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Abstract

The main subsect of this thesis is the theory of Lifshits-Krĕın spectral shift
function in semifinite von Neumann algebras and its connection with the the-
ory of spectral flow. Main results are an analogue of the Krĕın trace formula
for semifinite von Neumann algebras, the semifinite analogue of the Birman-
Solomyak spectral averaging formula, a connection between the spectral shift
function and the spectral flow and a Lidskii’s type formula for Dixmier traces. In
particular, it is established that in the case of operators with compact resolvent,
the spectral shift function and the spectral flow are identical notions.
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Introduction

Let H0 and H1 be two self-adjoint operators. Then the spectral shift function for
the pair H0, H1 can be defined as any function ξ such that, for any compactly
supported smooth function f, the equality

Tr(f(H1)− f(H0)) =
∫ ∞

−∞
f ′(λ)ξ(λ) dλ (1)

holds, provided that the difference f(H1) − f(H0) is trace class. This formula
is called the trace formula of I. M. Lifshits-M. G. Krĕın.

The notion of the spectral shift function was introduced in 1952 by the physi-
cist I. M. Lifshits [Lif]. Lifshits considered the perturbation of a self-adjoint op-
erator by a one-dimensional perturbation. He defined the spectral shift function
ξ(λ) by the formula

ξ(λ) = Tr(EH1
λ − EH0

λ ),

where EH
λ is the spectral projection of a self-adjoint operator H, corresponding

to the half-line (−∞, λ). Acting formally, one can recover the trace formula (1)
from this definition in the following way:

Tr(f(H1)− f(H0)) = Tr
(∫

f(λ) dEH1
λ −

∫
f(λ) dEH0

λ

)

= Tr
(∫

f(λ) d(EH1
λ − EH0

λ )
)

=
∫

f(λ) dTr
(
EH1

λ − EH0
λ

)

=
∫

f ′(λ) Tr
(
EH1

λ − EH0
λ

)
dλ =

∫
f ′(λ)ξ(λ) dλ.

The difficulty with this argument is that, apart of its formality, the difference

EH1
λ − EH0

λ (2)

is not necessarily trace class even for one-dimensional perturbations. This was

viii



INTRODUCTION ix

shown by M.G. Krĕın [Kr]. Krĕın considered integral operators

H0f(x) =
∫ ∞

0

k0(x, y)f(y) dy,

H1f(x) =
∫ ∞

0

k1(x, y)f(y) dy,

on the Hilbert space L2(0,∞) with kernels

k0(x, y) =
{

1
2 (ex−y − e−x−y) , if 0 6 x 6 y,
1
2 (e−x+y − e−x−y) , if 0 6 y 6 x,

k1(x, y) =
{

1
2 (ex−y + e−x−y) , if 0 6 x 6 y,
1
2 (e−x+y + e−x−y) , if 0 6 y 6 x,

respectively. In this case the perturbation V = H1−H0 is a one-dimensional op-
erator 〈·, ϕ〉ϕ, where ϕ(x) = e−x. Krĕın showed that (2) is an integral operator
with kernel

− 2
π

sin
√

λ(x + y)
x + y

,

and that it is not a compact operator.

Recently, V. Kostrykin and K. A.Makarov [KM] showed that, in this case,
for all λ ∈ (0, 1), the spectrum of (2) is purely absolutely continuous and is
equal to [−1, 1]. The general nature of the difference (2) was established in [Pu].
A.B. Pushnitski proved that the essential spectrum of (2) is equal to [−a, a],
where a = 1

2 ‖S(λ; H1,H0)− 1‖ and S(λ; H1,H0) is the scattering matrix of the
pair H0,H1. As was noted by Krein, the operators H0 and H1 are actually the
resolvents of the Dirichlet and Neumann one-dimensional Laplacian d2

dx2 at the
spectral point −1. A free one-dimensional particle on (0,∞) undergoes a phase
shift equal to π at 0 when one changes the Dirichlet boundary condition to the
Neumann boundary condition. So, in this case S(λ) = eiπ = −1 and the result
of Kostrykin-Makarov immediately follows from Pushnitski’s result.

In [Kr] M. G. Krĕın created the mathematical theory of the spectral shift
function. He proved that if the perturbation V = H1 −H0 is trace class, then
there exists a unique (up to a set of Lebesgue measure zero) summable function
ξ(·) such that, for a class of admissible functions, which includes compactly
supported functions f ∈ C2(R), the trace formula (1) holds. Surprisingly, for
f ∈ C1

c (R), the difference f(H1)− f(H0) is not necessarily trace class [Far].

The method of proof which Krĕın used was to establish the trace formula
first for one-dimensional perturbations, after that, for finite-dimensional pertur-
bations, and finally to use an approximation argument for general trace class
perturbations. The major step of this proof was the first step, i.e. the case of
one-dimensional perturbation. Krĕın showed that for one-dimensional pertur-
bations the perturbation determinant

det(1 + V (H0 − z)−1)
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satisfies the conditions of a theorem from complex analysis, more precisely, that
it is a Herglotz function and behaves like 1

y for large values of y = Im z.

One of the aims of this thesis is to establish the analogue of the Lifshits-Krĕın
theory for general semifinite von Neumann algebras N with a faithful semifinite
normal trace τ. In the case of a bounded self-adjoint operator H0 ∈ N and
τ -trace class perturbation V, this problem has been solved by R. W. Carey and
J.D. Pincus in [CP]. The novelty of our approach [ADS] is to consider the case of
an (unbounded) operator H0 affiliated with N . The main result of Section 3.1 is
Theorem 3.1.13, which is a semifinite analogue of classical result of M. G.Krĕın.

The main difficulty here is that there is no proper analogue of the classical
Fredholm determinant in semifinite von Neumann algebras (recall that Fuglede-
Kadison determinant takes only non-negative values; in the type I case, the
Fuglede-Kadison determinant is just the absolute value of Fredholm determi-
nant). This difficulty is overcome with the use of the Brown measure [Brn].
The Brown measure together with the semifinite analogue of the Lidskii theo-
rem [Brn] (see [Lid], [Si, Section 3] for the classical Lidskii theorem) allows us
to prove the conditions of the above mentioned theorem from complex analysis
in case of τ -finite perturbations. Generalization to an arbitrary relatively trace
class perturbations follows the lines of the classical case N = B(H).

Note that, if τ (1) < ∞, then the spectral shift formula (3.25) may be derived
directly by the argument given in [Kr2], provided f is absolutely continuous and
f ′ ∈ L1(R). This argument yields the formula

ξH+V,H(λ) = τ
(
EH

λ

)− τ
(
EH+V

λ

)
, a. e. λ ∈ R. (3)

This formula goes back to Lifshits [Lif] and reduces the calculation of the spectral
shift function to computation of the spectral distributions of the operators H +
V, H. In the setting given by Theorem 3.1.13, again in the special case of finite
trace, the formula (3) may be derived from (3.25) by a standard argument.

Another problem considered in this thesis, is the semifinite version of
Birman-Solomyak formula for the spectral shift function. In 1975, Birman and
Solomyak established the beautiful formula for the spectral shift function

ξ(λ) =
d

dλ

∫ 1

0

Tr(V EHr

λ ) dr, (4)

where Hr = H0 + rV, V ∈ L1(H). This formula is called the spectral averaging
formula. Birman-Solomyak proved this formula using double operator integrals.
This formula was established by V. A. Javrjan in [Jav] four years earlier. Javr-
jan considered the spectral averaging of Sturm-Liouville operator on a half-line
with respect to boundary condition. This corresponds to one-dimensional per-
turbation.

In 1998, B. Simon [Si2] found a short and simple proof of (4). As B. Simon
notes in [Si2], the formula (4) was rediscovered by many authors, who were
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not aware of V. A. Javrjan and Birman-Solomyak’s papers; among them Kotani
[Ko], who, in development of the celebrated result of Goldshtein-Molchanov-
Pastur [GMP], used spectral averaging to show that the spectrum of certain
random one-dimensional Schrödinger operators is a purely point spectrum with
probability 1 and that the corresponding eigenfunctions decay exponentially.

The main result of Section 3.4 (Theorem 3.4.2) establishes a semifinite ana-
logue of Birman-Solomyak’s spectral averaging formula. The proof follows essen-
tially the original proof of Birman-Solomyak. Since Birman-Solomyak’s proof
uses double operator integrals, it was necessary to develop the theory of the
double (and in general multiple) operator integral to von Neumann algebras.
The double operator integral theory developed in [dPSW] and [dPS] is not ap-
plicable in this situation, since the unperturbed operator H0 is not in general
τ -measurable, as required in [dPSW, dPS]. In the type I case, τ -measurability
is equivalent to boundedness. Consequently, it is first necessary to develop the
theory of double (multiple) operator integrals in von Neumann algebras, that
will cover the situation that H0 is unbounded.

Multiple operator integrals were first introduced in the celebrated work of
Yu. L. Daletskĭı and S. G.Krĕın [DK]. A multiple operator integral is an expres-
sion of the form

TH0,H1,...,Hn
ϕ (V1, . . . , Vn) :=∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn
,

where V1, . . . , Vn are bounded operators on H, H0, . . . , Hn are self-adjoint oper-
ators on H, and ϕ is a function of n + 1 variables. The initial approach of [DK]
to the definition of multiple operator integrals is to consider them as repeated
integrals

∫ ∞

−∞

(
. . .

(∫ ∞

−∞

(∫ ∞

−∞
ϕdEH0

λ0

)
V1 dEH1

λ1

)
V2 . . .

)
Vn dEHn

λn
,

for which purpose they define first the spectral integrals of operator valued
functions ∫ ∞

−∞
F (λ) dEH

λ .

Another approach to the theory of the multiple operator integral was given in
[Pa]. In this work, B. S. Pavlov considers the multiple operator integral as an
integral over the vector-valued measure

∆0 × . . .×∆n ∈ B(Rn+1) 7→ EH0
∆0

V1 EH1
∆1

V2 EH2
∆2

. . . Vn EHn

∆n
.

Pavlov proves that, if V1, . . . , Vn ∈ L2(H), then this measure is countably ad-
ditive and has bounded weak variation, so that for any bounded measurable
function ϕ the multiple operator integral can be considered as integral over this
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vector-valued measure. He then extends this definition to arbitrary bounded
Vj ’s under some additional conditions on ϕ.

For the purpose of generalizing the theory of multiple operator integrals to
von Neumann algebras, it is convenient [ACDS] to define the multiple operator
integral as follows. If one can write the function ϕ in the form (see (3.27))

ϕ(λ0, λ1, . . . , λn) =
∫

S

α0(λ0, σ) . . . αn(λn, σ) dν(σ), (5)

then one can see that formally
∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn

=
∫

S

α0(H0, σ)V1α1(H1, σ) . . . Vnαn(Hn, σ) dν(σ).

We call the representations of the form (3.27) BS-representations. The idea is
to define the multiple operator integral by the right hand side of this equality.
One has to prove that this definition is well-defined, i.e. that it does not depend
on the representation (5) of the function ϕ. This is done in Theorem 3.2.8. This
idea is taken from the work of Solomyak and Sten’kin [SS], who actually used
implicitly this definition of multiple operator integral. The difference was that
they considered series of the form

ϕ(λ0, λ1, . . . , λn) =
∞∑

k=1

α0,k(λ0) . . . αn,k(λn).

This same idea had been used earlier to define multiple operator integrals inde-
pendently by V.V. Peller [Pel].

An advantage of our new approach to the definition of multiple operator
integrals, is that once some BS representation for ϕ is found, one can work with
the multiple operator integral as the usual integral of operator-valued functions,
consequently using the well-developed and the well-known theory of such inte-
grals. Another advantage is that sometimes different BS representations for the
same function ϕ turn out to be better suited for a particular problem. For
example, it is known that the difference f(A)− f(B) can be represented as

f(A)− f(B) = TA,B
f [1] (A−B),

where f [1](λ, µ) = f(λ)−f(µ)
λ−µ is the first divided difference of the function f.

Examples of usage of different BS-representations of f [1] can be found in Sections
3.3 and 4.1.

The last chapter is devoted to the notion of spectral flow and its connection
with the theory of spectral shift function. The notion of spectral flow was intro-
duced by M. Atiyah, V. Patodi and I.M. Singer in [APS] as the net number of
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eigenvalues which cross zero from the left to the right. E. Getzler [Ge, Theorem
2.6] established the following formula

sf(D0, D1) =
√

ε

π

∫ 1

0

Tr
(
Ḋue−εD2

u

)
du +

1
2
ηε(D1)− 1

2
ηε(D0), (6)

where
ηε(D0) :=

1√
π

∫ ∞

ε

τ
(
D0e

−tD2
0

)
t−1/2 dt

is η- invariant of D0, and {Du} is a piecewise smooth path connecting D0 and
D1. The integral (6) is interpreted as an integral of the one-form

αε(X) =
√

ε

π
Tr(Xe−εD2

), (7)

where X ∈ Bsa(H), the real Banach space of bounded self-adjoint operators on
the Hilbert space H. J. Phillips [Ph, Ph2] gave a definition of spectral flow dif-
ferent from the original definition of [APS]. This definition interprets spectral
flow as Fredholm index and as such it can be generalized also to the case of
semifinite von Neumann algebras. In [CP, CP2] A. L. Carey and J. Phillips gen-
eralized the integral formulas for spectral flow to the semifinite case, establishing
integral formulas for the θ-summable and p-summable cases (i.e. (1 + D2)−p/2

has finite τ -trace). In particular they establish the formula (p > 1)

sf(D0, D1) = C̃−1
p

∫ 1

0

Tr
(
Ḋt(1 + D2

t )−p
)

dt + βp(D1)− βp(D0),

where βp(D) is an analogue of the η-invariant for the p-summable case [CP].
In the case of a p-summable spectral triple (A, D0,N ) and perturbation V =
u[D0, u

∗], the operators D0 and D1 = uD0u
∗ are unitarily equivalent, so that

the last formula takes the form

sf(D0, uD0u
∗) = C̃−1

p

∫ 1

0

Tr
(
u[D0, u

∗](1 + (D0 + tu[D0, u
∗])2)−p/2

)
dt. (8)

In [CPRS], this formula is the starting point for a proof of the Local Index
Theorem of Connes-Moscovici in non-commutative geometry. One of the ideas
of the proof is to consider p as complex variable, i.e. to consider analytical
continuation of the last integral as a function of p. In [CPS], using the zeta-
function representation for the Dixmier trace due to A.Connes [Co], it was
shown that when p → 1+, the spectral flow becomes the Dixmier trace [CPS,
Theorem 6.2]. At the noncommutative geometry workshop at Banff in 2005,
it was observed that when p → ∞, the last integral formula for spectral flow
becomes the Birman-Solomyak formula for the spectral shift function. This key
observation was developed in [ACS]. One of the main results of [ACS] states
that if D0 is an operator with compact resolvent and D1 its perturbation by a
bounded self-adjoint operator, then

sf(λ;D0, D1) = ξD1,D0(λ) +
1
2
τ (ND1−λ)− 1

2
τ (ND0−λ) .
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Combined with the Lifshits-Krĕın trace formula (1), this formula also implies
that when the ”endpoints” D0 and D1 are unitarily equivalent, the spectral flow
(= the spectral shift) function is constant. This sheds some light on integral
formulas for spectral flow like (8), since it is otherwise difficult to understand
why one should take into account eigenvalues very far from 0 to compute the
spectral flow at 0. The point is that, in the case of unitarily equivalent endpoints
D0 ∼ D1, the spectral flow at all points is the same (”the law of conservation
of spectrum”), so that one can compute ”parts” of spectral flow anywhere on
the spectral line.

The well-known Lidskii theorem (in its general semifinite form given in [Brn])
asserts that if N is a semifinite von Neumann factor with a faithful normal
semifinite trace τ, then the trace τ (T ) of an arbitrary operator T ∈ L1(N , τ) is
given by

τ (T ) =
∫

σ(T )\{0}
λ dµT (λ),

where µT is a Borel measure (the so-called Brown measure of T ) on the non-zero
spectrum of T. In the case when N is a type I factor, the measure µT is the
counting measure on the set of all eigenvalues of T. In Section 2.2.2, we present
an analogue of such a formula for Dixmier traces.

In the case of a standard (normal) trace, the assertion of the Lidskii theorem
for self-adjoint operators is immediate due to the absolute convergence of the
series

∑
n>1

λn(T ) of any T = T ∗ from the trace class. This is not the case any

longer for Dixmier (non-normal) traces, since the latter series diverges for any
T = T ∗ ∈ L1,∞(N , τ) which does not belong to the trace class.

The main result of Section 2.1 is Theorem 2.2.11. The Lidskii type formula
given there holds for all operators T ∈ L1,w. The ideal L1,w usually arises in
geometric applications. In particular, if N is the algebra of all bounded opera-
tors on L2(M) where M is a compact Riemannian n-manifold (respectively, if
N is the II∞ factor L∞(Rn) o Rn

discr [CMS, Sh]), the ideal L1,w contains all
pseudodifferential operators (respectively, all almost periodic pseudodifferential
operators) of order −n.

The Lidskii formula for Dixmier traces τω, where ω is an arbitrary dilation
invariant state on L∞(0,∞), takes an especially simple form for the case of mea-
surable operators T (by definition, an operator T ∈ L1,∞(N , τ) is measurable if
τω(T ) does not depend on ω). In this case, τω(T ) coincides with the true limit

lim
t→∞

1
log(1 + t)

∫

λ/∈ 1
t G

λ dµT (λ).

The proof of Theorem 2.2.11 depends crucially on the recent characterization
of positive measurable operators from L1,∞(N , τ) as those for which the limit

lim
t→∞

1
log(1 + t)

∫ t

0

µs(T ) ds
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exists [LSS, Theorem 6.6], and the spectral characterization of sums of com-
mutators in type II factors [DK2, Fac]. The spectral characterization of sums
of commutators is a very deep result, obtained independently by T. Fack [Fac,
Theorem 3], N. J. Kalton [Kal, DK] and K. J. Dykema and N. J. Kalton [DK2,
Theorem 6.8, Corollary 6.10] (though the main idea of the proof seems to be
the same in all these papers). This result implies that the Dixmier trace of any
operator T from the Dixmier ideal depends only on the Brown measure of the
operator T. However, Theorem 2.2.11 goes much further and gives an explicit
formula for the Dixmier trace τω(T ) in terms of the Brown measure µT .

Now we give a brief description of the sections of Chapter 1 (Preliminaries).
In Section 1.5 (Theory of τ -Fredholm operators) we give an exposition of the
theory of τ -Fredholm operators. We follow mainly the original Breuer’s works
[Br, Br2] and [PR, Appendix B]. Breuer proved his results for semifinite factors,
but as shown in [PR, Appendix B] the difference between the factor case and the
non-factor case is not significant. In Section 1.6 (Spectral flow in von Neumann
algebras) an exposition is given of J. Phillips’ theory of spectral flow in semifinite
von Neumann algebras. Here I follow the papers of J. Phillips [Ph, Ph2].

Section 1.7 (Fuglede-Kadison determinant) contains an exposition of the
Fuglede-Kadison determinant [FKa], following L. G. Brown’s paper [Brn].
B. Fuglede and R. V.Kadison introduced this determinant in the case of type II1
factors, while L. G. Brown considers semifinite factors. We give this theory for
semifinite von Neumann algebras, not necessarily factors. In Section 1.8 (The
Brown measure), an exposition of the Brown measure is given, following the
original work of Brown [Brn].

The main results of this thesis are Theorem 3.2.8 [ACDS] (new approach to
multiple operator integrals), Theorem 2.2.11 [AS] (Lidskii theorem for Dixmier
traces), Theorem 3.1.13 [ADS] (Krein’s formula for spectral shift function
in semifinite von Neumann algebras), Theorem 3.3.3 [ACDS], Theorem 3.3.6
[ACDS] (high order Fréchet derivative of functions f(H) of self-adjoint operators
H with suitable restrictions on the function f), Theorem 3.4.2 [ACDS] (semifi-
nite Birman-Solomyak spectral averaging formula), Theorem 4.1.17 [ACDS] (for-
mula for Fréchet derivative in terms of double operator integrals), Theorem 4.2.5
[ACS] (trace formula for operators with compact resolvent), Theorem 4.3.13
[ACS], Theorem 4.3.18 [ACS] (connection between spectral flow and spectral
shift function), Theorem 4.3.21 [ACS] (infinitesimal spectral flow), Theorem
4.3.24 [ACS] (spectral flow for I-summable spectral triples), Theorem 4.3.31
[ACS] (Carey–Phillips formula with new proof).



Chapter 1

Preliminaries

1.1 Operators in Hilbert space

1.1.1 Notation

We denote by R the field of all real numbers, and by C the field of all complex
numbers. We denote by L1(R) the Banach space of 1-summable functions on R
with the norm ‖·‖1 . By H we denote a complex separable (if not stated other-
wise) Hilbert space with a scalar product 〈·, ·〉 , anti-linear in the first variable,
and the norm ‖ξ‖ =

√
〈ξ, ξ〉.

If Ω ⊂ Rn is an open set then we write C∞c (Ω) for the set of all compactly
supported C∞-smooth functions on Ω, and B(Rn) (respectively, Bc(Rn)) for
the set of all bounded Borel functions on Rn (respectively, compactly supported
bounded Borel functions on Rn).

Suppose that T is a closed linear operator in H, with dense domain D(T ) ⊆
H. The resolvent set ρT is the set of those complex numbers λ for which
λ − T : D(T ) → H has a bounded inverse with domain dense in H. Since T
is closed, it follows from [HPh, Theorem 2.16.3] that λ ∈ ρT if and only if
T − λ is injective and surjective. The closed graph theorem then implies that
the resolvent

Rλ(T ) := (λ− T )−1, λ ∈ ρT ,

is a bounded linear operator on H. The spectrum of a closed linear operator T
is the set

σT := C \ ρT .

We will use the first resolvent identity

Rλ(T )−Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ), λ, µ ∈ ρT , (1.1)

1
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and the second resolvent identity

Rλ(S)−Rλ(T ) = Rλ(S)(S − T )Rλ(T ), λ ∈ ρS ∩ ρT . (1.2)

Also,
d

dz
Rz(T ) = −Rz(T )2, (1.3)

where derivative taken in ‖·‖-topology.

If T is a self-adjoint operator (not necessarily bounded) then

‖Rλ(T )‖ 6 |λ|−1
, λ ∈ C \ R. (1.4)

1.1.2 Topologies of B(H)

By B(H), we denote the set of all bounded linear operators on the Hilbert
space H.

A set of operators A ⊆ B(H) is said to be a (complex) algebra, if for any
complex numbers α, β ∈ C and any operator S, T ∈ A the operators αS + βT
and ST also belong to A. An algebra A of operators on H is said to be involutive
if T ∈ A implies that T ∗ ∈ A. An involutive algebra A of operators is said to
be a ∗-ideal of an algebra of operators N , if for any A ∈ A and S ∈ N we have
AS, SA ∈ A.

On the algebra B(H) there exist several natural topologies. The uniform
topology is the topology of the norm

‖T‖ = sup
x∈H,‖x‖=1

‖Tx‖ , T ∈ B(H).

The strong operator topology (or so-topology) is a locally convex topology on
B(H) generated by the system {pξ(·), ξ ∈ H} of seminorms

pξ(T ) = ‖Tξ‖ , T ∈ B(H).

The strong∗ operator topology (or so∗-topology) is a locally convex topology on
B(H) generated by the system

{
pξ(·), p∗ξ(·), ξ ∈ H

}
of seminorms

pξ(T ) = ‖Tξ‖ , p∗ξ(T ) = ‖T ∗ξ‖ , T ∈ B(H).

The weak operator topology (or wo-topology) is a locally convex topology on
B(H) generated by the system {pξ,η(·), ξ, η ∈ H} of seminorms

pξ,η(T ) = |〈Tξ, η〉| , T ∈ B(H).

The σ-weak topology is the topology generated by seminorms

A ∈ B(H) 7→ pξ̄,η̄(A) =

( ∞∑

k=1

|〈Aξk, ηk〉|
)−1/2

,
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the σ-strong topology is the topology generated by seminorms

A ∈ B(H) 7→ pξ̄(A) =

( ∞∑

k=1

‖Aξk‖2
)−1/2

,

the σ-strong∗ topology is the topology generated by seminorms

pξ̄(A), pξ̄(A
∗, )

where the sequences ξ̄ = (ξ1, ξ2, . . .) and η̄ = (η1, η2, . . .) are such that
∞∑

k=1

‖ξk‖2 < ∞,

∞∑

k=1

‖ηk‖2 < ∞.

Theorem 1.1.1 [BR, Proposition 2.4.1] The σ-strong topology is finer than the
strong operator topology, but the two topologies coincide on the unit ball B1(H) of
B(H). The unit ball B1(H) is complete in the uniform structure defined by these
topologies. Multiplication (A,B) 7→ AB is continuous as a map B1(H)×B(H) 7→
B(H) in these topologies.

Recall that H is a separable Hilbert space.

Proposition 1.1.2 [Di, Proposition I.3.1] The unit ball B1(H) of B(H) en-
dowed with the strong operator topology is a metrisable space.

It is not difficult to see that this proposition is true also for strong∗ operator
topology.

1.1.3 Self-adjoint operators

In this section we collect some theorems about unbounded operators. Their
proofs can be found in [RS].

By B(R), we denote the σ-algebra of all Borel subsets of R. For a self-adjoint
operator T let ET

∆ be the spectral projection of T corresponding to ∆ ∈ B(R),
and let ET

λ be the spectral projection of T corresponding to (−∞, λ]. This
means, in particular, that for any λ ∈ [−∞,∞)

ET
λ = inf

µ>λ
ET

µ . (1.5)

The following lemma is [CP, Appendix B, Lemma 1].

Lemma 1.1.3 If A and B are (possibly unbounded) self-adjoint operators with
dom(A) = dom(B) and 0 < c 6 A 6 B on their common domain, then 0 6
B−1 6 A−1 6 c−1 on all of H. Here c is a scalar operator.
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Proof. For ξ ∈ dom(B), the operator K(B
1
2 ξ) = A

1
2 ξ is well-defined and ‖K‖ 6

1, since
∥∥∥A

1
2 ξ

∥∥∥ 6
∥∥∥B

1
2 ξ

∥∥∥ . Since the closure of B
1
2 |dom(B) is B

1
2 , one checks that

K(B
1
2 ξ) = A

1
2 ξ makes sense for all ξ ∈ domB

1
2 ⊆ dom A

1
2 and so KB

1
2 = A

1
2 .

Since B
1
2 > c

1
2 , it follows that ran B

1
2 = H and hence K is everywhere defined

and injective. Since ran K ⊇ ranA
1
2 = H, it follows that K is invertible.

Thus, B
1
2 = K−1A

1
2 and so B− 1

2 = A−
1
2 K and, taking adjoint of this equality,

B− 1
2 = K∗A−

1
2 . So, for any ξ ∈ H

〈
B−1ξ, ξ

〉
=

〈
K∗A−

1
2 ξ, K∗A−

1
2 ξ

〉
=

∥∥∥K∗A−
1
2 ξ

∥∥∥
2

6 ‖K∗‖2 ·
∥∥∥A−

1
2 ξ

∥∥∥
2

6
∥∥∥A−

1
2 ξ

∥∥∥
2

=
〈
A−1ξ, ξ

〉
.

¤

Theorem 1.1.4 [RS, Section VIII.3] Spectral resolution
{
ET

∆, ∆ ∈ B(R)
}

of a
self-adjoint operator T on Hilbert space H is σ-additive in the strong operator
topology.

Theorem 1.1.5 [RS, Theorem VIII.7] If H is a (possibly unbounded) self-
adjoint operator on H, then the function R 3 t 7→ eitH ∈ B(H) is so∗-
continuous.

Actually, [RS, Theorem VIII.7] says that the function R 3 t 7→ eitH ∈ B(H)
is continuous in so-topology, but for eitH this evidently implies continuity in
so∗-topology.

By definition, a sequence of self-adjoint operators An resolvent strongly (re-
spectively, resolvent uniformly) converges to self-adjoint operator A if the se-
quence of resolvents of An converges to the resolvent of A in so-topology (re-
spectively, uniformly).

Theorem 1.1.6 [RS, Theorem VIII.20(b)] Let A and A1, A2, . . . be self-adjoint
operators on H. If the sequence An resolvent strongly converges to A and f is
a bounded Borel function on R then the sequence f(An) converges to f(A) in
so-topology.

We note that, for any spectral resolution Eλ and any ξ, η ∈ H, the measure ∆ 7→
〈E∆ξ, η〉 has finite total variation (this easily follows from polar decomposition
and the fact that the total variation of non-negative measure 〈E∆ξ, ξ〉 is ‖ξ‖2).

Lemma 1.1.7 If A is a self-adjoint (possibly unbounded) operator on a Hilbert
space H and if f is a function on R which is the Fourier transform of a finite
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Borel measure m on R then

f(A) =
1√
2π

∫

R
eisA dm(s),

where the integral is taken in so-topology.

Proof. For any ξ, η ∈ H we have

1√
2π

〈∫

R
eisA dm(s) ξ, η

〉
=

1√
2π

∫

R

〈
eisAξ, η

〉
dm(s)

=
1√
2π

∫

R

(∫

R
eisλ 〈dEλ ξ, η〉

)
dm(s)

=
1√
2π

∫

R

(∫

R
eisλ dm(s)

)
〈dEλ ξ, η〉

=
∫

R
f(λ) 〈dEλ ξ, η〉

=
〈∫

R
f(λ) dEλ ξ, η

〉
= 〈f(A)ξ, η〉 ,

where the interchange of integrals by Fubini’s theorem is possible, since both
measures have finite total variation. ¤

Lemma 1.1.8 (Duhamel’s formula). If B is an unbounded self-adjoint operator
on a Hilbert space H, if V is a bounded self-adjoint operator on H and if A =
B + V, then

eisA − eisB =
∫ s

0

ei(s−t)AiV eitB dt, (1.6)

where the integral converges in so-topology.

Proof. Let F (t) = e−itAeitB . Taking derivative of F (t) in the so-topology gives

F ′(t) = −iAe−itAeitB + e−itA(iB)eitB = −e−itAi(A−B)eitB .

So,

−
∫ s

0

e−itAi(A−B)eitB dt = F (s)− F (0) = e−isAeisB − 1.

Multiplying the last equality by eisA from the left gives (1.6). ¤

1.1.4 Numerical range

The numerical range W(T ) of an operator T ∈ B(H) is the set

W(T ) := {〈Tη, η〉 : η ∈ H, ‖η‖ = 1}
of complex numbers. Numerical range has the following properties.



CHAPTER 1. PRELIMINARIES 6

Theorem 1.1.9 (Toeplitz-Hausdorff theorem) If T ∈ B(H) then W(T ) is a
convex subset of C.

Theorem 1.1.10 If T ∈ B(H) then

σT ⊆ W(T ).

Theorem 1.1.11 If an operator T ∈ B(H) is normal then

W(T ) = conv W(T ),

where conv denotes the convex hull.

Proofs of these theorems can be found in [Hal, Chapter 22], Problems 210, 214
and 216 respectively.

1.1.5 The Bochner integral

In this section we collect the properties of the Bochner integral which will be
used in the subsequent text.

Let (S, ν) be a measure space and let X be a Banach space. A function
f : S → X is said to be Bochner integrable, if there exists a sequence of
simple functions (i.e. finitely-valued) fn : S → X norm converging a.e., such
that

lim
n→∞

∫

S

‖f(s)− fn(s)‖ dν(s) = 0.

In this case the Bochner integral of the function f is defined as
∫

S

f(s) dν(s) = lim
n→∞

∫

S

fn(s) dν(s).

It can be shown that this definition is well defined in the sense that it does not
depend on a choice of the sequence {fn} [Y, V.5].

When it is necessary, we shall use the terms ν-Bochner integrable and ν-the
Bochner integral.

Lemma 1.1.12 [Y, Corollary V.5.2] Let X , Y be Banach spaces and let
T : X → Y be a bounded linear operator. If a function f : S → X is Bochner
integrable, then the function Tf : S → Y is also Bochner integrable, and

∫

S

Tf(s) dν(s) = T

∫

S

f(s) dν(s).
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Theorem 1.1.13 [DS, Theorem III.6.16] (Lebesgue Dominated Convergence
Theorem for the Bochner integral) Let (S, ν) be a measure space and let X
be a Banach space. Let f1, f2, . . . be a sequence of Bochner-integrable functions
S : → X converging ν-almost everywhere to a function f. Suppose that there
exists a Bochner-integrable function g : S → X such that for all n = 1, 2, . . .
‖fn(s)‖ 6 ‖g(s)‖ ν-almost everywhere. Then f is Bochner integrable and

∫

S

‖fn(s)− f(s)‖ dν(s) → 0.

Lemma 1.1.14 [Y, Corollary V.5.1] If f : (S, ν) → X is a Bochner integrable
function, then ∥∥∥∥

∫

S

f(s) dν(s)
∥∥∥∥ 6

∫

S

‖f(s)‖ · |dν(s)| .

Theorem 1.1.15 [DS, Theorem III.11.13] Let (S, ν) and (T, µ) be two finite
measure spaces. Let X be a Banach space and let f : S × T → X be a ν×µ-
Bochner integrable function. Then, for ν-almost all s ∈ S, the function f(s, ·)
is µ-Bochner integrable on T and the function

∫
T

f(·, t) dµ(t) is µ-Bochner in-
tegrable on S. Moreover,

∫

S

(∫

T

f(s, t) dµ(t)
)

dν(s) =
∫

S×T

f(s, t) dν×µ(s, t).

1.2 Fréchet derivative

Definition 1.2.1 Let X1 be a topological vector space, X2 be a locally convex
topological vector space, and let E1, E2 be normed spaces embedded in X1 and X2

respectively. Let X0 ∈ X1 and

f : X0 + E1 → f(X0) + E2.

The function f is called Fréchet differentiable at X0 ∈ X1 along E1 if there
exists a (necessarily unique) bounded (linear) operator L : E1 → E2 such that

f(X0 + V )− f(X0) = L(V ) + r(X0, V ),

where ‖r(X0, V )‖E2 = o(‖V ‖E1). We write L = DE1,E2f(X0). In case E1 = E2 =:
E we write DEf(X0).

Theorem 1.2.2 Let
f : X0 + E1 → f(X0) + E2.
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be Fréchet differentiable along E1 and let Xt = X0 +tV, t ∈ [a, b], where a, b ∈ R
and V ∈ E1. If the function [a, b] 3 t → DE1,E2f(Xt) is piecewise continuous,
then ∫ b

a

DE1,E2f(Xt)(V ) dt = f(Xb)− f(Xa),

where the integral is the Bochner integral.

Proof. The additivity of the integral allows us to assume that the Fréchet
derivative DE1,E2f(X) is continuous. Let l ∈ X ∗2 . Let g(t) = l(f(X0 + tV )).

We have

g′(t) = lim
s→t

l(f(Xs))− l(f(Xt))
s− t

= lim
s→t

(s− t)l(DE1,E2f(Xt)(V )) + l(r(Xt, (s− t)V ))
s− t

= l(DE1,E2f(Xt)(V )).

Hence,

l

(∫ b

a

DE1,E2f(Xt)(V ) dt

)
=

∫ b

a

l (DE1,E2f(Xt)(V )) dt = l (f(Xb)− f(Xa)) ,

where the integral and the l functional can be interchanged since DE1,E2 is
continuous. Since X2 is locally convex, the proof is complete. ¤

Theorem 1.2.3 Let
f : X0 + E1 → f(X0) + E2

be Fréchet differentiable and let {Xt}t∈[a,b] be a smooth path in X0 + E1. If the
function [a, b] 3 t → DE1,E2f(Xt) is piecewise continuous, then

∫ b

a

DE1,E2f(Xt)(Ẋt) dt = f(Xb)− f(Xa).

Proof. The additivity of the integral allows us to assume that the Fréchet
derivative DE1,E2f(X) is continuous. Further, Theorem 1.2.2 implies that it
is enough to show that for given ε > 0 there exists a piecewise linear path
{Yt}t∈[a,b] such that Ya = Xa, Yb = Xb and

∥∥∥∥∥
∫ b

a

DE1,E2f(Xt)(Ẋt) dt−
∫ b

a

DE1,E2f(Yt)(Ẏt) dt

∥∥∥∥∥
E2

< ε.

Dividing the segment [a, b] into n equal parts, we see that it is enough to show
that

(E) :=

∥∥∥∥∥
∫ b

a

DE1,E2f(Xt)(Ẋt) dt−
∫ b

a

DE1,E2f(Yt)(Ẏt) dt

∥∥∥∥∥
E2

= o(b− a)
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as b → a, where {Yt}t∈[a,b] is already a straight line path with Ya = Xa, Yb = Xb.

Let V = Xb−Xa

b−a . By Theorem 1.2.2 we have

(E) =

∥∥∥∥∥f(Xb)− f(Xa)−
∫ b

a

DE1,E2f(Xt)(Ẋt) dt

∥∥∥∥∥
E2

=

∥∥∥∥∥(b− a)DE1,E2f(Xa)(V ) + (b− a) o(‖V ‖E1)−
∫ b

a

DE1,E2f(Xt)(Ẋt) dt

∥∥∥∥∥
E2

6
∥∥∥∥∥
∫ b

a

(
DE1,E2f(Xt)(Ẋt)−DE1,E2f(Xa)(V )

)
dt

∥∥∥∥∥
E2

+ o(b− a).

Now we write

DE1,E2f(Xt)(Ẋt)−DE1,E2f(Xa)(V )

= [DE1,E2f(Xt)(Ẋt)−DE1,E2f(Xa)(Ẋt)]

+ [DE1,E2f(Xa)(Ẋt)−DE1,E2f(Xa)(V )]

and use continuity of DE1,E2f(X) and Ẋt. ¤

1.3 von Neumann algebras

1.3.1 Basic properties of von Neumann algebras

An involutive algebra N of operators on a Hilbert space H is said to be a von
Neumann algebra, if it contains the identity operator and is closed in the
weak operator topology. If A is any subset of B(H) then by A′ we denote its
commutant, which is by definition

A′ = {S ∈ B(H) : ST = TS for any T ∈ A} .

A von Neumann algebra N is called a factor, if its center N ∩ N ′ is equal
to C1.

We state some well known properties of von Neumann algebras.

Theorem 1.3.1 (von Neumann’s bicommutant theorem) An involutive algebra
A of operators with identity operator is a von Neumann algebra if and only if it
coincides with its second commutant: A′′ = A.

Theorem 1.3.2 [BR, Theorem 2.4.23] Let N and M be two von Neumann
algebras. If ϕ is a ∗-homomorphism from M onto N then ϕ is σ-weakly and
σ-strongly continuous.
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This theorem implies that the σ-weak and σ-strong topologies of a von Neumann
algebra N do not depend on a representation of N .

Let N be a von Neumann algebra in Hilbert space H and let K be another
Hilbert space.

If U : H → K is an isomorphism of Hilbert spaces H and K then the mapping
T ∈ N 7→ UTU−1 ∈ B(K) is an isomorphism of N onto another von Neumann
algebra M = UNU−1 in K. This isomorphism is called spatial isomorphism.

The mapping T ∈ N 7→ T ⊗ 1 ∈ N ⊗ C is an isomorphism of N onto a von
Neumann algebra N ⊗C in H⊗K. This isomorphism is called an ampliation
of N .

If E′ is a projection from commutant N ′ of N with central support (i.e.
the infimum of all projections F ′ from the center of N ′, such that E′ 6 F ′)
equal to 1, then the mapping T ∈ N 7→ E′TE′ is an isomorphism of N onto
von Neumann algebra E′NE′ on Hilbert space E′H. This isomorphism is called
an induction of N via E′.

Theorem 1.3.3 [Di, I.4.4] Every ∗-isomorphism of two von Neumann algebras
can be realized as combination of a spatial isomorphism, an ampliation and an
induction.

If E is a projection from N then the set ENE is a von Neumann algebra
on the Hilbert space EH. This von Neumann algebra is called reduced von
Neumann algebra.

1.3.2 Projections in von Neumann algebras

We recall some well-known facts of geometry of projections in von Neumann
algebras. For details, see [Di], [SZ, Chapter 4].

Equivalence of projections

Let N be a von Neumann algebra in a Hilbert space H. We denote by P(N ) ={
P ∈ N : P 2 = P = P ∗

}
the set of all projections of N .

The projections E and F from a von Neumann algebra N are said to be
equivalent, if there exists an operator u ∈ N such that u∗u = E and uu∗ = F.
In this case one writes E ∼ F. The relation ∼ is an equivalence relation. We
write E ≺ F, if there exists a projection P such that E ∼ P and P 6 F.

If {Eα}α∈I is a set of projections from B(H), then by definition
∨

Eα is
the smallest projection E such that Eα 6 E for all α ∈ I, and

∧
Eα is the
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largest projection E such that E 6 Eα for all α ∈ I. If {Eα}α∈I ⊂ P(N ), then∨
Eα ∈ P(N ) and

∧
Eα ∈ P(N ) [Di]. Evidently,

∨
Eα = [span

⋃
EαH],

∧
Eα = [

⋂
EαH], (1.7)

where, if K is a linear subspace of H, then [K] denotes the projection onto the
closure of K. By E⊥ we denote the orthogonal complement of projection E, so
that E⊥ := 1− E.

Kernel and range projections

For T ∈ B(H) we denote by NT the (orthogonal) projection [kerT ] onto the
kernel of T, and we denote by RT the (orthogonal) projection [ranT ] onto the
closure of the range of T. If T ∈ B(H), then the right support projection
suppr(T ) of T, is the smallest projection P ∈ B(H) such that TP = T. Similarly,
the left support projection suppl(T ) of T is the smallest projection Q ∈ B(H)
such that QT = T. If T = T ∗, then suppr(T ) = suppl(T ) and in this case the
projection supp(T ) := suppr(T ) = suppl(T ) is called the support projection
of T. For any T ∈ B(H), one has suppr(T ) = supp(|T |).

Note that
RT = suppl(T ) and RT∗ = suppr(T ),

so that RT and RT∗ are projections which are minimal with respect to the
properties

RT T = T and TRT∗ = T. (1.8)

If T ∈ N , then NT and RT also belongs to N .

Note that for any two operators S, T ∈ N , one has the evident relations

NT 6 NST , (1.9)
RST 6 RS . (1.10)

Lemma 1.3.4 [Di, III.1.1, Proposition 2] For any T ∈ N we have

RT ∼ RT∗ .

Lemma 1.3.5 Let T ∈ N . The following equalities hold true

NT = R⊥
T∗ , (1.11)

NT∗ = R⊥
T . (1.12)

Proof. The second equality follows from the first one by replacing T by T ∗, so
that we will prove only the first equality.
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Let η ∈ H be such that NT η = η. This is equivalent to Tη = 0. Hence, for
any ξ ∈ H we have

0 = 〈Tη, ξ〉 = 〈η, T ∗ξ〉 .
This means that η ⊥ ranT ∗, which implies that RT∗η = 0, i.e. (1−RT∗)η = η.
Now, all implications are true also in reverse order, so that we are done. ¤

Lemma 1.3.6 (The parallelogram rule [SZ, Corollary 4.4]) For any two pro-
jections E and F in a von Neumann algebra N one has the relations

E ∨ F − F ∼ E − E ∧ F, (1.13)
E − E ∧ F⊥ ∼ F − F ∧ E⊥. (1.14)

It follows from the first equality in (1.7) that for any S, T ∈ B(H) the
following relation holds

RS+T 6 RS ∨ RT . (1.15)

Lemma 1.3.7 [Br] Let B ∈ N and let S ∈ N be an invertible operator. Then

NB = NSB , (1.16)
NB ∼ NBS . (1.17)

Proof. Since S is invertible, we have

ker (SB) = {ξ ∈ H : SBξ = 0} = {ξ ∈ H : Bξ = 0} = ker B,

so that (1.16) follows.

We observe, that for any projection F ∈ N , it follows from (1.16) that

NSF = NF = F⊥.

It follows from Lemma 1.3.4, (1.11) and the previous equality that

RSF ∼ R(SF )∗ = 1−NSF = 1− F⊥ = F. (1.18)

Now, letting F = NBS we have BSF = BSNBS = 0, so that BRSF = BSF = 0.
The last equality implies that RSF 6 NB , which together with (1.18) implies
that NBS = F ∼ RSF 6 NB , i.e.

NBS ≺ NB .

Now, since B is an arbitrary operator from N and S is an arbitrary invertible
operator from N , replacing in the last equality B by BS and replacing S by
S−1 gives NB ≺ NBS , so that NB ∼ NBS . ¤
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1.3.3 Semifinite von Neumann algebras

Here we give necessary information on semifinite von Neumann algebras from
[Di]. We denote by A+ the non-negative part {T ∈ A : T > 0} of a ∗-algebra
A ⊆ B(H). A trace τ on a von Neumann algebra N is a map τ : N+ → [0, +∞],
such that for all S, T ∈ N+, α ∈ [0, +∞) and for any unitary U ∈ N ,

τ (S + T ) = τ (S) + τ (T ) , τ (αT ) = ατ (T ) and τ (UTU∗) = τ (T ) . (1.19)

A trace τ on a von Neumann algebra N is called faithful if for any non-negative
operator T ∈ N the equality τ (T ) = 0 implies that T = 0. A trace τ on a
von Neumann algebra N is called normal if for any bounded increasing net of

non-negative operators {Tα}α∈I the equality τ

(
sup
α∈I

Tα

)
= sup

α∈I
τ (Tα) holds. A

trace τ on a von Neumann algebra N is called semifinite if, for each S ∈ N+,
τ(S) is the supremum of the numbers τ(T ) for those T ∈ N+ such that T 6
S and τ(T ) < +∞. A trace τ extends by linearity to linear combinations of
elements T ∈ N+ such that τ (T ) < ∞, and all properties of trace (1.19) still
hold for this continuation.

Any two equivalent projections have the same trace by the last equality
in (1.19).

A von Neumann algebra N is called semifinite if for any non-zero T ∈ N+

there exists a normal semifinite trace τ on N+ such that 0 < τ(T ) < +∞.

If N is a semifinite von Neumann algebra with a faithful normal semifinite
trace τ, then a projection from N is said to be τ -finite if its τ -trace is finite. An
operator T ∈ N is said to be τ -finite if RT is a τ -finite projection. Evidently,
if Q is a τ -finite projection and P is a projection such that P 6 Q then P is
also τ -finite, and hence if at least one of the projections P or Q is τ -finite then
P ∧ Q is also τ -finite. If a projection P is equivalent to a τ -finite projection
then P is also τ -finite.

Lemma 1.3.8 The set of τ -finite operators is a two-sided ∗-ideal of N .

Proof. Let S, T ∈ N be two τ -finite operators, and let A ∈ N . We have to
check that RS+T , RS∗ , RSA and RAS are τ -finite projections. That RSA is τ -
finite follows from (1.10). That RS∗ is τ -finite follows from Lemma 1.3.4. Since
by Lemma 1.3.4 and (1.10) RAS ∼ RS∗A∗ 6 RS∗ , it also follows that RAS is
τ -finite.

That RS+T is τ -finite follows from (1.15) and the parallelogram rule (1.13).
¤



CHAPTER 1. PRELIMINARIES 14

1.3.4 Operators affiliated with a von Neumann algebra

Let N be a von Neumann algebra acting on a Hilbert space H and let T be
a closed operator with dense domain D(T ) ⊂ H. The operator T is said to
be affiliated with N if and only if for all unitary operators U ∈ N ′ we have
UD(T ) ⊂ D(T ) and TU = UT on D(T ). In this case, one writes TηN .

If T is an operator affiliated with N , then T can be represented in a unique
way in the form

T = V |T | ,
where |T | =

√
T ∗T and V is a partial isometry whose left support coincides

with the left support of T, i.e. RT = RV [Di]. This representation is called the
polar decomposition of T. The operator V belongs to N and |T | is affiliated
with N [Di]. Also, all spectral projections of |T | belong to N .

1.3.5 Generalized s-numbers

In this subsection, we collect those properties of generalized s-numbers of τ -
measurable operators from [DDP2, FK], which will be used later. For details
see [DDP2, FK].

Let N be a semifinite von Neumann algebra and let τ be a faithful normal
semifinite trace on N .

Definition 1.3.9 Let TηN . An operator T is τ -measurable if and only if for
every ε > 0 there exists a projection E ∈ P(N ) such that EH ⊂ D(T ) and
τ (E⊥) 6 ε.

Let Ñ be the set of all τ -measurable operators.

Definition 1.3.10 Let T ∈ Ñ be a τ -measurable operator. The generalized
s-number µt(T ), t > 0, of the operator T is the number

µt(T ) = inf {‖TE‖ : E ∈ P(N ) and τ (E⊥) 6 t} .

The function µt(T ), t > 0, is called the generalized singular value function.

Definition 1.3.11 Let N be a von Neumann algebra with a faithful normal
semifinite trace τ. An operator T ∈ N is said to be τ -compact, if it belongs to
the norm closure of the set of τ -finite operators from N . The set of all τ -compact
operators from N is denoted by K(N , τ).

Lemma 1.3.12 The set K(N , τ) is a norm closed two-sided ∗-ideal.
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This follows from the norm continuity of the maps A 7→ BA, A 7→ AB and
A 7→ A∗.

