaptic

conductance parameters) from a single measurement [Bédard et al., 2012]. Another approach is a variant

on the Borg-Graham method that involves rapidly alternating the holding voltage, so that the excitatory

and inhibitory conductances are measured pseudo-simultaneously [Cafaro and Rieke, 2010]. Related

methods include periodically probing the neuron with hyperpolarising current pulses [Douglas et al., 1988]

or action potentials [Chizhov et al., 2014]. In general, these methods are only appropriate when the

time-scale of the synaptic conductance �uctuations is signi�cantly slower than the alternating frequency

used to change the membrane potential, which in turn is limited by the time taken for the cell to reach

steady-state voltage. In [Cafaro and Rieke, 2010], the method was applied to midget ganglion cells in the

retina, which are small, compact and have short time constants, and the alternating frequency of 100 Hz

was signi�cant faster than the kinetics of the measured synaptic response. In contrast, cortical pyramidal

neurons are much larger and have longer time constants, and therefore would require a slower alternating

frequency while the time scale of synaptic conductance changes (e.g. in response to sensory input) is

also faster (on the order of milliseconds to tens of milliseconds). An altogether di�erent approach takes

advantage of correlated synaptic inputs between nearby cortical neurons in vivo [Okun and Lampl, 2008].

Since nearby neurons receive similar synaptic inputs, re�ected by highly synchronous membrane potential
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�uctuations [Lampl et al., 1999, Petersen et al., 2003, Hasenstaub et al., 2005], excitatory and inhibitory

conductances can be estimated concurrently by simultaneously recording from two nearby neurons.

Single compartment versus multiple compartments

It is important to note that all of these methods view a neuron as a single compartment and to our

knowledge, none have adequately addressed the multi-compartment extension. The key challenge in

estimating synaptic conductances in a two or multi-compartment model is the presence of space-clamp

errors. Electrodes act as a point source of current. The combination of resistance to current �ow

along the axis of dendrites, as well as the inherent leakiness of cell membranes means that current

passing through the electrode exerts little in�uence distal from the recording location. Similarly, synaptic

currents that enter the cell distally can be signi�cantly attenuated by the time they reach the soma.

These e�ects together prevent accurate estimation of synaptic conductances, in both current-clamp and

voltage-clamp recordings.
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3.2 Methods

To elucidate the basic features of voltage- space-clamp errors and how they a�ect the estimation of

synaptic conductances, we performed numerical simulations on one- and two-compartment neuron models

in the NEURON environment. The models were purely passive and did not contain any voltage-gated

conductances. The only membrane conductances present in the models were a leak conductance and

excitatory and inhibitory synaptic conductances.

The single compartmental model

The single compartment model, depicted in Figure 3.1A, consists of a membrane capacitance, leak

conductance, and excitatory and inhibitory synaptic conductances. The compartment has length 10 �m

and diameter 10 �m and consisted of a single segment only. The membrane potential (V ) changes in

the compartment are governed by the di�erential equation

C
dV

dt
= �gpas (V � Epas)� ge(t)(V � Ee)� gi(t)(V � Ei) + Iext (3.2.1)

The speci�c membrane resistance (Rm = 1=gpas) was set to 10000 
 cm2 and the leak reversal potential

(Epas) was �70 mV. The speci�c membrane capacitance (C) was 1 �F cm�2. Voltage-clamp recordings

were performed by a single �electrode� at the soma. The current injected by the electrode at this site is

Iext; in voltage-clamp mode, this corresponds to the holding current.

The two compartmental model

We extend the one-compartment model described in the previous section by adding an additional dendritic

compartment governed by the same biophysical equations (Figure 3.1B). The somatic (s) and dendritic

(d) compartments are connected by an axial resistance (Raxial), and the membrane potential dynamics

are described by the following di�erential equations

Cs

dVs

dt
= �gs (Vs � Es;rev)� Vd � Vs

Raxial

+ Iext; (3.2.2)

Cd

dVd
dt

= �gd (Vd � Ed;rev)�
Vs � Vd
Raxial

; (3.2.3)

where Cs;d represents the speci�c membrane capacitance, Vs;d the membrane potential, gs;d the net

conductance of all membrane currents, and Es;d the net reversal potential of all membrane conductances,

in the respective compartments. In the two-compartment model, the somatic compartment had length

10 �m and diameter 10 �m, while the dendritic compartment had length 1000 �m and diameter 2.5
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�m. Both compartments consisted of a single segment only. The default value of the axial resistance

(Raxial) was 100 
 cm, but was varied in a number of the experiments. Values for the other biophysical

properties were the same as for the one compartment model. The current injected by the electrode at

this soma is Iext.

Synapses

In simulations with the one compartment model, a single excitatory and inhibitory synapse was located

in the somatic compartment. In simulations with the two compartment model, excitatory and inhibitory

synapses was located in both compartments or in the dendritic compartment only, as indicated in the

relevant sections. The time course of excitatory and inhibitory synaptic conductance changes had expo-

nential rise (�rise;e = 0:2 ms and �rise;i = 0:3 ms) and fall (�fall;e = 2 ms and �fall;i = 5 ms), and reversal

potentials Ee = 0 mV and Ei = �80 mV, respectively. The conductance change at excitatory synapses

had a peak of 250 pS while inhibitory synapses had a peak of 100 pS. Synapses were stimulated randomly

by independent Poisson processes.

Estimating cell capacitance

In the single compartment (iso-potential) model the e�ective cell capacitance was estimated by measuring

the area under the curve of the voltage response to a current step as follows. After adjusting for the

baseline voltage, the voltage response to a step current is given by

V = V0e
�t=RinC (3.2.4)

where V0 is the initial voltage, t is time, Rin is input resistance, and C is e�ect cell capacitance. The

integral of the voltage response is then

∫ 1

0

V dt =

∫ 1

0

V0e
�t=RinCdt

= V0RinC

Hence

C =
AUC

V0Rin

(3.2.5)

where AUC =
∫1
0

V dt is the area under the voltage response curve.
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B

Es,i Es,e

gs,igs,egs,pas

Cs

Es,pas Ed,i  Ed,e

gd,igd,egd,pas

Cd

Ed,pas

Raxial

Figure 3.1: Circuit diagrams for neuron models. (A) Equivalent circuit diagram of single compartment
neuron model. Circuit elements are the leak conductance, gpas; leak reversal potential, Epas; membrane
capacitance, C; excitatory synaptic conductance, ge; excitatory synaptic reversal potential, Ee; inhibitory
synaptic conductance, gi; inhibitory synaptic reversal potential, Ei. (B) Equivalent circuit diagram of two-
compartment neuron model. Circuit elements are the leak conductance, gx;pas; leak reversal potential,
Ex;pas; membrane capacitance, Cx; excitatory synaptic conductance, gx;e; excitatory synaptic reversal
potential, Ex;e; inhibitory synaptic conductance, gx;i; inhibitory synaptic reversal potential, Ex;i; where
x = fs; dg for the somatic and dendritic compartments, respectively.
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3.3 Results

Series resistance errors

In our �rst set of simulations we consider the impact of electrode series resistance errors on the estima-

tion of synaptic conductances in a single compartment neuron (Figure 3.1A). Excitatory and inhibitory

synapses were stimulated at a rate of 5000 Hz. This resulted in an average excitatory conductance of 3.2

nS and an average inhibitory conductance of 3.0 nS. The impact of electrode series resistance was deter-

mined by using dynamic clamp reinjection of the conductances estimated from voltage clamp simulations

and comparing the resultant change in membrane potential with the change in membrane potential during

the actual synaptic conductance. The mean squared error (MSE) of the di�erence between the actual

synaptic voltage change and the voltage recorded during dynamic clamp re-injection of the estimated

synaptic conductances was used to quantify the accuracy of the predicted conductance estimations.

The resistance across the electrode (referred to as the �series resistance�, Rs) causes a voltage drop

across the electrode of iRs, where i is the current recorded by the electrode. Without series resistance

compensation, there are two important implications for single electrode voltage-clamp recordings

1. the cell is held at a voltage di�erent from the command voltage, and

2. the cell is no longer clamped at a constant voltage.

Regarding the �rst point, the di�erence between the command voltage and the actual membrane potential

is simply the voltage drop across the electrode; �V = iRs. The second point requires further elaboration.

Referring to Equation (3.2.1), if the cell's membrane potential is no longer constant, then dV
dt does not

vanish to zero in the derivation of the Borg-Graham method. That means that the holding current, Ihold,

in Equation 3.1.7 contains a capacitive term. That is

Ihold = Ipas + Isyn = gpas (Vhold � Epas) + gsyn (Vhold � Esyn) + C
dV

dt
: (3.3.1)

Therefore, two corrections need to be applied sequentially to account for the series resistance.

1. the holding voltage is ~Vhold = Vhold � iRs, and

2. the holding current corrected for the capacitative term is ~Ihold = Ihold � C dV
dt .
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Using these expressions, the series resistance corrected current-voltage relationships become

~Ihold;rest = gpas~Vhold � gpasEpas ; (3.3.2)

~Ihold;act = (gpas + gsyn) ~Vhold � (gpasEpas + gsynEsyn) ; (3.3.3)

and the linear relationship between ~I and ~V allows extraction of the synaptic conductance parameters.

We demonstrate these ideas in Figure 3.2. We �rst �t a single exponential (with time constant � = 10:02

ms) by extracting the capacitance from the area under the curve of the voltage response to a current

step (Figure 3.2B). By knowing the amplitude of the current step we can recover the input resistance

of the compartment, and using Equation (3.2.5) we derive the value of the capacitance used for the

capacitive current correction.

We consider a series of scenarios. First, we simulate recordings obtained with di�erent series resistance

levels, and we estimate the synaptic conductances without any series resistance compensation (Figure

3.2C,D). We then reinject the estimated synaptic conductances and record the membrane potential

response (Figure 3.2E). From these traces it is apparent that estimates obtained under a high series

resistance poorly reproduce the current-clamp recordings. The MSE of the predicted traces increase

markedly for high series resistance levels (Figure 3.2F). In addition to calculating the MSE, we also

compute the cross-covariance of the predicted traces with the actual current-clamp recordings. While

the normalised cross-covariances have the same shape, there is an appreciable time lag that worsens with

increasing series resistance (Figure 3.2G). This lag re�ects �ltering e�ects in the estimation of synaptic

conductances when the series resistance is high.

Using the same synaptic conductance time courses, we perform the same estimation procedure but we

now compensate for the voltage drop across the series resistance and adjust the holding voltage of

the cell accordingly. In this case, the synaptic conductances are estimated much more reliably (Figure

3.2H,I) and dynamic clamp reinjection of the estimated conductances reproduces the current-clamp

trace more precisely (Figure 3.2J), as indicated by smaller MSEs (Figure 3.2K) and smaller lags in the

cross-covariance (Figure 3.2L). Finally, we estimate the synaptic conductances and correct for both

the voltage drop across the series resistance and the capacitive current. Under these conditions, the

synaptic conductances are estimated almost exactly (Figure 3.2M-Q). For example, in the absence of

series resistance correction, the MSE of the predicted voltage response with 100 M
 series resistance is
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Figure 3.2: Series resistance and capacitive compensation in a single compartment neuron model. (A)
Circuit diagram of one compartment model. (B) Voltage response to current step, adjusted for steady
state and single exponential �t. Time constant of the �t is 10.02 ms. Second row (C-G), no series resis-
tance compensation; third row (H-L), correction for the voltage drop across the series resistance; fourth
row (M-Q), correction for both the voltage drop and the capacitive current. First column (C,H,M),
the actual and estimated excitatory conductances. Second column (D,I,N), the actual and estimated
inhibitory conductances. Third column (E,J,O), the membrane potential response to dynamic clamp rein-
jection of the estimated conductances. Fourth column (F,K,P), the mean squared error (MSE) between
the actual membrane potential and dynamic clamp conductance reinjection. Fifth column (G,L,Q), the
cross covariance between the actual membrane potential and dynamic clamp conductance reinjection of
estimated conductances.
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4.66 mV2. Correcting for the voltage drop, this improves markedly to 0.92 mV2, an 80.3% reduction in

MSE. The addition of capacitance correction to series resistance compensation virtually eliminates the

MSE, which is 5.29 � 10�4 mV2 (Figure 3.2F,K,P).

Taken together, these results indicate that when applying the Borg-Graham method to extract the

synaptic conductances in a single compartment neuron model, the cell does not need to be held at a

constant voltage with series resistance compensation applied. Since the command voltage and current are

known, and the series resistance and cell capacitance can be estimated, the actual membrane potential

of the cell can be calculated. This procedure allows estimation of the synaptic conductances even when

the series resistance is not compensated. Furthermore, in our model, compensating for the voltage drop

across the series resistance accounted for most of the error, while the capacitive current only contributes

to a smaller fraction of the error.

Series resistance correction in a two compartment neuron model

Series resistance compensation in a single compartment model as discussed in the previous section does

not address issues that arise due to space-clamp errors in neurons with dendrites. To investigate problems

associated with poor space-clamp we performed the same simulations using a two-compartment model

(Figure 3.3A). Excitatory and inhibitory synapses were located on both somatic and dendritic compart-

ments and stimulated at a rate of 5000 Hz. This resulted in an average total excitatory conductance of

6.4 nS and an average total inhibitory conductance of 6.0 nS. Under all conditions the excitatory and

inhibitory conductances, which both contain somatic and dendritic components, are signi�cantly under-

estimated compared to the actual conductances. In the absence of series resistance compensation, the

greater the series resistance, the more the conductances are underestimated (Figure 3.3C,D). In contrast

to the single compartment case, even with series resistance compensation, the synaptic conductances

remain severely underestimated (Figure 3.3H,I,M,N). The predicted membrane potential is also a�ected

by increasing series resistance (Figure 3.3E,F), however the MSE is markedly reduced by series resistance

compensation (Figure 3.3K,K,P). In the absence of series resistance compensation or capacitance cor-

rection, the MSE of the predicted voltage response with 100 M
 series resistance is 36.0 mV2. With

series resistance correction, this improves markedly to 0.45 mV2, a 98.7% reduction. The addition of

capacitance correction to series resistance compensation, despite the fact that estimation of the capac-

itance based on the area under the exponential �t is wrong (see poor �t in Figure 3.3B), improves the

MSE slightly to 0.34 mV2, a further 25.2% reduction (Figure 3.3F,K,P). Correcting for the capacitive

current does not correct the conductance underestimation, however, and only has a small impact on
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the predicted membrane potential even with series resistance compensation. Capacitance correction also

does not eliminate the �ltering e�ects, unlike the single compartment case. Importantly in the two com-

partment case, low MSEs achieved by dynamic clamp reinjection of the estimated conductances in the

soma only re�ects the ability of the voltage-clamp to estimate the net e�ect of synaptic conductances

on the somatic membrane potential. It does not indicate good space-clamp since the total synaptic

conductances remain signi�cantly underestimated.

We explain these observations by considering the circuit description of the two compartment model

(Figure 3.3A), given by Equations (3.2.2) and (3.2.3) (see Methods for further details). Suppose under

steady-state conditions (i.e. temporal derivatives are zero), the somatic membrane potential is held at

some voltage Vs;hold with holding current Ihold. Then Equations (3.2.2) and (3.2.3) become

0 = �gs (Vs;hold � Es;rev)� Vd � Vs;hold
Raxial

+ Ihold; (3.3.4)

0 = �gd (Vd � Ed;rev)�
Vs;hold � Vd

Raxial

: (3.3.5)

Then from Equation (3.3.5), if Vs;hold = Vd, it follows that Vs;hold = Ed;rev. In other words, the dendritic

compartment is only held at the same voltage as the somatic compartment when the holding voltage of

the somatic compartment is equal to the net reversal potential of the membrane currents in the dendritic

compartment. This condition is never met when the membrane currents in the dendritic compartment

are varying. In this case, the dendritic membrane potential also �uctuates and therefore produces a

capacitive current. As a result, the current that �ows through the axial resistance contributes to the

currents measured by the somatic electrode, and this axial current contains both a capacitive component

as well as synaptic components that cannot be dissociated. Moreover, since the model is not isopotential,

the capacitance is distributed and cannot be compensated for by a point electrode. Thus, while we have

attempted to correct for the capacitive component based on a single exponential time course for the

voltage decay (see Methods), which assumes a single compartment RC model, in reality the voltage

response contains a mixture of exponential time courses. This complicates the estimation of the cell

capacitance.
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Figure 3.3: Series resistance and capacitive compensation in a two compartment neuron model. (A)
Circuit diagram of one compartment model. (B) Voltage response to current step, adjusted for steady
state and single exponential �t. Time constant of the �t is 6.96 ms. Second row (C-G), no series
resistance compensation; third row (H-L), correction for the voltage drop across the series resistance;
fourth row (M-Q), correction for both the series resistance and the capacitive current First column
(C,H,M), the actual and estimated excitatory conductances. Second column (D,I,N), the actual and
estimated inhibitory conductances. Third column (E,J,O), the membrane potential response to dynamic
clamp reinjection of the estimated conductances. Fourth column (F,K,P), the mean squared error
(MSE) between the actual membrane potential and dynamic clamp conductance reinjection. Fifth column
(G,L,Q), the cross covariance between the actual membrane potential and dynamic clamp conductance
reinjection of estimated conductances.
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The impact of axial resistance on conductance estimation

Given how the presence of an axial current impairs our ability to estimate synaptic conductances, we

explored the e�ect of axial resistance in further detail. In our two-compartment model (Figure 3.3A),

synaptic currents entering the dendritic compartment can either leak out of the dendritic membrane or

travel through the axial resistance to enter the somatic compartment. The greater the axial resistance

encountered, the less current �ows through this axial resistance and the more leaks out of the dendritic

membrane. A similar situation occurs in real neurons. The cumulative intrinsic resistance provided by

the cytoplasm and other intracellular structures provides a barrier to current �ow. The presence of any

other open membrane conductances (e.g. leak, voltage-gated channels) o�ers an alternative conduit for

current �ow, but across the cell membrane. The axial resistance, together with the leaky membrane, are

e�ectively the cause of space-clamp errors.

To investigate the impact of the axial resistance on the estimation of excitatory and inhibitory conduc-

tances we varied the axial resistance up to 500 M
 (Raxial in Figure 3.1B) and estimated the synaptic

conductances. To ensure that conductances measured arose from the distal compartment, we restricted

synaptic conductances to the dendritic compartment only. The excitatory and inhibitory synapses were

stimulated randomly at a rate of 5000 Hz, resulting in an average ratio of excitation to inhibition (ge : gi)

of 1.08. For these and all remaining simulations the series resistance was set to 0. With increasing

axial resistance, the estimated mean excitatory, inhibitory, and consequently total synaptic conductances

decreased, re�ecting a deterioration in space-clamp (Figure 3.4A). Interestingly, the estimated inhibitory

conductance was actually negative for higher axial resistance values. We also calculated the fraction

of synaptic conductance estimated, and noted that estimation of the excitatory conductance was con-

sistently superior compared to the inhibitory conductance (Figure 3.4B). As a result, the estimated

excitatory-to-inhibitory ratio markedly deviated from the actual ratio of the conductances (Figure 3.4C).

