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ABSTRACT 

Flooding is a natural disaster that brings about undeniable impacts on the environment and human 

property. Traditional methods like hydrological and hydraulic models have been developed to provide 

information regarding flood predictions. The advanced technology of satellite sensors has been used 

to provide related information to help improve flood predictions, especially in situations of limited 

ground data. Utilising such technology, this research aimed to explore the usefulness of freely 

available spaceborne imaging (Sentinel 1 Radar-Radio Detection And Ranging) in providing satellite 

information that can be compared to flood predictions produced by a hydrological flood model. The 

research focused on mapping the flood extent that occurred in the urban area of Townsville city, 

Australia at the end of January to early February 2019, by using both multispectral and Radar images 

(Sentinel 2 and Sentinel 1 respectively).  

The satellite imagery was acquired from Sentinel 1 (C band Synthetic Aperture Radar – SAR) and 

Sentinel 2 (Multispectral Vis-NIR-MIR wavelengths) which were used for pre-flood (dry state), during 

and post-flood event (wet states). Pre-processing of the multispectral imagery included geometric 

and radiometric corrections. Classification of the multispectral images was performed by utilising the 

Normalised Difference Water Index and a grey scale thresholding. After geometric and radiometric 

calibration and speckle reduction, the classification of the Radar images was performed using 

density slicing of the average of VV and VH polarizations, in conjunction with a change detection 

method.  

The overall accuracy of the classification of the two multispectral images, when validated with the 

map of surface water extent (Landsat Water Observations from Space), was 94.7% and 91.9%, with 

kappa values of 0.94 and 0.90 (for dry and wet conditions respectively). The overall accuracy of the 

classification of the Radar image (post-flood event), when validated against the classification of the 

multispectral image, was 90.0% with a kappa value of 0.87. The qualitative comparison of the 

classification of flood extent (during flood event) with the map of potential flood depth of Townsville 

from hydrologic modelling resulted in partial similarities along the river and open water bodies, 

particularly for areas predicted by the flood modelling to be greater than two metres in depth. The 

Radar classification showed areas of flooding to the west and north of the area, to which flood 

modelling was applied. However, differences between the Radar classification and flood modelling 

were evident in residential areas and these differences are attributed to confusion associated with 

Radar double bounce from buildings and water, backscatter from objects within the water and from 

wind-induced rough water surfaces. Longer wavelength SAR, for example, S or L band, could 

address some of these issues to some extent. 

Keywords: Flood, Flood extent, Radar, Sentinel 1, Sentinel 2, Change detection, Threshold, 

Polarization.  
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CHAPTER ONE: INTRODUCTION 

1.1 Problem statement/background 

Flooding is recognised as one of the most devastating natural disasters that frequently occurs 

throughout the world. The characteristics and types of this phenomena that have been variously 

described in literature, such as flash floods and storm floods, are commonly caused by a number of 

factors, including excessive rainfall, sea level rises, or dam failures (Few 2003; Kron 2005; 

Raaijmakers, Krywkow & van der Veen 2008). Globally, the occurrence of flood events is considered 

to be the most severe disaster regarding its contribution to the impacts on the environment and 

human property when compared to other types of natural disasters (Adhikari Pradeep et al. 2010). 

From 1995 to 2015, among all weather-related disasters, (including earthquakes, landslides, 

droughts, wildfires, and volcanic activity), flooding accounted for 43% of the total number of damage-

event occurrences (CRED/UNISDR 2016). Australia, for example, is one of the countries that 

frequently experiences flood events, especially in Queensland, which is located in a tropical climate 

zone with low-lying geography along its coastal areas, making it vulnerable to floods (Apan et al. 

2010; Coates 1999). Despite the country’s development in terms of advanced technology and 

techniques used for analysing natural disasters, unstoppable disasters such as flooding still have 

significant regional impacts (Ishikawa et al. 2013; Watson et al. 1998).  

The potential effects of flood events have been studied extensively and international organisations 

have recognised the need to integrate risk reduction strategies into sustainable development 

frameworks (Pelling et al. 2004). To create proper strategies and management plans to reduce the 

impacts of flooding events, an understanding of the impacts that will occur under a variety of 

expected conditions are required. Traditionally, this information has been provided by using 

hydrological and hydraulic models (Chatterjee, Förster & Bronstert 2008). There are many flood 

models which have been developed, including commercial, research, or freely available models 

(Patro et al. 2009). The models similarly require data collection of rainfall, soil data type, topography 

and temperature. Although some hydrological and hydraulic models may request less data input to 

run the models, some may require more data input such as infrastructure, structuring, and cadastral 

data,  which poses challenges in terms of data fulfilment (Few 2003; Teng et al. 2017).  

In recent decades, several alternative methods have been used to predict flood inundation as well 

as to provide data for flood models. This includes the combination of additional tools with the models 

and the use of spaceborne imagery (Houser et al. 1998). Satellite remote sensing can be 

incorporated into other methods, such as a geographical information system (GIS) tool and flood 

modelling, to overcome problems related to a lack of data (Houser et al. 1998; Schmugge et al. 

2002). Satellite imagery, either optical and/or Radar imagery, can be processed to provide various 

types of information such as the amount of rainfall, soil moisture, landcover, and flood extent (Horritt, 
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Mason & Luckman 2001; Schmugge et al. 2002). The latter, especially, can be derived at the time 

the flood occurs without a requirement for various parameters such as rainfall, soil types, and other 

topographical data, unlike typical hydrological models. This advantage has proven useful for coupling 

satellite imagery analysis with  hydrological and hydraulic models (Levy et al. 2007). 

However, each type of satellite imagery provides both advantages and limitations. Various 

engineering and environmental limitations are inherent in the different types of satellite images due 

to their temporal/spatial resolution and their capacity to detect the information during flood events 

(Schumann et al. 2007; Teng et al. 2017). Optical satellite imagery has been proven to successfully 

provide reliable flood extent information, but it is useless to extract the flood information from the 

imagery when there are limitations to the acquisition of data during the night and during poor weather 

conditions, especially cloudy conditions (Grimaldi et al. 2016). Aerial imagery can provide highly 

accurate and real-time observations appropriate to the geographically smaller areas. However, using 

airborne platforms to capture images over large areas can be expensive and also difficult to 

implement, especially in poor weather conditions such as those often associated with a flood. The 

aeroplane used to capture the imagery may not be able to fly stably, which can negatively impact 

the resolution of the imagery (Biggin 1996; Schumann et al. 2011). Microwave Radar and Synthetic 

Aperture Radar (SAR) imagery have the capacity to detect information no matter the weather 

conditions or the time, while also providing a faster repeat cycle with a large coverage of surface 

area (Chini et al. 2019; Grimaldi et al. 2016; Marti et al. 2010). However, uncertainties and limitations 

when detecting water extent in urban areas are raised in literature (Giordan et al. 2018; Khan et al. 

2011). Since countries without access to high-technology models often experience the greatest 

damage from flooding and also there have not been any universal solutions regarding the use of 

satellite imagery in cooperation with the models, this thesis explores the possibility of using freely 

available satellite imagery to understand flood inundation better and it also undertakes a comparison 

with the predicted flood extent versus flood modelling.  

1.2 Research aim and objectives  

The main aim of this research is to explore the usefulness of freely available spaceborne imaging 

(Radar Sentinel 1) in providing satellite information that can be compared with flood predictions 

produced by a hydrological flood model. 

Specifically, the objectives of this study are: 

• Extract flood water extent using Sentinel satellite products; 

• Examine whether the results from Sentinel image processing agree with the results of 

flood predictions generated by using a flood model at the specific time; 

• Provide suggestions regarding the usefulness of the freely available spaceborne 

imaging Radar for detecting water in urban areas.  
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1.3 Study area  

The study area for this research covers two main catchments of the Bohle and Ross Rivers located 

in Townsville City, one of the largest regional cities in Queensland, Australia. Townsville has an 

estimated population of 194,072 people (Australian Bureau of Statistics 2019). The location of 

Townsville is in northern Queensland, approximately 1,300 kilometres north of Brisbane, the state’s 

capital. The surface area of the local government is 3,738 km2. Townsville borders on the Great 

Dividing Range to the west, the Mount Elliot area (or Bowling Green Bay National Park) to the south, 

and the Paluma Range to the north. The area is characterised by diverse landforms and ecosystems 

with several rivers and creeks running through it which supply fresh water to the region. The central 

area of Townsville is located along the coastal plain, with the Ross and the Bohle being the main 

rivers (Figure 1). 

Townsville is further characterised by a tropical climate, with an average annual rainfall of 1,143 mm 

over an average of 91 rain days per annum (Bureau of Meteorology 2019a). Most of the average 

rainfall falls during the wet season from November to April, which is the vulnerable time for storm 

flooding. The region experiences thunderstorms, monsoonal rainfall, and tropical cyclones, putting 

the region at risk of flooding, especially flash floods. The city experienced extreme flash floods in 

January 1998, February 2007, January 2009, December 2010, March 2018, and the latest major 

flash flood was in February 2019 (City of Townsville 2019b; Townsville Bulletin 2019). 

According to its vulnerability to flooding and the development of the city, Townsville city council has 

launched a detailed study and provided a flooding map service which includes detailed flood depth 

and flood extent all over the city (Townsville Bulletin 2019). The areas of the flood study have been 

divided into 23 sub-catchments: Eastern Alligator Creek, Gordon Creek, Horseshoe Bay, Little Bohle, 

Lower Stuart, North Ward, Ross Creek, Ross River, Upper Bohle Plains, Deeragun, Althaus Creek, 

Louisa Creek, Lower Bohle, Bluewater, Douglas Annandale, Upper Bohle, Alligator Creek, Middle 

Bohle, Black River, Captain Creek, Gumlow, CBD, and Inner West End (City of Townsville 2019a).  

The extent of the study area (Figure1) focuses on the Bohle and Ross River catchments, with the 

total study area comprising of 1,230.287 square kilometres where the higher resolution map of the 

study area can be found in Appendix A. Along the Ross River, there is the Ross River Dam, which 

was constructed in 1971 to help reduce flooding events and to store water. Downstream of the dam, 

there are three weirs – Black Weir, Gleeson Weir, and Aplins Weir – which help maintain water within 

the river (City of Townsville 2019d). It is reported that within these catchments, the historic flood 

recurrence is lower for the Ross River catchment and higher for the Bohle River catchment. Flooding 

along the Ross River has mostly been due to overland flows, which have been reduced by the 

construction of the dam. However, the latest flooding of the city, which was caused by 10 days of 

consecutive rainfall, resulted in unexpected damage which went beyond the probability and 

assumptions of the flood study. A number of the low-lying suburbs were reported to be adversely 
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impacted by flooding, something which was predicted not to happen within the 100-year prediction 

cycle (ABC News 2019). This particular flood was of interest due to its high impact, including damage 

to hundreds of houses and public property, and even the loss of life. It was therefore chosen for 

analysis in the current study. 

Figure 1: Geographical location of Ross River and Bohle River catchments in Townsville, 
Queensland. 

1.4 Research questions 

To conduct this research, the initial research questions were: 

• Do flood prediction maps corresponding to extreme flows agree with the flood extents

mapped via satellite imagery?

• How well can Sentinel 1 Radar imagery detect water bodies in the study area?

• What are the differences and similarities between the results from the satellite image

analysis and the result of potential inundation from the Townsville Council flood model?

Image removed due to copyright restriction.
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1.5 Potential significance of the research 

• Providing information about the use of advanced and free sources of information, such

as satellite images, to detect water extent in urban areas. This could be significant,

especially for countries that have less data to support flood predictions, and where this

source of information can offer reliable alternative data to assist with floodwater

management;

• Providing flood mapping at low cost;

• Contributing to the management and mitigation of future impacts caused by natural

disasters;

• Contributing to the assessment of flood damage, thereby assisting relief organizations.

1.6 Outline of the thesis 

The aim and objectives of the research will be investigated and presented using the following thesis 

structure. In chapter two, a review of related literature will address the matters regarding the 

differences in satellite sensors and their use in generating maps of surface water and flood extent 

as well as the use of hydrological-hydraulic modelling to produce flood prediction maps. Chapter 

three will introduce the datasets, software, and methods used to achieve the research aim and 

objectives. The experimental results of significant processes will be demonstrated in chapter four, 

whilst chapter five is devoted to the discussion of the results as well as the limitations related to this 

overall research. Finally, the conclusions and recommendations will be reported in the last chapter.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Significance of flooding phenomenon 

Flooding is recognised as one of the most devastating natural disasters. This includes storm floods, 

flash floods, riverine floods, overflow floods, dam break floods, and tsunamis (Few 2003; Hammond 

et al. 2015; Kron 2005; Teng et al. 2017). Excessive amounts of precipitation during the wet season 

is the most common cause of flooding, especially in low-lying and monsoonal regions. Such is the 

case for many countries in Asia including, but not limited to, China, Bangladesh, Indonesia, India, 

and Laos (Levy et al. 2007). 

The increase in the global population has been linked to climate change, including a shift in the 

seasonal timeline, the environmental-global rainfall pattern, and the intense amount of rainfall which 

sometimes not only brings about flooding events but also droughts in some areas (Few 2003; Kron 

2005). Apart from influences on the natural environment, the increase in population also causes new 

urban development, thus impacting the hydrological cycle, and changing water flow and storage 

patterns (Hammond et al. 2015; Kron 2005). Floodplains and impervious urban areas are especially 

vulnerable to flooding when prolonged rainfall occurs (Hammond et al. 2015). 

Although flooding is a part of the natural hydrological cycle of river systems and it can provide both 

ecological and anthropogenic benefits, particularly in terms of alleviating drought conditions (Teng 

et al. 2017), flooding can also impact cultural, economic, ecological, educational, and/or human life, 

no matter how minimal or severe the size of the flood is (Godschalk 2003; Levy et al. 2007). A 2001 

review of the global loss of human life which can be directly contributed to flooding showed that there 

were 25,000 human deaths with billions of US dollars in economic losses (Godschalk 2003). Severe 

cases of flooding – such as that caused by hurricanes or tropical monsoonal storms, mudslides, 

violent winds, and lightning – can lead to additional short or long term destruction (Few 2003).  

Since it is undeniable that flooding contributes to losses, and because floods have become more 

frequent and intense in recent decades, engineering and technical sectors have been pushed to 

study the phenomenon and provide predictions of flood extents, flood levels and the velocity of water 

flows (Levy et al. 2007; Patro et al. 2009; Zhu, Zhenduo et al. 2016). However, one of the most 

difficult challenges to provide an accurate prediction is related to a lack of data as well as the cost of 

data acquisition. Hence, various hydrological models have been developed and combined with the 

use of satellite imagery, to generate flood extents in near-real-time and aid in the reliability of 

information about flooding (Levy et al. 2007; Quirogaa et al. 2016).  
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2.2 Remote sensing sensor 

The mode of sensors used (Figure 2), such as passive (multispectral sensor) and active (Radar: 

Radio Detection And Ranging; and LiDAR: Light Detection And Ranging), play a pivotal role in 

deriving information from the Earth’s surface. Since the sensors function via measuring 

electromagnetic radiation, different sensors exhibit information in different ways. 

Figure 2: Electromagnetic Radiation and its relation to passive and active remote sensors. 

(Muller 2017). 

2.2.1 Passive remote sensor 

The sun is the main source of energy for passive sensors, which means that the sensor does not 

have its own source of energy. Most passive sensors use solar radiation to illuminate the object 

(Campbell & Wynne 2011). Most of the time, the sensor detects objects based on the 

electromagnetic wavelength which ranges from ultraviolet (UV) through visible wavelengths to near-

infrared (NIR) and sometimes to thermal infrared. The spectral resolution of the imagery accounts 

for how many bands there are as well as the width of the wavelength each band senses (Boettinger 

et al. 2008). For example, the QuickBird sensor system provides three visible bands (red, green, 

blue) and near-infrared centred at 485 nm (450 to 520 nm), 560 nm (520 to 600 nm), 660 nm (630 

to 690 nm), and 775 nm (760 to 790 nm), which can be used for shallow water applications (Mishra 

et al. 2006). Spectral resolution is closely linked to spatial resolution in an inverse way where, in 

general, the higher the spectral resolution, the lower the spatial resolution. The spatial resolution of 

spaceborne instruments varies from sensor to sensor, ranging from less than a metre to a kilometre 

in length. In the case of temporal resolution, passive sensors can provide information about land 

surface with relatively high repeat times from multiple weeks to daily (Table 1). Together with these 

various resolutions and the uniqueness of the Earth’s surface-reflectance of different land cover 

types (Figure 3), passive remote sensing is widely used in a number of applications including surface 

water mapping, land use cover mapping, environmental disaster mapping like landslides, and forest 

fire mapping. 