Lemma 1.3.13 An operator T ∈ N is τ -compact if and only if lim
t→∞

µt(T ) = 0.

We denote by K(Ñ , τ) :=
{

T ∈ Ñ : lim
λ→∞

µt(T ) = 0
}

the set of all (possibly

unbounded) τ -compact operators.

Lemma 1.3.14 If T is a τ -measurable operator then the map t ∈ (0,∞) 7→
µt(T ) is non-increasing and continuous from the right. Moreover,

µ0(T ) := lim
t→0+

µt(T ) = ‖T‖ ∈ [0,∞]. (1.20)

Lemma 1.3.15 If T is a τ -measurable operator then, for any t > 0 and α ∈ C,
(i) µt(T ) = µt(|T |) = µt(T ∗) and (ii) µt(αT ) = |α|µt(T ).

Lemma 1.3.16 If S, T are τ -measurable operators and 0 6 S 6 T, then, for
any t > 0, µt(S) 6 µt(T ).

Lemma 1.3.17 If T is a τ -measurable operator and f is a continuous increas-
ing function on [0,∞) with f(0) > 0, then, for any t > 0, µt(f(|T |)) =
f(µt(|T |)).

Lemma 1.3.18 If S, T are τ -measurable operators, then S + T is also τ -
measurable and, for any s, t > 0, µs+t(S + T ) 6 µs(S) + µt(T ).

Lemma 1.3.19 If T is a τ -measurable operator and R, S ∈ N , then STR is
also τ -measurable and, for any t > 0, µt(STR) 6 ‖S‖ ‖R‖µt(T ).

Lemma 1.3.20 If S, T are τ -measurable operators then ST is also τ -
measurable and, for any s, t > 0, µs+t(ST ) 6 µs(S)µt(T ).

It is shown in [DDP2] that the trace τ extends uniquely to the positive cone of
the ∗-algebra of all τ -measurable operators as a positive extended-real function
which is positively homogeneous, additive, normal and unitarily invariant.

Proposition 1.3.21 If f is a continuous and increasing function on [0; +∞)
and f(0) = 0 then for any τ -measurable operator T

τ (f(|T |)) =
∫ ∞

0

f(µt(T )) dt.
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In particular, for any p ∈ (0,∞)

‖T‖p := τ (|T |p)1/p =
(∫ ∞

0

µt(T )p dt

)1/p

. (1.21)

Proposition 1.3.22 [FK] If T ∈ Ñ , then
1) if |T | = ∫

λ dEλ then µt(T ) = inf {λ > 0: τ (E⊥
λ ) 6 t} ;

2) µt(T ) = inf
{
‖S − T‖ : S ∈ Ñ , τ (supp(|S|)) 6 t

}
;

3) if f is a non-decreasing right-continuous function on [0, +∞) and f(0) ≥ 0
then µt(f(|T |)) = f(µt(|T |)) ∀t > 0;
4) if T ∈ K(N , τ) and f is a non-negative Borel function on [0;+∞) and

f(0) = 0 then τ (f(|T |)) =
+∞∫
0

f(µt(T )) dt;

Proposition 1.3.23 For all ε, δ > 0 the following sets, denoted by V (ε, δ),
coincide and they form the base of zero neighborhoods of a topology on Ñ :

V (ε, δ) :=
{

T ∈ Ñ : ∃E ∈ P(N ) ‖TE‖ 6 ε and τ (E⊥) 6 δ
}

=
{

T ∈ Ñ : µδ(T ) 6 ε
}

.

This topology is said to be topology of convergence in measure, and it
makes Ñ a complete topological *-algebra.

The distribution function of T ∈ N is defined by

λt(T ) := τ
(
χ(t,∞)(|T |)

)
= τ

(
1− E

|T |
t

)
, t > 0,

where χB denotes the indicator function for the set B. The distribution func-
tion λt(T ) is a non-increasing right-continuous function. The singular value
function µt(T ) is the non-increasing, right-continuous inverse of the distribu-
tion function λt(T ).

Proposition 1.3.24 Let T ∈ Ñ be a τ -measurable operator. The following
statements are equivalent:
(i) T is τ -compact;
(ii) λε(T ) < +∞ for all ε > 0;
(iii) There exist a sequence {Tn} , n = 1, 2, . . . , of τ -measurable operators
(bounded if wished) such that τ (supp(|Tn|)) < +∞ for all n = 1, 2, . . . , and
Tn

µ→ T.

If E ∈ N is a τ -finite projection, then

µt(E) = χ[0,τ(E))(t), t > 0. (1.22)
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By Proposition 1.3.22(2), µs(T ) = inf {t > 0 : λt(T ) 6 s} and for any
s, t > 0,

s > λt(T ) if and only if µs(T ) 6 t. (1.23)

Furthermore,
∫ λt(T )

0

µs(T ) ds = τ
(|T |χ(t,∞)(|T |)

)
, ∀ t > 0. (1.24)

Following [FK], we write

Φt(T ) =
∫ t

0

µs(T ) ds, t > 0.

Let f, g : (0,∞) → [0,∞) be two non-increasing functions. We write f ≺≺ g
if for all t > 0 (see e.g. [DDP2])

∫ t

0

f(s) ds 6
∫ t

0

g(s) ds.

We also write S ≺≺ T [DDP2], if µ(S) ≺≺ µ(T ), i.e. if, for all t > 0,

Φt(S) 6 Φt(T ).

Lemma 1.3.25 [FK, Theorem 4.4 (ii)] If S, T are τ -measurable operators then
µ(S + T ) ≺≺ µ(S) + µ(T ), i.e. for all t > 0

Φt(S + T ) 6 Φt(S) + Φt(T ).

Proposition 1.3.26 [FK, Lemma 4.1] Assume that N has no minimal pro-
jection. For any τ -measurable operator T, we have

Φt(T ) = sup {τ (E |T |E) : E ∈ P(N ) with τ(E) 6 t} . (1.25)

Lemma 1.3.27 [CDS, Lemma 2.3] Let 0 6 S, T, S′, T ′ ∈ Ñ . If S′ ≺≺ S,
T ′ ≺≺ T and if S′T ′ = 0, then S′ + T ′ ≺≺ S + T.

Lemma 1.3.28 If 0 6 S, T ∈ N , then

Φt(S) + Φt(T ) 6 Φ2t(S + T ).

Proof. Using the argument of the proof of [CDS, Lemma 2.3], one can assume
that N has no minimal projections. By 1.3.27, we may replace the algebra N
by N ⊕N , and the operators S and T by the operators S⊕ 0 and 0⊕T. Hence,
the formula (1.25) applied to S + T, S and T, yields the claim. ¤
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For T ∈ N and t > 0 let

Λt(T ) =
∫ t

0

log µs(T ) ds.

Proposition 1.3.29 [FK, Theorem 4.2 (ii)] For any T1, T2 ∈ N and any t > 0

Λt(T1T2) 6 Λt(T1) + Λt(T2). (1.26)

1.3.6 Non-commutative Lp-spaces

In this subsection, we recall some basic properties of non-commutative Lp-
spaces, following [DDP2].

Let N be a semifinite von Neumann algebra with a faithful normal semifi-
nite trace τ. An operator T ∈ N is said to be p-summable , where p ∈ (0,∞),
if τ (|T |p) is finite, where |T | :=

√
T ∗T . If p > 1, then the set Lp(N , τ) of

all p-summable operators from N is a normed space with the norm ‖T‖p ,
given by (1.21). The completion of Lp(N , τ) in the norm ‖·‖p is denoted by
Lp(N , τ). The relation Lp(N , τ) ⊂ Ñ holds [DDP2], and, for all A ∈ Lp(N , τ),
‖A‖p =

(∫∞
0

µt(A)p dt
)1/p

= τ (|A|p)1/p
. The norms ‖·‖p , p > 1, are or-

der continuous [DDP2, p. 730], i.e. 0 6 Tα ↓α 0 in Lp(N , τ) implies that
‖Tα‖p ↓α 0.

Elements of the space L1(N , τ) are called τ -trace class operators, elements
of the space L1(N , τ) = L1(N , τ) ∩N are the bounded τ -trace class operators.
The trace τ extends uniquely to L1(N , τ) as a normal unitarily-invariant linear
function [DDP2].

The space L2(N , τ) is a Hilbert space with the scalar product 〈S, T 〉 =
τ (S∗T ) . The representation πl of N on L2(N , τ) given by formula πl(A)B =
AB is called left regular representation of N .

The space Lp(N , τ), equipped with the norm

‖·‖Lp := ‖·‖p + ‖·‖ ,

is a Banach space and is a ∗-ideal of the algebra N . In particular, this implies
that if V ∈ L1(N , τ) then Re(V ), Im(V ) ∈ Lp(N , τ) and if V = V ∗ ∈ Lp(N , τ)
then V+, V− ∈ Lp(N , τ). The same if true for Lp(N , τ).

For any A,B ∈ N and T ∈ Lp(N , τ), one has ATB ∈ Lp(N , τ) and

‖ATB‖p 6 ‖A‖ ‖T‖p ‖B‖ ,

and for any S ∈ Lp(N , τ) one has ASB ∈ Lp(N , τ) and

‖ASB‖Lp 6 ‖A‖ ‖S‖Lp ‖B‖ .
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We will use these inequalities without further reference.

Lemma 1.3.30 [ACDS] Let (N , τ) be a semifinite von Neumann algebra. If
Aα ∈ N , α ∈ I, is a uniformly bounded net converging in the so-topology to
an operator A ∈ N and if V ∈ L1(N , τ), then the net {AαV }α∈I converges to
AV in L1(N , τ).

Proof. (A) Replacing the net {Aα} with {Aα −A} , we can assume that A = 0.
Since the net {Aα}α∈I is uniformly bounded, by Theorem 1.1.1 it follows that
Aα → 0 in the σ-strong operator topology. Since the σ-strong topology does
not depend on representation by Theorem 1.3.2, it can be assumed that N acts
on L2(N , τ) in the left regular representation, in particular ‖AαY ‖2 → 0 for
every Y ∈ L2(N , τ).

(B) Assume first that V > 0. Let Y = V 1/2 ∈ L2(N , τ). Then

τ (|AαV |) = τ
(
UαAαY 2

)
= τ (AαY (U∗

αY )∗) 6 ‖AαY ‖2 · ‖U∗
αY ‖2 → 0,

where U∗
α is the partial isometry from the polar decomposition of AαV.

(C) Now, if V is self-adjoint and V = V+ − V− with V+, V− > 0 then by (B)
we have that AαV+ → AV+ and AαV− → AV− in L1(N , τ). Hence, AαV → AV
in L1(N , τ).

(D) For an arbitrary V ∈ L1(N , τ) we have by (C) Aα Re(V ) → A Re(V )
and Aα Im(V ) → A Im(V ) in L1(N , τ). Hence, AαV → AV in L1(N , τ). ¤

Lemma 1.3.31 [DDP2] If X ∈ N and Y ∈ L1(N , τ), then

τ (XY ) = τ (Y X) .

Proof. (A) Using the decomposition T = Re(T ) + i Im(T ) for X and Y, we
reduce to the case of self-adjoint X and Y. Using T = T+ − T− for self-adjoint
X and Y, we reduce to the case of positive X and Y.

Any bounded operator from N is a linear combination of no more than four
unitary operators from N , see e.g. [RS, §VI.6]. This and (1.19) imply that if
Y is bounded, then τ (XY ) = τ (Y X) .

(B) Let Yn = EY
[0,n]Y. Then ‖XY −XYn‖1 6 ‖X‖ ‖Y − Yn‖1 =

‖X‖ τ (Y − Yn) → 0. So, using (A)

τ (XY ) = lim
n→∞

τ (XYn) = lim
n→∞

τ (YnX) = τ (Y X) .

¤
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Lemma 1.3.32 [BK, Theorem 17], [DDP2] Let X, Y ∈ N be such that XY
and Y X belong to L1(N , τ). Then

τ (XY ) = τ (Y X) .

Proof. Let P = suppl(X), Q = suppr(X), and

Pn = EXX∗
[n−1,n], Qn = EX∗X

[n−1,n], n = 1, 2, . . . .

We observe that
lim

n→∞
Pn = P, lim

n→∞
Qn = Q

in so-topology by Theorem 1.1.4, and

PnX = PnXQn = XQn. (1.27)

We claim that τ (PnXY ) = τ (Y XQn) , n = 1, 2, . . . . In fact, from
n−1Qn 6 X∗X, we get Y ∗QnY 6 nY ∗X∗XY ; hence, QnY ∈ L1(N , τ) fol-
lows from XY ∈ L1(N , τ).

Since QnY, Y XQn ∈ L1(N , τ) and PnX, Qn ∈ N , using (1.27) Lemma
1.3.31 twice we compute

τ (PnXY ) = τ (PnXQnY ) = τ (QnY PnX) = τ (QnY XQn) = τ (Y XQn) .

Since XY and Y X are in L1(N , τ), using Lemma 1.3.30 twice, together with
the claim, we conclude that

τ (XY ) = τ (PXY ) = lim
n→∞

τ (PnXY )

= lim
n→∞

τ (Y XQn) = τ (Y XQ) = τ (Y X) .

¤

Lemma 1.3.33 Let A, B ∈ N and suppose that one of these operators is
τ -trace class. Let T = T ∗ be affiliated with N . Then the measure µ(∆) :=
τ

(
AET

∆B
)

is countably additive and has finite variation.

Proof. It follows directly from Theorem 1.1.4 and Lemma 1.3.30. ¤

1.3.7 Holomorphic functional calculus

Let T ∈ B(H) and f is a function holomorphic in an open set G containing the
spectrum σT of T. Then f(T ) is defined by the Cauchy formula

f(T ) =
1

2πi

∫

γ

f(λ)Rλ(T ) dλ, (1.28)



CHAPTER 1. PRELIMINARIES 21

where γ is any piecewise smooth contour in G containing σT and the integral
converges in norm [DS, Chapter III.14].

The following theorem can be found in [GK, Brn]. The proof is taken from
[GK, Chapter IV].

Theorem 1.3.34 Let (N , τ) be a semifinite von Neumann algebra with faithful
normal semifinite trace τ. Let U ⊂ R be an interval and let A : U → L1(N , τ)
be a function that is continuously differentiable in L1(N , τ)-norm. Let σ :=⋃

t∈U σA(t) be a bounded set. If f is a function holomorphic in a neighbourhood
of σ, then the function U 3 t 7→ f(A(t)) ∈ L1(N , τ) is L1(N , τ) differentiable
and

d

dt
τ (f(A(t))) = τ (f ′(A(t))A′(t)) .

Proof. We write At = A(t) for clarity. For s, t ∈ U we have by (1.28) and the
resolvent identity (1.2)

τ (f(As)− f(At))
s− t

=
1

2πi
τ

(∫

γ

f(z)
Rz(As)−Rz(At)

s− t
dz

)

=
1

2πi
τ

(∫

γ

f(z)Rz(As)
As −At

s− t
Rz(At) dz

)
,

where γ is an anticlockwise oriented contour around σ, lying in the domain of
analyticity of f. Since At is L1(N , τ)-differentiable, the integrand, and hence,
the last integral converges in L1(N , τ) when s → t. Hence the trace can be
interchanged with d

dt and the integral, so that

(E) :=
d

dt
τ (f(At)) =

1
2πi

τ

(∫

γ

f(z)Rz(At)A′tRz(At) dz

)

=
1

2πi

∫

γ

f(z)τ
(
A′tRz(At)2

)
dz = − 1

2πi

∫

γ

f(z)τ
(

A′t
d

dz
Rz(At)

)
dz,

the last equality by (1.3). Hence, integrating by parts,

(E) =
1

2πi

∫

γ

f ′(z)τ (A′tRz(At)) dz

=
1

2πi
τ

(
A′t

∫

γ

f ′(z)Rz(At) dz

)
= τ (A′tf

′(At)) .

¤

Corollary 1.3.35 If A ∈ C1([a, b], 1 + L1(N , τ)), and if the closure of the
union of spectra of A(t), t ∈ [a, b] is a subset of a branch of Log, then
Log(A(·)) ∈ C1(R,L1(N , τ)) and

d

dt
τ
(
Log(A(t))

)
= τ

(
d

dt
Log(A(t))

)
= τ

(
A(t)−1A′(t)

)
.
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For a proof, apply the previous theorem to A(·)− 1.

1.3.8 Invariant operator ideals in semifinite von Neumann
algebras

Here we follow [ACDS].

Definition 1.3.36 If E is a ∗-ideal in a von Neumann algebra N which is
complete in some norm ‖·‖E , then we will call E an invariant operator ideal
if
(1) ‖S‖E > ‖S‖ for all S ∈ E ,
(2) ‖S∗‖E = ‖S‖E for all S ∈ E ,
(3) ‖ASB‖E 6 ‖A‖ ‖S‖E ‖B‖ for all S ∈ E and A, B ∈ N .

Definition 1.3.37 We say that an invariant operator ideal E has property (F)
if, for all nets {Aα} ⊂ E such that there exists A ∈ N for which Aα → A in the
so∗-topology and ‖Aα‖E 6 1 for all α, it follows that A ∈ E and ‖A‖E 6 1.

Lemma 1.3.38 An invariant operator ideal E has property (F) if and only if
the unit ball of E endowed with so∗-topology is a complete separable metrisable
space.

Proof. The ”if” part is evident. Since H is separable, the unit ball (B1(H), so∗)
of B(H) is a metrisable space by Proposition 1.1.2. Hence, the unit ball (E1, so

∗)
of E is also metrisable. Since H is separable the unit ball (B1(H), so∗) is also
separable. Thus, every subset of (B1(H), so∗) is separable [DS, I.6.12], and in
particular E1. Since by Theorem 1.1.1 the unit ball (B1(H), so∗) is complete, the
property (F) of E implies that (E1, so

∗) is also complete. ¤

Every von Neumann algebra with the uniform norm is an invariant opera-
tor ideal with property (F). The ideal K(N , τ) endowed with ‖·‖-norm, is an
invariant operator ideal, though K(N , τ) does not have the property (F).

Lemma 1.3.39 [DDPS, Proposition 1.6] For 1 6 p < ∞ the space Lp(N , τ)
with norm ‖·‖Lp is an invariant operator ideal with property (F).

1.4 Integration of operator-valued functions

This section is based on [ACDS] and [dPS, §5]. Unlike [dPS], we consider von
Neumann algebras on separable Hilbert spaces, instead of σ-finite von Neumann
algebras on arbitrary Hilbert spaces. This allows to simplify some proofs.



CHAPTER 1. PRELIMINARIES 23

Let (S, Σ) be a measurable space, let X be a metric space. A function
ξ : S → X is called simple (respectively, elementary), if the set ξ(S) is finite
(respectively, countable), and if ξ−1({x}) ∈ Σ for every x ∈ X.

Proposition 1.4.1 [VTCh, Proposition I.1.9] For any function ξ : S → X the
following assertions are equivalent.
(a) ξ is measurable and the set ξ(S) is separable.
(b) There exists a sequence ξ1, ξ2, . . . , ξn, . . . : S → X of elementary functions,
such that ξn(s) converges to ξ(s) uniformly with respect to s ∈ S.
(c) There exists a sequence η1, η2, . . . , ηn, . . . : S → X of simple functions, such
that ηn(s) converges to ξ(s) for every s ∈ S.

Proposition 1.4.2 [VTCh, Proposition I.1.10] Let (S, Σ) be a measurable
space, let X be a complete metric space, let Γ be a family of real-valued continu-
ous functions on X, separating the points of X, and let ξ : S → X be a function,
such that ξ(S) is separable. The following assertions are equivalent.
(a) ξ is measurable.
(b) For every f ∈ Γ the function f ◦ ξ is measurable.

Let (S, Σ, ν) be a finite measure space, let (N , τ) be a semifinite von Neu-
mann algebra with faithful normal semifinite trace τ and let E be an invariant
operator ideal of N .

Definition 1.4.3 A ‖·‖-bounded function f : (S, ν) → E will be called
(i) weakly measurable if, for any ξ, η ∈ H, the function 〈f(·)ξ, η〉 is mea-

surable;
(ii) ∗- measurable if, for all η ∈ H, the functions f(·)η, f(·)∗η : (S, ν) → H

are Bochner measurable from S into H;
(iii) so∗-measurable if there exists a sequence of simple measurable functions

fn : S → E such that fn(σ) → f(σ) in the so∗-topology for a. e. σ ∈ S.

Proposition 1.4.4 If E has property (F), then, for any E-bounded function
f : (S, ν) → E , the following conditions are equivalent.

(i) f is weakly measurable,
(ii) f is ∗- measurable,
(iii) f is so∗-measurable.

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are evident (and do not depend on
property (F)). That (i) ⇒ (iii) follows from Lemma 1.3.38 and Propositions
1.4.1 and 1.4.2. ¤

We denote the set of all ‖·‖-bounded ∗- measurable functions f : S → E
by Lso∗

∞ (S, ν; E). Examples of such functions are the bounded ‖·‖-Bochner-
measurable functions and, in the case that S is a locally compact space, all
so∗-continuous bounded functions.
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The following lemma is a simple consequence of the previous proposition
(see also [dPS, Lemmas 5.5, 5.6]).

Lemma 1.4.5 [dPS] (i) The set Lso∗
∞ (S, ν; E) is a ∗-algebra;

(ii) if ϕ ∈ BR(R), f ∈ Lso∗
∞ (S, ν;Bsa(H)), then ϕ(f) ∈ Lso∗

∞ (S, ν).

Proof. (i) Let f, g ∈ Lso∗
∞ (S, ν; E). Then f + g and f∗ belong to Lso∗

∞ (S, ν; E),
since f and g are weakly measurable. Now, by Definition 1.4.3(iii), let {fn} and
{gn} be sequences of simple functions, such that fn → f and gn → g in the
so∗-topology. Then, by Theorem 1.1.1 (more exactly, its so∗ analogue), we have
fngn → fg in the so∗-topology. Hence, fg also belong to Lso∗

∞ (S, ν; E).

(ii) By Definition 1.4.3(iii), let {fn} be a sequence of simple functions con-
verging to f in so∗-topology. By Theorem 1.1.6, the sequence ϕ(fn) of simple
functions converges to ϕ(f) in so∗-topology. Hence, ϕ(f) ∈ Lso∗

∞ (S, ν; E). ¤

Definition 1.4.6 For any bounded function f ∈ Lso∗
∞ (S, ν; E), we define the

integral
∫

S
f(σ) dν(σ) by the formula

(∫

S

f(σ) dν(σ)
)

η =
∫

S

f(σ)η dν(σ), (1.29)

where the last integral is the Bochner integral.

We will call this integral the so∗-integral of f with respect to ν. Evidently, such
an integral exists and it is a bounded linear operator with (uniform) norm less
or equal to |ν| ‖f‖∞ .

Lemma 1.4.7 If E has property (F), and if the sequence fn ∈ Lso∗
∞ (S, ν; E),

n = 1, 2, . . . is E-bounded and ν-a. e. converges to f : S → B(H) in the so∗-
topology, then f ∈ Lso∗

∞ (S, ν; E).

Proof. We have that, for any η ∈ H, the sequence fn(σ)η converges to f(σ)η
for ν-a.e. σ ∈ S. Since the H-valued functions fn(·)η are Bochner measurable
and since the pointwise limit of a sequence of Bochner measurable functions is
a Bochner measurable function, we have that f ∈ Lso∗

∞ (S, ν). That f(σ) ∈ E for
a. e. σ ∈ S follows from property (F). ¤

Lemma 1.4.8 If E has property (F), f ∈ Lso∗
∞ (S, ν; E) and if f is uniformly

E-bounded, then
∫

S
f dν ∈ E .

Proof. By Proposition 1.4.4, we can choose a sequence of simple functions fn ∈
Lso∗
∞ (S, ν; E) converging a. e. in so∗-topology to f. Evidently, An :=

∫
S

fn dν ∈ E
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for all n ∈ N. By the definition (1.29) of operator-valued integral, the sequence
{An}∞n=1 converges to

∫
S

f dν in the so∗-topology by the Lebesgue Dominated
Convergence Theorem for the Bochner integral. That

∫
S

f dν ∈ E now follows
from the property (F) of E . ¤

Under the assumptions of Lemma 1.4.7, we have that
∫

S

fn dν →
∫

S

f dν

in the so∗-topology. This follows directly from the definition of the so∗-integral
and the Dominated Convergence Theorem for the Bochner integral (Theorem
1.1.13).

Lemma 1.4.9 For any A ∈ B(H) and B ∈ Lso∗
∞ (S, ν; E)

A

∫

S

B(σ) dν(σ) =
∫

S

AB(σ) dν(σ)

The lemma follows directly from Lemma 1.1.12.

Lemma 1.4.10 If (Si,Σi, νi), i = 1, 2 are two finite measure spaces and if
f ∈ Lso∗

∞ (S1×S2, ν1×ν2), then f(·, t) ∈ Lso∗
∞ (S1, ν1) for almost all t ∈ S2 and

∫

S2

∫

S1

f(s, t) dν1(s) dν2(t) =
∫

S1×S2

f(s, t) d(ν1×ν2)(s, t). (1.30)

Proof. Since f(·, ·) is integrable, for any η ∈ H, there exists a ν2-null set
Aη ⊂ S2 such that, for all t /∈ Aη, the function f(·, t)η is Bochner integrable (see
Theorem 1.1.15). If {ξj}∞j=1 is an orthonormal basis in H and A =

⋃∞
j=1 Aξj ,

then ν2(A) = 0 and, for any η ∈ H and t /∈ A, we have

f(·, t)η =
∞∑

j=1

cnf(·, t)ξn,

where η =
∞∑

j=1

cnξn. Since linear combinations and uniformly bounded point-

wise limits of sequences of Bochner integrable functions on the measure space
(S, ν) are Bochner integrable (by the Lebesgue Dominated Convergence The-
orem), it follows that f(·, t)η is integrable for t /∈ A. Similarly, there exists a
ν2-null set A′ such that f(·, t)∗η is integrable for all η ∈ H and t /∈ A′. Hence,
f(·, t) is integrable for all t /∈ A ∪ A′ and the operator-valued function g(t) :=∫

S1
f(s, t) dν1(s) is well-defined. Now, the integral g(t)η =

∫
S1

f(s, t)η dν1(s)
exists and is equal to

∫
S1×S2

f(s, t)η d(ν1×ν2)(s, t) by Fubini’s theorem for the
Bochner integral of H-valued functions (Theorem 1.1.15). The latter means
that the equality (1.30) holds. ¤
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Lemma 1.4.11 If f ∈ Lso∗
∞ (S, ν;N ), then

(i) X :=
∫

S
f(σ) dν(σ) belongs to N ;

(ii) X as an element of the W ∗-algebra N does not depend on any representation
of N .

Proof. (i) Let A′ ∈ N ′. Then by Lemma 1.4.9

A′Xη =
∫

S

A′f(σ)η dν(σ) =
∫

S

f(σ)A′η dν(σ) =
∫

S

f(σ) dν(σ)A′η = XA′η

for any η ∈ H. Hence, X ∈ N .
(ii) This follows from the fact that two representations of a von Neumann al-
gebra can be obtained from each other by ampliation, reduction and spatial
isomorphism (Theorem 1.3.3), since for each of these isomorphisms the claim is
evident. ¤

Lemma 1.4.12 [dPS] If f ∈ Lso∗
∞ (S, ν;L1(N , τ)) and f > 0 then τ(f(σ)) is a

measurable function.

Proof. Let by Definition 1.4.3(iii) {fn} be a sequence of simple functions tak-
ing values in L1(N , τ) and converging for a.e. σ ∈ S to f in so∗-topology.
Let E ∈ N be a τ -finite projection. By Lemma 1.3.30, the sequence fn(σ)E
converges to f(σ)E for a.e. σ ∈ S in L1(N , τ)-topology. Hence, τ(fn(σ)E)
converges to τ(f(σ)E) for a.e. σ ∈ S. Since the functions τ(fn(σ)E) are sim-
ple and so measurable, so is τ(f(σ)E) = τ(

√
f(σ)E

√
f(σ)). Hence, τ(f(σ)) =

supE : τ(E)<∞ τ(
√

f(σ)E
√

f(σ)) is also measurable. ¤

Lemma 1.4.13 If (N , τ) is a semifinite von Neumann algebra, if f ∈
Lso∗
∞ (S, ν;L1(N , τ)) and if f is uniformly L1(N , τ)-bounded, then X :=∫
S

f(σ) dν(σ) ∈ L1(N , τ), the function τ (f(·)) is measurable and

τ

(∫

S

f(σ) dν(σ)
)

=
∫

S

τ (f(σ)) dν(σ).

Proof. Lemma 1.4.8 implies that X ∈ L1(N , τ), so that the left hand side of
the equality above makes sense. By linearity and by Lemma 1.4.5(i), we can
assume that f(·) > 0. By Lemma 1.4.12 the function τ (f(·)) is measurable. By
Lemma 1.4.11(ii), we can assume that N acts on L2(N , τ) in the left regular
representation. Let E be an arbitrary τ -finite projection from N . Then E ∈
L2(N , τ) and by the definition (1.29) of the operator-valued integral

XE =
∫

S

f(σ)E dν(σ),
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where the right hand side is the Bochner integral in L2(N , τ). Since E is τ -
finite, the convergence in L2(N , τ) of the Bochner integral implies convergence
in L1(N , τ), so that we have

τ (XE) =
∫

S

τ (f(σ)E) dν(σ).

Now, normality of the trace τ and the dominated convergence theorem imply
that

τ (X) =
∫

S

τ (f(σ)) dν(σ).

¤

Lemma 1.4.14 If (S, ν) is a finite measure space and if f ∈
Lso∗
∞ (S, ν;L1(N , τ)) is uniformly L1(N , τ)-bounded, then

∥∥∥∥
∫

f(σ) dν(σ)
∥∥∥∥
∗

6
∫
‖f(σ)‖∗ d |ν| (σ),

where ‖·‖∗ is any of the norms ‖·‖ , ‖·‖1 or ‖·‖L1 .

Proof. By definition, for any η ∈ H, the function σ 7→ f(σ)η is Bochner measur-
able. Hence, the function σ 7→ ‖f(σ)‖ = supη∈H : ‖η‖61 ‖f(σ)η‖ is also measur-
able. Similarly, since the function σ 7→ τ (f(σ)B) is measurable, the function
σ 7→ ‖f(σ)‖1 = supB∈N : ‖B‖61 |τ (f(σ)B)| is also measurable. Hence, the right
hand side of the last equality is well-defined.

For η ∈ H with ‖η‖ 6 1, by definition of the so∗-integral and Lemma 1.1.14,
we have∥∥∥∥

∫
f(σ) dν(σ)η

∥∥∥∥ =
∥∥∥∥
∫

f(σ)η dν(σ)
∥∥∥∥

6
∫
‖f(σ)η‖ d |ν| (σ) 6

∫
‖f(σ)‖ d |ν| (σ).

(1.31)

Hence, the inequality is true for the operator norm ‖·‖ . Since

‖A‖1 = sup
B∈N : ‖B‖61

|τ (AB)| ,

it follows that∥∥∥∥
∫

f(σ) dν(σ)
∥∥∥∥

1

= sup
B∈N : ‖B‖61

∣∣∣∣τ
(∫

f(σ) dν(σ)B
)∣∣∣∣

= sup
B∈N : ‖B‖61

∣∣∣∣
∫

τ (f(σ)B) dν(σ)
∣∣∣∣

6 sup
B∈N : ‖B‖61

∫
|τ (f(σ)B)| dν(σ) 6

∫
‖f(σ)‖1 d |ν| (σ),

(1.32)
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where the second equality follows from the definition of the so∗-integral and
Lemma 1.4.13. Combining (1.31) and (1.32) we get the inequality for norm
‖·‖L1 . ¤

1.5 Theory of τ-Fredholm operators

In this section we give an exposition of Breuer’s theory of operators relatively
Fredholm with respect to a semifinite von Neumann algebra. We follow the
works [Br, Br2] and [PR, Appendix B].

1.5.1 Definition and elementary properties of τ-Fredholm
operators

Definition 1.5.1 An operator T ∈ N is said to be τ -Fredholm if and only if
(BF1) the projection NT is τ -finite;
(BF2) there exists a τ -finite projection E such that ran(E⊥) ⊆ ran(T ).

The set of τ -Fredholm operators will be denoted by F(N , τ).

Remark 1.5.2 We note that one can define another notion, that of Breuer-
Fredholm operator. We recall that a projection E in a von Neumann algebra N
is said to be finite (relative to N ) if it is not equivalent to any projection F < E.
An operator T is said to be Breuer-Fredholm if the projection NT is finite and
there exists a finite projection E ∈ N such that ran(E⊥) ⊆ ran(T ). This notion
does not depend on trace τ. Any τ -finite projection is necessarily finite, so that
a τ -Fredholm operator is Breuer-Fredholm. But the converse is not true. In
case when N is a semifinite factor, finite projections are the same as τ -finite
projections for any faithful normal semifinite trace τ on N , which is actually
unique (up to a constant) in this case. Hence, for factors Breuer-Fredholm
operators and τ -Fredholm operators are the same.

We do not use the notion of Breuer-Fredholm operator.

Lemma 1.5.3 If an operator T from N is τ -Fredholm then the projection NT∗

is τ -finite.

Proof. (BF2) implies that
E⊥ 6 RT .

This and (1.12) implies that

E > R⊥
T = NT∗ .

Since E is τ -finite, the projection NT∗ is also τ -finite. ¤
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Definition 1.5.4 If T is τ -Fredholm then the τ-index of T is the real number

τ - ind(T ) = τ (NT )− τ (NT∗) . (1.33)

Definition 1.5.5 Let P, Q be two projections in N . If T ∈ N , T11 ∈ PNQ,
T12 ∈ PNQ⊥, T21 ∈ P⊥NQ, T22 ∈ P⊥NQ⊥ and

T = T11 + T12 + T21 + T22,

then we write

T =
(

T11 T12

T21 T22

)

[P,Q]

.

Evidently, for any two fixed projections P and Q from N every operator T ∈ N
can be represented in this form:

T =
(

PTQ PTQ⊥

P⊥TQ P⊥TQ⊥

)

[P,Q]

.

and this representation is unique.

Lemma 1.5.6 Let P, Q, R be three projections and let T, S ∈ N be such that

T =
(

T11 T12

T21 T22

)

[P,Q]

, S =
(

S11 S12

S21 S22

)

[Q,R]

.

Then

TS =
(

T11S11 + T12S21 T11S11 + T12S21

T21S11 + T22S21 T21S12 + T22S22

)

[P,R]

.

Proof. Direct calculation. ¤

1.5.2 The semifinite Fredholm alternative

The following theorem due to Breuer [Br, Theorem 1] is a generalized Fredholm
alternative and is very important in the theory of τ -Fredholm operators. Breuer
proved this theorem for semifinite factors, but as is shown in [PR, Appendix
B], the difference between the factor case and non-factor case is very small.

Theorem 1.5.7 If K is a τ -compact operator then T := 1−K is a τ -Fredholm
operator, and the projections NT and NT∗ are equivalent (and τ -finite), so that
the τ -index of T is zero.



CHAPTER 1. PRELIMINARIES 30

Proof. (A) Claim: if K is τ -finite then T = 1−K is τ -Fredholm.

Suppose that RK is a τ -finite projection, i.e. suppose that K is a τ -finite
operator. Then, since RK ∼ RK∗ by Lemma 1.3.4, and τ (RK ∨ RK∗) =
τ (RK) + τ (RK∗) − τ (RK ∧ RK∗) , by the parallelogram rule Lemma 1.3.6, it
follows that the projection

E := RK ∨ RK∗ (1.34)

is also τ -finite. The projection E satisfies the relations EK = KE = K, so that

E⊥T = E⊥, (1.35)
TE⊥ = E⊥. (1.36)

(1.36) implies that E⊥H = ran TE⊥ ⊆ ran T, so that (BF2) of Definition 1.5.1
holds. For ξ ∈ H, if NT ξ = ξ, then Tξ = 0, and hence by (1.35) E⊥ξ = E⊥Tξ =
0, so that Eξ = ξ, which implies that NT 6 E, so that (BF1) also holds. Hence,
T is τ -Fredholm.

(B) Claim: if K is τ -finite and T = 1−K then the projections NT and NT∗

are equivalent (and τ -finite).

If N1−K∗ξ = ξ then (1 − K∗)ξ = 0, K∗ξ = ξ, RK∗ξ = ξ, so that RK∗ >
N1−K∗ , and hence by (1.34) we have

E > N1−K∗ . (1.37)

Now, the formula (1.12) applied to the operator 1−K, gives

R1−K = N⊥
1−K∗ .

The formula (1.37) implies EN1−K∗ = N1−K∗ , so that multiplying the last
formula by E from the left we get

ER1−K = E −N1−K∗ . (1.38)

Let ξ ∈ ran (ER1−K) . Then there exists η ∈ H, such that ξ = ER1−Kη.
Hence, since for any ε > 0 there exists η′ ∈ H, such that

‖R1−Kη − (1−K)η′‖ < ε,

it follows that

‖ξ − (E −K)η′‖ = ‖ξ − (E − EK)η′‖
= ‖ER1−Kη − E(1−K)η′‖ 6 ‖R1−Kη − (1−K)η′‖ < ε.

(1.39)

Consequently, ξ ∈ ran (E −K).
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Now, let ξ ∈ ran (E −K) . Then there exists η ∈ H, such that

ξ = (E −K)η = (E − EK)η = E(1−K)η = ER1−Kη′

for some η′ ∈ H, which means that ξ ∈ ran (ER1−K) . Hence, ran (ER1−K) =
ran (E −K). This means that

ER1−K = RE−K , (1.40)

since by (1.38) the LHS of (1.40) is also a projection, and the ranges of projec-
tions on each side of (1.40) coincide.

Now, it follows from (1.38) and (1.40) that

RE−K = E −N1−K∗ ,

and
RE−K∗ = E −N1−K .

Since by Lemma 1.3.4 RE−K∗ ∼ RE−K and the projection E is τ -finite, it
follows that the projections N1−K and N1−K∗ are equivalent and τ -finite, and
hence

τ - ind(1−K) = τ (N1−K)− τ (N1−K∗) = 0.

(C) Here we prove that 1−K is τ -Fredholm and that N1−K ∼ N1−K∗ in the
general case of τ -compact K.

Since the ideal K(N , τ) of τ -compact operators coincide with norm closure
of the ideal of finite operators (Lemma 1.3.12), for ε = 1

2 there exists a τ -finite
operator K0, such that ‖K −K0‖ < ε, so that the operator

S = 1− (K −K0)

is invertible. We have

1−K = S −K0 = (1−K0S
−1)S

and
1−K∗ = S∗ −K∗

0 = S∗
(
1− (K0S

−1)∗
)
,

so that it follows from (1.17) and (1.16) that

N1−K ∼ N1−K0S−1 ,

N1−K∗ = N1−(K0S−1)∗ .

Since K0S
−1 is a τ -finite operator (by Lemma 1.3.8), it follows from parts

(A) and (B) that the projections N1−K and N1−K∗ are τ -finite and equivalent.
Hence, it is left to prove the axiom (BF2) of Definition 1.5.1.
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(D) Since K0 is τ -finite, it follows from Lemma 1.3.8 and the parallelogram
rule (Lemma 1.3.6) that the projection

F := RK0S−1 ∨ R(S∗)−1K0

is τ -finite. Now, the relation

(1−K)(1− S−1FS)S−1 = 1− F

implies that ran(1− F ) ⊆ ran(1−K), proving (BF2) of Definition 1.5.1. ¤

1.5.3 The semifinite Atkinson theorem

Definition 1.5.8 Let T ∈ N . An operator S ∈ N is said to be a τ-parametrix
of the operator T if the operators 1− ST and 1− TS are τ -compact.

The aim of this subsection is to prove Theorem 1.5.14, which is a generalization
of Atkinson’s theorem due to Breuer [Br2, Theorem 1].

We recall that if K1 is a subspace of a subspace K2 of H then K2ªK1 is the
orthogonal complement of K1 in K2, i.e. K2 ªK1 = K2 ∩ K⊥1 .

Lemma 1.5.9 Let S, T ∈ N . The restriction of T to the subspace kerSTªkerT
is a bijective map onto ran T ∩ kerS.

Proof. (A) (T |ker STªker T is injective). Let ξ ∈ kerST ª kerT. This means that
STξ = 0 and ξ ⊥ kerT. If Tξ = 0 then ξ ⊥ ξ so that ξ = 0. Hence T |ker STªker T

is injective.

(B) (T |ker STªker T is surjective). Let η ∈ ran T ∩ kerS. This means that
Sη = 0 and that there exists ξ ∈ H, such that η = Tξ. Let ξ = ξ1 + ξ2, where
ξ1 ∈ kerT, ξ2 ⊥ kerT. Then STξ2 = STξ − STξ1 = Sη − 0 = 0, which means
that ξ2 ∈ kerSTªkerT. Also, Tξ2 = Tξ−Tξ1 = η−0 = η. Hence, T |ker STªker T

is surjective. ¤

Lemma 1.5.10 Let E1 6 E2 6 . . . be a non-decreasing sequence of projections

in N . If the projection E∞ =
∞∨

n=1
En is τ -finite, then for any projection F ∈ N

E∞ ∧ F =
∞∨

n=1

(En ∧ F ) .

Proof. The parallelogram rule (1.14) implies

F − F ∧ E⊥
n ∼ En − En ∧ F⊥ (1.41)

F − F ∧ E⊥
∞ ∼ E∞ − E∞ ∧ F⊥. (1.42)
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Further, En 6 E∞ implies

F − F ∧ E⊥
n 6 F − F ∧ E⊥

∞.

This, together with (1.41) and (1.42), implies

En − En ∧ F⊥ ≺ E∞ − E∞ ∧ F⊥.

Taking traces, we get

τ (En)− τ (En ∧ F⊥) 6 τ (E∞)− τ (E∞ ∧ F⊥)

or
τ (E∞ ∧ F⊥)− τ (En ∧ F⊥) 6 τ (E∞ − En) .

By normality of τ, the left hand side tends to 0 when n →∞. Hence,

lim
n→∞

τ (En ∧ F⊥) = τ (E∞ ∧ F⊥) .

Again, by normality of τ, we have

lim
n→∞

τ (En ∧ F⊥) = τ
(∨

(En ∧ F⊥)
)

,

so that
τ

(∨
(En ∧ F⊥)

)
= τ (E∞ ∧ F⊥)

Since τ is faithful, it follows that
∨

(En ∧ F⊥) = E∞ ∧ F⊥.

¤

The following lemma is a combination of [Br, Lemma 13] and its Corollary.

Lemma 1.5.11 If T ∈ N is a τ -Fredholm operator, then there exists a non-
decreasing sequence of projections E1 6 E2 6 . . . in N , such that for all n =

1, 2, . . . the projection E⊥
n is τ -finite, ranEn ⊆ ranT and

∞∨
n=1

En = RT .

Proof. (A) First, let A ∈ N and A > 0. Let Fn = 1 − EA
[0,1/n], n = 1, 2, . . . , so

that F1 6 F2 6 . . . Since by (1.5)

∞∧
n=1

EA
[0,1/n] = EA

{0} = NA,

we have ∞∨
n=1

Fn = N⊥
A = RA.
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The pair (FnH, F⊥
n H) of subspaces of H reduces A. By the spectral theorem,

the restriction of A to the subspace FnH is invertible, and hence the range of
this restriction is FnH = ran Fn. Hence, ran Fn ⊂ ranA.

(B) Let B ∈ N . If B = V |B| is the polar decomposition of B, then let
Pn = V FnV ∗, where {Fn} is the sequence constructed in (A) for |B| . Then

P1 6 P2 6 . . . and
∞∨

n=1
Pn = RB .

(C) By (BF2), let E be a projection such that ranE ⊂ ranT and E⊥ is
τ -finite. If F = RT − E, then the sequence En = E + Pn, where Pn is the
sequence constructed in (B) for B = FT, satisfies the conditions of the lemma.
¤

Lemma 1.5.12 If S, T ∈ N are τ -Fredholm operators, then

NST −NT ∼ RT ∧NS . (1.43)

Proof.

Since the range of the projection NST − NT is kerST ª kerT, it follows
from Lemma 1.5.9 that the range of the operator T (NST −NT ) is the subspace
ran T ∩ kerS. Hence,

RT (NST−NT ) 6 RT ∧NS . (1.44)

Now, the difficulty to overcome is that ranT is not necessarily closed.

Since by Lemma 1.5.9 T is bijective on the range kerST ª kerT of the
projection NST − NT , it follows that ker (T (NST −NT )) = ker (NST −NT ) , so
that NT (NST−NT ) = NNST−NT

. Hence, by (1.11) we have

R(NST−NT )T∗ = N⊥
T (NST−NT ) = N⊥

NST−NT
= NST −NT . (1.45)

By Lemma 1.5.11 there exists a sequence E1 6 E2 6 . . . of projections of N ,
such that E⊥

1 is τ -finite, ran En ⊆ ran T and
∨

n∈NEn = RT . Then Lemma 1.5.9
implies that

En ∧NS 6 RT (NST−NT ). (1.46)

Define E0 = E1 ∧ N⊥
S . Since S is τ -Fredholm, the projection NS is τ -finite, so

that by the parallelogram rule (1.14) the projection

E1 − E1 ∧N⊥
S ∼ NS −NS ∧ E⊥

1

is τ -finite. Hence, the projection E⊥
0 = E⊥

1 +
[
E1 − E1 ∧N⊥

S

]
is also τ -finite.

The relations E0NS = 0 and E0 6 En imply

En ∧NS = (En − E0) ∧NS , RT ∧NS = (RT − E0) ∧NS . (1.47)
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Using Lemma 1.5.10 it follows from previous equalities that

∞∨
n=1

(En ∧NS) = RT ∧NS . (1.48)

The relations (1.46) and (1.48) imply that

RT (NST−NT ) > RT ∧NS .

Combining it with (1.44), we get

RT (NST−NT ) = RT ∧NS . (1.49)

The relations (1.45), (1.49) and Lemma 1.3.4 now imply

NST −NT = R(NST−NT )T∗ ∼ RT (NST−NT ) = RT ∧NS ,

which is (1.43). ¤

Lemma 1.5.13 If T ∈ N , P is a projection in N such that ranP⊥ ⊂ ranT
and if Q := NP⊥T then the map P⊥TQ⊥ : Q⊥H → P⊥H is bijective.

Proof. (Injective) Let ξ ∈ Q⊥H and P⊥TQ⊥ξ = 0. Then P⊥Tξ = 0, NP⊥T ξ = ξ,
Qξ = ξ or Q⊥ξ = 0. Since ξ ∈ Q⊥H, it follows that ξ = 0.

(Surjective) Let η ∈ P⊥H. Since ran P⊥ ⊂ ranT, there exists ξ ∈ H such
that η = Tξ. Hence, η = P⊥η = P⊥Tξ. Now, since P⊥TQ = P⊥TNP⊥T = 0,
we have P⊥T = P⊥TQ⊥, so that η = P⊥TQ⊥ξ. ¤

The Calkin algebra Q(N , τ) is by definition the factor-algebra N/K(N , τ).
Let

π : T ∈ N 7→ T +K(N , τ) ∈ Q(N , τ).

Since K(N , τ) is norm-closed ideal ofN , the algebraQ(N , τ) is a Banach algebra
with the norm

‖π(T )‖Q(N ,τ) = inf
K∈K(N ,τ)

‖T + K‖ .

Theorem 1.5.14 Let T ∈ N . Then the following conditions are equivalent.
(i) T is τ -Fredholm;
(ii) π(T ) is an invertible element of Q(N , τ);
(iii) T has a τ -parametrix.

Proof. (iii) ⇒ (i). Let S be a τ -parametrix of T, i.e. there exist τ -compact
operators K,L ∈ N such that

ST = 1−K, (1.50)
TS = 1− L. (1.51)
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Since 1 −K is τ -Fredholm by Theorem 1.5.7, the projection N1−K is τ -finite.
Since (1.50) with (1.9) imply NT 6 N1−K , it follows that the projection NT is
also τ -finite, so that (BF1) is satisfied.

The equality (1.51) implies

ran (1− L) ⊆ ranT.

Since 1−L is τ -Fredholm by Theorem 1.5.7, by axiom (BF2) there is a τ -finite
projection E ∈ N such that

ran (1− E) ⊆ ran (1− L)

and consequently
ran (1− E) ⊆ ran T,

so that the axiom (BF2) of Definition 1.5.1 is also satisfied for operator T.

(i) ⇒ (ii). Suppose that T is τ -Fredholm.

(A) There exists a τ -finite projection P such that

ran P⊥ ⊂ ranT.

Lemma 1.5.12 implies
NP⊥T −NT ∼ RT ∧ P.

Hence, the projection Q := NP⊥T is τ -finite.

By Lemma 1.5.13, the operator

P⊥TQ⊥ : Q⊥H → P⊥H
is bijective and hence is invertible by Banach’s inverse mapping theorem. This
means that

T =
(

T11 T12

T21 T22

)

[P,Q]

with invertible T22. If

S =
(

0 0
0 T−1

22

)

[Q,P ]

,

then by Lemma 1.5.6 we will have

ST =
( ∗ ∗
∗ 1

)

[Q,Q]

, TS =
( ∗ ∗
∗ 1

)

[P,P ]

∈ 1 +K(N , τ),

where the last inclusion is true since P and Q are τ -finite.

