The Generation and Characterisation of Human Insulin-like Growth Factor Mutants

Steven Thomas Henderson B.Sc. (Hons.)

Thesis submitted for the degree of Doctor of Philosophy

School of Biological Sciences, Faculty of Science and Engineering, The Flinders University of South Australia

September 2011

Table of Contentsi						
Abstract	Abstractiv					
Declarati	ion		. vi			
Acknowl	Acknowledgmentsvii					
Abbrevia	tion	S	viii			
Chapter	1	Introduction	1			
1.1	Thes	sis overview	1			
1.2	The	Insulin-like Growth Factor axis	2			
1.2.	1	IGF evolution	2			
1.2.	2	Gene structure, expression and physiological effects of the IGFs	5			
1.2.	3	Regulation of the IGFs	8			
1.2.	4	Structure of IGF-I and IGF-II	13			
1.3	The	function of the Insulin-like Growth Factor I Receptor	15			
1.4	The	structure of the Insulin-like Growth Factor I Receptor	15			
1.5	Insu	lin receptor isoforms and their functions	16			
1.5.	1	Distribution and functions of the IR-A	17			
1.5.	2	Distribution and functions of the IR-B	17			
1.6	Hyb	rid receptors and their functions	18			
1.6.	1	IR-A/IR-B hybrid receptors	18			
1.6.	2	IR/IGFR-IR hybrid receptors	18			
1.7	The	structure of the Insulin Receptor	19			
1.8	Chai	racteristics and mechanism of ligand binding to the IR and IGF-IR	21			
1.8.	1	IGF receptor binding sites are primarily located in the B and A-domains	25			
1.8.	2	Receptor binding specificity is determined by the IGF C and D-domains	25			
1.8.	3	IR and IGF-IR signal transduction	27			
1.9	The	IGF system and cancer	30			
1.9.	1	IGF ligands and the IGF-IR in cancer	31			
1.9.	2	IGF-II and the IR-A in cancer	31			
1.9.	3	Targeting the IGF system for use as potential cancer therapeutics	32			
1.10	Di	irected evolution	37			
1.10).1	Directed evolution requires protein function to be physically achievable	ē			
and	obta	ainable through evolution	38			
1.10).2	An overview of library construction for directed evolution	43			
1.10).3	An overview of screening and selection for directed evolution	44			
1.10).4	Directed evolution strategies	46			
1.10).5	Directed evolution in Neurospora	56			
1.11	Ai	ms	65			
Chapter	2	Materials and methods	66			
2.1	Mat	erials	66			
2.1.	1	Chemicals, reagents & enzymes	66			
2.1.	2	Neurospora crassa stocks	66			
2.1.	3	Bacterial stocks	67			
2.1.	4	Plasmid stocks	68			
2.1.	5	Mammalian cell lines	69			
2.1.	6	Antibodies	69			

Table of Contents

2.1.7	Protein standards	70
2.1.8	Oligonucleotides	70
2.1.9	Buffers & solutions	74
2.1.10	Neurospora culture media	80
2.1.11	Bacterial culture media	86
2.1.12	Mammalian cell culture media	87
2.2 Me	ethods	88
2.2.1	Neurospora methods	88
2.2.2	Bacterial methods	96
2.2.3	Mammalian cell culture methods	99
2.2.4	DNA methods	101
2.2.5	Protein methods	108
2.2.6	Biochemical methods	119
Chapter 3	Vector construction for diversification of human IGF-I in Neuros	pora123
3.1 Int	roduction	
3.1.2	Optimising the IGF-I CDS for gene diversification in Neurospora.	125
3.1.3	Heterologous expression of IGF-I in Neurospora	136
3.2 Dis	cussion	159
Chapter 4	Transformation, expression and diversification of IGF-I in Neuro	spora 164
4.1 Int	roduction	164
4.2 Ect	opic transformation of Neurospora with pFENIGFI	164
4.2.1	Electroporation of Neurospora with pFENIGFI	165
4.2.2	Isolation of pFENIGFI transformed Neurospora homokaryons	165
4.2.3	PCR confirmation of Neurospora transformation with pFENIGFI.	165
4.2.4	Repeat Neurospora transformation with pFENIGFI	166
4.2.5	Southern blot confirmation of pFENIGFI integration in ectopic	
Neuros	pora transformants	168
4.2.6	Western blot analysis of extracellular and intracellular protein f	rom
ectopic	pFENIGFI Neurospora transformants	170
4.2.7	IGF-IR ligand binding assay of culture supernatant from ectopic	pFENIGFI
Neuros	pora transformants	174
4.2.8	IGF-IR kinase phosphorylation assay of culture supernatant from	n ectopic
pFENIG	FI Neurospora transformants in FRIES medium	181
4.2.9	Optimisation of culturing conditions for Neurospora IGF-I secret	ion182
4.2.10	Characterisation of IGF-I degradation in Neurospora culture sup	ernatants
in the p	presence of protease inhibitors	188
4.3 Cha	aracterisation of transplaced IGF-I expression vectors	193
4.3.1	Targeted transplacement of the IGF-I expression constructs into)
Neuros	pora	194
4.3.2	Western blot characterisation of the IGF-I expression constructs	s in
Neuros	pora	202
4.3.3	IGF-IR ligand binding assay of the IGF-I expression constructs in	
Neuros	pora	211
4.3.4	Characterisation of RIP-generated IGF-I mutants	219
4.4 Dis	cussion	231
4.4.1	Diversifying the human IGF-I coding sequence in Neurospora cro	assa231
4.4.2	IGF-I secretion in Neurospora crassa	235