The maximum positive deviation was a ge : gi ratio of 8.1 (at 140 M
), while the maximum negative

deviation a ge : gi ratio of -9.0 (at 180 M
). For greater values of Raxial, the ratio remained negative

and tended towards -1.9 (at 500 M
). The hyperbolic nature of the estimated excitatory-to-inhibitory

ratio arises as the estimated inhibitory conductance passes very close to zero when it transitions from

positive to negative (Figure 3.4A). Finally, with dynamic clamp reinjection of the estimated conductances

at the soma the MSE of the predicted membrane potential showed a peak at a value of Raxial at 190

M
 (Figure 3.4D, blue). The improvement in the predicted membrane potential for high values of Raxial

likely occurs because as the axial resistance increases the amplitude of the synaptic response at the soma

decreases, which alone reduces the MSE. When the MSE is normalised, by �rst taking the square-root
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and then dividing by the mean amplitude of the actual synaptic responses, the normalised error shows a

steady increase with increasing axial resistance (Figure 3.4D, red).

Masking of synaptic conductances

When clamping at the excitatory reversal potential to estimate the inhibitory conductance, the current

measured has a component of the inhibitory current (which is outward), and a component of excitatory

current (which is inward) since the voltage control at the synapse is poor when there is poor space-

clamp. The combination of an outward (positive) current with an inward (negative) current results in

a diminished outward current; that is, the inhibitory conductance is underestimated. Similarly, when

clamping at the inhibitory reversal potential to estimate the excitatory conductance, mixing of these

conductances due to poor space-clamp leads to an underestimation of the excitatory conductance. These

so-called conductance masking e�ects can also be viewed as mixing of conductances; a fraction of the

estimated ge is mixed with the estimated gi, and vice versa.

We examined how well excitatory and inhibitory conductances are estimated when their relative strength

di�ers (Figure 3.5), by again restricting synaptic conductances to the dendritic compartment and inde-

pendently varying the stimulation frequency of the excitatory and inhibitory synapses from 0 to 20000

Hz (Figure 3.5A,B). Keeping ge �xed but increasing gi caused a subtle reduction in the fraction ge esti-

mated (Figure 3.5H). Similarly, keeping gi �xed but increasing ge also caused a reduction in the fraction

gi estimated (Figure 3.5I). However, the fraction of the overall conductance estimated did not depend

on a speci�c combination of ge=gi intensity, but rather the total of ge and gi (Figure 3.5J). To verify

this, we calculated the fraction of the total conductance estimated and plotted against the mean total

conductance for all combinations of ge and gi (Figure 3.5K). This �gure shows that the fraction of the

real conductance estimated depends only on the mean conductance, and not on the relative balance

between ge and gi.
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Figure 3.4: The impact of axial resistance on conductance estimation. (A) The mean estimated con-
ductance decreases with increasing axial resistance. The estimated excitatory, inhibitory and total con-
ductances are shown as solid lines, and the actual conductances are shown as broken lines. The estimated
inhibitory conductance is negative for moderate to high levels of axial resistance. (B) The fraction con-
ductance estimated (estimated conductance/actual conductance) decreases with axial resistance. The
fraction inhibitory conductance is negative for moderate to high levels of axial resistance. (C) The es-
timated E:I ratio as a function of axial resistance. The estimated ratio deviates signi�cantly from the
actual ratio over the entire range of axial resistance, and is particularly unstable where the estimated
inhibitory conductance is close to zero. The solid line represents the mean estimated E:I ratio, while
the shading represents the distribution of the estimated E:I ratio within two standard deviations of the
mean. (D) The error in the predicted membrane potential response as a function of axial resistance.
For intermediate levels of axial resistance the MSE is maximal but decreases thereafter (blue). The
normalised error, derived by dividing the square-root of the MSE by the amplitude of the actual synaptic
response, shows a continuous increase with increasing axis resistance (red).
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Figure 3.5: (Caption next page.)
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Figure 3.5: Space-clamp errors introduce masking e�ects in conductance estimation. Synaptic conduc-
tances were only included in the dendritic compartment. The stimulation frequencies of the excitatory
and inhibitory conductances were systematically varied between 0 and 20000 Hz. (A) The fraction of
excitatory conductance estimated, calculated by dividing the mean estimated excitatory conductance by
the mean actual excitatory conductance. Generally, keeping the excitation frequency �xed but increasing
the inhibition frequency results in a reduction in the fraction of excitatory conductance estimated. (B)
The fraction of inhibitory conductance estimated, calculated by dividing the mean estimated inhibitory
conductance by the mean actual inhibitory conductance. Generally, keeping the inhibition frequency �xed
but increasing the excitation frequency results in a reduction in the fraction of inhibitory conductance
estimated. Note the large number of stimulation frequency combinations that lead to a negative fraction
estimated. (C) MSE of predicted membrane potential for di�erent stimulation frequency combinations.
The MSE is worse for higher values of freqe and lower values of freqi . Four pairs of stimulation frequencies
are shown in more detail; freqe/freqi : 2000 Hz/2000 Hz (D), 2000 Hz/15000 Hz (E), 15000 Hz/2000 Hz
(F), 15000 Hz/15000 Hz (G). (D-G) Example estimated conductances (top) and predicted membrane
potentials (bottom) for di�erent combinations of stimulation frequencies. The average fraction of the
actual excitatory conductance estimated (H), average fraction of the actual inhibitory conductance esti-
mated (I) and average fraction of the total conductance estimated (J). (K) The fraction total synaptic
conductance estimated decreases as the mean total synaptic conductance increases.
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Temporal interactions

As the estimates of the excitatory and inhibitory conductances contain (negative) components of each

other, correlations between the estimates are introduced. We demonstrate these e�ects in Figure 3.6.

Excitatory and inhibitory synapses were restricted to the dendritic compartment and were stimulated at

a rate of 5000 Hz, resulting in an average excitatory conductance of 3.2 nS and an average inhibitory

conductance of 3.0 nS. This was carried out for a model with 20 M
 axial resistance (Figure 3.6A)

and a model with 200 M
 axial resistance (Figure 3.6B). We estimated the excitatory and inhibitory

conductances with somatic voltage clamp (Figure 3.6A,B) and then calculated the cross-covariance of

the actual conductances and compared with the cross-covariance of the estimated conductances for the

two scenarios (Figure 3.6C,D). In the model with 20 M
 axial resistance, the cross-covariance of the

estimated conductances had a pronounced negative peak that was absent in the cross-covariance of the

actual conductances (Figure 3.6C). The half-max width of this peak was 6.2 ms. We observed the

emergence of similar peak in the model with 200 M
, however this peak was wider with half-max width

of 10.9 ms, and the cross-covariance was also smoothed (Figure 3.6D). We repeated the analysis for an

extended range of axial resistance, which reveals a widening of the cross-correlation half-width as the

axial resistance increases (Figure 3.6E). Taken together, these results show that conductance masking

due to space-clamp errors introduce anti-correlations between the estimated excitatory and inhibitory

conductances that are not present in the actual conductances. The smoothing of the cross-covariance

we observed also indicates that estimation of high-frequency changes in the synaptic conductances is

subject to �ltering e�ects which worsens as the space-clamp degrades.

The relative time courses of excitatory and inhibitory conductances have been well-studied to help shed

light on the network mechanisms underlying cortical activity [Haider et al., 2006, Higley and Contreras,

2006]. In both spontaneous Down to Up state transitions and cortical responses to sensory inputs, the

consensus view is that the increase in excitation precedes the rise in inhibition by several milliseconds

[Isaacson and Scanziani, 2011]. Given that space-clamp errors introduce artifactual anti-correlations

between estimated synaptic conductances, how do these anti-correlations a�ect the estimation of the

temporal relationship between time-varying synaptic conductances? To answer this question, we consid-

ered conductance changes with a well-de�ned time course of the form

g(t) = �g (1� exp (�t=�)) : (3.3.6)
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Figure 3.6: Space-clamp errors introduce anti-correlations between estimated synaptic conductances.
(A,B) Uncorrelated excitatory and inhibitory synaptic conductance inputs were estimated at 20 M


(A) and 200 M
 (B) axial resistance. (C,D) Example cross-covariance traces at 20 M
 (C) and
200 M
 (D) axial resistance. The cross-covariance of the estimated synaptic conductances reveals a
prominent negative peak centred around 0 ms time lag that is absent in the cross-covariance of the actual
conductances. (E) The width of the negative cross-covariance peak increases as the axial resistance
increases.
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Equation (3.3.6) describes a conductance that approaches a maximum �g exponentially, with a time con-

stant of � . We considered a two-compartment model with excitatory and inhibitory conductances in the

dendritic compartment only, and set �ge = 5 nS, �ge = 5 nS. We �rst �xed Raxial to 100 M
 and simulated

three combinations of �e and �i; 5 ms/5 ms, 4 ms/6 ms and 6 ms/4 ms. The second two combinations

were chosen to mimic di�erent time courses of the rise of inhibition relative to excitation. When �e and

�i were the same (5 ms/5 ms), the normalised estimated excitatory and inhibitory conductances followed

the same time course, but the estimate of the rise of the conductances was slightly delayed compared to

the normalised actual conductances (Figure 3.7B). We also calculated the di�erence between the nor-

malised excitatory and inhibitory conductance time courses, for both actual and estimated conductances,

and observed no di�erence (Figure 3.7C). Thus, while the amplitude and time course of the estimated

conductance are distorted, the temporal relationship is maintained when �e and �i are equal. What hap-

pens when �e and �i are not equal (Figure 3.7D,G)? When �e and �i were not equal, the di�erence in

the time courses of the normalised estimated conductances becomes accentuated (Figure 3.7E,H) and

the estimated peak di�erence between the normalised conductance change are delayed (Figure 3.7F,I).

In the case where �e (4 ms) was shorter than �i (6 ms), the time of the peak di�erence was 4.88 ms for

the actual conductances, compared to 7.6 ms for the estimated conductances (Figure 3.7F). Similarly

when reversing the relative time courses such that �e (6 ms) was longer than �i (4 ms), the time of the

peak di�erence was again 4.88 ms for the actual conductances, compared to 7.5 ms for the estimated

conductances (Figure 3.7I). We systematically compared the mismatch for di�erent combinations of �e

and �i between 1 ms and 10 ms, and for di�erent levels of Raxial, and observed an exaggeration of the

mismatch between the estimated conductance time courses as the axial resistance increased (Figure

3.7J-L). Taken together, these simulations indicate that distortions arising from space-clamp errors can

a�ect estimation of the temporal relationship between excitatory and inhibitory conductance changes.
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Figure 3.7: Interactions arising from conductance masking distort the temporal relationship between the
time course of estimated conductances. The time course of the conductance changes is given by Equation
(3.3.6). Keeping Raxial �xed at 100 M
, we used di�erent combinations of �e=�i: 5 ms/5 ms (�rst row,
A-C), second row, 4 ms/6 ms (D-F), third row, 4 ms/6 ms (G-I). The time courses of the actual
and estimated excitatory and inhibitory conductances (A,D,G) were normalised to the steady state level
(B,E,H). When the time courses of excitation and inhibition were di�erent, the di�erence between the
normalised estimated conductances are accentuated compared to the di�erence between the normalised
actual conductances (C,F,I). A positive di�erence indicates a relative excess of excitation (F), while a
negative di�erence indicates a relative excess of inhibition (I). The excitation and inhibition mismatch
can be quanti�ed by comparing the time of the peak in the di�erence of the normalised conductances
(J), the full-width at half-maximum (FWHM) of the di�erence (K), as well as the area under the curve
(AUC) of the di�erence (L). We evaluated these measurements for combinations of �e and �i between
1 ms and 10 ms, at three di�erent levels of Raxial; 20 M
 (blue), 100 M
 (red) and 200 M
 (green).
The transient imbalance between excitation and inhibition is generally overestimated, and especially for
increasing values of Raxial.
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3.4 Discussion

We investigated how voltage- and space-clamp errors a�ect the Borg-Graham method for estimation of

synaptic conductances [Borg-Graham et al., 1998]. Voltage-clamp errors occur from the voltage drop

across the electrode series resistance. As a result, the membrane potential is not held at the command

voltage. A second consequence of poor voltage-clamp is that with a �uctuating membrane potential,

for instance due to barrages of synaptic input, a capacitive current is induced. This capacitive current

contributes to a component of the current measured. While the �rst issue can be corrected for post

hoc in single compartment models simply by calculating the voltage drop across the series resistance,

accounting for the capacitive component is more complex and requires knowing the cell capacitance.

Nevertheless, our simulations suggest that the capacitive current only contributes a small error, relative

to the error caused by the voltage drop across the series resistance in this isopotential situation.

In a two-compartment model, the presence of the axial resistance introduces a space-clamp error in

the compartment distal to the clamping electrode. Poor space-clamp contributes to three types of

errors in the estimation of synaptic conductances. The �rst error is underestimation of the total synaptic

conductance. Since estimates of the excitatory and inhibitory conductances depend on the estimated total

synaptic conductance, both conductances are a�ected but more so inhibitory conductances as discussed

below. The second error is masking e�ects arise, where changes in one synaptic conductance (excitatory

or inhibitory) a�ects estimation of the other conductance. This occurs from mixing of excitatory and

inhibitory conductances in the presence of poor space-clamp. The third type of error is temporal in

nature. Due to conductance mixing, the estimated temporal relationships between �uctuating synaptic

conductances is distorted.

Why are inhibitory conductances estimated more poorly than excitatory conductances (Figure 3.4B &

3.5B)? The reason is because the leak conductance impairs the ability of the somatic voltage clamp to

hold the dendritic compartment at membrane potentials far from the leak reversal potential. As a result

the voltage clamp is more e�ective at holding the potential close to the inhibitory reversal potential, as is

required to measure excitatory conductances, than at the reversal potential of excitatory conductances,

which is required to measure inhibitory conductances.

Several of these observations can be explained by considering how gsyn(t) and Esyn(t) are measured

(Equations 3.1.3 and 3.1.4), and the subsequent derivation of the estimates for ge(t) and gi(t) (Equations
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3.1.5 and 3.1.6). As mentioned previously, gpas is the slope of the (Ihold;rest vs Vhold) relationship and

(gpas + gsyn) is the slope of the (Ihold;act vs Vhold) relationship (Figure 3.8a, left). While Esyn(t) can be

calculated from the vertical intercept of (Ihold;act vs Vhold) relationship in Equation (3.1.9), Esyn(t) is

also where the curves (Ihold;pas vs Vhold) and (Ihold;act vs Vhold) intersect (Figure 3.8, left). Further, the

expressions in Equations (3.1.3) and (3.1.4) for gsyn(t) and Esyn(t) can be rearranged to obtain gi(t)

and ge(t)

gi(t) =
gsyn(t)[Ee � Esyn(t)]

Ee � Ei

; (3.4.1)

ge(t) =
gsyn(t)[Esyn(t)� Ei]

Ee � Ei

: (3.4.2)

It is clear from Equations (3.4.1) and (3.4.2), that changes to either gsyn(t) or Esyn(t) will a�ect

estimation of both gi(t) and ge(t). Masking e�ects arise from these interactions. Therefore, increasing

the inhibitory conductance would cause an increased slope and a leftward shift in Esyn(t) (Figure 3.8,

middle), and as a result, less inward (excitatory) current would be measured at the inhibitory reversal

potential while more outward (inhibitory) current would be measured at the excitatory reversal potential.

Correspondingly, an increased inhibitory conductance estimate would be associated with a decreased

excitatory conductance estimate. Similarly, increasing the excitatory conductance would also cause an

increased slope but a rightward shift in Esyn(t) (Figure 3.8, right), leading to an increased estimated

excitatory conductance but a decreased inhibitory conductance estimate.

Predicting voltage changes While space-clamp errors cause synaptic conductances to be underesti-

mated, the estimated conductances may still provide a prediction of the e�ect of the conductances at

the soma [Monier et al., 2008, Wehr and Zador, 2003]. Reinjecting the estimated conductances at the

soma by dynamic clamp produces membrane potential changes that are often close to those produced

by the actual dendritic conductances. We emphasise that the ability to predict the somatic membrane

potential is simply an indication that the voltage-clamp is relatively accurate at recovering the synaptic

conductances `visible' from the soma, but does not imply good voltage control throughout the cell. In

a single compartment model, reinjecting the estimated conductances (with appropriate series resistance

compensation and adjustment of the capacitive current) recovers the actual voltage response exactly

(Figure 3.2O,P). In a two compartment model, distributed capacitive e�ects that cannot be adjusted for

by a point electrode lead to small errors in the predicted membrane potential, even after series resistance

compensation (Figure 3.3O,P). We see however, that when space-clamp errors become severe, even the

estimated conductances do not predict the membrane potential changes very reliably (Figure 3.5C); thus,
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Figure 3.8: Masking interactions arise from space-clamp errors and a�ect the estimation of synaptic
conductance parameters from the current-voltage response. In these plots, the current axis represents the
current recorded for a given holding voltage and the voltage axis represents the holding voltage adjusted
for series resistance. The slopes of the curves represent the total conductances, and the voltage at the
intersection point of the two curves represents the reversal potential of the active conductance, which can
be used to estimate the underlying excitatory and inhibitory conductances if their reversal potentials are
known in a single compartment model. This intersection point is in between the inhibitory and excitatory
reversal potentials (Ei and Ee ) during balanced excitation/inhibition (left), and is shifted to the left or
right during increases in inhibition (middle) and excitation (right). In the presence of space-clamp errors
the required holding voltage for Ei and Ee is more negative and positive, respectively, than what is attained
by the electrode. The current-voltage response is �rst recorded under passive conditions (red curves)
and then under active conditions (green curves). The slopes of the curves represent the conductances,
and the voltage at the intersection point of the two curves represents the reversal potential of the active
conductance, which can be used to estimate the underlying excitatory and inhibitory conductances if
their reversal potentials are known in a single compartment model. Increasing the amount of inhibition
causes the current measured at Ei and the current measured at Ee to both become more positive. As a
result, the increase in estimated inhibitory conductance is coupled to a decrease in estimated excitatory
conductance (middle). Similarly, increasing the amount of excitation from initial (left) results in an
increase in estimated excitatory conductance coupled to a decrease in inhibitory conductance (right). The
dotted green lines (middle, right) represent the initial current-voltage response under active conditions
(left).
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a high MSE when this happens is consistent with poor space-clamp.

Relation to other work Simulations have been a popular approach to study the e�ects of space-clamp

errors on the estimation of conductance properties [Joyner et al., 1975, White et al., 1995, Velte and

Miller, 1996, Hartline and Castelfranco, 2003, Bar-Yehuda and Korngreen, 2008]. These studies have

been accompanied by experimental measurements of space-clamp errors [Williams and Mitchell, 2008]

and together have enabled an appreciation of the distortions that arise from voltage-clamp methods Little

work, however, has been done on how voltage- and space-clamp errors impact on the estimation of synap-

tic conductances during combined excitatory and inhibitory input. Furthermore, despite well-documented

evidence that space-clamp issues can signi�cantly distort synaptic conductances the voltage-clamp tech-

nique is still commonly used to dissect the excitatory and inhibitory components underlying synaptic input

[Haider et al., 2013, Longordo et al., 2013], primarily due to the lack of alternatives. One earlier simu-

lation study investigated how excitatory and inhibitory synaptic conductances interact and are distorted

in voltage-clamp recordings in morphologically realistic neurons [Poleg-Polsky and Diamond, 2011]. This

study explored how morphology and dendritic branching contributes voltage-clamp distortions, showing

how the complexity of realistic neurons greatly increases the dimensionality of the parameter space, mak-

ing it di�cult to delineate the precise contribution of di�erent parameters to the distortions observed. We

have adopted the other extreme by considering single and two-compartment models. This has allowed

us to determine the mechanisms underlying the observed voltage- and space-clamp distortions during

combined excitatory and inhibitory input.

