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Abstract

The main subsect of this thesis is the theory of Lifshits-Krĕın spectral shift
function in semifinite von Neumann algebras and its connection with the the-
ory of spectral flow. Main results are an analogue of the Krĕın trace formula
for semifinite von Neumann algebras, the semifinite analogue of the Birman-
Solomyak spectral averaging formula, a connection between the spectral shift
function and the spectral flow and a Lidskii’s type formula for Dixmier traces. In
particular, it is established that in the case of operators with compact resolvent,
the spectral shift function and the spectral flow are identical notions.
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Introduction

Let H0 and H1 be two self-adjoint operators. Then the spectral shift function for
the pair H0, H1 can be defined as any function ξ such that, for any compactly
supported smooth function f, the equality

Tr(f(H1)− f(H0)) =
∫ ∞

−∞
f ′(λ)ξ(λ) dλ (1)

holds, provided that the difference f(H1) − f(H0) is trace class. This formula
is called the trace formula of I. M. Lifshits-M. G. Krĕın.

The notion of the spectral shift function was introduced in 1952 by the physi-
cist I. M. Lifshits [Lif]. Lifshits considered the perturbation of a self-adjoint op-
erator by a one-dimensional perturbation. He defined the spectral shift function
ξ(λ) by the formula

ξ(λ) = Tr(EH1
λ − EH0

λ ),

where EH
λ is the spectral projection of a self-adjoint operator H, corresponding

to the half-line (−∞, λ). Acting formally, one can recover the trace formula (1)
from this definition in the following way:

Tr(f(H1)− f(H0)) = Tr
(∫

f(λ) dEH1
λ −

∫
f(λ) dEH0

λ

)

= Tr
(∫

f(λ) d(EH1
λ − EH0

λ )
)

=
∫

f(λ) dTr
(
EH1

λ − EH0
λ

)

=
∫

f ′(λ) Tr
(
EH1

λ − EH0
λ

)
dλ =

∫
f ′(λ)ξ(λ) dλ.

The difficulty with this argument is that, apart of its formality, the difference

EH1
λ − EH0

λ (2)

is not necessarily trace class even for one-dimensional perturbations. This was

viii



INTRODUCTION ix

shown by M.G. Krĕın [Kr]. Krĕın considered integral operators

H0f(x) =
∫ ∞

0

k0(x, y)f(y) dy,

H1f(x) =
∫ ∞

0

k1(x, y)f(y) dy,

on the Hilbert space L2(0,∞) with kernels

k0(x, y) =
{

1
2 (ex−y − e−x−y) , if 0 6 x 6 y,
1
2 (e−x+y − e−x−y) , if 0 6 y 6 x,

k1(x, y) =
{

1
2 (ex−y + e−x−y) , if 0 6 x 6 y,
1
2 (e−x+y + e−x−y) , if 0 6 y 6 x,

respectively. In this case the perturbation V = H1−H0 is a one-dimensional op-
erator 〈·, ϕ〉ϕ, where ϕ(x) = e−x. Krĕın showed that (2) is an integral operator
with kernel

− 2
π

sin
√

λ(x + y)
x + y

,

and that it is not a compact operator.

Recently, V. Kostrykin and K. A.Makarov [KM] showed that, in this case,
for all λ ∈ (0, 1), the spectrum of (2) is purely absolutely continuous and is
equal to [−1, 1]. The general nature of the difference (2) was established in [Pu].
A.B. Pushnitski proved that the essential spectrum of (2) is equal to [−a, a],
where a = 1

2 ‖S(λ; H1,H0)− 1‖ and S(λ; H1,H0) is the scattering matrix of the
pair H0,H1. As was noted by Krein, the operators H0 and H1 are actually the
resolvents of the Dirichlet and Neumann one-dimensional Laplacian d2

dx2 at the
spectral point −1. A free one-dimensional particle on (0,∞) undergoes a phase
shift equal to π at 0 when one changes the Dirichlet boundary condition to the
Neumann boundary condition. So, in this case S(λ) = eiπ = −1 and the result
of Kostrykin-Makarov immediately follows from Pushnitski’s result.