(ii) ⇒ (iii). Let S and S′ be such that ST, TS′ ∈ 1 + K(N , τ). Then
π(S)π(T ) = π(T )π(S′) = 1, so that

π(S) = π(S)π(T )π(S′) = π(S′),

which means that there exists K ∈ K(N , τ) such that S = S′ + K. Hence,
TS = T (S′+K) = TS′+TK ∈ 1+K(N , τ). It follows that S is a τ -parametrix
for T. ¤
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1.5.4 Properties of τ-Fredholm operators

Proposition 1.5.15 If T is τ -Fredholm then T ∗ is also τ -Fredholm and in this
case

τ - ind(T ∗) = −τ - ind(T ).

Proof. If S is a τ -parametrix for T then S∗ is a τ -parametrix for T ∗. Hence, T ∗

is τ -Fredholm by Theorem 1.5.14. The formula follows directly from definition
(1.33) of the index. ¤

Proposition 1.5.16 If S, T are τ -Fredholm then ST is also τ -Fredholm and in
this case

τ - ind(ST ) = τ - ind(S) + τ - ind(T ). (1.52)

Proof. If S′ is a τ -parametrix for S and T ′ is a τ -parametrix for T then S′T ′ is
a τ -parametrix for ST. Hence, ST is τ -Fredholm by Theorem 1.5.14.

To prove (1.52), we note that Lemma 1.5.12 implies

NST −NT ∼ RT ∧NS , (1.53)
N(ST )∗ −NS∗ ∼ RS∗ ∧NT∗ . (1.54)

One has according to the parallelogram rule (Lemma 1.3.6)

NS −N⊥
T∗ ∧NS ∼ NT∗ −N⊥

S ∧NT∗ .

According to Lemma 1.3.5, we have N⊥
T∗ = RT and N⊥

S = RS∗ , so that

NS − RT ∧NS ∼ NT∗ − RS∗ ∧NT∗ . (1.55)

Combining (1.53), (1.54) and (1.55), we have

NS − (NST −NT ) ∼ NT∗ − (N(ST )∗ −NS∗).

Taking traces gives

τ (NS)− τ (NST ) + τ (NT ) = τ (NT∗)− τ
(
N(ST )∗

)− τ (NS∗) ,

or
τ (NST )− τ

(
N(ST )∗

)
= τ (NS)− τ (NS∗) + τ (NT )− τ (NT∗) ,

so that (1.52) follows. ¤

Proposition 1.5.17 If T ∈ N is τ -Fredholm and if K ∈ N is τ -compact then
T + K is also τ -Fredholm and

τ - ind(T + K) = τ - ind(T ).
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Proof. If S is a τ -parametrix for T then S is also τ -parametrix for T + K, so
that T + K is τ -Fredholm by Theorem 1.5.14.

So, let ST = 1 − L1 and S(T + K) = 1 − L2, where L1, L2 are τ -compact
operators. By Theorem 1.5.7 and Proposition 1.5.16 we have

0 = τ - ind(1− L1) = τ - ind(ST ) = τ - ind(S) + τ - ind(T ),

0 = τ - ind(1− L2) = τ - ind(S(T + K)) = τ - ind(S) + τ - ind(T + K).

Hence, τ - ind(T + K) = τ - ind(T ). ¤

Proposition 1.5.18 The set F(N , τ) of τ -Fredholm operators is open in the
norm topology of N and the index τ - ind is a locally constant function on
F(N , τ).

Proof. (A) Let T be a τ -Fredholm operator. By Theorem 1.5.14, there exists
S ∈ N such that ST = 1 + K1 and TS = 1 + K2, where K1,K2 ∈ K(N , τ). If
0 < ε < ‖S‖−1

, then, for any A ∈ N with ‖A‖ < ε, we have ‖AS‖ < 1 and
‖SA‖ < 1, so that the operators 1 + SA and 1 + AS are invertible. We have

(1 + SA)−1S(T + A) = (1 + SA)−1(ST + SA)

= (1 + SA)−1(1 + K1 + SA) = 1 + (1 + SA)−1K1,

(1.56)

and

(T + A)S(1 + AS)−1 = (TS + AS)(1 + AS)−1

= (1 + K2 + AS)(1 + AS)−1 = 1 + K2(1 + AS)−1.

(1.57)

Since the operators (1+SA)−1K1 and K2(1+AS)−1 are τ -compact, the operator
T + A is invertible in Q(N , τ). By Theorem 1.5.14, T + A is τ -Fredholm.

(B) Taking τ -indices of (1.56), by Proposition 1.5.16 and Theorem 1.5.7, we
see that

τ - ind((1 + SA)−1) + τ - ind(S) + τ - ind(T + A) = 0.

Since (1 + SA)−1 is invertible, we have τ - ind((1 + SA)−1) = 0. Hence,

τ - ind(T + A) = −τ - ind(S) = τ - ind(T ),

where the last equality follows from ST = 1 + K1 after taking τ -index. ¤
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1.5.5 Skew-corner τ-Fredholm operators

The aim of this subsection is to give an exposition of the theory of skew cor-
ner τ -Fredholm operators. Here we follow [CPRS2, Chapter 3], with some
improvements.

In the case of skew-corner Fredholm operators, an operator T ∈ PNQ is
considered as a map from QH to PH, where P and Q are some projections
from N . This notion will be necessary in the theory of spectral flow of J. Phillips
(Section 1.6).

If T ∈ N and Q is a projection in N then we denote by NQ
T the projection

onto ker(T ) ∩QH, i.e.
NQ

T = NT ∧Q.

Lemma 1.5.19 Let P and Q be two projections in N and let T ∈ PNQ. Then

NQ
T = NT Q = QNT = Q− RT∗ (1.58)

and
NP

T∗ = NT∗P = PNT∗ = P − RT . (1.59)

Proof. Since T = PTQ, the relation Qξ = 0 implies Tξ = 0, i.e. NT ξ = ξ, so
that NT > Q⊥. Hence, NT Q = NT (1−Q⊥) = NT −Q⊥ = NT −Q⊥NT = QNT .

This yields NQ
T = NT Q = QNT . Further, NT Q = NT − Q⊥ = Q − (1 − NT ) =

Q− RT∗ by (1.11).

Since, T ∗ ∈ QNP, (1.59) follows from (1.58) applied to P and T ∗ instead of
Q and T. ¤

Definition 1.5.20 Let N be a semifinite von Neumann algebra, and let τ be a
normal semifinite faithful trace in N . Let P and Q be two projections from N
and let T ∈ PNQ. Then T is called (P ·Q) τ -Fredholm if and only if
(BF1’) the projection NQ

T is τ -finite;
(BF2’) the projection NP

T∗ is τ -finite;
(BF3’) there exists a τ -finite projection E 6 P such that ran (P − E) ⊆ ran(T ).

If T is (P ·Q) τ -Fredholm then the skew corner τ -index of T is

τ -indP -Q(T ) = τ
(
NQ

T

)− τ
(
NP

T∗
)
.

This index can be considered as the τ -index of T as an operator from QH to
PH, in which case NQ

T is exactly the kernel of T : QH → PH and NP
T∗ is the

kernel of T ∗ : PH → QH.

The set of (P ·Q) τ -Fredholm operators will be denoted by FP -Q(N , τ).
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Lemma 1.5.21 Let P and Q be two projections in N . If T is (P ·Q) τ -Fredholm
then T is (RT · RT∗) τ -Fredholm, and one has the relation

τ -indRT -RT∗T = 0.

Proof. By axiom (BF3’), let E 6 P be a τ -finite projection such that

ran (P − E) ⊆ ran T. (1.60)

By Lemma 1.3.5, both projections NRT∗
T and NRT

T∗ are zero, so that the axioms
(BF1’) and (BF2’) hold true. We claim that the projection F := RT ∧ (P −E)
satisfies the axiom (BF3’) with respect to RT . The properties F 6 RT and
ran (RT − F ) ⊆ ranT are evident. By the parallelogram rule (Lemma 1.3.6)
applied to von Neumann algebra PNP, we have

RT − F = RT − RT ∧ (P − E) = E − E ∧ (P − RT ),

so that the projection RT − F is τ -finite. Hence, T is (RT · RT∗) τ -Fredholm.
The equality is evident. ¤

Lemma 1.5.22 Let P and Q be two projections in N . If T is (P ·Q) τ -Fredholm
then the projections P −RT and Q−RT∗ are τ -finite and one has the relation

τ -indP -QT = τ (Q− RT∗)− τ (P − RT ) .

Proof. This follows directly from Lemma 1.5.19 and Definition 1.5.20. ¤

Lemma 1.5.23 Let P, Q, R be projections in N , let T ∈ PNQ be (P · Q) τ -
Fredholm and S ∈ RNP be (R · P ) τ -Fredholm. Then

NQ
ST −NQ

T ∼ RT ∧NP
S .

Proof. (A) Let T ∗ = V |T ∗| and S = U |S| be the polar decompositions of
T ∗ and S. Then U∗S, TV ∈ PNP. Hence, by Lemma 1.5.12 applied to the
operators U∗S and TV in the von Neumann algebra PNP, we have

NP
U∗STV −NP

TV ∼ RTV ∧NP
U∗S . (1.61)

(B) It is not difficult to see that the restriction of V to (NP
STV − NP

TV )H
gives the equivalence

NQ
ST −NQ

T ∼ NP
STV −NP

TV . (1.62)

Indeed, since this restriction is also an isometry, and since evidently V (NP
STV −

NP
TV )H ⊂ (NQ

ST −NQ
T )H, one needs only to show that for any η ∈ QH∩ kerST
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which is orthogonal to QH ∩ kerT, there exists (a necessarily unique) η0 ∈
PH ∩ kerSTV , orthogonal to PH ∩ kerTV , such that V η0 = η. One may take
η0 = V ∗η.

(C) It is clear that

NP
S = NP

U∗S , NP
U∗STV = NP

STV

and
RT = RTV .

Combining these equalities with (1.61) and (1.62) completes the proof. ¤

The statement of the following lemma is used in the proof of the skew-corner
Atkinson theorem in [CPRS2, Lemma 3.4] without a proof, though it seems to
be not so evident.

Lemma 1.5.24 Let P, Q, P0 ∈ N be projections, let P0 6 P, T ∈ PNQ and
(P − P0)H ⊆ TH. Let

Q0 := NQ
(P−P0)T

.

Then the map

(P − P0)T (Q−Q0) : (Q−Q0)H → (P − P0)H

is bijective.

Proof. (Injective) Let ξ ∈ (Q − Q0)H and (P − P0)T (Q − Q0)ξ = 0. Then
(P − P0)Tξ = 0, so that N(P−P0)T ξ = ξ, and, since we also have Qξ = ξ, it
follows that Q0ξ = NQ

(P−P0)T
ξ = ξ. So, ξ = 0.

(Surjective) Let η ∈ (P −P0)H. Since (P −P0)H ⊆ TH, there exists ξ ∈ H
such that η = Tξ, and so, η = (P − P0)Tξ. Now, since

(P − P0)TQ0 = (P − P0)TNQ
(P−P0)T

= 0,

we have (P − P0)T = (P − P0)TQ = (P − P0)T (Q − Q0), so that η = (P −
P0)T (Q−Q0)ξ. ¤

Definition 1.5.25 If T ∈ PNQ then a skew corner parametrix of T is any
operator S ∈ QNP such that ST = Q + K1 and TS = P + K2, where K1 is a
τ -compact operator from QNQ and K2 is a τ -compact operator from PNP.

Theorem 1.5.26 An operator T ∈ PNQ is (P · Q) τ -Fredholm if and only if
it has a skew corner parametrix.
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Proof. (A) Let S be a parametrix for T. Then there exists K2 ∈ KPNP such that
TS = P +K2, so that TS is τ -Fredholm in PNP by Theorem 1.5.7. Hence there
exists a τ -finite projection E 6 P such that ran (P − E) ⊆ ran(TS) ⊆ ran(T ).
So, the axiom (BF3’) holds and NP

T∗ = P−RT 6 E is τ -finite, and hence (BF2’)
also holds. On the other hand, T ∗S∗ = (ST )∗ = Q + K1, where K1 ∈ KQNQ,
is also τ -Fredholm in QNQ by the same Theorem 1.5.7, so that, by the same
argument, NQ

T is also τ -finite, that is, T is (P ·Q) τ -Fredholm.

(B) Now, let T ∈ PNQ be (P ·Q) τ -Fredholm. Then there exists a τ -finite
projection P0 such that (P − P0)H ⊆ TH. By Lemma 1.5.23

NQ
(P−P0)T

−NQ
T ∼ RT ∧NP

P−P0
= RT ∧ P0,

and so, since NQ
T and P0 are τ -finite, the projection

Q0 := NQ
(P−P0)T

is also τ -finite. By Lemma 1.5.24 and Banach’s inverse mapping theorem, the
map (P − P0)T (Q − Q0) : (Q − Q0)H → (P − P0)H has bounded inverse, say
S : (P − P0)H → (Q − Q0)H. Since P0 and Q0 are τ -finite, S is a parametrix
for T. ¤

Lemma 1.5.27 If T is a (P · Q) τ -Fredholm operator, then T ∗ is a (Q · P )
τ -Fredholm operator and

τ -indQ-P (T ∗) = −τ -indP -Q(T );

Proof. If S is a parametrix for T i.e. P − TS ∈ KPNP and Q − ST ∈ KQNQ

then P −S∗T ∗ ∈ KPNP and Q−T ∗S∗ ∈ KQNQ, i.e. S∗ is a parametrix for T ∗.
Hence T ∗ is (Q · P ) τ -Fredholm. The equality is evident. ¤

Proposition 1.5.28 Let S be (R ·P ) τ -Fredholm and T be (P ·Q) τ -Fredholm.
Then ST is (R ·Q) τ -Fredholm and

τ -indR-Q(ST ) = τ -indR-P (S) + τ -indP -Q(T ).

Proof. (A) By Theorem 1.5.26, there exist a parametrix S′ of S and a parametrix
T ′ of T. Hence, for some K ∈ KPNP , we have R−STT ′S′ = R−S(P +K)S′ =
R − SS′ + SKS′ ∈ KRNR. Analogously, Q − T ′S′ST ∈ KQNQ, i.e., T ′S′ is a
parametrix for ST, so that ST is (R ·Q) τ -Fredholm by Theorem 1.5.26.

(B) By (A) and Lemma 1.5.27, the operators S∗, T ∗, ST and T ∗S∗ are all
skew τ -Fredholm, so that by Lemma 1.5.23, we have

NQ
ST −NQ

T ∼ RT ∧NP
S

NR
T∗S∗ −NR

S∗ ∼ RS∗ ∧NP
T∗ .
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By the parallelogram rule (Lemma 1.3.6) applied to the von Neumann algebra
PNP, we have

NP
S − (P −NP

T∗) ∧NP
S ∼ NP

T∗ − (P −NP
S ) ∧NP

T∗ .

By Lemma 1.5.19 P −NP
T∗ = RT and P −NP

S = RS∗ , so that

NP
S − RT ∧NP

S ∼ NP
T∗ − RS∗ ∧NP

T∗ .

Using these similarities, we calculate

τ -indR-Q(ST ) = τ
(
NQ

ST

)− τ
(
NR

T∗S∗
)

= τ
(
NQ

ST −NQ
T

)− τ
(
NR

T∗S∗ −NR
S∗

)
+ τ

(
NQ

T

)− τ
(
NR

S∗
)

= τ
(
RT ∧NP

S

)− τ
(
RS∗ ∧NP

T∗
)

+ τ
(
NQ

T

)− τ
(
NR

S∗
)

= τ
(
NP

S

)− τ
(
NP

T∗
)

+ τ
(
NQ

T

)− τ
(
NR

S∗
)

= τ -indR-P (S) + τ -indP -Q(T ).

¤

Proposition 1.5.29 If T is (P · Q) τ -Fredholm and K ∈ KPNQ, then T + K
is also (P ·Q) τ -Fredholm and

τ -indP -Q(T + K) = τ -indP -Q(T ).

Proof. Evidently, if S is a parametrix for T then S is also a parametrix for
T + K.

So, let ST = Q+K1 and S(T +K) = Q+K2, where K1,K2 ∈ KQNQ. Then,
by Theorem 1.5.7 applied to von Neumann algebra QNQ and by Proposition
1.5.28, we have

0 = τ -indQ-Q(Q + K1) = τ -indQ-Q(ST ) = τ -indQ-P (S) + τ -indP -Q(T )

and

0 = τ -indQ-Q(Q + K2) = τ -indQ-Q(S(T + K))
= τ -indQ-P (S) + τ -indP -Q(T + K).

Hence, τ -indP -Q(T + K) = τ -indP -Q(T ). ¤

Proposition 1.5.30 Let P and Q be projections in N . The set FP -Q(N , τ) of
(P ·Q) τ -Fredholm operators is open in the norm topology in PNQ, i.e. for any
(P · Q) τ -Fredholm operator T there exists ε > 0 such that for any A ∈ PNQ
with ‖A‖ < ε the operator T +A is a (P ·Q) τ -Fredholm operator, and, moreover,

τ -indP -Q(T + A) = τ -indP -Q(T ).

Proof. The proof follows verbatim the proof of Proposition 1.5.18 with refer-
ences to Theorem 1.5.26 and Proposition 1.5.28 instead of Theorem 1.5.14 and
Proposition 1.5.16. ¤
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1.5.6 Essential codimension of two projections

In this subsection, we give an exposition of the notion of essential codimension
of two projections, due to J. E.Avron, R. Seiler and B. Simon [ASS]. Here we
follow [Ph2] and [BCPRSW].

Definition 1.5.31 A pair (P, Q) of two projections in N is said to be a Fred-
holm pair if ‖π(P )− π(Q)‖ < 1.

Proposition 1.5.32 If P,Q is a Fredholm pair of projections in N , then PQ
is a (P ·Q) τ -Fredholm operator.

Proof. Since

‖π(PQP )− π(P )‖ =
∥∥π(P )

[
π(Q)− π(P )

]
π(P )

∥∥ 6 ‖π(Q)− π(P )‖ < 1,

it follows that PQP is invertible in PNP modulo τ -compact operators in PNP,
and hence PQP is a τ -Fredholm operator in PNP by Theorem 1.5.14. Hence,
the projection NP

PQP is τ -finite. Since NP
QP 6 NP

PQP (see (1.9)), it follows
that NP

QP is also τ -finite. Similarly, the projection NQ
(QP )∗ = NQ

PQ is also τ -
finite. Now, since PQP is a τ -Fredholm operator in PNP, by (BF3’) there
exists a τ -finite projection E 6 P such that ran (P − E) ⊆ ranPQP. But since
ran PQP ⊆ ranPQ, it follows that ran (P − E) ⊆ ranPQ. Hence, PQ is a
(P ·Q) τ -Fredholm operator. ¤

Definition 1.5.33 If (P,Q) is a Fredholm pair of projections in N , then the
essential codimension ec(P, Q) of the pair (P, Q) is the number

ec(P, Q) := τ -indP -Q(PQ).

Let (P, Q) be a Fredholm pair. If P and Q commute then

ec(P, Q) = τ (Q− PQ)− τ (P − PQ) . (1.63)

Really,

ec(P, Q) = τ -indP -Q(PQ) = τ
(
NQ

PQ

)
− τ

(
NP

PQ

)

= τ ((1− PQ)Q)− τ ((1− PQ)P ) = τ (Q− PQ)− τ (P − PQ) .

In particular, if P ≤ Q then ec(P,Q) = τ (Q− P ) .

Lemma 1.5.34 If (P, Q) is a Fredholm pair then

ec(P,Q) = − ec(Q,P ).
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Proof. The last equality means

τ -indP -Q(PQ) = −τ -indQ-P (QP ),

which follows from Lemma 1.5.27. ¤

Proposition 1.5.35 If P1, P2, P3 are projections in N such that

‖π(P1)− π(P2)‖Q(N ,τ) <
1
2

and ‖π(P2)− π(P3)‖Q(N ,τ) <
1
2
,

then
ec(P1, P3) = ec(P1, P2) + ec(P2, P3). (1.64)

Proof. Since

‖π(P1)− π(P3)‖Q(N ,τ) 6 ‖π(P1)− π(P2)‖Q(N ,τ) + ‖π(P2)− π(P3)‖Q(N ,τ) < 1,

it follows from Proposition 1.5.32 that the terms in equality (1.64) are well-
defined. By Lemma 1.5.34, the equality (1.64) is equivalent to

ec(P1, P2) + ec(P2, P3) + ec(P3, P1) = 0

which by definition of ec means

τ -indP1-P2(P1P2) + τ -indP2-P3(P2P3) + τ -indP3-P1(P3P1) = 0.

So, by Proposition 1.5.28, we need to show that

0 = τ -indP1-P1(P1P2 · P2P3 · P3P1),

or
0 = τ -indP1-P1(P1P2P3P1). (1.65)

We have

‖π(P1P2P3P1)− π(P1)‖Q(N ,τ)

= ‖π(P1)[π(P2P3)− π(P1)]π(P1)‖Q(N ,τ)

6 ‖π(P2P3)− π(P1)‖Q(N ,τ)

6 ‖π(P2P3)− π(P2)‖Q(N ,τ) + ‖π(P2)− π(P1)‖Q(N ,τ)

6 ‖π(P3)− π(P2)‖Q(N ,τ) + ‖π(P2)− π(P1)‖Q(N ,τ) < 1.

Thus, there is a τ -compact operator K in the reduced von Neumann algebra
P1NP1 with

‖P1P2P3P1 − P1 + K‖ < 1,

which means that the operator P1P2P3P1 + K is invertible in P1NP1. Hence,

τ -indP1-P1(P1P2P3P1 + K) = 0,

and Proposition 1.5.29 now implies (1.65). ¤
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1.5.7 The Carey-Phillips theorem

The aim of this subsection is to prove the Carey-Phillips theorem (Theorem
1.5.37).

Let P and Q be projections in B(H). Since NQ
P = NP ∧ Q 6 Q and NP

Q =
NQ ∧ P 6 NQ = Q⊥, the projections NQ

P and NP
Q are orthogonal. Moreover

QNP
Q = NP

QQ = 0, (1.66)

PNP
Q = NP

QP = NP
Q

and similarly,

PNQ
P = NQ

P P = 0, (1.67)

QNQ
P = NQ

P Q = NQ
P .

If E is the orthogonal complement of NP
Q + NQ

P , so that

E ⊕NP
Q ⊕NQ

P = 1, (1.68)

then it also follows that PE = EP and QE = EQ. Hence, P1 := PE and
Q1 = QE are projections in HE = EH. Also,

NP1
Q1

= Q⊥
1 ∧ P1 = (Q⊥ ∧ P )E = 0,

and by symmetricity,
NQ1

P1
= P⊥

1 ∧Q1 = 0.

This means that
kerP1 ∩ ranQ1 = {0} (1.69)

ranP1 ∩ kerQ1 = {0} . (1.70)

Lemma 1.5.36 There exists a self-adjoint unitary U in B(HE) such that
U(P1 −Q1)U∗ = Q1 − P1.

Proof. (A) Let B = 1− (P1 +Q1) and let B = U |B| be the polar decomposition
of B. Then B anticommutes with P1 −Q1 and so B2 commutes with P1 −Q1,
and hence any continuous function of B2 commutes with P1−Q1. In particular,
|B| commutes with P1 −Q1. Hence, we have

U(P1−Q1) |B| = U |B| (P1−Q1) = B(P1−Q1) = (Q1−P1)B = (Q1−P1)U |B| .
That is, the operator U(P1 −Q1) is equal to (Q1 − P1)U on |B|H.

(B) Let ξ ∈ kerB. This means that

η := P⊥
1 ξ = Q1ξ. (1.71)
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Since P1η = 0 and η ∈ ran Q1, it follows from (1.69) that η = 0. Now, (1.71)
and (1.70) imply that ξ = 0.

Hence kerB = {0} . This implies that the range of |B| is dense in HE (see
(1.11)). Since the range of |B| is dense in HE , by (A) the operators U(P1−Q1)
and (Q1 − P1)U coincide on HE . Since B is self-adjoint, U is also self-adjoint.
¤

Theorem 1.5.37 [CP2] Let f ∈ C([−1, 1],R) be an odd function. Let P, Q be
two projections in N such that their difference P −Q is τ -compact operator and
f(P −Q) ∈ L1(N , τ). Then the pair (P,Q) is a Fredholm pair and

τ [f(P −Q)] = f(1) ec(Q,P ).

Proof. By (1.68), (1.66) and (1.67) we have

P = P1 ⊕ 1⊕ 0

and
Q = Q1 ⊕ 0⊕ 1.

So,
f(P −Q) = f(P1 −Q1)⊕ f(1)⊕−f(1). (1.72)

Since f is odd, we have by Lemma 1.5.36

Uf(P1 −Q1)U∗ = −f(Q1 − P1).

Since f(P1 − Q1) is τ -trace class, it follows that τ (f(P1 −Q1)) = 0. Hence,
taking the trace of (1.72) and noting that NP

Q = NP
QP , NQ

P = NQ
PQ, we have

τ (f(P −Q)) = f(1)
(
τ

(
NP

Q

)− τ
(
NQ

P

))

= f(1)
(
τ

(
NP

QP

)− τ
(
NQ

(QP )∗

))
= f(1) τ -indQ-P (QP ).

¤

1.6 Spectral flow in semifinite von Neumann al-
gebras

In this section, we give an exposition of the spectral flow theory of J. Phillips
[Ph, Ph2].

In the type I case, the spectral flow of a path from a self-adjoint operator D1

to a self-adjoint operator D2 measures the net number of eigenvalues crossing
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zero. We first define the notion of spectral flow and establish its properties, as
it was done by J. Phillips in [Ph, Ph2].

We denote by sign the function defined as sign(x) = −1 for x < 0 and
sign(x) = 1 for x > 0.

Proposition 1.6.1 Let [a, b] ⊂ R and F : [a, b] → Fsa(N , τ) be a norm con-
tinuous path of self-adjoint τ -Fredholm operators. Let χ(·) = χ[0,∞)(·) and let
Pt = χ(Ft), t ∈ [a, b]. Then the path of projections

t ∈ [a, b] 7→ π(Pt) ∈ Q(N , τ)

is ‖·‖Q(N ,τ)-continuous, and, hence, is also uniformly continuous.

Proof. (A) If T ∈ N is a self-adjoint operator and f ∈ C(R), then

f(π(T )) = π(f(T )),

where the left hand side is understood in the sense of the continuous functional
calculus in C∗-algebras (see e.g. [BR, Theorem 2.1.11B]). Indeed, this equality
is evidently true for f(x) = xn, n = 0, 1, 2, . . . . Hence, it is true for polynomials.
So, by Stone-Weierstrass theorem, it is true for any continuous function f.

(B) Here we prove that if T is a self-adjoint τ -Fredholm operator then
χ(π(T )) = π(χ(T )).

By Theorem 1.5.14 the operator T is an invertible element of C∗-algebra
Q(N , τ), and hence 0 /∈ σπ(T ) in Q(N , τ). Hence, there exist two continuous
functions f1 and f2 on R, which coincide with χ on σπ(T ) and such that f1 >
χ > f2. Thus, using (A) we have

χ(π(T )) = f1(π(T )) = π(f1(T ))
> π(χ(T )) > π(f2(T )) = f2(π(T )) = χ(π(T )).

Hence, χ(π(T )) = π(χ(T )).

(C) Since Ft is norm-continuous, π(Ft) is Q(N , τ)-continuous. Since all
π(Ft) are invertible in Q(N , τ), their spectra are bounded away from 0. Hence,
χ is continuous function on their spectra, and, hence, χ(π(Ft)) is continuous.
Thus, by (B), the path π(χ(Ft)) is continuous. ¤

Remark 1.6.2 Note that the map t ∈ [a, b] 7→ Pt itself is usually discontinuous
in the norm topology.

Definition 1.6.3 Let [a, b] ⊂ R and let F : [a, b] → Fsa(N , τ) be a norm con-
tinuous path of self-adjoint τ -Fredholm operators. Let t ∈ [a, b] 7→ Pt := χ(Ft)
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be the corresponding path of projections. By Proposition 1.6.1 we can choose
a partition t0 = a < t1 < ... < tn = b of the segment [a, b] such that∥∥π(Ptj−1)− π(Ptj )

∥∥ < 1
2 for all j = 1, . . . , n. The spectral flow of the path

{Ft}t∈[a,b] is the number

sf({Ft}) :=
n∑

i=1

ec(Pti−1 , Pti).

Remark 1.6.4 If the path {Ft} lies entirely in F0+K(N , τ) then π(Pt) = const
and

sf({Ft}) := ec(P0P1) = τ -indP0-P1(P0P1).

We note, that a topology weaker that the norm-topology, e.g. the strong
operator topology, does not suffice. The reason is that the spectrum of a self-
adjoint operator changes continuously under small perturbations for the norm
topology, but not under small perturbations for the strong operator topology.
A trivial example is given by the spectral projections En which converge to 1
in the strong operator topology. Here the spectrum of En is {0, 1} while the
spectrum of 1 is {1} , so that spectrum ”jumps” from 0 to 1 as n →∞.

Theorem 1.6.5 The spectral flow is well-defined, i.e. it is independent on a
choice of the partition.

Proof. In order to show that the spectral flow is independent of the partition, it
is enough to show that it does not change when we add one more point to the
partition. This follows from Proposition 1.5.35. ¤

Proposition 1.6.6 Properties of spectral flow.
(1) sf(F, F ) = 0;
(2) sf(F1, F2) + sf(F2, F3) = sf(F1, F3);
(3) sf(F1, F2) = − sf(F2, F1);
(4) sf(αF1, αF2) = sf(F1, F2) for any α > 0.

Proof. (1) and (2) follow directly from the definition of spectral flow. (3) follows
from Lemma 1.5.34. (4) follows from the fact that the projections χ(F ) and
χ(αF ) coincide. ¤

Proposition 1.6.7 Let [a, b] ⊂ R, and let F,G : [a, b] → Fsa(N , τ) be two norm
continuous paths of self-adjoint τ -Fredholm operators such that F (a) = G(a)
and F (b) = G(b). If these paths are norm homotopic via a homotopy leaving the
end-points fixed, then their spectral flows coincide.
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Proof. (A) For T ∈ Fsa(N , τ) let

N(T ) =
{

S ∈ Fsa(N , τ) : ‖π(χ(S))− π(χ(T ))‖ <
1
4

}
.

Then N(T ) is open in Fsa(N , τ) since S 7→ π(χ(S)) = χ(π(S)) is continuous
on Fsa(N , τ). Moreover, if S1, S2 ∈ N(T ), then by the definition of spectral
flow, all paths from S1 to S2 lying entirely in N(T ) have the same spectral flow,
namely, ec(χ(S1), χ(S2)).

(B) Let H : [a, b]× [a, b] → Fsa(N , τ) be a homotopy from {F (t)} to {G(t)} .
That is, H is continuous, H(t, a) = F (t) for all t ∈ [a, b], H(t, b) = G(t) for all
t ∈ [a, b], H(a, s) = F (a) = G(a) for all s ∈ [a, b] and H(b, s) = F (b) = G(b) for
all s ∈ [a, b]. The image of H in Fsa(N , τ) is compact, so that there exists a finite
cover by open sets of the form N(T ), say {N1, . . . , Nk} . Then the finite family{
H−1(N1), . . . , H−1(Nk)

}
forms a finite cover of [a, b]× [a, b]. Thus, there exists

ε0 > 0 (the Lebesgue number of the cover) so that any subset of [a, b] × [a, b]
of diameter less than ε0 is contained in some element of this finite cover of
[a, b]× [a, b]. Thus, if we partition [a, b]× [a, b] into a grid of squares of diameter
less than ε0, then the image of each square will lie entirely within some Ni.

Now, it is clear that we can construct a finite sequence of paths γ0, . . . , γN

from F (a) to G(a) such that γ0 = {Ft} , γN = {Gt} and each two successive
paths differ only by a small lasso (i.e. by the boundary of a small square of
the grid just built). Since the spectral flow along any such lasso is zero by (A),
the spectral flows of each two successive paths coincide by Proposition 1.6.6(3).
Hence, the spectral flows of the paths γ0 = {Ft} and γN = {Gt} also coincide.
¤

This proposition allows one to write the spectral flow in the form sf(Fa, Fb).

For a self-adjoint operator D, let

FD := D(1 + D2)−1/2.

Lemma 1.6.8 If D = D∗ηN has τ -compact resolvent and V = V ∗ ∈ N , then
D + V also has τ -compact resolvent.

Proof. This follows from the second resolvent identity (1.2) applied to the pair
D + V and D. ¤

The following lemma and its proof is taken from [CP] (Lemma 2.7).

Lemma 1.6.9 If D0 is a self-adjoint operator with τ -compact resolvent, V ∈
Nsa and D1 = D0 + V, then the operator FD1 − FD0 is τ -compact.

Proof. (A) Let g(x) := x
1+x2 . Using the argument of the proof of Lemma 4.1.9(i),

one can see that the measure |ξ| F(g)(ξ) dξ has a finite variation C. By Lemma
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1.1.7 and (1.6),

g(D1)− g(D0) =
1√
2π

∫

R
[eisD1 − eisD0 ]F(g)(s) ds

=
1√
2π

∫

R

∫ s

0

ei(s−t)D1iV eitD0 dtF(g)(s) ds,

so that

‖g(D1)− g(D0)‖ 6 1√
2π

∫

R
‖V ‖ |sF(g)(s)| ds 6 1√

2π
C ‖V ‖ .

Applying this estimate to the operators

Di(1 + D2
i + λ)−1 =

1√
1 + λ

g

(
Di√
1 + λ

)
, i = 0, 1,

one finds that

∥∥D1(1 + D2
1 + λ)−1 −D0(1 + D2

0 + λ)−1
∥∥ 6 C1

1 + λ
‖V ‖ , (1.73)

for some constant C1.

(B) By [CP, Appendix A, Lemma 4], for all ξ ∈ dom(D0) = dom(D1)

FD1ξ − FD0ξ =
1
π

∫ ∞

0

λ−
1
2 [D1(1 + D2

1 + λ)−1 −D0(1 + D2
0 + λ)−1]ξ dλ,

where the integral is norm convergent in H. But, by (1.73), the last integral
(without ξ) converges in the operator norm. The operator

D0(1 + D2
0 + λ)−1 =

1 + D2
0

1 + D2
0 + λ

· D0

D0 + i
· 1
D0 − i

is τ -compact, and since D1 also has τ -compact resolvent by Lemma 1.6.8, the
operator D1(1 + D2

1 + λ)−1 is also τ -compact. So, the claim follows from the
closedness of K(N , τ) for the operator norm (Lemma 1.3.12). ¤

Theorem 1.6.10 [CP] Let (A,N , D) be a semifinite spectral triple, and let
u ∈ A be a unitary. Then the spectral flow from D to uDu∗ is

sf(D, u∗Du) = τ -indP -P (PuP ),

where P := χ(D).

Proof. By definition

sf(D, uDu∗) := sf(FD, FuDu∗).
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Let FD = F̃D |FD| be the polar decomposition of FD. Let

F̃D = 2P − 1, F̃uDu∗ = 2Q− 1 = 2(uPu∗)− 1.

Since uDu∗ = D + [u, D]u∗ and [u,D] is bounded by definition of spectral
triple, it follows from Lemma 1.6.9 that FD −FuDu∗ is τ -compact. Since D has
τ -compact resolvent, it follows that

F̃D − FD = F̃D(1− |FD|) = F̃D(1− |FD|2)(1 + |FD|)−1

= F̃D(1 + D2)−1(1 + |FD|)−1

is also τ -compact. Hence, 2(P−Q) = F̃D−F̃uDu∗ = (F̃D−FD)+(FD−FuDu∗)+
(FuDu∗ − F̃uDu∗) is also τ -compact, so that the pair (P, Q) is Fredholm (since
‖P −Q‖Q(N ,τ) = 0 < 1). By Proposition 1.5.32, it follows that PQ is a (P ·Q)
τ -Fredholm operator. Hence, by Definition 1.6.3 of spectral flow, we have

sf(FD, FuDu∗) = τ -indP -Q(PQ).

So,

sf(D, uDu∗) = τ -indP -Q(PQ) = τ -indP -Q(PuPu∗)
= τ -indP -P (PuP ) + τ -indP -Q(u∗) = τ -indP -P (PuP ),

where the third equality follows from Proposition 1.5.28 and the last equality
follows from

τ -indP -Q(u∗) = τ
(
NQ

u∗

)
− τ

(
NP

u

)
= 0,

since u and u∗ are invertible, so that NQ
u∗ = NP

u = 0. ¤

The following example is due to J. Phillips.

Example 1.6.11 [BCPRSW] If N is a II∞ factor, then N contains an abelian
von Neumann subalgebra A isomorphic to L∞(R, dx). Let B0 ∈ A be the con-
tinuous function:





B0(x) = −1, if x ∈ (−∞,−1],
B0(x) = x, if x ∈ [−1, 1],
B0(x) = 1, if x ∈ [1,∞).

Let r ∈ R, and Bt(x) = B0(x + tr) for all x ∈ R. Then {Bt} is a continuous
path in Fsa

∗ . Let χ = χ[0,+∞). Then χ(Bt) = χ[−tr,+∞) and thus

π(χ(Bt)) = const

in Q(N , τ). Hence,

P0 = χ(B0) = χ[0,+∞), P1 = χ(B1) = χ[−r,∞)
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and, using (1.63),

sf {Bt} = ec(P0, P1) = τ -indP0-P1(P0P1)

= τ (P1 − P0P1)− τ (P0 − P0P1) =
∫ 0

−r

dx− 0 = r.

In this example, the spectral picture is constant. That is, σBt
= [−1, 1] and

σπ(Bt) = {−1, 1} for all t ∈ [0, 1]. Thus, one cannot tell from the spectrum alone
(even knowing the multiplicities) what the spectral flow will be.

We note, that this is characteristic for the type II case. In the case of N = B(H),
this is not possible.

1.7 Fuglede-Kadison’s determinant
in semifinite von Neumann algebras

In this section, we give an exposition of the theory of Fuglede-Kadison determi-
nant in semifinite von Neumann algebras, following L. G.Brown’s paper [Brn].
As usual, N denotes a semifinite von Neumann algebra, and τ denotes a faithful
normal semifinite trace on N . Let GL(N ) be the group of invertible elements
of N .

1.7.1 de la Harpe-Scandalis determinant

The classical Fredholm determinant is defined for operators of the form 1 + T,
where T ∈ L1(H), i.e. T is a trace-class operator, and it follows from Lidskii’s
theorem that this determinant can be given by the formula

det(1 + T ) =
∞∏

j=1

(1 + λj(T )), (1.74)

where λ1(T ), λ2(T ), . . . is the list of eigenvalues of T, counting multiplicities.

Our aim in this subsection is to introduce and to study the complex valued
determinant in semifinite von Neumann algebras. The formula (1.74) cannot be
generalized to semifinite von Neumann algebras directly. But if the spectrum of
the operator T does not intersect the half-line (−∞,−1], then one can rewrite
the last formula as

det(1 + T ) = e

∞∑
j=1

log
(
1+λj(T )

)
= eTr(log(1+T ))),

where log denotes that branch of Log defined on the set C \ (−∞, 0] such that
log 1 = 0. log(1 + T ) is defined by holomorphic functional calculus.
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This trivial observation is the rationale for introducing the next definition.

Definition 1.7.1 Let L1,π(N , τ) be the set of τ -trace class operators from N ,
whose spectrum does not intersect the half-line (−∞,−1], and let T ∈
L1,π(N , τ). Then the τ-determinant of 1 + T is

detτ (1 + T ) = eτ(log(1+T )) ∈ C. (1.75)

By an L1-smooth path {At}t∈[0,1] , we mean a map A : t ∈ [0, 1] 7→ At ∈
L1(N , τ) such that the following limit

lim
h→0

At+h −At

h
=: A′t

exists for all t ∈ [0, 1] in the norm of L1(N , τ), and t 7→ A′t is L1(N , τ)-
continuous.

One of the ideas of [CFM] is the following lemma.

Lemma 1.7.2 Let A ∈ L1,π(N , τ) and A : t ∈ [0, 1] 7→ At ∈ L1,π(N , τ) is an
L1-smooth path such that A0 = 0 and suppose that A1 = A. Then

detτ (1 + A) = exp
{∫ 1

0

τ
(
(1 + At)−1A′t

)
dt

}
. (1.76)

Remarks. 1) The condition At ∈ L1,π(N , τ) ensures that −1 /∈ σAt , i.e.
1 + At is invertible for all t ∈ [0, 1], so that (1 + At)−1 makes sense.

2) One can note that the right hand side of (1.76) makes sense for all L1-
smooth paths {At}t∈[0,1] with A0 = 0 and A1 = A and such that −1 /∈ σAt (to
ensure invertibility of 1 + At). Nevertheless, the condition At ∈ L1,π(N , τ) is
essential, since if two different paths {At}t∈[0,1] and {Bt}t∈[0,1] are not homo-
topic, then the right hand side of (1.76) gives different numbers. In the case
N = B(H), it does not make a difference since these different values of the in-
tegral in (1.76) for different curves {At}t∈[0,1] differ by 2nπi, where n ∈ Z, and
after exponentiation in (1.76) all differences will play no role.

3) We note that the spectrum of an operator is upper semi-continuous with
respect to the uniform topology. This means that the spectrum of At cannot
jump over the half-line (−∞,−1], and this is essential. Hence, the continu-
ity of the path in the uniform topology is essential, a weaker topology is not
appropriate for our purposes. For details see [Kat, IV-§3.1].

Proof. We have, by Theorem 1.3.34,
∫ 1

0

τ
(
(1 + At)−1A′t

)
dt =

∫ 1

0

{
τ
(
log(1 + At)

)}′
dt

= τ
(
log(1 + A1)

)− τ
(
log(1 + A0)

)
= τ

(
log(1 + A)

)
,
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which proves (1.76). ¤

Remark 1 This proof actually shows that the determinant, defined by the right
hand side of (1.76), does not depend on the choice of the path {At}t∈[0,1] , pro-
vided At ∈ L1,π(N , τ) for all t. This happens since all such paths are homotopic.

Proposition 1.7.3 Let A, B ∈ L1,π(N , τ), ‖A‖ <
√

2−1, ‖B‖ <
√

2−1. Then

detτ

(
(1 + A)(1 + B)

)
= detτ (1 + A) detτ (1 + B). (1.77)

Proof. First, we note that ‖A + B + AB‖ 6 ‖A‖+ ‖B‖+ ‖A‖ ‖B‖ < 1, so that
A + B + AB ∈ L1,π(N , τ) and the determinant in left hand side of (1.77) is
well-defined. Now, if At = tA and Bt = tB, then {At}t∈[0,1] and {Bt}t∈[0,1]

are two L1-smooth paths, such that A0 = B0 = 0 and A1 = A, B1 = B and
‖At‖ <

√
2 − 1, ‖Bt‖ <

√
2 − 1. If Ct = At + Bt + AtBt then C := C1 =

A1 + B1 + A1B1 = A + B + AB. Now,

τ
(
(1 + Ct)−1C ′t

)
= τ

(
{(1 + At)(1 + Bt)}−1 (At + Bt + AtBt)′

)

= τ
(
(1 + Bt)−1(1 + At)−1 {A′t + B′

t + A′tBt + AtB
′
t}

)

= τ
(
(1 + Bt)−1(1 + At)−1A′t(1 + Bt)

+ (1 + Bt)−1(1 + At)−1(1 + At)B′
t

)

= τ
(
(1 + Bt)−1B′

t

)
+ τ

(
(1 + At)−1A′t

)
.

Hence,

detτ

(
(1 + A)(1 + B)

)

= detτ (1 + C) = exp
{∫ 1

0

τ
(
(1 + Ct)−1C ′t

)
dt

}

= exp
{∫ 1

0

τ
(
(1 + At)−1A′t

)
dt +

∫ 1

0

τ
(
(1 + Bt)−1B′

t

)
dt

}

= detτ (1 + A) detτ (1 + B).

¤

Lemma 1.7.4 The product property (1.77) of the determinant (1.75) holds
for any pair A and B of operators from L1,π(N , τ), if there exists two L1-
smooth paths {At}t∈[0,1] and {Bt}t∈[0,1] from L1,π(N , τ) such that the path
{At + Bt + AtBt}t∈[0,1] also lies in L1,π(N , τ).

The proof of this lemma is the same as that of Proposition 1.7.3.
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Lemma 1.7.5 Every operator A ∈ L1,π(N , τ) can be connected with the zero
operator 0 by a L1-smooth path lying entirely in L1,π(N , τ).

Proof. For example, At = tA. ¤

This lemma means that the τ -determinant is defined for all operators from
L1,π(N , τ).

We note that the definition of complex-valued determinant (1.7.1) coin-
cides with the path-dependent determinant of de la Harpe-Scandalis [HS], if
one chooses a path lying in L1,π(N , τ).

1.7.2 Technical lemmas

Lemma 1.7.6 If T ∈ 1 + L1(N , τ) then |T | ∈ 1 + L1(N , τ).

Proof. We have T ∗ ∈ 1 + L1(N , τ), and so |T |2 = T ∗T ∈ 1 + L1(N , τ). Hence,
|T |2 − 1 = (|T | − 1)(|T | + 1) ∈ L1(N , τ). Since |T | + 1 is invertible, it follows
that |T | − 1 ∈ L1(N , τ). ¤

Lemma 1.7.7 If T ∈ 1+L1(N , τ), then there exists a unitary operator U such
that T = U |T | .

Proof. Since T ∈ 1+K(N , τ), it follows from Theorem 1.5.7 that the projections
NT and NT∗ are equivalent. So, if U1 is an isometry with initial projection NT

and final projection NT∗ and if T = U2 |T | is the polar decomposition of T, then

U1 =
(

U1 0
0 0

)

[NT∗ ,NT ]

, U2 =
(

0 0
0 U2

)

[NT∗ ,NT ]

,

and

T =
(

0 0
0 T

)

[NT∗ ,NT ]

,

so that U = U1 + U2 is a unitary operator and T = U |T | , since

U∗U =
(

U∗
1 0
0 U∗

2

)

[NT ,NT∗ ]

(
U1 0
0 U2

)

[NT∗ ,NT ]

=
(

NT 0
0 N⊥

T

)

[NT ,NT ]

= 1

and, similarly,

UU∗ =
(

U1 0
0 U2

)

[NT∗ ,NT ]

(
U∗

1 0
0 U∗

2

)

[NT ,NT∗ ]

=
(

NT∗ 0
0 N⊥

T∗

)

[NT∗ ,NT∗ ]

= 1,
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and

U2 |T | =
(

0 0
0 U2

)

[NT∗ ,NT ]

(
0 0
0 |T |

)

[NT ,NT ]

=
(

0 0
0 U2 |T |

)

[NT∗ ,NT ]

= T,

where the last equality follows from (1.11), (1.12) and (1.8). ¤

Lemma 1.7.8 If T ∈ 1 + L1(N , τ) is invertible and T = U |T | is the polar
decomposition, then U ∈ 1 + L1(N , τ) and there exist self-adjoint operators
S1, S2 ∈ L1(N , τ), such that U = eiS1 and |T | = eS2 .

Proof. Since U is invertible, so is |T | = U∗T. Since |T | ∈ 1 + L1(N , τ) by
Lemma 1.7.6, U = T |T |−1 ∈ 1 + L1(N , τ). If

U =
∫ 2π

0

eiλ dEU
λ

is the spectral integral, then let

S1 =
∫ 2π

0

λ dEU
λ .

Further, since |T | is a positive invertible operator, which belongs to the Banach
algebra C1 + L1(N , τ), its logarithm is well-defined in this Banach algebra by
the holomorphic functional calculus. ¤

1.7.3 Definition of Fuglede-Kadison determinant and its
properties

Definition 1.7.9 The Fuglede-Kadison determinant is the following func-
tion:

T ∈ 1 + L1(N , τ) 7→ ∆ (T ) := eτ(log |T |) = exp
[
τ (log |T |) ] ∈ [0,+∞),

where if kerT 6= {0} or log− |T | /∈ L1(N , τ) then we set, by definition, ∆(T ) :=
0. Here log− = min(0, log).

We note that the definition implies

∆ (T ) = ∆ (|T |) .

Lemma 1.7.10 If T ∈ 1 + L1(N , τ), then

∆(T )2 = ∆
(|T |2) .
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Proof. Taking logarithms, it suffices to show

2τ (log |T |) = τ
(
log(|T |2)

)
.

It suffices further to prove that, for any non-negative operator A,

2 log(A) = log(A2).

This readily follows from the spectral theorem in the form [RS, Theorem VII.3].
¤

Lemma 1.7.11 If T ∈ 1 + L1(N , τ), then

∆(T ) = ∆ (T ∗) .

Proof. By Lemma 1.7.7, there exists a unitary operator U such that T = U |T | .
Hence,

log(U |T |2 U∗) = U log(|T |2)U∗,

so that
τ [log(U |T |2 U∗)] = τ [log(|T |2)] ∈ [−∞, +∞).

It follows that
∆

(
U |T |2 U∗

)
= ∆

(
|T |2

)
∈ [0,∞).