Image removed due to copyright restriction.
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Satellite sensors Spectral 

Bands 

Central wavelength (µm) Spatial 

resolution 

(m) 

Temporal 

resolution (day) 

MODIS B1-B2 

B3-B7 

0.645; 0.858 

0.469; 0.555; 1.240; 1.640; 2.130 

250 

500 Daily 

Landsat 8 Pan 

B1-B7, B9 

B10-B11 

(TIR) 

0.590 

0.440;0.480;0.560;0.655;0.865;1.610; 

2.150; 1.37 

10.895; 12.005 

15 

30 

100 16 

SPOT 6 Pan 

B1-B3 

SW-IR 

0.600 

0.490; 0.560; 0.660 

0.825 

2.5 or 5 

10 

20 

26 

Sentinel 2 B1, B9, B10 

B2-B4, B8 

B5-B7, B8A, 

B11, B12 

0.443; 0.945; 1.375 

0.490; 0.560; 0.665; 0.842 

0.705; 0.740; 0.783; 0.865 

1.610; 2.190 

60 

10 

20 
5 

Ikonos 2 Pan 

B1-B4 

0.727 

0.485; 0.560; 0.660; 0.830 

0.82 

3.2 
3 

PLANETSCOPE B1-B4 0.485; 0.545; 0.630; 0.820 3 Daily 

Quickbird Pan 

B1-B4 

0.675 

0.485; 0.560; 0.660; 0.830 

0.61 

2.44 
1-3.5

World view 1 Pan 

B1-B4 

0.625 

0.455; 0.545; 0.672; 0.850 

0.31 

1.24 
< 1 

Table 1: Basic characteristics of different sensors. 

Where B means Band, Pan means Panchromatic, SWIR means shortwave infrared. TIR means 

Thermal infrared. Modified from https://www.satimagingcorp.com/satellite-sensors/ (Boettinger et 

al. 2008; Muinonen 2018; Team 2018).  

https://www.satimagingcorp.com/satellite-sensors/
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Figure 3: Generic spectral signature of soil, vegetation, and water with overlaying spectral bands 
from LANDSAT 7. 

(Dianderas, Rojas & Kemper 2014) 

2.2.2 Active remote sensor 

Active remote sensors, such as Radar imagery in particular, work differently from passive remote 

sensors in that they produce their own energy to illuminate objects on the Earth and, hence, they 

can operate day and night (Campbell & Wynne 2011). Although the active sensor can function in 

UV, visible and infrared wavelengths, Radar mainly focuses its function within Microwave 

wavelengths (Figure 2). These latter wavelengths are utilised in the Synthetic Aperture Radar (SAR) 

sensors that generate multipurpose radar images. Commonly, the sensor will create surface 

illumination by sending a wavelength within the electromagnetic spectrum to a target and then 

measuring the energy that returns to the sensor, which is called the backscatter. The sensor is 

characterised by two main components including the polarisation modes and the band frequency 

functioning in the sensor. The polarisation modes refer to the direction of the vibration of the electoral 

component of the radiation of either the transmitted or the received signal and these are common in 

the vertical or horizontal directions (Joseph 2005). Some SAR sensors offer results which are 

presented as like-polarisation, others as cross-polarisation, and others again as quad-polarisation. 

Like-polarisation includes either vertical transmission and vertical receive (VV) or horizontal 

transmission and horizontal receive (HH). Cross-polarisation is represented in either vertical 

transmission and horizontal receive (VH) or vice versa (HV). With different polarisations, significant 

information about the various properties of objects on the Earth’s surface can be derived in different 

ways (Van Zyl, Zebker & Elachi 1987). The band frequency used in active sensors varies depending 

on the sensor and the band ranges (Table 2). Normally, the band range demonstrates the ability of 

the wavelength to penetrate through cloud and other obstacles like tree canopies and dry snow. 

Image removed due to copyright restriction.
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Radar wavelengths range from 0.75 cm to 130 cm with the latter, the longest wavelength, indicating 

the greatest penetration (Figure 4).   

Radar Bands Frequency Range 

(GHz) 

Corresponding 

Wavelength Range (cm) 

P 0.230-1 30-130

L 1-2 15-30

S 2-4 7.5-15 

C 4-8 3.75-7.5 

X 8-12.5 2.40-3.75 

Ku 12.5-18 1.67-2.40 

K 18-26.5 1.13-1.67 

Ka 26.5-40 0.75-1.13 

Table 2: SAR Radar Frequency Bands. 

Source:https://www.usgs.gov/media/images/definition-sar-radar-frequency-bands-evans-1995. 

Figure 4: Different backscatters of short and long Radar wavelengths from various surface objects 
under different conditions. 

(Schumann et al. 2007). 

2.3 Remote sensing for urban flood detection 

Satellite images have been used extensively to provide information to calibrate, improve, and 

constrain some parameters in hydrological and hydraulic models (Barneveld et al. 2008; Bates 2012; 

Image removed due to copyright restriction.

https://www.usgs.gov/media/images/definition-sar-radar-frequency-bands-evans-1995
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Mason et al. 2008). In terms of hydrological variables, satellite observations from optical, 

multispectral and SAR sensors can contribute important input such as soil moisture, precipitation, 

land cover mapping, and mapping water extent as well as water levels when it is used in conjunction 

with the Digital Elevation Model (DEM) (Alsdorf, Rodríguez & Lettenmaier 2007; Anderson 1976; 

Rast, Johannessen & Mauser 2014). Both active and passive satellite platforms, as well as the 

sensors, have been improved over time. This has led to higher resolutions both temporally and 

spatially, particularly with regard to the latter. However, there are advantages and limitations in the 

uses of each data type and, hence, many researchers have combined the use of optical/multispectral 

imagery with SAR imagery in order to bridge these limitations and also to provide better results 

(Markert et al. 2018). 

2.4 Optical imagery for surface water detection 

Optical/multispectral imagery is recognised as a powerful data source to extract land cover and water 

extent due to its high spatial resolution, and it is best suited to visual interpretation (Giordan et al. 

2018). Because most sensors operate in the visible and NIR wavelengths, approximately from 400 

to 700 nm and 720 to 950 nm respectively (Joseph 2005), this makes it easy for the users to visually 

interpret the objects in the images. Moreover, the imagery is accessible via several sources including 

Landsat and Sentinel mission with a spatial resolution at the 10-30 m level. Therefore, optical 

imagery is widely used. However, because of its reliance on light from the sun to illuminate the 

objects on the Earth, the constraint of optical/multispectral imagery used for specific events like 

flooding is mostly caused by cloud and the time of acquisition, particularly when the flood occurs at 

night (Drusch et al. 2012; Loveland & Dwyer 2012). Aside from optical/multispectral imagery derived 

from satellites, images derived from airborne platforms have now become recognised as the best 

remote sensing imagery available as they provide accurate high-resolution and real-time information, 

which can also be used as a validation for satellite image classifications (Mason et al. 2008; Musa, 

Popescu & Mynett 2015). However, this source of imagery experiences drawbacks when applied to 

large land areas due to the cost of flight, technical issues and weather-related issues, particularly 

when dealing with storm-induced flood events. Furthermore, when users require updates about the 

extent of flooding, the cost of flying to retrieve this information increases proportionately whilst the 

cost for images from an orbiting satellite generally remains stable.  

Regarding the mapping of flood extents, research has demonstrated the successfulness of mapping 

surface water using multispectral imagery (Notti et al. 2018; Pekel et al. 2016). Feyisa et al (2014) 

present a new automated method to detect water and improve the accuracy of surface water 

mapping. The research used Landsat 5 TM images as the data source together with the Automated 

Water Extraction Index (AWEI). This method was developed to yield a better contrast between water 

and other dark objects like asphalt. Unlike the Normalized Difference Water Index (NDWI) where 

only two bands are used, this method uses all related bands like blue, green, near-infrared, and 
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shortwave infrared bands, as well as adding and applying different coefficients (Feyisa et al. 2014). 

The AWEI is an effective tool for the detection of water bodies, especially with regard to minimising 

the ambiguity of water versus other dark surfaces such as shadow, for example. However, since 

AWEI does not consider or factor in differences about the volume of water in different seasons or 

varying atmospheric compositions, this might result in over-classification for some surface areas. 

Although other methods like supervised classification, Normalised Difference Vegetation Index 

(NDVI), Normalized Difference Water Index (NDWI), and Modified Normalized Difference Water 

Index (MNDWI)  have been widely proposed through literature as having high degrees of accuracy 

(especially the latter) (Du et al. 2016; Lu, D & Weng 2007; Lu, S et al. 2011; Yang et al. 2017), it has 

not been proven that these methods can be applied uniquely to every region. Since water-related 

index-based methods rely upon only two main bands in their algorithms (green and either near-

infrared or shortwave infrared), the other bands are ignored. With imagery that offers a few or several 

different bands, there will not be any such complications. However, with multispectral imagery that 

caters to two or three bands in closed wavelengths like the Advanced Land Imager where there are 

two NIR bands and three Shortwave infrared (SWIR) bands, selecting the optimal water-related 

bands is vital and this can contribute to greater accuracy in the classification of objects or flooding 

(Li et al. 2013).. Although using only water-related index methods can be challenging to delineate 

water from non-water, water-related index methods are still accepted as the most common approach 

to classifying water from non-water objects.  

2.5 Radar for urban flood detection 

Although water extent acquired from optical imagery, either airborne or spaceborne, has been 

proven to be successful, it experiences limitations when mapping water extent during flood events 

and, thus, SAR imagery has been used extensively for mapping flood extent (Liu et al. 2019; Musa, 

Popescu & Mynett 2015; Ouled et al. 2018). Despite the advanced nature of its penetration capacity 

and its lack of time limitations, some research has presented a limitation in the use of SAR imagery. 

Hence, considerations of sensor characteristics like spatial resolution, wavelength, polarisation, 

incidence angle, the availability of the imagery at the time needed, methodology and algorithm to 

extract information are all significant factors to consider.  

When dealing with flooding, a selection of Radar wavelength is particularly significant. L band is 

claimed to be less sensitive to the roughness of the water’s surface plus it has the ability to penetrate 

tree canopies, while C and X bands are deemed to provide less penetration of tree canopies and 

even precipitation in the air (Liu et al. 2019; Xue et al. 2008). Above all, P band, which is the longest 

wavelength, presents the greatest penetration through tree canopies and even small branches, with 

the only detected matter being the trunks of the trees (Santos et al. 2003). S band (as used by 

NovaSAR1, for example) is another advanced SAR band that can perform better in severe weather 

conditions like heavy rainfall. It penetrates better down to the ground level when compared to X and 
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C bands (Dutch 2019). However, in comparison to X, C, and L bands, S band is still less common in 

the field of using spaceborne Radar for flood detection. With regard to the associated factors of this 

technology, such as advances in, the limitations of, and the availability (that is, cost, time, and 

resolution) of optical versus SAR satellite images, the free source of Sentinel 1 SAR imagery at C 

band wavelength is currently being used more broadly and has been providing reliable results 

(Giordan et al. 2018; Marti et al. 2010; Twele et al. 2016; Westerhoff et al. 2013).  

Various techniques have been applied to mapping water and non-water objects using SAR imagery, 

which have proven suitable for detecting water extent. Histogram thresholding is one of the common 

methods that is used to classify water from other objects (Pun 1980). When applying the condition 

that the image is derived on a non-windy day, water bodies will appear as smooth surfaces with low 

backscatter to the sensor, thereby appearing as dark tones in the image. Under such conditions, the 

image will present high distinctions between smooth objects versus rough objects, which aids in 

yielding better results (Pun 1980). However, the fact remains that mapping water extent during flood 

events is nearly always faced with challenges like heavy rainfall and windy conditions, which causes 

surface roughness and this, in turn, contributes to misclassifications (Henry et al. 2006; Pierdicca, 

Pulvirenti & Chini 2018).   

To overcome this ambiguity of water classification from SAR images, the use of multipolarisation has 

been considered. The different polarisations of HH, HV, and VV derived from Envisat ASAR images, 

combined together with threshold techniques, was used by Henry et al. (2006) to detect flooded 

areas and these demonstrated the influence of the polarisation mode on extracting flood extent, 

where HH polarization produced better results compared to the other two polarisation modes. 

Together with threshold techniques, change detection is also used to delineate flood extent (Long, 

Fatoyinbo & Policelli 2014). A method like thresholding imagery can be applied with a single image 

to detect rough objects. However, by applying a change detection method, multitemporal imagery 

provides better detection and comparisons in the change of water extent over time – especially 

before, during and after flooding (Clement, Kilsby & Moore 2018; Long, Fatoyinbo & Policelli 2014). 

Although thresholding and change detection methods are commonly used in combination with one 

another to provide flood extent maps, different methods like image segmentation using a pixel-based 

method and a statistical active contour model have been applied with European Remote Sensing 

Satellite SAR (ERS-1 SAR) to map flooding of the River Thames in the United Kingdom (Horritt, 

Mason & Luckman 2001; Martinis, Twele & Voigt 2009). This method provides a successful result of 

detecting flood extent in rural areas, but it proves less effective when applied to urban flood 

conditions due to the complexity of the vertical structures as well as the other effects of invisible flood 

under the Radar layover and shadow (Mason et al. 2008). To increase the effectiveness and 

accuracy of mapping flood extent using SAR images, particularly in heterogeneous environments, 

other topographical data like high-resolution Digital Elevation Model (DEM) and land use land cover 
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map have been integrated (Matgen et al. 2007). By integrating high-precision topographical data, it 

has been proven that the classification from SAR images can produce a realistic flood extent, 

especially with near-real-time events (Brivio et al. 2002; Matgen et al. 2007). Although there are a 

number of challenges and uncertainties for using SAR imagery in detecting flood extent, there are 

several methods that have been developed so that errors can be reduced and the accuracy of 

classification can be improved (Musa, Popescu & Mynett 2015).  

2.6 Hydrological and hydraulic modelling for urban flood mapping  

A hydrological model is an approximation of the real-world hydrological cycle to make it easy to 

understand, predict, and manage the resources, flow, and even the quality of the water (Moradkhani 

& Sorooshian 2009; Wheater, Sorooshian & Sharma 2007). The concept of the hydrology is a study 

about all kinds of aspects related to water on the Earth, whether it be its occurrence, circulation, 

distribution, or interaction with the environment (Devia, Ganasri & Dwarakish 2015). Hence, there 

are many types of models that are used for different purposes, including conceptual, analytical, 

statistical, and numerical models (Devia, Ganasri & Dwarakish 2015; Jain & Singh 2003). These 

models are mainly applied for studying system behaviour as well as hydrological processes. 

In general, to run a hydrological model there is a parameter requirement, with different models 

requiring different set parameters. There is some obvious data that is used as the input for almost 

all models such as rainfall, drainage area, landcover, air temperature, soil characteristics, soil 

moisture content, topography, vegetation, hydrogeology, and other such physical parameters 

(Devia, Ganasri & Dwarakish 2015). The requirement for a large amount of data input contributes to 

arising uncertainties and difficulties due to the lack of available data in some instances (Few 2003; 

Teng et al. 2017). The greatest uncertainty is generally in the quantity of the floodwater and the water 

extent, particularly in urban areas (Brown, Spencer & Moeller 2007; Jung & Merwade 2011).  

Due to the lack of input data or uncertainties regarding the input data, the reliability of the hydrological 

models is widely studied (Kauffeldt et al. 2016). However, it is not only the parameters that have 

been questioned but also the structure and the model tools. In general, when applying a hydrological 

model over a large scale of catchments together with a relatively broad range of time, the complexity 

is always significant and hence, calibration and parameter optimisation are vital (Yu et al. 2015).  