In [Kr] M. G. Krĕın created the mathematical theory of the spectral shift
function. He proved that if the perturbation V = H1 −H0 is trace class, then
there exists a unique (up to a set of Lebesgue measure zero) summable function
ξ(·) such that, for a class of admissible functions, which includes compactly
supported functions f ∈ C2(R), the trace formula (1) holds. Surprisingly, for
f ∈ C1

c (R), the difference f(H1)− f(H0) is not necessarily trace class [Far].

The method of proof which Krĕın used was to establish the trace formula
first for one-dimensional perturbations, after that, for finite-dimensional pertur-
bations, and finally to use an approximation argument for general trace class
perturbations. The major step of this proof was the first step, i.e. the case of
one-dimensional perturbation. Krĕın showed that for one-dimensional pertur-
bations the perturbation determinant

det(1 + V (H0 − z)−1)
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satisfies the conditions of a theorem from complex analysis, more precisely, that
it is a Herglotz function and behaves like 1

y for large values of y = Im z.

One of the aims of this thesis is to establish the analogue of the Lifshits-Krĕın
theory for general semifinite von Neumann algebras N with a faithful semifinite
normal trace τ. In the case of a bounded self-adjoint operator H0 ∈ N and
τ -trace class perturbation V, this problem has been solved by R. W. Carey and
J.D. Pincus in [CP]. The novelty of our approach [ADS] is to consider the case of
an (unbounded) operator H0 affiliated with N . The main result of Section 3.1 is
Theorem 3.1.13, which is a semifinite analogue of classical result of M. G.Krĕın.

The main difficulty here is that there is no proper analogue of the classical
Fredholm determinant in semifinite von Neumann algebras (recall that Fuglede-
Kadison determinant takes only non-negative values; in the type I case, the
Fuglede-Kadison determinant is just the absolute value of Fredholm determi-
nant). This difficulty is overcome with the use of the Brown measure [Brn].
The Brown measure together with the semifinite analogue of the Lidskii theo-
rem [Brn] (see [Lid], [Si, Section 3] for the classical Lidskii theorem) allows us
to prove the conditions of the above mentioned theorem from complex analysis
in case of τ -finite perturbations. Generalization to an arbitrary relatively trace
class perturbations follows the lines of the classical case N = B(H).

Note that, if τ (1) < ∞, then the spectral shift formula (3.25) may be derived
directly by the argument given in [Kr2], provided f is absolutely continuous and
f ′ ∈ L1(R). This argument yields the formula

ξH+V,H(λ) = τ
(
EH

λ

)− τ
(
EH+V

λ

)
, a. e. λ ∈ R. (3)

This formula goes back to Lifshits [Lif] and reduces the calculation of the spectral
shift function to computation of the spectral distributions of the operators H +
V, H. In the setting given by Theorem 3.1.13, again in the special case of finite
trace, the formula (3) may be derived from (3.25) by a standard argument.

Another problem considered in this thesis, is the semifinite version of
Birman-Solomyak formula for the spectral shift function. In 1975, Birman and
Solomyak established the beautiful formula for the spectral shift function

ξ(λ) =
d

dλ

∫ 1

0

Tr(V EHr

λ ) dr, (4)

where Hr = H0 + rV, V ∈ L1(H). This formula is called the spectral averaging
formula. Birman-Solomyak proved this formula using double operator integrals.
This formula was established by V. A. Javrjan in [Jav] four years earlier. Javr-
jan considered the spectral averaging of Sturm-Liouville operator on a half-line
with respect to boundary condition. This corresponds to one-dimensional per-
turbation.

In 1998, B. Simon [Si2] found a short and simple proof of (4). As B. Simon
notes in [Si2], the formula (4) was rediscovered by many authors, who were
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not aware of V. A. Javrjan and Birman-Solomyak’s papers; among them Kotani
[Ko], who, in development of the celebrated result of Goldshtein-Molchanov-
Pastur [GMP], used spectral averaging to show that the spectrum of certain
random one-dimensional Schrödinger operators is a purely point spectrum with
probability 1 and that the corresponding eigenfunctions decay exponentially.