Since |T ∗|2 = TT ∗ = U |T |2 U∗, it follows from Lemma 1.7.10 that

∆ (T ∗) = ∆ (T ) .

¤

Proposition 1.7.12 If S ∈ L1(N , τ), then

∆
(
eS

)
= eRe(τ(S));

Proof. By Lemma 1.7.10, we have ∆ (A)2 = ∆
(|A|2) . Hence, for t ∈ R,

2 log ∆
(
etS

)
= 2 log ∆

(|etS |) = log ∆
(|etS |2)

= log ∆
(
etS∗etS

)
= τ

(
log[etS∗etS ]

)
,

so that by Corollary 1.3.35 (the argument of log is a positive invertible operator,
so that log is holomorphic in a neighbourhood of its spectrum)

d

dt
(2 log ∆

(
etS

)
) =

d

dt
τ

(
log(etS∗etS)

)

= τ

(
(etS∗etS)−1 · d

dt
(etS∗etS)

)

= τ
(
e−tSe−tS∗ · (S∗etS∗etS + etS∗etSS)

)

= τ (S∗ + S) = 2Re(τ (S)).
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This means that log ∆
(
etS

)
= tRe(τ (S)), and taking t = 1 and exponentiating

this equality we get the claim. ¤

Lemma 1.7.13 The absolute value of the τ -determinant is equal to the Fuglede-
Kadison determinant.

Proof. If T ∈ L1,π(N , τ) then

|detτ (1 + T )| = eRe τ log(1+T ),

which by Proposition 1.7.12 is equal to ∆ (1 + T ) . ¤

Proposition 1.7.14 For any two invertible operators A,B ∈ 1 + L1(N , τ) the
following equality holds true

∆(AB) = ∆ (A)∆ (B) .

Proof. (A) Claim: for any two invertible positive operators A,B ∈ 1+L1(N , τ)
we have

τ (log(BAB)) = 2τ (log B) + τ (log A) . (1.78)

To prove this equality we can replace A by etS , where S = S∗ and t > 0,
and calculate derivatives of both sides, using Corollary 1.3.35

d

dt

(
τ
[
log(BetSB

])
= τ

(
(BetSB)−1 d

dt
(BetSB)

)

= τ
(
B−1e−tSB−1 ·BSetSB

)
= τ (S) ,

and
d

dt

(
2τ (log B) + τ

(
log etS

))
= τ

(
e−tS · SetS

)
= τ (S) .

Since with t = 0 the equality (1.78) is true, it has been proven.

(B) Claim: for any two invertible positive operators A,B ∈ 1 +L1(N , τ) we
have

∆ (AB) = ∆ (A)∆ (B) .

It follows from (1.78) that

log ∆
(
BA2B

)
= 2 log ∆ (B) + log ∆

(
A2

)
,

so that
∆

(
BA2B

)
= ∆(B)2 ∆

(
A2

)
.

Since by Lemma 1.7.10 we have

∆ (AB)2 = ∆
(|AB|2) = ∆

(
BA2B

)
,
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it follows that
∆ (AB)2 = ∆(B)2 ∆

(
A2

)
.

Now, Lemma 1.7.10 completes the proof of (B).

(C) Now, let A and B be two invertible operators. Since ∆ (A) = ∆ (|A|) ,
it follows that

∆ (AB) = ∆ (|AB|) = ∆
(√

B∗A∗AB
)

= ∆
(√

B∗|A||A|B
)

= ∆(||A|B|) = ∆ (|A|B) .

Further, using Lemma 1.7.11, applying the above equality to the pair B∗ and
|A| and using (B), we have

∆ (|A|B) = ∆ (B∗|A|) = ∆ (|B∗||A|)
= ∆ (|B∗|)∆ (|A|) = ∆ (B)∆ (A) .

¤

Proposition 1.7.15 log ∆ (·) is real-analytic in the L1(N , τ)-topology when re-
stricted to invertible elements of 1 + L1(N , τ). Also, if A(·) is an L1(N , τ)-
holomorphic function of a complex variable with invertible values in 1+L1(N , τ)
then log ∆ (A(·)) is harmonic.

Proof. (A) Claim: the proposition is true for the open set{
A ∈ 1 + L1(N , τ) : ‖A− 1‖ < 1

}
.

The series ∞∑
n=0

(−1)n−1

n
(A− 1)n

converges in L1(N , τ)-norm in the open ball ‖A− 1‖L1 < 1. It follows from
Proposition 1.7.12 that in the open ball ‖A− 1‖L1 < 1

log ∆ (A) = Re τ (log A) = Re
∞∑

k=1

(−1)n−1

n
τ [(A− 1)n].

Since Re τ is an R-linear L1(N , τ)-bounded functional, the claim is proved.

(B) That the proposition is true also for GL(N )∩1+L1(N , τ) follows from
Lemma 1.7.6, Lemma 1.7.8 and Proposition 1.7.14. ¤

Lemma 1.7.16 If A ∈ L1(N , τ), 1 + A > 0 and N1+A = {0} then

∆(1 + A) = exp
(∫ 1

0

τ
(
(1 + tA)−1A

)
dt

)
.
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Proof. (A) If 1 + A is invertible, then A ∈ L1,π(N , τ) and the equality under
claim follows from Lemmas 1.7.2 and 1.7.13 by taking the path At = tA, t ∈
[0, 1], which connects 0 with A (or it also follows directly from the proof of
Lemmas 1.7.2).

(B) If 1 + A is not invertible then let gδ(x) = max(δ, x), δ > −1, and
Aδ = gδ(A). Then since log(1 + Aδ) is decreasing as δ → −1+, by normality of
τ we have

∆ (1 + A) = lim
δ→−1+

∆(1 + Aδ) .

Since 1 + Aδ is invertible, we have by (A)

∆ (1 + A) = lim
δ→−1+

exp
(∫ 1

0

τ
(
(1 + tAδ)−1Aδ

)
dt

)
.

Since
τ

(
(1 + tAδ)−1Aδ

)
=

1
t
τ

(
1− (1 + tAδ)−1

)

decreases as δ → −1+, by monotone convergence theorem and normality of τ
we have

lim
δ→−1+

∫ 1

0

τ
(
(1 + tAδ)−1Aδ

)
dt =

∫ 1

0

τ
(
(1 + tA)−1A

)
dt.

The proof is complete. ¤

Lemma 1.7.17 If A, B ∈ 1 + L1(N , τ) and if |A| 6 |B| then ∆(A) 6 ∆(B) .

Proof. Since ∆ (A) = ∆ (|A|) and |A| , |B| ∈ 1 + L1(N , τ) by Lemma 1.7.6, we
can assume that 0 6 A 6 B. Let A = 1 + S and B = 1 + T, so that S, T ∈
L1(N , τ) and −1 6 S 6 T. If N1+S 6= {0} , then by definition ∆ (1 + S) = −∞,
so there is nothing to prove. Otherwise, by Lemma 1.7.16 we have

∆ (1 + S) = exp
(∫ 1

0

τ
(
(1 + tS)−1S

))
dt

and

∆ (1 + T ) = exp
(∫ 1

0

τ
(
(1 + tT )−1T

))
dt.

So, it is enough to prove that τ
(
(1 + tS)−1S

)
6 τ

(
(1 + tT )−1T

)
. This is the

same as
1
t
τ

(
1− (1 + tS)−1

)
6 1

t
τ

(
1− (1 + tT )−1

)
.

So, it is enough to prove that (1 + tS)−1 > (1 + tT )−1, t ∈ (0, 1). But since for
t ∈ (0, 1) there exists c > 0 such that 0 < c 6 1 + tS 6 1 + tT, this follows from
Lemma 1.1.3. ¤
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Remark 2 Actually, as L.G.Brown notes in [Brn], this lemma is a simple
consequence of the fact that log is an operator monotone function. We gave
a proof which does not use this result. L.G.Brown says also that this lemma
follows very easily from spectral dominance arguments.

Proposition 1.7.18 log ∆ (·) is upper semi-continuous in the L1(N , τ)-
topology, i.e., if {Aα} is a net of operators from 1 + L1(N , τ) which converges
to A in L1(N , τ) topology then

lim
α

log ∆ (Aα) 6 log ∆ (A) .

If the net {|Aα|} , in addition, is non-increasing then equality holds.

Proof. (A) For ε > 0 and T = A− 1, set

fε(A) =
1
2

log ∆
(
|A|2 + ε |T |2

)
.

Since

ε |T |2 + |A|2 = ε |T |2 + (A∗ − 1)(A− 1) + A∗ + A− 1
= εT ∗T + T ∗T + T ∗ + T + 1

=
(
(1 + ε)1/2T ∗ + (1 + ε)−1/2

)(
(1 + ε)1/2T + (1 + ε)−1/2

)

+
ε

1 + ε

> ε

1 + ε
,

(1.79)

it follows that |A|2 + ε |T |2 is invertible. Hence, by Proposition 1.7.15 the
function ε 7→ fε(A) is continuous. It also follows from the last equality that
the map A ∈ 1+L1(N , τ) 7→ fε(A) is L1(N , τ)-continuous. Further, by Lemma
1.7.17 we have that fε(A) > log ∆ (A) and fε(A) is non-decreasing in ε.

(B) Claim:
lim

ε→0+
fε(A) = log ∆ (A) .

Let Aδ = gδ(A), where δ ∈ (0, 1/2) and gδ(λ) = max(δ, λ). Aδ is invertible and,
since A ∈ 1 + L1(N , τ), the operator Aδ also belongs to L1(N , τ). Hence, since
by Lemma 1.7.17

1
2

log ∆
(
A2

δ + ε |T |2
)

> fε(A)

and by Proposition 1.7.15

lim
ε→0+

1
2

log ∆
(
A2

δ + ε |T |2
)

= log ∆ (Aδ) ,
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it follows that
fε(A) 6 log ∆ (Aδ) .

Since log ∆ (Aδ) = τ (log(Aδ)) , by normality of trace τ we have

fε(A) 6 log ∆ (A) .

(C) Let an(ε) be a sequence of non-decreasing functions such that the point-
wise limit lim

n→∞
an(ε) exists. Then

X := lim
n→∞

lim
ε→0+

an(ε) 6 lim
ε→0+

lim
n→∞

an(ε) =: Y.

For sake of completeness, we give a proof of (C). Let δ > 0. There exists ε0 > 0
such that lim

n→∞
an(ε0) < Y + δ. By monotonicity of an we have limε→0+ an(ε) 6

an(ε0). Hence,

X = lim
n→∞

lim
ε→0+

an(ε) 6 lim
n→∞

an(ε0) < Y + δ,

so that X 6 Y.

(D) Using (B), (C), (A) and again (B), we have

lim
α

log ∆ (Aα) = lim
α

lim
ε→0+

fε(Aα) 6 lim
ε→0+

lim
α

fε(Aα) = lim
ε→0+

fε(A) = log ∆ (A) .

¤

Proposition 1.7.19 For any S, T ∈ 1 + L1(N , τ) one has the relation

∆(ST ) = ∆ (S)∆ (T ) . (1.80)

Proof. (A) Assume first that S, T > 0 and that T is invertible. Let Sn = gn(S),
where gn(λ) = max( 1

n , λ), n = 2, 3, . . . . Since, by Lemma 1.7.10, ∆ (ST )2 =

∆
(
|ST |2

)
= ∆

(
TS2T

)
, we see, by Lemma 1.7.17, that

∆ (SnT ) =
√

∆(TS2
nT ) >

√
∆(TS2T ) = ∆ (ST ) .

Thus Proposition 1.7.18 implies that

lim
n→∞

∆(SnT ) = lim
n→∞

√
∆ (TS2

nT ) =
√

∆(TS2T ) = ∆ (ST ) . (1.81)

Taking T = 1 implies also that lim
n→∞

∆(Sn) = ∆ (S) . Since Sn is invertible,

Proposition 1.7.14 and (1.81) imply that ∆ (ST ) = ∆ (S)∆ (T ) .

(B) Now assume that S, T > 0 are not necessarily invertible. Let Tn =
gn(T ), n = 2, 3, . . . . Since, by Lemmas 1.7.11 and 1.7.10, ∆ (ST )2 =
∆

(
|(ST )∗|2

)
= ∆

(
ST 2S

)
, it follows from Lemma 1.7.17 that

∆ (STn) =
√

∆ (ST 2
nS) >

√
∆ (ST 2S) = ∆ (ST ) .
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So, by Proposition 1.7.18,

lim
n→∞

∆(STn) = lim
n→∞

√
∆(ST 2

nS) =
√

∆(ST 2S) = ∆ (ST ) . (1.82)

Since Tn is invertible, by part (A)

∆ (ST ) = lim
n→∞

∆(S)∆ (Tn) = ∆ (S)∆ (T ) .

(C) Now, exactly the same argument, as in the proof of part (C) of Propo-
sition 1.7.14, shows that (1.80) holds for arbitrary S, T ∈ 1 + L1(N , τ). ¤

Proposition 1.7.20 If E is a projection from N such that TE = ETE then

∆(T ) = ∆ENE (ETE) ·∆E⊥NE⊥ (E⊥TE⊥) .

Proof. The equality TE = ETE implies E⊥TE = E⊥ETE = 0, so that

T =
(

T11 T12

0 T22

)

[E,E]

.

Since
(

T11 T12

0 T22

)

[E,E]

=
(

1 0
0 T22

)

[E,E]

(
1 T12

0 1

)

[E,E]

(
T11 0
0 1

)

[E,E]

,

(1.83)
by Proposition 1.7.19 we have

∆ (T ) = ∆
(

1 0
0 T22

)

[E,E]

∆
(

1 T12

0 1

)

[E,E]

∆
(

T11 0
0 1

)

[E,E]

= ∆E⊥NE⊥ (T22)∆

(
exp

(
0 T12

0 0

)

[E,E]

)
∆ENE (T11)

= ∆E⊥NE⊥ (T22) exp Re τ

(
0 T12

0 0

)

[E,E]

∆ENE (T11)

= ∆E⊥NE⊥ (T22)∆ENE (T11) ,

where the third equality follows from Proposition 1.7.12. ¤

Proposition 1.7.21 If T ∈ 1 + L1(N , τ) and B is an invertible operator
from N , then

∆
(
B−1TB

)
= ∆(T ) .

Proof. (A) Suppose first that T is invertible. In this case, in the polar decom-
position T = U |T | , the operators U, |T | ∈ 1 + L1(N , τ) by Lemmas 1.7.6 and
1.7.8. Hence, Proposition 1.7.19 implies

∆
(
B−1TB

)
= ∆

(
B−1UB ·B−1 |T |B)

= ∆
(
B−1UB

)
∆

(
B−1 |T |B)

.
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Since by Lemma 1.7.8 U = eS1 and |T | = eS2 for some S1, S2 ∈ L1(N , τ), by
Proposition 1.7.14

∆
(
B−1UB

)
= ∆

(
[B−1eS1/2][eS1/2B]

)
= ∆

(
[eS1/2B][B−1eS1/2]

)
= ∆ (U) ,

and similarly, ∆
(
B−1 |T |B)

= ∆ (|T |) . Hence,

∆
(
B−1TB

)
= ∆(U)∆ (|T |)

and by Proposition 1.7.19

∆
(
B−1TB

)
= ∆ (U |T |) = ∆ (T ) .

(B) For general T, let Tn = Ugn(|T |), where gn(λ) = max( 1
n , λ), n = 2, 3, . . . .

Then, since |T | ∈ 1 + L1(N , τ) (Lemma 1.7.6), we have that Tn, n > 2, is
invertible, Tn ∈ 1 +L1(N , τ), Tn → T in L1(N , τ) and ∆ (Tn) → ∆(T ) . So, by
(A)

∆ (T ) = lim
n→∞

∆(Tn) = lim
n→∞

∆
(
B−1TnB

)
.

Then, since B−1TnB → B−1TB in L1(N , τ), Proposition 1.7.18 implies that
∆ (T ) 6 ∆

(
B−1TB

)
. By symmetry, also ∆

(
B−1TB

)
6 ∆ (T ) . ¤

1.8 The Brown measure

In this section we give an exposition of the theory of the Brown measure for
τ -trace class operators. We follow here [Brn].

The Brown measure of an operator from a semifinite von Neumann algebra
N is a measure on the spectrum of the operator. It describes spectral properties
of the operator and it is a generalization of both the spectral measure of a normal
operator and the counting measure of a compact operator.

1.8.1 Weyl functions

For purposes of exposition, it will be convenient to adopt the following termi-
nology.

Definition 1.8.1 We call a function ϕ : [0,∞) → [0,∞) a Weyl function if
ϕ is non-decreasing, ϕ(0) = 0 and the function R 3 t 7→ ϕ(et) is convex.

Lemma 1.8.2 A function ϕ : [0,∞) → [0,∞), which is continuous at 0, is a
Weyl function if and only if it is the limit of an increasing sequence of linear
combinations of functions log+(rx), r > 0 with non-negative coefficients.
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Proof. (If) If ϕ(x) = log+(rx) then ϕ(et) = max(0, a + bt), for some a ∈ R
and b > 0. Hence, the functions log+(rx), r > 0, are Weyl functions. Also,
a positive linear combination of Weyl functions is a Weyl function. It is also
clear that the limit of an increasing sequence of Weyl functions is also a Weyl
function.

(Only if) This assertion follows from the well-known fact that any increas-
ing convex function f on R, with limt→−∞ = 0, is the limit of an increasing
sequence of linear combinations of a constant function and functions of the form
max(0, a + bt), b > 0. ¤

Any Weyl function is the sum of a Weyl function, which is continuous at 0,
and a function ϕ with ϕ(0) = 0 and ϕ(t) = const for t > 0.

Note that, since (log(1 + et))′′ = et

(1+et)2 > 0, the function log(1 + x) is a
Weyl function.

Proposition 1.8.3 Let s1, s2 : (0,∞) → [0,∞) be non-increasing, and assume
that ∫ 1

0

log+ sj(x) dx < ∞, j = 1, 2.

Then the following are equivalent:
(i) ∫ t

0

log s1(x) dx 6
∫ t

0

log s2(x) dx for all t ∈ (0,∞).

(ii)
∫ ∞

0

log+(rs1(x)) dx 6
∫ ∞

0

log+(rs2(x)) dx for all r ∈ (0,∞).

(iii) ∫ t

0

ϕ(s1(x)) dx 6
∫ t

0

ϕ(s2(x)) dx for all t ∈ (0,∞],

where ϕ is an arbitrary Weyl function.

Proof. The hypothesis implies that for any t > 0 and r > 0
∫ t

0

log+(rsj(x)) < ∞.

(i) ⇒ (ii). Note that, for j = 1, 2,
∫ ∞

0

log+(rsj(x)) dx = sup
t>0

{∫ t

0

log(rsj(x)) dx

}

= sup
t>0

{
t log r +

∫ t

0

log sj(x) dx

}
.

(1.84)
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(ii) ⇒ (i). First assume that s2(t) > 0. Then for r = 1
s2(t)

,

∫ t

0

log(rs1(x)) dx 6
∫ t

0

log+(rs1(x)) dx 6
∫ ∞

0

log+(rs1(x)) dx

6
∫ ∞

0

log+(rs2(x)) dx =
∫ t

0

log(rs2(x)) dx,

which gives the result for t. Now let t∗ = inf {t : s2(t) = 0} . Since
∫ t∗

0

log s1(x) dx = lim
t→t∗−

∫ t

0

log s1(x) dx

6 lim
t→t∗−

∫ t

0

log s2(x) dx =
∫ t∗

0

log s2(x) dx,

it suffices to show that

if t∗ < t2, then s1(t2) = 0. (1.85)

For any r > 1 by (1.84) we have
∫ ∞

0

log+(rs1(x)) dx 6 t2 log r +
∫ t2

0

log s1(x) dx

and ∫ ∞

0

log+(rs2(x)) dx 6 t∗ log r +
∫ t∗

0

log+ s2(x) dx.

So, for large enough r, the inequality s1(t2) > 0 would contradict (ii).

(ii) ⇒ (iii). If t < ∞ then we may change s1(x) and s2(x) to 0 for x > t,
since (i) will remain true. Thus we are reduced to the case t = ∞. If ϕ is
continuous at 0, then it is enough to apply Lemma 1.8.2 and the monotone
convergence theorem. Otherwise, it is enough to consider the function ϕ(0) = 0,
and ϕ(t) = 1, if t > 0. For this case the claim follows from (1.85).

(iii) ⇒ (ii). Trivial, since log+(rx) is a Weyl function. ¤

Lemma 1.8.4 For any T ∈ N and for any Weyl function ϕ

τ (ϕ(|Tn|)) 6 τ (ϕ(|T |n)) .

Proof. By Proposition 1.3.29, we have Λt(Tn) 6 nΛt(T ), so that
∫ t

0

log(µs(Tn)) ds 6 n

∫ t

0

log(µs(T )) ds

=
∫ t

0

log(µs(T )n) ds

=
∫ t

0

log(µs(|T |n)) ds,
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the last equality by Lemma 1.3.17. Hence, equivalence of (i) and (iii) in Propo-
sition 1.8.3 gives

∫ ∞

0

ϕ(µt(Tn)) dt 6
∫ ∞

0

ϕ(µt(|T |n)) dt,

which by Proposition 1.3.21 is the same as

τ (ϕ(|Tn|)) 6 τ (ϕ(|T |n)) .

¤

1.8.2 The Weierstrass function

Let gk : C→ C, k > 1, be an entire function, defined by

gk(z) = (1− z)ez+ 1
2 z2+...+ 1

k−1 zk−1
, z ∈ C.

Lemma 1.8.5 The following is true

log |gk(z)| = O(|z|k), as z → 0; (1.86)

for any ε > 0
log |gk(z)| = O(|z|k−1+ε), as z →∞; (1.87)

and for some C > 0

log |gk(z)| 6 C |z|k , ∀z ∈ C. (1.88)

Proof. We have,

log |gk(z)| = Re log
(
(1− z)ez+ 1

2 z2+...+ 1
k−1 zk−1

)

= −Re
(

1
k

zk +
1

k + 1
zk+1 + . . . +

1
n

zn + . . .

)
.

Here it does not matter which branch of logarithm is taken, since the real parts
will be the same. Hence, (1.86) follows.

The assertion (1.87) follows from

log |gk(z)| = log |1− z|+ Re
(

z +
1
2
z2 + . . . +

1
k − 1

zk−1

)
.

The inequality (1.88) follows from (1.86) and (1.87), since at the discontinuity
point z = 1, the function is −∞. ¤

In (1.87), ε is necessary for the case k = 1.
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1.8.3 Subharmonic functions

We give first the definition of a subharmonic function and collect some properties
of subharmonic functions. These are necessary for the exposition of the theory
of the Brown measure, given later.

Let G be a domain i.e. an open connected subset of C.

Definition 1.8.6 An upper semicontinuous function u : G → [−∞,∞) is said
to be subharmonic in G if, for any z ∈ G, there exists ε > 0 such that for any
0 < r < ε

u(z) 6 1
2π

∫ 2π

0

u(z + reiθ) dθ. (1.89)

The proof of the following facts can be found in, e.g. [HK] or [Vl].

Proposition 1.8.7 [HK] (i) If u is subharmonic in G then u is subharmonic
in any open subset U of G.
(ii) If u1, . . . , uk are subharmonic in G and t1, . . . , tk > 0, then t1u1 + . . .+ tkuk

is subharmonic in G.
(iii) If u1, . . . , uk are subharmonic in G, then max u1, . . . , uk is subharmonic
in G.
(iv) A non-constant subharmonic function cannot have a local maximum.

Lemma 1.8.8 [HK] Decreasing sequence un(z) of subharmonic functions con-
verges to a subharmonic function.

Lemma 1.8.9 [HK] If u is subharmonic in G then it is locally summable in G.

Proposition 1.8.10 [HK] If u is subharmonic in G, then ∆u ≥ 0 in G (in dis-
tribution sense). Conversely, if u ∈ D′(G) and ∆u ≥ 0, then u is a measurable
function which is almost everywhere equal to a subharmonic function.

If u is locally integrable, then ∆u, computed in distributional sense, is a
measure which is finite on compact sets. The measure 1

2π ∆u is called the Riesz
measure of the subharmonic function u. The Riesz measure of a subharmonic
function is finite on compact subsets.

Let E(z, w) be one of the functions log |z − w| , log
∣∣gk

(
z
w

)∣∣ , k > 1. The
function E(z, w) satisfies the equation ∆zE(z, w) = 2πδ(z − w), where δ is the
Dirac δ-function.
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If µ0 is a non-negative measure in C with compact support and K is a
compact subset of C, then the function

vK(z) =
∫

K

E(z, w) dµ0(w)

is subharmonic and ∆vK(z) = µ0

∣∣
K

. Hence, if µ0 is the Riesz measure of a
subharmonic function u, then u = 2πvK +h, where h is a subharmonic function,
harmonic on the interior of K.

Lemma 1.8.11 [HK] Let u be subharmonic in C, and let µ0 be its Riesz mea-
sure. If E(z, w) is a Green’s function for the Laplace operator ∆, such that for
some R > 0 ∫

{w:|w|>R}
|E(z, w)| dµ0(w) < ∞ (1.90)

for all z ∈ C, then

u(z) =
∫

C
E(z, w) dµ0(w) + h(z),

where h(z) is an entire harmonic function.

This lemma follows from Riesz representation theorem [HK, Theorem 3.9] and
the estimate (1.90).

Lemma 1.8.12 [HK, Theorem 3.14] Assume that u is subharmonic on C, and
that u is harmonic in a neighbourhood of 0, and u(0) = 0. Let µ0 be the Riesz
measure of u. Then for all r > 0

∫
log+

r

|w| dµ0(w) =
1
2π

∫ 2π

0

u(reiθ) dθ.

If u is a subharmonic function in C, then we set

Snu(z) :=
n−1∑

j=0

u(ρjz),

where ρ = e
2πi
n . It follows directly from the definition of the subharmonic func-

tion (1.89), that the function Snu is subharmonic in C. It is easy to check that
∫ 2π

0

Snu(reiθ) dθ = n

∫ 2π

0

u(reiθ) dθ. (1.91)

Let
Sn+u(z) = max (0, Snu(z)) .

By Proposition 1.8.7(iii), the function Sn+u is also subharmonic in C.
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Proposition 1.8.13 Let u : C→ R be subharmonic in C, and let u be harmonic
in a neighborhood of 0. Let µ0 be the Riesz measure of u. Let p > 0 be such that

∫

C
|w|−p dµ0(w) < ∞ (1.92)

and let k > p be an integer. Assume that u vanishes to order at least k at zero
and

Sn+u(z) = o(|z|n) (1.93)

as z →∞ for all n > k. Then for all z ∈ C

u(z) =
∫

C
log

∣∣∣gk

( z

w

)∣∣∣ dµ0(w).

Proof. (A) The estimates (1.86) and (1.92) imply that the last integral converges
when z

w is very small. Hence, if v(z) is the integral, then by Lemma 1.8.11,

u = v + h, (1.94)

where h is an entire harmonic function.

We have to show that h = 0.

Since µ0 is zero in a neighbourhood of 0, (1.92) implies that
∫

C
|w|−k dµ0(w) < ∞

for any k > p. Since by (1.88)

|v(z)| 6 C |z|k
∫
|w|−k

dµ0(w) 6 C1 |z|k ,

v vanishes to order k at 0, and since u also vanishes to order k at zero, so does
h = u− v.

(B) Let ε > 0 and let R = R(ε) > 0 be such that
∫

{w : |w|>R}
|w|−k

dµ0(w) < ε. (1.95)

By (1.87),

∣∣∣
∫

{w : |w|6R}
log

∣∣∣gk

( z

w

)∣∣∣ dµ0(w)
∣∣∣

6 C

∫

{w : |w|6R}

∣∣∣ z

w

∣∣∣
k−1/2

dµ0(w) 6 C1(R) |z|k− 1
2 .
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By (1.88) and (1.95),
∣∣∣∣∣
∫

{w : |w|>R}
log

∣∣∣gk

( z

w

)∣∣∣ dµ0(w)

∣∣∣∣∣ 6 C

∫

{w : |w|>R}

∣∣∣ z

w

∣∣∣
k

dµ0(w) < Cε |z|k .

Hence,
v+(z) = o(|z|k) (1.96)

as z →∞.

(C) Since
∫ 2π

0

v(reiθ) dθ =
∫ 2π

0

v+(reiθ) dθ −
∫ 2π

0

v−(reiθ) dθ > v(0) = 0,

it follows from (1.96) that
∫ 2π

0

∣∣v(reiθ)
∣∣ dθ = o(rk) as r →∞.

Hence, for any n > k,

∫ 2π

0

∣∣Snv(reiθ)
∣∣ dθ = o(rn) as r →∞,

since rk 6 rn for r > 1.

Similarly, by (1.93), for any n > k,

∫ 2π

0

∣∣Snu(reiθ)
∣∣ dθ = o(rn) as r →∞.

(D) Any entire harmonic function h̃ has an expansion

h̃(reiθ) =
∞∑

m=0

amrm cosmθ +
∞∑

m=1

bmrm sin mθ, am, bm ∈ R,

where for m > 0,

am =
1

πrm

∫ 2π

0

h̃(reiθ) cos mθ dθ (1.97)

and

bm =
1

πrm

∫ 2π

0

h̃(reiθ) sin mθ dθ. (1.98)

Indeed, any entire harmonic function h̃(z) is the real part of an entire analytic
function f(z) =

∑∞
m=0 cmzm. Hence, letting cm = am + ibm and z = reiθ,

h̃(z) =
∞∑

m=0

amrm cosmθ − bmrm sin mθ.
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The formulas (1.97) and (1.98) for the coefficients am and bm can be found by
multiplying this equality by cos mθ for am and by sin mθ for bm and integrating
both sides over [0, 2π].

(E) For m divisible by n,

am(Snh) = nam(h) and bm(Snh) = nbm(h). (1.99)

The equality (1.94) implies Snu = Snv + Snh. So, it follows from (C) that for
any n > k ∫ 2π

0

∣∣Snh(reiθ)
∣∣ dθ = o(rn), as r →∞.

By (1.99) and (1.97), this implies an(h) = 1
nan(Snh) = 0, and similarly, bn(h) =

0 for any n > k. Since, by (A), h vanishes to order k at 0, h = 0. ¤

1.8.4 Technical results

Lemma 1.8.14 Let A1, ..., An, B1, ..., Bn ∈ B(H) be such that the operator
n∑

k=1

|Ak|2 ∈ B(H) is invertible. Then

(
n∑

k=1

B∗
kAk

)(
n∑

k=1

|Ak|2
)−1 (

n∑

k=1

A∗kBk

)
6

n∑

k=1

|Bk|2.

Proof. Let Āj = Aj

(
n∑

k=1

|Ak|2
)−1/2

and let

Ā : H → H⊕ . . .⊕H, B : H → H⊕ . . .⊕H
be given by

Aξ = Ā1ξ ⊕ Ā2ξ ⊕ . . .⊕ Ānξ, Bξ = B1ξ ⊕B2ξ ⊕ . . .⊕Bnξ.

Then Ā∗Ā = 1 and hence ĀĀ∗ 6 1. Therefore,

(B∗Ā)(Ā∗B) = B∗(ĀĀ∗)B 6 B∗B,

as desired. ¤

Lemma 1.8.15 Let A1(z), ..., An(z) be holomorphic functions of a com-
plex variable, relative to the topology of L1(N , τ), such that A1(z) −
1, A2(z), ..., An(z) ∈ L1(N , τ). If

n∑
k=1

|Ak(z)|2 is invertible for all z ∈ C, then

u(z) := log ∆

(
n∑

k=1

|Ak(z)|2
)

is subharmonic.
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Proof. By Proposition 1.7.15, u is a C∞-function. By Proposition 1.8.10 it is
enough to show ∆u > 0. We have

∂u

∂z
= τ







n∑

j=1

Aj(z)∗Aj(z)



−1

n∑

j=1

Aj(z)∗A′j(z)


 ,

1
4
∆u =

∂2u

∂z̄∂z
= τ







n∑

j=1

|Aj(z)|2


−1

n∑

j=1

∣∣A′j(z)
∣∣2

−



n∑

j=1

|Aj(z)|2


−1

n∑

j=1

A′j(z)∗Aj(z)




n∑

j=1

|Aj(z)|2


−1

n∑

j=1

Aj(z)∗A′j(z)


 .

Since, by Theorem 1.3.32, τ [X−1Y ] = τ [X−1/2Y X−1/2], in order to show that
∆u > 0, it is sufficient to show that

n∑

j=1

∣∣A′j(z)
∣∣2 >

n∑

j=1

A′j(z)∗Aj(z)




n∑

j=1

|Aj(z)|2


−1

n∑

j=1

Aj(z)∗A′j(z).

This last follows from Lemma 1.8.14 with Bj = A′j(z). ¤

Theorem 1.8.16 Let A1(z), ..., An(z) be holomorphic functions of a complex
variable in the topology of L1(N , τ), such that A1(z) − 1, A2(z), ..., An(z) ∈
L1(N , τ). Then

u(z) := log ∆

(
n∑

k=1

|Ak(z)|2
)

is subharmonic.

Proof. Let T (z) = A1(z)− 1, and for ε > 0 let

uε(z) = log ∆

(
ε |T (z)|+

n∑

k=1

|Ak(z)|2
)

.

Then ε |T (z)|+
n∑

k=1

|Ak(z)|2 is invertible for any z by the argument of (1.79), so

that by Lemma 1.8.15 the function uε is subharmonic. Since by Lemma 1.7.17
uε ↓ u(z) as ε ↓ 0, by Lemma 1.8.8 u is also subharmonic. ¤
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1.8.5 The Brown measure

As usual,N is a semifinite von Neumann algebra, τ is a faithful normal semifinite
trace on N .

Let T ∈ Lk(N , τ), where k is a positive integer and set

uT (z) := log ∆ (gk(zT )) = τ (log |gk(zT )|) , z ∈ C.

Theorem 1.8.17 The function uT (z) is subharmonic in C and is harmonic in{
z ∈ C : z−1 /∈ σT

}
. In particular, uT (z) is harmonic in a neighbourhood of 0

and vanishes to order k at 0.

Proof. Since gk(z)−1 vanishes to order k at 0 by (1.86), it follows that gk(zT ) ∈
1 + L1(N , τ). Combined with the case n = 1 of Theorem 1.8.16 and Lemma
1.7.10, this implies that uT (z) is subharmonic. Moreover, gk(zT ) is invertible
whenever 1

z /∈ σT , and in this region u is harmonic by Proposition 1.7.15. In
particular, u is harmonic in a neighbourhood of 0 and vanishes to order k at 0.
¤

This enables one to introduce a measure in C, which characterizes spectral
properties of an operator T.

Definition 1.8.18 The Brown measure µT of an operator T ∈ L1 is a non-
negative measure in C \ {0} , defined by the formula

dµT (λ) := dµ∗T (λ−1),

where
dµ∗T =

1
2π

∆uT (z)

is the Riesz measure of the subharmonic function uT (z).

The Brown measure is a non-negative measure, which is finite on compact sub-
sets of C \ {0} .

The support of a measure µ in C is defined as the complement of the
union of all open sets of µ-measure zero.

Corollary 1.8.19 Let T be a τ -trace class operator from N . The support
supp(µT ) of the Brown measure of T is a subset of σ∗T := σT \ {0}.

Proof. Directly follows from definition of the Brown measure and Theorem
1.8.17. ¤
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1.8.6 The Lidskii theorem for the Brown measure

The aim of this subsection is to prove the Lidskii theorem for the Brown measure
(Theorem 1.8.27). The main concern of the proof is to check the conditions of
Proposition 1.8.13 for the function uT (z).

Lemma 1.8.20 If T ∈ Lp(N , τ), where p is a positive integer, then for any
integer n > p

SnuT (z) = log ∆ (1− znTn) .

Proof. Using the product property of the Fuglede-Kadison determinant (Propo-
sition 1.7.19) we see that

SnuT (z) =
n−1∑

j=0

log ∆
(
gk(ρjzT )

)
= log ∆




n−1∏

j=0

gk(ρjzT )


 .

Hence, it suffices to show that
∏n−1

j=0 gk(ρjzT ) = 1− znTn. We have

n−1∏

j=0

gk(ρjzT ) =
n−1∏

j=0

(1− ρjzT )eρjzT+ 1
2 (ρjzT )2+...+ 1

k−1 (ρjzT )k−1

= e

n−1∑
j=0

ρjzT+ 1
2

n−1∑
j=0

ρ2j(zT )2+...+ 1
k−1

n−1∑
j=0

ρ(k−1)j(zT )k−1

·
n−1∏

j=0

(1− ρjzT )

=
n−1∏

j=0

(1− ρjzT ) = 1− znTn,

where the third equality follows from the fact that
n−1∑
j=0

ρmj = 0 for all m =

1, 2, . . . , p− 1. ¤

Lemma 1.8.21 If T ∈ L1(N , τ) then

τ (log |1 + T |) 6 τ (log(1 + |T |)) .

Proof. We have τ (log |1 + T |) 6 τ
(
log+ |1 + T |) and, by Proposition 1.3.21,

τ
(
log+ |1 + T |) =

∫ ∞

0

log+ µt(1 + T ) dt,

so that
τ (log |1 + T |) 6

∫ ∞

0

log+ µt(1 + T ) dt.
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Hence, since µt(1 + T ) 6 µ0(1) + µt(T ) = 1 + µt(T ) by Lemma 1.3.18, we have

τ (log |1 + T |) 6
∫ ∞

0

log+

(
1 + µt(T )

)
dt

=
∫ ∞

0

log
(
1 + µt(T )

)
dt = τ (log(1 + |T |)) ,

where the last equality follows from Proposition 1.3.21. ¤

Lemma 1.8.22 If T ∈ Lk(N , τ) then for any n > k

Sn+uT (z) = o(|z|n) as z →∞.

Proof. By Lemma 1.8.20 we have

SnuT (z) = log ∆ (1− znTn) .

Since Tn ∈ L1(N , τ), we may suppose that n = k = 1. Then, by Lemma 1.8.21,

uT (z) = τ (log |1− zT |) 6 τ (log(1 + |z| |T |)) .

So, it suffices to show that

(E) := lim
r→∞

τ (log(1 + r |T |))
r

= 0.

l’Hôpital’s rule and Theorem 1.3.34 imply

(E) = lim
r→∞

τ
(
(1 + r |T |)−1 |T |) = lim

r→∞

∫

R

λ

1 + rλ
τ

(
dE

|T |
λ

)
.

Since |T | ∈ L1(N , τ), we have
∫
R λ τ

(
dE

|T |
λ

)
= τ (|T |) < ∞, so that the inte-

grand is majorized by a summable function and converges to 0. By the domi-
nated convergence theorem (E) = 0. ¤

Lemma 1.8.23 If T ∈ Lk(N , τ), then for any r > 0

1
2π

∫ 2π

0

uT (reiθ) dθ 6 τ
(
log+(r |T |)) ,

where log+(x) = max(0, log(x)).

Proof. Using successively (1.91), Lemma 1.8.20, Lemma 1.8.21, Lemma 1.8.4
applied to the Weyl function ϕ(x) = log(1 + x) and the spectral theorem, we
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have for n > k

1
2π

∫ 2π

0

uT (reiθ) dθ =
1

2πn

∫ 2π

0

SnuT (reiθ) dθ

=
1

2πn

∫ 2π

0

τ
(
log

∣∣1− rneinθTn
∣∣) dθ

6 1
n

τ (log(1 + rn |Tn|))

6 1
n

τ (log(1 + rn |T |n))

=
1
n

∫ ∞

0

log(1 + rnλn) dν(λ),

where ν(F ) = τ
(
E
|T |
F

)
. For λ < 1

r , we have log(1 + rnλn) 6 (rλ)n 6 (rλ)p,

where the last function is ν-summable. Thus, by the dominated convergence
theorem

lim
n→∞

∫ 1/r

0

log(1 + rnλn) dν(λ) = 0.

For λ > 1
r , we have log(1 + rnλn) 6 log(2rnλn) 6 log 2 + n log(rλ). Hence,

1
n

∫ ∞

1/r

log(1 + rnλn) dν(λ) 6 log 2
n

ν ([1/r,∞)) +
∫ ∞

1/r

log(rλ) dν(λ)

→ 0 + τ
(
log+(r |T |)) = τ

(
log+(r |T |)) ,

as n →∞. ¤

We recall (see e.g. [SW, p. 202, (V.3.18)]) that, if ν is a non-negative measure
on a measurable space S, f is a non-negative measurable function on S and f∗

is the non-increasing rearrangement of f relative to ν, then for all non-negative
measurable functions ϕ : [0,∞) → [0,∞)

∫ ∞

0

ϕ(f∗(s)) ds =
∫

S

ϕ(f(w)) dν(w). (1.100)

Theorem 1.8.24 If ϕ is a Weyl function, then
∫

C
ϕ(|w|) dµT (w) 6 τ (ϕ(|T |)) .

Also, for all t > 0 ∫ t

0

ϕ(µ1(s)) ds 6
∫ t

0

ϕ(µs(T )) ds,

where µ1 is the non-increasing rearrangement of |w| relative to dµT .
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Proof. We have
∫ ∞

0

log+(rµ1(s)) ds =
∫

C
log+(r |w|) dµT (w)

=
∫

C
log+

(
r

|w|
)

dµ∗T (w)

=
1
2π

∫ 2π

0

u(reiθ) dθ

6 τ
(
log+(r |T |))

=
∫ ∞

0

log+(rµs(T )) ds,

where the first equality follows from (1.100), the third equality follows from
Lemma 1.8.12, the fourth inequality follows from Lemma 1.8.23 and the fifth
equality follows from Proposition 1.3.21. Hence, implication (ii) ⇒ (iii) of
Proposition 1.8.3 gives, for all t ∈ (0,∞],

∫ t

0

ϕ(µ1(s)) ds 6
∫ t

0

ϕ(µs(T )) ds.

Now, applying once more (1.100) and Proposition 1.3.21, one gets from the last
equality with t = ∞,

∫

C
ϕ(|w|) dµT (w) 6 τ (ϕ(|T |)) .

¤

Corollary 1.8.25 (i) For any q > 0,
∫

C
|w|q dµT (w) < ‖T‖q

q .

(ii)
µT (σT \ {0}) 6 τ (suppr(T )) .

Proof. For (i), take ϕ(x) = xq in Theorem 1.8.24; for (ii), take ϕ(0) = 0 and
ϕ(x) = 1 for x > 0. ¤

Theorem 1.8.26 If k is a positive integer and if T ∈ Lk(N , τ), then, for all
z ∈ C,

τ (log |gk(zT )|) =
∫

C
log |gk(zw)| dµT (w). (1.101)

Proof. We can apply Proposition 1.8.13 to the function uT (z) since all its
conditions are fulfilled by Theorem 1.8.17, Lemma 1.8.22 and Corollary 1.8.25(i).
¤
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Theorem 1.8.27 (The Lidskii theorem for the Brown measure) Let k be a pos-
itive integer, let T ∈ Lk(N , τ) and let f(z) be a function holomorphic in a
neighborhood of σT ∪ {0} which vanishes to order k at 0. Then

τ (f(T )) =
∫

σ∗T

f(w) dµT (w).

Proof. A calculation gives

(log gk(x))′ = − xk−1

1− x
, x ∈ R.

So, differentiating (1.101) with respect to z ∈ R, by Theorem 1.3.34 we obtain,
for any z ∈ C \ {0} ,

τ

(
T k

1− zT

)
=

∫

C

wk

1− zw
dµT (w),

after cancelling zk−1 from both sides. (Note that we can differentiate under the
integral by Corollary 1.8.25(i) and Lebesgue Dominated Convergence theorem).
Thus, we have the theorem for functions of the form

g(w) =
wk

a− w
,

where a /∈ σT ∪ {0} . Now, write f(w) = wkf̃(w), where f̃ is a uniform limit of
linear combinations f̃n of functions 1

·−w in a neighbourhood of σT ∪{0} (in order
to get this representation, just take Riemannian sums of the Cauchy integral
for f). Then we have

τ
(
T kf̃n(T )

)
=

∫

C
wkf̃n(w) dµT (w).

In order to complete the proof, it remains to be shown that

lim
n→∞

∫

C
wkf̃n(w) dµT (w) =

∫

C
wkf̃(w) dµT (w)

and
lim

n→∞
τ

(
T kf̃n(T )

)
= τ

(
T kf̃(T )

)
.

The first equality follows from Corollary 1.8.25(i) and the Lebesgue Dominated
Convergence theorem. The second equality follows from the fact that T k ∈
L1(N , τ) and f̃n(T ) converges to f̃(T ) uniformly. ¤

1.8.7 Additional properties of the Brown measure

Let f∗µT be an inverse image of the Brown measure µT , i.e. f∗µT (B) :=
µT (f−1(B)) for any Borel subset B of the complex plane C.
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Proposition 1.8.28 [Brn, Theorem 4.1] Let T ∈ Lp(N , τ), p ∈ (0,∞). If
a function f(z) is holomorphic in a neighborhood of the spectrum of T and if
f(0) = 0 in case of τ (1) = ∞, then

µf(T ) = f∗µT .

We omit the proof of this proposition.

Proposition 1.8.29 If T ∈ Lp(N , τ), where p ∈ (0,∞), is normal, then for
any Borel subset B of C one has the relation

µT (B) = τ (χB(T )) ,

where χB is the indicator function of the set B.

Proof. Let f be a continuous function on σT , vanishing in a neighbourhood of
0. By the Stone-Weierstrass theorem, the function f can be uniformly approxi-
mated on σT by a sequence of polynomials {fn} vanishing at 0 to order p. For
each polynomial fn, we have by the Brown-Lidskii Theorem 1.8.27

τ (fn(T )) =
∫

σT \{0}
fn(w) dµT (w),

and taking the limit n → ∞ we get τ (f(T )) =
∫

f(w) dµT (w). This and a
standard measure theory argument complete the proof. ¤

Lemma 1.8.30 Let Ā ∈ 1+L1(N , τ), let E be a projection from N and suppose
that

Ā =
(

A B
C D

)

[E,E]

,

where A is invertible in ENE. Then

∆
(
Ā

)
= ∆ (A) ∆

(
D − CA−1B

)
.

Proof. This follows from Proposition 1.7.20 and
(

A B
C D

)

[E,E]

=
(

1 0
CA−1 1

)

[E,E]

(
A B
0 D − CA−1B

)

[E,E]

.

¤

Theorem 1.8.31 If S, T ∈ N and ST, TS ∈ Lp(N , τ) for some p ∈ (0,∞),
then

µST = µTS .
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Proof. (A) Let for ε > 0

P = E
|S∗|
[0,ε], Q = E

|S|
[0,ε],

and let

Ā = gk(ST ) =
(

A B
C D

)

[P,P ]

Ā′ = gk(TS) =
(

A′ B′

C ′ D′

)

[Q,Q]

.

We need to show that ∆ (gk(zST )) = ∆ (gk(zTS)) . We may absorb z into T,
so that it is enough to show

∆(gk(ST )) = ∆ (gk(TS)) .

By Lemma 1.8.30, the last equality will be proved if we show that

∆ (A) = ∆ (A′) , (1.102)

∆
(
D − CA−1B

)
= ∆

(
D′ − C ′(A′)−1B′) . (1.103)

(B) Claim: there exists a sufficiently small ε > 0 such that the operators

A = Pgk(ST )P and A′ = Qgk(TS)Q

are invertible in PNP and QNQ respectively.

We can write gk(w) = 1 +
∑∞

n=k anwn, where the power series has radius of
convergence ∞. Since ‖PS‖ , ‖SQ‖ 6 ε, for the invertibility of A and A′, it is
sufficient to choose ε > 0 such that

ε

∞∑

n=k

|an| ‖S‖n−1 ‖T‖n
< 1.

(C) This will imply ‖A− 1‖ < 1 and hence

log ∆ (A) = Re τ (log(A)) = Re
∞∑

m=1

(−1)m−1

m
τ ((A− 1)m) .

Moreover, the series for gk can be used to expand τ ((A− 1)m) . Since a similar
expansion holds for A′, (1.102) will follow from

τ (P (ST )n1P (ST )n2 . . . P (ST )nmP ) = τ (Q(TS)n1Q(TS)n2 . . . Q(TS)nmQ) ,
(1.104)

for n1, n2, . . . , nm > k. To prove (1.104) we use Lemma 1.3.32. Here

X = PS,

Y = QT (ST )n1−1P (ST )n2 . . . P (ST )nmP,
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and in order to show that τ (XY ) = the LHS of (1.104) and τ (Y X) = the RHS
of (1.104), we use the obvious fact

PS = SQ. (1.105)

(D) (1.103) will follow from

(D − CA−1B)S = S(D′ − C ′(A′)−1B′). (1.106)

Indeed, the operator P⊥S = SQ⊥ is invertible from Q⊥H to P⊥H. Hence,
(1.106) implies that (D−CA−1B) is similar to (D′ −C ′(A′)−1B′), and Propo-
sition 1.7.21 completes the proof of (1.103). Now we must prove (1.106), and
we note that it is equivalent to

P⊥gk(ST )P⊥S − P⊥gk(ST )(Pgk(ST )P )−1gk(ST )P⊥S

= SQ⊥gk(TS)Q⊥ − SQ⊥gk(TS)(Qgk(TS)Q)−1gk(TS)Q⊥. (1.107)

Here the inverses are taken relative to PNP and QNQ, respectively.