There are several hydrological modelling tools available and selecting the most appropriate tools are 

always a challenge. This requires the user identify the appropriate tool which matches the 

requirements of the project together with the tool’s capacity, the equation used as well as the 

availability of input data. The Soil and Water Assessment Tool (SWAT) model, for example, is a 

complex physical-based model which requires numerical input data including daily precipitation, air 

temperature, solar radiation, humidity value, wind speed, and a specific water balance equation to 

simulate the hydrological circulation (Arnold et al. 2012). Various other complex physical-based 
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models range from the scale of the work to the purpose of the work. Models like SWAT simulate the 

flow of surface water and the transport process on a catchment scale (Abbaspour et al. 2007). This 

demonstrates a challenge in the use of the hydrological model. 

Besides hydrological modelling, a comprehensive flood assessment requires a combination of 

hydraulic models. The combined application of hydrological and hydraulic models will allow 

analysists to conduct in-depth evaluation regarding the impacts of various flood scenarios (Grimaldi 

et al. 2016). MIKE Flood modelling, for example, has been developed for both river and floodplain 

modelling to analyse the behaviour of flooding and to identify the causes and effects of flooding while 

also providing a simulation of flood extent (Chatterjee, Förster & Bronstert 2008). This model has 

been applied to obtain simulations of flood extents, flood depths, and any other hydraulic-related 

matters in a number of studies such as a delta region in India and along the Elbe River in Germany 

(Chatterjee, Förster & Bronstert 2008; Patro et al. 2009). These studies presented a relatively 

satisfying result of the model in comparison to the observed data. However, other research reveals 

its limitations in terms of accuracy, time, and cost-effectiveness when compared with alternative 

models (Jamali et al. 2018). Different models have their own advantages and limitations either 

because of the systematic nature of the software, the requirement of data inputted, the uncertainty 

of the data inputted or the results outputted. Hence, additional tools and the use of information 

derived from satellite images are integrated with the models (Houser et al. 1998). 

2.7 Townsville flooding Models 

Townsville city’s council has been undertaking a flood study for catchments throughout the council 

area. The studies are implemented under a city-wide Flood Constraints Project which aims to 

develop and provide up-to-date flood models for the city. The models have been developed from a 

number of previous hydrological and hydraulic studies (City of Townsville 2019b). For the studies, a 

comprehensive flood assessment of each catchment in Townsville is developed using MIKE FLOOD 

– a single-package, commercial model that was developed from Mike 11 and Mike 21 by the Danish

Hydraulic Institute (Patro et al. 2009). MIKE 11 is a one-dimensional hydrological model which is 

used to analyse floods, the contribution of dams, water quality, sediment transport, reservoirs, river 

structure operations, and catchment characteristics (MIKE11 2015). MIKE 21, however, is a two-

dimensional model applied for simulating hydraulics and other related events, proving especially 

practical for estuaries, coastal waters and seas (Warren & Bach 1992). MIKE 11 and MIKE 21 include 

information about floodplains such as elevation, precipitation, and Manning’s n values.  

MIKE FLOOD has been used for a recent flood study in the Townsville city council area. Specifically, 

the Ross and Bohle catchments, whose boundaries cover the city areas, were modelled using data 

that included historical rainfall records, stream gauging records, topographical data, cadastral data, 

and structure design data. The model was calibrated to three flood events which occurred in 

February 2007, January 2009, and December 2010. The Hydrologic Engineering Centre’s River 
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Analysis System (HEC-RAS) was utilised for validating Townsville area’s MIKE FLOOD Model’s 

treatment of significant bridge structures. HEC-RAS is free hydrological software that has been 

widely used for simulating one-dimensional steady and unsteady river flow hydraulics and sediment 

transportation, calculating the water surface profile, and producing flood inundation maps (Brunner 

2010; Buffin-Bélanger et al. 2015; D’Oria, Mignosa & Tanda 2015; Pearson & Pizzuto 2015). From 

the results of the verification, a reliable agreement between the two models was confirmed. Flood 

results from the hydraulic model contributed to base-line flood maps for the Townsville city council 

area, where the maps include water depths, flood levels, and flow velocities of two to 2,000-year 

average reoccurrence intervals (City of Townsville 2019b). 

2.8 Summary 

In summary, both optical and Radar satellite imagery are possible candidates for mapping water 

bodies as well as yielding water extent data, which can be compared to provide better information 

for flood prediction maps. Hydrological and hydraulic models are the most common methods of 

generating flood extent and flood depth prediction maps, but with the requirement of physical and 

actual measurements for simulation. Optical images provide promising results to map water bodies 

using water-related spectral bands. However, the poor weather and cloudy conditions which typically 

occur during most flood events often obstruct the usefulness of optical images. Since Radar sensors 

can penetrate through cloud and provide imagery during times of flooding, Radar images are 

recommended to avoid weather-related issues. While long wavelength SAR imagery can potentially 

provide better penetration through vertical features such as tree canopies, they are currently 

expensive and are sometimes not available at the time when a flood occurs. Hence, with a focus on 

the free and available satellite images as well as non-complex image processing methods, water-

related histogram thresholding will be applied to extract flood extent data from Sentinel products for 

the urban area. These results will be compared to flood models so that the usefulness of the freely 

available Sentinel products in providing flood extent maps will be realised.  
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CHAPTER THREE: DATA COLLECTION AND METHOD 

Figure 5 demonstrates the overall workflow of the methods applied in this thesis. First, all data was 

obtained from various sources, including rainfall, GIS format of drainage sub-basins in Townsville, 

DEM, a map of the surface water from WOfS, a map of a potential flood from Townsville city council, 

and satellite imagery. Next, the DEM was processed to assist in defining the catchment boundaries 

and later for improving the satellite image classification. The freely available satellite images of 

Sentinel 2 and Sentinel 1 were processed, and the classifications of Sentinel 2 images were verified 

with the map of surface water from WOfS. Then, the classifications of Sentinel 2 images were used 

to justify the classification of Sentinel 1 images. The final classification of the flood extent derived 

from the Sentinel 1 images were compared with the potential inundation map from the flood 

modelling. Details of each step will be explained in the following sub-sections.  

Figure 5: The flowchart of the data collection and its method. 

3.1 Data collection 

3.1.1 Townsville flood event 

To understand more about the flood event relevant to this thesis, the dates that the flood occurred, 

the weather observations (rainfall, temperature, and wind speed), and the water release time and 

dates from the Ross River Dam were all investigated. According to the Bureau of Meteorology 

(2019b), persistent monsoonal rainfall had started affecting different parts of Townsville during the 

last week of January 2019 before starting to fade in the second week of February 2019. In the Ross 

and Bohle River catchments, the flood started to occur on Thursday 31 January with persistent 

rainfall. The Ross River Dam spillway gate had to be fully opened on the evening of Sunday 3 

February (Bureau of Meteorology 2019b). The rainfall, temperature, and wind speed data at 
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Townsville Aero Station (station number 032040) between 1 January to 28 February 2019 (Appendix 

B) were collected to support the investigation of the flood event and also to support the selection of

the satellite imagery. Regarding the rainfall data, a summary of historic cumulative rainfall from 1 

January to 30 December in the years 2000, 2015, 2018, and 2019 yielded a difference in the amount 

of rainfall data in early 2019 compared with other historical data (Figure 6), including with regard to 

the split gate opening timeline (Figure 7). The cumulative rainfall from late January to early February 

2019, which was at the time that the flood occurred, exceeded the previous highest readings in the 

year 2,000 by a considerable volume. A more detailed statement about the flood event and its related 

data is addressed in the Bureau of Meteorology (2019b) and in the BMT (2019).  

Figure 6: Cumulative rainfall at Townsville Aero Station: 032040. 

 (Bureau of Meteorology 2019b) 

Figure 7: Rainfall and dam release timeline. 

(BMT 2019; Bureau of Meteorology 2019b) 

Image removed due to copyright restriction.

Image removed due to copyright restriction.
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3.1.2 Satellite imagery (Sentinel 2 and Sentinel 1) 

Sentinel 2 and Sentinel 1 are part of the Earth Observation mission under the Copernicus 

Programme, which is supported by the European Space Agency (ESA). It provides imagery at a 

medium spatial and spectral resolution which is cost-free and is widely used for a number of 

applications such as land cover classification and flood monitoring (Malenovský et al. 2012; Yang et 

al. 2017; Zhu, Zhe, Wang & Woodcock 2015). Hence, predominantly relying on the free availability 

of Sentinel satellite imagery, this study used both Sentinel 2 and Sentinel 1 (Table 3 & Table 4) to 

detect water bodies and the water extent that occurred in Townsville city during this flash flood event. 

As a result of a near-simultaneous Sentinel 2 and Sentinel 1 imagery acquisition, a classification of 

Sentinel 2 imagery was used in particular as a baseline of “dry conditions” to verify the results of 

Sentinel 1 imagery classification. The acquisition dates of the images were decided upon by the 

availability of the images corresponding to the duration of the flood event and the rainfall data derived 

from rain gauge measurements at Townsville Aero Station. Both types of satellite images are derived 

from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).  

3.1.2.1 Sentinel 2 

Four different dates for the Sentinel 2A and Sentinel 2B images (Table 3 & Figure 8) categorised 

into dry and wet conditions were used to detect possibly permanent water and flood water extents. 

These were later used as a baseline for verifying the classification of the flood extent and, hence, 

the selection of the images for dry conditions were based on their temporal correspondence to the 

availability of the Sentinel 1 images (pre-flood event). Sentinel 2A and 2B are twin satellites under 

the Sentinel 2 mission that fly in the same polar sun-synchronous orbit providing 290 kilometres of 

the orbital swath width (Dutch 2019). These two satellites provide medium spatial resolution, 

multispectral imagery ranging from 10m through 20m to 60m based on 13 different spectral bands 

ranging from visible wavelengths through near-Infrared to shortwave Infrared wavelengths (Figure 

9). The Multispectral Instrument (MSI) provides four of 13 bands at a spatial resolution of 10m and 

covers the visible wavelengths of red, green, blue, and near-infrared. At a spatial resolution of 20m, 

six of the 13 bands are derived from four regions of spectral wavelength ranging through infrared 

red edge, infrared and two bands of short-wave infrared. The lowest spatial resolution bands at 60m 

are derived from the three other bands which mainly detect atmospheric particles like aerosols, water 

vapour, and cirrus cloud. Apart from the spatial resolution, Sentinel 2 mission provides high- temporal 

resolution imagery with a revisit time of five days at the equator, which presents the potential to apply 

a time-series analysis. Two different product types freely accessible for users are the images that 

can be derived at levels 1C and 2A (Baillarin et al. 2012), although images at level 2A were only 

available over the European continent up until December 2018 and are currently in the stage of a 

gradual global roll-out through 2019. All the Sentinel 2 images used in this study (Table 3) were 

derived at the processing level 1C, with images containing reflectance at the Top Of Atmosphere 

https://scihub.copernicus.eu/dhus/#/home
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(TOA) and presenting cloud cover when there were no clear conditions. A graphical example of 

Sentinel 2 imagery of Townsville is shown in Figure 8.   

No Satellite 

No 

Acquisition 

date 

Acquisition time 

(Local) 

Instrument Pass 

direction 

Product 

type 

Cloud 

cover (%) 

Remark 

1 S-2A 26-Oct-18 10:27 MSI Descending S2AMSIL 

1C 

9.5 Dry 

2 S-2A 25-Nov-18 10:27 MSI Descending S2AMSIL 

1C 

0.02 Dry 

3 S-2A 13-Feb-19 10:26 MSI Descending S2AMSIL 

1C 

2.7 Wet 

Table 3: Summary of Sentinel 2 satellite images acquired for dry and wet conditions.

Figure 8: An example of MSI raw data from Sentinel 2 acquired on 26 October, 2018 with RGB 
bands 4, 3, 2. 
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Figure 9: MSI spectral bands and spatial resolution. 

(Gatti & Bertolini 2013). 

3.1.2.1 Sentinel 1 

Seven Sentinel 1 images acquired on different dates were used to detect water extent during the 

flood event (Table 4 & Figure 10). This set of images are categorised into pre-flood, during flood, 

and post flood conditions in order to derive water extent for this specific flood event. The Sentinel 1 

mission (like the Sentinel 2 mission) is composed of a constellation of twin satellites – Sentinel 1A 

and Sentinel 1B – which move in the same orbit. These twin satellites were launched in September 

2014 and April 2016 respectively, with a lifetime of 7 years and a consumables lifetime of 12 years 

(Torres et al. 2012). Sentinel 1 provides imagery with a revisiting time of 12 days with one satellite 

(with a high repeat frequency of six days for the final constellation) and high repetitiveness of three 

days at the equator (Torres et al. 2012). The Sentinel 1 mission provides a Radar image produced 

using the C band Synthetic Aperture Radar (SAR) instrument operating in the four different modes 

of Stripmap (SM), Interferometric Wide Swath (IW), Extra-Wide swath (EW), and Wave mode (WV), 

thereby resulting in different resolutions and swath widths (Figure 11). Sentinel 1 products are 

distributed in three processing levels which are level 0, level 1, and level 2, which represent raw 

products, single look complex (SLC) or Ground Range Detected (GRD) products, and Ocean (OCN) 

products respectively. The satellites acquire a dual polarisation of HH+HV, VV+VH with one 

transmitting chains of either H or V and the second receiving chains for H and V (Twele et al. 2016). 

According to the area of interest over land, the images used in this study were derived in the 

Interferometric Wide Swath with VV and VH polarisation, which provides geometric resolution up to 

5 x 20m with a 250 km wide swath. The SLC mode was chosen so that the averaging of digital 

values, which occurs with multi-look products, did not occur. 

Image removed due to copyright restriction.
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Figure 10: An example of Radar data from Sentinel 1 acquired on 31 January, 2019 with VH 
polarisation (during flood event).  

Note the lack of orientation and distorted geometry associated with this product. 

No Satellite 

No. 

Acquisition 

date 

Acquisition 

time (local) 

Instrument Pass 

direction 

Product 

type 

Polarisation Mode Remark 

1 S-1A 27-Oct-18 5:44 SAR-C Descending SLC VV/VH IW Pre-Flood 

2 S-1A 31-Jan-19 05:44 SAR-C Descending SLC VV/VH IW Flood 

3 S-1B 6-Feb-19 05:43 SAR-C Ascending SLC VV/VH IW Flood 

4 S-1A 6-Feb-19 18:43 SAR-C Descending SLC VV/VH IW Flood 

5 S-1A 12-Feb-19 05:44 SAR-C Descending SLC VV/VH IW Post-flood 

6 S-1B 12-Feb-19 18:42 SAR-C Ascending SLC VV/VH IW Post-flood 

Table 4: Summary of Sentinel 1 satellite images acquired for the flood event. 
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Figure 11: Acquisition Modes for the Sentinel 1 mission. 

(Torres et al. 2012). 

3.1.3 Map of surface water extent from water observation from space 

A map of the extent of the surface water across the area of interest (Appendix C) was used to verify 

the accuracy of the image classification of the possible permanent water. This information about the 

occurrence of surface water is part of the Water Observation from Space (WOfS) product that covers 

the extent of surface water throughout Australia; it was developed by Geoscience Australia (Mueller 

et al. 2016). This product is a result of the classification of the Multidecadal archive of Landsat 5 and 

Landsat 7 satellite imagery acquired from 1987 to the present. The map of the extent of the surface 

water is presented with a pixel size of 61.5 x 61.5 metres. “Wet pixels” demonstrating water bodies 

were detected by applying a decision tree classifier method on every single-date image at each 

location. The result of each classification is summed and compared to every clear-sky observation 

at that location by using logistic regression (Mueller et al. 2016). More detail of the methodology is 

presented by (Mueller et al. 2016). The map of the surface water extent demonstrates a presence of 

water that is persistent through the time series (such as the water in reservoirs, lakes, rivers, and 

human-made ponds), with the pixels of surface water extent depicting where water is always present 

through to occasionally and then rarely present being represented with percentages ranging from a 

hundred to zero (Table 5). This geodata is freely downloadable via the Digital Earth Australia Website 

(http://www.ga.gov.au/dea/products#wofs).  