4.4.3	3 Screening of IGF-I variants in <i>Neurospora</i> culture supernatants	.244
4.4.4	4 Diversification of human IGF-I in <i>Neurospora crassa</i> : summary and	
cond	clusion	247
Chapter 5	5 Generation and characterisation of IGF-II analogues	.249
5.1	Introduction	.249
5.2	Construction of IGF-II analogues	.253
5.2.2	1 Cloning of <i>E. coli</i> codon optimised IGF-II coding sequence	.253
5.2.2	2 DpnI site-directed mutagenesis	.254
5.2.3	3 Cloning into pGH(1-11)VNPAPM vector	.254
5.3	Heterologous expression of IGF-II protein in Escherichia coli	.255
5.3.3	1 E. coli transformation and induction	.255
5.3.2	2 Purification, refolding and cleavage of IGF-II mutant proteins	.260
5.3.3	3 Isolation & purification of C1 protein summary	.261
5.3.4	4 Isolation & purification of C2 protein summary	.262
5.3.	5 Isolation & purification of C3 protein	.262
5.3.0	6 Quantitation, mass spectrometry analysis and N-terminal sequencing	g of
IGF-	II analogues	.266
5.4	Characterisation of IGF-II analogues	.266
5.4.3	1 IR-A interaction with the IGF-II analogues	.268
5.4.2	2 IR-B interaction with the IGF-II analogues	.274
5.4.3	3 IGF-IR interaction with the IGF-II analogues	.277
5.4.4	4 Structural modelling of the IGF analogues	.283
5.5	Discussion	.287
5.5.3	1 C1 interaction with IR-A and IR-B	.290
5.5.2	2 C2 interaction with IR-A and IR-B	.292
5.5.3	C3 interaction with the IR-A and IR-B	.296
5.5.4	4 C1 and C2 interaction with the IGF-IR	.297
5.5.	5 C3 interaction with the IGF-IR	.299
5.5.0	6 Comparison of assay results from this study with published reports	.300
5.5.	7 Protein structure modeling	.303
5.5.8	8 Future work	.304
5.5.9	9 Conclusion	.306
Final discussion		.307
Appendix3		
Bibliography		

Abstract

Human insulin-like growth factor-I and -II (IGF-I and -II) are structurally homologous ligands with differential binding affinities for the insulin/IGF family of cell surface receptors. High affinity binding of IGF-I and IGF-II ligands to the insulin-like growth factor I receptor (IGF-IR), insulin receptor exon 11- (IR-A) and exon 11+ (IR-B) isoforms stimulates receptor tyrosine kinase activity regulating numerous biological responses such as cell cycle progression, proliferation and cell survival. Deregulation of the IGF-IR and IR-A signalling axis is common in cancer. Both IGF-I and IGF-II have been implicated in cancer initiation and progression due to ligand overexpression and autocrine ligand production.

The focus of this study was to diversify human IGF-I as part of the ongoing development of an *in vivo* gene diversification system associated with the filamentous fungus Neurospora crassa (Catcheside et al., 2003). The aim of this project was to generate, express, secrete and screen novel IGF-I variants to identify IGF-IR antagonists as potential cancer therapeutics. Mutant IGF-I DNA sequences were generated with high efficiency using the Neurospora Repeat-Induced Point Mutation (RIP) & HotSpot-Mediated Recombination (HSMR) gene diversification platforms. Multiple IGF-I expression vectors were constructed and the novel secretion of human IGF-I protein in Neurospora was achieved with the fusion of the IGF-I protein to the endogenous glucoamylase (gla-1) protein. However, the abundance of mature IGF-I protein in culture medium was relatively low due, at least in part, to extracellular proteolytic degradation. In addition, the IGF-IR binding assay was found to be unsuitable for reliable screening of secreted IGF-I protein in Neurospora culture medium. Resolution of these issues were not pursued in this project as the generation of protease deficient Neurospora expression strains and development of a more robust screening methodology were already being undertaken by Neugenesis Corporation and were unlikely to be resolved within the duration of this project. Consequently, the project direction was diverted to the characterisation of IGF residues involved in receptor binding and activation through site-directed mutagenesis.