The main result of Section 3.4 (Theorem 3.4.2) establishes a semifinite ana-
logue of Birman-Solomyak’s spectral averaging formula. The proof follows essen-
tially the original proof of Birman-Solomyak. Since Birman-Solomyak’s proof
uses double operator integrals, it was necessary to develop the theory of the
double (and in general multiple) operator integral to von Neumann algebras.
The double operator integral theory developed in [dPSW] and [dPS] is not ap-
plicable in this situation, since the unperturbed operator H0 is not in general
τ -measurable, as required in [dPSW, dPS]. In the type I case, τ -measurability
is equivalent to boundedness. Consequently, it is first necessary to develop the
theory of double (multiple) operator integrals in von Neumann algebras, that
will cover the situation that H0 is unbounded.

Multiple operator integrals were first introduced in the celebrated work of
Yu. L. Daletskĭı and S. G.Krĕın [DK]. A multiple operator integral is an expres-
sion of the form

TH0,H1,...,Hn
ϕ (V1, . . . , Vn) :=∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn
,

where V1, . . . , Vn are bounded operators on H, H0, . . . , Hn are self-adjoint oper-
ators on H, and ϕ is a function of n + 1 variables. The initial approach of [DK]
to the definition of multiple operator integrals is to consider them as repeated
integrals

∫ ∞

−∞

(
. . .

(∫ ∞

−∞

(∫ ∞

−∞
ϕdEH0

λ0

)
V1 dEH1

λ1

)
V2 . . .

)
Vn dEHn

λn
,

for which purpose they define first the spectral integrals of operator valued
functions ∫ ∞

−∞
F (λ) dEH

λ .

Another approach to the theory of the multiple operator integral was given in
[Pa]. In this work, B. S. Pavlov considers the multiple operator integral as an
integral over the vector-valued measure

∆0 × . . .×∆n ∈ B(Rn+1) 7→ EH0
∆0

V1 EH1
∆1

V2 EH2
∆2

. . . Vn EHn

∆n
.

Pavlov proves that, if V1, . . . , Vn ∈ L2(H), then this measure is countably ad-
ditive and has bounded weak variation, so that for any bounded measurable
function ϕ the multiple operator integral can be considered as integral over this
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vector-valued measure. He then extends this definition to arbitrary bounded
Vj ’s under some additional conditions on ϕ.

For the purpose of generalizing the theory of multiple operator integrals to
von Neumann algebras, it is convenient [ACDS] to define the multiple operator
integral as follows. If one can write the function ϕ in the form (see (3.27))

ϕ(λ0, λ1, . . . , λn) =
∫

S

α0(λ0, σ) . . . αn(λn, σ) dν(σ), (5)

then one can see that formally
∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn

=
∫

S

α0(H0, σ)V1α1(H1, σ) . . . Vnαn(Hn, σ) dν(σ).

We call the representations of the form (3.27) BS-representations. The idea is
to define the multiple operator integral by the right hand side of this equality.
One has to prove that this definition is well-defined, i.e. that it does not depend
on the representation (5) of the function ϕ. This is done in Theorem 3.2.8. This
idea is taken from the work of Solomyak and Sten’kin [SS], who actually used
implicitly this definition of multiple operator integral. The difference was that
they considered series of the form

ϕ(λ0, λ1, . . . , λn) =
∞∑

k=1

α0,k(λ0) . . . αn,k(λn).

This same idea had been used earlier to define multiple operator integrals inde-
pendently by V.V. Peller [Pel].

An advantage of our new approach to the definition of multiple operator
integrals, is that once some BS representation for ϕ is found, one can work with
the multiple operator integral as the usual integral of operator-valued functions,
consequently using the well-developed and the well-known theory of such inte-
grals. Another advantage is that sometimes different BS representations for the
same function ϕ turn out to be better suited for a particular problem. For
example, it is known that the difference f(A)− f(B) can be represented as

f(A)− f(B) = TA,B
f [1] (A−B),

where f [1](λ, µ) = f(λ)−f(µ)
λ−µ is the first divided difference of the function f.

Examples of usage of different BS-representations of f [1] can be found in Sections
3.3 and 4.1.