Image removed due to copyright restriction.

http://www.ga.gov.au/dea/products#wofs
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Range of the 

probability of water 

occurrence (%) 

Description 

0 No water detected 

>1 More than 1% of water occurrence in the observations (includes flooding 

and misclassified shadows). 

>5 More than 5% of water occurrence in the observations (includes 

intermittent water bodies). 

>20 More than 20% of water occurrence in the observations (includes water 

that often dries out). 

>50 More than 50% of water occurrence in the observations. 

>80 More Than 80% of water occurrence in the observations (permanent 

water). 

100 Water that is always detected. 

Table 5: Filtered water summary. 

(Geoscience Australian 2019). 

3.1.4 Map of potential flood depth in Townsville 

Ideally, a GIS layer derived from a flood model developed by Townsville City Council of potentially 

inundated areas could be compared with the flood extent mapped by satellite imagery. Despite 

ongoing efforts to obtain the flood model in GIS format from the Townsville City Council, the 

information was unable to be received in a timely manner. However, a published map of the potential 

flood depth of Townsville (in PDF format) was instead downloaded from the Townsville city council’s 

website and compared with the satellite image classification for the Townsville flood event. The map 

was published on 3 February, 2019 by Townsville city council depicting the results of an analysis of 

the hypothetical scenario in which the water flow at Ross River reached 2,000 m3/s (City of 

Townsville 2019c). Although this map (Appendix D) had been produced merely to provide 

information with no consideration for any errors or omissions (City of Townsville 2019c), it was used 

to compare with the water classification from satellite imagery since it was the only available map on 

this subject.  

3.1.5 Related spatial data 

The GIS data for Queensland’s coastline and catchment areas in Townsville were collected from the 

Queensland Government portal (https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/sub-basin-

ross-river/). These were used to define the study area as well as to mask out the redundant areas 

from the satellite imagery. Apart from this, the 30 m and 1 m resolution DEM of the city of Townsville 

was used to support the classification. The DEM is freely provided by the Intergovernmental 

https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/sub-basin-ross-river/
https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/sub-basin-ross-river/
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Committee on Surveying and Mapping (ICSM), a standing committee of the Australian and New 

Zealand Spatial Information Council. Hence, the DEM was downloaded from ELVIS: Elevation and 

Depth Foundation Spatial Data website (https://elevation.fsdf.org.au/). 

3.2 Software used 

Several types of geospatial and image processing software including Sentinel Application Platform 

6.0 (SNAP), Environment for Visualizing Images 5.4 (ENVI), Earth Resources Data Analysis System 

(ERDAS) Imagine 2018, and ArcGIS 10.6.1/ ArcGIS Pro 2.3 were used to pre-process and prepare 

data for processing and analysing tasks as well as producing maps of the water’s extent. Since 

SNAP is a free Sentinel toolbox which fully supports Sentinel products, especially Sentinel 1, it was 

used mainly to pre-process the Sentinel Radar images before applying further image processing with 

the other software.  

3.3 DEM integration 

3.3.1 Topographic Wetness Index 

The 1m resolution DEM was used to produce a Topographic Wetness Index (TWI). TWI is a method 

that makes use of high-resolution DEM to describe the topography, the location, and the possible 

saturated areas that are likely to be affected by overland flow (Ali et al. 2014). With such 

characteristics, TWI was aimed to help improve the classification from satellite images in further 

analysis. Despite numbers of the modified TWI methods which add more parameters like distance, 

soil transmissibility, and hydraulic conductivity coefficient to aid in more complex tasks (Pourali et al. 

2016), this research relied upon the original formula of TWI due to its reduced dependence on the 

user’s input and its ease of implementation. The TWI is generated based on the TWI formula 

proposed by Beven & Kirkby (1979), which can be applied in the ArcGIS 10.6.1/ ArcGIS Pro 2.3.  

Equation 1: TWI. 

Modified from (Beven & Kirkby 1979). 

Where 𝑎 represents the number of upslope pixels derived from the scale of flow accumulation; 

𝑡𝑎𝑛𝛽 represents the tangent of the steepest downslope at each pixel. 

3.3.2 Defining catchment areas 

The GIS file of the main catchment boundary and the sub-drainage boundary was used in 

conjunction with the sub-catchment generated to establish the areas of the Bohle River catchment, 

the Ross River (upper) catchment, and the Ross River (lower) catchment. These newly generated 

sub-catchments were created using an automatic watershed delineation of the 1m resolution DEM. 

(1)

https://elevation.fsdf.org.au/
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The pour point was created to support the delineation and the delineating process was accomplished 

using the spatial analysis tools provided in ArcGIS 10.6.1/ ArcGIS Pro 2.3. The final defining process 

for the catchments of Bohle River, Ross River (upper), and Ross River (lower) was based on the 

map of the Ross River Basin published by the Queensland government (Appendix E).  

3.4 Image analysis 

Since the data used in this research demonstrates two different types of satellite imagery, different 

classification methods were applied to extract water information within the study area. The classifier 

applied with the multispectral image is a spectral-based classification called Normalised Difference 

Water Index using a threshold. Unlike the multispectral image, the Radar image does not provide 

spectral information of objects but rather backscatter values at two polarisations and, hence, a 

different method of density slicing was applied to detect smooth versus rough surfaces. More detail 

of image processing stages is explained in this sub-section and the overall workflow is presented in 

the following flowcharts (Figure 12 & Figure 13). 

Figure 12: Overall workflow of water-extent classification from a multispectral image. 
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Figure 13: Overall workflow of water-extent classification from a Radar image. 

3.5 Digital image pre-processing for Sentinel 2 

3.5.1 Atmospheric correction 

The Sentinel 2 level 1C product provides a Top of Atmospheric (TOA) scaled radiance image which 

means that the satellite image provides the atmospheric reflectance instead of Earth surface 

reflectance. Atmospheric particles can either absorb or scatter the radiance from both the sun and 

that which is reflected from the Earth’s surface. Hence, to achieve the reflectance at the bottom of 

the atmosphere (BOA), an atmospheric correction was applied (Matthew et al. 2002). There are a 

number of algorithms and methods for atmospheric correction which are available for this purpose, 

such as Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Quick 

Atmospheric Correction (QUAC), Dark Object Subtraction (DOS), Atmospheric and Topographic 

Correction (ATCOR), and Sen2Cor (Nazeer, Nichol & Yung 2014; Yusuf et al. 2018). These 

sophisticated methods have been developed to utilize proper atmospheric properties required for 

the correction (Ariza, Robredo Irizar & Bayer 2018). Since Sen2Cor is an atmospheric correction 

processor that is fully supported by the SNAP Software, this was applied to all Sentinel 2 imagery 

used in this research. The Sen2Core processor provides correction for atmosphere, terrain, and 

cirrus effects that are applied to the Top of Atmospheric level 1C product (Figure 14). As a result, 

this processor produces an Earth surface reflectance image, which is especially necessary when the 

comparisons are made among images acquired on different dates or using different sensors (Louis 

et al. 2016; Müller-Wilm, Devignot & Pessiot 2016). 
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Figure 14: Sen2cor processing workflow. 

(Gascon et al. 2017). 

3.5.2 Layer stack 

The original image file derived from sentinel 2A and 2B contains 13 unique bands. Each band 

presented as a greyscale imagery and hence, to derive a multispectral image file, every single band 

needed to be fused together. Although Sentinel 2 mission provides 13 different bands that are 

derived from different wavelengths, some bands such as the three bands that indicate atmospheric 

particles (aerosol, water vapour, and cirrus) do not contain much useful information for classifying 

water. Hence, to ignore redundant data that only adds to processing time, these three bands were 

not combined with the others.   

3.5.3 Geometric evaluation 

Geometric correction is a significant step in remote sensing image processing, particularly when 

there is a requirement for multi-source data integration (Toutin 2004). Usually, the image that is 

derived directly from the remote sensing satellite will contain geometric distortions (Toutin 2004), 

which results in a constraint when relating this data to other mapping products with a specific map 

projection and datum (Toutin 2004). Geometric distortion of the imagery can be caused by different 

factors such as the error from acquisition systems like the platform and measuring instruments 

(Toutin 2004). A number of geometric correction models, both physical and empirical, have been 

proposed in literature (Gonçalves, Gonçalves & Corte-Real 2009; Wang et al. 2012). Specifically, 

empirical models, which rely upon a bundled mathematical function and do not require any physical 

or sensor information, are commonly used for the geometric correction of remote sensing imagery 

(Wang et al. 2012). More detail about Empirical models and other geometric correction models can 

be found in Toutin (2004). To geometrically correct the Sentinel 2 imagery used in this research, 

empirical models based on a 2D polynomial model were used. This is appropriate because ESA has 

already corrected the imagery for 3D errors such as relief displacement in their level 1C products. 

Toutin (2004) recommends using at least 12 Ground Control Points (GCPs) that are evenly spread 

Image removed due to copyright restriction.
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across the image (Figure 15). This research collected 25 Control Points (CPs) over the imagery as 

well as from a reference image. Instead of using reference GCPs from a field measurement (due to 

the lack of data), Bing Aerial Base Map (provided in ERDAS Imagine with a higher spatial resolution 

than that of Sentinel products) was used as the reference image. Despite there being a number of 

methods for validation, the traditional root mean square (RMS) of residuals was applied to 

quantitatively evaluate the confidence of the geometric correction. To derive the final resulting 

geometric correction, the image was resampled using the Nearest Neighbour (NN) method so that 

the original pixel values were preserved.  

 

 

 

 

 

 

3.5.4 Noise removal 

Although the multispectral Sentinel 2 images have been radiometrically corrected from TOA to 

Bottom of Atmospheric (BOA) reflectance, the images still contain some degree of noise from either 

the sensor or the atmosphere (Loughlin 1991). To reduce such noise from the images used in this 

research, Principal Component Analysis (PCA), a common spectral enhancement technique, was 

applied. This technique started with deriving the variance-covariance matrix of all the multispectral 

bands of an image, and this was followed by computing the eigenvalues and eigenvectors of the 

dataset, before finally performing a linear transformation from the dataset into principal component 

bands. In the transformation, the first component band will account for the most variance of the 

original dataset while the variance in the other remaining components will decrease depending on 

the differences among the spectral regions in each band (Loughlin 1991). Eventually, the noise can 

Satellite Images Reference Images 

GCPs Collection 

2D polynomial Model 

Computation 

RMS Computation 

NN Resampling 

Computation 

Geometric Corrected 

Images 

Figure 15: Workflow for geometric correction. 
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be reduced in the image by removing the principal component bands that contain low variance and 

only preserving the bands that contain related information through an inverse PCA. Further 

information about the PCA can be found in ERDAS (1999). 

3.5.5 Subset image 

To reduce the size of the image, which can contribute to the processing time, the image was clipped 

(subset) to the extent of the study area as described in section 3.2.2. The boundary that was used 

to subset the image was derived from the combining of the Bohle and Ross River catchments.  

3.6 Digital image processing for Sentinel 2 

Understanding the characteristics of the image is as important as the selection of algorithms to 

classify the image and, hence, the spectral signatures of different features were investigated and 

various methods were experimented with.  

3.6.1 Spectral signature investigation 

The spectral characteristics of materials on the Earth’s surface are important for digital image 

classifications. To identify the proper method for classifying water apart from non-water features, 

particularly in this urban area where there are complex objects, different spectral-based methods 

have been applied. Fundamental to this approach is the collection of spectral profiles of different 

landcover types and unsupervised classification. The collection of each spectral signature allows for 

visual inspection of the reflectance spectrum through all spectral bands, while an unsupervised 

classifier provides initial inspection for the discrimination of various features including water and 

other features, including for dark objects in particular.  

Firstly, the spectral signatures of five main features (water, vegetation, the airport runway, rooftops, 

and bare soil) within the area of interest were collected. Five samples of each type of signature were 

collected to ensure the consistency of its signature. The spectral profile of each feature was visually 

and numerically compared to one another as to whether there were any similarities in terms of 

reflectance value, focusing on the comparison of water surface with the other surfaces.  

Fifty random classes were set in an unsupervised classification. In ERDAS IMAGINE, the Iterative 

Self-Organizing DATA (ISODATA) analysis technique was utilised to perform the classification, 

which means that this technique will repeatedly perform pixel assignment to the random 50 classes 

before recalculating the statistics until the defined criteria are met (Dhodhi et al. 1999). The ISODATA 

technique uses spectral Euclidean distance formula to form a cluster of pixels with similar spectral 

characteristics which will eventually provide different classes of landcover type (Dhodhi et al. 1999), 

showing the ambiguity of the classification among landcover types within a class.  



31 

3.6.2 Water-related index base method 

The use of the water-related index is a common method to classify surface water and non-water in 

imagery due to the differences in spectral reflectance of different landcover types (especially for 

water which mostly absorbs radiance in NIR and SWIR wavelengths), the ease of using such a 

method, and the efficiency of computation in terms of the time required (Feyisa et al. 2014; 

McFeeters 1996; Xu 2006). A number of studies have classified surface water using different water-

related indexes including NDWI, MNDWI, and AWEI, all of which show different results (Campos, 

Sillero & Brito 2012; Fisher, Flood & Danaher 2016; Yang et al. 2017). To determine the most suitable 

method to delineate surface water within the area used for this research, all the above-mentioned 

methods were applied. 

McFeeters (1996) proposed the NDWI method to differentiate water from other objects by using the 

green and NIR wavebands (Equation 2). 

Equation 2: NDWIMcFeeters. 

Where 𝜌 represents the reflectance value of the spectral bands (Green and NIR) for optical imagery. 

Xu (2006) suggested the MNDWI approach to delineate surface water by replacing the NIR 

waveband in the NDWI method with the SWIR waveband (Equation 3). 

Equation 3: MNDWIXu. 

Where 𝜌 represents the reflectance value of the spectral bands (Green and SWIR) in an optical 

image. 

Recently, a new water-related index method AEWI has been proposed by Feyisa et al. (2014) where 

more components than two different wavelength bands have been added to improve the 

classification (Equation 4 & Equation 5). 

Equation 4: AWEInsh. 

(2) 

(3) 

(4)
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Equation 5: AWEIsh. 

Where, 𝜌 represents the reflectance value of the spectral bands (green, blue, NIR, and SWIR) of an 

optical image; AWEInsh indicates the equation is suitable for the area where there is no significant 

shadow effect; and AWEIsh demonstrates the equation is suitable for an area where there is shadow 

effect. 

3.6.3 Thresholding classification 

After applying the water-related index, using a binary threshold is the common method to extract 

surface water extent from its background (Yang et al. 2017). Although the most common suggestion 

is that a threshold value greater than 0 is the most likely value to be classified as water and negative 

values as non-water, different studies propose different threshold values for a normalised difference 

water-related index image (Feyisa et al. 2014; Xu 2006). In this research, a threshold of 0 was initially 

selected to extract water surfaces and the result was visually compared to the multispectral image. 

Different threshold values were compared for the classification and, hence, a threshold value greater 

than -0.01 was eventually applied with every normalised difference water-related index image. 

However, it is suggested that a normalised difference water-related index image is still affected by 

the reflectance from built-up surfaces in urban environments (Xu 2006). A proposed combined 

thresholding is recommended by Yang et al. (2017). By taking advantage of the unique spectral 

signature of water and its low reflectance value of SWIR band, this study combines the threshold of 

a value greater than -0.01 from the normalised difference water-related index image together with a 

threshold of reflectance value at the second SWIR of the Sentinel 2 image which is smaller than 

1,000 (BOA reflectance multiplies by 10, 000). As a consequence, any confusion between water and 

non-water surfaces will be eliminated.  

3.6.4 Accuracy assessment 

To provide confidence regarding the image classification, an accuracy assessment of the 

classification against the reference data was applied. The most common and acceptable technique 

is based on the confusion or error matrix (Foody 2002) and, hence, it was applied in this project. 