Finally, (1.107) follows from repeated application of (1.105) and

gk(ST )S = Sgk(TS). (1.108)

In particular, we note that (1.105) and (1.108) imply (Pgk(ST )P )−1S =
S(Qgk(TS)Q)−1. ¤

Lemma 1.8.32 One has

dµT∗(w) = dµT (w̄).

Proof. We have gk(zT ∗) = gk(z̄T )∗. This and Lemma 1.7.11 imply

uT∗(z) = log ∆ (gk(zT ∗)) = log ∆ (gk(z̄T )∗)
= log ∆ (gk(z̄T )) = uT (z̄).

Hence, dµT∗(w) = dµT (w̄). ¤

Proposition 1.8.33 If T ∈ L1,π(N , τ) then T ∗ ∈ L1,π(N , τ) and

detτ (1 + T ∗) = detτ (1 + T ).

Proof. Theorem 1.8.27 and Lemma 1.8.32 imply that

τ (log(1 + T ∗)) =
∫

C
log(1 + λ) dµT∗(λ)

=
∫

C
log(1 + λ) dµT (λ̄) =

∫

C
log(1 + λ̄) dµT (λ)

=
∫

C
log(1 + λ) dµT (λ) = τ (log(1 + T )),
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so that

detτ (1 + T ∗) = eτ(log(1+T∗)) = eτ(log(1+T ))

= eτ(log(1+T )) = detτ (1 + T ).

¤

Proposition 1.8.34 If T ∈ L1,π(N , τ) and S ∈ GL(N ) then S−1TS ∈
L1,π(N , τ) and

detτ (1 + S−1TS) = detτ (1 + T ).

Proof. Theorems 1.8.27 and 1.8.31 imply

τ
(
log(1 + S−1TS)

)
=

∫

C
log(1 + λ) dµS−1TS(λ)

=
∫

C
log(1 + λ) dµT (λ) = τ (log(1 + T )) .

¤

The last two lemmas can also be proved using Lemma 1.7.2.



Chapter 2

Spectrality of Dixmier trace

2.1 The Dixmier trace in semifinite von Neu-
mann algebras

The Dixmier trace is a specifically constructed example of a non-normal trace
on B(H), which was first discovered by Dixmier in 1966 [Di2]. In particular,
the Dixmier trace vanishes on all finite-rank operators. The Dixmier trace has
further found various applications. Alain Connes [Co] interpreted the Dixmier
trace as a non-commutative integral.

2.1.1 The Dixmier traces in semifinite von Neumann al-
gebras

In this subsection, we follow [Co].

Definition 2.1.1 The Dixmier ideal L1,∞(N , τ) is the set of all operators
T ∈ N such that

‖T‖(1,∞) := ‖T‖+ sup
t>0

1
log(2 + t)

Φt(T ) < ∞. (2.1)

It is clear that if ‖T‖(1,∞) < ∞, then lim
t→∞

µt(T ) = 0. So, by Lemma 1.3.13,

L1,∞(N , τ) ⊂ K(N , τ). (2.2)

Proposition 2.1.2 The set L1,∞(N , τ) is an invariant operator ideal of N .

85



CHAPTER 2. DIXMIER TRACE 86

Proof. (A) (L1,∞(N , τ), ‖·‖(1,∞)) is a normed linear space.

If ‖T‖(1,∞) = 0, then, evidently, T = 0. It follows from Lemma 1.3.15(ii),
that ‖αT‖(1,∞) = α ‖T‖(1,∞) . Finally, by Lemma 1.3.25, ‖S + T‖(1,∞) 6
‖S‖(1,∞) + ‖S‖(1,∞) .

(B) It follows from Lemma 1.3.15(i), that if T ∈ L1,∞(N , τ), then T ∗ ∈
L1,∞(N , τ) and ‖T ∗‖(1,∞) = ‖T‖(1,∞) .

It follows from Lemma 1.3.19, that if S,R ∈ N and T ∈ L1,∞(N , τ), then
STR ∈ L1,∞(N , τ), and, moreover,

‖STR‖(1,∞) 6 ‖S‖ ‖T‖(1,∞) ‖R‖ .

Hence, L1,∞(N , τ) is a ∗-ideal.

(C) (L1,∞(N , τ), ‖·‖(1,∞)) is complete.

Let T1, T2, . . . ∈ L1,∞(N , τ) be a Cauchy sequence in the norm ‖·‖(1,∞) .

Since, {Tn} is also a Cauchy sequence in the operator norm, it follows from
(2.2) and Lemma 1.3.12 that this sequence converges in the operator norm to a
τ -compact operator T ∈ N .

If in Lemma 1.3.18 we let s → 0, then, by (1.20), for all t > 0,

|µt(S)− µt(T )| 6 ‖S − T‖ .

Hence, for all t > 0,

lim sup
k→∞

|µt(Tk)− µt(T )| 6 lim sup
k→∞

‖Tk − T‖ = 0,

and so, for all t > 0, lim
k→∞

µt(Tk) = µt(T ). This implies that, for all t > 0,

lim
k→∞

Φt(Tk) = Φt(T ). (2.3)

If M ≥ 1, then, for any k = 1, 2, . . . ,

sup
06t6M

1
log(2 + t)

Φt(Tk) 6 sup
n≥1

‖Tn‖(1,∞) < +∞.

Passing to the limit k →∞ and using (2.3), we obtain

sup
06t6M

1
log(2 + t)

Φt(T ) 6 sup
n≥1

‖Tn‖(1,∞) .

Since the inequality above holds for every M ≥ 1, we obtain

sup
t>0

1
log(2 + t)

Φt(T ) 6 sup
n≥1

‖Tn‖(1,∞) .
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It follows that T ∈ L1,∞(H).

Now, we show that Tk converges to T in ‖·‖(1,∞) norm. Let ε > 0. Let
M ∈ N be such that for all k, m > M

‖Tk − Tm‖(1,∞) <
ε

2
.

It follows that, for all k,m > M,

sup
t>0

1
log(2 + t)

Φt(Tk − Tm) 6 ‖Tk − Tm‖(1,∞) <
ε

2
, (2.4)

Since, for all t > 0,

lim
m→∞

µt(Tk − Tm) = µt(Tk − T ),

it follows from (2.4), that for every fixed t > 0,

1
log(2 + t)

Φt(Tk − T ) = lim
m→∞

1
log(2 + t)

Φt(Tk − Tm) 6 ε

2
. (2.5)

Therefore,

sup
t>0

1
log(2 + t)

Φt(Tk − T ) 6 ε

2
.

If M is large enough, so that for all k > M ‖Tk − T‖ < ε
2 , then ‖Tk − T‖(1,∞) <

ε. ¤

Remark 2.1.3 In the case of a general semifinite von Neumann algebra N ,
the summand ‖T‖ in the definition (2.1) of the Dixmier norm is necessary to
ensure the completeness of the normed space (L1,∞(N , τ), ‖·‖(1,∞)). The norm
on the ideal L1,∞(N , τ), as defined in [CPS, p. 75], is not complete. In the case
N = B(H) the summand ‖T‖ in (2.1) can be removed.

The dilation operator Dα, α ∈ R, is defined on L∞[0,∞) by the formula

Dαf(t) = f(eαt).

We recall that a state on L∞[0,∞) is a normalized positive linear functional
on L∞[0,∞). Let ω be a dilation-invariant state on L∞[0,∞), i.e. a state
on L∞[0,∞), such that ω(Dαf) = ω(f). The value of a dilation-invariant state
ω on a bounded function f will also be denoted by

ω(f) = ω-lim
t→∞

f(t).

Proposition 2.1.4 Let ω be a dilation-invariant state on L∞[0,∞) and let
f ∈ L∞[0,∞). If the limit lim

t→∞
f(t) exists, then it is equal to ω(f).
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Proof. (A) If χ[0,a] is the indicator of the interval [0, a], a > 0, and if α ∈ R,
then ω(χ[0,a]) = ω(Dαχ[0,a])) = ω(χ[0,e−αa]). If e.g. α > 0, it follows that
ω(χ(e−αa,a]) = 0. This implies that ω vanishes on compactly supported func-
tions.

(B) Since ω(1) = 1, we may assume that lim
t→∞

f(t) = 0. Let ε > 0. Using (A)

and changing f to 0 on a sufficiently large interval [0, a], we may assume that
‖f‖∞ < ε. Positivity of ω implies, that ω(f) < ε. Hence, ω(f) = 0. ¤

Corollary 2.1.5 Any dilation-invariant state vanishes on compactly supported
functions.

Definition 2.1.6 Let ω be a dilation invariant state on L∞[0,∞). The
Dixmier trace τω(T ) of a non-negative operator T ∈ L1,∞(N , τ) is the number

τω(T ) := ω-lim
t→∞

1
log(2 + t)

Φt(T ).

It will be shown later, that the Dixmier trace τω can be extended to the whole
ideal L1,∞(N , τ) as a unitarily invariant non-normal linear functional.

Remark 2.1.7 Usually, in the definition of the Dixmier ideal and the Dixmier
trace, one uses 1

log(1+t) instead of 1
log(2+t) . The choice of 1

log(2+t) simplifies some
proofs. If T is τ -measurable, but not necessarily bounded, then one can also
consider the so-called Dixmier traces at 0 [DPSS, DPSSS, DPSSS2], in which
case the usual Dixmier trace is called the Dixmier trace at ∞. For the Dixmier
traces at 0, the choice of 1

log(1+t) is essential. The Dixmier traces at 0 have not
yet found any applications.

Proposition 2.1.8 If 0 6 T ∈ L1,∞(N , τ) and if α > 0, then

τω(αT ) = ατω(T ).

Proof. This follows from Lemma 1.3.15. ¤

Proposition 2.1.9 If 0 6 S, T ∈ L1,∞(N , τ), then

τω(S + T ) = τω(S) + τω(T ).

Proof. Lemma 1.3.25 implies that τω(S + T ) 6 τω(S) + τω(T ).
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By Lemma 1.3.28,

1
log(2 + t)

Φt(S) +
1

log(2 + t)
Φt(T )

6 log(2 + 2t)
log(2 + t)

(
1

log(2 + 2t)
Φ2t(S + T )

)
.

Since log(2+2t)
log(2+t) = 1 + o(1), by Proposition 2.1.4 and dilation invariance of ω, it

follows that
τω(S) + τω(T ) 6 τω(S + T ).

¤

Definition 2.1.10 The Dixmier trace of a self-adjoint operator T ∈ L1,∞(N , τ)
is τω(T ) := τω(T+) − τω(T−). The Dixmier trace of an arbitrary operator T ∈
L1,∞(N , τ) is τω(T ) := τω(Re(T )) + iτω(Im(T )).

Evidently, the Dixmier trace, thus defined, is a linear functional on L1,∞(N , τ).

Proposition 2.1.11 The Dixmier trace τω is a trace on L1,∞(N , τ), i.e. τω is
a linear functional such that, for any T ∈ L1,∞(N , τ) and any unitary operator
U ∈ N ,

τω(UTU−1) = τω(T ).

Proof. The linearity has been already proved. The unitary invariance of the
Dixmier trace follows immediately from the definition of the Dixmier trace and
unitary invariance of generalized singular values µt(T ). ¤

Proposition 2.1.12 The Dixmier trace τω has the following properties.
1) For any T ∈ L1,∞(N , τ) and for any S ∈ N , τω(ST ) = τω(TS).
2) For any T ∈ L1(N , τ), τω(T ) = 0.

Proof. 1) Since every operator S ∈ N is a linear combination of four uni-
tary operators from N (see e.g. [RS, VI.6]), it is sufficient to prove
the equality Trω(UT ) = Trω(TU) for a unitary U. By Proposition 2.1.11,
Trω(UT ) = Trω(UTUU−1) = Trω(TU).

2) If T ∈ L1(N , τ), then, by (1.21), for all t > 0,

Φt(T ) 6
∫ ∞

0

µs(T ) ds = τ(|T |) < ∞.

So, by Proposition 2.1.4, Trω(T ) = 0. ¤

This Proposition also implies that the Dixmier trace is not normal.
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2.1.2 Measurability of operators

This subsection is based on [LSS].

Definition 2.1.13 An operator T from L1,∞(N , τ) is said to be measurable if
its Dixmier trace τω(T ) does not depend on the state ω.

For an arbitrary subset A ⊆ N , we denote by Am the set of measurable elements
from A.

Lemma 2.1.14 The set of measurable operators is a linear space.

The proof is evident.

Definition 2.1.15 The set of all operators T ∈ N , which satisfy

‖T‖1,w := sup {tµt(T ) : t > 0} < ∞,

form a ∗-ideal in N , denoted by L1,w.

We note that ‖T‖1,w is not a norm. Evidently, L1,w ⊂ L1,∞(N , τ). The ideal
L1,w is a little bit smaller than L1,∞(N , τ). At the same time, all natural and
interesting examples of operators from L1,∞(N , τ) belong also to L1,w.

Lemma 2.1.16 Let N be a semifinite factor. If T > 0 in L1,w, then there
exists S ∈ L1,w

m such that T 6 S, supp(S) 6 supp(T ) and ST = TS.

Proof. If N is a type II factor, then the assertion follows from [DDP, Theorem
3.5]. The type I case is straightforward. ¤

Lemma 2.1.17 If T ∈ L1,∞
m (N , τ) then T ∗, Re(T ), Im(T ) ∈ L1,∞

m (N , τ). The
same assertion also holds for L1,w.

Proof. Let T = T1−T2+iT3−iT4, where T1, . . . , T4 > 0. Then, by the definition
of the Dixmier trace τω, we have τω(T ) = τω(T1) − τω(T2) + iτω(T3) − iτω(T4)
and τω(T ∗) = τω(T1)− τω(T2)− iτω(T3) + iτω(T4) = τω(T ). The latter equality
shows that T ∗ is measurable provided T is measurable. Since Re(T ) and Im(T )
are linear combinations of T and T ∗, the assertions follow. ¤

Remark 3 The positive and negative parts of a self-adjoint measurable opera-
tor are not necessarily measurable. For example, take a positive non-measurable
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diagonal operator A = diag{a1, a2, a3, . . .} from L1,∞(H). Then define a diago-
nal operator B by B = diag{a1,−a1, a2,−a2, . . .} Evidently, this latter sequence
is measurable, moreover Trω(b) = 0 for all ω. However, the positive and negative
parts of b are not measurable.

In this section, we will need two auxiliary theorems.

Theorem 2.1.18 (G.H. Hardy, cf. [Ha, section 6.8]) Let b(t) be a positive
piecewise differentiable function such that tb′(t) > −H for some H > 0 and all
t > C, where C is a constant. Then

lim
t→∞

1
t

∫ t

0

b(s) ds = A for some A > 0 if and only if lim
t→∞

b(t) = A.

For any α ∈ R, a translation operator Tα on the algebra L∞[0,∞) is
defined by formula

Tαf(t) = f(t + α), t > 0,

if α > 0, and by formula

Tαf(t) =
{

f(t + α), if −α 6 t,
0, if 0 6 t < −α,

if α < 0. The set {Tα : α ∈ R} is a group up to functions of compact support.

A state L on the algebra L∞[0,∞) is said to be translation-invariant, if
L(Tαf) = L(f) for all α > 0. Evidently, if for f, g ∈ L∞[0,∞) there exists α > 0,
such that f

∣∣
[α,∞)

= g
∣∣
[α,∞)

, then L(f) = L(g) for any translation invariant state
L. For this reason, we write

L(f) = L-lim
t→∞

f(t).

Let A : L∞[0,∞) → L∞[0,∞) be an operator, defined by formula Af(x) =
f(log+ x). The inverse A−1 is defined up to functions of compact support. So,
up to a functions of compact support,

A−1DαA = Tα.

So, if ω is a dilation invariant state on L∞[0,∞), then L = ω ◦A is translation
invariant. Indeed,

L ◦ Tα = ω ◦A ◦ Tα = ω ◦Dα ◦A = ω ◦A = L.

Similarly, if L is a translation invariant state, then ω = L ◦ A−1 is dilation
invariant. This can also be expressed by formula

ω-lim
t→∞

f(t) = L-lim
λ→∞

f(eλ). (2.6)



CHAPTER 2. DIXMIER TRACE 92

So, the operator A maps bijectively the set of all dilation invariant states to the
set of all translation invariant states.

It is known that the set of translation invariant states on L∞[0,∞) is not
empty [Gr]. Hence, on L∞[0,∞) there exists a dilation invariant state (though
it follows from the same result from [Gr]).

We recall that a positive function f ∈ Cb[0,∞) is said to be almost con-
vergent to A ∈ C, if all translation-invariant states take the same value A on
this function.

Theorem 2.1.19 (G. Lorentz, cf. [Lo], [LSS, Theorem 3.3]) If a function f ∈
Cb[0,∞) is almost convergent to a number A then the ordinary limit

lim
t→∞

1
t

∫ t

0

f(s) ds

exists and is equal to A.

Remark 4 Actually, the theorem of G. Lorentz says that f is almost convergent
to A if and only if lim

t→∞
1
t

∫ a+t

a
f(s) ds exists uniformly with respect to a and is

equal to A. But we don’t need this.

The aim of this section is to prove the following theorem.

Theorem 2.1.20 [LSS] A positive operator T from L1,∞(N , τ) is measurable
if and only if the limit

lim
t→∞

1
log(2 + t)

∫ t

0

µs(T ) ds

exists.

Proof. If ‖T‖(1,∞) = 0 then the assertion is evident. So, we assume that
‖T‖(1,∞) > 0.

Suppose that for all dilation-invariant states ω on Cb[0,∞) the Dixmier trace

Trω(T ) := ω-lim
t→∞

1
log(2 + t)

∫ t

0

µs(T ) ds

exists and is equal to A. By (2.6), this implies that for all translation-invariant
states L the limit

TrL(T ) := L- lim
λ→∞

1
log(2 + eλ)

∫ eλ

0

µs(T ) ds (2.7)



CHAPTER 2. DIXMIER TRACE 93

exists and is equal to A. Now, Lorentz’s theorem (Theorem 2.1.19) implies that
the limit

lim
u→∞

1
u

∫ u

0

(
1

log(2 + eλ)

∫ eλ

0

µs(T ) ds

)
dλ

exists and equal to A. So, according to Hardy’s theorem (Theorem 2.1.18), the
theorem will be proved if we check that the function

b(λ) :=
1

log(2 + eλ)

∫ eλ

0

µs(T ) ds

satisfies the inequality λb′(λ) > −‖T‖(1,∞) .

We have

λb′(λ) = λ
d

dλ

(
1

log(2 + eλ)

∫ eλ

0

µs(T ) ds

)

> λ
d

dλ

(
1

log(2 + eλ)

) ∫ eλ

0

µs(T ) ds

= − λeλ

(2 + eλ) log2(2 + eλ)

∫ eλ

0

µs(T ) ds

> − λ

log(2 + eλ)
· 1
log(2 + eλ)

∫ eλ

0

µs(T ) ds > −‖T‖(1,∞)

for all λ > 0. So, the theorem is proved. ¤

2.2 Lidskii formula for Dixmier traces

2.2.1 Spectral characterization of sums of commutators

This subsection is based on the work [DK2]. In this subsection, we assume that
N is a semifinite factor.

Proposition 2.2.1 [DK2, Proposition 6.5] If T ∈ L1,∞(N , τ) then there exists
a normal operator S ∈ L1,∞(N , τ) with the same Brown measure as that of T.

The following theorem is a very deep result, due to K. J. Dykema, T. Fack and
N. J. Kalton.
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Theorem 2.2.2 [DK2, Theorem 6.8] An operator T ∈ L1,∞(N , τ) can be
represented as finite linear combination of commutators [Aj , Sj ] with Aj ∈
L1,∞(N , τ) and Sj ∈ N , j = 1, . . . , N, if and only if there is a positive op-
erator V ∈ L1,∞(N , τ) such that for all r > 0

∣∣∣∣∣
∫

{z : r<|z|}
z dµT (z)

∣∣∣∣∣ 6 rτ(EV
(r,∞)). (2.8)

Theorem 2.2.3 [N. J. Kalton] If S ∈ L1,w then there exists a normal operator
T ∈ L1,∞(N , τ) such that the Brown spectral measures of S and T coincide and
τω(S) = τω(T ).

Proof. Let T be a normal operator with the same Brown measure as that of S,
which exists according to Proposition 2.2.1. Consider the operator

A :=
(

T 0
0 −S

)
.

From the definition of the Brown measure and Proposition 1.7.20, it follows that
the Brown measure of this operator is µA = µT + µ−S . As follows from the
definition of the Brown measure, we have µ−S(z) = µS(−z) (this also follows
from Proposition 1.8.28). Hence,

∫

{z : r<|z|}
z dµA(z) =

∫

{z : r<|z|}
z dµT (z)−

∫

{z : r<|z|}
z dµS(z) = 0.

Theorem 2.2.2 implies that A can be represented as linear combination of com-
mutators of the form [Ai, Bi] with Ai ∈ L1,∞(N , τ) and Bi ∈ N . By Proposition
2.1.12, it follows that τω(A) = 0. Since τω(A) = τω(T ) − τω(S), it follows that
τω(S) = τω(T ). ¤

2.2.2 The Lidskii formula for the Dixmier trace

In this subsection, we assume that N is a semifinite factor. The aim of this
subsection is to prove the Lidskii formula for the Dixmier trace in case of normal
operators. The main idea of the proof is that, in the definition of the Dixmier
trace, Φt(T ) can be replaced by Ψt(T ), introduced below.

For arbitrary operators the result (Theorem 2.2.11) follows from Dykema-
Fack-Kalton theorem (Theorem 2.2.3).

Lemma 2.2.4 If T ∈ L1,w, then for all t > 0 λ1/t(T ) 6 ‖T‖1,w t.
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Proof. Let M := ‖T‖1,w . Since for all t > 0 µt(T ) 6 M
t , it follows from (1.23)

that t > λM/t for all t > 0. Replacing t with Mt, one gets Mt > λ1/t for all
t > 0. ¤

Let

Ψt(T ) =
∫ λ1/t

0

µs(T ) ds, t > 0.

Proposition 2.2.5 If 0 6 T ∈ L1,w, then

|Ψt(T )− Φt(T )| 6 ‖T‖1,w log ‖T‖1,w .

Consequently,

lim
t→∞

1
log(2 + t)

|Ψt(T )− Φt(T )| = 0.

Proof. Again, let M := ‖T‖1,w .

If t > λ1/t(T ), then, since by (1.23) s > λ1/t(T ) if and only if µs(T ) 6 1
t ,

we have

|Ψt(T )− Φt(T )| =
∫ t

λ1/t(T )

µs(T ) ds 6 (t− λ1/t(T )) · 1
t

6 1.

If t < λ1/t(T ), then, by Lemma 2.2.4, for all t > 0,

|Ψt(T )− Φt(T )| =
∫ λ1/t(T )

t

µs(T ) ds 6 M

∫ λ1/t(T )

t

ds

s

6 M

∫ Mt

t

ds

s
= M log M.

¤

Lemma 2.2.6 If T > 0 in L1,w then

τω(T ) = ω-lim
t→∞

1
log(2 + t)

Ψt(T ). (2.9)

If T is measurable, then the ω-limit can be replaced with the true limit.

Proof. The equality (2.9) follows from Proposition 2.2.5. The second assertion
follows Theorem 2.1.20 and Proposition 2.2.5. ¤

Lemma 2.2.7 If A,B, C > 0 in L1,w and C = A + B then

lim
t→∞

1
log(2 + t)

|Φt (A) + Φt (B)− Φt (C)| = 0 (2.10)
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and

lim
t→∞

1
log(2 + t)

|Ψt (A) + Ψt (B)−Ψt (C)| = 0. (2.11)

Proof. Let A′ > 0 and B′ > 0 be operators from L1,∞(N , τ) such that µt(A′) =
µt(A), µt(B′) = µt(B) ∀t > 0 and A′B′ = 0. Let C ′ = A′ + B′.

Since A′ and B′ are orthogonal, the formula (1.24) implies

Ψt (A′) + Ψt (B′)−Ψt (C ′) = 0. (2.12)

By Proposition 2.2.5, it follows that

lim
t→∞

1
log(2 + t)

|Φt (A′) + Φt (B′)− Φt (C ′)| = 0. (2.13)

Lemmas 1.3.27 and 1.3.25 imply that, for all t > 0,

Φt(C ′) 6 Φt(C) 6 Φt(A) + Φt(B) = Φt(A′) + Φt(B′).

This and (2.13) imply (2.10).

The formula (2.11) follows from (2.10) and Proposition 2.2.5. ¤

Lemma 2.2.8 Let T ∈ L1,w be normal and let T = T1 − T2 + iT3 − iT4, where
T1, . . . , T4 > 0. Then

τω(T ) = ω-lim
t→∞

1
log(2 + t)

(Ψt (T1)−Ψt (T2) + iΨt (T3)− iΨt (T4)) .

If T is measurable, then the ω-limit can be replaced with the true limit.

Proof. The first assertion follows from Lemma 2.2.6 and the linearity of Dixmier
traces.

Let T be measurable and self-adjoint. By Lemma 2.1.16, there exists a
non-negative measurable operator S ∈ L1,w, commuting with T−, such that
S − T− > 0 and supp(S) 6 supp(T−). Since

0 6 S, T + S ∈ L1,w
m , (2.14)

Lemma 2.2.6 implies

τω(T ) = τω(S + T )− τω(S)

= lim
t→∞

1
log(2 + t)

Ψt (S + T )− lim
t→∞

1
log(2 + t)

Ψt (S) .
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Since S + T = (S − T−) + T+ and the operators S − T− and T+ are disjoint, by
(2.12) we have Ψt (S + T ) = Ψt (S − T−)+Ψt (T+) . This and the formula (2.11)
of Lemma 2.2.7 with A = T−, B = S − T− and C = S imply that

lim
t→∞

1
log(2 + t)

(
Ψt (T+)−Ψt (T−)−Ψt (S + T ) + Ψt (S)

)
= 0.

Taking the ω-limit, we conclude from Lemma 2.2.6 and (2.14) that

τω(T ) = ω-lim
t→∞

Ψt (T+)−Ψt (T−)
log(2 + t)

= ω-lim
t→∞

Ψt (S + T )−Ψt (S)
log(2 + t)

= lim
t→∞

Ψt (S + T )−Ψt (S)
log(2 + t)

= lim
t→∞

Ψt (T+)−Ψt (T−)
log(2 + t)

. (2.15)

If T is normal, the assertion now follows from Lemma 2.1.17. ¤

Lemma 2.2.9 If T ∈ L1,w is normal and a > 0 then

τω(T ) = ω-lim
t→∞

1
log(2 + t)

∫

λ/∈Qt

λ dµT (λ),

where Qt = {x + iy ∈ C : |tx| 6 a, |ty| 6 a} ∀ t > 0. If T is measurable, then
the ω-limit can be replaced with the true limit.

Proof. We may take a = 1, by dilation invariance of ω. Let T = T1−T2+iT3−iT4,
where T1, . . . , T4 > 0. For T > 0 in L1,w, it follows from (1.24) and Proposition
1.8.29 that

Ψt(T ) =
∫ ∞

1/t

λ dµT (λ). (2.16)

Let Ā be the complement of A ⊂ C, Rt := {λ ∈ C : |Re λ| 6 1/t} and It :=
{λ ∈ C : |Imλ| 6 1/t} . For any Borel set B ⊆ R, we have

∫

B

λ dµRe(T )(λ) =
∫

{λ : Re(λ)∈B}
Re(λ) dµT (λ),

∫

B

λ dµIm(T )(λ) =
∫

{λ : Im(λ)∈B}
Im(λ) dµT (λ)

and so∫

Q̄t

λ dµT (λ) =
∫

Q̄t

Re(λ) dµT (λ) + i

∫

Q̄t

Im(λ) dµT (λ)

=
∫

R̄t

Re(λ) dµT (λ) +
∫

Q̄t∩Rt

Re(λ) dµT (λ)

+ i

∫

Īt

Im(λ) dµT (λ) + i

∫

Q̄t∩It

Im(λ) dµT (λ)

=
∫

{|ξ|>1/t}
ξ dµRe(T )(ξ) +

∫

Q̄t∩Rt

Re(λ) dµT (λ)

+ i

∫

{|ξ|>1/t}
ξ dµIm(T )(ξ) + i

∫

Q̄t∩It

Im(λ) dµT (λ).
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By Lemma 2.2.8 and (2.16), the sum of the first and the third terms in the
expression above gives τω(T ) after dividing by log(2 + t) and taking the ω-limit
with respect to t →∞. If T is measurable, then, by Lemma 2.2.8, we may take
the ordinary limit.

So, to complete the proof it suffices to show that

lim
t→∞

1
log(2 + t)

∫

Q̄t∩Rt

Re(λ) dµT (λ) = 0

and
lim

t→∞
1

log(2 + t)

∫

Q̄t∩Rt

Im(λ) dµT (λ) = 0.

It is enough to prove the first equality, the second is proved analogously. In
fact, it suffices to prove that

lim
t→∞

1
log(2 + t)

∫

{Im(λ)>1/t}∩Rt

Re(λ) dµT (λ) = 0.

We have
∣∣∣∣∣
∫

{Im(λ)>1/t}∩Rt

Re(λ) dµT (λ)

∣∣∣∣∣ 6 1
t

∫

{Im(λ)>1/t}∩Rt

dµT (λ)

6 1
t

∫

{Im(λ)>1/t}
dµT (λ) =

1
t

∫ ∞

1/t

dµIm(T )(λ)

=
1
t
τ

(
χ(1/t,∞)(T3)

)
=

1
t
λ1/t(T3) 6 C.

The last inequality follows from the equivalence of µCt(T3) 6 1/t and λ1/t(T3) 6
Ct, see (1.23). ¤

Lemma 2.2.10 Let T be a normal operator from L1,w and let G be a bounded
Borel neighborhood of 0 ∈ C. Setting t ∈ R let Gt := {z ∈ C : tz ∈ G}, t > 0,
we have

τω(T ) = ω-lim
t→∞

1
log(2 + t)

∫

λ/∈Gt

λ dµT (λ).

If T is measurable, then the ω-limit can be replaced with the true limit.

Proof. For an arbitrary bounded neighborhood G of 0 ∈ C there exist squares
Qa and Qb such that Qa ⊆ G ⊆ Qb. Hence, Lemma 2.2.9 implies that it is
sufficient to prove that

lim
t→∞

1
log(2 + t)

∫

Qt/b\Qt/a

|λ| dµT (λ) = 0. (2.17)
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The set Qt/b\Qt/a consists of four trapeziums and it is suffices to prove the above
limit for one of them, Dt :=

{
z ∈ Qt/b \Qt/a : Re(tz) ∈ [a, b]

}
, for example.

We have

1
2

∫

Dt

|λ| dµT (λ) 6
∫

Dt

Re(λ) dµT (λ) 6
∫

t Re(λ)∈[a,b]

Re(λ) dµT (λ)

=
∫ b/t

a/t

λ dµRe(T )(λ) =
∫ λa/t

0

µs ds−
∫ λb/t

0

µs ds.

By Lemma 2.2.6, we can replace upper limits λa/t and λb/t by t/a and t/b
respectively. Then

∫ t/a

0

µs ds−
∫ t/b

0

µs ds 6
∫ t/a

t/b

C/s ds 6 C log
b

a
.

¤

The following theorem is the main result of this section.

Theorem 2.2.11 If S ∈ L1,w and G is a bounded Borel neighborhood of 0 ∈ C,
then

τω(S) = ω-lim
t→∞

1
log(2 + t)

∫

λ/∈Gt

λ dµS(λ).

If S is measurable, then the ω-limit can be replaced with the true limit.

Proof. According to Theorem 2.2.3, there exists a normal operator T ∈
L1,∞(N , τ) with the same Brown measure and Dixmier trace. Hence, the
Lemma 2.2.10 implies

τω(S) = τω(T ) = ω-lim
t→∞

1
log(2 + t)

∫

λ/∈Gt

λ dµT (λ)

= ω-lim
t→∞

1
log(2 + t)

∫

λ/∈Gt

λ dµS(λ).

If S is measurable then T is also measurable by Theorem 2.2.3. The second
assertion now follows from Lemma 2.2.10. ¤

Corollary 2.2.12 Let S, T ∈ N be such that ST, TS ∈ L1,w. Then

τω(ST ) = τω(TS).

Proof. It follows directly from Theorems 1.8.31, 2.2.11, noting that L1,w ⊂
L1+ε(N , τ). ¤

We specialize Theorem 2.2.11 to the case N = B(H).
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Corollary 2.2.13 Let T be a compact operator on an infinite-dimensional
Hilbert space H such that µn(T ) 6 C/n, n > 1 for some C > 0. If λ1, λ2, . . . is
the list of eigenvalues of T counting the multiplicities such that |λ1| > |λ2| > . . . ,
then

Trω(T ) = ω-lim
t→∞

1
log(2 + t)

∑

λ∈σ(T ), λ/∈Gt

λµT (λ)

= ω- lim
N→∞

1
log N

N∑

i=1

λi,

where µT (λ) is the algebraic multiplicity of the eigenvalue λ. If T is measurable,
then the ω-limit can be replaced with the true limit.

Proof. The first equality is an immediate consequence of Theorem 2.2.11.
By Theorem 2.2.3, it is sufficient to prove the second equality for a nor-
mal operator T. Let G := {z ∈ C : |z| < 1}. It is enough to show that∑
k∈AN∪BN

|λk| < const, where AN = {k ∈ N : k 6 N, |λk| 6 1/N} and

BN = {k ∈ N : k > N, |λk| > 1/N}. We have,
∑

k∈AN

|λk| 6 1. That
∑

k∈BN

|λk|
is bounded follows from the condition |λk| < C/k, k ∈ N, for some C > 0 and
estimate (2.17). ¤

The following corollary follows from the combination of Corollary 2.2.13 and
[Co, Prop. IV.2.5]

Corollary 2.2.14 [Fac, Prop 1] If M is a compact Riemannian n-manifold
and T is a pseudo-differential operator of order −n on M, then

Trω(T ) = lim
N→∞

1
log N

N∑

k=1

λk.



Chapter 3

Spectral shift function in
von Neumann algebras

3.1 Spectral shift function for trace class per-
turbations

As usual, we denote by N a semifinite von Neumann algebra N equipped with
normal faithful semifinite trace τ, acting in Hilbert space H.

We recall that (Definition 1.7.1)

L1,π(N , τ) =
{
T ∈ L1(N , τ) : σT ∩ (−∞,−1] = ∅

}
.

We denote by log the single valued branch of the logarithm in C\(−∞, 0] which
takes value 0 at 1. If T ∈ L1,π(N , τ), we define, via the standard Riesz-Dunford
functional calculus (see, for example, [Ta, Proposition I.2.7]),

log(1 + T ) :=
1

2πi

∫

γ

log(1 + λ)Rλ(T ) dλ ∈ N

where γ is any positively oriented, simple closed curve in C\(−∞,−1] containing
σT in its interior. On the other hand, following [GK, Chapter IV.1], observe
that

Rλ(T ) = 1/λ + (1/λ)TRλ(T ), 0 6= λ 6∈ σT . (3.1)

Since T ∈ L1(N , τ), the resolvent equation implies that the function

λ ∈ C \ (−∞,−1] 7→ log(1 + λ)
λ

TRλ(T ) ∈ L1(N , τ)

101
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is ‖·‖1,∞ continuous. Now suppose that γ is any positively oriented, simple
closed curve in C\ (−∞,−1] containing σT ∪{0} in its interior. Using (3.1) and
Cauchy’s theorem, it follows that

log(1 + T ) =
1

2πi

∫

γ

log(1 + λ)
λ

dλ +
1

2πi

∫

γ

log(1 + λ)
λ

TRλ(T ) dλ

=
1

2πi

∫

γ

log(1 + λ)
λ

TRλ(T ) dλ

Since the integral on the right exists in the norm ‖·‖1,∞ , it follows immediately
that if T ∈ L1,π(N , τ) then

log(1 + T ) ∈ L1(N , τ). (3.2)

We note that if T ∈ L1,π(N , τ) and ‖T‖ < 1, then the usual power series
expansion

log(1 + T ) =
∞∑

k=1

(−1)k+1T k/k

is valid with convergence in the norm ‖·‖1,∞ . This equality in the operator norm
is given, for example, in [Ta, Chapter 1.2], while convergence of the series in
the norm ‖·‖1 follows simply by observing that

∥∥∥∥∥
∞∑

k=N

(−1)k+1T k/k

∥∥∥∥∥
1

6 ‖T‖1 (
∞∑

k=N

‖T‖k−1
/k)

for all N ∈ N.

We shall need the following representation theorem from complex function
theory which is given in [Ya, Theorem 1.2.9 and Corollary 10].

Theorem 3.1.1 Suppose that F is holomorphic in the open upper half-plane
C+. If Im F is bounded and nonnegative (or non-positive) and if

sup
y>1

y |F (iy)| < ∞

then there exists a nonnegative (respectively, non-positive) real function ξ ∈
L1(R) such that

F (z) =
∫ ∞

−∞

ξ(λ) dλ

λ− z
, Im z > 0.

The function ξ is uniquely determined by the inversion formula

ξ(λ) =
1
π

lim
ε→0+

Im F (λ + iε), a. e. λ ∈ R.

We also need the following simple uniqueness result. We indicate the proof for
lack of convenient reference.
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Proposition 3.1.2 If ξ1, ξ2 ∈ L1(R) are real-valued and if
∫ ∞

−∞

ξ1(λ) dλ

(λ− z)2
=

∫ ∞

−∞

ξ2(t) dλ

(λ− z)2
, Im z > 0, (3.3)

then ξ1 = ξ2.

Proof. We observe that equality (3.3) may be written in the form

d

dz

∫ ∞

−∞

ξ1(λ) dλ

λ− z
=

d

dz

∫ ∞

−∞

ξ2(λ) dλ

λ− z
, Im z > 0. (3.4)

If

Fi(z) :=
∫ ∞

−∞

ξi(λ) dλ

λ− z
, i = 1, 2, Im z 6= 0,

then
sup
y>0

y |Fi(iy)| 6 ‖ξi‖1 , i = 1, 2.

It follows that
lim

y→∞
Fi(iy) = 0, i = 1, 2. (3.5)

It now follows from (3.4) and (3.5) that F1 = F2. Using standard properties of
the Poisson kernel [Ga] together with the fact that the functions ξi, i = 1, 2 are
real-valued, it follows that

ξ1 = ξ2 = lim
ε→0+

Im F1(·+ iε) (= lim
ε→0+

ImF2(·+ iε))

where the limit taken in the norm of L1(R). ¤

3.1.1 Krein’s trace formula: resolvent perturbations

Throughout this subsection, we will denote by H a self-adjoint operator affiliated
with N , and by V a bounded self-adjoint operator in L1(N , τ).

Proposition 3.1.3 Suppose that z ∈ C, that Im z > 0 and set

X :=
{

λ ∈ C :
∣∣∣∣λ + i

‖V ‖
2 Im z

∣∣∣∣ 6 ‖V ‖
2 |Im z|

}
.

If V > 0, then σRz(H)V ⊆ X and if V 6 0 then σRz(H)V ⊆ −X.

Proof. Suppose first that V > 0. By [Ta, Proposition I.2.1], it follows that

σRz(H)V ∪ {0} = σV 1/2Rz(H)V 1/2 ∪ {0} ,
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and so it suffices to show that

σV 1/2Rz(H)V 1/2 ⊆ X.

Now observe that

W (V 1/2Rz(H)V 1/2) =
{
〈Rz(H)V 1/2ξ, V 1/2ξ〉 : ξ ∈ H, ‖ξ‖ = 1

}

⊆ [0, ‖V ‖]W (Rz(H)).
(3.6)

Since Rz(H) is normal, and using the spectral mapping theorem, it follows from
Theorem 1.1.11 that

W (Rz(H)) ⊆ conv σRz(H) = conv
{
(z − λ)−1 : λ ∈ σH

}
. (3.7)

Since by Theorem 1.1.10

σV 1/2Rz(H)V 1/2 ⊆ W (V 1/2Rz(H)V 1/2),

the assertion of the Lemma for the case that V > 0 now follows from (3.6)
and (3.7). If V 6 0, we set W = −V so that W > 0. From what has just
been proved, it follows that σRzW ⊆ X and so σRzV = −σRzW ⊆ −X. This
completes the proof of the Lemma. ¤

We note that, in particular, it follows that if V > 0 then 1±Rz(H)V is invertible.
We shall use this fact repeatedly below without further reference.

Remark 3.1.4 1) Note, that in the proof of the last proposition we didn’t use
the fact that V is τ -trace class.

2) In the case of bounded self-adjoint operator H and (not necessarily pos-
itive or negative) bounded self-adjoint operator V, it follows from [W, Theorem
1] that the spectrum of Rz(H)V is a subset of X+ ∪ X−, which is enough to
define log(1 + Rz(H)V ).

3) Open problem. Prove that the spectrum of Rz(H)V is a subset of
X+ ∪X− for any self-adjoint H and any bounded self-adjoint V.

A positive solution of this problem would enable one to simplify the following
theory of SSF a little bit.

Using (3.2) and the fact that X ∩ (−∞,−1] = ∅, we obtain the following
result.

Corollary 3.1.5 If 0 6 V ∈ L1(N , τ), if H = H∗ is affiliated with N and if
z ∈ C \ R then ±Rz(H)V ∈ L1,π(N , τ) and log(1±Rz(H)V ) ∈ L1(N , τ).

We now prove the following
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Proposition 3.1.6 If V ∈ L1(N , τ) and H = H∗ is affiliated with N , then

Rz(H + V )−Rz(H) ∈ L1(N , τ), Im z 6= 0.

Further, if either V > 0 or V 6 0 and if

F (z) := τ (log(1−Rz(H)V )) , z ∈ C \ R,

then F is holomorphic in C \ R and

d

dz
F (z) = τ (Rz(H + V )−Rz(H)) , z ∈ C \ R.

Proof. The first assertion follows from the second resolvent identity (1.2). We
now assume that V > 0, since the case that V 6 0 is identical. Since the limit

d

dz
(−Rz(H)V ) = Rz(H)2V, z ∈ C \ R

exists in the norm ‖·‖1,∞ , and since the trace τ is a continuous linear functional
on L1(N , τ), precisely the same argument as in [GK, Chapter IV, (1.14)] shows
that the function F is holomorphic in C \ R and that for z ∈ C \ R

d

dz
F (z) = τ

(
(1−Rz(H)V )−1 d

dz
(−Rz(H)V )

)

= τ
(
(1−Rz(H)V )−1Rz(H)2V

)
.

We now observe that for z ∈ C \ R

τ
(
(1−Rz(H)V )−1Rz(H)2V

)
= τ (Rz(H + V )Rz(H)V )
= τ (Rz(H)V Rz(H + V ))
= τ (Rz(H + V )−Rz(H)) ,

and this completes the proof. ¤

Proposition 3.1.7 If V ∈ L1(N , τ) and if H = H∗ is affiliated with N , then

τ (V ) = lim
y→±∞

iyτ
(
log(1 + Riy(H)V )

)
.

Proof. We note first, via the spectral theorem, that

‖Rz(H)‖ 6 1/ |Im z| , z ∈ C \ R.

Consequently, by taking y = Im z sufficiently large, it may be assumed that, for
some M > 0,

‖Riy(H)‖ ‖V ‖1,∞ < 1/2, |y| > M, (3.8)
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and so
σ(Riy(H)V ) ⊆ {λ ∈ C : |λ| < 1/2} .

In particular, it follows that Riy(H)V ∈ L1,π(N , τ) and log(1 + Riy(H)V ) ∈
L1(N , τ) for |y| > M. It follows that

log(1 + Riy(H)V ) = Riy(H)V +
∞∑

k=2

(−1)k+1(Riy(H)V )k/k

with convergence in the norm ‖·‖1,∞ so that

τ (log(1 + Riy(H)V )) = τ (Riy(H)V )+
∞∑

k=2

(−1)k+1τ
(
(Riy(H)V )k/k

)
, |y| > M.

(3.9)
Now observe that

τ (V ) = τ ((iy −H)Riy(H)V ) = iyτ (Riy(H)V )− τ (HRiy(H)V ) . (3.10)

Setting En := χ[−n,n](H), n ∈ N, note that

τ (HRiy(H)V ) = τ (HRiy(H)EnV ) + τ (HRiy(H)E⊥
n V ) .

Using the spectral theorem, we obtain that, for all |y| > M,

‖HRiy(H)En‖ 6 n/
√

n2 + y2, ‖HRiy(H)‖ 6 1, n ∈ N,

so that

|τ (HRiy(H)EnV )| 6 ‖HRiy(H)En‖ ‖V ‖1 6 n ‖V ‖1 /
√

n2 + y2 (3.11)

for all n ∈ N and for all |y| > M. On the other hand, since V HRiy(H) ∈
L1(N , τ) and En converges to 1 in the so-topology (by Theorem 1.1.4), it follows
from Lemma 1.3.30 that

|τ (HRiy(H)E⊥
n V )| = |τ (V HRiy(H)E⊥

n )| 6 ‖V HRiy(H)E⊥
n ‖1 → 0, (3.12)

and n →∞. Consequently, from (3.10), (3.11) and (3.12), it follows readily that

τ (V ) = lim
y→±∞

iyτ (Riy(H)V ) . (3.13)

Finally, using (3.8) for |y| > M,

∣∣∣∣∣
∞∑

k=2

(−1)k+1τ
(
(Riy(H)V )k

)
/k

∣∣∣∣∣ 6
∞∑

k=2

∥∥(Riy(H)V )k
∥∥

1

6 ‖Riy(H)‖2 ‖V ‖ ‖V ‖1
∞∑

k=2

(‖Riy(H)‖ ‖V ‖)k−2 6 2 ‖V ‖1 ‖V ‖ / |y|2 . (3.14)

The assertion of the Proposition now follows directly from (3.9), (3.13)
and (3.14). ¤
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Lemma 3.1.8 Suppose that V ∈ L1(N , τ) and that H = H∗ is affiliated
with N .
If V > 0, then

0 6 Im τ (log(1−Rz(H)V )) 6 πτ (supp(V )) , Im z > 0;

and
−πτ (supp(V )) 6 Im τ (log(1 + Rz(H)V )) 6 0, Im z > 0.

Proof. If V > 0, it follows from Proposition 3.1.3 that

σ−Rz(H)V ⊆ {λ ∈ C : Imλ > 0} ∪ {0} ,

and by Corollary 1.8.19 this implies that the support of the Brown measure
µ−Rz(H)V is contained in the open upper half-plane. Further, by Corollary
1.8.25(ii)

µ−Rz(H)V (σ−Rz(H)V \ {0}) 6 τ (suppr(−Rz(H)V )) 6 τ (supp(V )) .

Since 0 6 Im(log(1 + λ)) < π whenever Im λ > 0, it now follows from Theorem
1.8.27 that

Im τ (log(1−Rz(H)V )) =
∫

−σRz(H)V \{0}
Im(log(1 + λ)) dµ−Rz(H)V (λ)

6 πτ (supp(V )) .

and this establishes the first assertion. The second assertion follows similarly.
¤

We may now state the principal result of this section.

Theorem 3.1.9 Suppose that H = H∗ is affiliated with N and that V = V ∗ ∈
L1(N , τ) satisfies τ (supp(V )) < ∞. Let V = V+−V− be the standard decompo-
sition of V into its positive and negative parts. There exists a unique real-valued
function ξH+V,H ∈ L1(R) with ‖ξH+V,H‖1 6 ‖V ‖1 such that

τ (Rz(H + V )−Rz(H)) =
∫ ∞

−∞

ξH+V,H(λ) dλ

(λ− z)2
, Im z > 0. (3.15)

Further, ∫ ∞

−∞
ξH+V,H(λ) dλ = τ (V ) (3.16)

and

−τ (supp(V−)) 6 ξH+V,H(λ) 6 τ (supp(V+)) , a. e. λ ∈ R. (3.17)
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Proof. We define

F+(z) := τ (log(1−Rz(H)V+)) ,

F−(z) := −τ (log(1 + Rz(H + V+)V−)) , Im z > 0,

and set
F := F+ − F−.

By Proposition 3.1.6, each of the functions F+, F− (and, consequently, the func-
tion F ) are holomorphic in C+ and for z ∈ C+

d

dz
F (z) =

d

dz
F+(z)− d

dz
F−(z)

= τ (Rz(H + V+)−Rz(H)) + τ (Rz(H + V+ − V−)−Rz(H + V+))
= τ (Rz(H + V )−Rz(H)) .

(3.18)

From Lemma 3.1.8, it follows that

0 6 Im F±(z) 6 πτ (supp(V )) , Im z > 0. (3.19)

Since τ (supp(V )) < ∞, it follows that the functions F± are bounded and non-
negative in the open upper half-plane. Further, it follows from Proposition 3.1.7
that supy>1 y |F±(iy)| < ∞. We may therefore apply Theorem 3.1.1 to obtain
functions ξ+, ξ− ∈ L1(R) such that

F±(z) =
∫ ∞

−∞

ξ±(λ) dλ

λ− z
, Im z > 0,

where the functions ξ± are uniquely determined by the formulae

ξ±(λ) =
1
π

lim
ε→0+

Im F±(λ + iε), a. e. λ ∈ R. (3.20)

We now set
ξH+V,H := ξ+ − ξ−.