[Wehr and Zador, 2003] argue using compartmental simulations that estimated delays between the time

course of excitation and inhibition are unlikely to be a�ected by space-clamp errors. In their case, the

same time courses were used for the excitatory and inhibitory conductance changes, but the onset of the

conductance changes had a variable time o�set. We investigated an alternate scenario, where the onset

of the conductances were the same but the speed of the onset di�ered. Masking e�ects which lead to

anti-correlations between the estimated conductances distorted the estimates such that the di�erences

in the excitation and inhibition time course became accentuated (Figure 3.7). In contrast to [Wehr and

Zador, 2003] we conclude therefore, that during combined excitation and inhibition it may be di�cult to

determine the time course of actual conductance changes especially when the estimated conductances

(which are already distorted) have di�erent time courses.
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Future directions Our simulations with a two-compartment model re�ect an extreme case in which

the dendritic synaptic conductances are colocalised in the same compartment. In such a con�guration,

the dendritic synaptic conductances interact with each other maximally. Cortical neurons are better

represented by multi-compartment models with synapses dispersed across di�erent dendritic branches.

This spatial complexity may lead to additional interactions, which may a�ect conductance estimation in

di�erent ways. For example, on a single dendritic branch, how are masking e�ects in�uenced by synapse

location and the presence of other synapses more proximal or distal? To what extent do synapses on

di�erent branches interact? In general, while it is widely accepted that space-clamp errors distort synaptic

conductance estimates, these distortions have not been explored in detail during combined excitatory and

inhibitory synaptic input. To do so in real neurons requires a thorough understanding of the distribution

and activation patterns of synaptic inputs [Chen et al., 2013b, Jia et al., 2010] or the ability to mimic

synaptic barrages. Recent developments in optogenetics [Yizhar et al., 2011] and two-photon uncaging

strategies [Kantevari et al., 2010] may permit such investigations in the future. We will encounter some

of these strategies in Chapter 5.
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Chapter 4

The impact of somatic versus dendritic

inhibition on neuronal output

4.1 Introduction

In Chapter 2, we characterised the e�ect of balanced excitation and inhibition on synaptic integration in

binocular layer 2/3 pyramidal neurons and showed that the presence of inhibition contributes to sublinear

summation in these neurons. Inhibition in the cortex can exert a variety of e�ects, in part due to

the anatomical and functional diversity of inhibitory neurons [Isaacson and Scanziani, 2011, Markram

et al., 2004]. This complicates studying the contribution of inhibition to cortical computations, as the

speci�c role of inhibition is likely to depend on the physiological and behavioural context it operates in.

Nevertheless, a simple way to characterise the e�ect of inhibition is to assess how it alters the input-

output (IO) relationship of a neuron (Figure 4.1). The slope of the IO relationship is called gain and

provides a simple quanti�cation of how the spiking response of a neuron varies with the strength of the

input it receives. Gain control refers to the modulation of the slope of this IO relationship [Chance

et al., 2002, Mitchell and Silver, 2003, Carvalho and Buonomano, 2009] and in this framework, inhibition

is said to be additive/subtractive if it shifts the IO curve to the left/right, and multiplicative/divisive

if it increases/reduces the slope of the IO curve (Figure 4.1B). Although simple in de�nition, this can

be a powerful way to understand how inhibition a�ects information coding. For example, divisive gain

control a�ects the responsiveness of a neuron but not how it represents a stimulus, as seen in contrast

invariance of orientation tuning [Anderson et al., 2000b] and attentional scaling [Treue and Trujillo,

1999]. In contrast, subtractive inhibition has been shown to increase response discriminability of odour

representations in the piriform cortex [Sturgill and Isaacson, 2015].
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The mechanisms underlying gain modulation have been extensively studied by a variety of experiment

and computational approaches and many di�erent factors have been suggested to play a role. These

include excitatory and inhibitory inputs [Murphy and Miller, 2003], background synaptic activity [Chance

et al., 2002, Prescott and De Koninck, 2003, Shu et al., 2003a], synaptic depression [Rothman et al.,

2009] and plasticity [Carvalho and Buonomano, 2009], dendritic saturation [Prescott and De Koninck,

2003], active dendrites [Larkum et al., 2004, Meha�ey et al., 2005], and the slow after-hyperpolarisation

conductance [Higgs et al., 2006]. More recently, optogenetic strategies have allowed the contribution

of de�ned interneuron populations to the IO relationship of neurons to be investigated in vivo [Lee

et al., 2012b, Wilson et al., 2012, Atallah et al., 2012]. However no consensus on this matter has

been reached [Lee et al., 2014, El-Boustani et al., 2014]. For example, parvalbumin-expressing (PV)

interneurons that target the perisomatic region of layer 2/3 pyramidal neurons have been shown to

exert predominantly divisive e�ects while somatostatin-expressing (SOM) interneurons that target the

dendrites have subtractive e�ects [Wilson et al., 2012, Atallah et al., 2012]. Opposite results have also

been demonstrated, whereby PV interneurons exert subtractive e�ects while SOM interneurons produce

divisive e�ects [Lee et al., 2012b]. Interestingly, these studies have used very similar preparations and

all studied the e�ect of inhibition on the tuning properties of super�cial pyramidal neurons in the visual

cortex.

Given the con�icting nature of these results, we set out to investigate the conditions under which sub-

tractive or divisive e�ects may be produced, and the dependence of these e�ects on the location of

inhibition.

80



Introduction Chapter 4. Somatic versus dendritic inhibition

A

0 200 400 600 800 1000 1200 1400

−50

0

50

Time (ms)

M
e
m

b
ra

n
e
 p

o
te

n
ti
a
l 
(m

V
)

 

 
No inhibition

Tonic inhibition

Current step

B
Subtraction

Excitation

F
ir

in
g
 r

a
te

 (
H

z
)

Excitation

F
ir

in
g
 r

a
te

 (
H

z
)

Division

Excitation

F
ir

in
g
 r

a
te

 (
H

z
)

Mixed

Figure 4.1: E�ects of inhibition on the IO curve of a neuron. (A) The IO curve of a neuron is determined
by the �ring rate response to an excitatory stimulus (black), in this case a depolarising current step. The
impact of inhibition is quanti�ed by its e�ect on the �ring rate response (green). (B) The e�ect of
inhibition can be characterised by its e�ect on the IO curve on the neuron. Subtraction is seen as a
rightward shift in the IO curve (left) while division is seen as a reduction in the slope of the IO curve
(middle). Inhibition can also have mixed subtractive and divisive e�ects (right).
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4.2 Methods

We used the NEURON simulation environment to simulate a reconstructed layer 2/3 pyramidal neuron

with passive properties (obtained from [Longordo et al., 2013]; see Chapter 2). The biophysical param-

eters for the soma and dendrites are as follows: Cm = 0:9 �F cm�2, Rm = 12 k
 cm2, Ri = 105 
 cm,

Eleak = �80 mV. The model also contained an axon with the same passive parameters except Rm = 400


 cm2. Spines were incorporated into the model by decreasing Rm and increasing Cm by a factor of 2

in distal dendritic compartments (>40 �m from the soma). The neuron also included Hodgkin-Huxley

Na+ and K+ channels in the soma and axon, to support action potential generation, together with Km

channels and an AHP mechanism in the soma, to enable spike �ring adaptation. The simulation time

step was 0.05 ms.

The �ring rate of the neuron was calculated by counting the number of spikes generated by the neuron

in response to a 1 second stimulus. We used a variety of ways to stimulate the neuron. The neuron

was stimulated by steady-state somatic current injections, steady-state dendritic excitatory conductance

changes, noisy somatic current injections or asynchronous and synchronous dendritic excitatory conduc-

tance changes together with either somatic or dendritic inhibition. The neuron included 1000 dendritic

excitatory synapses located on basal dendrites >40 �m from the soma (Figure 4.2, left), 100 periso-

matic inhibitory synapses located <40 �m of the soma (Figure 4.2, middle) and 100 dendritic inhibitory

synapses located on basal dendrites >40 �m from the soma (Figure 4.2, right). Excitatory and inhibitory

input was either applied as a constant change in conductance to a de�ned level, or as synapses randomly

activated at di�erent rates by independent, homogeneous Poisson processes. For these latter simula-

tions, the conductance change at excitatory synapses had an exponential rise and decay of 0.2 and 2 ms,

respectively, a peak of 100 pS and a reversal potential of 0 mV. The conductance change at inhibitory

synapses had an exponential rise and decay of 0.2 and 10 ms, respectively, a peak of 100 pS and a

reversal potential of �80 mV. In simulations with noisy current injections, current noise was modelled by

an Ornstein-Uhlenbeck Process (OUP) [Uhlenbeck and Ornstein, 1930]. The OUP was described by the

following di�erential equation

dI

dt
=

1

�
[I(t)� Ibias] +

√
2�2

�
�(t); (4.2.1)

where � is the standard deviation of the noise, �(t) is a Gaussian white noise process with zero mean

and unit standard deviation, and Ibias = 0 is the mean current, and � = 2 ms is the time constant of the

�uctuations. The di�erential equation given by Equation (4.2.1) was solved using standard methods.
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Data produced by the NEURON simulations were analysed in MATLAB. We assume the transformations

to the IO curve are exclusively represented by a combination of subtractive or divisive e�ects. Suppose

f (I) is the �ring rate response to a stimulus I. Then subtraction is expressed as

f (I)! f (I � c); (4.2.2)

for some constant c , while division is expressed as

f (I)! kf (I); (4.2.3)

for some constant k . Hence, a transformation containing both subtractive and divisive e�ects is given by

f (I)! kf (I � c): (4.2.4)

We quanti�ed the extent of subtractive and divisive e�ects by �tting the control curve (f (I)) with a

linear interpolation in the absence of inhibition and then determined the values of c and k required to �t

the change in f (I) in the presence of inhibition using a least-squares optimisation approach (Figure 4.3).

The �t was performed using the MATLAB Optimization Toolbox.

83



Chapter 4. Somatic versus dendritic inhibition Methods

Figure 4.2: Distribution of excitatory and inhibitory synapses in the layer 2/3 pyramidal neuron model.
1000 excitatory synapses (blue) were located on basal dendrites >40 �m from the soma (left), 100
perisomatic inhibitory synapses (green) located <40 �m of the soma (middle) and 100 dendritic inhibitory
synapses (red) located on basal dendrites >40 �m from the soma (right)
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Figure 4.3: Fitting the subtractive and divisive e�ects of inhibition. The curve-�tting approach obtains
the values of c and k that minimises the mean squared error (MSE) of the di�erence between the
transformed control curve (no inhibition) and the target curve (with inhibition). In the example shown,
the MSE of the di�erence between the control curve and target curve is 125.9. Fitting the subtractive
(left) or divisive (middle)components only reduces the MSE to 8.29 and 14.09, respectively. Fitting both
components obtains the superior �t (middle), with a MSE of only 0.11.
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4.3 Results

Using a reconstructed layer 2/3 pyramidal neuron model [Longordo et al., 2013], we explored the de-

pendence of the IO relationship on inhibition and how this varied under di�erent stimulation conditions.

The IO curve of the neuron was �rst obtained by injecting current through a somatic `electrode' and

measuring the �ring rate of the neuron under current clamp conditions (Figure 4.4). The response curve

was approximately linear (Figure 4.4C) and in our neuron model we did not observe saturation of spike

�ring when up to 1.5 nA of current was injected. To investigate the impact of inhibition on the IO curve

we added inhibitory synapses to the model. Excitatory pyramidal neurons receive inhibitory inputs from

several di�erent interneuron types. Two major classes of cortical interneurons that have been described

include parvalbumin (PV) expressing interneurons that mainly synapse onto the perisomatic region of

their pyramidal neuron targets, and somatostatin (SOM) expressing interneurons that typically synapse

more distally on the dendrites of pyramidal neurons [Markram et al., 2004]. To mimic these two sources

of inhibitory inputs, two sets of inhibitory synapses were distributed perisomatically (Figure 4.2, middle)

or throughout the distal basal dendrites (Figure 4.2, right) of the neuron model. These two sets of in-

hibitory synapses were activated separately. To model the conductance change associated with synaptic

input in a noiseless situation, all inhibitory synapses were activated simultaneously and the conductance

of these synapses was constant. Under these conditions, regardless of whether the site of inhibition was

perisomatic (Figure 4.4A) or dendritic (Figure 4.4B), the presence of inhibition resulted in a rightward

shift in the IO curve of the neuron (Figure 4.4C). The transformation in the IO curve was almost purely

subtractive and divisive e�ects were largely absent (Figure 4.4D). The amount of subtraction observed

was also proportional to the strength of the inhibition, and unsurprisingly, perisomatic inhibition had

greater subtractive e�ects than dendritic inhibition (Figure 4.4D).

Having characterised the e�ects of inhibition on a neuron stimulated by depolarising current injection,

we replaced the current injection with constant conductance excitatory input. Excitatory synapses were

distributed throughout the basal dendritic tree (Figure 4.2, left), and in the next series of simulations

activation of the excitatory synapses was modelled by a constant conductance (Figure 4.5A,B). Although

somatic current injections are usually used to extract the IO curve of neurons (e.g. [Chance et al.,

2002]), conductance input di�ers from current input in two key ways. Firstly, increasing the synaptic

conductance reduces the input resistance of the neuron, e�ectively reducing the responsiveness of the

neuron to further stimulation. Secondly, the depolarisation evoked by excitation brings the membrane

potential of the neuron closer to the reversal potential of the excitatory synaptic current, thereby reducing
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Figure 4.4: Somatic and dendritic inhibition can cause purely subtractive e�ects. Depolarising current
injection was applied at the soma along with constant conductance inhibitory input in the perisomatic (A)
and basal dendritic (B) regions. (C) The input-output curves showing the e�ect of somatic inhibition
(left) and dendritic inhibition (right). (D) Both somatic and dendritic inhibition exerted subtractive
e�ects which increased with increasing inhibitory conductance (left), but neither produced signi�cant
divisive e�ects (right).
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the driving force for additional excitatory current. These two e�ects combined to produce a saturation in

the IO curve, seen as a sublinear increase in �ring rate in response to increasing excitatory conductance

(Figure 4.5C). Constant conductance somatic and dendritic inhibition again both produced subtractive

e�ects on the IO curve (Figure 4.5D, left), however, a divisive component also emerged (Figure 4.5D,

right).

Up to this point, we have only considered constant current or constant conductance conditions. Neurons

in vivo are bombarded by synaptic inputs and this barrage of synaptic activity leads to large �uctuations

in the membrane potential [Steriade et al., 1993, Destexhe et al., 2003]. Even if the average membrane

potential of the neuron is below threshold, su�ciently large �uctuations will cause the membrane potential

to occasionally reach threshold. Thus, membrane potential variability is expected to have implications

on the shape of the IO curve, particularly near threshold [Chance et al., 2002, Prescott and De Koninck,

2003]. We �rst investigated the impact of membrane potential variability on the IO curve in the absence

of inhibition by measuring the response to depolarising current injections at the soma with di�erent levels

of added noise (Figure 4.6). The current noise was modelled by an Ornstein-Uhlenbeck Process (described

in Methods) and superimposed on current steps. An increase in the amplitude of membrane potential

�uctuations was associated with an increase in spiking rate and a smoothing of the IO relationship near

threshold (Figure 4.6B). The current noise also produced membrane potential �uctuations reminiscent

of the membrane potential variability observed in vivo and contributed to irregular spiking (Figure 4.6C).

We next introduced synaptic input with realistic activation and deactivation kinetics, and stimulated

excitatory and inhibitory synapses with independent Poisson processes. IO curves were generated by

increasing the frequency of dendritic excitation in the presence of increasing levels of somatic or dendritic

inhibition (Figure 4.7A,B). As the EPSP response at each synapse is small and also subject to dendritic

�ltering e�ects, during asynchronous activation of excitatory and inhibitory inputs the summation of

numerous randomly occurring EPSPs generates only small membrane potential �uctuations at the soma.

This leads to IO curves generated in the absence of large membrane potential �uctuations (Figure 4.7C).

In order to generate larger �uctuations in the membrane potential, excitatory synapses were stimulated

in groups of 4 (Figure 4.7D), 10 (Figure 4.7E) and 25 (Figure 4.7F), where each group of synapses

was driven by a common Poisson process, while the Poisson processes used to drive di�erent groups

were independent of one another. The size of the membrane potential �uctuations generated by this

grouping increased with the number of synapses recruited simultaneously. Modifying the statistics of the

synaptic stimulation by increasing the number of co-activated excitatory inputs reduced the subtractive

87



Chapter 4. Somatic versus dendritic inhibition Results

e�ects of inhibition without impacting divisive e�ects, and was similar in models with somatic inhibition

and dendritic inhibition (Figure 4.7G,H). The �nding that increasing levels of membrane voltage noise

decrease the subtractive e�ects of inhibition is consistent with the simulations shown in Figure 4.6,

which show that voltage noise acts to smooth the IO relationship near threshold (see also [Prescott and

De Koninck, 2003]).
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Figure 4.5: Somatic and dendritic inhibition can cause mixed subtractive and dendritic e�ects. Constant
conductance excitatory input was applied at the soma along with constant conductance inhibitory input
in the perisomatic (A) and basal dendritic (B) regions. (C) The IO curves showing the e�ect of somatic
inhibition (left) and dendritic inhibition (right). Compared to current injection, these IO curves show
a sublinearity with increasing excitatory conductance. (D) Both somatic (left) and dendritic (right)
inhibition exerted subtractive and divisive e�ects which increased with increasing inhibitory conductance.
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Figure 4.6: The impact of using noisy current injection to drive spiking. (A) Schematic of the recording
con�guration whereby a single electrode is used to deliver noisy current at the soma. (B) IO curve
of the neuron with di�erent levels of noise. Increasing noise smoothens the IO curve near threshold
and shifts the IO curve to the left. (C) Increasing the standard deviation of the noise increases the
magnitude of random �uctuations in the membrane potential at rest (mean Iinj = 0 nA; left column) and
increases intensity of spiking(mean Iinj = 0:25 nA; right column). The histograms show the distribution
of the resting membrane potential. Each row corresponds to a di�erent level of noise (0.5, 1.0 and 1.5
nA/

p
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Figure 4.7: Conductance noise decreases subtractive e�ects without a�ecting division. Conductance-
based excitatory synapses were stimulated in groups by Poisson inputs. Conductance-based inhibitory
synapses in the perisomatic (A) and basal dendritic (B) regions were stimulated by independent Poisson
processes. The IO curves showing the e�ect of somatic inhibition (left) and dendritic inhibition (right)
when excitatory synapses were stimulated asynchronously (C), in groups of 4 (D), in groups of 10 (E)
or in groups of 25 (F). Increasing the synchronicity of the excitatory synapses reduces the subtractive
e�ects for both somatic (G) and dendritic (H) inhibition without altering the divisive e�ects.

91



Chapter 4. Somatic versus dendritic inhibition Discussion

4.4 Discussion

We have explored how the location of synaptic inhibition a�ects the input-output �ring curve of a biophys-

ically realistic layer 2/3 pyramidal neuron model. In our simulations, we investigated the IO relationship

generated during depolarising somatic current injection and dendritic excitatory conductance input un-

der noiseless and noisy conditions, and we compared the e�ect of perisomatic and dendritic inhibition

on these di�erent stimulation conditions. We show that the e�ect of inhibition, whether subtractive

or divisive, was largely independent of the site of inhibition. Rather, the e�ect of inhibition depended

more on the characteristics of the stimulus used to drive the neuron. When constant current injection

was used to drive the neuron, inhibition was predominantly subtractive. On the other hand, replacing

constant current stimulation with constant conductance excitation introduced a divisive component to

the e�ect of inhibition on the IO relationship, which was observed during both somatic and dendritic in-

hibition. The purely subtractive e�ects of inhibition were further diminished when synapses with realistic

activation and deactivation kinetics were used instead of constant conductance excitation. Under these

conditions introducing correlations between excitatory inputs to increase membrane potential noise led to

a further reduction in the subtractive e�ects of both somatic and dendritic inhibition without changing

their divisive impact on the IO relationship.