Commonly, this accuracy assessment will provide overall accuracy of the image classification as 

well as the kappa coefficient (k) of the accuracy where a higher the value of k demonstrates a better 

agreement of the classification and the reference (Foody 2002). By relying solely on the error matrix 

method, the extent of water and non-water classifications were compared to the map of surface 

water extent from WOfS as reference data. The overall accuracy was derived from the proportion of 

the total agreement of water and non-water area over the whole study area. The set of equations, 

which are modified from (Yang et al. 2017), and which demonstrate the derivation of the overall 

(5)



33 

accuracy (OA), the producer’s accuracy (the error of Omission), and the user’s accuracy (the error 

of commission) are:  

Equation 6: Omission error. 

Equation 7: Commission error. 

Equation 8: Overall accuracy. 

Equation 9: Kappa coefficient. 

Equation 10: Sum of indicators. 

Where TP (Total pixels) represents the total number of pixels in the experimental area; AP (Agree 

pixels) represents the number of pixels that agree as water; CE (Commission Error) represents the 

number of pixels that show as water in the classified image but not in Reference image; OE 

(Omission Error) represents the number of pixels that show as water in the reference image but not 

in the classified image; and NP (Non-agree pixels) represents the pixels that disagree as water. 

3.7 Radar image pre-processing for Sentinel 1 

3.7.1 Radiometric calibration 

The raw Sentinel 1 SAR imagery provides digital numbers which indirectly relate to the value of the 

Radar backscatter. Radiometric calibration was applied to convert the pixel value of the image to the 

true Radar backscatter of the surface. In order to compare the different images, it is necessary to 

derive the true value of the backscatter. To convert the digital pixel values to the value of the Radar 

backscatter of surface reflectance, the radiometric calibration tool available in SNAP was used 

(Equation 11). Since the software fully supports Sentinel 1 products, it is able to use the annotations 

provided within the image metadata.  

(6) 

(7) 

(8) 

(9) 

(10)
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Equation 11: Sentinel 1 Radiometric Calibration. 

Equation 12: Pixel digital number. 

Where DN represents the pixel’s digital numbers of the square root of the combination to the power 

of two of each value from the measurement file, which account for the real value (I) and the imaginary 

value (Q); and 𝐴𝜎represents the Radar cross-section sigma naught.  

3.7.2 Image de-speckle 

The Radar image will normally provide bright and dark pixels which are called speckle. This speckle, 

often incorrectly termed “noise”, is caused by the inconsistency of the phase when the Radar signal 

returns to the sensor. Speckle causes a change in the intensity values of the image which leads to 

a decrease in the image’s appearance as well as the quality of the image. Hence, to undertake the 

Radar image analysis, speckle removal is one of the important steps in the process before further 

analysis. Since reducing speckle in the image can also lead to a change in the image, several de-

speckle models have been developed for different applications and sensors. Adaptive filters like 

Gamma-map and Lee-sigma are some of the most popular filters to better preserve the radiometric 

and textural information of the image (Baraldi & Parmiggiani 1995; Lee 1980). Hence, after applying 

different filters and comparing the quality and the appearance of the images, this research eventually 

applied the Lee-sigma filter, with the moving windows of 5 x 5 pixels corresponding to the pixel size 

of 8 x 8 metres. 

3.7.3 Image orthorectification 

Unlike optical/multispectral imagery, SAR imagery is derived from a side-looking sensor and 

experiences significant distortion from the topographical variation within a scene. Image 

orthorectification has been a common process to correct the imaged terrain, with this initially 

reducing the distortion and representing the geometry of the image as being close to real-world 

geometry (Small & Schubert 2008). The SNAP application provides a range doppler terrain 

correction operator to automatically rectify the image and, hence, it is used for this research. The 

operator allows the geometric correction from the slanted image to the actual position on the Earth’s 

surface by making use of the available information in the image’s metadata, the DEM in the online 

library (SRTM 1Sec HGT), and by applying the orthorectification algorithm provided by Small (2008). 

Since a group of Ground Control Points (GCPs) were not simultaneously used in this 

orthorectification, a second minor adjustment to the 2D ortho-rectified image was subsequently 

required.  

(11) 

(12)
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3.7.4 Geometric evaluation 

Following the image orthorectification, another step of geometric correction was required to improve 

the accuracy of the position of the image (Blacknell et al. 1989). Similar to the multispectral image 

where the automatic method can provide initial geometric correction, a geometric model like a 2D 

polynomial model to enhance accuracy was applied in this research. Traditionally, the proper 

numbers and distribution of GCPs collected from the fields are required to generate geometric 

correction (Zhou et al. 2012). Due to the lack of the GCPs, the multi-geometric correction tool 

provided in ERDAS Imagine was used to collect GCPs from Bing Aerial Base Map, which has a 

higher spatial resolution than Sentinel products. Although the collection of Control Points (CPs) from 

SAR imagery is far more difficult than for multispectral images due to the distortion of images as 

presented to human eyes, 20 out of 30 CPs could be used for the correction. Essentially, the principle 

of 2D polynomial model applied for this correction is similar to the one applied to the Sentinel 2 

imagery.  

3.7.5 Subset image 

Similar to section 3.5.5, the image should be subset to an area of interest before starting the image 

processing so as to enhance the processing time and avoid storage limitations.  

3.8 Digital image processing for Sentinel 1 

In this subsection, all experimental techniques such as polarisation investigation, a selection of 

density slicing, verification of the density slicing, and detection of the change in a potentially smooth 

surface through the time-series of the flood event will be addressed.  

3.8.1 Polarisation investigation 

Sentinel 1 SAR imagery provides two polarisation modes, with one being VV and the other VH. To 

detect surface water from SAR imagery, the application of polarisation is important. Several studies 

proposed that like-polarised images (VV/HH) will better identify water bodies when compared with 

cross-polarised images (VH) (Henry et al. 2006). However, it has also been proven that VV polarised 

data is more sensitive to surface roughness while cross-polarisation demonstrates higher resistance 

when applied to windy conditions, especially during a flood caused by local weather systems; but it 

is also sensitive to vegetation (Baghdadi et al. 2001; Shen et al. 2013). Hence, by consulting the 

backscatter variation of possibly constant smooth surfaces, such as water, as well as the trade-off 

of the like- and cross-polarisations, this research is considered an experiment in the combination of 

both polarisations to delineate the flood extent.  

3.8.2 Density slicing 

Density slicing (backscatter thresholding) is one of the most common methods to classify water from 

non-water surfaces (Martinis, Twele & Voigt 2009). Similar to the grey level threshold for a 

normalised difference water-related index, density slicing relies on assigning pixels of SAR imagery 
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that contain a scattering cross-section lower than a certain threshold value as smooth (water) class 

or greater than the value of the non-water class (Brivio et al. 2002; Martinis, Twele & Voigt 2009). 

For this research, density slicing was first applied to the single image of dry conditions and a single 

image of wet conditions, which were acquired on 27 October, 2018 and 12 February, 2019 

respectively. These images were selected due to their correspondence to the dates of the dry and 

wet conditions of the Sentinel 2 multispectral images, which were used to validate data for SAR 

image processing. A threshold value was initially selected by observing the backscatter histogram 

and subtracting its Standard Deviation (SD) value from the mean of the backscatter of the image, 

where the SD of the image derived on 27 October was equivalent to 3 dB and the mean was -14.757 

dB. Then, the sensitivity comparison varying amount of the SD (1 to 5 dB) were subtracted from the 

mean. The aim was to investigate the best threshold value. Regarding the minor backscatter 

variation of possibly constant smooth surfaces like the airport runway on different dates, similar 

threshold criteria were applied to the wet-conditions image derived on 12 February, 2019.  

3.8.3 Verification of the classification 

It is challenging to select the proper threshold value for the backscatter value to delineate water from 

non-water. An incorrect threshold value can lead to either a misclassification or an over-classification 

of the water extent and, hence, verification is required. Similar to the common accuracy assessment 

for raster classification, the results from different density slicing were compared to the water 

classification of Sentinel 2, which was proposed as the most accurate estimate of the water extent. 

The overall accuracy, commission and omission errors of such results were consulted for the 

selection of the best threshold value so that the same method could be applied to the other SAR 

images used in the research.  

3.8.4 Change detection 

To detect the flood extent, both single-image and multi-temporal image algorithms have been used. 

However, it is accepted that a multi-temporal algorithm approach produces better results than those 

of a single algorithm (Schlaffer et al. 2015). A change detection method is one of the most popular 

methods to delineate the flood extent from SAR data by making use of the change of the backscatter 

occurring before, during, and after a flood event. This method yields promising results (Lu, D et al. 

2004) and, hence, it was applied to the set of images used in this research (Figure 16). When using 

SAR images, water bodies are potentially detected based on differences in backscatter between 

rough and smooth surfaces. The detection of the flood extent using the change detection method 

relies upon the possibility that land, generally a rough surface, will change to a smooth surface when 

it is flooded. This change detection method is used in combination with the thresholding method 

(Equation 13), where the thresholding of the dry-conditions image was subtracted from the 

thresholding of each of the wet-conditions images (images acquired during and after the flood event). 

Unlike single-date thresholding, change detection facilitates the removal of the over-detected pixels 

that represent smooth surfaces but are not necessarily flood water. By performing this step in the 
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process, only the thresholding pixels that demonstrate a change from a rough to a smooth surface, 

when compared to the threshold from dry conditions, were retained and classified as a change in 

the water extent.  

Figure 16: An example of the change in the backscatter on the image; a) dry conditions on 27 
October, 2018; b) & c) during the flood on 31 January, 2019 and 06 February, 2019; d) post flood 

on 12 February, 2019. 

Equation 13: Traditional Change Detection method. 

Where Pf represents possible change in water extent; Tf represents thresholding classification for 

possible water on a specific day of flooding; and Tpw represents thresholding classification for 

possible water from the dry-conditions image acquired before the flood event.  

3.9 Image post-processing 

To derive a total flood extent map which includes both permanent water and flood water, the 

classification of the flood extent acquired from the change detection method was used in combination 

a b 

c d 

(13)
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with the permanent water classification from the Sentinel 2 images (dry conditions). The following 

sub-section will explain the methods that were applied after the processing stage, which include a 

filter for misclassified pixels and the re-assessment of the accuracy of the classification. 

3.9.1 Filtering misclassification from Sentinel 1 images 

The over-classification of smooth (water) surfaces along the hilly areas was removed using the slope 

value derived from DEM. By numerically investigating the classification and the range of the slope 

values, the binary thresholding of a slope value of above 15 degrees was applied in conjunction with 

the classification image. The slope value above 15 degrees was assigned 0 while pixel values less 

than 15 degrees were assigned 1. When combining this binary threshold with the classification, any 

over-classification was minimised.  

3.9.2 Re-assessing the accuracy of water extent classification from Sentinel 1 images  

The results from section 3.9.1 were compared to the classification from Sentinel 2 images. This 

assessment followed the same principle as that described in section 3.8.3 with the purpose to 

investigate if applying such a filter can help improve the accuracy of the classification.   

3.9.3 Generating maps of water classification 

The final process was to create maps of pre-, during, and post flood events that were derived from 

the classification of the Sentinel 2 and Sentinel 1 images, with each map being individually generated 

using ArcGIS 10.6.1.  

3.10 Comparison of potential flood extent maps 

Due to the lack of a proper GIS file for an inundation map of flood modelling, the maps derived from 

the classification of Sentinel 1 images were qualitatively compared with the map of potential flood 

depths published by Townsville city council. This map was created based on the hypothetical 

scenario of water flowing at 2,000 m3/s at Ross River. This hypothetical scenario was dated the third 

of February, 2019 and, hence, only the maps of the images acquired on 31 January (described as 

pre-release water from the Ross River dam) and 6 February were used (described as post-release 

conditions).  
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CHAPTER FOUR: RESULTS 

In this chapter, the results of the processes described in the previous chapter will be reported. 

4.1 Results from digital image pre-processing for Sentinel 2 

4.1.1 Atmospheric correction 

Since Sentinel 2 images were derived at level 1C, with TOA reflectance that could affect their 

classifications, atmospheric correction was applied and this resulted in derived Sentinel 2 images at 

level 2A with BOA reflectance. The results provided a marked change in the spectral reflectance 

value of each landcover type (Figures 17 and 18). For example, the spectral reflectance of band 1 

(representing the Aerosols band) contains a relatively high pixel value above 1,000 for all landcover 

types but this was corrected to almost less than 1,000, except for the reflectance from built-up 

features which almost remained the same. The spectral reflectance in the visible bands improved, 

particularly for band 2. For instance, the spectral reflectance of vegetation after atmospheric 

correction presents low reflectance at band 2 yet high reflectance at band 3 (green) as well as at the 

red edge and NIR bands, which correspond to the generic spectral signature of vegetation presented 

by Dianderas (2014). This indicates that the effects of the atmosphere at these spectral bands have 

been corrected to the surface reflectance value. 

Figure 17: The spectral profile of different landcover types from TOA reflectance of the Sentinel 2 
image acquired on 26 October, 2018. 
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Figure 18: The spectral profile of different landcover types from BOA reflectance of the Sentinel 2 
image acquired on 26 October, 2018 

4.1.2 Layer stack 

Layer stacking single-band images resulted in one multispectral image file (Figure 19). The single 

band image clearly provides only greyscale colour which visually presents less distinction in 

differences between objects when compared to the multispectral image (Figure 19).  

Figure 19: The images of each spectral band and the multispectral bands; a) band 4; b) band 3; c) 
band 2; d) the colour composite of RGB bands 4,3,2. 

a b 

c d 
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4.1.3 Geometric evaluation 

Despite the auto-radiometric and geometric corrections of Sentinel 2 images at level 2A, further 

evaluation and calibration was able to provide improvements to the geometry of the images. The 

geometric correction produced more accurate geometry for the image with the indication of a small 

RMS error value. The overall RMS error for the Sentinel 2 image on 26 October (for instance) is 

2.505 meters, which is less than the 10m spatial resolution of an image pixel (Table 6). Therefore, 

the geometry of the Sentinel image is acceptably co-registered with the reference image. The RMS 

values for the images were derived on 25 November, 2018 and 13 February, 2019 (Appendix F & 

Appendix G). 

Table 6: Geometric correction for Sentinel 2 imagery derived on 26 October, 2018. 

Where Xi and Yi represent the X and Y positions in coordinates derived from the Sentinel 2 imagery; 

Xr and Yr represent the X and Y positions in coordinates derived from the reference imagery; and 

Points Xi (m) Yi (m) Xr (m) Yr (m) Rx (m) Ry (m) RMSE (m)

GCP1 465168.374 7848687.446 465168.994 7848687.903 0.62 0.457 0.770         

GCP2 484844.43 7844737.435 484843.423 7844736.433 -1.007 -1.002 1.421         

GCP3 468751.352 7870161.056 468758.336 7870169.445 6.984 8.389 10.916       

GCP4 482394.41 7870158.095 482394.203 7870160.012 -0.207 1.917 1.928         

GCP5 485864.995 7859470.209 485867.502 7859469.468 2.507 -0.741 2.614         

GCP6 468592.313 7859135.38 468591.877 7859133.419 -0.436 -1.961 2.009         

GCP7 479075.863 7852184.249 497079.085 7852186.283 3.222 2.034 3.810         

GCP8 471681.427 7856524.424 471683.5 7856525.394 2.073 0.97 2.289         

GCP9 479754.774 7856864.183 479456.341 7856864.246 1.567 0.063 1.568         

GCP10 472373.723 7871898.122 472374.71 7871896.259 0.987 -1.863 2.108         

GCP11 474807.579 7869452.24 474806.296 7869451.275 -1.283 -0.965 1.605         

GCP12 474870.671 7870071.689 474871.594 7870072.84 0.923 1.151 1.475         

GCP13 475549.453 7869404.42 475549.918 7869402.384 0.465 -2.036 2.088         

GCP14 477100.64 7869248.114 477101.02 7869248.176 0.38 0.062 0.385         

GCP15 477214.36 7869680.985 477214.616 7869681.041 0.256 0.056 0.262         

GCP16 472678.243 7864470.317 472676.112 7864472.59 -2.131 2.273 3.116         

GCP17 483667.71 7862620.946 483668.845 7862621.06 1.135 0.114 1.141         

GCP18 482903.765 7859214.328 482903.566 7859216.654 -0.199 2.326 2.334         

GCP19 484873.183 7848659.824 484870.5 7848659.165 -2.683 -0.659 2.763         

GCP20 467280.445 7862501.585 467275.736 7862500.19 -4.709 -1.395 4.911         

GCP21 474751.82 7868933.152 474750.528 7868932.451 -1.292 -0.701 1.470         

GCP22 478155.5 7868555.941 478150.302 7868552.282 -5.198 -3.659 6.357         

GCP23 477143.293 7868660.706 477143.196 7868660.675 -0.097 -0.031 0.102         

GCP24 478214.862 7869161.46 478214.701 7869161.3 -0.161 -0.16 0.227         

GCP25 468065.065 7867154.458 468063.353 7867149.821 -1.712 -4.637 4.943         

2.505         RMSE
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Rx and Ry represent the differences between each position in coordinates derived from the Sentinel 

2 image and the actual value from the reference image. 

