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Summary 
 

Reverse osmosis membrane desalination technology has come a long way since 

the Loeb and Souririjan type membranes of the 1960s. Advances in production 

and engineering processes have overcome many inherent system limitations, 

however some remain. Truly biofouling-resistant membranes are yet to be 

realised, and membrane compaction remains an issue. 

In this thesis methods for mitigating these two membrane limiting factors have 

been investigated; polymeric modification and nanoparticle inclusion. 

In the first part of the project, a detailed study of the polymerisation of poly(2-

hydroxyethyl methacrylate) via activators regenerated by electron transfer atom 

transfer radical polymerisation was undertaken. Conditions were chosen to be 

commercially attractive. The modified membranes were studied with fourier 

transform infrared spectroscopy (FTIR), x-ray photospectroscopy, nuclear 

magnetic resonance, and thermogravimetric analysis. Results showed that by 

varying the initial monomer volume and/or the polymerisation reaction time it 

was possible to create a series of modified membranes with a range of polymer 

graft densities, thus indicating the livingness of the polymerisation reaction. 

In order to evaluate the ideal graft density, the properties of the modified 

membranes were further investigated. The polymer coating was clearly visible 

using scanning electron microscopy and an increase in surface roughness was 

observed with atomic force microscopy, in both cases confirming the increase in 

polymer graft density. Water contact angle studies explored the relationship 

between surface morphology and wettability, indicating conformational changes 

in the polymer. Hydrolysis had little effect on modified membrane filtration 

properties  when soaked at pHs outside the recommended range for pristine 

cellulose acetate membrane (CAM). 
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Unique aquarium biofouling tests were performed, and showed a decrease in 

biofouling for the modified membranes. Stirred-cell experiments were used to 

evaluate the filtration properties of the modified membranes. From the results it 

was possible to determine optimum conditions for membrane modification to 

obtain a polymer graft density with maximum biofouling resistance and minimum 

loss of filtration properties. 

In the second part of the project, aminopropylisobutyl polyhedral oligomeric 

silsesquioxane (POSS) was investigated as a nanocomposite additive. Since 

nanoparticle agglomeration and leaching were identified as issues in 

nanocomposite materials, an anchored nanoparticle was synthesised using 

isocyanate chemistry to attach POSS to cellulose acetate (CA). This anchored 

nanoparticle was compared to un-anchored POSS as an additive in CA membrane 

casting solutions at loadings of 0.5, 1.0 or 5.0 wt%. FTIR and energy dispersive 

X-ray microanalysis showed the anchored nanoparticle to have better dispersion 

in the resulting membranes. The nanocomposite membranes showed greater flux 

of water and salt than an unmodified CA control. Membrane compaction was 

mitigated at low nanoparticle loadings. Dynamic Mechanical Analysis (DMA) 

results suggest POSS has a plasticisation effect on the CA matrix. 
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