The IO relationship of a neuron is in�uenced by the features of the excitatory stimulus used to drive

the neuron and any other background activity [Chance et al., 2002, Prescott and De Koninck, 2003].

Unlike depolarising current injection (Figure 4.4), an excitatory conductance input exerts a shunting

e�ect on the neuron as the input resistance decreases when the conductance increases (Figure 4.5).

Since the excitatory current also saturates, the �ring rate response curve of a neuron driven by excitatory

conductance is sublinear, compared to that observed during current injection. In addition, synaptic

activity, such as that found in vivo, leads to �uctuations in the membrane potential that can cause random

excursions above threshold. This noise-induced spiking smoothens the IO relationship of a neuron near

threshold, such that the onset to spiking with increasing stimulus intensity is less abrupt (Figure 4.6;

see [Prescott and De Koninck, 2003]). As a result the shape of the IO curve of a neuron depends on

the nature of the input used to drive the neuron (current or conductance, noisy or noiseless). While the

IO response �tted with a parametric curve allows quanti�cation and comparison of the subtractive and

divisive components with appropriate model selection, the choice of curve depends on the shape of the

IO response. To address this issue, for a given set of stimulation conditions, we took the IO response

in the absence of inhibition as the reference curve, and then determined the subtractive and divisive
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components (c and k) required to transform the response to that observed in the presence of inhibition

(Figure 4.3). This circumvents the need to de�ne the shape of the parametric curve used to describe

the IO relationship.

Relation to other work Our results contrast with several recent experimental studies that have placed a

much greater emphasis on the role of the site of inhibition in determining its e�ect on the IO relationship.

For example, recent work in vivo has assigned subtractive e�ects to soma-targeting PV interneurons and

divisive e�ects to dendrite-targeting SOM interneurons [Lee et al., 2012b, Atallah et al., 2012], although

the opposite has also been reported [Wilson et al., 2012]. Based on the simulations presented in this

Chapter we concluded that, in principle, both soma-targeting and dendrite-targeting interneurons are

capable of generating both subtractive and divisive inhibition depending on the nature of the stimulation

used to drive the neuron of interest.

These studies highlight how stimulus control in vivo can be particularly challenging for various reasons.

Pyramidal neurons are recurrently connected with each other and highly interconnected with surrounding

inhibitory interneurons. Cortical activity is known to depend on recurrent excitation [Petersen et al., 2003,

Fiser et al., 2004]. Thus it is very di�cult to isolate the manipulation of one subpopulation of neurons

without inadvertently modifying the activity of other elements in the circuit in some way. Optogenetic

up- or down-regulation of an inhibitory interneuron population, as performed in the studies cited above,

not only a�ects the activity of the neurons receiving direct input from the activated or inhibited inhibitory

population, but is likely to have downstream e�ects in the recurrently connected larger network. For

example, SOM interneurons also inhibit PV interneurons in the visual cortex [Pfe�er et al., 2013]. In

addition, the overall impact of optogenetic stimulation or inhibition of di�erent interneuronal populations

will depend on rhodopsin expression levels, light intensities and the timing and duration of optogenetic

stimulation, making comparisons between di�erent studies problematic. Furthermore, Cre driver lines

for labelling PV and SOM interneurons are not entirely speci�c and label overlapping morphologically

distinct types of interneurons, such that the separation of soma- and dendrite-targeting interneurons is

not ensured by these labelling methods [Jiang et al., 2015]. For all of these reasons, selectively activating

a genetically-de�ned population of interneurons does not necessarily allow unambiguous extraction of the

divisive and subtractive e�ects attributable to that population alone.
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To our knowledge, only one other study has provided a combined experimental and modelling approach

to comparing somatic and dendritic inhibition [Pouille et al., 2013]. In these experiments excitation

was delivered via dynamic clamp injection of an excitatory conductance into the apical dendritic trunk of

CA1 pyramidal neurons, or via focal optogenetic stimulation of channelrhodopsin-2 expressing neocortical

pyramidal neurons. Local somatic or dendritic inhibition was mimicked by focal application of muscimol (a

GABAA agonist) delivered by picospritzer-controlled local applications through a micropipette. The con-

clusions drawn from these experiments was that colocalising excitation and inhibition led to subtractive

e�ects, independent of whether inhibition was somatic or dendritic, whereas dendritic excitation com-

bined with somatic inhibition resulted in a predominant divisive change which had a smaller subtractive

component. Computer simulations in a simpli�ed ball and stick model were presented that replicated

these experimental observations. One criticism of this study is that the experimental conditions and

computer simulations represent a relatively speci�c scenario. Excitatory input, both in the experiments

as well as the simulations, was very focal and would likely lead to very high localised changes in input

resistance. Similarly, inhibition was applied focally and would also have a very localised e�ect. These

large, localised changes in input resistance and membrane potential due to focal excitatory input are un-

likely to mimic the response to realistic, dispersed input. This questions the physiological relevance of the

study. In our morphologically realistic model the e�ects of somatic and dendritic inhibition were far less

disparate. As synaptic inputs in this model were distributed throughout the dendritic tree and activated

in a dispersed manner, similar to that observed in vivo [Chen et al., 2013b, Jia et al., 2010], activation of

individual inputs would be associated with localised conductance changes and smaller membrane potential

changes, leading to less local shunting interactions between the conductances. This di�erence is likely

to explain why in our simulations both divisive and subtractive e�ects of somatic and dendritic inhibition

were observed.

Future directions The key result we have presented that dendritic and somatic inhibition can produce

similar divisive and subtractive e�ects are derived from computer simulations and hence require experi-

mental validation. As we have discussed, focal synaptic stimulation represents an unrealistic scenario and

may produce misleading conclusions [Pouille et al., 2013]. Therefore the ideal in vitro experiment would

involve controlled, di�use but targeted activation of excitatory and inhibitory synapses to mimic the way

synapses are activated in vivo, and could be implemented by the neurotransmitter uncaging strategies we

will discuss in Chapter 5.

94



Discussion Chapter 4. Somatic versus dendritic inhibition

Since dendritic and somatic inhibition have very similar e�ects on neuronal output in our model, when

is the location of inhibition important? We argue that the e�ect of inhibition is more dependent on the

functional context that the inhibition operates in rather than the biophysical location of the inhibition

itself. This is not to say that the location of inhibition does not play a role. The functional impact of

inhibition is likely to depend critically on how it interacts with the local active properties of the region

targeted. For example, in some circumstances dendritic inhibition very e�ectively shuts down cell spiking

by suppressing dendritic electrogenesis and provides a powerful mechanism for divisive gain control [Miles

et al., 1996]. In the hippocampus for example, in vitro silencing of SOM+ dendrite-targeting interneurons,

but not PV+ perisomatic-targeting interneurons, dramatically increases the �ring rate response of CA1

pyramidal neurons to CA3 input [Lovett-Barron et al., 2012]. In the cortex, various dendrite-targeting

interneurons are also able to regulate dendritic electrogenesis and subsequent neuronal output [Murayama

et al., 2009, Jiang et al., 2013], while interhemispheric inhibition mediated by GABAB receptors and

delivered by layer 1 interneurons to the tuft region of layer 5 pyramidal neurons robustly shuts down �ring

for hundreds of milliseconds [Palmer et al., 2012b]. With regard to axosomatic inhibtion, chandelier cells,

which target the axon initial segment of cortical pyramidal neurons, may be uniquely positioned to exert

exquisite control over the output of these neurons [Howard et al., 2005, Woodru� et al., 2010]. The

ability of chandelier cells to precisely control pyramidal neuron output is also demonstrated by their role

in establishing oscillations and enforcing synchrony in the hippocampus [Somogyl, 1995]. Together, these

examples serve to demonstrate how the e�ect of inhibition may be intimately related to the nature of

the active properties of the recipient domain.

Beyond the local active properties of the neuron, in vitro and in vivo studies have also shown that di�erent

classes of interneurons may be recruited under di�erent circumstances. In the hippocampus for example,

basket, axo-axonic and oriens-lacunosum-moleculare cells, which innervate the perisomatic region, axon

initial segment, and distal apical dendrites, respectively, show class-speci�c and distinct patterns of activity

during behaviourally-relevant theta rhythms and sharp-wave ripples [Klausberger et al., 2003]. In the

cortex, two inhibitory microcircuits which both target the apical dendrites of pyramidal neurons have

been shown to be active under di�erent circumstances. Namely, the deep layer Martinotti neurons which

act via GABAA-mediated neurotransmission [Murayama et al., 2009, Silberberg and Markram, 2007], and

the layer 1 neurogliaform cells which act via GABAB-mediated neurotransmission or volume transmission

[Chu et al., 2003, Oláh et al., 2009]. The context-speci�c �ring of interneurons in these examples

also lend weight to the notion that the timing of inhibition is key, such as in the establishment and

maintenance of hippocampal rhythms [Somogyi and Klausberger, 2005]. Indeed, somatic feed-forward

95



Chapter 4. Somatic versus dendritic inhibition Discussion

inhibition is known to impose a very narrow time window for EPSP integration in pyramidal neurons

[Pouille and Scanziani, 2001].

These examples provide instructive guides for directing future investigations and also demonstrate the

limited utility of characterising the e�ects of inhibition according to how the IO relationship of a neuron is

modulated during somatic current injection. Characterisation of inhibition in this way does not distinguish

other important features such as the timing of inhibition and its impact on active dendritic processes

including dendritic spikes. Thus future e�orts should be directed to further understand which interneuron

populations are active and under what circumstances during behaviour.
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Chapter 5

Four-dimensional multi-site photolysis of

caged neurotransmitters

5.1 Introduction

Optical methods for studying neuronal integration have changed the landscape of studying neuronal func-

tion [Scanziani and Häusser, 2009] by enabling researchers to study the physiology of dendritic compart-

ments not accessible to electrophysiological recordings. Light o�ers several advantages over electrodes.

Optical methods are essentially non-invasive since light passes through cells, producing minimal trauma.

Light also o�ers superior spatial characteristics, with the ability to precisely localise signals while record-

ing from multiple locations. For example, with two-photon (2P) microscopy it is possible to image with

cellular resolution across all depths of the cortex [Chia and Levene, 2009, Andermann et al., 2013] and

even two distant cortical areas simultaneously [Lecoq et al., 2014]. For these reasons, light microscopy

has become one of the most widely used tools for probing neurons and neural circuits.

Neurotransmitter uncaging, or photostimulation with caged neurotransmitters, has been an in�uential

method for studying synaptic integration [Wang and Augustine, 1995, Pettit et al., 1997]. Uncaging

approaches involve photolysis of caged compounds, which are molecules attached to a photolabile pro-

tecting group that renders the molecule biologically inert. Light is used to break the attachment to the

protecting group, releasing the molecule in an active form. Many caged compounds have been developed

[Adams and Tsien, 1993], including caged neurotransmitters such as glutamate [Matsuzaki et al., 2001],

GABA [Wieboldt et al., 1994], and acetylcholine [Milburn et al., 1989]. Uncaging di�ers from optoge-

netics in that optogenetics relies primarily on genetic speci�city for precise targeting, whereas uncaging

relies on optical manipulation of light to achieve spatial precision. Furthermore, by uncaging with 2P
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laser stimulation, it is possible to achieve sub-millisecond control with sub-micron resolution, allowing

one to mimic the temporal and spatial dynamics of neurotransmitter release [Noguchi et al., 2011].

Laser-scanning systems utilising galvanometer mirrors [Matsuzaki et al., 2001, Gasparini and Magee,

2006, Branco et al., 2010] implemented in 2P laser-scanning microscopes provide quasi-simultaneous

multi-site stimulation by scanning the laser beam at fast rates (�10 kHz i.e. switching time of �100
�s). These two-dimensional scanning systems, however, are restricted to a single optical plane. A

high-speed 3D scanning system has been described employing four acousto-optic modulators (AOMs)

[Reddy et al., 2008]. This system has been used to monitor neuronal activity via calcium imaging [Reddy

et al., 2008, Katona et al., 2012]. However, using four AOMs results in low optical throughput, and

the dispersion through the AOM crystal signi�cantly decreases 2P e�ciency due to pulse broadening.

Consequently, such a system has not been utilised for multi-site photolysis of caged neurotransmitters in

3D. Beam-shaping techniques using a spatial light modulator (SLM) can split a single laser beam into

several beamlets and generate arbitrary illumination patterns. These techniques have been demonstrated

for photostimulation with shaped illumination in single-photon (1P) [Lutz et al., 2008, Zahid et al., 2010]

and 2P [Dal Maschio et al., 2010, Papagiakoumou et al., 2010], and for multi-foci photostimulation

patterns in 1P [Anselmi et al., 2011, Yang et al., 2011] and 2P [Nikolenko et al., 2008]. 1P excitation

exhibits poor resolution along the optical axis, due to scattering in brain tissue. While 2P photostimulation

o�ers enhanced axial resolution, previous studies have only shown stimulation in a single plane.

Two-photon photolysis of caged neurotransmitters using holographic projection of an arbitrary 3D multi-

foci uncaging pattern has recently been demonstrated [Go et al., 2012]. While holographic projection

allows simultaneous multi-site photostimulation in 3D, the slow response of the SLM (�10-30 ms) remains
the limiting factor in achieving fast-switching light patterns within physiologically relevant timescales (�1
ms). Here, we overcome this limitation by temporally gating the 3D multi-foci uncaging pattern generated

by the SLM using a high-speed spatial light-switching array provided by a digital micro-mirror device

(DMD). The programmable array of micro-mirrors can be used to independently control each beamlet in

less than a millisecond (�0.7 ms) allowing the multi-site pattern to be changed at submillisecond rates.

Random spatial stimulation patterns in 3D are therefore possible at physiologically relevant timescales. In

this Chapter we demonstrate the performance of this system as a tool for studying neuronal integration

by uncaging glutamate at multiple foci with submillisecond resolution, stimulating activation of multiple

dendritic spines on di�erent dendritic branches. My contribution to this collaboration was the design of

the software used to control the DMD as well as experimental testing of the system. Vince Daria and
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Ann Go also made substantial contributions to this work, and are acknowledged throughout this chapter.
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5.2 Methods

Microscope design

Our time-gated holographic microscope system employed a SLM, encoded with a phase hologram to

generate a multi-focal excitation pattern of the incident laser beam, and a DMD, which acts as a spatial

light switch allowing independent switching of the individual foci. The resulting spatio-temporal excitation

pattern is used for glutamate uncaging. We also use galvanometer scanning mirrors to image the 3D

morphology of the neuron. A schematic of the system is described in Figure 5.1A.

The microscope system consisted of a photostimulation arm and an imaging arm, with corresponding

uncaging (720 nm) and imaging (800 nm) lasers. The two laser beams are split by a polarising beam

splitter (PBS), and recombined ahead of the objective lens by a second PBS following reorientation of

the polarisation of each laser using half-wave plates. The imaging arm includes a near infrared (NIR)

Ti:S laser (MIRA 900, Coherent Inc) and galvanometer scanning mirrors that scan the linearly polarised

imaging beam across the �eld of view. A photomultiplier tube (PMT) is used to detect photons collected

from the sample under the objective. Photons are directed to the PMT via a second dichroic mirror, which

re�ects wavelengths below 650 nm into the PMT. For DIC imaging, infrared light from below the sample

passes through the objective and the �rst dichroic mirror charge-coupled device (CCD) camera (Dage-

MTI IR-1000EX). In DIC imaging mode, the dichroic mirror above the objective lens allows infrared

light (>810 nm wavelength) to pass through and focus onto a charge-coupled device (CCD) camera

(Dage-MTI IR-1000EX).

The two principle components of the photostimulation that enable fast spatiotemporal light modulation

are a spatial light modulator (SLM), which generates a multi-focal three-dimensional excitation pattern

from the incident laser beam, and a digital micro-mirror device (DMD), which serves as a two-dimensional

light switch that enables rapid and independent switching of individual stimulation foci. The uncaging

laser beam from a Ti:S laser (Coherent Inc. Chameleon) is expanded by a telescope to illuminate the

16 � 12 mm2 area of a programmable phase-only SLM (Hamamatsu X10468-02), where the phase-

only hologram is encoded. The hologram is computed using custom software based on the standard

prism-lens superposition algorithm [Liesener et al., 2000, Curtis et al., 2002]. The DMD (DLP3000,

Texas Instruments) is positioned at the Fourier plane with respect to the SLM and is interfaced to the

microscope using 4f relay lenses, which position the DMD at the conjugate image plane with respect to

the sample region. The DMD is used to individually switch each beamlet of the excitation pattern ON
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Figure 5.1: Optical design of 4D holographic microscope. (A) Light from a laser tuned to 800 nm is
projected through two polarising beam splitters (PBS) onto two galvanometer (GM) scanning mirrors
that scan the excitation beam across the sample for imaging. Fluorescence from the sample is collected
by a photomultiplier tube (PMT). Light from another laser tuned to 720 nm is expanded, projected onto
a spatial light modulator (SLM), focused onto a digital micro-mirror device (DMD) and imaged onto the
sample. The SLM is encoded with a phase hologram that generates a multi-focal excitation pattern from
the incident laser beam. The DMD acts as a spatial light switch allowing independent switching of the
individual foci. The resulting spatio-temporal excitation pattern at the sample plane is used for uncaging
glutamate. �=2, half-wave plate; DM, dichroic mirror; M, mirror; L, lens; LFT , Fourier transform lens;
OL, objective lens; ACSF, arti�cial cerebrospinal �uid. (B) The DMD operates the micro-mirrors by
changing their tilt between an ON and an OFF state. In the ON state, incident light is directed towards
the objective, while in the OFF state, incident light is directed towards a beam dump. The micro-mirrors
can all be operated independently from one another. For a given beam focus size, fewer micro-mirrors
are required to switch a focus on the DMD that is confocal with the objective lens (Focus1) than a focus
that is above the DMD plan (Focus2). (C) The intensity of light incident on the photodiode located in
the conjugate Fourier plane re�ects the number of foci switched ON. Micro-mirror states can be switched
at 1440 Hz, corresponding to a period of approximately 0.7 ms. This microscope design was conceived
with Vince Daria and Ann Go.
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or OFF. In the ON state, the micro-mirrors direct the laser light to the sample (see Figure 5.1B). In the

OFF state, the laser light is directed to a beam dump. The relay lenses are chosen to ensure that the

back aperture of the objective lens is �lled and that the area of the DMD encompasses the �eld of view

of the objective lens (200 �m2 for a 1.0 NA 40� objective).