4.1.4 Noise removal 

Despite the atmospheric correction from TOA to BOA reflectance, the image still contained 

intercorrelated data and, hence, noise removal was applied to the Sentinel 2 images. In comparison 

to the image with noise, the image derived after noise removal presented a brighter, more colourful 

and more distinct contrast between objects such as roads, buildings, and water (Figure 20). 

Figure 20:  A sample of Sentinel 2 image with noise and with noise removal derived on 26 October, 
2018 with a colour composition of RGB bands 4, 3, 2; a) before noise removal; b) after noise 

removal. 

4.1.5 Subset image 

The sub-setting image provided a satellite image of the extent of the Ross and Bohle River 

catchments (Figure 21). The area outside the target area of interest was cropped away and the size 

of the satellite image file was also reduced.    

a b 
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Figure 21: Subset image; (a) whole area of the downloaded Sentinel 2 image; (b) sub-area subset 
for image processing after removal of the sea; (c) the subset image for the Ross and Bohle River 

catchments. 

4.2 Results from digital image processing for Sentinel 2 

4.2.1 Spectral signature investigation 

Investigating the spectral signature of water, vegetation, the airport runway, rooftops, and bare soil 

provided information regarding their differences and similarities (Figure 22 and 23). The spectral 

a 

b c 
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reflectance of water showed a notable difference to that of rooftops, vegetation and bare soil, but 

was similar to the reflectance of the airport runway (Figure 22).  

In the relationship between spectral reflectance of each landcover type at each spectral band, the 

reflectance of water indicates that the reflectance value at band 3 is higher than that at the other 

bands. This relationship clearly demonstrates the difference of water from other landcover types, 

except for the reflectance of some rooftops which present similarly to water. 

This means that by relying on the spectral reflectance of all bands, this similarity can cause confusion 

between the water class and other landcover types, including the airport runway and some rooftops. 

Figure 22: The spectral profiles of five different landcover types derived from the Sentinel 2 image 
acquired on 26 October, 2018; a) spectral signature of water; b) spectral signature of vegetation; c) 
spectral signature of bare soil; d) spectral signature of the airport runway; e) spectral signature of 

rooftops. 

a b 

c d 

e 
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Apart from the spectral collection, applying an unsupervised classification with 50 different random 

classes presented accurately classified water bodies in classes 2, 4, and 5 (Figure 23). However, 

there was still some misclassification of the water class at the airport runway and in areas of shadow. 

This confusion corresponds to the preceding observations of the spectral profile, where there was 

some similarity in the spectral reflectance between the airport runway and water bodies.  

Figure 23: An unsupervised classified image derived from Sentinel 2 image acquired on 26 
October, 2018; (b) & (c) represent an enlargement of two surface areas from (a). 

a 

b c 
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4.2.2 Water-related index base method 

The initial delineation of surface water from other landcover types was derived using different water-

related index methods which included NDWI, MNDWI, and AWEInsh. Such methods provided 

greyscale images ranging from -1 to +1 (Figures 24 and 25) and approximately from -3 to +3 (Figure 

26) where positive values possibly represent water bodies. As a whole, the results from the different

water-related index methods indicated some misclassification of water over buildings (Figure 24, 25, 

26). Applying the same threshold value with NDWI and MNDWI images demonstrated 

misclassification of water over other objects such as rooftops and increasingly on vegetation for the 

MNDWI image (Figures 24 and 25). Unlike the images from the NDWI and MNDWI methods, the 

AWEInsh images indicated various results with different threshold values (Figure 26). While a 

threshold value of 0.001 yielded lower results in the classification of water, a threshold value of -0.5 

provided miss- and over-classification results of water and this was even greater for a threshold 

value of -0.9.  

Figure 24: Results from the NDWI method; (a & b) sample of greyscale images from different 

areas; (c & d) sample of the threshold above 0. 

a c 

b d 
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Figure 25: Results from the MNDWI method; (e & f) sample of greyscale images from different 
areas; (g & h) sample of the threshold above 0. 

e g 

f h 
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Figure 26: Results from the AWEInsh method; (i) sample of greyscale images; (j) sample of the 
threshold above 0.001; (k) sample of the threshold above -0.5; (l) sample of the threshold above -

0.9. 

4.2.3 Thresholding classification 

A combination of the threshold values of NDWI and AWEInsh images and the threshold of the single 

SWIR band with a pixel value smaller than 1,000 (BOA reflectance multiplied by 10,000) provided 

two-class images of water and non-water with a more effective removal of any misclassifications 

(Figures 27 and 28). The thresholding of the NDWI image created no confusion between water 

bodies and non-water bodies but also presented no classification at some areas along the river and 

around the edges of ponds (Figure 27). The thresholding of the AWEInsh image yielded better-

classified results at the edges of ponds but no classification at some areas along the river and also 

some misclassification of water over vegetation (Figure 28).  

i 

j 

k 

l
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Figure 27: Results from the combination of the threshold of NDWI and the threshold of a single 
SWIR band. 

Figure 28: Results from the combination of the threshold of AWEInsh and the threshold of a single 
SWIR band. 

4.2.4 Accuracy assessment 

The accuracy assessment of the water classification derived from the Sentinel 2 images, both pre- 

and post flood event, indicated effective correspondence with the map of surface water from WOfS 

(Tables 7 and 8). The classification for the pre-flood event image presented relatively high overall 

accuracy of 94.71% and a strong kappa value of 94.20% (Table 7). At the same time, the 

classification post flood event presented an acceptable rate of overall accuracy of 91.94% and a 

kappa value of 89.71% despite the high commission error of 14.76% (Table 8). 
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Table 7: An accuracy assessment of the water classification from Sentinel 2 pre-flood conditions 
against the map of surface water from WOfS with a threshold of 40% water class occurring over 

time. 

Table 8: An accuracy assessment of the water classification from Sentinel 2 post flood conditions 
against the map of surface water from WOfS with a threshold of 10% water class occurring over 

time. 

4.3 Results from Radar image pre-processing for Sentinel 1 

4.3.1 Radiometric calibration 

Radiometric correction provided a satellite image with a change in backscatter values from a physical 

value to a real backscatter value of the surface, in which the backscatter value of smooth surfaces 

was more distinguishable (Figure 30). For instance, the backscatter value of the radiometrically 

corrected image changed from a physical pixel value ranging from 0 to 80 to the real backscatter of 

the surface reflectance value ranging from -50 to 30 dB (Figure 30). The distribution of the 

backscatter value of the radiometrically corrected image presents a greater negative value, which 

means that the backscatter of smooth surfaces is more detectable. 

Result (%)

Overall accuracy 94.71

Omission Error 5.29

Commission Error 6.83

Kappa 94.20

Result (%)

Overall accuracy 91.94

Omission Error 8.06

Commission Error 14.76

Kappa 89.71

a 
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Figure 29: A histogram for the backscatter value of the VH polarization of the image derived on 31 
January, 2019; a) before radiometric calibration; b) after the calibration. 

4.3.2 Image de-speckle 

Image de-speckling enhanced the image, revealing a better contrast between the backscatter of 

rough surfaces (bright colour) and that of smooth surfaces (dark colour) (Figure 30). The de-speckled 

image presented two distinct peaks of backscatter value - one representing smooth surfaces and 

the other representing rough surfaces (Figure 31). 

Figure 30: A sample of image de-speckle for the VH polarization of the image derived on 31 
January, 2019; a) before de-speckle; b) after de-speckle. 

b 

a b 
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Figure 31: A histogram for the backscatter value of the VH polarization of the image derived on 31 
January, 2019; c) before speckle removal; d) after speckle removal. 

4.3.3 Image orthorectification 

The orthorectified image reduced the geometric distortion, improving it from slant range geometry to 

ground range geometry (Figure 32).  

Figure 32: Orthorectification of Sentinel 1 image acquired on 31 January, 2019 with VH 
polarization; a) before orthorectification; b) before orthorectification. 

c 

d 

a b 
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4.3.4 Geometric evaluation 

A further adjustment of the 2D ortho-rectification provided further correction of the image’s geometry. 

For instance, the overall RMS error of the Sentinel 1 image derived on 27 October, 2018 was 4.740 

m, which was less than a pixel size of the image.   

Table 9: Geometric correction for Sentinel 1 imagery derived on 27 October, 2018. 

4.4 Results for digital Image processing for Sentinel 1 

4.4.1 Polarisation investigation 

An investigation into polarisation yielded information regarding the difference in the backscatter value 

of smooth surfaces derived from the different dates. While the backscatter of the possibly constant 

smooth surface derived from the average-polarisations of the images acquired from different dates 

presented backscatter differences lying within +/- 1 dB, both VV and VH demonstrated backscatter 

differences ranging from one dB up to 3 dB (Table 10). This indicated that the backscatter derived 

from the average-polarisations is more constant than for other polarisations.  

Image 

Acquisition Date 
Time 

Pass 

Direction 
VV (dB) VH (dB) 

Average 

VV&VH (dB) 
Remark 

27-10-18 5:44 Descending -21.586 -23.558 -22.572 Runway 

31-1-19 5:44 Descending -20.947 -25.190 -23.069 Runway 

6-2-19 5:43 Descending -22.441 -21.600 -22.020 Runway 

Points Xi (m) Yi (m) Xr (m) Yr (m) Rx (m) Ry (m) RMSE (m)

GCP1 471824.059 7870257.206 471821.05 7870258.582 3.009 -1.376 3.308         

GCP2 482048.628 7869464.004 482043.574 7869469.176 5.054 -5.172 7.231         

GCP3 483680.783 7862604.354 483683.683 7862603.678 -2.9 0.676 2.978         

GCP4 478152.832 7868569.793 478150.971 7868572.694 1.861 -2.901 3.446         

GCP5 482093.432 7869209.631 482093.308 7869207.128 0.124 2.503 2.506         

GCP6 477037.563 7866494.689 477042.44 7866498.674 -4.877 -3.985 6.298         

GCP7 472396.522 7851654.063 472392.135 7851654.657 4.387 -0.594 4.427         

GCP8 470572.61 7850966.133 470578.03 7850965.054 -5.42 1.079 5.526         

GCP9 472671.411 7864472.639 472666.722 7864473.824 4.689 -1.185 4.837         

GCP10 478213.072 7869168.078 478218.207 7869162.042 -5.135 6.036 7.925         

GCP11 478559.576 7866958.191 478552.417 7866955.247 7.159 2.944 7.740         

GCP12 474939.192 7866157.146 474940.776 7866156.974 -1.584 0.172 1.594         

GCP13 477152.904 7868662.653 477162.436 7868661.268 -9.532 1.385 9.632         

GCP14 477103.279 7867219.542 477099.682 7867220.155 3.597 -0.613 3.649         

GCP15 471958.612 7852619.144 471956.798 7852619.804 1.814 -0.66 1.931         

GCP16 470680.201 7865698.968 470682.447 7865697.277 -2.246 1.691 2.812         

4.740         RMSE
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6-2-19 18:43 Ascending -21.459 -25.264 -22.279 Runway 

12-2-19 5:44 Descending -18.140 -24.226 -21.183 Runway 

12-2-19 18:42 Ascending -19.911 -22.415 -21.163 Runway 

Table 10: Example of the variation of the backscatter value at the runway (a smooth surface) using 
different polarizations and the result from the average of both polarizations. 

4.4.2 Density slicing 

Density slicing provided a classification of smooth and rough surfaces where smooth surfaces were 

considered to be potential water bodies (Figures 33, 34, and 35). Different density slicing (threshold) 

values resulted in more or fewer smooth surfaces being classified. The higher the threshold value, 

the more pixels were classified as smooth surfaces (Figure 33); and the lower the threshold value, 

the less pixels were classified as smooth surfaces (Figures 34 and 35). 

Figure 33: The threshold value of -1dB from the mean value of the backscatter derived from the 
average-polarization image acquired on 27 October, 2018. 
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Figure 34: The threshold value of -3dB from the mean value of the backscatter derived from the 
average-polarization image acquired on 27 October, 2018. 

Figure 35: The threshold value of -5dB from the mean value of the backscatter derived from the 
average-polarization image acquired on 27 October, 2018. 

4.4.3 Verification of the classification 

The verification of the classification provided numerical results of classification accuracy in reference 

to the base-line data (Tables 11 and 12). The results of the classification of both pre-flood and post 

flood events demonstrated the best overall accuracy is at a threshold value of -1dB, but this 

presented significant commission error. While the accuracy assessment of the threshold value of -

5dB from the mean presented the best commission error, it still offered acceptable overall accuracy. 
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The overall accuracy of both pre-flood and post flood events at the threshold value of -5dB is 0.90 

and the kappa value higher than 0.7 indicated high confidence in the accuracy of the data when 

compared to the other values.  

-1dB -2dB -3dB -4dB -5dB

Overall accuracy 0.98 0.97 0.96 0.94 0.90 

Omission Error 0.02 0.03 0.04 0.06 0.10 

Commission Error 10.26 6.69 3.89 1.99 0.86 

Kappa 0.41 0.48 0.55 0.63 0.73 

Table 11: An accuracy assessment of the water classification from the Sentinel 1 image derived on 
27 October, 2018 (pre-flood event) against the classification from the corresponding Sentinel 2 

image derived on 26 October, 2018 (dry conditions). 

-1dB -2dB -3dB -4dB -5dB

Overall accuracy 0.97 0.95 0.94 0.92 0.90 

Omission Error 0.03 0.05 0.06 0.08 0.10 

Commission Error 5.26 2.76 1.31 0.60 0.28 

Kappa 0.48 0.58 0.68 0.78 0.84 

Table 12: An accuracy assessment of the water classification from the Sentinel 1 image derived on 
12 February, 2019 (post-flood event) against the classification from the corresponding Sentinel 2 
image derived on 13 February, 2019 (wet conditions). 

Where the numbers of -1dB through to -5dB represents a range of dB negatively from the mean. 

4.4.4 Change detection 

Change detection revealed the extent of classified pixels which changed from a rough surface to a 

smooth surface. For example, the mapped area in blue depicts a change which occurred at the 

Ross River Dam, accounting for the change in land that was flooded (Figure 36). 
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Figure 36: Change detection overlays on the Radar image derived on 31 January, 2019. 

4.5 Results for image post processing 

4.5.1 Filtering misclassification from Sentinel 1 images 

By using data such as a slope raster value, the misclassification over hilly areas was removed from 

the classified image resulting in a more accurate classification (Figure 37).  

Figure 37: Filtered classification of flood extent overlays on the Radar image derived on 31 
January, 2019; a) before filter; b) after filter. 

Note: the red circle was added to focus attention on the misclassification over hilly areas before the 
filter was applied. 

4.5.2 Re-assessing the accuracy of water extent classification from Sentinel 1 images 

After filtering out the misclassifications, a re-assessment of the accuracy provided numerical 

evidence indicating greater confidence for the classification derived from a threshold value of -5dB 

from the mean (Table 13). In comparison to the information provided in section 4.4.3, the results of 

the re-assessment indicated the filtered misclassification results (Table 13) were slightly better than 

the first classification (section 4.4.3, Table 12), especially for the decrease in the commission error 

and the increase in the kappa value.  