iv

The IGF-I and IGF-II ligands share a common domain structure and exhibit differential receptor binding and activation which is primarily due to the IGF C-domain. Understanding the role of specific residues within the C-domains could make a significant contribution to our fundamental understanding of ligand-receptor interactions in the insulin/IGF system and enable the rational design of IGF-IR and IR-A antagonists for use as anti-cancer agents. As such, a second aspect of this study aimed to delineate the C-domain residues conferring differential receptor binding affinity and activation by generating and characterising three IGF-II analogues. Mutants C1 and C2 contained partial IGF-I C-domain substitutions (IGF-I residues underlined): <u>GYGSS</u>SRRSR & SRVSRR<u>APQT</u>, respectively. Mutant C3 contained a truncated IGF-I C-domain (GSSSRRAT) which approximated the size of the IGF-II C-domain. The three IGF-II analogues were characterized by competitive receptor binding assay, receptor phosphorylation assay and cell survival assay using the IR-A, IR-B and IGF-IR receptors.

The C1 analogue bound the IR-A and IGF-IR with high affinity but bound the IR-B with only moderate affinity suggesting a negative interaction between the C1 C-domain and the exon-11 encoded peptide in the IR-B. The IR-A, IR-B and IGF-IR activation and cell survival responses were generally proportional to the relative binding affinity of C1. In contrast, C2 acted as a partial agonist against the IR-A, IR-B and IGF-IR with high receptor binding affinities but substantially lower activation and cell survival responses in all three receptors. These data indicated both flanks of the IGF C-domain play important roles in receptor binding, activation and cell survival. The C3 analogue had generally poor IR-A, IR-B and IGF-IR binding affinities, activation and cell survival responses which indicated this analogue lacked critical C-domain residues required for high affinity receptor binding and activation.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previous submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

S.T. Henderson

Acknowledgments

First and foremost, I would like to thank my supervisor, Prof. David Catcheside for being an outstanding mentor and role model. I don't think I can really express how grateful I am for David's unwavering support and guidance over the years. I would also like to thank my co-supervisor Dr. Leah Cosgrove for her continual support throughout my PhD.

I thank Dr. Colin Ward at the CSIRO and Dr. Dorsey Stuart at Neugenesis Corporation for supporting my project. I am very grateful to Dr. Ed Cambareri for generously sharing his expertise with heterologous expression in *Neurospora*. I thank Prof. John Wallace for allowing me to express and purify the IGF-II analogues in his laboratory and Dr. Briony Forbes for her advice and guidance with the IGF-II analogue project. I would also like to thank Peter Hoyne for his advice regarding the Europium receptor binding assay and Dr. Morry Frenkel and John Bentley for generously providing reagents.

There are a number of people who have greatly helped me throughout my candidature and to whom I am deeply appreciative. Dr. Paul Rasmussen, for his friendship over the years and for all his help when I first started in the lab. Dr. Jane Yeadon and Dr Fred Bowring, for their support and guidance. Graham Eariss and Dr. Gemma Brierley, for sharing the joy of life at the lab bench and various other places around Australia and abroad. Special thanks to Annette Boettcher for her help and support. Ilka Priebe, for being a great friend and always making me laugh with the many spontaneous conversations about anything and everything, and for helping me through when things started getting a bit rough. Tim Gore, for always asking how the PhD was going and for actually listening when I told him. Dr. Cathy Dandie, for offering to read "Stinky – the Wonder Thesis" in her spare time (you mad fool!). Cap'n Dave & Sue Wood and Alex Stropin for the laughs, troughfests and near-death experiences!

To the numerous people who have helped, supported, encouraged and occasionally tolerated me during my PhD. At Flinders University: Dr. James Waters, Dr. Lin Koh, Russell Stainer, Angus Forgan, Dr. Keryn Simons, Dr. Simon Schmidt, Ben James, Dr. Peter Anderson, Jennie Brand and the Higher Degrees Committee for granting the odd extension or two. At the CSIRO: Dr. Tanya Lewanowitsch, Dr. Michelle Zucker, Dr. Damien Belobrajdic, Dr. Leanne Purins, Dr. Cheng Cheng Ooi, Joanne Lane, Dr. Shusuke Toden (who has a promising alternative career as an inspirational speaker), Corinna Bennett, Emma Watson, Brad Klingner, Maryam Hor, Dr. Claus Christophersen, Ben Scherer, Robb Muirhead, Dr. Erin Symonds, Kerry Nyland, Jessica Southwood, Dr. Tom Wycherley, Sharon Zyrna, Darien Sanders, Julie Dallimore, Michael Adams, Kaylene Pickering, Caroline Cooke, Dr. Trevor Lockett, Alison Tuckfield and Dr. Karsten Oelkers (who helped to push me over the finishing line!). At Adelaide University: Dr. Adam Denley, Dr. Clair Alvino, Kerrie McNeil, Carlie Delaine and Chris Cursaro. Thank you all!