The dimension of one micro-mirror in the DMD is smaller than the di�raction-limited focal spot of the

Fourier transform (FT) lens, with an e�ective numerical aperture (NA) of �0.1. Hence, it takes a small

set of micro-mirrors to switch a single beamlet of the multi-focal pattern ON and direct it to the sample

for uncaging (see Figure 5.1). When the holographic focus generated by the SLM is either above or

below the plane of the DMD, a larger subset of micro-mirrors is needed. The size of the subset of

micro-mirrors is calculated based on the conical angle of the focus with respect to the NA of the FT lens

and the operating wavelength (720 nm). Figure 5.1C shows the relative intensity in the sample plane

as measured by a photo-diode located at the conjugate Fourier plane (see Figure 5.1A) for di�erent

numbers of focal spots turned ON by the DMD. The DMD receives 24-bit RGB data at 60 Hz per pixel,

with each colour channel (RGB) having 8-bit depth i.e. 256 di�erent intensity levels. At the level of the

micro-mirrors, the RGB pixel intensity determines when each mirror is switched on and o� during a 60

Hz cycle. The way the video input is used to turn individual mirrors on and o� depends on the mode

the DMD is operating in. We operated the DMD in 1-bit monochrome mode. In this mode, an image

frame in a single 60 Hz cycle consists of 24 1-bit planes, which encode the micro-mirror state (ON or

OFF) at 24 consecutive time epochs during that cycle. This allows temporal sequences to be read out

at 1440 Hz. In Figure 5.2 we show how the temporal sequence of micro-mirror states is encoded in the

RGB pixel intensities. The photostimulation pattern and video feed to the DMD were generated with a

custom MATLAB routine running the Psychophysics Toolbox (PTB) package.

The setup is also equipped with a micromanipulator (Sutter Instruments), peristaltic pump (Gilson

Minipuls 3) and ampli�er (MultiClamp 700B, Molecular Devices) for electrophysiology. We use cus-

tom software developed in LabVIEW (National Instruments) to control the acquisition of 3D 2P images,

the calculation of the appropriate hologram for projection of photostimulation sites, and the laser intensity

via a polarising beam splitter and a half-wave plate on a motorised rotation mount.
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Intensity

Sequence

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

22 26+ 68= 24 16= 23 8=

Figure 5.2: Encoding the temporal sequence of mirror states. A 24-bit RGB pixel encodes a single
60 Hz cycle consisting of 24 consecutive mirror states. To encode a sequence of 24 mirror states, the
binary sequence is split into three groups corresponding each colour channel (blue, red and green). Thus
each group consists of 8 elements. Each element is assigned to a di�erent bit-plane, numbered from 0
to 7. To determine the intensity of each colour based on the sequence of mirror states, the bit-planes
corresponding to non-zero (i.e. ON) states are exponentiated (base 2) and summed. For example in the
�gure shown, the �rst eight elements of the ON-OFF sequence, 00100010, corresponding to the blue
channel, have non-zero states in bit-planes 2 and 6. Thus the intensity of the blue channel is calculated
as 22 + 26 = 68.
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Slice preparation and electrophysiology

Wistar rats (3-5 weeks old) of either sex were anaesthetised with iso�urane and decapitated according to

protocols approved by the Animal Ethics Committee of the Australian National University. Three hundred

micrometer thick parasagittal brain slices of somatosensory cortex and hippocampus were made using a

Leica VT1200S vibratome. During slice preparation, the brain tissue was submerged in ice-cold arti�cial

CSF (ACSF) containing (in mM): 125.0 NaCl, 2.5 KCl, 1.25 NaH2PO4, 2.0 CaCl2, 25.0 NaHCO3, 1.0

MgCl2, and 10.0 glucose, bubbled with 95% O2/5% CO2 (pH � 7:4). Slices were transferred to a

holding chamber containing ACSF bubbled with 95% O2/5% CO2 (pH � 7:4) and incubated at 34�C

for 30 minutes before being maintained at room temperature.

Somatic whole-cell recordings were made from visually identi�ed layer 2/3 and 5 pyramidal neurons under

di�erential interference contrast optics [Stuart et al., 1993] with a MultiClamp 700B ampli�er. Record-

ing electrodes were �lled with a solution containing (in mM): 115 K-gluconate, 20 KCl, 10 HEPES, 10

phosphocreatine, 4 ATP-Mg, 0.3 GTP, 5.4 biocytin, and 0.1 Alexa-488 (Invitrogen). In some instances,

neurons were injected with current to hold their resting membrane potential at �70 mV. For the experi-

ments depicted in Figures 5.4D-F, the resting membrane potential was depolarised to �55mV to enable

APs to be more easily generated. Data analysis was performed with AxoGraph X and MATLAB. We

calculated peak currents and voltages by averaging 5-12 trials.

Two-photon imaging and glutamate uncaging

Neurons were �lled with 0.1 mM Alexa-488 for 20-30 minutes before imaging at 800 nm with 12-22 mW

of laser power. Image stacks measuring 800 � 800 pixels per image plane were acquired, with a separation

of 1 �m between planes in the stack. ImageJ (National Institute of Health) was used for volume rendering

and 3D visualisation. We determined the potential sites on the dendritic tree for photostimulation from

the 3D image map of the �uorescently labelled neuron. The appropriate phase hologram for the desired

multifocal pattern around the neuron was then calculated and encoded onto the SLM. The DMD was

used to switch individual sites ON or OFF.

MNI-caged glutamate (3 mM in ACSF, Tocris Bioscience) was bath-applied with 0.1 mM cyclothiazide.

Uncaging was performed at 720 nm using 9-30 mW power per uncaging spot. A closed recirculating

system using a peristaltic pump was used to minimise the ACSF volume. A semi-automated drift detection

algorithm was executed prior to every uncaging experiment to ensure that the photostimulation sites

remained in the same positions.
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5.3 Results

Time-gated holographic system

Our microscope design builds on an earlier 2P holographic microscope system capable of simultaneous

multi-site photostimulation in 3D [Go et al., 2012] by incorporating a DMD element. The addition of

the DMD o�ers several advantages over the original system. Firstly, the DMD is able to rapidly update

photostimulation patterns at 1440 Hz (under 0.7 ms per frame), an order of magnitude faster than what

the SLM is capable of, which has a response time of �10-30 ms. Since each pixel on the DMD array

operates separately, stimulation foci can be switched independently of each other. This is in contrast

to shutter systems that can also provide sub-millisecond switching, but cannot switch stimulation foci

individually. Secondly, the DMD can eliminate spurious light patterns normally produced by phase-only

holograms [Palima and Daria, 2006, Palima and Daria, 2007, Go et al., 2011], thereby reducing artifactual

uncaging outside of the designated foci.

To visualise the di�erent foci, we placed a re�ective surface (e.g. glass slide) in the sample plane and

imaged the re�ected light leaked through the dichroic mirror directly above the objective lens (see Figure

5.1A). Figure 5.3A shows the photo- stimulation pattern produced by the SLM projected onto the sample

with all DMD pixels in the ON position. Figure 5.3B shows the same photostimulation pattern with only

the intended nine foci switched ON. Note that the undi�racted (i.e. zero-order; see image centre in

Figure 5.3A) beam from the SLM is missing in the latter, as are other higher di�raction orders and mirror

projections of the �rst orders. The DMD therefore provides an easy way of eliminating the zero-order

beam, thus, reducing the risk of unintended uncaging, and gives independent control for switching each

stimulation site.

Figure 5.3C shows how the power on one uncaging focus depends on the number of focal spots, N,

produced by the SLM. The relationship is an inverse proportionality as reported earlier [Daria et al.,

2009]. The error bar for N = 1 shows the variability in power among di�erent non-central positions of

the holographic spot which results from the spatial variation in the di�raction e�ciency of the SLM. For

N = 2 to 20, the ON focus was kept at a �xed position as the spot con�guration for a �xed number of

foci was varied. Note that the variability in power within a single position is much less than the spatial

variability. The laser beam has a Gaussian intensity pro�le. Figure 5.3D shows the normalised power as a

cumulative Gaussian function of DMD array size, de�ned as the length of the square array of micro-mirrors

for gating the uncaging focus, averaged over di�erent positions of the holographic spot. On average,
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96% of the maximum intensity at each spot was recovered using a DMD array size of 21, whereas 90%

was recovered with an array size of 15. Based on this information, for most of the experiments in this

paper we used an array size of 15. Figures 5.3E,F show how the glutamate uncaging-evoked response

varies with number of uncaging sites, N, and DMD array size, respectively. The quadratic intensity

dependence of 2P absorption is re�ected here with the peak voltage seen as a function of 1=N2 and a

squared cumulative Gaussian function of DMD array size. As the total laser power was kept constant for

the experiment in Figure 5.3E, data points for N < 6 were not investigated to preclude damaging the

DMD with high laser power. Laser pulse duration for Figure 5.3E,F is 2 ms.

Figure 5.4A shows 11 foci positioned in a circular arrangement with z-axis positions ranging from 10 �m

above (negative) to 10 �m below (positive) the nominal focus of the objective lens (0 �m). The point in

the focal plane is in focus (i.e. sharpest) but the rest are out of focus with the points in the farthest away

planes (� 10 �m) the most out of focus. Figure 5.4B shows the same light pattern but with the objective

lens focused in the plane z = + 10 �m. Figure 5.4C shows the DMD array sizes for gating the di�erent

foci in the light pattern in Figure 5.4A. By scaling the micro-miror array size for gating the relevant site

with distance from the nominal focal plane of the objective lens, we accommodate the increasing size of

the out-of-focus projection of the beamlets and allow collection of light for points projected above and

below the focal plane. The DMD array size puts a restriction on the minimum separation between two

uncaging sites for independent gating. Figure 5.4D plots the minimum distance between two uncaging

sites as a function of axial distance for an array size of 15 for the case where one spot is �xed while

the other spot is moved away axially and for when both spots move together in the axial direction. The

minimum separation for two uncaging sites in the same plane is 6.5 �m. As a result we refrained from

positioning uncaging sites within 10 �m of the centre to avoid switching ON the zero-order beam and

unnecessarily illuminating the sample. Technically, however, this minimum separation is a soft limit as

independent uncaging at two sites, de�ned by the spatial resolution of glutamate uncaging, has a much

narrower pro�le. Figures 5.4E,F show representative lateral and axial resolution pro�les from uncaging-

evoked voltage responses to 700 �s laser pulse duration. The responses were measured in current clamp

as the uncaging site was moved orthogonally from the spine while the objective was kept �xed. The

lateral pro�le has a full width at half maximum (FWHM) of 0:8�0:1 �m. The axial pro�le was 1:3�0:1

�m. The solid lines correspond to Gaussian curve �ts. The �nal resolution depends on laser power,

laser pulse duration and local MNI-glutamate concentration. For example, we earlier reported uncaging

resolution with FWHM of 2:4� 0:2 �m and 3:7� 0:3 �m for the lateral and axial pro�les, respectively,

using 2 ms laser pulse duration [Go et al., 2012].
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Figure 5.3: (Caption next page)
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Figure 5.3: SLM-generated 3D photostimulation pattern with DMD gating. (A) Nine-foci light pattern
produced by the SLM with all DMD pixels turned ON showing zero order (0 order), second order [+2
(a)] and mirror projections [-1 (a-c)] of the �rst di�raction order [+1 (a-c)]. (B) Same photostimulation
pattern as in (A) but with only the nine desired foci gated by the DMD. All other light is eliminated by
being directed to the beam dump. (C) Power on one ON focus as a function of number of foci, N (n = 10

di�erent spot con�gurations), measured by a power meter under the objective lens. For N = 2 � 20

foci generated by the SLM, the DMD was con�gured to illuminate a single (ON) focus only. The ON
focus was kept at a �xed position. Solid line is 1=N �t. (D) Normalised power as a function of DMD
array size (n = 10 focal spot positions). The array size is de�ned as the length, in pixels, of the square
array of micro-mirrors for gating each uncaging focus. Solid line is a cumulative Gaussian �t. (E,F) Peak
of glutamate-evoked voltage from one ON uncaging site as a function of (E) number of uncaging sites
and (F) DMD array size (n = 8 � 10 trials). In F, 10 foci were generated by the SLM. Solid lines are
proportional to squares of curve �ts in C and D, respectively. These experiments were performed by Ann
Go.
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Figure 5.4: Spatial resolution of independent gating and uncaging. (A) 3D photostimulation pattern
with objective lens focused in the reference plane z = 0 �m and the other 10 sites holographically
projected either above (negative) or below (positive) the reference plane. (B) Same photostimulation
pattern as in C but with objective lens focused in the plane z = +10 �m. (C) Sizes of micro-mirror arrays
for switching foci shown in A. The array size scales with distance from the objective focal plane allowing
collection of out-of-focus light. (D) Minimum separation for independent gating of two uncaging sites
as a function of axial distance for the case when one spot is �xed while the other spot is moved away
axially (ncoplan) and for when both spots move together in the axial direction (coplan). DMD array size
is 15. Solid line is linear �t. (E) Peak voltage with varying lateral distance orthogonal to a spine. FWHM
= 0:8� 0:1 �m. (F) Peak voltage as a function of axial distance above the spine. FWHM = 1:3� 0:1

�m. For E and F, solid lines are Gaussian �ts. These experiments were performed by Ann Go.
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Spatio-temporal patterned stimuli

The system o�ers access to the 3D dendritic arbor of the neuron for activating synaptic receptors. This

enables the study of how neurons integrate multiple synaptic inputs on their dendritic trees. We illustrate

such an experiment in Figure 5.5. A 2P �uorescence image of a layer 5 pyramidal neuron is shown in

Figure 5.5A with the recording pipette at the soma and some basal dendrites either viewed from the

top (xy) or side (yz). Four uncaging sites are chosen with two each projected onto two basal dendrites

located 5 �m apart in the vertical direction. A static hologram for all four sites is generated with the

SLM, and the DMD is used to switch ON one focus at a time. Figure 5.5B shows glutamate-evoked

excitatory postsynaptic potentials (EPSPs) generated by individually uncaging glutamate at each site

for a duration of 3 ms. Laser power was set to generate EPSPs consistent with single synaptic inputs

(<0.5 mV) [Nevian et al., 2007, Fino et al., 2009]. Figure 5.5C summarises EPSP summation for all the

possible combinations of the uncaging sites. Linearity is expressed as the ratio of the peak amplitude of

the composite EPSP generated when all sites are simultaneously stimulated and the arithmetic sum of

individual EPSPs. The blue bar corresponds to within-branch and the red to between-branch summation,

respectively. No statistically signi�cant di�erence is observed, indicating that the summation is largely

linear (two inputs in one basal, n = 2; two inputs on two basal dendrites, n = 4; three inputs, n = 4;

four inputs, n = 1; pooled data, n = 11 combinations). This observed linear within-branch summation is

consistent with the observation by [Polsky et al., 2004] who showed that two EPSPs on the same layer

5 basal dendrite 20 �m apart summate linearly.

The DMD, by enabling independent switching of individual photostimulation sites, makes it possible to

activate di�erent combinations of sites without having to change the phase hologram i.e. the hologram

remains static and sites are switched ON/OFF by the DMD. Moreover, to allow comparison of di�erent

stimulus combinations, it is critical that the laser power at each uncaging site is kept constant. Use of

the DMD to switch sites on and o� allows this and eliminates the need to adjust the total power for

distribution among the uncaging sites when using di�erent numbers of stimulus sites.

Using the DMD system we next investigated the impact of integrating di�erent synaptic inputs located at

di�erent dendritic locations on AP output. Figure 5.5D shows �ve marked uncaging sites on three apical

oblique dendrites of a layer 2/3 pyramidal neuron. The DMD is used to randomly switch uncaging sites

ON or OFF for 0:7 � 4 ms at a time for a total period of 4 s. Figure 5.5E shows the relative intensity

at the sample, indicating the number of stimulus sites at which glutamate is uncaged, together with

the membrane potential at the soma for two trials of identical time-varying uncaging patterns. Several
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peaks of the APs during the two trials align in time indicating that the APs are not randomly evoked,

but are triggered by speci�c uncaging patterns. Figure 5.5F shows a magni�ed view of sections of the

membrane potential trajectory and laser intensity 60 ms before to 20 ms after the peak for four of the

APs generated by this uncaging pattern. Integration of several inputs is required prior to AP generation.

This information can be used to determine the glutamate uncaging pro�le leading to AP generation.

Figure 5.5G shows the average membrane potential and laser intensity (n = 53 APs) 60 ms preceding

AP generation to 20 ms after. This analysis indicates that on average, an AP is driven by a signi�cant

increase in laser intensity �23 ms before its peak.
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Figure 5.5: Synaptic integration experiments. (A) Layer 5 pyramidal cell with uncaging sites in two
planes 5 �m apart (1 and 2 are in one plane, 3 and 4 in another) as viewed in the xy and yz planes.
Scale bar 25 �m. (B) Individual uncaging-evoked EPSPs obtained by turning ON stimulation sites in
a static hologram one at a time with the DMD. Stimulus duration (3 ms) is indicated by red bars at
the start of the EPSP. (C) Summary of results for di�erent combinations of uncaging sites. Linearity is
expressed as the ratio of the peak amplitudes of the measured compound EPSP and the arithmetic sum of
individual EPSPs. Dashed line denotes linear summation (100%). Blue bar corresponds to within-branch
summation; red, between-branch summation. Data are shown as mean � s.e.m. for all combinations.
(D) Layer 2/3 pyramidal cell with �ve uncaging sites situated along three apical oblique branches and all in
a single plane. Scale bar 25 �m. (E) Representative membrane potential time courses generated by two
repeats of the same train of random stimulus for uncaging glutamate at the sites in D. In the stimulus,
the spatial selections and their time intervals are both random. The resting membrane potential at the
soma was set to �55 mV. Several action potentials (APs) align in time triggered by the same uncaging
patterns. Laser intensity in the sample plane is indicative of the number of simultaneously active stimulus
sites. (F) Magni�ed view showing membrane potential (black) and laser intensity (red) for a time window
from 60 ms before to 20 ms after the peak of the AP. (G) Mean membrane potential and laser intensity
(n = 53 APs) from 60 ms preceding peak of AP to 20 ms after. AP is driven by a signi�cant increase in
laser intensity shortly (�23 ms) before its peak. These experiments were performed with Ann Go.
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5.4 Discussion

We have shown that holographic projection with high-speed temporal gating via a DMD overcomes the 2D

limitation of galvanometer-based laser scanning systems and the poor temporal resolution of SLM-based

holographic projection systems for 2P uncaging of neurotransmitters. The DMD allows independent

control of each uncaging spot in a SLM-generated photostimulation pattern and o�ers a convenient way

to eliminate the zero and higher di�raction orders. This method o�ers unprecedented �exibility in the

design of spatio-temporal (or 4D) light patterns for highly localised release of neurotransmitters. It opens

up the possibility to study synaptic integration in 3D with high temporal resolution. Since holographic

projection allows easy positioning of photostimulation sites along the dendritic arbour of neurons, this

method enables integration between branches to be directly investigated. This is especially important

since the extensive dendritic arbours of neurons are virtually never entirely in the same imaging plane.

This method can also be applied to the spatio-temporal control of neuronal activity which allows probing

of neural coding, i.e. what kinds of spatio-temporal input patterns a neuron responds to. In addition,

uncaging may be extended to neuronal populations. By generating a multi-cell holographic stimulation

pattern and using the DMD to sequentially evoke suprathreshold 2P activation of neurons in a population,

connections to a patched neuron can be determined. This facilitates a fast method for �nding connected

pairs, for instance. This multiplexing technique may also be used for population calcium imaging in

the study of network activity [Ducros et al., 2013] and the interaction between di�erent sub-networks.

Another potential �eld of application for these 4D light patterns is optogenetics. By using sculptured

light to activate speci�c subnetworks of genetically labeled neuronal populations, an even higher degree

of selectivity can be achieved than is possible with traditional optogenetic approaches alone [Liu et al.,

2012, Lovett-Barron et al., 2012].