Table 13: An accuracy assessment of the water classification from the Sentinel 1 image derived on 
12 February, 2019 (post-flood event) after filtering against the classification from the corresponding 

Sentinel 2 image derived on 13 February, 2019 (wet conditions). 

Result

Overall accuracy 0.90

Omission Error 0.10

Commission Error 0.21

Kappa 0.87

a b 
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4.5.3 Generating maps of water classification 

The map of the water extent in dry conditions (pre-flood) derived from the Sentinel 2 images 

(Appendix H) demonstrates where there is no water and where there are possibly permanent bodies 

of water, including the Ross River Dam area, along the natural rivers, and at manmade ponds. The 

map of the water extent during wet conditions (post flood) derived from the Sentinel 2 images 

(Appendix I) presented the existing water bodies which were detected in the images of dry 

conditions, the occurrence of new bodies of water as well as the expansion of the water extent at 

some areas such as the Ross River Dam, downstream of the Ross River Dam, and in the wetlands 

in the North-West area of the image. Similarly, the maps of the flood extent (during the flood) derived 

from the Sentinel 1 images (Appendixes J, K, and L) indicate a possible increase in the occurrence 

of water bodies at the Ross River Dam area, along creeks and rivers, in the wetland and at residential 

areas. The maps of the extent of water for the post flood event (Appendixes M and N) show a 

decrease in the water extent along the rivers and its disappearance around residential areas. These 

maps presented a change in the occurrence of water bodies over the specific time period, across 

the Ross and Bohle River catchments.  

4.6 Comparison of potential flood extent maps 

Within the areas of the map of potential inundation published by Townsville City Council, which 

covers mostly the Ross River (lower) catchment (Appendix D), the comparison with the flood extent 

derived from Sentinel 1 images (Appendixes J, K, and L) presented a high correspondence of water 

occurrence along Ross River. While the inundation map presented a large water extent downstream 

from Apline Weir with flooding spreading around Gordon and Ross Creeks, the maps of the flood 

extent partially agree with a number of the pixels, showing there was indeed the occurrence of 

surface water in such areas. At the same time, the maps of the flood extent derived from Sentinel 1 

indicated some differences of the occurrence of water extent along the foothills of the hilly area 

(further south of the inundated map) and the non-existence of water extent around the central east 

area (based on the inundated map).  
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CHAPTER FIVE: DISCUSSIONS AND LIMITATIONS 

This study was guided by the research questions and objectives presented on page 4. This Chapter 

focuses on observations of the key findings in relation to the research questions and the stated aim. 

5.1 Possibility of Sentinel 2 MSI imagery for providing water extent 
maps for urban areas 

5.1.1 Promising points for classification 

The results from the processing of the Sentinel 2 image clearly demonstrate that Sentinel 2 MSI 

imagery provides a satisfactory opportunity to separate water class from other types of landcover. 

Sentinel 2 imagery contains relatively rich spectral information about objects which provides an 

advantage in delineating water. The spectral reflectance of water is low in the NIR and SWIR 

wavelengths, especially for the latter as shown in Figure 22 (section 4.2.1). In contrast, most objects 

present higher reflectance in such wavelengths (Xie et al. 2016). The unique spectral reflectance 

characteristic of water makes the water-related index, when used in conjunction with grey scale 

thresholding methods, more efficient to classify water extent in clear and deep water. Furthermore, 

this is done using less complex and inexpensive procedures than with multi-spectral image 

classification methods, even though water-related index methods use fewer spectral bands to 

distinguish between land and water classes when compared to other classifier methods, like 

supervised and unsupervised. Floodwater with significant sediment loads can lead to some 

difficulties when using water indices (Doxaran et al. 2002; Shi & Wang 2014). However, based upon 

the accuracy assessment, a single date Sentinel 2 image contains enough spectral information to 

provide surface water extent (permanent water) during dry conditions and wet conditions (post flood 

event), providing strong agreement with the map of surface water derived from WOfS (Table 7 and 

Table 8 in section 4.2.4 respectively). 

However, despite the strong agreement with the map of surface water derived from WOfS, some 

omission and commission errors are noticeable. These differences help quantify the errors of under 

- and over - classification derived from the image in comparison to the reference data (as shown in

section 4.2.4). Nevertheless, some commission error in Sentinel 2 imagery classification 

satisfactorily classified water bodies when compared visually to the higher spatial resolution of the 

Aerial Base Image provided by Google Earth Engine (2019). Although the map of surface water 

derived from WOfS used a large time-series of Landsat imagery that reliably depicted  the surface 

water extent over a long time period (more than 40 years), the 30 m lower spatial resolution and 16-

day, low-temporal resolution yielded some under-classification of water bodies whose sizes were 

smaller than that of the spatial resolution (Mueller et al. 2016). At the same time, the commission 

error for wet conditions may also be due to the temporal resolution of Landsat images, which might 

miss a number of flood events, thereby resulting in the omission of some pixels which rarely wet 
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(Mueller et al. 2016). Unlike Landsat imagery, the Sentinel 2 images provide a higher spatial 

resolution at 10 m which allowed for a classification of water that the Landsat imagery might not 

detect. For instance, while a classification of water extent in the Ross River (upper) catchment 

appeared in Sentinel 2 satellite imagery (as shown in Appendixes H and I), they did not appear in 

the map of surface water derived from WOfS (as shown in Appendix C). When visually compared 

with the higher spatial resolution of Aerial Base image (Appendix O), the classification of water 

derived from the Sentinel 2 satellite images in such areas was in strong agreement.  

5.1.2 The challenging points for classification 

The use of Sentinel 2 imagery together with the proper water-related index methods (NDWI, for 

instance) can offer acceptable water detection but still present some confounding issues, while the 

lack of clear sky observations during a flood event is the main challenge. It is common that weather 

conditions and complex landcover types often create some challenges for classification (Doxaran et 

al. 2002). Sentinel 2 MSI satellite imagery has no ability to sense land surface during cloudy days, 

which results in the loss of necessary data (Xie et al. 2016). For the flood investigated in this 

research, five main observations on 1st, 2nd, 3rd, 4th and 5th February 2019 were missed due to cloud 

cover. Complex landcover types in urban areas can contribute to spectral confusion with dark 

objects, for instance, by providing similar spectral reflectance to that of water bodies (Yang et al. 

2017).  In urban areas, Sentinel 2 imagery presents notable difficulty in delineating narrow channels 

and small ponds due to the lower spatial resolution when compared with the size of the water bodies 

and their surrounding objects such as buildings and vegetation. This can be seen in Appendix H 

where some water in small creeks was missed. 

Apart from this, a selection of spectral bands used in the water-related index methods yield various 

trade-offs between the different methods (Li et al. 2013). When analysing shallow water with some 

vegetation and turbidity present, NIR bands can result in under-classified water bodies while 

increasing the infrared wavelength to SWIR wavelengths can result in the misclassification of 

vegetation as water bodies (Doxaran et al. 2002; Shi & Wang 2014). For instance, after setting an 

appropriate threshold value for NDWI (using green and NIR bands), some water pixels were not 

included in the classification as shown in Figure 24 where there was water in Ross River 

(downstream from Aplins Weir), but this water was not covered in the classification. At the same 

time, an appropriate threshold of MNDWI and AWEInsh resulted in some vegetation being classified 

as water. This can be seen in Figures 25 and 26, where there was vegetation near the mouth of 

Ross River, but it was classified as water.  This means that although the water-related index methods 

provided highly accurate results for surface water detection, selecting each of the water indices was 

challenging and depended on the characteristics of the study area. 
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5.2 Possibility of Sentinel 1 Radar imagery for providing flood extent 
maps for urban areas 

5.2.1 Promising points for classification  

The classification of Sentinel 1 Radar imagery provided reasonable results in delineating smooth 

from rough surfaces using the simple method of density slicing in conjunction with a change detection 

method. Similarly to the MSI imagery, the characteristic of open water backscatter is relatively low 

during calm, windless conditions which enables water, a distinctively smooth surface, to be classified 

in SAR imagery (Brisco et al. 2009). More importantly, Sentinel 1 SAR imagery experiences no 

restrictions due to weather conditions like cloud cover, permitting water to be classified even during 

severe weather conditions that cause flooding (Giustarini et al. 2013).  

In the case of a flooding event, the change in medium backscatter values from rough surfaces to the 

lower backscatter values of flooded surfaces was addressed effectively as the land became 

inundated. The twin satellites of Sentinel 1A and 1B with the temporal resolution of a 6-day revisit 

time provided the opportunity to monitor the flood extent by using pre-, during, and post flood event 

images. Due to the availability of Sentinel 1 imagery that corresponded to the ten days of intense 

and continuous rainfall, which led to the flash flood of Townsville city, the classifications of the flood 

extent were reasonably generated with a 6-day gap and effectively described for all the pre-, during, 

and post flood events. However, a shorter time gap between images would have been preferable. 

In terms of polarisation, Sentinel 1 Radar imagery provided the dual polarisation of VV and VH, which 

allowed for a better detection of the flood extent by using the average of both polarisations rather 

than just a single polarisation. During a flood event, especially one caused by heavy rainfall or 

storms, windy conditions can cause turbulence on the surface of the water and this can result in 

higher backscatter (Henry et al. 2006). While VV polarisation effectively detected the body of open 

water, it is sensitive to rough conditions on the water while VH polarisation presents less sensitivity 

to rough water surfaces (Baghdadi et al. 2001; Henry et al. 2006; Shen et al. 2013). Instead of limiting 

the results to those of just an individual polarisation to classify water, Sentinel 1 Radar imagery 

permits the opportunity to average the polarisations so that the sensitivity to surface roughness is 

minimised, thereby improving the final classification.  

5.2.2 The challenging points for classification  

While Sentinel 1 Radar imagery can provide data for water classification, smooth surfaces in 

complex urban environments result in over-classification, thereby reducing the delineation of the 

water class while also creating difficulties for setting the proper threshold (Martinis et al. 2019). In 

urban environments, roads, carparks, airport runways, and some flat rooftops present as smooth 

surfaces which perform similarly in specular scattering as calm water. At the same time, the areas 

that present as smooth surfaces like roads but are surrounded by tall buildings, can conversely 
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experience double-bounce scattering and this can cause the return of high energy to the Radar 

sensor, thereby being interpreted as a rough surface (Schlaffer et al. 2015).   

Vegetation is another problem that can cause misclassification when using Sentinel 1’s C band SAR. 

The flood extent in areas of vegetation remained unseen due to high backscatter that is caused by 

the tree canopy. The C band is a short Radar wavelength that offers a reduced ability to penetrate 

through tree canopies when compared to longer Radar wavelengths like the L and P bands (Liu et 

al. 2019; Xue et al. 2008) and, hence, the C band resulted in an under-classification of floodwater 

under trees or on the forest floor. 

Apart from this, Sentinel 1 Radar medium spatial resolution (especially for 20m Azimuth resolution) 

yielded mixed backscatter values of objects within a pixel, which makes it challenging to delineate 

smooth from rough surfaces in residential areas. The medium spatial resolution of SAR imagery 

does not offer the ability to identify an individual backscatter, such as a double-bounce from smooth 

surfaces (roads) surrounded by buildings (Tsyganskaya et al. 2018). Such medium spatial resolution 

presents many difficulties for interpreting two different objects, especially when dealing with a 

complex environment such as an urban area (Grimaldi et al. 2016). Hence, a finer spatial resolution 

would be required in any further work of this nature (Mason et al. 2008).  

More importantly, Sentinel 1 Radar imagery processing requires the integration of other 

topographical data and this requires significant time to implement the analysis. Shadow along the 

hilly areas presents a low backscatter value as in the case of smooth surfaces, which results in 

misclassification of the water extent. To improve the classification in such areas, the highly accurate 

DEM was integrated into the Radar image processing, otherwise such sloping areas would be 

classified as inundated with water. Moreover, image pre-processing in particular was very time-

consuming and required a significant amount of effort to make these images ready for analysis. 

The 6-day temporal resolution of twin Sentinel 1A and 1B Radar satellite imagery is insufficient to 

provide a satisfactory degree of information considering the time constraints. Although the temporal 

resolution of Sentinel 1 Radar imagery provided an opportunity to acquire satellite imagery for pre-, 

during, and post flood event every six days, some important dates were still missed. For example, 

the major flash flood that occurred in Townsville along Ross River started on the 2nd and continued 

through the 3rd and the 4th of February, 2019 (BMT 2019), but there were no satellite images available 

on these days. The lack of acquisition of such images resulted in the omission of significant 

information necessary for comparison with the map of the potential flood depths in Townsville. 

5.3 Differences and similarities between flood extent maps from satellite 
images versus flood modelling 

The comparison of the flood extent maps derived from Sentinel 1 satellite imagery with the map of 

potential flood depth in Townsville showed partial similarities along the river and bodies of open 
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water, particularly for areas predicted by the flood modelling to be greater than 2m in depth. Radar 

satellite imagery can provide an acceptable and reliable result of water classification, especially for 

open water bodies (Brisco et al. 2009). The imagery corresponded accurately with the predicted 

water depths and water extent along the channel, particularly downstream where the land is less 

steep (Peña & Nardi 2018).  

Despite the similarities, there were still differences between the flood extent classification and the 

flood map for Townsville, with these differences occurring mostly in the residential areas and along 

the foot of the hilly areas. This could be due to a number of factors, including a type of scenario 

model simulation applied in the model and the challenges of the classifications themselves. Different 

scenarios of the flood modelling require different inputs which can result in different predictions 

(Bales & Wagner 2009). When generating flood maps, for instance, if the assumption of a steady 

flow rate used in a flood modelling is set at a low flow rate, the prediction of inundation will be less 

affected than the one modelled with high flows (Bales & Wagner 2009). While the map of potential 

flood depth of Townsville (Appendix D) was generated based on the assumption of water flowing at 

a rate of 2,000 m3/s, the actual water flow rate on 31 January and 6 February 2019 (BMT 2019), the 

dates that the satellite imagery was used for classifying the flood extent was lower than that assumed 

for the map of potential flood depth for Townsville. Hence, it is possible that the areas showing 

inundation in the map of the potential flood depth of Townsville were not reflected in the flood extent 

maps. More importantly, the classifications of the flood extent derived on 31 January and 6 February, 

2019 were not addressed as major flooding, since major flooding occurred along the Ross River 

throughout 2nd, 3rd, and 4th February, 2019. Hence, it is also possible that the areas showing 

inundation in the map of the potential flood depth of Townsville might be detected if there was satellite 

observation data during those days.  

Regardless of the comparison between the flood extent maps derived from the satellite image and 

the map of potential flood depth for Townsville (for the Ross River lower catchment area), the flood 

extent maps derived from the Sentinel 1 Radar satellite images showed flooding ( Appendixes J, K, 

and L) in the upper Bohle River catchment (in the areas of Gumlow, Kelso, and Ras Mussen 

suburbs), the residential areas (in the areas of Condon, Thuringowa Central, and Kirwan suburbs), 

and the low lying areas north east of Townsville airport. However, because this research could not 

access GIS format of the flood modelling that covers the Bohle River catchment, and because there 

was no published map of the potential flood depth for the area, any further comparison could not be 

implemented. 

Although it was challenging for the Radar image to detect smooth surfaces, as mentioned in the 

previous section (section 5.2.2), the image could contribute to identifying differences between the 

flood extent maps and the map of the potential flood depth for Townsville. Due to the lack of 
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appropriate data relating to flood modelling, a quantitative analysis and a more in-depth investigation 

was not conducted and, hence, future work is suggested for further comparisons.  

5.4 Key limitations 

Research requires time to analyse and understand the related issues. Due to time constraints, it was 

not possible to cover all the potential research experiments and some other limitations did occur in 

the research. Hence, the overall outcome of the research may be improved upon in future research. 

5.4.1 Lack of free availability of high-resolution satellite imagery 

Sentinel 2 imagery is currently the highest spatial and spectral resolution that is freely available. 