The last chapter is devoted to the notion of spectral flow and its connection
with the theory of spectral shift function. The notion of spectral flow was intro-
duced by M. Atiyah, V. Patodi and I.M. Singer in [APS] as the net number of
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eigenvalues which cross zero from the left to the right. E. Getzler [Ge, Theorem
2.6] established the following formula

sf(D0, D1) =
√

ε

π

∫ 1

0

Tr
(
Ḋue−εD2

u

)
du +

1
2
ηε(D1)− 1

2
ηε(D0), (6)

where
ηε(D0) :=

1√
π

∫ ∞

ε

τ
(
D0e

−tD2
0

)
t−1/2 dt

is η- invariant of D0, and {Du} is a piecewise smooth path connecting D0 and
D1. The integral (6) is interpreted as an integral of the one-form

αε(X) =
√

ε

π
Tr(Xe−εD2

), (7)

where X ∈ Bsa(H), the real Banach space of bounded self-adjoint operators on
the Hilbert space H. J. Phillips [Ph, Ph2] gave a definition of spectral flow dif-
ferent from the original definition of [APS]. This definition interprets spectral
flow as Fredholm index and as such it can be generalized also to the case of
semifinite von Neumann algebras. In [CP, CP2] A. L. Carey and J. Phillips gen-
eralized the integral formulas for spectral flow to the semifinite case, establishing
integral formulas for the θ-summable and p-summable cases (i.e. (1 + D2)−p/2

has finite τ -trace). In particular they establish the formula (p > 1)

sf(D0, D1) = C̃−1
p

∫ 1

0

Tr
(
Ḋt(1 + D2

t )−p
)

dt + βp(D1)− βp(D0),

where βp(D) is an analogue of the η-invariant for the p-summable case [CP].
In the case of a p-summable spectral triple (A, D0,N ) and perturbation V =
u[D0, u

∗], the operators D0 and D1 = uD0u
∗ are unitarily equivalent, so that

the last formula takes the form

sf(D0, uD0u
∗) = C̃−1

p

∫ 1

0

Tr
(
u[D0, u

∗](1 + (D0 + tu[D0, u
∗])2)−p/2

)
dt. (8)

In [CPRS], this formula is the starting point for a proof of the Local Index
Theorem of Connes-Moscovici in non-commutative geometry. One of the ideas
of the proof is to consider p as complex variable, i.e. to consider analytical
continuation of the last integral as a function of p. In [CPS], using the zeta-
function representation for the Dixmier trace due to A.Connes [Co], it was
shown that when p → 1+, the spectral flow becomes the Dixmier trace [CPS,
Theorem 6.2]. At the noncommutative geometry workshop at Banff in 2005,
it was observed that when p → ∞, the last integral formula for spectral flow
becomes the Birman-Solomyak formula for the spectral shift function. This key
observation was developed in [ACS]. One of the main results of [ACS] states
that if D0 is an operator with compact resolvent and D1 its perturbation by a
bounded self-adjoint operator, then

sf(λ;D0, D1) = ξD1,D0(λ) +
1
2
τ (ND1−λ)− 1

2
τ (ND0−λ) .
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Combined with the Lifshits-Krĕın trace formula (1), this formula also implies
that when the ”endpoints” D0 and D1 are unitarily equivalent, the spectral flow
(= the spectral shift) function is constant. This sheds some light on integral
formulas for spectral flow like (8), since it is otherwise difficult to understand
why one should take into account eigenvalues very far from 0 to compute the
spectral flow at 0. The point is that, in the case of unitarily equivalent endpoints
D0 ∼ D1, the spectral flow at all points is the same (”the law of conservation
of spectrum”), so that one can compute ”parts” of spectral flow anywhere on
the spectral line.

The well-known Lidskii theorem (in its general semifinite form given in [Brn])
asserts that if N is a semifinite von Neumann factor with a faithful normal
semifinite trace τ, then the trace τ (T ) of an arbitrary operator T ∈ L1(N , τ) is
given by

τ (T ) =
∫

σ(T )\{0}
λ dµT (λ),

where µT is a Borel measure (the so-called Brown measure of T ) on the non-zero
spectrum of T. In the case when N is a type I factor, the measure µT is the
counting measure on the set of all eigenvalues of T. In Section 2.2.2, we present
an analogue of such a formula for Dixmier traces.

In the case of a standard (normal) trace, the assertion of the Lidskii theorem
for self-adjoint operators is immediate due to the absolute convergence of the
series

∑
n>1

λn(T ) of any T = T ∗ from the trace class. This is not the case any

longer for Dixmier (non-normal) traces, since the latter series diverges for any
T = T ∗ ∈ L1,∞(N , τ) which does not belong to the trace class.