Relation to other work The basic component of holographic projection is a phase-only liquid crys-

tal (LC) SLM encoded with a computer-generated phase hologram. The response time of the LC is

dependent on its phase retardation rate, which relates to the operating wavelength of the SLM ([Wu,

1986]. This response time is typically �10 ms, but addressing via computer video output further limits

the temporal resolution to �30 ms. There have been several attempts to increase the response time of

SLMs [Dayton et al., 2001, Kirby and Love, 2004], but no technique using spatially addressable SLMs

has achieved multi-level phase-only modulation to perform a full OFF-ON-OFF cycle of the hologram

at sub-millisecond timescales. High-speed hologram transition has recently been demonstrated using a

device with an extended phase map of up to 4� and choosing the minimum route in phase shift for each
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pixel in between transitions [Thalhammer et al., 2013]. This technique allows for one-way transitions of

1-3 ms. An iterative hologram optimisation routine is necessary to improve the di�raction e�ciency with

the reduced phase representation of the hologram. While this technique can potentially be applied to 4D

photostimulation, changing the hologram introduces spurious light patterns during hologram transitions,

which could result in unwanted uncaging. Although a high-speed shutter or an acousto-optic de�ector

can be used to turn OFF the light during transitions, the projection of zero and higher di�raction orders

can still pose a potential issue when the hologram is ON especially when the iterative optimisation routine

does not produce an e�cient hologram for a speci�c stimulation pattern.

Holographic projection with binary phase modulations (0 and �) has been demonstrated recently for the

study of neuronal circuits [Reutsky-Gefen et al., 2013]. SLMs employing ferro-electric LCs have fast

response times (�0.5 ms). However, binary holograms produce mirror projections of equal light intensity

in addition to the zero order. This reduces the power available for stimulation (after blocking zero order

and mirror projection) to signi�cantly less than 40%. While such a technique can well be applied for

1P excitation, either for optogenetics or uncaging, its low optical throughput can be an issue when

applying the technique to 2P uncaging in 4D. Moreover, even for a �xed number of foci, global changes

in the binary hologram impact the intensity level of each focus and could introduce variable 2P uncaging

responses. Changing the number of foci necessitates dynamic control of the laser intensity a�ecting both

1P and 2P uncaging modes.

Our technique uniquely distinguishes itself from existing techniques in that it uses a conventional phase-

only SLM with slow refresh rate combined with a DMD, which enables independent gating of the holo-

graphically projected multiple foci at high speeds. Here, the SLM �rst modulates the phase of the

incoming laser beam to generate the desired multi-focal spatial pro�le before the DMD allows each focus

to be individually turned ON or OFF. Thus, there is minimal loss of laser intensity compared to the

method of using DMDs to remove unwanted light from a wide-�eld illumination to shape the excitation

light [Bednarkiewicz et al., 2008, Zhu et al., 2012].

Future directions The DMD array size sets a minimum lateral distance between two uncaging sites

for independent gating. For an array size of 15, the minimum distance is 6.5 �m. This is a soft limit as

glutamate uncaging has a much narrower pro�le (0:8� 0:1 �m lateral FWHM) and considerable overlap

between two DMD arrays is needed to induce 2P uncaging in the OFF site. However, we can further

decrease this distance with a slight adjustment in the optical system. By replacing the FT lens (see
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LFT in Figure 5.1A) between the SLM and DMD with one with a shorter focal length, we can achieve

smaller foci on the DMD and consequently require smaller DMD array sizes for gating. This, however,

will increase the incident power density level on the DMD and will require high-tolerance mirror coatings

to prevent damage.

Our system uses a DMD (DLP3000) from an evaluation module (DLP LightCrafter, Texas Instruments).

We retained only the components in the module necessary to address the bare DMD via the video interface

and removed the other components (e.g. light source and projection lenses). The DMD is electronically

driven at 1440 Hz when delivering the uncaging binary pattern via the computer's digital video output.

This rate can be increased up to 4 kHz (250 �s) when 96 frames are preloaded onto the onboard memory

of the DMD's driver circuit but this would give a total of only 24 ms of stimulation. Alternatively, one can

use more advanced DMD systems (e.g. DLP V-module, ViALUX), which are capable of switching rates

of up to 22 kHz. One limitation in this work is the low damage threshold of the DMD component itself.

Blockade of AMPA receptor desensitisation with cyclothiazide allowed us to reduce the laser intensity

for uncaging. In the integration experiments (Figure 5.5), long pulse durations (3 ms) were utilised to

further reduce laser intensity and minimise damage to the DMD with repetitive stimulation. Since it is

not designed for use with high power light sources (e.g. lasers), illuminating the DMD for long periods

with focused laser spots damages the device. Such a technical constraint could be overcome by custom

fabricating DMDs with speci�c mirror coatings to tolerate higher power levels. In this work, the DMD

was potentially stretched to its limits by positioning it in the Fourier plane where the holographically

projected foci from the 2P laser were incident. Long sequences of spatio-temporal stimulation patterns

are not possible with the current device due to photodamage of the array. Nonetheless, even with the

limits of the current device it is apparent that the synergistic combination of SLM and DMD can be

applied to the study of synaptic integration.

In summary, holographic projection using a SLM combined with high-speed temporal gating via a DMD

allows the generation of random spatio-temporal stimulation patterns in 3D with sub-millisecond temporal

resolution, and in this way o�ers unprecedented �exibility in the design of 4D light patterns for highly

localised release of neurotransmitters. Implementing this approach opens up a wide range of prospects

for the study of neuronal circuits.
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Operant conditioning of single neuron

activity

6.1 Introduction

Up to this point, we have studied the biophysical and integrative properties of dendrites and seen how

these enrichen the computations performed by single neurons. A shortfall however of these approaches

however, is their ex vivo setting. How can we study integration in vivo, where neurons receive much more

synaptic input and are under additional neuromodulatory drive [Destexhe et al., 2003, Seamans and Yang,

2004]? Furthermore, if we can modulate the neural activity what do we hope to learn about single neurons

and their interaction with surrounding neurons in vivo? In Chapter 5 we discussed uncaging approaches

for activating neurons by mimicking their synaptic input. Stimulation with electrodes or optogenetic

modulation [Boyden et al., 2005] are two other approaches, however these methods all share a caveat in

that they represent arti�cial means for modulating network activity.

Here we describe an operant conditioning task as an alternative approach to impose a constraint on neural

activity in vivo, by presenting rewards only when a pre-de�ned pattern of neuronal activity occurs. Lever-

aging two-photon microscopy [Svoboda and Yasuda, 2006] and genetically-encoded calcium indicators

[Chen et al., 2013b], we demonstrate operant conditioning of single neuron activity with simultaneous

imaging of hundreds of neurons in the surrounding population. The behavioural paradigm we present is

analogous to neuroprosthetic learning [Carmena, 2013] and shares similarities with a series of early studies

successfully demonstrating operant conditioning of neural activity based on extracellular recording [Fetz,

1969, Fetz and Finocchio, 1971]. In these studies, the activity of single cortical neurons recorded by

microelectrodes was conditioned by reinforcing elevated �ring rates with delivery of a reward. More re-
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cent developments in neuroprosthetic learning have included electrode recordings of neural activity from

larger ensembles involving up to hundreds of neurons [Taylor et al., 2002, Carmena et al., 2003, Velliste

et al., 2008] and imaging approaches to track neural activity in real-time [Clancy et al., 2014, Hira et al.,

2014]. Drawing on these developments and to demonstrate the utility of our experimental paradigm, we

relate the dynamics of single neurons undergoing operant conditioning to the activity of the surround-

ing population, and characterise how functional plasticity of the conditioned neuron is correlated with

behavioural learning. In particular, we seek to determine whether learning is based solely on the activity

of the single conditioned neuron, or whether many neurons in the network increase their activity during

training. The work presented in this chapter was undertaken in collaboration with Diego Gutnisky (design

and implementation of behavioural paradigm), with assistance from Nick Sofroniew (con�guration of

two-photon microscope), Simon Peron (image analysis), Vijay Iyer (ScanImage programming) and Bryan

MacLennan (animal surgeries). All experiments and analyses reported were performed by the author.
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6.2 Methods

Mice and water restriction

We used C57BL/6 mice, aged between 2 and 4 months old. Mice were housed separately in cages with

bedding in a reverse light cycle room and kept under water restriction of 1-1.5 mL of water per day.

The total water provided to mice each day was comprised of the water consumed during any behavioural

sessions and supplemental water. The weight gained during behavioural sessions was used as an estimate

of the volume of water consumed during the session and the amount of supplemental water provided was

adjusted accordingly. All animal procedures were in compliance with protocols approved by the Janelia

Farm Research Campus Institutional Animal Care and Use Committee.

Surgical procedures

Head post surgery was performed as previously described [O'Connor et al., 2010]. Mice were implanted

with a titanium head post (22.5 mm length, 3.2 mm width) for head �xation and mounting in the

behavioural apparatus. Mice were anaesthetised with iso�uorane (1-2% by volume in O2; SurgiVet,

Smiths Medical) and maintained at 37�C on a thermal blanket (Harvard Apparatus). Marcaine (50 �L,

0.5%) was injected under the scalp prior to removal of the scalp and periosteum over the dorsal surface

of the skull. A thin layer of cyanoacrylate adhesive (Krazy glue, Elmer's Products Inc.) was then applied

to the skull. The head post was attached to the skull with dental acrylic (Jet Repair Acrylic, Land Dental

Manufacturing, P/N 1223). Buprenorphine HCl (0.1 mg/kg, i.p.; Bedford Laboratories) was used for

postoperative analgesia. Ketoprofen (5 mg/kg, s.c.; Fort Dodge Animal Health) was used at time of

surgery postoperatively to reduce in�ammation. Mice were allowed at least three days to recover from

surgery before being placed on water restriction.

Cranial windows and viral injections

Cranial window surgery and viral injections were performed at the same time as head post surgery. A

circular craniotomoy (2-3 mm diameter) was made above anterior lateral motor cortex (ALM; 1.5 mm

lateral to midline, 2.5 mm anterior to bregma). AAV1 syn-GCaMP6f (Penn Vector Core #Av-1-PV2822)

or AAV1 syn-GCaMP6s (Penn Vector Core #Av-1-PV2824) was injected using a home-made injector into

ALM of anaesthetised mice. Injections were administered in 300 �m intervals on a 3�3 grid. 20 nL of

virus was injected over 80 seconds at a depth of 450 �m at each injection site. A cranial window was then

placed over the craniotomy. Both pyramidal and GABAergic neurons were labelled using this approach.

Imaging and behavioural training started 2-3 weeks after window implantation and viral injection.
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Data acquisition and experimental control

The entire experimental apparatus was coordinated in a real-time environment by BControl software

(Z. Mainen, C. Brody, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, http://brodywiki.

princeton.edu/bcontrol/index.php/Main_Page) on a real-time Linux system (code.google.com/

p/rt-fsm). The behavioural control was implemented on a separate system by a MATLAB (Mathworks)

graphic user interface (GUI) running on Windows XP, and communicated with the real-time system

over Ethernet and additional interfaces with PCI-6229 and PCI-6713 data acquisition boards (National

Instruments) using COMEDI drivers (comedi.org; [O'Connor et al., 2010]). The real-time system

executed a module of C code at 6 kHz that read and wrote digital and analog voltages on the data

acquisition boards for monitoring the sensors and controlling the actuators on the apparatus. Data was

sent back from the real-time system to the MATLAB system for logging, refreshing the GUI at 4 Hz.

The MATLAB GUI was also used to initiate and terminate sessions on the real-time system, trigger water

delivery, and specify the trial type and structure.

Imaging and real-time analysis

The two-photon imaging system used has been described previously ([Huber et al., 2012]). A Ti-Sapphire

laser (MaiTai-HP, Spectra Physics) tuned to 1000 nm was used for excitation. Microscope control and

image acquisition were performed by ScanImage (http://vidriotechnologies.com/ [Pologruto et al.,

2003]) running on a Windows 7 machine. Imaging was performed through a 16 � 0.8 NA microscope

objective (Nikon) and photons were detected using GaAsp photomultiplier tubes (10770PB-40, Hama-

matsu). The microscope was equipped with a piezo focuser (Physik Instrumente) for positioning the

objective in the z axis and a resonant-galvo module (Thorlabs) for scanning in the lateral xy dimensions.

Together, these enabled fast multi-plane imaging. The �eld of view was 300 �m � 300 �m (512 � 512

pixels) over 3 planes separated by 25 �m in the z-axis, imaged at 7.8 Hz per plane. Average imaging

power was <40 mW, measured at the back aperture of the objective.

Real-time image analysis was performed by C++ code and a GUI written in Qt (ReTiNA) running in parallel

with ScanImage. To correct for brain motion, a simple real-time cross-correlation based image registration

process using fast Fourier transforms was implemented. A reference image for image registration as well

as region of interest (ROI) selection was obtained at the beginning of each behavioural session by aligning

and stacking an image sequence obtained over a minute while the animal was actively behaving. Visually-

identi�ed soma were selected as ROIs, and semi-automated ROI segmentation was performed as in

120



Methods Chapter 6. Single neuron operant conditioning

[Chen et al., 2013b]. Once the reference image was obtained, images newly acquired in ScanImage were

shuttled to ReTiNA in real-time by memory mapping for immediate registration. This approach also

allowed the �eld of view from previous sessions to be easily relocated. Following registration, the neural

activity in the pre-segmented ROIs was extracted. The calcium dynamics in the ROIs was estimated by

dF/F0 = (F � F0)/F0, where F was the instantaneous pixel intensity and F0 was continually updated

as a rolling moving average of the lowest 10% pixel values over the previous 5 minutes. The activity of

one randomly-selected ROI was then logarithmically mapped to a sound frequency command that was

immediately sent to an Arduino-based sound server.

Sound server

An Arduino Due microcontroller board was used to integrate the trial structure and ROI activity from

the various systems and was responsible for producing an appropriate feedback sound signal. The Due

was coupled to a direct digital synthesizer (DDS, AD9833, Analog Decives), which in turn generated

a frequency input to a speaker. The Due received and integrated inputs from the real-time system via

an analog voltage command, the MATLAB behaviour GUI system via Ethernet, and ReTiNA also via

Ethernet. Together, these three inputs determined when and what frequency tone would be generated

by the Due. The MATLAB behaviour system conveyed to the Due what type of behavioural trial was

occurring, the real-time system indicated what the trial structure was and what the current stage of the

trial was, while ReTiNA delivered the frequency command related to the ROI activity.

Spherical treadmill

We used the same spherical treadmill apparatus described previously [Sofroniew et al., 2014]. A smooth

foam ball (Plasteel; 16 inch diameter, Ball no. 183), obtained in hollow halves with initial wall thickness

of 19.5 � 0.2 mm (weight 121.3 � 0.5 g), was carved on the inside with a hot wire system (Hot Wire

Foam Factory) to reduce the wall thickness to 3.79 � 0.66 mm. The halves were then glued together

with expanded polystyrene foam glue (Hot Wire Foam Factory; Foam Clu, no. 028B-8), giving a total

weight of 82.5 g. The ball was elevated by 10 Ping-Pong balls (JOOLA Gold 3-Star 40 mm) in air

cannons. Each air cannon consisted of a 1.577 inch diameter acrylic tube plugged at one end with acetyl

resin base plate containing a tube �tting (McMaster Carr, no. 50745K15) for air �ow. The ball was

seated in a custom 19 inch diameter acrylic ribbed bowl with air cannons positioned around the lower

half. One cannon was located beneath the ball, three cannons on a ring at latitude 60�S, and six on a

ring at latitude 20�S. Air�ow to the bottom cannon, the cannons at 60�S, and two groups of cannons

at 20�S was controlled independently with regulators (McMaster Carr, nos. 3846K29 and 5627K511).

121



Chapter 6. Single neuron operant conditioning Methods

Ball tracking

The ball rotation was tracked using two cameras with chips that measure optic �ow (Avago Technologies,

ADNS-6090) and have a serial interface to a microcontroller (Atmel, ATMega644p; [Seelig et al., 2010]).

The cameras were mounted on the ribbed bowl, one directly in front of the mouse and the other on the

right. A 940 nm IR LED (Roithner, ELJ-940-629) was used to illuminate the surface of the ball in front

of each camera. The optic �ow was measured by each camera at 2 ms intervals and converted into a

ball motion vector as previously described [Sofroniew et al., 2014].

Water delivery and lick detection

Water was delivered through a stainless steel tube (0.05 inch outer diameter; Small Parts, HTX-18H-36-

10), and water �ow was controlled using a solenoid valve (Lee Company, LHDA0533115H). The delivery

port was attached to a 3D printed thermoplastic piece and could be positioned by a three-axis stepper

motor system (Zaber 3X, NA11B30 and T-JOY3). Licks were detected by an electric detector that was

triggered every time a lick completed a circuit [Slotnick, 2009].

Training and behavioural task

Training began after head post implantation surgery, recovery and >7 days of water restriction. Mice

were initially handled over several days before being placed into the head-�xation apparatus. In some

instances, brief sedation with iso�urane anaesthesia (2% for up to 2 minutes) was used to assist with

head �xation. Training was progressive and consisted of four main stages (Figure 6.1A). The �rst stage

involved free, periodic water delivery. The minimum period between successive openings of the water valve

was 4 seconds, and was increased to 10 seconds as the mice became more familiar with the lickport.

This stage typically lasted between 5 and 10 minutes. The second stage involved periodic water delivery

paired with a reward cue. The period between successive water delivery was at least 10 seconds, and

was increased up to 20 seconds. We progressed through to the third stage of training once mice licked

frequently in response to water delivery. The next stage of training involved presentation of the reward

cue and water delivery triggered by licking. Mice were required to lick within 2 seconds of the reward

cue and the interval between reward cues was varied from 10 to 20 seconds. Population calcium imaging

was commenced from the third stage of behavioural training. The same �eld of view was imaged across

di�erent sessions and days. At the start of each new session, between 20 and 40 neurons were randomly

selected in addition to any neurons of interest from the previous session, and the activity of these neurons

was monitored in real-time. When mice consistently responded to the reward cue, they were progressed
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through to the fourth stage of training. These �rst three stages typically required one to three days of

training.

The fourth stage of training involved providing additional auditory feedback during training. One neuron

was randomly chosen from the pool of tracked neurons, based on a lack of observable licking- and

movement-related activity, and then used for closed-loop conditioning training with auditory feedback.

The structure of the conditioning training is depicted in Figure 6.1B. During the pre-trial period, the

dF/F0 activity of the neuron had to remain below a starting threshold otherwise the trial was aborted.

The pre-trial period was followed by the response window, during which the animal was provided auditory

feedback on the activity of the neuron. We converted the activity of this neuron to an auditory frequency

based on the instantaneous value of the dF/F0 signal (Figure 6.1C). The dF/F0 signal was thresholded

above and below (Figure 6.1C, top), and linearly mapped to a log-scale of frequency between 3 and 12

kHz (Figure 6.1C, bottom); thus the maximum variation in auditory frequency was two octaves. If the

activity of the conditioned neuron increased beyond the reward threshold, the feedback was stopped and

a reward cue was provided indicating the start of a brief reward window. A trial was successful if the

mouse then licked for water during the reward window. Otherwise, the feedback was continued for up to

20 seconds before ceasing, indicating the end of an unsuccessful trial.