However, the classification still resulted in some water being misclassified. There are other satellite 

imagery that provide higher spatial and temporal resolutions (Planet, IKONOS, GeoEye etc) or a 

higher spectral resolution (World View 3, ASTER etc) which could contribute to more accurate 

classifications. However, such commercial sensors are expensive for large areas of coverage and 

are unaffordable for the researcher. Although, Planet satellite images may be freely available, for 

research purposes, it still costs money for non-research purposes. 

5.4.2 Lack of free availability of longer wavelength Radar satellite imagery 

Sentinel 1 provides the only dual polarisation VV and VH SAR imagery which is freely available. 

Although the average of these polarisations helped improve the sensitivity of water surface detection 

at a certain level, it does not provide fully adequate information to help distinguish different surface 

objects for a more satisfactory classification, unlike the full multi-polarisations available from Radar 

sensors such as Radarsat 2 and ALOS PALSAR 2. Apart from this, there was a lack of observation 

on the dates when the major flooding occurred due to the temporal resolution of Sentinel 1 imagery, 

which provided results only every six days. 

5.4.3 Lack of ground truth data 

The acquisition of ground truth data is an important requirement behind remote sensing image 

analysis. The uncertainty of the classification requires an assessment to ensure the accuracy of the 

analysis. In this research, the ground truth data of the surface water and the flood extent were not 

physically collected or provided. Therefore, the accuracy assessment of the classifications of surface 

water extent and the flood extent were not estimated from the actual information of the landscape. 

Deriving a GIS layer from a flood model developed by Townsville City Council would have allowed 

further quantitative analysis of how well the classification of the flood extent from Sentinel 1 images 

agreed with the flood model or vice versa.  
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CHAPTER SIX: CONLUSIONS AND FUTURE RESEARCH 

6.1 Conclusion 

This research was primarily conducted with the need to use freely available technology to assist in 

managing and mitigating the impact of flood events - one of the world’s most severe naturally 

occurring disasters. The main aim of the research was to explore the usefulness of freely available 

spaceborne images (Sentinel 1 Radar) in providing satellite information for comparison with flood 

predictions produced by a hydrological flood model. To achieve the aim, proposed objectives 

including the extraction of the flood water extent using Sentinel products and examining the results 

of the image analysis in comparison to the map of the potential flood depths for Townsville were 

covered in this research.   

The research in part answered the questions set and met its aims. It is suggested that water-related 

methods for MSI imagery and the change detection methods for SAR imagery are computationally 

inexpensive, require less processing time (only for MSI imagery) and provide reliable results for the 

water extent and flood extent classification with a degree of accuracy. Surface water detection from 

Sentinel 2 MSI imagery provided highly accurate results when compared to the map of the surface 

water extent, which was derived from multi-temporal Landsat imagery over a long time period. At the 

same time, the results from Sentinel 1 Radar images indicated an acceptable level of accuracy when 

compared to the classification of Sentinel 2 MSI images. The expectation to use the high-resolution 

Digital Elevation Model to improve the classification presented satisfactory results only around the 

hilly areas but not on the relatively flat surfaces like the city and the central area of Townsville due 

to its least invariant topography. The results of the classification of the flood extent, used in 

conjunction with the map of the potential flood depths for Townsville, presented some similarities, 

especially along the river and the bodies of open water, while yielding some differences in residential 

areas. 

Despite some challenges in the detection of flood extent in urban areas when using SAR imagery, 

Sentinel 1 C band SAR images presented as a possibly reliable source for detecting flooded areas, 

particularly for the rural and undeveloped areas. The results from the research indicated that the 

flood extent map derived from the classification are useful for addressing the possible areas that 

were inundated. Hence, as a free satellite resource with a relatively high spatial and temporal 

resolution, it is suggested as an acceptable alternative approach to flood modelling, especially for 

the areas which lack ground data and where cloud obscures optical imagery. Also, some of the 

challenges mentioned in Chapter 5 could be improved in further research.  
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6.2 Recommendations 

From the challenges and limitations that occurred during this research, some recommendations 

are proposed as follows:  

6.2.1 Utilising spatial and spectral resolution 

The misclassification and over-classification of surface water in urban areas and along rivers where 

some vegetation and turbidity are present may be improved upon by increasing to higher spatial and 

spectral resolutions of MSI imagery. this may be achieved by using cost-bearing satellite sources 

such as World View 3 imagery, for example, which uses one panchromatic band, eight multispectral 

bands, eight SWIR bands, and 12 CAVIS bands at a spatial resolution of 30 m for CAVIS, 3.7 m for 

SWIR, 1.24m multispectral, and up to 31 cm for panchromatic. A higher spatial resolution will help 

reduce the volume of mixed spectral reflectance or the number of objects sensed within a pixel, 

which at the same time will help better identify objects. A higher spectral resolution will provide a 

more distinct spectral signature of objects and, hence, may help in reducing the confusion between 

the spectral reflectance of each object.  

6.2.2 Utilising multi bands and multi polarizations 

The use of cross polarisations and longer wavelength SAR, for example S or L band, could reduce 

classification confusion related to water surface roughness as induced by windy conditions while 

also improving the ability to penetrate through tree canopies (L Band) and, hence, better detect water 

under tree cover as is possible, for instance, with ALOS PALSAR-2 imagery. Moreover, these 

applications could provide better information that may help delineate surface features. An increase 

in information provided by multi bands and multi polarisations may lead to a better opportunity to 

classify not only water and non-water classes but also other classes. In 2022, there is a possibility 

that The NASA-ISRO Synthetic Aperture Radar or NISAR satellite (a mission under the cooperation 

between the National Aeronautics and Space Administration (NASA) and the Indian Space Research 

Organization) will freely provide L band and S band Synthetic Aperture Radar imagery (NASA 2019). 

The availability of these bands’ frequencies and their multi-polarisations may provide better 

understanding about flood hazards, offering better classifications of flood extent in future research. 
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APPENDICES 

Appendix A: Map of the study area 
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Appendix B: Rainfall, temperature, and wind speed data at Townsville Aero Station (station 
number 032040) 

Source: (Bureau of Meteorology 2019c). 

1/1/2019 22.7 32 1.8 ENE 48 12:36

1/2/2019 23.3 31.9 0 ENE 48 12:47

1/3/2019 22.6 32.9 0 ENE 33 16:43

1/4/2019 23.1 32.7 0 ENE 44 13:59

1/5/2019 23 31.8 0 E 31 9:49

1/6/2019 23.9 32.5 0 NE 41 15:08

1/7/2019 23.9 32.6 0 ENE 43 16:02

1/8/2019 23.9 33.8 0 N 31 13:14

1/9/2019 24.9 38.3 0 SSW 41 10:41

1/10/2019 24.6 29.5 12.2 SE 54 22:39

1/11/2019 25.4 31.4 4.2 ENE 41 8:09

1/12/2019 24.3 31.2 0.6 ENE 37 11:26

1/13/2019 22.3 32.4 0.2 E 46 12:51

1/14/2019 25.1 32.8 0 ENE 46 13:09

1/15/2019 25.3 31.6 0 ENE 44 16:02

1/16/2019 21.7 32.2 1.6 ENE 43 14:51

1/17/2019 24.5 31.4 0 NE 39 12:11

1/18/2019 24.9 31.4 0 ENE 43 12:00

1/19/2019 25.9 32.3 1 ENE 39 11:50

1/20/2019 22.9 32.4 0 E 52 13:21

1/21/2019 23.3 32.5 0 E 44 13:45

1/22/2019 23.8 32.5 1 ENE 46 15:25

1/23/2019 25.5 32 0 E 43 12:26

1/24/2019 25.4 32.8 0 ENE 43 14:32

1/25/2019 25.6 31 0 ESE 41 9:56

1/26/2019 25.7 31.4 0 E 48 15:44

1/27/2019 23.3 27.6 30 ENE 52 2:15

1/28/2019 24 26.7 51.6 ESE 72 3:04

1/29/2019 23.9 27.7 80 ENE 48 13:18

1/30/2019 24.1 27.1 108.6 E 61 10:33

1/31/2019 24.6 26.9 153 ENE 54 23:38

2/1/2019 24.4 26.5 216.4 NE 59 9:42

2/2/2019 24.6 25.3 141.8 ESE 63 23:20

2/3/2019 22.5 27.4 171.6 ESE 76 22:24

2/4/2019 22.8 26.9 181.4 ESE 59 2:48

2/5/2019 24.2 29.2 42.2 ESE 43 0:51

2/6/2019 24.8 29 110.4 E 54 9:45

2/7/2019 24 27.7 16.4 SE 44 16:11

2/8/2019 23 29 118 SE 39 1:47

2/9/2019 24.5 31.9 1 SSE 33 10:01

2/10/2019 24.7 34.1 0 ESE 26 21:55

2/11/2019 25.4 36.4 0 ENE 30 18:59

2/12/2019 25.2 37.6 0 SSE 35 13:53

2/13/2019 22.9 36.1 0 NW 26 16:07

2/14/2019 24.3 39.3 0 ENE 43 15:56

2/15/2019 27 31.9 0 ENE 39 13:51

2/16/2019 24.9 32.4 0 NE 35 11:52

2/17/2019 25.5 31.3 0 NE 31 14:07

2/18/2019 25.3 31.6 0.2 NNE 28 12:27

2/19/2019 27.1 34.4 0 NE 37 20:32

2/20/2019 26.3 40.3 0 WSW 39 14:17

2/21/2019 23.1 40.7 0 S 43 14:02

2/22/2019 24.2 33.6 0 ENE 39 13:03

2/23/2019 27 31.4 0 E 41 9:22

2/24/2019 23 30.7 7 E 48 4:50

2/25/2019 23.8 31.6 2.4 E 46 11:26

2/26/2019 22.4 0.2

2/27/2019 22.2 31.5 E 52 19:21

2/28/2019 23.2 31.6 0 ENE 46 15:42

Time of maximum 

wind gust
Date

Minimum temperature 

(DegreeC)

Maximum temperature 

(DegreeC)
Rainfall (mm)

Direction of 

maximum wind gust 

Speed of maximum 

wind gust (km/h)
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Appendix C: Map of the occurrence of surface water derived from Water Observation from 
Space  
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Appendix D: Map of potentially inundated properties (Townsville) 

Source: (City of Townsville 2019c). 
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Appendix E: Map of Ross River plan 

Source: Queensland Government 2013. 
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Appendix F: Geometric correction for Sentinel 2 imagery derived on 25 November, 2018 

Points Xi Yi Xr Yr Rx Ry RMSE

GCP1 465166.321 7848692.594 465166.808 7848694.766 0.487 2.172 2.226

GCP2 484841.26 7844745.988 484840.752 7844743.352 -0.508 -2.636 2.684

GCP3 468758.88 7870177.67 468761.806 7870180.075 2.926 2.405 3.788

GCP4 482397.798 7870164.974 482396.581 7870161.844 -1.217 -3.13 3.358

GCP5 485866.729 7859473.781 485868.082 7859475.32 1.353 1.539 2.049

GCP6 468592.243 7859153.231 468593.383 7859143.22 1.14 -10.011 10.076

GCP7 479077.857 7852188.82 479077.883 7852193.595 0.026 4.775 4.775

GCP8 471681.982 7856538.724 471682.489 7856537.784 0.507 -0.94 1.068

GCP9 479753.219 7856873.221 479752.121 7856872.686 -1.098 -0.535 1.222

GCP10 474801.091 7869454.899 474801.035 7869456.191 -0.056 1.292 1.294

GCP11 474871.745 7870076.015 474871.598 7870076.322 -0.147 0.307 0.341

GCP12 475549.273 7869405.727 475549 7869406.033 -0.273 0.306 0.41

GCP13 477096.297 7869251.393 477095.687 7869251.854 -0.61 0.461 0.765

GCP14 477215.479 7869684.614 477214.734 7869685.226 -0.745 0.612 0.964

GCP15 472680.644 7864478.105 472681.302 7864477.35 0.658 -0.755 1.001

GCP16 483664.376 7862625.978 483664.458 7862625.156 0.082 -0.822 0.826

GCP17 482904.665 7859224.056 482905.12 7859226.223 0.455 2.167 2.214

GCP18 467279.842 7862504.041 467277.15 7862509.051 -2.692 5.01 5.687

GCP19 474748.116 7868938.162 474750.665 7868937.229 2.549 -0.933 2.715

GCP20 478154.102 7868555.198 478153.969 7868555.178 -0.133 -0.02 0.135

GCP21 477145.27 7868665.252 477145.207 7868665.288 -0.063 0.036 0.072

GCP22 478215.209 7869163.726 478215.086 7869163.728 -0.123 0.002 0.123

GCP23 468060.312 7867158.578 468057.793 7867157.277 -2.519 -1.301 2.835

2.201217391Average RMSE
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Appendix G: Geometric correction for Sentinel 2 imagery derived on 13 February, 2019 

 

Points Xi Yi Xr Yr Rx Ry RMSE

GCP1 465169.721 7848693.295 465171.314 7848692.33 1.593 -0.965 1.862

GCP2 484864.871 7844743.512 484862.767 7844743.075 -2.104 -0.437 2.149

GCP3 468767.468 7870170.212 468765.174 7870170.912 -2.294 0.7 2.398

GCP4 482396.517 7870158.552 482394.221 7870166.339 -2.296 7.787 8.118

GCP5 485870.468 7859473.056 485871.655 7859473.931 1.187 0.875 1.475

GCP6 468597.178 7859143.847 468598.122 7859141.559 0.944 -2.288 2.475

GCP7 479083.927 7852190.728 479083.761 7852192.634 -0.166 1.906 1.913

GCP8 471682.993 7856535.488 471678.994 7856538.419 -3.999 2.931 4.959

GCP9 479754.388 7856864.178 479761.888 7856864.235 7.5 0.057 7.5

GCP10 472384.445 7871905.853 472386.772 7871905.356 2.327 -0.497 2.38

GCP11 474808.635 7869455.163 474812.527 7869456.143 3.892 0.98 4.014

GCP12 474878.417 7870078.388 474878.666 7870075.67 0.249 -2.718 2.729

GCP13 475551.855 7869408.695 475556.74 7869409.339 4.885 0.644 4.927

GCP14 477101.902 7869255.689 477100.677 7869256.728 -1.225 1.039 1.606

GCP15 477219.254 7869688.207 477217.075 7869691.56 -2.179 3.353 3.998

GCP16 472690.575 7864477.07 472679.942 7864482.123 -10.633 5.053 11.773

GCP17 483669.883 7862626.606 483666.933 7862623.883 -2.95 -2.723 4.015

GCP18 482907.507 7859223.216 482910.318 7859221.804 2.811 -1.412 3.145

GCP19 467284.694 7862507.624 467284.53 7862505.875 -0.164 -1.749 1.757

GCP20 474756.257 7868939.904 474759.749 7868939.599 3.492 -0.305 3.505

GCP21 478159.016 7868559.784 478155.547 7868558.181 -3.469 -1.603 3.821

GCP22 477145.783 7868669.342 477148.586 7868664.939 2.803 -4.403 5.219

GCP23 478222.021 7869170.718 478219.771 7869162.05 -2.25 -8.668 8.955

GCP24 468067.028 7867159.693 468069.072 7867162.136 2.044 2.443 3.186

4.078291667Average RMSE
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Appendix H: Map of water extent in dry conditions (pre-flood) derived from Sentinel 2 
images (26 October, 2018) 



75 

Appendix I: Map of water extent in wet conditions (post flood) derived from Sentinel 2 image 
(13 February, 2019) 
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Appendix J: Map of flood water extent (during flood) derived from Sentinel 1 image (31 
January, 2019) 
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Appendix K: Map of flood water extent (during flood) derived from Sentinel 1 image (at 5:44 
A.M. on 06 February, 2019) 

 



78 

Appendix L: Map of flood water extent (during flood) derived from Sentinel 1 image (at 18:43 
P.M. on 06 February, 2019)
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Appendix M: Map of surface water extent (post flood) derived from Sentinel 1 image (at 5:44 
A.M. on 12 February, 2019) 
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Appendix N: Map of surface water extent (post flood) derived from Sentinel 1 image (at 
18:42 P.M. on 12 February, 2019) 
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Appendix O: Map of high spatial resolution of Aerial Base Imagery (derived from Google 
Earth Engine 2019) 
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