It follows from (3.19) and (3.20) that

0 6 ξ±(λ) 6 τ (supp(V±)) , a. e. λ ∈ R (3.21)

and that ξH+V,H ∈ L1(R) and is uniquely determined by the formula

ξH+V,H(λ) =
1
π

lim
ε→0+

(Im F+(λ + iε)− Im F−(λ + iε)), a. e. λ ∈ R.

Further, we obtain that

F (z) =
∫ ∞

−∞

ξH+V,H(λ) dλ

λ− z
, Im z > 0. (3.22)
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The inequalities (3.21) imply that

−τ (supp(V−)) 6 ξ(λ) 6 τ (supp(V+)) , a. e. λ ∈ R
and this is (3.17). From Proposition 3.1.7, and using the dominated convergence
theorem, we obtain that

τ (V+) = − lim
y→∞

iyτ (log(1−Riy(H)V+))

= − lim
y→∞

iy

∫ ∞

−∞

ξ+(λ) dλ

λ− iy
=

∫ ∞

−∞
ξ+(λ) dλ.

Similarly, we obtain that

τ (V−) =
∫ ∞

−∞
ξ−(λ) dλ.

Consequently,
∫ ∞

−∞
ξH+V,H(λ) dλ = τ (V+)− τ (V−) = τ (V ) ,

which is (3.16). Further,

‖ξH+V,H‖1 =
∫ ∞

−∞
|ξH+V,H | (λ) dλ

6
∫ ∞

−∞
ξ+(λ) dλ +

∫ ∞

−∞
ξ−(λ) dλ = τ (V+) + τ (V−) = τ (|V |) = ‖V ‖1 .

Finally, from (3.18) and (3.22), we obtain that

τ (Rz(H + V )−Rz(H)) =
d

dz

∫ ∞

−∞

ξH+V,H(λ) dλ

λ− z

=
∫ ∞

−∞

ξH+V,H(λ) dλ

(λ− z)2
, Im z > 0.

This is (3.15) and completes the proof of the Theorem. ¤

The function ξH+V,H whose existence is given by Theorem 3.1.9 will be called
the Krein spectral shift function associated with the self-adjoint operator H
for the perturbation V. We remark that the preceding Theorem 3.1.9 specializes
to [Kr, Theorem 5.1] in the special case that N is the von Neumann algebra of
all bounded linear operators on some Hilbert space and τ is the canonical trace.

Now we are going to extend Krein’s trace formula (3.15) to the case that V
does not necessarily have finite support.

The proof of the following lemma, which is [Kr, Theorem 1], is simpler than
that of [Kr].
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Lemma 3.1.10 If H = H∗ is affiliated with N and V = V ∗,W = W ∗ ∈
L1(N , τ), then Rz(H + V )−Rz(H + W ) ∈ L1(N , τ) for all Im z 6= 0 and

‖Rz(H + V )−Rz(H + W )‖1 6 ‖V −W‖1 / |Im z|2 , Im z 6= 0.

Proof. It follows from (1.2) and (1.4) that

‖Rz(H + V )−Rz(H + W )‖1 = ‖Rz(H + V )(V −W )Rz(H + W )‖1
6 ‖Rz(H + V )‖ ‖(V −W )‖1 ‖Rz(H + W )‖ 6 ‖V −W‖1 / |Im z|2 . (3.23)

¤

Theorem 3.1.11 Suppose that H = H∗ is affiliated with N and that V = V ∗ ∈
L1(N , τ). There exists a unique function ξH+V,H ∈ L1(R) with

‖ξH+V,H‖1 6 ‖V ‖1 and τ (V ) =
∫ ∞

−∞
ξH+V,H(λ) dλ

and such that

τ (Rz(H + V )−Rz(H)) =
∫ ∞

−∞

ξH+V,H(λ) dλ

(λ− z)2
, Im z > 0.

Proof. We set
Vn := χ[1/n,n)(|V |)V ∈ L1(N , τ), n ∈ N

and note that

τ (supp(Vn)) 6 τ
(
χ[1/n,n)(|V |)

)
6 nτ (|V |) < ∞, n ∈ N.

Further, by order continuity of the norm ‖·‖1 , it follows that ‖V − Vn‖1 → 0
as n →∞. Using Lemma 3.1.10, it follows that

|τ (Rz(H + V )−Rz(H))− τ (Rz(H + Vn)−Rz(H))|
= |τ (Rz(H + V )−Rz(H + Vn))| 6 ‖V − Vn‖1 / |Im z|2 → 0

as n → ∞ for all Im z 6= 0. Using the addition formula given by the first
assertion of Corollary 3.1.12 below (note that the proof of this formula in the
special case that τ (supp(V )) , τ (supp(W )) < ∞ depends only on Theorem
3.1.9 and Proposition 3.1.2) and using the norm estimate given in Theorem
3.1.9, we obtain that

‖ξH+Vm,H − ξH+Vn,H‖1 = ‖ξH+Vm,H+Vn‖1 6 ‖Vm − Vn‖1 →n,m 0.

We now set
ξH+V,H := lim

n→∞
ξH+Vn,H ,
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where the limit is taken in the norm ‖·‖1 . The assertion of the Theorem now
follows readily from the facts that, for all n ∈ N,

‖ξH+Vn,H‖1 6 ‖Vn‖1 , τ (Vn) =
∫ ∞

−∞
ξH+Vn,H(λ) dλ,

τ (Rz(H + Vn)−Rz(H)) =
∫ ∞

−∞

ξH+Vn,H(λ) dλ

(λ− z)2
, Im z > 0,

and τ (Vn) → τ (V ) .

The uniqueness assertion follows immediately from Proposition 3.1.2 and
this completes the proof of the theorem. ¤

We now exhibit several properties of the spectral shift function, given in [Ya,
Proposition 8.2.5] for the case that (N , τ) is the von Neumann algebra B(H)
equipped with the canonical trace. In this setting, the proof given in [Ya]
depends on the theory of perturbation determinants.

Corollary 3.1.12 If H = H∗ is affiliated with N and if V,W ∈ L1(N , τ) are
self-adjoint, then

ξH+V +W,H = ξH+V +W,H+V + ξH+V,H ,

ξH,H+V = −ξH+V,H

and
‖ξH+W,H − ξH+V,H‖1 6 ‖W − V ‖1 .

Further, if 0 6 V, W, then

ξH+V +W,H > ξH+V,H .

Proof. It follows from Theorem 3.1.11 that
∫ ∞

−∞

ξH+V +W,H(λ) dλ

(λ− z)2
= τ (Rz(H + V + W )−Rz(H))

= τ (Rz(H + V + W )−Rz(H + V )) + τ (Rz(H + V )−Rz(H))

=
∫ ∞

−∞

ξH+V +W,H+V (λ) dλ

(λ− z)2
+

∫ ∞

−∞

ξH+V,H(λ) dλ

(λ− z)2
, Im z > 0.

The first assertion of the Corollary now follows from Proposition 3.1.2 and the
second by taking W = −V in the first. Replacing W by W − V in the first
assertion and using the estimate in Theorem 3.1.11, it follows that

‖ξH+W,H − ξH+V,H‖1 =
∥∥ξH+V +(W−V ),H+V

∥∥
1

6 ‖W − V ‖1 .

The final assertion follows from the first together with the observation that if
V > 0, then ξH+V,H > 0. This observation follows readily from Lemma 3.1.8,
and an inspection of the proofs of Theorems 3.1.9, 3.1.11. ¤
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3.1.2 The Krein trace formula: general case

The principal result of this section is the following theorem, due to M.G. Krein
[Kr, Kr2] in the special case that N is the von Neumann algebra B(H) equipped
with the canonical trace.

Theorem 3.1.13 If H = H∗ is affiliated with N and V = V ∗ ∈ L1(N , τ), then
there exists a unique function ξH+V,H ∈ L1(R) such that

‖ξH+V,H‖1 6 ‖V ‖1 ,

∫ ∞

−∞
ξH+V,H(λ) dλ = τ (V ) ,

−τ (supp(V−)) 6 ξH+V,H(λ) 6 τ (supp(V+)) , a. e. λ ∈ R,

and, for every function f ∈ C1(R) whose derivative f ′ admits the representation

f ′(λ) =
∫ ∞

−∞
e−iλt dm(t), λ ∈ R (3.24)

for some finite (complex) Borel measure m on R, then f(H + V ) − f(H) ∈
L1(N , τ) and

τ (f(H + V )− f(H)) =
∫ ∞

−∞
ξH+V,H(λ)f ′(λ) dλ. (3.25)

The proof of the Theorem is based on the corresponding formula for the case of
resolvent perturbations given in Theorems 3.1.9 and Theorem 3.1.11. The first
two assertions are given in Theorem 3.1.11 and the third assertion is established
in (3.17) in the case that τ (supp(V±)) < ∞. To extend Theorem 3.1.11 to the
wider class of functions f specified by Theorem 3.1.13, we follow the same lines
as the original proof of Krein [Kr, Kr2] in the type I case. However, some
additional technical details are necessary in the type II setting. We proceed as
follows.

Lemma 3.1.14 Let H and V be as in Theorem 3.1.13.

(i) The operator function

t 7→ eit(H+V )V e−itH ∈ L1(N , τ), t ∈ R,

is continuous in the norm ‖·‖1 .

(ii) For each t ∈ R,
eit(H+V ) − eitH ∈ L1(N , τ)

and ∥∥∥eit(H+V ) − eitH
∥∥∥

1
6 |t| ‖V ‖1 , t ∈ R.
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(iii) There exists a unique function ξH+V,H ∈ L1(R) such that

τ
(
eit(H+V ) − eitH

)
= it

∫ ∞

−∞
ξH+V,H(λ)eitλ dλ, t ∈ R.

Proof. (i) By Lemma 1.3.30 and Theorem 1.1.5, for any ε > 0 there ex-
ists δ > 0 such that |t− t0| < δ implies

∥∥V eitH0 − V eit0H0
∥∥

1
< ε/2 and∥∥e−itH1V − e−it0H1V

∥∥
1

< ε/2. It follows that
∥∥∥eit(H+V )V e−itH − eit0(H+V )V e−it0H

∥∥∥
1

=
∥∥∥eit(H+V )

(
V eitH − V eit0H

)
+

(
eit(H+V )V − eit0(H+V )V

)
eit0H

∥∥∥
1

6
∥∥∥eit(H+V )

∥∥∥
∥∥V eitH − V eit0H

∥∥
1

+
∥∥∥eit(H+V )V − eit0(H+V )V

∥∥∥
1

∥∥eit0H
∥∥

6 ε

2
+

ε

2
= ε.

(ii) Since L1(N , τ) has property (F) (see Lemma 1.3.39), the inclusion fol-
lows from Duhamel’s formula (Lemma 1.1.8) and Lemma 1.4.8. The inequality
follows from Duhamel’s formula and Lemma 1.4.14.

(iii) Using (i), (ii) above and Theorem 3.1.11, the proof of (iii) is exactly the
same as that in the type I setting given in [Ya, Lemma 8.3.2] and accordingly,
the details are omitted. ¤

Corollary 3.1.15 If the function f ∈ C1(R) satisfies (3.24), then

f(H + V )− f(H) ∈ L1(N , τ)

and
‖f(H + V )− f(H)‖1 6 ‖V ‖1 |m| (R).

Proof. From (3.24), it follows that

f(λ) = f(0) +
∫ ∞

−∞

eiλt − 1
it

dm(t), λ ∈ R.

Using the spectral theorem, we obtain that

f(H + V )− f(H) =
∫ ∞

−∞

eit(H+V ) − eitH

it
dm(t). (3.26)

It follows from Lemma 3.1.14 that the integral exists in the norm ‖·‖1 and this
implies that f(H + V )− f(H) ∈ L1(N , τ). Finally, the estimate

‖f(H + V )− f(H)‖1 6
∫ ∞

−∞

∥∥∥∥
eit(H+V ) − eitH

it

∥∥∥∥
1

d |m| (t) 6 ‖V ‖1 |m| (R)
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follows immediately from Lemma 3.1.14 (ii) and this completes the proof. ¤

We may now complete the proof of Theorem 3.1.13 as follows. By (3.26),
Lemma 3.1.14 (iii) and the fact that ξH+V,H ∈ L1(R), we obtain

τ (f(H + V )− f(H)) =
∫ ∞

−∞

τ
(
eit(H+V ) − eitH

)

it
dm(t)

=
∫ ∞

−∞
dm(t)

∫ ∞

−∞
ξH+V,H(λ)eitλ dλ

=
∫ ∞

−∞
ξH+V,H(λ) dλ

∫ ∞

−∞
eitλ dm(t) =

∫ ∞

−∞
ξH+V,H(λ)f ′(λ) dλ

and this completes the proof of the theorem.

3.2 Multiple operator integrals in von Neumann
algebras

A multiple operator integral is an expression of the form
∫ ∞

−∞
. . .

∫ ∞

−∞
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn
,

where H0, . . . ,Hn are self-adjoint operators on the Hilbert space H, and
V1, . . . , Vn are bounded operators onH. These integrals were first introduced and
investigated by Yu. L. Daletskii and S.G. Krein in [DK]. Afterwards a number
of works appeared devoted to multiple operator integrals [Pa, SS, St]. These au-
thors defined a multiple operator integral as a repeated integral. We take quite
different approach to definition of multiple operator integrals, which seems to
make simpler handling them.

We denote by N a von Neumann algebra acting on Hilbert space H, and by
Tr the standard trace on B(H). In case when N is semifinite, we denote by τ a
fixed faithful normal semifinite trace on N . If S is a measure space we denote
by B(S) the set of all bounded measurable complex-valued functions on S.

3.2.1 BS representations

Let n be a non-negative integer. We denote by B(Rn+1) the set of all bounded
Borel functions on Rn+1.

Definition 3.2.1 Let ϕ ∈ B(Rn+1). A BS representation of the function ϕ
is a representation of it in the form

ϕ(λ0, λ1, . . . , λn) =
∫

S

α0(λ0, σ) . . . αn(λn, σ) dν(σ), (3.27)
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where (S, ν) is a finite measure space and α0, . . . , αn are bounded Borel functions
on R× S.

For any C1-function f : R→ C, we denote by f [1] the continuous function

f [1](λ0, λ1) =
f(λ1)− f(λ0)

λ1 − λ0
,

and for any Cn+1-function f : R→ C

f [n+1](λ0, . . . , λn+1) =
f [n](λ0, . . . , λn−1, λn+1)− f [n](λ0, . . . , λn−1, λn)

λn+1 − λn
.

It is well known that f [n] is a symmetric function.

We denote by Cn+(R) the set of functions f ∈ Cn(R), such that the
j-th derivative f (j), j = 0, . . . , n, belongs to the space F−1(L1(R)), where
F(f) is the Fourier transform of f. Here, the Fourier transform is taken
in the sense of tempered distributions. Note, that if f ∈ Cn+(R), then
F(f (n))(ξ) = (−iξ)nF(f)(ξ). See, for example, [Y, Chapter VI.2]. It is not

difficult to see that the Schwartz space S(R) =
∞⋂

n=0
Cn+(R).

The next lemma introduces a finite measure space which will be frequently
used to construct BS representations.

Lemma 3.2.2 Let

Π(n) = {(s0, s1, . . . , sn) ∈ Rn+1 : |sn| 6 . . . 6 |s1| 6 |s0| ,
sign(s0) = . . . = sign(sn)},

and
ν

(n)
f (s0, . . . , sn) =

in√
2π
F(f)(s0) ds0 . . . dsn.

If f ∈ Cn+(R), then
(
Π(n), ν

(n)
f

)
is a finite measure space.

Proof. The total variation of the measure ν
(n)
f on the set Π(n) (up to a constant)

is equal to
∫

Π(n)
|F(f)(s0)| ds0 . . . dsn =

∫

R
|F(f)(s0)|∆s0 ds0

=
1
n!

∫

R
|F(f)(s0)sn

0 | ds0

=
1
n!

∫

R

∣∣∣F(f (n))(s0)
∣∣∣ ds0 =

1
n!

∥∥∥F(f (n))
∥∥∥

1
,
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where ∆s0 is the volume of the n-dimensional simplex of size s0. ¤

We write for simplicity Π = Π(1) and νf = ν
(1)
f , so that

Π :=
{
(s0, s1) ∈ R2 : |s1| 6 |s0| , sign(s0) = sign(s1)

}
,

and
dνf (s0, s1) :=

i√
2π
F(f)(s0) ds0 ds1. (3.28)

The next two lemmas provide concrete BS-representations for divided dif-
ferences f [n] of functions belonging to the class Cn+(R).

Lemma 3.2.3 If f ∈ C1+(R), then

f [1](λ0, λ1) =
∫∫

Π

α0(λ0, σ)α1(λ1, σ) dνf (σ), (3.29)

where σ = (s0, s1), α0(λ0, σ) = ei(s0−s1)λ0 , α1(λ1, σ) = eis1λ1 , s0, s1 ∈ R.

Proof. We have
∫∫

Π

α0(λ0, σ)α1(λ1, σ) dνf (σ)

=
i√
2π

∫

R
ds0F(f)(s0)

∫ s0

0

eis0λ0−is1λ0+is1λ1 ds1

=
1

(λ0 − λ1)
√

2π

∫

R
F(f)(s0)(eis0λ0 − eis0λ1) ds0

=
1

λ0 − λ1
(f(λ0)− f(λ1)) = f [1](λ0, λ1),

where the repeated integral can be replaced by the double integral by Fubini’s
theorem and Lemma 3.2.2. ¤

Lemma 3.2.4 If f ∈ Cn+(R), then, for all λ0, . . . , λn ∈ R,

f [n](λ0, . . . , λn)

=
∫

Π(n)
ei((s0−s1)λ0+...+(sn−1−sn)λn−1+snλn) dν

(n)
f (s0, . . . , sn).
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Proof. By Lemma 3.2.3 and induction, we have
∫

Π(n+1)
ei((s0−s1)λ0+...+(sn−sn+1)λn+sn+1λn+1) dν

(n+1)
f (s0, . . . , sn+1)

=
∫

Π(n)
ei((s0−s1)λ0+...+snλn)

(∫ sn

0

ieisn+1(λn+1−λn) dsn+1

)

dν
(n)
f (s0, . . . , sn)

=
1

λn+1 − λn

∫

Π(n)
ei((s0−s1)λ0+...+snλn)

(
eisn(λn+1−λn) − 1

)

dν
(n)
f (s0, . . . , sn)

=
1

λn+1 − λn

(
f [n](λ0, . . . , λn−1, λn+1)− f [n](λ0, . . . , λn−1, λn)

)

= f [n+1](λ0, . . . , λn+1).

¤

Lemma 3.2.5 If f ∈ Cn+1+(R), then, for all λ0, . . . , λn+1 ∈ R,

f [n+1](λ0, . . . , λn+1)

= i

∫

Π(n)

∫ sj−sj+1

0

ei((s0−s1)λ0+...+uλn+1+(sj−sj+1−u)λj+...+snλn)

du dν
(n)
f (s0, . . . , sn).

Proof. The right hand side is equal to

i

∫

Π(n)
ei((s0−s1)λ0+...+(sj−sj+1)λj+...+snλn)

∫ sj−sj+1

0

eiu(λn+1−λj) du dν
(n)
f (s0, . . . , sn)

=
1

λn+1 − λj

∫

Π(n)
ei((s0−s1)λ0+...+(sj−sj+1)λj+...+snλn)

(
e(sj−sj+1)(λn+1−λj) − 1

)
dν

(n)
f (s0, . . . , sn)

=
1

λn+1 − λj

∫

Π(n)

(
ei((s0−s1)λ0+...+(sj−sj+1)λn+1+...+snλn)

− ei((s0−s1)λ0+...+(sj−sj+1)λj+...+snλn)
)

dν
(n)
f (s0, . . . , sn)

=
1

λn+1 − λj

(
f [n](λ0, . . . , λj−1, λn+1, λj+1, . . . , λn)

− f [n](λ0, . . . , λj−1, λj , λj+1, . . . , λn)
)

= f [n+1](λ0, . . . , λn+1).

¤
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3.2.2 Multiple operator integrals

In this subsection, we define multiple operator integrals of the form
∫

Rn+1
ϕ(λ0, . . . , λn) dEH0

λ0
V1 dEH1

λ1
V2 dEH2

λ2
. . . Vn dEHn

λn
.

Definition 3.2.6 Let ϕ ∈ B(Rn+1) be a function with BS representa-
tion (3.27). For arbitrary self-adjoint operators H0, . . . , Hn on the Hilbert space
H and bounded operators V1, . . . , Vn ∈ B(H) the multiple operator integral
TH0,...,Hn

ϕ (V1, . . . , Vn) is defined as

TH0,...,Hn
ϕ (V1, . . . , Vn) :=

∫

S

α0(H0, σ)V1 . . . Vnαn(Hn, σ) dν(σ), (3.30)

where the integral is the so∗-integral (Definition 1.4.6).

Remark 3.2.7 By [dPS, Lemma 5.13] and Lemma 1.4.5(i) applied to E =
B(H), the function σ 7→ α0(H0, σ)V1 . . . Vnαn(Hn, σ) is ∗- measurable and there-
fore the integral above exists.

Theorem 3.2.8 The multiple operator integral is well-defined in the sense that
it does not depend on the BS representation of ϕ.

Proof. We first prove that if the operators V1, . . . , Vn are all one-dimensional,
then the right hand side of (3.30) does not depend on the BS representation
of ϕ.

For η, ξ ∈ H, we denote by θη,ξ the one-dimensional operator defined by
formula θη,ξζ = 〈η, ζ〉 ξ, ζ ∈ H. It is clear that Tr(θη,ξ) = 〈η, ξ〉 , Aθη,ξ = θη,Aξ

for any A ∈ B(H) and that θη1,ξ1 . . . θηn,ξn = 〈η1, ξ2〉 . . . 〈ηn−1, ξn〉 θηn,ξ1 .
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Let Vj = θηj ,ξj
, j = 0, . . . , n. Then

E := Tr
(

V0

∫

S

α0(H0, σ)V1 . . . Vnαn(Hn, σ) dν(σ)
)

= Tr
∫

S

V0α0(H0, σ)V1 . . . Vnαn(Hn, σ) dν(σ)

= Tr
∫

S

θη0,ξ0α0(H0, σ)θη1,ξ1 . . . θηn,ξn
αn(Hn, σ) dν(σ)

=
∫

S

Tr (θη0,ξ0α0(H0, σ)θη1,ξ1 . . . θηn,ξnαn(Hn, σ)) dν(σ)

=
∫

S

Tr (α0(H0, σ)θη1,ξ1 . . . θηn,ξn
αn(Hn, σ)θη0,ξ0) dν(σ)

=
∫

S

Tr
(
θη1,α0(H0,σ)ξ1 . . . θηn,αn−1(Hn−1,σ)ξn

θη0,αn(Hn,σ)ξ0

)
dν(σ)

=
∫

S

〈η0, α0(H0, σ)ξ1〉 〈η1, α1(H1, σ)ξ2〉 . . . 〈ηn, αn(Hn, σ)ξ0〉 dν(σ).

Now, since 〈η, α(H)ξ〉 =
∫
R α(λ)

〈
η, dEH

λ ξ
〉
, we have that

E =
∫

S

∫

R
α0(λ0, σ)

〈
η0, dEH0

λ0
ξ1

〉
. . .

∫

R
αn(λn, σ)

〈
ηn, dEHn

λn
ξ0

〉
dν(σ).

Since the measure 〈η, dEλξ〉 has finite total variation, Fubini’s theorem implies

E =
∫

S

(∫

Rn+1
α0(λ0, σ) . . . αn(λn, σ)

〈
η0, dEH0

λ0
ξ1

〉
. . .

〈
ηn, dEHn

λn
ξ0

〉)
dν(σ)

=
∫

Rn+1

(∫

S

α0(λ0, σ) . . . αn(λn, σ) dν(σ)
) 〈

η0, dEH0
λ0

ξ1

〉
. . .

〈
ηn, dEHn

λn
ξ0

〉

=
∫

Rn+1
ϕ(λ0, . . . , λn)

〈
η0, dEH0

λ0
ξ1

〉
. . .

〈
ηn, dEHn

λn
ξ0

〉
.

We recall that, if A,B are bounded operators, then A = B if and only if the
equality Tr(V A) = Tr(V B) holds for all one-dimensional operators V. It now
follows immediately that the multiple operator integral does not depend on BS
representation of ϕ in the case that the operators V1, . . . , Vn are one-dimensional.

By linearity, it follows that the definition of multiple operator integral does
not depend on BS representation in the case of finite-dimensional operators
V1, . . . , Vn. Since every bounded operator is an so-limit of a sequence of finite-
dimensional operators, the claim follows from Proposition 3.2.13. ¤

Lemma 3.2.9 If N is a von Neumann algebra, if H0, . . . , Hn are self-adjoint
operators affiliated with N and if V1, . . . , Vn ∈ N , then TH0,...,Hn

ϕ (V1, . . . , Vn) ∈
N .

This follows from Lemma 1.4.11.
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Lemma 3.2.10 If E is an invariant operator ideal with property (F) and if one
of the operators V1, . . . , Vn belongs to E , then

TH0,...,Hn
ϕ (V1, . . . , Vn) ∈ E .

In case that n = 2, this yields
∥∥TH1,H2

ϕ

∥∥
E→E 6 ‖ϕ‖ ,

where

‖ϕ‖ = inf
{∫

S

‖α(·, σ)‖∞ ‖β(·, σ)‖∞ dν(σ) : ϕ(λ, µ) =
∫

S

α(λ, σ)β(µ, σ) dν(σ)
}

.

Proof. Follows from Lemmas 1.4.5(i) and 1.4.8. ¤

Remark 3.2.11 If V ∈ L2(N , τ) and if n = 2, then the preceding definition
coincides with the definition of double operator integral as a spectral integral
given in [BS2] and [dPS].

Corollary 3.2.12 If V1, . . . , Vn ∈ N , Vj ∈ L1(N , τ) for some j = 1, . . . , n,
H0, . . . , Hn are self-adjoint operators affiliated with N , ϕ ∈ B(Rn+1) and
ϕ(λ0, . . . , λn) admits the representation (3.27), then

τ
(
TH0,...,Hn

ϕ (V1, . . . , Vn)
)

=
∫

S

τ (α0(H0, σ)V1α1(H1, σ) . . . Vnαn(Hn, σ)) dν(σ)

Proof. It is enough to note that the operator-valued function

σ 7→ α0(H0, σ)V1α1(H1, σ) . . . Vnαn(Hn, σ)

is ∗- measurable by [dPS, Lemma 5.13] and Lemma 1.4.5(i), so that we can
apply Lemma 1.4.13. ¤

Proposition 3.2.13 (i) If a sequence of self-adjoint operators V
(kj)
j ∈

B(H), j = 1, . . . , n, converges to Vj ∈ B(H) in the so-topology (respectively,
norm topology) as kj →∞, then

TH0,...,Hn
ϕ (V (k1)

1 , . . . , V (kn)
n ) → TH0,...,Hn

ϕ (V1, . . . , Vn)

in the so-topology (respectively, norm topology) as k1, . . . , kn →∞.

(ii) If a sequence of self-adjoint operators H
(kj)
j , j = 0, . . . , n resolvent

strongly converges to Hj as kj →∞ and V1, . . . , Vn ∈ B(H), then

T
H

(k0)
0 ,...,H(kn)

n
ϕ (V1, . . . , Vn) → TH0,...,Hn

ϕ (V1, . . . , Vn)

in the so-topology as k0, . . . , kn →∞.
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Proof. We prove the part (ii), the proof of part (i) is similar (and simpler).
Suppose that

ϕ(λ0, . . . , λn) =
∫

S

α0(λ0, σ) . . . αn(λn, σ) dν(σ)

is a representation of ϕ given by (3.27). Since α(·, σ) is a bounded func-
tion for every σ ∈ S, the operators α(H(kj)

j , σ) converge to α(Hj , σ) in
the so-topology by Theorem 1.1.6. Since by Theorem 1.1.1 multiplication
of operators is jointly continuous in the so-topology on the unit ball of N ,

the operator α(H(k0)
0 , σ)V1 . . . Vnα(H(kn)

n , σ) converges in the so-topology to
α(H0, σ)V1 . . . Vnα(Hn, σ), σ ∈ S. Now, an application of the Dominated Con-
vergence Theorem for the Bochner integral of H-valued functions (Theorem
1.1.13) completes the proof. ¤

This new definition of multiple operator integral enables us to give a simple
proof of the following

Proposition 3.2.14 The multiple operator integral has the properties:
(i) if ϕ1 and ϕ2 admit a representation of the type given in (3.27), then so does
ϕ1 + ϕ2 and

TH1,...,Hn

ϕ1+ϕ2
= TH1,...,Hn

ϕ1
+ TH1,...,Hn

ϕ2
; (3.31)

(ii) in the case of double operator integrals, if ϕ1 and ϕ2 admit a representation
of the type given in (3.27), then so does ϕ1ϕ2 and

TH1,H2
ϕ1ϕ2

= TH1,H2
ϕ1

TH1,H2
ϕ2

.

Proof. (i) If we take representations of the form (3.27) with (S1, ν1) and (S2, ν2)
for ϕ1 and ϕ2 and put (S, ν) = (S1, ν1) t (S2, ν2) for ϕ1 + ϕ2 with evident
definition of α1, α2, . . . , then the equality (3.31) follows from Definition 3.2.6.
Here t denotes the disjoint sum of measure spaces.

(ii) If

ϕj(λ1, λ2) =
∫

S1

αj(λ1, σ1)βj(λ2, σ1) dνj(σ1), j = 1, 2,

set
ϕ(λ1, λ2) =

∫

S

α(λ1, σ)β(λ2, σ) dν(σ),

where
(S, ν) = (S1, ν1)×(S2, ν2)

and
α(λ, σ) = α1(λ, σ1)α2(λ, σ2), β(λ, σ) = β1(λ, σ1)β2(λ, σ2).
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Consequently,

TH1,H2
ϕ1

(
TH1,H2

ϕ2
(V )

)

=
∫

S1

α1(H1, σ1)TH1,H2
ϕ2

(V )β1(H2, σ1) dν1(σ1)

=
∫

S1

α1(H1, σ1)
(∫

S2

α2(H1, σ2)V β2(H2, σ2) dν2(σ2)
)

β1(H2, σ1) dν1(σ1).

Now, Lemma 1.4.9 and Fubini’s theorem (Lemma 1.4.10) imply

TH1,H2
ϕ1

(
TH1,H2

ϕ2
(V )

)

=
∫

S1×S2

α1(H1, σ1)α2(H1, σ2)V β2(H2, σ2)β1(H2, σ1) d(ν1×ν2)(σ1, σ2)

= TH1,H2
ϕ1ϕ2

(V ).

¤

The following observation is a direct consequence of Lemma 3.2.4 and Defi-
nition 3.2.6.

Lemma 3.2.15 If f ∈ Cn+(R), then

TH0,...,Hn

f [n] (V1, . . . , Vn)

=
∫

Π(n)
ei(s0−s1)H0V1e

i(s1−s2)H1V2 . . . VneisnBn dν
(n)
f (s0, . . . , sn).

3.3 Higher order Fréchet differentiability

We note that, by Stone’s theorem (Theorem 1.1.5) and joint continuity of multi-
plication of operators (from the unit ball) in the so-topology (Theorem 1.1.1) all
operator-valued integrals occurring in this and subsequent sections are defined
as in subsection 1.4.

Theorem 3.3.1 Let N be a von Neumann algebra. Suppose that H0 = H∗
0 is

affiliated with N , that V ∈ N is self-adjoint and set H1 = H0+V. If f ∈ C1+(R),
then

f(H1)− f(H0) = TH1,H0

f [1] (V ).

Proof. It follows from Lemma 1.1.7 that

f(H1)− f(H0) =
1√
2π

∫

R
dsF(f)(s)(eisH1 − eisH0).
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Hence, by Lemma 1.1.8,

f(H1)− f(H0) =
i√
2π

∫

R
dsF(f)(s)

∫ s

0

ei(s−t)H1V eitH0 dt. (3.32)

Since f ∈ C1+(R), by Lemma 3.2.2 and Fubini’s theorem (Lemma 1.4.10), the
repeated integral can be replaced by a double integral, so that

f(H1)− f(H0) =
i√
2π

∫∫

Π

F(f)(s)ei(s−t)H1V eitH0 ds dt

=
∫∫

Π

ei(s−t)H1V eitH0 dνf (σ).
(3.33)

It now follows from Lemma 3.2.15 that f(H1)− f(H0) = TH1,H0

f [1] (V ). ¤

Remark 3.3.2 The preceding result is a generalization of a formula due to
Yu. L.Daletskii and S.G.Krein [DK]. It is similar to [dPSW, Corollary 7.2],
which applies to a wider class of functions but is restricted to bounded operators
in a semifinite von Neumann algebra N . The proof given here is simpler.

Theorem 3.3.3 Let N be a von Neumann algebra, acting in a Hilbert space
H. Let H = H∗ be affiliated with N and let V ∈ Esa, where E is an invariant
operator ideal over N with property (F). If f ∈ C2+(R), then the function
f : H ′ ∈ H + Esa 7→ f(H ′) ∈ f(H) + Esa is affinely Fréchet differentiable along
Esa and

DEf(H) = TH,H
f [1] .

The function X 7→ DEf(H + X) is continuous in the norm of E and satisfies
the estimate

‖DEf(H + X)(V )−DEf(H)(V )‖E 6 ‖F(f ′′)‖1 ‖V ‖E ‖X‖E , X, V ∈ E .
(3.34)

Proof. By (3.33) we have, following [Wi],

f(H + V )− f(H) =
∫∫

Π

ei(s−t)(H+V )V eitH dνf (s, t)

=
∫∫

Π

ei(s−t)HV eitH dνf (s, t)

+
∫∫

Π

(
ei(s−t)(H+V ) − ei(s−t)H

)
V eitH dνf (s, t)

= (I) + (II).
(3.35)
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(I) is equal to TH,H
f [1] (V ) and represents a continuous linear operator on E (see

Lemmas 3.2.15 and 3.2.10), so that it will be a Fréchet derivative of f : H +
E → f(H) + E provided it is shown that the second term is o(‖V ‖E). Applying
Duhamel’s formula (1.6) yields

(II) =
∫∫

Π

(∫ s−t

0

eiu(H+V )iV ei(s−t−u)H du

)
V eitH dνf (s, t). (3.36)

Since f ∈ C2+(R), Lemmas 3.2.5, 3.2.15 and Theorem 3.2.8 enable us to
rewrite (3.36) as

(II) =
∫∫∫

Π(2)
eiu(H+V )V ei(t−u)HV ei(s−t)H dν

(2)
f (s, t, u),

where (Π(2), ν
(2)
f ) is the finite measure space defined in Lemma 3.2.2. The E-

norm of the last expression is estimated by
∣∣∣ν(2)

f

∣∣∣ ‖V ‖ ‖V ‖E 6
∣∣∣ν(2)

f

∣∣∣ ‖V ‖2E . So,

the function f : H+E → f(H)+E is Fréchet differentiable and DEf(H) = TH,H
f [1] .

The norm continuity of this derivative and the estimate (3.34) follow by a
similar argument using Duhamel’s formula (1.6). ¤

Remark 3.3.4 It follows, in particular, from the preceding theorem via Lemma
3.2.10 that the operator TH,H

f [1]

∣∣∣
E

is a bounded linear operator on E .

Remark 3.3.5 [dPS] Here we show that (a) the function sin : f ∈ L∞[0, 1] 7→
sin(f) ∈ L∞[0, 1] is Fréchet differentiable and that (b) the function sin : f ∈
L1[0, 1] 7→ sin(f) ∈ L1[0, 1] is Gateaux differentiable but not Fréchet differen-
tiable.

Indeed,

sin(f + 2h)− sin(f) = 2 sin(h) cos(f + h)
= 2 sin(h) cos(f) + 2 sin(h)(cos(f + h)− cos(f))
= 2 cos(f)h + 2 cos(f)(sin(h)− h) + 4 sin(h) sin(f + h/2) sin(h/2)
= 2 cos(f)h + r(f ; h).

So, it is clear that r(f ; h) = O(‖h‖2∞). This means that the function sin : f ∈
L∞[0, 1] 7→ sin(f) ∈ L∞[0, 1] is Fréchet differentiable.

It is also clear that the function sin : f ∈ L1[0, 1] 7→ sin(f) ∈ L1[0, 1] is
Gateaux differentiable. In order to see that it is not Fréchet differentiable it is
enough to take hn = nχ[0,1/n]. In this case

r(f ; hn) = 2χ[0,1/n] cos 1(sin 1− 1) + 4χ[0,1/n] sin(1) sin(f + 1/2) sin(1/2).
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Clearly, ‖r(f ;hn)‖1 is not o(‖hn‖1 .

This example shows that, for example, for perturbations of the class L1(N , τ)
this theory does not work. One has to take functions from narrower than C1+(R)
class.

Theorem 3.3.6 Let N be a von Neumann algebra on a Hilbert space H, let
H = H∗ be affiliated with N and let V1, . . . , Vn ∈ Esa. If f ∈ Cn+1+(R), then
the function f : H ′ ∈ H + Esa 7→ f(H ′) ∈ f(H)+ Esa is n-times affinely Fréchet
differentiable along Esa and

Dn
Ef(H)(V1, . . . , Vn) =

∑

σ∈Pn

TH,...,H
f [n] (Vσ(1), . . . , Vσ(n)) ∈ E , (3.37)

where Pn is the standard permutation group.

Proof. If n = 1 then this theorem is exactly Theorem 3.3.3. Set H̃ = H +Vn+1.
By induction we have

Dnf(H̃;V1, . . . , Vn)−Dnf(H; V1, . . . , Vn)

=
∑

σ∈Pn

(
T H̃,H̃,...,H̃

f [n] (Vσ(1), . . . , Vσ(n))− TH,H,...,H
f [n] (Vσ(1), . . . , Vσ(n))

)
.

A single term of this sum is

T H̃,H̃,...,H̃
f [n] (Vσ(1), . . . , Vσ(n))− TH,H,...,H

f [n] (Vσ(1), . . . , Vσ(n))

=
n∑

j=0

(
T H̃,...,

(j)

H̃ ,H,...,H
f [n] (Vσ(1), . . . , Vσ(n))− T H̃,...,H̃,

(j)
H ,...,H

f [n] (Vσ(1), . . . , Vσ(n))

)
.

Now, the j-th summand is (Lemma 3.2.15)

T H̃,...,
(j)

H̃ ,H,...,H
f [n] (Vσ(1), . . . , Vσ(n))− T H̃,...,H̃,

(j)
H ,...,H

f [n] (Vσ(1), . . . , Vσ(n))

=
∫

Π(n)
ei(s0−s1)H̃Vσ(1) . . . Vσ(j)e

i(sj−sj+1)H̃Vσ(j+1)e
i(sj+1−sj+2)H

Vσ(j+2) . . . Vσ(n)e
isnB dν

(n)
f (s0, . . . , sn)

−
∫

Π(n)
ei(s0−s1)H̃Vσ(1) . . . Vσ(j−1)e

i(sj−1−sj)H̃Vσ(j)e
i(sj−sj+1)H

Vσ(j+1) . . . Vσ(n)e
isnB dν

(n)
f (s0, . . . , sn)

=
∫

Π(n)
ei(s0−s1)H̃Vσ(1) . . . Vσ(j)

(
ei(sj−sj+1)H̃ − ei(sj−sj+1)H

)

Vσ(j+1) . . . Vσ(n)e
isnB dν

(n)
f (s0, . . . , sn).
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By Duhamel’s formula (Lemma 1.1.8), we have

T H̃,...,
(j)

H̃ ,H,...,H
f [n] (Vσ(1), . . . , Vσ(n))− T H̃,...,H̃,

(j)
H ,...,H

f [n] (Vσ(1), . . . , Vσ(n))

=
∫

Π(n)
ei(s0−s1)H̃Vσ(1) . . . Vσ(j)

(∫ sj−sj+1

0

eiuH̃iVn+1e
i(sj−sj+1−u)H du

)

Vσ(j+1) . . . Vσ(n)e
isnB dν

(n)
f (s0, . . . , sn).

Applying Fubini’s theorem (Lemma 1.4.10) we get

T H̃,...,
(j)

H̃ ,H,...,H
f [n] − T H̃,...,H̃,

(j)
H ,...,H

f [n]

= i

∫

Π(n)

∫ sj−sj+1

0

ei(s0−s1)H̃Vσ(1) . . . Vσ(j)e
iuH̃Vn+1

ei(sj−sj+1−u)HVσ(j+1) . . . Vσ(n)e
isnB du dν

(n)
f (s0, . . . , sn). (3.38)

Hence, it follows from formula (3.38), Lemma 3.2.5 and the fact that multiple
operator integral is well-defined (Theorem 3.2.8) that

T H̃,...,
(j)

H̃ ,H,...,
(n)
H

f [n] (Vσ(1), . . . , Vσ(n))− T H̃,...,H̃,
(j)
H ,...,

(n)
H

f [n] (Vσ(1), . . . , Vσ(n))

= T H̃,...,
(j)

H̃ ,H,...,
(n+1)

H
f [n+1] (Vσ(1), . . . , Vσ(j), Vn+1, Vσ(j+1), . . . , Vσ(n)).

Since the multiple operator integral on the right hand side minus the same
multiple operator integral with the last H̃ replaced by H has the order of
o((max ‖Vj‖)n+2) by Duhamel’s formula, we see that the theorem is proved.

That the value of the derivative (3.37) belongs to E follows from Lemma
3.2.10. ¤

The argument of the last proof and Lemma 3.2.15 implies

Corollary 3.3.7 Let N be a von Neumann algebra on a Hilbert space H. If
H = H∗ is affiliated with N , if V ∈ Esa and if f ∈ Cn+1+(R), then

f(H + V )− f(H)

= TH,H
f [1] (V ) + TH,H,H

f [2] (V, V ) + . . . + TH,...,H
f [n] (V, . . . , V ) + O(‖V ‖n+1

E ).

Proof. This corollary is a consequence of Theorem 3.3.6 and Taylor’s formula
[Sch, Theorem 1.43]. ¤
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3.4 Spectral shift and spectral averaging
in semifinite von Neumann algebras

The aim of this subsection is to prove a semifinite extension of a formula for
spectral averaging due to Birman-Solomyak [BS].

Lemma 3.4.1 If (N , τ) is a semifinite von Neumann algebra, if H = H∗ is
affiliated with N and V ∈ L1(N , τ), then the function γ(λ, r) = τ

(
V EHr

λ

)
is

measurable, where Hr := H + rV, r ∈ [0, 1].

Proof. Let ϕλ,ε be a smooth approximation of χ(−∞,λ]. We note that ϕλ,ε(H) =
ϕ0,ε(H − λ), and that the unbounded-operator valued function (λ, r) ∈ R2 7→
Hr−λ is resolvent uniformly continuous [RS, VIII.19]. It follows from Theorem
1.1.6 that the function (λ, r) 7→ ϕλ,ε(Hr) is so-continuous, so that Lemma
1.3.30 implies that the function (λ, r) 7→ τ (V ϕλ,ε(Hr)) is continuous. Now,
since ϕλ,ε → χ(−∞,λ] pointwise as ε → 0, the operator ϕλ,ε(Hr) converges
to χ(−∞,λ](Hr) in so-topology by [RS, Theorem VIII.5(d)]. Hence, again by
Lemma 1.3.30, the function τ

(
V χ(−∞,λ](Hr)

)
is measurable as pointwise limit

of continuous functions. ¤

Theorem 3.4.2 Let (N , τ) be a semifinite von Neumann algebra on a Hilbert
space H with a faithful normal semifinite trace τ. Let H = H∗ be affiliated with
N and let V = V ∗ ∈ L1(N , τ). If f ∈ C2+(R), then f(H+V )−f(H) ∈ L1(N , τ)
and

τ (f(H + V )− f(H)) =
∫

R
f ′(λ) dΞ(λ),

where the measure Ξ is given by

Ξ(a, b) =
∫ 1

0

τ
(
V EHr

(a,b)

)
dr, a, b ∈ R.

Here Hr := H + rV, r ∈ [0, 1] and dEHr

λ is the spectral measure of Hr.

Due to Lemma 3.4.1 the measure Ξ is well-defined.

Proof. If ϕ(λ, µ) = α(λ)β(µ), where α, β are continuous bounded functions
on R, then by the definition of the multiple operator integral

TH,H
ϕ (V ) = α(H)V β(H).

Hence,
τ

(
TH,H

ϕ (V )
)

= τ (α(H)V β(H)) = τ (α(H)β(H)V ) .
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Since the function α(·)β(·) is bounded, the simple spectral approximations to
the bounded operator α(H)β(H) converge uniformly and so, after multiplying
by V, converge in norm of L1(N , τ). This implies that

τ (α(H)β(H)V ) = τ

(∫

R
α(λ)β(λ) dEH

λ V

)
=

∫

R
α(λ)β(λ)τ

(
dEH

λ V
)
.

Hence, for functions of the form ϕ(λ, µ) = α(λ)β(µ), it follows that

τ
(
TH,H

ϕ (V )
)

=
∫

R
ϕ(λ, λ)τ

(
dEH

λ V
)
. (3.39)

Let (S, Σ, ν) be a finite (complex) measure space, let α(·, ·), β(·, ·) be bounded
continuous functions on R× S and suppose that

ϕ(λ, µ) =
∫

S

α(λ, σ)β(µ, σ) dν(σ), λ, µ ∈ R,

is a BS-representation (3.27) of ϕ. Let ϕσ(λ, µ) := α(λ, σ)β(µ, σ). It then fol-
lows from the definition of the multiple operator integral that TH,H

ϕ (V ) =∫
S

TH,H
ϕσ

(V ) dν(σ) and hence by Corollary 3.2.12

τ
(
TH,H

ϕ (V )
)

=
∫

S

τ
(
TH,H

ϕσ
(V )

)
dν(σ).

It follows from (3.39) that

τ
(
TH,H

ϕ (V )
)

=
∫

S

∫

R
ϕσ(λ, λ)τ

(
dEH

λ V
)

dν(σ)

=
∫

R

∫

S

ϕσ(λ, λ) dν(σ)τ
(
dEH

λ V
)

=
∫

R
ϕ(λ, λ)τ

(
dEH

λ V
)
. (3.40)

The interchange of integrals in the second equality is justified by Lemma 1.3.33
and Fubini’s theorem. Further, since f ∈ C2+(R), it follows from Theorem
3.3.3 applied to E = L1(N , τ) that the Fréchet derivative DL1f(Hr) = THr,Hr

f [1]

exists for all r ∈ [0, 1]. By the continuity of the Fréchet derivative given by
the estimate (3.34) and the Newton-Leibnitz formula for the Fréchet derivative
(Theorem 1.2.2), it follows that

∫ 1

0

THr,Hr

f [1] (V ) dr =
∫ 1

0

DL1f(Hr)(V ) dr = f(H + V )− f(H).

Taking traces by Lemma 1.4.13 we have
∫ 1

0

τ
(
THr,Hr

f [1] (V )
)

dr = τ (f(H + V )− f(H)) . (3.41)
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Since f [1] is continuous, f [1](λ, λ) = f ′(λ), so that (3.41) and (3.40) imply

τ (f(H + V )− f(H)) =
∫ 1

0

∫

R
f [1](λ, λ)τ

(
dEHr

λ V
)

dr

=
∫ 1

0

∫

R
f ′(λ)τ

(
dEHr

λ V
)

dr

=
∫

R
f ′(λ)

∫ 1

0

τ
(
dEHr

λ V
)

dr,

the interchange of the integrals in the last equality being justified by Fubini’s
theorem due to Lemma 1.3.33 and the fact that f ′ is a bounded function. ¤

The next corollary in the case that N = B(H) and τ = Tr was established
in [BS].

Corollary 3.4.3 The measure Ξ is absolutely continuous and the following
equality holds

dΞ(λ) = ξ(λ) dλ,

where ξ(t) is the spectral shift function for the pair (H + V, H).

Proof. From Theorems 3.1.13 and 3.4.2 it follows that
∫

R
f ′(λ) dΞ(λ) =

∫

R
f ′(λ)ξ(λ) dλ

for all f ∈ C∞c (R). Consequently, the measures dΞ(λ) and ξ(λ) dλ have the
same derivative in the sense of generalized functions. By [GSh, Ch. I.2.6] there
exists a constant c such that

dΞ(λ)− ξ(λ) dλ = c · dλ.

Since the measures dΞ(λ) and ξ(λ) dλ are finite, it follows immediately, that
c = 0. ¤



Chapter 4

Spectral shift function and
spectral flow

4.1 Preliminary results

We denote by N a semifinite von Neumann algebra acting on Hilbert space H,
with a faithful normal semifinite trace τ.

If D = D∗ηN and Rz(D) is τ -compact for some (and hence for all) z ∈ C\R,
then we say that D has τ -compact resolvent.