Additional control trials were interleaved with regular trials (probability 0.1 - 0.2) during the fourth stage

of training once mice achieved intermediate performance. For random reward trials, no auditory feedback

was provided and a reward cue was given at a random time during the response window. The provision of

water reward was not contingent on the dF/F0 trajectory. Random reward trials were included to assess

the neural response to licking and reward delivery and also enabled post hoc veri�cation that the target

neuron was not licking related.
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Figure 6.1: Behaviour training. (A) Stages of behavioural training. Animals were progressed through
four di�erent stages of behavioural training. During the �rst stage, animals were habituated to the
behavioural apparatus (top left). Water was delivered periodically. Following this stage, water was
delivered along with a reward cue (top right). During the third stage, a reward cue was provided and
water delivery was triggered by licking in a short window after the reward cue (bottom left). The �nal
stage involved closed-loop conditioning of a single neuron (bottom right). During the response window
auditory feedback was provided indicating the level of activity of the conditioned neuron. The criterion
for water reward was met when the dF/F0 activity reached a given threshold. Level of coloured lines
indicate the status (high or low) of the indicated parameter. (B) Block diagram showing sequence of
events during feedback trials (see Methods for further details). (C) Conversion of dF/F0 to an audio
frequency. The dF/F0 signal was thresholded above and below and logarithmically mapped to a frequency
between 3 kHz and 12 kHz.
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6.3 Results

Behavioural training

Our aim was to develop an imaging-based, closed-loop single neuron operant conditioning paradigm to

study the dynamics of single neuron and population activity during behavioural learning. Water-deprived

mice were head-�xed on a spherical treadmill and trained to voluntarily elevate the activity of a selected

neuron in order to receive a water reward. Trials began after a period of activity in the selected neuron

below the reward threshold. During this pre-trial `catch' period, if the neuron activity reached the reward

threshold and remained elevated above the threshold for one second the trial was aborted. No speci�c

signal was provided to the mouse when this occurred, apart from lengthening of the e�ective inter-trial

time. The beginning of each trial was marked by the onset of a continuous auditory signal, which provided

feedback to the mouse as to the level of activity of the target neuron. Mice had up to 20 seconds from

the onset of the feedback period to elevate the activity of the target neuron above the reward threshold

(Figure 6.1B) (for details, see Methods). If the reward threshold was not reached during this period,

the trial `timed out' and the continuous auditory feedback was discontinued for the transition to a four

second inter-trial period. When the neuron activity reached the reward threshold, the continuous auditory

feedback was terminated and a di�erent auditory tone was delivered to signal that a reward was available.

Mice received a water reward if they licked within 2 seconds of the reward tone (a `hit') but no reward

was provided otherwise (a `miss').

To assess the performance, we considered the proportion of hit trials as well as the duration of time

taken during hit trials from onset of the feedback signal to the reward delivery (latency to reward).

An increase in the proportion of correct trials concomitant with a reduction in the latency to reward

was suggestive of learning (Figure 6.2A). In addition to these measures, we also calculated the rate

of rewards received by combining the proportion of correct trials with the latency to reward (Figure

6.2B). We considered this composite measure of performance to be more reliable than either measure

alone, since we observed sessions where the proportion of correct trials increased without a change in the

latency to reward and similarly, other sessions where the latency to reward decreased without a change

in the proportion of correct trials. Mice demonstrated an ability to rapidly increase their behavioural

performance during individual sessions. The average behavioural performance for all animals showed a

tendency for an increase in the reward rate in the �rst 15 minutes of feedback training (Figure 6.2C,D).

However there was signi�cant variability in performance from session to session, since the underlying

sessions included those that showed no tendency of learning or improvement in performance, as well as
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sessions that displayed strong signs of learning.

Licking and movement on the spherical treadmill

Having demonstrated that mice were quickly able to learn the task, we proceeded to characterise particular

behaviours observed during learning. The reward apparatus contained circuitry to detect tongue contacts

with the water port i.e. lick events [Slotnick, 2009]. As mice were head-�xed and positioned on a spherical

treadmill, we were also able to monitor locomotion on the treadmill, which was reported as the rotational

speed of the ball (see Methods for further details). We aligned these behaviours to the onset of feedback

and compared the behavioural responses according to the trial outcome (hit or miss) (Figure 6.3). Average

lick activity prior to sound onset was low but increased sharply when the feedback commenced. For hit

trials, the activity showed two characteristics peaks. There was a sharp, initial response to sound onset,

followed by a slower increase in licking corresponding to recipient of the water reward. For miss trials,

the initial response to sound onset was also present, but since no reward was received, licking activity

ceased after a few seconds. Average movement on the treadmill showed less variability between hit and

miss trials and was relatively uniform through most of the trial period. However, at the instance of sound

onset, there was a characteristic decrease in movement.

Response of the conditioned neuron

How does the target neuron response to operant conditioning evolve? In the representative example shown

in Figure 6.4, the activity of the conditioned neuron is sporadic and unrelated to the timing of the feedback

signal during early trials at the start of training (Figure 6.4A). With progression through the session, the

target neuron becomes more consistently activated at the onset of the feedback. Furthermore, the

response of the target neuron to feedback is more intense later in the session (Figure 6.4A) with a mean

event rate 2 seconds after onset of feedback of 0.32 events/sec in the �rst 25% of trials compared to

0.72 events/sec in the last 25% of trials (p < 0:05). Comparing the activity of the target neuron between

hit and miss trials (Figure 6.4B,C), the average elevation in activity at onset of feedback is signi�cantly

greater during hit trials, with mean area under the dF/F0 curve of 0.56 for hit trials compared to 0.19

for miss trials (p < 0:001). Even on miss trials, the activity showed elevations after onset of feedback,

but these did not meet the reward criterion. On both hit and miss trials, there was signi�cant variation

in the dF/F0 amplitude and time course from trial to trial (shown by the shading in Figure 6.4C), despite

the strong modulation of the target neuron on both hit and miss trials.
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Figure 6.2: Behavioural performance improves with learning. (A) Example of behavioural performance
during a single training session demonstrating how the proportion of trials correct (blue) increases and the
latency to reward (red) decreases with behavioural training. (B) Example of the reward rate in a single
training session, as a composite measure of behavioural performance combining the proportion of trials
correct and the latency to reward. With training, the reward rate also increases. The histogram (blue)
shows the average number of rewards in 5 minute bins and is overlaid by a smoothed reward rate (red).
(C) The reward rate, as a composite measure of behavioural performance combining the proportion of
trials correct and the latency to reward. The average behavioural performance is taken across multiple
sessions in a single animal (n = 12 sessions). Shaded region indicates � 1 standard deviation. (D)
The average behavioural performance taken across multiple sessions showing learning in di�erent animals
(n = 29 sessions in four mice). Shaded region indicates � 1 standard deviation.
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Figure 6.3: Characteristics of licking behaviour and locomotion on the spherical treadmill. The average
normalised licking behaviour (left column) and movement on spherical treadmill (right column) are shown.
Top row, all trials (n = 3652 trials); second row, hit trials (n = 2024 trials); third row, miss trials
(n = 1628 trials); last row, mean traces The shaded regions represent percentile responses corresponding
to the 16-84%-tile (dark grey), 5-95%-tile (medium grey) and 1-99%-tile (light grey).
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Figure 6.4: Activity of the target neuron reliably increases after onset of feedback. (A) Fluorescence
activity of the conditioned neuron during progression of a training session. (B) Fluorescence activity of the
conditioned neuron during hit (top, n = 104 trials) and miss (bottom, n = 56 trials) trials. Mean activity
is shown in green (hit trials) or red (miss trials), individual trials are shown in grey. (C) Distribution of the
dF/F0 response of the target neuron. The shaded regions represent percentile responses corresponding
to the 16-84%-tile (dark grey), 5-95%-tile (medium grey) and 1-99%-tile (light grey). Mean activity is
shown in green (hit trials) or red (miss trials), individual trials are shown in grey.
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Analysis of random reward trials

We observed a strong tendency for mice to start licking at the onset of feedback (Figure 6.3), which

occurred together with an increase in the activity of the target neuron (Figure 6.4). The coincidence of

these two events suggests there may be a association between licking and activity in the target neuron,

which would be the case if the target neuron was lick-related. To delineate between a lick-related neural

response and neural activity coincident with licking, in each session, we included a small proportion of

trials involving random delivery of a reward cue and water reward in the absence of additional auditory

feedback (Figure 6.5). For these trials, reward delivery was not contingent on the activity of the target

neuron reaching the reward threshold (compare Figure 6.5A, top with Figure 6.5B, top), but was triggered

by licking after presentation of the reward cue. Since no auditory feedback was provided to signal the

commencement of the trial, mice did not anticipate the reward cue. In contrast to normal trials, where

licking commenced before valve opening (Figure 6.5A, middle), in random reward trials mice only licked

once the reward cue had been presented (Figure 6.5B, middle). In these trials, there was no increase in

activity in the target neuron that is associated with licking, which demonstrates that the target neuron

is not simply responding to licking. Additionally, for both normal trials and random reward trials, reward

delivery was associated with a decrease in movement on the spherical treadmill (Figure 6.5A,B, middle).

Taken together, these results show how random reward trials enable di�erentiation between lick-related

responses triggered by onset of feedback and neural activity coincident with licking. Furthermore, these

trials provide a means to verify that the target neuron is not lick-related.
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Figure 6.5: Random reward trials distinguish lick-related neural activity from activity coincident with
licking. (A) Normal trials (n = 154) and (B) random reward trials (n = 40) showing the average activity
of the target neuron (green) in an 8-second time window surrounding opening of the water valve (top).
The shaded regions represent percentile responses corresponding to the 16-84%-tile (dark grey), 5-95%-
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treadmill (bottom) for corresponding trials are also shown.

131



Chapter 6. Single neuron operant conditioning Results

Speci�city of response in target neurons

We next investigated how much the neural activity is modulated by the onset of feedback. Since the

training paradigm required the activity of the target neuron to be low prior to onset of feedback and ele-

vated after onset of feedback in order for the animal to be rewarded, we de�ned a neuron's responsiveness

as the ratio of its activity in the 2 seconds after to the activity in the 2 seconds before onset of feedback.

We observed that in sessions where mice demonstrated strong evidence of learning, the responsiveness

of the target neuron reached values signi�cantly greater than one later in the session, even if early in the

session the ratio was less than one when behavioural performance was poor (Figure 6.6A-C).

While the responsiveness of the conditioned neuron increases with training, how does it compare with the

responsiveness of other neurons in the population? To investigate how speci�c the change in responsive-

ness was for the conditioned neuron, we ranked neurons by their responsiveness in comparison to other

neurons in the population and assessed how the rank of the conditioned neuron varied with training. A

lack of change in rank of the conditioned neuron with learning would suggest a global learning mechanism

whereby a large proportion of neurons in the population is activated by feedback. On the other hand,

an increase in rank is consistent with the view that operant conditioning speci�cally enhances activation

of the conditioned neuron but does not rule out the neuron being part of a larger subpopulation that is

also activated. We found that learning was associated with an increase in rank of the responsiveness of

the conditioned neuron (Figure 6.6D). Such modulation of target neurons is consistent with the notion

that conditioning led to speci�c activation of a subset of neurons and animals did not employ a global

strategy for activating large numbers of neurons.
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Figure 6.6: Responsiveness of the conditioned neuron increases with behavioural training. (A) Change
in event rate of neurons in a time window 2 seconds before compared to 2 seconds after the onset of
feedback during early trials in the learning session (�rst 20 trials). The mean event rate after onset of
feedback is plotted against the mean event rate before onset of feedback. The conditioned neuron is
denoted by red, all other neurons in grey (n = 344 neurons). (B) Change in event rate of neurons in
a time window 2 seconds before compared to 2 seconds after the onset of feedback during late trials
in the learning session (last 50 trials). The mean event rate after onset of feedback is plotted against
the mean event rate before onset of feedback. The conditioned neuron is denoted by red, all other
neurons in grey (n = 344 neurons). (C) Change in event rate in a time window 2 seconds after onset
of feedback, early trials in the learning session compared to late trials. The mean event rate during late
trials is plotted against the mean event rate during early trials. The conditioned neuron is denoted by
red, all other neurons in grey (n = 344 neurons). (D) Change in rank responsiveness of the conditioned
neuron (n = 4). Normalised average event rate of target neuron in the 2 seconds before (left) and
after (middle) onset of feedback. With progress in the training session, the rank responsiveness of the
conditioned neuron increases (right). Each colour represents a di�erent conditioned neuron.
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Chapter 6. Single neuron operant conditioning Results

Diversity of responses in the population

We observed that while the activity of conditioned neurons was elevated at sound onset, the activity

of other neurons in the population showed more variability (Figure 6.6). Some neurons also displayed

elevations in their activity, while others showed no change in activity or even a reduction in activity at the

onset of feedback. Based on these observations, we classi�ed neurons into one of three groups depending

on the relative change in activity during the 2 seconds before onset of feedback and during the 2 seconds

after. Neurons whose average activity increased by at least 40% were classi�ed as activating neurons,

neurons whose average activity decreased by at least 40% were classi�ed as deactivating neurons, while

the remaining neurons were classi�ed as non-responsive neurons (Figure 6.7B). We further separated the

activity of these ensembles during hit and miss trials (Figure 6.7C-E). While the activity of the activating

ensemble increased signi�cantly more during hit trials (Figure 6.7C), the activity of the other two groups

were similar during both hit and miss trials (Figure 6.7D,E). Since licking activity was also more vigorous

during hit trials (Figure 6.3), the activating group may simply represent licking behaviour. Even with this

classi�cation, there was a degree of heterogeneity within the di�erent groups, with respect to the precise

timing of the changes in activity. For example, some neurons in the activating group showed very fast

increases in activity after sound onset, while other neurons showed slower increases in activity (Figure

6.7F).

An important advantage of population calcium imaging is the ability to compare the spatial di�erences

in the way neurons behave. Accordingly, we next set out to characterise the spatial relationship between

the conditioned neuron and neurons in the three response categories described above. For each imaging

volume, we binned the radial distance from the conditioned neuron and counted the number of neurons

from each response category in each radial distance bin. Each radial distance bin is therefore represented

by an annulus of �xed width, with inner and outer radii corresponding to the lower and upper limits,

respectively, of the radial distance bin. Comparing the spatial distributions of neurons belonging to the

di�erent response categories, we observed a similar spatial distribution of neurons in each of the categories.

For this analysis we did not normalise counts to the radial distance when estimating the density of neurons.

The increase in probability of �nding neurons further away from the conditioned neuron (Figure 6.7G)

arises because the area of the annulus increases with the radial distance. While normalising for radial

distance may allow comparisons between di�erent �elds of view and di�erent animals, imaging conditions

were not su�ciently uniform to enable such comparisons. For example, GCaMP6 expression displayed

variation between animals, and the presence of blood vessels in the �eld of view also obscured visualisation

of some neurons. Nevertheless, this analysis suggests that neural responses showed a homogeneous spatial
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distribution, with no evidence of spatial clustering of responses.
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Figure 6.7: (Caption next page.)
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Figure 6.7: Diversity of neural responses in the population. (A) Example imaging �eld showing ROIs
shaded according to response group. Conditioned neuron indicated by yellow box. (B) Average �uores-
cence activity of the three response groups, activating (n = 112 neurons; blue), deactivating (n = 49

neurons; red), non-responsive (n = 184 neurons; green). Shaded error bars denote s.e.m. (C) Average
�uorescence activity of activating neurons during hit (light blue) and miss (dark blue) trials (n = 112

neurons). Shaded error bars denote s.e.m. (D) Average �uorescence activity of non-responsive neurons
during hit (light green) and miss (dark green) trials (n = 49 neurons). Shaded error bars denote s.e.m.
(E) Average �uorescence activity of deactivating neurons during hit (light red) and miss (dark red) trials
(n = 184 neurons). Shaded error bars denote s.e.m. (F) Average �uorescence activity of individual
neurons in activating group. Neurons are sorted in ascending order of time to peak �uorescence. (G)
Relative probability of �nding a neuron from the three di�erent groups versus the distance from the
conditioned neuron.
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Although we were imaging in ALM, an area involved in pre-motor planning for licking activities [Komiyama

et al., 2010, Guo et al., 2014], other motor activities such as locomotion on the spherical treatmill were

also represented in the neural activity (Figure 6.8A). Since we monitored both licking and movement

on the treadmill, reported as the rotational speed of the treadmill, we were able to identify epochs of

neural activity in some neurons that were distinctively correlated with physical behaviour (Figure 6.8A).

Despite the clear correlations, it was also evident that neurons did not respond with absolute reliability

during licking or movement epochs. When we calculated the correlation between the activity of individual

neurons and both licking and running, we found a wide distribution of correlation strengths (Figure 6.8B).

While some neurons were strongly correlated with either or both behaviours, many neurons in fact showed

weak or negative correlations with behaviour.

To extend the analysis, we explored the temporal evolution of behavioural correlations during a training

session. We evaluated a coincidence measure in several steps. We �rst normalised the licking and

movement traces, as well as the dF/F0 traces of all imaged neurons. To calculate the coincidence, for

each time point we multiplied the normalised traces together and then applied a temporal smoothing

�lter using an exponential moving average (EMA) with a time constant of two minutes. For example,

to obtain the coincidence with licking, for each neuron in the dataset the normalised dF/F0 trace was

multiplied with the normalised lick trace before the EMA was applied. In Figure 6.8C we show how the

distribution of the coincidence measures across all neurons evolves during a training session. To compare

how these coincidence measures evolve with training, we also ranked the target neuron against the rest

of the population. As the target neuron is more robustly activated with training, the rank of dF/F0-

lick coincidence of the target increased throughout a session, while by comparison, dF/F0-movement

coincidence showed strong �uctuations through the training session and no clear trend. Across multiple

animals, we observed a characteristic increase in dF/F0-lick coincidence rank (Figure 6.8D, left) that

remained elevated through to the end of the training session, even when behavioural performance had

already deteriorated entirely by the latter stages of the session (Figure 6.8D, right). In contrast, dF/F0-

movement coincidence rank showed strong �uctuations throughout the session and did not follow any

clear trends (Figure 6.8D, middle). This �nding suggests that conditioning establishes and maintains a

coupling between activity in target neurons and licking behaviour, even when motivation to perform for

water reward diminishes by the end of training sessions.
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Chapter 6. Single neuron operant conditioning Results

Figure 6.8: Correlations of neural activity with movement and licking. (A) Example traces of licking
and movement on the spherical treadmill, and the corresponding dF/F0 traces (normalised by standard
deviation) of the target neuron (green) and other selected neurons (black). (B) The activity of ROIs
showed variable correlation with movement and licking (n = 1651 ROIs). (C) Examples showing how
dF/F0-lick coincidence (left) and dF/F0-movement coincidence (right) vary during a single training ses-
sion. The coincidence measure for the target neuron is shown in blue. The shaded regions represent
percentile responses of the population, corresponding to the 16-84%-tile (dark grey), 5-95%-tile (medium
grey) and 1-99%-tile (light grey) (n = 345 neurons). As the session progresses, the dF/F0-lick coinci-
dence of the conditioned neuron reaches values above the 95th percentile of the population, while the
dF/F0-movement coincidence does not reach the same upper extremes. (D) Evolution of the dF/F0-lick
(left) and movement (middle) coincidence rank of the conditioned neuron throughout a training session
(n = 4 sessions from di�erent animals). The dF/F0-lick coincidence rank of the conditioned neuron
increases during a training session and remains elevated until the end of the session (left). In contrast,
the dF/F0-movement coincidence rank of the conditioned neuron shows no clear trend. The reward rate
during each of these sessions show a characteristic increase followed by a decrease as animals become
satiated by the end of each session (right). Each colour corresponds to a di�erent conditioned neuron.
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6.4 Discussion

In this chapter we demonstrate an optical brain-machine interface for operant conditioning based on

the activity of single neurons. Water-deprived mice were trained to voluntarily increase the activity of a

selected neuron in order to receive a water reward. Mice showed the ability to quickly learn the behavioural

task, reaching high rates of reward within 15 minutes of new training sessions. Modulation of activity

showed speci�city for target neurons, while the population response was much more heterogeneous.