Thanks to my family who have supported me over the years, particularly my Mother although she never really understood why I wanted to work on bread mould. The biggest thankyou goes to my partner Cara-Lyn and my children, Eliza and Oliver, for putting up with the many long hours I've spent in the lab and writing this dissertation – I dedicate this thesis to you.

Abbreviations

%CV	coefficient of variation expressed as a percentage
AA	amino acid
amp	ampicillin
BCA	bicinchoninic acid
Bis-tris	bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane
boil prep	boiled preparation of Neurospora macroconidial gDNA for PCR
bp	base pair
BAP	biotinylated alkaline phosphatase
BCIAD	IGF-II mutant with IGF-I C-domain
BSA	bovine serum albumin
cat#	catalogue number
C1	IGF-II analogue with N-terminal flank of IGF-I C-domain
C2	IGF-II analogue with C-terminal flank of IGF-I C-domain
C3	IGF-II analogue with shortened IGF-I C-domain
CIP	calf intestinal phosphatase
conc.	concentrated
DMEM	Dulbecco's modified eagles medium
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNAse	deoxyribonuclease
dNTP	deoxyribonucleotide triphosphate
DTPA	diethylenetriaminepentaacetate
DTT	dithiothreitol
EC ₅₀	half maximal effective concentration
E. coli	Escherichia coli
ECL	enhanced chemiluminescence
EDTA	ethylenediaminetetraacetic acid
EtBr	ethidium bromide
Eu	europium
FCS	fetal calf serum
FFS	Fast Flow S (buffer)
Fm	FRIES medium
FmH	FRIES medium supplemented with histidine
FmHS	FRIES medium supplemented with histidine and sorbose
FPLC	fast protein liquid chromatography
gDNA	genomic DNA
HCI	hydrochloric acid
HEPES	N-2-hydroxyethylpiperazine-N`-2-ethanesulfonic acid
hIGF-I	human IGF-I
his	L-histidine
hr	hour(s)
HPLC	high performance liquid chromatography
HRP	horseradish peroxidase
HSMR	Hotspot-mediated recombination

hyg	hygromycin
IB/s	inclusion body/bodies
IC ₅₀	half maximal inhibitory concentration
IGF	insulin-like growth factor
IGF-I	insulin-like growth factor I
IGF-II	insulin-like growth factor II
IGF-IR	insulin-like growth factor I receptor
IGF-IIR	insulin-like growth factor II receptor
IPTG	isopropyl-beta-D-thiogalactopyranoside
IR	insulin receptor
IR-A	insulin receptor A isoform
IR-B	insulin receptor B isoform
kb	kilobase pair
LB	Luria broth
LB/amp	Luria broth with ampicillin (100µg/ml)
LG	(Neurospora) linkage group
mAB	monoclonal antibody
min	minute(s)
miniprep	miniscale plasmid preparation
midiprep	midiscale plasmid preparation
mqH₂O	milli-Q water
NEB	New England Biolabs
nIGF-I	Neurospora RIP-optimised human IGF-I coding sequence
NMR	nuclear magnetic resonance spectroscopy
NSB	non-specific binding
NSmH	Neurospora secretion medium supplemented with histidine
OD _{XXXnm}	optical density at wavelength in nm
OPM	orbits per minute
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PIC	Protease inhibitor cocktail (Sigma)
PMSF	phenylmethylsulfonyl fluoride
RIP	repeat-induced point mutation
RNA	ribonucleic acid
RNase	ribonuclease
HPLC	(reverse phase) high performance liquid chromatography
RT	room temperature
S	second(s)
SC	synthetic crossing medium
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SEM	standard error of the mean
SGF	sorbose, glucose & fructose
SOC	super optimal catabolite repression medium
SSC	salt sodium citrate buffer
TAE	tris acetate EDTA buffer
TCA	trichloroacetic acid

TE	tris EDTA buffer
TBS	tris buffered saline
TBST	tris buffered saline with tween-20
TFA	trifluoracetic acid
Tm	melting temperature
Tris	tris(hydroxymethyl) aminomethane
Triton X-100	iso-octylphenoxypolyethoxyethanol
TSS	transformation and storage solution
Tween 20	polyoxyethylene (20)-sorbitan monolaurate
U	unit of enzyme activity (1µmol min ⁻¹)
UV	ultra violet
V	Volts
VmH	Vogel's N medium supplemented with histidine
VmHH	Vogel's N medium supplemented with histidine and hygromycin
vol	volume