We constantly use some parameters for specific purposes. The parameter r
will always be an operator path parameter, i. e. the letter r is used when we
consider paths of operators such as Dr = D0 + rV. Very rarely we need another
path parameter which we denote by s. We do not use t as path parameter, since
t is used for other purposes later in the paper. The letter λ is always used as a
spectral parameter. If we need another spectral parameter we will use µ.

The following elementary fact will be used repeatedly.

Lemma 4.1.1 If Ω is an open interval in R and if f ∈ Ck
c (Ω), then there exist

functions f1, f2 ∈ Ck
c (Ω) such that f1, f2 are non-negative, f = f1 − f2 and√

f1,
√

f2 ∈ Ck
c (Ω).

Proof. Let [a, b] be a closed interval, [a, b] ⊆ Ω and supp(f) ⊆ (a, b). Take a
non-negative C∞-function f1 > f on [a, b] which vanishes at a and b in such a
way that

√
f1 is C∞-smooth at a and b, and take f2 = f1 − f. ¤

130
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4.1.1 Self-adjoint operators with τ-compact resolvent

In this subsection, we collect some facts about operators with compact resolvent
in a semifinite von Neumann algebra.

Lemma 4.1.2 If D = D∗ηN has τ -compact resolvent, then for all compact sets
∆ ⊆ R the spectral projection ED

∆ is τ -finite.

Proof. If D has τ -compact resolvent then the operator (1 + D2)−1 = (D +
i)−1(D − i)−1 is τ -compact. Since for every finite interval ∆ there exists a
constant c > 0, not depending on D such that ED

∆ 6 c(1+D2)−1, the projection
ED

∆ is also τ -compact, and hence τ -finite. ¤

Corollary 4.1.3 If D = D∗ηN has τ -compact resolvent, then for all f ∈ Bc(R)
the operator f(D) is τ -trace class.

Proof. There exists a finite segment ∆ ⊆ R such that |f | 6 constχ∆, so that
|f(D)| 6 constED

∆ . ¤

The following lemma and its proof are taken from [CP].

Lemma 4.1.4 [CP, Appendix B, Lemma 6] If D0 is an unbounded self-adjoint
operator, A is a bounded self-adjoint operator, and D = D0 + A then

(1 + D2)−1 6 f(‖A‖)(1 + D2
0)
−1,

where f(a) = 1 + 1
2a2 + 1

2a
√

a2 + 4.

Proof. (A) If A dom(D0) ⊆ dom D0, so that dom D2 = dom D2
0, then there

exists a positive constant C such that:

1 + D2
0 6 C(1 + D2) on dom D2 = dom D2

0.

Proof of (A). We need to prove that for some C > 0 and for all vectors ξ of
norm 1 in dom D2

0 :

〈ξ, ξ〉+ 〈D0ξ, D0ξ〉 6 C[〈ξ, ξ〉+ 〈D0ξ, D0ξ〉+ 〈Aξ,Aξ〉+ 〈D0ξ, Aξ〉+ 〈Aξ, D0ξ〉]

or, letting x = ‖D0ξ‖ and a = ‖Aξ‖ ,

1 + x2 6 C
(
1 + x2 + a2 + 2xa

)
,

which would follow from:

1 + x2 6 C
(
1 + x2 + a2 − 2xa

)
.
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One easily calculates the maximum value of 1+x2

1+(x−a)2 to be f(a) = 1 + 1
2a2 +

1
2a
√

a2 + 4. Since a 6 ‖A‖ and f is clearly increasing, we get

1 + x2 6 f(‖A‖) (
1 + (x− a)2

)

and so (1 + D2
0) 6 f(‖A‖)(1 + D2) on dom D2

0. Lemma 1.1.3 now implies

(1 + D2)−1 6 f(‖A‖)(1 + D2
0)
−1.

(B) To rid ourselves of the restrictive hypothesis that A(dom D0) ⊆ dom D0,
let En = ED0

[−n,n] and let An = EnAEn. Then An is self-adjoint, ‖An‖ 6 ‖A‖
and An(dom D0) ⊆ dom D0. If Dn = D0 + An then by (A)

(1 + D2
n)−1 6 f(‖A‖)(1 + D2

0)
−1.

Now, since En → 1 in so-topology by Theorem 1.1.4, we have that An → A
in so-topology by Theorem 1.1.1, and hence Dnξ → Dξ for every ξ ∈ dom D0.
So, [RS, Theorem VIII.25] implies that Dn → D in strong resolvent sense, and
Theorem 1.1.6 implies that

(1 + D2
n)−1 → (1 + D2)−1

in so-topology. This completes the proof. ¤

Lemma 4.1.5 Let D0 = D∗
0ηN have τ -compact resolvent, and let BR =

{V = V ∗ ∈ N : ‖V ‖ 6 R} . Then for any compact subset ∆ ⊆ R the function

V ∈ BR 7→ ED0+V
∆

is L1(N , τ)-bounded.

Proof. We have ED0+V
∆ 6 c0(1+(D0+V )2)−1 for some constant c0 = c0(∆) > 0

and for every V = V ∗ ∈ N . Now, by Lemma 4.1.4 there exists a constant
c1 = c1(R) > 0, such that for all V ∈ BR

(1 + (D0 + V )2)−1 6 c1(1 + D2
0)
−1.

Hence, since D0 has τ -compact resolvent, all projections ED0+V
∆ , V ∈ BR, are

bounded from above by a single τ -compact operator T = c0c1(1 + D2
0)
−1. This

means, that for t > 0
µt(ED0+V

∆ ) 6 µt(T ).

Further, by (1.22) µt(ED0+V
∆ ) = χ

[0,τ
(

E
D0+V

∆

)
)
(t) and there exists t0 > 0 such

that µt0(T ) < 1. This implies that for all V ∈ BR, τ
(
ED0+V

∆

)
6 t0. ¤

Corollary 4.1.6 If D0 = D∗
0ηN has τ -compact resolvent, then for any function

f ∈ Bc(R) the function V ∈ BR 7→ ‖f(D0 + V )‖L1 is bounded.
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Corollary 4.1.7 Let D0 = D∗
0ηN have τ -compact resolvent, r = (r1, . . . , rm) ∈

[0, 1]m, V1, . . . , Vm ∈ Nsa and set Dr = D0 + r1V1 + . . . + rmVm. Then
(i) for any compact subset ∆ ⊆ R the function r ∈ [0, 1]m 7→

∥∥∥EDr

∆

∥∥∥
1

is bounded;

(ii) for any function f ∈ Bc(R) the function r ∈ [0, 1] 7→ ‖f(Dr)‖1 is bounded.

Lemma 4.1.8 If D0 = D∗
0ηN and if V = V ∗ ∈ N , then for any t ∈ R,

eit(D0+V ) converges in ‖·‖-norm to eitD0 when ‖V ‖ → 0.

Proof. It follows directly from Duhamel’s formula (1.6)

eit(D0+V ) − eitD0 =
∫ t

0

ei(t−u)(D0+V )iV eiuD0 du

and Lemma 1.4.14 ¤

4.1.2 Difference quotients and double operator integrals

Lemma 4.1.11 provides a modification of the BS-representation for f [1] from
Lemma 3.2.3 with which we will constantly work.

We include the proof of the following fact for completeness.

Lemma 4.1.9 (i) If f ∈ C1
c (R), then f̂ ∈ L1(R).

(ii) the function
φ(x) :=

x√
1 + x2

(4.1)

belongs to C2,+(R).

Proof. (i) [BR, Corollary 3.2.33] The Schwartz inequality and the Parseval’s
identity imply

∫

R
|f̂ |(ξ) dξ =

∫

R
|ξ + i|−1|ξ + i||f̂ |(ξ) dξ

6
(∫

R
|ξ + i|−2 dξ

) 1
2

(∫

R
|ξ + i|2|f̂ |2(ξ) dξ

) 1
2

= const
(∫

R
|f ′(x) + f(x)|2 dx

) 1
2

< ∞.

(ii) The derivatives φ′(x) = (1 + x2)−3/2, φ′′(x) = −3x(1 + x2)−5/2,
φ′′′(x) = −3(1 + x2)−5/2 + 15

2 x(1 + x2)−7/2 belong to L1(R). So, by the
argument of (i),

∫

R
|ξ| |φ̂|(ξ) dξ 6 const

(∫

R
|φ′′(x) + φ′(x)|2 dx

) 1
2

< ∞
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and ∫

R
|ξ|2 |φ̂|(ξ) dξ 6 const

(∫

R
|φ′′′(x) + φ′′(x)|2 dx

) 1
2

< ∞.

¤

This lemma means that C1
c (R) ⊆ C0,+(R). Applying it to the first n derivatives

of a function f from Cn+1
c (R), we obtain

Corollary 4.1.10 Cn+1
c (R) ⊆ Cn,+(R), n = 0, 1, 2, . . .

The following lemma provides a BS-representation for f [1], 0 6 f ∈ C2
c (R),

which will be used throughout this section.

Lemma 4.1.11 Let f ∈ C2
c (R) be a non-negative function such that g :=

√
f ∈

C2
c (R). If Ω ⊇ supp(f), then

f [1](λ0, λ1) =
∫

Π

(α1(λ0, σ)β1(λ1, σ) + α2(λ0, σ)β2(λ1, σ)) dνg(σ),

where σ = (s0, s1) and

α1(λ0, σ) = ei(s0−s1)λ0g(λ0), β1(λ1, σ) = eis1λ1 , (4.2)

α2(λ0, σ) = ei(s0−s1)λ0 , β2(λ1, σ) = eis1λ1g(λ1),

so that α1(·, σ), β2(·, σ) ∈ C2
c (Ω) for all σ ∈ Π, and |α1(·)| , |β2(·)| 6 ‖g‖∞ ,

while α2(·, σ), β1(·, σ) ∈ C∞(R) for all σ ∈ Π, and |α2(·)| , |β1(·)| 6 1.

Proof. The assumption g ∈ C2
c (R) implies that g ∈ C1,+(R) (see Corollary

4.1.10). Now,

f [1](λ0, λ1) =
g2(λ0)− g2(λ1)

λ0 − λ1

=
g(λ0)− g(λ1)

λ0 − λ1
(g(λ0) + g(λ1)) = g[1](λ0, λ1) (g(λ0) + g(λ1)) .

Hence, using (3.2.3), we have

f [1](λ0, λ1) =
∫

Π

(
α(λ0, σ)g(λ0)β(λ1, σ) + α(λ0, σ)g(λ1)β(λ1, σ)

)
dνg(σ).

If we set α1(λ, σ) = α(λ, σ)g(λ), β1(λ, σ) = β(λ, σ), α2(λ, σ) = α(λ, σ) and
β2(λ, σ) = g(λ)β(λ, σ), then we see that all the conditions of the Lemma are
fulfilled. ¤

The following lemma is a corollary of Lemma 4.1.11 and the definition of the
multiple operator integral (Definition 3.2.6).
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Lemma 4.1.12 If D0 = D∗
0ηN , if D1 = D0+V, V = V ∗ ∈ N and if f ∈ C2

c (R)
is a non-negative function, such that g :=

√
f ∈ C2

c (R), then

TD1,D0

f [1] (V ) =
∫

Π

(α1(D1, σ)V β1(D0, σ) + α2(D1, σ)V β2(D0, σ)) dνg(σ),

where α1, β1, α2, β2 are given by (4.2).

We need the following weaker version of [ACDS, Theorem 5.3]. See also [BS2].

Proposition 4.1.13 [ACDS, Theorem 5.3] Let N be a von Neumann algebra.
Suppose that D0 = D∗

0 is affiliated with N , that V ∈ N is self-adjoint and set
D1 = D0 + V.
(i) If f ∈ C1,+(R), then

f(D1)− f(D0) = TD1,D0

f [1] (V ).

(ii) If f ∈ C2,+(R), then the function f : D0 +Nsa 7→ f(D0) +Nsa is affinely
(N ,N )-Fréchet differentiable, the equality DN f(D) = TD,D

f [1] holds and DN f(D)
is ‖·‖-continuous.

4.1.3 Some continuity and differentiability properties of
operator functions

We are going to consider spectral flow along ‘continuous’ paths of unbounded
Fredholm operators. We will make precise what we mean by continuity in this
setting later. However our formulae require more than just continuity. They
require us to be able to take derivatives with the respect to the path parameter.
For this to be feasible we need the full force of the double operator integral
formalism. We present the results we will need as a sequence of lemmas. In the
sequel we will constantly need to take functions of a path of operators. We thus
need the following continuity result. For the definition of BR see Lemma 4.1.5.

Proposition 4.1.14 If D0 = D∗
0ηN has τ -compact resolvent and if f ∈ C2

c (R)
then the operator-valued function A : V ∈ BR 7→ f(D0 + V ) takes values in
L1(N , τ) and is L1(N , τ)-continuous.

Proof. That A(·) takes values in L1(N , τ) follows from Lemma 1.6.8 and Corol-
lary 4.1.3. By Lemma 4.1.1 it is enough to prove continuity for a non-negative
function f with g =

√
f ∈ C2

c (R). By Proposition 4.1.13(i) and Lemma 4.1.12
we have

f(D0 + V )− f(D0) = TD0+V,D0

f [1] (V )

=
∫

Π

(α1(D0 + V, σ)V β1(D0, σ) + α2(D0 + V, σ)V β2(D0, σ)) dνg(σ).
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Hence, by Lemma 1.4.14, we have

‖f(D0 + V )− f(D0)‖L1 6
∫

Π

[ ‖α1(D0 + V, σ)‖L1 ‖V ‖ ‖β1(D0, σ)‖

+ ‖α2(D0 + V, σ)‖ ‖V ‖ ‖β2(D0, σ)‖L1

]
d |νg| (σ)

6
∫

Π

( ‖g(D0 + V )‖L1 ‖V ‖

+ ‖V ‖ ‖g(D0)‖L1

)
d |νg| (σ)

6 |νg| (Π) ‖V ‖ (‖g(D0 + V )‖L1 + ‖g(D0)‖L1).

Now, Corollary 4.1.6 applied to g completes the proof. ¤

Corollary 4.1.15 If D0 = D∗
0ηN has τ -compact resolvent, r = (r1, . . . , rm) ∈

[a, b]m, if V1, . . . , Vm ∈ Nsa and if Dr = D0 + rV = D0 + r1V1 + . . . + rmVm,
then for any function f ∈ C2

c (R) the operator-valued function A : r ∈ [a, b]m 7→
f(D0 + rV ) takes values in L1(N , τ) and is L1(N , τ)-continuous.

Next we prove the main lemmas of this Section. There are several matters to
establish. First we want to be able to differentiate, with respect to the path
parameter, certain functions of paths of operators. Then we need to determine
formulae for the derivatives and the continuity properties of the derivatives with
respect to the path parameter.

Lemma 4.1.16 If D1 and D2 are two self-adjoint operators with τ -compact
resolvent affiliated with semifinite von Neumann algebra N , if X ∈ Nsa and if
f ∈ C3

c (R) then TD1,D2

f [1] (X) depends L1-continuously on ‖·‖ perturbations of D1

and D2.

Proof. As usual, we can assume that f is non-negative and its square root is
C3-smooth.

Let Y1, Y2 ∈ Nsa. Then by Lemma 4.1.12

TD1+Y1,D2+Y2

f [1] (X)− TD1,D2

f [1] (X)

=
∫

Π

[
α1(D1 + Y1, σ)Xβ1(D2 + Y2, σ)

+ α2(D1 + Y1, σ)Xβ2(D2 + Y2, σ)

− α1(D1, σ)Xβ1(D2, σ)− α2(D1, σ)Xβ2(D2, σ)
]
dνf (σ)

=
∫

Π

([
α1(D1 + Y1, σ)− α1(D1, σ)

]
Xβ1(D2 + Y2, σ)

+ α1(D1, σ)X
[
β1(D2 + Y2, σ)− β1(D2, σ)

]

+
[
α2(D1 + Y1, σ)− α2(D1, σ)

]
Xβ2(D2 + Y2, σ)

+ α2(D1, σ)X
[
β2(D2 + Y2, σ)− β2(D2, σ)

])
dνf (σ).
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For every fixed σ ∈ Π by Lemma 4.1.8 the norms ‖β1(D2 + Y2, σ)− β1(D2, σ)‖
and ‖α2(D1 + Y1, σ)− α2(D1, σ)‖ converge to zero when ‖Y1‖ , ‖Y2‖ → 0,
and by Corollary 4.1.6 the ‖·‖L1-norms of α1(D1, σ) and β2(D2 + Y2, σ) are
bounded when ‖Y1‖ , ‖Y2‖ → 0. Hence, for every fixed σ ∈ Π the ‖·‖L1-norms
of the second and third summands in the last integral converge to zero when
‖Y1‖ , ‖Y2‖ → 0.

Now we are going to show that the same is true for the first and fourth
summands. It is enough to prove that for every fixed σ ∈ Π, for example,
‖α1(D1 + Y1, σ)− α1(D1, σ)‖L1 tends to zero. We have

‖α1(D1 + Y1, σ)− α1(D1, σ)‖1,∞

=
∥∥∥ei(s0−s1)(D1+Y1)g(D1 + Y1)− ei(s0−s1)D1g(D1)

∥∥∥
L1

6
∥∥∥
(
ei(s0−s1)(D1+Y1) − ei(s0−s1)D1

)
g(D1 + Y1)

∥∥∥
L1

+
∥∥∥ei(s0−s1)D1 (g(D1 + Y1)− g(D1))

∥∥∥
L1

6
∥∥∥
(
ei(s0−s1)(D1+Y1) − ei(s0−s1)D1

)∥∥∥ ‖g(D1 + Y1)‖L1

+
∥∥∥ei(s0−s1)D1

∥∥∥ ‖g(D1 + Y1)− g(D1)‖L1 .

It follows from Lemma 4.1.8 that the first summand converges to zero when
s0, s1 are fixed and ‖Y1‖ → 0, and it follows from Proposition 4.1.14 that the
second summand also converges to zero.

Since by Corollary 4.1.6 the trace norm of the expression under the last
integral is uniformly L1(N , τ)-bounded with respect to σ ∈ Π, it follows from
Lemma 1.4.14 that

∥∥∥TD1+Y1,D2+Y2

f [1] (X)− TD1,D2

f [1] (X)
∥∥∥
L1
→ 0,

when ‖Y1‖ , ‖Y2‖ → 0. ¤

Theorem 4.1.17 If the von Neumann algebra N is semifinite, D0 = D∗
0ηN

has τ -compact resolvent and f ∈ C3
c (R) then the function f : D ∈ D0 +Nsa 7→

f(D) ∈ Nsa takes values in L1(N , τ)sa. Moreover, it is affinely (N ,L1)-Fréchet
differentiable, the equality

DN ,L1f(D) = TD,D
f [1]

holds, and DN ,L1f(D) is (N ,L1)-continuous, so that

f(Db)− f(Da) =
∫ b

a

TDr,Dr

f [1] (V ) dr, (4.3)

where V ∈ Nsa, Dr = D0 + rV and the integral converges in L1(N , τ)-norm.
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Proof. We have by Proposition 4.1.13(i) and Lemma 4.1.12

f(D1)− f(D0) = TD1,D0

f [1] (V )

=
∫

Π

(α1(D1, σ)V β1(D0, σ) + α2(D1, σ)V β2(D0, σ)) dνg(σ),

=
∫

Π

(α1(D0, σ)V β1(D0, σ) + α2(D0, σ)V β2(D0, σ)) dνg(σ)

+
∫

Π

[α1(D1, σ)− α1(D0, σ)]V β1(D0, σ) dνg(σ)

+
∫

Π

[α2(D1, σ)− α2(D0, σ)]V β2(D0, σ) dνg(σ)

= TD0,D0

f [1] (V ) + (II) + (III).

Since α2 is just an exponent and since g ∈ C2,+(R) that ‖(III)‖L1 =
O(‖V ‖2) can be shown by Duhamel’s formula. The argument is as in the proof
of [ACDS, Theorem 5.5]. So, it is left to show that ‖(II)‖L1 is o(‖V ‖). By
Lemma 1.4.14 we have

‖(II)‖L1 =
∥∥∥∥
∫

Π

[α1(D1, σ)− α1(D0, σ)]V β1(D0, σ) dνg(σ)
∥∥∥∥
L1

6
∫

Π

‖α1(D1, σ)− α1(D0, σ)‖L1 ‖V ‖ ‖β1(D0, σ)‖ dνg(σ)

= ‖V ‖
∫

Π

‖α1(D1, σ)− α1(D0, σ)‖L1 dνg(σ).

Now, it follows from α1(·, σ) ∈ C2
c (R) (see (4.2)) and Proposition 4.1.14 that

‖α1(D1, σ)− α1(D0, σ)‖L1 → 0, σ ∈ Π, so that by the Lebesgue dominated
convergence theorem we conclude that the last integral converges to 0, and
hence ‖(II)‖L1 = o(‖V ‖).

Finally, that DN ,L1f(D) is (N ,L1)-continuous follows from Lemma 4.1.16.
¤

4.1.4 A class Fa,b(N , τ) of τ-Fredholm operators

Our technique for handling spectral flow of paths of unbounded operators is to
map them into the space of bounded operators using a particular function. We
thus need to discuss some continuity properties of paths of bounded τ -Fredholm
operators, analogous to those we described in the unbounded case.

Let a < b be two real non-zero numbers. Let Fa,b(N , τ) be the set of
bounded self-adjoint τ -Fredholm operators F ∈ N such that (F − a)(F − b) ∈
K(N , τ). For F0 ∈ Fa,b(N , τ) let AF0 = F0 + Ksa(N , τ) be the affine space of
τ -compact self-adjoint perturbations of F0.
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Lemma 4.1.18 If F0 ∈ Fa,b(N , τ) then

AF0 ⊆ Fa,b(N , τ).

Proof. If K ∈ Ksa(N , τ) then (F0 + K − a)(F0 + K − b) = (F0 − a)(F0 − b) +
(F0 − a)K + K(F0 + K − b) ∈ K(N , τ). ¤

Lemma 4.1.19 If F ∈ Fa,b(N , τ) and h ∈ Bc(a, b) then h(F ) ∈ L1(N , τ).

Proof. The proof is similar to the proof of Lemma 4.1.2. For any compact subset
∆ of (a, b) there exists a constant c0 > 0 such that χ∆(x) 6 c0χ[a,b](x)(b−x)(x−
a), so that

EF
∆ 6 c0E

F
[a,b](b− F )(F − a). (4.4)

Since (b − F )(F − a) ∈ K(N , τ), it follows that EF
∆ ∈ K(N , τ) and hence EF

∆

is τ -finite. Now, for any h ∈ Bc(a, b) there exists a compact subset ∆ of (a, b)
and a constant c1 such that |h| 6 c1χ∆, so that |h(F )| 6 c1E

F
∆ and hence

h(F ) ∈ L1(N , τ). ¤

Lemma 4.1.20 If F0 ∈ Fa,b(N , τ), K = K∗ ∈ K(N , τ), and if ∆ is a compact
subset of (a, b), then
(i) the function r ∈ [0, 1] 7→ EF0+rK

∆ takes values in L1(N , τ) and is L1(N , τ)-
bounded;
(ii) there exists R > 0 such that the function K ∈ BR∩K(N , τ) 7→ EF0+K

∆ takes
values in L1(N , τ) and is L1(N , τ)-bounded.

Proof. (i) That EFr

∆ = EF0+rK
∆ ∈ L1(N , τ) follows from Lemmas 4.1.18 and

4.1.19. By (4.4) we have EFr

∆ 6 c0E
Fr

[a,b](b − Fr)(Fr − a) for all r ∈ [0, 1] and
hence by Lemmas 1.3.15(ii) and 1.3.19

µt(EFr

∆ ) 6 c0µt

(
EFr

[a,b](b− Fr)(Fr − a)
)

6 c0µt ((b− Fr)(Fr − a)) .

Since (b−Fr)(Fr−a) = (b−F0)(F0−a)+ rL1− r2L2, where L1, L2 ∈ K(N , τ),
we have by Lemma 1.3.18

µt(EFr

∆ ) 6 c0

(
µt/3[(b− F0)(F0 − a)] + rµt/3(L1) + r2µt/3(L2)

)

6 c0

(
µt/3[(b− F0)(F0 − a)] + µt/3(L1) + µt/3(L2)

)
,

so that µt(EFr

∆ ) = χ[0,τ(EFr
∆ )](t) is majorized for all r ∈ [0, 1] by a single function

decreasing to 0 when t →∞, since all three operators (b− F0)(F0 − a), L1 and
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L2 are τ -compact. The same argument as in Lemma 4.1.5 now completes the
proof.

(ii) If F = F0 + K then (b − F )(F − a) = (b − F0)(F0 − a) + L, where
L = (b − F0)K −K(F0 − a) −K2 ∈ K(N , τ). Choose the number R > 0 such
that ‖K‖ < R implies ‖L‖ < 1. Then by (4.5) the function t 7→ µt(EF+K

∆ ) =
χ[0,τ(EF+K

∆ )](t) will be majorized by a single function decreasing to a number
< 1, so that the same argument as in Lemma 4.1.5 again completes the proof.
¤

Proposition 4.1.21 Let F0 ∈ Fa,b(N , τ), K = K∗ ∈ K(N , τ), and let h ∈
C2

c (a, b). Then
(i) the function r ∈ R 7→ h(F0 + rK) takes values in L1(N , τ) and is L1(N , τ)-
continuous;
(ii) there exists R > 0 such that the function K ∈ BR ∩ K(N , τ) 7→ h(F0 + K)
takes values in L1(N , τ) and is L1(N , τ)-continuous;

Proof. The proof of this proposition follows verbatim the proof of Proposition
4.1.14 with references to Lemmas 4.1.18, 4.1.19 and 4.1.20 instead of Lemmas
1.6.8, 4.1.3 and Corollary 4.1.6. ¤

Lemma 4.1.22 If F1, F2 ∈ Fa,b(N , τ), X ∈ Ksa(N , τ) and h ∈ C3
c (a, b), then

the double operator integral
TF1,F2

h[1] (X)

takes values in L1(N , τ) and is L1(N , τ)-continuous with respect to norm per-
turbations of F1 and F2 by τ -compact operators.

Proof. The proof of this lemma is similar to that of Lemma 4.1.16 with references
to Lemma 4.1.20(ii) and Proposition 4.1.21(ii) instead of Corollary 4.1.6 and
Proposition 4.1.14.

As usual, we can assume that h is non-negative and its square root g =
√

h
is C2-smooth. Let F1,s = F1 + sK1, F2,r = F2 + rK2. By Lemma 4.1.12

T
F1,s,F2,r

h[1] (X) =
∫

Π

[
α1(F1,s, σ)Xβ1(F2,r, σ) + α2(F1,s, σ)Xβ2(F2,r, σ)

]
dνg(σ),

so that
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T
F1,s,F2,r

h[1] (X)− T
F1,s0 ,F2,r0
h[1] (X)

=
∫

Π

[
α1(F1,s, σ)Xβ1(F2,r, σ) + α2(F1,s, σ)Xβ2(F2,r, σ)

− α1(F1,s0 , σ)Xβ1(F2,r0 , σ)− α2(F1,s0 , σ)Xβ2(F2,r0 , σ)
]
dνg(σ)

=
∫

Π

([
α1(F1,s, σ)− α1(F1,s0 , σ)

]
Xβ1(F2,r, σ)

+ α1(F1,s0 , σ)X
[
β1(F2,r, σ)− β1(F2,r0 , σ)

]

+
[
α2(F1,s, σ)− α2(F1,s0 , σ)

]
Xβ2(F2,r, σ)

+ α2(F1,s0 , σ)X
[
β2(F2,r, σ)− β2(F2,r0 , σ)

])
dνg(σ)

In the last integral for every fixed σ ∈ Π, when (r, s) → (r0, s0) the L1(N , τ)-
norms of the second and third summands converge to zero by Lemmas 4.1.8 and
4.1.19, and the L1(N , τ)-norms of the first and fourth summands converge to
zero by Proposition 4.1.21. Since the L1(N , τ)-norm of the expression under the
last integral is uniformly L1(N , τ)-bounded with respect to σ ∈ Π by Lemma
4.1.20, it follows from the Lebesgue Dominated Convergence Theorem that

∥∥∥T
F1,s,F2,r

h[1] (X)− T
F1,s0 ,F2,r0
h[1] (X)

∥∥∥
L1
→ 0,

when (r, s) → (r0, s0). ¤

Theorem 4.1.23 Let N be a semifinite von Neumann algebra. If F0 ∈
Fa,b(N , τ), h ∈ C3

c (a, b), then the function h : F ∈ F0 + Ksa(N , τ) 7→ h(F0) +
Ksa(N , τ) takes values in L1(N , τ)sa. Moreover, it is affinely (K,L1)-Fréchet
differentiable, the equality

DK,L1h(F ) = TF,F
h[1]

holds, and DK,L1h(F ) is (K,L1) continuous, so that

h(Fr1)− h(Fr0) =
∫ r0

r1

TFr,Fr

h[1] (K) dr, r0, r1 ∈ R, (4.5)

where K ∈ Ksa(N , τ), Fr = F0 + rK and the integral is in L1(N , τ)-norm.

The proof is similar to that of Theorem 4.1.17 with use of Proposition 4.1.21(ii)
and Lemma 4.1.22 instead of Proposition 4.1.14 and Lemma 4.1.16, and there-
fore it is omitted.
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4.2 The spectral shift function for operators
with compact resolvent

We will take an approach to the notion of spectral shift function suggested by
Birman-Solomyak formula (4.6). The key point is that once one appreciates
that the spectral shift function of M. G. Krein is related to spectral flow in a
specific fashion one can reformulate the whole approach to take advantage of
what is known about spectral flow as expounded for example in [BCPRSW].
The theorem in [ACDS] which connects spectral flow and the spectral shift
function contains the germ of the idea but one needs the technical machinery
of the last Section to exploit this.

We now explain this different way to approach spectral shift theory which is
influenced by ideas from noncommutative geometry.

4.2.1 The unbounded case

In order to make our main definition we need to prove a preliminary result
which complements [ACDS, Lemma 6.2]. The latter asserts that the function
γ(λ, r) = τ

(
V EDr

λ

)
is measurable for every V ∈ L1(N , τ) and D = D∗ηN .

Lemma 4.2.1 Let (N , τ) be a semifinite von Neumann algebra and let D =
D∗ηN have τ -compact resolvent. If V = V ∗ ∈ N then the function f : (a, b, r) ∈
R3 7→ τ

(
V EDr

(a,b)

)
is measurable.

Proof. Without loss of generality, we can assume that V > 0. It is enough to
prove that the function f is measurable with respect to the second variable b and
with respect to r. Since τ

(
V EDr

(a,b)

)
= τ

(√
V EDr

(a,b)

√
V

)
, we know by Lemma

1.4.12 that it is enough to prove that the operator function (r, b) 7→ √
V EDr

(a,b)

√
V

is so∗-measurable. By Proposition 1.4.4 it is enough to prove that for any
ξ, η ∈ H the scalar function

〈√
V EDr

(a,b)

√
V ξ, η

〉
= Tr(θ√V ξ,

√
V ηEDr

(a,b)) is mea-
surable, where θξ,η(ζ) := 〈ξ, ζ〉 η. Since the operator θ√V ξ,

√
V η is trace class, the

measurability of this function follows from Lemma 3.4.1. ¤

Definition 4.2.2 If D0 = D∗
0ηN has τ -compact resolvent and if D1 = D0 + V,

V ∈ Nsa, then the spectral shift measure for the pair (D0, D1) is defined to be
the following Borel measure on R

ΞD1,D0(∆) =
∫ 1

0

τ
(
V EDr

∆

)
dr, ∆ ∈ B(R). (4.6)
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The generalized function

ξD1,D0(λ) =
d

dλ
ΞD1,D0(a, λ) (4.7)

is called the spectral shift distribution for the pair (D0, D1).

Evidently, this definition does not depend on a choice of a. By Lemmas 1.6.8,
4.1.2, 4.2.1 and Corollary 4.1.7(i) the measure Ξ exists and is locally finite.

Our task now is to show that the spectral shift distribution is in fact a
function of locally bounded variation. The main result we wish to establish
next is that the spectral shift measure is absolutely continuous with respect
to Lebesgue measure. Moreover its density, which we previously referred to as
the spectral shift distribution, is in fact a function of locally bounded variation
which we will then refer to as the spectral shift function. It is our extension of
M.G. Krein’s function to the setting of this paper.

Our method of proof is to first establish some trace formulae.

Lemma 4.2.3 (i) Let D = D∗ηN have τ -compact resolvent. A function α ∈
B(R) is 1-summable with respect to the measure τ

(
ED

∆

)
(∆ ∈ B(R)), if and

only if α(D) ∈ L1(N , τ) and in this case

τ (α(D)) =
∫

R
α(λ) τ

(
dED

λ

)
.

Furthermore, for any V = V ∗ ∈ N the function α is 1-summable with respect
to the measure τ

(
V ED

∆

)
, and

τ (V α(D)) =
∫

R
α(λ) τ

(
V dED

λ

)
.

(ii) Let F ∈ Fa,b(N , τ). A function α ∈ B(a, b) is 1-summable with respect to
the measure τ

(
EF

∆

)
(∆ ∈ B(a, b)), if and only if α(F ) ∈ L1(N , τ) and in this

case

τ (α(F )) =
∫ b

a

α(λ) τ
(
dEF

λ

)
.

Furthermore, for any V = V ∗ ∈ N the function α is 1-summable with respect
to the measure τ

(
V EF

∆

)
, and

τ (V α(F )) =
∫ b

a

α(λ) τ
(
V dEF

λ

)
.

Proof. We give only the proof of (i). Without loss of generality, we can assume
that α is a non-negative function. If α is a simple function then the first part of
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the claim follows from Lemma 4.1.2. Let αn be an increasing sequence of simple
non-negative functions, converging pointwise to α.

Then for each of the functions αn the first equality is true. The supre-
mum of the increasing sequence of non-negative operators αn(D) is α(D)
and the supremum of the increasing sequence of numbers

∫
R αn(λ) τ

(
dED

λ

)
is

∫
R α(λ) τ

(
dED

λ

)
. Hence, both non-negative numbers

∫
R α(λ) τ

(
dED

λ

)
and

τ (α(D)) are finite or infinite simultaneously, which proves the first part of the
lemma.

For the second part we can assume w.l.o.g. that V > 0. Then again the both
parts of the second equality make sense and they are equal for simple functions.

Since the measure τ
(
V ED

∆

)
= τ

(√
V ED

∆

√
V

)
, ∆ ∈ B(R), is non-negative

and the supremum of
√

V αn(D)
√

V ∈ L1(N , τ) is
√

V α(D)
√

V we have that
∫

R
α(λ) τ

(
V dED

λ

)
= lim

n→∞

∫

R
αn(λ) τ

(
V dED

λ

)

= lim
n→∞

τ
(√

V αn(D)
√

V
)

= τ
(√

V α(D)
√

V
)

,

so that
∫
R α(λ) τ

(
V dED

λ

)
and τ (V α(D)) = τ

(√
V α(D)

√
V

)
are finite or infi-

nite simultaneously. ¤

We need the following version of Fubini’s theorem.

Lemma 4.2.4 (i) For any self-adjoint operator DηN with τ -compact resolvent
and V = V ∗ ∈ N , let mD,V (∆) = τ

(
V ED

∆

)
. Let D0 = D∗

0ηN have τ -compact
resolvent and let Dr = D0 + rV. If g ∈ Bc(R), then

∫ 1

0

dr

∫

R
g(λ)mDr,V (dλ) =

∫

R
g(λ)ΞD1,D0(dλ). (4.8)

(ii) For any F ∈ Fa,b(N , τ) and V = V ∗ ∈ N , let mF,V (∆) = τ
(
V EF

∆

)
,

∆ ∈ B(a, b). Let F ∈ Fa,b(N , τ) and let Fr = F0 + rV. If g ∈ Bc(a, b), then

∫ 1

0

dr

∫ b

a

g(λ)mFr,V (dλ) =
∫ b

a

g(λ)ΞF1,F0(dλ).

Proof. (See also [Ja, VI.2]). We give only the proof of (i). The measurability
of the function r 7→ ∫

R g(λ)mDr,V (dλ) follows from Lemma 4.2.1.

Note, that both integrals are repeated ones. Let Ω ⊇ supp(g) be a finite
interval. By Corollary 4.1.7 (i) there exists M > 0 such that for all r ∈ [0, 1] we
have |mDr,V (Ω)| 6 M.
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If g(λ) = χ∆(λ), ∆ ∈ B(Ω), then

∫ 1

0

dr

∫

Ω

χ∆(λ) mDr,V (dλ) =
∫ 1

0

mDr,V (∆) dr

= Ξ(∆) =
∫

Ω

χ∆(λ) Ξ(dλ).

So, (4.8) is true for simple functions. Let now g be an arbitrary function from
Bc(Ω), let ε > 0 and let h be a simple function such that ‖g − h‖∞ < ε. Then
the LHS of (4.8) is equal to

∫ 1

0

dr

∫

Ω

(g − h)(λ) mDr,V (dλ) +
∫ 1

0

dr

∫

Ω

h(λ) mDr,V (dλ) = (I) + (II),

and the RHS of (4.8) is equal to
∫

Ω

(g − h)(λ) Ξ(dλ) +
∫

Ω

h(λ) Ξ(dλ) = (III) + (IV ).

We have (II) = (IV ). Further, |(I)| 6 M ‖g − h‖∞ 6 Mε and |(III)| 6
M ‖g − h‖∞ 6 Mε. ¤

The following theorem complements [ACDS, Theorem 6.3].

Theorem 4.2.5 If D = D∗ηN has τ -compact resolvent, if V = V ∗ ∈ N , and
if D1 = D0 + V, then the measure ΞD1,D0 is absolutely continuous, its density
is equal to

ξD1,D0(·) = τ
(
ED0

(a,λ]

)
− τ

(
ED1

(a,λ]

)
+ const (4.9)

for almost all λ ∈ R. Moreover, for all f ∈ C3
c (R) f(D1)− f(D0) ∈ L1(N , τ)

and

τ (f(D1)− f(D0)) =
∫

R
f ′(λ)ξD1,D0(λ) dλ. (4.10)

Proof. By Lemma 1.6.8 and Corollary 4.1.3 f(D1)− f(D0) ∈ L1(N , τ).

By Lemma 4.1.1 we need only consider the case of a non-negative function
f with g :=

√
f ∈ C2

c (R).

We have by (4.3)

f(D1)− f(D0) =
∫ 1

0

TDr,Dr

f [1] (V ) dr,
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where the integral converges in L1(N , τ)-norm. Hence, it follows from Lemma
4.1.12 that

f(D1)− f(D0)

=
∫ 1

0

∫

Π

(α1(Dr, σ)V β1(Dr, σ) + α2(Dr, σ)V β2(Dr, σ)) dνg(σ) dr.

(4.11)

Now, for a fixed σ ∈ Π, we have

τ
(
α1(Dr, σ)V β1(Dr, σ) + α2(Dr, σ)V β2(Dr, σ)

)

= τ (V (α1(Dr, σ)β1(Dr, σ) + α2(Dr, σ)β2(Dr, σ)))

=
∫

R
(α1(λ, σ)β1(λ, σ) + α2(λ, σ)β2(λ, σ)) τ

(
V dEDr

λ

)
,

where the last equality uses Lemma 4.2.3. (That α1(λ)β1(λ) + α2(λ)β2(λ) be-
longs to Bc(R) follows from Lemma 4.1.11)

Hence using (4.11), and by Lemma 1.4.13 applied to the finite measure space
([0, 1]×Π, dr×νg) our previous equality implies that we have:

A := τ (f(D1)− f(D0))

=
∫ 1

0

∫

Π

τ (α1(Dr, σ)V β1(Dr, σ) + α2(Dr, σ)V β2(Dr, σ)) dνg(σ) dr

=
∫ 1

0

∫

Π

∫

R
(α1(λ, σ)β1(λ, σ) + α2(λ, σ)β2(λ, σ)) τ

(
V dEDr

λ

)
dνg(σ) dr.

Now, by Lemma 4.2.3, Fubini’s theorem, and Lemma 4.1.11 we have

A =
∫ 1

0

∫

R

∫

Π

(α1(λ, σ)β1(λ, σ) + α2(λ, σ)β2(λ, σ)) dνg(σ) τ
(
V dEDr

λ

)
dr

=
∫ 1

0

∫

R
f ′(λ) τ

(
V dEDr

λ

)
dr.

Finally, by Lemmas 4.2.4 we have

A =
∫

R
f ′(λ)

∫ 1

0

τ
(
V dEDr

λ

)
dr =

∫

R
f ′(λ) dΞD1,D0(λ). (4.12)

Let f ∈ C1
c (R) and take a point a outside of the support of f. Then we have

(see [AB, Proposition 8.5.5])

A = τ (f(D1)− f(D0)) = τ (f(D1))− τ (f(D0))

=
∫

R
f(λ)dτ

(
ED1

(a,λ]

)
−

∫

R
f(λ)dτ

(
ED0

(a,λ]

)
(integrating by parts)

= −
∫

R
f ′(λ)

(
τ

(
ED1

(a,λ]

)
− τ

(
ED0

(a,λ]

))
dλ.

(4.13)
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Comparing (4.13) and (4.12) we see that Ξ is absolutely continuous with density
equal to

ξD1,D0(λ) = τ
(
ED0

(a,λ]

)
− τ

(
ED1

(a,λ]

)
+ const . (4.14)

¤

It is worth noting that the formula (4.10) does not determine the function ξ
uniquely, but only up to an additive constant.

Remark 5 This theorem is an analogue of Theorem 3.1.13, in which the exis-
tence and absolute continuity of the spectral shift measure were proved for any
self-adjoint operator D affiliated with N and τ -trace class operator V ∈ N .

As a result of what we have proved to this point we are now in a position to assert
that in fact the spectral shift distribution is an everywhere defined function and
hence to change our terminology and refer to ξ as a function. Moreover this last
lemma enables one to modify ξ so as to make it a function defined everywhere
in a natural way.

Definition 4.2.6 If the expression (4.14) is continuous at a point λ ∈ R, then
we define ξD1,D0(λ) via formula (4.14). Otherwise, we define the value of the
spectral shift function ξ at a discontinuity point to be half sum of left and right
limits.

Corollary 4.2.7 The spectral shift function ξ is a function of locally bounded
variation.

Proof. This is immediate because ξ is the difference of two increasing functions
by the last formula. ¤

Lemma 4.2.8 Let D0ηN be a self-adjoint operator with τ -compact resolvent,
let V ∈ Nsa and let D1 = D0 + V. If f ∈ Bc(R) then

∫ ∞

−∞
f(λ)ξD1,D0(λ) dλ =

∫ 1

0

τ (V f(Dr)) dr.

Proof. It follows from Lemma 4.2.3 and Lemma 4.2.4 that
∫ 1

0

τ (V f(Dr)) dr =
∫ 1

0

∫ ∞

−∞
f(λ)τ

(
V dEDr

λ

)
dr

=
∫ ∞

−∞
f(λ)

∫ 1

0

τ
(
V dEDr

λ

)
dr.
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¤

The situation where the operators D and D + V, are unitarily equivalent arises
naturally in noncommutative geometry in the context of spectral triples. One
thinks of the unitary implementing the equivalence as a gauge transformation
by analogy with the study of gauge transformations of Dirac type operators. It
thus warrants special consideration especially in view of our first result below.

Theorem 4.2.9 Let D be a self-adjoint operator affiliated with N having τ -
compact resolvent and let V = V ∗ ∈ N be such that the operators D + V and
D are unitarily equivalent. Then the spectral shift function ξD+V,D of the pair
(D + V, D) is constant on R.

Proof. The operators f(D + V ) and f(D) are unitarily equivalent and for
f ∈ C∞c (R) they are τ -trace class by Corollary 4.1.3. Hence,

τ (f(D + V )− f(D)) = 0,

so that by Theorem 4.2.5 the equality
∫

R
f ′(λ)ξD+V,D(λ) dλ = 0

holds for any f ∈ C∞c (R). Now, integration by parts shows that ξ′(λ) is zero as
generalized function on R, which by [GSh, Ch. I.2.6] implies that ξ is equal to
a constant function. ¤

Note, function ξ in this theorem is equal to a constant function everywhere, not
just almost everywhere.

Our second major result on the spectral shift function in this special context
is the following theorem. We shall show in Section 4.3 below that this theorem
extends one of the main results of [CP2].

Theorem 4.2.10 Let D0 be a self-adjoint operator with τ -compact resolvent,
affiliated with N . Let V = V ∗ ∈ N be such that the operators D1 = D0 +V and
D0 are unitarily equivalent. If f ∈ C2

c (R) then

ξD1,D0(µ) = C−1

∫ 1

0

τ (V f(Dr − µ)) dr, ∀ µ ∈ R, (4.15)

where C =
∫
R f(λ) dλ.

Proof. For any fixed µ the operator Dr − µ has τ -compact resolvent by Lemma
1.6.8 and the function r 7→ τ (V f(Dr − µ)) is continuous by Proposition 4.1.14,
so that the integral on the RHS of (4.15) exists. By Lemma 4.2.8 and Theorem
4.2.9 we have

∫ 1

0

τ (V f(Dr − µ)) dr =
∫

R
f(λ− µ)ξD1,D0(λ) dλ = ξ(0)

∫

R
f(λ) dλ.
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¤

4.2.2 The bounded case

Our technique in the next Section for discussing spectral flow in the unbounded
case is to map into the space of bounded τ -Fredholm operators. We thus need
to develop the theory described in the previous subsections ab initio for the
bounded case. Fortunately, this is not a difficult task as the proofs are much
the same. As we will see, because we are considering bounded perturbations of
our unbounded operators, it suffices to consider compact perturbations in the
bounded case.

Definition 4.2.11 If F0 ∈ Fa,b(N , τ), K ∈ Ksa(N , τ), F1 = F0 + K and if
Fr = F0 + rK, then the spectral shift measure for the pair (F0, F1) is defined to
be the following Borel measure on (a, b)

ΞF1,F0(∆) =
∫ 1

0

τ
(
KEFr

∆

)
dr, ∆ ∈ B(a, b). (4.16)

The generalized function

ξF1,F0(λ) =
d

dλ
ΞF1,F0(c, λ), c ∈ (a, b), (4.17)

is called the spectral shift distribution for the pair (F0, F1).

Evidently, this definition does not depend on a choice of c ∈ (a, b). The measura-
bility of the function r 7→ τ

(
KEFr

∆

)
may be established following the argument

of Lemma 4.2.1, using Lemma 4.1.20. It follows that the measure Ξ exists and
is locally-finite on (a, b).

Proposition 4.2.12 If F0 ∈ Fa,b(N , τ), K ∈ K(N , τ) and if F1 = F0 + K,
then
(i) the measure ΞF1,F0 is absolutely continuous and its density is equal to

ξF1,F0(λ) = τ
(
EF0

(c,λ] − EF1
(c,λ]

)
+ const, λ ∈ (c, b),

where c is an arbitrary number from (a, b);
(ii) there exists a unique function ξF1,F0(·) of locally bounded variation on (a, b),
such that for any h ∈ C2

c (a, b) the following equality holds true

τ (h(F1)− h(F0)) =
∫ b

a

h′(λ)ξF1,F0(λ) dλ.
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The proof is identical to the proof of Theorem 4.2.5, with references to 4.1.18,
4.1.19, (4.5) instead of 1.6.8, 4.1.3, (4.3) and hence we omit it.

Corollary 4.2.13 In the setting of Proposition 4.2.12, if F0 and F1 are uni-
tarily equivalent, then ξF1,F0 is constant on (a, b).

Proof. The proof is similar to the proof of Theorem 4.2.9.

For any h ∈ C∞c (a, b) the operators h(F0), h(F1) are τ -trace class by
Lemma 4.1.19, and since they are also unitarily equivalent it follows that
τ (h(F1)− h(F0)) = 0. Hence, it follows from Proposition 4.2.12 that

∫ b

a

h′(λ)ξF1,F0(λ) dλ = 0,

which implies that the generalized derivative of ξF1,F0(·) is equal to 0 on (a, b),
so that ξF1,F0(·) = const on (a, b). ¤

Definition 4.2.14 We redefine the function ξF1,F0 at discontinuity points to be
half the sum of the left and the right limits of the RHS of the last equality.

Thus, the function ξF1,F0 is defined everywhere on (a, b).

Lemma 4.2.15 If F0 ∈ Fa,b(N , τ), K ∈ K(N , τ), if Fr = F0 + rK, r ∈ [0, 1]
and if h ∈ Bc(a, b) then

∫

R
h(λ)ξF1,F0(λ) dλ =

∫ 1

0

τ (Kh(Fr)) dr.

This Lemma and its proof are bounded variants of Lemma 4.2.8, so we omit the
details.

4.3 Spectral flow

4.3.1 The spectral flow function

The next lemma is a strengthening of Carey-Phillips Theorem 1.5.37.

Lemma 4.3.1 Let P and Q be two projections in the semifinite von Neumann
algebra N and let a < 0 < b be two real numbers. Let κ be a continuous
function such that for any s ∈ [0, (b−a)2

4 ] κ(s(P − Q)2) is τ -trace class. Then
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F0 = (b− a)P + a and F1 = (b− a)Q + a are self-adjoint τ -Fredholm operators
from Fa,b(N , τ) as is the path Fr = F0 + r(F1 − F0), and

sf({Fr}) = C−1
a,b

∫ 1

0

τ
(
Ḟrκ[(b− Fr)(Fr − a)]

)
dr,

where Ca,b =
∫ 1

0
(b − a)κ

(
(b − a)2(r − r2)

)
dr is a constant, and the derivative

Ḟr is ‖·‖-derivative.