One of our most striking observation was an increase in lick-related correlations that persisted through

to the end of training sessions. When compared with other neurons in the network, target neurons

achieved and maintained very high ranks in the dF/F0-lick coincidence measure, even when behavioural

performance had deteriorated (Figure 6.8D). This observation suggests that the lick-related correlations

were not simply due to licking behaviour being coincident with elevations in activity of the target neuron

as part of the training paradigm, but that a functional coupling between the neuron's activity and licking

was established from conditioning. These lick-related correlations in the target neuron can arise in

one of two ways. The �rst is coupling of an unobserved motor behaviour, which the target neuron is

related to, with licking behaviour. This represents learning to associate behaviours, and is not necessarily

indicative of cortical plasticity. The second way is cortical plasticity and circuit reorganisation such that

the target neuron becomes wired in with the circuit responsible for licking. In this case, dopaminergic

neurotransmission triggered by water intake is a likely candidate mechanism that provides the reward

signal for driving synaptic plasticity [Schultz, 1998, Schultz, 2013]. We are unable to distinguish between

these two possibilities since our behavioural apparatus did not monitor motor activities apart from licking

and locomotion. Nevertheless, two lines of evidence support a cortical plasticity hypothesis; the increase

in lick-coincidence we observed was a common feature of learning across conditioned animals and, prior

studies have demonstrated that pairing a reward signal with a sensory stimulus can induce plasticity of the

receptive �elds of primary sensory cortical neurons [Bao et al., 2001, Shuler and Bear, 2006, Goltstein

et al., 2013]

The imaging was performed in the ALM cortex, a region involved in high-level control of licking behaviour

[Komiyama et al., 2010] and preparatory motor activity [Guo et al., 2014]. In our imaging experiments,

only a minority of neurons appeared directly correlated with licking or were correlated with movement

running on the spherical treadmill. A caveat of imaging in a motor region is that it can be di�cult to

dissociate genuine learning of a novel pattern of neural activity from simple execution of an existing motor

plan. To rule out the latter, selection of neurons for conditioning was based on an absence of correlation
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with licking and movement on the spherical treadmill prior to behavioural training. Instead of conditioning

single neuron activity, others have demonstrated conditioning paradigms involving more arbitrary patterns

of neural activity that are unlikely to already exist in the natural repertoire of responses [Koralek et al.,

2012, Clancy et al., 2014]. Such approaches also help to ensure that novel patterns of activity are being

conditioned, rather than requiring the animal to reinforce a pre-existing pattern of activity.

While inclusion of random reward trials allowed us to verify the strength of the correlation between licking

and the activity of the conditioned neuron, additional trial types that could be investigated include:

� Trials with no sound, to assess the rate of rewards achieved with baseline neural activity and the

absence of auditory feedback to indicate the start of a new trial.

� Trials where no reward is provided when the target neuron reaches the reward threshold and the cue

for reward is given. These trials will enable di�erentiation between the neural response for licking

or reward expectation and response to reward delivery.

� Trials where the auditory feedback is held at a constant frequency and does not vary with the level

of neural activity. These trials will allow assessment of the neural response to variable auditory

feedback, and whether neural activity is dependent on the frequency of feedback.

� Trials where the auditory feedback is based on the dF/F0 trajectory of a previous trial. For these

trials, uncoupling of the feedback frequency from the instantaneous neural activity breaks the

closed-loop structure of the trial and is expected to degrade the behavioural performance. Well-

trained mice respond to increases in auditory frequency by licking in anticipation of reward since in

normal trials, such increases in frequency are predictive of reward.

We observed sign�cant variability in behavioural performance from neuron to neuron. Some neurons

responded to operant conditioning with a high degree of speci�city, while other neurons showed no or

little signs of learning. Why are some neurons trainable whereas others are not? On the one hand, animals

are capable of learning a wide range of tasks, from moving computer cursors [Serruya et al., 2002, Taylor

et al., 2002], manipulation of robotic arms with one or even 3 degrees of freedom [Chapin et al., 1999,

Wessberg et al., 2000], to arbitrary modulation of ensemble activity [Koralek et al., 2012]. On the other

hand, some behaviours are easier to learn than others [Krakauer and Mazzoni, 2011, Ranganathan et al.,

2014]. Our observation that not all neurons are responsive to the learning paradigm are consistent with

the notion that patterns of activity similar to existing patterns are easier to learn than patterns that
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are orthogonal to the existing structure [Hwang et al., 2013, Sadtler et al., 2014]. However, it remains

unclear if operant conditioning of novel patterns of activity can expand the repertoire of innate activity,

and if so, the extent to and conditions under which this occurs.

Operant conditioning of neural activity opens up new avenues to explore the mechanisms underlying

synaptic plasticity in vivo. Contemporary approaches for studying synaptic and spine plasticity in vivo

have typically relied upon sensory stimulation or behavioural training and observation of structural or

functional changes in spines and dendrites [Trachtenberg et al., 2002, Yang et al., 2009, Fu et al.,

2012, Caroni et al., 2012, Cichon and Gan, 2015]. While it may be possible to extract the structural

and functional correlates of neural plasticity by determining which neurons are reliably activated during

the behaviour, such experimental paradigms themselves do not constrain the pattern of neural activity.

In contrast, operant conditioning of neural activity involves reinforcement of speci�c patterns of activity

and thereby allows a more direct investigation of post-synaptic plasticity in the target neuron or circuit.

In this vein, operant conditioning of neural activity is an extension of earlier attempts to reproduce spike

timing dependent plasticity (STDP) in vivo by various means, including pairing electrical stimulation or

a post-synaptic spike with sensory input [Schuett et al., 2001, Jacob et al., 2007] and manipulating the

spatio-temporal features of the sensory input to generate temporally precise patterns of cortical activity

[Fu et al., 2002, Yao et al., 2004].

While unlikely to have immediate practical applications in the clinical domain, cellular imaging remains

indispensable for studying the functional and structural adaptations underlying neuroprosthetic learning.

Fluorescence imaging approaches o�er several key advantages over electrical recordings, including the

ability to unambiguously identify di�erent neurons within a session and across multiple sessions thereby

allowing chronic behavioural training over multiple days. In addition, this method a�ords the ability to

investigate the precise spatial relationships between di�erent neurons, and when combined with genetic

approaches, the ability to label distinct neuronal subtypes. Additional advantages are a�orded by our

imaging con�guration. The use of fast z-focusing enabled us to capture the activity of a large number

of neurons; in many experiments, over 400 simultaneously. Furthermore, population imaging lends itself

to a variety of complex analytical techniques for studying the interactions between neurons and ensemble

behaviour including dimensionality reduction approaches [Cunningham and Byron, 2014], statistical mod-

elling of population activity e.g. [Pillow et al., 2008], and investigations into the correlational structure

of neuronal �ring [Schneidman et al., 2006]. The analyses we have presented here are only a fraction of

the analyses possible.
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We utilised a simple real-time imaging analysis engine for real-time image registration and dF/F0 esti-

mation. Image registration was necessary to compensate for lateral motion artefacts, while in our hands,

motion correction in the axial direction was not required [Chen et al., 2013a]. Our image registration

algorithm itself employed fast Fourier transforms to estimate the cross-correlation matrix between the

reference image and newly acquired images. This approach is much simpler and faster than previous

methods �tting statistical models to the motion artefacts [Dombeck et al., 2007, Greenberg and Kerr,

2009], but was facilitated by the fast resonant-scanning hardware used in our imaging setup.

Beyond image registration, with incorporation of appropriate computing hardware (such as GPUs, and

FPGAs) into the real-time processing engine, we expect it will be possible to undertake much more

intensive procedures in real-time. These include, but are not limited to, sophisticated analyses of neural

activity, model �tting, and eventually interfacing with a neuro-prosthetic device [Serruya et al., 2002,

Velliste et al., 2008]. Furthermore, by coupling real-time analysis of neural activity with optogenetic

control we envisage all-optical closed-loop control of neural activity, allowing the capacity to precisely

control the activity of hundreds of neurons in real-time [Paluch-Siegler et al., 2015]. All-optical closed-

loop optogenetic control of neural activity is made possible by combining the use of �uorescent reporters

of neural activity (e.g. GCaMP6 [Chen et al., 2013b]) with optogenetic tools (e.g. ChR2 [Yizhar et al.,

2011]) to enable feedback control of circuit activity. In Chapter 4 we demonstrated and discussed optical

methods for achieving millisecond control of multiple neuron simultaneously and independently, which

will push the limits of closed-loop optogenetic control even further. Closed-loop manipulation of neural

activity by optical means allows interrogation of neurons and neural circuitry in the vein of `control theory',

with this approach already making progress in the clinical settings, for instance in the control of epilepsy

[Paz et al., 2013, Krook-Magnuson et al., 2015]. Control strategies for closed-loop neuroprosthetic

systems have been recently reviewed elsewhere [Wright et al., 2016] and these may o�er alternative

approaches for designing neuroprosthetic learning paradigms.
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General discussion

In this Chapter we synthesise our results and discuss broader implications of our �ndings. Throughout

the thesis, we have explored the integrative properties and behaviour of single cortical neurons from a

number of perspectives. We have employed multiple approaches and techniques, and we have attempted

to exploit synergism through combinations of these. The core experimental techniques we have utilised

were patch-clamp electrophysiology and two-photon imaging, applied both in vitro and in vivo, while

numerical simulations have also contributed a large number of the results.

We set out in Chapter 2 to investigate the integration of synaptic inputs in vivo. Despite abundant

evidence for the existence of supralinear dendritic mechanisms [Major et al., 2013], it remains unclear

what in vivo conditions produce supralinear activity in dendrites and how such activity contributes to

behaviour. Recent work has shown how sublinear dendritic processing can expand the computational

power of neurons [Cazé et al., 2013, Tran-Van-Minh et al., 2015]. Our �ndings in Chapter 2 contribute

to this body of work. We chose as our model system layer 2/3 pyramidal neurons in the binocular

region of the mouse primary visual cortex, since this system o�ers a convenient means to investigate how

pyramidal neurons in vivo integrate two separate streams of input i.e. the visual input from each eye.

Whole-cell patch-clamp recordings revealed that binocular inputs were summated sublinearly, and that the

degree of sublinearity was determined by the amplitude of the synaptic inputs and not by any particular

feature of the visual stimulus used to drive the synaptic response. We explored the dendritic mechanisms

underlying sublinear responses by supplementing these experiments with detailed neuron modelling. We

�rst considered a range of scenarios involving excitatory inputs only, however, maximising the interactions

between excitatory synapses by activating synapses close together in space or time could not produce the

degree of sublinearity observed experimentally. Since balanced excitation and inhibition is a ubiquitous

feature of cortical synaptic responses [Haider and McCormick, 2009], we subsequently investigated the
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contribution of inhibitory inputs. Voltage-clamp recordings provided the experimental basis for our next

series of simulations, and our experiments and simulations together con�rmed that balanced excitation

and inhibition was responsible for generating sublinear integration. However, what became apparent

from these simulations was that we were unable to determine the location of the inhibitory inputs and

could not distinguish betwee somatic versus dendritic inhibition. Voltage-clamp simulations also revealed

marked di�erences in the excitatory and inhibitory synaptic drive required to match the experimental

data, depending on whether inhibitory inputs were somatic or dendritic. This study raised a number

of questions for future investigations, such as when and why cortical pyramidal neurons operate in a

supralinear, sublinear or even linear fashion, and what are the consequences of this on behaviour including

the impacts on perception and learning. In addition, this study highlighted problems with estimating

excitatory and inhibitory conductances based on somatic voltage-clamp due to voltage- and space-clamp

errors. This issue motivated the themes of the next two Chapters of the thesis.

In Chapter 3, we explored the capacity of the somatic voltage-clamp technique to estimate combined

excitatory and inhibitory synaptic conductances. In contrast to Chapter 2, where we used a realistic

neuron morphology in our simulations, in Chapter 3 we restricted our analysis to a simple, one- or two-

compartment neuron model. This allowed us to extract the core features of voltage- and space-clamp

errors and how they a�ect the estimation of synaptic conductances. Our �ndings extended previous results

[Williams and Mitchell, 2008, Poleg-Polsky and Diamond, 2011] and in particular showed how space-

clamp distortions a�ect the estimates of the temporal dynamics of synaptic conductance changes, by

introducing anti-correlations between excitation and inhibition and exaggerating the estimated mismatch

between excitation and inhibition when a real mismatch is present. This has important consequences

on the interpretation of much of the literature concerning the temporal dynamics of excitatory and

inhibitory conductance changes underlying spontaneous and evoked cortical activity, since the voltage-

clamp technique has been the principle method for deriving these results [Haider and McCormick, 2009].

In Chapter 4, we explored the impact of somatic versus dendritic inhibition on the action potential

output. The diversity of inhibitory interneurons in the cortex has driven many investigations into the

roles of di�erent interneuron subtypes including several that have considered how the subcellular location

of inhibition regulates neuronal output [Wilson et al., 2012, Lee et al., 2012b, Atallah et al., 2012].

These studies, which utilised optogenetic manipulation of inhibitory interneurons, characterised the e�ect

of inhibition according to how it transforms the neuron's input-output relationship but reached opposing

conclusions. We attempted to reconcile these con�icting experimental studies with numerical simulations
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and using a detailed multicompartmental model of a layer 2/3 pyramidal neuron with passive dendrites

found that both somatic and dendritic inhibition can exert similar subtractive or divisive e�ects on the

input-output relationship of the neuron. These simulations allow for unrestricted control of the stimulation

parameters and conditions, and are not a�ected by experimental limitations of optogenetic systems such

as non-speci�city of ChR2 expression. In addition, they allowed us to explore a range of stimulation

conditions that would be di�cult to reproduce experimentally in vitro or in vivo. The e�ects observed

depended on the stimulation conditions, such as whether current or conductance input was used to drive

neuronal �ring and whether the input was stationary or noisy. These results are especially intriguing

in the context of our �ndings in Chapter 2 that somatic and dendritic inhibition could both underlie

the sublinear summation observed experimentally, and suggest that other interneuron subtype-speci�c

features of inhibition predominate over subcellular location in regulating the output of the postsynaptic

target [Palmer et al., 2012a]. These include subtype-speci�c activity of inhibitory interneurons in a state-

dependent and behaviour-dependent manner, as well as subtype-speci�c neuron-neuron connectivity that

govern how neurons interact and in�uence each other.

While in these preceding chapters the emphasis was on the measurement and impact of synaptic inputs

on neuronal output, in Chapter 5 we shifted our focus to developing a system that would allow arbitrary

but precise stimulation of the dendritic tree in three dimensions (3D), and thereby enable us to directly

interrogate the rules underlying integration of synaptic inputs by dendrites. To achieve this goal we

designed a two-photon microscope that combined a spatial-light modulator with a digital micro-mirror

device to perform holographic stimulation with high-speed temporal switching. This approach o�ers

unprecedented �exibility in generating stimulation patterns for studying the rules governing synaptic

integration. Using this system we mimicked excitatory synaptic activation in 3D with millisecond precision

using glutamate uncaging. Such a system can be extended to other neurotransmitters including GABA,

separately or in combination with each other, and could also be adapted for optogenetic stimulation.

Furthermore, our system is not limited just to studying synaptic integration in individual neurons, but

could be used for photo-stimulation across large neuronal populations. In summary, the applications range

from mapping the subcellular distribution of synaptic inputs within single neurons [Petreanu et al., 2009],

to mapping local connectivity [Shepherd, 2012] as well as long-range connections between di�erent brain

regions [Mao et al., 2011].

Ultimately, our focus on dendritic integration thus far has been driven by a desire to understand the con-

tribution of single neurons to behaviour. To that end, in Chapter 6 we developed a real-time two-photon
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microscope for imaging the �uorescence signal of the genetically-encoded calcium indicator GCaMP6 in

vivo and performed real-time image registration and signal analysis. Using this system as an optical brain-

machine interface, we designed a behavioural paradigm involving operant conditioning of single neuron

activity. By expressing GCaMP6 in super�cial neurons of the anterior lateral motor cortex area, a region

known to be involved in motor planning [Komiyama et al., 2010, Guo et al., 2014], we demonstrated

that mice had the ability to voluntarily modulate the activity of single target neurons, in some instances

with relatively high speci�city. The system we developed and behavioural paradigm we demonstrated

provides a prototypical example of how an operator can modulate the activity of a subset of neurons

in a speci�c manner in vivo. This is in contrast to more conventional approaches, such as presentation

of sensory stimuli as in Chapter 2, which do not enforce speci�c temporal spiking patterns in arbitrary

groups of neurons. The approach we take in Chapter 6 therefore o�ers the possibility of investigating

phenomena in vivo that are dependent on spike-timing, such as dendritic integration and spike-timing

dependent plasticity (STDP) [Sjöström et al., 2008] without resorting to arti�cial stimulation methods.

Much of the work in this thesis lies at the intersection of experiment, numerical simulations, and techniques

development. These approaches complement each other in several ways. On the one hand, experimental

results provide the foundations necessary to construct computational models. These models can be used

to test hypotheses that are beyond experimental interrogation, as well as increase our understanding

of the biophysical mechanism underlying the experimental observations. On the other hand, results

produced from numerical simulations can inform, guide and provide hypotheses for future experimental

work. We saw in Chapter 2 for example, the interplay between in vivo whole-cell recordings and simulations

uncovered the critical contribution of inhibition to sublinear summation. Similarly, many of the simulations

presented in Chapter 4 were built upon experimental results and con�icting ideas that arose from those

experiments [Wilson et al., 2012, Lee et al., 2012b, Atallah et al., 2012]. In particular, our results

reconciled these earlier studies and provided insights for future experiments. At the same time, the

simulations we performed in Chapter 3 enabled us to rigorously explore the validity and limitations of

experimental procedures relying on somatic voltage-clamp recordings which are a�ected by space-clamp

errors in neurons with dendrites. New methods and techniques build on existing experimental approaches

to drive progress, and often provide a means to cross from theoretical in silico simulations to real

experimental data. This was the motivation for Chapters 5 and 6, where the systems and behavioural

paradigms developed enable the detailed investigation of dendritic integration and single neuron behaviour

in vitro and in vivo.
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On that note, the pinnacle of dendritic integration research is reaching an understanding of how compu-

tations performed at the dendritic level contribute to behaviour. To attain this goal, we envisage that

the investigation of dendritic function will continue to require a multi-faceted approach encompassing

the experimental and theoretical domains. This includes examining the physiology of dendrites in detail,

such as characterising the ion channels expressed in dendrites and their e�ects on the various phenomena

exhibited by dendrites in vitro and in vivo, identi�cation of the circuit elements involved in regulating

these phenomena, such as inhibitory interneurons, a continued expansion of theoretical frameworks to

understand the computations performed by dendrites and individual neurons, and ultimately the imple-

mentation of behavioural experiments that capture the physiology and computation in action. To this

end, throughout the thesis we have strived to incorporate many of these elements in our quest to fully

understand the neuronal basis of behaviour.
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