The main result of Section 2.1 is Theorem 2.2.11. The Lidskii type formula
given there holds for all operators T ∈ L1,w. The ideal L1,w usually arises in
geometric applications. In particular, if N is the algebra of all bounded opera-
tors on L2(M) where M is a compact Riemannian n-manifold (respectively, if
N is the II∞ factor L∞(Rn) o Rn

discr [CMS, Sh]), the ideal L1,w contains all
pseudodifferential operators (respectively, all almost periodic pseudodifferential
operators) of order −n.

The Lidskii formula for Dixmier traces τω, where ω is an arbitrary dilation
invariant state on L∞(0,∞), takes an especially simple form for the case of mea-
surable operators T (by definition, an operator T ∈ L1,∞(N , τ) is measurable if
τω(T ) does not depend on ω). In this case, τω(T ) coincides with the true limit

lim
t→∞

1
log(1 + t)

∫

λ/∈ 1
t G

λ dµT (λ).

The proof of Theorem 2.2.11 depends crucially on the recent characterization
of positive measurable operators from L1,∞(N , τ) as those for which the limit

lim
t→∞

1
log(1 + t)

∫ t

0

µs(T ) ds
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exists [LSS, Theorem 6.6], and the spectral characterization of sums of com-
mutators in type II factors [DK2, Fac]. The spectral characterization of sums
of commutators is a very deep result, obtained independently by T. Fack [Fac,
Theorem 3], N. J. Kalton [Kal, DK] and K. J. Dykema and N. J. Kalton [DK2,
Theorem 6.8, Corollary 6.10] (though the main idea of the proof seems to be
the same in all these papers). This result implies that the Dixmier trace of any
operator T from the Dixmier ideal depends only on the Brown measure of the
operator T. However, Theorem 2.2.11 goes much further and gives an explicit
formula for the Dixmier trace τω(T ) in terms of the Brown measure µT .

Now we give a brief description of the sections of Chapter 1 (Preliminaries).
In Section 1.5 (Theory of τ -Fredholm operators) we give an exposition of the
theory of τ -Fredholm operators. We follow mainly the original Breuer’s works
[Br, Br2] and [PR, Appendix B]. Breuer proved his results for semifinite factors,
but as shown in [PR, Appendix B] the difference between the factor case and the
non-factor case is not significant. In Section 1.6 (Spectral flow in von Neumann
algebras) an exposition is given of J. Phillips’ theory of spectral flow in semifinite
von Neumann algebras. Here I follow the papers of J. Phillips [Ph, Ph2].

Section 1.7 (Fuglede-Kadison determinant) contains an exposition of the
Fuglede-Kadison determinant [FKa], following L. G. Brown’s paper [Brn].
B. Fuglede and R. V.Kadison introduced this determinant in the case of type II1
factors, while L. G. Brown considers semifinite factors. We give this theory for
semifinite von Neumann algebras, not necessarily factors. In Section 1.8 (The
Brown measure), an exposition of the Brown measure is given, following the
original work of Brown [Brn].

The main results of this thesis are Theorem 3.2.8 [ACDS] (new approach to
multiple operator integrals), Theorem 2.2.11 [AS] (Lidskii theorem for Dixmier
traces), Theorem 3.1.13 [ADS] (Krein’s formula for spectral shift function
in semifinite von Neumann algebras), Theorem 3.3.3 [ACDS], Theorem 3.3.6
[ACDS] (high order Fréchet derivative of functions f(H) of self-adjoint operators
H with suitable restrictions on the function f), Theorem 3.4.2 [ACDS] (semifi-
nite Birman-Solomyak spectral averaging formula), Theorem 4.1.17 [ACDS] (for-
mula for Fréchet derivative in terms of double operator integrals), Theorem 4.2.5
[ACS] (trace formula for operators with compact resolvent), Theorem 4.3.13
[ACS], Theorem 4.3.18 [ACS] (connection between spectral flow and spectral
shift function), Theorem 4.3.21 [ACS] (infinitesimal spectral flow), Theorem
4.3.24 [ACS] (spectral flow for I-summable spectral triples), Theorem 4.3.31
[ACS] (Carey–Phillips formula with new proof).