Proof. We have
Ḟr = F1 − F0 = (b− a)(Q− P )

and
(b− Fr)(Fr − a) = (b− a)2r(1− r)(Q− P )2,

so that by assumption κ[(b−Fr)(Fr − a)] is τ -trace class for r ∈ [0, 1]. For each
r ∈ (0, 1) define

fr(x) = (b− a)xκ
(
(b− a)2(r − r2)x2

)
.

Then

∫ 1

0

τ
(
Ḟrκ[(b− Fr)(Fr − a)]

)
dr

=
∫ 1

0

τ
(
(b− a)(Q− P )κ[(b− a)2r(1− r)(Q− P )2]

)
dr, (4.18)

and by Theorem 1.5.37 we have
∫ 1

0

τ
(
Ḟrκ[(b− Fr)(Fr − a)]

)
dr =

∫ 1

0

τ (fr(Q− P )) dr

=
∫ 1

0

fr(1) ec(Q, P ) dr

= Ca,b ec(Q,P ) = Ca,b sf({Fr}),

where the last equality follows from a < 0 < b and Definition 1.6.3 of spectral
flow. ¤

4.3.2 Spectral flow one-forms: unbounded case

The strategy of [CP2] is geometric and follows ideas of [Ge]. The first step in
this strategy is summarized in Proposition 4.3.3 in preparation for which we
need an explicit formula for the derivative of function of a path of operators.
The method by which this is achieved in [CP2] does not apparently generalise
sufficiently far to cover the situations considered in this paper. The double
operator integral approach of Section 2 overcomes this problem.
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Lemma 4.3.2 Let D = D∗ηN , let X,Y ∈ N and let f ∈ C2
c (R) be a non-

negative function such that g :=
√

f ∈ C2
c (R). If Y TD,D

f [1] (X) and XTD,D
f [1] (Y )

are both τ -trace class then

τ
(
Y TD,D

f [1] (X)
)

= τ
(
XTD,D

f [1] (Y )
)

.

Proof. By Lemma 4.1.12 we have

A = τ
(
Y TD,D

f [1] (X)
)

= τ

(
Y

∫

Π

(α1(D,σ)Xβ1(D,σ) + α2(D, σ)Xβ2(D, σ)) dνg(σ)
)

= τ

(
Y

∫

Π

(
ei(s1−s0)Dg(D)Xeis1D + ei(s1−s0)DXg(D)eis1D

)
dνg(s0, s1)

)
.

Making the change of variables s1 − s0 = t0, s1 = t1, and using (3.28) we have
∫

Π

(
α1(D, σ)Xβ1(D, σ) + α2(D, σ)Xβ2(D, σ)

)
dνg(σ)

=
i√
2π

∫

{(t0,t1)∈R2, t0t1>0}

[
eit0Dg(D)Xeit1D + eit0DXg(D)eit1D

]

F(g)(t0 + t1) dt0dt1

=
i√
2π

∫

R

(∫

Σt

(
eit0Dg(D)Xeit1D + eit0DXg(D)eit1D

)
dlt

)
F(g)(t) dt,

where Σt =
{
(t0, t1) ∈ R2 : t0t1 > 0, t0 + t1 = t

}
and dlt is the Lebesgue mea-

sure on Σt. Thus, by Lemma 1.4.10

A =
i√
2π

τ

(
Y

∫

R

(∫

Σt

(
eit0Dg(D)Xeit1D + eit0DXg(D)eit1D

)
dlt

)
F(g)(t) dt

)

=
i√
2π

∫

R

(∫

Σt

τ
(
Y eit0Dg(D)Xeit1D + Y eit0DXg(D)eit1D

)
dlt

)
F(g)(t) dt

=
i√
2π

∫

R

(∫

Σt

τ
(
Xeit1DY g(D)eit0D + Xeit1Dg(D)Y eit0D

)
dlt

)
F(g)(t) dt,

where the trace and integral can be interchanged by Lemma 1.4.13. The integral
above coincides with τ

(
XTD,D

f [1] (Y )
)

. ¤

The key geometric idea is to regard the analytic formula for spectral flow of [Ge]
and [CP2] as expressing it as an integral of a one form. As we are dealing with
an affine space the geometry is easy to invoke as we see in the next result.

Proposition 4.3.3 Let D be a self-adjoint operator affiliated with N , having
τ -compact resolvent and let f ∈ C3

c (R). Let α = αf be a 1-form on the affine
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space D0 +Nsa defined at the point D ∈ D0 +Nsa by the formula

αf
D(X) = τ (Xf(D)) , X ∈ Nsa, D ∈ D0 +Nsa. (4.19)

Then α is a closed 1-form, and, hence, also exact by the Poincaré lemma.

Proof. The proof follows mainly the lines of [CP], with necessary adjustments.
As usual, we can assume that f > 0 and g :=

√
f ∈ C3

c (R). We note that the
operator Xf(D) is τ -trace class, so that the 1-form α is well-defined. Now, by
the definition of the exterior differential, for X, Y ∈ N , we have

dαD(X,Y ) = £X αD(Y )−£Y αD(X)− αD([X, Y ]),

where £X is the Lie derivative along the constant vector field X. Since the space
D0 + Nsa is flat, we have [X, Y ] = 0. So, we have to prove that £X αD(Y ) =
£Y αD(X). It follows from Theorem 4.1.17 that

A := £X αD(Y ) =
d

ds

∣∣∣∣
s=0

αD+sX(Y ) =
d

ds

∣∣∣∣
s=0

τ (Y f(D + sX))

= τ
(
Y DN ,L1f(D)(X)

)
= τ

(
Y TD,D

f [1] (X)
)

.

Hence, by Lemma 4.3.2

£X αD(Y ) = τ
(
Y TD,D

f [1] (X)
)

= τ
(
X TD,D

f [1] (Y )
)

= £Y αD(X),

which implies that αD is a closed 1-form. ¤

Though closedness of a 1-form already should imply its exactness by the
Poincaré lemma and contractibility of the domain we follow [CP2] and give
an independent proof of exactness.

Definition 4.3.4 Let D0 be a fixed self-adjoint operator with τ -compact resol-
vent affiliated with N , and let f ∈ Cc(R). We define the function θf on the
affine space D0 +N by the formula

θf
D =

∫ 1

0

τ (V f(Dr)) dr,

where D ∈ D0 + Nsa, V = D − D0 and Dr = D0 + rV. Measurability of the
function r 7→ τ (V f(Dr)) follows from Lemma 4.2.1.

Proposition 4.3.5 Let f ∈ C3
c (R) and let X ∈ N . Then

dθf
D(X) = αf

D(X).
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Proof. Without loss of generality, we can assume that X is self-adjoint. By
definitions

(A) := dθf
D(X) =

d

ds

∣∣∣∣
s=0

θf
D+sX

=
d

ds

∣∣∣∣
s=0

∫ 1

0

τ ((V + sX)f(Dr + srX)) dr

= lim
s→0

1
s

∫ 1

0

τ ((V + sX)f(Dr + srX)− V f(Dr)) dr

= lim
s→0

∫ 1

0

τ
(
Xf(Dr + srX)

)
dr

+ lim
s→0

1
s

∫ 1

0

τ
(
V

(
f(Dr + srX)− f(Dr)

))
dr.

The first summand of this sum by Proposition 4.1.14 is equal to
∫ 1

0

τ
(
Xf(Dr)

)
dr.

By Proposition 4.1.13(i) the second summand is equal to

lim
s→0

1
s

∫ 1

0

τ
(
V TDr+srX,Dr

f [1] (srX)
)

dr

= lim
s→0

∫ 1

0

τ
(
V TDr+srX,Dr

f [1] (rX)
)

dr

=
∫ 1

0

τ
(
V TDr,Dr

f [1] (rX)
)

dr

=
∫ 1

0

τ
(
X TDr,Dr

f [1] (V )
)

r dr,

where the second equality follows from Lemma 4.1.16 and the last equality
follows from Lemma 4.3.2. Hence, by Lemma 1.4.13

(A) =
∫ 1

0

τ
(
X

[
f(Dr) + r TDr,Dr

f [1] (V )
])

dr

= τ

(
X

∫ 1

0

[
f(Dr) + r TDr,Dr

f [1] (V )
]
dr

)
,

where the integral on the RHS is a so∗-integral. By Proposition 4.1.14 and
Lemma 4.1.16 the function r ∈ [0, 1] 7→ f(Dr) + r TDr,Dr

f [1] (V ) ∈ L1(N , τ) is
L1(N , τ)-continuous, so that the last integral

(B) :=
∫ 1

0

[
f(Dr) + r TDr,Dr

f [1] (V )
]
dr
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can be considered as Riemann integral. Let 0 = r0 < r1 < . . . < rn = 1
be the partition of [0, 1] into n segments of equal length 1

n . By the argument
used in the proof of Lemma 4.1.16, it can be shown that the L1(N , τ)-norm of

T
Drj

,Drj

f [1] (V )− TDr,Dr

f [1] (V ), r ∈ [rj−1, rj ], has order 1
n . Hence

L1- lim
n→∞

1
n

n∑

j=1

(
j

n
T

Drj
,Drj

f [1] (V )− j

∫ rj

rj−1

TDr,Dr

f [1] (V ) dr

)

= L1- lim
n→∞

1
n

n∑

j=1

j

∫ rj

rj−1

(
T

Drj
,Drj

f [1] (V )− TDr,Dr

f [1] (V )
)

dr = 0,

so that by formula (4.3) applied to the pair (Drj−1 , Drj
) we have

(B) = L1- lim
n→∞

1
n

n∑

j=1

(
f(Drj−1) +

j

n
T

Drj
,Drj

f [1] (V )
)

= L1- lim
n→∞

1
n

n∑

j=1

(
f(Drj−1) + j

(
f(Drj )− f(Drj−1)

))

+ L1- lim
n→∞

1
n

n∑

j=1

(
j

n
T

Drj
,Drj

f [1] (V )− j

∫ rj

rj−1

TDr,Dr

f [1] (V ) dr

)

= L1- lim
n→∞

1
n

n∑

j=1

(
jf(Drj )− (j − 1)f(Drj−1)

)
= f(D1).

¤

Corollary 4.3.6 The integral of the 1-form αf along a piecewise continuously
differentiable path Γ in D0 +N depends only on the endpoints of the path Γ.

Proof. The 1-form αf
D is a derivative, which depends continuously on D due

to the equality (Proposition 4.1.13)

f(D)− f(D0) = TD,D0

f [1] (D −D0).

and Lemma 4.1.16. Hence, the integral of αf depends only on endpoints by
Theorem 1.2.3. ¤

Proposition 4.3.7 If a self-adjoint operator D0 affiliated with N has τ -
compact resolvent, D1, D2 ∈ D0 +Nsa, then for all λ ∈ R

ξD2,D0(λ) = ξD2,D1(λ) + ξD1,D0(λ).

Remark 6 We emphasize that this additivity property is not almost everywhere
in the spectral variable but in fact holds everywhere.
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Proof. It follows from (4.9) that

ξD2,D0(λ) = ξD2,D1(λ) + ξD1,D0(λ) + C,

where C is a constant. Multiplying both sides of this equality by a positive
C2

c -function f, and integrating it, by Lemma 4.2.8 we get
∫

ΓD2,D0

αf =
∫

ΓD2,D1

αf +
∫

ΓD1,D0

αf + C

∫

R
f(λ) dλ,

where ΓDi,Dj
is the straight line path connecting operators Di and Dj . The last

equality and Corollary 4.3.6 imply that C = 0. ¤

4.3.3 Spectral flow one-forms: bounded case

Since we obtain our unbounded spectral flow formula from a bounded one we
need to study the map D 7→ FD = D(1 + D2)−1/2 which takes the space
of unbounded self adjoint operators with τ -compact resolvent to the space
F−1,1(N , τ) of bounded τ -Fredholm operators F satisfying 1− F 2 ∈ K(N , τ).

Let F0 ∈ Fa,b(N , τ), let h ∈ C2
c (a, b) and let K = F − F0, Fr := F0 + rK.

We define a 0-form θ and a 1-form αh on the affine space AF0 by the formulae

θh
F =

∫ 1

0

τ (K h(Fr)) dr,

and
αh

F (X) = τ (X h(F )) , X ∈ K(N , τ).

By Lemmas 4.1.18 and 4.1.19, the operators h(Fr) and h(F ) are τ -trace class,
so that the forms θh and αh are well-defined.

Proposition 4.3.8 If F0 ∈ Fa,b(N , τ) and if h ∈ C2
c (a, b), then

dθh
F (X) = αh

F (X),

where X ∈ K(N , τ), so that the 1-form αh
F is exact.

Proof. The proof follows verbatim the proof of Proposition 4.3.5, with refer-
ences to Proposition 4.1.21 and Lemma 4.1.22 instead of Proposition 4.1.14 and
Lemma 4.1.16.

We give the proof for completeness.
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Without loss of generality, we can assume that X is self-adjoint. By defini-
tion

(A) := dθh
F (X) =

d

ds

∣∣∣∣
s=0

θh
F+sX =

d

ds

∣∣∣∣
s=0

∫ 1

0

τ ((K + sX)h(Fr + srX)) dr

= lim
s→0

1
s

∫ 1

0

τ ((K + sX)h(Fr + srX)−Kh(Fr)) dr

= lim
s→0

∫ 1

0

τ
(
Xh(Fr + srX)

)
dr

+ lim
s→0

1
s

∫ 1

0

τ
(
K

(
h(Fr + srX)− h(Fr)

))
dr.

The first summand of this sum, by Proposition 4.1.21, is equal to
∫ 1

0

τ
(
Xh(Fr)

)
dr.

By Proposition 4.1.13(i) the second summand is equal to

lim
s→0

1
s

∫ 1

0

τ
(
KTFr+srX,Fr

h[1] (srX)
)

dr = lim
s→0

∫ 1

0

τ
(
KTFr+srX,Fr

h[1] (rX)
)

dr

=
∫ 1

0

τ
(
K TFr,Fr

h[1] (rX)
)

dr

=
∫ 1

0

τ
(
X TFr,Fr

h[1] (K)
)

r dr,

where the second equality follows from Lemma 4.1.22 and the last equality
follows from Lemma 4.3.2. Hence, by Lemma 1.4.13

(A) =
∫ 1

0

τ
(
X

[
h(Fr) + r TFr,Fr

h[1] (K)
])

dr

= τ

(
X

∫ 1

0

[
h(Fr) + r TFr,Fr

h[1] (K)
]
dr

)
,

where the last integral is a so∗-integral. By Proposition 4.1.21 and Lemma
4.1.22 the function r ∈ [0, 1] 7→ h(Fr) + r TFr,Fr

h[1] (K) ∈ L1(N , τ) is L1(N , τ)-
continuous, so that the last integral

(B) :=
∫ 1

0

[
h(Fr) + r TFr,Fr

h[1] (K)
]
dr

can be considered as a Riemann integral. Let 0 = r0 < r1 < . . . < rn = 1
be the partition of [0, 1] into n segments of equal length 1

n . By the argument
used in the proof of Theorem 3.3.6, it can be shown that the L1(N , τ)-norm of
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T
Frj

,Frj

h[1] (K)− TFr,Fr

h[1] (K) has order 1
n . Hence

L1- lim
n→∞

1
n

n∑

j=1

(
j

n
T

Frj
,Frj

h[1] (K)− j

∫ rj

rj−1

TFr,Fr

h[1] (K) dr

)

= L1- lim
n→∞

1
n

n∑

j=1

j

∫ rj

rj−1

(
T

Frj
,Frj

h[1] (K)− TFr,Fr

h[1] (K)
)

dr = 0,

so that by (4.5) applied to the pair (Frj−1 , Frj ) we have

(B) = L1- lim
n→∞

1
n

n∑

j=1

(
h(Frj−1) +

j

n
T

Frj
,Frj

h[1] (K)
)

= L1- lim
n→∞

1
n

n∑

j=1

(
h(Frj−1) + j

(
h(Frj )− h(Frj−1)

))

+ L1- lim
n→∞

1
n

n∑

j=1

(
j

n
T

Frj
,Frj

h[1] (K)− j

∫ rj

rj−1

TFr,Fr

h[1] (K) dr

)

= L1- lim
n→∞

1
n

n∑

j=1

(
jh(Frj )− (j − 1)h(Frj−1)

)
= h(F1).

¤

As in the unbounded case we get the following

Corollary 4.3.9 The integral of the one-form αh depends only on the end-
points.

Proof. The 1-form αh
F is a derivative, which depends continuously on F due to

the equality (Proposition 4.1.13)

h(F )− h(F0) = TF,F0

h[1] (F − F0).

and Lemma 4.1.22. Hence, the integral of αh depends only on endpoints by
Theorem 1.2.3. ¤

Corollary 4.3.10 Let Fj ∈ Fa,b(N , τ), j = 0, 1, 2, such that F2−F1, F1−F0 ∈
K(N , τ). Then for any λ ∈ (a, b) the following equality holds true

ξF2,F0(λ) = ξF2,F1(λ) + ξF1,F0(λ).

Proof. The proof is similar to that of Proposition 4.3.7.
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It follows from Proposition 4.2.12 that for any h ∈ C∞c (a, b)

∫ b

a

h′(λ) (ξF2,F1(λ) + ξF1,F0(λ)) dλ =
∫ b

a

h′(λ)ξF2,F0(λ) dλ.

It follows that for all λ ∈ (a, b)

ξF2,F0(λ) = ξF2,F1(λ) + ξF1,F0(λ) + const .

¤

It is easy to see that if D = D∗ηN is an operator with τ -compact resolvent, then
the operator FD := φ(D) belongs to F−1,1(N , τ) (see (4.1) for the definition of
φ).

Proposition 4.3.11 If D0 = D∗
0ηN is an operator with τ -compact resolvent,

and if V = V ∗ ∈ N , D1 = D0 + V, then the following equality holds

ξD1,D0(λ) = ξFD1 ,FD0
(φ(λ)).

Proof. Let h ∈ C3
c (−1, 1) and f(λ) = h(φ(λ)). Then by Theorem 4.2.5

A := τ (f(D1)− f(D0)) =
∫

R
f ′(λ)ξD1,D0(λ) dλ

and since FD1 − FD0 ∈ K(N , τ) by Lemma 1.6.9, we can apply Proposition
4.2.12 to get

A = τ (h(FD1)− h(FD0)) =
∫ 1

−1

h′(t)ξFD1 ,FD0
(t) dt

=
∫ ∞

−∞
h′(φ(λ))φ′(λ)ξFD1 ,FD0

(φ(λ)) dλ

=
∫ ∞

−∞
f ′(λ)ξFD1 ,FD0

(φ(λ)) dλ.

Since f is an arbitrary C2-function with compact support, comparing the last
two formulas we get the equality

ξD1,D0(λ) = ξFD1 ,FD0
(φ(λ)) + C. (4.20)

It is left to show that the constant C = 0.

Let h be a non-negative function from C∞c (−1, 1). By Lemma 4.2.8 we have

∫

R
h(φ(λ))ξD1,D0(λ) dλ =

∫ 1

0

τ (V h(FDr )) dr. (4.21)
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Multiplying the first term of the RHS of (4.20) by h(φ(λ)), integrating it
and using Lemma 4.2.15, we get

A :=
∫

R
h(φ(λ))ξFD1 ,FD0

(φ(λ)) dλ =
∫ 1

−1

h(µ)ξFD1 ,FD0
(µ)(φ−1)′(µ) dµ

=
∫ 1

0

τ
(
Kh(Fr)(φ−1)′(Fr)

)
dr,

where K = FD1−FD0 and Fr is the straight line path connecting FD1 and FD0 .
Let g(µ) = h(µ)(φ−1)′(µ). By Corollary 4.3.9 we have

A =
∫ 1

0

τ (Kg(Fr)) dr =
∫ 1

0

τ
(
ḞDrg(FDr )

)
dr.

By Proposition 4.1.13(ii) we have ḞDr
= TDr,Dr

φ[1] (V ). Hence,

A =
∫ 1

0

τ
(
TDr,Dr

φ[1] (V )g(FDr )
)

dr.

Using the BS-representation for φ[1] given by (3.2.3), it follows from the defini-
tion of DOI (3.30), Lemma 4.1.9(ii) and Lemma 1.4.13, that

A =
∫ 1

0

τ

(∫

Π

ei(s−t)DrV eitDr dνφ(s, t) · g(FDr )
)

dr

=
∫ 1

0

∫

Π

τ
(
ei(s−t)DrV eitDrg(FDr )

)
dνφ(s, t) dr

=
1√
2π

∫ 1

0

∫

R
τ

(
V eisDr isφ̂(s)g(FDr )

)
ds dr

=
1√
2π

∫ 1

0

τ

(
V g(FDr )

∫

R
eisDr isφ̂(s) ds

)
dr

=
∫ 1

0

τ (V g(FDr )φ
′(Dr)) dr =

∫ 1

0

τ (V h(FDr )) dr,

(4.22)

since g(φ(λ))φ′(λ) = h(φ(λ)). It follows from (4.20), (4.21) and (4.22) that
C

∫
R h(φ(λ)) dλ = 0 and, hence, C = 0. ¤

4.3.4 The first formula for spectral flow

We establish first a spectral flow formula for bounded τ -Fredholm operators. In
this way we avoid a number of difficulties with unbounded operators. Then we
make a ‘change of variable’ to get to the unbounded case.

First we require some additional notation which is important for establishing
a convention for how we handle the situation when the endpoints have a kernel.
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Let a < 0, b > 0 and let signa,b be the function defined as signa,b(x) = b if
x > 0, and signa,b(x) = a if x < 0.

We will write F̃ = signa,b(F ), when it is clear from the context what the
numbers a and b are.

Definition 4.3.12 If F ∈ Fa,b(N , τ) and κ is a C2-function on [0,∞) vanish-
ing in a neighbourhood of 0 then for h(λ) = κ

(
(b− λ)(λ− a)

)
we define γh(F )

as

γh(F ) =
∫ 1

0

αh
Fr

(Ḟr) dr,

where αh is the closed one-form defined before Proposition 4.3.8, and {Fr}r∈[0,1]

is the straight line connecting F and F̃ .

The following theorem is the analogue of [CP2, Theorem 5.7]. It is the fun-
damental formula that we need as our starting point. The proof follows ideas
of [CP2, Theorem 5.7].

Theorem 4.3.13 Let F0 ∈ Fa,b(N , τ), let K ∈ K(N , τ) and let F1 = F0 + K.
Let κ be a C2-function on [0,∞) vanishing in a neighbourhood of 0, such that
the integral of h(λ) = κ

(
(b−λ)(λ−a)

)
over (a, b) is equal to 1. Then the spectral

flow between F0 and F1 is equal to

sf(F0, F1) =
∫ b

a

h(λ)ξF1,F0(λ) dλ + γh(F1)− γh(F0).

Proof. By additivity property of spectral flow (Proposition 1.6.6(2)) we have

sf(F0, F1) = sf(F0, F̃0) + sf(F̃0, F̃1) + sf(F̃1, F1).

It directly follows from the definition of spectral flow that sf(F, F̃ ) = 0 for any
F ∈ Fa,b(N , τ), since all projections χ(F + t(F̃ − F )) are the same for all t.
Hence

sf(F0, F1) = sf(F̃0, F̃1).

Now, by Lemma 4.3.1 we have

sf(F̃0, F̃1) =
∫ 1

0

αh
F̃r

( ˙̃
F r) dr,

where {F̃r}r∈[0,1] is the straight line path, connecting F̃0 and F̃1. By Corollary
4.3.9 we can replace this path by the (broken) path given on this diagram

F0
//___ F1

γh(F1)

²²Â
Â
Â

F̃0
//

−γh(F0)

OOÂ
Â
Â

F̃1
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Then we get

sf(F̃0, F̃1) = −γh(F0) +
∫ 1

0

αh
Fr

(Ḟr) dr + γh(F1),

where {Fr}r∈[0,1] is the straight line path, connecting F0 and F1. But, setting
F1 − F0 = K, we have by Lemma 4.2.15

∫ 1

0

αh
Fr

(Ḟr) dr =
∫ 1

0

τ (Kh(Fr)) dr =
∫

R
h(λ)ξF1,F0(λ) dλ.

¤

Theorem 4.3.14 Let F0 ∈ F−1,1(N , τ), let K ∈ K(N , τ) and let F1 = F0 +K.
Let κ be a C2-function on [0,∞) vanishing in a neighbourhood of 0, such that
the integral of h(λ) = κ(1−λ2) over (−1, 1) is equal to 1. Then the spectral flow
function for the pair F0 and F1 is equal to

sf(µ;F0, F1) =
∫ 1

−1

h(λ)ξF1,F0(λ) dλ + γh−µ(F1 − µ)− γh−µ(F0 − µ),

where h−µ(λ) = h(λ + µ).

Proof. By definition we have

sf(µ; F0, F1) = sf(F0 − µ, F1 − µ).

Since Fj − µ ∈ F−1−µ,1−µ(N , τ), by Theorem 4.3.13 we have

sf(F0−µ, F1−µ) =
∫ 1−µ

−1−µ

h−µ(λ)ξF1−µ,F0−µ(λ) dλ+γh−µ(F1−µ)−γh−µ(F0−µ).

Since ξF1−µ,F0−µ(λ) = ξF1,F0(λ + µ), we have

sf(F0−µ, F1 − µ)

=
∫ 1−µ

−1−µ

h(λ + µ)ξF1,F0(λ + µ) dλ + γh−µ(F1 − µ)− γh−µ(F0 − µ)

=
∫ 1

−1

h(λ)ξF1,F0(λ) dλ + γh−µ(F1 − µ)− γh−µ(F0 − µ).

¤

Corollary 4.3.15 If F0 and F1 are unitarily equivalent, then

sf(µ;F0, F1) = ξF1,F0(µ) = const .
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Proof. By Corollary 4.2.13 the function ξF1,F0(·) is constant on (−1, 1), so that∫
R h(λ)ξF1,F0(λ) dλ = ξF1,F0(0).

If F0 and F1 are unitarily equivalent, then γh−µ(F1 − µ) = γh−µ(F0 − µ).
Hence, for all µ ∈ (−1, 1)

sf(µ;F0, F1) = ξF1,F0(µ) = ξF1,F0(0).

¤

Lemma 4.3.16 If F ∈ F−1,1(N , τ) and if {hε}ε>0 is an approximate δ func-
tion (by compactly supported even functions) then for all µ ∈ (−1, 1) the limit

γµ(F ) := lim
ε→0

γhε
(F − µ)

exists and is equal to ξG,G̃(0), where G = F − µ.

Proof. Since h is an even function we have that
∫ 0

−∞
hε(λ)ξG,G̃(λ) dλ → 1

2
ξG,G̃(0−)

and
∫ ∞

0

hε(λ)ξG,G̃(λ) dλ → 1
2
ξG,G̃(0+),

as ε → 0. If {Gr}r∈[0,1] is the straight line path connecting G and G̃ then by
Lemma 4.2.15 we have

γhε(G) =
∫ 1

0

αhε(Ġr) dr =
∫ 1

0

τ
(
Ġrhε(Gr)

)
dr

=
∫

R
hε(λ)ξG,G̃(λ) dλ → 1

2

(
ξG,G̃(0−) + ξG,G̃(0+)

)
= ξG,G̃(0)

as ε → 0, by Definition 4.2.6 of ξ at discontinuity points. ¤

Now we consider the situation when the endpoints are not unitarily equiva-
lent. For this we require some additional facts about the ‘end-point correction
terms’. The approach used here differs in a fundamental way from the previous
point of view in [CP2]. The next few results demonstrate this by showing that
the spectral shift function absorbs the contribution to the formula due to the
spectral asymmetry of the endpoints leaving only kernel correction terms to be
handled.

Lemma 4.3.17 If F ∈ F−1,1(N , τ) and if µ ∈ (−1, 1), then the following
equality holds true

γµ(F ) =
1
2
τ (NF−µ) .
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Proof. Let G = F − µ. We have

τ (NG) = τ
(
EG

(−∞,0] − EG̃
(−∞,0]

)
.

By Proposition 4.2.12(ii) and Definition 4.2.14 the value ξG̃,G(0) is the half sum
of the last expression and

τ
(
EG

(−∞,0) − EG̃
(−∞,0)

)
= 0.

Hence, by Lemma 4.3.16

γµ(F ) = ξG,G̃(0) =
1
2
τ (NG) .

¤

Theorem 4.3.18 If F0, F1 ∈ F−1,1(N , τ) such that F1 − F0 ∈ K(N , τ), then
for all µ ∈ (−1, 1)

sf(µ; F0, F1) = ξF1,F0(µ) +
1
2

(τ (NF1−µ)− τ (NF0−µ)) . (4.23)

Proof. Replace h in Theorem 4.3.14 by hε,µ (thus translate the approximate δ
function hε by µ) and then let ε → 0 using Lemmas 4.3.16, 4.3.17. ¤

We now see that under hypotheses that guarantee both are defined the spec-
tral flow function and the spectral shift function differ only by kernel corrections
terms for the endpoints. We should remark that the occurrence of the correction
terms γµ(Fj), j = 1, 2, in the last formula can be explained by the fact that
we actually define the spectral flow function and the spectral shift function at
discontinuity points in different ways. The spectral shift function is defined as
a half-sum of the left and the right limits, while the spectral flow is defined to
be left-continuous.

4.3.5 Spectral flow in the unbounded case

The formulae for spectral flow in the bounded case may now be used to establish
corresponding results in our original setting of unbounded self adjoint operators
with compact resolvent.

By Proposition 4.3.11 ξD1,D0(0) = ξFD1 ,FD0
(0) and by definition of spectral

flow for unbounded operators [BCPRSW] sf(D0, D1) = sf(FD1 , FD0). Hence, it
follows from (4.23) taken at µ = 0 that

sf(D0, D1) = ξD1,D0(0) + γ0(F1)− γ0(F0).
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Since
ker(D) = ker(FD)

we have the following equality

sf(D0, D1) = ξD1,D0(0) +
1
2
τ (ND1)−

1
2
τ (ND0) .

If we replace here the operators D0 and D1 by the operators D0−λ and D1−λ
respectively then we get

sf(λ; D0, D1) = ξD1−λ,D0−λ(0) +
1
2
τ (ND1−λ)− 1

2
τ (ND0−λ) .

Since ξD1−λ,D0−λ(0) = ξD1,D0(λ) we have proved

Theorem 4.3.19 If D0 = D∗
0ηN has τ -compact resolvent, V = V ∗ ∈ N and

D1 = D0 + V, then for every λ ∈ R

sf(λ; D0, D1) = ξD1,D0(λ) +
1
2
τ (ND1−λ)− 1

2
τ (ND0−λ) . (4.24)

The spectral flow formula using infinitesimal spectral flow

The results on the spectral shift function which were established in Section 4.2
now suggest a new direction for spectral flow theory.

Definition 4.3.20 Let D0 be a self-adjoint operator affiliated with N having τ -
compact resolvent. The infinitesimal spectral flow one-form is a distribution-
valued one-form ΦD on the affine space D0 +Nsa, defined by formula

〈ΦD(X), ϕ〉 = τ (Xϕ(D)) , X ∈ Nsa, ϕ ∈ C∞c (R).

Formally,
ΦD(X) = τ (Xδ(D)) ,

where δ(D) is the δ-function of D.

Theorem 4.3.21 Let D1 ∈ D0+Nsa. Spectral flow between D0 and D1 is equal
to the integral of the infinitesimal spectral flow one-form along any piecewise
C1-path {Dr}r∈[0,1] in D0 +N connecting D0 and D1 in the sense that for any
ϕ ∈ C∞c (R) the following equality holds true

∫

R
sf(λ; D0, D1)ϕ(λ) dλ =

∫ 1

0

〈ΦDr (Ḋr), ϕ〉 dr.

Formally,

sf(D0, D1) =
∫ 1

0

ΦDr (Ḋr) dr,
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or

sf(λ; D0, D1) =
∫ 1

0

ΦDr−λ(Ḋr) dr.

Proof. By Corollary 4.3.6 we can choose the path {Dr}r∈[0,1] to be the straight
line path Dr = D0 + rV. It follows from Lemmas 1.6.8 and 4.1.2 that the func-
tions λ 7→ τ (ND0−λ) and λ 7→ τ (ND1−λ) can be non-zero only on a countable
set. Hence, by (4.24) and Lemma 4.2.8 we have

∫

R
sf(λ; D0, D1)ϕ(λ) dλ =

∫

R
ξD1,D0(λ)ϕ(λ) dλ

=
∫ 1

0

τ (V ϕ(Dr)) dr =
∫ 1

0

〈ΦDr
(Ḋr), ϕ〉 dr.

¤

We remark that the infinitesimal spectral flow one-form is exact in the sense
that its value on every test function is exact.

4.3.6 The spectral flow formulae in the I-summable spec-
tral triple case

The original approach of [CP2] required summability constraints on the operator
D0. We will now see that if indeed D0 satisfies such conditions then we can
weaken conditions on the function f in Theorem 4.2.10.

Lemma 4.3.22 Let D0 be a self-adjoint operator with τ -compact resolvent af-
filiated with N . Let g be an increasing continuous function on [0, +∞), such
that g(0) > 0 and g

(
c(1 + D2)−1

) ∈ L1(N , τ) for all c > 0. Let f(x) =
g

(
(1 + x2)−1

)
. Then for any R > 0 and for any V = V ∗ ∈ N the operator

f(D + V ) is trace class and the function

V ∈ BR 7→ ‖f(D + V )‖1
is bounded.

Proof. By Lemma 1.3.17 we have for all t > 0

µt(f(D + V )) = µt

(
g

((
1 + (D + V )2

)−1
) )

= g
(
µt

((
1 + (D + V )2

)−1
))

.

By Lemma 4.1.5 there exists a constant c = c(R) > 0 such that for any V ∈ BR

(
1 + (D + V )2

)−1 6 c
(
1 + D)2

)−1
.
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Hence, by Lemma 1.3.16 we have

µt(f(D + V )) 6 g
(
µt[c

(
1 + D2

)−1
]
)

= µt

(
g[c

(
1 + D2

)−1
]
)

.

Since g
(
c(1 + D2)−1

) ∈ L1(N , τ), by Proposition 1.3.21 the last function be-
longs to L1[0,∞), which in its turn again by Proposition 1.3.21 implies that
f(D + V ) ∈ L1(N , τ). ¤

Lemma 4.3.23 Let D0, g and f be as in Lemma 4.3.22. An integral of the
one-form

αf
D(X) = τ (Xf(D)) , X ∈ N , D ∈ D0 +Nsa,

along a piecewise smooth path in D0 + Nsa depends only on endpoints of that
path.

Proof. Let fn be a increasing sequence of compactly supported smooth functions
converging pointwise to f and Γ1, Γ2 be two piecewise smooth paths in in
D0+Nsa with the same endpoints. Then by Lemma 4.3.22, Lebesgue dominated
convergence theorem and Corollary 4.3.6 we have

∫

Γ1

αf =
∫

Γ1

lim
n→∞

αfn = lim
n→∞

∫

Γ1

αfn

= lim
n→∞

∫

Γ2

αfn =
∫

Γ2

lim
n→∞

αfn =
∫

Γ2

αf .

¤

The condition that g(c(1 + D2
0)
−1) be trace class is a generalized summability

constraint. This notion arises naturally for certain ideals I of compact operators
(for example for the Schatten ideals Lp(H), p > 1, g(x) = xp/2 and we have the
notion of p-summability).

Now if there is a unitary u ∈ N with V = u∗[D0, u] bounded then we have,
for a dense subalgebra A of the C∗-algebra generated by u, a semifinite ‘g-
summable’ spectral triple (A,N , D0). Moreover D0 + V = uD0u

∗ so we have
unitarily equivalent endpoints.

Theorem 4.3.24 Let f be a non-negative L1-function such that f(Dr) ∈
L1(N , τ) for all r ∈ [0, 1], and let r 7→ ‖f(Dr)‖1 be integrable on [0, 1]. If
D0 and D1 are unitarily equivalent then

sf(λ; D0, D1) = C−1

∫ 1

0

τ (V f(Dr − λ)) dr,

where C =
∫∞
−∞ f(λ) dλ.
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Proof. Unitary equivalence of D0 and D1 implies that two last terms in (4.24)
vanish. In case of f ∈ Bc(R), multiplying (4.24) by f(λ) and integrating it we
get the required equality by Lemma 4.2.8 and Theorem 4.2.9. For an arbitrary
f ∈ L1 the claim follows from Lebesgue’s dominated convergence theorem by
approximating f by an increasing sequence of step-functions converging a.e.
to f. ¤

Definition 4.3.25 An operator D = D∗ηN is θ-summable, if for every ε > 0
the operator e−εD2

has finite τ -trace. An operator D = D∗ηN is p-summable,
where p > 0, if the operator (1 + D2)−p/2 has finite τ -trace.

Note that any θ-summable or p-summable operator has τ -compact resolvent.

The following corollary recovers two of the main results of [CP, CP2].

Corollary 4.3.26 (i) If D0 is θ-summable with respect to N and if D0 and D1

are unitarily equivalent then

sf(D0, D1) =
√

ε

π

∫ 1

0

τ
(
V e−εD2

r

)
dr.

(ii) If D0 is p-summable (i.e. (1 + D2
0)
−p/2 ∈ L1(N , τ)) with respect to N ,

where p > 1 and if D0 and D1 are unitarily equivalent then

sf(D0, D1) = C−1
p

∫ 1

0

τ
(
V

(
1 + D2

r

)− p
2
)

dr,

where Cp =
∫∞
−∞(1 + λ2)−

p
2 dλ.

Proof. Put f(λ) = e−ελ2
and f(λ) = (1 + λ2)−

p
2 for (i) and (ii) respectively in

Theorem 4.3.24. The conditions of that theorem are fulfilled by Lemma 4.3.22.
¤

In particular, one has (Carey-Phillips formulae for spectral flow)

Corollary 4.3.27 (i) Let (A,N , D) be a θ-summable semifinite spectral triple.
Then for any unitary u ∈ A the following holds

sf(D,uDu∗) = π−1/2

∫ 1

0

τ
(
u[D, u∗]e−(D+tu[D,u∗])2

)
dt.

(ii) Let (A,N , D) be an n-summable semifinite spectral triple, p > 1. Then

sf(D,uDu∗) = C−1
p/2

∫ 1

0

τ
(
u[D, u∗](1 + (D + tu[D, u∗])2)−p/2

)
dt,

where Cp/2 =
+∞∫
−∞

(1 + x2)−p/2dx.



CHAPTER 4. SPECTRAL FLOW 169

The last formula is a starting point in [CPRS] for the proof of the Connes-
Moscovici Local Index Theorem for spectral flow.

4.3.7 Recovering η-invariants

To demonstrate that we have indeed generalized previous analytic approaches
to spectral flow formulae we still need some refinements. What is missing is the
relationship of the ‘end-point correction terms’ to the truncated eta invariants
of [Ge].

In fact Theorem 4.3.13 combined with some ideas of [CP2] will now enable
us to give a new proof of the original formula (4.25) for spectral flow with
unitarily inequivalent endpoints.

Introduce the function

κε(λ) =
√

ε

π
λ−3/2eε(1−λ−1).

and let hε(λ) = κε(1− λ2), fε(λ) = κε

(
(1 + λ2)−1

)
.

Lemma 4.3.28 Let D0 = D∗
0ηN be θ-summable, let V ∈ Nsa and let D1 =

D0 + V. Then
∫ 1

−1

hε(λ)ξFD1 ,FD0
(λ) dλ =

√
ε

π

∫ 1

0

τ
(
V e−εD2

r

)
dr.

Proof. Since hε(φ(µ)) = fε(µ), by Proposition 4.3.11 we have

(A) :=
∫ 1

−1

hε(λ)ξFD1 ,FD0
(λ) dλ =

∫ ∞

−∞
hε(φ(µ))ξFD1 ,FD0

(φ(µ))φ(µ)′ dµ

=
∫ ∞

−∞
fε(µ)φ′(µ)ξD1,D0(µ) dµ.

Further, by Lemmas 4.2.4 and 4.2.3

(A) =
∫ ∞

−∞
fε(µ)φ′(µ)

∫ 1

0

τ
(
V dEDr

µ

)
dr

=
∫ 1

0

τ (V fε(Dr)φ′(Dr)) dr

=
∫ 1

0

τ

(
V

√
ε

π
(1 + D2

r)3/2e−εD2
r (1 + D2

r)−3/2

)
dr

=
√

ε

π

∫ 1

0

τ
(
V e−εD2

r

)
dr.
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¤

As we have emphasized previously, the strategy of our proof follows that of [CP2]
in that, we deduce the unbounded version of the spectral flow formula for the
theta summable case from a bounded version. To this end introduce Fs =
D(s + D2)−1/2.

Lemma 4.3.29 [CP2, Lemma 8.8] We have

lim
δ→0

∫

Γδ

αhε = 0,

where Γδ is the straight line connecting F0 and Fδ.

Lemma 4.3.30 If D = D∗ηN is θ-summable, then the following equality holds
true

γhε(FD) =
1
2

(ηε(D) + τ (ND)) .

Proof. We note that 1 − F 2
s = s(s + D2)−1 and that Ḟs = − 1

2D(s + D2)−3/2.
The path Γ1 := {Fs}s∈[0,1] connects sgn(FD) with FD. If we denote by Γ2 the

straight line path connecting sgn(FD) with F̃ = sign(FD) then the path−Γ1+Γ2

connects FD with F̃ , so that by Lemma 4.3.23 applied to f = hε, and by the
argument of [CP2] and Lemma 4.3.29 dealing with discontinuity of the path Γ1

at zero, it follows that

γhε(FD) = −
∫

Γ1

αhε +
∫

Γ2

αhε .

We have for the first summand
∫

Γ1

αhε =
∫ 1

0

αhε

Fs
(Ḟs) ds =

∫ 1

0

τ
(
Ḟshε(Fs)

)
ds

= −1
2

∫ 1

0

τ
(
D(s + D2)−3/2κε

(
1− F 2

s

))
ds

= −1
2

∫ 1

0

τ
(
D(s + D2)−3/2κε

(
s(s + D2)−1

))
ds

= −1
2

√
ε

π

∫ 1

0

τ
(
D(s + D2)−3/2s−3/2(s + D2)3/2e−

ε
s D2

)
ds

= −1
2

√
ε

π

∫ 1

0

τ
(
De−

ε
s D2

)
s−3/2 ds

= −1
2

√
ε

π

∫ ∞

1

τ
(
De−εtD2

) dt√
t

= −1
2
ηε(D).
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Let Gr = sgn(FD) + r ND be the path Γ2. Then the second summand is
equal to

∫

Γ2

αhε =
∫ 1

0

τ
(
Ġrhε(Gr)

)
dr =

∫ 1

0

τ
(
NDκε(1−G2

r)
)

dr.

Since 1−G2
r = (1− r2) ND, it follows that

∫

Γ2

αhε =
∫ 1

0

τ
(
NDκε(1− r2)

)
dr = τ (ND)

∫ 1

0

κε(1− r2) dr =
1
2
τ (ND) ,

so that γhε
(FD) = 1

2 (ηε(D) + τ (ND)) . ¤

As a direct corollary of these Lemmas and Theorem 4.3.13 we get a new
proof of Carey-Phillips formula ( [CP2, Corollary 8.10], [Ge, Theorem 2.6])
with η-invariants.

Theorem 4.3.31 If D0 is θ-summable then the formula

sf(D0, D1) =
√

ε

π

∫ 1

0

τ
(
V e−εDr

2
)

dr

+
1
2

(ηε(D1)− ηε(D0)) +
1
2
τ (ND1 −ND0) (4.25)

holds true, where

ηε(D) :=
1√
π

∫ ∞

ε

τ
(
De−tD2

)
t−1/2 dt.

is a ‘truncated eta invariant’.

Proof. Let hn be a sequence of smooth non-negative functions, compactly
supported on (−1, 1), and converging pointwise to hε. Recall that Dr =
D0 + rV. Then the sequence γhn(FDr ) converges to γhε(FDr ) and the sequence∫ 1

−1
hn(λ)ξFD1 ,FD0

(λ) dλ converges to
∫ 1

−1
hε(λ)ξFD1 ,FD0

(λ) dλ by Lebesgue’s
DCT, since θ-summability of D0 implies 1-summability of hε(FDr ). Hence the
claim follows from Theorem 4.3.13 and Lemmas 4.3.28, 4.3.30. ¤

If p > 1 then the same argument with the choice

κp(λ) = C−1
p λp− 3

2 ,

where Cp =
∫∞
−∞(1 + x2)−p/2 dx, leads to a formula with ”ηp-invariants” for

p-summable case [CP2].



Concluding remarks

In the development of the main ideas of this thesis we will make some concluding
remarks.

The Birman-Solomyak formula for the spectral shift function can be written
as

ξ(ϕ) =
∫ 1

0

Tr(V ϕ(Hr) dr,

where Hr = H0 + rV, and the spectral shift function ξ is considered as distri-
bution. It seems that the Birman-Solomyak spectral averaging formula is a key
fundamental formula, which should be taken as definition of the spectral shift
function. One of the reasons is that for all pairs of operators H0,H1 for which
the spectral shift function ξH1,H0 exists, the Birman-Solomyak formula holds.
Further, the integrand of the Birman-Solomyak formula seems to have special
importance. One can interpret the expression

ΦH(V )(ϕ) = Tr(V ϕ(H))

as infinitesimal spectral flow, in a certain sense. Indeed, in the case when H is
the operator of multiplication by λ on the Hilbert space L2(R, dρ(λ)), and V is
an integral operator with compactly supported C1 kernel v(λ, λ′), one has

ΦH(V )(ϕ) = Tr(V ϕ(H)) =
∫

R
v(λ, λ)ϕ(λ) dρ(λ).

This means that the infinitesimal spectral flow in this case is a measure on
the spectrum of H with density v(λ, λ) dρ(λ). This fully agrees with a classical
formula from quantum-mechanical perturbation theory [LL, (38.6)]

E(1)
n = Vnn :=

∫
ψ(0)

n V̂ ψ(0)
n dq,

where E
(1)
n is the first correction term for the nth eigenvalue of the perturbed

operator Ĥ = Ĥ0 + V̂ . One can show that ΦH(V ) is a measure of the spectrum
of H. The one-form (7) is the value of infinitesimal spectral flow on the test
function ϕε(x) =

√
ε
π e−εx2

, which approximates δ-function as ε → 0. Similarly,

172
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the integrand of the formula (8) is the value of infinitesimal spectral flow on
the test function ϕp(x) = C−1

p (1 + x2)−p/2, which approximates δ-function as
p →∞.

Another idea suggested by Birman-Solomyak formula is that the spectral
shift function should be possible to define for pairs of operators H0,H1 for which
the expression V ϕ(Hr) is trace class for all r. This poses the question of whether
the inclusions V ϕ(H0), V ϕ(H1) ∈ L1(H) implies that V ϕ(Hr) ∈ L1(H). This
problem is still open, but one can observe that in all known cases this implication
has been proved. This leads naturally to the notion of trace compatible operators.
Two operators H0 and H1 = H0 + V are called trace compatible, if V ϕ(Hr) ∈
L1(H) for all r ∈ R. One can define trace compatible affine space as an affine
space with some appropriately defined topology, such that any two elements
of this space are trace compatible. It was shown in [AS2] that for any pair of
operators from a trace compatible affine space the Birman-Solomyak formula
holds with {Hr} an arbitrary piecewise smooth path, connecting H0 and H1,
and that the spectral shift distribution is absolutely continuous. Independence
from path of integration is a corollary of exactness of ΦH(·), considered as a
one-form on the corresponding trace compatible affine space. For example, one
can show that the space D +Cc(R) is trace compatible, where D = 1

i
d
dx . In this

case ΦD+a(v) does not depend on a ∈ Cc(R) and is constant:

ΦD+a(v) =
1
2π

∫

R
v(x) dx ·mes,

where mes is the Lebesgue measure.

The notion of infinitesimal spectral flow was developed further in [AzISF].
In [AzISF] it is shown that the absolutely continuous part (the density of)
Φ(a)

H (V )(λ) of infinitesimal spectral flow is actually the trace of an operator
valued function ΠH(V )(λ), which was called infinitesimal scattering matrix and
which is defined naturally on the absolutely continuous part of the spectrum of
H. The reason for this terminology is a formula for the scattering matrix

S(λ;H1,H0) = Texp
(
−2πi

∫ 1

0

w+(λ; H0,Hr)ΠHr (Ḣr)(λ)w+(λ; Hr,H0) dr

)
,

established in [AzISF], where Texp is the chronological exponential, defined by
the formula

Texp
(

1
i

∫ t

a

A(s) ds

)
= 1 +

∞∑

k=1

1
ik

∫ t

a

dt1

∫ t1

a

dt2 . . .

∫ tk−1

a

dtkA(t1) . . . A(tk).
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[Kr] M. G. Krĕın, On the trace formula in perturbation theory, Mat. Sb.,
33 75 (1953), 597–626.
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